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Abstract

Multitarget tracking is a state space estimation problem where false measurements, rnissed

detections, and uncertainty in the source of measurements provide the challenge. The
Probabilistic Mutti-Hypothesis Tracker (PMHT) is an algorithm which solves the Multi-
target tracking problem through application of the Expectation Maximisation algorithrn.
This algorithm has a number of advantages over traditional techniques, but has not under-
gone the same degree of development as more established algorithms. This thesis presents
extensions to the PMHT which both generalise its fundamental problem formulation, and
address practical issues arising in the use of real sensors'

The PMHT is extended to incorporate augmented measurements, which consist of
the normal state observations, and classification measurements not considered under the
standard PMHT. These classification measurements are interpreted as observations of
the assignments, and a PMHT algorithm is derived. The classification measutements
improve data association, and simulations are used to demonstrate the effect this has on
state estimation accuracy.

The probabilistic assignment model, central to the PMHT, is generalised to allow for an

assignment prior distribution which varies smoothly with time. The prior is modellecl as a

random process following a first order Markov chain. Simulations are used to demonstrate
the performance of the algorithm under a time evolving assignment prior.

The PMHT assumption of a constant and known number of targets is relaxed by
developing automatic track initiation schemes which are used to reject superfluous can-

didate models. Several approaches, similar to those used in other tracking algorithms,
are considered, and the best of these is found by simulations involving various clutter
conditions.

The above extensions are applied to the problem of Over the Horizon Radar (OTHR)
tracking and a prototype OTHR tracker is developed. A number of OTHR specific prob-
lems are also addressed, and the performance of the PMHT extensions is measured on
data recorded from an operational OTHR. The performance of the PMHT prototype is
compared with the existing tracking algorithm, which is based on the Probabilistic Data
Association Filter.
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Find rest, O my soul, in God alone;
for my hope comes from him.

He alone is my rock and my salvation;
he is my fortress; I will not be shaken.

My salvation and my honour depend on God;
he is my mighty rock, my refuge.

Trust in him at all times, O people;
pour out your hearts to him,
for God is our refuge.

Psalm 62, v 5-8, NIV translation
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Chapter 1

Introduction

rftHtr term tracking is used to describe approaches used where the goal is to learn about
I an environment through the application of statistical rnodels to corrupted and am-

biguous data. This environment is a dynamic enigma, and it is usually trends within the
model that provide information of interest. Tracking techniques can be applied to various
problems, such as analysing stock prices, biomedical monitoring, mobile telecommunica-
tions, and remote sensing. This thesis is concerned with the last of these applications,
the study of which is referred to as target track'ing or multi,-target tracki,rug depending on
the complexity of the problem at hand.

There is a variety of different types of sensors for which target tracking is applied. .4c-
ú¿ue sensors observe distant objects by illuminating them with an energy source and mea-
suring the reflected enelgy. Alternatively, passiue sensors observe objects by measuring
characteristic emissions of the object (such as engine noise or active sensor transmissions),
AIso, these sensors operate in different media, and use different types of radiated energy.
Examples include underwater and atmospheric propagation, using electromagnetic and
sonic energy. While these considerations have significant influence on the difficulty of the
target tracking problem, and infer niceties that affect implementation, they do not alter
the techniques used for the problems' solution. In all permutations, the sensor is fun-
damentally a device that rneasures incident energy over a spatial region, and the tracker
is an algorithm that seeks to locate and characterise objects of interest in this region by
modelling the temporal variation of this energy.

Solution of the multi-target tracking problem requires the simultaneous completion of
two tasks: esttmati,on and data assoc'iat'ion Estimation is the task of finding the best
model parameters to describe the observed data. The method used to complete this
task is generally a function of the assumed model, resulting in a compromise between
model fidelity and ease of model parameter optimisation. It is intuitive that independent
objects in the sensor field of view should be represented by independent components
in the data model. However, the sensor measurements (namely the observed incident
energy, or a statistic of it) do not identify which object caused them. If data from one
source is mistakenly used in the parameter optimisation of a component representing a
different source object, then that optimisation becomes degraded. The task of assigning
data to the components of the data model is data association. There are many different
approaches for data association and this is generally the distinguishing feature that gives
rise to different tracking algorithms.

This thesis is primarily concerned with a particular tracking algorithm called the Prob-
abilistic Multi-Hypothesis Tracker (PMHT). This algorithm is a relatively new competitor
among more established rivals, first introduced by Streit and Luginbuhl in 1995 [SL95].

1



2 CHAPTÐR 1. INTRODUCTION

The advantage offered by the PMHT is that the complexitSz 6f the algorithm is linear with
time and with the number of components in the data model (the number of objects in
the sensor field of view). This makes it realisable without cornpromising approximations,
and gives the possibility of analysing data over a temporal batch, potentially increasing
sensitivity and accuracy. The PMHT also uses a mixture paradigm which makes the
use of sophisticated models simpler. Such models are often used for manoeuvring target
tracking and in difficult interference conditions.

1.1 Motivation
A common shortcoming of rnost tracking approaches is that they suffer from a combina-
torial growth in algorithmic complexity with the number of targets and the number of
measurements. This growth is also exponential with time if batch processing is used. The
reason for the complexity problem is that standard tracking algorithms assume a measure-
ment model that allows, at rnost, one measurement per target. This infers a dependency
between measurements, and the resulting assignment problem is NP complete. The ex-
plosion of computation requirements makes it impractical to implement such algorithms
without making approximations that may degrade performance. In contrast, the PMHT
has an algorithmic complexity that grows only linearly with these data size parameters.
This makes the PMHT an attractive option for multi-target tracking applications.

The Jindalee Facility at Alice Springs (JFAS) is a skywave Over the Horizon Radar
(OTHR) that provides wide area surveillance of Australia's Northern approaches. This
sensor was flrst developed by the Defence Science and Technology Organisation (DSTO)
and its continued enhancement is a research focus for Intelligence, Surveillance and Re-
connaissance Division (ISRD). The current tracking algorithm used for JFAS is called
the Unified Probabilistic Data Association Filter (UPDAF) [Colg9, CD03] and is a single
target tracking algorithm. This means that the algorithm assumes that the association
of measurerrents with tracks can be performed independently for each track. This is
a coarse approximation of the type described above, that allows linear cornplexity with
the number of targets, at the cost of estimation accuracy when targets are close to one
another. However, since JFAS is a surveillance sensor) timely algorithm performance is
crucial, and estimation performance is secondary to execution time.

The single target approximation is valid provided that the targets are sufficiently
separated that there is no contention for measurements. This is not always the case. In
OTHR, the sensor resolution is tnuch coarser than line of sight microwave radar (typically
tens of kilometres). This increases the distance between targets at which the single target
approximation breaks down. Also, skywave OTHR relies on propagation by refraction
through the ionosphere, an area of charged particles in the atmosphere. This is a multipath
medium, and often these paths may be closely spaced, due to the sensing geometry.
\Ã¡ithout a highly accurate ionospheric model, the tracking algorithm must treat each
path as an independent target. Thus, apparent closely spaced rnulti-target scenarios may
arise even when only one target is present due to the multi-path medium.

The need for a multi-target tracking algorithm that was capable of real time operation
motivated the investigation of the PMHT. However, the PMHT is a young algorithm, and
extensions have been required to produce an operationally practical tracking algorithm.
The need for these extensions prompted the research described in this thesis.
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L.2 Overview of Multi-target TYacking

Multi-Target Tracking, as described previously, is the problern of monitoring dynamic
objects of interest in the field of view of a sensor. This is done by applying a state space

model. At discrete intervals, referred to as scans) the sensor collects an image of the
received energy over the field of view. According to standard practice, this image is put
through localisation and thresholding, resulting in a set of point lneasurerlents. The set
of measurements at scan ú is denotedZt. The state of the rnth target at scan ú is denoted
by æT. The tracking problern is then to find the optimal estimate for æ1, for all targets
(all values of m), given all available information. Often the tracker is required to operate
in real-time, that is the state at scan ú should be estimated irnmediately that the scan is
received. Under this requirement, the tracker has available measurements from scan 1 to
ú, namely Zt,. . .Z¿. Thus the task of tracking in this case is to evaluate P (nilz1,. . .Zr).
Alternatively, the tracker rnay have a historical batch of data available, in which case

there are measurements from scan 1 up to some ? ) ú. In this case, the tracker is able
to use future measurements to estimate the state, and the tracking task is to evaluate
P (æilz1,. ..Zr). The optimal estimator is then obtained from this probability density
function (pdf ), according to the optimality criterion.

The difficulty in this task is that there are multiple targets present, the detector makes
false detections, and targets are not always detected. So, it is not obvious to the tracker
which measurements from the data available are caused by target m and which are due
to other sources) such as other targets or various false detection processes referred to as

clutter. The true assignment of measurements at scan ú to targets and clutter is denoted
as K¿. If Kú were known, then the state estimation problem would be relatively easy,

and could be solved using standard estimation techniques. However, K¿ is unknown,
and resolving this uncertainty is the data association problem, a key part of tracking
algorithms.

1.2.L PMHT Measurement Model
The fundamental difference between the PMHT algorithm and other tracking approaches
is the assumed measurement model. Under the standard model, prior processing is as-

sumed to extract sufficient statistics of the sensor data that essentially correspond to
observations of the location of scatterers in the sensor field of view. It is assumed that
this part of the measurement process produces at most one observation per scatterer.
Thus, the standard assumption is that at most one observation can be due to a target
track. This makes the track to observation association process dependent because the
assignment of one observation may alter the possible assignment options for the next.

This is not the case under the PMHT model. The PMHT instead assumes that the
true assignment of measurements is an independent random process with an unknown
prior probability mass function (pmf ). The result of this assttmption is that the track
to observation association is independent for different observations. This independence is

what admits a reduced computational complexity for the PMHT.
The difference between the assumed measurement process for the standard tracking

paradigm and the PMHT is highlighted by the Bayesian Inference Networks (BINs) shown
in figure 1.1. In the BIN, each random variable is represented as a circle, and directed
Iines linking the circles indicate the dependence of one variable upon another. There are

n¿ different measurements in scan ú, ztr¡. . . ztnt, and each of them is dependent on the
model states and the assignment indices.
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(a) standard measurement model (b) PMHT measurement model

Figure 1.1: Measurement Model BINs

Under the standard measurement model, there is an assignment index for each target
model, indicating which measurement, if any, is the one due to that target. Unless merged
measurements are allowed, the assignment indices of different target models are not al-
Iowed to indicate the same measurement. Thus, all of the measurements are dependent
on the same indices, and all of the measurements need to be taken into account in the
estimation of these indices.

In contrast, under the PMHT model, there is an independent index for every mea-
surement. Each of these indices is an independent realisation of an underlying random
process. Since each index only affects one measurement, only that measurement needs
to be used to estimate the index. So, the PMHT model allows the algorithm to deal
with each measurem.ent independently, and this makes the assignment problem much less
compuationally taxing.

1.3 Thesis Overview
The thesis deals with extensions of the Probabilistic Multi-Hypothesis Tracker. These
extensions expand the tracking algorithm to accommodate a broader range of realistic
applications.

The first key contribution of this thesis is the extension of the PMHT
algorithm to incorporate augmented measurements that are treated
as observations of the assignments.

A key feature of the PMHT algorithm is that it assumes that the assignment of
each measurement is an independent realisation of an underlying random process. When
the probability mass of this process is unknown, then the PMHT is able to estimate it.
However, it requires the limiting constraint that the probability mass is fixed or time
independent.
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The second key contribution of this thesis is the generalisation of
the PMHT measurement model to assume a measurement assign-
ment prior that is a random process which evolves according to an
arbitrary discrete Markov Chain.

An important problem in practical tracking filters is automated track decisions. Over
time, new targets enter the sensor surveillance region, and old targets leave. It is desirable
for a practical filter to automatically initiate new tracks and terminate old tracks in such
cases. The PMHT assumes that the number of rneasurement models is fixed and known.

The third key contribution of this thesis is the extension of the
PMHT algorithm to include methods for automatic track initia-
tion and termination. These methods include approaches related
to model order estimation, and the use of a Hidden Markov Model
to describe track quality.

In order to demonstrate the performance of the above PMHT enhancements, the
PMHT algorithm was applied to the skywave OTHR tracking problem and tested using
recorded radar data from the JFAS radar.

The fourth key contribution of this thesis is the application of the
PMHT algorithm to tracking of data recorded from the JFAS Over
the Horizon Radar.

The structure of the thesis is now described. The numbered references correspond to
the publications listed on page xxv.

Chapter 2 presents a survey of relevant research in multi-target tracking. In particular,
the various methods for data association are described and existing methods for automatic
track decision making and augmented measurement data are reviewed. The chapter also
gives a thorough surnmary of advances made to the original PMHT algorithm which
improve estirnation performance and provide solutions for the problems of manoeuvering
targets and clutter.

Chapter 3 defines the multitarget tracking problem in clutter. The Kalman Filter and
the Probabilistic Multi-Hypothesis Tracker are reviewed.

Chapter 4 derives a method for incorporating classification measurements into the
PMHT framework. The resulting algorithm is referred to as the PMHT-c [3], [8]

Contribution: The development of an enhanced PMHT algorithm incorporat-
ing classification measurements, including the estimation of the
unknown probability mass function of these measurements, the
PMHT-c.

The performance of the PMHT-c for classification measurements of varying accuracy
is investigated through simulation. The degradation in performance experienced when the
probability mass of the classification measurements is estimated, rather than known, is

examined. The sensitivity of the PMHT-c algorithm to a mismatch between the assumed
probability mass and the true probability mass is also analysed by simulation [4].

5
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Contribution: Analysis of the sensitivity of the PMHT-c to an incorrectly assumed
probability mass for the classification measurelrents, and the algo-
rithm's ability to adaptively estirnate this probability mass.

Chapter 5 presents a generalised assignment model for the PMHT, referred to as the
PMHT with Hysteresis. Under this model, the assignment prior probability has a discrete
state (a Bayesian hyperparameter)which evolves according to a Markov Chain with an
arbitrary state space and statistics. Thus, the assignment state is a Hidden Markov
Model (HMM). Two PMHT variants are derived by treating the assignment state as
missing information, and by estimating the assignment state [10].

Contribution: The development of two PMHT algorithms applicable to problems
where the assignment prior varies smoothly with time. These algo-
rithms utilise a discrete state space model for the assignment prior.
The first, PMHT-ym, treats the assignment state as missing data
and calculates its probability using the HMM Smoother, whereas
the second, PMHT-ye, estimates the assignment state sequence us-
ing the Viterbi Algorithm.

Chapter 6 considers the problem of automated track initiation and termination with
the PMHT. To provide automated track initiation, automatic initialisation must be per-
formed. A scheme is presented based on a generalised version of the homothetic PMHT.
This method uses the innovation covariance matrix as a means for automatic inflation of
the measurement vatiance, thus assisting initialisation by smoothing the objective func-
tion at early iterations.

Contribution: An initialisation scheme for the PMHT based on modelling the
measurement process as a mixture of the true measurement process
and a process defined by the innovation covariance matrix.

Different approaches for automatic track initiation are then considered, each based on
the formation of candidate tracks. The candidate tracks are assigned a quality statistic
and this statistic is used to accept or reject the candidates. Model Order Estimation
techniques are used to derive a candidate quality measure. A Hidden Markov Model
approach is also developed by applying the PMHT with Hysteresis to the track initiation
problem. The ui,si,bili,tyl model used for initiation with the Integrated Probabilistic Data
Association Filter (IPDA) is identified as a special case of the Hysteresis model, and thus
the PMHT-ye and PMHT-ym are used to provide a measure of track quality integrated
with the state estimation 16].

Contribution: Two algorithms for initiating tracks with the PMHT, utilising a
Hidden Markov Model for track quality, analogous to the IPDA
approach to track initiation.

Simulated statistics of the various candidate quality measures are used to produce
estimated Receiver Operating Characteristic (ROC) curves for the track initiation decision
[5]. These ROC curves are used to analyse the discrimination of false candidates and valid
candidates for each initiation approach.

lThis approach also referred Lo as perce'iuabi,li,ty, obseruabi,lity and track etistence by different authors
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Contribution: Comparison of the effectiveness of different track quality measures
in the discrimination of false and valid tracks, through use of a
Receiver Operating Characteristic curve for track initiation.

In chapter 7, an implementation of the PMHT for over the horizon radar is developed.
The PMHT-c algorithm is incorporated for clutter density parameterisation [1]. The
effectiveness of the PMHT-c for this application is compared with a direct feature tracker
which bypasses the intermediate classification stage [2].

Contribution: Application of the PMHT-c to clutter density estimation for over
the horizon radar.

A solution for the particular initialisation problems for Over the Horizon Radar am-
biguous doppler measurements is developed, and the initiation schemes of chapter 6 are
tested on recorded radar data from the JFAS radar.

Contribution: Application if the PMHT-c, initialisation, and initiation techniques
to recorded radar data from the JFAS over the horizon radar.

ChapterS presents a comparison of the performance of the PMHT and PDAF for track
initiation. ROC curves are used to analyse the false and valid candidate discrimination for
simulated data [7] and for data recorded from the JFAS radar. The PMHT performance
on radar data is compared with the current JFAS tracking algorithm, which is an enhanced
PDAF tracker [9] A preliminary comparison of other features of the PMHT and PDAF
algorithms is found in [12] following the technique in [11] but is not included in this thesis.

Contribution: Comparison of the track initiation performance of the PMHT and
the PDAF on simulations and on recorded radar data.

Chapter 9 presents a summary of the thesis and completes with conclusions.

7
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Chapter 2

Background

l\ IuLTr-TARGET tracking is fundamentally a problem of state estimation confounded by
lVI un""rtainty in the observation pïocess. The result of this uncertainty is that track-
ing algorithms must be able to simultaneously solve two very different problems. Firstly,
the tracking algorithm must be able to assign observations to each target track. This
process is often referred to as Data Association and is in essence an integer programming
problem.

Given a collection of observations associated together, the tracking algorithm must
secondly be able to estimate the state of the target. If the algorithm is provided with a

batch of measurements consisting of observations at different times, then the estimator is
commonly referred to as a smoother. A smoothing algorithm uses observations from the
past and the future to estimate the current target state. If the state must be estimated
in a time recursive fashion (so that the only data available is the observation from the
current time and previous observations) then the estimator is commonly referred to as a
filter. It is generally possible to derive a filter from the smoothing algorithm.

2.L State Estimation
Given a particular collection of data, it is often possible to determine several optimal state
estimates based on different optimality conditions. Usually, such optimality conditions
can be stated in terms of the probability density function (pdf) of the states given the
observations. Thus, the problem of state estimation can be formulated as the problem of
calculating the probability density of the state.

Under general conditions, it is not possible to obtain a closed form solution to the
problem of state estimation. However, there are some special cases where the solution
is known. If the target state is a discrete variable, then it can be estimated using the
Hidden Markov Model (HMM) Smoother UR86]. The HMM Smoother is a finite length
algorithm with dimension equal to the dimension of the state space. The HMM Smoother
is generally not used in multltarget tracking because the target state (typically position
and velocity) is continuous. It is possible to discretise the target state space using a

sampling grid, but such an approach is an approximation, and will usually lead to a very
large grid size since the smoother must have reasonable precision over a large area.

The second case where a closed form estimator exists is when the system is linear and
the random elements are Gaussian random variables. Under these conditions, the optimal
estimator is the Kalman Smoother [Kal60, IiB61]. The Kalman Smoother is a finite length
algorithm based on a recursion of the mean and covariance of the state probability density

9
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function. Many target tracking algorithms use the Kahnan Smoother or its filter form
for state estimation |BSL95, BlaS6]. Howevet, tnost tracking problems are not linear, and
the Kalman Smoother cannot be used directly. Instead, an approximate solution to the
problem is achieved by linearising around a point and solving for the linearised system
with a Kalman Smoother. This approach is referred to as the Extended Kahnan Smoother
and is the heart of rnany practical target tracking algorithms. The Kalman filter is usually
specified as update equations for the mean and covariance of the target state probability
density function. However, an equivalent filter can be written using a recursion for the
information matrix (the inverse of the covariance) and this version is referred to as the
information filter, There are numerous books that discuss the Kalman filter in detail,
including [AI\,f79, BSF88, CC99].

There also exist certain classes of non-linear problems where a closed form solution
exist. An example of this is the Benes Filter [Ben81, FBR02]. However, these special
non-linear classes of problem are not relevant to target tracking.

A recent approach to uon-linear non-Gaussian estimation is referred to as the particle
filter. The particle filter is a nurnerical approximation to the optimal non-linear non-
Gaussian solution based on Monte Carlo integration techniques IDDFGOI]. The particle
filter uses a finite number of sarnples to represent the state probability density function
and uses the exact non-linear system equations to propagate these samples. Since the
filter is able to use the exact system rather than a functional approximation, the particle
filter is also useful for problems containing constraints on the state space [Cha00, GR01].

2.2 Data Association
\Mhen targets are closely spaced, or when the sensor produces false detections, it becomes
difficult to discern which measurement belongs to which target. Data Association is the
process by which an algorithm assigns measurements to targets. In general, the assign-
ment of meâsurements to targets can be hard or soft. Hard assignment is where the data
association approach makes a decision about which measurement (if any) is due to a par-
ticular target and assigns that measurement to the target (and not others). The target
state estimate (i.e. the track) is updated assuming that the assigned measurement is the
correct measurement for this target. Soft assignment is where more than one measure-
ment is assigned to each target with a certain probability. Rather than choose a sirrgle
measurement to update the track, the track is updated using many possible assignments
and the collection of updated states is combined using the assignment probabilities, usu-
ally in a Bayesian framework. If the data association is performed over a batch of data, it
may be possible for the tracking algorithm to change the measurement assignment based
on future data.

A data association approach is referred to as being either sr,ngle-target or multt-target.
A single-target association approach considers each target track in isolation and ignores all
other tracks when assigning measurernents. Single-target association inherently assumes
that the assignment of measurements is independent for different tracks, which is gener-
ally not a valid assumption. Single-target association is used to simplify the assignment
problem, but may cause significant performance degradation if the targets are closely
spaced. In contrast, multi-target association algorithms jointly assign measurements to
many tracks simultaneously. To avoid impractical computational requirements, it is usu-
ally necessary to partition the tracks into clusters that have little effect from other tracks
outside the cluster. This is an approximation made for the sake of processing time, and
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may again cause performance degradation if the tracks outside the cluster are too close

to the cluster.
Data Association is described in detail in many tracking texts, for exatnple [BSÞ-88,

BSL95, Bla86, BP99].

2.2.t Nearest Neighbour
The simplest form of data association is nearest neighbour association [BSL95]. Using
nearest neighbour, the observation that is closest to the predicted measurement for a

track is assumed to be the correct measurement. Nearest Neighbour is a single-target,
hard assignment rule.

Since not all measurelnent components will have the same accuracy (and some may
be coupled) the distance is usually normalised using the target measurement covariance
or the innovation covariance. When this is done, the nearesú measurement is also the
lneasurement with the highest likelihood given the current state estimate.

If the target is not detected on a particular scan, then the nearest neighbour will always
be the wrong tneasurement to assign to the track. If the false measurement assigned to
the track is distant from it, then updating the track with it will cause the track to diverge
from the target trajectory. To avoid this, a validation gate may be defined. The validation
gate determines a region over which it is acceptable to assign measurements to the track.
Usually, this takes the form of a maximum distance to the predicted target measurement.
Such a validation gate defines an ellipsoid in the measurelnent space outside of which
assignment is not allowed. Measurements inside the validation gate are called validated
measuïements. The modified nearest neighbour rule is then to assign the closest validated
measurement to the predicted target measurement.

Nearest neighbour association tends to perform poorly in cluttered environments where
tracks are easily seduced by false detections [BSL95].

2.2.2 Tback Split
On any scan where there is more than one measurement inside the validation gate for
a track, there exists several possible assignment hypotheses. Either the target was not
detected at all, or it caused one of the validated measurements. The nearest neighbour
approach chooses one of these hypotheses - that the nearest measurement was due to the
target. However, this may not necessarily be the correct hypothesis. For example, if the
target manoeuvres, then the target measurement may be distant from the measurement
predicted by the track. In such a case, there is a high probability that a false detection will
be closer to the track than the true target detection, and the nearest neighbour approach
will fail. One way of addressing this issue is to split the track into several tracks, each

of which chooses a different assignment hypothesis. There now exists a separate track
for each hypothesis, and the assignment decision can be deferred until a future scan.
This approach is known as Track Split. The track split approach is a single-target hard
association rule. More detailed descriptions of the track split approach can be found in
[BSF'88, BSL95, Bla86, BP99].

As the number of scans received increases, the number of tracks in the system will
grow exponentially. For example, if we receive two validated measurements per scan, the
number of tracks will double with every scan. To deal with this, a track scoring systetn
is used to discard the least acceptable tracks and keep the number of tracks manage-
able. This is typically done by accumulating the squared inuovations (the innovation
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is the difference between the observed measurement and the predicted measurement).
The accumulated squared innovations are proportional to the log of the likelihood of the
measurement sequence, under Gaussian tneasurement statistics.

Track split is an ad hoc approach designed to allow hard assignment while still hedg-
ing bets over which measurement to use for that assignment. The track split association
method has two major deficiencies. Firstly, it performs single-target association. If the
scene contains closely spaced targets, then single-target association becornes confused and
will perform poorly. Secondly, it produces a continual supply of new tracks from a sin-
gle target. Because track split treats each of these spawned tracks independently, it is
inevitable that the algorithm will produce duplicate tracks following the same target re-
turns. Such duplicate tracks are redundant, and unless dealt with will ultimately consume
the finite processor resources. To deal with redundant tracks, additional rules must be
developed which themselves hinder tracking of closely spaced targets.

2.2.3 Multi-Hypothesis Tracker
The multi-hypothesis tracker (MHT) [Rei77, Rei79] is a data association formalism used
to assign measurements over a batch of data to multiple tracks. Suppose we have a batch
of 7 scans each containing n¿ measurenents, and M ftacks. An association hypothesis
is defined as an assignment of all of the batch measurements to tracks, so that no more
than one measurement is assigned to each track from each scan, and no measurement is
assigned to more than one track. Each association hypothesis represents a possible hard
assignment of the measurements. The MHT finds the best hypothesis by enumerating all
possible hypotheses and ranking them based on a scoring metric, typically the measure-
ment likelihood. Since the MHT enumerates all assignment permutations, it is guaranteed
to find the optimal hard assignment for the given scoring metric.

To achieve optirnal performance on a continuous stream of measurements, the MHT
must retain all the hypotheses and their associated scores. This quickly becomes impracti-
cal, because the number of hypotheses grows exponentially with time and combinatorially
with the number of targets. To make the computation of the hypotheses and their scores
feasible, it becomes necessary to approximate the MHT solution by reducing the number
of hypotheses retained by the algorithm. Clustering (see discussion above) will greatly
reduce the number of hypotheses, but generally more drastic measures are required with
MHT. These amount to merging or discarding low scoring hypotheses. The process of
deleting low scoring hypotheses is referred to as prun'ing, dtrc to the intuitive representa-
tion of the hypotheses as a tree. Each node on the tree represents an assignment decision
and the various branches from the node correspond to the different choices of assignment.

An alterative implementation of the MHT is referred to as the track-orientated MHT
[Kur90, BP99]. In this method, the hypotheses are not retained over time, but reformed
as each new scan is received. [8P99] contains a detailed explanation of MHT including
the discussion of valious implernentation issues involved in producing a practical system.

2.2.4 Viterbi Algorithm
The Viterbi Algorithm is a linear programming approach usually used to find the optimal
state sequence for a discrete Markov random process [Vit67, FJ73]. The algorithm is an
efficient way of enurrerating all possible state sequences which retains only a single se-
quence leading to each possible state per scan. This reduced sequence set can be achieved
because of the Markov property of the state. For each possible state, fr¡, àt scan ú, there
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are many possible sequences of previous states that may have lead to æ¡. However, due to
the Markov property of the state, the future evolution does not depend on these previous
state values. This means that the score of all sequences through z¿ is the sum of the score
before ú and the score afler t. Since we are interested in the best score, we need only
keep that sequence leading to ø¿ with the best score - the score after ú can be optimised
independently.

It is possible to apply the Viterbi algorithm to target state estimation by discretising
the state space, however this is usually undesirable. Instead, the algorithm has been used
to perform data association lPL97]. Rather than a sequence of states, the algorithm is

used to estimate a sequerce of assignments. This approach can be seen as an optimal
Multiple Hypothesis pruning method in the sense that it guarantees that the optimal
sequence is never discarded. The algorithm of [PL97] also includes a modei for automatic
track initiation and termination.

The main shortcoming of the Viterbi approach is that the number of hypotheses still
blows out with the number of tracks and this makes a multitarget implementation of the
algorithm infeasible without further pruning. The algorithm used in [PL97] is only for
single targets. [G]\'IF02] showed that

2.2.5 Assignment Techniques
The Multi-Hypothesis Tracker is a brute-force approach to solving an integer assignment
problem. It works by enumerating all possible assignment hypotheses and choosing the
best hypothesis, based on a scoring method. However, there a e many other approaches
for solving the integer assignment problem. In the tracking field, these approaches are
collectively referred to as assignment techniques. Assignment techniques were first applied
to the target tracking problem in [VIor77], where they were used for data association and
track initiation. A survey of assignment techniques for multi-target tracking can be found
in [PPK00].

The measurement association problem (for a single scan), wilh M targets and n¡
measurements, can be couched as a constrained optimisation of the forrn

(2 1)

where c^, is the cost associated with assigning measurement r with track m and X-, is

an indicator function taking the value zero or unity when measurement r is assigned to
track m. The track denoted m : 0 is used to model false detections and the measurement
denoted r : 0 is a dummy measurement used to model undetected targets. The y^, are
constrained such that

(2 2)

,M (2 3)

These constraints ensure that each measurement is assigned to a single track, and that each

track is assigned exactly one measurement (possibly the dummy measurement, r:0).
Note that there are no constraints on the dummy m.easurement or dummy track. This
optimisation problem is referred to as 2-D assignment. If the costs are chosen to be the
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logarithm of the measurement likelihood for each measurement and track, then the opti-
misation is a maximum likelihood assignment approach. This approach for multi-target
tracking has been used as early as [\,Íor77] where the author repeats the optimisation for
different numbers of tracks to solve the track initiation problem. There exist several algo-
rithms for efficiently solving this optimisation, such as the auction algorithm [Ber79] and
the Jonker, Volgenant, and Castanon (JVC) algorithm [.]V87]. There are also algorithms
that can determine the second and third (and so on) best assignment solutions, rather
than simply the single best. It may be useful to retain a number of assignment options so
that future data can be used to improve the decision. The Auction algorithm is generally
regarded as the best approach in sparse problems lBer88, PPK00, BP99]. Most tracking
problems will be sparse, since tracks will tend to validate only a small proportion of the
total collection of received measurements.

2.2.5J Auction

The auction algorithm [Ber79, Ber88] is an O(n3C) complexity algorithm where C is
the range of the cost coefficients. The complexity depends on C because it dictates how
quickly the bidding process will converge. As its name suggests, the auction algorithm sees
tracks vying for contested rneasurements by making b'ids. Each track bids for measure-
ments until the price becomes too high and the auction finishes. The auction algorithm
is guaranteed to reach within a prescribed amount of the optimal cost, dependent on the
overbidding parameter, e, which is explained below. The auction algorithm deals with a
maximisation problem obtained by making the price coefficients the negative of the cost
coefficients, cmr.

Initially, all measurements are assigned to the clutter track (- :0) with an associated
price, pr : -cor. The tracks place a value on each rneasurement, given by u^, : -cmr-pr.If this value is positive, then making the corresponding track-measurement assignment
would improve the overall cost. A value of zero is given to the durnmy m.easurement, i.e.
I)mo :0. Each track determines which measurement represents the highest value - if no
measurement has a positive value, then the track is assigned to the dummy measurement
indicating that the target was not detected. Those tracks with a nonzero value for at
least one measurelnent bid for the measurement with the highest value. The tracks bid
an amount 7-" defined by

max
r'*r^fmr : max {ø-r} - {u*,'} + e, (2 4)

where e is an overbidding constant which is used to prevent ties in the event that two
tracks have the same cost relating to a particular measurement. This bid is the value of the
best measurement less the value of the second best measurement, plus the overbidding
factor. The track which makes the highest bid for a measurement is assigned to that
measurement, and all other tracks are unassigned. The prices of all assigned measurements
are incremented by the bid value, Fr : pr * max {l^r}.

The unassigned tracks repeat the bidding process after redetermining the value of
each measurement using the new prices. The assigned tracks do not bid again. Again,
the highest bidder is assigned to a measurement, and any track previously assigned to
that measurement becomes unassigned. The bidding process is continued urúil there are
no more unassigned tracks. The use of the overbidding constant, 6, causes tracks to bid
until measutements become slightly overpriced, and guarantees that the algorithm will
eventually stop. Because the bidding increases the price of attractive measurements, the
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less attractive measurernents (i.e. those with a higher cost) will eventually offer better
value to unassigned tracks.

The auction can equivalently be implemented with measuretnents bidding for tracks,
except that any number of measurements is allowed to be assigned to the clutter.

2.2.5.2 S-D assignment

The auction and JVC algorithms described above are methods for solving the 2-D assign-
ment problem. This corresponds to associating measurements from a single scan. When
presented with a batch of data, the problem becomes more difficult. The general batclt
problem is referred to as ,S-D assignment, where S - 1 scans of measurements are assigned
to the tracks. This problem is solved using a technique referred to as Lagrangian relax-
ation [Fis81]. The S-D problem is an //P hard problem and the Lagrangian relaxation
technique provides an efficient way of deterrnining an approximate solution. The S-D
assignment problem consists of an objective function, analogous to equation (2.1), and S
hard constraints of similar form to (2.2) and (2.:l). The Lagrangian relaxation works by
relaxing one of the ,S hard constraints and replacing it by a Lagrangian penalty term in
the objective function. In this way, the constraint is no longer enforced, but assignments
that violate it will be penalised. The new problem is now an ,9 - 1 dimensional one with a
modified objective function. Since there are now fewer constraints, the problem is simpler
to solve. The relaxation of the hard constraints can be repeated until the problem is

reduced to a 2-D assignment with S - 2 Lagrangian penalty terms in the modified ob-
jective function. This 2-D problem can be solved with the auction algorithm (or others).
Since the problem no longer enforces the constraints, it cannot be guaranteed to give the
optimal solution. Detailed discussion of S-D assignment can be found in |PPKOO] and

lBPeel.

2.2.6 Bayesian Data Association
Estimators are generally derived using an optimality criterion based on the probability
density of the target states given the received measurements. Bayesian Data Association
approaches are based on the use of Bayes Rule to simplify the target state probability
density function. Let X¿ denote the target states at scan ú (possibly for multiple targets).
At scan ú, a set of n¿ measurements, Z¿, is observed by the sensor. The aim is to calculate
the density of the X¿ given the measurements from scan ú and all earlier scans, and given
an initial state densily P (Xo). LeT Zl be the set of all measurements fron scan 1 to scan
ú. This required density is

P (Xtlzi) : P (XlZr,Zr,. . .,2,)
: / p (x,lx o,zr,zz,. . . ,zr)P (xo) dxo. (2 b)

J

Under the assumption that the target states are independent first order l\4arkov pro-
cesses the density becomes

p (xtlzi) : | ,(X,lx,-,, z,) p (X,-, lzi) dX,-r Q.6)

This now provides a, recursion for the posterior state density, but the term
P(X¿lXú-1,2¡) is problematic because the assignment of each measurement rn Z¡ is

unknown. We introduce an index variable K¿ which denotes a particular assignment
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hypothesis. Each value of K¿ defines the assignment of all measurements in Z¿ and the
domain of K¿ contains all possible assignment hypotheses. Given K¿, the probability of
the observations is known. We now write

P (XtlT,X,_r) P (Xr,ZrlXr_r)
P (ZlXFl)

o( P (X¿lX¿- r) P (Ztlxt)

I e (X,lx,-,) P (ztlxt,K¿) P(K¿) (2 7)
Kt

Implementation of (2.7) would yield the optimal association strategy. However, the
domain of K¿ grows combinatorially with the number of targets and measurements. Fur-
ther, (2.7) means that the density P(XtlZ!) is a mixture (due to the sum). For every
mode in P(Xr-1lzi-'), (2.7) produces d¿ modes in P(X¡lZl) where d¿ is the number
of hypotheses (the size of the domain of K¿). This means that the density e $¡lZl)
is a mixture with a number of components that gro\Ms exponentially with time and the
rate of growth is combinatorially dependent on the number of targets and measurements.
This exponential growth makes it impractical to implement an exact Bayesian solution,
so approaches have been developed to approximate it.

2.2.6.I Gaussian Sum Filter

The Gaussian sum filter lSal90] is an approximation to the Bayesian solution that uses
a fixed (or bounded) number of Gaussian components to represent the target state dis-
tribution at each scan. When new data is received, the number of components in the
updated state distribution is inflated. The components in the updated distribution are
ranked and then merged together until the resulting approximation contains the desired
number of components. The merged components are chosen in such a way as to preserve
the moments of the distribution. The Gaussian sum filter ensures that the approximate
distribution is a Gaussian mixture with a reduced number of components, which enables
the use of a Kalman fllter for state estimation. The Gaussian sum filter is also referred to
as a mixture reduction algorithm because it works by reducing the number of components
in the Gaussian mixture that is the pdf of the target state.

There are two different merging techniques used in [Sal90]. The first is tertned joi,n'ing
and selects pairs of mixture components that have the closest means. Here the distance
measure is normalised by the overall mixture covariance. The algorithm defines an accept-
able degree of distortion, and continues to merge pairs until it reaches this limit. If the
number of components is still larger than the pre-defined maximum number retained, then
further pairs are joined until the nurnber components is low enough. The second merging
technique is termed clustering and collects together components that have low mixing
proportion, merging thern with more dominant components. The clustering method rnay
merge together several components at once (rather than simply pairs). [Sal90] demon-
strates that the clustering method gives better results, but with increased computational
expense.

It is apparent that the Gaussian Sum approach is a numerical approximation to the
probability density function. In fact, we can view the Gaussian as a kernel function
and the mixture components as coefficients of a multi-resolution approximation to the
true density function. As with all approximations, the performance of the filter will be
acceptable if the approximations are within tolerable error. By adjusting the maxirnurn
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number of components, we have a trade-off between computation requirements and the
degree of approxitnation used by the filter.

A particular special class of Gaussian Surn filters is referred to as lhe Generah,sed
Pseudo Bages (GPB) filters. The GPB filter of order N, referred to as GPBIú, is a

Gaussian sum filter that merges together mixture components at a fixed lag of ly' scans.

The GPB terrninology is also used for filters that contain a number of switching dynam-
ics models which leads to a similar growth in the number of components in the state
probability density. The advantage of a GPB filter is that the rnerging of components
can be pre-computed analytically since it is fixed. The drawback is that the fllter may
waste resources updating components that make negligible contribution, or may merge
two significant components because they arose from an ambiguous assignment at an ear-
lier stage. Since the merging is analytically derived and hard coded into the filter, it is

not possible to change the number of retained components at a later stage.

2.2.6.2 Probabilistic Data Association Filter

A special case of the Gaussian Sum Filter is the Probabilistic Data Association Filter
(PDA or PDAF) [BST75]. The PDA is a popular association algorithrn in practical
tracking systems because of its simplicity and speed. The PDA is also the Generalised
Pseudo Bayes filter of order 1. In the PDA, the target state density is approximated by
a single Gaussian component. This is equivalent to representing the distribution by its
first two moments. At each scan, the number of components iu the target density grows
according to the number of validated measurements received. The PDA then makes the
assumption that the resulting mixture can be approximated by its first two moments, and
produces an updated Gaussian pdf approximation. This approach has been demonstrated
to significantly improve tracking performance over nearest neighbour association lBST75].
However, if the probability density of the target state is strongly multi-modal, then the
PDA is clearly throwing away information, and the performance can be adversely affected.

The main advantage of the PDA approach is that it can be easily implemented in an
efficient way. Since the target pdf is approximated at each scan by a single Gaussian,
it is possible to reorganize the target density update so that the PDA is realised by a

single Kalman filter. The filter is fed a centroid measurement, formed by taking the
weighted average of all the validated measurements, and the filtered covariance is inflated
an amount dependent on the scatter of the validated measurements.

The PDA is a single-target algorithrn, but it has been extended to a multitarget ver-
sion, referred to as the Joint-PDA (JPDA) [FBSS83]. Like the multi-hypothesis tracker,
the complexity of the JPDA grows exponentially with the number of targets and clus-
tering is usually required to achieve a physically practical algorithm. Various methods
have been proposed to provide efficient JPDA algorithrns including lZB95l and [DC01].
Detailed discussion of the PDA and JPDA can be found in [BSL95].

2.2.7 Probabilistic Multi-Hypothesis Tbacker

The Probabilistic Multi-Hypothesis Tracker (PMHT) [SL95] represents a very different
approach to association. In the standard Bayesian approaches, or in the various hard
assignment techniques, the true assignment of measurements to targets is viewed as an
unknown parameter of the problem. This parameter is subject to constraints, namely
each target is allowed to form at most one measurement. In the PMHT framework, the
assignment of each tneasurement is treated as a random process) with an associated prob-
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ability mass function. It is usual to treat the measurements as independent realisations
of a random process, but the PMHT extends this to treat tìreir sources as realisations
of a random assignment process. This means that the hard constraints of the standard
association approaches are violated. The constraints represent a forrn of dependence be-
tween the association of different measurements. The PMHT asserts that the association
of measurements and sources is independent for different measurements. The problem of
association and estimation then becornes a joint estimation process of two sets of random
variables: continuous target states, and discrete measurement assignments.

The joint estimation of target states and random assignments is no easier than the
standard MHT approach. However, the actual values of the assignments are not of any
particular interest in most applications. The goal of the tracker is to estimate the target
states, and the assignment problem merely arises as a complication. It is possible to treat
the tracking problem as an estimation problem with incomplete data. The incomplete data
consists of the measurements, whereas complete data would also include the measurement
assiguments. This form of problem can be solved using the Expectation-Maximisation
(EM) algorithm [DLR.77].

The EM algorithm provides a method for estimating the target states without esti-
mating the assignments. This is achieved by maximising the conditional expectation over
the assignments of the joint log likelihood of the states, assignments and measurements.
This expectation is referred to as the EM auxiliary function. A detailed exposition of the
EM algorithm can be found in [i\aK97].

The resulting algorithm is an iterative procedure that alternates between a data as-
sociation step and a state estimation step. In the association step, the probability that
each measurement is due to each target is calculated, using the state estimate from the
previous iteration. In the estimation step, a new state estirnate is produced by finding
the maximum likelihood estimate of the state given measurements weighted by their as-
sociation probabilities. The process is initialised by choosing a first state estimate and is
halted when the auxiliary function converges.

The main advantage that the PMHT has over other association techniques is a linear
complexity in the number of targets and in the number of scans used in a batch. These
are a result of the probabilistic model used for the measurernent assignments. However,
this probabilistic model does not match realistic sensors that perform peak detection
[DC99] to attempt to produce a single measurement per target. For such systems, the
one-to-one assignment approach of other filters is more appropriate. In lRWSggl the mod-
ified measurement model was shown to degrade the Cramer-Rao Lower Bound (CRLB)
for estimator variance. While this is important, it does not reflect the true algorithm
performance since PMHT is an optimal algorithm (given the initial assumptions) and
should achieve its CRLB whereas algorithms based on the standard measurement model
are suboptimal.

The PMHT originally proposed by Streit and Luginbuhl in [SL95] is a multitarget filter
for updating tracks in the absence of clutter. The algorithm assumes that the number of
targets is known, and that it is possible to initialise the track states.

The problem of initialisation was addressed by the introduction of a homothet'ic rnea-
surement model in [RWS95a]. The homothetic model uses multiple measurement pro-
cesses with a common rrrean and different covariances. Using the homothetic measure-
ment model reduces the PMHT sensitivity to track initialisation. Alternatively, methods
commonly used in other numerical optimisation algorithms can be employed. One such
approach is covariance inflation which uses large covariance values for initial iterations,
and progressively reduces them to the desired covariances for the flnal iterations. Such a
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scheme was used by Kreig [Kre98]. More recently, [RW01a] introduced Lhe Turbo PMHT
which exploits a technique similar to turbo codr,ng used in communication coding. The
advantage of the turbo PMHT approach is that it introduces the track innovation co-
variance, which is a measure of the current estimate uncertainty. lRlVOlal demonstrates
significant improvement with the turbo PIVIHT over the homothetic PMHT.

Clutter has been incorporated into the PMHT in [RWS95a] and [DH97]. The incor-
poration of clutter is done by adding an extra model to the track list to represent clutter.
This model has a different measurement process to the models representing targets that
may be uniform, or at least diffuse. The homothetic measurement model also itnproves
tracking performance in clutter by giving preference to measurernents closer to the pre-
dicted track position. In [LSWO1], the clutter pdf is modelled as an arbitrary mixture of
uniform components, each with a different spatial support. The clutter pdf is adapted
with the observed data

The PMHT algorithrn has also been generalised to deal with measurements from more
than one sensor [KG97b, Kre98].

2.2.7.L Existing comparisons of the PMHT with other approaches

The first performance comparison for the PMHT was published by Rago, Willett and
Streit in [R\\'S95a] and presents a comparison of the algorithm with the Joint PDA
tracking algorithm. The Joint PDA algorithm is a variant of the PDA used to track
several targets simultaneously. This paper presents only one simple simulated scenario
with two tracks moving in parallel with constant speed, under varying clutter density.
The results of the comparison indicate that the PMHT offers superior performance in this
example. However, the comparison does not address the issue of track initiation, that is,

starting new tracks from a collection of observations. For the comparison in [RWS9l1a],
all tracks are initialised with the correct target states.

Dunham and Hutchins presented a PMHT formulated for tracking in clutter in [DH97]
and [HD97]. These papers compare the PMHT with the Multi Hypothesis Tracking algo-
rithm and the PDA. However, the PMHT is implemented as a batch algorithm over an
extended data set (30 time scans) while the PDA and MHT are recursive algorithms, The
comparison gives the expected result that a batch smoother produces state estimates with
a smaller estirnation error than a recursive filter. The comparison uses a strict initialisa-
tion criterion, which requires five consecutive target detections to start a track. Such a

condition would be rarely met under a modest probability of detection. Disturbingly, the
authors comment in [HD97] that the PMHT performed very poorly with less stringent
initialisation conditions. The comparison also makes no mention of the false track perfor-
mance of the approaches, which is important in any analysis of tracking in clutter. The
comparison measures performance using RMS estimation error, which is an inappropriate
metric for initiatiorr.

Willett, Ruan and Streit presented a PMHT for manoeuvring targets in [WRSgSa]
that was compared with the Interacting Multiple Model PDA (IMM-PDA), a variant of
the PDA used for manoeuvring targets. Both algorithms use a Markov process to cope
with manoeuvring targets. The target is modelled as having two process states, one with
high process noise (the manoeuvring state) and one with low process noise (the non-
manoeuvring state). The IMM-PDA uses a PDF approximation (two moments) for each

model. The PMHT estimated the state at each time instant using the forwards-backwards
Markov chain approach. The comparison used a simulated target in the presence of clutter.
This comparison is again favourable for the PMHT but it does not address initialisation.
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In [R\\r01a], various PMHT algorithms are compared with the PDA in the problem of
track maintenance. The number of trials where each filter manages to follow the target
over a batch of data is observed for various clutter conditions. The turbo PMHT is
detnonstrated to give approximately the same performance as PDA, which is better than
the homothetic approach. The problem of track initiation is not considered and tracks
are initialised with the correct state.

2.2.8 Histogram PMHT
The two main problems with the PMHT are its sensitivity to initialisation, and the
violation of the one to one assignment constraint. The PMHT is sensitive to initialisation
because it is a hill clirrbing numerical optimisation approach and the objective function
(tne nlt auxiliary function) has a problematic topology. Each measurement in a scan
forms a local maximum in the auxiliary function and the overall global maximum is
only achieved by temporal correlation of the in scan maxima. This is because the point
detection process treats all measurements equally. The one to one assignment constraint
is also a consequence of point detection and is really a fallacy. Typically, a sensor forms
bins which form a discrete tnap of the received power in the m.easurerlent space. The
backscattered power from targets will spread into more than one bin, either because of
the physical target size compared with the bin resolution, or because of the point spread
function of the sensor. This distributed target response is then put into a point detection
process often referred to as peak d,etection, or peak p'ick'ing lDC99], that attempts to
produce an output of one measurement per distributed target response. It is this peak
detection step that imposes the one to one assignment constraint. The PMHT fails to
enforce the constraint because it models the sensor measurements as a mixture model, not
a point detection process. So, it can be seen that the PMHT is not an incorrect model of
the tracking problem, rather it fails to model a step in the sensor processing that the user
chooses for the purpose of data reduction (and because other tracking algorithms require
it).

The solution to the two main failings of the PMHT is then to remove the peak detec-
tion process. In [Stú0b] Streit developed an algorithm referred to as H,istogram PMHT
(HPMHT) that tracks multiple targets in clutter using the entire collection of sensor
bins. The naming of the algorithm stems from the theoretical development, which models
the received radar image as a multi-dimensional histogram of a mixture. The histogram
model is produced by quantising the bin powers at a particular resolution, ñ, and treating
each of the quantised values as a shot count. The artificial shots are independent of each
other conditioned on the mixture model. The theoretical development of the algorithm
concludes by taking the limit as the resolution becomes infinitely fine (ñ --+ 0) and the
original sensor data are recovered. The HPMHT algorithm is robust to poor initialisa-
tion, and demonstrates good tracking on low power targets, even in the vicinity of other
stronger targets |SGWOI]. Since the HPMHT processes the entire sensor image, the pro-
cessing requirements are significantly higher than the standard PMHT, and data storage
may be an important issue, particularly with a stepped scanning sensor that may dwell
on many different spatial regions. However, like the PMHT, the growth in computation
remains linear with the number of targets and with the data size (batch length and size
of each individual scan).

The HPMHT has also been extended to handle the case where targets have an ex-
tended signature in one or more of the sensor dimensions [StLOt]. An example of this is
passive sensing where th.e sensor measures the angle of arrival of signals and their spec-
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tra. These spectra carry information about the identity of the target and can be used
in classification [CP01]. This extension is called the Spectral HPMHT and provides a
method for integrated tracking and classification. It also improves multi-target tracking
performance by allowing for a superposition spectrum when targets become unresolvable.

2.2.9 Markov-chain Monte Carlo
Markov-chain Monte Carlo (IVICMC) is a powerful numerical technique for solving dif-
ficult statistical problems, particularly involving integrals. The ain is to represent the
target pdf by a collection of samples from it. This same technique is used in the particle
filter [DDFG01] to solve nonlinear state dynamics or measurement processes. MCMC
uses a numerical approximation to model the target pdf whereas the gaussian sum type
approaches use a functional approxination. Each sample of the target state densìty is
updated by a particular measurement and the resulting samples form an approximation of
the updated state density. This approach was used in [HLP01, HLP02] to solve a highly
non-linear multitarget bearings only tracking problem.

2.2.LO Probabilistic Least Squares TYacker

The Probabilistic Least Squares Tracker [Kle98] (PLST) is a multi-target soft associa-
tion approach based on the principle of least squares optimisation. Whereas the PMHT
and PDA approach the measurement association problem from a Bayesian probability
theoretic viewpoint, the PLST takes more of a pragmatic stance. PLST assigns each
measurement to each track with a certain weight. Rather than the probability of that
measuïement having been caused by the particular track, the PLST weight is chosen so

as to optimise an iteratively re-weighted least squares problem. The formulation is much
like tlre S-D assignment probiem, but with the y^, indicator function replaced by a real
valued a^r. The û-" must satisfy similar constraints to the Xrnr)rramely they must sum
to unity.

The optimal solution for the e*, is a function of the unknown target states. The
PLST solution requires an iterative approach, alternating between state estimation and
optimal weighting. Thus the PLST is an example of an iteratively re-weighted least
squares algorithm. Unlike the assignment approaches, the real valued a-" results in an
algorithm with linear complexity in the number of targets and in time.

The resulting PLST algorithm is functionally very similar to the PMHT but it uses a
normalised distance ratio to assign measurements rather than a probability ratio. Under
the usual assumptions of linear Gaussian statistics, the probability ratio of the PMHT
tends strongly to extreme values (zero or unity) whereas the PLST distance ratio tends
to be more variable [Kre98]. A detailed comparison of PLST and PMHT was performed
in [KG97a, Kre98]. The PLST was found to be robust to mismodelling of the system
covariances because it does not rely on assumed pdfs. However, the PMHT tended to
give better steady state performance when the system statistics are known.

2.3 Tracking \,vith Augmented Measurements
The tracking problem was introduced as two separate tasks: association and estimation.
The tracking techniques described above make use of the same observations for both
tasks. In general, there may be additional information available to the tracker which can
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improve the measurement association, but has no bearing on the target state estimation.
This information can be used to augment the measurements and give better tracking per-
formance through improved assignment. The strategy of improved assignment through
augmenting measurements was first proposed in [NSC84] where the rank of measurements
was used to improved target to clutter discrimination. Usually a radar transmits a se-
ries of pulses and targets may be detected on each pulse with a particular probability,
which depends on the target signal to noise ratio (SNR). The rank of the measurement
is defined as the number of pulses in a scan where a detection is flagged at the corre-
sponding radar cell. A certain minimum rank is required by the detector to declare a
measurement. We would generally expect false measurements to have a lower rank than
valid target measurements, hence the rank is a useful measurement feature for association.
Another feature commonly used to improve discrimination of target measurements and
false measurements is the measurement amplitude [Col87, Col89, LBS90, LBS01].

The above examples demonstrate additional information available to the tracker from
alternative processing of the sensor data already used for state estimation. However, there
may also be other sensors on the tracking platform that are able to provide information
to the tracking system. An example of this is an airborne platforrn fitted with radar and
ESM (electronic support measures) sensors. The ESM is a passive selÌsor which provides
information about the emitters at various azimuths. This information can be incorporated
into the tracker to improve association. [CP01] gives an algorithm for jointly tracking on
ESM and radar data.

The algorithms presented in [NSCS4, Col87, LBS90] are all examples of augmented
PDA algorithms. A brief discussion of the augmented PDA can be found in [BSL95]. Any
feature can be incorporated into the augmented PDA algorithm, so long as the designer
can provide the probability density function of the feature for targets and clutter (or at
least a reasonable model for it). The examples above demonstrate both real and integer
valued features. In general, the augmented measurement set will contain continuous and
discrete information. If the features provide discrimination between targets and clutter,
or between different targets, then association will be improved.

A special case of this problem is where the tracker receives classification informa-
tion. Here the additional measurements come from an enumerated set of classes and the
probability of observing a particular class depends on intrinsic properties of the target.

2.3.t Augmented Measurement Vector

The simplest way to incorporate additional measurement information into the tracking
filter is to augment the measurement vector and assume fixed models for the distribution
of the augmented measurements. The kinematic observations, such as range, azimuth and
radial velocity, are dependent on the target state, but the augmented information depends
on fixed distributions for targets and clutter. This is the method used in [NSCS4] to in-
corporate measurement rank. [LBS90, LBS01] also use fixed models for target and clutter
amplitude. The drawback with this approach is that rnost practical tracking problems
contain different types of targets, which will have varying statistics. For example, the
distribution of measurement rank depends on the probability of detecting the target on a
particular pulse. This probability of detection is a function of the SNR which in turn is a
function of radar cross section. Similarly, the observed amplitude also depends on radar
cross section.
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Figure 2.1: Joint Tracking and Classification approach of Challa and Pulford

2.3.2 Augmented State Vector
In order to account for targets with different characteristics, it is necessary to augment
the state vector with parameters of the feature distribution. In this manner, the feature
distribution for each target can be estimated. [Col87, Col89] is au example of this approach
where the amplitude of each target is modelled as constant with Gaussian measurement
error and estimated through the Kalman filter. The difficulty with this is that most
features will not have Gaussian observation errors and their dynamics are unlikely to be
Iinear. This means that the Kalman Filter is not really a suitable estimator. In [Col99]
this problem is dealt with by using a non-linear transform to produce an error distribution
which is somewhat similar to a Gaussian. This is analogous to pre-whitening a receiver
spectrum before applying a matched filter.

2.3.3 Joint Classification and TYacking
A typical case where augmented measurements are provided to the tracker is where the
sensor or platform is capable of providing estimated classifications. These classifications
might be treated as augmented measurements, such as in [RCD97], or alternatively the
tracker might be used to provide features to the classifier. Since the target class and its
dynamics are linked (or else the above approaches would be pointless) it would be desirable
to jointly perform both tasks. This is essentially an augmented state vector paradigm,
however, this restrains the forrn of the classifier. The tracker requires an estimate of
the probability density function of the data. Rather than perform the two tasks together,
Challa and Pulford ICPO1] proposed a coupled architecture where the tracker and classifier
feedback into each other and each task is performed iteratively. This coupled architecture
is shown in figure 2.1.

A more general discussion of integrated tracking and classification is found in [Dru99,
Dru01]. These articles provide more of a philosophical discussion of how the problem
might be approached rather than demonstrating a particular algorithm such as in [CP01].

2.4 Track Initiation
In the general multi-target tracking problem, the sensor receives data from an unknown
number of targets at unknown locations within the surveillance region. Most tracking
algorithms make use of data association techniques to assign measurements to existing
target tracks and then refine the target tracks using those measurements. This assumes
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Figure 2.2: General initiation flow diagram

that the algorithm already has a state estimate of each target from a previous time and
that no ne'ü/ targets appear. In a practical situation this will not be the case and the
problem of initiating tracks on new targets arises.

In general, track initiation approaches can be expressed in a candidate track promotion
form. Figure 2.2 shows a flow diagram for track initiation in the candidate track form.
New tracks are formed based on unassigned measurements and these new tracks are added
to a collection of candidate tracks. The candidate tracks are updated using a tracking
filter and then put through a promotion test. Those tracks that pass the test are promoted
to established tracks that can be shown to the sensor user. Those that do not are put
through a second test, and are discarded if they fail it. The set of established tracks may
interact with the candidate update perhaps through censoring the measurement list to
prevent formation of multiple tracks on the same target.

The different methods used for track initiation can be viewed as different tests for
promotion and retention of candidate tracks. There are broadly two approaches to this
testing: the test statistic can be a byproduct of the tracking filter, or the filter can be
specifically designed to provide a test statistic. The advantage of using byproducts of the
filter is that the filter itself need not be altered in any way. This simplifies the design and
makes it possible to retrofit automatic testing to existing filters. Unfortunately, this is a
little like bolting new functions onto existing solutions. Better performance is obtainable
by using a filter that provides a test statistic by design.

The candidate tracks can be started by initialising a track on a single measurement,
or by using several measurements from consecutive scans to provide a more accurate
initialisation. It is common to initialise tracks using measurements from two consecutive
scans. This is referred to as two po'int d'ifferenci,ng. A discussion of track initialisation
can be found in [Str9S].

[HLB97, LHB96] present comparisons of the performance of different track initiation
methods.

The simplest initiation schemes are those that make use of tracking byproducts, since
these require no modification of the tracking algorithm. Approaches of this type will be
reviewed first.
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2.4.I M of N initiation
A comrnonly used test for track initiation is referred to as M of l/ initiation. Under this
rule, candidate tracks must be assigned M rneasurernents in ly' scans. Under low clutter
conditions, the rule may require d,[ validated measurements in -ly' scans, a slightly easier
condition. Because the rule is so sirnple, it is possible to generate analytic expressions for
quantities such as the probability of prornoting false and valid tracks, which are useful
in quantifying tracking perforrnance [BSCL9O]. A problem with this approach is that
all tracks are quite likely to have validated measurements when the clutter is dense. In
addition, there is a limited range of promotion thresholds available, since M must be an
integer no more than l/. In order to achieve a very low probability of prornoting false
candidates, it may be necessary to use a large l/ which delays track initiation.

2.4.2 Accumulated Log-Likelihood
The first algorithms for track initiation [Sit64] used the measurement innovations to score
the track. If the target statistics are gaussian, then the sum of the squared innovations
is proportional to the negative of the log likelihood of the measurement sequence. The
measurement innovations are the difference between the predicted measuretnent and the
observed measurement. When used in a time recursive manner, the squared innovations
are accumulated with time, producing a test statistic proportional to the negative of the
accumulated log-likelihood of the measurements. Valid target tracks are expected to have
a low scatter, and the sum of their squared inuovations should be low. False tracks are
expected to give high innovations. This is the same test that is used in the track split
filter to discard excess tracks. If the target statistics are known (or assumed), then it
is possible to determine analytically the probability of observing a particular innovation
given the measurement is due to the target. This can be used to determine the probability
of promoting valid tracks for a given threshold on the accumulated innovations [Sit64].

2.4.3 Model Order Estimation Techniques

The track initiation and termination problem is actually a rnodel order estimation prob-
lern. This is particularly clear if we view tracking as parameter estimation of a dynamic
mixture where the number of components in the mixture is unknown. Methods such as

Maximum Likelihood and Least Squared Error fail in the model order estimation problem
because the model fit to the data can always be improved by added further components.
The pioneering work in model order estimation [Aka"74, Sch78, Ris78] resulted in a num-
ber of different tests to determine the model order of a data sequence. Of these, the
Minimum Description Length (MDL) of [Ris78] is generally accepted to be the best. This
is because the test due to [Aka7a] is dependent on the number of measurements of the
system. When more observations are received, it will produce a higher model order esti-
mate. Duplicating the data to artiflcially increase the number of measurements produces
the same behaviour. The test due to [Sch7S] has a penalty term that scales with the
number of measurements, but the MDL also contains a penalty term dependent on the
model complexity (not all order M models are the same).

The MDL test was derived by an information theoretic approach designed to find the
statistical autoregressive moving average (ARMA) model with the minimum number of
coefficients that fit the observed data. The test chooses the model that maximises the data
likelihood penalised by a term dependent on the model ordel and by a tertn dependent on
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the model complexity. Essentially, a higher order model is accepted only if it increases the
likelihood by more than a prescribed amount. This test can be directly applied to track
initiation, by promoting candidate tracks only when they sufficiently increase the data
likelihood. An approach analogous to [Sch78] was used in [VLI(00, VL00] to estimate
the number of components in a (static) Gaussian mixture. The technique introduced a
new component and used partial trM to optimise the state of the new mixture component.
Partial EM updates a subset of the states while keeping the others fixed. The improvement
in the EM auxiliary function, namely the increase in the log-likelihood, was tested against
a threshold. This technique could be extended to dynamic mixtures, which is precisely
the EM problem solved by PMHT.

A rnodel order estimation approach such as MDL can be considered as an initiation
scheme which uses byproducts of tracking. It is quite similar to the cumulative likelihood
approach, however it uses the joint likelihood of all tracks, rather than considering each
track in isolation. NÍDL requires the rnaximum data likelihood given the model, which
is obtained by using the maximum likelihood estimator for the state. This is what the
tracker does anyway, so MDL for tracking can be irnplemented as a candidate test after
tracking, and the tracker is not modified.

2.4.4 Hidden Markov Model
When the tracker updates a false candidate track there is a mismatch between the data
and the assumed model. The model assumes that there is a target present that produces
a sequence of measurements, when in fact there is none. The initiation methods which
rely on tracker byproducts attempt to detect this mismatch condition and thus reject
false candidates. An alternative is to change the model so that it is capable of rnodelling
the false track condition. Candidates would then be accepted or rejected based on the
estimated state of the model. This is a fundamentally different approach because it alters
the target state model and integrates the candidate quality estimation with the target
state estimation.

An extended target state model was first proposed by Colegrove et al in [CDA86].
The extended target state contained a binary scoring parameter, referred to as the target
obseruabi,l'ity. The target observability was a first order Markov process that was used to
model the validity of candidate tracks with the PDA.

The term observability was not adopted by other authors due to the existing state
modelling definition. However, the Markov model for track validity was. In [Col99]
Colegrove adopted the alternative term ui,si,bi,li,ty which will be used in this thesis. The
same approach to initiation with the PDA has been referred to as track eristence in
[l\,{ES94] and perce'iuabi,li,ty in lLL01a, LL01b]. This PDA variation is often referred to
as the Integrated PDA (IPDA), u term first used by Mu5icki et al. in |N,IES94]. The
Markov visibility model has also been used with other association algorithms such as
in [R400, CVW02]. With this assumed model, there are a number of different possible
approaches to solve for the probability mass of the target visibility, these will now be
discussed.

2.4.4.I Generalised Pseudo Bayes

The generalised pseudo Bayes (GPB) filtering approach is a fixed lag method for estimat-
ing processes with switching modes [Blo8a]. This switching may be in the target model, in
the form of manoeuvre models, or in the form of the visibility model for target existence.
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Figure 2.3: Generalised Pseudo Bayes, order 3

As described earlier, it can also be applied to data association. The GPB filter of order
ly', referred to as GPB¡/, uses a fixed lag of ly' scans to estimate the target state. In
the visibility case, this is achieved by storing 2N-1 state estimates, each corresponding to
a different chain of target visibilities. When the new scan is processed, these estimates
grow to 2N since each can either switch visibility state or remain the same. These 2N
state estimates are then combined to form 2N-1 estimates corresponding to shifting the
beginning point of the sliding batch. Figure 2.3 shows a flow diagram for the GPB3
algorithm. The visibility chains are labelled o or Ð corresponding to whether the target
is visible or invisible at that time. For example rù ' is the state estimate corresponding
to the hypothesis that the target was invisible on the previous scan, but became visible
on this one. Separate filtering must be done for each of the 2N modes which therefore
increases the computational cost of the algorithm.

The simplest form of the generalised pseudo Bayes filter is the GPB1 filter. This is
the form originally proposed in [CDA86] where the visibility model was introduced.

At each scan, the GPB1 forms a single estimate of the target state by summing to-
gether the visible and invisible state estimates, weighted by their respective probabilities.
The visible state estimate is found by the standard PDA approach: each validated mea-
surement is used to update the state, and these state estimates are combined according
to the probability that the particular measurement was caused by the target. The proba-
bility that measurement z¡ wàs caused by the target is denoted as Bi and the probability
that the target is visible but did not cause any of the validated measurements is denoted
às þo. In addition to these standard PDA terms, there is the invisible target state, and
the probability of the target being invisible is denoted às l3-t Figure 2.4 shows a flow
diagram of the state estimation when there are rz¿ validated measurements for the track.
In addition to the target state estimate, the filter maintains an estimate of the probability
that the target is visible which can be used to make track promotion and retention deci-
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Figure 2.4: GPB1 track initiation flow diagram

sions. This probability of the target being visible also feeds into the rnixing proportions
which are used to sum the state estimates.

In [CDA86] ttre Ceel algorithm was demonstrated to give a significant improvement
in false track rate over the standard PDA for similar target detection performance. The
algorithm also has the advantage of being fairly simple and quick.

2.4.4.2 Interacting Multiple Model Probabilistic Data Association

The Interacting Multiple Model (IMM) filter [BIo84, BBS88] was first proposed as an
approximation to the GPB2 filter. The IMM filter uses mixing of the state estimates to
reduce the complexity of the GPB2 filter. A thorough description of the use of IMM-PDA
for track initiation is given in [BSCB9O]. Other descriptions of the IMM-PDA algorithm
for track initiation and manoeuver tracking can be found in [\tIABSD98] and [BSL95].
The IMM algorithm is an approximation to the GPB2 algorithm which was originally
justified with asymptotic arguments in [Blo84].

Rather than blowing out to four state estimates, the two estimates from the previ-
ous scan are mixed together to form predicted visibie and invisible states. Each of these
predicted states is then updated. The predicted visible state is updated using standard
PDA. The predicted invisible state is updated without any measurements (dead reckon-
ing). The structure of the IMM-PDA filter is shown in figure 2.5. The IMM mixing stage
effectively transfers the model reduction step from after data association (as in GPB2) to
before it. This halves the association load.

The practical gain in efficiency of the IMM over GPB2 is not as substantial for track
initiation as when it is used for manoeuvring target tracking. This is because the invisible
model is not updated by measurements. Since the invisible model is not updated by
measurements, the GPB2 algorithm only requires 2 Kalman filters (rather than 4) which
is the same as the requirements of the IMM filter.
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Figure 2.5: IMM flow diagram

2.4.4.3 Integrated Probabilistic Data Association

A slightly different approach is termed Integrated Probabilistic Data Association (IPDA)
[\4ES94]. The GPB and IMM approaches both formed the mean and covariance of the
target state over both the invisible and visible models. Instead, the IPDA calculates the
conditional mean and covariance of the target state, given that it is visible. If the invisible
model is chosen to be absorbing (i.e. a track can never change to visible from invisible)
then the conditional pdf of the target state depends only on one sequence of the Markov
chain, namely the target being visible for all scans. Thus, when the invisible model is
absorbing, the conditional state distribution can be estimated using a normal PDAF. The
only extra requirement is to calculate the visibility probability.

The IPDA approach is potentially limiting, since it inherently specifies the invisible
model to be absorbing, but the conditional state estimate should give better estimation
accuracy than the GPB unconditional one, because the latter damps the filter gain based
on the visibility probability. In [LL01a] a formulation of both types of algorithrn is
presented. Theoretical and simulated comparisons conclude that the GPB1 algorithm
has slightly poorer error statistics, but confirms slightly fewer false tracks than the IPDA
algorithm. Overall, the differences are minimal. [l\,iEsg4] gives a comparison of IPDA
and IMM-PDA where the two algorithms give almost identical performance. [LL01a] also
concludes that the added complexity of the IMM algorithm does not provide a performance
advantage for initiation.

2.4.5 Radon and Hough Tlansforms
The optimal strategy to detect a target would be to coherently integrate all of the energy
that the sensor received from it to maximise the detector SNR. The difficulty with this
is that we do not know the target trajectory. It is not feasible to test all conceivable
trajectories, since there will be an infinite number of them (or at least a very large
quantity). However, the Radon transforrn can be used to test all possible linear trajectories
through the data. The Radon transform is a mapping from the position space into a
parameterised line space. Peaks in the Radon space can be used to detect straight lines in
position space. Usually the discrete version, referred to as the Hough transform lDH72,
IK88] is used to detect lines in images. The Hough transform has been applied to detection
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and tracking for radar in [CEW94a, CEW94b, CEW94c] and more recently it has been
integrated into the PMHT framework in [LSW01]. A drawback of this approach is that it
uses the full data a,rra,y received by the sensor and requires a number of scans of the same
spatial region, This may result in a large memory requirement for a stepped scan sensor.



Chapter 3

Multi-Target Problem Formulation

rf'lHIS chapter defines the multi-target tracking problem in clutter and introduces the sta-
I tistical framework that shall be used in the following chapters. It follows the method

used by Streit and Luginbuhl in [SL95] to derive the Probabilistic Multi-Hypothesis
Tracker. However, the same framework can also be used to derive other algorithrns such
as the Probabilistic Data Association Filter. The concept of the observer is reviewed, and
the structure of the observer for the case of multi-target tracking in clutter is presented.
Particular state models of interest are presented.

The standard PMHT algorithm is then stated, and sorne of the existing enhancements
to it are discussed. Areas where the PMHT may be improved are highlighted, in particular
those addressed in later chapters of this thesis.

3.1 Problem Definition
Suppose that a sensor observes a particular surveillance region and reports measurements
at irregular intervals, referred to as scans. At each scan, there are multiple measurements.
Some of these measurements are caused by signals that are of interest to the sensor
operator, and are referred to as target detections. The other measurements may be
caused by various undesired interference and noise processes collectively referred to as

clutter. LeT Z denote the collection of all measurements from the sensor over a batch
from scan 1 to scan T . Let r¿ denote the time at which scan ú was collected and n¿ denote
tlre number of measurements formed by the sensor in scan ú. Assume that r¿+r ) r¡ for
all ú. This merely implies that the measurements are ordered in time sequence and that
all measurements observed at a particular time are collated in a single scan. Although it
is possible to consider a more general problem, where measurements are received possibly
out of sequence, this is beyond the scope of this thesis. Define Z¡ to be the vector of all
rneasurements in scan ú.

Zt : lzu,zt2,...,zmrf, (3.1)

where z¡, is tlrc r'th measurement in scan ú. The set of all measurements Z can be written
as the set of the per scan vectors Z¡.

Z:{Zt,Zz,...,Zr}. (32)

The probabitity density of the measurements, P(Z), is a mixture of the measurement
probability densities due to each of the various sources in the sensor scene, that is, P(Z) is
the weighted sum of the measurement probability densities of the sources. The weighting

31
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for each source is referred to as the mixing proportion for that source and the measurement
probability for that source is a component of the probability density function oT Z. Each of
the source measurernent probability densities has a known functional form with unknown
time varying parameters, called the state. The goal is to find the dynamic mixture model
that best describes the probability density function of the measurements Z, namely the
states that maximise the probability of the observed measurements. This is a lVlaximum
Likelihood Criterion for estirrating the states.

3.2 The Observer
The PMHT observer as introduced by Streit and Luginbuhl in [SL95] consists of two
parts. Firstly, there is a collection of continuous states. These states are the dynamic
parameters of the components of the measurement mixture density function. Secondly,
there is a set of discrete assignments. These assignments label the true source of every
measurement in the set Z.

The continuous state part of the observer is composed of a number of models. Each
model is used to represent an independent source of sensor measurements. Let the number
of target models be My and the number of clutter models be My. The total number of
dynamic state models is

M:MxlMv. (33)

The distinction between target and clutter models is unnecessary at this stage since
both are simply members of the dynamic mixture. The PMHT algorithm is not tied to
any specific models for target or clutter behaviour. Instead, models are specified based on
the problem at hand, and a particular solution is achieved for those models. The models
do not have to occupy the same state space, and it is likely that it will be useful to have
different state vectors for different models. For example, the state representation of clutter
processes will most likely be different to the state representation of target processes. It
is assumed that the dimension of the state vector for each model does not vary over the
batch.

Let æi deuote the state of model m at time r¿ corr€sponding to scan ú. Suppose
there is some time rs at which the probability density function of the state æff is known.
In a practical system, this density function may not be known and track initialisation
techniques would be used to estimate it.

Define the temporal collection of model states over the batch for model zn as

X-: l*i,*T,...,æil.
The total collection of all states is defined as

x: [x',X',...,Xt] ,

and the vector of all states at a particular scan is denoted

X,: l*I,n?,. . .,*yl .

(3.4)

(3 5)

(3 6)

Denote the (known) probability density function of the state of model m at time ro
às 1þi @T) Assume that the evolution of the state of model m is a first order Markov
process. That is, given the state of the model at the previous scan ælr, the state of the
model at the current scan æl is conditionally independent of all prior states æi ...æ72.
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Denote tlre (known) probability density function of the state evolution as ,þ7 (*Tl*?t)
This function is implicitly dependent on the time elapsed between scans ú and f - 1, i.e.

Tt - Tt-t.
The observer also contains the assignment of each. measurement to the model that

caused it. For the rth measurement,, z¡r, at scan ú there is a corresponding assignment
index, k¿r, thal denotes the model that gave rise to that measurement. The assignment
index is an integer in the range lI, M| When the assignment index k¿" takes a value in
the range lI,M"l then this indicates that measurement z¡ywàs caused by clutter model
kr,. When it takes a value in the range lMn + I, Mx ¡ Mv) then this indicates that
measuremettl z¡, was caused by target model k¿". Define the set of all assignment indices
at scan f as

Kt = lkrr,krr,... ,krnr],

and the set of assignment indices over the whole batch as

K:[Ko,Kr,...,Kr] ,

(3 7)

(3 8)

where Ko : Ø, i.e. the empty set, because there are no measurements at time r¡.
Notice that by defining the association indices K there is an implicit assumption that

each measurement is caused by only one of the models. There is no allowance made for
the possibility that more than one model might contribute to a measurement, for example
the case of two closely spaced targets that are not resolved by the finite aperture of a
radar.

The observer at scan ú is then defined as the combination of the model states and the
assignment indices for scan t at' time r¿:

O¿ : {X¿, K¿} , (3.9)

and the batch observer is defined as the collection of model states and assignment indices
over the entire batch:

O: {X,K}: [Oo,Or.,...,Or] . (3.10)

3.2.L The Assignment Model
Under the standard assignment model for tracking, each target is able to form, at most,
one mea,surement. It is assumed that the sensor uses a detection process that may not
always form a measuïement when a target is present. This missed detection may be due

to random signal fluctuations, environmental factors, or simply low signal strength at the
detector. When the target is detected, it may be distributed through several sensor cells,

however the detector is assumed to produce a single measurement from these distributed
returns. Each target thus produces either no measurement or exactly one measurement.
This implies that no two assignment indices, for different measurements in the same scan,

can indicate the same target model. That is, the number of indices which take the value
m e Mv , . . M is either zero or one. Mathematically this is represented as:

nt

Ðd(rr,-rn)e{0,1} Mvtllm<M, (3.11)
r:7

where ð(.) is the Dirac delta, an indicator function that is unity at the origin and zero
elsewhere. There is no constraint on the number of measurements assigned to the clutter
rnodels.



34 CHAPTER 3. MULTI.TARGET PROBLEM FORMULATION

The constraints (3.11) cause the assignment problem to be difficult to solve and result
in algorithms with greater than linear complexity in the number of measurements. This
constrained assignment model is used in the Probabilistic Data Association Filter and the
Multi-Hypothesis Tracker.

In the PMHT, the assignrnents are assumed to be independent identically distributed
random variables. This assumption conflicts with the constrained assignments used for
PDAF and MHT. Because PMHT uses this assumption, it allows each target to produce
more than one measurement, and the constraint 3.11 can be violated. Letri denote the
probability that the assignment index k¿¡, corresponding to the rth measurement at scan
ú, takes the value rn. Since Lhe k¡, are identically distributed, rl is the same for aII r (r
is an arbitrary indexing). Define the following sets of rf:

fI¿= 1"1,"?,...,ny1 ,

il : [IIr, fI2,. .. , flr] .

3.2.2 The Measurement Process

e| (r*l*i)

e? Q,,l*?)
p (zt lXr, kr") :

In addition to the observer, a measurement process is used to link the states and the
assignments with the received measurements. The measurement process for each model
defines the probability density function of measurements from that model over the surveil-
Iance region. The measurement processes are each functions only of the state of the
correspouding models. All measurements are assumed to be independent identically dis-
tributed random variables drawn from the measurement probability density for the model
given by the assignment index corresponding to the measurement. This means that the
measurement process is a mixture process and the unconditional probability density of
the measurements is a weighted sum of the individual model measurement densities.

Different models may have different measurement processes (indeed they must if the
models have different state vectors). The measurement probability density function for
model m at scan ú is denotedbV eT Ql*T). Note that it has also been implicitly assumed
that the measurements at scan ú are independent of the states at all other scans when
conditioned on the states at scan ú. The independence of rneasurernents conditioned on
the model states is a common assumption to tracking algorithms. The probability density
function of measurement z¡, is then:

(3.r2)

(3 13)

(3.14)

if kr,:1

tf kr,:2

elo (r*l*Y) ,f k,,: M

3.3 Target and Measurement Models
Up to this stage, the tracking problem has been defined using completely general forms
for the probability density functions of the target state evolution and the measurement
process. Without specifying these processes in terms of statistical rnodels, it is difficult
to proceed to a solution for the estimation of their parameters.
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One commorÌ assumption in marìy tracking applications is that of linear Gaussian
statistics. A reason for the popularity of this model is that the probability density function
can be defined using a frnite palameter set, namely the mean vector and covariance matrix.
Further, the solution to the estimation problem is well known for linear Gaussian statistics.
That is, given a set of rneasurements, it is possible to find the optimal state estimate. The
closed form solutiorr for this estimate is the Kalman smoother. The state evolution and
measuïerlent models are now examined in more detail, presenting the linear Gaussian
forms frequently used.

3.3.1 State Evolution Model
Recall that the target evolution is assumed to be a first order Markov process. Therefore,
the most general form of the evolution can be written as

æT : fT (*7,,,uT,uT), (3.15)

where ui ís a control input, ui is random noise (referred to as the process noise), and

fTO issomefunction. Inthetargettracking case,n! generallyrepresentsthedynamic
state of a non-cooperative target (perhaps with other non-kinematic attributes), so it is

necessary to concede at this point that the control input ui is unknown and it will be
compensated for by using an artificially inflated noise process. Under the assumption of
additive noise, the state model can be rewritten as

æT : rT @7,) + gT @T), (3.16)

where the functions /i(.) and gfl(.) are arbitrary, and perhaps nonlinear. In many
practical applications, such as the tracking of ballistic objects ICKBSOI, YBSPD9S], it is
necessaïy to use nonlinear functions for fi(.) and gi"(.). Nevertheless, in other cases, it
is more usual to assume that they are both linear, and further that the noise process trf
is Gaussian. This allows the use of the Kalman Filter for state estimation, whereas the
nonlinear, non Gaussian case requires an approach such as particle filtering.

Under the linear Gaussian model, the evolution density of the target state is a linear
function of the target state at the previous scan corrupted with Gaussian noise. The state
evolution is thus represented by

æT : FT*\r-t Giai, (3'17)

where ui is a zero mean Gaussian random vector with covariance Qf and Fi" and Gi
are appropriately sized matrices. Equation (3.17) is a general linear state model with
additive noise. In the tracking application, the matrices Fl", Gfl and Qi" are determined
by the equations of motion and the motion model used. For example, a common model
is the almost constant ueloci,ty model. Here, the target velocity is assumed to be constant
except for accelerations introduced by the noise process, ul. For a one dimensional almost
constant velocity model, the state vector consists of one dimensional position and velocitv,

æi$D) :
[;]

(3.18)

the process noise covariance , QT, is a scalar, and so:

I r¡ - r¡_1
01Fr(lD) : (3.1e)
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Gr(lD) :fåt:-:ì'l (320)
L rt-rt-t I

The almost constant velocity model at higher dimensions can be composed simply
from the matrices Ff(1D) and Gfl(1D). For exarnple, for a three dimensional model Qi
is a 3x3 symmetric positive definite tnatrix and:

Fr(3D) : Fr(lD) o o0 Fr(1D) 0o o Fr(1D)

Gr(lD) o oo Gr(lD) oo o Gr(lD)

(3 21)

(3.22)

assuming that the random variations in speed are independent for each velocity compo-
nent.

Using (3.17) it is straightforward to show that the covariance of æi given æp, is
GTQTGT'. It is clear from (3.20) that this covariance of the state evolution is singular.
That is,

,u,* {ø løf - FT*T,) @T - rf *7,)'f} : 
'u,.u {af } < dim {*T}. (3.23)

This is because the only random elements are the velocity perturbations and there is
no random fluctuation of the position, except as an integration of the velocity. This means
that the probability density function of the state evolution exists only on a manifold and is
zero elsewhere. The position is completely dependent on the velocity fluctuations. While
this is unimportant for Kalman Filtering (since the Kalman Filter does not require this
inverse) it is important to recognise this in order to write down the proper expression for
the evolution density, lþT (*Tl*pr). The only time that the evolution density is required
is in the calculation of the PMHT auxiliary function that is used to test convergence. Since
the random part of the evolution comes through the noise process, u!, the probability
evolution density is simply the noise probability density. Under the almost constant
velocity model, the process noise produces a deviation in the velocity, so the difference
between the target velocity at ri and ú - 1 determines the value of the noise, of .

So the state evolution probability density is given by

,þT (*Tl*7,) : lzne1l-å ."p {_.iO, - *7,)'A'ef-'A (*T -rf ,)} , e.24)
)

where the matrix A is used to pick out the velocity cornponent of the state, for example

(3DGT

A(3D) : (3.25)

This pdf applies provided the position deviation matches the velocity deviation, otherwise
the probability of the state transition is zero.

In addition to the evolution probability density, the estimator requires the initial
probability density function of the model states, ,þi @T). In general, this function might
take any form, but under the assumption of linear Gaussian statistics, ,þi @T) is also a
Gaussian function. Let the mean and variance of æff be æff and Pfi' respectively. The
initial state distribution is thus:

,t,i @Ð : l2npffl-' "*o { -f,f*f - æi)'pi-'@i -.n} (3.26)

lo 1 o o olo o o 1o
lo o o o o il
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3.3.2 Measurement Model
Recall that there is a measurement probability density for each model, namely CT QI*T)
In general, this density is the result of the nonlinear measurement process

ztr: hT @T,urtr), Q.27)

where tlre source of measurement z¡, is model m as defined by the index k¿r, and ul
is random noise. Under the assumption of additive noise, and assuming that the noise
vector, r.t)¡r,has the same dimension as the measurement vectot, z¡r, (3.27) becomes

Ztr : nT @T) t u)u. (3.28)

In almost all tracking applications, the true measurernent equation is nonlinear, be-
cause the seusor receives observations in a polar coordinate system (such as range, bearing
and elevation) but the target state is represented in a Cartesian coordinate system (alti-
tude, north, east) or in a geocentric coordinate system (altitude, Iatitude, Iongitude). If
the target state is modelled in the radar polar coordinate system, then the state evolution
will be nonlinear (since targets do not move at constant range or azimuth rate except in
special cases). When the target state occupies a Cartesian coordinate system, and the
sensor measurements are in a polar coordinate system, the bearing measurement function
becorrres an arctangent.

The modelling method for the measurement process depends very much on the degree
of nonlinearity. For active sensors that operate at very long range, it is reasonable to
assume that targets move at constant velocity in the radar polar coordinates. This makes
life simpler, since the whole problem now becomes linear. This approach is appropriate
for sensors such as Over the Horizon Radar which typically operate at ranges greater
than 1000 km. At intermediate ranges, the nonlinearity cannot be ignored, but it is still
not a large problem. Sensors such as active microwave radars typically use a first order
Taylor approximation to the nonlinear function, namely the extended Kalman Filter. At
close range, or with passive sensors where a range measurement is unavailable, it becomes
necessaïy to use a nonlinear filter such as the particle filter |DDFGOI].

Since the following analysis will be mainly concerned with association performance,
and not estimation performance, it is possible restrict the problem to linear measurement
models, These models are also appropriate for the physical application which will be
explored later, namely Over the Horizon Radar.

The linear Gaussian measurement model replaces (3.28) with

ztu : HT*T I urt,, (3.29)

where Hi is an appropriately sized matrix, and ra¿, is zero mean Gaussian noise with
covariance matrix Rl".

Under the linear Gaussian measurement model, the measurement probability density
function is then given by:

: l2nRil-å "*p {-io" - HT *T)'RT_' (.,, - HT æn\ . (3 30)

A cornmonty a'alysed probtem is where the measur;";. """t;" ""r', *."r"",,"",of the target position. For the almost constant velocity target model, this corresponds to:

Hr(lD) : [1 o] . (3.31)
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In a similar manner to the matrices Fi and Gfl, the meâsurement matrix for higher
dirnensional problems can be expressed in terms of the one dimensional measurement
matrix. For example,

Hr(3D) : U

Hr(1D)
0 rn

tH

(1D)
0
0

HT 0
0
(

(3.32)
1D

3.4 The Kalman Filter
When the evolution and measurement processes are linear and the random elements are
Gaussian, then the probability density function of the model state, given a collection of
observations of that model, is also Gaussian. So, the posterior state pdf can be fully
described by its mean and variance. The Kalman Filter is an optimal recursive estimator
for the mean and variance of the posterior state pdf. It provides a method for calculating
the mean and variance based on their values at the previous scan and on the m.easurement
observed at the current scan. The Kalman Filter is analysed in detail in many texts (e.g.

[CC99]) and will not be reviewed in detail here. However, it is a fundamental building
block of most tracking algorithms, in particular the Probabilistic Data Association Filter
and Probabilistic Multi-Hypothesis Tracker. For this reason, the Kalman Filter equations
are nov¡ briefly reviewed.

Suppose, at scan t - I, the mean and variance of the posterior state pdf are known.
Let these be denoted as:

ùT-t: E{*7tlZr,...,Zr-r}, (3.33)

P7, : cov {æirlZr,...,Zr-r} , (3 34)

where both (3.33) and (3.34) are implicitly dependent on the known prior distribution of
the state, ,þi @T)

At scan ú, the measurement z¿^ is received. It is assumed to be known that the
rr¿th measurement is due to model m. The new mean and variance of the state pdf are
calculated using a two step procedure. Firstly, the mean and variance are predicted based
on the previous data, this is referred to as the prediction step. In the correction step (also
referred to as the filtering or update step) , the predicted quantities are adjusted using
the received measurement.

The prediction step extrapolates the state mean and covariance using the following
equations:

ûir-t : FTùT-t, (3.35)

Pi,-r: FTPTÏTr+GTQTGTT. (3.36)

The prediction step also calculates the mean and the covariance of the measurement
z¿q, àI scan ú, conditioned on the predicted state and its associated error covariance. The
mean of the conditional measurement pdf (i.e. the expected measurement) is given by

2T : HTûft-r' (3'37)

(3.38)
and its covariance is

si:HTPit-tHir+Rfl
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This concludes the prediction step. The correction step adjusts the predicted state
statistics from the new measurement, z¡^. In the correction step, the filter calculates
the measurement tnnouat'ion. The innovation is defined as the difference between the
expected measurement and the actual observed measurement, and is denoted zj':

uT : zr- - 27. (3.39)

Note that the innovation has à zero vector mean, because 2i is defined as the mean
of z¡^, provided the initialisation is unbiased. Also, the covariance of the innovation is

the covariance of the conditional measurement pdf, namely Si. Hence, S|' is referred to
as the innovation covariance matrix. This matrix is very important because it controls
the gain of the filter.

Next, the Kalman gain, Wfl, is calculated using

wT : Pir-iH1rs1-'. (3.40)

The correction step then concludes by forming the new state mean and covariance:

æf : ûir-r-tWiui, (3'41)

PT : PT,_, - WrHTPft4. Q.42)

Notice that the Kalman gain and the state covariance do not depend on the actual
measurements received. This means that these quantities could be pre-computed if the
matrices FT, GY and Hi are known a priori. In practice, both Fi and Gf depend on
the difference between consecutive scan times. So, if the scan rate is constant (or varies
in a known predictable way) then Fi and Gfl can be known a priori and the gains and
covariances computed off line. For many sensors this will not be the case, since the scan
rate may fluctuate.

The Kalman Filter can be presented in different formats. In particular, it is possible
to write the whole filter as two equations, one for the mean and one for the covariance.
However, this format has been chosen because data association at scan ú will be performed
using the predicted measurement, (3.37).

3.4.L The Kalman Smoother
The Kalman Filter is used to estimate the state in a time recursive manner, however
in some applications the estimator has access to a batch of data. In this case, future
measurements can be used to improve the state estimate at scan ú. The Kalman filter can
be extended to handle batch data, and this extension is called the Kalman Smoother.

The Kalman Smoother is almost identical to the Kalman Filter, but it involves an
extra correction step after the filter has calculated the recursive state estimates for the
batch. Define the smoothed state mean and covariance as:

ñi, : n{rilz}, (3.43)

Pi, : cov {rilz} . (3.44)

The state mean and covariance at the final scan 7 are already conditioned on the
whole batch, so

ûiv (3.45)fti,
Pi.PTv (3.46)
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The mean and covariance at earlier scans are then corrected using the backwards
TECUISlONS

ûi, : ûT*r¡r + PTFnIrP\*r,'-t lûtT*rlr - FT*rùT) , Q.47)
ph : pT +plFntlpn,¡t-l fpär¡r - pärl,] pT*r -',Fr *,,pT. (3.48)

Notice that the measurements play no part in the smoother backwards correction.
This is because the future state means already contain corrections for the measurements
through (3.41). Like the Kalman Filter, the smoother has linear complexity with the
number of scans.

3.5 The Probabilistic Multi-Hypothesis Tracker
The Probabilistic Multi-Hypothesis Tracker of lSL95] is a true multi-target tracking al-
gorithm derived from the application of the Expectation-Maximisation (EM) technique
of [DLR77]. A fundamental difference between the PMHT and other standard tracking
approaches is that the PMHT assumes that the assignment indices for each rneasurement
are independent random variables (see section 3.2.1). This introduces a further parameter
of the problem, fI, the prior probability mass function of the assignments.

The PMHT is an iterative algorithm: it asymptotically approaches a local maximum
of the EM auxiliary function by refining estimates for the states, X, and the parameters,
II. At the zth iteration, denote the estimated states and parameters as X(i) and ¡(l) t"-
spectively. The estimated states of model m at scan ú are denot ed, æi@ and the estimated
prior assignment probability for model m at scan t is riØ. The iterations are repeated
until the auxiliary function converges (or some other halting criterion is met) at iteration
¿* and the estimated track state and parameters at the last iteration comprise the PMHT
state and parameter estimates:

ùT : æ!(i.) 
'îT : ni?-l '

To start the iterative algorithm, the PMHT requires initial estimates [(0), ¿nfl fl(O).
These may be obtained frorn earlier data if it is available, or may be rnerely guesses. fI(O)
can be initialised as a uniform distribution, zf(O) : M-|.

The estimu¡.r ¡(z+t) and II('z+1) are found by maximising the EM auxiliary function
TntM

Ç (x,illx{r), rl(n)) : t t t log P (X, K, z;n) P (Klx{t) ,z;rr?')¡, (3.4e)
t:I r-I let":I

with respect to X and fL
Recall that the states of all models are assumed to be first order Markov random

variables and are therefore independent of all other prior information when conditioned
on the prior state of that model. The assignments are independent identically distributed
realisations of the probability mass II. The measurements are independent identically
distributed realisations of the measurement processes (fl as defined by the respective
assignment. These independence assumptions, combined with Bayes' Rule are used to
simplify (3.49) into two terms:

MT
g (x,rlx(r), rr(n)) : t eT (x^lx-tz), rr(o)) + t e,- (n,1xÍn), iljn)) . (3.b0)

1n:l t:l
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8r, (n,¡Xio),ilt0,) rnust be maximised subject to the constraint th.t t rT:I,
namely II¿ should be a proper probability vector. This is achieved fry in#ãta,tcing a

Lagrangian multiplier and the resulting solution is

m.(¡.\
1Tt " .n,, (3.51)

wlrere ,flr, i" referred to as the assignment we'ight for measurement z¡y and. model m.
This weight can be interpreted as the posterior probability that measurement z¡, is d:ue

to model m. It is given by:

( i.\
urn't

riu) * ("*l*Tto'
(3,52)

From (3.52), it can be seen that the weight, ,9r,, captures the dependence upon the
state and parameter estimates from the previous iteration.

Theterm Q^(X 1X(¿),fl(i)) in(3.50) isafunctionof thestatesof targetrnoverthe
batch and is independent of the other models. This implies that the state estimation for
model m is independent of the state estimation of the other models. This term is given
by,

Q* (x*]x-('),If(l)) :
TTTLT

roe,þi @Ð +D.* ,þT @Tl*7,) * i t,l|,,rosef Q,,l*T), (3'53)

t--1, t:l r:1
The weight equation (3.52) has a linear complexity in the number of models and the

models are maximised independently, so the overall PMHT complexity is linear with the
number of models.

The state estimate for model m at iteration z, ¡nz(í+l), is that state sequence that
maximises Q^ (X^1X(i),fl(i)). This is a maximum likelihood problem with weighted
measurements. The objective likelihood function (3.53) is the same as the likelihood
function of an unambiguous measurement problem, except for the measurement term.
The unambiguous measurement case is maximised by the Kalman Smoother when there
are linear Gaussian statistics. For linear Gaussian statistics, (3.53) becomes

T

Q^ (x^1x-(¿), rr(i)) : IoB ,þi @i) + t toerþT @Tl*7) + c* +
t:7

T n¿ _ _.,,(i)t t ff1r,, _ HT*T).RT-' (.r, _ HT*Ð, (3.54)
t:I r:7

where C^ ís a constant factor due to the measurement density normalisation.
Through algebraic manipulation, (3.54) can be rewritten as

T

Q^ (x^ l>c-{';), fl(n)) :roeúi (rä') + I to* ,þT @Tl*Ï-') + c^ +
t:1

nt

T
r:l

M

D ^f(o)C," 
("* *í'o')

s:1

_1
TL¡

Tt 1

t:l 2
(rT,, - HT*T)' (n¡r'r¡-' çry,, - HT*T), (3 bb)
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where

rn(i\TLtTlt '
(3 56)

i)- 1

m(i\TLtTft '
Rr

The likelihood function in (3.55) is the same as the likelitrood function optimised by
the Kalman smoother. However, instead of the measurement probability density for model
m, e? Q*l*T), a modified measurement density with covariance Rf(" appears. The mea-
surement centroid, ZT@ , acts as a synthetic measurement. So, the model state estimate,
æl(t), can be found using a Kalman Smoother where the measurement probability density
is given by

(3.58)
The term 8r, (n,¡xjo),ilj')) in (3.50) is a function of the parameter vector fI¿ and

is independent of the parameters at other scans and independent of the model states. It
is given by

M

O,* (n,¡xio',do') : t wflr,Iogri. (3.5e)
m:1

The PMHT algorithm is then the repeated application of equations (3.52) and (3.51)
along with Kalman smoothing to estimate the model states. At each iteration, the states
and parameters are modified and this produces new weights through (3.52). When the
algorithm converges) the changes in the estimates and weights will become small.

It is important to recognise that the weight equation (3.52) uses the measurement
probability density ei Qt læi), which is the probability density of the measurements
when the model state is known. This is different from the PDAF which uses the probability
density of measurements conditioned on the current state estimate (and its covariance).

3.5.1 Homothetic Measurement Models
An irnportant extension of the PMHT is the introduction of homothetic measurement
models [RWS95a], The homothetic measurement model replaces the simple Gaussian
model lor Çi Qr,l*T). Rather than a single Gaussian, the homothetic PMHT uses a
Gaussian mixture where each of the components has the same mean, but different covari-
ance matrices. In published uses of the homothetic model, the covariance of each of the
components is a scalar multiple of the measurement variance. It is possible to use a more
general form of the homothetic model, and this is presented in chapter 6.

The homothetic mixture model comprises of P Gaussian components, each with mean
HTæT, and with covariance rc*pR! , where n^p is a scalar. Chapter 6 uses a more general
model where the covariances of the different components are arbitrary time varying ma-
trices. Since the measurement process for each target is now a mixture, the index variable
k¿" must assign measurements to both the appropriate model and the homothetic mixture
component of that model's measurement process. So the new assignment index is

ler,:{tl,,tt|}, (3.60)

-m.(i.\z¿
1

D'9,.'n,
r:l

ñr(

Ç (uTu'*r) 2na7Ø -åexp {-iGr") -HT*T)'(nft";-',

(3.57)

- rn( T*TH
i)

))
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where kl, e lI,M] indicates the state model that corresponds to the true source of mea-
surement z¡y, àr1d k!, e lI,P] indicates the homothetic mixture component of that model
that caused the rneasurement.

The homothetic mixture model for the measurement process for model rn then gives

the measurement density:

e?'Q"l*T)

CT'Q*l*T)

ir kl,:1
tf kl,:2

Ç ("r,1*T) : (3.61)

ei" ("*l*Y) lf kl,: P,

where

eT' Q*l*T) : l2trn^PRil-å ""p -!r{rr, - HT*T)- @*eRi)-I (tr, - Hf *T)}
(3.62)

There is now a different assignment weight for each homothetic component, since they
represent different measurement pdfs. These weights are given by

(L)
Umptr

ri(ù ,* @) eT' (r*l*T'u')
(3.63)

Ð"',(o) PIi @) ein (.*l*it'')

where p# (p) is the prior probability mass of the index kl, lor model m, i.e. the mixing
proportions for the components of the measurement density for that model. In [RWS95a,
RWS95b], this mass was implicitly assumed to be known to be uniform. However, it may
be desirable to assume a nonuniform probability mass, or adapt it with the data. If it is
assumed unknown, then the probability mass Pffi (p) can be estimated in the same way
as the probability mass fL

Under this new measurement model, the assignment prior is then estimated by

(3.64)

If the homothetic model prior is to be estimated, then it is given by

p^1(u) (p) :
D'9,"
r:l (3 65)ntPtt'f)*,

r:1 s:1

tvlt
S:1

P

a:I

11. I

Umptr
.ntPnTu):lYY' nr ¿-t ¿-¿
" r:I p:I

The target state estimates can still be derived by a Kalman Smoother with synthetic
measurements and covariances defrned by

2T(,:{åå%) 'Ë E_%,).,,, (366)
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ñirtr - tt .9rn -1Pnt
Rr (3.67)

K,mPr:l p:l
The above equations assume that the homothetic models have covariances which are

scalar multiples of each other. For the more general case of arbitrary covariance matrices,
synthetic measurement and covariance equations are derived in appendix A.

In [R\VS95a] the homothetic model was used to allow the PMHT to assign distant
measurements to target models and improved track maintenance. Because of the over-
lapping covariances, the homothetic model also provides a means for the PMHT to prefer
closer measurements. Under a simple constant clutter distribution, all measurements close
to target models will have a much higher pdf under the target assignment rather than
clutter. In this case, all such measurements are treated equally by the PMHT rather than
preferring the closest one. In [RWS95b] a homothetic model was used, but the higher
covariance components were lumped into the clutter distribution, not the target. This
causes the target to pay less attention to more distant measurements.

[\\¡RS98b] presented a comparison of a variety of different PMHT permutations. The
homothetic rreasurement model was one of the best performing PMHT variants.

3.5.2 Manoeuvring Target Models
The inclusion of multiple dynamics models for each target is relatively straight-forward
within the PMHT framework. Whereas the homothetic measurement model described in
section 3.5.1 provides a mixture model for the measurement probability density function,
the standard switching dynamic models used for manoeuver tracking can be represented
as a mixture model for the state evolution process.

Manoeuver models for the PMHT were first proposed in [LKH97] and [WRS98a], and
have continued to be an area of interest for research, for example [RW01b]. The approach
described here is that of [WRS98a].

Let the target state evolution probability density be given by

,þT' (*Tl*i-') tf p"i : 1

,þT' (*Tl*í:') if ¡,ti :2
,þT (*Tl*7,) : (3 6s)

,þT* (*Tl*fl1') 11 p,l: ttt,

where p,T € ll. . . N] is an index that denotes the component of the mixture distribution
present at scan ú, namely the index of the manoeuver model that is active. Each of the
,þT' (*Tlqßr) ir a known function.

The manoeuvre model index, pT, is modelled as a Markov chain with a known tran-
sition matrix and prior probability vector. The index is treated as additional missing
data, just as the homothetic model index is done. This means that the PMHT requires
the conditional probability of the indices given the observed data and the current state
estimate. This probability is more difficult to calculate than the probability of the ho-
mothetic model index because of the temporal dependence (through the Markov chain).
Rather than the simple ratio in (3.65), the conditional probability of the manoeuvre index
must be determined using the Hidden Markov Model Smoother.
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A common approach to using rnultiple manoeuvre models is to use almost constant
velocity rnodels with different process noise covariance matrices, Q. When these matrices
are chosen to be scalar multiples of a base matrix Qo, then the resulting PMHT algorithm
can be implemented using a scalar multiple of Qo in much the same way that the homoth-
etic model in the previous section uses a scalar multiple of the measurement matrix. This
assumption is not necessary, and more general manoeuvre models give rise to a solution
analogous to the general homothetic measurement model presented in chapter 6.

3.5.3 PMHT Permutations
One of the main advantages of the PMHT algorithm is that its structure is amenable to
extension. The homothetic measurement model and the manoeuvring target model de-

scribed above are two examples of this. Many other variants were presented in [!\rRS98b].
Besides allowing for new additions, this structure also allows the combination of exten-
sions such as the homothetic model and manoeuvring target models. In essence, the
derivation of such combinations is simply a matter of careful notational accounting. The
result is a superposition qf algorithms, much as intuition would predict. An example of
this combination of extensions is demonstrated in appendix B, where the various threads
of this thesis are drawn together in a single über-algorithm.

3.6 Problem Areas in PMHT
Since the PMHT is a relatively young tracking algorithm, there are problem areas which
have been addressed for other filters that remain unresolved for the PMHT. In addition
to these problems, there are some areas that are more peculiar to the PMHT because of
its data model and iterative nature. Some of these problem areas a e described below.

3.6.1 Additional Sensor Information
The standard PMHT formulation includes measurements that are observations of the
target state. In practice, there may be additional data available to the tracker. Sensors
operate at a finite resolution, and the energy received from targets typically occupies
several voxelsl in the radar image. The standard measurements comprise of estimates
of the mode (or mean) of this distributed energy pattern along a particular dimension.
However, other measures of the pattern have been used with the augmented PDAF. Mea-
surernents such as the area of the pattern, the height of the mode, and the curvature of
the spread have all been used in the Augmented PDAF context to improve the discrimina-
tion of target and clutter originated measurements [NSC84, Col87, LBS90, CC01]. These
approaches are highly effective in reducing the false track rate of the PDAF.

As well as additional features of the sensor signal, some platforms provide the tracker
with information from alternative sensors. An example of this is where an ESM receiver
is used to provide classification information. This classification information can be used
in the tracker to improve performance [CP01]. However, it is more usual for the tracking
and classification problems to be dealt with independently.

Non-kinematic measurements are referred to as features using the standard classifica-
tion terminology. Features with a known, or estimable probability density function are
easily incorporated using an approach similar to the Augmented PDAF. The Spectral

lvoxel: a contraction of volume pixel. The quantum of a three or higher dimensional image.
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Histograrn PMHT [StrOt] uses a nonparam.etric approach to estimate the feature distri-
bution for a special kind of feature (namely spectra). This is the only PMHT approach
to incorporate feature or classification information.

3.6.2 Dynamic Assignment Prior
A key difference between the PMHT and other tracking approaches is the assumed as-
signment model. As described in section 3.2.1, the PMHT assumes that the true source
of each measurement is an independent realisation of a random process with probability
mass fI¿. This pmf can also be interpreted as the rnixing proportion for each model where
the sensor data is treated as a mixture process. If the assignment prior is unknown, then
the PMHT can estimate it, but only under restrictive conditions. The standard PMHT
algorithm is derived under the assumption that the fI¿ are time independent. For many
applications, the true mixing proportions of the component models varies smoothly over
time, and are not independent from scan to scan. To properly model such cases, it is
desirable to generalise the PMHT so that the assignment prior, fI¿, is a random process
with an arbitrary evolution probability density.

3.6.3 Tlack Initiation
One of the difficult problems that faces practical tracking systems is that the number of
targets present within the surveillance scene is unknown and dynamic. Targets may enter
or leave the scene at the boundary of the sensor footprint, but they may also appear and
disappear due to the loss of signal propagation or target manoeuvre, especially around
airports. It is highly desirable that practical tracking algorithms used for real time systems
are able to automatically form new tracks when new targets appear, and terminate old
tracks when targets vanish.

Like most tracking algorithms, the standard PMHT is predicated on a known and
fixed number of target models. Furthermore, the algorithm requires a priori knowledge
about the states of these targets. Since the PMHT is a hill climbing algorithm, the state
estimate may converge to a local maximum if proper initialisation is not used. This
assumption is contrary to the goal of automated track initiation and termination.

As reviewed in chaptet 2, a number of different approaches have been used with other
tracking filters to perform automated track decisions. In the following chapters, some of
these techniques are incorporated into the PMHT framework and their performance is
analysed for the problem of initiating target tracks in clutter with poor initialisation.

3.6.4 Application of PMHT to Operational Sensor Systems
A consequence of the youth of the PMHT algorithm is that there a very few implementa-
tions of the PMHT for real sensors. Work on the PMHT has mainly been studies using
simulated data. While these are useful and provide a test-bed for theoretical advance-
ment, stalwart practitioners are only convinced by performance on real systems. The goal
of the following chapters is to develop a PMHT algorithm capable of handling the difficult
problems encountered with practical data. Ultimately this algorithm is run on recorded
radar data with better than real time speed. The performance of the prototype PMHT
developed here is compared with the Unified PDAF (UPDAF), the current operational
tracker for the Australian JFAS radar.



Chapter 4

The Probabilistic Multi-Hypothesis
Tracker with Classification
Measurements

rftHE original formulation of the Probabilistic Multi-Hypothesis Tracker deals with mea-
I surements that are instantaneous observations of the state of a particular model. The

data association problem arises because the particular model that caused any particular
measurement is unknown. Thus the PMHT forms an estimate of the unknown model
states based on a collection of state observations with uncertain origin. The algorithm
estimates the model states by maximising the conditional expectation of the log likelihood
with respect to the model to measurement assignments.

In practical applications) a sensor may be able to gather other information in addition
to state observations. While this inforrnation may not be useful in estimating the state
of the targets of interest, it may improve the tracking algorithm's ability to associate
measurerlents with each target track and hence improve the overall performance. This
chapter considers the case where the tracking filter has an estimate of the class of the
target that caused each available state observation. This classification measurement is

treated as an observation of the assignment of the corresponding measurement.
One physical example of a system where classification measurements exist is high

resolution radar. At microwave frequencies, the wavelength of the transmitted waveform
may be relatively short compared with the physical size of the target. This causes the
target return to be distributed through several range bins. The distributed range response
of a target is referred to as a range prof,le. The range profiles from various azimuth angles
can be collated to form a radar image of the target. The location of primary scatterers and
other features of this image can be used to classify the target UO97]. Another example
is where a radar platform has access to data from an electronic support measure (ESM)
receiver [CP01]. An ESM receiver is a passive sensor that detects radiation from radar
emitters on other platforms. The ESM receiver can provide classiflcation information
about emitters at various bearings that can be associated with radar detections aligned
at the same bearings.

The PMHT algorithm derived in this chapter is designed to take advantage of classi
fication measurements to improve data association and state estimation. This extension
of the PMHT is referred to as the PMHT-c. It will be shown that the standard PMHT is

a special case of the PMHT-c algorithm that is realised when there are rlo classification
measurements available, or equivalently, when the classifications provide no information.

The derivation of the PMHT-c follows the same development as the original PNIHT
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algorithm. The derivation is presented in full here for completeness.

4.I Derivation
Using the observer model developed in chapter 3, write the likelihood of the observer and
the received measurements as

L (O,Z) : P (O,Z): P (X, K,Z) . (4.1)

The observer likelihood in (a.1) is implicitly dependent on the parameters, fI, which
provide the prior distribution of the assignments, K. In general, neither X, K, nor fI
are known and all must be estimated in order to achieve a state estimate X, which is the
tracking goal.

It is not feasible to compute the maximum likelihood solution for X, K and fI because
the number of permutations of the assignments K grows exponentially with the batch
Iength, 7, and the number of models 111. Instead, the Expectation-Maximisation (EM)
algorithm is used to derive an iterative scheme that converges to the maximum likelihood
estimates for the states, X, and the assignment prior, fI without directly estimating the
assignments themselves. Using EM terminology, the assignments K are the m'issi,ng data
and O and Z are collectively the complete data. The complete data likelihood is .L.

Define an auxiliary function

q &.rt*(¿). r(')) = t log tr (o, z¡ e (x1xr, ,r) , Ø.2)\')/*
where f(';) ir the state estimate at iteration z and ¡(z) 6 the estimate of the prior proba-
bility of the assignments at iteration ¿.

The summation denoted I is the sum over all possible permutations of the assign-

ments, K. Explicitly, K

MMtt MM Mt {'} = tt t{} (4.3)

(4.4)

(4.5)

K Ie11:L lae:1 klnr:I þ21:l krnr:!

A recursive estimator for X and II is achieved by finding the values of X and fI that
maximise O (*,nlÎi';1,Û(o)). That is,

¡(l+t;, fr{z+r¡ : argmaxO (*,frlx(i), ¡1(¿)

: arg max I to* L (o,,2) P
K

4.L.L Classification measurements
Suppose that each measuremenl z¡, at scan ú has an associated classification measure-
ment. fet zl! denote the measurement vector produced by an observation of the state
of an unknown model k¿". Denote the classification measurement associated with zf! as

"!l . f"t the total meâsurement vector be the collection of the state observation with its
associated classification measurement,

)
( XK i,) Z)

Iø)
'tr(k\ztr

Zfu
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The probability density function of the state observation "t! i" given by the measuïe-
ment process for the rnodel designated by lcr, as defined in chapter 3. Thus,

, (rÍî'lk*,x,) : e!" (.Íî'l*f") (4 6)

The classification measurement is a discrete variable that takes its value from an
enumerated set of classes. The number of classes that define the possible outcomes for

"ll i", in general, not the same as the number of rnodels, M. For example, if the
classification measurement is due to an ESM receiver, the set of classes may be the set
of radar platforms known to the ESM classifier, which will be a large set of vehicles.
Alternatively, if the classiflcation is due to poor resolution range profiles the classes may
be broad groups such as { small, medium, and large}. Let the number of classes in the
set of possible class measurements be Ms. The range of possible values of "ll) will be

lr . .'M"1.
Assume that the classification measurement is independent of the model state, X, and

also independent of the state observation ,jf). tn,t.,

P (z¿,lk¿,,X¡)

'll1k,,,x,
"l! 1k,,,x,

(

(

(

P

P

P

lul (k\ ,atr t atr tutr , *r)
P ('Íi) "t7) ,r,,,,x,)
P (.ÍP k,,) .

)

) (47)

This is equivalent to assuming that the avaiiable measurement data has been partitioned
into dynamic and non-dynamic parts. These then comprir".!! ""d, "ll) respectively. If
this is not the case, then the classification measurements provide information about the
state and must be taken into account during the state optimisation.

The probability mass function P (rÍi'tn*) can be represented by a matrix w\th Mç

rows corresponding to possible class value " fot z!l) and, M columns corresponding to the
possible values of k¿r. Such a matrix is referred to as a confus'ion matrir in classification

Iiterature [TK99]. Denote the confusion matrix C: {"0¡} with c¿¡ = P (zÍP : i'lkt : i).
So c¿y is the probability that the classification process will produce the class output'i when
the observation was truly caused by model j.

Using the confusion matrix elements, c¿¡,, aîd the model measurement processes, eT,
the total measurement probability is then given by

P (z¡,lk¿,,X,) : e!" (rl;t@f") ",Íyt,, (4 s)

In some cases, the confusion matrix values may not be known by the tracking filter.
If they are not known, then they must be treated as unknown parameters of the system.
In this case, the auxiliary function becomes

/
O (*,r, clx(i), û{,'), c(c)) : I to* L (o,z¡ e (x]x" ,r) (4 e)

K

The iterative estimates for the confusion matrix elements are found by maximising the
auxiliary function.
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4.L.2 Complete data likelihoo
The expression .L(O,Z) in (a.1) is referred to as the complete data likelihood and is the
joint probability of the states, the assignments and the measurernents. This probability
may be rewritten via Bayes' Rule as

L(o,z): P(x)P(Klx)P(zlK, x). (4.10)

The measurements are assurned to be independent conditioned on the states and the
assignments, so T rLt

P(zlK,X) : IIil P (z¡,lk¿,,X¿), (4.11)
t:7 r:l

where P ("t lkr,,Xr) is defined by (4.8).
The assignments are assumed to be independent of each other and independent of the

model states, so
TntTnt

P(Klx) : fl ll r (kn) : fI fl "f'. (4.r2)
t:l r:I t:I r:1

The targets are assumed to be independent of each other and independent of the
clutter models, so 

M
P(x) : fI P (x-) (4.13)

rn:I
The models are assumed to have a first order Markov dependence, so the state at scan

ú is independent of the state at scans t' < t - 1 when conditioned on the state at scan
t - L. This means

P(x) il
M

ln:1

T

P @Ðffn (æilæ7')
fn--

M

t:l

il ,þi @ÐIløf (*Tl*7,)
T

t:7
(4.r4)

(4.16)

Substituting (4.8), (4.11) , (4.12) and (4.14) into the complete data likelihood (4.10)
gives

M ( 'r l"ntL(o,z): fl l,ur r*nIl,pr @T@7,) lnn n!"ef* (,Íî,wr-) ".Ít),,,. (4 15)
z':r I t:t ) rt r=t

4.L.3 Conditional probability of the assignments
Computing the auxiliary function in (a.9) requires the probability of the assignments
conditioned on the states and the measurements, P(KlX,Z). Using Bayes'Rule, write

P(X, K,Z)
P(X,Z)
P(X, K,Z)

I"(*, K,z)
K
L(O,Z)

\r1o,z¡

P(KIX,Z) :

K
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Both the clutter states and the target states ar-e independent of the assignments, so the
terms in tr(O, Z) corresponding to these can be factored out of the sum in the denominator
of (a.16). These terms then cancel with the same terms in the numerator

P(KI){-,Z) þ_{rr @i)II,þi @T *7,)}H nf*ef* ("Íi' *f-) ""Ít,r,.

,þi @i)Ilw (*Tl*7,)

T
,þi @ÐlIvr @T@7,)

t:I
T

t:I

il fi nli EkL. ("Íi, wf*),.Íy n;.
t:l r:1

Mil
ú fr nr,. cf- (,Íi, l*i*) ""Ír) *,.t:l r:7

{rr ønyr, (*?t*7) 
} p H ,rfL.çkí. ("Ír,wrr¡ ".Ít,r;.

il fr*f* e!" (,Íî,t,i") c"g)n,.

rn:l
T

t:l r:l (4.t7)

(4.18)

(4.1e)

(4.20)

(4.2r)

Tntt il fnf; ç*|' ('Ír' wr") ""Ír) *i,Kt t:l r:I

where K/ is simply a dummy index.
The sum of products in the denominator of (4.17) is equivalent to a product of sums,

namely

Thus (4.17) can be simplified to

P(KIX,Z)

Define

ú il nr" cf" (r',i'wr") 
"",,r.,n,"

TntTntMtilll/( )=lIlI t /( )
Kt t-7 r:1, t:I r:l þt,:l

Tnt: I]II
t:l r:l

t:I r:l
TntM

ilil D, "i;efr. (.Íî'l*lt.) ""g,)n,.f:l y:l þt,:!

nf ," <!,, ("1î' l*f ' ") 
" ",,1, 

*,,

D "i;eit. (,1î,1*f,.) ""g,rL.

M

krr:t

nf,, ef, " (.Íî' l*f") 
" "'f;, r,,kt,tr M

\ nYt'çrt'
k'tr:t

("Í;,1*i*¡ ""Ít)*,.

P(Klx, z):ilflrr,.,,Tnt

t:l r:l

then (4.19) becomes

'11)
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The w^¡, is referred to as the association weight for measurement r at scan ú and
model m. It can be thought of as the posterior probability that the assignment k¿y : rn
whereas the prior probability is, by definition, ri. The weight u)^¿, is implicitly iteration
dependent because it is a function of the estirnates at iteration ¿.

4.L.4 Expectation Step
The expectation step of the EM algorithm involves the calculation of the auxiliary func-
tion, Q. Recall that the auxiliary function is defined in (4.9) as

8 (x,r, clx(¿), ¡(.,), ç(';)) : t log tr(o, z;fr,c)p (KlxØ,2.r@, C(r)¡ ,

K

where the dependence on the probability mass functions fI and C is shown explicitly. The
quantities ¡(';), ¡(l), and C(i) are the estimates found from the ¿¿h iteration of the EM
algorithm, and the estimates for the i + Lth iteration are found by maximising Q.

Fþom (4.15) write

rogtr(o, z;fr,C) : 
'"- {JI, {rr oy\r, (*Tt*7.)} x

Tnt

n I nf'" Çf* ("1î' l*f")' "tf' r,.\t:1. r:I
rrr( T I: I { t"* ,þi @T) + t toeúi @Tl*7) I

----r I L:r )
Tnt

+ t I {t"* r,n* + los #,' (rÍ;'Wf") r tog 
",Í1.) t ,,} .f+.zzl

t:I r:7
Substituting Ø.22) and (4.21) into (4.9) gives

I (X,fI, CIX(i), fl(i),6(t)) :

+ ^:D-{'"*r, 
@i) +å,"- 'þF 

(*Tl'r')}

+ D {iË bs,rr''} ilii ,',t,),,,
K ( r=L r:t ) t:1lJ

.Ð{åå ,,ec!" ("Í;'wr-) }Ug'*

.Ð{åå ros'"Ít'r"

Tnt

IIil'f).,,
t:7 r:\

tr

'u)
(ù
kt,tr (4.23)

The notat ion wf,),r, is used to indicate that the measurement to model assignment
weight is calculated using the estimated states and parameters from iteration z, namely
¡(t), ¡(;), and C(i).

The following two identities are used to sirnplify (4.23),
Tnt

t il fl'wt*"t' : l' (4'24)
K t:I r:I
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and
Tnt

t ilIJ,.r,,r,:utrusust
K\/c'" f:l r:1

where t is the sum oveï all assignment indices except k?,s

K\k,"
Applying (4.24) and (4.25) to (4.23) gives

I (x,fr, Clx(t), If(¿), c(e)¡

t t I to* '"',1;*'f),

rôo.)

Mt
m:l

(r
{ tosøä' @i) + Ito* ,þi @T *7IE

11.\
wì*i.,

(4.25)

(4.26)

,)

.{

.{

.{

TntMttlto*
t:I 'r:l k:l
TnLMttI,o*

t:l r:l k:l
TntM

nfw

ef (.1? *i)

t:I r:7 lc:7

(4,26) can be grouped into the following three terms

M

m:l
g (x,fI, clx(i-1), ¡(r), c(t)) : Ðqç + t eh t es

T

t:l

The Qft term in (4.27) depends only on the target model states and the measutements
and is given by

TTnt
eT :toeúi @Ð + I to, ,þT @Tl*7,) + I I,o* ef ("Íî)@T) -f),,. (4.28)

t--I t:l r:7

(4.27)

(4.30)

The Q¿,, term in (4.27) depends only on the prior probability fI and is given by

Q,n:ttros"frf), (4.2e)
r:l Ir:7

The Qs term in (4.27) depends only on the classification measurem"nt" ztf) and the
confusion matrix C and is given by

ntM

TntM

t:l r:1 k--I
Qc: ttlto* ""li,rrfll

4.L.5 Maximisation Step
The EM maximisation step updates the estimates of the unknown states and parameters
by maximising the auxiliary function Q. Because the auxiliary function is the sum of
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independent tetms, the overall function can be maximised by performing independent
maximisation on each of the terms.

¡rn(i+l) : argmaxQft,
T

If(¿+l): argmaxl.Qr,,
t:1'

ç(l+t¡ : arg rnax Q6.

4.L.5.L State estimate

The maximisation of the state terms Çp depends on the particular forms of the evolu-
tion probabilities ,þT@Tlæ7,) and the measurement processes efQÍ?læi) anð, may be
different for each model since the models may have functionally different probabilistic
models. For the special case of linear Gaussian functions, Streit and Luginbuhl have
shown that the solution for the states is a fixed interval Kalman smoother. The proof of
this important result is repeated for completeness.

Let us examine the measurement term in (4.28) which is given by
Tntt trogcr (,Í?wr) -fl,,

t:l r:I
For the case of linear Gaussian statistics, the measurement function for model m is

er (,lr)@T) : 
"#p""0 

{ -}(,Sl - HT,T)'(*r)-' ('Í:' - Hr*T)} ,

where Hi" is an appropriately sized matrix and R is the measurement covariance
detail on linear Gaussian models is given in section 3.3.

Taking the log of (4.31) gives

(4.31)

More

Tnt

D'l),,'Íi)
r:I

(Rr)-'uT*T)

- FT *T)' (nî")-' (ä,r..fr') ) + A (4 34)
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Substituting

into (4.34) gives

nt

where

I tosç" ('Íî'@r),9,,

D'f),,'Íi'
r:l

(r)
wrnt,

1

Ð'l),,
r:7

Ri"

(¿)
tnta
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(4.35)

(4.36)

(4.38)

ntt
r:1

r:1

Completing the square, gives

;2.n {FT*T). 
(Rr)-' (ur*T)

- (rn)'(*r)-' UT*T)

- FT*T)'(nr)-' ?Ð) * o

É.* er (,1î)@T),9,.
r:l

: -;i.9,,(zl), - HT*T)'(*r)-' ?n - aiæi) + a
r:7

: -i|n - HT*T) (n¡t'r¡ ' (t9, - niæi) + 'a,

o( bsef (u9,1-f) , Ø.37)

ñirtr

and

r: (29,1*7) ' (rg, - HT-T)\1

{-;('r - HT*r) (nr"')r/2 exp
2rAYU't

(4.3e)

Ignoring constant terms, write (4.23) as

TT
QT:ros,þL@i) +Ito* ,þT @Tl*r:.') * I roeef (u9,1-f) (4'40)

t:L t:l

Observe that (4.40) is exactly the log-likelihood of a linear Gaussian state estima-

tion problem with measurem e*s 2flrand. measurement probability density ç (r|tl-f)
Thus, the Kalman smoother can be employed to obtain X(i+1) because the Kalman
smoother is the Maximum Likelihood estimator for this problem.

For the case of linear Gaussian statistics, the state estimate for iterationi,lT is found
by running a Kalman smoother with the synthetic measurements

nt

Ð'(;Ì,,'li)
r:7

D'f),.
r:I

- (i\þn¿t:
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and with a modified measurement covariance given by

ñ¡r,'l

D'l),.
r:7

Rr

4.L.5.2 Assignment prior estimate
fuI

The Q¡n term in (4.27) must be maximised subject to the constraint D"! : t This is

1

where Àfl is the Lagrange multiplier.
Differentiating the Lagrangian with respect Lo r! and solving for stationâry points

gives

(4.42)

Reapplying the constraint gives

achieved by using the Lagrangian

achieved by using the Lagrangian

Ltu : äär* r! wf)+ .u (r - P_",)

. flt

nfþ) : t \-L \lt lr/trL --1

lxluií,

^;

Mtj:t

k:t

i:r

(4.41)

)i: ntMtt'fl,:n,
r:I k:I

(4.43)

(4.44)

(4.45)

So the estimate for rf at iteration ¿ -|- 1 is given by the unique stationary point of the
Lagrangian

k(i+r\
ttt

nt

D,'ÍlI
r:7

4.L.5.3 Confusion matrix estimate
M¿

TheQs term in (4.27) must be maximised subject to the constraint D"o,:1. This is

T
TÙ¿

M¡1

Lc: tIDto* c"ytrwf;),+ 1-tTntM

t:l r:I k:I i,:7

where Àrq is the Lagrange multiplier.
Rewrite (4.45) as

C;;

i:L

MçTntMMcM
Lc :t t t t õ ('Íf) - ,;) ros 

"on-f),+ I r; 1-t C;; (4.46)
t:I r:I lr:7 i:I j:r

where ô(ú) is the Kronecker delta function, an identity function that is unity at the origin
and zero elsewhere
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t:7 r:l i:I
nt nt

Differentiating the Lagrangian with respecl, to c¡¡ and solving for stationary points
gives

"11) 
:: É 'Lu (;,i' - r),j',), (4 47)_xJ 

Àr¡ i:, ,:,
Reapplying the constraint gives

n¿ rLt M¿

^; 
: ItD6('ti) -u),5',1
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II,jl) Ø48)
Ã ':t

So the estimate for c¿¡ at iteration ¿ i 1 is given by the unique stationary point of the
Lagrangian T n¿tt 6 ('Íi) -n)'l',1

(i+1)
-1,1

t:7 r:7 (4.4e)nt nt

D,L,'l:)"
t:l r:l

The denorninator of (a.a9) is the sum of all the weights for model j over the whole
batch. This is the posterior maximum likelihood estimate of the number of measurements
truly caused by model j. The delta function in the numerator effectively controls the range
of the summation in the numerator by selecting only those weights which corresponded
to classification measurements with value i. So, the numerator is the posterior MLE of
the number of measurements truly caused by model 7 with classification i. The ratio in
(4.,19) is thus an estimate of the fraction of measurements due to model j which gave rise
to an observed classification ¿. In other wotds, the estimator for each confusion matrix
entry (which is a probability) is the estimated relative frequency of the associated event.
This is an intuitively appealing result.

4.2 Summary of the PMHT-c algorithm
The Probabilistic Multi-Hypothesis Tracker with classification measurements (PMHT-c)
can be summarised by the following steps.

1. Initialise the state and parameter estimates, X(o), lI(0) and C(0) . Proper initialisation
is crucial since the EM algorithm is a hill climbing approach that can guarantee only
local convergence. Since the classification measurements, zlf are observations of
the assignments, it is possible to use their probabilities to define .çri) : c,txt*ãrrd
form the initial estimates using these weights.

2. Calculate assignment weights w::)tu for each measurement r and model rn at each
time sample ú defined by (4.20) as

(i) - 
nf@ ef ('lî'l*T''') ""rr,^

rntr - M

Ð".'ùel (.Ír't
I:I

(h)
tr

*'r''') "

'u)
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3. Calculate the refined estimate of the states X(i+l) using the weight s w:ltu and the
observatiotrs z¿y.

For the case of linear Gaussian statistics, the state estimate for iteration ¿ * 1 is
found by running a Kalman smoother with the synthetic measurements

nt

D'[1,,'Íi'
='(i) - 

r:l
-mt - T¿I )

Ð'f)"
r:l

and with a modified measurement covariance given by

nTro¡ - -!-or
D'f)"
r:1

where Ri is the true measurement covariance, i.e. the covariance of the function
lrnIr

4. Calculate the refined estimate of the assignment prior, II(i+l), using
.nt

irk(i+t) : )>,r,;),tbt
f': I

5. Refine the estimate of the confusion matrix, C(i+1) using

T nt

ID¿ ("Ír' - u),!:,1

"\i+- x.l

1) _ ¿:1 r:1
nt nt

DD,l:),
t:7 r:7

6. Calculate the value of the auxiliary function at the new estimates,

I (Xtr+tl,If(¿+l), C(i+l)lX(i), ¡(r), C(i)) :
Mt roe,þi ('pto*'r¡ + t .s,þi (æ7{t+'t'',T}i*'))

T

t:1m:l

.{

.{

.{

TntM

ItDto*nfo+rtru)
t:l r:7 k:7
TntM

t:l r:l le:l
TntM

IDItosef ("Íî'l*f''*") (i)
'11) ktr

ÐÐÐ'"* "')¡i¡'Y¡'

6 until I (Xf;+t¡,fI(,+t), C(i+1) ¡(r), ¡(r), C(¿)) converges7, Repeat steps 2
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4.3 Special Cases

Consider two special cases of the PMHT-c filter. In both cases, it is assumed that the
PMIIT knows the true confusion matrix C.

4.3.t Uninformative classification measurements

The PMHT-c is a generalised version of the original PMHT. The original PMHT is derived
without classification measurernents, so it is expected that the PMHT-c will simplify to
the original PMHT in the case that the classification measurements are uninformative.

Suppose that the classification nìeasurements were uninformative, that is each model
is equaliy likely to give rise to each class output. In this case, the confusion matrix
is constant across rows. That is, c¿j c¿¡rYi,,j,k. Denote c¿ as the constant value of
the confusion matrix for row ¿. This situation is equivalent to having no classification
measurements at all since the probability of the observatio " tlf) is independent of the
value of k¿r, ,.". 

" "Íf, rr, 
: c 

"Í!) 
.

In this case, the weight equation for model rn becomes

,,f@ ef (.Íî'l*T'u C tt¡'t(i)
Um'tr M

Ð"',Ø el ("Íî'l*i''') (r. )tr
L- L

Ctx
'tr ,ni(o) eT ("Íî'l*Tt")

M

" "Íi, D rl{a r' (,Íî' l*i''')
l:7

,,f@ ef (,Íî'l*T'''
M

Ð"',(ùel (,Íî'l*i''')
t:7

The term due to the classiflcation measurements cancels and the weight equation is
the same as that for the standard PMHT. Thus, when the classification measurements
are uninformative, the algorithm simplifies to the standard PMHT.

4.3.2 Perfect classification measurements

Another special case of interest is when the output of the classifier is perfect. Suppose
there is a separate class for each model and that the classification measurements ate errot
free. In this case, the confusion matrix is the identity matrix and the individual elements
may be written as identity functions c¿¡ : õ(i, - j). Intuitively, it is expected that the
algorithm should use the classiflcations as hard associations.

c
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Figure 4.1: Simulated scenarios
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This weight equation effectively means that the filter no longer uses probabilistic as-

signment of the observations and models. This should be expected since the perfect clas-
sification measurements are providing the filter with the true values of K. The weights
are now hard assignments independent of the model states so there is no need for re-
cursive estimation of the states or the probability parameter fL The filter simplifies to
independent state estimation of the different models using the assignments provided by
the classifier.

4.4 Performance Analysis
The improvement in tracking performance obtainable by using classification measurements
is now illustrated through some simulated examples. These examples focus on estimation
performance in a manoeuvring target setting. Two different scenarios are considered.
In each scenario, there are two targets that follow one dimensional trajectories that are
closely spaced, making for a difficult tracking problem. In the first scenario, the targets
move together and then cross over before eventually diverging. In the second scenario, the
targets move together and then turn back. These two scenarios are shown in figure 4.1.
The trajectory of target 1 is shown as a solid line and the trajectory of target 2 is shown
as a dashed line.

In both cases, the targets are simulated without clutter and a single measurement is
observed in each scan. The measurement is taken from either target with equal probability.
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The sensor receives measurernents of position and classification measutements. The
classification measurements are an observation of the true source of the position observa-
tion. The confusion matrix for the classification measurements is of the form

C-

where a is the probability that the correct classification is reported. a will be referred to
as the classification veracity. The scenarios are tested with various values of a and the
performance observed. For the case of a:1, the classification measurements are perfect
and the filter performance will be the best possible for the scenario. Thus, the case of a : 1

provides a performance bound. For the case of a : 0.5, the classification measurements
provide no information and the PMHT-c simplifies to the standard PMHT. Thus, the
performance when a : 0.5 shows the standard PMHT performance on the scenario. The
cases of known and unknown C were both considered.

4.4.L Simulation Details
The particulars of the simulations used for performance evaluation are now presented.
For each combination of parameters, 1000 Monte Carlo realisations are generated and the
filter performance is gauged by averaging over these realisations.

4.4.L.L Target Trajectories

In both scenarios, the target trajectories are composed of constant velocity and constant
acceleration segments. This means that the position is a piecewise combination of linear
and quadratic functions. The trajectory of target 2 is a mirror image of the target 1

trajectory. The difference between the turn scenario and the crossing scenario is the sign
of the acceleration in the second constant acceleration segment.

For the crossing scenario, the true state of target 1 is given by:

a
l-a

7-a
a

(4 50)

(4.51)
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r d¿

(4.52)

where the constants u : 0.5 and rå : 1 '125u: 13.5 were chosen. The function given in
(4,52) defines the solid curve shown in figure a.1(a).

4.4.L.2 Measurements

At each scan' a single measurement is observed, TLt: I' The scans are taken at regular
intervals with a sampling rate of 1. This means Lhal, r¡: ú and Tt - rt_t: 1. A batch
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length of T :80 is used. The measurement at each scan is taken from either target with
equal probability, so rl : 0.5. lI is assumed to be known by the tracker.

Each measurement is the current position of one of the targets corrupted with white
Gaussian noise, with variance R : 1.

The classification measurement at each scan is generated according to the confusion
matrix, C, as defined in (4.50). The classification veracity, o, is varied.

4.4.L.3 Target Models

The tracker uses a one dirnensional almost constant velocity modell for the targets. This
means that the motion is assumed to be constant in velocity with Gaussian perturbations.
In the one dimensional case, these perturbations are scalars with zero mean and variance
a This variance is assumed to be constant and the same for both targets. A value of
q : (u/10)2 : 0.0025 was chosen so that the filter would give an adequate dynamic
response to the acceleration segments. The target state vector is

ri
r\T

The true measurement process is linear and Gaussian. It is assumed that the filter
knows the measurement process. This measurement process is, in the Gaussian position
only case, described in 3.3. So, the measurement probability density used by the filter is

ri (4.53)

Ìm\ (") *r) {-* (":o -H*T)'}, (4.54)

where R:1is a scalar, and 11 : [1,0].
The filter knows that the confusion matrix, C, takes the form given in (a.50). Both

cases of known and unknown classification veracity) e.) ate considered. When the value
of o is unknown, the confusion matrix must be estimated. However, the filter does know
the form of the matrix, which can be exploited by incorporating the constraint c11 : c22.
When this constraint is incorporated into the iterative maximisation of Qc, then the
estimator for a is given by

T

Ð.\',, d ("t^ - r) +.1')a (z
t:l

The target state estimates for the filter are initialised by using the correct initial state
and projecting a constant velocity path from this point. This scheme is unrealistic in
practice, but it avoids irrelevant track initiation issues. Track initiation is considered
later in chapter 6. The prior state distribution tþ*(r|) is Gaussian centred on the correct
initial state with covariance matrix Po : diag(,R,0.5).

4.4.2 Performance Metrics
The performance of the PMHT-c is quantified by estimation accuracy for X and C as a is
varied. An additional measure of performance is the probability that the filter follows the
target trajectories properly. Since the measurements make the target paths ambiguous,
it is possible that the filter may lose the targets, or may switch tracks. Figure 4.2 shows
examples of trials with correct and incorrect tracking. In the left plot, the filter has
correctly identified the crossing trajectories, but in the right plot, it assigns measurements
from target 2 to the track for target 1 and so incorrectly produces turning trajectories.

6(z+1) : ! [7l (À) (4.55)2

lrefer to section 13.3 for more detaiÌs on the almost constant velocitv mo<ìel
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(b) crossing trial, incorrect tracking

Examples of simulated trials

20

The probability of correctly following the trajectories is estimated by counting the
number of random trials where both of the state estimates remain within a prescribed
distance of the respective true states, If the tracks move farther away from the true state
than this distance at any stage, then the trial is declared incorrectly tracked. A gate

distance of 3 units was used.
The estimation performance for X is quantified by the bias and variance of the esti-

mator output. These statistics are calculated using their sample estimates for trials with
correct tracking. The estimation of target 1 is investigated and it is assumed that similar
results would be obtained for targeí 2 (particularly given the symmetrical nature of the
geometry). Spot checks confirm this assumption.

The instantaneous position bias is estimated from the simulations by using the sample
mean of the estimates. That is,

Êî: lNË fn:I
tl(") _ rl), (4.56)

where fr1("1 'r the position estimate for track 1 at scan ú from the nth correctly tracked
random trial. l/ is the total number of trials with correct tracking.

There are two sources of estimation bias. Firstly, the model used by the PMHT-c
does not properly match the target dynamics. The true target model switches between
constant velocity to constant acceleration during the scenario. The tracker is attempting
to model the trajectory using an almost constant velocity model, which means it will be
inclined to estimate a trajectory with gradual changes in speed. During the periods of
acceleration, the model is mismatched and the tracker models the manoeuvre as a more
gradual acceleration over a longer time period. This leads to estimator bias. The second
source of bias is the presence of measurements from the other target. The measurements
truly due to target 2 will be given a non-zeÍo assignment weight for target 1, and will
cause a bias towards target 2. This bias depends on the target geometry because the
association probability will be very low when the targets are widely separated. If the
tracker were able to perfectly assign measurements, then the second target would cause

no bias. These two sources of bias will be referred to as mismatch bias and assignment
bias. The biases rnay counteract each other. For example, in the turn scenario, the
mismatch bias on target 1 is positive (the expected value of the estimate is above the true
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trajectory) but the assignment bias is negative. In such a case, the mismatch bias may
become masked if the assignment bias is high (when the classifier veracity is low). The
biases are not inherent deficiencies of the PMHT approach, but inevitable errors that any
estimator would encounter using the above target models.

The instantaneous position variance is estimated from the simulations by using the
sample variance. That is,

1¡/
òT : :I lr;,"' - (er* "i)] Ø57)-L N 1,

Estimator variance is caused by the randomness of the measurements. \Mhen the variabil-
ity of the measurements assigned to a track is high, then the estimator variance is high.
Such a condition is encountered when the two targets are close together. If the tracker
performed perfect assignment (such as when the classifier veracity is unity), then the mea-
surement variability would always be the target measurement noise, and the estimator
variance wouid be constant with time.

The estimation of the confusion matrix is quantified by examining the bias and variance
of the estimator â obtained when the PMHT-c converges. These are estimated using their
sample values, namely

¡l
Ba: 1

N I lat"r - o) ,

n:1
(4.58)

(4.61)

ão : :Ë laøt - (er *")]' (4be)N t:t

The bias and variance of the estimator ã. are not time varying because ô produces one
estimate for the whole batch.

For each scenario, the number of trials with correct tracking is an estimate of the true
probability that the scenario is correctly tracked for a particular value of a. Let us denote
the true probability of correctly tracking the scenario as p. The estimator, þ, used to form
the tables of results is

1åþ: ñ )-,d0, (4'60)
i:I

where d¿ is the result of the ith ftiaI (zero or unity) and lr/ is the number of trials, i.e 1000.
It can be shown that the variance of this estimator is given by

var(p) :*(o-p').

This is maximized when P:0.5. If p:0.5 then the variance of þ using 1000 samples
is 2.5 x 10-4. Thus, the standard deviation of the results given in tables 4.1 . ..4.4 is less
than 0.016, i.e. 16 trials.

4.4.3 Improvement with known confusion matrix
First investigate the performance gain obtained by using classification measurements when
the confusion matrix C is known. The number of trials with correct tracking for various
values of a is given in table 4.1.
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0.5 0.6
classification veracity, a

0.7 0.8 0.9

863 972 1000

65

1

crossing targets

turning targets

634 613 694

115 355 695 911 987 1000

Table 4.1: Nurnber of trials with correct tracking with known confusion matrix

As would be expected, the number of triais with correct tracking generally increases
as the classification veracity improves. What is surprising is how much improvement is
obtained even for very inaccurate classifications.

The standard PMHT (namely the PMHT-c with a : 0.5) performs poorly on the turn
scenario because the fllter is predisposed to the crossing explanation. The filter tends to
overshoot, causing the tracks to cross in the stationary part of the scenario. Since the
tracks have already crossed, it is unlikely that they will cross again, which is required for
the turn output. This behaviour can be seen from the estimator bias at the middle of
the scenario (refer to figure 4.5). The bias that causes the overshoot is the assignment
bias, which reduces as the classification veracity improves. The assignment bias actually
improves the performance for the crossing scenario. Table 4.1 shows that the performance
of the PMHT-c is better for a : 0.5 than for a : 0.6 on the crossing scenario. This is
because the assignment bias for the filter predisposes the filter to the crossing case.

The position estimation bias for the crossing scenario is plotted in figure 4.3 for various
values of a. The variance for the crossing scenario is plotted in figure 4.4. Figures 4.5
and 4.6 show the bias and variance for the turning scenario respectively.

The algorithm uses smoothing which means that measurements from earlier time sam-
ples and measurements from later time samples contribute to the state estimate. Because
the smoother does not have these extra measurements near the end of the batch, the vari-
ance rises towards the end. At the beginning of the batch, the variance is very low. This
is due to the initialisation which uses the true value of the target state. This behaviour
is common for all classification veracity values, o. When ù.: l, the true source of each
measurement is known, and the variance is roughly constant over the rest of the batch.
There is a small rise in variance during the target manoeuvres, wltete the assumed model
does not fit the true dynamics, and other fluctuations are due to the finite ensemble size.

For other values of a, the variance peaks around the middle of each scenario. This is
when the two targets are close together, and there is most ambiguity in the assignment of
measurements. The height of this peak increases as o decreases. In the turning scenatio,
the peak of the variance is roughly symmetrical in time, but it is not in the crossing
scenario. This is because the target trajectories are symmetrical in the turning scenario,
but not in the crossing one.

As discussed in section 4.4.2, there are two sources of estimator bias, namely the mis-
match of the target dynamics and the assumed model dynamics during target manoeuvres)
and incorrectly associated measurements from the other target. The first source is most
clearly seen in the curves for perfect classificatiolt, û:1. In this case, there is no associ-
ation errors, and the only source of bias is the model mismatch. The algorithm assumes
an almost constant velocity model, but the true trajectory follows a constant acceleration
Iaw during the manoeuvres. This means that the algorithm over-smoothes the estimated
trajectory, rounding off the corners and introducing bias towards the inside of the turn.
For the crossing scenario, this means a positive bias for the first manoeuvre, and a neg-
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ative bias for the second, whereas positive bias is produced for both manoeuvres in the
turning scenario, as is expected due to the symmetry. The second source of bias has an
increasing influence as the classifier veracity decreases. This bias is maximised when the
targets are closest together, at the middle of each scenario. Incorrectly associated mea-
surements bias each state estimate towards the other target, so the bias is negative for
target 1. When this bias counteracts the mismatch bias, such as during both manoeuvres
for the turning scenario, the overall bias may be reduced at that instant in time. Thus the
a : 0.5 case gives less bias than a : 1 during the manoeuvre, but more in the constant
velocity sections. Like the variance, the crossing scenario bias is asymmetrical because of
the asymmetrical target trajectories.

Generally, both the bias and variance of the state estimate increase as the classification
accuracy reduces. Although there is significant improvement from o : 0.7 to a : 1,
the results for low veracity classifications are still important. These show that with
fairly vague information, significant improvement in performance can be obtained over
the standard PMHT algorithm.

4.4.4 Improvement with unknown confusion matrix
The performance of the PMHT-c algorithm is now examined for the case where the
classification veracity is unknown. As for the known confusion matrix case, the number
of trials with correct tracking, the state estimator bias, and the state estimator variance
provide performance measures. In addition to these, the bias and variance of the estimated
veracity ô are also used. The PMHT-c knows the form of the confusion matrix, but does
not know the particular value of the classification veracitv, a. The confusion matrix
parameter is estimated using (4.55)

T
û(i+1) : + {t ,\')a (,f) - t) * ,y)6 (a

(k)
2

t:7
The estimated value for a is a function of the assignment weights and relies on the

PMHT-c to be able to deterrnine the true source of the measurements. When the weights
are exactly correct (i.e. zero or unity corresponding to the true measurement source) then
(4.55) is the optimal estimator for o. If the weights deviate from their correct values, the
estimate becomes degraded. During the middle time of both scenarios, there is much
confusion over the true source of m.easurements and the weights for both targets tend to
be close. Under this condition, the estimate of o is poor. However, at the start and end
of the scenarios, the targets are well separated and the weights will converge to zero or
unity, giving a good estimate of a. To ensure that the estimator is not corrupted by the
confused middle segment of the scenarios, the estimate of a is only calculated when the
Iarger of the target weights is more than 0.8.

A further benefit obtained by estimating the confusion matrix is an automatic check
for correct tracking. If o is estimated from the data at the end of the scenario, then it
is expected that the estimate would be less than 0.5 if the tracks have swapped targets.
If the estimate is unbiased, then the mean of ô would be 1 - o. This could be used to
implement an ad hoc rule to correct for the incorrectly tracked scenarios. However, no
such rule has been used in this analysis.

The number of trials with correct tracking for the two scenarios is given in table 4.2,
These results are -compared with the standard PMHT and the PMHT-c when the confu-
sion matrix is known. The unknown a performance is somewhat poorer than when the
confusion matrix is known, but the results are still much better than the standard PMHT.
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0.5

crossing targets

standard PMHT
PMHT-c a knowrt

PMHT-c a estimated

turning targets

standard PMHT
PMHT-c o knowrr

PMHT-c a estimated
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a
0.6 0.7 0.8 0.9 1

634
634
589

634
613
612

634
694
727

634
863
858

634
972
940

634
1000
1000

115
1000
1000

115
115
2r0

115
911
858

115
987
926

115
695
636

115
355
343

Table 4.2: Number of trials with correct tracking with estimated coufusion matrix

Figures 4.7 and 4.8 show the bias and variance of the PN4HT-c when the classification
veracity is estimated on the turn scenario. Similar results are obtained for the crossing
scenario and are not shown here. The plots also show the statistics for the standard
PMHT (i.e. a : 0.5), and the PMHT-c when the classification veracity is known. There
is very little degradation in performance between the PMHT-c curves for known and
unknown classifier veracity.

Flom these results, it appears that the PMHT-c does not suffer from significant per-
formance degradation when the confusion matrix is unknown.

4.4.4.L Confusion matrix estimation performance

As stated earlier, the estimation performance of the classification veracity, o, is quantified
by the bias and variance of its estimator. These quantities are plotted in figures 4.9 and
4.10 respectively. The figures show the bias and variance for the turn and cross scenarios.
When the targets are incorrectly tracked for a particular trial, the information used to
estimate a is systematically in error since the tracks follow the wrong targets. This bias
tends to make the estimated o closer to 0.5 since the incorrect segments cancel out the
correct segments. Hence, the bias and variance are calculated using only the trials with
correct tracking.

The estimator bias is approximately symmetrical about the point a : 0.5. This is to
be expected. If the tracker were to take the opposite of the classification measurement,
then it would be correct with probability I - a, so the veracities a and I - a are es-

sentially equivalent. For both scenarios, the bias tends to push the estimated veracity
away from 0.5. This may be because the estimator only uses those measurements where
polarised weights are obtained. If the true states are fairly close, then a correctly classified
measurement may be given a strong weight when an incorrectly classified one is given an
indecisive one. This causes slightly more correctly classified measurements to be counted
in the estimator than is representative. When o is less than 0.5, the converse occurs.
There is a small positive average bias.

The estimator variance is also approximately symmetrical about a : 0.5 and is highest
aL u :0.5 when the classifications provide the least information. For a binomial process
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with pararneter p, the variance of the estimator of p is given by

var(P) o;" 
,

where l/ is the number of data points. The classificatious are a binomial process, but they
are indirectly observed. Since the estimator ô only uses those classificatiolì measurements
where the weights are polarised, the number of data points that contribute to the estimator
varies with the classifier veracity. When the veracity is very high (or equivalently very
low) then most of the data points are used, and N is approximately the batch length, 80.

When the veracity is close to 0.5, then many of the measurements have indecisive weights
and the number of data points used for the estimator is much lower. So the variance of
the estimated veracity, ô, should be

var(ô) : T#, Ø.62)

where ¡/(r) is the expected number of data points that contribute to the estimator. For
the crossing scenario, an empirically derived function,

¡/(r) : 80 - 200a(1 - o), (4.63)

was found to agree well with the observed variance. This function corresponds to all 80

batch points contributing to the estimator at extreme a and only 30 points contributing
when a : 0.5. The quadratic transition models the experimental results adequately. This
fitted variance curve is also plotted in frgure 4.10.

The variance is generally lower for the turn scenario than the crossing scenario because
in the crossing scenario, the targets remain close to each other for a longer portion of the
batch. This means there are less scans where the targets are well separated. The result
is that the number of rneasurements that contribute to the veracity estimator, l/(a), is
generally higher for the turn scenario, giving a lower variance.

4.5 Sensitivity of the PMHT-c to an Incorrectly As-
sumed Confusion Matrix

The results shown in section 4.4.3 assume that the PMHT-c knows the true classifier
confusion matrix, and in section 4.4.4 Lhe confusion matrix is unknown. In general, it is
likely that the confusion matrix assumed to be correct is (at least slightly) in error. In
this section, the PMHT-c is analysed for the case where the assumed confusion matrix
is incorrect. In particular, the PMHT-c will assume a classifier veracity that is not the
same as the true classifier veracity, o. The assumed veracity will be denoted B. Thus the

PMHT-c assumesthat the conf'usion matrixis C: | - P l- Plrrr.Lrr^rù\-- lt-P P ]
The crossing and turning target scenarios are repeated for a variety of true veracities,

a, and assumed veracities, þ. As previously, the performance is specified using the bias
and variance of the estimate for the position of target 1, and by the number of trials with
correct tracking.

The number of trials with correct tracking for various a and p is given in table 4.3 for
the crossing trial, and table 4.4 for the turning trial. The table also includes the results
obtained in section 4.4.4 when the confusion matrix is estimated. trach column of tables
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assumed p 0.5 0.6

634
613
64r
654
690
7
6t2

115
355
511
595
643
1

343

true a
0.7

115
485
695
768
818
30
636

0.8 0.9 1.0

0.5
0,6
0.7
0.8
0.9
1.0

adapted

0.5
0.6
0.7
0.8
0.9
1.0

adapted

634
trittJlJ
547
529
503
0

589

634
643
694
772
835
60
727

634
686
784
863
928
207
858

115
612
844
911
94L
169
858

634
717
852
931
972
526
940

115
I ¿,J

936
974
987
479
926

634
725
906
982
999
1000
1000

115
851
984
1000
1000
1000
1000

assumed B 0.5 0.6

Table 4.3: Crossing target scenario

true a
0.7 0.8 0.9 1.0

115
244
355
442
465
0
2t0

Table 4.4: Turning target scenario

4.3 and 4.4 corresponds to a particular true classification veracity, a. Each row shows
how the performance varies when a particular confusion matrix is assumed and the true
classification veracity changes.

All of the entries in the first row of table 4.3 are the same, and similarly for table 4.4.
This is because this row corresponds to the PMHT-c assuming that the confusion matrix
is unif'orm and that the classification measurements are useless. In this case, the PMHT-
c simplifies to the standard PMHT and the performance is identical, independent of
classification accuracy, since the classifications are ignored.

The row corresponding to þ : L.0 gives very bad performance except when the clas-
sifications are perfect, or almost so. This is because the algorithm assumes that the
classifications are perfect and uses them blindly to assign the measurements. This means
that any false classifications will cause measurements from the wrong target to be assigned
to a track and the state error will become larger the farther apart the targets move.

What is quite remarkable is the trend shown in both tables: performance is improved
the more accurate the classifications are assumed to be, provided they are not assumed
to be perfect. For almost every value of classification veracity, the assumed veracity
þ : 0.9 gives the best performance. This resuit is completely counter intuitive, since
one would expect the best performance to occur when the algorithm assumes the correct
classification veracity. This result also leads to the interesting conclusion that, if the
PMHT-c is provided with the true classification veracity, it is better off not using it!
These surprising results are explained by detailed examination of the algorithm in the
following section.

The performance even improves with higher p when the classification measurements
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are uninformative, in the turn scenario. This occurs essentially due to the predisposi-
tion of the PMHT to favour the crossing explanation. It would be fairly straightforward
to generate four short tracks on either scenario (two at the start and two at the end).
The task of determining the target trajectories would then be equivalent to rnatching the
tracks from the start and the end. This could be done by picking a single classification
measurement from the start of the batch and one from the end. For the uninformative
case, this would give the correct track segment association half of the time - the same
as an arbitrary decision. The uninformative classifications do not improve the situation,
however, the performance of the PMHT is much worse than 50% for the turning scenario
because of the estimator bias. So, assuming that these uninformative measurements actu-
ally have high veracity does not improve the solution over what might have been possible
using segments of tracks. Rather, it reduces the impact of the PMHT's predisposition
to choose the crossing case. This effect is the same for the crossing scenario and so the
performance is degraded (the bias enables the correct decision).

For various mismatched conditions, the state estimation bias and variance are plotted
in figure 4.11 and flgure 4.12 respectively, for the turning scenario. Similar results are
obtained for the crossing scenario, and are not shown. Each individual plot in these figures
shows the performance for a single true confusion matrix, a, as the assumed confusion
matrix, B, varies. There is no curve shown for p :1 since assuming this confusion matrix
very rarely gives correct tracking. The bias and variance obtained when a is estimated
are also shown. In each case, the performance when a is estimated is similar to the
performance when the correct value is obtained (as has already been demonstrated with
figures 4.7 and a.S). The number of trials with correct tracking generally improved when
a larger value of B was assnmed, and figures 4.11 and 4.12 demonstrate that the state
estimation performance follows a similar trend. The curves corresponding to 13 :0.5 are
independent of the true veracity, because this is where the algorithm has assumed the
classifications to be uninformative and ignores them, i.e. the standard PMHT.

The state estimation bias for varying a when þ : 0.7 is plotted in figure 4.1.ì, and
tlre variance in figure 4.I4. Both the bias and variance are reduced as the veracity of the
classifications improves (o increases) even though the assumed confusion matrix is the
same. Similar plots are obtained for other assurned values of B, except 13 :0.5 when the
classifications are ignored. This indicates that improving the quality of the supplied data
always improves the quality of the track output, which is a desirable result.

4.5.L Improved Performance with Mismatch
The most intriguing conclusion of the previous section, is that the performance of the
PMHT-c improves when it assumes the classification measurements are very accurate,
even if they are not. This would seem to imply that it is better to always assume a high
probability of correct classification) even if it is known that this assumption is invalid.
This is counter-intuitive, but can be understood if the functioning of the algorithm is

examined closely.
The key is in the function of the assignment weights. A simplified example will be

considered. The conclusions drawn from this example will explain the performance im-
provements observed with high values of p.

Consider one scan with a single measurement, where the target state estimates from
the previous EM iteration are ã1: -0.5 and ù2: 0.5. The true target states ãlë, t1- -1
and æ2 : 1, and the measurement functions are both centred on the target state r,vith
unity variance. For the standard PMHT, the assignment weight is simply a normalised
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nonlinear distance measure, and the weights for the tracks will follow the curves shown in
figure 4.15. The weight for track l, u)t, is plotted as a solid line and the weight for track
2, u2, as a dashed line. Track 1 is preferred over track 2 when the measurement is closer
to it and visa versa.

Suppose there is now a ciassification measurement associated with the state observa-
tion, and that the PMHT-c assumes that the probability that it is correct is p. There are
two pairs of curves, one for the case that the classification indicates target 1, i.e. zk : I,
and one for the case that it indicates target 2, i.e. zk : 2. Since the scenario chosen
is symmetrical, these curves are simply reflections of each other. The weight functions
obtained are plotted in figure 4.16 for 0 : 0.7 and figure 4.17 for þ : 0.9. By assuming
a lrigher value of B,lhe crossover point of the ?.u1 and ür2 cürv€s is moved away from the
geometric midpoint of the two tracks. The effect of the classification measurement is to
shift the point where both tracks are equally likely to have caused the measurement away
from the track indicated by the classification measurement.

The reason that the PMHT-c gives improved performance over the PMHT is that
these weight functions now depend on the true source of the measurement. The weights
shown in figure 4,15 depend only on the value of the state observation - there is no way of
knowing which target caused the observation, so the weight curves are independent of the
true measurement source, k. This is not the case for the curves shown in figures 4.16 and
4.17 because they also depend on the classification measurement zk which is dependent
on the true source of the measurement,, k. So, with the PMHT-c, there will be different
weight characteristics depending on the probability that each target will cause the class
measurement. If k : I and the true confusion matrix parameter is a then the weight will
have an expected value given by

1t.)t : alt)t (t* : t) + (t - o)wt (.r : Z) . (4.64)

1_. w2
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This expected weight is dependent on k, Figure 4.18 plots the expected weights for
track 1 when a :0.7 and o : 0.9 and when the PMHT-c assumes 13 :0.7 and B : 0.9'

When the classification measurements are rnore accurate (a:0.9), the weight curves
extend farther away from the track before dropping down. This indicates th.at more
measurements will be given the correct weight. Recall that these curves are produced for
the case that k: 1. In fact, perfect classifications rn'ould give a curve that had wt:1
for all possible state observations. When the PMHT-c assumes that the measutements
aïe more accurate than they really are, the expected r,veight is reduced close to the track
since some measurements will be incorrectly classified and penalised by the PMHT-c.
However, the expected weight is increased farther away. In effect, the weight given to
nearby measurements is reduced slightly to increase the weight given to more distant
measurements.

One way to quantify this reach'ing phenomenon is to plot the difference between the
expected weights for track 1 when k : I and k : 2. The bigger this difference, the
more the classification measurements are providing the filter with insight into the true k.
Figure 4.20 shows this difference for a : 0.7 and a : 0.9 where the PMHT-c assumes

þ:0.7 andlj:0.9. Fromfigure 4.20iI isclearthatthereisasignificantincreaseinthe
discrimination of the weights when a higher value of p is assumed.

The peak of the curves in figure 4.20 occurs at the spatial midpoint of the two tracks
where

u1(lç : L) - u{k :2) : {, f*: llk : 1) l¡r (zk : t) +

P ("r :2lk : I) wt ("* : Ð\ -
{pQ*:rlk:2)ut(zk:t)+t

P ("r :2lk :2) w, (.* : ù\
: {*þ+ (t-a)(1 - P)) -{(1 -c-)13 +o(1 - P)}
: (2* - L)(213 - 1) - 1. (4.65)

It can be seen from (4.65) that choosing a higher value of p will improve the dis-
crimination. This might suggest that it is best to use B as high as possible, however,
the probability of the target producing a measurement becomes very low as the distance
from the target becomes large. Choosing p so that the weights remain high for these
measurements is dangerous since it will mean that measurements due to other targets
that are misclassified will be given high weights and the track will be lost. This is seen

in the performance obtained when þ : l.

4.6 Value of Estimating the Confusion Matrix
Estimating the confusion matrix appears to give worse performance than assuming an
incorrect confusion matrix. On any particular realisation, the adaptive algorithm will
choose a particular estimate ô from the distribution of the estimator. If this value is
high, the results show that the filter will give good performance. However, sometimes it
will be 0.5 or lower. Even if the true associations were known, some realisations of the
classifrcation measurements would give estimates with low values. In this case, we have
the performance of the first row of tables 4.3 and 4.4 or worse. In effect, the performance of
the adaptive algorithrn is the convolution of the estitnator distribution with the column
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of table 4.4 or 4.3 corresponding to the true scenario. The result is that the overall
performance is reduced by an amount dependent on the probability of the estimate, ô,
being 0.5 or lower.

For the scenario presented, there is no value to be gained by estimating the confusion
matrix, unless learning it is the goal itself. It is unclear whether different scenarios might
give more favourable results for this part of the algorithm.

4.7 Summary
In many applications the tracking algorithm has access to additional data besides the state
observations which are usually assumed in the algorithm formulation. This data may be
discrete and take the form of classifications, provided by either alternative processing
of the sensor data, or by additional sensors. This chapter derived a PMHT algorithm
for incorporating classification information by treating the data as observations of the
assignment variable itself. This algorithm is referred to as the PMHT with classification
measurements, ot PMHT-c.

The PMHT-c was derived under both known (or assumed) classifier statistics, and
unknown classifier statistics. \Mhen the classifier confusion matrix is unknown, the PMHT-
c can estimate it. The PMHT-c was shown to simplify to the standard PMHT when
the classification measurements were known to be uninformative, and to revert to hard
association when the classification measurements are known to be perfect.

Simulations of two simple scenarios were used to demonstrate that the use of classifi-
cation information can improve estimation accuracy, and also enhance the ability of the
tracker to follow difficult manoeuvring trajectories. It was found that the difference in
performance between a known and unknown confusion matrix was small.
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Similar simulations were also used to examine the change in performance when the
PMHT-c assumed a confusion matrix which was incorrect. Surprisingly, it was shown that
the performance actually improved in many cases when an overly optimistic confusion
matrix was assumed. This occurs because the PMHT-c with an optimistic confusion
matrix gives more emphasis to the classification measurements. Provided that they are
correct most of the time, this implies that the algorithm emphasises the correct assignment
decision, and performance is improved.



Chapter 5

A Dynamic Model for Measurement
Assignment the Probabilistic
Multi-Hypothesis Tracker with
Flysteresis

A key feature of the PMHT algorithm is the unique way in which it models the as-

lì. signment of measurements to the dynamic state models used to represent targets
and clutter. The PMHT assumes that the true source of each measurement is a random
variable. Each measurement has an assignment random variable which is independent of
the assignment of other measurements, given that the probability mass is known. When
the assignment probability mass is unknown, it can be estimated by the PMHT.

Under the standard PMHT formulation [SL95], the probability mass of the assignment
variable is assumed to be either time independent, or fixed over the batch. This is rather
limiting, and it may be useful to adopt a model where the assignment probability evolves
according to a probabilistic process.

This chapter presents a ner,¡/ extension of the PMHT which incorporates a state model
for the assignrnent prior and hence allows for its dynamic evolution. That is, a Bayesian
hyperparameter for the assignment process is introduced, and this hyperparameter is
treated as a random process. This model is shown to be a generalisation of the stan-
dard PMHT assignment model. Two alternative approaches are identified for solving the
generalised assignment model, and algorithms derived for each approach.

5.1 The Standard PMHT Measurement Assignment
Model

The main difference between the PMHT algorithm and other tracking approaches is the
assumed measurement model from which the algorithm arises. Under the usual measure-
ment model, there is an assumed prior processing stage that ensures that every target
present produces, at most, one measurement. If the target is distributed over several
sensor bins, a quasi sufficient statistic is assumed to be achieved through locating the
peak of this distributed response, or alternatively its centroid, or some other summarising
point. The result of this assumption is that there is, at most, one measurement belonging
to each track. This makes the track to observation association process dependent because
the assignment of one observation may alter the possible assignment options for the next.
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(a) standard measurement model (b) PMHT measurement model

Figure 5.1: Measurement Model BINs

The PMHT uses a different model, inspired by viewing the measurements as a col-
lection of independent observations of a mixture. The PMHT assumes that the true
assignment of each neasurements is an independent random variable with a possible un-
known prior probability mass function. The result of this assumption is that the track to
observation association is independent for each different observation. This independence
is the cause of the PMHT's linear complexity in the problem size, and allows the PMHT
to perform batch processing, which is otherwise unfeasible due to the prohibitive growth
in computational requirements under the standard model.

The difference between the assumed measurement process for the standard tracking
paradigm and the PMHT is highlighted by the Bayesian Inference Networks (BINs) shown
in figure 5.1. Each random variable is represented by a circle in the BIN and the arrows
linking the circles show the conditional dependence of the variables. In the figure, there
are two target models, and n¡ measurements. Under the standard tracking measurement
model, there is an assignment variable for each target model, and all measurements are
dependent on it. For the PMHT model, there is different assignment for each measure-
ment. Under the standard model, all measurements must be used to jointly estimate
each assignment. Under the PMHT model, each measurement is used independently to
estimate the single assignment variable associated with it.

As introduced in section 3.2.7, the prior probability mass of the assignment taking
a value m, P(krr: m), is denoted by n?. The ri values are constrained to sum to
unity over rL (by the law of total probability). Under the standard PMHT, the nl are
either known, or obey restrictive assumptions: they must be constant over fixed intervals
and independent between intervals. These assumptions are usually simplified to make
the priors constant over the batch, or independent from scan to scan. These restrictive
assumptions will now be relaxed, and the probability mass will be assumed instead to obey
a state model, with the state evolving randomly with time, i.e. the r! are assumed to be
a random process. The resulting algorithm is referred to as the PMHT with hysteresis,
since the state model for assignments produces a temporal dependence in the assignment
prior probability.
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Figure 5.2: BIN for PMHT with hysteresrs

5.2 Assignment State Model
The remainder of this chapter will deal with a problem deflnition expanded from that
in chapter 3. The standard PMHT observer was reviewed in chapter 3, and consists of
the model states, and the assignments. Here the observer is extended to also contain
a further random variable, that acts as a state variable for the assignments. It will be
assumed that a subset of the models have time dependent assignment probabilities. The
others are independent, conditioned on the dependent priors (since normalisation links all
of the priors). Those models that have time dependent assignment probability each have
an associated assignment state. The assignment state for model m at scan t is dl, and it
defines the assignment prior probability for that model, i.e. di is a hyperparameter. df is

a scalar. It will be seen to be convenient to choose the assignment state to be discrete (in
order to achieve a problem solution). However, this is not a fundamental property of the
hysteresis model and this choice will be deferred until the algorithm solution is obtained.

Define the per scan set Dt = {¿i.. d,y"} and the batch set D = {Do...Dr}'
The assignment state is assumed to be a first order Markov random process with known
evolution probability density (or mass) function LT @Tld?r). th" prior distribution for
the assignment state of each model is also assumed known and is denoted as Aff (dfi').

Figure 5.2 shows a one scan slice of the Bayesian Inference Network (BIN) for the
PMHT with hysteresis. The BIN demonstrates how the assigument state variables pro-
vide a dynamic model for the probability mass of K. This dynamic model is the key
contribution of this chapter.

Assume that the number of measurements due to targets is relatively low compared
witir the number of measurements due to clutter. This implies that the mixing proportions
associated with target models, rl for m: My +1...M, are low compared with those
for the clutter models, rl for rn : L . My While this assumption is valid for many
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tracking systems, it may not necessarily be the case.
The assignment state is the underlying random process that determines the ri. It

will be assumed that the dependence of fI¿ upon D¿ takes the form:

óT-n" (¿T-r*) m) My,

ri (Dr): NIx (5. 1)

oi 1- t óî@,Ð 0<m1My,

where the functiottt df @'r) are assumed to be known, and the parameters øfl are the
relative mixing proportions of the clutter models, which are assumed to be unknown.
The oi represent the prior probability that a measurement is due to clutter model rn
given that it is due to clutter, and are constrained by

0{o!17, (52)
tuJY

Ð"i : t. (5 3)
m,:7

Define the sets E, : {ol...oy"i and Ð : {Xr...Xr}.
The functions /f (df ) represent probabilities and so must be positive semi-definite

functions, namely they may not give negative values for any di. (5.1) ensures that the n'fl
sum to unity for any values of óï @í), provided that the constraint (5.3) holds. However, if
some of the þi (df) take values that are too large, then some of the ri wrll not correspond
to legal probabilities. For example, if the sum of the þi (df ) is greater than unity, the
clutter priors will be negative. This is why it is necessary to assume that the number of
measurements due to targets is low. This assumption then corresponds to constraining
the maximum values of each of the ó', (d,Ð to be sufficiently low to ensure that the rl are
positive.

It is possible to use a different definition for the dependence of the priors on the D,
rather than (5.1). A general form, such as assuming rT : óT@t) could be used. The
form in (5.1) was chosen because it concentrates the joint dependence of fI into onìy the
clutter models. The target n fl values are thus independent of each other. This may be
desirable if partial trM is used to reduce the complexity. This choice does not alter the
algorithm derivation, and a modified D dependence could easily be used.

The assignment state parameter will be assumed to occupy a finite discrete space.
Without loss of generality, this space is assumed to contain Mp elements, with the as-
signment state taking an integer value between 0 and Mo - I. The decision to use a
discrete assignment state parameter, rather than a continuous one, is driven by a de-
sire to achieve at a soluble problem. For continuous random variables, the only optimal
estimators known are those due to Kalman lKal60] and Benes [Ben81]. Each of these
addresses a special case of the state evolution and observation equations. Both require a
linear observation with Gaussian noise. In this problem, the functions Afl (a7la7r) ana
óT @T) are the evolution and observation functions respectively. To achieve the positive
definite constraints, and an upper bound, means that these functions cannot adhere to
the Kalman or Benes formulations. Thus, no continuous functions will give rise to an
optimal solution (barring the discovery of another continuous optimal filter, which would
be a major contribution of itself).

The particular forms of the functions óT @,n and Afl (Afl¿yr) are chosen according
to the specific problem to be solved. The PMHT algorithms derived in this chapter are
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applicable for any functions, when di \s discrete. This is because discrete problems are
solved in a direct numerical manner by algorithms such as the Viterbi algorithm, or the
Hidden Markov Model Smoother, without the problematic analytic integration required
for optimal solution of continuous problems

5.2.L A Note on Terminology
The hysteresis model is somewhat similar to a model used originally with the PDAF
for track initiation. For historical reasons, this model is variously referred to as target
obseruab,ilttE, track eristence, null track, target percei,uabi,h,ty, and target ui,si,bi,li,ty (e.g.

[CDA86, \,{8594, LL01a, Col99]). These various names all apply to the same approach
(with minor variations on the theme) and are collectively described here as visibility. The
purpose of visibility is to provide an integrated model specifically designed for making
track decisions, such as those for automated initiation and termination of tracks.

In the PDAF context, visibility is a binary attribute of targets that controls whether or
not they are able to be detected. A u'is'ible target provides a signal at the sensor which may
(or may not) be detected, whereas an'inu'is'ible target cannot be detected. An example
of an invisible target, is one occluded from the sensor due to physical constraints, such
as blind doppler zones, or the physical extent of the sensor region. Targets may become
invisible due to a manoeuvre (for example an aircraft might land) or simply by leaving
the footprint of the sensor. Tracks started on clutter measurements may be considered
to be due to postulated fictitious invisible targets. Hence the model incorporates both
detectability and existence.

The visibility model is not restricted to the PDAF, but is rather an alternative state
model for targets. This model has been used in various other filters, such as the Gaussian
Sum Filter [R400], the Viterbi Algorithm [PL97], and with Random Sets |CVWO2].

The framework of the PMHT with hysteresis can be viewed as a generalised version of
visibility. The simplest case of the hysteresis model is when the assignment state variable
is chosen to be binary. In this case, the PMHT with hysteresis simplifies to the PMHT
with visibility when the appropriate dependence of fI on D is chosen. This model will be
discussed in more detail in chapter 6 when the PMHT with hysteresis is applied to track
initiation.

Whereas visibility is a binary random variable with a fixed effect on the detectability of
a target, the assignment state model used for the PMHT is a general Markov process with
an unspecified dependence on the prior assignment probability mass, fL The assignment
state acts as a state of a general dynamics model for the assignment prior. Of course,
particular models must be assumed to arrive at an implementable algorithm, but the
PMHT formulation is not restricted to these forms.

In contrast to PDAF implementations of target visibility, the interpretation of the
hysteresis model with PMHT is well defined and not contentious. In the PDAF com-
munity, the physical interpretation of visibility has been a source of some consternation
among researchers, with various claims made about which interpretation offers the most
complete theoretic description.

The term ui,si,bi,li,ty is not used to describe the PMHT with Hysteresis because the
extended assignment model is much more general than the problem of track initiation
and termination addressed by the visibility model. The PMHT with Hysteresis is a
fundamental generalisation of the standard PMHT, of which automated track decision
making is merely an application.
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5.2.2 PMHT \Mith Hysteresis
The PMHT with hysteresis is derived in substantially the same way as the standard
PMHT. The derivation of the PMHT has been given in more detail in chapter 4 where the
PMHT-c algorithm was derived. Therefore, the derivation of the PMHT with hysteresis
is merely outlined here, although detail is given where it deviates from the derivation in
chapter 4. The symbols used in this derivation were defined in chapter 3.

There are two approaches that can be used to develop an algorithm based on this
model. Firstly, the assignment state can be treated as further missing data in an EM con-
text. This means that the auxiliary function will be the expectation over the assignments,
K, and the assignment states, D.ln this case, the algorithm will be seen to calculate the
probabilities of the dl, much as the standard PMHT calculates the probabilities of the
assignments, k¿, (these are the weights, umtr).

The second method of solution is to estimate the assignment states. In this case,
the auxiliary function becomes a function of the target states and the assignment states,
dependent on their values frorn a previous iteration. Under this approach, the assignmeut
state is treated in a similar \May to the target state estimates. An initial assignment state
sequence is assumed, and this sequence is iteratively refined based on the measurement
assignment weights.

Each of the above approaches will now be explored, and PMHT algorithms derived.
The algorithm resulting from treating the assignment states as missing data will be re-
ferred to by the notational shorthand PMHT-ym. Similarly, the algorithm resulting from
estimation of the assignment states will be referred to as PMHT-ye.

5.3 Hysteresis as Missing Data, PMHT-ym
One way to derive an algorithm with the expanded measurement model incorporating
hysteresis is to treat the assignment state variables as additional missing data. This
approach is now considered. The algorithm derived through this approach is referred to
as the PMHT-ym.

The missing data is now the assignments, and the assignment states. This means that
the auxiliary function will be the conditional expectation over the assignment states, and
the assignments. Namely,

I (x,tlx(t), t(n)) : I Ito*P(x, D,K,z)P(D,Klxr'l,2), (5 4)
DK

where the summation denot"d t is the sum over all possible permutations of the assign-

ment states, D. Explicitly,
D

Mp-7 Mp-I:t t
då:o a2o:o

{}t
D

Mp-| IvIp-I Mo-It t t{}
a{x:s a!:o aY*:o

(5 5)

The BIN in frgure 5.2 illustrates the independence assumptions of the filter. These
assumptions are that the state models are independent of each other and that the assign-
ment states are independent of each other. Under these assumptions, the complete data
Iikelihood is

p(x, D,K,z): p(x)p(D)p(KlD)p(zlK,x). (5 6)
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Tlre assignments, k¡¡, àrê conditionally independent given the assignment state vector
for scan t, Dt. Hence

Tnt
P(KID) : fI n "!* (D,) , (5 7)

t:I r:l

where lTf* (Dù is defined by (5.1).
The assignment states are independent of each other and are each first order Markov

processes, so

P(D): fI ^T 
@,n lI ¡r @Tt¿\,)

Ms¡

m:l

DK

DK

T

t:l
(5.8)

The remaining terms in (5.6) are the same as the standard PMHT and are given by
(4.11) and (a.14), namely

Tnt
P(zlK,X) : II il P (z¿,lk¡,,x¿),

and

t:I r:1

D

P(x) :fr_{w øn\r, (*r@r)\

The conditional probability of the assignment states and the assignments in (5.4) can
be expanded via Bayes rule as

P (D,Klx{r), Z) : P (KlD,x{ù, z¡ e çolx@,2¡ (5 e)

It is important to note that (5.9) is implicitly dependent on the clutter parameters
X(i) from the previous EM iteration. It is not a function of the unknown parameters Ð.

Substitutins (5.6) and (5.9) into (5.-t) gives

8 (x, ) lxt¿1, t(n)) : Iog P(X) + t Ios P(D) P(olx{i) ,z¡

+ t I to* P(KID)P(KID, x@,Z)P(olxØ,2¡

+ t I to* P(zlx,K)P(KlD, x(¿), z)P(Dlx,'),2).(s.to)

The first term in (5.10) is the log likelihood of the state sequence. This term is the
same as for the standard PMHT and is fully expanded in (4.14). The second term is
constant and can be ignored. The third and fourth terms in (5.10) both involve a double
sum over D and K. Note that the dependence upon X is implicit in the probability
masses of the assignments.

The logP(KlD) term is The only part of (5.10) that is dependent on the clutter
parameter, X. Substituting (5.1) and (5.7), and making similar manipulations as in
section 4.7.4, the logP(KlD) term in (5.10) can be written as
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t t rog P(KID)P(KID, x{ù ,z¡r1o1x@ ,z¡
DK:tt ttlogP (k*lD,) P (KlD, X{ù, Z1 e lDlX@, Z)

Tnt

t:7 r:1D
T

-\--L
T

:\-/,
t:l
T

K
nt

K1 r:l
nt IVI

Dt r:l kb:I
M

t:I Dt m:I
T My

t:I Dt m:I
lvly

t I rogr!', (D) p(KtlD, ¡t';l ,z)p(DtlxrÐ ,z)

t t I ,o* rf* (D,) p(KtlD,xQ'),z)p(DtlxØ,2)

: t t t tosri (D,) t p(k* : mlD,x@,z)p(Dlxt'),2)
nt

r:l
nt

m:L

r-I
IvIx

:tt I to* óT @,nl wç-+rø,v,(Dt)-r

t Iog øf * log 1-tóT@,7)
)] å 

u"tr(Dt))"1r,¡*,o),2), (b 11)
s:1

where wn¿ù(D) is defined as

w-t (Dt) : P(kr, : mlD,XØ,Z). (5.L2)

Note that wnh(Dt) is implicitly dependent on the iteration index, z, but this index is
suppressed to somewhat simplify notation.

The terms involving óT@T) in (5.11) are constant, since they are summed over d!.
So, the only term in (5.11) that is significant is the one involving af . Let

e,n=ä{.- "í¡ ,-,}, (5 13)

where

urntr : Ð.^r,(Dò P(DtlX(Ð,2)
D

: Dr(rr, : mlD,x@,2¡eçDlx@,2) (5.14)
D

Then, (5.11) can be written as

T

t t rog p(KlD)p(KlD,x{ù ,z¡elDlx{';) ,z) : Der^ r AN, (b.lb)
D K t--7

where A6 is an irrelevant constant.
The measurement term, logP(ZIX,K), can be simplified using the same process as

in section 414 and cai,Jil;il]^,",r.,r,x(i), 
.,p(Drx@,2)

DK M r nt (b.16): tIt\osi;f QnþT)umtr.
m-1 t:l r:I
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The auxiliary function can now be written as

lvl

93

(5.17)g (x,)lx{r),>(n)) : t eT +Dq^ t eo,
n¿:7

T

t:7

where Qo is constant, and the model term, QT,i" given by

T TLt

QT : Iosrþi @i) + D to* ,þT @T1"7,) * D los (l Qr,lrT) u)m*. (5.18)
t:l r:l

(5.18) is the sarne expression as is achieved for the standard PMHT except that the
weights are obtained using (5.14). As is described in section 4.I.5, this equation can
be optimised using a Kalman smoother when the processes are linear and the random
elements are Gaussian.

The Q¡n term in (5.17) is a function of the reiative clutter probabilities, X, and is
essentially the same as the prior auxiliary function for the standard PMHT. This is to be
maximised subject to the constraint (5.3), namely

My

ÐoT:t
m:L

This is achieved by using the Lagran gian L¿n: Qtn+ i, (r -Ðrr)
d,L,-

derivative É 
:0 gives

kot D'f,,

Setting the

(5. 1e)

(5.20)

1
r¿t

Àf r:l
and reapplying the constraint gives the estimate lor of as

D'**
nt

r:7o!: Mv nt

m:l r:7
ÐÐ-^,,

This is the same form as the solution for rl in the standard PMHT except that the
weights are implicitly dependent on the assignment state probabilities.

5.3.1 Assignment'Weights
To complete the algorithm, an expression for the assignment weight, 'tt)*¡r, is required.
The weight, as defined in (5.1a), is comprised of two terms

lnmtr : D, (rr, : mlD,x@,2) P (Dr1xØ, z¡.
D

The first term in (5.14) is the conditional probability of the assignments, and the
second term is the posterior probability of the assignment states.
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The conditional probability of the assignments is found via Bayes Rule

P (kr,: p¡¡(t) ,D,Z) : P (kr, - rn,xo), D,z)
luI

s:1
t r (kr, : s, x(i) , D,z)

P (x{;) , D,z\ rr) nT (Dr) Ç" (zr,l*i?t)
M

I r (xt,l, D,z\ 2,,) nî (D,) ei (r"l*î,',)
s:1

nT (D,) * (",,1*T'o')
M (5.21)

I "¡ (D,) Ci (",,1*î,")

where Z\rr,is the set of all measur";;, in the batch except the measurement z¡,. (5.2L)
is the same as the standard PMHT weight equation except that the prior distribution of
the assignments, r! (D¿) is dependent on the assignment state D¿.

The posterior probability of the assignment state vector D¿ given all of the batch
measurements and the state estimates at the previous iteration, namely P(DlX@,2),
can be determined by using the Hidden Markov Model (HMM) smoother [JRS6].

Using Bayes Rule write

P (D'|X,Z) o( P (D1,X,Z): P (Dr, xl, xTr., z!, zTr)
: P (Dr,xi,zl) P (xlnr,zrr*rlor,xi,zi)
: a'(Dr) \r(D') =.yt(Dù , (5.22)

where

x:? : {Xr,...xr"}, (5.23)
zii : {2r,... zr,} . (5.24)

The required probabilities are the y(D¡) and these shall be found be deriving recursive
relations for a¡(D¡) and p¡(D¿).

at(Dr) P (Dr, xi, zl)
I r (Dr,Dr-r,xl,zi)
Dt-t

\ e (DrlD,-1) p (x,lx¿- ù p (ztlD,, x,) att (D,-ù
D+-t

I r (DrlDr-]) P (zrlDr,xr) ar¿ (Dr_)
Dt-t

My

D lI ¡r @TøT') P (ZtlDt,Xr)rr-r (Dt-r) , (5.25)
Dt-t rn:1

and a¿ (D¿) is normalised by dividine ¡V I ar(Dr)
Dt
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ílr(Dr) : P (XT*r,ZTrlDt,Xl,Z!)
: t r (xl*r, z{*r, Dr¡1lDb xl, z!)

Dt+t
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(5.27)

t r (Dr*rlDr) p (x,*,.1x,) p (zr*rlDr+r, x,+r) þr+, (Dr+r)
D r+1

o( \ e (Dr*,.lDr) P (zr+rlDr+r, Xr+r) l3r+, (Dr+r)
Dt+r

p_ {ff, ^T*, 
(dr*,lor) 

} 
p (2,*',1D,+,, x,+') 0,+, (D,*,¡ , (b.26)

and. B¡(D¿) is normalised by dividing ¡v D þt (Dt)
D¡

The incomplete conditional data likelihood P (ZtlDr,X¿) can be written as

P (zlDúXt) P(z¿,lD¿,X¡)
nt

T
r:7
rLtil
r:1

M

D"T @ò e? Q,,l*T)
rn:

6.3.2 Statement of PMHT-ym Algorithm
The PMHT-ym algorithm is mostly the same as the standard PMHT. Where it differs, is

that the PMHT-ym has an additional step where the assignment state probabilities are
calculated via the HMM smoother, and the assignment weights are dependent on these
probabilities. The algorithm proceeds as follows:

1. Initialise the estimates X(0) and E(0).

2. Determine the posterior probability of assignment state using

p (Dtlx(i-r),2\ :,, ?:,(D)=9:(?:L =-/ Duc"t(Dt:U)0r(Dt-U)
where at(Dt) and B¿(D¡) are defined using (5.25) and (5.26). This probability is

implicitly iteration dependent through the conditioning on the t¡u¡" ¡(t-t).
3. Calculate the assignment weights for each measurement and model,

r (t,¡xt,;-r),2) P (kr, : *lDr) Ç (zt læitt'-tl),n,:Ð
D¿ Ðy:, P (kr, : PlDt) Ç (.r,@Iþ-1))

4. Update the state estimates using the Maximum Likelihood Estimator to give X(¿).
This part of the algorithm is identical to the standard PMHT. As with the standard
PMHT, a Kalman Smoother can be exploited to find the ML estimates under the
case that the evolution pdf, ,þT@Tl*7.,), and the observation pdf, eTQ*l*T),
are linear Gaussian functions. Obtain the estimates X(i) using (5.20).

5. Repeat steps 2 . . .4 until convergence
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5.4 Estimated Assignment State, PMHT-ye
The alternative to treating the assignment state variable as missing data is to estimate
it. Under this approach, the assignment state plays a similar role in the algorithm to the
model states: an initial assignment state sequence is assumed, and then the assignment
weights are used to iteratively estimate the optimal assignment state sequerlce for each
target track. The algorithm derived under this approach is referred to as the PMHT-ye.

5.4.L Modified Auxiliary F\rnction
The auxiliary function for the PMHT-ym is given by (5.a),

8 (x,)lx(r), t(o)) : I I to* P(x, D,K,z)P(D,xlx@ ,z¡
DK

Under the PMHT-ym approach, the assignment state sequence is rnissing data, and the
auxiliary function is the expectation over the missing data. For this approach, the assign-
ment state sequence is to be estimated, so the new auxiliary function is:

O (*,D, tlx(i) , DØ) ,t(')) : I,o* p(x, D,K,z)p(Klx(t) , p(t') ,z) (5.28)
K

The difference between (11.28) and (5.4) is the removal of the summation over the
possible assignment state values and the modified term P(KlX(t) , Dþ) ,Z). This term has
already been derived in section 5.3.1 and is given by (5.21)

P(KlX(i) , D@,2) il il, (r,,¡xtt'), ntt),2)
nt nt

t:l r:7

t:I r:7

nt ntilil ,^* (rÍn')l_:o"
t:l r:7
nt ntiltl "f (oÍ") eT (2,,1*i'o')1,_:*,.

M

D"; (rj") ei (',,¡'i'n')
s:1

Using the same method as in section 5.3, the auxiliary function can be written as

O (*,D, Ðlx(r), p(r), ¡(r)) log P(X) * Iog P(D)

+ t log P(KID)P(KID@ ,x@,2¡
K

+ t tog P(zlx, K)P(K|D@ ,x@ ,z). (b.2e)
K

The term
(5 11)

I*to* P(KlD)P(X¡ptol,X(i),2) is simplified using the same steps as in
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I to* P (KID) P(x¡¿¡t';l,xØ,2¡

t:l

My

m:l
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K

t
K
Tt

t:l
Tt

t:1
Tt

t:l

TLt

ttlogP (k*lD') P(KID@,X@,2)
T

nt

r:L

I to* óT @,nr].ç***,v,(nÍo)) +

I to* P (kr,lD) P(KtlD(.o),x@ ,Z)

t:I r:l
nt

r:7
Mt

m:7
log P (kr, : mlDr)D r(rr, : 72lPØ ,Y(t') ,z)

s:1
T

Ms

m:1.

l.-

nt

r:I

T

t:l
My

rn:7

Mv Myt o.; + log 1- t óT @,7)
)] å,,,.@Ío\\
T AIx

t:7 m:7

T

: t Q,n +t t roeÓT @T) ø*,+ ! log 1- t óT @,7) .u.ot, (5.30)
m:l t:7

MvT

MxT

m,:7 t:I

t:l
where

nt

wmt : lwç^+rør¡r,(DÍo)),

,rrr(Dlo))

The clutter term, Qrn, is identical to the term for
except that the weights 'trp¡¡ àtE replaced by conditional

(5.31)

(5 32)

the PMHT-ym, given in (5.13)

weights .^r, (oÍo))

--1

Mv nt

wot: It
s:l r:1

(5.33)

Substituting (5.30) into (5.29), the auxiliary function can be written as

T
g (x,rlx(r), r(o)) : t eT +Ðq^ t Qo, (b.34)

m:l t:l

where, unlike (5.17) ,the Qp term is no longer constant and is the objective function for
optimising the assignment state sequence estimate. This Q¿ term is given by

e,n =ä {.- "i¡,,,,, (rÍ',) }

Qo : log P(D) + t I to* óT @,n w^t * I to* 1- I óT @,7)

M¡t
rn:7

rog A,[" @Ð + I |to* LT @Tld\,) + toe öT @,7) ø*,)

T

+llog 1-tóT@,7)
t:I m:l

uot

lxot

(5.35)
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The model term, 8T, i" identical to that for the PMHT-ym given in (5.1S) except
that the weights 'u)r¡1¿y àr€ replaced by conditional weighLs,u)^¡, (Ojt')

Tnt
QT : I"srþi @i) + f ,o* ,þT (*Tl*7,) * I los (l Q,,lrT).*,, (olo') . (b.36)

ú:1 r--7

Like (5.18), (5.36) is the same expression as is achieved for the standard PMHT except
with a different definition for the weights. As is described in section 4.1.5, this equation
can be optimised using a Kalman smoother when the processes are linear and the random
elements are Gaussian.

The solution for the o! estimate is found by optimising Qrn. Since the o! are con-
strained to sum to unity, this is done via a Lagrangian, as shown in section 5.3. The
estimator for o! is then

nt

Ð'r,,('Í")
-t - M, - 

\v.ur ,/

t t ,** (oÍn')
m:I r:1

5.4.2 Assignment State Sequence Estimate
All that remains to complete the algorithm is to derive a recursion for the estimated
assignment state sequence by optimising (5.35)

Ms¡

Qo t rogAff @Ð + D [to* LT @,Tldî!,) + tog óT @T)ø^,]
T

t:I
M1¡T

ú:1

m:1.

+flog 1- t óT @,7) wot
rn:7

The difficulty is that the final term couples together the assignment states of all Lhe
target models. The result is that the optimal estimator for the assignment state sequence
will have to be a joint estimator for all the target models. This should not be particularly
surprising, since the PMHT-ym algorithm resulted in a joint probability calculation.

The optimal sequence for D can be found using the Viterbi algorithm [Vit67, FJ73].
Since (5,35) is coupled between the target models via the clutter term, the assignment
states must be jointly estimated. This means that the Viterbi algorithm must run over
a state space with cardinality (Mo)'t". For completeness) a statement of the Viterbi
algorithm applied to this problem is now presented. This algorithm is repeated for each
target model (or the models could be estimated in parallel).

5.4.2.L Viterbi Algorithm for Assignment State Sequence Estimation
Define nodes, nf , corresponding to the'uth possible assignment state value at scan ú. The
nodes nfl represent the possible initial assignment state values. The number of nodes
for each ú (i.e. the range of values for j) is the cardinality of the joint assignment state
domain, (Mo)*". There are (Mo)mx nodes at each scan, and ? scans, giving a total
of (Mp)M*? possible assignment state sequences. Enumerating these is possible through
brute force, however it is unnecessary because the aim to find the best path, not rank all
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paths. Thus, some sequences can be discarded before they are fully enumerated, once it
is apparent that they cannot be the best path.

The log likelihood of a particular sequence can be accumulated along the path due
to the Markov nature of the assignment state process - given dT, dT*t is independent of
all other di and its likelihood is known. Further, for a particular node, it is possible to
construct the likelihood of all partial sequences after that node, independent of the partial
sequence prior to the node. This means that if the best sequence passes through nodenrr,
then it must consist of the best partial sequence leading from scan I T,o nr, and the best
partial sequence from n!, to scan 7.

The Viterbi algorithm then operates by retaining only the best partial sequence leading
to each node for each scan. When the last scan is considered, then the best sequence is
chosen from the best sequences leading to each final node. Effectively, each possible path
is considered, but only (Mp)&1* sequences need to be remembered instead of (MD)Mxr.

For each node, define a cost, qi, and, a path prr. The path for nodeni represents the
most likely assignment state at f - 1 given that the assignment state at t is nrr. The cost
is the log likelihood of the most likely assignment state sequence leading to node nf .

The Viterbi algorithm proceeds as follows:

1. For each j, calculate the initial node costs given by

My
q:o: DIog Aff (¿i : "lo)

(5.38)
m:l

2. Starting with ú : 1, and for each j determine the best palh pr, given by

My
pi : ars'''u,* | lqf-, + log ai @T = "!rld\, = "f-t)). (5.3e)

m:1

3. Calculate the node cost for each node at f given by

Ma

d, D lnf-,-r rog LT @,7 = n!,ld,i1= "f)lln:otrn:7

+ t w-¡losóT @,7 -- "!r) *'us¿ log 1-tóT@,T="!,) (5.40)
NIx

m:l

My

m:l

4. Repeat steps 2 and 3 Ïor t:2. . .7.

5. Determine the most likely final assignment state by finding the node with the highest
q+ 

br =arsmax lqå] . (b.41)

6. Determine the earlier assignment state values by following the path backwards from
t:Tt'ot:t 

bF1:ft ln=oi. (5.42)
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5.4.3 Statement of PMHT-ye Algorithm
The PMHT-ye algorithm is mostly the same as the standard PMHT. Where it differs,
is that the PMHT-ye has an additional step where the assignment state sequence is
determined via the Viterbi algorithm, and the assignment weights are dependent on this
sequence.

The algorithm proceeds as follows:

1. Initialise the model state estimates,;ç(0), and the assignment state estimates, D(0).

2. Calculate the assignment weights for each measurement and model,

P kr, m, D -1)

Ðy:,, (kr, p D tP
\¿ Zb

) er (.,,1*7ro

lrl<landz+-1, (5.43)

( (i- 1)

wl),,: t

(r-1)
t

3. Update the state estimates using the Maximum Likelihood Estimator to give X(¿).
This part of the algorithm is identical to the standard PMHT. As with the standard
PMHT, a Kalman Smoother can be exploited to find the ML estimates under the
case that the evolution pdf, ,þT@Tl*7r), and the observation pdf, eTQr,læT),
are linear Gaussian functions.

4. Using the Viterbi algorithm, update the assignment state estimates to give p(¿).

5. Repeat steps 2 .. .4 until convergence

5.4.4 Approximate PMHT-ye with Reduced Complexity
In the derivation of the PMHT-ye, it is fairly clear that the necessity to jointly estimate
the assignment state variables arises from the coupling through the clutter term in (5.35).
If this term can be decoupled, then it would be possible to independently optimise the
different models. This is appealing because the Viterbi algorithm must consider all pos-
sible transitions in the state space, of which there are D2, where D is the number of
states. Performing My parallel optimisations over a Mo sized space is far preferable to
performing one optimisation over a (Mr)** sized space.

It is not possible to achieve this decoupling. However, an approximate decoupling can
be achieved by using the Taylor series expansion of the logarithm

log(1 + z): z -ïu * 7"
-a,J

which for small z, admits the approximation

log(1 *z)xz lrl<1 (5.44)

Notice that it has already been assumed in section 5.2.2 lhat Lhe þi (df ) are suffi-
ciently small to preserve normalisation. This requirement is quite loose. Provided that the
other values are very small, óT @T): 0.9 would still be acceptable. If this requirement
is tightened such that 

Ma

I ør @'T) < r, (5.4b)L=t
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then (5.35) can be approximated by

101

(5.46)

Qo = t togAff (¿Ð + I [to* LT @Tld\,) + tos óT @T)r¡*,)
Ms1

m:l

T

t:1.
IVIx

- t óT @,7)
m:1

T

uot

óT @,7)-*'
exp lóT @T) øorl

+
Tt

t:l
My

t:L
t IogAff (¿3') + I [.* LT @,T d,7,) +r"sóT @T)ø^, - óT @Ðúo,]

D,qr (5.47)
rn:I

The advantage of this approximation is that each of the functions QB is now inde-
pendent of all of the other models and the assignment state sequence for model m can be
estimated independently of the other models. This means that the algorithm has linear
complexity in the number of target models.

Let $i @i) be defined such that

: I"eóT @T).^, - óT @T) øor,

rn:I
My

ros þi @i)

ør r¿n

Then, Qfr can be written as

(5.48)

(5.4e)

Qß :rog Aff @Ð +I 1,"* ^T 
(dTld\,) + tog óf @,nl (5.50)

T

t:l

The function þi @i) is analogous to a measurement likelihood. If it were possible
to clroose óT @,?) such that óT @,7) is a Gaussian function, then the assignment state
sequence could be estimated with a Kalman smoother. Howevet, the form of (5.a9)
makes it impossible to frnd such a function for þi@i). In fact, it appears that there
is no function þi @i) that will result iu a closed form solutionl. However, (5.110) can
be optimised since di is a discrete random variable. As with the proper PMHT-ye,
the assignment state sequence is now estimated with the Viterbi algorithm. Due to the
separation achieved through the approximation, each model is now optimised with an
independent Viterbi smoother.

5.4.5 Special Cases

In the previous chapter, the PMHT-c was seen to simplify to the standard PMHT when
the classification measurements were known (or assumed) to be uninformative. Similarly,
the PMHT-ye simplifies to the standard PMHT under special conditions. This kind of
behaviour is not considered for the PMHT-ym, because it treats the prior in a different
way to the standard PMHT, which estimates it.

The transition probability, LT @TId\r), d"t.t-ines the main difference between the
standard PMHT and the PMHT-ym. The standard PMHT assumes the assignment

1It is the author's belief that no closed form solution exists. No attempt has been made to prove this,
although it can be shown that there is no function óT @T) that results in a Gaussian ÓT @T).



t02 CHAPTER 5. THE PMHT WITH HYSTERESIS

prior is constant, or independent with time. These two cases can be simply emulated
by choosing Af (Afl¿yr) : 6 (AT - d1r) (where ð(.) is the Dirac delta function) or
LT @Tld!t) : # respectively. In the first case, the Viterbi algorithm always selects
the node corresponding to the same assignment state at the previous time, since other
transitions are illegal. This means that Lhe Mp state sequences at the end of the batch
all correspond to different possible constant states, and the ML constant value is chosen.
In the second case, the most likely previous state for each node is simply the ML state
at that time, since all transitions are equally likely. The final sequence estimate will be
the set of ML states for each point in time, determined independently. However, for both
cases, the estimated prior value is constrained to take one of Mp values, since df is a
discrete variable. The standard PMHT does not impose these conditions on the prior.
Thus the PMHT-ym only simplifies to the PMHT in the limit as Mo - oo, i.e. when
dl becomes continuous. Further, the ó? (dT) must be such that the prior ri is capable
of taking all values in [0,1], i.e. it must have support over [0, 1]. Under these conditions,
the PMHT-ym simplifies to the standard PMHT.

5.5 Comparison of PMHT-ym and PMHT-ye
The PMHT-ym and PMHT-ye are both algorithms similar to the standard PMHT, This
is to be expected since they address substantially the same problem. One salient area in
which they differ in computational complexity. The standard PMHT requires computa-
tions that scale linearly with the problem size. This is not the case for the PMHT-ym and
PMHT-ye. Since these algorithms both operate jointly over the target space for some part
of their work, these parts of the algorithm scale exponentially with the number of targets;
each must consider (Mo)"t* transitions. This is because of the assumed measurement
model. However, other parts of the algorithm scale linearly, notably the state estimation.

Figure 5.3 shows flow diagrams for the two algorithms. These flow diagrams highlight
some of the differences between them. The key differences are:

o The PMHT-ye depends on initialisation of the assignment state variables. This
means that local convergence may be an issue.

o The PMHT-ye constrains the assignment state to take one of a fixed set of values.
If fine discrimination in ri is required, a large state space must be used (i.e. Iarge
Mp) and the complexity of the algorithm grows quickly wiLh Mo. In contrast, the
PMHT-ym effectively averages over the different discrete values and can be expected
to achieve finer resolution for \ow Mp.

o The PMHT-ym provides the probability of the assignment state at each point in
time, which gives a measure of the uncertainty in the estimated prior. The PMHT-ye
provides only an estimated sequence of values.

o The PMHT-ym probability is a single scan quantity. This means that the PMHT-
ym can estimate sequences that are illegal (where the corresponding LT (dTld\\)
is zero).

o The PMHT-ye estimates a sequence, so incorrect estimates in one scan produce a
bias in the next, compounding errors.
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Figure 5.3: Flow diagrams for PMHTs with hysteresis

5.6 l-Jnknown Assignment State Parameters

The derivations of both the PMHT-ym and PMHT-ye assume that the parameters of the
assignment state model are known. Namely, LT @,i), LT @Tld\r), and ó? (d'T) are all
known. The validity of this assumption will depend on the application. If the assignment
state model is adopted simply as a means of smoothing the estimab,ed ri then these
parameters are design variables, chosen to ensure the desired behaviour of the estimated
zrfl. However, if it is believed that the true underlying prior truly follows a Markov chain,
then it is not appropriate to choose somewhat arbitrary values. Under this circumstance
it may be desirable to estimate the true assignment state parameters'

Firstly, consider the family of functions óT @,7). This function is analogous to the
measurement function in a standard HMM. However, it does not control the measurements
directly, but influences the probability of selecting different models. Effectively, this
function acts as a discretisation of the ri function. Thus, the designer can always choose
the þi @i').

In contrast, the Af (Afl¿\) represent the true underlying dynamic behaviour of the
rfl. This function can be incorporated in the same rù/ay as the unknown confusion matrix
in chapter 4. In a sirnilar way, the optimal estimate for each matrix element is given by

LT @,7 : ildTt: i) : ''lt dT : i,d\r: j)
(5.5 1 )

'Yt-t d\r: j)

where the probability n (¿T : ù,dTt: ¡) is determined using a Hidden Markov Model
smoother with forwards and backwards recursions similar to those used for y @i) as

given in (5.25) and (5.26). The above estimate for A suffers from a scarcity of data, and
it would probably be prudent to assume that the transition function is stationary. This

u)Q)

Viterbi
smoother

Kalman
smoother I

Kalman
smoother 2

Kalman
smoother M
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leads to temporal averaging and the estimated A is then given by

T

Dl (¿T i,d7, )J

LT @,7 : i,ld\t: j) : T

l*-' (¿7r: i)
t:7

(5.52)

The main application of the assignment state model considered in this thesis is as a
means for smoothing the nfl estimate. Thus, it will be assumed that the assignment state
parameters are known, since they are design choices based on the degree of smoothing
desired.

5.7 Simulated Example
To demonstrate the use of the PMHT-ym and PMHT-ye algorithms, a simple simulated
example is now considered. The simulation consists of a two model scenario with static
states, but varying mixing proportions. Multiple scalar measurements are detected at
each scan, and these are the only information provided to the tracker.

Each model has a two element state, defining the mean and variance of the (Gaussian)
measurement density function for that model. Thus the state vector is

æT =¡m:1"*lltl,r^lo'lf', (b.b3)

and the measurement pdf is

t:I

Both models are chosen to have a variance of 2.25, i.e. rLl"'l - ,'lo'l - 2.25. The
means are chosen as rrlp,]: 1 and ,'[tt]: -1. A batch length of T :100 is used with
TLt:5 measulements per scan.

The mixing proportions of the two components vary sinusoidally such that

e^ Q*): (2trr*[o'])-å "*o

r¿1 : 0.5 - o.Jcos W)

(5.54)

(b.55.)

Thus the rl vary between 0.2 and 0.8, and there are / cycles of the sinusoid over the
batch. Two different frequencies are considered: f :1, and Í : 4. Figure 5.4 shows the
measurements from an example trial where f : I is used. It can be seen that there are
more rneasurements at high values when the first model dominates, in the middle of the
batch.

The mean and variance of the state estimate and the prior estimate are measured over
1000 Monte Carlo trials. The PMHT-ym does not produce a prior estimate, but rather
a probability mass for the prior. The mean of this probability mass is used as a prior
estimate for the purpose of this comparison.

The performance of the PMHT-ym and PMHT-ye is compared with the standard
PMHT which assumes that the prior probabilities are time independent.
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Figure 5.4: Example trial with / : 1

5.7.L Assumed Assignment State Model
Both the PMHT-ym and PMHT-ye use the same assignment state model for this example.
The modelhas Mp: 11 and

dvt
óT @n: ïb, o < dT < Mo - r' (5.56)

Thus the rl are modelled as one of 0,0.1, . . . 0.9, 1.0.
The transition matrix is assumed to be tri-diagonal with the diagonal elements at 0.5

and the elements one step off-diagonal at 0.25. This means that the model assumes that
the prior changes only slowly, and does not allow a step of more than 0.1 from one scan to
the next. Using a strongly diagonal transition matrix of this form imposes a low-pass filter
effect on the estimated zrfr. This has the desired effect of smoothing out the estimate.
Choosing a transition matrix with strong off-diagonal terms could be used to impose a
high-pass filter on the estimated ri. As a limiting case, a matrix with zero along the
diagonal implies that the prior never remains constant.

5.7.2 State Estimation Performance
The bias and variance of the state estimate are estimated from the sample mean and
variance2. These values are given in tables 5.1 and 5.2 respectively.

AII of the algorithms have a bias in the mean which pushes the two state estimates
apart: the bias in model 1 (which has a true mean of 1) is always positive, and the bias
in model 2 (which has a true mean of -1) is always negative. Measurements from one tail
of model 1 are assigned to model 2, and this skews the estimated parameters away from

2Chapter 4 gives more information about the sample bias and variance in section 4.4.2
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,'ltl ,tlo'l 12 l,'
I_1.t -L

standard PMHT
PMHT-ym
PMHT-ye

I_^J -+
standard PMHT

PMHT-ym
PMHT-ye

!_1J -L
standard PMHT

PMHT-ym
PMHT-ye

!_^J -+
standard PMHT

PMHT-ym
PMHT-ye

0.019 0.038 0.018
0.034 0.090 0.031
0.012 0.060 0.012

0.25
0.040
0.15

0.25
0.097
0.15

0.019
0.030
0.0r2

-0.54
-0.10
-0.33

-0.55
-0.22
-0.35

0.039
0.10
0.061

-0.24
-0.061
-0.16

-0.24
-0.11
-0.r7

0.017
0.026
0.011

-0.54
-0.13
-0.35

-0.55
-0,22
-0.36

Table 5.1: State estimation bias

:LI rl o2 tT. t'lo'l

0.040
0.10
0.060

0.038
0.086
0.060

Table 5.2: State estimation variance

model 2. Measurements from the tail of model 2 assigned to model 1 also adds to this
effect.

In a similar way) all algorithms consistently underestimate the variance of the tw<r

models. This occurs for the same reason as above: outliers from one model are assigned
to the other, decreasing the variance of the set of measurement assigned to the model.

It is also worth noting that the biasses in table 5.1 are very significant when compared
with the true state values. The standard PMHT shows approximately a twenty five
percent bias, the PMHT-ye a fifteen percent bias, and the PMHT-ym five percent.

In both examples, the PMHT-ym gives the lowest state estimation bias. The bias of
the PMHT-ym is significantly less than the standard PMHT. The bias of the PMHT-ym
increases when the variation in the prior becomes more rapid (i.". / :4). The PMHT-ye
gives performance between the two.

In contrast to the bias performance, the PMHT-ym gives the worst variance, as shown
in table 5.2. The PMHT-ym variance is generally more than twice the standard variance.
The PMHT-ye has variance performance better than PMHT for the mean, but worse
for the variance. The variance does not significantly change with the variability of the
prior. The variance values are also significant compared with the true state vaiues. The
standard deviation in the mear estimate is fourteen percent for the standard PMHT,
seventeen percent for the PMHT-ym, and eleven percent for the PMHT-ye.

The bias and variance can be combined to form the model state estimation root mean
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1_1J -r
standard PMHT

PMHT-ym
PMHT-ye

T-AJ -+
standard PMHT

PMHT-ym
PMHT-ye

r07

rI

0.29
0.18
0.19

ir+

r2lÀ ,'lo'l

0.29 0.58 0.28
0.2t 0.37 0.2r
0.19 0.42 0.20

r'lo

0.58
0.33
0.47

0.27
0.77
0.19

0.58
0.34
0.43

0.58
0.37
0.44

Table 5.3: State estimation RMS error

square (RMS) error, represented by e. The estimated RMS error is given by

B( )' (5 57)

Combining tables 5.1 and 5.2 to form RMS estimates gives table 5.3. In terms of RMS
error, both the PMHT-ym and PMHT-ye perform better than the standard PMHT for all
pararneters, for both frequency values, /. Both the PMHT-ym and the PMHT-ye have
similar errors for the mean parameter,r*lpl, but the PMHT-ym gives significantly better
performance for the variance parameter, r^lo2l. This is a reflection of the bias having
more of a contribution than the variance to the RMS result.

Overall, PMHT-ym gives the best model state estimation performance, closely followed
by PMHT-ye.

5.7.3 Prior Estimation Performance
The bias and variance of the estimated zfl values is now examined for each of the filters.
As mentioned previously, the PMHT-ym does not produce an estimate of the prior, rather
it gives the probability rnass of it. For this comparison, an estimate is formed by taking
the mean of this mass. Note that this means that the PMHT and PMHT-ym estimates
are continuous valued quantities whereas the PMHT-ye will always provide an estimate
based on the model, which restricts ri to 0,0.1, . . . 1.0.

5.7.3.L Low F?equency Prior Variation

Figure 5.5 shows an example of the estimated priors for each of the algorithms. The figure
shows the prior probability for model 1 (the probability for model 2 is the compliment of
this value). The PMHT estimate is shown as a solid line, the PMHT-ym as a dashed line,
and the PMHT-ye as a dotted line. The dash-dot line shows the true value of the prior.
The discretised nature of the PMHT-ye estimate is immediately oþvions from the staircase
shape of the corresponding curve. The size of the jumps could be trivially reduced by
increasing the dimension of the assignment state model (i.e. Mp). The variation in the
PMHT estimate is substantial and the estimated ri that it produces is erratic.

Figure 5.6 shows the probability mass function estimated by the PMHT-ym.
The results in figures 5.5 and 5.6 show the performance from a single random trial.

The bias and variance of the estimators are estimated using the sample estimators from
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Figure 5.6: PMHT-ym prior probability mass

1000 Monte Carlo realisations. The bias of each of the filters is shown in figure 5.7 and
the variance in figure 5.8.

The bias of the PMHT-ym is marginally better than the standard PMHT, and that
of the PMHT-ye is marginally worse. There is no significant difference between the three
algorithms in bias. However, the reduction in variance by using the assignment state
model is dramatic. Both the PMHT-ym and PMHT-ye reduce the variance by an order of
magnitude over the standard PMHT. This result is clear from the single realisation shown
in figure 5.5. The high variance of the PMHT is clearly seen in the erratic variability noted
earlier. The high variance of the standard PMHT is also seen by the variability in the
bias curve in figure 5.7. This curve is averaged over 1000 trials, and the variance of the
average is still apparent in the figure.

The variance of the PMHT estimate can be clearly seen to peak when the true prior
is 0.5 and to have minima when it reaches the most one-sided points (nl : 0.2 and
n¿1 :0.8). This is because the filter is estimating a binornial process, and the variance
of that estimate is expected to follow a r! (I - "l) curve analogous to that derived in
section 4.4.2.

One reason for the dramatic reduction in variance is that the dynamics of the assign-
ment state model allows the filter to effectivel)r use measurements from adjacent scans to
estimate the prior for any particular scan. This is made quite obvious from the expression
maximised by the HMM smoother, i.e. P (DrlX, Z). This is the probability of assignment
state at scan ú given measurements over the whole batch. The effect of measurements from
different scans is reduced the farther that scan is in time, depending on the diffuseness of
the transition matrix, LT (dfldSr). fne standard PMHT uses neasurements only from
one scan) since it assumes that the prior at other scans is independent.
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5.7.3.2 Higher FÏequency Prior Variation

The sarne bias and variance curves are generated for a higher frequency variation in rl,
with / : 4. The estimates from a single trial are shown in figure 5.9. In this case both the
PMHT-ym and PMHT-ye appear to underestimate the true variation in the prior. The
two curves clearly vary at the same frequency as the true prior, but the departure frorn
rT :0.5 is reduced. This is actually a manifestation of the low-pass filtering property
of the transition matrix chosen for the assignment state model. The variation in tltis
exarnple is at a rate that shows significant attenuation by the filter, but not high enough
to be suppressed fully. This is also seen in the bias curve in figure 5.10. However, in
figure 5.11, the variance of the PMHT-ym and PMHT-ye estimates remains an order of
magnitude below that of the standard PMHT.

5.8 Summary
This chapter introduced a dynamic model for the assignment prior probability. This
model is referred to as þsteresis. The hysteresis model uses an independent discrete
state variable for each target model, so the assignment process is modelled with a Mx
dimensional randomly evolving hyperparameter. Two alternative approaches for solving
the generalised problem posed by the introduction of this model were considered: firstly,
the state value was treated as missing data in an EM sense, and secondly, the state was
estimated.

The PMHT algorithm derived by treating the assignment state as missing data is
referred to as the PMHT-ym. The PMHT-ym determines the probability of the assign-
ment state, in much the same way as the standard PMHT determines the probability
of the assignments. This probability can be calculated using the Hidden Markov Model
Smoother.

The PMHT algorithm derived by estimating the assignment state values is referred
to as the PMHT-ye. The PMHT-ye treats the assignment state in the same way as the
model states: an initial value is assumed, and then the algorithm iteratively updates
the assignment state estimate based on the measurements. The refined assignment state
sequence can be determined using the Viterbi algorithm.

The PMHT-ym and PMHT-ye were run on a simple sirnulated example to demonstrate
the effect each has on the estimated assignment prior. The algorithms were run on
mixtures with low and high frequency variation in their mixing proportions. It was found
that by assuming a certain degree of smoothness in the hysteresis model, a low pass

filtering effect was achieved. The PMHT-ym and PMHT-ye both apply a restriction on
the rate of change of the prior, based on the assumed hysteresis model, which suppresses
higher frequency variations. Both algorithms dramatically reduce the variance over the
standard PMHT which assumes that the assignment prior is time independent. This
reduction in variance is achieved because data from adjacent scans contributes to the
prior estimate through the assumed dynamic model.
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Chapter 6

Track Initiation and Initialisation
with the Probabilistic
Multi-Hypothesis Tracker

f-T-'tHE original Probabilistic Multi-Hypothesis Tracker derived by Streit and Luginbuhl
I makes the assumption that the number of models is fixed and known. Further, it

assumes that the tracker has availabie a prior distribution for the state of each of these
models. In a realistic tracking situation, targets enter and leave the field of view of the
sensor for various reasons. This means that the number of models that the tracker should
use (namely the number of targets in the scene) is an unknown and dynamic quantity.
Since new targets appear inside the sensor field of view at unkuown locations, no prior
distribution of their state is known, so a prior must be assumed based on sensor data.

In order to use the PMHT algorithm in an online implementation, it is necessary to
develop a method of initiating new tracks and terminating old tracks as new data arrives.
This function may be performed manually by the sensor operator, however this may be
time consuming and manual track management is only used if automatic management is
unavailable or unreliable . It is desirable for the tracking algorithrn to be able to auto-
matically perform the tasks of initiation and termination without operator intervention.

In addition to track initiation, the tracker rnust also be able to perform self initiali-
sation. Namely the tracker should choose the initial state estimate automatically. The
PMHT is a numerical optimisation approach that iteratively converges to the Maximum
Likelihood state estimate. However, it converges only to local maxima, and the initial-
isation of the algorithm is therefore critical. Since the algorithm is required to initiate
new tracks, it must provide a method for initialising the state estimates of these tracks.
The problem of poor initialisation is similar to the situation where a target manoeuvres
and the previously accurate state estimate becomes biassed. Thus, incorporation of an
automatic initialisation scheme is anticipated to also improve tracking of manoeuvering
targets.

This chapter presents methods for addressing track initiation and initialisation with
the PMHT. Firstly, an initialisation technique is introduced which is based on the ho-
mothetic measurement model of [RWS95a]. This method uses the innovation covariance
matrix as a second measurement model. Since the innovation covariance matrix repre-
sents the current uncertainty in the predicted measurement location, this method enables
the PMHT to use a broad secondary measurement model when initialisation is poor, and
to narrow this secondary model when good initialisation is obtained.
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Figure 6.1: Growth of the innovation covariance under poor initialisation

A general framework for track initiation and termination is then presented. Two
alternative approaches using the standard PMHT are described. These approaches make
use of existing features of the PMHT algorithm. A third approach is the application of the
Hysteresis model presented in the previous chapter. Under this approach, the assignment
state itself can be used as a statistic for significance testing of proposed new target tracks.

The different methods for track initiation with the PMHT are compared via simulation
studies and a preferred method is identified.

6.1 Innovation Homothetic Measurement Model for
Initialisation

One of the problems with the PMHT algorithm is that it requires good initialisation of the
target state estirnate to avoid convergence to a local maximum. In many practical situa-
tions, it is not possible to obtain an accurate initial estimate of the target states (otherwise
tracking would not be required), so a scheme to reduce the sensitivity to initialisation is
required. One cause of this sensitivity is that the PMHT associates measurements using
the measurement covariance. This is because the algorithm performs assignment assuming
that the current estimate is the true target state. This may cause target measurements to
be given a low weight if the initial state estimate is poor. Most other tracking algorithms
(for example PDAF) associate measurements using the innovation covariance, which gives
the scatter of measurements conditioned on the current state estimate. When the current
estimate is poor, the innovation covariance matrix allows measurements more distant to
have high association probabilities, which allows the algorithm to correct the estimate,
Figure 6.1 demonstrates a simplistic example of how the innovation covariance matrix can
grow when initialisation is poor and allows algorithms such as PDAF to recover from this
condition. In the figure, a solid line represents the true target position, and the dotted
Iine the initialised trajectory. Elipses are drawn to show the size of the covariance ma-
trix used for assignment and hence give a qualitative representation of the weights target
measurements might be given.

One way to improve global convergence of the PMHT is to use inflated covariance
values for the measurement process. This has the effect of smearing the likelihood surface
and local maxirna may become hidden by the spread global maximum. After convergence

05 15 35 05 15 25
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with the inflated tneasurerlent covariance, the covariance is reduced somewhat and the
algorithm run again. This process is repeated until the final iteration where the true
measuïement covariance rnatrix is used. This rnethod requires a choice of how much to
inflate the measurernent covariance matrix and how quickly to approach the true value.
Since the batch of data is processed several times, use of covariance inflation incurs a
significant computation cost.

To reduce the extra computational load required by covariance inflation, the degree
of inflation can be made adaptive. One way of adapting the inflated covariance is to use
the innovation covariance associated with the current state estimate. This allows higher
covariance inflation for tracks with greater uncertainty.

The covariance inflation approach can also be automated by using the homothetic
measurement model proposed in [Rl,VS95a]. Under the homothetic measurement model,
the measurement process for each target is itself a mixture of Gaussians. Usually the mix-
ture is composed of Gaussians that share a common mean, although this is not required.
The homothetic measurement model can be used as a method of covariance inflation by
making the measurement process a mixture of a Gaussian with covariance defined by the
assumed "true" measurement covariance and a second Gaussian with covariance given by
the innovation covariance of the current state estimate. When the track estimate is first
initialised, it is assìgned a high degree of uncertainty and the innovation covariance is high.
As the trM iterations are performed, the smoothed state estimate gains higher accuracy
and the innovation covariance is reduced. When the smoothed state estirnates are suffi-
ciently close to the observed measurements, the algorithm associates the measurements
with the tighter density that uses the "true" measurement variance.

Figure 6.2 demonstrates how this approach allows the PMHT to recover from poor
initialisation through a mechanism similar to the PDAF shown in figure 6.1. The figure
shows a sequence of plots. In each plot, false detections are shown with the symbol 'x'
and valid detections '-l'. The estimated trajectory for that iteration of the PMHT is
drawn with a solid line, and elipses are drawn to show the innovation covariance. As
the state estimate improves, the elipses shrink, indicating the the innovation covariance
matrix corresponds to a tighter measurement scatter.

The standard homothetic measurement model for PMHT uses measurement covariance
matrices which are scalar multiples of the true measurement covariance. This results in
state estimation with the Kalman Smoother where the measurement covariance is replaced
by a scalar multiple of the true measurement variance. The assignment weights determine
the scaling factor. The smoother uses a synthetic measurement which is a weighted sum
of the sensor observations. As presented in chapter 3, these are given by

P
:{

-r nt P
:lnz¡ ttnt

r:1 p:l

wmptr

KÌNP t t umptr
Krnp

(6 1)

(6 2)

Zb¡
r:I P:1'

and
-1

Rr \- \- untqtr
L L pimq

Rr
ntP

r:7 p:1

where n^p is the scalar multiplier for the measurement variance associated with homoth-
etic model p and umptr is the assignment weight for model p of fiack m.

The results in (6.1) and (6.2) do not hold when the second model is the innova-
tion matrix because the innovation covariance is not necessarily a scalar multiple of the
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Figure 6.2: Correction for poor initialisation with innovation homothetic model

measurement variance. However, the state estimate can stiil be solved using a Kalman
Smoother. The smoother uses a synthetic measurement and covariance defined by

arrL.t n¡ l,lr-rr, (Rf)-t Iu^2t (sT)-tl "*
nt

(6 3)
r:1

and

(6 4)
r:1 r:L

where Si" is the innovation covariance matrix for model rn at scan Í.
The expressions (6.3) and (6.4) are more generalised versions of those in (6.1) and

(6.2) respectively. They sirnplify to the latter expressions if the matrix Sfl can be written
as rcRf, with rc constant. The derivation of (6.3) and (6.a) is presented, along with a
more detailed discussion of this generalised homothetic model in Appendix A.

6.2 Initiation Methodology
The process of creating new tracks when new targets are detected is called track initia-
tion, or track formation. There are numerous techniques for solving the track initiation
problem, but each of them can be formulated under a common framework of candidate
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Figure 6.3: General initiation flow diagram

tracking. Using the radar measurements, candidate tracks are initialised at possible target
locations. Candidate tracks might be started on all measurements, or on a subset, ac-
cording to a selection rule. For example, one might choose measurements not assigned to
an existing target model which are sufficiently close to a measurement from the previous
scan. However formed, the candidate tracks are allorved to assign measurements and are
updated. After a number of scans, the candidates are tested using a decision rule. Based
on this test, candidates may be discarded or promoted to established tracks. The decision
to promote or discard may be deferred, and the candidate retained.

Figure 6.3 shows a typical scheme for tracking with automatic initiation. In figure 6.3
established tracks, which were initiated at some earlier time, get the first pickings of the
sensor measurements. These tracks remove measurements that have a high assignment
probability and the remaining measurements (the residual measurements) are used to
form candidate tracks. The candidate tracks perform association and state estimation
using the residual measurements. This prevents the candidate tracker from running a
candidate track on the same target as is represented by an established track.

A possible fault with the scheme shown in figure 6.3 is that the association of measure-
ments and the updating of state estimates should perhaps be done jointly for all tracks
rather than in the sequential manner shown. A scheme performing this joint association
and update is shown in figure 6.4. The danger with the sequential approach is that an
established track will be assigned measurements from more than one target and it will
prevent new tracks forming on the other targets. This is likely to occur with the joint
scheme anyway since the new candidates must be formed from the residual measurements)
otherwise multiple tracks will be formed on every target.

A danger with the joint scheme is that candidate tracks will degrade the established
tracks. Suppose there is a track following a target that performs a heading change. The
established track may take a few scans to adjust heading to the new trajectory, In the
meantime, a candidate track has been started on the new heading and is very close to
the measurements since they were used to initialise it. The candidate track is assigned
the measurements in preference to the established track since the established track is
farther from the correct state estimate. The consequence is that the established track
will be terminated and the new candidate track will be promoted. This is undesirable
performance which is easily prevented by using the sequential approach.



New candidates Residual
measufements

Established tracks Track update
association/estimation

measurements

Candidate tracks

Promote

Retain

Candidate
quality test

Retain

Established track
test

L20 CHAPTER 6. INITIATIO¡\T A¡\TD INITIALISATION WITH THE PMHT

Delete Delete

Figure 6.4: Alternative initiation flow diagram

A key component of either track initiation approach is the decision criteria for promot-
ing candidate tracks. Given a particular algorithm for association and state estimation,
the obvious question is: what decision criterion for candidate promotion gives the best
pedormance? To start to answer this question, track initiation performance must be
objectively defined. The design of the promotion test must balance two conflicting re-
quirements: low probability of promoting a track that is false, and high probability of
promoting a track that is valid. The first requires a high test threshold, whereas the sec-
ond requires a low test threshold. In the following discussion, assume that the candidate
promotion test is not allowed to defer its decision, instead the candidate tracker is given
a short batch of data and required to rnake hard decisions about the candidate tracks at
the end of the batch.

6.3 Candidate Tests using the Standard PMHT
The simplest way to perform track initiation is to use information already provided by
the PMHT algorithm to test candidate tracks. Two such approaches are no\¡/ introduced.

6.3.1 Sum of Weights Quality Statistic
A common test for promoting candidate tracks is referred to as an M of.l/ rule. Under
an M of Iy' rule, candidates are promoted if they receive M validated measurements in
ly' scans. This rule is also used to select potential measurements with which to create
candidates. In this case, a candidate is formed if there are M measurements within a
gate volume in l/ scans. Rather than simply counting the number of measurements that
are within an arbitrary distance of the track, a more intuitively appealing approach is to
test the sum of the association probabilities. This has the advantage of not promoting a
track simplv because it is in a high clutter environment. AIso it gives a greater choice of
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promotion threshold, since the test statistic is no longer integer valued. This leads to a
simple ad hoc quality statistic given by the sum of the association weights:

Tnt
qi:ttumtr' (6.5)

t:7 r:1

This statistic can be interpreted as the estimated number of measurements caused by
model rn. When normalised by the total number of measurements in the batch, qT rs

also the maximum likelihood estimator for the prior probability of a measurement being
caused by model rn if this prior is time invariant.

This simple quality statistic will be referred to as the sum of wei,ghts quality statistic
(for obvious reasons) and is used as a benchmark for other proposed initiation schemes.
The sum of weights test could be implemented with no alteration to the PMHT algorithm
and carries very little overheads.

6.3.2 Cost Function Increment
Another commonly used quality test for candidate tracks is the cumulative log likelihood
of the assigned measurement sequence [Sit64]. The log likelihood can be determined by
accumulating the squared innovations when the statistics are assumed to be Gaussian,
i.e.

rnlTrltq"" : -,t t w^r,(HyFT*7, - tr,)'(sf)-t (nyr7æ7r - ztu) (6 6)
I L:t ,:r

Intuitively, false tracks are expected to be assigned measurements that match the
target dynamic model poorly and have a large scatter about the predicted measurements.
Such tracks will have a high accumulated innovation and this can be used to reject them.
This statistic gives a measure of how well the measurements assigned to a track fit the
assumed target model.

An analogue of this approach for the PMHT would be to use the component of the
auxiliary function corresponding to that model as the quality statistic, namely

AT
T

'IT¿q

roe,þL @T) +I to*,þ7 @Tl*7,) * D f tos (í" ("Í:'Wf) umtr. (6 z)
Tnt

t:7 r:lt:1.

Note that an iteration index is not included on the weights because the quality statistic
is only calculated on convergence of the algorithm.

There are two main problems with this approach. Firstly, a track with very few
rneasurements assigned to it will clearly not have very high measurement scatter and so

be treated as a good candidate track. Such tracks are not good candidates; the lack
of assigned measurements is a strong indicator that the track is only assigned clutter
measurements. To deal with this case, the log likelihood test must be augmented with a
Iogical test to require the candidate to assign a certain number of measurements.

The second problem is that the test is centred on the track itself. The goal of adding
a new track is not to add a new model which assigns measutements. Rather it is to
add a model which accounts for measurements which seem unlikely under the current
mixture model. To this end, the test statistic should encompass the overall improvement
in the data description by the inclusion of a new model. This point is best illustrated



t22 CHAPTER 6. INITIATIO¡\T A¡\ID INITIALISATIOAT WITH THE PMHT

with an exarnple. Suppose there is a sequence of valid target measurements. A target
model on these measurements will give a good quality statistic. Further suppose that a
target model assigns most of these measurements, but that a candidate track is initialised
on them anyway. The candidate will be given significant weights for the measurements,
and the weights for the pre-existing track will be reduced. Depending on the promotion
threshold, this new candidate may be promoted even though it adds nothing to the overall
description of the data.

Both of the above problems can be addressed by using the total system likelihood as

the quality statistic, rather than the individual model likelihood. Under this approach, the
quality assigned to a new candidate is the improvement in the overall likelihood obtained
by adding the candidate. This improvement is given by

qa:Q(x,x") -a(x) , (6.s)

where X" is the candidate state sequence and X are the states of the other models.
The addition of the candidate model is guaranteed to increase the auxiliary function,

and the amount of this increase provides a measure of how much the candidate model
adds to the overall data description. This approach was used to estimate the number
of components and the parameters of a Gaussian mixture with an unknown number of
components by Vlasis et al. in [VLK00, VL00].

6.3.2.I Comparison with Model Order Estimation

The track initiation problem is really one of model order estimation. The aim is to find the
best set of dynamic Gaussian models to describe the sensor data. The solution requires
both the determination of the states of each component and an estimation of how many
components provides the best fit to the data. This latter part is model order estimation.

It is not possible to use standard optimisation approaches for model order estimation.
Optimisation criteria such as Maximum Likelihood or Least Squared Error will always
prefer a model of higher order. Ultimately, such methods will find the optimal model order
to be any number at least as large as the number of data points. Once the number of
parameters is more than the number of data points, adding further complexity produces
no change in the optimising objective function. To alleviate this shortcoming, model order
estimation approaches incorporate a penalty term which reduces the objective function
when a higher order rnodel is used. This penalised objective function is then of the form

A(X) : IoB L (x,4 - f @6), ¡/), (6 e)

where d is the total number of parameters (the sum of the lengths of all the state vectors)
and lú is the total number of data points, namely l/ : D, nt. L is the maxirnum value
of the likelihood of the data under model X, i.e. the likelihood when X is set to the ML
estimate, The model order is then that integer d which maximises the function Ç.

The A Informat'ion Cri,teri,on (AIC) was developed by Akaike [Aka7a] by minimising
the Kullback-Leibler distance between the true data model and the estirnated model. The
derivation of the AIC relies on asymptotic arguments. The AIC is given by

Qo,r: log I (X, Z) - 2d(X). (6.10)

A problem with the AIC is that the penalty term is independent of the size of the data
and so the model order will be overestimated when l/ is large. Both Schwartz [Sch78]
and Rissanen [Ris78] are critical of the arguments used to derive the AIC.
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An alternative method, the Bayes Informati,on Criteriorz (BIC) was presented by
Schwartz [Sch78]. This approach is derived using asymptotic argutnents about a Bayesian
model order technique, The BIC is given by

Q",, :log I (x, z) - los^N d(x) (6.11)t/2

The Minimum Description Length (MDL) of Rissanen [R,is78] was derived by finding
the smallest number of bits to represent an ARMA data sequence. This criterion is the
same as the BIC except that it includes an additional term which takes into account model
complexity (not all d parameter models are the same). However, this term is independent
of the data size and becomes insignificant for large data sets. The MDL was also derived
using asymptotic arguments.

These standard model order estimation techniques each have a penalty term that is
linear in the model order. So, the AIC, BIC and MDL (for large data sets) can be written
AS

Õ : loe ¿ (X, Z) - , d(x), (6.12)

where e varies depending on the selection criterion.
This criterion is equivalent to choosing a model of order d over a model of order d - 1

when the log likelihood under model d is at least e more than the log likelihood under
model d - l:

a@) >
log l (x(d),2) - ed >

log I (X(d),2) - log I (X(d - r),2) >

The model order estimation above does not involve a data association problem. When
data association is introduced, the likelihood can be replaced by its expectation over the
assignment hypotheses. It follows that (6.13) can be written as

Q(X,X") -A(X) ) Ce, (6.14)

where C is the order of the candidate model. Thus, approaches such as AIC and MDL are
equivalent to the incremental cost test as described above, but where a particular decision
threshold is chosen. In general, Neyman-Pearson type detector laws may be desirable,
where the threshold is chosen to specify a particular false alarm rate, rather than an
optimal decision. Thus it is desirable in some instances to choose the decision threshold.

6.4 PMHT \ /ith Hysteresis for Initiation
An alternative to using outputs of the standard PMHT as a candidate test is to develop
a modified algorithm that builds in a track quality measure by design. The sum of the
assignment weights for model m is a scaled version of the standard PMHT estimate for the
assignment prior, ri. The prior is an intuitively appealing measure of candidate quality
since it specifles the contribution of each model to the measurement set. The previous
chapter demonstrated that the PMHT with Hysteresis can give superior prior estimation
performance over the standard PMHT. This is because it provides the PMHT framework
with a method for modelling the temporal behaviour of the assignment process. One fault
with the weights sum approach is that it gives equal importance to a candidate which has
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two assigned measurements in one scan, and a candidate which assigns one measurement
per scan in two consecutive scans. It is evident that the latter is more likely to be a valid
track. When the Hysteresis nodel is used, the Markov chain of the assignment process
can be designed so that the assignment state itself is an in-built quality measure of the
candidate.

When a candidate track is valid, then it is detected with probability Pd and if it is
detected, then it forms one measurement. Thus, the true ri of a valid candidate i" #.
If the candidate is false, then the true rl is zero. An obvious quality test for candidates
is thus the estirnated ri value. This is the weights sum approach already discussed.
However, the estimated ri has a high variance) as demonstrated in the previous chapter.
This then motivates the use of the PMHT-y model for smoothing the rfl estimate, and
was actuallv the problem which inspired its development.

6.4.L Initiation \Mith PMHT-ym
There are two types of candidate tracks: valid and false. Since this analysis assurnes a
fixed probability of detection Pd, which is the same for all targets, then there are two true
values of rf, as stated above. An intuitive decision is thus to use an assignment state
space with two possible state values corresponding to false and valid tracks, i.e. Mp : ).
This is the simplest possible model, and has the benefit of minimising the computational
requirements of the algorithm. Under this model,

óT@ :
óT0 : (6.15)

This special case, with a binary assignment state model, is the same as the visibility
model used for initiation with the PDAF and other filters. Section 5.2.1 discusses the
relationship between the visibility approach and the hysteresis assignment model. For
this special case, the assignment state for model m, dT, will be referred to as the visibility
of model m and the PIVIHT-ym using this model is referred to as the PMHT with visibility,
or PMHT-v.

The PMHT-v calculates the posterior probability mass P (dT :1), which is the prob-
ability that the candidate has a prior consistent with a valid track. This then provides
a natural quality statistic. Since the visibility variable can change over the batch, the
candidate test statistic is

rn 7Tni : Tf r @,7 : rlx,z). (6.16)
t:l

All that remains is the seiection of the transition probability matrix and the prior
probability mass. Since the model is binary (Mo :2) these are fully specified by three
parameters: Aff (dff) has two elements, one of which is constrained by normalisation, and
LT (d,Tl¿\r) has four elements, two of which are constrained by normalisation. These
parameters are design parameters which can be chosen either by subjective belief, or by
optimising particular criteria.

In [LL01b] a set of heuristic rules is optimised in order to select parameters of the
perce'iuabzli,ty modeL This model is visibility by another name (in the PDAF context of
[CDA86]), and [LL01b] is the only work to address the issue of parameter selection. Other
authors either present quantities with no explanation, or do not provide these numbers

0,

Pd
Tù¡
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due to propriety issues. The parameters derived in [LL01b] are

P (di : r) : 0.5,

P (d,T : Tld2t: r) : 0.988,

P (d,T : rldir: s) : o.o.

The method used for initiation performance analysis used in this thesis is the initiation
Receiver Operating Characteristic curve (described in detail in section 6.5.1). So, it is
sensible to optimise the parameters for the curve. This confirmed the above parameters,
with the exception of the prior probability, which was instead chosen as

P (dT : 1) : 0'1'

6.4.L.I The PMHT-v algorithm

In the analysis to follow, the special form of the PMHT-ym used for track initiation
is referred to as the PMHT-v. This is because the algorithm is the PMHT version of
the visibility based initiation approach particularly popular with PDA. Unlike the PDA
initiation algorithms the PMHT version of visibility has a solid theoretical foundation;
various authors make claims about the superiority of their PDA models based mainly on
the interpretation of the model. The interpretation of the Hysteresis model is clear and
fits easily into the PMHT framework.

For completeness, a summary of the PMHT-v is now presented. Notice that the set
D¿ is now a binary vector, and thus Dr. D, gives the number of elements in D¿ which
are unity. The PMHT-v proceeds as follows:

1. Initialise the estimates X(0) and X(0).

2. Determine the posterior probability of assignment state using

P (Dlxu-t),2) : at(Dr) þ'(Dr)
Ðu a'(Dt : U) 0' (D, : u)

where at(Dt) and B¡(D¿) are defined using (5.25) and (5.26)

ar(Dr): t
Ma

lI or (¿Tt¿T,) P (ZtlDt,Xr) ",-r (Dr_1) ,

Dt-t m:1.

Ma
P (Zr*rlDr*r,Xr+t) 1r+t(Dr*t1 ,

Dt+t m:l

and the incomplete conditional data likelihood P (ZlDüX¿) can be written as

lvlv

Ð"-ef Q"þT)

0, (Dr): t fl oïL' @'T*'ld'T)

Pd t d,T-*" er Q,,l*T)

P (2, D,,x,) : I { (t - 4o,, o') m:I

+
A/Í

TL¡ rn:NIv*7
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3. Calculate the assignment weights for each measurement and model,

P (DIXQ-L),2) P (kr, : mlDr) Ç ztu@TQ-1))t
Dt Dy:, P (k* : plD') Ç

t n(i-l\zblæi'

4, Update the state estimates using the Maximum Likelihood Estimator to give [(l).
This part of the algorithm is identical to the standard PMHT. As with the standard
PMHT, a Kalman Smoother can be exploited to find the ML estimates under the
case that the evolution pdf, ,þT @Tl*7,), and the observation pdf, eT Q*lrT),
are linear Gaussian functions. Obtain the estimates )(i) using (5.20).

5. Repeat steps 2 . . .4 until convergence

The track promotion statistic is given by

11.IU-¡,

qT
1T;t P@,7:rlx,z)

t:7
T

t t dTP (Dlx,z) . (6.17)
t:t Dt

The probability P (D|){',Z) is calculated using the HMM smoother, as described
above. This smoother decomposes the probability into a filter component, o, and a retro-
diction component, p. Recursions are used to calculate these probabilities, and these
recursions are strongly driven by the incomplete data likelihood P (ZrlDr,X¿). Simplis-
tically, the HMM smoother will assign a high probability fhaf di : 1 only if there is a
significant increase in the incomplete data likelihood by including the new candidate rn.
For the case of a single candidate track, the test statistic is a smoother over the incomplete
data likelihood ratio between the valid and clutter candidate hypotheses.

6.4.2 Initiation with PMHT-ye
When the PMHT-ye is used, the algorithm estimates the assignment state sequence, and
this sequence itself can be used as the quality measure. As with the PMHT-ym, the batch
information is summarised by taking the average of the temporal values.

It is not appropriate to use the binary visibility model used for the PMHT-v, because
the estimated visibility sequence will be a realisation of the visibility Markov chain. If this
chain is binary, then the estimated visibility sequence will essentially correspond to either
0To or 100% confidence in the candidate track. This does not allow the user to choose a
desirable false track promotion probability, except perhaps by tuning the Markov chain
transition probabilities. The algorithm is forced to make a hard decision. It is preferable
to have an algorithm that provides for some uncertainty in the quality of candidates. For
this reason, there should be more than two values in the state space , i.e. M ¡, ) 2.

The functions þi @i) are chosen to be

óT @ï\ : ,!T ,,. (6 1s)' n, (Mo - I)'
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Thus, higher values of di correspond to models which contribute more measutements
to the mixture and are hence more likely to correspond to valid targets. M¡ is now
equivalent to a quantisation level of 

"h 
in the óT @T) used for the PMHT-v in the

previous section.
Heuristic specifications on the transition matrix are provided by intuition: the rnatrix

should be dominantly diagonal with the probability of switching between extrerne ends
of the assignment state space being very low. When the main diagonal of the transition
matrix is strongly dominant, then the estimated state sequence will smoothly transition
between values.

The transition matrix has Mo(Mo - 1) free elements to optimise. To sirnplify the
parameter optimisation, it was chosen to limit the freedom of the transition matrix by
assuming the following form:

^i @i)
1

Mp Ym

LT @'T : jld\t:d) d,¿exp

(6.1e)

(6 20)

(6 21)

where op is now the only design parameter, and this quantity controls the dominance of
the diagonal elements. d¿ is a normalising constant that ensures that all of the transitions
from state i sum to unity probability and is given by

,,:{
M¡1tj:r /. '\t\L-J).

Mn-itexp
2 (oDMD)2 l) j:L-¿

d¿ is the inverse of the sum of the exponential function in (6.20) over a window that
slides according to ¿. It will take its biggest value for i,:1 and i,: Mn. This means that
the diagonal terms in the transition matrix are biggest for the extreme visibility values.
The matrix defined by (6.20) and (6.21) is shown in figure 6.5 for a particular value ol op.
The brightest areas show the greatest probabilities, and these areas are found near the
top left and bottom right end of the matrix. This tends to encourage the model towards
extreme values.

6.4.2.I Parameter Selection for the PMHT-ye
The above hysteresis model for initiation with the PMHT-ye still has two parameters
to select: the dimension of the assignment state space, Mp, and the dominance of the
transition diagonal, controlled lry on. These could be chosen by subjective belief, or
preferably by optimisation of an objective criterion. As in section 6.4.1, the appropriate
criterion to use is the initiation Receiver Operating Characteristic (ROC) curve, since the
ROC will be used as the performance measure for track initiation. The ROC curve for
track initiation is discussed in detail in section 6.5.1. The parameter Mo is chosen to be
as small as possible, while maintaining high performance. The transition parameter, o¡
is chosen to give the best ROC curve.

The PMHT-ye is not included in the initiation analysis which is to follow. This is
because it was found to give poor performance. When the algorithm was able to recover
from initialisation and follow the target trajectory, it easily discriminated the valid target
track from false tracks due to clutter. Howevet, on difficult realisations (usually when
the target was not detected for several scans near the start of the batch) the PMHT-ye
failed to recover from initialisation and diverged from the true trajectory. Essentially it
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performed excellently on the simple cases, but very poorly on the more difficult cases
For this reason, it is not considered further.

6.5 Performance Analysis Method
Several methods for track initiation with PMHT have now been presented. These methods
will be compared in this chapter through simulation. However, the measures used in
previous chapters (such as the mean squared estimation accuracy) are not appropriate
for track initiation. Instead, the performance measure for track initiation should quantify
how well the candidate test discriminates between valid and false candidate tracks. This
will be done by using a Receiver Operating Characteristic curve.

6.5.1 The Receiver Operating Characteristic Curve
The track promotion test in the initiation process is a decision and can be viewed as
a detector. The promotion test aims to detect valid target tracks and to reject false
tracks that associate clutter measurements. One way of quantifying the performance of a
detector is through the use of a Receiver Operating Characteristic curve. The ROC plots
the probability of correctly detecting a desired signal as a function of the probability
of incorrectly detecting a noise signal (a false alarm). Each point in the locus of the
curve represents a particular detector setting (threshold). The ROC curve summarises
the probability of detection and the probability of false alarm for all possible detector
parameter choices and thus provides a measure of how well the test discriminates valid
and false signals.

Figure 6.6 shows an example ROC curve for track initiation. Whereas the standard
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Figure 6.5: Transition matrix., L! (¿T : j dTt: ¿), for Mn : 51
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Figure 6.6: Example tracker ROC curve

ROC curve plots probability of detection as a function of probability of false alarm, the
tracker ROC plots the probability of promoting a valid track (a correct positive result) as

a function of the probability of prornoting a clutter track (a false positive). Here, a valid
track is a track which has been initialised on a true target measurement(s) and is within
tolerable estimation error of the true trajectory. A clutter track is one which is initialised
on clutter and does not follow a true target trajectory. The ROC curves presented in this
and following chapters, plot the probability of promoting a valid track on a linear scale
and the probability of promoting a clutter track on a logarithmic scale. This is because
the probabitity of promoting a clutter track is required to be very low. Commonly there
a e many more false detections than valid target detections and consequently the majority
of the candidate tracks will be clutter tracks.

The ideal performance curve would sit in the top left corner of the plot. At this point,
all valid tracks a e promoted and all clutter tracks are discarded. At any particular prob-
ability of promoting a clutter track, a higher probability of promoting a valid track is
desirable and so the curve which is higher is preferred. In figure 6.6, test A gives superior
performance at high probability of promoting clutter tracks, but test B gives better per-
formance for low probabilities. In such a case, ueither test is universally preferred, and
the design choice depends on the operating point at which the system will work.

Although the ROC curve has been used to quantify track initiation performance (e.g.

[BSCL9O, LHB96, BSFSS]), it is not common. Rather, authors tend to choose to fix the
false track rate (equivalent to choosing a particular probability of promoting a clutter
track) and observe the valid track initiation performance. This may result in misleading
conclusions. In figure 6.6 dotted lines show the performance obtained when a mediocre
probability of promoting clutter tracks is specified. In this case, the curve corresponding
to test A would give better results than the curve for test B, leading to the conclusion that
test A is a superior test. Clearly this is not universally true, and in fact test B is preferable
when very low probability of promoting clutter tracks is required (which it usually is).
In order to show results representative of the algorithm under test and independent of
the particular operating point chosen, the ROC curve is used as the primary ruler for
measuring track initiation performance.
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6.5.2 Other Performance Assessment Approaches
The ROC curve is a good method for assessing track initiation performance, but this is
only one facet of the tracking algorithm. Aspects such as manoeuvre handling, estimation
error) overshoot and false track duration are all important factors in overall tracker rating.
In [CDD96], seventeen metrics for tracker performance are used to compare competing
algorithms. This approach is more appropriate to gain an overall indication of tracking
performance. However, he main focus of this thesis will be track initiation performance
quantified via the ROC curve. Other studies have already considered the performance
of PMHT under established track criterion, such as estimation accuracy (for example,
[RWS95a, R\\¡S99, RW01a, WRS98b]).

6.5.3 Generating ROC Curves Fþom Simulated Data
In section 6.5.1 the track initiation ROC curve was introduced as a method for evaluating
the performance of track initiation schemes. This curve is the locus of the probability of
promoting a track, given it is associated with a valid target, as a function of the probability
of promoting a track, given it is false. The problem with using the ROC curve is that these
two promotion probabilities cannot be analytically derived for complicated algorithms
such as the PMHT and its variants. This means that the true ROC curve cannot be
computed, and an approximated one must be used in its place. This approximated ROC
curve is produced by estimating the promotion probabilities above. These estimates are
obtained using Monte Carlo simulation.

The true ROC curve is composed of the promotion probabilities which are the curnu-
lative distributions of the qualitv statistic

P(promotelvalid;ú) : [* p(qlrutid)dq, (6.22)
Jt

where ú is the promotion threshold. Given a sample of l/ valid tracks, this probability
can be approximated by

1å
P(promotelvalid;ú) = i L,I (q" ¿t), (6.23)

n:l

where 1(') is an indicator function taking the value unity when its argument is true and
zero when it is false. This is equivalent to approximating the density p(qlvalid) with a
sum of dirac delta functions, each shifted to the location of one of the observations

¡¿

p(qlvalid) = I6(q- q,). (6.24)
n:l

Using the approximation in (6.23) may lead to a noisy estimated ROC curve. One way
to smooth the estimated ROC is to use a smoother density estimate for the promotion
probability. This may be done by using a kernel density approximation lSilS6]

p(qlvalid) =:Ë lr(q-q"\ , rc.25)N#''\ s /
where the kernel function, 4, is a normalised, smooth. function. If the support of the kernel
function is fixed at (say) [-1,1], then the dilation parameter, s, controls the support of
the contribution of each observation, and hence the smoothness of the pdf estimate.
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Using this kernel estimator, the smoothed estimated cumulative density function is

p(promotervarid;ú) = + ä1,-:r (1ø) ., rc'6)

The ROC curves that are presented in this thesis have all been generated using a
quadratic kernel function 

rt(q) : q2 - r, (6.27)

with a dilation parameter, s : 0.1.

6.6 Simulated Track Initiation Performance
The performance of three of th.e PMHT track initiation approaches presented in this
chapter is now examined through simulation. These approaches are

1. The standard PMHT algorithm using the sum of the candidate assignment weights
as a promotion test statistic. This approach is referred to as the we'ights surn (see

section 6.3.1).

2. The standard PMHT algorithm using the incremental improvement in the EM auxil-
iary function by introducing a candidate as a promotion test statistic. This approach
is referred to as the cost'increment (see section 6.3.2).

3. The PMHT-ym algorithm using visibility for the assignment state model. The
candidate promotion test statistic is the average probability that the assignment
state is that of a visible target. This approach is referred to as PMHT-v (see

section 6.4.1).

A crucial factor in the production of the initiation ROC curves is a knowledge of the
underlying truth. The statistics are conditioned on knowledge of whether each track is

valid or false. In order to guarantee this knowledge, two test scenarios are used. To
estimate the candidate statistics of false tracks, a scene containing no target is used. The
statistics of valid tracks are estimated using a scene with a single target, and a valid
target measurement is used to initialise the track. The valid candidate is discarded if the
final state estimate deviates from the true target state by more than a prescribed amount.
This approach avoids the possibility of coincident tracks, and false tracks being assigned
valid target measurements.

The simulated target model is the two dimensional almost constant velocity model
(see section 3.3 for more details on the almost constant velocity target model). This is a
cartesian model, with target motion independent in the two coordinate axes.

The sensor provides a two dimensional measurement vector which contains an obser-
vation of the target position in each dimension, corrupted with independent noise. This
is a linear Caussian modcl. Diffcrent distributions of the clutter measurements are con-
sidered, although each consists of only a single model. Thus, My :1 and d¿l : 1. The
sensor detects measurements over a footprint arbitrarily labelled from -50 to 50 in the x
direction and from 0 to 100 in the y direction. Measurements are collected over a batch
ofT:11scans.

When a target is present, it begins in the middle of the sensor footprint with an initial
state given by æo: [0,0.35, 50, 0.35]r (corresponding to a velocity vector of magnitude
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0.5) . The process noise for the state evolution is set to Q :0.001I(2), where I(n,) is the n
dimensional identity matrix. This low process noise ensures that the target trajectory is
approximatelv straight. rñ/hen a target is present, it is detected with probability Pd, : 0.6.
Each target measurement is corrupted by Gaussian noise with covariance R: I(2).

Tracks are initialised using a single measurement at zero velocity. This is equivalent
to assuming that the mean of the initial target state distribution is

ro: [zbfrf ,0, zt,[y],0]t, (6.28)

where zv[r] and z¡[y] are the two components of the rth measurernent at the first scan,
i.e. z¡ = l"rrlrl,"rrlal]' .

The initial covariance assigned to the tracks (i.e. the assumed covariance of the initial
state distribution) is

P0
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(6.2e)

The covariance of the position part of the initial state is the covariance of the measure-
ment used to initialise it. The covariance of the velocity part of the initial state is chosen
so that the true target velocity is several standard deviations from the initial estimate.

The track initialisation is deliberately chosen to be poor to demonstrate the robustness
introduced via the innovation homothetic measurement model, and also to make it more
difficult to discriminate between valid and false tracks. It is necessary to choose scenarios
where discrimination is difficult because easier conditions will only show differences be-
tween the initiation approaches at extremely low false track promotion probabilities. Since
the promotion probability is estimated by a smoothed ratio of simulated experiments,
these low promotion probabilities can only be estimated by performing unrealistically
numerous trials.

For the challenging scenarios chosen, 10000 Monte Carlo trials are used for each statis-
tic to be tested. The cost increment statistic and the weights sum statistic are both derived
from the standard PMHT algorithm. Thus, each plot in the following analysis is generated
using 40000 random trials (10000 each of valid and false tracks for the standard PMHT
and the PMHT-v).

6.6.1 Divergent Tlacks
On some valid track trials, the state estimate will diverge from the true target trajectory.
This may occur because the track is seduced by clutter, or it may be that the track is not
able to recover from its poor initialisation (perhaps due to early missed detections). Such
tracks are no longer valid. The candidate track is effectively false. Thus, they are not
included in the analysis. To test for this condition, the distance between the track and the
true target position is measured through the batch. If this distance exceeds a particular
threshold, then the track is deemed divergent, and not included. This threshold is chosen
to be 3 standard deviations of the measurement noise. This means a track is divergent if

Tþf @, - æ,)rHrR-'H (ù, - *r) , 9. (6.30)

The number of divergent tracks is used independently as a measure of initialisation
robustness, and is presented after the ROC curve analysis.



6.6. SIMULATED TRACK INITIATIO¡\¡ PERFOR ,TANCE 1 
'.)It)t)

6.6.2 Uniform Clutter Distribution
The first case considered is the ubiquitous uniform clutter distribution. fhe perfornance
of the three proposed initiation schemes is examined for two different rates of false detec-
tions. The first of these corresponds to 10 clutter measurements per scan. This is quite a
low concentration of false measurements, and all of the schemes have a fairly easy time in
discriminating between false and valid tracks. In this example there is little to distinguish
the different approaches. The estirnated ROC curve for each of the initiation schemes on
this relatively low false detection rate is shown in figure 6.7. The weights sutn and cost
increment quality measures are shown as a dashed line and a dotted line respectively. The
PMHT-v performance is shown as a solid line.

The second clutter false detection rate corresponds to 50 clutter measurements per
scan. The estimated ROC curves for this relatively high concentration clutter are shown
in figure 6,8. As is expected, the performance of all approaches is degraded from that
obtained on the lower concentration clutter. Of the three approaches, the PMHT-v gives
the best performance, although the difference between it and the weights sum approach is
not significant. The cost increment approach gives significantly worse performance than
the other two. This is a little surprising, since the cost increment approach is linked
to established Model Order Estimation techniques, whereas the weights sum approach is
purely an intuitive, ad hoc method. This performance is expected, however, if the nature
of the two statistics is more closely examined.

6.6.2.I Relationship Between Cost Increment and'Weights Sum for a Uni-
form Clutter Distribution

It may have been intuitively expected that the weights sum (being an ad hoc test) would
give the worst initiation results. Howevet, the cost function increment has worse perfor-
mance. By manipulating the expression for the cost increment quality statistic, this result
can be predicted.

In this experiment, there is only one target model, and one clutter model. If the target
model is removed, then the cost function is

Tnt

Ç(x) t t loe (,' ("*l*l)
t:l r:7
T

Ð"rloe#, (6.31)
T:I

since all of the measurements have the same probability when the clutter pdf is uniform
With the target model, the cost function is

T

8 (x,x") : e', -rler" + t Ðrrr,loeC,'
Tnt

t:l r:1.t:l

c
Qq I (X,X") - A(X)

T

Qi +D q^ + t D-r,,loe C/ - t n¡rog ÇtI

T r¿t

t:1 r:7

T

Thus

t:l

(6.32)



134 CHAPTER 6. INITIATIO¡\T A¡\ID INITIALISATIO¡ú WITH THE PMHT

-3

0.95

0.9
p
E o.as
c.o

? o.a
C
.9

Ê o.zs
o
o
o 0.7
à
E
E 0.65
o
o-

0.6

0.55

0.5
10

ol
10 - 10 '

probability of promotion, given false
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(6.34)

T Tnt

t:l r:l

t-1 r:1
TT

L

Ai +Ðq^+ t D tt - w,t,) log (,' - I n¿rog(|
t:I
T

t:I
r

t:7

ai+\,Q,*-tDr,*los#

ei +Ðq* -.,eelqi, (6.33)
t:l

where Q', i" the model cost for the candidate track.
The statistic clearly consists of a scaled version of the benchmark, qfi, plus two other

terms. The Q¡n term is relatively small and has secondary effect. The candid aLe lerm Q2,
is negative definite since it consists of the sum of the norms of the random errors in the
model scaled by their corresponding covariances and by a factor of - |. fne assignment
weights also scale the measurement orientated error terms. The term proportional to q".

is positive definite since (1 < 1. Thus lhe Q2" acts against the qfl term. When the track
corresponds to a valid target, it is likely that many measurements will be assigned to it,
and this makes the Q2" term larger.

The cost increment statistic can be decomposed into two terms: the first term is the
reduction in the clutter measurement cost due to assigning measurements to the candidate
track. The second term penalises this cost improvement based on the discrepancy between
the candidate track and the assumed model. When the clutter is uniformly distributed,
then the first term is simply proportional to the sum of the candidate assignment weights.
However, when a non-uniform clutter distribution is present, the first term acts to reduce
the quality statistic of tracks in highly cluttered regions and increase the quality statistic
of those in sparsely cluttered regions. Thus the cost increment approach is more suited
to non-uniform clutter distributions.

6.6.3 Chi-Squared Clutter Distribution
The next clutter distribution considered is the chi-squared distribution with two degrees
of freedom, i.e. an exponential distribution. This distribution is used in the E coordinate
direction, and a uniform distribution is used in the r coordinate direction. The clutter
distribution is thus given by

el Q',)
1: 

-€XD
2000

As with the uniform distribution, two different rates of false detections are considered.
Figure 6.9 shows an example trial. All of the measurements for the batch are shown in a
spatial plot. The non-uniform distribution of clutter measurements in the vertical axis is
clearly seen. The target is present in the trial, and the target detections can be seen in
the middle of the plot. The target rleasurements are shown as circles, and false detections
AS CÏOSSES.

Figures 6.10 and 6.11 show the ROC curves generated for chi-squared distributed
clutter. Again, the PMHT-v shows better performance than the weights sum. In this
case, the performance difference is more significant than in the uniform clutter example.
In contrast to the uniform case, the cost increment approach now performs almost as well
as the PMHT-v.
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Figure 6.9: Example trial with target for chi-squared clutter

The weights sum approach performs particularly poorly for this example. Also, the
ROC curve exhibits a staircase appearance. The staircase effect occurs because the PMHT
weights tend to converge to extreme values: close to unity, or close to zero. This means
that the weights sum statistic tends to have a pdf with peaks around integer values,
for both valid and false tracks. The false track peaks are more broad because the false
measurements have a higher scatter. Each point on the ROC curve corresponds to a
possible promotion threshold setting. As this threshold increases, the resulting promotion
probabilities follow the ROC curve from the top right corner (zero threshold where all
tracks are promoted) to the bottom left corner (an extremely high threshold where all
tracks are denied promotion). When this threshold changes from slightly less than a
particular integer to slightly more, then a large number of tracks are no longer protnoted,
since there are peaks in the pdf at integer values. When many valid tracks are thus
suppressed, this causes an almost vertical drop in the ROC curve. Conversely, when the
threshold is varied between integer values, very few valid tracks are suppressed, but false
tracks may be rejected because the false track peaks have more spread. This causes an
almost horizontal segment in the curve. The result is a staircase appearance which is
somewhat smoothed by the kernel pdf estimator (see section 6.5.3).

The overall poor performance of the weights sum occurs because the approach only
considers the number of measurements which are assigned to a track, and does not take
account for how well these measurements may have been described by the existing model
without the new candidate. It is a track orientated approach, not a total system one. In
contrast, the cost increment statistic is the increase in the log likelihood by the addition
of the candidate. Thus if the candidate assigns measurements in a high clutter density
region (in this case low values of z¡,lE]) the statistic will be small: those measurements
already have a high likelihood under the hypothesis that they are due to clutter. If the
candidate assigns measurements in a lower density region, then the statistic will be higher:
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those measurerrrents had a low likelihood under the clutter hypothesis. Notice that the
true target trajectory lies through a lower density part of the clutter distribution. If it
were in the highest density part, the tracker would have no hope of following the target.
Similarly, the PMHT-v uses a HMM smoother to estimate the probability of visibility.
This smoother is driven by a gain terrn which is the conditional measurement likelihood
under each visibility hypothesis, P (ZrlDr,X¿) (see (5.25) and (5.26)). When there is only
one target, it can be seen that the HMM smoother is driven by the conditional likelihood
ratio of the measurements with and without the candidate. If the candidate makes little
change to the measurement likelihood (for reasons described above) then this ratio will
be close to unity. If the likelihood is greatly increased, then the ratio is large and this
drives the HMM smoother to give a high probability of the candidate track corresponding
to a visible target.

The cost increment and PMHT-v approaches perform better than the weights sum
because they both take account of the likelihood that the measurements assigned to the
candidate track were due to clutter, whereas the weights sum effectively counts the number
of measurements close to the candidate trajectory. The cost increment and the PMHT-v
should thus be expected to always outperform the weights sum in non-uniform clutter
densities. The PMHT-v gives better performance than the cost increment, because it
also exploits the temporal history of the track. Candidates which assign rneasurements in
many scans are given higher credence than those who assign a few outlier measurements.

6.6.4 Polynomial Clutter Distribution
The chi-squared distribution in the previous section has a gradual decay. It also has an
infinite support: it is possible (although unlikely) to observe measurements with arbitrar-
ily high values. In this section, a polynomial distribution is used, which has a sharper
peak at low values and a plateau at higher values. It also has compact support (the pdf
is nonzero only within a closed interval) . This distribution is given by

C| Q,,) : # ,r,la]-o''u o { zt [E] < 1oo
0 otherwise.

(6.35)

This distribution is long tailed, and also shows a large difference between the high and
low density parts. It is generated using the simple relation

zr,lAl : pa, (6.36)

where p is uniformly distributed on the interval 0. . . 1.

Figure 6.12 demonstrates the difference between this distribution and the chi-squared
distribution. The chi-squared (exponential) distribution is shown as a solid line and the
polynomial distribution as a dashed line. The polynomial pdf can be seen to have a much
higher peak at very low measurement values, but then the pdf drops quickly below the chi-
squared pdf. For most of the measurement space, the polynomial pdf is almost constant,
and high value measurements are more likely under this pdf than the chi-squared (up to
the limit of the polynomial pdf support). This pdf is somewhat like a very low mean
exponential pdf with a uniform pedestal.

The ROC curves for this clutter pdf with low and high false detection rates are shown
in figures 6.13 and 6.14. As with the chi-squared case the weights sum gives the worst
performance, although the difference is not as great. The weights sum also shows the
staircase appearance, particularly for low false detection rates. The cost increment gives
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Figure 6.12: Non-uniform clutter densities

somewhat better performance than the PMHT-v on the low false detection rate data, but
they give approximately the same performance on the higher false detection rate data.
This may be because the very high peak in the clutter pdf makes it likely that a false
candidate will find a sequence of false detections at very low z¡,lEl values. The PMHT-v
would then enhance the statistic of such tracks because of the temporal history.

6.6.5 Initialisation Robustness
The empirical ROC curves are generated using only those valid tracks which remain within
an error tolerance of the true target state. This ensures that tracks which have diverged
from the correct trajectory do not adversely affect the initiation metric. However, the
number of these divergent tracks is also of interest. If the initiation algorithm is able
to perfectly discriminate valid tracks from clutter tracks, but diverges from the true
trajectory most of the time, then it is much less effective than the ROC will suggest.

The number of divergent trials is therefore listed here to demonstrate that the different
schemes have similar performance in this area, and that each only diverges in an acceptably
small number of trials. Since the cost increment and weights sum approaches both use
information provided by the standard PMHT, they have the same number of divergent
trials.

Table 6.1 lists the number of divergent trials for each of the scenarios.
The uniformly distributed clutter has the highest number of divergent tracks. This is

because the non-uniform clutter densities concentrate the false detections away from the
simulated target. The higher density clutter in this region makes discrimination between
valid and false tracks more difficuit because it produces false tracks with more matching
measurements. However, the total number of measurements is the same, so the density
around the target is lower for the non-uniform clutter. Since most divergent tracks occur

- 
Chi-Squared pdf
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clutter type
false alarm rate

standard PMHT
PMHT-v

uniform
low high

597
619

chi-squared
Iow high

3120 259 500
2346 292 563

polynomial
Iow high

303
340

874
901

Table 6.1: Number of divergent trials

when the track is seduced by clutter detections, this lower density around the target leads
to a lower rate of divergence.

In general, the rate of divergent tracks is approximately the same for the PMHT
and the PMHT-v, with the PMHT-v showing a marginally higher rate. This happens
because the pararneter choice for the PMHT-v was to use a very low prior probability
that the target is visible. In section 6.4.1, the prior probability of a target being visible
was chosen to be A6 (dT :1) : 0.t. This means that the PMHT-v may decide that some
difficult triais, where early measurements are missed, do not contain a valid track. When
the visibility probability is very low, then the track is not updated by measurements
and the track is marked as divergent because it never ïecovers from initialisation. This
effect can be reduced by choosing a higher initial probability, but that degrades the ROC
performance. Since the increase in the rate of divergent tracks is only marginal, it was
preferred to tolerate it, in preference for superior ROC performance.

The exception to the above trend is the high false detection rate uniform clutter,
where the PMHT-v performs much better than the PMHT. This is the only case where
the two show a significant difference in performance. In this case, the PMHT-v shows
better performance because it constrains the allowable values of ri. If more than one
measurement is close to the candidate track in one scan, then the standard PMHT will
give an estimated frf > *.The PMHT-v limits the prior t" #. Thus the converged
assignment weights for the standard PMHT will be higher than those for the PMHT-
v in such a case. Since the true measurement model used for the simulation can only
produce one valid measurement per scan, the multiple measurement case only occurs due
to false detections. These false detections can seduce the track away from the true path,
and by limiting the value of rl, the PMHT-v is made somewhat more resilient to this
factor. This behaviour is not observed for any of the other data conditions because the
non-uniform clutter pdfs concentrate the false detections in a different area to where the
target is present. So, the high rate uniform clutter pdf is the case where the valid track
is faced with the highest rate of false detections in its immediate vicinity.

6.6.6 Simulation Conclusions
Over the various clutter conditions simulated, the PMHT-v gave the best, or equal best
performance on all but one example. In that case, it was slightly worse that the best
performance. In non-uniformly distributed clutter, the weights sum approach did par-
ticularly poorly with performance becoming more degraded the less uniforrn the clutter
pdf. The cost increment approach performed poorly in uniforrn clutter, and slightly worse
than the PMHT-v in non-uniform clutter.

The PMHT-v algorithm, using the parameters selected to optimise ROC performance,
was slightly less robust than the standard PMHT to poor initialisation when the target
was undetected on several scans. However, it was better equipped to resist seduction in
the presence of false detections.
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Overall, the PMHT-v, which is a special case of the PMHT-ym algorithm, is found to
be the preferred approach for track initiation out of those considered in this chapter.

6.7 Summary
The standard PMHT is limited by the assumption that the number of targets is fixed and
known, and that prior information is available about the state of each. This chapter has
introduced a method for making the PMHT robust to poor initialisation, due to inade-
quate knowledge of this prior. This method uses the homothetic measurement model, but
employs a dynamic secondary measurement model specified by the innovation covariance
matrix. This approach can be viewed as an automated covariance inflation method for
initialisation.

This chapter has also presented alternative methods for allowing the PMHT to use
a dynamic number of target models. These methods are based on over modelling the
problem, and then rejecting superfluous models based on a model significance test. This
approach is referred to as candidate based track initiation, and each candidate track is
assigned a quality statistic by the tracker. Two different tests were propose for use with
the standard PMHT. Firstly the candidate quality was quantified by using the sum of
the assignment weights for that model. Secondly the candidate quality statistic was given
by the improvement in the EM auxiliary function when it was introduced. The PMHT
with Hysteresis was also used to provide a candidate quality mea,sure. The PMHT-ym
was implemented using a binary assignment model, and the probability of the assignment
state was used as the candidate quality. This algorithm is referred to as the PMHT-v
because the binary assignment model is analogous to the visibility approach used for track
initiation with other algorithms. The PMHT-ye was also used, but not tested extensively
because it provided poor performance, even with a large state space.

The track initiation schemes proposed were tested on simulated data under a variety
of clutter conditions, and their performance quantified by ROC curves for the candidate
test. The PMHT-v (i.e. the binary PMHT-ym) method was found to consistently give
good performance over all conditions and is considered the preferred approach based on
these results.



Chapter 7

Applying the Probabilistic
Multi-Hypothesis Tracker to Over
The Horizort Radar

T,tARLItrR chapters have introduced theoretical extensions of the PMHT algorithm. The
I1 performance of these extensions has been demonstrated through simulations. How-
ever) as with all things, the proof of the pudd'ing'is'in the eati,ng [dC05]. In this chapter,
the PMHT extensions are applied to data recorded from the Jindalee Facility at Alice
Springs (JFAS) Over the Horizon Radar (OTHR). The performance results obtained from
recorded OTHR data are used to verify the simulated results of the previous chapters.

This chapter first reviews some basic principles of Over the Horizon Radar, with focus
on some particular features of the JFAS radar pertinent to target tracking. Problems
encountered when processing JFAS data are discussed and the PMHT solution to these
problems presented. ROC curves for track initiation are then estimated using recorded
JFAS data.

The JFAS OTHR is an Australian operational sensor. For this reason, the radar
data itself, and the performance of the radar algorithms cannot be presented in an open
publication. Instead, relative performance metrics comparing competing algorithms are
used. Thus the performance measures, derived from radar data, presented in this chapter
(in particular initiation ROC curves) deliberately do not show quantitative axis scales.

7.t Over the Elorizon Radar Fundamentals
Over the Horizon Radar is the name given to a class of active radar sensors that exploit
electromagnetic refraction in the high frequency (HF) band. This refraction is used to
curve the signal propagation path and sense beyond the line of sight limitation of a
standard radar sensor. Figure 7.1 shows how a curved propagation path can increase the
detection range of a radar.

Surface Wave radar is a form of OTHR that exploits refraction due to the sea. In
Surface Wave radar, the radar signal hugs the sea surface because the media boundary
between air and water curves the propagation path.

Skywave OTHR exploits a part of the atmosphere called the ionosphere. The iono-
sphere is a cloud of ionised particles formed by the solar radiation. It is composed of
several regions of high ion density, referred to as layers. The elevation of these layers
varies as does their density and spatial extents. Each layer provides a potential propaga-
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Line of sight radar Over the horizon radar

Figure 7.1: Extended radar range through electromagnetic refraction

tion path between the sensor and targets of interest. Since target echoes may return by
a different layer from the one that transported the transmitted signal, skywave OTHR is
a multipath sensing environment with the number of possible paths given by the square
of the number of layers. There are other factors which also provide further propagation
paths. For example, when an aircraft flies over water, a Lloyd's mirror effect is experi-
enced, and a signal may propagate not only due to direct backscatter from the aircraft,
but also from backscatter reflected from the water beneath. In this case, the length of the
two paths will differ only slightly, however the phases of the two paths will be different,
and may cause fluctuations in the received signal por'¡/er.

A common condition for the JFAS radar is propagation support from two layers, called
the E and F layers. Signals propagated via the E layer arrive more quickly than those
propagated via the F layer, because of its lower altitude. Figure 7.2 shows how a two
layer environment provides four return paths to the radar. In standard OTHR parlance,
each of the different return propagation paths is referred to as a mode, and the modes
are labelled to show the layer which supported the transmitted and reflected signals. The
paths for which the return propagation is via a different path to the transmitted signal
are called mixed modes. Mixed modes which involve the same two layers in reverse order
(such as the FE mode and EF mode in figure 7.2)have the same length, but arrive at the
receiver from different elevations. Since JFAS uses a linear receiver aruay, this causes the
paths to be observed at different azinuths. The observed azimuth for a linear array is the
cone angle between the array and the incident signal, which is a function of the bearing
and elevation angles.

A result of sensing targets at long range is that there is very high propagation loss when
backscattered signals eventually return to the receiver. In order to detect these signals, the
transmitter power must be relatively high, and this requires a high duty cycle waveform.
This restriction means that OTHR systems are built in a bistatic configuration with
transmitter and receiver beyond line of sight to prevent interference. Since the separation
of the transmitter and receiver is small compared with the observation range, the system
can be assumed to be approximately monostatic,

The transmitter waveform is a frequency modulated signal with a carrier frequency
ranging from a few megahertz to tens of megahertz. Lower frequencies are refracted more
and are used to illuminate shorter ranges. Lower frequencies must also be used at night
time when the ionosphere reduces in size without ionising radiation from sunlight. The
radar uses a stepped scanning strategy, which means that wide area coverage is achieved
by tiling the surveillance area with smaller regions. The sensor dwells on each region for
a period, collecting data over a number of waveform repetitions to measure target range,
bearing angle and Doppler frequency shift. The sensor then steps to a different region
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Figure 7.2: Typical multipath propagation

and later revisits each previous region based on a scheduling scheme. Regions may have
different priorities and the revisit time (namely the time between consecutive looks for
each region) is region dependent and variable.

7.L.L Jindalee Facility at Alice Springs
The JFAS OTHR is a skywave radar built by the Defence Science and Technology Or-
ganisation (DSTO) to provide surveillance over the north western coast of Australia. The
transmitter and receiver sites are located close to the city of Alice Springs in central
Australia. This radar is operated by the Royal Australia Air Force (RAAF). Two sim-
ilar radars at Laverton and Longreach have recently been commissioned. These sensors
comprise the Jindalee OTHR Network (JORN), providing coverage to the entire northern
and western coast of Australia.

Archived data from the JFAS OTHR will be used in this chapter to confirm the
simulations presented in earlier sections.

A history of the development of the JFAS OTHR can be found in [Col00]. A technical
overview of the signal processing algorithms used to process the radar data is given in
[Lee87].

7.2 Specific Over the Horizon Radar Models
The particular target and clutter models used for this application are now presented
These models will be applied in all cases where experimental data is analysed.

7.2.1 Measurement Vector
The JFAS OTHR uses a sequential signal processing approach. The received signal from
the antennae is passed through successive data processing algorithms culminating in the
tracking algorithm. Figure 7.3 shows the typical data processing algorithms applied to
the receiver data up to tracking. By the detection stage, the data has been converted
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Figure 7.3: Typical OTHR data processing

into a map of the received amplitude in each azimuth, range, doppler bin. This map is
referred to as the ARD. Local maxima are found in the ARD and these are interpolated
using a 3 point quadratic fit in each of the ARD dimensions. This step is referred to as
peak detection [DC99], or peak picking. The aim of peak detection is to produce a single
measurem.ent for distributed target returns which may have high amplitude output in
many adjacent bins. The peak detector aims to localise the centroid of the target return
with sub-bin accuracy.

In addition to detection, the peak detector also plays a part in clutter modelling.
It segments the ARD into two areas, which define a classification surface, and are used
to label each peak detection as either background or interference. This label identifies
the data behaviour in the local vicinity of the bin where the detection is declared. If
there is high amplitude in many adjacent bins, it is likely that this part of the ARD
map is contaminated by an interference, and the interference label is given to the peak.
Otherwise, the peak is labelled as background. These labels are used in the standard
JFAS tracker for modelling the clutter probability density function [Col99]. Figure 7.4
shows an example of how the data whitener and peak detector operate on JFAS data.
The figure shows firstly ARD data after doppler processing. The next image shows the
data after the whitener, and the final image shows the peaks and the segmentation map.
The peaks are shown as crosses and the grey shaded area in the third image shows the
region designated as interference. In each image, there are five beams stacked on top of
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Figure 7.4: Data processing stages for the Jindalee OTHR

each other, and each beam is an image with range and doppler bins displayed vertically
and horizontally respectively.

The output of the peak detector is the input to the tracker, and so there are two
measurement types. Firstly, the peak detections themselves are four eiement vectors
containing observed range, doppler, azimuth and amplitude. Thus,

":? 
: lrnlrl, ztulldl, zr,l0l, 

"r,lol]r 
. (7.1)

The second measurement is the discrete peak tags (interference or background). These
classification tags can be viewed as a set of augmented measurements, giving

(*)zir'
(k)zir'

(7.2)-tr -

where "[p i, a binary variable denoting the class assigned to that peak

7.2.2 Target State Representation
There are two different types of state models used to represent targets in the OTHR
environment. These two types correspond to two different types of targets observed by
the radar. The models are referred to as the coupled model and the decoupled model

[Col99]. The difference between the two models is in the treatment of the observed
Doppler frequency shift, z¡,lf¿|.

In the coupled model, the Doppler frequency shift is purely caused by the movement
of the target. The shift is proportional to the radial velocity of the target, according to
the standard Doppler shift equation

-2f.fla
c

where /¿ is the doppler shift, /" is the carrier frequency of the transmitted signal, r is the
radial velocity of the scatterer, and c is the speed of light. The coupled model is used to
represent standard air targets.

In the decoupled model, the observed Doppler shift is not purely due to the target
motion, but also due to an additive frequency shift at the target, or in the propagation
medium, _){ ;r oJc' t rJd---TJotc

+
+
+
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where /, is the additive frequency shift. The decoupled model has an extended state space
which includes a frequency rnodulation parameter. The observed frequency shift is the
sum of the Doppler frequency shift due to target motion and the frequency modulation
shift. The decoupled model is used to represent transponders that use a mixer to modulate
the transmitted signal. These transponders are usually geographically fixed and are used
to infer ionospheric model parameters. However, they display apparent motion due to
travelling ionospheric disturbances (waves in the ionosphere). These disturbances rnay
cause variations in the elevation of arrival and the delay of the received signal, which is
interpreted by sensor as motion in azimuth and range. Range variations are usually small,
but azimuth effects can be significant. The decoupled model can also be used to model
very low speed targets, such as ships, where the Doppler frequency shift due to movement
of the ionosphere may be significant compared with the Doppler frequency shift due to
target motion.

7.2.2.I Coupled Model

The main state model is the coupled model and is used for aircraft and sea targets (when
ionospheric motion compensation is applied before tracking). It consists of an almost
constant velocity linear motion model in two dimensions: range and azimuth. The motion
of most targets will not have constant velocity in the radar coordinate space, however it
is a reasonable approximation to make at the long ranges encountered with OTHR. The
process noise is assumed to be sufficient to compensate for this mismatch. The state vector
also contains the target amplitude, which is modelled as an almost constant feature of
the target. Thus, the coupled state vector for the rnth target, rrl : Mv I I . . . M, is

"Tlrl, rTlrl, rTl0l, rTl0), "Tl"l\ (7 5)

The almost constant velocity model is presented in more detail in section 3.3. The state
evolution is assumed to be a linear process contaminated with white additive Gaussian
noise zf with covariance matrix Qi such that

æT : Ftæ\t -f G¿ui. (7 6)

The noise process ul contains three elements modelling acceleration in range and
azirruth and fluctuations in signal level. The covariance matrix, Ql, is assumed to be
diagonal.Thus, m r ruT:{"Tlrl,uTl0l,"Tl"l}, (7.7)

and lqrll o o IQi:l o aTlol o l, (7.8)

I o o aTþl)
where the scalars QTlrl, QTl?l, and Qilal are design parameters.

The matrices F¿ and G¿ are determined by the equations of motion and are given by

00
F(lD) 0

01

*T:{

F

0
G(1D)

0

0
0

Tt - Tt-t

(7 e)

(7.10)
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, and G(1D) :
1t ,2i\rt - rt:) , as defined in section 3.3where F(1D) : I r¡-r¿

01 Tt - Tt-t
The measurement is assumed to be a linear process contaminated with additive white

Gaussian noise o¿" with covariance matrix R¿ such that

"Í? 
:HtæT I?)t, (7.11)

when k¿y : rTL indicates that ztl is due to target model rn.
The noise process o¿. contains four elements corresponding to each of the four com-

ponents of the measurement vector. The covariance matrix of this noise is assumed to be
diagonal. Thus,

ntr: {u*lrl,ur,lfa],ubl0l,ur,lo)}., (7.L2)

R¿:
000

RTvol o o
o RTlql 0
0ORT

(7 13)

where the scalars RTlrl, RTlf ol, RTl?l, and Rilal are design parameters
The matrix H¿ is given by

RT
0
0
0

T

a,

1

H+: 0"0
0

ftt.
?ls

000
000
100'
001

c (7.14)
0
0

where /- is the waveform repetition frequency, /" is the carrier frequency, c is the speed of
light, and A" is the range extent of each range bin. The coupling between the range and
doppler measurements occurs because both measurements are obtained from the phase
law of the received signal. Notice that the azimuthal velocity is not observed and must
be inferred from the progression of measurements over time. The doppler measurement is
not strictly linear because the velocity measurement is arnbiguous and some velocities are
thus aliased. This is equivalent to a fixed offset which can be compensated. This aliasing
is described in rrore detail in section 7.3.

7.2.2.2 Decoupled Model

The second target state model is the decoupled rnodel and is used for transponders and an
artificially injected calibration signal used in the JFAS radar. Transponders are positioned
at various known locations within the coverage area of the radar and are used to estimate
ionospheric model parameters. The transponder itself is a fixed device with a modulator
that produces a frequency shift in the transmitted radar waveform. This frequency shift is
observed as a doppler frequency shift by the radar processing. Thus the observed doppler
shift is independent of the target dynamics. Since the physical location of the transponder
is known, tracks formed on transponders can be used as reference points for ionospheric
modelling, which is required to estimate the ground position of other radar targets.

The calibration signal is the other type of decoupled target. These signals are injected
into the receiver subarrays at a fixed frequency modulation and in fixed range bins. Like
transponder signals, they are observed by the radar processing as targets whose doppler
shift is independent of their (stationary) dynamics.
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As with the coupled model, the state vector contains amplitude. The model is identical
to the coupled model, except that it also contains a frequency modulation pararneter, r[f r].
Thus the decoupled state vector is

(7.15)

The state evolution is the same as the coupled model, with the frequency rnodulation
assumed to be a constant process contaminated with white additive Gaussian noise. The
noise process ul contains four elements modelling fluctuations in range, azimuth, doppler
frequency shift and signal level. These fluctuations may be caused by both random noise
and ionospheric disturbances, such as travelling waves. The covariance matrix of this
noise is assumed to be diagonal. Thus,

uT : {"Tlrl,uTll"l,"Tl0l,rTlol}-, (7.16)

æT : {rT lrl, rT lrl, rT ll.), rT l0l, rT l0l, rT lol}
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(7.20)

(7 18)

(7.1e)

where again, QTlrl, Q?llal, QTlel, and Qilal are scalar design parameters. The de-
coupled model uses lower values for the process noise parameters, because those targets
which obey this model have sedate dynamics. In fact, any apparent dynamic behaviour
is primarily due to ionospheric effects for targets of this type.

The matrices F¿ and G¿ are given by

F

F¿:

0
0
0

1( D )
0
0
0

D1G (

The measurement model is the same as the coupled model, but with a measurement
matrix given by

H¿:
1

0
0
0

fin,ft
6
0

7.2.3 Clutter state model
The distribution of clutter measurements in azimuth, range and doppler frequency is
modelled as uniform. A clutter state model is used to model the distribution of the
amplitude of clutter measurements. The amplitude distribution for clutter measuretnents
is modelled as a mixture of two components in the current tracking system. Two clutter
models will therefore be used for the analysis of recorded OTHR data in this work. These
two components can be thought of as false measurements caused by fluctuations in the
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background noise and false rneasurements caused by interference. Common interference
sources in the OTHR environment are meteors, range ambiguous spread doppler ground
clutter and signals from other users of the HF band.

In the analysis to follow, the distribution of the amplitude of measurements from each
clutter model is assumed to be exponential. As stated above, the distribution in other
dimensions is assumed to be uniform. The clutter model state vector is a vector of the
parameters of the assumed amplitude distribution which is a single parameter for the
exponential distribution, i.e. æT = ri is a scalar for the clutter models. The clutter
state is assumed to be fixed over the batch. Thus the dynamics of the clutter model
rn : 1. .. My : 2 are modelled as

,þT ("T1"7,) : ô @T - r7r) , (7.2r)

where ô(.) is the Kronecker delta function, an identity function taking unity value at the
origin and zero elsewhere.

The probability density of clutter measurements is given by

ci e,.t*T): Ih.,.o { -t+t} (7 22)

where z¿ is the detection threshold which is assumed to be known, and ,,4, is the volume
of the surveillance region in the dimensions of azimuth, range and doppler frequency.

7.3 Initialising from Ambiguous Doppler Measure-
ments

As described earlier, the measurement received by an OTHR consists of an observation
of range, azimuth, doppler frequency and amplitude. The waveforrn parameters used for
OTHR are typically in the medium waveform repetition frequency range. This means
that both the range and doppler frequency measurements may be aliased.

The ambiguous range of the waveform is usually very large - nominally a few thousand
kilometres. This means that the signal attenuation from targets at this range will be so
high that range ambiguous targets will not be detected. The exception to this is clutter
that may be received from a double refraction through the ionosphere. This clutter will
be detected from a long range that becomes aliased onto the region of interest because
of the ambiguous waveform. The clutter is detected where targets are not because the
backscatter from the sea surface is much greater than that of a target. Also, at longer
ranges, returns very close to the sensor may also be aliased. This interference is referred
lo as range folded clutter. Typically, range folded clutter may also be spread through
the doppler domain, making target detection problematic. Problems arising from range
folded clutter and targets ambiguous in range can be resolved using a variable waveform
repetition frequency, as discussed in more detail below. No special efforts will be made
within thc tracker to address ambiguous range measurements.

The ambiguous doppler of the waveform is a significant problem. Common waveform
parameters result in a relatively low ambiguous doppler frequency. This means that the
doppler frequency measurement will suffer from aliasing. Figure 7.5 shows observed the
doppler shift as a function of target radial velocity and highlights the aliasing problem.
The horizontal dotted line illustrates how several feasible target velocities might cause
an observed normalised doppler frequency of 0.3. The normalised doppler frequency is
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the actual frequency divided by the waveform repetition frequency, and the normalised
radial velocity is the actual radial velocity divided by the ambiguous velocity, uo*6 which
is proportional to the arnbiguous doppler frequency.

A result of the doppler aliasing is that the posterior velocity distribution is multimodal.
Each possible unwrapping of the aliased doppler corresponds to a peak in the posterior
velocity distribution. These unwrapped velocities (and hence the distribution peaks) are
each separated by the ambiguous velocity. Thus, the posterior distribution is comb-like
in structure with the spread around each mode determined by the measurement noise.
Knowledge of the dynamic constraints of physical aircraft can be used to form a prior
distribution of target velocities. Combining this prior with the observed doppler frequency
and its measurement probability density gives the posterior probability density of the
target velocity. Figure 7.6 illustrates an hypothetical posterior density given an observed
doppler frequency of 0.3. Peaks are seen in figure 7.6 where the corresponding radial
velocity \maps to the observation. The outer peaks are lower because they correspond to
relatively high radial velocities that are considered unlikely. Further peaks might exist at
higher velocities depending upon the ambiguous velocity of the waveform which defines
the spacing between adjacent peaks. For OTHR these higher velocity wrappings usually
correspond to infeasibly high target speeds.

For OTHR, the ambiguous doppler measurement is further complicated by the exis-
tence of. stati,onary targets. Stationary targets are targets that do not physically rnove
through space, but nevertheless produce an apparent doppler frequency shift, due to an
additive frequency offset at the target. These are modelled using the decoupled model de-
scribed in section 7.2.2.2. The existence of stationary targets provides a second family of
unwrapped states - each with zero radial velocity, but varying aliased mixing frequencies.
Just as physical constraints can be used to limit the number of unwrapped radial speeds
considered, knowledge of the range of mixing frequencies used by transponders can be
used to limit the number of stationary options considered.

A common technique to resolve the velocity unwrapping problem is to change the
waveform repetition frequency from scan to scan. This changes the ambiguous range and
doppler frequency, and hence the collection of unwrapped velocities. Only the correct
velocity will be a possible unwrapping for all repetition frequencies. The correctly un-
wrapped velocity can then be determined by correlating the measurements over time. This
approach eliminates different dynamic models and different stationary models, however it
does not distinguish between a moving target model at the correct unwrapping and the
stationary model at the equivalent frequency shift. The only way to discriminate between
these is through the range history of the target measurements - i.e. whether the target
actually moves. This is best done in the tracker itself. So, it is necessary to integrate a
method for resolving the doppler ambiguity with the tracker.

The result of the ambiguity in the doppler measurement is that the initial state prob-
ability density function, ,þi@T), is multimodal in the range rate and offset frequency
dimensions. Let the index ¡;- designate which of the possible unwrapped velocity op-
tions is the true target radial velocity. lt^ is an integer taking a value in the range
l...Mp,where Mristhetotalnumberof modesof theinitialstatedensity. Thedensity
,þi @T; p,*) is now unimodal, and the state prior is given by

Mp

,þi @i): t ,þi @i; p*) Pt"^ 0"\ , (7.23)
pm:r

where Pr- (p^) is the prior probability mass of the index, p-.
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The design decision is now whether to treat [t^ as an extra piece of missing data
(and thereby rnarginalise it out of the maximisation step) or to treat it as a variable to
be estimated by the algorithm. There are two disadvantages of treating Lt* as missing
data. Firstly, it will result in the need to calculate assignrnent weights for each different
possible value of lP. 'I'his increases the algorithm's computation requirements since many
nÌore measurement density calculations must be made. These calculations are typically
the most expensive part of the tracking algorithm. Secondly, the state estimate will be a
superposition of the Ai[, different possible states, weighted according to their probabilities.
While each of these options is a viable state sequence, the superposition of many of thern
is most likely not. Further, the different dynamic options for the model must all occupy
the same state space for the superposition to be sensible, and this is not the case since
the decoupled and coupled models have different state vectors. So, the algorithm is likely
to give a state estimate that is poor. This is the same problem that occurs with the MAP
estimate of a discrete variable.

If p^ is instead treated as a pararneter to be estirnated, then there is only one set of
weights for each target model, and they are used to estimate ¡t"^. '|he estimated p"* for the
next iteration is that velocity that maximises the auxiliary function, namely the one with
the lowest measurement scatter. However, these weights are determined using a particular
value of L( derived from the previous iteration (or from initialisation). This means that
the measurements that receive high weights might not be the true target measurements,
but rather false detections that happen to lie along the wrongly assumed trajectory. These
measurements reinforce the incorrect initial assumption. So, the estimation approach
suffers from a bias towards whichever unwrapped velocity is initially assigned to the
model. This problem may be exacerbated in dense target or multi-path conditions where
it is more likely that measurements will be found along incorrect trajectories.

Both of the above approaches have undesirable features. These features arise because
both approaches use a single state sequence to estimate the target. Whilst the true
trajectory is a single sequence, it is one of a set of possible sequences and selecting the
correct member of this set is the problem at hand. Another solution can be found by using
an alternative target model. The alternative model uses a mixture to describe the target
rneasurements. Each component of the mixture is one of the possible state sequences)
and the mixing proportions of these components are the unknown prior probabilities,
Pr^ (tt^). The prior probability will be estimated by the algorithrn and the hope is
that this prior will converge to unity for the value of p^ corresponding to the correct
unwrapped velocity.

This model is somewhat like the homothetic measurement model described in chap-
ter 3 and chapter 6. In the homothetic measurement model, the measurement density is
modelled as a mixture of cornponents with the same mean, but with different measure-
ment variances. In this model, the components have the same measurement probability
density function, but different means.

Two different approaches for ambiguous velocity unwrapping were implemented and
tested on radar data. These approaches were to treat the index of the correct dynamic
model as a parameter to be estimated, and the mixture approach described above. The
missing data option was not implemented since different state vectors are used for the
different rnodels.
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7.3.I Estimation Approach for Velocity lJnwrapping
This approach is substantially the same as the standard P\4HT algorithm. What is
introduced in addition is a target dynamic index, which is to be estimated. On the
first run, a particular value for this index is chosen - for example the target is initially
assumed to be outbound with an unaliased velocity. This value is used to generate the
initial state sequence, which in turn is used to calculate the assignment weights. Once
these weights are obtained, the estimated state sequence and dynamic index are chosen
to jointly maximise the auxiliary function. For each value of the index, a particular initial
state pdf is assumed, and a Kalman smoother run over the measurements. The new
estimated index is then the one corresponding to the smoother output with the highest
likelihood (the maximum associated auxiliary value). The new state sequence is the
output of the smoother, and the algorithm moves to the next iteration.

Thus the estimation approach consists of the following steps:

1. Initialisation

(a) Choose an initial unwrapped velocity index, p^(0).

(b) Initialise the state estimate sequence where æfr(o) 't determined by the index
p,^(o).

2. Calculate measurement assignment weights, ,n, using the standard PMHT defi-
nition

3. Maximisation.

(a) For each index ltr* : 7 . ..M, determine the optimal state sequence using a
Kalman Smoother where æff is determined by p* , and synthetic measurements
and covariances are defined in the standard PMHT manner.

(b) For each index Lr^ : 7 . . . A[p determine the conditional likelihood of the op-
timal state sequence, Qft(¡;-), using the target model dependent part of the
standard PMHT auxiliary function.

(c) Update the state estirnate sequence, X(i), by choosing the optimal sequence
for the index with the highest QT}t*), and select the updated velocity index,

lt^Q) , as the index of the highest QTjt^).

4. Repeat steps 2 and 3 until convergence.

7.3.2 lJnwrapped Velocity as a Mixture Model
Recall that the target dynamics follows one of M, known models, but that the particular
one of which is unknown. Each of these component models has its own state, prior density,
evolution density and measurement densitS' functions. Let the state of the pth component
of target model rn at scan ú be denoted as æle. The state of model rn at scan ú is the set
of all component states

æl = {*T',*T',...*f''). (7.24)_-¿ L J

Each component has its own measurement and evolution probability densities,

#' (rr,l*To), ,þfo @Tol*Yr), and tþ{e (*T').
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For each measuremelí, z¿r, the index k¿" denotes the rnodel that was the true source
of that measuretneut. Let the index ¡-r,¿, define which component of model m produced
the measurernent ztr. I,t* is an integer in the range L... A[p. Define the sets

pt = {Lttt, 11t2,.. . Ft r}, (7 25)

and

þ={h,pz,...pr}. (7.26)

Notice that the component index, ¡-r,¿r, does not have an explicit model dependence,
i.e. þT. This is because there is only one index per measurement, not an index for each
m.easurement and model pair. This is similar to the assignment index k¿".

The underlying physical model for the problem requires that p"¿, : lf,t" for all scans ú

and measurements r,s if kr,: kr,. That is, there is really only one target model. Under
the physical model, the prior Pr* (tt^) is the probability that ¡t^ represents the proper
dynamic model for the target corresponding to model m. Here, a different, nonphysical
approach is adopted. Instead, it is assumed that m represents a mixture process and
thab ¡t¡, is independent of ¡;¿, provided that r and s are not identical. The probability
Pr* (p*) is now the unknown mixing proportions of the model. The probability is in-
dependent of the measurement index, r, implicitly assuming the þ* Io be independent
identically distributed randorn variables, given that they are due to the same target, i.e.
the corresponding k¿, is the same.

Let
P r* = {Pr^ (I) , Pr^ (2) ,. . . Pr^ (Mò} , (7.27)

and
pr= {prt,prr,...prr}, (7.2s)

The indices p shall now be treated as missing data and marginalised from the optimi-
sation problem.

Since the p are missing data, the new auxiliary function is the expectation of the
complete data likelihood over both the assignrnents, K, and the p. So the auxiliary
function is

O (*, rI, P,lx(t), fr(?), P/,(c)) : I I to* L(o,z) p (x, ¡,r,1x1) ,z) ., (T .2s)
tL' K

where
M,, M,, M,,IÛ=Dt D Û

I,r ttl:I t-t2:I pLI :l

The complete data likelihood is given by

P(x) P(K) P (p) P (zlx, K, p)

(7.30)

: fr_{El* ør, t Err, @r, -y)l}

ú {I lnf* r,r* (t,,,)e!" ('* *f""')l\

L(O,Z)

(7.31)
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K
T

Using the same simplifying steps as in section 4.L3, the conditional probability of the
indices K and ¡; is given by

P (K, plX,Z) L(O,Z)
f (x{i),2)

P(x) P(K) e QL,) e QlX, K, p)

t t r(xt¿) ¡ r1e e Qt) r (zlx,K, ¡t)

r57

(7.34)

(7.32)

(7.33)

p

il rtVf" Prr" (t r,) e!" (.r,1*f"-)]
t:l r:L

t t il fÎ lnf*',r* (t''*) ef" ('nl*y""')f
¡.t I{ t:7 r:l

H
prn

Tnt

il il u^pt l*:¡,rp:tf,*7
t:l r:l

where the superscript (z) has been omitted from X, fI and P, to slightly simplify nota-
tion. The weight umptr is implicitly dependent on these estimates from the previous EM
iteration.

Following the steps set out in section 4.1..5, the auxiliary function can now be written
AS

O (*, fI, Pplx(t), fr(i), Pp(¿)) log [P(x) P ($ e Qt) e (zlx,K, p)]

Tnt

Jl fl u¡nptrl^:¡,,,,p:¡",,
t:L r:l

MMp

m:l p:I

M T

tt QT +D,qf +IQ,,,,
ln:I t:l

where

QT : Iosrþio (*io) + t I"srþio (*T'l*Y) + t D*^rr,Iosefo Qr,l*To), (7.35)
T

t:7

T rlt

t:I r:l

Qi : I to* Pr* (p)t I'u)rnptrt
Mp

P-I

TLT TLT

t:7 r:1
(7 36)

and

umptr (7.37)

Apart from trivial notational differences, (7.35) is identical to the standard PMHT
model expression for Q!, given in (a.28) and is optimised in the same way. As shown in

M fuIp nt

Qrn: I to* "f ÐD
m:l p:L r:I
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section 4.L.5, the solution for the states r'fp can be realised using a Kalman Smoother
when the statistics are linear and Gaussian. The important result in (7.34) is that the
state sequences of each of the components of model m can be estimated independently.

Similarly, (7.37) varies only slightly from the standard PMHT expression, given in
(4.29). Using a Lagrangian approach, as in section '11.5, it is simple to show that opti-
mising (7.37) gives the updated prior

Mp nt

tt umptr

rT: ++-^ (7.38)

IIY,,o,,
The expression for Qff in (7.36) is again ahnost identical to @.29) and can easily be

shown to be optimised by ,1, nt

It wmptr

Pr*(P):

s:l p:I r-l

t:l r:I
MpTnt

ttD.,,,.
s-1 t:l r:1

(7.3e)

When the algorithm converges, the component with the highest Pr*(p) can be chosen
as the dynamic model for target model m and the state estimate is given by fhe rie
sequence for that component. Prior knowledge (or belief) about the prior probability of
particular target velocities can be incorporated though the initial values of the Pr. In
particular, setting Pp^(o)(ù :0 for a specific component will result in Pr*(p): 0 for
that component on convergence.

This approach significantly increases the computation requirements of the algorithm,
since each target model now has Mrweights per measurement and requires M, parallel
Kalman Smoothers for state estimation. This increased cost is sirnilar to that incurred
by the PDAF approach for resolving the ambiguous velocity problem, given in [Col99].

7.3.3 Doppler lJnwrapping Performance
The two above approaches were implemented and run over a collection of JFAS data sets.
The data used has a higher than average update rate (a small time delay between scans).
This makes the doppler ambiguity problem more difficult because there is little time to
observe target motion. The fraction of correctly unwrapped tracks is shown in table 7.1.
The trials were conducted for various batch lengths - longer batches provide more time for
the target to move and hence make velocity resolution easier. However, with a real-time
sensor, the batch length should be limited to enable speedy track initiation.

The results in table 7.1 show that the estimation approach gives much better perfor-
rnance than the mixture model. The performance of the estimation approach is almost
constant with batch length, which allows for the use of a short batch. As stated above,
this is desirable for timely response of the tracker.

This result may be somewhat surprising - intuition suggests that the hard decision
made in the estimation approach might cause the performance to be poor. In practice,
the estimation approach is better because it incorporates the state likelihood as well as
the measurement likelihood. The mixture approach makes a decision based on the rela-
tive probability of each component. This probability is determined by the measurernent
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method 4
batch length

68 10

0.74 0.77 0.78 0.78
0.t7 0.23 0.52 0.63

estimated
mixtrrre

Table 7.1: Proportion of correctly unwrapped velocities

assignment weights as given in (7.39). This probability depends on how well the rneasure-
ments match the component states, but does not consider how consistent the component
states are with their dynamic rnodels. When each component state sequence is adjusted,
they are made to follow the measurements, and the relative values of the process and
measurement noise covariances, Qi and Rf , determines the trade-off between following
measurements and model consistency. Over short periods of time, all of the components
can be made to fit the measurements, and random noise fluctuations become important
to the final decision. When the batch is longer, the dynamics prevent all components
from being close to later measurements, and the performance is better. In contrast, the
estimation approach includes both measurement terms and evolution terms, since it max-
imises (7.35) over the component index, p. This penalises components whose dynamics
poorlv match the optimal state sequenceT and a better result is obtained.

7.4 Using PMHT-c for Clutter Parameterisation
The standard JFAS tracker models the clutter distribution as a mixture of two compo-
nents. Each component is uniform in the spatial dimensions (azimuth, range and doppler)
and non-uniform in amplitude. The tracker formulation allows for variation in this model,
such as a non-uniform doppler distribution [Col99]. The non-uniform distribution is as-

sumed to have a known functional form, with unknown parameters. The labels are as-

sumed to perfectly divide peaks into the two classes, and the peak subsets are used to
estimate the unknown distribution parameters. This process is represented in figure 7.7.

The process in figure 7.7 implicitly assumes that the segmentation of the clutter mea-
surements is perfect, that is the segmentation labels are correct. In fact, these labels do
not have to be taken as perfectly valid. Rather, they can be incorporated into the tracking
algorithm as classification measurements, as is preempted by the notation used earlier in
this chapter. The veracity of the classifier that produces these labels is unknown, and
it cannot be estimated by the use of training data, since there is no way of determining
true classifications for radar measurements. Besides which, the two component mixture is
only an assumed model, and will likely not be the true underlying density of the clutter.

Even though training data is unavailable, the results of chapter 4 indicate that signif-
icant advantage might be gained by relaxing the assumption that the classifier is perfect,
and that the precise confusion matrix need not be known. The confusion matrix can
be estimated, or can be assumed to be some arbitrary imperfect matrix, and it can be
expected that performance will be improved.

Assume that the clutter is caused by a two component mixture. These components
will be described using models 1 and 2. Hence, My :2 and models m:3 . . . M represent
targets. The classification measurement (the segmentation output) takes either the value
I or 2, indicating which clutter cornponent the preprocessor believes to be the source of
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Figure 7.7: Clutter Segmentation Process

the corresponding state measurement. This means that the confusion matrix will not be
square; there are two observable classes, but M models. This is because the classification
measurement provides no information about targets.

Assume that the confusion matrix is of the form

c-
The current approach treats the classification information as perfect, which is equiv-

alent to assuming that o1 : e.2: 7.

The feature used for classification is a measure of the local noise floor. The proba-
bility that a target measurement will give rise to a classification ,Íf) :1 is therefore the
proportion of the surrounding surveillance region with a local noise level corresponding
to clutter model 1. This proportion can be approximated by the mixing proportions of
the clutter components, and p is assumed to be given by

r!
p nt (7.4r)

I (d +r?)

Q,1

r-c-t
I-o.z

A2

p
r-13 1 p

13 (7.40)

t
t:l

t:I

The problem can now directly be approached as one of the form solved by the PMHT-c
algorithm presented in chapter 4. The value of the classifier veracity, a, can be estimated,
or simply assumed to be a particular number.
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7.4.I Centralised Fusion Option
Using the PMHT-c algorithm to incorporate the classifier output can be viewed as a
distributed data fusion approach. The sensor receives state observations and feature
information. The feature information is used as the input to a classification algorithm
that in turn acts as input to the tracker. This architecture is shown in figure 7.8. For
each measurement, tti) , th"r" is a corresponding feattne, zld) . The set of all feature
information is labelle ¿ u, 7U) .

An alternative to this strategy is to feed the feature information as a direct input to
the tracker. The feature itself becomes a form of augmented measurement. The tracker
then assumes a probabilistic model for the distribution of the feature for each model, and
it can be used in much the same way as the amplitude measurement. This architecture
is shown in figure 7.9.

In th.e centralised architecture, the tracker jointly performs the tasks of classification
and state estimation. Since the tracker has access now to the feature data, rather than
simply a binary decision from the classifier, it is expected that the performance of the
algorithm will improve. Some of the decisions in the classifier will be indisputable while
others are borderline. By coupling the classification decision into the tracker, the tracker
gains knowledge about the strength of the evidence for class assignments and this will
improve performance. If the classifier instead provided probabilities of each class, theu
there would be no advantage to the centralised approach.

The viability of joint classification and tracking in the form shown in figure 7.9 de-
pends on the features and how much information is available about their distribution.
The centralised architecture concatenates the features and the state observations to form
augmented measurements. For the tracker to be able to use the augmented measutements,
the probability density of the each feature for each class must be known, or estimated.

The feature that is used in the Jindalee OTHR (a measure of the local noise floor) is
a continuous valucd scalar and its distribution is unknown. However, the feature values
for all measurements were collected together and used to produce a kernel estimate of
the probability density of the logarithm of the feature. This density estimate is shown
in figure 7.10. The figure shows the estimated density for two different data sets. The
first data set contains relatively benign clutter, and the second data set contains more
challenging clutter caused by range folded spread clutter. In each case, the distribution
is multimodal, but the positions of the modes is different. Also the variance of the

Tracker
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distribution is much higher for the interference data than the benign data.
The two different feature densities in figure 7.10 can each be approximated as a two

component Gaussian mixture. As observed above, the variance of the components is much
higher in the interference data, and the means are farther apart. So it is necessary to use
a dynamic feature pdf which will adapt to the data. The bimodal nature of the densities
in flgure 7.10 suggests that two different processes are at work, and was the motivation
for the original decision to use a two component model for clutter in the JFAS tracker.

Past analysis of the feature data and the measurement amplitude data has shown
that high values of the feature correspond to regions contaminated by interference where
the amplitude distribution is more spread [RCID97, RC98]. Thus, it is reasonable to
attribute the rightmost peak of the feature distribution to interference measurernents
and the leftmost peak to benign background measurements. Each clutter component is
assumed to give rise to features which have a Gaussian distribution. The means and
variances of these two Gaussians are dynamic unknowns, but are assumed to be constant
over the measurement batch.

Thus the clutter state vector lor m: 1,2 is now

æT = an : {"*1"],r^ltÀ,r^[o']]', (7.42)

where ,*lo] is the parameter of the exponential distribution for measurement amplitude,
and r*l¡L,l and r^lo2] are the parameters of the Gaussian feature pdf. The augmented
measurement pdf is

(

11: 
-- €Xl)
A r^lal

(4{, -,^tÀ)
)
(7 )

benign data
interference data

ei Q*l*T) 2r^lo2)

43
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(7.44)

where it has been assumed that the feature measurement is independent of the amplitude
rneasurement.

The clutter state components are then estimated using their Maximutn Likelihood
Estimators (MLEs) given weighted measurements. These MLEs for the feature parameters
are the weighted sample mean and variance given by

û^lpl:

Tnt

tt'"",,"1{)
t:\ r:I

Tnt

ÐD,*,,
t:l r:l

and

iË .**("Í{)-t^tpl)
î*lo2l: t:7 r:I (7.45)Tnt

DÐ,^,,
t:7 r:1

The feature pdf of target measurements is assumed to be a mixture of the clutter
pdfs, where the two components are weighted by the estimated mixing proportions of the
clutter models. The state observation is assumed independent of the feature. Thus for
targets,

p(ztulæT):Ç(,Íî,1*T)p(':{'), (746)

where

o(4{'): hn(,Í{)tt') * ffi'(,Í{'te'¡ 3 47)

7.4.2 Simulated Performance of PMHT-c for Clutter Parame-
terisation

The performance of the various approaches for incorporating the clutter feature infor-
mation is first investigated through simulations. These simulations are similar to the
those used to compare initiation methods in chapter 6. As with the analysis in chapter 6

the performance of the competing approaches will be compared using an experimental
initiation ROC curve. For all cases, PMHT-v method is used for track initiation.

The measurernent space is two dimensional, as before, but now the measurements are
augmented with a third observation which provides classifrcation information about the
clutter. This observation is the feature measurement.

Two alternative processing schemes are considered. The first method is the distributed
fusion process described in the previous section. Under this approach, the feature mea-
surement is thresholded to provide a binary estimate, indicating which clutter component
is associated with the measurement. This is analogous to the current JFAS process-
ing. Thus the feature measurement, z[{), is converted to a classification measurement,
,lp. fft" PMHT-c is then used., as outlined. in section 7.4. Three forms of the PMHT-c
are considered. Firstly, the classifier veracity is assumed to be perfect (*r: az: I),,
which is analogous to the current JFAS approach. Next, the veracity is assumed to be
(xr : a2: 0.9, and thirdly, it is estimated. The analysis in chapter 4 suggests that the
second of these three will provide the best performance.
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uninformative medium perfect
r^ r^ rm' tr* r^ ,o' tr* :tr* to'

clutter
component

model 1

model 2
2

1

1

7

0
0

1

1

-2.5
0.5

-2.5
0.5

0.1
0.1

Table 7.2: Clutter parameters

The second processing scheme is the centralised fusion approach described in the pre-
vious section. Here, the feature itself is simply treated as a third measurerr.ent dirnension.
The target is assumed to have a mixture distribution in the feature domain, where the
components of the mixture are the two clutter distributions and the mixing proportion is
derived from their relative frequency, namely p as defined in section 7.4.

Finally, two reference curves are generated. For the first curve, the tracker is provided
with perfect classification information (at least between the clutter distributions). This
will then give the best performance attainable by any of the other approaches. The second
curve is the performance obtained using the standard PMHT algorithm, which effectively
ignores the classification information, This provides a benchmark; performance worse than
the standard PMHT with useful classifications would be a poor result for any approach.

The measurements used in the simulation are random realisations of the two compo-
nent clutter process, and target measurements (when it is present and detected). Perfor-
mance is quantified through ROC curves, and the scenario is chosen to make initiation
deliberately difficult to bring out differences in the approaches.

The two dimensional measurement vector is denoteaiby zti) = {rr,lrl,zr,[E]]t For
both clutter components, the measurement vector is uniformly distributed in z¿r[r), ex-
ponentially distributed in z¿,lyl and has a Gaussian distributio"i" r!{). The exponential
parameters (namely the means) are fixed, and the Gaussian parameters are varied to
achieve different classification veracities. Three different classifler veracities are consid-
ered: uninformative classifications, medium veracity classifications, and perfect classifica-
tions. These parameters are summarised in table 7.2. The clutter state vector is given by
sm : {"^lAl,r*lp],r*[o']]', where r^lA] is the parameter of the exponential distribu-
tion for the E coordinate measurement, and ,*lpl and r*[o2] are the pararneters of the
Gaussian distribution for the feature measurement.

As given ín Q.a7), the target feature distribution is a mixture of the clutter distribu-
tions, when the target is present. The target dynamic model and measurement process
are the same as that used in the initiation comparisons of chapter 6. Namely, the target
uses an almost constant velocity model with independent velocity perturbations in lhe r
and y coordinate directions.

When the classifier is used., it thresholds the ,rf) *"u.urement at 0. In the unin-
formative example, both classes have equal probability of being labelled class 1 ot 2, so
(tr : u2: 0.5. In the medium veracity case, the classification veracities can be obtained
by integrating the "ll pdf over the decision region, and are ar : 0.95 and. a2: 0.76. In
the perfect classification case, et : cuz - L.

The mixing proportions of the components are chosen so that three quarters of the
clutter measurements are due to component 1. So, when no target is present, irl :0.75
and rl :0.25.
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Figure 7.11: PMHT-c for clutter parameterisation, uninformative classifications

7.4.3 Simulation Results
ROC curves measured for the three feature distributions are now presented. In each case,
the performance of the PMHT-c based algorithms is at least as good as the standard
PMHT. The adaptive PMHT-c performs better than assuming perfect classifications) or
assuming a : 0.9. The centralised fusion algorithm performs better than the PMHT-c.
This centralised algorithm is only available because the pdf of the feature is a known
function. In many practical cases) this algorithm may not be realisable.

7.4.3.L lJninformative Classification

The ROC curves for the case of an uninformative feature are given in figure 7.11. Under
this condition, it is not expected that any of the llew approaches will perform better
than the standard PMHT. There is no extra information available to exploit. The perfect
classification curve is still shown to give a performance bound. The PMHT-c algorithm
which assumes a diagonal confusion matrix gives very poor results. This is because it
is assuming that useless information is faultless. The other approaches all give roughly
similar results, with no significant differences. The central fusion algorithm is slightly
better than the others, and the PMHT-c which assumes that the classifier veracity is
a : 0.9 is slightly worse. The PMHT-c which estimates the confusion matrix, and the
standald PMIIT (wliich does not use the classification measurements) give almost exactly
the same performance. This tends to indicate that the estimated a is behaving correctly.

7.4.3.2 Medium Veracity Classification

The ROC curves for the medium veracity example are given in figure 7.12, This case is the
most interesting because it demonstrates the differences between the various approaches.
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The PMHT-c algorithm which assumes a : I actually degrades the performance over
the standard PMHT. Thus, assuming the classifications to be perfect is more detrimental
than discarding them cornpletely. The adaptive PMHT-c has better performance. How-
ever, assuming the veracity to be a : 0.9 is superior. This is in accordance with the
results reported in chapter 4, where assuming a : 0.9 appeared to be a sound strategy,
independent of the true veracity. The centralised fusion algorithm performs better than
the adaptive PMHT-c because it has access to the feature information which is a much
richer source than the classiflcation nìeasurements, however it has the same performance
as the PMHT-c with o : 0.9. This result is somewhat surprising; intuition would predict
that the centralised algorithm would be a clear winner. It indicates that the classifications
adequately summarise the feature data, for the purposes of this problem.

7.4.3.3 Perfect Classification

The ROC curves for perfect classification accuracy are given in figure 7.13. AII of the
algorithms have very similar performance to the reference curve for perfect classification
knowledge, because all have this knowledge. The adaptive PMHT-c, which estimates o,
does slightly worse that the others. The PMHT performance is significantly worse, since
it ignores the classifications.

7.4.4 Summary of Clutter Modelling \vith PMHT-c
The standard JFAS processing gives rise to feature measurements which the JFAS tracker
uses to segment the state observations into background and interference classes. This
segmentation step is a classification process where the class output is a binary random
variable. The JFAS tracker assumes that this classification information is error free and
uses it to estimate the parameters of a two component clutter model, and to identify
which component of the clutter is the source of each measurement if it is not due to a
target.

The PMHT-c provides a framework for incorporating this classification information
which allows for errors in the classifier. Since the true confusion matrix of the classifier
is unknown, the PMHT-c must either assume a particular confusion matrix, or estimate
it from the data. Both of these possibilities were considered, with different assumed
confusion matrices. The algorithm with an assumed confusion matrix of the identity
matrix is analogous to the JFAS approach which assumes that the classifications are
correct.

An alternative approach was identified whereby the classification step is removed com-
pletely, and the tracker instead uses the feature information directly. Under this approach,
the tracker must assume distributions for the feature data for clutter and target measure-
ments. Empirical data

The various PMHT based approaches for clutter modelling were simulated and their
relative performance observed via track initiation ROC curves. It was seen that the
PMHT-c which assumes a non-ideal confusion matrix, and the PMHT-c with an estimated
confusion matric both gave performance benefit over the standard PMHT which ignored
the classification information. The PMHT-c which assumed the classifications were always
correct performed worse than the standard PMHT - it was more detrimental to assume the
information was perfect than to ignore it. The approach which fed the feature information
directly to a standard PMHT algorithm gave the best performance of the approaches
considered.
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7.5 Full Radar Algorithm
Chapters .4 and 6 provided a number of theoretical advancements of the PMHT algorithm,
and this chapter has also presented solutions to particular OTHR data issues in the
previous sections. All of these algorithmic extensions have been presented in isolation.
Realistically, it is desirable to incorporate many of these advances into a single algorithm
for application to the radar data. The derivation of such an algorithm is essentially a
matter of careful uotational accounting and is not presented here. This is because of the
amenable structure of the PMHT framework. Instead, an example of one of the algorithms
run on radar data is presented in Appendix B. The example used does not necessarily
use the best of competing approaches (for example arnbiguous velocity resolution) but
instead demonstrates how the various algorithm changes are incorporated in a modular
fashion.

This algorithm incorporates:

o the PMHT-c approach for clutter parameterisation with estimated classifier confu-
sion matrix

o the innovation homothetic model for initialisation

o the PMHT-vm approach for track initiation

o the mixture approach for ambiguous velocity resolution

7.6 Radar Data Performance
The results of applying the PMHT enh.ancements derived in this thesis to recorded OTHR
data are now analysed. The performance of the various algorithms is quantified through
an ernpirical ROC curve for track initiation. This curve is generated by a similar method
to that derived from simulation in chapter 6 and in section 7.,1.3. The difference is that
each of the tracks used in the simulated examples is known to be either valid or false,
since this is predeterrnined by the simulation. \Mhen data from a real sensor is used, it is
not axiomatic which measurements are valid and which are false. This underlying truth
is difficult to obtain, yet it is vital to the analysis. Mislabelled tracks with high or low
quality might easily lead to incorrect ROC curves.

The first step required in the production of real data ROC curves is the generation of
truth. In a coordinated experiment, this might be done using accutate position logging
devices, such as a Global Positioning System (GPS). For the purpose of tracking truth,
the target position should be known with an accuracy less than the sensor resolution.
Since the resolution of OTHR is typically tens of kilornetres, a microwave sensor could
also be used. However, any such truth method would give estimates of the target position
in a geographic co-ordinate system (for example, latitude and longitude). Since the iono-
spheric truth is inevitably unknown, this makes registration of ground truth and radar
rneasurerrì.ents unwieldy. So, rather than using secondary measurements, the validity of
measurements is determined by direct examination of the data using the JFAS opera-
tor displays which are capable of overlaying track reports with the radar image. This
approach is used to form a set of valid tracks, and then the candidates are correlated
against these, rather than ground truth.
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7.6.L Data Set Features
Two data sets have been selected for use in this analysis. The first data set was collected
in early evening. Due to the propagation conditions, and the waveform parameters used,
it contains large amounts of interference, in the form of spread doppler clutter. The
whitening algorithm somewhat suppresses this interfererìce, but not enough to preveut
the standard JFAS tracker producing numerous false tracks. It is known that no targets
are present, and the only valid measurements are those due to the calibration track. This
data is primarily a test of false track performance. It presents a particularly difficult
clutter scenario because the spread doppler clutter occupies a particular spatial region
and false detections produced by it are concentrated in this area - in effect the spatial
clutter distribution is non-uniform.

The second data set was recorded under more amiable propagation. The data contains
a single target of opportunity which is supported by a single mode of propagation. This
target is of relatively low amplitude and is sornetimes undetected due to signal fading.
This data provides a low detectability valid target.

These two data sets are chosen because they avoid some of the more cotnplex problems
encounteled under multiple mode propagation. Such data, particularly in the presence of
multiple targets, are difficult to produce truth for, The data sets are combined to produce
a single ROC curve for each algorithm tested.

The calibration signals and the target of opportunity provide two types of target.
The calibration signals are high amplitude and are stationary, so they are relatively easy
to track. In contrast the target of opportunity has a low amplitude and is relatively
difficult to track. The effect of these two classes of target can be seen in some of the ROC
curves, where an initial decline in promotion probability is followed by a plateau. In this
plateau region, the difficult target has been suppressed, but the calibration tracks are still
promoted with quality levels much higher than the threshold.

7.6.2 Clutter Parameterisation
The various different clutter parameterisation approaches described in section 7.4 werc
implemented and the perforrnance of each quantified through ROC curves. These results
are shown in figure 7.14. For each clutter approach, initiation was performed using the
PMHT-v algorithm. As mentioned earlier in this chapter, since the data used to produce
these ROC curves has been obtained from the JFAS radar, it is not possible to show
quantitative scales on the graph axes.

The ROC curves in figure 7.14 confirm the simulated conclusion that the best perfor-
marìce is obtained by removing the classifier and allowing the tracker direct access to the
feature information. However, there is not a large advantage gained by this approach.
Further, the other methods give almost identical results. These methods are the standard
PMHT which ignores the classification measurements, the PMHT-c assuming perfect clas-
sification, and the PMHT-c with an estimated confusion matrix. This result is somewhat
counterintuitive. The simulation results in section 7.4.2 do not provide a case where the
PMHT-c with assumed perfect classifications gives the same performance as the standard
PMHT.

A possible cause for the lack of discrimination between clutter approaches is that the
estimated clutter parameters for real data are closer than those assumed for the sirnulation.
This means that the difference between the two clutter models being used by the PMHT
is not as great. If this is true, then it would be expected that removing one of the clutter



t70 CHAPTER 7. APPLYING THE PMHT TO OTHR

models would not make rnuch of an adverse irnpact on performance. Figure 7.I5 shows
ROC curves formed using the PMHT-c assuming perfect classifications, and the standard
PMHT with only one clutter rnodel. The difference between the curves is only marginal.

The results in figure 7.15 are rather surprising given the experience of introducing
a second clutter model with the PDAF. With the JFAS tracking algorithm, the use of
two clutter models reduced the false track rate by an order of magnitude [Col99]. The
reason why the PMHT does not show the same difference appears to be that the PMHT
is more robust to pdf mismatch than the PDAF. Intuitively, this would occur because
the PMHT is an iterative hill climbing approach, whereas the PDAF makes only a single
adjustment to the state estimate. If the clutter pdf is elevated, then the likelihood ratio
between the target and clutter pdfs, which ultimately drives both algorithms, is reduced.
This means that the correction to the state estimate due to the measurement is reduced.
For the PMHT, this is less important, because the eievated pdf tends to reduce the rate
of convergence, rather than changing the convergence point. To confirm this intuition, a
study of pdf mismatch with PDAF and PMHT would need to be conducted. This has
not been performed as part of this thesis.

7.6.3 Track Initiation
Three different track initiation approaches were presented in chapter 6. Recall that these
approaches are

1. The standard PMHT algorithm using the sum of the candidate assignment weights
as a promotion test statistic. This approach is referred to as the weights sum.

2. The standard PMHT algorithm using the incremental improvement in the EM auxil-
iary function by introducing a candidate as a promotion test statistic. This approach
is referred to as the cost'increment.

3. The PMHT-ym algorithm using visibility for the assignment state model. The
candidate promotion test statistic is the average probability that the assignment
state is that of a visibie target. This approach is referred to as PMHT-v.

ROC curves generated using radar data for these three approaches are shown in fig-
ure 7.16. As was the general trend in the simulations presented in chapter 6, the PMHT-v
gives the best performance.

The clutter pdf for the OTHR data is non-uniform, so the weights sum approach is
expected to give the worst performance, this is confirmed by the results. The weights
sum also has a step drop off in performance. This occurs because the strong targets are
detected in almost all scans. If there are no nearby clutter measurements, the weights
sum will thus be approximately equal to the batch length. Once it becomes necessary to
raise the promotion threshold above this level, all of those tracks become suppressed.

7.7 Summary
This chapter has presented the results of the implementation of the PMHT for Over
the Horizon Radar. The OTHR problem highlights the application of the theoretical
enhancements made to the PMHT through the development of the PMHT-c and PMHT-
v algorithms. Performance results on radar data have confirmed the simulation results
given in earlier chapters and demonstrated the practical utility of the earlier work.
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Figure 7.16: Recorded JFAS data initiation ROC

The chapter first reviewed the models used for OTHR tracking and the standard JFAS
data processing approach. This lead to the problem of ambiguous velocity measurements,
where the ambiguous 

"¡/aveform 
of the radar and the nature of OTHR targets leads to a

multimodal initialisation problem. Alternative methods for addressing this problem with
PMHT were identified, and their performance measured on radar data.

The PMHT-c algorithm was applied to the problem of clutter density parameter es-
timation. The current JFAS processing uses a multiple model clutter density, and has a
classification scheme that segments the radar data. The PMHT-c was used to incorporate
the segmentation measurements into the tracker, and allow for errors in the segmentation
process. The performance of this approach \Mas measured on simulated data and on radar
data. It was found that the greatest gains were made through proper modelling of the
segmentation output for target measurements, which substantially reduced false tracks.

The various methods for track initiation with PMHT and PMHT-v were implemented
and their performance measured for radar data. As simulations predicted, it was found
that the PMHT-v gave the best performance.
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Chapter 8

Comparison of the Probabilistic
Multi-Flypothesis Tracker with the
Probabilistic Data Association Filter

al-tHE previous chapters demonstrated that the extensions to the PMHT developed in
I this thesis provide improved performance oveï the standard algorithm. However, this

is of limited interest if the extended PMHT does not outperform other existing algorithms.
In section 1.1, a requirement for an efficient multi-target tracking algorithm for the JFAS
radar was cited as motivation for pursuing research into PMHT. To address this, the
PMHT algorithm that has been developed should be compared with the current JFAS
tracking algorithm, the Unified PDAF (UPDAF). The PMHT is a multitarget algorithm,
and the UPDAF is a single target algorithm. Subsequent research since the installation
of the UPDAF at JFAS has produced a Unified Joint PDAF (UJPDAF) [DC01], however
only the single target UPDAF is considered. The track initiation scenarios considered
consist of isolated targets, and multi-target tracking is not required.

In addition to the imperative to justify PMHT research, the comparison of PMHT
and PDAF is of interest in itself. Since the PMHT is a recent algorithm, exhaustive
studies have not been performed. In particular, the initiation performance of the PMHT
has not been studied, since this thesis and |LSWO1] are the first approaches presented for
automatic initiation. To focus completely on the operational algorithm would give results
practical, but rather specific. Therefore simulation studies with a simplified UPDAF are
also considered. These simulations provide m.ore general information about the relative
performance of PMHT and PDAF in track initiation.

This chapter presents a comparison of track initiation with the PMHT and the PDAF.
Firstly, the PDAF extensions leading to the UJPDAF are briefly described. Next, an
overview of existing comparisons and higher level considerations is presented. Then the
track initiation performance is measured via simulations and using recorded JFAS data.
The performance of each algorithm will be quantified via the ROC curve for the track
initiation decision.

8.1 The Probabilistic Data Association Filter
The Probabilistic Data Association Filter (PDAF) [BST75, BSFSE] is an approximation
to the optimal recursive Bayesian data association strategy. The PDAF is a single target
algorithm, so each track is filtered in isolation, and it is assumed that any measurements

773
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due to other targets can be lumped into the clutter. The PDAF enforces the single
measurement assignment constraint, namely each target track is only allowed to forrn at
most one nÌeasurernent. Since the PDAF is a single target algorithm, each target model,
m: My + 1 . . . M, determines independent association probabilities.

The single measurelnent per target constraint means that there o"re rù¡ f 1 assignment
hypotheses for model rn. One for each measurement, and tire hypothesis that no mea-
surements are due to the target. Whereas the PMHT derives assignment weights, lDmtrt
tlre PDAF uses euent probabtli,ti,es. The event probability, 0T(r), is the posterior prob-
ability that the rth measurement at scan f is due to target model zn. This probability
is determined assuming that each measurement is due either to model rn or clutter (the
single target assumption).

The standard PDAF makes a number of assumptions about the target and clutter
behaviour. The targets are assumed to have linear Gaussian statistics, and all target
tracks (i.e. filter models assumed to represent targets) must correspond to valid targets.
The clutter is assumed to be uniformly distributed over the surveillance region, and the
number of measurements due to clutter is assumed to follow a Poisson distribution.

Further background information about the PDAF is presented in Appendix C.

8.1.1 The Unified PDAF
The Multiple Model Unified PDAF (MM-UPDAF) [CD03] is a non-parametric PDAF that
incorporates nearest neighbour validation, multiple non-uniform clutter models, multiple
target dynamic models and target visibility. These PDAF extensions are presented in
more detail in Appendix C. The MM-UPDAF algorithm is used in the operational JFAS
detection and tracking software. The term multi,ple model refers to the use of a set of
dynamic models for each target, not to multi-target tracking. These dynamic models can
be used both for ambiguous doppler unwrapping, as described in the previous chapter, and
for manoeuvring target tracking. With M, (known) target dynamic component models,
the target model state for model mis æ!e,1or m: Mv + 1...M andp: l...Mr.
The event probabilities for target model m àre denoted l3i'(r), with þT'(r) assumed to
independent of Bit(s) if n I m. The MM-UPDAF uses nearest neighbour gating, so that
only the 1 closest measurements to the predicted target measurement are assumed to have
nor-zero association probabilities.

The JFAS system uses a preprocessor that tags each measurement as being caused by
clutter component I or2, this is the classification part of the measurement, .(r? e $,2j.
This tagging procedure is assumed to be perfect. There are two clutter models, My :2,
and the event probabilities for target models m: 3 . . . M are given by

pye|) :
prr@ :
lti'(r):

bi Pmie (1 - Pdre P'Tr) ,

bi Pmie Pdie
#' (":î'¡*7') ";ai c

(k
'tr

(8.1)

(8 2)

(s 3)
er (.Íî) æç) x;r

I
where bi is a normalising constant, ensuring that ! þio(r):t. The term Pmie is

the a priori probability for model componen t e, erVl-rtr. ,n" predicted probability that
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the target is visible, given data up to the previous scan, Psfp is the probability that
the target orientated measurement is within the 1 nearest, giy"e¡t rnodel p is the correct
model, nf is the number of measurements tagged as type c : zìi' fi'om those within the 1
nearest for all model components, Nr" is the total number of measurements tagged as type
,: .:l) aû, Ai is the spatial area of clutter model c (provided by the preprocessor). The

measurement pdf, *' ("lr'l*T'), is the probability density of the measurement given

that it is due to nlp, but with only an estirnate of the state. This is a normal distribution
with covariance given by the innovation covariance matrix, Sie. Notice that the PDAF
uses the innovation covariance to assign measurements, not the measurement variance.
This feature was discussed in more detail in chapter 6.

The event probabilities are then used to determine synthetic measurements for each
target component model, and a Kalman filter is run for each æle. The derivation of the
Ì\,{M-UPDAF event probabilities and state recursions is presented in detail in [Col99].

8.1.2 The Unified Joint PDAF
The MM-UPDAF makes a single target approximation, narnely that the assignment of
measurements can be perforrned independently for different target tracks. This assump-
tion is invalid when targets are closely spaced with respect to the sensor resolution. This
circumstance may also arise in OTHR when multiple propagation paths are closely spaced.
In order to improve the tracking performance of the MM-UPDAF, this single target as-

sumption was relaxed and a Multiple Model Unified Joint PDAF was developed [DC01].
The event probabilities for this filter are found using substantially more complicated
expressions than those above, and are not presented here. Since the track initiation com-
parison uses only isolated targets, multi-target tracking is not required, and for simplicity
the UJPDAF is not used.

8.2 JPDAF compared with PMHT
The PMHT solves th.e tracking problem using an approach different from that used by
standard tracking algorithms. This results in an elegant algorithm for multitarget track-
ing. However, this elegance is not a particularly compelling reason for choosing it over
more established tracking approaches. It is important to compare the PMHT with stan-
dard algorithms, to see if practical advantage can be gained through its use. Rather than
compare PMHT with all of the tracking pantheon, this work focusses on the PDAF, since
this algorithm is widely used, and because it is used in the JFAS radar, data from which
will be used to provide a realistic evaluation of algorithmic performance. Since the PMHT
is by nature a multitarget algorithm, it is sensible to compare it with the JPDAF, or to
use single target scenarios. The latter has been chosen because the comparison focusses
on track initiation. Multitarget scenarios would unnecessarily complicate the initiation
analysis and the results would most likely depend on the particular scenario chosen.

8.2.1 Philosophical Differences
The fundamental philosophical differences between PMHT and JPDAF were discussed in
the original presentation of the PMHT [SL95]. When the batch length is one, the PMHT
becomes a recursive filter and the two appear superficially similar. Both algorithms can
be implemented using probabilistic weights to form synthetic measurements that feed
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a Kalman Filter for state estimation. However, the PDAF association probabilities are
based on the predicted state, which is a deterministic function of the state estimate at the
previous scan. In contrast, the PMHT uses the ML estimate of the current state. [SL95]
cites this as a source of bias in the JPDAF.

The JPDAF updates the state with each measurement and then cornbines the state
estimates into a single estimate. The PMHT combines the measurements to form synthetic
measurements which are then smoothed.

The JPDAF assumes a one to one assignment of measurements to targets (provided
that all targets are detected). The PMHT assumes that each measurement is assigned
independently. This effectively means that the PMHT allows the event that more than
one measurement is caused by a particular target. The effect of this depends on the
validity of these assumptions for the particular data set.

The covariances calculated by the JPDAF reflect the current uncertainty in the state
estimate, whereas those computed by the PMHT are not statistically defined in this man-
ner. [SL95] provides a discussion of the interpretation of the PMHT covariance matrices.

8.2.2 Practical Differences

The rnost obvious differences between the algorithms can be broadly described as imple-
mentation issues. The PMHT is a very simple algorithm to implement because of the
independence of the assignrnents. This independence results in an algorithrn with cornpu-
tation requirements linearly scaling with the problem size, and which can be implernented
in a massively parallel manner. In contrast the JPDAF must deal with an event space
whose dimension grows combinatorially with the problem size (the number of targets and
measurements within each scan). This combinatorial growth makes the JPDAF a greedy
algorithm and the efficient implementation of the JPDAF is an area of research in itself
(for example, [ZB95r, DC01]). A further issue, besides speed, is the memory required to
store the joint event probabilities. In a naive implementation, all the events would be
enumerated and their probabilities stored for updating tracks. For challenging scenarios,
when multiple dynamic models are used, the number of the joint events can make storing
all their probabilities impractical (requiring gigabytes of rnemory).

A more subtle difference is that the PMHT associates measurements using the target
measurement covariance, whereas the JPDAF uses the innovation covariance (which is
the expected scatter of the target measurement given the current state estimate and its
covariance). This means that the JPDAF gives higher probability to distant measurements
than the PMHT does. Also, it gives the JPDAF an ability to dynamically inflate the
association process if a track starts to diverge from the true target trajectory. This
impacts on the PMHT's ability to handle manoeuvres and heavy clutter.

The algorithms also vary significantly when multiple measurerlents are sufficiently
close to be given high assignment weights. In the JPDAF, this causes the covariance of
the state estimate to increase, reflecting the uncertainty about which measurement is the
true target measurement (recall that the JPDAF assumes that there can only be one true
target measurement). This occurs through the measurement scatter term in (C 7) In the
PMHT, each of the measurements is assigned with high probability to the target model.
Since there are more measurements of the target, the covariance is reducerl. This happens
because the sum of the weights for this model is greater than unity and so R reflects a
more accurate measurement than R (namely lRl < lRl).
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8.2.3 trxisting Comparison Studies
The existing comparisons of PMHT arid (J)PDAF have been mainly orientated at the
analysis of steady state tracking performance. The emphasis has been on what Ruan and
Willett call "the game of lost-tracks". Namely, given established tracks, what is the prob-
ability that the algorithm will maintain the track over a series of scans. In both [RWS95a,]
and [RW01a], the PMHT algorithm is demonstrated to show sinilar performance to the
JPDAF under easy conditions, but superior performance under difficult conditions.

In lR\\iS99], the Cramer Rao lower bounds for estimator variance are examined for
the PMHT and PDAF measurement models. These models differ due to the different
assumptions made about the assignment of measurements. This work showed that the
bound for the PMHT is higher than the PDAF. This indicates that a minimum variance
unbiased estimator for the PDAF measurement model would have a lower variance than
a minimum variance unbiased estimator for the PMHT. Unfortunately, this result does
little to illuminate the performance of the PMHT and PDAF algorithms.

8.3 TYack Initiation on Simulated Data
In chapter 6, sinulated experiments were used to examine the track initiation perfor-
nrance of the PMHT using various initiation schemes. Of these competing approaches,
the PMHT-v was found to give the best overall performance. As described earlier in
chapter 6, the visibility model, which is a special case of the hysteresis assignment model,
is analogous to the nodel used by the UPDAF for track quality decisions.

The initiation simulations in chapter 6 are now repeated with a simplified version
of the UPDAF algorithm. This simplified algorithm needs not deal with multiple clutter
components or target dynamic models. The performance of the UPDAF is compared with
the PMHT-v performance. Two versions of the PMHT-v are used: the standard batch
processor, and a time recursive algorithm. Intuition suggests that batch processing will
provide an advantage to performance. Since the UPDAF is a time recursive algorithm,
it may seem a little unfair to compare it with a batch approach. Howevet, for the track
initiation process, a real time estimate of candidate tracks is not provided to the user.
Instead, the candidate is hidden until it passes the promotion test. This means that batch
processing could be used for track initiation, even in a system requiring immediate target
state estimates for each scan. Both the recursive and batch versions of the PMHT-v are
retained to demonstrate the benefit gained by using batch processing.

Three different clutter distributions were considered in chapter 6; uniform clutter, chi-
squared clutter, and polynomial clutter. ROC curves for these clutter distributions are
shown in figures 8.1, 8.2, and 8.3 respectively. These figures show the high false detection
rate clutter examples from chapter 6. Low false detection rate examples are not shown
because they give results simiiar to the high rate, but with reduced differences between
the curves.

An interesting feature of the ROC curves is that sometimes the recursive PMHT-v gives
a higher probability for promoting valid tracks than the batch P\4HT-v for a particular
probability of promoting false tracks. This occurs because the ROC is a normalised
picture. The recursive PMHT-v has a much higher rate of divergent candidates than the
batch PMHT-v (see the following section). The tracks which diverge in the recursive
PMH-T-v are invariably those which are assigned a low probability of being visible by the
batch PMHT-v. This means that the average quality of tracks in the PMHT-v is reduced,
and the ROC is therefore effected.
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Figure 8.3: Polynomial Clutter, high density

On the uniformly distributed clutter, all give similar performance, except for very
low probability of promoting a false track, where the recursive PMHT-v drops off. For
chi-squared distributed clutter, recursive PMHT-v and UPDAF give simiiar performance,
with batch PMHT-v significantly better. For the polynomial distributed clutter, the
PMHT-v batch is slightly better than the recursive version, and the UPDAF gives very
poor performance. The UPDAF fails in this last case because of the high concentration
of false detections at low measurement values. Although the distribution itself is non-
physical, the primary difficulty in OTHR radar data (for initiation at least) is highly
concentrated false detections due to phenomenon such as range folder clutter.

Overall, the batch PMHT-v is clearly the best track initiation approach in these sim-
ulated examples.

8.3.1 Initialisation Robustness

Table 8.1 lists the number of divergent trials for each of the scenarios. As a general rule,
the batch PMHT-v gives a much lower rate of divergent tracks. The recursive PMHT-v
and the UPDAF give similar results, with the recursive PMHT-v slightly worse. The
recursive PMHT-v does particularly poorly in the high false alarm rate, uniform clutter
example. These results serve to highlight the advantage of using batch processing, which
is not a viable option with the UPDAF. The similarity between the recursive PMHT-
v and the UPDAF results indicates that the innovation homothetic model has done an
acceptable job of making the PMHT robust to initialisation errors.
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clutter type
false alarm rate

batch PMHT
recursive PMHT

UPDAF

high
chi-squared

low high

619 2346 292 563
1655 3460 975 1574
1336 25rr 850 1238
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uniform polynomial
low low

340
TI77
r077

901
1999
1700

Table 8.1: Number of divergent trials

8.4 Track Initiation on JFAS Data
As with the earlier track initiation analysis, JFAS data is now used to support the simula-
tion findings. The UPDAF algorithm is the current tracking algorithm for the JFAS radar.
This algorithrn reports a track quality measure referred to as track confidence which is
derived from the posterior visibility probability. To produce empirical ROC curves, the
confidence of candidate tracks is reported after a fixed number of scans. This is the same
as the batch length used for the PMHT algorithm, namely 8 scans.

The ROC curve derived for the JFAS UPDAF tracker is shown in figure 8.4 with
PMHT-v curves for batch and recursive processing. In chapter 7, a number of different
approaches for modelling clutter were tested. The PMHT-v curve in 8.4 is derived using
the degenerate PMHT-c filter which assumes that the clutter classiflcation iuformation
is perfect. This is the same philosophy as that adopted by the UPDAF, so it should be
used for a fair comparison.

It can be seen that the PMHT-v performance is superior, particularly when the false
track promotion probability is low. The recursive PMHT-v algorithm gives worse perfor-
mance than the batch PMHT-v. The UPDAF shows a sudden drop off in perforrnance,
resulting in an effective minimum false track promotion probability below which detection
is impossible, This occurs because the track quality measure for the UPDAF is bounded
between 0 and 100. To achieve very low false track rates, the promotion threshold must be
increased until it becomes very close to 100 where all tracks are rejected. In essence this
means that some false tracks can never be suppressed with UPDAF. The sharpness of the
transition occurs because most of the UPDAF tracks formed on strong targets have the
same (or very similar) confidence values. In contrast, the PMHT-v is able to suppress all
of the false candidate tracks and still promote a high proportion of the valid candidates.

8.4.1 Initialisation Robustness
In each of the initiation comparisons performed in earlier parts of this thesis, the analysis
has included ROC curves and tables of initialisation robustness. The initialisation robust-
ness has been quantified by a count of the number of times a candidate that was i,ni,ti,ali,sed
on a ualtd detecti,on diverged from the true target trajectory. To analyse this quantity for
real data, would require accurate knowledge of whether each target was detected or not
for each scan. Acquiring this knowledge would be very time consuming, and it has not
been done. Consequently, the initialisation robustness on real data is not considered.

8.5 Established Track Performance
The focus of the work in this thesis has been track initiation. However, this is only one
aspect of tracking performance. There is also a raft of tracking performance metrics that
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high
probability of promotion, given false

Figure 8.4: ROC curves for JFAS data

can be proposed for established track performance. For example, [CDD96] lists numerous
metrics which include track initiation performance as well as estimation accuracy and
multitarget correctness measures. Consideration of these is beyond the scope of this
thesis, as is any further PNIHT development that may be required to address application
specific problems in established tracking.

8.6 Summary
This chapter has presented a comparison of the track initiation performance of the PMHT-
v and UPDAF algorithms. The UPDAF is the algorithm currently used for tracking in the
JFAS radar. The PMHT-v was implemented in both batch and time recursive forms. For
a variety of simulated clutter conditions, the batch PMHT-v was found to give better track
initiation performance than the UPDAF, and to recover better from poor initialisation
when the innovation homothetic initialisation scheme was used. The recursive PMHT-v
gave comparable performance to the UPDAF, except in one example where the UPDAF
performed very poorly.

These algorithms were also compared using JFAS radar data. In this case, the UPDAF
used was the operational radar tracking algorithm, a result of considerable research ef-
fort. The track initiation performance of the PMHT-v was found to be superior in both
recursive and batch fotms, with the batch PMHT-v giving the best results.
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Chapter I
Summary

rftHIS thesis has introduced a number of enhancements to the PMHT algorithm, mo-
I tivated bv the Over the Horizon Radar tracking problem. The primary two en-

hancements are the incorporation of classification information, and the introduction of
a discrete state model for the assignment prior probability. The modified PMHT algo-
rithms achieved through these enhancements are referred to as PMHT-c and PMHT-y
respectively.

The benefit of the PMHT-c and PMHT-y algorithms has been demonstrated through
simulation studies, and through the application of both to recorded OTHR data.

9.1 Classification Measurements
The standard PMHT algorithm deals with measurements that are observations of the
state of a particular model. The algorithm provides state estimates by determining the
probability of an assignment index that links measurements with the model that caused
them. The PMHT-c is an extension of the PMHT that deals with the more general
problem where the tracker is also provided with measurements of the assignment index
itself. These measurements are classifications, and are assumed to be independent of
the model state, and hence the normal measurements. The PMHT-c simplifies to the
standard PMHT if the classification measurements are uninformative.

The PMHT-c algorithm has been shown to improve state estimation accuracy, and
manoeuvre tracking, by using extra measurement information to increase the probability
of the true assignment index. The probability mass function of the classification mea-
surements can be represented as a matrix and is referred to as the conf'usion matrix. The
PMHT-c was derived under the two conditions of known and unknown confusion matrix.
Simulations demonstrated that the PMHT-c is not sensitive to the confusion matrix val-
ues if it is assumed to be known. Further, in the experiments conducted, it was seen to
be advantageous to assume an artificially high probability of correct classifications.

9.2 Dynamic Assignmcnt Prior
The second extension to the PMHT algorithm was the addition of a discrete Markov
process as an underlying dynamic model for the assignment prior probability. Under the
standard PMHT model, the assignments are independent identically distributed random
variables drawn from a possibly unknown prior probability mass. If this mass is unknown,
the PMHT allows for its estimation, but only under the restrictive assumption that it is
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either independent between scans) or identical. This assumption was relaxed by intro-
ducing a state model for the assignment prior, referred to as the hysteresis model. The
only restriction on the assignment state rnodel was that the state was required to be a
discrete random variable. This restriction was imposed to enable the optimal solution of
the estimation of the assignment state, or its probability. A continuous assignmeut state
could be used, but this would require an approximate solution method, such as particle
filtering or a Taylor Series analytic approximation. This thesis dealt with the situation
where the statistics of the assignment state are known, however methods were identified
for the case where these statistic are unknown.

Two algorithms were derived under this geueralised assignment model: the PMHT-ym
was derived by treating the assignrnent state as missing data. The resulting algorithm
calculates the probability mass of the assignment state, similar to the way the standard
PMHT calculates the assignment probability rnass. The PMHT-y- algorithm can be
implemented using an iterative scheme alternating between a bank of parallel Kalman
Smoothers for rnodel state estimation, and a joint Hidden Markov Model Smoother to
determine the probability of the assignment state.

The PMHT-ye was derived by treating the assignment state as a quantity to be es-

timated. This means that the assignment state is treated as an extension of the target
model states, and is iteratively estimated along with the target dynamic states. In this
case, the assignment state is estimated using a joint Viterbi algorithm, run in parallel
with the Kalman Smoother bank for dynamic state estirnation.

Each of the algorithms derived under the Hysteresis model requires joint target model
processing for part of the algorithm. This is a result of the normalisation across models
in the assignment prior and can only be avoided through making approximations. This
means that both the PMHT-ym and PMHT-ye contain steps with exponential complexity
in the number of targets.

Simulations were used to demonstrate how both the PMHT-ym and PMHT-ye algo-
rithms were able to give much better estirnation accuracy for the assignment prior when
the prior was smoothly varying with time. This improvement was observed to be a result
of the Hysteresis model allowing the PMHT to incorporate data from adjacent scans to
estimate the assignment prior.

9.3 Track Initiation
The problem of track initiation was addressed for PMHT: under the standard PMHT
assumptions, the number of models is fixed and known, and prior information is available
for the models. This is rarely the case in practice. An approach for initialisation based on
the homothetic measurement model was introduced and demonstrated to greatly improve
the robustness of PMHT to assumptions about the state prior. A dynamic number of
target models was achieved by introducing methods for automatic track initiation. This
was achieved by over modelling the system using a number of candidate models, and dis-
carding redundant candidate models based on a significance test. Different test statistics
were considered, including those based on intuition, Model Order Estirnation, and the
application of the Hysteresis model.

It was shown that the ui,si,bi,li,ty model used for track initiation with PDAF and other
tracking algorithms \Mas a special case of the Hysteresis model where the assignment state
is assumed to be binary. The PMHT-y- algorithm incorporating visibility was referred
to as the PMHT-v.



9.4. RADAR DATA PERFORMANCE 185

Simulations were used to investigate the perforrnance of the proposed initiation meth-
ods on a variety of clutter conditions. It was found that the PMHT-v algorithm gave the
best overall initiation perforrnance, and gave particular advantage when the probability
density function of the clutter was non-uuiform.

9.4 Radar Data Performance

In order to verify the simulation results, and because of a perceived need for a true
multitarget tracking algorithm for OTHR, the PIVIHT and the enhancements above were
implemented for data from the JFAS radar. This implementation required the tracker to
also address a number of practical problems with the JFAS data. The two main issues
were the JFAS clutter modelling approach and the problem of unwrapping ambiguous
doppler measurements.

Several approaches were identified for addressing the doppler unwrapping problem.
These included modelling the true doppler frequency as an unknown track parameter,
treating it as missing data in an EM context, and using a non-physical mixture model
which modelled the target as a superposition of all possible unwrapped dopplers. It was
found that the unknown parameter approach gave the best results.

The clutter modelling problem was addressed by applying the PMHT-c to the JFAS
data. The JFAS pre-track processing produces feature information which is used in a
classifier to segment the measurements into different classes. The PMHT-c was used
to incorporate this classification information, and to allow for classification errors. An
alternative approach whereby the tracker was given direct access to the feature information
was also identified. These approaches r,Ã/ere tested using simulated data and using recorded
JFAS data. It was found that the best performance was obtained by removing the classifier
and giving the tracker direct access to the feature measurements.

The proposed track initiation approaches were applied to recorded JFAS data and
the performance of each observed. As with the sirnulated results, it was found that the
PMHT-v, which is a special case of the Hysteresis dynamic assignment model, gave the
best performance.

9.5 Comparison with PDAF

The enhancements made to the PMHT enabled it to deal with a broader range of data
conditions. However, the problems solved by the new PMHT variants have already been
addressed using other tracking algorithms. In order to gauge the usefulness of these new
variants, the PMHT performance was compared with that of the Unified PDAF, the
algorithm currently used for tracking with the JFAS radar. Track initiation performance
was compared based on sirnulated data and on recorded radar data. It was found that
the PMHT-v algorithln gave better performance than the UPDAF.
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9.6 Future 'Work

As with any research, this thesis leaves areas which might be explored by future work

9.6.1 Classification Information
An early assumption in the PMHT-c formulation is that the classification measuretnents
are independent of the state, and the state measurements. This assumption may not
always be valid. In some applications, the classifier output may be dependent on the
state. For example, a ship classifier may use a length estimate as a feature. The accuracy
of the estimate, and hence the classification accuracy, would be dependent on the ship's
aspect angle and range. These are components of the dynamic state. It is reasonably
straightforward to use a state dependent confusion matrix for measurement association,
however under this circumstance, the classification measurement provides state informa-
tion. The proper incorporation of this information in the state optimisation requires
further investigation.

The analysis of the PMHT-c in this thesis has considered how a classifier can be used to
enhance state estimation. The complementary problem is the influence of state estimates
on the classifier output. Further, the classifier and tracker could be tightly coupled, such
as in lCP01] to improve both by cross fertilisation.

9.6.2 Prior Dynamics

The Hysteresis model presented in this thesis was solved under the assumption of a discrete
assignment state. This rnight be viewed as an approximation to a continuous assignment
state, using a fixed grid method. Alternative methods could be used, such as particle
filtering.

An obvious shortcoming of the PMHT-ve and PMHT-vm algorithms is that both
have exponential complexity in the number of targets. This is disappointing, since one
of the advantages of the standard PMHT over other tracking approaches is its linear
computational growth. The exponential cornplexity is an inevitable result of the model
coupling which occurs due to normalisation of the prior. However, with further tesearch,
it may be possible to achieve similar performance with an approximate algorithm that
has reduced complexity.

9.6.3 TYack Initiation and Initialisation
The Innovation Homothetic Model presented in this thesis is an ad hoc approach for
tackling the PMHT initialisation problem. In its use, no consideration was given to issues
such as convergence. There are many other methods that might be used, and initialisation
remains an open question for PMHT.

While the track initiation research presented in this thesis was underway, other par-
allel work on initiation with PMHT was done using a Hough Transform based approach
[LSW01]. Future comparisons need to be performed to ascertain the relative merits of
this approach compared with PMHT-v.
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9.6.4 OTHR Implementation
The prototype OTHR algorithm developed in this thesis has been demonstrated to give
good performance for track initiation. Howevet, there are numerous other aspects of
tracking which need to be addressed before the algorithm would be appropriate for oper-
ational evaluation. There are many problems in established tracking which have already
been addressed with the UPDAF, and some of these solutions may be incorporated into
the PMHT algorithm.

9.6.5 PMHT and PDAF Comparison
The comparison of PMHT and PDAF presented in this thesis considered only the problern
of track initiation. \Mhiie other studies have cornpared aspects of established track per-
formance, an overall comparison between the two algorithms would be of interest. This
is especially true of the recorded radar data comparison.

Through the implementation of the JFAS mixture model for clutter, evidence has been
found that the PMHT is less sensitive to the assumed density functions than PDAF. If
this is the case, it is an important fundamental property of the algorithms, and could be
further investigated through simulation studies.

9.7 Conclusions
This thesis has presented new extensions to the Probabilistic Multi-Hypothesis Tracker,
motivated by the Over the Horizon Radar tracking problem. Some of the research has
provided solutions to application focused problems, such as track initiation and clutter
modelling. Other work has given rise to fundamental generalisations of the PMHT algo-
rithm to allow it to properly deal with a wider range of measurement processes.
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Appendix A

Innovation Homothetic Model for
Initialisation Robustness

rftHrs appendix presents details of the initialisation approach introduced in chapter 6,

I which uses the innovation covariance matrix as a homothetic measurement pdf. The
use of the innovation covariance matrix aliows the second homothetic model to effectively
expand its assignment gate when the state initialisation is poor.

The Homothetic PMHT presented in [RWS95a] makes use of a scaled measurement
covariance matrix for the homothetic model. This has the convenience that the covariance
of the mixture components for each target model are simply scalar multiples of each other.
The result is that the EM auxiliary function is maximised by a Kahnan filter that uses the
measurement covariance modified by a scalar factor. In general, the innovation covariance
will not be a scalar multiple of the measurement covariance since it also includes the
covariance of the current state estimate. Recall that the innovation covariance is given by

sT : HTPT*ÏT' + RI (A 1)

When the innovation covariance is used as a second homothetic measurement model,
the resulting solution will not be a Kalman smoother using a scalar multiple of the mea-
surement covariance.

The solution for the homothetic measurement model where the second component of
the mixture density has an arbitrary covariance matrix now follows. Assume that the
two mixture components are not equal components of the mixture, but that they have
unknown mixing proportions which may be a function of time. This is a generalisation of
the homothetic mixture model first used in [RWS95a]. The extension of the homothetic
model to use arbitrary covariance matrices is known [Str00a, Lug01], but has not been
published. Having derived this PMHT, the extension to a mixture of more than two
arbitrary covariance components will be obvious.

The missing data are the assignment indices K. As introduced in section (3.5.1),
the homothetic mixture model uses two index lists. For measurement z¡r, the index kf
takes a value in the range L .. A,t and indicates the model that caused the measurement.
The inclex kl,, takes either the va,lue 1 or 2, indicating the component of the homothetic
mixture for model kl, that caused the measurement. So,

p ("r,lxr,kl,kî) : ekl''nï' (.*l*f'") (A 2)

where the mixture compone nts ç!l''n?' are Gaussian distributions given by

eit Qr,l*T) N .n/ (H¿æi, Ri)
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ei'Q*l*T) N N(H¿æi,Si) (A 4)

For each target at each scan, introduce the mixing proportions pTp so that the prior
probability mass of the indices is given by

P(kl,-m) :
P (ki: plk'* - m) :

(A 5)

(A 6)

The mixing proportions are constrainedby pTt + pT2:1and for each clutter model
PTr : I'

Also define temporal sets as follows

p, : lp\r, pl', p?',. . . py'l (A 7)

and
p = lpt, Pz,. . . , Prl (A 8)

Since the observer and measurement model have been modified, the complete data
likelihood is modified. The conditional probability of the received measurements is given
by

P (zlK,X) : (A.e)

The probability of the assignments is given by

-TIttt
TNDPt'

il fi ekt.n?. (r* *fl.)
t:7 r:l

Tnt
P (K) : fl flrfi" or;Ln\'

z*læ

(A.10)

(A.11)

t:l r:7
Thus the new complete data likelihood is given by

L(o
Mil

m:L

,z):

{rrønyw@?-r)}II
u
l"fi. ,frn?. ç!Ln?.
r:7

kl,

The conditional probability of the assignments is also modified. There are now two
weights for each track and mea"surement because of the two mixture components in the
target measurement density. The new conditional probability of the assignments is thus

P(KIX,Z): Ie2rrtr (A.12)

where the weight uk!,k!,tr is given by

irkl, pkLk?, ek 
,rr, ("rrl*f|)

T rlt

llll.*;
t:l r:1

wkl,r<l,tr : M2

t I nT pT'oe?'o (.*l*T)
m:I p:I

(A.13)
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Equations (4.11) and (4.12) are no'ù/ substituted into auxiliary function to obtain

(A.14)

, px(o(x,n
t
K

T
K

t
K

t
K

i),IJ(¿) 
, p(i)) :

{,"*u, 
@i) +å.- ,þi @T -*t\} H ,t!.r7.,+

nt .ì T nL

Iro* "!t. | ilf|,'l!"u7,,,+
r=t ) l:tr:t

t -\nTr
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(A 1e)

lvIt
m:1

Tt
Tt

t:l
Tt

t:l

nt

(,,. *f*(ù) )ú fr.,t1,.*,.n

I to* prl'rT ,t1,,*?,*i
r:7
nt

Dto* çkl'k?'
r:1

where the dependence on 1¡" .(r-r) terms is implicit in the weight ,llii',*.
In a similar way as for the standard PMHT, rewrite (4.1a) as

T T Iv'T

I (x,rr, plx(';), fr(i), p(i)) : Ðqy + t etn tD,Ð,qA (4.1b)
m:7 t:I t:l m:7

The Qp term in (4.15) depends only on the target model states and the rneasurements
and is given by

TTnt2

Q'i : ros,þto @Ð + I to* ,þT @Tl*7,) * I t t roeefo Q*l*T).|),* (4.16)
t:I t:l r:I p:I

The Q¡n term in (4.15) depends only on the prior probability fI and is given by

ntM
Q,n : t t rosr! (,f1,, *,Í3*) (4.17)

r:I k:I
The Qfr term in (4.15) depends only on the prior probability p and is given by

/-\ttL 
- 

nt 2

,{tp=ttrogpiewfor, (4.1s)
y:! p:l

4.1 Maximisation Step
Since it is the simplest, start by maximising the Qtn term in (4.15). Notice that the
expression for Q¿n is almost the same as that found for the standard PMHT whose solution
i. gi,r"n in (S.Si). By substituting .fl*+rf;)r,tot rf;),r" (3.51), the estimate for fi at
iteration z is given by

k
1Tt D,lll,, +,tL,(i+1) 

- 
1

nt

r:lTL¿

The Qfi term in (4.15) is maximised in a similar way to l,he Q¡n term. Qfi is to
be maximised subject to the constraint pT' + pT2 : I. This is achieved by using the
Lagrangian

Lo(^,f) : tlto* pTrf)r*+\k,,
nt2

r:1 p:I

2

k:r
(A 20)
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where \fr,, is the Lagrange multiplier.
Differentiating the Lagrangian with respect to pT' and solving for stationary points

gives

-mp(if-l\ 1
Pt :\p

,rm,t L*9,*
r:1

(A.21)

(^.22)

(A.23)

Reapplying the constraint gives

-mp(i+1)Pt:

Àfn,t: tt r9o,,
nt2

r:1 p:l

So the estimate for pie at iteration z is given by the unique stationary point of the
Lagrangian

ntt
r:I

(?)
mptru

t (.f;,:) *,fl,*)
nt

r:I

The estimate of pie is thus the proportion of weights for that measurement model at
scan f

^.2 
Target State Maximisation

A modified Kalman filter algorithm is now derived for the target state update following
the approach used in [SL95].

Recall that (A.a) defines (fll and ({" u"

ei'Q*l*T)
eT'Q*l*T)

- ,n/ (H¿æi, R¿)

- N (H¿æi, S¿)

and that (,d.16) gives Qp as

T

QT :Ios,þ'o@Ð + I to* ,þT @Tl*7') + I t t Ioeefo Qnl*T) rflo,,
Tnt2

t:7 r:L p:l

Consider the measurement dependent part of QT uf scan ú, namely

nt2

t t los (o (z,læ) up,
r:I p:L

where the scan index ú, the model index m and the iteration index ø are suppressed for
simplicity of notation.

Substituting the (e definitions from (4.4) write
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(A.27)

(A.28)

(A.2e)

t t ros (' (z,lr) we, D.r,(t, - Hæ)rR-t (r, - Hæ) +
nt2

r:I p:L

nt

r:I
nt

D.r,(., - Hø)r5-t Q, - Hr) + A
r:l

: t (", - Hn)r {wyR-l + wz,S-r} (t, - Hæ) + A (^.24)
nt

r:I

nt

(Hr).

nt

r:1

nt

where A is independent of the target state n! and can be ignored.
Expanding the quadratic terms and collecting all state independeut expressions into

the constant A gives

t t log (o (z,læ) we, Irr"R-t+Dwz,S-7 (H') -
nt2

r:l p:l

nt

r:I

nt

r:l

D",'(tur"R-l *,u2"S-1) (Hr) -
nt

(Hr)tI (rr,*-1 +w2,S-r) ",+ I (4.25)
r:l

Complete the square, giving

t t los (o (rÀ*) up, : (2 - Hn)r R-t (2 - Hæ) + A (A.26)
nt2

r:l p:I
where

and

R-1 Drr"R-t+twz,S-r
r:l r:l

i(rl:) *-y)) {p1(z+r)R-l + p2(¿+1)s-1}
r:I

nt

2:R I (tr;t"n-r + w2,S-1) z,
r:1

The result in (4.26) is the same expression as that maximised by a Kalman smoother:
the log likelihood of a measurement 2 wilh measurement covariance R. Thus (4.28) and
(4.29) define a synthetr,c measurement at each time point for each target model and give
the covariance of the measurement. The maximum likelihood state estimate can be found
using a Kalman smoother. The results in (4.2S) and (A.29) simplify to the homothetic
synthetic measurements given in [RWS95a] when the innovation covariance is a scalar
multiple of the measurement variance and to the standard PMHT when there is only a

single homothetic model,
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Appendix B

Fbll Radar Algorithm

Chapters 4, 5 and 6 provided a number of theoretical advancements of the PMHT algo-
rithm, and chapter 7 presented solutions to particular OTHR data issues. All of these
algorithmic extensions have been presented in isolation. Realistically, it is desirable to
incorporate many of these advances into a single algorithm for the radar data. The deriva-
tion of such an algorithm is essentially a matter of careful notational accounting and is
not presented here. This is because of the amenable structure of the PMHT framework.
Instead, an example of one of the algorithms run on radar data is presented.

This algorithm incorporates:

o the PMHT-c approach for clutter parameterisation with estimated classifier confu-
sion matrix

o the innovation homothetic model for initialisation

o the PMHT-v approach for track initiation

o the mixture approach for ambiguous velocity resolution

8.1 Statement of Algorithm
1. The first step with all PMHT variants is initialisation. There are several different

variables that need to be initialised for this algorithm.

(a) Clutter model states, X1(0) and X2(0): mean of amplitude distribution

(b) Clutter mixing proportionr, of(o) : 0'5

(c) Classifier veracity, tfo) ut d 
"lo)

(d) Target model states, X3(0),. .. ¡nz(o)

(e) Target model visibilities ' P(d'T:1;(o):0'11 for all m.

(f) Target homothetic measrüement component mixing proportion", pT'@) : 0.5
for all target models m, for all scans ú and all dynamic components, p.

(g) Target dynamic component mixing proportions, Pr^(P) - M;t

2. Calculate the assignment weights for each model (component model) and measure-
ment. The expressions for target model weights and clutter model weights are differ-
ent because the target models are substantially more sophisticated than the clutter

195
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models. Lel ú denote a pre-normalised assignment weight. The pre-norrnalised
assignment weights are given by

(a) For clutter model nù € Lr2 and measurement z¡,

o (r,,1*7"')
o!þ) 

",,;, ^eî (zr,p7ro)

,mk(i) prm{o) @)p ("*l*Trr,r)

,mk(i) p rm(i) (ç) c,r,> ^Çr (t *l*T"o')

P(DrlX,Z):ffi

Umtr

MNIr2

(8.1)

(8.2)

(8.3)

(b) For homothetic measurement component k of dynamic component p of target
model m € 3,... M and measurement z¡,

ú)^tu(k,p)

at(Dr): I

Pd
TL¿

Pd
TÙ¡

3. Calculate the visibility probabilities for each target model using the HMM smoother

Dt-t {F_", 
(aTl¿T,)} o r"lot,xt) ,-t-t(D,-,) (B 4)

þr(Dr): I fI rä, (d,T*,ld,T) P (Zr*rlDr+r,X,+r) 0r+r(Dr*r) (B 5)
M1¡

Dt+t

nt

P (ZtlDüX) : n'Qr,lDr,Xr)

m: 1

r:7

Dt

r - Pd DrDr'
TL¿

(wu, + {uzt,) t I I Ð oT*^r,(k, p)

The weights are then normalised according to

a:$ p:l þ:!
(B 6)

if m:7,2 (8.7)
| - Pd DrDr.

rL¡umtr :\e (Dlx,z)
P (.r,lDt,Xt)

wmff

u^t,(k,p) : t P (Dtlx,z1 Ë-aß-' e)

Dt 
\- ¿r--) -' P (t"lD"X') m:3,...M (88)
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4. Update the estimated variables

(a) Clutter model states

D,^,,

197

(B.e)

(8.10)

(8 11)

(8.13)

nt

i+1) _ r:1
| .^r,"Í? çq)

rn(nt' nt

r:l

(b) Clutter mixing proportions

(c) Classifier veracity

*l:"*') : i Ë u*,.6 (4*, - *)

nt

Ð*^r,
m(i+L\ot' : r:1

2nt

s:1 r:1
II'","

t:1 r:l

DD'*,,
Tnt

t:l r:I

r:7

(d) The estimated state sequence for each dynamic component of each target model
is computed using a Kalman Smoother with synthetic measurement

(8.12)

and synthetic measurement covariance

nt

a7, :l{-*r,lt,p) + u*t (2,n)) {oT'u*l)1r;4-r + pinu'+t) Q) 6f'Yt\

: ayo 
{ä@^,,(L,p)R-1 

+ w-t,(2,p) 6f,)-') ",,\
- rnl)zt'

r:l

(e) Target homothetic measurement component mixing proportions

nt

Y .*r,(k,p)
nt2

t t u^t'(s'P)
r:1 s:1

,mn\+t) Ø) : (8.14)
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(f) Target dynamic component mixing proportions

Pr^(P):

Tnt2

IIL'^*(k,p)
t:I r:I k:I

Tru2Mt'

ttttw^¿,(k,s)
t:I r:7 k:l s:l

5. Calculate the value of the auxiliary function at the new paraneter estimate

a (x{z+rl, p/.,(i+1) i p(i+I) , 6Q+t), ç(i+r; lx(i), pr(l) 
, ,(t') , oQ') , C@)

.,( T ì: t ltos,þi @i) + Dto* ,þî @il*T) I_-:, I t:r )
MMp( r I

+ t f j t"*,þi' @To)+ t Ioe,þT' @T'l*Y) Im=3 p:r ( ¿:l )

M

m:3

2Mp

k:1 p:L

(8.15)

+tt IosPr-(p)ttT.-*(k,p)
My2T

lulx Mp

m:7 p:l

m:l t:7
Tnt

t:l r:L
Tnt

Tnt2

r:I p:I

t:I r:l k:I
nt Mp+ttt IoepT* tt w*t,(k,p)

rn:I k:7 t:l
2T+tt togoiä.,-"j

2*It I to* c"Ík)^w-t + D ror""Í|,^t t w^¡(k,p)
tn:l

+tt 2t
m:l

Umtr ros (I (,Í? *f)
M2Mp

+ t t D w^t (k,p)tos ef- ("Í? *f')
t:7 r:1

v¡¿:l þ:! p:!
My

+ I I to* Li @,T) P (Dolx,z)

My
+ t t t D to* 

^T @TldT,) P (o,-,, Dtlx,z)

Ds m:l
T

t:I Dt-t D¡ m:I
T

t:t Dt
1- P-! prprt

rù¡
+I\r (D,lX, z)Ð I ú-r" log

nt 2

r:1 m:1.
M2Mp

+ttt umtr(k,p)los Pd
TL¡yy¡:f, þ:l p:t

6. Repeat steps 2 3 and 4 until the auxiliary function I (.(z+r¡1.(a)) converges

(8.16)



Appendix C

Review of the Probabilistic l)ata
Association Filter

Chapter 8 presented a comparison of the PMHT track initiation performance and the
Unified Probabilistic Data Association Filter (UPDAF) track initiation performance. This
appendix gives a summary of the Probabilistic Data Association Filter (PDAF) and its
various extensions leading to the UPDAF.

The Probabilistic Data Association Filter [BST75, BSF88] is an approximation to
the optimal recursive Bayesian data association strategy. The PDAF is a single target
algorithm, so each track is filtered in isolation, and it is assumed that any measutements
due to other targets can be lumped into the clutter. The PDAF enforces the single
measurement assignment constraint, namely each target track is only allowed to form at
most one measurement. At scan ú there àtÊ 'n¿ * 1 possible assignment hypotheses for
target model rn. These hypotheses are the assignment of each measurement in turn, and
the hypothesis that target model m formed no measurement at scan ú.

The standard PDAF makes a number of assumptions about the target and clutter
behaviour. The targets are assurned to have linear Gaussian statistics, and all target
tracks (i.e. filter models assumed to represent targets) must correspond to valid targets.
The clutter is assumed to be uniformly distributed over the surveillance region, and the
number of measurements due to clutter is assumed to follow a Poisson distribution. This
means that:

My 1

1

P Ðd (*,, - r) :,
nt

e| ("r,l"l) V

#exp(-Àrz)r:l

where I/ is the volume of the surveillance region, and À is the rate parameter of the
Poisson distribution, which ìs assumed to be known.

Using Bayes Rule, the recursive state estimation problem can be written as:

nt

l,n (*7,0¡(r)lZ¿,æ7r)
r:0
nt

D,e (ef ?)12,,*7,) r (æiloiQ),2,,*7,)
r:O

n (æilZ', n!t)
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nt: Pf @ ,þT @Tl*7,) * D þiØ n (æilz,,,*7r), (c.1)
r:l

where 0T(r) represents the rth assignment hypothesis at scan f and þT(r) is the posterior

probability of that hypothesis, and I 0iØ: 1. Under hypothesis 7iQ), measurement

r is caused by target model m and,ä:tÏotn., measurements are due to clutter - since the
algorithm is a single target one, any measurement not caused by model rn must be due to
clutter, i.e. model 1. Under hypothesis 0T@) all measurements are due to clutter. The
term p (*Tlrr,,æl1.r) in (C.1) is the probability density function of the target state when
it is updated by measurement z¡,. If the probability density of the state at the previous
scan is Gaussian, then this expression can be gained through a Kalman Filter.

The density in (C.1) is clearly multimodal. If the prior state distribution is unimodal,
then (C.1) will have k I I modes. This is the exponential growth in complexity of
the Bayesian association approach. The PDAF makes the assumption that the density
(C.1) can be approximated by a single Gaussian, thus reducing the distribution back to a
unimodal one. The PDAF thus requires the mean and the variance of the posterior state
density. First, consider the mean. Using (C.1), write:

E {æilz¡,æ1r} : øf Q) E {rTl*7r} + t 0iØ E {nilz¡,,*1r} . (c.2)
nt

r:I

Using a Kalman Filter,

E {æ!lz¡,,æ7r} : E {nilæ\r} +wTi#,

where the innovalion, uff is given by

,# : l"r, - HT E {*Tl*I:'}) ,

and Wfl is the Kalman gain, which is independent of the measurement.
Substituting (C 3) into (C.2) gives

rLt

E {æilZ¿,æ7r} prg) E {æilæi,} + I 0iØ ø {æilri,} +w7"ç

(c.3)

(c.4)

(c 5)

(c 6)

r:1
nt

E {nilæi,} + I tsiØ wT,#
r:1: E {rilæir} +w7"7,

where uf is a synthetic innovation given by

nt,i : \ 0f frl 1",, - ni n {æil*!r}l
r:l

Comparing (C.5) with (C.3) it is clear that the mean of the track state posterior prob-
ability density can be obtained using a single Kalman filter with a synthetic innovation.
This provides for an efficient implementation for the mean update.
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Using similar manipulations, the covariance of the posterior state estimate can be
shown [BSF88] to be

nt

cov {rilz,, æTr} : p#Pf Qlt - 1) + \, Of ef Oft)
r:I

+wr \,ProvnzT' - 2Tzr' wT
nt

r:l
T (c 7)

where PT(tlt - 1) is the covariance of the state estimate given the previous state estimate,
and Pi(tlt) is the covariance of the state estimate when it is updated by a measurement
at scan ú and assignment is known (under this condition, the value of the measurement
does not effect this covariance). Both of the covariances PT(tlt - 1) and Pfl(úlú) are
provided by the Kalman Filter, So, (C.7) can be viewed as a correction to the Kalman
Filter Covariance to account for the data association uncertainty.

The PDAF is thus implemented using a Kalman Filter, with a synthetic innovation,
and a correction to the posterior covariance. This means the PDAF is a very efficient
algorithm, carrying little extra cost than th.e optimal estimator when the assignments are
known.

Many of the Bff wlll be close to zero, and (C.11) is expensive to calculate because
of the exponential. To reduce the computation load, it is usual practice to introduce
a validation gate, which is generally a physical boundary set at some multiple of the
innovation covariance, i.e.

(z-nieff-,)'sr-'Q-aieffi-t):12. (c.8)

Measurements outside this boundary are assumed to have negligible probability of
being due to the target. The number of measurements in the validation region then
replaces n¿ in the above equations.

Let Pdi be the probability that target m is detected at scan ú. This probability may
be a function of the target state, especially in the case where physical obstacles may
obscure the target. Lef Pgi be the probability that a target measurement is within the
validation gate, given that it was detected. Usually, the gate is chosen lo make Pgl
constant.

There are two forms of the PDAF, known as the parametric and nonparametric PDAF.
In the parametric PDAF, it is assumed that the rate parameter of the clutter density, À, is
known. In the nonparametric PDAF, the rate parameter is unknown and is approximated
using \: mtlV. An alternative nonparametric PDAF in [CDAS6] uses the approximation
),: ntlA where A is the area of the entire surveillance region. This latter form will be
more accurate, if the data really is uniformly distributed.

For the parametric PDAF, the association probabilities, 0T(r), are given by

piv): #-(')--, (c e)

Ðure)
r:0

where

bT(0) Àlztrsilvz (r - Pdi Psi) (c.10)
Pgi'

1
, T:lr...rfutb?(,) exp

2
>mIem-l:tnatr Jt zlr (c 11)
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It is important to recognise that the association probabilities, Bi(r), use the innovation
covariance matrix, Sfl, not the measurement process ef O Thus, measurements are
assigned based on the current state estimate uncertainty. This is both a boon and a bane
for the PDAF. If a target manoeuvres, the state moves arvay from the predicted state and
the innovation covariance grows, allowing the PDAF to recapture the track. However,
tracks started on clutter rnay be allowed to assign distant measurements because the
innovation covariance is large.

C.l Nearest Neighbour Gating
In the standard PDAF, a validation gate is used to restrict the number of possible assign-
ment hypotheses, and hence the computational load. It is assumed that measurements
outside the validation gate have a negligible probability of being caused by the target cor-
responding to the track. The validation gate itself is usually deflned by the hyper-ellipse

(z - Hiri)'sf-' Q - Hini) : r'
where Sf is the innovation covariance for track rn at scan ú and 12 is some fixed threshold
setting. [Dru01] calls gating first stage data association.

The purpose of gating is primarily to remove the need to make costly density calcu-
lations, such as eT Qr,l*T), for very distant measurements that obviously do not belong
to the track. This need not be done by using a fixed radius hyper-ellipse. In [CDA86],
Nearest Neighbour Gating was introduced. Here, each track validates the l measurements
closest to it. The number of validated measurements is fixed, at 1, and the physical size of
the effective validation region changes with each scan. This method was originally intro-
duced to improve pipelining of the data association algorithm by removing the dynamic
variation in the number of assignment hypotheses. However, it has since shown to give
other advantages over a fixed gate [CD00a].

The main advantage of using a fixed number of validated measurements, rather than
a spatially fixed gate, is that it makes the algorithm adaptive to the clutter conditions.
When the clutter is low (i.e. there are very few false detections) then the effective gate is
very large, and it is possible to valiclate measurements distant from the extrapolated target
position, such as may occur after a manoeuvre. When the clutter is high (i.e. there are
many false detections) then the effective gate is small, and the track is not easily seduced.
While it is possible to design the gate based on the prevailing clutter condition, in practice
clutter varies with time and perhaps spatially. lCDOOa] demonstrated that using a low
number of nearest neighbours, say 1 : 3, does not degrade tracking performance.

C.2 Target Visibility
The standard PDAF makes the assumption that every track corresponds to a valid target.
In practice this is an unrealistic assumption. Targets move out of the surveillance region of
the sensor, and aircraft land. Thus, what begins as a track corresponding to a valid target
may become a track corresponding to no target. Similarly, the target tracks must come
from somewhere. Even if the tracks are initiated by a radar operator, it is inevitable that
there will be some tracks that have been falsely initiated. A tracking filter for a realistic
scenario should be able to deal with these conditions.

The target visibility model is a method for enabling the tracker to make automatic
initiation and termination decisions. The model was first introduced in [CDA86] and
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has become a popular approach for track decisions with the PDAF, for example [1\'IES94,
LL01a, CD03]. The name Integrated PDAF (IPDAF) has become associated with the
nonpararnetric PDAF with visibility.

Target visibility is a binary attribute of each target, and it determines whether the
sensor is capable of detecting the target or not. If a target is visible, then the sensor
receives energy frorn the target which may be detected with probability Pd. H the target
is invisible, then it cannot be detected. A target may be become invisible if it passes
into an area occluded by physical limitations of the radar; it might be an aircraft that
lands or nÌoves into a blind Doppler zone. By estimating the probability that the target
corresponding to each track is visible, tracks can be automatically terminated when their
respective targets becomes invisible.

In cluttered environments where the sensor receives false detections, the source of the
sensor measurements (target or clutter) is unknown, and it is inevitable that some tracks
will be initialised on clutter (that is false detections). Such tracks will fail to associate
measurements and appear to the sensor to be invisible targets. Even though the clutter
measurements used to start the track were not caused by a target, the sensor cannot
differentiate them from measurements from a true target that became invisible. Such
tracks can be considered to correspond to a fictitious target that has become invisible.
None of the estimated target parameters (such as range and azimuth) have a physical
meaning under the hypothesis that there is no target, however the estimated probability
of target visibility can be used to test whether there really is a target corresponding to
that track. Tracks that are estimated to correspond to invisible targets are discarded and
those corresponding to visible targets are retained. This provides a method of automatic
track initiation. Further, the probability of target visibility can also be used to discard
tracks that associate some valid target measurements but mis-model the dynamics, since
these will also be estimated to be invisible targets.

The target visibility attribute for target model rn is denoted ui and takes either the
value zero or unity, indicating an invisible or visible target respectively. There is no
visibility for clutter and so there is no ur1. The target visibility attribute is modelled as

a first order Markov process and is assumed to be independent of the target dynamics.
That is, the probability that the target is visible given it was visible (or invisible) at
the previous scan is independent of all other prior information. This probability mass)
P (uiluir), 

"utt 
be presented as a transition matrix,
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P (uilui,) : 1 - Aor Aot
1 - Arr Arr (c.12)

where 461 is the probability that the target switches from invisible at scan ú - 1 to visible
at scan ú. All is the probability that the target remains visible at scan ú when it was
visible at scan t - L

Lef Puft¡t, represent the probability that the visibility variable ul : 1 given the
measurements up to scan ú2. That is,

Pullp" = P (uff : IlZt,. .. ,Zr,) (C.13)

Using the Markov property of the visibility, write

Prrlr-l.: Aor (t - Pur-tlr-r) + LryPu¡-1¡¡-1' (C.14)

The introduction of visibility splits the event 0?(0) into two events: the target is invis-
ible (and therefore cannot produce a measurement),0iÇ1), and the target is visible, but
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either undetected, or the detected measurement is not validated, 0iQ). The probability
of the invisibility event is given by

bTer): Àt2trsrtp L!-u). (c.15)\ l'tt rt I pgT pu4t_t

and the other b's are unchanged (the normalisation equation for p now spans mi2 events).
The updated visibility probability, Puff¿, is obtained using

Puff,: t - Pf er) (C.16)

The visibility model has been shown to provide a substantial reduction in false tracks
[cDA86]

C.3 Augmented PDAF
The PDAF algorithm is derived for measurements that are a linear function of the target
state, such as position and bearing estimates. In practical applications, there may be other
features of the observed data that can be used to discriminate target measurements from
false detections due to clutter. The extension of the PDAF to deal with such information
is referred to as the Augmented PDAF [BSL95].

Suppose that the sensor provides features with each measurement, in addition to the
usual state observation components. These features may be continuous valued or discrete,
or a combination of both. The combined measurement vector can be written as

(c.17)

where .ti) i" a vector of state observations, and ,!!) i" a vector of features.
Assume that the probability density (mass) function of the feature vector, ,[l) , i"

known for both targets and clutter. Denote these probabilities as c!
likelihood ratio of the feature vector is

(,tf') Then, the

"r (,:P)

- -l "lî) \'tr-\'ä'I

L* (c 18)
-(k)'tr

The augmented measurelnents are then incorporated by multiplying (C.11) by the
Iikelihood ratio, L* (r[?)

bT?) : L (4f') ",{-;uT'sT-'zT}, r : t,...,,,t. (c.le)

C.4 Sophisticated Clutter Models
The standard PDAF makes the assumption that the clutter is uniformly distributed. This
assumption is rarely accurate. For most sensors, the distribution of false detections is a
function of at least one of the measurement components. For example, false detections are
more likely at low elevation angles for a ground based radar, or at low Doppler frequencies.

(k
utr( ) cl
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Furthermore, the clutter may not be well modelled by a single distribution at all, but may
instead be better described by a mixture model.

When the clutter distribution is known, then the Augmented PDAF approach can
be used. Rather than consider the likelihood of the feature, the likelihood of the entire
measurement vector can be used,

L- (z¡r) :
ci l/çlzìr' l2rST al t 2 exp {- t zff. ST -' zi.} (c 20)

"r (":P) pr (z*)

where pr (zr,) is the clutter pdf for the measurement. This likelihood ratio can then be
used directly in the event probability equations, with

(t - Pr,,,, .\bTeL) : xffi, (c2r)

. (1 - rdiPsi)
b;í"(0) : ^t--#:t
bT(r) : L^("t), r:L, ,frt

(c.22)

(c.23)

If the clutter distribution is a mixture, then the denominator of the likelihood ratio can
be replaced by the sum over the mixture components weighted by their relative mixing
proportions.

When the clutter distribution is unknown, it must be modelled in some way. One way
to do this is to assume a parameterised distribution for the clutter probability density
function and then estimate the parameters of the distribution. This is the approach taken
in [RCD97, RC98, CD00b], where a mixture model for the clutter probability density
function is used.

An alternative is to build up an ernpirical modei. A histogram of the received measure-
ments is accumulated over time, and this histogram is used to estimate the probability
density function of clutter measurements for future scans. The IPDA-map algorithm in
[Ìv'IE97] uses an approach similar to this to build a nonparametric model for spatially
nolruniform clutter.

C.5 Sophisticated Target Models
The PDAF assumes that the target obeys a linear almost constant velocity motion model.
In practice this may be true for sections of a flight path, but targets usually turn (change
heading) or change speed. It desirable that the tracker accommodate such behaviour and
not diverge frorn the true target trajectory. To do this, a more complicated model of
target behaviour must be used.

A commonly used assumption is that the target behaviour can be well modelled by a
jump-Markov process. This means that the dynamic behaviour of the target follows one
of a family of modcls, and may switch between these models at random times, according
to set of transition probabilities. An example of this is a model set containing an almost
constant velocity model and turn models for left and right turns.

If the sequence of dynamic models is known, then the state estimate can be estimated.
However, the model sequence is unknown and must be estirnated with the states. Since
the number of possible model sequences grows exponentially with time, it is impractical to
implement an optimal algorithm for estimating the states and the model sequence. This
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(c.25)

is very similar to the problem encountered with the visibility Markov model for track
decisions as described in chapter 2. However, whereas the visibility model is a switching
model controlling the target observatiorì process, this is a switching model controlling the
state evolution process.

Like the visibility model, the problem of switching target dynamics can be solved
using an IMM-PDAF [\,'IABSD98]. As described in chapter 2, the IMM-PDAF is an
approximation to a generalised pseudo Bayes order 2 approach.

An alternative to the IMNI is presented in [Col99]. This fllter uses a first order GPB
structure. The first order GPB approach is simpler than the IMM structure, but IMM is
generally considered to give superior performance for manoeuvring targets [BSL95].

C.6 The Unified PDAF
The Multiple Model Unified PDAF (MM-UPDAF) lCD03] is a nonparametric PDAF that
incorporates nearest neighbour validation, multiple nonuniform clutter models, multiple
target dynamic models and target visibility. This algorithm is used in the operational
JFAS detection and tracking software. The event probabilities for the MM-UPDAF are
denoted bV /io (r), where m is a track index, p is a model index, and r is the measurement
index. Since the algorithm is a single target one, Bie(r) is assumed to be independent of
B¡nl(s)tfnlm.

The JFAS system uses a preprocessor that tags each measurement as being caused by
clutter component L or 2. This tagging procedure is assumed to be perfect. The event
probabilities for target models m > 2 are given by

1io (r)
uT'(r) (c.24)MpI

ttbr'(i')
s:l i:l

where

bT',eI)

bTo(0)

,*7"#,
P^T' 0 - Pdfe PtTo) , (c.26)

bìir,,e(r) : pmip pd,irÇi1?"1"T)-"i'qî ." : "(,!\. ç.27)' *L 
Cf e"lr",) Nf I t u - zLr .

Models 1 and 2 are used to represent clutter. The term P^T'is the a priori probability
for model p, PsTo is the probability that the target orientated measurement is within the
1 nearest, given model p is the correct model, nf is the number of measurements tagged
as type c from those within the 1 nearest for all models, Nr" is the total number of
measurements tagged as type c and ,4f is the spatial area of the component c (provided
by the preprocessor).

The derivation of these expressions is presented in detail in [Col99].

C.7 The Joint UPDAF
The MM-UPDAF makes a single target approximation, namely that the assignment of
measurements can be performed independently for different target tracks. This assump-
tion is invalid when targets are closely spaced with respect to the sensor resolution. This
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circumstance may also arise in OTHR when multiple propagation paths are closely spaced,
In order to improve the tracking performance of the MM-UPDAF, this single target as-

sumption was relaxed and a Multiple Model Unified Joint PDAF was developed [DC01].
The event probabilities for this filter are found using substantially more complicated ex-
pressions than those above, and are not presented here.
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