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Abstract

Transport phenomena are governed by the processes of advection and diffusion. This work concerns

the development of high-order finite-difference methods on a uniform rectangular grid for advection

and diffusion problems with smooth variable coefficients. The initial and boundary conditions are

assumed to be given with sufficient smoothness to maintain the order of convergence of the scheme under

consideration. High-order finite-difference methods for constant coefficients usually degenerate to first or,

at best, second-order when applied to variable-coefficient problems. A technique is developed whereby

the convergence rate can be increased to the constant-coefficient rate. This modification procedure

is applied to finite-difference methods for both the non-conservative and conservative forms of the

variable-coefficient advection equation, and to the variable-coefficient diffusion equation. Since the

conservative form of the advection equation may be considered as an equation in which the two processes

of non-conservative advection and decay (or growth) are taking place simultaneously, it is shown that

the conservative process may be split into two separate processes, thereby simplifying the solution

procedure. It is also observed that the decay may be identified as a sink term, so methods developed

for the soiution of the conservative equation may also be applied to the non-conservative advection

equation in the presence of sinks. Lil<ewise, the variable-coefficient diffusion equation is noted to be a

special case of the variable-coefficient transport equation, so high-order methods developed to solve the

former equation may also be applicable to the latter equation. Finite-difference methods can readily be

extended to probiems involving two or more dimensions using locally one-dimensional techniques. This

is demonstrated by application to two-dimensions for the non-conservative advection equation, and to

a special case of the diffusion equation. The new modified methods are particularly apt for problems

involving smooth initial and boundary data, where they outperform the base methods considerably.



Chapter 1

Introduction

The advection-diffusion equation (ADE) , which is commonly referred to as the transport equation,

governs the way in which contaminants are transferred in a fluid due to the processes of arlvection and

diffusion. Mass, momentum and heat transfer are all described by transport equations. Hydrologists

use the Allþl to model solute transport in groundwater. It has been used to describe bacterial transport

in porous media (Hornberger et al. 1992) and solute transport through large uniform and layered soil

columns (Porro et al. 1993). The two-dimensional ADE has been used by Portela et al. (1992) to model

the fate of a pollutant released into the Tejo estuary in Portugal, and by Noye et al. (1992) to predict

prawn larvae movement in coastal seas.

In many fluid flow applications, advection dominates diffusion. Meteorologists rely on accurate numer-

ical approximations of the advection equation for weather forecasting (Staniforth and Côté 1991). In

optically thin media, the time-dependent radiative transfer equation reduces to the advection equation

(Stone and Mihalas 1992). The advection equation also governs acoustic or elastic wave propagation

(Leveque 1997), gas discharge problems in physics (Morrow 1981, Steinle et al. 1989), and the motion

of shallow free-surface flows (Hubbard and Baines 1997)'

Diffusion is the governing process in problems involving flow through porous media, and conduction

of heat in solids. The diffusion equation has been used to model heat flow in a thermal print head

(Morris 1970), heat conduction in a thin insulated rod (Noye 1984a), and the dispersion of soluble

matter in solvent flow through a tube (Taylor 1953). Equations similar to the diffusion equation have

also been used to calculate heat transfer, radiation transfer and hydrostatical equilibrium in stellar

evolution programs (Livne and Glasner 1986).

There are, however, few applications for which analytical solutions to the transport equation exist.

Barry and Sposito (1989) discuss an analytical solution to the transport equation with time-dependent

coefficients. Yates (1992) reports the development of an analytical solution to the ADE with a constant

advection velocity and an exponential diffusion function. An analytical solution has been developed by

Basha and EI-Habel (1993) to the one-dimensional transport equation with constant advection and a

1



time-dependent diffusion coefficient. Zoppou and Knight (1997a, 1997b) present analytical solutions of

advection and advection-diffusion equations with spatially variable coefficients. An asymptotic solution

for two-dimensional flow in an estuary, where the velocity is time-varying and the diffusion coefficient

varies proportionally to the flow speed, has been found by Kay (1997). Because of the limiterl mrmber of

analytical solutions fbr real-liI'e problems, numerical techniques are usually used to approximate solutions

to transport problems. The most common techniques used to solve the ADE are based on fi.nite-difference

methods (FDMs), finite-element methods (FEMs) or finite-volume methods (FVMs). Numerical approx-

imations of ihe ADE generally invoive the simultaneous solution of a hyperbolic operator describing the

advection process and a parabolic operator describing the diffusion process (Noye 1987a).

Fluid flow can be approached from either an Eulerian or a Lagrangian viewpoint. Euierian methods are

based on the solution of the transport equation in terms of a frxed grid coordinate system (Noye 1987a).

Problems associated with the Eulerian approach, which are mainly due to the hyperbolic operator,

include numerical diffusion, spurious oscillation, wave-speed errors and peak-clipping (Yeh et al. 1992).

Numerical diffusion, prevalent in first-order schemes (for example, the first-order upwind scheme) gives

the appearance of an artificial increase in diffusion. Spurious oscillation, common in central-difference

schemes, results in the development of overshoots and undershoots around the concentration front

(Healy and Russell 1993). Schemes resoiving the problem of mrmerical rliffusion may thus be seen

to introcluce spurious oscillation, while methods which reduce oscillations may give rise to excessively

damped solutions (Yeh et al. 1992). Lagrangian methods solve the transport equation by using a moving,

deformable coordinate system which follows the fluid flow, thereby avoiding the explicit treatment of

the advection term (Noye 1987a), Ieaving only the problem of solving the diffusion equation on â nevr'

variable grid each time-step. Although Lagrangian methods offer what appears to be a more natural

approach to fluid flow, they have some serious drawbacks. Large grid deformations may occur in regions

of rapidly varying velocity, resulting in a subsequent loss of accuracy (Vreugdenhil and Koren 1993).

Additionally, where concentration fronts cross each other, such as in the presence of multiple sources,

Lagrangian techniques cannot be used (Noye 1987a).

The above-mentioned problems associated with the Eulerian and Lagrangian approaches, which are

mainly due to the first-order advection term, have led to the development of mixed Eulerian-Lagrangian

methods for solving advection-dominated transport problems. This approach involves solving the ad-

vection and diffusion components of the transport equation separately. A fixed Eulerian grid is adopted

for the solution of the diffusion process, while advection is handled by a Lagrangian formulation. Yet,

these methods can also suffer from a number of problems, including an inability to treat boundary

fluxes when characteristics intersect inflow or outflow boundaries, an inability to ensure conservation of

mass, and the introduction of numerical diffusion due to low-order interpolation or integration (Healy

and Russell 1993). If higher-order interpolation is used, numerical diffusion may be improved but at

the expense of the reintroduction of spurious oscillation. Zhang et al. (1993) comment on the practical

difficulties of implementing these techniques. They state that these schemes are "quite troublesome to

implement and time consuming to execute because of the need to continuously track the concentration

front using numerous particles at each time step." They also find criticism \/ith Yeh's (1990) approach
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in which an Eulerian-Lagrangian method with a zoomable (or adjustable) fine hidden mesh is imple-

mented: "While this scheme reduces or virtually eliminates numerical dispersion and oscillations, the

process of zooming and refining the elements at each time step is not straightforward in terms of its

practical implementation. Also, the large number of elements needed for this approach requires exces-

sive amounts of computer memory and execution time." 'Lhang et al. (1993) have developed what they

describe as an efficient Eulerian-Lagrangian method for solving solute transport problems in steady and

transient flow fields. Their work has some promising features: it eliminates spurious oscillation, reduces

numerical diffusion, and reduces computational times compared to FEMs. Their method is appropriate

for use with advection-dominated transport problems, but is limited to one-dimensional problems with

values of the Courant number c ( 1.

In this thesis, FDMs will be developed on a uniform Eulerian grid for advection and diffusion problems

with smooth variable coefficients. In most applications, it is necessary to consider the fact that the fluid

velocity is not constant. For example, the velocity of a river of varying cross-section is not constant,

and currents due to tides fluctuate. Field and experimental studies have suggested that the diffusion

coefficient in many applications is not constant but increases as a function of travel time, or equiva-

lently, with the solute displacement distance (Basha and EI-Habel 1993). However, it is not always

straightforward to find appropriate representations to describe the variable velocity and diffusion fields.

The choice may be restricted by the following factors. First, the lack of available experimental data for

most applications due to the high cost of sampling and data analysis, as well as the practical difficulties

associated with knowing the number and placement of samples to achieve a certain level of confidence

in describing the physical process (Yates 1992). Second, testing the accuracy of numerical techniques

generally requires an exact analytical solution. These are usually only available for very simple, highly

idealised test cases.

Finite-difference methods are preferred to FEMs or FVMs in this work, because they are easier to for-

mulate, usually require iess memory capacity and computer time, and allow easier preparation of input

of data (Noye 1987a). A particularly attractive feature of FDMs is that they readily lend themselves

to the technique of process splitting (D'Yakonov 1963, Marchuk 1975). In this approach, the governing

equation, for example, the transport equation, is divided into the separate processes of advection and

diffusion. The individual processes are solved sequentially each time-step using a FDM, giving a solution

to the full equation at the end of one time-step. This idea can be extended to multi-dimensional equa-

tions, using locatly one-dimensional (LOD) techniques (D'Yakonov 1963, Marchuk 1975). Complicated

multi-dimensional problems are split into a number of simpler one-dimensional equations, each of which

can be solved separately, to give an approximation to the complete equation.

In Chapter 2, a description of the finite-difference method is given. The concepts of convergence,

consistency and stability are summarized, and their connection through Lax's equivalence theorem is

described. An illustration of the discretization of the one-dimensional constant-coefficient transport

equation is provided, and the notation used in this work is introduced. Chapter 2 concludes with a

brief discussion of some additional properties, such as conservation and non-negativity, that numerical
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schemes should respect. The general one-dimensional variable-coefficient transport equation is given by

(1 .1)

in which î : î(r,ú) represents, for example, temperature, vorticity, turbulent kinetic energy or concen-

tration of a passive solute at position r and time ú in a fluid moving with variable velocity u: u(n,t),

subject to diffusion governed by the positive coefficient a = a(r,ú). In Chapter 3, the pure variable-

coefficient advection equation written in the non-conservative form

OT OT* lu(r,ú) ^ :U,
dt oíx

ôî ôr .Aî| +u(r,U,t)+ 1-u(r,y,L) ^ =0,ot or ou

(1 .2)

is investigated. High-order FDMs used to approximate (1.2) for the constant velocity case generally

revert to low-order for variable velocities. A technique is developed whereby the convergence rate of any

FDM can be improved to its constant-coefficient order for application to variable-coefficient problems.

Numerical tests in Chapter 4 illustrate the improved convergence of the new modified methods and

show that they are often significantly more accurate and efficient than the original methods. In two-

dimensions, the non-conservative form of the advection equation is given by

(1.3)

where î : î(r,y,t), and where u and u are the variable velocities in the z and y directions respectively.

The methods developed in Chapter 3 are used in Chapter 5, in a LOD fashion, yielding highly accurate

numerical solutions to (1.3) . This is tested for the special case u : u(n,ú) and u: u(!J,ú), for which

an analytical solution is Ì<nown. The most general conservative form of the one-dimensional advection

equation, namely

ôî
At

, ô(uî)
'ôr (1.4)

which may also be written as

(1.5 )

is studied in Chapter 6. Various conventional techniques based on the discretization of (1.4) will be_->_å¡^+

compared to several new methods based on splitting the advection and decay processes, which are seen to

be taking place simultaneously in (1.5). The technique developed in Chapter 3 is then used in Chapter 7

to modify FDMs for a special case of the diffusion equation given by

0

ðî ôî ðu

- 
I'tt,- -l- 

-i 
= 0At ðr ôr

4

aî ô2î
- - a(r. ú)-_ :0dt ' ' dr'¿

(1 6)



Once these methods have been validated by numerical tests against an exact solution, they are used

in Chapter 8 to approximate solutions to the two-dimensional version of (1.6). F\rrthermore, it is

demonstrated in Chapter 9 that these methods can be used in conjunction with the methods developed

in Chapter 3 to approximate solutions to the general variable-coefficient diffusion equation, namely

ðî ð/ aî\
ôt - a" \"ôrJ 

: u (1 .7)

Expanding (1.7) gives

(1.8)

in which the term u: -ôalôr may be regarded as a variable velocity. Thus (1.7) can be approxi-

mated by splitting (1.8) into the separate processes of advection and diffusion. Additionally, it will be

shown how FDMs for the constant-coefficient transport equation can be modified to produce high-order

solutions for the variabie-coefficient case given by (1.8).

Analytical solutions to the variable-coefficient advection and diffusion equations are derived, and are used

to assess the accuracy of the schemes. The methods are also compared in terms of their computational

efficiency. For most schemes, ways to overcome difficulties near the boundaries are described, however,

since a widely applicable scheme is sought, the initial and boundary conditions are usually given by

the analytical solution. In this way, attention can be focussed on producing high-order methods for use

away from the effects of the boundaries. Because the existence of a smooth solution is the underlying

assumption of high-order methods, the test problems involve only smooth variable quantities.

ôî .ôî .ô2i
* Í u(r,L) M a(r,t) ô*, 

:0,
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Chapter 2

General Theory

fi * fiø,t * ftø, * frø,t : * (*#) . & (",#) . * G"f),

The partial differential equation (PDE) governing the transport of a pollutant in a fluid, in the absence

of sources and sinks, written in conservative form, is given by

(2.1)

in which

î: î(n,ú) is the unknown contaminant concentration at position r: (r,y,z) and time ú,

u: (u(n,t),u(p,t),w(r,ú)) is the flow velocity vector,

a: (a,(r,t),ao(n,t),a"(r,ú)) is the diffusion coefficient vector,

and z, y and z are coordinates relative to a set of Cartesian axes

Expanding (2.1) yields

x. (" *) #. (. Ðf . 
Q -*)r. (#*uå*Y),

(2.2)
ô2î ô2î ô2î

= (\1 ú- * ar;-; * o. 
-or""oa"oz.

In the limit as o : 0, (2.2) ís known as the pure advection equation, and when u : 0 it is known as the

pure diffusion equation. If the fluid is incompressible then V.u:0, and the decay term vanishes.

The transformation of (2.2) to non-dimensional form by appropriate normalizations allows the relative

importance of the various terms to be estimated. The results of numerical tests conducted on such

models are then scaled to real flow conditions (Ferziger and Perió 1996).

6



After normalization, (2.2) appears in the same form, but it is now solved over the spatial domain [0, 1]

in each dimension, and the value of î and the coefficients of the equation are dimensionless.

Examples of the non-dimensionalization procedure for the three-dimensional transport equation are

given in Noye (1984a) and Vreugdenhil (1993). All PDEs considered in this work will be assumed to

have been written in non-dimensional form.

Analytical techniques such as separation of variables, integral transforms and the method of charac-

teristics, can produce closed form expressions for the solutions of PDEs, giving the behaviour of the

dependent variables continuously throughout the solution domain.

Although a large number of analytical solutions are known for general initial and boundary condi-

tions to constant coefficient problems with simple geometries, due to the complexity of most problems,

PDEs are usually solved numerically (Zoppou and Knight 1997b). Numerical techniques such as FDMs

approximate the solution at specific discrete points, called grid points, in the computational domain.

D ornain Discretization

Considerations will be restricted to problems involving at most two spatial dimensions. The solution do-

main will be discretized using a uniform rectangular grid with grid spacings of Ar : 7lJ and Ag : llK
in the z and g directions, which is repeated at constant time steps of Aú : T lN in thg ú coordinate axis,

where T is the final time of interest. Grid points occur at the intersection of grid lines, and are defined

by (ri,at ,tn) : (jA,r,tc\,y,n\.t) for j, k, n : 0(7) J, K, -Al, where the notation p(q)r denotes the

set of integers from p Lo r in steps of q. The exact solution î of the PDE is approximated at interior

grid points by the numerical method. Values on the boundaries, that is, when j : 0 or J, lt : 0 or

K,aregivenbytheboundaryconditions,andwhenn=0,bytheinitialconditions. Thevalueof îat
(r¡,An,ú,,), labelled the (j, Ìt,n)th grid point, will be denoted îi,k, L similar notation will apply to all

other variable quantities.

2.t Finite-Difference Equations

As an illustration of the discretization process, consider the following simple example, in which the

one-dimensional constant-coefficient transport equation is discretized at the (j,n)'n grid point, so that

n

j

OTlu 
ôíx

n, ^t^o'T
- û ;-;j or'

naî
ôt -0 (2.3)

Each of the derivatives in (2,3) may be replaced by a discrete form. A list of all difference forms used

in this work is given in Appendix A.
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For example, if the time derivative is replaced by first-order forward-time differencing, namely

+ o{(a¿)'?}, (2.4)

and the space derivatives are replaced by the second-order centered-space difference approximations

given by (4.3) and (4.6) respectively, then the following discretized partial differential equation (DPDE)

is obtained

aî" :ôt¡
îi*t - îi Lt ô2î1"

N - - atrl¡

(ry-+#+or(a¿),,) *" _g{#+o{(^r)4})t.i+t - tj-7
2Ln

(2.5)

-o
îi+r - 2îi + îii _ (L,r)2 ðaî

(L")' t2 ôra
+ o{(Ar)4} -0

Omitting the terms of O{At} and O{(Aø)'z} in (2.5) yields the finite-difference approximation (FDA)

-n+'.i
Lt

(2.6)

whose solution gives approximate values r for the exact solution î of (2.3), provided (2.6) is stable (see

Section 2.2). The error in using (2.6) instead of (2.5) is called the truncation error, and is given by

11 a2î 1E.:f iorap-uu(a,x)2
ô3î
ô13

a4î
ôna

+ o{(Lt)2,(^'")n} (2.7)

which may be written

E,: o{Lt,(Ar)'} (2.8)

Rearranging (2.6) yields the finite-difference equation (FDE)

,In':|f"*rE1, -t (1- 2s)ri _ tU{"-rÐ1l*r,
(2.e)

in which c is the Courant number and s is the diffusion number, defined by

c : u\,tl Lr, s = a\,tl(L,r)z (2.10)

Equation (2.9) is known as the FTCS formula (Noye 1987b) and gives the approximate value rl+1 at

time-level (n + 1) explicitly in terms of the approximate values rþ1, ri and ri*t at time-level n.

n

J
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If the velocity and diffusion in (2.3) can vary in space and time, then c and s are replaced by the local

Courant number and the local diffusion number, so that

cî : uîLtl Lr, si : oTLtl(Ln)2 (2.11)

A three-levet FDE may be written in the general form

F{r} : L {'r} -7¿{'} - P{r) = s, (2.t2)

where L,1/-and2collectthevaluesof rappearingattime-level(n-ll),n and(n -1) respectively.

Methods involving more than three levels in time wili not be considered here. A computational stencil

(p,q,r) specifies that p grid points are involved at time-level (n + 1), q at level n, and r at level (" - 1).

In two-level methods both 2 and r are omitted. If p - 1 the FDE is termed explicit, otherwise it is

implicit.

2.L.L Accuracy and Convergence

The accuracy of FDEs may be assessed by comparing the size of their truncation errors, which can be

found by replacing the approximation r by the exact solution î, so that

F{î}: L{î} -R{î} -P{î}, (2.13)

and then taking the Taylor series expansion of each term in (2.13) about any fixed point in the solution

domain. This yields

f {î): -K(",s)Aú8 , (2.14)

in which ,Ð, is the truncation error obtained by replacing the PDE by the FDA. Note that, in the case

of pure advection K : K(c), and for pure diffusion K : K(s). Often K is found to equal unity, in

which case (2.1a) is simplified to

r{î}: -L1ET (2.15)

Since the time-dependent and spatially-dependent terms in the truncation error might cancel, the tem-

poral derivatives will be converted to spatial derivatives using the original PDE. The order of the leading

term in the truncation error then gives the order of convergence of the FDE in terms of Ar.
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2.2 Properties of Finite-Difference Equations

To be useful, any finite-difference equation must be stable and consistent with the partial differential

equation it is modelling, and its solution must converge to the solution of the partial differential equa-

tion. The reader is referred to Richtmyer and Morton (1967), Noye (1984a) and Hirsch (1990) for a

comprehensive discussion of these concepts as only a brief summary follows.

A numerical method is said to be convergent if the discretization error e, defined as the difference

between the flnite-difference solution r and the exact solution of the partial differential equation î,
approaches zero at all points in the solution domain in the limit as the grid spacings tend tozero.

A finite-difference equation is said to be consistent with a partial differential equation if, in the limit as

the grid spacings tend to zero, the FDE is identical to the PDE at each point in the solution domain.

In other words, the truncation error must become zero) as the grid spacings tend to zero.

A formal consistency analysis involves replacing the approximation r by the exact solution î in the

numerical scheme, taking the Taylor expansion of each term about some fi,xed point, retaining the

higher order terms, and taking the limit of the resultant expression as the grid spacings approach zero.

This reveals the original PDE being approximated.

The solution to a FDE found by the use of computers is not the exact solution r of the difference

equation, but an approximation ã. A FDtr is said to be stable, if the effect of the round-off errors

t:r - i, introduced at some time level remain bounded after an infinite number of time steps.

2.2.L Lax's Equivalence Theorem

Lax's theorem (Lax and Richtmyer 1956) states that "Given a properly posed linear initial value prob-

lem and a finite-difference approximation to it that satisfies the consistency condition, stability is the

necessary and sufficient condition for convergence."

A properly posed problem is one in which the solution of the PDE depends continuously on the given

initial conditions. Linearity implies that round-off errors propagate according to the homogeneous form

of the given finite-difference equation.

Lax's theorem allows the complicated technique required to prove convergence of the solution of the

FDE to the solution of the PDE to be replaced by the relatively easy procedures of proving stability of

a FDE and its consistency with the PDE.
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2.2.2 von Neumann Stability Analysis

The von Neumann stability analysis is the most commonly used method to test the stability of linear

FDEs. Its main advantage is that it may be applied to any spatial grid and for any time step, which is

of importance if Lax's equivalence theorem is used.

For linear initial value problems with constant coefficients, the von Neumann stability analysis provides

both sufficient and necessary conditions for the stability of a FDE.

Consider a linear FDtr written in the form

T{r} : g (2.16)

The error propagation equation, namely

f{(} : o' (2.17)

is the same as the homogeneous part of the FDE being considered (Noye 1984a) . A solution of the error

propagation equation is sought in the variable separable form

Ç : G" exp{i'Bi}, (2.18)

in which ¿: fi and B - rntr\n. The superscript n denotes the n¿h power of the (possibly) complex

number G. The von Neumann ampiification factor C : Ç*t I Ç must satisfy the criterion

lcl<7 v p, (2.1e)

for error growth to be bounded, and hence for the FDE to be stable

In this work, the von Neumann stabiìity analysis will be used to determine stability conditions for FDEs

developed to solve linear PDEs with non-constant coefficients. This local stability analysis, achieved by

freezing the coefficients at their value at a fixed point, will provide necessary but not sufficient conditions

for the stability of the FDtrs considered (Hirsch 1990). A local von Neumann stability analysis is implied

wherever a stability analysis is given.

11



2.2.3 Additional Properties

The use of implicit FDEs results in systems of linear algebraic equations which must be solved simulta-

neously. Direct methods (such as Gauss elimination or the Thomas algorithm for tridiagonal systems)

are termed solvable if round-ofl errors do not magnify during the solution procedure. A necessary (but

not sufficient) condition for a method to be solvable is that the coefficient matrix of the system of

equations is diagonally dominant. This is so if

lou¡l > \l"nil, i - 1(1)¡/,
j:1
i+í

(2.20)

where A :la¡¡) is the lü x ly' coefûcient matrix of the system of equations to be solved.

PDEs usually model physical phenomena characterizing the conservation of a quantity such as mass or

momentum. Numerical schemes should respect conservation laws, so that "at steady state and in the

absence of sources, the amount of a conserved quantity leaving a closed volume is equal to the amount

entering that volume" (Ferziger and Perió 1996). Although non-conservative schemes may produce

artifici¿l sources and sinks, if they are consistent and stable they can lead to accurate solutions on a

very fine grid (Ferziger and Perió 1996).

If non-negative initial and boundary conditions are specified, it can be shown that the exact solution

of (2.1) is also non-negative. It is important that numerical schemes preserve the non-negativity of

physically non-negative quantities. Additionally, no new overshoots or undershoots should be introduced

into the solution by the numerical scheme (Holmgren 1994). A linear finite-difference equation of the

form

,î*t : T o^rl*^, (2.2t)
nr:- q

is defined as positive if all the coefficients (rn are positive (Vreugdenhil and Koren 1993). If this holds,

no negative values will be introduced into the numerical solution.
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Chapter 3

One-Dimensional Non- Conservative
Advection

The accurate approximation of advection terms in the equations of motion governing fluid flow has been

a topic of ongoing research for many years. Meteorologists, oceanographers, and scientists modelling

industrial flows, have spent considerable effort developing accurate high-order numerical solutions for

the advection equation with constant coefficients, with some success (see for example, Leonard 1979;

Leonard and Niknafs 1990; Noye 1986, 1991; Noye and von Trojan 1996). However, little progress has

been made toward developing FDMs for the case in which the advective velocity varies in time and

space, as it does in most physical situations.

When a FDE developed for use in constant velocity problems is applied in a variable velocity situation,

it generally degenerates at least one order of convergence (Noye and von Trojan 1998). For instance,

Rusanov's explicit fourth-order formula (Rusanov 1970) reverts to first-order accuracy when the fluid

velocity is variable. A technique has been developed (Noye and von Trojan 1998) which can modify

any finite-difference formula which is consistent with the advection equation so that it will retain its

constant velocity order in the variable velocity case.

This is illustrated by application to several well known FDEs, which will be referred to as base methods.

These formulae are based on different weighted discretizations ofthe constant velocity advection equation

The weights are chosen to eliminate some of the dominant terms in the truncation error of the modified

equivalent partiai differential equation (MtrPDE), described in Section 3.3. The more terms that can be

removed from the truncation error, which is the difference between the MEPDE and the given PDE, the

higher the accuracy of the formula. Numerical tests show the superiority of the modified method relative

to the base method when the velocity is variable, and illustrate the theoretical orders of convergence.

13



3.1 Mathematical Formulation

The advection of a scalar quantíty î(r,ú) in a fluid moving with constant velocity u, is governed by the

equation

C,T

ð,luôî
ôt

0

-0

(3.1)

(3.4)

(3 5)

Thisequationissolvedontheregion0(r(1,0<ú(Tsubjecttoaninitialcondition

î(r,0) : f @), (3 2)

and a boundary condition

î(0,t) : s"(t) if u ) 0, î(7,t): g"(¿) if u 10, (3.3)

where /, g, and gR are known functions. Alternatively, if the problem is cyclic in space with a periodicity

of one, periodic boundary conditions î(r,t): î(1 + r,t) may be specified.

3.2 A Weighted (1,5) FDE

The advection equation can be differenced at the (j,n)'h grid point on the (1,5) computational stencil

using the weights þ, 1 and d in the following way (Noye 1998)

ry."ó(+)*,,(ry)
+uõ ( -ri+2 + 8ri+r - 8ri4 + ri- ^\

\ 12ar -)*u(7-Ó-'Y-õ) ('i+t -'.i-t\
\2L" )

Rearranging yields the explicit FDE

,î*' : - ,:50 +6lri-z+ ifs + ô + e7 +3ó)rî-r+|fz-37c-2þc)ri

(3 + ô - 37 - 3S)rj'*, + å6rhr,

in which c: uLtlLr is the constant Courant number. Note that the second and third terms in (3.4)

are backward-space difference forms, while the last two terms are centered-space difference forms. As is

shown in the sections to follow, the choice of the weights in (3.4) yields the various explicit base schemes

considered in this chapter, each of which has a different computational stencil.
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3.3 The MEPDE

When the terms of a FDE which is consistent with the advection equation are expanded as Taylor

series about a fixed point in the solution domain, an equivalent partial-differential equation (EPDE)

is obtained. If this is modified by repeatedly adding a suitable multiple of the appropriate derivative

of the EPDE to itself until all the temporal derivatives except ôrlôt have been eliminated, then the

MEPDE (see Noye and Hayman 1986a), written as follows, is obtained

(3.6)

If nrk):0 for q:2(l)Q and 4ça1(") t0, the FDE is said to be order Q, since the truncation error

E1 Ë
âqr

no?) a*n,
(3 7)

s:Q*7

u(Lr)o-t
c1l

is o{(Ar)a}

Artificial (numerical) diffusion is introduced into the solution by the use of the finite-difference equation

unless Tz :0. It has been shown (see Noye 1984a, 1984b) that the terms involving even derivatives in

the truncation error contribute to the amplitude error of the solution of the finite-difference equation,

and the terms involving odd derivatives add to the wave-speed error of the numerical solution.

An analogous expression to (3.6) cannot be obtained for variable velocities because each differentiation

of the EPDtr would result in an increase in the number of terms that need to be considered. Instead,

the exact solution î replaces r in the FDE, and then each term is expanded as a Taylor series about

some fixed point, yielding the discretized partial-differential equation (DPDE).

This is then modifi.ed by differentiating the original PDE successively, yielding a finite number of terms,

which can be used to eliminate the temporal derivatives in the DPDE, giving the modified discretized

partial-differential equation (MDPDE).

The development of (3.6) requires the function r to be continuously differentiable on the computational

domain. If there are discontinuities in the given initial or boundary conditions, the results expected from

an analysis based on the MEPDE may not be found in practice. In addition to smooth initial and bound-

ary conditions, the existence of a smooth veìocity profile is assumed in the generation of the MDPDE.

ôr
ðt

+
ôr
ox)

u +
fl2r14¿1c I .ô'tr
,--noG) a,,:o
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The first three error terms of the MEPDE of (3.5) contain the factors

qz--Óic,
\e:7+2c2-õ-31-3óc,
\+ : 4cf 6c3 - 46c r 61$ - 2") - Ó(l + r2c2) -f 3þ2c.

(3.8)

If r.l2:0, (3.5) issecond-order,if r¡2--ns:0itisthird-order,andif r¡2:qB:n4:0itisfourth-order
Some examples will be given in the sections to follow.

3.4 Leith's FDE

Selectingó:c,sorl2=0,andchoosingl:õ:0in(3.5),soonlya(1,3) stencilisinvolved,yields

Leith's method for constant velocity (Leith 1964). When written in the form (2.72), Leith's method is

given by

L{r} : ¡?+1

(3.e)

For a variable velocity fleld c is replaced by the local Courant number cl . For brevity, in the following,

the superscript n and subscript j will be omitted from expressions involving t,r, and c; it is understood that

these are evaluated at (r¡,ú,). The order of (3.9) may be determined by conducting a formal consistency

analysis. Replacing the finite-difference approximation r by the exact solution î, and taking the Taylor

series expansion of each term in (3.9) about (r¡,ú,), gives

F{î}: -LtE,, (3.10)

where the truncation error is given by

R{r\ : tU"{" * r)rî, + (7 - c2)ri + }"ç" - 1)rî*,

+ o{2}, (3.11)

and

o{p} : o{(a'r)e '"(Lt)*; rn an integer} (3.12)

To determine whether the terms in (3.11) cancel, the time derivative is converted to space derivatives

n,: -)u (# - ",#
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Differentiating (3.1) with respect to ú gives

A2î 0u ôî ô2î
ôt2 - ôt ôr * 

ôtÔ*'

while differentiating (3.1) with respect to r, yields

A2î ðu ôî A2î
ôrôt - ôr 0r - ô*z

Substitution of (3.i4) into (3.13) to eliminate the cross derivative then produces

(3.13)

(3.14)

(3.15)

(3.17)

so that

where the correction factot d is defined as

ô2î / ôu ôu\ ôî ,A2î
atr:-(A-"ar)-+u"ar2'

u,:+G-"#)#+o{2}

F{î} : _-rl*#l+ o{s},

o:#(x-"#)

(3.16)

Leith's FDE is thus generally first-order convergent, unless z is constant, when it becomes second-order

3.4.L Modification

Substitution of (3.16) into (3.10) yields

(3.18)

The modification to retain the second-order convergence of the FDE is achieved by replacing the spatial

derivative in (3.17) by a finite-difference approximation of appropriate order. Note that the correction

factor is intrinsically first-order. To achieve second-order convergence, the approximation to the spatial

derivative must therefore be at least first-order. A possible choice involves using upwind differencing,

in which the major contribution to the approximation comes from one side. Although the first-order

upwind scheme is inaccurate because it introduces numerical diffusion into the solution, this two-point

scheme will be used here, so that Leith's (1,3) stencil is retained.
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Because information travels downstream at a finite speed in advection problems, the behaviour of the

quantity being approximated depends on the information it receives from a certain number of upstream

points. If information is required from points more distant than the differencing allows, numerical

instability results. This may be avoided by using backward-space (BS) differencing when the flow is in

the positive direction, and forward-space (FS) differencing when the flow is in the negative direction.

Hence, using first-order BS differencing for d > 0 and first-order FS differencing for d, < 0, gives

(3.1e)

after the error terms of order three and higher have been omitted. A second-order modified form of

Leith's method is then given by expanding (3.19) using (3.9) and rearranging, yielding

,l'*' :lU'* c+d,-rldl)ri-r+ (1 - cz -lal)r; +|@' - c- d.+ldl)rî+r, (3.20)

which will be denoted mod-L in the following. Methods involving odd-order spatial derivatives in the

leading term of their truncation error are known to be much more dispersive than those involving even-

order derivatives (Leonard 1981). The presence of the first-order spatial derivative in (3.17) contributes

to the wave-speed error of the numerical solution of the base method (see Table 3.1 in Section 3.12).

The discretization of the spatial derivative using first-order upwind (UW) ditrerencing introduces a

second-order amplitude error into the numerical solution of the mod-L method (refer to Table 3.2).

Consequently, the amplitude of the solution is better approximated by the base method, but its wave-

speed is more accurately represented by the new modified method.

3.4.2 Modification

Alternatively, second-order centered-space (CS) differencing may be used to discretize ôîf ðn, thereby

eliminating the first-order .wave-speed error present for the base method, but introducing a third-order

wave-speed error into the numerical solution (see Table 3.2). An advantage of using CS differencing is

that the flow direction does not need to be checked, so separate cases for d > 0 and d ( 0 need not be

considered. The resultant modified method will be denoted mod2-L, and is given by

r1r{r} : i(lal + d)ri-t - ld),i + ;(ldl - d),i+,,

,)'n' :){"'*c+d,)ri-r+ (1- c2)ri +f,f"'- c- d,)rl*r, (3.21)

which is also accurate to second-order. Leonard (1981) does not advocate the use of central differencing

for modelling odd-order spatial derivatives, in particular the fi.rst-order advection term, because it may

introduce nonphysical oscillations and instability into the numerical solution. So, before the methods can

be applied in any practical situation, stability conditions must be determined. This is discussed below.
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3.4.3 Stability

The von Neumann stabitity analysis is the most commonly used technique to determine stability. It is

based on the assumption of the existence of a Fourier decomposition of the solution over the compu-

tational domain. This impties the existence of periodic boundary conditions and constant coellicients

(Hirsch 1990) . The von Neumann stability analysis cannot therefore strictly be applied for variabie

coefficients, because single harmonics can no longer be isolated (Hirsch 1990).

The stability analysis can however be applied locally (see for example Hirsch 1990, Strikwerda 1989,

Mitchell and Griffiths 1980) . This involves freezing the coefficients so that the velocity and hence the

Courant number are assumed to be constant within the computational stencil. If the coefficients are

frozen, the corresponding constant coefficient equation is obtained (Strikwerda 1989). This is also the

case for the modified methods because the correction factors, which depend on the derivatives of the

variable velocity, vanish if the velocity is taken to be constant.

The stability analysis applied locally then provides a local stability condition, which is a necessary

condition for the stability of the variable coefficient problem (Richtmyer and Morton 1967, Hirsch 1990).

There is much numerical evidence to support the contention that if the von Neumann stability condition,

derived as though the coefficients were constant, is satisfied at every point in the domain, then the

variable coefficient problem is also stable (Mitchell and Griffiths 1980).

Furthermore, if the stability condition obtained from a local stability analysis is violated in a small

region, the instability will not grow outside that region (Strikwerda 1989). In other words, the method

can be stable even if the stability criterion lcl I 1 is violated for some values of the coefficients. This is

because the condition obtained from a local stability analysis is a necessary but not suficient condition

for the stability of the variable coefficient problem. That is, the method is stable if the local stability

condition is satisfied, but it is not necessarily unstable if the condition is violated.

The determination of sufficient conditions for the stability of variable coefficient problems requires addi-

tionaì restrictions to be placed on the von Neumann amplification factor (Richtmyer and Morton 1967,

Hirsch 1990) . These restrictions have only been determined for a very limited class of variable-coefficient

problems (see Richtmyer and Morton 1967, Hirsch 1990); where it was found that a mild strengthening

of the local stability condition is sufficient for the overall stability of the variable-coefficient problem

(Richtmyer and Morton 1967, Hirsch 1990). The determination of sufficient conditions for variable-

coefficient problems will not be considered in this work. Necessary conditions for the stability of the

variable coefficient problem will be determined from a local stability analysis as follows:
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1

2

Fix the coefficients, so that the velocity is constant

within the computational stencil.

Set any correction factors, which are dependent on the

derivatives of the velocity, to zero.

3. Perform the von Neumann stability analysis locally

4. The stability of the constant coefficient equation then

gives a necessary condition for the stability of the

variable coefficient problem.

For the variable coefficient problem considered in this section, a necessary condition for the stability is

then given by the stability of Leith's method. Leith's method is stable for lcl < 1 (Leith 1964).

3.5 The UW15 FDtr

If d : 0 and 3 + ô - 37 - 3ó : 0 in (3.5), a formula involving no FS grid points is obtained. Setting

d: c eliminates r¡2, so the scheme introduces no artificial diffusion, and the remaining weight takes the

value 7 :1- c. This formula, described by Noye (1984b), and given by

(3.22)

is unstable for c ( 0 and so can only be used when z ) 0. An analogous formula, which involves no BS

grid points and so can only be applied when z ( 0, may be obtained by setting -Az for Ar in (3.22),

so that -c replaces c, giving

,l*' : -IOt - ")rî-z + c(2 - ")rî-, +'rft - Af, - ")'î ,

,î*t : t¡ft * Af, + c)ri - c(2 + c)tt + tUOt * c)rî+z

Summarizing (3.22) and (3.23) gives an FDE with a (1,5) stencil

(3.23)

(3.24)'î*' : - 1,t - c)(c + lcl)r'¡'-, + |e - c)(c + l"l)rî,, + 
r1fz - slcl + c2)ri

+I¡fz +")(l"l - "),î+, - ]lr + 
"l(l"l - c)rl¡2,

which may be applied for c of arbitrary sign, and will be referred to as the UW15 FDE. Its accuracy

when used in a variable velocity situation is found by replacing r by the exact solution î, and taking
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the Taylor series expansion ofeach term in (3.2a) about (r¡,ú'), yielding

F{î}: -LtEr,

in which

(3.25)

E"r (3.26)

The dominant term in the truncation error is identical to that in (3.16) for Leith's method, so the

modification procedure will be the same. This gives the following second-order modified methods:

,î*' :-1,t - c)(c + l"l)ri-, + 
r1fz 

-c)(c + lcl)ri-t + |fz - slcl + c2)rî
(3.27)

+rrfz +c)(lcl - ")rî+, - ]tr + ")(l"l - c)rhz + F{r},

A¿

2 *_"H)ffi*op¡

where

1. ¡: (3.19) when upwind differencing is used, giving the mod-U FDE

2. ¡: (3.19) with ldl : 0 when CS differencing is used, giving the mod2-U FDE
(3.28)

The stability of the base method l"l <2 (Noye 1984b), provides a necessary condition for the stability

of the variable coefficient problem (see Richtmyer and Morton 1967, Hirsch 1990).

3.6 Rusanov's FDE

Settingrl2:rn:n4:0in(3.8)givesvaluesfortheweightsÓ:c,7:c(I-"')16,õ:(2-c)(7-c2)12.
Substituting into (3.5) gives Rusanov's fourth-order FDE for constant velocity (Rusanov 1970), which is

the optimal formula for the (1,5) stencii involved, in the sense that the truncation error has the highest

possible order. Consider Rusanov's FDE:

L{r} : v?+r

R {r} : - hO, - "')(2 
+ "),i-r+ }"tr + c)@ - c'),i-t+ }fr - c2¡ç+ - c27ry (3.2e)

- å",t - c)(4 - c2¡ri*, * h"f, - c')(2 - ")'î+r,

applied to a variable velocity field. The DPDE obtained by conducting a consistency analysis of this
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(3.31)

The MDPDE is obtained by converting the time derivatives to space derivatives. Differentiating (3.15)

with respect to time and then eliminating the cross derivatives yields

method about the point (ø¡, ú,") is given by

F{î}: -LtE",,

where the truncation error is given by

in which

B :3u

E,: -i*(# -"'#+ |rrff + Lt ô3î
A"t

+ o{3}

a3ì ôr -02î ^a3î
art=Aa**B*+"ô*t'

1-
-11,-
3

(3.30)

(3.32)

(3.33)

(3.35)

ð2u ôuõu ô2u / ôu\2 ,ô2uA- - at, +' 
æ u * u 

ôtô* - " \ô, ) - u' a*r'

(x-"#),

C:-u3

Substituting (3.32) and (3.15) into (3.31) gives

(3.34)

The truncation error, with leading term identical to that of Leith's equation and the UW15 method,

shows that Rusanov's method is also first-order convergent when u varies.

3.6.1 Modificatrons

Equation (3.30) can now be written as

n, : lu (-' "# - A^tX - u",#)+ o{3}

r{î} : _zaln"ffil * n fro,l'#) + o{4),
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If a third-order truncation error is to be obtained, the first-order spatial derivative in (3.35) must be

correct to at least second-order, and the second-order spatial derivative must be correct to at least

first-order. The resultant third-order modified methods take the form

where the correction factors d and h are defined as

where

1

/ At\2

¿:*l-fu-rB-ALt¡,l2\,r'

n:ffia

,î*' : -hOt - "\(2+c)ri-z+ |"tr +c)g- c\+r+ |tr - c2¡ç+- c2¡r;

- å",t - c)(4 - cz)r'¡'¡r + )"O - c')(2 - c)tz + F{r},

r : -r1{a + lal)'i-, + {2(d+ ldl) + h}'î-, - (3ldl + 2h)ri

(3.36)

(3.37)

-{2(d,- ldl) - h}rî+, +}fa - @l)ri+r, giving the mod-R FDE (3.38)

2 F : (d + h)rj'-r - 2hri - @ - h)ri+t, giving the mod2-R FDE

The mod-R method is derived by using second-order upwind differencing for the first spatial derivative

and second-order centered space differencing for the second spatial derivative in (3.35). The mod2-R

method is derived by using second-order centered space differencing for both spatial derivatives.

3.6.2 Remarks

The modification procedure introduces third and fourth-order dispersion into the solution of both

methods, but the magnitude of these errors is halved when second-order centered space differencing

instead of second-order upwind differencing is used to discretize the first-order spatial derivative. This

can be seen by comparing 4.3 and 4.4 in Appendix A; and means that the mod2-R method should

be more accurate. Both modified methods introduce a fourth-order amplitude error into the numerical

solution when the second-order spatial derivative is replaced by second-order centered space differencing.

The dominant error terms present for the base method have been eliminated in both modified methods.
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A fourth-order method could be obtained by including the third-order error term in (3.31) into the

discretization. This term is given by

(3.3e)

We would then have to convert the fourth-order temporal derivative to space derivatives, and introduce

an additional correction factor in the modification procedure. As this adds significantly to the complexity

of any modified method, this shall not be considered here.

We recall that the von Neumann stability analysis can only be used to establish necessary and sufficient

conditions for initial value problems with constant coeffi.cients. For variable coefficients, a local stability

analysis leads to necessary conditions. Rusanov's method is stable for lcl < 1 (Rusanov 1970), giving a

necessary condition for the stability of the variable coefficient problem.

3.7 A \Meighted (3,3) FDE

Consider the advection equation evaluated at the point (r¡, tn¡t¡ù.Expressing the time derivative in

the symmetricaliy weighted form:

o{3} = -firoa'(# "#)

#1]." = ó XI].','' * Í - ó) #1",*" * ó Xl")*','' * o{(a'r)z},

and the space derivative as the average of its value at the nth and (n + 7)th time levels, namely

gi1"*' r' 
= ! ( Ll" * Tl"*') + o{1rr¡,1,ul¡ -t\*1, urtj / "

L {r} : (+þ - c)rj'Jl + 4(1 - zó)ri*' + (4ó + Òri|i
R {r} : (4þ + c)ri_t+ 4(1 - 2þ)ri + @þ - c)ri*r.

and replacing all derivatives by their second-order centered-difference forms, gives the weighted method

(3.40)

(3.41)

(3.42)

If the coefficients on the left hand side of the weighted FDE are all non-zero, an implicit scheme is

obtained. Implicit methods can only be used to approximate solutions of the advection equation if
the boundary values are known at both ends of the computational domain, or if periodic boundary

conditions are used. A more comprehensive discussion of boundary conditions is given in Section 3.10.
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The resultant tridiagonal system can be solved using the Thomas algorithm provided that the system

is diagonally dominant. Diagonal dominance is required so that the Thomas algorithm is stable with

respect to the propagation of round-off errors (Hirsch 1990). The advantage of using the Thomas

algorithm for tridiagonal systems is that it is much more efficient than using, for example, Gaussian

elimination with back substitution.

From the definition given in Section 2.2.3,it can be seen that the weighted method is diagonally dominant

provided 411 - 2ól > 14ó - cl + laþ -l cl. Furthermore, since it is diagonally symmetrical for all c and þ,

it is unconditionally stable. The proof of this is given in Noye (1984a).

In the constant coeficient case, the first few error terms of the MEPDE of (3.42) contain the factors

(3.43)

ns:(2tc2-12ó)12

Therefore, the weighted method is accurate to second-order unless Tls : 0, when it is fourth-order

convergent. Since the maximum order of convergence that can be attained for the given computational

stencil is fourth-order (Noye 1986), the weighted method is optimal when 43 - 0.

3.8 The Optimal FDE

For constant coefficients, the optimal version of the weighted method is obtained when the leading error

term in the MtrPDE takes the value zero. This is achieved by setting ö : (2 + c2)172, giving the

unconditionally stable fourth-order optimal method (Noye 1986), namely

n2: n4:116: 0

which is diagonally dominant and hence solvable using the Thomas algorithm if lcl ! 1 (Noye 1986).

As the development of (3.aa) involved evaluating the advection equation aL (r¡,tn¡rlz), the consistency

analysis to determine its convergence for variable coefficients is also taken about this point. The MDPDtr

obtained after converting the temporal derivatives to spatial ones in the truncation error is given by

F{î} : -t2LtE.,, (3.45)

where

t.{r}: (2 -3c+ c2)ril1r +2(4- "')ri*t + (2+3c+ c2)r','l}

R {r} : (2 + 3c + c2)rl'; + 2(4 - c2)ri -r (2 - 3c + c2)rl¡r,
(3.44)

u,:ry e#-,n#) +o{4},
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in which

in which the correction factors are defrned as

P : # - r*u# * r" u*4, - ^ (#) * +u, "-,#,

e:G_ +"-\r,ffi.

r {î} - -+alt"ffi) * rnfro,r' #) * o ur,

The truncation error indicates that the optimal method, denoted OPT, is second-order when the variable

velocities are specified at each half time level. This is one order of magnitude higher than that found

for the explicit base methods.

3.8.1 Modificatrons

Substitution of (3.46) into (3.45) yields the MDPDE

(3.47)

(3.48)

(3.4e)

(3.50)

To gain a third-order truncation error, both spatial derivatives must be substituted with approximations

that are at least first-order. Since the derivatives are evaluated at (r¡,tn¡r1z), they are first written

as the average of their values at the ntt" and (n+I)th time levels, as shown in (3.a1). The first-order

spatial derivatives are then replaced by first-order upwind differencing, and the second-order derivatives

are replaced by second-order centered-space forms. This gives

d, = 
(L,t)3 

P.
8Ar

n:ffia

(2 - 3c t c2 - a - òriJÌ + 2(4 - c' + 9)ri+1 + (2 + 3c t c2 + d - òrili
: (2+3c:- c2 + d+ @ri r+2(4- c2 - ç)ri + Q-3cI c2 - d+ ç)ri*1,

in which ,p : ldl * h. This method, for which all coefficients are evaluated at the half time level, will

be called the mod-O method. A fourth-order method can be obtained if all spatial derivatives are

discretized using CS forms. The result, denoted mod2-O, is given by (3.50) with cp : å,. The second-

order wave and amplitude errors in the truncation error of the base method have been removed and

replaced with third and fourth-order amplitude errors in the truncation error of the mod-O method,

and by fourth-order numerical dispersion and amplitude errors in that of the mod2-O method.
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3.9 Discrete Velocity Fields

In the previous sections it was assumed that the advective velocity is available as a differentiable function

of r and ú. However, in practice it is more likely that a discrete velocity fleld will be available, with

values of u known only at grid points. In this case, the correction factors must be computed from the

given values of ø. For exampìe, differencing the correction factor d given by (3.18) so that it is correct

to first-order, does not change the order of the modified methods considered. If the derivatives in (3.18)

are replaced by two-point forward-time and centered-space approximations, then d may be replaced by

uT*t - un u']*
(3.51)

2L,r

without loss of order. If the values of t¿ are not yet available at the time level (n + 1), then two-point

backward-time differencing could be used instead, yielding

A¿ -ui ) 
: i {z("i*' - q - ciþi¡t - "i-,)},

t - ull-t

u'],

2A,r

The only disadvantage of this procedure is that the discrete velocity field must be known at the time

levei n: -1 if the values of do, arc to be available for use at the initial time. The correction factors

defined by (3.36) and (3.49) can also be discretized by replacing all derivatives of u by approximations

which are accurate to at least first-order. Approximations to d must then involve three-levels in time

because of the second-order temporal derivatives of z involved in each formulation. Either forward-

space, backward-space or centered-space differencing could be used to approximate the second-order

temporal derivative, the choice depending on which values of u are available. At most two levels in time

are required to discretize h in each case.

3.10 Boundary Conditions

According to (3.3), íf u ) 0 then the upstream boundary values at r : 0 are known, but those

downstream atr: l willnot be available. Likewise, if u <-0the values aT,r:0 arenot given.

Generally, a supplementary scheme of appropriate order must be used to provide these unknown values.

For example, Leith's method could be supplemented at the left or right hand boundaries as required,

using the UW15 method, which reduces to (3.23) for negative velocities or (3.22) for positive velocities.

Higher-order boundary values may be obtained using the second, third or fourth-order implicit equations.

In this work, if a boundary value problem is being considered, the analytical solution wiil be used to

provide the required initial and boundary values, as weil as the downstream boundary values. The

provision of an extra downstream boundary condition overspecifies the advection problem. However,

this is acceptable if the advection equation is considered as the transport equation in the limit as the

o*9#(", 1,,-'-", ) 
: i {2(c; - "i-\ - "î(c}+, - E-)} (3 52)

T 1_L
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diffusion tends to zero (Steinle 1994). The transport equation requires the specification of boundary

conditions at both ends of the domain because of the presence of the second-order derivative.

Problems may also arise at points close to the boundaries when approximations to derivatives require

data at more than three points, as in the case of the (1,5) methods. Often one-sided or implicit schemes of

appropriate order are used to provide the values adjacent to the boundaries. The alternatives suggested

by Steinle (1994) include interpolating the unknown values from surrounding values, or extrapolating

the solution to give fictitious values outside the domain, which can be used directly in the equation.

As the performance of the schemes should be representative of a wide range of applications rather

than dependent on a specific situation, periodic boundary conditions are often used in numerical tests.

Although the condition î(0,1) : î(I,ú) is usually referred to as the periodic boundary condition, strictly

speaking it is not a boundary condition, because for periodic problems there are no boundaries (see

Strikwerda 1989).

3.11 Summary

The accuracy of four base methods (Leith's method, the UWl5 method, Rusanov's method, the optimal

method) was determined by conducting a formal consistency analysis, yielding the truncation error of

the scheme. It was seen that the convergence rate of the base method is reduced when it is applied in

a variable velocity situation. Each base method was modified in two ways in an attempt to restore the

convergence rate back to (or close to) that of the base method when it is used for constant coefficients.

The first modification was based on using upwind differencing for the term involving d and centered space

differencing for the term involving h in the truncation error. There was a term involving h for Rusanov's

method and for the optimal method. The modified methods were denoted mod-Fl, where 'FL' is the

first letter of the base method. The second modification involved using centered space differencing for

both the term involving d and (if present) the term involving h. These modified methods were denoted

mod2-Fl, where again 'FL' is the frrst letter of the base method. A synopsis is given in Figure 3.1.

3.L2 Conclusion

We have seen that FDMs may lose several orders of convergence when applied in variable velocity

situations. The leading error terms, which may affect either wave speed (odd derivatives) or amplitude

response (even derivatives) can be discretized and incorporated into the FDE, thereby increasing the

order of convergence back to the constant coefficient rate. Although new errors are introduced by the

modifi.cation procedure, they are always of a higher order than the original errors. The dominant error

terms for ail ihe base methods considered are presented in Table 3.1.
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Leith

denoted LTH

(1,3) explicit stencil

second-order for constant z

first-order for variable z

uw15

denoted UW15

(1,5) explicit stencil

second-order fbr constant u

first-order for variable u

Rusanov

denoted RUS

(1,5) explicit stencil

fourth-order for constant u

first-order for variable u

Optimal

denoted OPT

(3,3) implicit stencil

fourth-order for constant u

second-order for variable u

mod-L

(1,3) explicit stencil

UW differencing for d term

no term involving h

second-order for variable z

mod-U

(1,5) explicii stencil

UW differencing for d term

no term involving h,

second-order for variable u

mod-R

(1,5) explicit stencil

UW differencing for d term

CS differencing for h term

third-order for variable u

mod-O

(3,3) implicit stencil

UW differencing for d term

CS differencing for h term

third-order for variable u

mod2-L

(1,3) explicit stencil

CS differencing for d term

no term involving h.

second-order for variable u

mod2-U

(1,5) explicit stencil

CS differencing for d term

no term involving h

second-order for variable u

mod2-R

(1,5) explicit stencil

CS differencing for d term

CS differencing for å, term

third-order for variable u

mod2-O

(3,3) implicit stencil

CS differencing for d term

CS differencing for h, term

fourth-order for variable u

---+

__>

-+

-l

&

&

&

k

Figure 3.1: Synopsis of the properties of the methods.

Note that the variable coefficients are evaluated at (ø7, tn) for all the explicit methods, whereas for the

implicit methods they are evaluated at (r¡,tn¡t/z).
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LTH

uw15

RUS

OPT

Table 3.1: Dominant error terms for the base methods where €r ...€¡ are weights

The coefficients of the derivatives have been replaced by the weights €r . . . €r, to retain clarity. When

the error term involving (¡ is removed by the modification procedure, a new error term is introduced.

The new terms are given in Table 3.2. Note that wherever "€y" is read, the entire term involving "{¡"
is implied.

It is not necessarily the case that any of the new erÌors are amongst the dominant elror terms of the

modified equation. For example, the mod2-L modification, in which the first-order error of the base

method has been replaced by a third-order error, is still generally second-order because of the presence

of the second-order term in the truncation error of the base method.

Clearly, there is the potential for the new error terms to interact with the old higher-order ones, which

were not modified in any way. These interactions may act to reduce, but could possibly magnify, any

existent wave or amplitude errors. It is difficult to quantify these interactions because of the variability

of the velocity field, but it would be fair to say that any such effects are subtle in comparison to the

magnitude of the dominant wave or amplitude errors of the base methods.

The stability of the methods was determined by conducting a local von Neumann stability analysis on

the frozen coefficient problem (Strikwerda 1989, Hirsch 1990), yielding a necessary condition for the

stability of the variable coefficient problem (Richtmyer and Morton 1967, Hirsch 1990).

E,: Lt€tff*op¡ first-older wave-speed error

E,= Lt{rffi*op¡ first-order wave-speed error

âî ôî a2îE,: LL€ti: + lnr;'1za + (a¿)'(r 
- 

+o{3} : first and second-order wave-speedcltx oî or'
errors and second-order amplitude-error (numerical diffusion)

^; 
n2î

E, = (a't)2€af; + (a¿)'(t up + o{a} : second-order wave-speed error

and second-order amplitude error (numerical diffusion)
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mod-L

mod2-L

mod-u

mod2-u

mod-R

mod2_R

mod_o

mod2_o

Table 3.2: Errors introduced by modification procedure.

By considering various base methods with different stencils, it was possible to develop several new

modified methods with convergence rates ranging from two to four. It is desirable to have a broad

range of methods available for several reasons. We have seen that many schemes require supplementary

methods to provide values near the boundaries. By having another scheme with a different stencii, but

equivalent order, this problem can be resolved without a reduction in convergence. In practice, the

accuracy of the solution technique should match that of the input data. Using a less accurate scheme

means that information will be lost in the solution process, while using a more accurate one may be

more time consuming, but cannot add significantly to the overall accuracy of the solution.

(1 replaced by second-order amplitude error

{1 replaced by third-order \'r'ave-speed error

{1 replaced by second-order amplitude error

(1 replaced by third-order v/ave-speed error

(1 and {2 replaced by third and fourth-order wave-speed errors respectively

(3 replaced by fourth-order amplitude error

(1 and (2 replaced by third and fourth-order wave-speed errors respectively

(half magnitude of mod-R), {3 replaced by fourth-order amplitude error

(4 replaced by third-order amplitude error

{s replaced by fourth-order amplitude error

(a replaced by fourth-order wave-speed error

{5 replaced by fourth-order amplitude error
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Although we have gained some insight into the relative accuracy of the schemes by comparing their

truncation errors, numerical tests are required to illustrate their performance in modelling certain aspects

of advection, such as amplitude and wave speed. Numerical tests will also provide an indication of the

computational time required by each scheme to produce a result. In Chapter 4, the performance of the

schemes will be investigated when applied to the benchmark test problem of advecting a wavetrain of

Gaussian pulses at a velocity which varies in both space and time. Because both the initial condition

and velocity profile considered are smooth functions, it will be possible to verify the improved orders of

convergence of the new modified methods. Additionally, the tests will show that, in general, high-order

schemes are more accurate and more efficient than low-order ones.
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Chapter 4

Numerical Tests for
One-Dimensional Non- Conservative
Advection

Numerical tests are required to validate models. A good numerical scheme for advection is one which

can propagate steep fronts for a large range of Courant numbers with as little numerical diffusion as

possible, with no introduction of oscillations or negative values, and requiring a minimal amount of

computational effort. The accuracy of numerical schemes may be assessed by using analytical solutions,

successive grid refinement or by comparing numerical schemes (Zoppou and Knight 1997b).

Few analytical solutions exist for variable coefficient problems, and those that do are often complicated,

or have limited practical relevance (Zoppou and l(night 1997b) . In the absence of asuitable analytical

solution, successive grid refinement may be used. This technique, which will be used in Section 4.1, has

the disadvantage that a very fine grid is required to obtain a solution accurate enough to be considered

'exact.' This is not only computationally expensive, but also risks the introduction of round-off errors

into the numerical solution. In fact, after a certain point, further refinement of the grid will no longer

reduce the error, because the round-off error has become comparable in size to the discretization error

(May and Noye 1984). In Section 4.2,an analytical solution is developed, which is used in Section 4.3,

to determine how the accuracy of the methods is affected by altering the size of the Courant number.

Comparing numerical schemes based on the various desirable properties mentioned above tends to be

rather subjective. There is often a trade-off between factors such as overall accuracy versus simplicity

and computational efficiency, amplitude errors versus wave speed errors, non-negativity versus high

orders of convergence, and additionally, the imposition of stability restrictions.
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4.L Numerical Test

The aim of this section is to illustrate the improved orders of convergence of the modified methods,

and to compare their performance with the application of the base methods to the solution of the

non-conservative form of the advection equation. All of the methods described in Chapter 3 will be

tested and examined in terms of their overall accuracy, computational efficiency, and the severity of any

amplitude or wave speed errors introduced into the numerical solution.

4.L.L Smoothness of the Data

It is known that the existence of a smooth solution is the underlying assumption of high-order methods,

and that non-smoothness in the initial data (and thus the final solution) may result in reduced orders

of convergence. For this reason, the test problems involve the propagation of a smooth initial profile

subject to a smooth variable velocity. In other words, for a scheme of order p, at least the first (p + 1)

derivatives of the initial condition and the velocity exist and are continuous.

4.1.2 Periodic Boundary Conditions

Periodic boundary conditions will be used for the numerical test discussed in this section. Periodic

boundary conditions may be specified on a finite domain by repeating the computational domain of

length L periodically so that all quantities, the solution, as well as the errors, can be expressed as

a finite Fourier series over the domain 2L. Using periodic boundary conditions allows attention to be

focussed on determining the order of convergence of the numerical scheme under consideration and is

valid when the influence of the boundaries can be neglected or removed. It should be noted that the

von Neumann stability analysis, which does not take the influence of boundary conditions into account,

is based on the assumption of the existence of periodic boundary conditions (Hirsch 1990).

4.1.3 Initial Condition and Velocity Profile

The advection of a Gaussian pulse, initially given by î(r,0) : e*p{ -400(r - 0.1)'?}, moving at a velocity

of the form u(n,t): K(0.5.|sin2zrr) cosú, is simulated using the numerical schemes. The coefficient rc

is included to keep the maximum value of the Courant number fixed at cmax: 1 for both final times

considered (refer to Table 4.1). The problem is solved on successively finer grids, so that the grid

number ranges from "I : 50 to 10000, and the number of time steps is set equal to the grid number, so

that l/:.-I. The solution is sought after a quarter cycle, that is at time T:r12, and after one cycle.
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No exact solution is known to the problem after a quarter cycle, so the exact solution is taken to be the

result of the most accurate method solved on the finest grid considered. In other words, the fourth-order

implicit mod2-O method solved on the grid .I : 10000 provides the exact solution'

Since the velocity profile is temporally cyclic, the pulse is returned to its original location with its initial

shape every half cycle. Hence, after one cycle, the exact solution is given by the initial condition.

4.t.4 Implementation

The numerical test described in Section 4.1 will be referred to as the Gauss test. A summary of the

data required to implement the Gauss test is given in Table 4.1.

The explicit methods are implemented in a trivial fashion, with the single unknown at the new time

level (n * 1) being given explicitly from the known values at the old time level n.

The implicit methods require the solution of a periodic tridiagonal system of linear algebraic equations

each time step. A slightly modified fbrm of the Thomas algorithm has been developed for the solution

of periodic tridiagonal systems. This algorithm can be found in Noye (198aa) and in Hirsch (1990).

The programs were written in Fortran 90 and run on a Toshiba Tecra 8000

4.L.5 Results

The results of applying the Gauss test with J : 50 and J : 100 to a final time of a quarter cycle are

shown in Figures 4.1 and 4.2. The graphical results after one cycle are not presented because at this

final time the pulse is too narrow to compare the methods. The main features that can be isolated from

the diagrams are how well the scheme models the amplitude and the wave speed of the pulse.

Amplitude errors are seen as the difference between the true height of the pulse and the height of the

numerical solution. For this numerical test, the exact height of the pulse is equal to one. Wave speed

errors are seen as a displacement of the peak of the numerical solution relative to the true peak position.

An error in the wave speed of the scheme can cause spurious oscillations and unrealistic negative values

to be introduced into the numerical solution, which can also be detected in the graphical results.

There are two possible sources for any loss in peak amplitude seen in the numerical results. The first

cause is the introduction of amplitude errors (such as artificial diffusion) into the numerical solution by

the scheme. The second possibility is the result of the dispersing (or spreading) of the pulse into different

waves due to different Fourier components in the initial condition being propagated with different speeds.

Therefore, the amplitude of a method with a dominant wave speed error) may also be poor.
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1. Initial condition î(r,0) : exp{-400(r - 0.1)2}

2. Periodic boundary conditions î(7 + r,t) : î(r,t)

3. Courant number c : uLt I Ln : uT J lN

4. cmax: 1

5. u(r,t): ,r(0.5 + sin2 zrr) cos ú

6. T : r12, n : 4l3r,umax : 2fr: quarter cycle

7. T:2r, n:ll3r, ?¿max: lf2r'. one cycle

8. N: J with J = 50,100,200,...,5000

9. exact solution when T : ¡r 12 is the solution of mod2-O when J : 10000

10. exact solution when T : 2tr is the initial condition

Table 4.1: Daia for the Gauss Test

Leith's method and the mod-L and mod2l, methods are compared for J : 50 in the top left diagram

of Figure 4.1. The solutions exhibit spurious trailing oscillations and unrealistic negative values, in-

dicative of poor wave speed modelling. Spurious oscillations can develop if the scheme transmits the

short wavelength Fourier components in the initial condition at different speeds to the long wavelength

components (Noye 1984b). These oscillations grow unless they are damped by the scheme.

It is apparent that the peak of the base method is better aligned to the exact solution and exhibits

Iess damping than either modified method. Table 4.2 (see Section 4.1.6) shows that Leith is only more

accurate than mod-L and mod2-L when .I : 50. Because of their higher convergence, the accuracy of

both modified methods improves more rapidly than that of the base method as the grid is refined.

Table 4.4 shows that the amplitude error introduced by the mod2-L method is smaller than that intro-

duced by the mod-L method. That is, the solution of the mod2-L method is less damped than that of

the mod-L method (top left diagram in Figure 4.1). This is explained in Table 3.2; the mod2J method

uses second-order centered space differencing in its modification procedure, which is more accurate than
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Figure 4.1: The top diagrams compare Leith's method and its modifications to the UW15

method and its modifications for .I : 50. The bottom diagrams are for J : 100.

the first-order upwind differencing used for the mod-L method. The use of upwind differencing is known

to damp the numerical solution (Noye 1984b). A comparison of the UW15, mod-U and mod2-U methods

in the top right diagram of Figure 4.1, shows that the height of the pulse advected by the base method

is closer to the exact value, but the pulses advected by the modifred methods are better aligned to the

true solution. AII three methods advect the pulse too rapidly and a leading oscillation is generated. This

oscillation is slightly worse for the base method (see Table 4.5 which gives the minimum value of the
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Figure 4.2: The top diagrams compare Rusanov's method and its modifications to the OPT
method and its modifications for J : 50. The bottom diagrams are for .,I : 100.

numerical solution for each scheme). Because of the centered space differencing used in its modification

procedure, the solution of the mod2-U method is less damped than that of the mod-U method (see

top right diagram in Figure 4.1). Since the UW15 method was modified in the same way as Leith's

method, any differences seen in the results of their respective modified methods are because of intrinsic

differences between the base schemes, rather than as a consequence of the modification procedure. The

top diagrams in Figure 4.1 show that the leading oscillation generated by the U\M15 method is spread

over ìess grid points than the trailing oscillation produced by Leith's method, but Leith's solution is

mod O
mod2 O ----
exact 

-

RUS _ _..

mod R "''
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exact 
-
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better aligned to the exact solution. When the grid is refined to J : 100, the results of all methods

improve (see bottom diagrams in Figure 4.1); particularly noticeable is the improved alignment of the

modified solutions to the exact solution. In all cases, the spurious oscillations are no longer visible, but

the solutions of the modified methods are still more damped than those of the base methods.

The top left diagram in Figure 4.2 shows that the solution of Rusanov's method leads the exact soiution

with a reduced peak height. This is consistent with the fact that the dominant errors of this base method

include first and second-order wave speed errors and second-order artificial diffusion (refer to Table 3.1).

The spurious oscillations and unrealistic negative values introduced by the schemes in Figure 4.1 are

not evident in these test results.

Table 3.2 indicates that the mod-R and mod2-R methods do not introduce any first or second-order

errors into the numerical solution. The dominant errors affect their wave speed. The top left diagram

in Figure 4.2 shows that, because these errors are small, the numerical solutions are closely aligned to

the exact solution. The only visibie difference between the two modified methods is that the mod2-R

method models the height of the pulse slightly better than the mod-R method.

The implicii OPT method introduces second-order wave and amplitude errors into the numerical

solution. Since it introduces no first-order wave speed errors into the numerical soiution, its solution

should be better aligned to the exact solution than that of the explicit base methods. This is verified

by comparing the solutions of the base methods displayed in Figures 4.1 and 4.2. Although the OPT

method gives smaller amplitude errors than Leith's method or the UW15 method for the solutions

displayed, Rusanov's method models the height of the pulse even better (see also Table 4.4).

Table 3.2 shows that the dominant error of the mod-O method includes third-order numerical diffusion,

and that the mod2-O method introduces fourth-order amplitude and wave speed errors into its solution.

The top right diagram in Figure 4.2 shows that these errors are so small that only a slight loss in peak

height is seen when J : 50. The bottom diagrams in Figure 4.2 show that when the grid is refined,

the results of the third and fourth-order methods are indistinguishable from the exact solution, but the

pulse advected by Rusanov's method still lies ahead of the exact solution, and a slight loss in amplitude

is observed for the OPT method.

Peak clipping is a problem that often arises in the numerical simulation of advection. Unless the peak is

advected in an integral number of grid points, information is lost, giving the appearance that the peak

has been flattened (Steinle 1994). This effect is more prominent for coarse grids, where insufficient data

points are available to represent the solution accurately. Most of the schemes display some form of peak

clipping when J:50. However, this is no longer a dominant feature of the results when ,I=100.

It is possible to recover the peak by using polynomial interpolation near the maximum of the pulse, and

the peak position can be found by inverse interpolation (Steinle 1994). The order of the polynomial is

usually chosen to match that of the scheme. So that the performance of the schemes at hand can be

assessed, interpolation to capture the peak is not considered.
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Because the pure advection equation governs the way in which a passive quantity is carried along by

a fluid in the absence of diffusion, sources or sinks, the maximum and minimum values of the finite-

difference solution should be identical to those of the initial condition. For this numerical test, the

maximum and minimum values of the solution should therefore be one and zero, respectively.

TabIe 4.4 gives the error in amplitude for the methods after a quarter cycle. Except for the UW15

method, for which the ampiitude is greater than one for grid numbers exceeding 500, all methods

have the property that the height of the pulse approaches one from below as the grid is refined. The

modified implicit schemes give the smallest amplitude errors. The explicit mod2-R method also performs

well, especially when the grid number is greater than 50. The modified second-order explicit formulae,

however, are always outperformed by their base counterparts.

The schemes should not introduce negative values into the numerical solution, so the values lr^inl are

compared in Table 4.5. Values smaller than 1e-14 are taken to be zero, and are represented by a dash

in the tables. The implicit methods usually outperform the explicit ones, giving results which are very

close to being non-negative. As the grid is refined, it can be seen from Table 4.5 that r*¡n -+ 0 most

rapidly for the mod2-O method. The explicit scheme for which rmin) 0 fastest is the mod-R method.

To summarize, of the three explicit base schemes considered, Rusanov's method gives the best amplitude,

while Leith's meühod positions the pulse the best. The implicit OPT method aligns the pulse more

accurately than Leith's method and, in addition, introduces no detectable negative values or oscillations

into the numerical solution. Rusanov's method captures the height of the pulse better than the OPT

method, but its numerical solution leads the true solution considerably. The second-order explicit

modified methods do not capture the height of the pulse as well as their respective base methods.

The third and fourth-order modified methods advect the Gaussian puise most accurately. When the

grid is refined, there is an obvious improvement in the alignment and peak resolution of ali methods.

This is more noticeable for the solutions of the modified methods, which are usually better aligned than

the solutions of their base counterparts, and which become indistinguishable from the exact solution in

the case of the third and fourth-order methods.

4.L.6 Further Comparisons

The rms error in the finite-difference solution relative to the exact solution was calculated using all the

grid points at the final time. The exact solution after a quarter cycle was taken to be the result given

by the mod2-O method when J : 10000. The rms errors for all methods are given in Table 4.2 and the

average cpu time over 20 consecutive runs of the algorithm is given in Table 4.3.

From the values in Table 4.2, the methods can be classified in terms of their overall accuracy. The

results show that the implicit OPT method, which is second-order convergent, is the most accurate base

method. Of the explicit base methods, ail of which are first-order, Leith's method is the most accurate,
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followed by Rusanov's method and the UW15 method. Although Leith's method is more accurate than

Rusanov's method, the latter scheme may be preferred, since it doesn't appear to introduce osciìlations

or unrealistic negative values into the numerical solution (compare Figures 4.7 and 4.2.)

The OPT method is the most accurate second-order method. Unless J:50, when the mod-L method

is more accurate, the mod2-L method is the most accurate expÌicit second-order scheme. The mod-L

method is more accurate than the mod2-U method unless J : 5000, and the mod-U method is the least

accurate second-order method. Leith's method is more accurate than the mod-L and mod2j methods

when J : 50, and more accurate than the mod-U and mod2-U methods when ,.I: 50 or 100.

Of the three third-order methods developed for variable coefficients, the implicit mod-O method is the

most accurate, followed by the explicit mod2-R and mod-R methods (see Table 4.2). The fourth-order

implicit mod2-O method is the most accurate method overall, except for when ,.I : 50 and 100, when it
is outperformed by the third-order mod-O method (see Table 4.2).

From the above discussion we may conclude that, generally speaking, implicit methods are more accurate

than explicit methods of the same order, and the higher the order of convergence, the more accurate

the method. Table 4.3 can be used to classify the methods in terms of the computational effort required

to obtain the numerical solution.

For all methods, it can be seen that doubling the grid number, which also doubles the number of time

steps, increases the computational time four-fold. Leith's method is the fastest method overall. This

is because of the simplicity of the coefÊcients in its (1,3) computational stencil. The mod2J method

requires about 2.25 times longer to run than Leith's method for each grid number. The mod-L method

takes a little ionger to run than the mod2-L method (refer to Table 4.3).

The computational times for the UW15 method and its modifications are a little longer than for Leith's

method and its modifications. This is because they have (1,5) stencils. Rusanov's method has more

complicated coefficients than the UW15 method and so requires more computational time. The mod-R

method takes about 3.71 times longer to run for each grid number than Rusanov's method. It has

complicated coefficients and requires the evaluation of two correction factors at each point in the domain.

Although the implicit OPT method is the slowest base method, it requires less cpu time than the explicit

modified schemes. The modified implicit methods require the longest time to run. The mod-O method

requires about 3 times longer to run than the OPT method for each grid, while the mod2-O method is

a little faster than the mod-O method (see Table 4.3).

It is recalled that a periodic variant of the Thomas algorithm for tridiagonal systems was used to solve

the implicit schemes. This algorithm requires a total of 72J multiplication and division operations for

a system of .I equations in J unknowns (Noye 1984a). By contrast, the standard Thomas algorithm for

tridiagonal systems requires only 5J such operations for a system of the same size (Hirsch 1990).
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These results lead to the conclusion that the simpler the computational stencil and coefficients of the

scheme, the smaller the cpu time. Specifically, the base schemes with (1,3) stenciÌs were faster than

those with (1,5) and (3,3) stencils. Furthermore, it is observed that the least accurate methods tend to

be the fastest. There is clearly a trade-off between speed and accuracy. For this reason, it may be more

appropriate to judge the methods in terms of their computational efficiency, rather than considering

their speed and their accuracy separately. This will be discussed below.

Convergence can be illustrated by plotting the rms error against the grid number on Iogarithmic scales.

The order of convergence can be found from the slope of the line of best frt to the data. The equation of

the line of best fit is found by using the method of least squares. Accuracy in relation to computational

efficiency is studied by graphs showing the rms error versus cpu time using logarithmic scales. Similarly,

the cpu time is plotted against the grid number so that just the speed of the methods can be compared.

Graphs showing the convergence, efficiency and cpu times of the methods after a quarter cycle are given

in Figures 4.3 and 4.4. The main information given by these plots is the comparative performance of

each modified method to its base method, and an indication of how well the two modified methods

of each base scheme perform with respect to each other. It is observed that, although the modified

methods always required more time to run than their base counterpart, they were almost always more

accurate and more efficient to use.

The top left diagram in Figure 4.3 shows that Leith's method is more accurate than the mod-L and

mod2-L methods when J : 50. The middle left diagram in Figure 4.3 indicates that it is also more

efficient than these methods when J : 50 and 100. However, if the grid is refined further, both modified

methods outperform Leith's method quite considerably in terms of accuracy and efficiency. The second-

order explicit methods cannot be separated from the diagrams in Figure 4.3, however Tables 4.2 and 4.3

have already been used to compare the speed and accuracy of these methods.

Although the implicit OPT method expends more time than the other base methods, this additional

cost is more than compensated by its superior accuracy. Not only is the OPT method the most efficient

base method, it is also the most efficient second-order method. This is because it is the fastest and most

accurate second-order method (see Tables 4.2 and 4.3).

The superior performances of the third and fourth-order modified methods over the base methods is

evident in Figure 4.4. The third-order mod2-R method is clearly the most accurate and efficient explicit

scheme, whiie the fourth-order implicit mod2-O method is generally the most accurate and efficient

method overall. The third-order mod-O method is marginally more accurate when J : 50 and 100, but

is otherwise outperformed by the mod2-O method (see Table 4.2).

It is observed that for this numerical test, the third-order mod2-R method actually gave results which

are accurate to fourth-order for grid numbers not exceeding 500. The mod-O method also shows fourth-

order convergence) but only for glid numbers not exceeding 200. Otherwise, the lines of convergence for

ali methods are very close to being straight lines (compare top diagrams in Figures 4.3 and 4.4).
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J LTH uw15 RUS OP'I'
50
100

200

500

1000
2000
5000

3.47e-02
1.63e-02
L02e-02
4.78e-03
2.52e-03
1.29e-03
5.24e-04

9.53e-02
3.99e-02
1.67e-02
5.84e-03
2.78e-03
1.36e-03
5.34e-04

4.88e-02
2.62e-02
I.32e-02
5.29e-03
2.64e-03
1.32e-03
5.29e-04

1.32e-02
3.39e-03
8.54e-04
1.37e-04
3.43e-05
8.57e-06
1.37e-06

J mod-L mod-U mod-R mod-O
50
100

200
500
1000
2000
5000

5.51e-02
7.62e-02
4.17e-03
6.69e-04
1.67e-04
4.18e-05
6.69e-06

5.98e-02
1.75e-02
4.44e-03
7.02e-04
I.74e-04
4.34e-05
6.93e-06

1.15e-02
1.14e-03
1.12e-04
6.02e-06
7.05e-07
8.52e-08
5.34e-09

1.74e-03
9.85e-05
7.18e-06
3.55e-07
4.36e-08
5.51e-09
3.57e- 10

J mod2-L mod2-U mod2-lì mocl2-o
50

100

200

500
1000

2000
5000

5.53e-02
1.58e-02
4.02e-03
6.44e-04
1.61e- 04
4.02e-05
6.42e-06

5.61e-02
1.65e-02
4.22e-03
6.72e-04
1.68e-04
4.18e-05
6.68e-06

7.46e-03
5.06e-04
2.93e-05
6.05e-07
4.31e-08
5.96e-09
4.58e- 10

1.81e-03
9.96e-05
6.06e-06
1.54e-07
9.62e-09
6.00e- 10

I.44e.-17

Tabìe 4.2: RMS errors after a quarter time cycle when the Gauss test is

applied to the one-dimensional non-conservative advection problem.

J LTH uw15 RUS OPT
50

100

200
500
1000

2000
5000

2.70e-03
1.05e- 02

4.28e-02
2.76e-07
1.06ef 00
4.36e+00
2.69et01

2.80e-03
1.10e-02
4.67e-02
2.80e-01
1.11e*00
4.70e*00
2.83e *01

3.30e-03
7.32e-02
5.36e-02
3.33e-01
1.30e-l00
5.44e*00
3.23e*01

4.40e-03
I.76e-02
7.I7e-02
4.49e-01
1.80e*00
7.59e*00
5.03e*01

J mod-L mod-U mod-R mod-O
50
100

200

500
1000
2000
5000

6.05e-03
2.42e-02
9.78e-02
6.12e-01
2.45e*00
9.83e+00
6.15e*01

6.10e-03
2.58e-02
1.01e-01
6.23e-01
2.50e*00
1.02e*01
6.27eI01

1.24e-02
4.97e-02
1.96e-01
1.23e+00
4.91e+00
1.96e101
1,.22e*02

1.35e-02
5.38e-02
2.I7e-07
1.36e-l00
5.44e*00
2.33e+01
I.49e+02

J mod2l, mod2-U mod2-R mod2-O

50
100

200
500

1000

2000
5000

6.00e-03
2.41e-02
9.72e-02
6.05e-01
2.42e-100
9.81e*00
6.09e*01

6.05e-03
2.48e-02
9.83e-02
6.09e-01
2.44e+00
9.89e*00
6.12e*01

1.20e-02
4.78e-02
1.76e-01
1.22e-100
4.82e*00
1.87e*01
1.20e-102

1.32e-02
5.22e-02
2.11e-01
1.33e*00
5.43et00
2.20e+01
L.44e-102

Table 4.3: CPU times after a quarter time cycle when the Gauss test is
appliecl to the one-dimensional non-conservative advection ploblem.
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J LTH U W15 RUS OPT
50

100
200

500
1000

2000
5000

629e-02
L.77e-02
1.56e-03
7.62e-04
3.79e-05
9.62e-06
7.24e-06

6.21e-02
7.95e-03
6.54e-04
3.83e-05
-7.22e-05
-2.85e-06
-5.89e-07

I.47e-02
6.80e-04
3.66e-04
2.79e-05
3.69e-06
2.09e-06
2.08e-07

4.36e-02
1.09e-02
2.88e-03
4.67e-04
1.05e-04
2.70e-05
4.58e-06

J mod-L mod-U mod-lì mod-o
50
100

200

500

1000

2000

5000

1.02e-01
2.56e-02
5.50e-03
8.02e-04
1.90e-04
4.74e-05
7.68e-06

1.06e-01
2.27e-02
4.48e-03
6.47e-04
7.42e-04
3.51e-05
5.86e-06

2.39e-02
1.60e-03
3.83e-04
5.19e-05
1.06e-06
9.57e-07
4.74e-07

5.60e-03
6.37e-04
3.1 1e-04
5.15e-05
1.07e-06
9.64e-07
4.15e-07

J mod2-L mod2-U mod2-R mod2-O
50
100

200

500

1000

2000

5000

8.32e-02
1.85e-02
3.55e-03
4.85e-04
1.1 1e-04
2.75e-05
4.51e-06

8.37e-02
1.53e-02
2.51e-03
3.29e-04
6.26e-05
1.53e-05
5.58e-07

1.69e-02
9.33e-04
3.17e-04
5.04e-05
9.05e-07
9.42e-07
4.73e-07

4.66e-03
5.15e-04
2.96e-04
5.05e-05
9.49e-07
9.49e-07
4.14e-07

Table 4.4: Amplitude enols after a quarter time cycle when the Gauss test
is applied to the one-dimensional non-conservative advection problem.

J LTH uw15 rìUS OPT
50
100

200

500

1000

2000

5000

5.18e-02
2.30e-03
3.22e-06
1.86e- 13

4.08e-02
1.36e-03
1.14e-05
2.87e-tj

4.24e-04
1.85e-06
4.26e-t0

3.37e-05
1.55e-08
2.10e-14

.i mod-L mod-U mod-R mod-O
50
100

200

500
1000

2000
5000

4.23e-02
2.10e-03
3.02e-06
5.65e- 13

3.12e-02
1.10e-03
9.90e-06
2.63e- 10

5.38e-04
I.44e-06
3.45e- 10

2.46e-05
1.09e-07
5.85e-09
3.41e- 11

1.56e- 12

5.26e-I4
2.87e-I4

J mod2-L mod2-U mod2-R. mod2-O
50

100

200

500

1000

2000
5000

4.90e-02
2.29e-03
3.24e-06
1.97e- 13

3.33e-02
1.13e-03
1.03e-05
2.69e- 10

5.01e-04
1.85e-06
4.40e- 10

2.59e-05
1.07e-08

Table 4.5: Values l4'¿'l after a quarter time cycle when the Gauss test is

applied to the one-dimensional non-conservative advection problem.
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Method T:¡r12 T :2tr Theory

LTH

mod-L

mod2-L

uw15

mod-U

mod2-U

RUS

mod-R

mod2-R

OPT

mod-O

morl2-O

0.89

7.97

1.98

7.t2

1.98

1.98

0.99

3.t7

3.69

1.99

3.31

4.04

1.05

2.05

2.92

t.27

2.t5

2.86

7.02

3.39

3.15

3.01

1

2

2

1

2

2

1

.)

t

2

.)

4

Table 4.6: The orders of convergence for the Gauss test are given

by the slope of the line of best fit to the data.

After one time cycle, the exact solution is given by the initial condition, and the rms errors are presented

in Table 8.1 of Appendix B. Since the numerical test was constructed in such a way that no additional

computational effort is required to run the tests to a full cycle, the cpu times for this final time are not

presented.

Table 8.1 shows that the solutions given by the implicit OPT and mod2-O methods after one cycle are

virtually identical to the exact solution. The errors given by these methods are at the limits of machine

accuracy and may be taken to be zero. A possible explanation for this is that errors in the solution

which have built up over the first half-cycle are compensated for during the second half-cycle by errors

opposite in sign but equal in magnitude.

To verify this, the errors that accumulate after half a cycle and three quarters of a cycle were calculated.

The results, which are not presented, showed that the errors grow to a maximum after a quarter cycle,

after which they decline in the second quarter, so that exact results are again obtained after half a cycle.

This pattern continues, with errors increasing in the third quarter and decreasing in the fourth quarter.

Apart from these remarkable results and the fact that the second-order mod2J and mod2-U methods

gave almost third-order accurate resuits after one cycle (see Table 8.1), similar results to those after a

quarter cycle are obtained, so the convergence plots are omitted.
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4.L.7 Summary

The methods developed in Chapter 3 were used to simulate the advection of a Gaussian pulse, subject

to a variable velocity field and periodic boundary conditions. The methods vr'ere examined in terms of

their accuracy, efficiency, time expended to obtain a result, and the severity of any amplitude and wave

errors introduced into the numerical solution.

The convergence of the schemes was iìlustrated by plotting the rms error against the grid number on

Iogarithmic scales. The orders of convergence in Table 4.6 were obtained by performing a least squares

fit to the data. These indicate that for this numerical test all methods gave close to or better convergence

rates than expected from the theory. Since the OPT and mod2-O methods gave exact solutions after

one cycle, their convergence rates at this frnal time are not presented.

Based on the values given in Table 4.6, it can be concluded that we have been successful in the aim to

modify low-order methods for the numerical simulation of advection into high-order methods. Moreover,

the modified high-order methods were shown to be almost always more accurate and efficient than their

low-order base counterparts; particularly for fine grids and smali time-steps.

Although implicit schemes may require more time to tun, they can produce signifi.cantly more accurate

results than explicit methods of the same order. It was seen that artificial oscillations were generated in

the results of all the first and second-order explicit methods except for Rusanov's method. The implicit

schemes introduced no detectable oscillations into the numerical solution and gave results which were

virtually non-negative.

Overall, the most accurate explicit and implicit schemes were the third-order mod2-R and fourth-order

mod2-O methods. These were usually also the most efficient methods. Both schemes propagated a

smooth steep front without introducing any obvious oscillations into the solution. Each approximated

the speed of the numerically simulated pulse successfully.

Of all the schemes considered, the mod2-O method introduced the least artificial diffusion into the solu-

tion. Regarding this property, the mod2-R method was amongst the best performing explicit schemes.

Both methods were modified from low to high-order, and each can be recommended to give excellent

results at both coarse and fine grid resolutions.

4.L.8 Discrete Profile

The test was repeated for the second-order explicit schemes, using a discrete velocity fre\dui : u(r¡,tn),

where u and the other parameters are given in Table 4.1. The correction factor d is approximated by

(3.51). After a quarter cycle, the percentage change in rms error for these methods, compared to those

given in TabIe 4.2, is only approximately 0.5% (see Table 4.7). After two cycles, the errors increased by

about 3% for the mod2-L method, but less than by 2To for the other second-order explicit schemes.
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J mod-L mod2l, mod-u mod2-u

50

100

200

500

1000

2000

5000

0.54

0.62

0.48

0.60

0.60

0.48

0.45

0.36

0.63

0.50

0.47

0.62

0.50

0.62

-0.33

-0.57

-0.45

-0.57

-0.58

-0.46

-0.58

-0.54

-0.61

-0.71

-0.45

-0.60

-0.48

-0.60

50

100

200

500

1000

2000

5000

r.77

1.18

0.93

0.64

0.13

0.00

0.34

, ttJ. Jd

3.41

3.17

3.47
Deq

3.10

3.46

0.99

0.77

0.34

0.28

0.72

0.52

0.00

7.32

1.16

0.78

1.05

0.93

7.49

1.05

Table 4.7: Percentage change in RMS error when a discrete velocity profile is used

Values at top are for a quarter cycle and bottom values are for one cycle'

4.L.9 Non-negativity

It has already been mentioned that numerical schemes should preserve the physical properties of the

quantity under consideration. In particular, if non-negative initial and boundary values are specified,

then the exact solution is also non-negative (Vreugdenhil and Koren 1993). For this reason, numerical

schemes should not introduce unwanted (non-physical) negative values into the numerical solution,

Negative values are caused by spurious oscillations, which are in turn created by poor wave speed

modelling of the short wavelength Fourier components (Noye 1986).

Godunov's theorem (Godunov 1959) tells us that there is no linear scheme, with an order higher than

one, which is free from oscillations. The simplest and least diffusive linear scheme which gives non-

negative and non-oscillatory results is the first-order upwind method (Godunov 1959) . Hence, it is

possible to use the first-order upwind method to remove the negative values from the results given by

the methods described in Chapter 3.

A way to achieve this is by testing the sign of the value rf+1 obtained using the numerical scheme. If
it is negative, the value is recalculated, this time using the first-order upwind method. This technique

has been applied to all the numerical schemes using the Gauss test (Table 4.1) with T = n12. Sínce

negative values could only be seen in the results of the methods depicted in Figure 4.1 for .I : 50, only

the new results for these methods are shown below.
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0 0.5
Distance x

1 0 0.5
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Figure 4.5: Upwind method is used to eliminate negative values in the Gauss test

Other than the fact that the results are nov/ non-negative and non-oscillatory, none of the other features

of the solution change by using the first-order upwind method. Although the first-order upwind method

is very difiusive, the height of the pulse is unaffected, because it is not used near the peak of the pulse.

Even though the upwind method is only flrst-order, it is used only for a few grid points in the solution

domain, and so the convergence rates given in Table 4.6 are unchanged.

Although using the first-order order upwind method to remove all spurious oscillations has been success-

ful for this numerical test, this wilt not generally be the case. If instead of advecting a smooth front like

the one considered in the Gauss test, the numerical methods are used to advect, for exampie, a square

pulse, then oscillations may be generated along the entire top surface of the pulse (see for example

Steinle and Morrow 1989). Such oscillations cannot be removed by ihe technique described above.

Research undertaken to develop non-oscillatory schemes includes using a linear filter (Shapiro 1970),

or using polynomial approximation with the interpolation being done so as to avoid overshoots and

undershoots as in the CIP method (Takewaki and Yabe 1987). The upwind method is used as the

basis in the method of Smolarkiewicz (1983); some of the excess diffusion is removed by using a second

corrective upwind step, which guarantees that the numerical solution remains positive. Other schemes

include those of Van Leer (L97 4, 7977), and flux-corrected transport (Boris and Book 1973, 1976).

Most of these schemes have shortcomings. Linear filtering cannot remove all the negative values from

the numerical results (Shapiro 1970), the CIP method is very diffusive (Steinle 1994), the method of

Smolarkiewicz deforms and skews the solution (Vreugdenhil and Koren 1993) , and the methods of Van

Leer cannot differentiate between a spurious oscillation and a true maximum or minimum (Vreugdenhil

and Koren 1993). The flux-corrected transport method has been used quite successfully to ensure

positive, non-oscillatory solutions (see Steinle, Morrow and Roberts 1989) for a square wave test.

uw15 - -'-
mod U '--' '

mod2 U ----
exact 

-
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4.2 An Analytical Solution

In this section, an analytical solution is developed for the purpose of testing the schemes. Consider

aî ai* lu(r'ú) ^ :U,
ot ofr

with u(ø, f) in the separable form

u(r,t) : r(t) I s(r), s(r) I 0

then a solution of (a.1) may be sought in the separable form

î(r,t) : X(r)T(t)

Substitution of (a.3) into (4.1) leads to

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4 8)

1
T

TXITI
r

Since the expression on the left is a function of ú, 'ú/hile the expression on the right is a function of r,
both expressions must equal a constant K. This yields two separable first-order differential equations

sX

î:orand
xt
T - -Ks,

which have soiutions

in which ,4 and B are constants. The general solution of (a.1) is thus given by

î(r,t) = ABexp{KI, (t)dt) exp{- KI, (r)dr]¡

The methods will be compared for the case r: cos(trtl2) and s: e', when (4.7) becomes

T(t) : Aexp{K 
lr(t)dl}

and X(r): Bexp{- KI, (r)dr\,

î(r,t) = sYP
rt
TSIN?

'tf ) - "') ,

where the constants have been set to K = 1 and AB : I.
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4.3 Parameter Analysis

The aim of this section is to determine how the accuracy and the efficiency of the schemes are affected

if the size of the Courant number is varied. For constant velocity, an analytical relationship between

a scheme's accuracy and the size of the Courant number can be established by examining the leading

term in the truncation error of the MEPDE (cf. Section 3.3). Assuming that the high-order terms in

the truncation error can be ignored, the leading error term gives an indication of the performance of

the scheme with respect to the size of the Courant number. Several three-point two-level methods for

the constant coeficient advection equation are compared in this way in Noye (1986).

For variable coeficients, the leading term in the truncation error of the MDPDE of the scheme depends

on the derivatives of the velocity, rather than on the Courant number itself, as is the case for constant

coefficients. Consequently, the scheme's accuracy with respect to the Courant number cannot be quan-

tifred in the way described above. Instead, the methods can be compared in a numerical test for which

an exact solution is known.

All of the methods described in Chapter 3 (refer to synopsis Figure 3.1) are compared with the analytical

solution given in Section 4.2. The initial condition is obtained by setting t : 0 in the analytical solution.

As indicated in Section 3.10, it is assumed that boundary values are available at both ends of the

computational domain, and these are also given by the analytical solution. The numerical solution is

sought at time T : 5 for values of the grid number ranging from -I : 50 to 1000. The number of time

steps is chosen so that the maximum value the Courant number takes is one of the three values 1, 0.5

and 0.25. A summary of the data required to implement the numerical test is given in Table 4.8.

4.3.1 Implementation

The explicit schemes are implemented in a trivial fashion, with the single unknown at the new time

level (n t 1) being given explicitly from the known values at the old time level n.

Those methods which have (1,3) computational stencils are solved for j:1(1)/- l with the values at

the boundaries being given by the analytical solution.

The expìicit methods which have (1,5) stencils are solved for j :2(I)J - 2 and need to be supplemented

near the boundaries. The values ciose to the boundaries are given by the anaÌytical solution.

The impiicit methods require the solution of a tridiagonal system of linear algebraic equations each time

step. The Thomas algorithm is used to solve the tridiagonal system.

The coefficients of the explicit schemes are evaluated at time úr, while those for the implicit schemes

are evaluated at trr¡t¡2. The programs were written in Fortran 90 and run on a Toshiba Tecra 8000.
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1. Exact solution î(u, ú) : exp { } sin(f ) - e" }

2. Initial condition: î(r,0) is given by the exact solution

3. Boundary conditions: î(0, ú) and î(1, ú) are given by the exact solution

4. Courant number c : u\,t I Lr : uT J lN

5. u(n,t) : e-' cos(trtl2)

6. umax : 7, T : 5, J :50, 100,200,500, 1000

7. setting N :TJ,2TJ,4TJ gives cmax:1,0.5,0.25

Table 4.8: Data for the Numerical Test

4.3.2 Results

To measure the accuracy of the schemes, the rms error in the numerical solution relative to the exact

solution is calculated using all the grid points at the final time. The errors for all methods are given

in Table 4.9 for the three values of the maximum Courant number, and the corresponding cpu times

averaged over 20 consecutive runs of the algorithms are presented in Table 4.10. A comparison of the

efficiency of the schemes for each Courant number is shown in Figures 4.6 and 4.7. These graphs were

obtained by plotting the rms error against the cpu time on logarithmic scales.

For all methods, the cpu times approximately double when the maximum Courant number is halved.

This is because doubling the number of time steps halves the Courant number. Table 4.9 shows that

the first-order explicit base methods (LTH, U\ry15, RUS) all give simiiar accuracy. Furthermore, the

errors for these methods are approximately halved when the maximum Courant number is halved. Their

effi.ciency plots show that they are more efficient for cmax : 0.25 than for the other two values of cmax.

This is because for any specified accuracy, using them with cmax:0.25 gives the result faster.

The OPT method is the most accurate and efficient second-order method when cmax : 1. However,

because its accuracy decreases as the maximum Courant number is halved (see Table 4.9), the OPT

method is not always the most efficient second-order method to use. For example, it is more efficient

to use the mod2j method with cmax : 0.5 than the OPT method with cmax : 0.5 or 0.25 (compare

bottom left diagram in Figure 4.6 with top right diagram in Figure 4.7).

53



The ieast effrcient second-order results are given by using the mod-U method with cmax = 0.25. This

is established from Figure 4.6 by observing that for 100 seconds of cpu time, the mod-U method would

give the least accurate second-order results. It is however always more efficient to use the least efficient

second-order scheme than the most efficient fi.rst-order scheme. For example, from their efficiency plots

in Figure 4.6, it can be ascertained that it takes less than 0.1 seconds to achieve an accuracy of 1.0e-04

using the mod-L method, but more than 1 second using Leith's method for cmax :0.25.

Table 4.9 shows that the implicit mod-O method is the most accurate third-order method when cmax : 1.

Although it requires more cpu time than the explicit mod-R and mod2-R methods (see Table 4.10),

it is nevertheless the most efficient third-order scheme for this Courant number. This can be seen by

comparing the efficiency plots for the mod-O, mod-R and mod2-R methods pictured in Figure 4.7.

Tables 4.9 and 4.10 show that the mod-O method is, however, less accurate and less efficient than the

mod2-R method when the maximum Courant number is halved. F\rrthermore, if the maximum Courant

number is halved again, the mod-O method is the least efficient third-order scheme overall.

Comparing the least efficient third-order results, given by the mod-O method with cmax : 0.25, with

the most efficient second-order results, given by the OPT method with cmax : 1, shows that it is always

more efficient to use the third-order scheme. For example, Tables 4.9 and 4.10 show that the OPT

method used with ,.I : 1000 gives an error of 3.69e-08 in 9.95 seconds, which is worse than the error

of 2.78e-08 given by the mod-O method in 1'56 seconds when '-I: 100' Hence' the third-order method

is more accurate and more efÊcient than the second-order scheme. The fourth-order mod2-O method

yields the most accurate and efficient solutions to the test problem (see Table 4.9 and Figure 4.7).

Tables 4.11 and 4. 12 summarize the results by ranking the accuracy and efficiency of each scheme for the

three values of cmax considered. The efficiency of the mod-U method for cmax : 1 and 0.5 overlaps (see

middle right diagram in Figure 4.6), so the efficiencies for these two Courant numbers have the same

rank. This is also the case for the efficiency of the mod-R method for these two values of cmax. The

least accurate results for ail schemes except for the OPT and mod-O methods are given when cmax: 1.

The OPT and mod-O methods are on the other hand most accurate when they are used for this value.

In terms of accuracy, only the mod2-L method performs at its best when the maximum Courant number

takes the value 0.5. It can also be used most efficiently for this Courant number.

The base methods and the mod-O method all have the property that they are most efficient or least

efficient for the same value of the maximum Courant number for which they give the most accurate or

least accurate results. This is not the case for the other methods. For instance, although the mod2-U

method is most accurate to use when cmax : 0.25 and least accurate when cmax : 1, the opposite can

be said about its efficiency for these two Courant numbers (compare Tables 4.71 and 4.12).
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rms errors when cmax : 1

J LTH uw15 R,US (-)P'r'

50
100

200

500
1000

2.29e-03
1.14e -03
5.72e-04
2.29e-04
7.I4e-04

2.26e-03
1.14e-03
5.70e-04
2.28e-04
7.I4e-04

2.28e-03
1.14e-03
5.77e-04
2.28e-04
7.14e-04

1.49e-05
3.71e-06
9.25e-07
1.48e-07
3.69e-08

.l mod-L mod-U mod-R mod-O
50
100
200

500
1000

6.08e-05
1.52e-05
3.80e-06
6.07e-07
1,.52e-07

7.39e-05
1.87e-05
4.72e-06
7.58e-07
1.90e-07

6.90e-07
8.36e-08
1.08e-08
6.89e- 10

8.60e- 11

6.94e-08
8.55e-09
1.06e-09
6.76e- 1 1

8A4e-12
J mod2-L mod2-U mod2-R mod2-O

50
100

200
500
1000

3.56e-05
8.88e-06
2.27e-06
3.54e-07
8.84e-08

5.23e-05
1.30e-05
3.26e-06
5.21e-07
1.30e-07

2.30e-07
2.92e-08
3.68e-09
2.37e-10
2.97e-LL

1.32e-09
8.22e-77
5.12e-12
1.31e- 13

8.84e- 15

rms errors when cmax : 0.5
,l LI'H u w15 RUS OPT
50
100
200

500
1000

1.15e-03
5.75e-04
2.86e-04
1.14e-04
5.71e-05

1.14e-03
5.72e-04
2.86e-04
1.14e-04
5.71e-05

1.16e-03
5.74e-04
2.86e-04
1.74e-04
5.71e-05

2.06e-05
5.12e-06
1.28e-06
2.04e-07
5.10e-08

J mod-L mod-U mod-R mod-O
50
100

200

500
1000

7.74e-05
4.30e-06
1.07e-06
1.69e-07
4.19e-08

3.89e-05
9.79e-06
2.46e-06
3.93e-07
9.84e-08

2.44e-07
3.01e-08
3.73e-09
2.37e-Ij
2.95e- 11

1.93e-07
2.40e-08
2.99e-09
1.91e- 10

2.39e- 11

J mod2-L mod2-U mod2-R mod2-O
50
100
200

500
1000

4.42e-06
1.13e-06
2.85e-07
4.60e-08
1.16e-08

2.80e-05
6.95e-06
1.73e - 06
2.76e-07
6.91e-08

7.58e-08
9.65e-09
1.21e-09
7.79e-77
9.74e-12

7.39e- 10

4.59e- 11

2.86e-12
7.33e-74
6.46e- 15

rms errors when cmax: 0.25
J I]TH UW15 RUS (-)P'l'

50
100
200

500
1000

5.8le-04
2.89e- 04

7.44e-04
5.73e-05
2.86e-05

5.82e-04
2.88e-04
1.43e-04
5.72e-05
2.86e-05

5.87e-04
2ß9e-04
7.44e-04
5.72e-05
2.86e-05

2.27e-05
5.50e-06
1.37e-06
2.19e-07
5.47e-08

J mod-L mod-U mod-R, mod-0
50
100
200

500
1000

1.01e-05
2.53e-06
6.31e-07
1.0le-07
2.51e-08

3.03e-05
7.56e-06
1.89e-06
3.02e-07
7.54e-08

1.12e-07
1.37e-08
1.69e-09
1.07e- 10

1.33e- 11

2.24e-O7
2.78e-08
3.47e-09
2.22e-70
2.77e-LI

J mod2-L mod2-U mod2-R mod2-O
5t)

100
200

500
1000

1.10e-05
2.77e-06
6.95e- 07
I.12e-07
2.80e-08

2.51e-05
6.24e-06
1.56e-06
2.49e-07
6.21e-08

4.72e-08
5.95e-09
7.45e-09
4.76e-LL
5.94e-12

5.2 le- 10

3.24e-7L
2.02e-72
5.20e-I4
6.93e- 15

Table 4.9: Comparison of RMS errors for various values of the maximum Courant number
for the one-dimensional non-conservative advection equation.
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cpu times when cmax : 1

J UI'FI U W15 RUS OP'I'
50
100

200

500
1000

7.74e-tJ2
7.03e-02
2.83e-01
1.74e*00
6.97e+00

1.80e-02
7.20e-02
2.92e-01
1.79e*00
7.15e*00

2.08e-02
8.24e-02
3.34e-01
2.03e*00
8.04e+00

2.42e-02
9.98e-02
3.90e-01
2.37e*00
9.95e+00

J mod-L mod-U mod-R mod-O

50

100
200

500
1000

4.45e-02
1.78e-01
6.94e-01
4.43e-l00
1.76e*01

4.47e-02
1 82e-01
6.97e-01
4.46e*00
1.80e-101

8.46e-02
3.39e-01
1.36e*00
8.49e*00
3.41e*01

9.38e-02
3.84e-01
1.52e*00
9.42e*00
3.82e+01

J mod2-L mod2-U mod2-R. mod2-O
50
100
200

500
1000

4.39e-02
1.70e - 01

6.83e-01
4.40e*00
1.71e*01

4.44e-02
1.78e- 01

6.89e-01
4.43e+00
1.76e+01

8.41e-02
3.34e-01
1.32e*00
8.46e100
3.39e+01

9.32e-02
3.80e-01
1.51e*00
9.40e+00
3.80e+01

cmax : 0.5

5t)

100
200

500
1000

3.49e-02
1.41e-01
5.60e-01
3.47e+00
1.40e*01

3.59e-02
1.44e-01
5.82e-01
3.58e+00
1.46e*01

4.74e-02
1.64e-01
6.68e-01
4.04e+00
1.61e*01

4.86e-¡J2
2.00e-01
7.79e-01
4 73e+00
1.98e*01

J mod-L mod-U mod-R mod-o
50
100

200
500
1000

8.93e-02
3.56e-01
1.37e*00
8.90e*00
3.52e*01

8.94e-02
3.62e-01
1.39e+00
8.92e*00
3.64e101

1.69e-01
6.77e-01
2.70e*00
1.70e*01
6.80e*01

1.85e-01
7.70e-07
3.08e+00
1.88e*01
7.72e-107

J mod2-L mod2-U mod2-R mod2-O
50
100
200
500
1000

8.80e-02
3.42e-07
1.32e*00
8.86e+00
3.44e-|-01

8.88e-02
3.58e-01
1.35e+00
8.90e+00
3.54e-ì-01

1.67e-01
6.64e-01
2.68e+00
1.68e*01
6.67e+01

1.83e-01
7.64e-0L
3.00e+00
1.84e+01
7.61e*01

cpu times when cmax : 0.25
J LI'H u w15 ttuS OPT
50
100

200

500
1000

6.95e-02
2.80e-01
1.13e*00
6.97ef 00
2.79e-l0l

7.79e-02
2.86e-01
1.17e*00
7.18e*00
2.88e*01

8.30e-02
3.30e-01
1.32e*00
8.19e+00
3.23e+01

9.64e-02
3.97e-01
1.57e+00
9.52e+00
3.97e+01

J mod-L mod-U mod-R. mod-O
50
100
200

500
1000

1.78e-01
7.10e-01
2.79e+00
L 77e-l0l
7.06e+01

1.80e-01
7.30e-01
2.81e*00
1.78e*01
7.24e*07

3.36e-01
1.36e+00
5.42e*00
3.38e*01
1.36e+02

3.78e-01
1.56e*00
6.06e*00
3.74e+01
1.54e*02

J mod2-L mod2-U mod2 lì mod2-o
50
100

200

500
1000

1.76e-01
6 87e-01
2.71e*00
1.76e+01
6.86e+01

1.78e-01
7.16e-01
2.74e*00
1.74e+01
7.10e*01

3.34e-01
1.33e*00
5.30e+00
3.36e101
1.34e102

3.73e-01
1.52e+00
6.03e*00
3.72e-l01
1.50e*02

Tabie 4 10: Cornparison of CPU times for various values of the maximum Courant number
for the one-dimeusional non-conservative advection equation.
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Method c:l c=0.5 c 025

LTII

mod-L

mod2-L

uw15

mod-U

mod2-U

RUS

mod-R

mod2-R

OPT

mod-o

mod2-O

J

J

t

J

1

1

2

2

1

2

2

2

2

2

2

2

,

2

1

1

2

1

1

1

1

1

1

1

Table 4.11: Accuracy from best 1 to worst 3 for
the various cmax.

Method c=l c 0.5 c: 0.25

LTH

mod-L

mod2-L

u\ry15

mod-u

mod2-U

RUS

mod-R

mod2-R

OPT

mod-o

mod2-O

J

2

1,2

1

J

t,2

2

1

I

1

2

1

1

2

7,2

2

2

1,2

1

2

2

,

1

2

I

J

3

1

3

3

3

J

Table 4.12: Efficiency from best 1 to worst 3 for
the various cmax.
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4.3.3 Summary

An analytical solution was developed to compare the performance of the schemes in terms of accuracy,

execution time and efficiency. The initial condition, boundary conditions, and any supplementary values

required near the boundaries were all given by the analytical solution. The effect of changing the size

of the maximum Courant number on the accuracy and efficiency of the schemes was investigated'

The values of the maximum Courant number for which each scheme was most or least accurate and

most or least efficient, were summarized in Tables 4.11 and 4.12. Other than for the mod-O method

and for the base methods, the schemes were most efficient for a different value of the maximum Courant

number to that for which they were most accurate.

For this numerical test, the most accurate first-order results could be obtained by using either Leith's

method or the UW15 method with a maximum Courant number of 0.25. The most accurate second,

third and fourth-order results were yielded by the mod-L, mod2-R and mod2-O methods, respectively,

all using cmax: 0.25.

The most efficient first, second, third and fourth-order results were given by Leith's method, the OPT

method, the mod-O method and the mod2-O method, respectively, when the size of their maximum

Courant number took the value 0.25, 1, 1 and 1, respectively.

It was always more accurate and efûcient to use a third-order scheme rather than a second-order one,

and a second-order scheme instead of a first-order method. The fourth-order implicit mod2-O method

was the most accurate and efficient method overall. In terms of both accuracy and efficiency, the new

modified methods were seen to be superior to their base counterparts.

4.3.4 Stability

Because of stability constraints, Leith's method and Rusanov's method can only be used if their maxi-

mum Courant number remains less than or equal to one. Although the OPT method is unconditionally

stable, its effective range of stability is reduced to a maximum Courant number of one because the

coefficient matrix must lemain diagonally dominant if the efficient Thomas algorithm is to be used.

Although the UW15 method is stable for a maximum Courant number of two, it might in practice need

to be supplemented at the boundaries because of its (1,5) computational stencil. If Leith's method, for

example, is used to obtain these values, the effective range of stability of the UW15 method is reduced

to that of Leith's method. Hence, none of the methods benefit from having a larger stability region.
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Chapter b

Two-Dimensional Non- Conservative
Advection

Geophysical flow problems like those found in meteorology (Holmgren 1994) and oceonography (Hubbard

and Baines 1997) are often two-dimensional. Two-dimensional flow problems frequently arise in the

aerospace industry (Sharif and Busnaina 1988) and in acoustic or elastic wave propagation (Leveque

1gg7). Consequently, much effort has gone into improving discretization schemes for the two-rìimensional

advection equation. In Chapter 3, we showed how finite-difference methods used to solve the one-

dimensional non-conservative advection equation could be modified to give high-order convergence for

variable advective velocities. In this chapter we demonstrate that these modified methods can be used

to give high-order results to the two-dimensional non-conservative advection equation.

5.1 Locally One-Dimensional (tOD) Methods

Multi-dimensional equations may be divided into a number of simpler locally one-dimensional equations,

each of which is solved sequentially to approximate the solution of the original equation. Difficulties

associated with discretizing the full equation to obtain an FDE based on a three-dimensional compu-

tational stencil are thus avoided. Separate numerical algorithms can be used for each one-dimensional

problem, and if an exact solution is known to any of the subprocesses it may be used with numerical

schemes for the remaining subprocesses to yield a solution to the complete equation.

As boundary conditions are defined for the full two-dimensional equation only, appropriate intermediate

boundary conditions must generally be determined for the split equations. Gourlay and Mitchell (1972)

and more recently Leveque and Oliger (1983) have shown how intermediate boundary conditions tbr

two-dimensional hyperbolic equations may be derived. Alternatively, the boundary conditions and the

intermediate boundary conditions may be periodic.
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A necessary condition for the stability of the LOD method is that the stability conditions for the methods

used for each spatial dimension are satisfied simultaneously (Mitchell and Griffiths 1980) . A necessary

condition for the stability of the individual methods is that given by conducting a local von Neumann

stabiiity analysis (Hirsch 1990). This witl be taken to be the case in the following.

5.2 Application

Consider the two-dimensional non-conservative form of the advection equation given by

u] * u{,, r, r)# t u(r, r,r)f : o, (5.1)

in which î : î(r,g,ú). The numerical solution of (5.1) over one time-step may be obtained by solving

(5.2)

commencing with the values ri,kto give the intermediate values rri¡. Then using these as initial values

(5.3)

is solved, yielding an approximate solution ri,[\ to the full problem after one time-step. The values rr1,¡

are frctitious and have no physical significance.

5.3 Leith's Method

Application of Leith's method to each one-dimensional equation leads to the explicit forms

ri,n:)"*@, + t)rJ'-r,*+ (1 - c?*)ri* +f,c,k, - r)'hr,r, (5.4)

which, by sweeping in the r direction for each g value, yields the intermediate values r|,¡,, and

rifr ='U"okrn l)ri¡-r + (1 - c?r)ri,n +1r"0@o - \)ri,*¡r, (5.5)

which, by sweeping in the y direction for each z value, yields an approximate solution to the full two-

dimensional problem at time-level (n + 1). In the above, cx : u(ï,y,t)L'tlL'r and c, : u(r,y,t)L'tlL'y-
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In a similar fashion, either the mod-L or mod2J method may be applied to each one-dimensional

equation. This is demonstrated here for the mod-L method, so that

,i,n:!r(", + c?, + d, +la,l)+r,r r (1 - c?, -ld-l)ri,n -|ø. - c7+ d* _ ld,l)ri+r,k, (5.6)

is appiied by sweeping in the r direction for each gt value. Then using these as initial values

rift : IU, * c?o + d,, + ld')ri,x-r+ (i - 
"?o 

- ldrl)r],* - ]ø, - "? 
+ d'o - ld,sl)r],*+t , (5.7)

is applied by sweeping in the g direction for each r value. The parameter d' is defined by (3.18), which

on replacing Ar with AE and uby u defines the parameter dr. The constituent formulae are locally

stable provided lcrl ( 1 and l"rl < t, so the LOD method is locally stable when both these criteria hold.

5.4 The U\M15 Method

The UW15 method may be applied to each one-dimensional problem as follows. To obtain values at the

intermediate level over the solution domain, first

,T,n: -'n{, - ",){", +lc,l)ri-z,x+}fz - c,)(c, :_l"*l)ri-r,*+}fz- 31",1 + 
"',)rî,x (5.8)

+)fz+ c,)(lc,l- c,)ri¡1,¡,- ]ft * c,)(lc,l- 
"*)r]'+z,n

is solved as it would be for the one-dimensional equation, but repeated for each g value. Then

rifr :-1,t - co)þr-rlcrl)ri,n-z+r1tz - co)þo'rlcrl)ri,x-t +]e -3lcrl+ c?o)r],¡
(5 e)

+|e + 
"a)(l"ol - cr)ri,*+r- ]lt * "ò(lcrl - c)r|,n+z

is solved by sweeping in the gr direction for each r value, giving an approximate solution to the two-

dimensional problem. Similarly, either the mod-U or mod2-U method could be used for each one-

dimensional advection equation. The correction factors d* and d, are exactly the same as for the mod-L

and mod2-L methods. The constituent formulae are locally stable if l",l<2 and lcrl ( 2, so the LOD

method is iocally stable when both of these conditions hold.
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5.5 Rusanov's Method

Consider the appiication of Rusanov's method to each of the one-dimensional problems, so that

'i,n: -fi",Q. - c?,)(2-t c,)rir,o+ |c,(r i c,)(4 - "|)ri-r,x* ]lt - c2*)(4 - c?.)rî,k

1

a",G - c,) (4 - "?)ri+r,n 
+ )c,Q - "?) 

(2 - c')ri+z,x

is first solved by sweeping in the r direction for each g/ value, followed by the application of

,;:[' : -h"rrt- c?r)(z+co)r],n-z+ ]cr(r +c)(4- c?r)ri,*-t+ ]lr - c?o)Ø- c?o)r]¡,

1

- a.oç - co)Ø - cf,)rj,n+r + fi"rçt - c'zo)Q - c)ri,x+z

(t- c,)(2- c,)ri t,*+2(2- c,)(2+c,)ri,x+ (1+ c,)(2+c,)ri¡r,n

: (1 + c,)(2 + c*)rj'-r,* + 2(2 - c*)(2 + c*)ri,n+ (1 - c,)(2 - "*)rI+r,x,

which is solved by sweeping in the r direction for each value of 3r, and

(t - co)Q - "r)rî[!, + 2(2 - cr)(2 + "òrîÏ' + (1 + c)(2 + "ùriÏ],
: (1+ c)(2+ c)ri,*-r+2(2- c)(2+ c)ri,n + (1- "ò(2- "a)ri,*+,.,

as it would be for the one-dimensional equation (5.3), but repeated for each r value. This gives an

approximate solution to the two-dimensional advection equation after one time-step' In an identical

fashion the mod-R and mod2-R methods could be used in a LOD fashion. The parameters d, and h,

are then defined by (3.36); d,o anð. ho are obtained by replacing Au by Ag and uby u. A necessary

condition for the stability of the LOD method is that l"'l < t and lcrl ( 1'

5.6 The Optimal Method

Application of the optimal method to each one-dimensional equation leads to the implicit forms

(5,i0)

(5.11)

(5. 12)

(5.13)

applied by sweeping in the y direction for each r value. The coefficients of the implicit schemes are

evaluated at (r¡,yp,tn¡r¡z).The mod-O and mod2-O methods are implemented in the same way, with

the correction factors d* and h., defined by (3.a9); and do and h, obtained by replacing Ar by Ag and

uby u. Although the individual equations are unconditionally locally stable, they are only diagonally

dominant and hence solvable using the very efficient Thomas algorithm if lc, l < l and lcrl < 1.
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6.7 Numerical Test

The initial condition for this numerical test is a two-dimensional Gaussian distribution of unit height

given by î(*,a,0) : exp{-400(ø - 0.5)'- a00(g - 0.5)'}. The velocity profiles are chosen to take the

form u(ø,ú) and u(y,t), where u is the same as given in Table 5.1, and r-, is obtained by replacing z

by g. A uniform grid with grid spacings of Ar and Ag in the z and g directions is defined, and the

advection equation is soived on the domain [0, 1] in each spatial direction. The boundary conditions and

the intermediate boundary conditions are periodic. The numerical solution is sought at time T:7T,
with ./ : K:ly', and rc:213n, so the maximum value of the Courant numbers c, and c, is one, and

the exact solution is given by the initial condition. The numerical test is summarized in Table 5.1.

1. Initial condition î(r,A,0) : exp{-400(r - 0.5)'- 400(y - 0.5)2}

2. Periodic boundary and intermediate boundary conditions

3. Courant numbers cr:u\tlLr:uTJlN, ca =u\'tlL'y:uTKlN

4. maximum value of ct and c, is one

5. u(r,t) : K(0.5 f sin2 zrr) cos ú, u(a,t) : rc(O'5 + sin2 zrg) cos ú

6. T : T, n:2l3tr: half cycle

7. maximum value of u and u is lln

8. N: J: K with J:50,80,100,150,200

9. exact solution is the initial condition

Table 5.1: Data for the locally one-dimensional Gauss Test

AII of the methods described in Chapter 3 are tested. Although different schemes could be used for

each spatial direction, the same FDE is applied in both directions, so that the convergence of the LOD

method can be examined. For each time-step the LOD method is implemented as follows:
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1

2

The FDE is first used in the r direction as it would be for

the one-dimensional equation (5.2).

The application is repeated for each y value, yielding the

intermediate values ri¡ over the spatial domain.

3. Then using the zi* as the initial condition, the same FDE

is used in the g direction as it would normally be used to

solve the one-dimensional equation (5.3).

4. This is repeated for each r value, yielding the values rffl
at the end of the time-level (n -t 1).

Table 5.2: Implementation of the LOD technique.

The explicit schemes are solved by calculating the single unknown directly from the known values at

the old time level. The periodic tridiagonal system of linear algebraic equations resulting from the

implementation of the impticit schemes is solved using the cyclic variant of the Thomas algorithm.

5.7.L Results

To allow easy comparison of the results, the figures and tables referred to in this section have been

placed in a group from page 68 to 72. Table 5.3 shows that the implicit OPT and mod2-O results are

virtually identical to the exact solution. This is because for these methods, the errors that accumulate

over the first quarter cycle are eliminated in the second quarter cycle by errors of equal magnitude, but

of opposite sign. Of the other methods, the third-order implicit mod-O method is the most accurate

method overall, while the third-order mod2-R method is the most accurate explicit scheme.

The mod-O method is more accurate, but also more time consuming than the mod2-R method (compare

Tables 5.3 and 5.4). The efficiency plots on the bottom right of Figure 5.2, however, reveal that the extra

time spent implementing the mod-O method is worthwhile, since it outperforms the explicit mod2-R

method considerably in terms of efficiency. These plots show that to achieve an error of 1e-04 takes less

than 10 seconds using the mod-O method, but more than 50 seconds using the mod2-R method.

Table 5.3 shows that all the first-order explicit base methods are of similar accuracy, while the most

accurate explicit second-order scheme is the mod2-L method. Because it expends less time than the

other explicit second-order methods (see Table 5.4), the mod2-L method is also the most efficient explicit

second-order scheme. This can also be concluded from Figure 5.2.
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From Table 5.4, it is seen that doubling the size of the spatial grid leads approximately to an eightfold

increase in the cpu times for all methods. This is to be expected, since for this numerical test, doubling

the grid size in both spatial directions, also doubles the number of time steps.

The mod-L and mod-U methods require approximately twice as long to run for each grid than their

respective base counterparts. The mod-R method needs about 3.3 times longer to run than Rusanov's

method, while the mod-O method takes about 2.3 times longer than its base method for each grid.

In addition to overall accuracy and efficiency, it is important to determine how well the schemes represent

the exact solution in terms of the introduction of artificiai diffusion and spurious oscillations. To examine

these aspects, profiles of the numerical solution and the exact solution are taken as follows'

It is recalled that the initial condition is a two-dimensional Gaussian distribution of unit height centered

at (0.5,0.5). Furthermore, because the pulse returns to its initial location with its original shape every

half time cycle, the exact solution (pictured in Figure 5.1) is identical to the initial condition.

exact

Figure 5.1: Initial condition and exact solution for two-dimensional Gauss test

For all schemes, the numerical solution is symmetrical about U : r. Although this will not generally be

the case, it occurs for this test problem, because the same FDE is being used in both spatial dimensions,

and because the exact solution itself is symmetrical about y : ¿.

Because they introduce wave speed errors into the numerical solution, the explicit base methods position

the pulse one grid point to the right of the true location. That is, for the 50*50 grid, the maximum is

found at grid point (j,k): (26,26) instead of at grid point (25,25). Likewise, for the 80*80 grid, the

maximum occurs at grid point (41,41). The modified methods position the pulse correctly (see below).

Therefore, only the slice at the y location where the maximum occurred is displayed. That is, the profiles

for the exact solution and modified methods are taken at A - 0.5, while those for the base methods are

taken at 9 : 0.5 * Àg. Figures 5.3 to 5.5 verify that the solutions of the explicit base methods lead the

exact solution. It is apparent that leading and trailing oscillations and negative values (see Table 5.6)
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J LTH uw15 RUS OPT
50

80

100

150

200

2.59e-02
1.56e-02
722e-02
7.94e-03
5.95e-03

2.73e-02
1.65e-02
I.27e-02
8.05e-03
5.96e-03

2.28e-02
7.46e-02
1.18e-02
7.91e-03
5.95e-03

1.61e- 16

1.70e- 16

2.01e- 16

2.97e-76
2.73e-76

J mod-L mod-U mod-R. mod-O

50

80
100

150

200

2.27e-02
1.09e-02
7.10e-03
2.94e-03
1.52e-03

2.49e-02
1.30e-02
8.71e-03
3.75e-03
1.93e-03

1.30e-02
3.80e-03
1.89e-03
5.09e-04
2.05e-04

3.74e-04
8.88e-05
4.54e-05
1.35e- 05

5.69e-06
J mod2-L mod2-U mod2-R mod2-O
50

80

100

150

200

1.78e-02
7.56e-03
4.55e-03
1.59e-03
7.05e-04

2.72e-02
7.02e-02
6.56e-03
2.53e-03
1.18e-03

8.74e-03
2.06e-03
9.06e-04
2.02e-04
7.55e-05

1.93e- 16

2.66e- 16

2.65e- 16

3.75e- 16

4.00e- 16

Table 5.3: RMS errors for the two-dimensional Gauss test.

J LTH uw15 RUS OPT
50

80

100

150

200

3.20e-01
1.32e-100
2.69e100
8.68e+00
2.06e-101

3.57e-01
1.41et00
2.76et00
9.34e*00
2.23eI01.

4.40e-0L
1.70ef 00

3.25ef 00
1.09e*01
2.54e-l0l

7.95e-01
3.05e*00
5.74e*00
1.83e101
4.23e*01

.I mod-L mod-U mod-R, mod-O
50

80

100

150

200

6.60e-01
2.80e*00
5.38e*00
1.81e*01
4.30e+01

7.75e-07
2.93e*00
5.66e-l00
1.90ef 01

4.51e*01

1.37e*00
5.61e100
1.08e*01
3.60ei01
8.53e+01

1.81ef 00

6.98e*00
1.33e*01
4.33e*01
I.02e-102

J mod2-L mod2-U mod2-R mod2-O
50

80

100

150

200

6.50e-01
2.78e*00
5.32e+00
1.79e101
4.28e*01

7.10e-01
2.84et00
5.42e*00
1.87e*01
4.45e+01

1.34ef 00

5.46e*00
1.02e*01
3.54e-t01
8.49e+01

1.71e+00
6.94e-l00
1.31ef 01

4.28e-l01
1.01e*02

Table 5.4: CPU times for the two-dimensional Gauss test
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J LTH uw15 RUS OPT
50

80

100

150

200

3.95e-01
1.90e-01
1.20e-01
4.48e-02
2.06e-02

4.54e-07
2.44e-0I
1.63e-01
6.67e-02
3.18e-02

2.74e-07
5.94e-02
2.79e-02
7.00e-03
3.00e-03

J mod-L mod-U mod-R mod-O

50

80
100

150

200

4.50e-01
2.39e-01
1.61e-01
6.96e-02
3.63e-02

4.84e-01
2.76e-01
1.93e-01
8.73e-02
4.59e-02

2.52e-01
7.22e-02
3.25e-02
6.02e-03
1.65e-03

9.00e-03
2.03e-03
1.04e-03
3.06e-04
'J,.29e-04

J mod2l, mod2-U mod2-R mod2-O
50

80

100

150

200

3.58e-01
1.67e-01
1.05e-01
3.82e-02
1.72e-02

4.15e-01
2.18e-01
1.45e-01
5.87e-02
2.79e-02

I.77e-01
4.43e-02
7.92e-02
3.66e-03
1.13e-03

Table 5.5: Amplitude errors for the two-dimensional Gauss test

J LTH uw15 RUS OPT
50

80

100

150

200

2.56e-02
1.27e-02
6.56e-03
5.03e-04
8.16e-06

2.16e-02
1.65e-02
1.09e-02
2.62e-03
4.I8e-04

2.37e-02
1.78e-04
1.36e-05
9.70e-13

J mod-L mod-U mod-R mod-O
50

80

100

150

200

1.66e-02
8.87e-03
4.67e-03
3.61e-04
5.90e-06

1.80e-02
1.40e-02
9.38e-03
2.27e-03
3.69e-04

3.77e-02
4.95e-04
6.70e-06
3.69e-13

7.37e-04
4.1 1e-06
1.57e-06
3.34e-07
4.52e-08

J mod2L mocl2-U mod2-R mod2-O
50

80

100

150

200

2.75e-02
1.39e-02
6.59e-03
5.23e-04
8.47e-06

2.73e-02
1.83e-02
1.20e-02
2.92e-03
4.56e-04

3.13e-02
1.41e-03
1.96e-05
1.48e-12

Table 5.6: Values lr^¿nl for the two-dimensional Gauss test
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LTH

mod-L

mod2-L

uw15

mod-U

mod2-U

RUS

mod-R

mod2-R

OPT

mod-O

mod2-O

1.06

7.97

2.34

1.11

1.86

2.10

0.97

3.02

3.47

3.02

1

2

2

1

2

2

1

3

.)

2

ò

4

Table 5.7: The orders of convergence for the Gauss test are given

by the slope of the line of best fit to the data.

are introduced into the numerical solution by the explicit schemes. Additionally, considerable artificial

diffusion is introduced into the solution by most of the first and second-order explicit schemes. For

example, for the mod-U method, the amplitude is only 52% of the true height when ,-I :50, ard72%

of the true height when J : 80 (see Table 5.5).

The benefits of using the modified methods based on centered space differencing instead of those based

on upwind differencing are evident in the results shown in Figures 5.3 to 5.5. For example, when J : 50,

the amplitude of the solution given by the mod2l, method is 0.64, which is somewhat closer to one,

than the peak height of 0.55 given by the mod-L method. Likewise, the mod2-U and mod2-R methods

capture the height of the pulse better than the mod-U and mod-R methods (see Figures 5.4 and 5.5).

Figure 5.5 shows that Rusanov's solution is less spread out and the peak is better resolved than for

the other first-order explicit base methods. Table 5.5 shows that its amplitude \s 79% of the true value

when J : 50, and 94% of the true value when J : 80. Although the mod-R and mod2-R methods

introduce pronounced oscillations and negative values (see Table 5.6) into their solutions when -I: 50,

no oscillations are detectable when "I: 80. Table 5.3 shows that the third-order mod2-R method is the

most accurate explicit method. It is outperformed only by the implicit third-order mod-O method.
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Of the methods pictured in Figures 5.3 to 5.6, the mod-O method gives the most accurate results. It

aligns the solution correctly, cloesn't introduce any significant negative values or spurious oscillations

into the solution, and captures the height of the pulse to within 7To for all grids considered. Although

it uses more cpu time than the other methods, it is the most efficient method (see Figure 5.2). In this

numerical test, the OPT and mod2-O methods gave the exact solution. However, all methods will be

retested in Section 5.8, so that an indication of their performances can be gained.

5.7.2 Non-negativitY

The negative values appearing in the numerical solution of the schemes can be eliminated by using the

first-order upwind method, whenever the value ri,¡ or rif,l becomes negative. This has been applied

to all of the LOD schemes, and the solution profrles at the location of the maximum fot J = 50 are

presented in Figure C.1 in Appendix C. Since the first-order upwind method is only used for a few

points in the solution domain, the rms errors don't change enough to alter the convergence rates of the

schemes. Additionally, even though the upwind method is usually very diffusive, because it is not used

near the peak of the pulse, no loss in the height of the numerical solution is observed' Other than the

fact that the results are non-ûegative, none of the other features of the solution change significantly.

5.7.3 Sumrnary

The performance of the schemes was examined in a numerical test in which a two-dimensional Gaussian

pulse was advected subject to periodic initial and boundary conditions. The two-dimensional problem

was solved using the LOD technique, which essentially separates the advection into the two spatial

directions (Noye 1984a) . The same scheme was applied for each spatial dimension. A necessary condition

for the stability of the individual methods is that given by conducting a local von Neumann stability

analysis (Hirsch 1990). A necessary condition for the stability of the LOD method is then, that the

conditions for the individual equations are both satisfied (Mitchell and Griffiths 1980).

For the given test problem, the modification procedure described in Chapter 3, to improve the conver-

gence rates of the base methods to (or close to) their constant coefficient rate, but for use in variable

coefficient problems, has been successful. In Figure 5.2, the superior convergence of the modified meth-

ods, compared to the base schemes, was pictured. A least squares fit to the data gives the slope of

the line of best fit, which then gives the order of convergence of the method. The convergence rates

tabulated in Table 5.7, verify the improved convergence of the modified methods over the base schemes'
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5.8 An Analytical Solution

An exact solution to (5.2) when u(ø, t):r(t)lt@) is given by

fl(r,t) : LexP{K r(t)dtj exp{-K s(r)dr\,I I (5.14)

(5. 15)

where K and, L are constants. Similarly, when u(g, t) : p(t) lq(y), then a solution of (5.3) is given by

îz(U,t) = M exP{C p(t)dtj exp{-C q(a)da\,I
where M and C are constants. An exact solution of (5.1) is then given by the product

î (*, A, t) : îr(r, t)î2(Y, t), (5.16)

which is also used to supply the initial and boundary values for the test problem' However, it is

important that the boundary values for the intermediate level are not taken to be those given for the

full two-dimensional problem. This is because, at the intermediate stage, only the advection in the r
direction has been evaluated, but the boundary values given for the full problem incorporate the effects

of the advection in both spatial dimensions. At the intermediate level, an exact solution is given by

î (*, y, t*) : ît(n, tn¡1)î2(Y, tn), (5.17)

which may be used to supply the intermediate boundary conditions. In this way, at the intermediate

level, only the effect of the advection in the ø direction at the new time level úrr+r is incorporated. The

methods will be compared for the case r(ú) : p(t) - sinú, s(r) : 20(r + 0.1), s(g) :20(y f 0.1), so

that from (5.16), an analytical solution to (5.1) is given by

î(r,a,ú) : e*p {-10(r + 0.1)2 - 10(g + 0.1)2- 2cosú} 
'

(5.18)

where the constants have been set to 1

5.8.1 Numerical Test

The two-dimensional advection equation is solved on the domain [0, 1] x [0, 1] to a final time of T : r 12.

A uniform grid with J = K : -f[ is defined, so that the maximum value of the Courant numbers c,

and co is rl4 æ 0.785, for all grids considered. The initial and boundary conditions are given by the

analytical solution, and the intermediate boundary conditions are given by (5.17). A summary of the

data required to implement the numerical test is given in Table 5.8.
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1 Exact solution î(n,u,t): exp{-1O(z + 0'1)2 - 10(y + 0'1)2 - 2cosú}

2. Initial condition: î(",y,0) given by the exact solution

3. Boundary conditions: î(0,y,t), î(7,y,t), î(r,0,t), î(r,1,ú) given by exact solution

4. Intermediate BCs: î(0,A,t*), î(l,y,t*), î(r,0,t*), î(r,1, ú*) given by (5'17)

5. Courant numbers % : u\tlLn : uTJlN, ca : uLtlA'y : uTKIN

6. maximum value of c, and c, is r f 4 t 0.785

7. u(r,t) : sintl20(r + 0.1), u(a,t) : sintl20(v + 0'1)

8. T : r12: quarter cYcle

9. maximum value of z and u is 0.5

10. N : J :K with J :50,80,100,150,200

Table 5.8: Data for the locally one-dimensional test problem

For each time-step, the LOD method is implemented by flrst applying the FDE in the r direction for

each y value, yielding intermediate values over the spatial domain. Then, using these as the initial

conditions, the same FDE is solved in the gr direction, but this time, for each :x value. This yields an

approximate solution to the full two-dimensional problem after one time-step.

The explicit schemes are implemented in a trivial fashion, with the single unknown being given di-

rectly from the values at the old level. Those methods which have (1,5) computational stencils (recall

Figure 3.1), need to be supplemented near the boundaries (cf. Section 4.3.1), and these values are given

by the analytical solution (5.17) for the intermediate stage, or from (5.16) for the second stage. The

implicit methods are solved using the Thomas algorithm for tridiagonal systems.

As a measure of the accuracy of each LOD scheme, the rms errors at the final time are calculated and

given in Table 5.9. The cpu times required are presented in Table 5.10. In Figures 5.7 and 5.8 the

data are plotted using logarithmic scales, giving a comparison of the convergence and efficiency of each

modifred method in relation to its base method, as well as a comparison of their run times.
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J LTH uw15 RUS OPT
50

80

100

150

200

1.38e - 03

8.46e-04
6.72e-04
4.43e-04
3.31e-04

8.91e-04
6.50e-04
5.46e-04
3.87e-04
2.99e-04

1.04e-03
7.07e-04
5.82e-04
4.03e-04
3.08e-04

1.29e-04
4.93e-05
3.13e-05
1.38e-05
7.75e-06

J mod-L mod-U mod-R mod-O

50
80
100

150

200

7.57e-04
6.27e-05
4.04e-05
1.81e-05
1.02e-05

8.68e-05
3.20e-05
2.00e-05
8.61e-06
4.77e-06

5.51e-06
1.57e-06
8.44e-07
2.68e-07
I.l7e-07

6.36e-06
1.57e-06
8.00e-07
2.36e-07
9.91e-08

J mod2-L mod2-U mod2-R mod2-O
50

80

100

150

200

1.30e-04
5.06e - 05

3.23e-05
7.44e-05
8.07e-06

9.42e-05
3.66e-05
2.33e-05
1.03e-05
5.76e-06

3.23e-06
8.40e-07
4.38e-07
1.33e-07
5.69e-08

3.83e-07
5.83e-08
2.38e-08
4.69e-09
1.48e-09

Table 5.9: RMS errors for test problem when .Òl : K : J

J LTH uw15 RUS OPT
50

80
100

150

200

2.69e-01
1.08et00
2.l2el-00
7.10e*00
1.75ef 01

3.19e-01
1.20e*00
2.32e-100
7.89e-100
1.88e*01

3.85e-01
1.57e100
2.91e*00
9.15e*00
2.24eI07

4.95e-01
2.02e-l00
4.12e*00
7.24e1-07
2.82e1-07

J mod-L mod-U mod-R mod-O
50

80
100

150

200

4.90e-01
1.98e*00
3.96e*00
1.34e*01
3.15e*01

5.50e-01
2.08e*00
4.12e100
1.40e+01
3.30e+01

9.40e-01
3.90ef 00

7.52e*00
2.53e*01
6.00e*01

1.21ef 00
4.89e*00
9.23e*00
2.85e-l-01
6.88e*01

J mod2-L mod2-U mod2-R mod2-O
50
80
100

150

200

4.87e-01
1.97e_l_00

3.94ef 00
1.32et01
3.11e*01

5.46e-01
2.02e-l00
4.07e100
1.37ef 01

3.24e*01

9.30e-01
3.81ef 00
7.48e100
2.51e*01
5.87e+01

1.19e*00
4.85e*00
9.18e*00
2.82e-101
6.67e*01

Table 5.10: CPU times for test problem when ly' : K : J
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LTH

mod-L

mod2-L

uw15

mod-U

mod2-U

RUS

mod-R

mod2-R

OPT

mod-O

mod2-O

1.03

7.97

2.00

0.79

2.09

2.02

0.88

2.78

2.92

2.03

3.00

4.07

1

2

2

1

2

2

1

3

q
.)

2

3

4

Table 5.11: The orders of convergence for the test problem

are given by the slope of the line of best fit to the data.

Examining Table 5.9 shows that, for this numerical test, the first-order explicit UW15 method is the most

accurate explicit base method, followed by Rusanov's method and Leith's method, respectively. The

implicit second-order OPT method is, however, the most accurate base method. It is also more accurate

than the second-order mod-L and mod2-L schemes, but less accurate than both of the modifications of

the UW15 method.

The explicit third-order mod2-R method is more accurate than the implicit third-order mod-O method

in this test, and since the implicit method also requires more computational time (see Table 5.10), it is
Iess efficient to use than the mod2-R method. The implicit fourth-order mod2-O method is the most

accurate method overall.

The efficiency of the schemes can also be examined by comparing the middle diagrams in Figures 5.7

and 5.8. It can be seen from Figure 5.7 that the UW15 method is a little more efficient than Leith's

method when J : 50, but otherwise these two base methods are of very similar efficiency. Additionally,

it is seen that, even though they require more cpu time (see Table 5.10), the modifications of the UW15

method are nevertheless more efficient than those of Leith's method.
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The second-order implicit OPT method is clearly the most efficient base scheme (see middle right

diagram in Figure 5.8). The explicit third-order mod2-R method is, as previously mentioned, more

efficient than the implicit third-order mod-O method. Furthermore, it is seen that the morl2-R. method

is the most efficient third-order scheme overall. Figure 5.8 shows that the fourth-order implicit mod2-O

method is not only the most accurate method, but also the most effrcient method overall.

The benefrts gained by using the modified methods, instead of the base schemes, are evident from the

results presented in the diagrams. As a specific example, from Tables 5.9 and 5.10, it can be seen that

using the mod2-R method instead of Rusanov's method with J : 80, takes 2.24 seconds longer, but the

error is reduced by a factor of 842. For all methods, doubling the grid number leads approximately to

an eightfold increase in the cpu times.

In Table 5.11, the orders of convergence of the LOD schemes are tabulated. These were obtained from

a least squares fit to the data, and verify the improved convergence of the modified methods over the

base schemes. For this numerical test, the UW15 method and Rusanov's methods are a little less than

first-order convergent, and the mod-R method gives results which are a little less than third-order. For

the other schemes, the convergence rates are very close to being those expected from the theory.

5.8.2 Comment

It has already been mentioned that very few analytical solutìons are known for variable coefficient

problems, and numerical schemes must usually be tested on simplifi,ed equations. Because of the lack of

available analytical solutions for more general problems, the numerical tests considered in this chapter

examined. the special case u independent of gr and u independent of r.

However, if we carefully examine the way in which LOD techniques are implemented, it is seen that

for each sweep in the ø direction, the value of y is actually held constant. Likewise, for each sweep in

the g direction, the value of z is fixed. In other words, even if, in the most general case, the velocity

u is also dependent on g, for each sweep, the dependence on E would be treated as a constant. Hence'

although a special case has been considered here, the LOD technique should also be applicable for the

more general case.

It should be noted that the Molenkamp test, which is commonly used in the literature to test schemes

for two-dimensional unsteady advection (see for example Vreugdenhil and Koren 1993), is also a special

case. In fact, in the Molenkamp test, the velocity z is independent of r and ú, and the velocity u is

independent of y and ú. For the purpose of testing the accuracy of the methods considered in this work,

this test is inapplicable, since for each sweep, the velocity is essentially a constant.
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Chapter 6

One-Dimensional Conservative
Advection

Although the non-conservative form of the advection equation is a valid equation, describing many phys-

ical processes (see Zoppou and Knight1997a, Leveque 1997), it is often important that the conservative

form of the advection equation is considered. This is particularly the case for non-linear problems,

such as in the propagation of a shock (Vreugdenhil and Koren 1993). The one-dimensional advection

equation, written in its most general conservative form

(6.1)

in which u: u(n,t), or in the advective form

(6.2)

describes the processes of advection and decay (or growth) taking place simultaneously. It is the advec-

tion term uôîlôr in (6.2) which is particularly difficult to approximate accurately. It has already been

seen how the discretization of this term can lead to the introduction of artificial diffusion, wave-speed

errors, numerical oscillations, and a general reduction in the order of convergence of the scheme, in

situations where the velocity is variable. We were able to improve the accuracy of a variety of FDMs,

thereby minimizing the negative effects of using low-order schemes. However, the term îÔuf ðr was

neglected, so that the integral of î was generally not conserved. Attention will now be focussed on ways

in which this term can be incorporated into the discretization process.
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6.1 Conventional Methods

The purpose of this section is to present a few schemes which have been used to approximate (6.1) in

the past. These particular schemes have been chosen because they are generalized versions of some of

the base methods discussed in Chapter 3 for the non-conservative form of the advection equation. Other

schemes can be found in Roberts and Weiss (1966), Crowley (1968), Boris and Book (1973, 1975, 1976)

and Leonard (1991).

6.1.1 Crowley's Scheme

Crowley's approach was to consider the second term in (6.1) as the divergence of a flux and apply

Green's theorem: "In any zone the decrease in r/ with time is proportional to the net flux out of the

zone" (Crowley 1968). Here r : rp. The decrease in r with time corresponds to forward-time differencing

of the time derivative in (6.1), resulting in

-n!l _ -n _
'.i - t j

A¿

t\r (Fi*rt, - Fi_t¡), (6.3)

(6.4)

(6.6)

where Fr¡r72 is the flux across the boundary aI' ri+L/2) defined as

Fj+r/r: (ur)¡¡r¡z = 
^! 1,-,'*

+r /2
r(r',t)dr'

, '.-uL,t

The quantity l was assumed to vary linearly between r¡ and r¡ai and (6.4) integrated, yielding

(6.5)

A corresponding expression for F¡;/z can be obtained by setting -Ar for Ar, so -c replaces c, and

j - 1 replaces j f 1. Upon substitution in (6.3) Crowley's "second-order" flux-divergence scheme results:

,î*t : |"¡-rp(t r ci-t¡z){, + }Q - ci+t/z - "?*, /, + ci-r/2 - "l-r¡z)ri
+75"¡¡t 1r@¡+r /2 7)rî-r,

where c is evaluated at time úr. For constant velocity, Crowley's scheme, denoted CROW, corresponds

to Leith's method. This advection scheme is first-order for non-uniform velocity fields, but can be

constructed to have second-order convergence for arbitrary flow fields (Smolarkiewicz 1985).
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6.1.2 Rusanov's Method

A generalized version of Rusanov's explicit fourth-order method for constant velocity, that can be used

to solve (6.1), written in flux form (Steinle 1994), is given by

,I*' : ri - cpri -t cmrl - ï"rrt - "p)(rî+, - ri) + I"^rt - "^)?i -'î-r)
1 ". - t ,- r ,+icp(t - "?)?i+' - 2ri + riì - u"*(t -,'â?i - 2rf-r + rþz)

1
+ 

^cp(t 
- "?r)lz - cp)(ri'¡z - }ri*, + 3ri - ri-.J
1

- fic^(r - "?^)(2 - c^)(ri+t - Sri + tri, - ri-),

(6.7)

(6.8)

in which cm : cî_t/z and cp : c\+r/2. This method will be denoted RUS2 to distinguish it from the

scheme described in Chapter 3

6.1.3 An Implicit Algorithm

An implicit scheme, denoted IMP, for non-uniform velocity fields is given by Steinle et al. (1989). This

method takes the fbrm

(2 - 3c ¡ -r 1 z + 
"l -, p)rj'J| + (8 + 3c¡ ¡r / z - 3c¡ -t /z - 

"? *, p - "l -, ¡ )ti+t
+(2 + 3"i*, /, + c?t*, ¡r)ffi

: (2 + 3cj-t/2 + "l-r¡r)*r -| (8 - 3c¡¡r/z + 3ci-1/2 - "?*r/, - "l-r¡)ri
+ (2 - 3c¡¡r /z t "?n, /)ri*r,

which is the fourth-order OPT FDE if the velocity is constant. The authors use (6.8) as their high-order

solution as part of a flux-corrected transport (FCT) algorithm. It should be noted that for variable

velocities, (6.8) is only first-order when c is evaluated at tn, or second-order if it is evaluated at tn¡1¡2.

6.L.4 Numerical Test

The accuracy of the conventional methods is determined using the Gauss test. The data required to

implement the Gauss test are summarized in Table 6.1. Since no exact solution is known when ? : r 12,

the result given by the second-order IMP method with -I : 10000, and c evaluated al'tn¡t¡zt is assumed

to represent the exact solution. The Thomas algorithm for periodic tridiagonal systems is used to solve

the IMP method. The coefficients of the explicit methods are evaluated at time tn, and the single

unknown at the new time-level is given directly from the known values at the old time-level.
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1 Initial condition î(2,0) : exp{-400(ø - 0.1)'z}

2. Periodic boundary conditions î(7 + n,t) : î(r,t)

3. Courant number c : u\t I Lr : uT J lN

4. cmax : 1

5. u(r,t) : Æ(0'5 f sin2 zrr) cos ú

6. T : n12, n = 41Str, umax = 2f r.'- quaúer cycle

7. N: J with J:50,100,200,...,5000

8. exact solution when T:r12 is the solution of IMP when .I:10000

Table 6.1: Data for the Gauss Test applied to the conventional methods

The rms errors in Table 6.2 show the first-order convergence of both Crowley's advection scheme and the

generalized version of Rusanov's method. The second-order IMP method is the most accurate method.

Because Crowley's scheme has the simplest coefficients and a (1,3) computational stencil, it requires the

Ieast time to run (see Table 6.2), whereas the implicit scheme is the most time consuming method.

Crowley's method is more efficient than the generalized Rusanov method. This is because it is faster,

and gives more accurate resuits for all grids considered. The superior performance of the IMP method

over the first-order schemes can be seen by the following example. Crowley's method used with J : 1000

takes 1.79 seconds and yields an error of 1.17e-03, whereas the IMP method used with J = 100 yields

a smaller error, and takes only a fraction of the computational effort.

The cpu times in Table 6.2 indicate that doubling the grid number leads approximately to a fourfold

increase in the computational times for all methods. Additionally, the generalized form of Rusanov's

method requires approximately 1.37 times longer to run for each grid than Crowley's method, while the

implicit method takes about 1.85 times longer than Crowley's method for each grid.
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J

rms errors
CROW RUS2 IMP

50

100

200
500
1000
2000

5000

1.74e-02
8.62e-03
5.00e-03
2.24e-03
1 .17e-03
5.95e-04
2.47e-04

2.32e-02
1..27e-02
6.07e-03
2.43e-03
1.21e-03
6.07e-04
2.43e-04

4.47e-03
1.12e-03
2.80e-04
4.47e-05
1.11e-05
2.69e-06
3.36e-07

J
cpu times

CROW RUS2 IMP
50

100

200
500
1000
2000
5000

4.40e-03
1.88e-02
7.74e-02
4.42e-01
1.79e*00
7.47e-t00
4.42e1-01

6.12e-03
2.47e-02
9.80e-02
6.15e-01
2.46ef 00
9.84e+00
6.15e*01

8.20e-03
3.36e-02
1.32e-01
8.09e-01
3.25e*00
1.34ef 01

8.12ef 01

Table 6.2: Results of the conventional methods in the Gauss test

6.2 A Discretization Procedure

In Chapter 3, a technique was outlined which could modify any FDM for the non-conservative advection

equation, so that it could retain its constant-coefficient order in the variable-coefficient situation. This

idea may be extended to incorporate the decay term present in (6.2). Consider (6.2) with the decay

term interpreted, for the moment, as a sink term

(6 e)

then a FDM to approximate the solution of (6.2) may be based on any scheme for the non-conservative

advection equation plus an additional term L,tFl , to take into account the sink term. Take for example

Leith's method: a solution to (6.2) can then be approximated from

,I*' : iO" * t)ri'-t+ (1 - c2)ri +;O" - l)ri+, + LtFi, (6.10)

where the superscript n and subscript j have been omitted from the non-constant Courant number cf
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The order of (6.10) is assessed by taking a Taylor expansion of each term about (r¡,tn), giving

f{î}: -LtEr,

where the truncation error is given by

(6.11)

(6.13)

(6.14)

(6.15)

(6.16)

(6.12)

The time derivative is converted to space derivatives by differentiating (6.2) with respect to ú, and then

eliminating the cross derivative by differentiating (6.2) with respect to r, yielding

Substituting (6.13) into (6.11) produces

n,: -7unt (# - "'#) + o{2}

r{î}: _.rl*#)+ 
^ß+ 

o{3},

+
a2î
ôr,Iu2OT

A"
0u
ô"

/ôu:-[*-"a2î
ðt,

AF ôF
u

At ôr

in which

and

in the former case, or

o:+#G-"#),

^ LtlôF ôF

'= 2 \ar -" a"

Equation (6.10) is clearly accurate to first-order. To obtain a second-order truncation error, the spatial

derivative in (6.la) must be discretized to at least first-order; it can be approximated using either upwind

or centered-space difference forms as before. This yields

îi*, : LTH + Lt (Fi + Gi) + O{3}, (6.17)

where

LrH: Tf"* c2 +d,+lal)ri-t+ (1 - "'-ldl)t -;("-"'+d-ldl)îi+1, (6.18)

LTH : l t" * c' + a) îi-t + F - "") oi - tt 
(" - "' + d) îi+r,
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in the latter case. The new term, involving G, must be accurate to third-order, so G must be approxi-

mated to second-order. This may be achieved by computing the derivatives of -t' to at least first-order'

If first-order forward-time and second-order centered-space forms are used, then

" =i{2(Fî*' - FÐ - c(Fi+r- 41,)} (6.20)

Finally, substituting (6.20) into (6.17) and omitting all error terms, yields a second-order method for

approximating the conservative form of the advection equation, namely

,I*' : LTH + LtFi + rUtt 
1zçr;*' - Fî) - "(Fî+, - Ff-r)\ , (6.21)

where F : -rðulôr. Rearranging (6.21) gives an explicit three-point formula, that is

n.*1
'i = jtrt" + jttpr;-r + 2Fi - "Fî+,\),

(6.22)

in which

9:7- 0.54¿4'+1 and /:-ôulôr (6.23)

Because the dominant term in the truncation error of the UW15 method is the same as that for Leith's

method, (6.22) can readily be used with UW15 replacing LTH. Note that since the equations involved

are linear, only the stability of the homogeneous part of the FDE, obtained by setting -F' = 0, needs to

be determined. A local stability analysis then yields necessary conditions for the stabiÌity of the variable

coefficient problem (cf. Section 3.4.3).

If higher than second-order convergence is desired, for instance, by using Rusanov's method in place of

either the Leith or UW15 schemes, then the conversion of the temporal derivatives in the truncation

error to space derivatives implies the inclusion of many more terms like (6.16). Each of these must then

be approximated to the appropriate order. Three levels in time will necessarily be involved. Clearly this

modification procedure becomes very complicated and is suitable for only the simpler base schemes.

6.2.L Numerical Test

The Gauss test, summarized in Table 6.3, is used to examine the performance of the schemes developed

in this section. Since no exact solution is available when T: r12, the numerical solution given by the

second-order mod2-L method when J : 20000, is assumed to represent the exact solution. If one of the

other second-order methods is used to give the exact solution with this grid number, the rms errors do

not change, indicating that this numerical solution is accurate enough to represent the exact solution.
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1 Initial condition î(r,0) : exp{-400(r - 0'1)2}

2. Periodic boundary conditions î(7 + x,t) : î(r,t)

3. Courant number c = uLt I Lr : uT J lN

4. cmax: 1

5 . u(r , t) : K (0.5 * sin2 zrr) cos ú

6. T : ¡r12, n : 413n, ttn;'ax: 2fr: quaúer cycle

7. N: J with "I:50,100,200,...,5000

8. exact solution when T : r 12 is the solution of mod2-L when ,./ : 20000

Table 6.3: Data for the Gauss Test applied to the discretized methods.

Figure 6.1 shows that Leith's method captures the height of the pulse better than the mod-L and

mod2-L methods. The mod2-L method is less diffusive than the mod-L method because of the centered

space differencing used to modify it, as opposed to the diffusive upwind differencing used for the mod-L

method. For similar reasons) the mod2-U solution in Figure 6.1 is less diffuse than the mod-U solution.

The spurious oscillations present in the solutions for J : 50, are not visible when J : 100.

The solution of the UW15 method in Figure 6.1 leads the exact solution with an amplitude that has

apparently not decayed sufficiently. This is explained by examining the term ðulôr. For the velocity

considered, ðu I ôr is proportional to sin 2trr, so when r e (0,712) this term is positive and decay occurs,

but when r € (1,12,1) this term is negative and growth occurs. Because the pulse travels too rapidly,

the growth which should occur later is already taking effect.

Figures 6.2 and 6.3 show that Leith's method is more accurate and more effi.cient than the UW15 method.

The accuracy and efficiency of the second-order schemes cannot be separated from these figures, however,

Tables 6.4 and 6.5 indicate that the mod2-L method is the most accurate and most efficient second-order

scheme. This is because it gives the smallest errors in the least time. Comparing Leith's method and

Crowley's scheme (cf. Section 6.1.1), shows that, although Leith's method is a little more accurate, it
takes more than twice the cpu time for each grid (compare Tables 6.4 and 6.5 with Table 6.2).
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Fig 6.1: The discretised methods are used in the Gauss test for the one-dimensional conservative

advection equation. The top diagrams are for J : 50 and those on the bottom are for "I: 100.
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J LTH UW15
50

100

200
500
1000
2000
5000

1.73e-02
8.04e-03
4.58e-03
2.06e-03
1.07e-03
5.47e-04
2.22e-04

4.30e-02
1.69e-02
6.98e-03
2.45e-03
1.17e-03
5.71e-04
226e-04

J mod-L mod-U
50

100
200
500
1000
2000
5000

2.I7e-02
6.60e-03
1.74e-03
2.82e-04
7.06e-05
1.76e-05
2.67e-06

2.6Ie-02
7.10e-03
7.74e-03
2.71e-04
6.71e-05
1.68e-05
2.79e-06

J mod2-L mod2-U
50

100

200
500
1000
2000

5000

2.lle-02
6.28e-03
1.64e-03
2.65e-04
6.61e-05
1.64e-05
2.49e-06

2.48e-02
6.74e-03
1.66e-03
2.67e-04
6.47e-05
1.62e-05
2.71e-06

Table 6.4: RMS errors for discretized methods in Gauss test.

J LTH uw15
50

100
200
500
1000
2000
5000

9.90e-03
4.00e-02
1.56e-01
9.70e-01
3.91e*00
1.57e+01
1.00e102

1.01e-03
4.18e-02
1.63e-01
9.77e-0I
3.93e*00
1.60e+01
1.01ef 02

J mod-L mod-U
50

100

200

500
1000
2000

5000

1.32e-02
5.30e-02
2.1.4e-01
1.31e-l00
5.34e+00
2.20e*01
I.42eI02

1.33e-02
5.39e-02
2.15e-01
1.32ei00
5.43e+00
2.27ei0l
I.43e*02

J mod2-L mod2-U
50

100
200
500
1000
2000

5000

1.31e-02
529e-02
2.10e-01
1.30e*00
5.23e+00
2.09e*01
1.33e102

1.32e-02
5.37e-02
2.12e-07
1.31e*00
5.41e+00
2.19e+01
1.37e+02

Table 6.5: CPU times for discretized methods in Gauss test

92



6.3 Process Splitting

Rather than developing FDMs which approximate solutions to (6.2) directly in the manner just de-

scribed, it is possible to divide the governing equation, solving the processes of advection and decay

separately during each time-step. Consider the component equations

ai aî
-*1l-:U.ðt dr

(6.24)

(6.25)

the first of which can be solved using any of the methods described in Chapter 3. The second equation

may be solved either by using an exact solution, or by using any sufficiently accurate ODE solver,

such as Heun's method for second-order accuracy or the fourth-order Runge-Kutta (RKa) method for

higher accuracy. Assuming that both î(n,t) and the advective velocity are variable separable with

u(r,t): f (x)g(t), then an exact solution to (6.25), written in discrete form' is given by

(6.26)

where /' : dlldr. Because the coefficients of the component equations are not constant, there is an

error in splitting even if the subprocesses are treated exactly (Vreugdenhil and Koren 1993). This error

can be avoided by making the splitting process symmetric (Strang 1968), which involves reversing the

order of the subprocesses each time step (Vreugdenhil and Koren 1993).

6.3.1 Numerical Test

The Gauss test was applied to all of the methods described in Chapter 3. The decay process was

approximated by applying Heun's method, where first or second-order convergence was expected (recall

the synopsis given in Figure 3.1), or by using the RK4 method for higher convergence. A summary of

the data required to implement the numerical test is given in Table 6.6.

The coefficients of the explicit methods are evaluated at time tn, and the single unknown at the new

time-level is given directly from the known values at the old time-level. The coefficients of the implicit

methods are evaluated attv¡t/2, and the Thomas algorithm for periodic tridiagonal systems is used to

solve the system of linear algebraic equations arising.

î;'+' : î'r' exP{- f '(,r¡ lt^"n' 
gç'¡a'¡,
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1 Initial condition î(r,0): exp{-400(ø - 0.1)'?}

2. Periodic boundary conditions î(7 + r,t) : î(n,t)

3. Courant number c : uLt I Lr : uT J lN

4. cmax: 1

5. u(r,t): K(0.5 + sin2 a.r) cos ú

6. T : r12, rc : 4l3tr,'Llmax : 2fr: quarter cycle

7. T : 2r, n : Il3n, I.trr'àx: lf2tr: one cycle

g. N : J with .I : 50,100,200,...,5000

9. exact solution when T =r12 is the solution of mod2-O when J:10000

10. exact solution when T :2r is the initial condition

Table 6.6: Data for the Gauss Test applied to the process splitting methods

The diagrams in Figure 6.4 show the results for J = 50 after a quarter cycle. A comparison of the

top two diagrams in Figures 6.1 and 6.4 indicates that in terms of accuracy there is little difference in

performance between the process splitting methods and those used in the discretization procedure. This

is verified by comparing their rms errors in Tables 6.4 and 6.7. However, Tabìes 6.5 and 6.8 show that

the process splitting technique is considerably faster to execute than the discretization procedure.

The bottom left diagram in Figure 6.4 shows that the solution of Rusanov's method lies well ahead of

the exact solution, and the height of the pulse is too large. This is due to the term Ôul)n; growth

occurs when r € (712,1). The explicit third-order mod-R and mod23 methods do not introduce any

visible oscillations into the numerical solution, and are closely aligned to the exact solution. However,

they introduce more diffusion into the solution than the implicit mod-O and mod2-O methods (compare

bottom diagrams in Figure 6.4), causing a reduction in the height of the pulse.
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Figure 6.4: The Gauss test is applied for J = 50 to the process splitting methods to

approximate the one-dimensional conservative advection equation.

The solution of the OPT method (bottom right diagram of Figure 6.4) is better aligned to the exact

solution than the other base methods (LTH, UW15, RUS), and captures the height of the pulse better

than LTH and UW15. Its solution is also better aligned to the exact solution than those of the explicit

second-order schemes. Additionally, it introduces no visible oscillations into the solution. The implicit

mod-O and mod2-O methods (whose performance cannot be separated in Figure 6.4) give the most

accurate solutions, with only a small loss in the height of the puise observed.
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Figure 6.5: The top four diagrams show the convergence of the process splitting methods.

The bottom two diagrams show the efficiency of RUS, OPT and their modifications.
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J LTH UW15 RUS OP'T'

50
100

200

500
1000
2000
5000

1.65e-02
7.82e-03
4.54e-03
2.05e-03
1.07e-03
5.47e-04
2.22e-04

4.20e-02
1.67e-02
6.94e-03
2.44e-03
1.17e-03
5.71e-04
2.25e-04

2.Líe-02
l.l2e-02
5.60e-03
2.24e-03
1.12e-03
5.59e-04
2.23e-04

5.49e-03
1.39e-03
3.50e-04
5.61e-05
1.40e-05
3.51e-06
5.61e-07

J mod-L mod-U mod-R mod-O
50

100

200
500
1000

2000
5000

2.I2e-02
6.44e-03
1.69e-03
2.75e-04
6.88e-05
L.72e-05
2 75e-06

2.49e-02
6.86e-03
1.70e-03
2.67e-04
6.61e- 05

1.64e-05
2.62e-06

4.32e-03
4.41e-04
4.44e-05
2.39e-06
2.76e-07
3.25e-08
2.03e-09

6.92e-04
4.15e-05
3.28e-06
2.31e-OT
4.54e-08
9.99e-09
1.19e-09

J mod2-L mod2-U mod2-R mod2-0
50
100

200

500
1000
2000
5000

2.08e-02
6.16e-03
1.60e-03
2.59e-04
6.47e-05
1.62e-05
2.59e-06

2.37e-02
6.54e-03
1.64e-03
2.58e-04
6.43e-05
1.60e-05
2.56e-06

2.86e-03
2.01e-04
1.20e-05
3.20e-07
4.85e-08
1.06e-08
1.25e-09

6.90e-04
3.79e-05
2.25e-06
t.44e-07
3.67e-08
9.08e-09
1.14e-09

Table 6.7: RMS errors after a quarter time cycle when the Gauss test

is applied to the one-dimensional conservative advection problem.

J I]TH uw15 RUS OPT
50

100

200

500
1000
2000
5000

6.18e-03
2.69e-02
1.05e-01
6.32e-01
2.49e*00
1.06e*01
6.21e*01

6.60e-03
2.76e-02
1.07e -01
6.70e-01
2.69e*00
1.08et01
6.38e-l01

1.10e-02
4.23e-02
1.70e-01
1.02e*00
4.07e+00
1.64e*01
1.02e+02

1.19e-02
4.99e-02
1.95e-01
1.23et00
4.77e-100
1-94e*01
1.33e*02

J mod-L mod-U mod-R mod-O
50
100

200
500
1000
2000
5000

9.90e-03
4.I2e-02
1.56e-01
9.73e-01
4.01e*00
1.60et01
9.61e*01

1.04e-02
4.17e-02
I.72e-0L
1.06e*00
4.19e*00
1.63e+01
L.02e-102

7.92e-02
7.68e-02
3.08e-01
1.92e+00
7.71e+00
3.09e*01
2.01e-102

2.20e-02
8.41e-02
3.43e-01
2.17e*00
8.77e*00
3.67ef 01
2.32e+02

J mod2_L mod2-U mod2-R mod2-O
50
100

200

500
1000
2000
5000

9.59e-03
3.93e-02
1.54e-01
9.55e-01
3.80e+00
1.54e*01
9.60e+01

1..02e-02
3.95e-02
1.56e-02
9.88e-01
3.82e+00
1.55e*01
1.00e*02

1.90e-02
7.65e-02
3.07e-01
1.89e*00
7.60e+00
3.08e+01
L92e-102

2.15e-02
8.38e-02
3.22e-01
2.04e+00
8.21e*00
3.56e*01
2.24ei02

Table 6.8: CPU times after a quarter time cycle when the Gauss test
is appliecl to the one-dimensional conservative advection problem.
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Method T:r12 T :2tr Theory

LTH

mod-L

mod2-L

uw15

mod-U

mod2-U

RUS

mod-R

mod2-R

OPT

mod-O

mod2-O

0.92

1.96

1.96

1.13

2.00

1.99

1.00

3.77

aÐo

2.00

2.83

2.83

7.07

2.05

2.92

t.77

2.75

2.87

7.02

3.30

3.11

3.01

1

2

2

1

2

2

1

J

3

2

4

Table 6.9: The orders of convergence for the Gauss test are given

by the slope of the line of best fit to the data.

The top four diagrams in Figure 6.5 show the convergence of the schemes after a quarter time cycle.

For most methods the results are as expected, but for the mod2-R, mod-O and mod2-O schemes, the

convergence declines as the grid is refrned. This decrease in accuracy causes a corresponding decrease in

the efficiency of these schemes, as seen in the bottom two diagrams of Figures 6.5. Apparently, it is only

slightly more profitable to use the fourth-order mod2-O method than the third-order mod-O method.

The convergence rates at both final times are given in Table 6.9. These were determined by performing a

least squares fit to the data given in Tables 6.7 and 8.2 (Appendix B). The convergence rate is given by

the slope of the line of best fit to the data. After one cycle, both the mod2-R and mod-O methods gave

results which have the expected convergence rates, and the second-order mod2-L and mod2-U methods

performed better than expected, giving nearly third-order convergence.

The phenomenon called order reduction (see Sanz-Serna et al. 1987) may be responsible for the decrease

in accuracy of the third and fourth-order methods when the RK4 method is used to approximate the

decay term. It has been observed (Sanz-Serna et al. 1987) that in many problems involving the time

integration of hyperbolic equations using Runge-Kutta methods, the convergence rate is less than the

theoretical order. According to Sanz-Serna et al. (1987), order reduction occurs unless certain boundary

conditions are fulfilled. These conditions are not natural to the problem, but arise as constraints when

the Runge-Kutta method is used (Sanz-Serna et al. 1987). Such constraints will not be considered here.
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Figure 6.6: Solution of the non-conservative and conservative advection equation when ? : r 12.

It is observed that the exact solution of the non-conservative and conservative forms of the advection

equation to the same problem may be different. In Figure 6.6, the initial condition and exact solution at

T : ¡r12 are illustrated for the Gauss test problem. In both cases, the exact solution is given by solving

the advection equation using the implicit fourth-order mod2-O method with -I : 10000. As shown in

the diagrams, the peak of the non-conservative solution is located ã,t no - 5.529e-01 with î*o, - l,
while the peak of the conservative solution is located 164 grid points to the right at rp : 5.693e-01

with î^o, ry 0.411. In other words, the concentration front travels slower in the non-conservative case

and the peak is unattenuated. By contrast, the solution profile of the conservative equation decays

exponentially in time. Similar observations have been made by Zoppou and Knight (1997a), who

compared analytical solutions for the conservative and non-conservative forms of the advection equation

with spatially variable coefficients. An approximation of the area under the profiles of the conservative

and non-conservative solutions is given by Vreugdenhil (1993) as

giving an initial and final area of 8.86e-02 in the conservative case, but the area has increased to 2.10e-01

in the non-conservative case. For many problems, it is important that the conservative form is used, and

this has been addressed by incorporating the decay term into the approximation. Note that after one

cycle, the exact solution for both the conservative and non-conservative forms ofthe advection equation,

is given by the initial condition. Hence, for this final time, both equations are equivalent.
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6.4 Summary

Various techniques to incorporate the decay term into the non-conservative advection equation, so that

the integral of î is conserved, were considered. Conventional methods based on the integral formulation

of (6.1) and the flux of matter across the boundaries of a computational cell, were compared to a new

discretization procedure and a process splitting method. Although the conventional methods were of

Iow-order, they performed quite well compared to the base methods, described in Sections 6.2 and 6.3.

The discretiza1ionprocedure and the process splitting method gave similar accuracy' though the former

technique was too complicated to carry out for all but the simplest base schemes. The latter technique

was easy to implement, required less cpu time, and could be readily applied to all the schemes considered

for the non-conservative advection equation, without alteration. Although some of the third and fourth-

order methods did not show the expected convergence rates for frner grid resolutions, these methods

were nevertheless still superior to all others'
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Chapter 7

One-Dimensi nal Diffusion:
A Special Case

The one-dimensional diffusion equation

(7.1)

in which the diffusion coefficient a(n,t) ) 0 is space and time dependent, quantifies the process of

diffusion, which is involved in many physical situations, such as solute flow through heterogeneous

porous media, and conduction phenomena involving transfer of heat in nonhomogeneous solids. Closure

oftheinitialvalueproblemwithinthedomain0(r(1,03t<?requirestheprescriptionofan
initial condition

î(r,0):f(r), 0(r(1 (7.2)

and boundary conditions

î(o,t) : 9"(t),
(7.3)

î(1,ú) :9*(ú), 0 <t <T

where /(ø), g'(ú) and 9"(ú) are known.

Considerable research and experimental studies have been undertaken to determine the form of the

variable diffusion coefficient for a wide range of practical applications (see for example Crank 1956,

Corey et al. 1970, Pickens and Grisak 1981a, Yates 1992).

0<t<T
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In many appìications, the diffusion coefficient is a function of travel time only (Barry and Sposito 1989,

Basha and EI-Habet 1993), so the governing equation simplifies to

(7.4)

In this chapter, the accuracy of various base methods will be analyzed, when they are applied to (7.4),

with a in its most general form, namely

aî . a2î-;--o(r,¿) 
- 

-U.ot on'

X-"#.n'nf=+l¡ffi:o

(7.5)

The relevance of considering the more general form (7.5), rather than (7.4), will become apparent in

Chapter g. Any methods developed to solve (7.5), will perform at least as well, when applied to (7.4).

As was the case for FDMs used to solve the variable-coefficient advection equation, high-order methods

for constant diffusion usually become low-order when applied to variable diffusion problems' It will be

shown how these methods can be modified, so as to retain their constant coefficient order.

7.t The MtrPDE

The MEPDtr of a FDE which is consistent with the constant coefficient diffusion equation is given by

(7.6)

Iffo(s) :0forS:3(1)8*landfa+r(r) f0,thentheFDEisoforderQ,sincethetnrncationerror

ET Ë
2a(Lr)o-z

ql
ro(t)

ôqr
ôrq'

(7.7)

q:Q+2

is O{(Ar)A}. A shift in the peak of the numerical solution occurs unless the odd coefficients are all zero

The even coefÊcients indicate that there is an error in the damping response (Noye and Hayman 1986a)

For variable coefficients, an analysis must be based on the MDPDE, obtained by replacing r by î in

the FDE, expanding each term about a fixed point in the solution domain, and then eliminating all the

temporal derivatives using the original PDE. The analysis based on either the MEPDE or the MDPDE

requires the solution to be continuously differentiable on the domain.
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7.2 The FTCS Method

For constant diffusion, the FTCS method (Richtmyer and Morton 1967) is given by

,I*t : srþr -t (7 - 2s)ri r sri*1 (7.8)

For variable coefficients, s is replaced by si: o|Ltl(Lr)2. The superscript n and subscript j will be

omitted from the following for convenience. A formal consistency analysis of (7.8) about the (i,r)'n

grid point gives the truncation error

A¿D"r--T
ô2î t,

- -o.'s
t)

-rônî
ôra

+ o{4},

a4î* o-o*n

ðt2
(7.e)

(7.11)

(7.12)

(7.13)

(7.r4)

where

o{p} : o{(Lr¡n-zø (Lt)o , s an integer}, (7'10)

since At is proportional to (Aø)2. To determine whether terms in (7.9) cancel, the time derivative is

converted to space derivatives as follows. Differentiating (7.5) with respect to t gives

while differentiating (7.5) with respect to ø' twice, yields

A2î ôa ð2î ô3r
J-a-

ôt2 - ôt ôr2 '"ôtôr2'

ô3i ô2a ô2î ða ô3î

-I
ôt,ðrz - ôr2 ôn2 ' 'ôr ôrJ

Substituting (7.12) into (7.11) produces

where

a2î
At'

ð2a\ 02î - ðaô3i ,A4i
ôF)aæ-t2a*a*t+a'a#'

E,: -+ ("# * o# + a2(r- å,-', #) * ornr,

E:X*'ffi,K=zaff

ôa
ôt

la

which contains no time derivatives of î. The truncation error then becomes

(7.15)

The FTCS method is therefore second-order convergent, independent of whether it is used for variable

or constant coefficients, except in the case s:116, when it becomes fourth-order for constant diffusion.

It is locally stable if 0 < s l1/2 (Richtmyer and Morton 1967).
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7.3 The Noye-Hayman Method

Consider the Noye-Hayman method (Noye and Hayman 1986b), written in the form (2'12), where

L{r} :71'+t

R{r} : }{ur' - s)ri-z+ l{-or' +  s)ri'-r +1,tz + 6s2 - ss)rf

+]{-or' + a{ri*, + }$,' - ù,h2.

1 / a2îE,=-rttlffi-"' ô4î
A"^

ôr

For variable difiusion, s is replaced by si , but the superscript n and the subscript j arc omitted for

convenience. The convergence of the method is determined by a formal consistency analysis, achieved

by replacing the finite-difference approximation r by the exact solution î' and taking the Taylor series

expansion of each term in (7.16) about (r¡,tn), yielding

r{î} : -LtEr, (7.t7)

where the truncation error is given by

(7.16)

(7.20)

+ o{4} (7.18)

The time derivative is converted to space derivatives using (7.13), so that the truncation error becomes

+ K + o{4}, (7.1e)

where-E and.K aredefinedbV (7.15). Thetruncationerrorindicatesthatthebasemethod, denoted NH2,

is fourth-order for constant diffusion, but only second-order for variable coeficients.

7.3.1. Modification

The following modification is given by Noye (1993). Substitution of (7.19) in (7.17) yields

n,: -|u ("# a3î

F{î} : e løù' #).o fra,l' #) * orur,

where the correction factors P and Q are defined by

P : E(Lt)2 l2(A,r)2, Q : K(Lt)2 la@'n)3
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The presence of the term involvingô2îf ôr2 indicates that artificial diffusion has been introduced into

the numerical solution. The third-order spatial derivative shows that there is a shift in the peak of the

numerical solution. The exact solution will be better modelled if these terms are eliminated by using,

for example, second-order centered-space difference forms, whereupon (7.20) becomes

?{î} : P (î;'-r - 2îi + îi*t) + Q (îi*, - 2îi*, + 2îi-r - ti-z) + 0{6} (7.22)

Omitting the error terms of order six and higher, replacing î by r, and substituting the base method

for f , then yields a fourth-order method, denoted NH4, and given by

,I*' : ifuu - s -t2e)ri,r+] {-ur' -t4s-r6Q +JP)ri-tl-trtr*6s2 _ 5s - +e)ri

+] {-or' -t 4s - 6Q + 3P) rî+r-r å (ur' - s + t2Q) ri+2.
(7.23)

(7.25)

(7.26)

The base method is stable if 0 < s < 2/3 (Noye and Hayman 1986b), giving a necessary condition for

the stability of the variable coefficient problem (Richtmyer and Morton 1967, Hirsch 1990).

7.4 The Inverted (5,1) Method

Since the Noye-Hayman method has a (1,5) computational stencil, it can only be used fot j :2(7)J-2,
so a supplementary method must be used to find the values of rf+r and r!!1. Such a method may be

developed by inverting the NH2 method to give a formula with a (5,1) computational stencil. This is

achieved as follows. Consider the base method, rewritten here for convenience:

,I*' : |$r' - s)ri-z+ ]{-or' + 4s)ri-t +l;fz + 6s2 - ls)ri
(7.24)

+l{-0"' -t  s)ri*, + }fa* - ,),î+2,

in which s is evaluated at (j,n). By setting -s for s, (n - 1) replaces (n f 1), so that

^rr-I - 
I I

' j - 12\
6s2 +

7,r_t,c\

s)rj'-z+ l{-or' -  s)ri'-r + l1fz + 6s2 + trs)ri

Now, shifting the time index, so that (rz + 1) replaces n, gives the inverted NH2 method, namely

-6s2 - aùrh, + |fa" + r)rî+,

,y : |{ar' + s)ri\rt + }{-0"' - 4s)riJl +}fz+ 6s2 + ls)ri+r

+]t-0,' - qÐ,îfi + |fa" -t s)r;f,t ,

in which s is evaluated at (j,r¿ + 1). By setting j :2 in (7.26) and rearranging, the value of rf+1

may be obtained, where the NH2 method has already been used to calculate r at the new time-level

105



for j:2(1,)J-2, and rfr+1 is given by the left-hand boundary value. Similarly, by setting i: J-2
in (2.26) and rearranging, the value of rj1r1 is found, where r]+1 is given by the right-hand boundary

value. The NH4 method can also be inverted, giving a fourth-order method with a (5,1) stencil, namely

,i:i(os2+ s.-r2Q),iJ,'+å(-ur'_ 4sr-6Q+3P)"i!i+f;tr*6s2+5s -+P),î*' 
ç7.22)

.å (-or' - 4s - 6Q+ sr) rff1 + ,l (or' + s + r2Q) rif,rt,

in which s and the correction factors P and Ç are all evaluated at (j,n + 1). The signs of P and Q

do not change, because they are proportional to (At)2, whereas the sign of s changes, because it is

proportional to Aú. The inverted NH4 method can then be used to find the values of. rl+r a"d ti1r1

7.5 Mitchell's Method

An implicit fourth-order method to solve (7.5) has been outlined by Mitchell (1969) as follows. If (7.5)

is divided through by a(r,ú) l0 and evaluated at (r¡,tn+r/z),then

n*r/2ltðî1
L;al

nr7/2 A2î -0.

(L,r)2 ôaî /2

(7.28)

+ o{4}. (7.2e)

ô12
J J

Replacing the space derivative by the average of its values at the n and (n + 7)'h time-levels, and then

replacing these by second-order centered-difference forms, gives

:n*1
' 
j+t -

from which follows, that

The spatial derivative in (7.29) may be written as

ô4

t+
1

;n
'i+t +

+
2(L,r 2(L,n)2

n*7/2

72 ôra

ô2

clr'
T

ð"^
ô2

ô"' (å#) (7.30)

+ o{2} (7.31)ôqî1n+r/z _ r (lly1"*"'
5*o li (Ar)' \ la ôL ) ,*,

o l7aî1t__t
laôtl

l1 aîlt__t
laat)

n*\/2

j-r
+

J

Substituting this in (7.29), which is then substituted in (7'28), yields

r/2 | ôîf+r/zr--l' r2c]Tl/2 ôt l¡*t

-2î? +î? ,
I I_L

aî n+

ôtj

2(L,n)2

in
'i+t
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If the time derivatives are replaced by second-order centered forms and the error terms are omitted,

then Mitchell's fourth-order method is obtained, namely

7.5.1 Stability and SolvabilitY

The local stability of (7.33) can be determined by considering the case when a(r,t): (t, a constant

Then sT+I/2 : s for all j and r¿ and Mitchell's method can be written as

(r -os)ri_f +2(5+6s)rj'+1 + (1- as)ffi: (1+ 6t)ri,, +2(5- 6s)ri + (1+6s)1iî1, u.34)

which is Crandall's method (Crandatl 1955). It is well known that Crandall's method is unconditionally

stable and solvable. Therefore, Mitchell's method may be considered locally unconditionally stable and

solvable, and can be used so long as o(r,ú) is not zero for any valtres of ø and ú in the solution domain.

7.6 Three-Level Methods

Consider the fourth-order N131 method (Noye 1998) for the constant diffusion equation, which when

written in the form (2.72), is given by

F{r}: (r + os)ri+1 -t2s2(rit+ri+) -2(r-tzs2)ri + (1- 6s)ri L, (7.35)

which involves three-levels in time. Applying (7.35) to the variable-coefficient diffusion equation, results

in only second-order convergence. This may be seen by replacing r by î in (7.35) and expanding each

term as a Taylor series about (r¡,t,"), yielding

F{î}: -L2s\tÐr, (7.36)

in which

(#-,)','.r ., (i** u)'Í*' . (#" -,)',r.r
1

n+l/2
s j-t'

*o) +,.,(ï*-,) 'r.( 1

n*7/2sj+r'

a2î

'.i+t+6:(

(7.33)

a4î
ô"^

Lttl - __ur - 72s AP
cl2 + o{4}
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After replacing the temporal derivative by (7.13) 
' 

we obtain

(7.38)

in which -Ð and K are given by (7.15). The truncation error is therefore second-order for variable

coefficients, but fourth-order for constant diffusion. Note that if s:716, then the N131, Noye-Hayman

and FTCS methods are identical. Also, comparing the leading error term (7.38) with that of the NH2

method (7.19) , indicates that for values of s>1,f 6, the N131 method should be more accurate.

7.6.L Modification

The following modification is suggested by Noye (1998). Substituting (7.38) into (7.36) yields

E,: _#("# +K a3î
Art

+ o{4},

F{î} =r [tr"l' #]. alzrs'#)* orur, (7.3e)

where the correction factors P and Q are defined as

P : E(Lt)2 l(L*)', Q : K(Lt)2 l2(A'r)3 (7.40)

Replacing the space derivatives by second-order centered-space difference forms then gives

F{î} : p(îi*, - 2îi + îi) + QGi+, - 2îi*, + 2îit - îi) + 0{6} (7.4r)

Omitting the errors terms and equating with (7.35), produces the following fourth-order methorl

,î*t : airi-z + birit + il]rî -t eir]'*, + fiti+, + siri-t , (7.42)

which will be denoted as the N151 method when

a: -f : -Q€, 6 : (72s2 + P +2Q)e, d: 2(7 - l2sz - P)e

e- (72s2 + P -2Q)t, s: -(1- 6t)€, €:1/(1+6s).
(7.43)

The base method is stable in the range 0 < s ( lltÃ, (Noye 1998), which gives a necessary condition

for the stability of the variable coefficient problem.

7.6.2 Starting Procedure

Because they are three-level methods, the N131 and N151 methods require a two-level starter of appro-

priate order to compute the values at the first time level. A suitable second-order starting procedure for
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the N131 method is the NH2 method, which can be applied lor j - 2(l)J - 2. The inverted NH2 method

can then be used to provide the values rr1 and r]-r. Likewise, the NH4 and inverted NH4 methods can

provide the required values at the first time-level for the N151 method. At each time level, the N151

method must also be supplemented near the boundaries; again the inverted NH4 method can provide

these auxiliary values, once the values for j - 2(1)J - 2 have been evaluated using (7.42).

7.7 An Analytical Solution

An analytical solution of (7.5) will be developed for the purpose of testing the accuracy of the methods

d.escribed in this chapter. If the diffusion coeffi,cient is in the separable form a(r, t) : p(r)q(t), then a

solution of (7.5) in the separable form

î(n,t) : X(r)M(t), (7.44)

leads to

lf a constant. (7.45)

This yields two ordinary differential equations, the first of which has the solution

M(t):.Aexp{ "lq(t)dtj, ,4 a constant (7.46)

A solution of the second equation, whenp(r) is of the formp(r) :0.5[1 -2(r- 0.5)']-t, is given by

x(r) :Bexp{-(r-0.5)'}, B aconstant, (7.47)

where /f = -1. The exact solution of (7.5) is then given by

Iî(n,t) : .L exp{-(r - 0.5)'} exp{- q(t)dtj, (7.48)

where .L is a constant, and q(t) is the time varying component of the diffusion coefficient.

7.S The Diffusion Field

For most problems, it is not adequate to assume that the diffusion coefficient is uniformly constant. Field

evidence and experimental studies have suggested that, in describing, for example, solute transport in

hydrogeologic systems, the diffusion coefficient increases as a function of travel time or travel distance
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until it reaches an asymptotic value (Pickens and Grisak 1981b). The variability of the diffusion is

usually attributed to the heterogeneity of the porous medium (Sauty 1980, Basha and El-Habel 1993).

In the numerical tests to follow, the diffusion field will be assumed to be in separable form, where the

space-dependent component is given by the function

p(r) :0.5 [1 - 2(n - 0.5)2]-r ,
(7.4e)

and the time-dependent component will take on one of the three functional forms given by Basha and

El-Habel (1993). These are

Linear
(7.50)

Asymptotic
(7.51)

q(t): no!+ n-,

q(t) : Drh-t D*,

or Exponential:
(7.52)

s(t) : Do [1 - exp(-l/,k)] t D*,

where De is the maximum diffusion , D^ is the molecular diffusion and k is equal to the mean travel

time. In the following, Do: D*:1,120 and k : 10, in which case analytical solutions for the three

diffusion profiles considered, are

Linear:
(7.53)

î(r,t): exp {-(r - 0 5)'} exp {-t2 l+00 - tl20} , L : 7

Asymptotic:
(7.54)

î(r,t) : Jtl70 + rexp{-(r - 0.5)' - 0.1¿}, L : llt/n

or Exponential:
(7.55)

î(r,t) : exp {-(r - 0.5)'} exp {0.5 - 0.1ú - 0.5exp(-0 -7t)}, L: exp(0.5)

These are depicted in Figure 7.lfor the case ú:4, along with the initial condition ú:0.
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Figure 7.1: Initial condition and solution atT:4 for diffusion profiles.

7.9 Numerical Tests

The one-dimensional diffusion equation, with the diffusion coefficient given by one of the three functional

formsdescribed,issolvedonthedomain0<u<1,0<ú(4.Theinitialandboundaryvaluesaregiven
by the analytical solution. The grid number ,,I ranges from 40 to 200. The number of time steps .l{ = /2,

so that Aú is proportional to (Lr)' , and the maximum value of the diffusion number remains fixed. For

the three cases considered: Ìinear, asymptotic and exponential, s^or:(t*orT æ 0.28,0.26,0.27, so all

schemes are locally stable. A summary of the data required to implement the numerical test for the

asymptotic diffusion profile is given in Table 7.3 in Section 7.10.

Mitchell's method is implicit, so the Thomas algorithm is used to solve the resulting tridiagonal system.

The other methods are explicit, so the single unknown is given directly from the known values at the old

time-level, or from the previous two levels for the three-level methods. The rms errors and cpu times

for the three diffusion profiles are given in Tables 7.1 and 7.2. Tlne convergence and efficiency of the

schemes for the asymptotic profile are shown in Figures 7.2 and 7.3. Table 7.1 shows that the results

for the linear and exponential profiles are qualitatively similar to those of the asymptotic profile, so

the plots are omitted. The second and fourth-order Noye-Hayman methods are denoted NH2 and NH4

respectively, and Mitchell's method is denoted M4.
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3.20e-09

4.87e-10
1.99e- 10

1.24e-17

j
Asymptotic Time Variation

FTCS NH2 NH4 N131 N151 M4

40

50

80

100

200

2.78e-05

1.77e-05

6.90e-06

4.41e-06

1.10e-06

2.19e-05

1.38e-05

5.32e-06

3.40e-06

8.45e-07

1.75e-08

6.41e-09

8.41e- 10

3.30e- 10

1.94e- 11

2.79e-05

1.78e-05

6.94e-06

4.43e-06

1.11e-06

2.85e-07

1.12e-07

1.58e-08

6.34e-09

3.78e- 10

7.52e-09

3.07e-09

4.67e- 10

1 .91e- 10

1.19e- 1 1

J

Exponential Time Variation

FTCS NH2 NH4 N131 N151 M4

40

50

80

100

200

2.89e-05

1.85e-05

7.18e-06

4.59e-06

1.15e-06

2.34e-05

1.48e-05

5.70e-06

3.64e-06

9.05e-07

1.77e-08

6.51e-09

8.57e- 10

3.37e- 10

1.98e- 11

2.93e-05

1.87e-05

7.29e-06

4.66e-06

1.16e-06

3.28e-07

1.28e-07

1.83e-08

7.30e-09

4.35e- 10

7.62e-09

3.1 1e-09
4.73e-10

1.94e- 10

1.21e- 1i

Table 7.1: RN4S errors for one-dimensional diffusion problem

Table 7.2: CPU times for one-dimensional diffusion problem

J

Linear Time Variation

FTCS NH2 NH4 N131 N151 M4

40

50

80

100

200

3.41e-02

6.70e-02

2.38e-01

4.63e-01

3.76e-l-00

5.50e-02

1.10e-01

4.29e-01

8.16e-01

6.71e*00

9.30e-02

1.93e-01

7.80e-01

1.51e*00

1.19e*01

6.04e-02

1.19e-01

4.65e-01

8.86e-01

7.19e*00

1.23e-01

2.38e-01

9.72e-07
1.92e*00

1.54ef 01

1.32e-01

2.52e-01

9.97e-01

1.95e100

1.59ef 01

J

Time Variation

FTCS NH2 Nfl4 N131 N151 M4

40

50

80

100

200

4.0ie-02
7.47e-02
2.86e-01

5.49e-01

4.45e*00

6.70e-02

1.31e-01

4.71e-01

9.18e-01

7.44e*00

1.18e-01

2.25e-01

8.94e-01

1.72et00

1.41e*01

6.88e-02

1.33e-01

5.11e-01

1.02e100

7.94ef 00

1.33e-01

2.59e-01

1.06e-l-00

2.08e*00

1.66e*01

1.38e-01

2.74e-01
1.07e*00

2.10et00
1.68e101

J

Exponential Time Variation

F'i'0s NH2 NH4 N131 N151 M4

40

50

80

100

200

7.25e-02
1.37e-01

5.43e-01

1.06ef 00

8.65e+00

9.23e-02
1.74e-01

6.95e-01

1.35e*00

1.10e*01

2.42e-01
4.87e-01

1.88e1-00

3.67e100

2.95ef 01

1.05e-01

2.00e-01

7.47e-07
1.48e1-00

1.18et01

2.64e-01

5.14e-01

2.11e*00

4.10e*00

3.29e*01

2.66e-01

5.18e-01

2.15e*00

4.13e*00

3.30e-l-01
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A comparison of the data given in Table 7.1 shows that all diffusion profiles give very similar results.

This observation was also made by Yates (1992), who investigated analytical solutions of the transport

equation for a linear and exponential diffusion coefficient. He states that the "solutions will produce

essentialiy the same results at early times, when their respective dispersion functions are approximately

the same, but differences occur at intermediate and large times."

Yates (1992) also observed that significant differences in the concentration curves are only found when

the diffusion coefficient differs by a factor of 10. Consequently, he concluded that it would be difficult

and expensive to determine whether the diffusion is linear or asymptotic at early times, and a clear

distinction may only be possible at very large times.

Pickens and Grisak (1981b) found that "the effect of early time scale-dependent dispersion may be,

in some cases, of little consequence in predictions at large mean travel distances." For large travel

distances, Pickens and Grisak recommended using the asymptotic diffusion coefficient.

Figure 7.2 shows that all methods give the predicted convergence rates. The orders of convergence of

the second-order FTCS, NH2 and N131 methods, given by the slope of the line of best fit to the data,

are 2.01, 2.02 and 2.00 respectively. The orders of convergence of the fourth-order NH4, N151 and M4

methods arc 4.22,4.72 and 4.01 respectively.

Although the NH2 method is the most accurate second-order scheme, the FTCS method is more efrcient

to use. This may be seen by examiming Figure 7.3, and is because the FTCS method has a simpler

stencil, and so requires less time to run than the NH2 method.

The computational times presented in Table 7.2 show that the schemes require approximately twice as

Iong to run for the exponential diffusion profile than for the linear profile. For all methods and profiles,

doubling the grid number leads to an eightfold increase in the run times.

It was mentioned in Section 7.6 that, based on the leading term of their truncation errors, the N131

method should be more accurate than the NH2 method if s > 116. However, it is observed that the latter

method is actually more accurate in these tests. This can be explained by calculating the percentage of

grid points in the computational domain for which s > 116. For the asymptotic diffusion profile, this

was so for Less than 25To of the grid points for each grid resolution. Consequently, the NH2 method is

more accurate.

The most accurate scheme is Mitchell's implicit fourth-order method, and although it expends more time

than the explicit NH4 method, it can be seen by comparing their efficiency plots that it is nevertheless

the most efficient scheme. Another advantage of Mitcheil's method is that it is unconditionally stable

and solvable; the other methods are restricted to diffusion numbers as small as 0.288 in the case of the

N131 and N151 schemes, and at most 0.667 for the NH2 and NH4 methods.
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The implicit Crank-Nicolson method (Crank and Nicolson 1947), which has a second-order truncation

error for constant diffusion, is another unconditionally stable and solvable method. A formal consistency

analysis of the Crank-Nicolson method about (ø7, tn+t /z), reveals its tnrncation error

E1 êù'# + o{4}1
: 

-(l12

An examination of the truncation error indicates that the leading error term contains no derivatives of the

diffusion coefficient. Hence, the Crank-Nicolson method retains its constant-coefÊcient order in variable-

coefficient situations. Moreover, since the coefficient of the leading error term is positive, insufficient

damping of the high frequency components of the solution may occur. Examples of problems in which

high frequency components occur in the solution are: problems where the boundary conditions are

discontinuous, and problems where the solution decays very rapidly (Cash 1984). The Crank-Nicolson

method is known to perform poorly on such problems.

To summarize, because Mitchell's method is the most accurate and efficient scheme, and has the largest

stability region, it would be most recommended. In terms of cpu time, the second-order explicit FTCS

method is, however, the fastest scheme, requiring only a quarter the time of Mitchell's method to run for

each grid. Generally, no benefit could be found by employing the three-level schemes; they are neither

more accurate and efficient, nor more stable than the other methods, and are the most difficult of all

schemes to implement. Because the accuracy and the effrciency of the schemes depends on the size of

the diflusion number, they will now be compared for different values of the maximum diffrrsion number.

7.LO Parameter Analysis

For constant coefficients, the leading term in the truncation error of the MEPDE can be used to give

an indication of the accuracy of the methods for different values of the diffusion number. The leading

error terms for the methods considered in this chapter are given by (see Noye and Hayman 1986b)

fä"'(r) :6s-1, f|"(s) =2(2- 15s+30s2), fà"(r) :3(20.e2 -Ð12, fä"'(r) :60s2-1,

where Mitchell's method reduces to Crandall's method for constant diffusion (cf. Section 7.5.1). These

relations give the functional dependence of the leading term on s, and indicate that the FTCS method

is fourth-order if s : 1/6, Mitchell's method is sixth-order if s2 : 7f 20, and the N131 method is sixth-

order if s2 :1160. A relative error measure, which may be used to compare the accuracy of different

methods of the same order, is given by the modulus of the leading term (see Noye and Hayman 1986b).

For variable coefficients, because the leading term of the truncation error of the MDPDE contains

derivatives of the diffusion coefficient, such a form of parameter analysis is generally not possible.

Instead, the accuracy and efficiency of the methods for different values of the maximum diffusion number
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1. Exact solution: î(r,t) : f ú/10 exp {-("-0.5)'?-0.1ú}

2. Initial condition: î(2,0) is given by the exact solution

ò.

4.

Boundary conditions: î(0, ú) and î(I,t) are given by the exact solution

Diffusion number: s : o,\t l(Lr)2 : aT J2 lN

5. Asymptotic profile: a(r,t): 0.05(ú + 5)(¿ + 10)-1[1 - 2(" - 0.S¡21-t

6. ama,x : 7120, T : 4, J : 40, 50, 80, 100, 200

7. setting N: J2 14, J2f2, J2,2J2,4J2 gives smax x1.04, 0.52,0.26,0.13, 0.07

Table 7.3: Data for Parameter Analysis

are compared in a numerical test. To this effect, the methods are tested using the asymptotic diffusion

profile for various values of the maximum diflusion number, as given in Table 7.3. Only Mitchell's method

is stable when smax : 1.04, the three-level methods are unstable if smax :0.52, and all methods are

stable for the other values of the maximum diffusion number.

Note that the FTCS method, which is locally stable only if s < 0.5, is stable when smax = 0.52. This

is because the values of smax given in the table are the maximum values on the solution domain, in

the limit as the grid spacings tend to zero, whereas in the numerical test, the values are computed at

discrete points inthe computat'ional domain, so the maximum diffusion number is not quite attained.

7.7O.L Results

Graphs showing the convergence and the efficiency of the methods for the various values of the maximum

diffusion number for which they are stable are presented in Figures 7.4 and 7.5. Additionally the rms

errors for the test problem are given in Table 7.4. The cpu times are not presented, since they follow

from those given in Table7.2 for the asymptotic profile, in the sense that doubling the number of time

steps doubles the times, quartering the number of time steps quarters the times, and so on.
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Fig 7.4: Convergence shown on left and efficiency shown on right for the second-order

FTCS, NH2 and N131 methods for various values of smax.
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.I

smax: 0.07
¡"I'US NH2 NH4 N131 N 151 M4

40
50
80
100

200

2.80e-05
1.79e-05
6.96e-06
4.45e-06
1.11e-06

6.01e-06
3.64e-06
1.35e-06
8.57e-07
2.12e-07

8.54e-09
3.99e-09
7.32e-I0
3.14e- 10

2.10e- 11

2.79e-05
1.78e-05
6.94e-06
4.43e-06
1.11e-06

7.32e-07
5.18e-08
7.43e-09
2.98e-09
1.79e- 10

7.92e-09
3.23e-09
4.92e-70
2.01e- 10

1.25e- 11

J
smax: 0.13

I"I'CS NH2 NH4 N131 N 151 M4
40
50
80
100

200

2.79e-05
1.78e-05
6.94e-06
4.43e-06
1.11e-06

1.13e-05
7.03e-06
2.68e-06
1.70e- 06

4.23e-07

6.06e-09
2.1 1e-09
3.27e- 10

1.40e- 10

9.50e- 12

2.79e-05
1.78e-05
6.94e-06
4.43e-06
1.11e-06

2.02e-07
7.91e-08
1.13e- 08

4.53e-09
2.72e-70

7.84e-09
3.20e-09
4.87e-10
1.99e- 10

7.24e-1,1

J

smax: 0.26

!"r'os NH2 NH4 N131 N151 M4
40
50

80
100

200

2.78e-05
1.77e-05
6.90e-06
4.47e-06
1.10e-06

2.19e-05
1.38e-05
5.32e-06
3.40e-06
8.45e-07

1.75e-08
6.41e-09
8.41e- 10

3.30e- 10

1.94e- 11

2.79e-05
1.78e-05
6.94e-06
4.43e-06
1.11e-06

2.85e-07
1.12e-07
1.58e-08
6.34e-09
3.78e- 10

7.52e-09
3.07e-09
4.67e-70
1.9le- 10

1.19e- 1 1

J

smax: 0.52

FTOS NH2 NH4 N131 N151 M4
40
50

80
100
200

2.75e-05
1.76e-05
6.84e-06
4.37e-06
1.09e-06

4.30e-05
2.74e-05
1.06e-05
6.78e-06
1.69e-06

4.98e-08
2.00e-08
2.97e-09
1.21e-09
7.49e-77

unstable unstable

6.24e-09
2.55e-09
3.87e-10
1.58e- 10

9.87e-12

J
smax: 1.04

FTCS NH2 NH4 N131 N151 M4
40
50
80
100

200

rrnstable unstable unstable unstable unstable

1.14e-09
4.63e-10
7.04e-I1
2.88e- 11

1.80e- 12

Table 7.4: RMS errors for asymptotic profile for various smax
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The first observation is that the accuracy of the second-order FTCS and N131 methods is virtualiy

independent of the size of the maximum diffusion number. This is seen by examining the left top and

bottom diagrams in Figure 7.4, or the values tabulated in Table 7.4. In fact, Table 7.4 shows that the

results of the N131 method are so similar for the three values of the maximum diffusion number for

which it is stable, that the errors are identical for all three values'

The best choice of the diffusion number is then the one that gives the results most quickly which, from

the efficiency plois given in Figure 7.4, is the largest value of the diffusion number for which these

methods are stable. That is, the FTCS method is most efficient when it is used for smax : 0.52, while

the N131 method is most efûcient for smax :0.26.

The errors given by the NH2 method are approximately doubled as the maximum value of the diffusion

number is doubled (see Table 7.4), whereas the cpu times are halved because the number of time steps

is halved. For this reason, the graphs showing the convergence of the NH2 method are more spread out

than those showing its efficiency (compare the middle diagrams in Figure 7.4).

Whereas the other second-order methods were most efficient for the largest value of the maximum

diffusion number for which they were tested, the NH2 method is most efficient for the smallest value

of the maximum diffusion number. The most accurate and efficient second-order results overall are

achieved bv using the NH2 method with smax = 0.07.

As can be seen by examining Figure 7.5, the fourth-order N151 method is least efficient for the same

value of the maximum diffusion number for which it is most accurate. This is because it takes four

times longer to achieve the results with smax = 0.07 than with smax : 0.26, but the errors are only

approximately halved.

The fourth-order NH4 method gives the most accurate results when it is used with smax : 0.13. It

gives similar efficiency for all values of the maximum diffusion number except for smax : 0.07, for which

it performs worst. The most accurate and efficient results given by any method, are those given by

Mitchell's method for smax : 7.04. Furthermore, Mitchell's method is the only stable scheme for this

value of the maximum diffusion number.

However, using the NH4 method with smax = 0.52,0.26 or 0.13, is more efficient than using Mitchell's

method with smax:0.13 or 0.07. And in fact, from Table7.4, it can be seen that the NH4 method is

actually more accurate than Mitchell's method when smax: 0.13.

Note that the least efficient fourth-order results, given by the N151 method with smax : 0.07, are still

much more accurate and efficient than the most accurate and effi,cient second-order results, given by the

NH2 method with smax : 0.07. For example, from the tabulated values, it can be seen that the NH2

method used with J = 200 is less accurate than the N151 method used with J : 40.
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FTCS

(1,3) explicit stencil

second-order for constant s

fourth-orderfors:1/6
second-order for variable s

Noye-Hayman

denoted NH2

(1,5) explicit stencil

fourth-order for constant s

second-order for variable s

NH4

(1,5) explicit stencil

CS differencing for P term

CS differencing for Q term

fourth-order for variable s

Mitchell

denoted M4

(3,3) implicit stencil

fourth-order for constant s

fourth-order for variable s

Ni31

(1,3,1) explicit three-level stencil

fourth-order for constant s

second-order for variable s

same as FTCS, NH2 for s :716

N151

(1,5,1) explicit three-level stencil

CS differencing for P term

CS differencing for Ç term

fourth-order for variable s

---+

Figure 7.6: Synopsis of the properties of the methods

Note that the variable coeffi.cients are evaluated at tn for all the explicit methods, whereas for Mitchell's

method they are evaluated at tn¡t/2.
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7.Lt Summary

In this chapter, the accuracy of several finite-difference methods used to approximate the solution of

the variable coefficient diffusion equation were examined. This is of considerable importance because in

many applications, it is inappropriate to assume that the diffusion is constant; it is far more likely to

depend on the travel time or travel distance.

It was seen that high-order methods for the constant coefficient equation reduce to low-order when used

for variable coefficients. A technique to modify these methods so as to increase their order back to the

constant coefficient rate was implemented.

The fourth-order Noye-Hayman method, which reverts to second-order for variable diffusion, was modi-

fied to give a new fourth-order method. The second-order FTCS method and Mitchell's implicit fourth-

order method were investigated, and a three-levei second-order method was modified to fourth-order,

thereby retaining its constant-coefficient order. A synopsis of the methods is given in Figure 7.6.

The schemes were tested for the three diffusion profiles suggested by Basha and EI-Habel (1993). It

was found that the methods gave similar performances for all three proflles, a result also seen in the

literature. The modified methods outperformed their base counterparts considerably, in terms of both

accuracy and efficiency. Mitchell's method gave the most accurate and efficient results overall.

Since accuracy depends on the size of the diffusion number, the methods were also tested for various

values of the maximum diffusion number using the asymptotic profile. The accuracy of the second-order

FTCS and N131 methods 'r¡/as seen to be virtually independent of the size of the maximum diffusion

number. The NH2 method was the most accurate and efficient second-order scheme, and performed

best with smax: 0.07.

Mitchell's fourth-order method used with smax : 1.04 was seen to be the most accurate and efficient

method overall. Mitchell's method also has the advantage of being unconditionally stable and solvable;

the other schemes are rather restricted in their stability range.

To determine a necessary condition for the stability of the schemes for variable coefficient problems, a

locai stability analysis was performed, achieved by freezing the coefficients, so that the diflusion may be

considered constant within the computational stencil (Richtmyer and Morton 1967, Hirsch 1990).
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Chapter 8

Two-D lmenslonal Diffusion:
A Special Case

The two-dimensional form of (7.5), namely

ôî a2i
à - o*(*,y,Ð a*, = o,

ff - a'(*'v't) a2î

(8.1)

inwhich î:î(r,y,t),may besolvedusingtheLODtechniquedescribedinChapterS,sothateachof

the one-dimensional equations

(8.2)

ôy
(8.3)

is soìved consecutively over a time-step. Appropriate intermediate boundary conditions must be derived

if the LOD method is to retain the accuracy of the component equations. Morris and Gourlay (1973),

Mitchell and Griffiths (1980), and Noye and Hayman (1994) discuss the implementation of intermediate

boundary conditions for LOD methods applied to parabolic equations.

The two-dimensional diffusion equation is used to model contaminant dispersion in rivers and estuaries.

In many applications, it can be assumed that the flow is well mixed over the water depth, so that the

contaminant is approximately uniform in the vertical direction (Croucher and O'Sullivan 1998). A two-

dimensional depth averaged form of the three-dimensional equation can then be used to approximate

the movement due to diffusion.

2
0,
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In this chapter, the methods described in Chapter 7 to solve the one-dimensional equation will be used

in a Iocally one-dimensional fashion to approximate solutions to the two-dimensional diffusion equation.

Since three-level methods cannot be used in a LOD fashion, they will not be considered here.

8.1 The FTCS Method

To solve (8.1), the FTCS method can be applied to (8.2) followed by (8.3), so that

ri,*: snrf-r,t * (1 - Zs,)rir ¡ s'rf¡r,n (8.4)

is applied by sweeping in the r direction for each gt value, and

ri,[\ : sor],r"-r+ (1 - zs)ri,n I syrl,n+t (8.5)

is applied by sweeping in the y direction for each z value.

In the above, sn: ott(r,y,t)A,tl(Ar)2 and so: ao(r,y,t)Ltl(Ly)2. The constituent formulae are

locally stable if s, 17f 2 and s, < 112, so the LOD method is locally stable when both conditions hold.

8.2 The Noye-Hayman Method

The two-dimensional diffusion equation may also be solved by applying the Noye-Hayman (NH2) method

to each of the one-dimensional diffusion equations as follows. First solve

,i,n: 
fi{ar2, - s,)ri-2,x + (-6sl +  s,)rl-¡x +|fz + asl - ils,)ri¡,

(8.6)

+15t-a,? + +,

1

;.)
,)

+]l-o'? ¡ 4s,y)ri,x+t * |rc'? - sr)r|,n¡z

1
-nr
' j+r,k 

' 72
(6t? - s,)ri+z,n

by sweeping in the z direction for each y value, then solve

rî}r : lfa'? - so)ri,x-z+ ]t-o'? +  so)r],n-t +r1fz + as2, - lso)r],¡,
(8.7)

by sweeping in the g direction for each z value. The constituent formulae are locally stable if s* <2f 3

and s, <213, so the LOD method is locally stable when both conditions are satisfi.ed.
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The modified fourth-order NH4 method can be implemented in the same way, so that

,;,0 : lçari, - r, - tzQ)ri-z,o + ]{-0"? t 4s* t 6Q + 3P)+r,n + }Q + 6sl - 5s, - 4P)ri¡,

+]t-or? t 4s, - 6Q + JP)rî+r,o + |$r7- s* * 72Q)ri+r,n (8.8)

is solved by sweeping in the ø direction for each y value, and

ri,[\ : [fa'? - sa - r2Q)ri,*-z* ]l-o'? r 4so 'r øQ + 3P)ri,n-, + r1tz + 6sl - lso - 4P)r],¡

*]l-or? t4s, _ 6Q +3P)ri,n*, + fr1or;- ro *:2Q)ri,x¡z (8.e)

is solved by sweeping in the g direction for each value of r. The factors P and Q are defined by (7.21),

with g replacing r in P and Q for use in (8.9). A necessary condition for the stability of the LOD

method is that s, 1 2f 3 and s, < 213.

8.2.L Near Boundary Values

Because of their (1,5) stencils, the NH2 and NH4 methods can only be used for j --2(1)J - 2 for each

Ø sweep, and for k : 2(7)K - 2 for each y sweep (see Noye and Hayman 1994). The values near the

boundaries can be found as follows. Consider Mitchell's method written in the form

LIrit,x + L2r|,x -t L3ri*t,o : R|{t,x + R2rin + RSri+L,k (8.10)

where,L1, L2,L2,R1,R2,43 are the coefficients given by (7.33). Then, settin1 j:2 in (8.10), and

rearranging, yields

ri,¡" : (Rrri,k + R2ri,¡, + R3r!,¡" - L2r|,¡, - L3r[,) lLl, (8.11)

where the NH2 or NH4 method has already been used to find the intermediate values for j : 2(1)J -2
Similarly, setting j : J-2 in (8.10) provides

rj-t,n : (.R1 rT-2,* -l R2ri-r,o I R3rl-t,r - L7rj-s,¡ - L2rj-2þ I L3 (8.12)

If Mitchell's method is written in the form

nri[\ + L2ri[1 + L3 ri}il : R7r/¡-t + R2r],n + R3 ri,*+r, (8.13)

in which gr replaces r in the coefficients given by (7.33), then by setting lc:2 andlc: K-2 in (8.13),

and rearranging, the values of ,i[' und ri,I'-, may be found.
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8.3 Mitchell's Method

Mitchell's method can be used to solve the two-dimensional diffusion equation as follows

Llri-yx + L2ri,x I L3r|*t,* : RTrlt,n + R2rin + R}ri+r,k (8.14)

is applied by sweeping in the ø direction for each g value, where .L1, L2, L2, R7, R2, Ã3 are the coefficients

given by (7.33), and

Lr ri,[\ + L2 ri,[\ + rzri,[]' : R7 ri,x-t + R2 ri,* + R3ri,r,+t, (8.15)

is solved by sweeping in the 3r direction for each ø value, where y replaces r in the coefficients of (7.33).

Mitchell's method is unconditionally stable and solvable for all s' ) 0 and s, ) 0, so the LOD method

can be implemented unconditionally.

8.4 Numerical Tests

The two-dimensional diffusion equation, in which the diffusion coefficient takes one of the three functional

forms described in Section 7.8, is solved on the domain [0,1] in each space dimension up to the final

time ?, for various values of the grid number ranging from 40 to 200. Rather than setting -ly' : J2 we

set.ðy': J2f2,halvîng the time required to solve the problem without altering the expected orders of

convergence, as At is still proportional to (Az)2. Choosing T:2, the maximum value of the diffusion

number for each profile is the same as in the one-dimensional case.

The analyticai solution of the two-dimensional equation is the product of the exact solution of (8.2)

and the exact soìution of (8.3). For Equation (8.2) the exact solution is given in Section 7.8, with y

replacing ø to give the exact solution of (8.3). The initial and boundary values are given by the exact

solution, and the intermediate boundary conditions are given by (8.16), see below. A summary of the

data required to implement the numerical test for the asymptotic profile is given in Table 8.1.

8.4.1 Implementation

For each time-step the LOD technique is implemented as indicated in Table 8.2. Noye and Hayman (1994)

also give an in depth description of the implementation of the LOD technique for the FTCS method

and the NH2 method applied to the two-dimensional constant coefficient diffusion equation. The im-

plementation for variable coefficients is identical.
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1. Exact solution: î(r,a,t): (1+ú/10)exp{-(r - 0.5)' - (a - 0.5)'? - 0.2¿}

2. Initial condition: î(r,A,0) given by the exact solution

3. Boundary conditions: î(0,A,¿), î(1, y,t), î(r,0,t), î(r,1, ú) given by exact solution

4. Intermediate BCs: î(0,U,¿-), î(1, y,t*), î(r,0,t*), î(r,1, ú*) given by (8'16)

5. Diffusion numbers: s* : a,Ltl(L*)' - a,TJ2 f N, sa: aaLtl(LA)' : aoTK2 f N

6. Asymptotic profile: a*(r,t):0.05(ú+5)(¿+ 10)-1[1 -2(" - 0.S;21-t, as(U,t): a'(a,t)

7. maximum value of a, and o, is 0.05, ? : 2

8. N : J2 12 : K2 12 with J : 40, 50,80, 100,200 gives smax È 0.26 for s, and s,

Table 8.1: Data for the LOD problem for the asymptotic diffusion profile.

The boundary conditions given for the full two-dimensional problem cannot be applied at the intermedi-

ate level, because they incorporate diffusion in both spatial directions, whereas after the first stage only

the diffusion in the r direction has been approximated (Noye and Hayman 1994). The exact solution at

the intermediate levei is given by

î(*, l), t*) : îr(r, tn¡1)î2(y, tn), (8.16)

where î1 and îz are the exact solutions of (8.2) and (8.3), respectively. This can be used to supply

the correct intermediate boundary conditions, because at the new time-level only the diffusion in the z

direction is incorporated, and none of the diffusion in the g direction (Noye and Hayman 1994).

For the expìicit schemes, the singie unknown at the new time-level is given directly from the known

values at the old time-level. The NH2 and NH4 methods are supplemented using Mitchell's method,

to give the interior values near to the boundaries (cf. Section 8.2.1). The Thomas algorithm is used to

solve the system of linear algebraic equations arising when Mitchell's method is used. Recall that the

coefficients of the explicit schemes are evaluated at time ú,, but attn¡y¡2 for Mitchell's method.
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1 The FDE is first used in the r direction as it would be for

the one-dimensional equation (8.2).

2. The application is repeated for each y value, yielding the

intermediate values rJ,¡ over the spatial domain.

3. Then using the ri,x as the initial condition, the same FDE

is used in the y direction as it would normally be used to

solve the one-dimensional equation (8.3).

4. This is repeated for each r value, yielding the values rffl
at the end of the time-level (n, * 1).

Table 8.2: Implementation of the LOD technique

8.4.2 Results

The convergence and efficiency of the schemes for the asymptotic diffusion profile are shown in Figures

8.1 and 8.2. Table 8.3 shows that the results for the linear and exponential profiles are qualitatively

similar to those of the asymptotic profile, so the convergence and efficiency plots are not presented. The

cpu times given in Table 8.4 are the average of 10 consecutive runs of the algorithm. These show that

the cpu times are longest for the profile incorporating exponential time variation. For all methods and

profiles, doubling the grid number leads approximately to a 16 fold increase in the computational times.

The second-order NH2 method is more accurate than the second-order FTCS method unless "I = 40.

The FTCS method is however faster to execute: a reflection of its simpler (1,3) computational stencil.

Because of the trade-off between speed and accuracy, neither method has any significant advantage over

the other in terms of efficiency (see Figure 8.2). Although Mitchell's implicit method requires more cpu

time than the explicit NH4 method, it is always more accurate and more efficient to use. For example,

for the asymptotic diffusion profile, using Mitchell's method with J : 40 is more accurate than using

the NH4 method with J : 50, and takes only about 54To the cpu time.

The advantage of using the fourth-order schemes over the second-order ones is obvious in terms of overall

accuracy and efficiency. In terms of raw computational time, the fourth-order schemes are however more

time consuming. For example, for the linear diffusion profile, the NH4 method requires about 2.7 times

Ionger to run for each grid than the FTCS method, and about 1.7 times longer than the NH2 method.
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J

Linear Time Variation
FTCS NH2 NH4 M4

40
50

80
100

200

2.70e-05
1.72e-05
6.66e-06
4.25e-06
1.06e-06

2.83e-05
1.49e-05
5.23e-06
3.29e-06
8.09e-07

4.17e-08
1.18e-08
1.01e-09
3.42e-70
1.56e- 11

6.49e-09
2.65e-09
4.01e- 10

1.64e- 10

1.02e- 11

J
Asvmptotic Time Variation

t"I'CS NH2 NH4 M4
40
50

80
100

200

2.53e-05
1.61e-05
6.24e-06
3.98e-06
9.91e-07

2.64e-05
1.36e-05
4.75e-06
2.99e-06
7.34e-07

4.50e-08
1.27e-08
1.09e-09
3.69e- 10

1.69e- 11

6.18e-09
2.52e-09
3.81e- 10

1.56e- 10

9.69e- 12

J

Exponential Time Variation
t"r'(js NH2 NH4 M4

40
50

80
100

200

2.60e-05
1.66e-05
6.42e-06
4.10e-06
1.02e-06

2.72e-05
7.42e-05
4.96e-06
3.12e-06
7.67e-07

4.35e-08
1.23e-08
1.06e-09
3.58e- 10

1.64e- 11

6.31e-09
2.57e-09
3.89e-10
1.59e- 10

9.88e- 12

Table 8.3: RMS errors for two-dimensional diffusion problem.

J

Linear Time Variation
FTOS NH2 NH4 M4

40
50
80
100

200

1.82e-l00
4.47e1-00
2.82e1-01
7.02e*01
1.14e103

2.80et00
6.92e*00
4.39ef 01

1.08e*02
1.78e*03

4.89e100
1.18e_l_01

7.64et-0L
1.88ef 02
3.08e*03

6.43e+00
1.56e*01
1.03e*02
2.49eI02
4.05e*03

J
Asymptotic Time Variation

l,-'I'OS NH2 NH4 M4
40
50

80
100

200

2.09e*00
5.05e100
3.17ef 01

7.75e_l_01

1.23ei03

3.52et00
8.40e*00
4.86ef 01

1.25eI02
1.89e_I_03

5.27e-100
7.27e1-01
8.14et01
1.98e-l-02
3.26e*03

6.86e100
1.64e*01
1.07e-102
2.59e1-02
4.24e*03

J

Exponential Time Variation
FTCS NH2 NH4 M4

40
50

80
100

200

3.74et00
8.62e*00
5.45ef 01

7.32e-102
2.15et03

4.83e*00
1.14e-101

7.55e*01
1.80e*02
2.67e*03

1.02et01
2.53e-101
1.63e*02
3.97e-102
6.34e-l03

1.05e*01
2.54ei07
1.66e-102
4.05ef 02

6.46e-l03

Table 8.4: CPU times for two-dimensional diffusion problem.
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8.4.3 Comment

Because of the lack of avaitability of exact solutions for more general problems, the methods in this

chapter were tested for the special case or independent of g and o, independent of ø. However, as

already discussed in Section 5.8.2, because for each sweep in the ø direction the value of g is held

constant, and for each sweep in the g direction the value of ø is held constant, the LOD technique

should be just as successful if it is implemented for the more general case.
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Chapter 9

One-Dimensi nal Diffusion:
General Case

The most general version of the diffusion equation is given by

aî a/___t
ü ôr\

in which the diffusion coefficient a(r,t) > 0. This may be written as

Aî ôa(r. L\ 0i . ô2î
ôt-- Af *-a(r,t)*

ff * u@,Ðf- - a(r,t)ffi :0,

0
aî
A"

a (e.1)

(e 2)0

which is equivalent to the variable-coefficient transport equation, namely

(e.3)

where tl : -ôalôr. Equations (9.2) and (9.3) reveal the presence of an intrinsic advective component

in the diffusion process, which was neglected in Chapters 7 and 8. In this chapter, we will investigate

how this advection component can be incorporated, so that (O.t) can be accurately approximated. The

first approach is to approximate (9.3) using severai well-known methods for the constant-coefficient

transport equation (see Hogarth et al. 1990, Noye 1987b, Noye 1987c). The accuracy of these methods

will be analyzed, and it will be shown how they can be modified to give high-order convergence in the

variable-diffusion situation. The analysis of the methods will be kept as general as possible so that

they may readily be applied to either (O.Z), or to (9.3), where u and o are arbitrary functions. The

second approach is to use process splitting, whereby (9.3) is divided into the two separate processes

of advection and diffusion, each of which is solved separately every time-step. Any of the methods

developed in Chapters 3 or 7 may be used for the advection and diffusion components, respectively.
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9.1 The FTCS Method

If (9.3) is discretized at (ri,ú,) using forward-time and centered-space differencing (Noye 1987b), then

l+n

Aú
(e.4)

Omitting the second-order error terms, where Aú is proportional to (Aø)2, gives the second-order FTCS

method, namely

,î*' : |fr, * "),i,t + Q - 2s)ri + )fz' - "),î+,,
(e.5)

0.5

Ø

o
-o
Efc
c
.9
v)f

õ

0
0

Courant number c

Figure 9.1: Stability region for the FTCS method.

which is stable for c2 < 2s < 1 (Noye 1987b). This region, shown in Figure 9.1, indicates that (9.5)

is particularly suited for application to diffusion dominated transport problems. However, if advection

dominates, (9.5) may be unstable. The FTCS method may readily be appìied to (9.2) by noting that

ôa Lt
- ôr A'r

(e.6)

All variable quantities are evaluatedat (n¡,úr), but the superscripts and subscripts have been omitted

for convenience.

stable
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9.2 The Lax-Wendroff Method

A second-order explicit method for solving the constant-coefficient transport equation is the Lax-

Wendroff method (Lax and Wendroff 1964), namely

,I*' :lfr, * c+ c2)+r+ (1 - zs - cz)ri +f,fzt - c+ c2)ri*, (e.7)

Setting s : 0 in (9.7) gives Leith's method for pure advection, while setting c : 0 yields the FTCS

method for pure difiusion. The Lax-Wendroff method, denoted LW2, is stable if 0 < s < (1 - c2) 12 (Lax

and Wendrotr 1964).

05

Ø

C)
.o
Ef
c
.o
Ø
f

õ

0

Courant number c

Figure 9.2: Stability region for the Lax-Wendroff method

The size of the stability region is the same as for the FTCS method, but this method is suitable for advec-

tion dominated transport problems as well as for diffusion dominated problems. For variable-coefficients,

the convergence of the LW2 method may be determined from a consistency analysis, resulting in

F{î}: -LtE,, (e.8)

where

+ o{4} (e.e)

The time derivative can be converted to space derivatives as follows. First (9.3) is written in the form

1 /a2î ^a2i ru(L,r\2ô3î 7a(L,r\2Ôaî\
Er = - ,L't lap - ," a*, * ¡-Zi ô.'- A-É ar^ )

ô2î;-;dr"laôî aî
dt dr

stable
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then, differentiating with respect to r, gives

Differentiating (9.11) with respect to ø, yields

ô3î ô2u 0î / ô2a ^ôu\rl--'r-l
ôr2ôt - ôr2 ôr ' \ôr, - 0" )

- ôa ôa ô2a ^Ôu ,
Q : ôú -u ôr+a aû -2a *lu"

R: zoff-2au

ô2a ôq ô2a ô3a

-I 

J-^-

ðrðt' ôror2 '"ars'

a2î
ôr}t

(e.11)

(e.12)

(e.13)

(e.14)

(e.15)

(e.16)

#.(,H-") a3î a4î
urs 

+ a 
5r+

Now, if (9.10) is differentiated with respect to ú, and (9.11) and (9.12) substituted, this produces

a2î ôî
ôr #.nffi+o'

a4î
0r4'

where

+QP
AP

In the special case ?.¿: -ôalÔr, this may also be written

P,

Q,

To keep the analysis as general as possible, (9.14) rather than (9.15) will usually be used.

Substituting (9.13) into (9.9) then gives

ôa
ðt

,( #)'."#'

ø,: -|ntl^#."# * "# *"#)+ o{4},

+

R,' : 4o!ör
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'¡/here

A:P,

B : Q,-u2,

1. u(L,n)zC: R+
(e.17)

(e.le)

(e.20)

2u

3A¿)
t a(A,n)2
6Lt

If Aú is proportionat to (Ar)2, then the truncation error corresponds to second-order convergence. The

truncation error can be modified to give fourth-order convergence as follows.

9.2.L Modificatron

Substituting (9.16) into (9.8) gives

D

(e.18)

Then, if all the space derivatives in (9.18) are replaced by second-order centered-space difference forms,

and the sixth-order error terms are omitted, the fourth-order LW4 method is obtained, namely

F{î} :}roA" 
loffi #. "# *"#l+ 0{6}

,î*t : U - n)*, + )fzt t c t c2 - 8/ + 4h + 2b - 2ù*r+ (1 - 2s - c2 + 6 f - 2b)ri

+1(2, _ c+c2 -8/- 4h+2b+2s)ú+t+(/+ h)rî+r,
2'

+B

where the correction factors are defined as

I
(A¿),
4Lr A, b- (^t)'

2(L,r)2
B, n:ffi", r:ffio

9.2.2 The Inverted (5,1) Method

Since the LW4 method can only be applied for j - 2(7)J-2, it is inverted to give a fourth-order method

for application near the boundaries. This is achieved as foìlows. Consider (9.19) written in the form

,I*t : alrf-z l- azrl4 r asrl r a+rf¡r + a5rh2, (e.21)

where the coefficients at,. . . ¡d5 âr€ evaluated at (r¡,t^). If Aú is replaced by -Al, then (zr, - 1) replaces

(n + 1) in (9.21), and shifting the index so that (n+ 1) replaces r¿ in the resultant expression, yields the
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implicit (5,1) method given by

,l : ot"îjz' + "r"îjl 1- øzrl+1 + atffi -l a5rif), (e.22)

where the coefficients (Lr¡...,o5 ar€ evaluated at (r¡,úra1). So, in order to solve for rl+1 , c is replaced

by -c, s is replaced by -s, and

1. a( L,r\2D':q' f ;--:=_-,,bA¿

(e.23)

replace C and D in (9.22). By setting j =2we obtain

rî : atrl+\ l a2rl+1 l asrl+l l aar{+\ l ar'rf,+r (e.24)

Rearranging (9.24) gives an explicit expression for r!+r, where rfr+1 is given by the left hand boundary

condition, and the other values of r at the new time level have already been calculated using (9.19). The

coefficients et¡...,a5 àre evaluated at (12,ú,11). The value of r!!l is obtained in the same fashion.

Setting i : J -2 in (9.22), gives

r']-z: "trïll + "2r!!! + qr]!) + "q"i!l + a5r!+1, (e.25)

in which the coefficients o1 , . . . , o5 âÍ€ evaluated at (n¡-2,úra1). The value of r!+r is given by the right

hand boundary condition.

9.3 The Noye and Tan Method

The greatest order of convergence for solving the constant-coefficient transport equation using a (2,3)

stencil is 3 (see Noye 1987c). Such a method has been developed by Noye and Tan (1988), namely

-2c(6s-t+c2)rilrt +2(1+c)(6s+ 2c+c2)rl+r (9.26)

: (t2s2 + c(1+ c)2(z+ "))*, -2(i.2s2 - 6s r c(c'- 1)(c+ 2))ri + (r2s2 - c2 +ca)rf¡r,

which can be marched across the spatial grid from left to right when u) 0, making the computational

procedure explicit in nature, thereby reducing the cpu times considerably. The Noye and Tan method,

denoted NAT, is stable when (see Noye and Tan 1988)

in*'l (, - 3(3-2c)(2c+7)

r37

(e.27)



whichrequires0 ( c<312. TheNoyeandTanmethodismarchingstablewhens ) 0, c 2 0.

Therefore, it may be used in the region displayed in Figure 9.3. A different formula, which may be

marched in the negative ø direction, that is, from right to left across the spatial grid, can be developed

by replacing cby -c in (9.26). The resultant formula is marching stable if c ( 0, and may be used in

the region obtained by replacing cby -cin (9.27), provided c ( 0.

1

Courant number c

1.5

Figure 9.3: Usable region for the Noye and Tan method

The region shown in Figure 9.3 is larger than for the explicit methods considered. The Noye and Tan

method, which is third-order for constant coefficients, becomes second-order for variable c and s.

9.4 Optimal Two-\Meight Method

If (9.3) is discretized at the point (jAr, (n + 0)L,t), in the way described by Noye (1987b), then the

following implicit (3,3) equation is obtained

05

Ø

c)
.o
E
l
c
C
.o

=
õ

0

0 05

-0(c + ó)rîJi + 2(7 + eó)ri*' + 0(c - ó)"il]
: (1 - 0)(c + ó)+, + 2(7 - þ$ - e))ri - (1 - 0)(" - Ðrh,

(e.28)

stable
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For constant coefficients, the optimal third-order FDE is obtained by setting the weights

6 : l3c2 * 6s - l6aT 3æ + 36Pll$"',),

þ : rþc * 2s,

tþ:c(7-20).

It can be shown (Noye 1987b) that this method, denoted OPT2 in the following, is stable when

(e.2e)

(e.30)

if lcl<t, cf)

if

'1

Courant number c

2c1 I
if -2<c1-1,

and diagonally dominant provided c I 0 (Noye 1987b). This region is shown in Figure 9.4 for c > 0

Although the OPT2 method has the greatest stability region, it cannot be applied when c: 0.

2.2

Ø

o)
!
Efc
c
.9
Ø
f

ä

1.1

0
0 2

Figure 9.4: Stability region for the OPT2 method

The order of convergence of the OPT2 method for variable coefficients can be determined by taking the

Taylor series expansion of each term in (9.28) about (27, ú,), yielding

stable

r{î}: -2LtEr,

139

(e.31)



where

E, : -+ (# .2,0# - u2(r - rt)# - ,"tffi *t5

9.4.L Modification

u(L,r)2 A3î _ [ c(Âu)2 ôaî\
A¿ ô.t - A tt 

-A"n )
+ o{4}

(e.32)

(e.33)

(e.35)

If the time derivatives are converted to space derivatives, (9.31) becomes

r{î} : (Lt)2 A
ðî
A" #. cffi +o ô4î

ôra
+ 0{6},

where

+B

^: -ôå*"p*-"p#,

B: X-"P#*"P#-"PqY*'

C : za¡ff - 2uaB+ ]',,or-',

D : a20 _ 
äo'r-',

in which þ : I - 20. The spatial derivatives are replaced by second-order centered-space difference

forms, yielding the fourth-order OPT4 method, namely

-0(c+ ó)rîJi + 2(1 + eó)'i*' + 0(c- ó)'iii
ç¡ - h)r]'_z + ((t - 0)(c+ó) -4T +2h+b- s)ri-r+2(1- ó(1-0) +3f -b)ri (e.34)

+(-(1 - 0)(" - ó) - 4f - 2h + b + s)ri+r+ (/ + h)ri+r,

where the weights are given by (9.29), and the correction factors are given by

I A
(Aú)'
2L.n

b- B,
(Aú),
(L")' n:ffic, r:ffio

Because of its computational stencil, the OPT4 method can only be applied for j - 2(l)J-2, and so

off-centered versions were developed to supplement it near the boundaries. If (4.8) and (4.10) are used

for the third and fourth spatial derivatives in (9.32), then a method which can be used with j : 1ig

obtained. If Ar is replaced by -L,r in (4.8) and (4.10), and the resultant difference forms are used for

the third and fourth spatial derivatives, then a method which can be used with j - J - 1 is obtained.
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9.5 Process Splitting

It is possible to approximate solutions to (9.3) by solving the advection and diffusion components

separately. A Strang type splitting algorithm (Strang 1968) must be used, whereby the order of the

subprocesses is reversed each time-step, so that the composite solution retains the accuracy of the

individual schemes.

A review of the literature suggests that all Strang type splitting algorithms are second-order, even if the

subprocesses are treated exactly (Khan and Liu 1995, Vreugdenhil and Koren 1993, Leveque and Oliger

1983, Gourlay and Mitchell 1972). Consequently, little attention has been paid in the past to achieve

higher than second-order splitting algorithms for either constant or variable-coefficient problems.

It has already been seen in Chapter 6, where the advection-decay equation was solved using a Strang

type splitting algorithm, that higher than second-order convergence can be attained by using high-order

algorithms for the component equations.

For the problem considered here, any of the two-level methods described in Chapters 3 and 7 can be used

for the advection and diffusion components, respectiveìy. However, because the boundary conditions

are defined for the governing equation, it is necessary to determine appropriate boundary conditions for

the intermediate step.

Very little work has been done to derive appropriate intermediate boundary conditions for the splitting

of the transport equation. However, a good review is given by Khan and Liu (1995), who derive

intermediate boundary conditions for the advection dominated transport equation, but assume u and a

to be locally constant. Much additional work is required if these are allowed to vary.

A way to overcome the difficulty of deriving intermediate boundary conditions is to use, for example,

an explicit (1,3) method for the advection process. The intermediate boundary values rj and rj arc

then computed separately using a (3,3) method. The values rf , i:0(1)-r, are then used as the initial

conditions for the diffusion stage. The boundary conditions for this stage are the given conditions.

Because the order of the subprocesses is reversed, intermediate boundary conditions are then required

for the diffusion process. Again, if a (1,3) stencil is used, then the intermediate boundary conditions

are found separately using a (3,3) method. This process is repeated until the final time is reached.

Since the optimal order of convergence for a (1,3) stencil is second-order, this is the maximum order of

convergence that can be obtained from such a splitting procedure.

In the numerical tests to follow, PS1 will be used to denote the process splitting method when the mod-L

method is used for the advection step and the FTCS method, Equation (7.8), is used for the diffusion

step. The boundary values at the intermediate level are evaluated using the second-order OPT method

for advection, and the second-order Crank-Nicolson method (Crank and Nicolson 7947) for diffusion.

t47



A splitting algorithm in which the component equations have (1,5) stencils can be defined as follows: the

initial condition is extrapolated to give fictitious values near the boundaries outside the computational

domain, so that the first method can be used for J : 0(1)J. The intermediate values are the initial

conditions for the second stage, and the boundary conditions are those defined for the given problem.

The intermediate values are then extrapolated, so that the second method can be used for j :O(I)J.

The order of the processes is reversed, and the procedure is repeated until the final time is reached.

The optimal convergence for a (1,5) stencil is fourth-order, so this is the maximum order that can be

expected from this splitting algorithm.

In the numerical tests to follow, PS2 will be used to denote the process splitting method when the

mod2-R method is used for advection and the NH4 method is used for diffusion. The analytical solution

developed in the next section will be used to extend the computational domain as required.

Aithough the mod2-R method is third-order convergent, it gave fourth-order results for grid numbers

not exceeding 500 in the numerical test described in Section 4.1 (see Figure 4.4). Since the largest grid

number used in the following tests is 500, fourth-order results can be obtained from the PS2 algorithm.

Once intermediate boundary conditions are known, methods with implicit (3,3) stencils can be used

as the component equations for the splitting algorithm. PS3 will be used to denote the application of

Mitchell's method for diffusion and the mod2-O method for advection, after the intermediate boundary

values have been determined using the NH4 and mod2-R methods.

The splitting algorithms are stable provided the component equations are stable over the step for which

they are used (a proof of this is given in Noye 1987c). This generally ensures a greater stability range

than for methods based on the discretization of the complete transport equation.

A problem may arise if the stability of the schemes used to determine the intermediate boundary

conditions is more restricted than that of the component equations. For the algorithms described above,

this problem only affects the stability of the PS3 algorithm. Since Mitchell's method is supplemented by

the NH4 method, the overall stability of the diffusion stage is reduced to s ( 213. CIeatIy, it would be

better to be able to derive scheme independent boundary conditions, so that this problem is eliminated.
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9.6 An Analytical Solution

Consider (g.3) with u: -ôalôr. A solution will be sought when î : î(r,ú) is in the separable form

î(r,t): X(r)T(t), (e.36)

and a(ø, t): f (r)g(t) is also separable. It follows thatu(r,t): -ft(r)g(f). Substituting in (9.3) gives

TtX-f'gTX'-fgTX":0, (e.37)

which yields the two ordinary differential equations

L : [:! + ry = K, Ka constant.
sTXX

(e.38)

(e.3e)

The solution to the first-order differential equation involving time Ú, is

IT(t): Aexp{K g(t)dtj, A a constant.

A solution to the second-order differential equation involving space u, namely

f x" + l'x'- KX:0, (e.40)

is given by the solution of Legendre's equation

(r - r2)x" - 2rxt -l n(n -l1)x : o, (e.41)

if the space-varying component of the diffusion coefficient is /(ø) : I - 12 and I{ : -2. In this case,

x(") : alXy'r) + aoxz(:L)

: ùLn + ao(7 - 0.5rln(1+ r) + O.5rln(1 - r)),
(e.42)

where X1 (r) and X2(r) are linearly independent solutions to (9.a1). In the following, ø0 = 1, ør :0;
and so an exact solution to (9.3) is given by

î(n,t) : A(r - 0.5llln(1 + r) + 0.5r ln(1 - ø)) exp{-2I
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If an asymptotic function is chosen for the time-varying component of the diffusion coefficient, namely

t

-I

t+lr'g(t) : Do D^ (e.44)

(e.45)

with Ds : D^ :1/30 and k : 10, then

u(r,t)=+,(ffi)

t+5
¿+10

and

(e.46)

An exact solution to (9.2) is then given by

î(r,t): A(7 _ 0.lrln(1+ n) +0.lrln(1- z))exp{-2t 175+2ln(ú + 10)/3}, A:19-z/z Q.47)

Note that the exact solution is unbounded when r : \, so a restricted spatial domain must be used.

The exact solution is displayed in Figure 9.5 for ú : 0,5 and 10. Since solutions for which î(r,t) < 0,

which correspond to non-physical quantities, are not considered, the diffusion equation is solved on the

spatial domain 0 ( r ( 0.8. Furthermore, if Do: D-:7120, as in Section 7'8, then smax ) 0'5, so

the FTCS method is unstable.

9.7 Numerical Test

A numerical solution is sought atT:5 with N : J2, so that Aú is proportional to (4")'. The initial

and boundary conditions are given by the analytical solution. The maximum value of the diffusion

number is smax ry 0.35. The problem is strongly diffusion dominated, with cmax x 0.02. A summary of

the data required to implement the numerical test is given in Table 9.3 in Section 9.8.

The explicit methods are solved by sweeping in the r direction, with the single unknown at the new

time-level being given directly from the known values at the previous time-level. The LW4 method is

supplemented near the boundaries using the inverted scheme as indicated in Section 9.2.2. The NAT

method is marched across the computational domain in an explicit fashion.

The implicit methods are solved using the Thomas algorithm, with the OPT4 method being supple-

mented near the boundaries as indicated in Section 9.4. The methods based on splitting the governing

equation are implemented in the way described in Section 9'5.
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Figure 9.5: Initial condition and analytical solution at t :5 and ú : 10

The rms error in the numerical solution relative to the analytical solution at the final time is plotted

against the grid number on logarithmic scales to illustrate convergence. Graphs showing the cpu times

versus the errors on logarithmic scales give an indication of the efficiency of the schemes. Diagrams

showing the convergence, efficiency and computational times of the schemes are depicted in Figure 9.6.

Additionally, the errors and times for the numerical test are presented in Tables 9.1 and 9.2.

The slope of the line of best frt to the data gives the orders of convergence of the methods. For the

second-order schemes the orders are found to be 2.00 for all methods except for the PS1 scheme, whose

order of convergence is 2.30. The orders of convergence for the fourth-order LW4, OPT4, PS2 and PS3

methods are 4.03, 3.89, 3.99 and 4.04, respectively.

Of the methods based on the discretization of the transport equation, the FTCS method is the most

accurate second-order scheme (see Table 9.1). Since it also has the simplest coefficients and a (1,3)

computational stencil, it also gives the smallest cpu times (see Table 9.2), making it the most efficient

second-order scheme, based on the discretization of the transport equation.

The second-order PS1 process splitting algorithm, however, gives the most accurate second-order results

overall (see top diagrams in Figure 9.6), giving errors one quarter the size of the FTCS method. Because

the PSl technique involves the solution of two (1,3) methods each time-step, it requires about twice the

time to run for each grid than the FTCS method (see Table 9.2). Although the PSl method takes longer

to run than the FTCS method, it is clearly more efficient to use, and is the most efficient second-order

scheme overall (compare the middle diagrams in Figure 9.6).
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J FTCS NAT PS1

40
50
80
100

200
500

6.35e-05
4.06e-05
1.58e- 05

1.01e-05
2.52e-06
4.02e-07

7.95e-05
5.08e-05
1.98e-05
I.27e-05
3.16e-06
5.05e-07

1.51e-05
8.63e-06
2.74e-06
1.61e-06
3.30e-07
4.57e-08

J L\M2 OPT2 PS2

40
50
80
100

200
500

8.04e-05
5.13e-05
2.00e-05
1.28e-05
3.19e-06
5.09e-07

7.49e-05
4.78e-05
1.86e-05
1.19e-05
2.97e-06
4.75e-07

5.73e-08
2.34e-08
3.59e-09
t.47e-09
9.27e-77
2.39e-I2

J L\M4 OPT4 PS3

40
50

80
100
200
500

5.43e-07
2.22e-07
3.32e-08
1.34e-08
8.21e- 10

2.08e- 11

3.87e-07
7.74e-07
3.00e-08
1.27e-08
8.32e- 10

2.16e- 1 1

2.07e-07
8.25e-08
I.22e-08
4.93e-09
3.03e- 10

7.67e-72

Table 9.1: RMS errors for the general case diffusion equation'

J FTCS NAT PS1

40

50

80
100

200
500

4.78e-02
8.07e-02
3.08e-01
5.99e-01
4.73ef 00
7.13e*01

7.54e-02
7.44e-07
5.74e-01
1.11ef 00
8.82e*00
1..37e*02

8.52e-02
1.59e-01
6.32e-01
7.22e|-00
9.94e*00
1.5Oef 02

J LW2 OPT2 PS2

40
50

80
100

200

500

4.95e-02
9.44e-02
3.73e-01
722e-0L
6.23e-l00
9.05e+01

1.21e-01
2.34e-07
9.29e-01
1.81ef 00
1.48e*01
2.25e-t02

2.26e-01
4.27e-01.
1.62ef 00
3.13e*00
2.49e-107
3.90e*02

J Lr!I/4 OPT4 PS3
40
50

80
100
200
500

1.33e-01
2.54e-07
1.02e*00
2.09e*00
1.65e*01
2.48e1-02

2.32e-07
4.53e-01
1.84e-l00
3.59e*00
2.95e+01
4.55e1-02

2.52e-07
4.70e-01
1.85ef 00
3.73e*00
3.02e-101
4.57eJ-02

Table 9.2: CPU times for the general case diffusion equation
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Although the NAT method is implemented in a marching fashion, it is still quite expensive to use,

because of the complicated coefÊcients in its (2,3) computational stencil. The most expensive second-

order scheme is, however, the implicit OPT2 method, which requires three times as long as the FTCS

method to run for each grid. The OPT2 method, although being more accurate than the LW2 method,

is somewhat less efficient to use (see middle left diagram in Figure 9.6).

As shown in the top left diagram of Figure 9.6, the two modified fourth-order schemes based on the

discretization of the transport equation are of quite similar accuracy, but the explicit LW4 method is

clearly more efficient to use. Both modified methods incorporate four correction factors and require

special procedures near the boundaries, making them quite complicated to implement compared to the

base methods. These methods do, however, give far superior results in terms of overall accuracy and

eficiency to the base methods.

As shown in Table 9.1, the fourth-order process splitting algorithms, PS2 and PS3, are more accurate

than the fourth-order methods based on the discretization of the transport equation. The PS2 algorithm,

which involves the solution of two (1,5) methods every time-step, requires nearly twice as long to run as

lhe expiicit LW4 method, which also has a (1,5) stencil. The PS3 algorithm, which requires the solution

of two systems of tridiagonal linear algebraic equations each time-step using the Thomas algorithm, is

the most time consuming method of all.

9.7.1 Sumrnary

Several techniques for solving the transport equation for the case ?r:-ôalÔn were presented. Of the

second-order methods based on the discretization of the transport equation, the FTCS method was the

most accurate and efficient scheme, while the LW2 method was slightly less accurate than the OPT2

and NAT methods. The OPT2 and LW2 methods were modified from second to fourth-order, resulting

in schemes with (3,5) and (1,5) stencils respectively. Off-centered (in the case of the OPT4 method)

and inverted (in the case of the L\M4 method) schemes were developed to supplement these methorls

near the boundaries. The results of the numerical tests showed that the modified methods gave superior

results in terms of accuracy and efficiency to the base methods, but also required longer to run.

The process splitting algorithms yietded the most accurate and efficient results. The PS1 algorithm gave

the most accurate and efficient second-order results, while the PS2 algorithm gave the most accurate

and efficient fourth-order results. Scheme dependent intermediate boundary conditions were used in the

numerical tests. As indicated by Khan and Liu (1995), it would probably be better to derive intermediate

boundary conditions which are independent of the schemes used for the separate components. This may

be important in situations where the conditions outside the computational domain do not match those

in the interior, and would eiiminate the problem of reduced stability if the supplementary schemes have

more limited stability than the component equations.
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9.8 Parameter Analysis

For constant coefficients, the leading term in the truncation error of the MtrPDE of a FDE consistent

with the transport equation (see Noye 1987b), gives an indication of how the accuracy of the scheme

depends on the size of the diffusion number s and Courant number c. The MEPDE also provides

information about whether the dominant error affects the scheme's ability to model the amplitude or

the wave-speed of the numerical solution (see Hogarth et al. 1990, Noye 1987b).

A comparative study of finite-difference methods for the constant-coefficient transport equation is given

in Hogarth et al. (1990). The methods based on the discretization of the constant-coefficient transport

equation discussed in the present chapter are given in that paper, as well as the leading term in the

truncation error of the MEPDE, and other relevant comments about the accuracy and efficiency of

the schemes. For variable-coefficient problems, the methods must be compared in a numericai test for

different values of the maximum diffusion number.

9.8.1 Numerical Test

The methods are tested for several values of the maximum diffusion number, as indicated in Tabìe 9.3.

Only the OPT2 and OPT4 methods are stable when smax : 1.40. The PS3 algorithm could be used

with smax : 0.70, even though the NH4 method used to calculate the intermediate boundary values

for the diffusion step, is only stable \f s <213. This is because the NH4 method is only used for afew

points in the domain for which s > 2 f 3, and so round-off errors do not accumulate. The rms errors are

given in Table 9.4. The cpu times are omitted because they follow from those given in Table 9.2, in the

sense that doubling the number of time steps doubles the computational times, halving the number of

time steps halves the times, and so on.

The convergence and efficiency of the process splitting algorithms are shown in Figure 9.8. For the

methods based on the discretization of the transport equation, only the efficiency plots are presented

in Figure 9.7. This is because Tabie 9.4 shows that for almost all of these schemes, the rms errors do

not change significantly when the size of the maximum diffusion number is altered, and so the lines of

convergence overlap to a large extent. FYom Table 9.4, the FTCS, LW2 and NAT methorls are most

accurate if smax : 0.09, the LW4 method is most accurate for smax : 0.35, and the OPT2 and OPT4

methods perform best when smax: 1.40.

The OPT2 method used with smax : 1.40 is more accurate than the second-order FTCS, LW2 and

NAT methods, and since the cpu times for this value of smax are shortest, it is also more efficient than

these schemes. Likewise, the fourth-order OPT4 method used with ,smax : 1.40 is more accurate and

efficient than the fourth-order LW4 method (compare right middle and bottom diagrams in Figure 9.7).

Figure 9.8 shows that the second-order PS1 and fourth-order PS2 splitting algorithms are most accurate

and efficient when smax : 0.35, while the fourth-order PS3 algorithm performs best for smax: 0.70.
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1. Exact solution: î(r,¿) : (0.1¿ +1,)3/2(l - 0.5rln(1+ r) +0.5rln(1- r))exp{-2t175}

2 Initial condition: î(2,0) is given by the exact solution

3. Boundary conditions: î(0, ú) and î(0.s, ¿) are given by the exact solution

4. Difiusion number: s : aLtl(Lr)2, L,t :TlN, A'r :0.81 J

5 Asymptotic profile: a(r,t): (1 - r2)(t + 5)(¿ + 10)-1/15

6. amax: 2145, T :5, J :40,50,80,100,200

7. setting N: J2 14, J2f2, J2,2J2,4J2 gives smax æ7.40,0.70, 0.35, 0'18, 0.09

Table 9.3: Data for Parameter Analvsis.

9.8.2 Summary

The most accurate and efficient second-order results overall are achieved by using the PS1 algorithm

with smax : 0.35. For this smax, the errors given by the PSl algorithm are less than 27% of those given

by the second-order OPT2 method used with smax : 1.40. Additionally, from their efficiency plots it

can be deduced that it takes more than 10 seconds to achieve an accuracy of 1.0e-06 using the OPT2

method, but less than 10 seconds to gain this accuracy using the PS1 algorithm.

The most accurate and efficient fourth-order results overall are attained by using the PS2 algorithm

with smax : 0.35. For this smax, the errors given by the PS2 algorithm are less than 76% of those given

by the fourth-order OPT4 method used with smax: 1.40. The PS2 algorithm used with smax : 0.35

requires about four times longer to run than the OPT4 method used with smax: 1.40. The additional

cpu time is compensated for by the superior accuracy of the PS2 algorithm, which is slightly more

efficient than the OPT4 method.
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splitting algorithms for various values of smax.
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J FTCS L\ry2 LW4 NAT OPT2 OPT4 PS] PS2

40

bU

80

100

200

5.94e-05

3.80e-05

1.49e-05

9.52e-06

2.38e-06

6.36e-05

4.07e-05

1.59e-05

1.02e-05

2.55e-06

5,93e-07

2.42e-07

3.61e-08

1.46e-08

8.94e-10

7.47e-05

4.79e-05

1.87e-05

1.20e-05

3.00e-06

7.85e-05

5.03e-05

1.97e-05

1.26e-05

3.15e-06

3.80e-07

7.72e-07

2.97e-08

1.26e-08

8.27e-10

4.11e-05

2.64e-05

1.04e-05

6.69e-06

1.68e-06

2.54e-07

1.13e-07

1.97e-08

8.42e-09

5.75e-10

2.73e-07

1.09e-07

1.63e-08

6.63e-09

4.10e-10

J

smax=0.18

FTCS LW2 L\Ä/4 NAT OPT2 0P t'4 PS1 PS2 PS3

40

50

80

100

200

6.05e-05

3.87e-05

1.51e-05

9.69e-06

2.42e-06

6.88e-05

4.41e-05

7.72e-05

1,10e-05

2.76e-06

5.74e-07

2.35e-07

3.51e-08

1.42e-08

8.69e-10

7.60e-05

4.87e-05

1.90e-05

1.22e-05

3.05e-06

7.70e-05

4.93e-05

1.93e-05

1.23e-05

3.09e-06

3.81e-07

L72e-07

2.98e-08

1,26e-08

8.28e-10

2.42e-05

1.57e-05

6.26e-06

4.04e-06

1.03e-06

L43e-07

6.48e-08

1.15e-08

4.95e-08

3.43e-10

2.53e-07

1.01e-07

1.51e-08

6.12e-09

3.78e-10

J

smax=0.35

FTCS L\ry2 LW4 NAT OPT2 OP'I4 PS1 PS2 PS3

40

50

80

100

200

6.35e-05

4.06e-05

1.58e-05

1.01e-05

2.52e-06

8.04e-05

5.13e-05

2.00e-05

1.28e-05

3.19e-06

5.43e-07

2.22e-07

3.32e-08

1.34e-08

8.21e-10

7.95e-05

5.08e-05

1.98e-05

1.27e-05

3.16e-06

7.49e-05

4.78e-05

1.86e-05

1.19e-05

2.97e-06

3.87e-07

1.74e-07

3.00e-08

1.27e-08

8.32e-10

1.51e-05

8.63e-06

2.74e-06

1.61e-06

3.30e-07

5.73e-08

2.34e-08

3.59e-09

1.47e-09

9.27e-17

2.07e-07

8.25e-08

1.22e-08

4.93e-09

3.03e-10

J

smax=0.70

FTOS LW2 L\ry4 NAT OP I'2 OPT4 PS1 PS2 PS3

40

50

80

100

200

unstable unstable unstable unstable

6.78e-05

4.35e-05

1.70e-05

1.09e-05

2.72e-06

3.81e-07

7,72e-07

2.98e-08

1.26e-08

8.29e-10

unstable unstable

9.10e-08

3.70e-08

5.55e-09

2.26e-09

1.40e-10

J

smax=1.40

FTCS LW2 LW4 NAT OPT2 0PT4 PS1 PS2 PS3

40

5tl

80

100

200

unstable unstable unstable unstable

5.59e-05

3.58e-05

1.40e-05

8.96e-06

2.24e-06

3.67e-07

1.67e-07

2.89e-08

1.23e-08

8.07e-10

unstable unstable unstable

Table 9.4: RNIS errors for various values of the maximum diffusion number

153



Chapter 10

Conclusron

This thesis was motivated by the lack of high-order finite-difference methods available in the literature for

realistic variable-coefficient flow problems. In the past, it was necessary to use finite-difference methods

based on the discretization of a constant-coefficient partial differential equation for variable-coefficient

problems. These schemes ignore the variability of the advective velocity and the diffusion coefficient

a serious shortcoming considering that, in most appìications, these vary in both space and time. Not

surprisingly, such finite-difference methods, which may be of high-order for constant coefficients' become

low-order when applied to variable-coefficient problems'

The main objective of this thesis was to modify these schemes, so that they retain their constant-

coefficient order of convergence in variable-coefficient problems where the advective velocity and the

diffusion field are allowed to vary in both space and time. The only constraint made on the variable-

coefficients is that they are assumed to be smooth. In other words, they must be continuous and

sufi ciently differentiable.

A secondary goal was to compare the new modified methods with the original base methods in terms

of their computational efficiency, and the introduction of certain types of errors (such as amplitude and

wave-speed errors) into the numerical solution. Because of the lack of available analytical solutions

in the literature for variable-coefficient problems, it was recessary to develop exact solutions for the

variable-coefficient problems considered, so that such comparisons could be made.

The scope of this thesis included both the non-conservative and conservative forms of the one-dimensional

advection equation, and the diffusion equation. The techniques were also extended to solve two-

dimensional problems using locally one-dimensional methods. The scope of this thesis is rather broad,

especially considering that the new methods can readily be incorporated into larger flow problems by us-

ing the technique of process splitting. An outline of the general approach taken for each method follows.

a
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The convergence of the base method was established by performing a consistency analysis, yielding the

truncation error of the scheme. The temporal derivatives in the truncation error were then converted to

spatial derivatives using the original partial difierential equation, so that the convergence of the scheme

is given by the order of the leading term in the truncation error in terms of the grid spacing Az. For

each scheme the types of error that are introduced into the numerical solution were identified. The

main sources of error ,\¡/ere recognized as amplitude errors, which are quantified by the coefficients of

the even spatial derivatives in the truncation error, and wave speed errors, governed by the odd spatial

derivatives in the truncation error.

The modiflcation procedure developed to improve the convergence for variable-coefficients involved in-

corporating the leading term ofthe truncation error into the finite-difference equation' This was achieved

by replacing the spatial derivatives by finite-difference approximations of appropriate order. Although

the modifi.cation procedure itself introduces new errors into the numerical solution, these are of a higher

order than the original errors. The approximations were usually chosen so that the computational stencil

of the original scheme could be retained, but this is not always possible. Schemes with wide compu-

tational stencils are more difficult to implement than compact schemes, and additional procedures to

determine the numerical solution adjacent to the boundaries are required.

The stability of finite-difference methods for variable-coefficient problems can usually only be determined

by performing a local stability analysis. This involves freezing the coefficients, so that the velocity and/or

diffusion may be considered to be constant within the computational stencil. The local stability condition

then gives a necessary condition for the stability of the variable-coefficient problem. The method for

determining the local stability of the methods considered in this work was the von Neumann stability

analysis. The key concepts and main results of each chapter are strmmarized below'

In Chapter 3, the accuracy of several well-known methods was analyzed when they are applied to the

non-conservative variable-coefficient advection equation. All of the methods were shovrn to suffer from

a reduction in convergence rate. Except for Rusanov's method, which was noted to contain a fourth-

order temporal derivative in its truncation error, making it more complicated to modify than the other

schemes, the methods were modified to retain their constant-coefficient order. The maximum order of

convergence was achieved by modifying the implicit optimal method, which reverted to second-order for

variable-coefficients, back to its constant-coefficient rate, resulting in the fourth-order mod2-O method.

AII of the methods described in Chapter 3 were tested in Chapter 4. The data used in the numerical tests

were chosen to be smooth because the existence of a smooth solution is the underlying assumption of

high-order methods. The numerical tests illustrated the improved orders of convergence of the modified

methods relative to the base methods. Moreover, the tests showed that the modified methods were

almost always more accurate and efficient than the base methods.

The schemes were also compared in terms of their ability to simulate the advection of a pulse. It was

seen that although the modified methods could not overcome all the difficulties associated with the

introduction of spurious oscillation, they often captured the height of the pulse and the peak position
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better than the base methods. It was demonstrated that unwanted negative values can be removed by

using the frrst-order upwind formula whenever the numerical solution becomes negative. The effect of

altering the size of the maximum Courant number on the accuracy and the efficiency of the schemes

was investigated. It was concluded that the third-order mod2l. method and the fourth-order mod2-O

method are the most accurate and efficient explicit and implicit schemes, respectively.

For the two-dimensional advection equation, a locally one-dimensional approach was taken so that the

methods described in Chapter 3 could be used directly for either spatial direction. The complexities

associated with applying a three-dimensional computational stencil are avoided by using iocally one-

dimensional techniques, which are relatively straightforward to implement, except that intermediate

boundary conditions are required if an implicit scheme is used for the first spatial direction. Numerical

tests established that the convergence of the locally one-dimensional method matches that of the com-

ponent equations, and verified the superior accuracy and efficiency of the modified methods, compared

to the base methods.

It was shown in Chapter 6 that the exact solution of the non-conservative and conservative forms of

the advection equation to the same test problem are quite different. In the non-conservative case,

the concentration front travelled slower, the peak was unattenuated, and the area under the solution

profile increased. Severai approaches to incorporate the decay (or growth) term into the solution were

examined. It was demonstrated that a discretization procedure could be used to improve the convergence

of methods, when the decay term is treated like a sink term. This proved to be too complicated for

most schemes) so more attention was focussed on how the processes of advection and decay could be

approximated separately.

A Strang-type splitting algorithm was utilized because errors are introduced if the splitting process is not

symmetric. Such errors are avoided by reversing the order of the processes each time step- The advection

component was approximated using the methods described in Chapter 3, while the decay was handled

using an ODE solver such as the fourth-order Runge-Kutta method or Heun's second-order method,

depending on the required accuracy. Although the splitting algorithm was generally successful' a decline

in the convergence rate was observed for some of the high-order schemes when very fine grids were used.

Nevertheless, higher convergence rates could be attained than by employing conventional methods based

on the integral formulation of the conservative equation, or by applying the discretization procedure to

the complete unsplit conservative equation. Moreover, the modified methods gave significant gains in

accuracy and efficiency compared to the base schemes.

It has been recognized that constant-coefficient models are inadequate to describe, for example, diffusion

through porous media. Field experiments have demonstrated that the diffusion is not constant but may

depend on the travel time or solute displacement distance. However, in the past, most research has gone

into improving discretization methods for the constant-coefficient diffusion equation. In Chapter 7, the

accuracy of several methods was analyzed when they are used for variable-coefficient problems. It was

shown how the Noye-Hayman and N131 methods, which are fourth-order for constant diffusion, can be

modified to retain this convergence rate.
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Analytical solutions were developed for three functional forms of the diffusion coefficient, and numerical

tests established the improved convergence, accuracy and efficiency of the modified methods. The

results of the methods for the three diffusion profiles considered were rather similar; an outcome also

observed by other researchers. The schemes \tr'ere also compared for various values of the maximum

difiusion number. It was concluded that Mitchell's fourth-order implicit method could produce the

most accurate and efficient results. Because of its unconditional stability and solvability, Mitchell's

method has a considerable advantage over the other schemes. Except for the three-level methods, which

cannot be applied in a locally one-dimensional fashion, the methods were then successfully applied in

Chapter 8, to the two-dimensional diffusion equation'

If methods for the diffusion equation are used directly for variable-coeffi,cient diffusion problems, the

intrinsic advective component is not incorporated. This problem was addressed in Chapter 9, where the

most general form of the one-dimensional diffusion equation was studied. Two approaches were taken

to incorporate the advective component. The first approach was to recognize that by expanding the

diffusion equation, a special case ofthe variable-coefficient transport equation is obtained. Consequently,

by modifying methods for the constant-coefficient transport equation, two new fourth-order methods

for the one-d,imensional diffusion equation were obtained. Because the analysis was kept as general as

possible, these schemes can also be applied to the general variable-coefficient transport equation. The

second approach was to use some of the methods developed in Chapters 3 and 7 to approximate the

advection and d3ffusion components separately. A Strang-type splitting algorithm was used, so that the

convergence matches that of the component equations. Both approaches were successful, yielding far

superior results to those given by the conventional schemes'

To summarize, in this thesis, a technique was developed to give high-order finite-difference methods

for variable-coefficient problems. This technique has been successfully applied to variable-coefûcient

advection and diffusion problems. It has been demonstrated that the new schemes may readily be

incorporated into multi-dimensional problems by using locally one-dimensional techniques) or that they

may be used in process splitting algorithms to solve complicated time-dependent partial differential

equations.
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Appendix A: Difference Forms
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Table 4.1: A selection of first and second-order difference forms.

Note that (4.1) and (4.5) are first and second-order forward space forms respectively, (4.2) and (4.4)

are first and second-order backward space forms respectively, while (4.3), (4.6), (,{.7) and (4.9) are

second-order centered space forms.
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Appendix B: Gauss Results

J LTH uw15 RUS OPT
50
100

200

500
1000
2000
5000

2.43e-02
8,3le-03
3.62e-03
1.40e-03
6.96e-04
3.48e-04
1.89e-04

4.76e-02
I.22e-02
4.01e-03
7.42e-03
6.98e-04
3.48e-04
1.39e-04

1.63e-02
7.12e-03
3.50e-03
1.39e-03
6.96e-04
3.47e-04
1.39e-04

4.82e-16
6.00e- 16

7.59e- 16

1.20e- 15

1.86e - 15

2.98e- 15

4.62e-L5
J mod-L mod-U mod-R mod-O
50

100

200
500
1000
2000
5000

3.50e-02
9.33e-03
2.14e-03
3.1 1e-04
7.50e-05
1.84e-05
2.90e-06

5.05e-02
1.40e-02
2.9le-03
3.62e-04
8.12e-05
1.91e-05
2.95e-06

1.40e - 02
1.20e-03
8.74e-05
3.47e-06
3.63e-07
4.16e-08
2.53e-09

5.17e-04
6.18e- 05

7.63e-06
4.87e-07
6.08e-08
7.60e-09
4.87e-10

J mod2-L mod2-U mod2-R. mod2-L)
50

100

200
500
1000
2000
5000

t.79e-02
3.23e- 03

4.42e-04
2.88e-05
3.61e-06
4.52e-07
2.89e-08

3.78e-02
8.61e-03
1.29e-03
8.57e-05
1.08e-05
1.34e-06
8.61e-08

5.7le-03
2.91e-04
2.81e-05
1.96e-06
2.50e-07
3.14e-08
2.01e-09

2.47e-76
4.75e-76
6.16e- 16

1.16e- 15

1.41e- 15

2.08e- 15

3.34e- 15

Table 8.1: RMS errors after one time cycle when the Gauss test is applied
to the one-dimensional non-conservative advection problem.

J LTH UW15 RUS OPT
5L)

100

200
500
1000

2000
5000

2.44e-02
8.81e-03
4.02e- 03

1.58e-03
7.87e-04
3.93e-04
1.57e-04

4.02e-02
1.19e-02
4.26e-03
1.59e-03
7.88e-04
3.93e-04
1.57e-04

1.77e-02
8.02e-03
3.96e-03
1.58e-03
7.87e-04
3.93e-04
t.57e-04

8.46e-09
4.01e- 11

1.25e-L2
1.30e- 14

2.06e- 15

2.83e- 15

4.80e- 15

J mod-L mod-U mod-R mod-O
50
100

200
500
1000
2000
5000

3.48e-02
9.26e-03
2.12e-03
3.09e-04
7.45e-05
1.83e-05
2.89e-06

4.97e-02
1.38e-02
2.87e-03
3.58e-04
8.05e-05
1.90e-05
2.93e-06

L.45e-02
1.15e-03
1.06e-04
4.70e-06
5.13e- 07
5.98e-08
3.67e-09

5.17e-04
6.19e-05
7.64e-06
4.88e-07
6.09e-08
7.62e-09
4.87e-70

J mod2-L mod2-U mod2-R mod2-O
50

100

200
500
1000
2000
5000

1.78e-02
3.20e-03
4.37e-04
2.85e-05
3.57e-06
4.47e-07
2.86e-08

3.71e-02
8.42e-03
1.26e-03
8.37e-05
1.05e-05
1.31e-06
8.41e-08

5.51e-UJ
2.78e-04
3.08e-05
2.2Le-06
2.82e-07
3.54e-08
2.27e-09

3.ti7e-09
4.01e- 1 1

1.25e-72
1.28e-14
1.72e-15
2.02e-15
3.40e- 15

Table 8.2: RMS errors after one time cycle when the Gauss test is appÌied
to the one-dimensional conservative advection problem.
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Appendix C: Non-l\egativity
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Figure C.1: The upwind method is used to eliminate negative values when the Gauss test is applied to
the two-dimensional non-conservative advection equation. The results shown are for -I = 50.
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