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Science is like sex: sometimes something useful comes out, but that is
not the reason we are doing it

Richard Feynman
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Abstract

This thesis proposes a new method for the evolutionary design of models for appli-
cations in learning tasks. Evolving a model of the learning environment enables the
products of the evolutionary process to be more easily understood. The evolution-
ary methods employed in this thesis directly encode the structures of interest and
evolve the phenotype.

The models of interest are discrete structures. The evolution of discrete structures
can be problematic. Novel mutation operators for the manipulation of structures
need to be defined. Once defined, they have to be used to evolve useful models for
the learning environment. This thesis proposes and evaluates a novel self-adaptive
scheme for evolving discrete representations.

Most discrete model structures will require parameters to define the symbols with
which they operate. This thesis proposes to segregate the tasks of model param-
eter optimisation from model structure optimisation. The resulting symbiosis of
parameters and discrete structures is evolved by a consistent self adaptive scheme.

This thesis proposes a nelry self-adaptive, symbiotic model evolution framework,
SASME. sASME is described generally and then applied to the specific task of evolving
rule sets with explicit default hierarchies for learning problems. Experiments are
conducted on the sASME framework to establish the efficiency of the self-adaptive
mutation scheme when compared to apri,ori settings of the mutation rate. The
self-adaptive scheme is found to perform optimally, removing the trial-and-error
experimentation often required to get satisfactory performance from fixed mutation-
rate evolutionary systems.

The sesup rule sets are evalutated on a number of difficult control tasks. In a
one step procedure controllers are able to be evolved for the well known cart-pole
problem under a variety of conditions. The much more difficult two-pole problem
is solved by the inclusion of relational information in the rule premises. A final
non-Markovian variant of the two-pole problem requiring a, recurcenl rule set is also
solved by the sASME approach.

The sesvE framework is used to produce rules which predict the level of algae in
a lake from measured data. The rule sets produced in this data mining application
are comprehensible and transparently show how the system is predicting the algae.
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The more difficult problem of predicting the presence of algae species from water
qualit;' data is then undertaken and the resulting rule sets interpreted to discover
what they infer about the ultimate causes of species transitions in the lake.
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Preface

The last thing one knows in constructing a work is what to put first.

Blai,se Pascal

The original proposal for this thesis was to compare traditional learning methods
with the products of evolutionary learning systems. As I started to learn and read

about the evolutionary computation universe ideas of a comparison diminished as I
waded through the literature on evolutionary algorithms. They seemed like a very
neat idea. Make the computer do the work. I go down the pub while the computer
solves the problem. Surely this is the logical next step for Turing's chilcl!

Alas, many nights were spent away from the pub as the damnable machine decided to
not solve the problems that I ask it to. The final results are this thesis. Increasingly
I became enamoured with trying to understand what the computer had learnt. In
light of the no free lunch results it seemed even more important to value-add the
products of any automated optimisation procedure. One way of value adding is to
use the solution representation that I want to.

Initially I was interested in methods alone. Learning about how and why different
methods of simulated evolution does (and doesn't) produce results was top of the
list. Like most people in the field I have far more questions about these issues than
anyone, including me, has been able to supply answers for. And again, this seemed

to lead me towards evolving things I could understand. I wanted to evolve anything.
Any solution whatever.

My initial toy problems in control theory led me to consider rule based systems.

At the time, the only evolutionary rule based systems I was a\ryare of were classifier
systems, and my initial inclination (and advice) was not to :use a Mi,chi,gan approach.
In one of the few cases during my PhD, I took the advice offered and am glad I did
so. Perhaps I should have more often.

Theoretically I found the self-adaptive techniques of Fogel, Schwefel and Bäck to be

most interesting. The tutorial by David B. Fogel I attended in 1997 was possibly
the intellectual highlight of my ideas on methodology.

My interest in representations of solutions led to an interest in the applications I
was using. It occurred to me that I can't say much about the representations I have

XIX



used to solve a problem if I don't understand the problem I am solving. There are
large numbers of machine learning databases available for testing methods. But I
wanted to test learni,ng. I didn't really care about the mean square error or amount
of mis-classification, I wanted to see what the evolutionary method had learnt about
the problem. That is what automatic learning means to me. It doesn't have to tell
me everything about the problem, but if it learns something interesting, I want to
know what it has discovered. Otherwise my computer seems to sit there consuming
power for hours before providing me with a number accurate to 5 decimal places on
its expected mean square error when applied to some kind of problem. Of course,
this is important, but it isn't what lwas interested in.

This idea of concentrating on methods, but examining applications in depth, is what
I have attempted to do in this thesis. I want this work to show that my method for
evolving things can learn interesting things about interesting problems.

XX



Chapter 1

Introduction

Darwinian evolution works by the indirect and inefficient mechanism of nat-
ural selection.

Life's Grandeur Stephen Jay Gouldl

The field of evolutionary science began with the publication of Charles Darwin's

"The Origin of Species" in November 1859. Darwin's work was influenced by earlier

work, particularly Thomas Malthus's "An Essay on the Principle of Population",
first published in 1798. Darwin's argument for the derivation of the origin of species

is encapsulated in his summary of Chapter IV [53, p105]:

If during the long course of ages and under varying conditions of life, organic

beings vary at all in several parts oftheir organization, and I think this cannot
be disputed; if there be, owing to the high geometric ratio of increase of each

species, a severe struggle for life at some age, season, or year, and this certainly
cannot be disputed; then, considering the infinite complexity of the relations
ofall organic beings to each other and to their conditions ofexistence, causing

an infinite diversity in structure, constitution, and habits, to be advantageous

to them, I think it would be a most extraordinary fact if no variation ever

occurred useful to each beings own welfare, in the same manner as so many
variations have occurred useful to man. But if variations useful to any organic

being do occur, assuredly individuals thus characterized will have the best

chance of being preserved in the struggle for life; and from the strong principle
of inheritance they tend to produce offspring similarly characterized. This
principle of preservation, I have called it, for the sake of brevity, Natural
Selection; and it leads to the improvement of each creature in relation to its
organic and inorganic conditions of life.

Darwin presents his argument in the origin of species as a series of observed facts that
lead inescapably to the process he calls natural selection. The "Origin of Species"

is a long collection of hard earned evidence about the observed facts referred to in
Darwin's summary [59, page  9]. The choice of phrasing in this summary is striking
because it describes an algorithmic understanding of natural selection. Darwin had

no notion of what an algorithm is [162].

1

1[101, page 221]



2 CHAPTER 1. INTRODUCTION

1.1 The Algorithm of Natural Selection

Informally, an algorithm is a step-by-step procedure which allows an operation to
be carried out without an application of intelligence [37]. Knuth [135, pages 5 6],
writes that an algorithm must have five properties:

1 They must terminate after a finite number of steps.
2 They must be unambiguous.
3 They must accept input.
4 They must generate output.
5 They must be reproducible, in principle, by someone using paper and pencil.

Darwin's description of natural selection is a description of an algorithmic process,
a process which is "mindless, purposeless and mechanical" [162]. The products
of Darwin's algorithm of natural selection have the appearance of desi,gn without
having been designed [59]:

Give me Order, [Darwin] says, and time, and I will give you Design. Let me
start with regularity-the mere purposeless, mindless, pointless regularity of
physics-and I will show you a process that eventually will yield products
that exhibit not just regularity but purposive design.

Dennet conjectures that it is the algorithmic nature of Darwin's explanation that
gives it its power [59]. Dawkins likens Darwin's process of natural selection to a
blind watchmaker [54, Page 5]:

Natural selection, the blind, unconscious, automatic process which Darwin
discovered, and which we noru know is the explanation for the existence and
apparent purposeful form of all life, has no purpose in mind. It has no mind
and no mind's eye. It does not plan for the future. It has no vision, no
foresight, no sight at all. If it can be said to play the role of a watchmaker, it
is a blind watchmaker.

The modern significance of an algorithm is that it can be expressed as a computer
program2 and executed by a computer. According to Dennet [bg, page 50], algo-
rithms are:

Substrate neutral They can be implemented with any medium, and they will
perform the same task.

Mindless An algorithm requires no thought to execute.

Consistent An algorithm will always do the same thing, wherever it is implemented
on whatever it is implemented. The results are guaranteed.

What does Dennet mean by guaranteed results? Gould cites the Burgess shale, a
collection of fossils from just after the Cambrian explosion3 which contairrs many

2A computer progrâ,m may be defined as the expression of a cornputational method in a corn-
puter language, where a computational method is a procedure having the characteristics of an
algorithm (except possibly finiteness) [135, page 5][76, page 525]

3About 570 million years ago.



1.2. EVOLUTION FOR AUTOMATED KNOWLEDGE ACQUISITION

species which do not belong to any modern phylum, as evidence that were one

to re-run evolutionary history, the same phylla would not be expected to become

established. A re-run of the history of life would produce different results. Natural

selection is a stochastic algorithm. The guaranteed results that it produces are

products which are adapted to their environment.

It is a common misunderstanding to suppose that the algorithm proposed by Darwin

is directed. That it leads to bigger, or smarter, or more complex individuals. It does

not. There are numerous examples, the panda's thumb being a well known one [160,

page 352][100, page 61][99]. Bears do not have an opposable thumb. Panda's are

the bamboo eating descendants of meat eating bears. In its meat eating mode of

existence the panda's thumb wâs co-opted into the paw structure required for a

carnivorous mode of life.a The consumption of bamboo is greatly assisted by having

the extra flexibility which comes with having an opposable digit' The bears thumb

was already "committed" to the paw structure. The evolved solution was to adapt

a bone in the panda's wrist, its radial sesamoid bone, into an effective but inelegant

thumb. Thus the panda has 6 digits. The opposable digit that evolution supplied

to the panda is not as useful as an opposable thumb. It is a suboptimal solution.

Evolution has simply adapted what it had to work with to become better suited to

the environment. If one were to design a panda, one would give it a thumb. What

evolution does is nol directecl towards designing the perfect panda. It has adapted

the extant forms to their ever changing environment.

The underlying mindlessness of an algorithm means that when executed on a com-

puter, which is essentially an automated algorithm executing device, an algorithm

does whatever it does automatically. One of the enduring goals of artificial intelli-
gence research is the production of automated learning methods. These are methods

which solve problems without the input of human intelligence. Simulating the nat-

ural selection algorithm is one ïvay this goal may be accomplished.

L.2 Evolution for Automated Knowledge Acquisi-
tion

Using the algorithm of natural selection to adapt symbolic knowledge structures

has been undertaken by the evolutionary computation community to solve a large

number of different problems. The idea is to take Darwin's algorithm of natural

selection and use it to adapt structures to learning problems. Although the evolution

algorithm does not guarantee any form of optimality in the evolved solutions, it
promises to be a flexible method capable of adapting a range of structures to different

environments.

The view taken in this thesis is that the lack of any optimality assurances about the

final solutions is pri,ma fac,ie reason to utilise representations which communicate

3

aThe paw structure is common to all mammalian Carnivora.



4 CHAPTER 1. INTRODUCTION

discovered knowledge about the learning task.

The meihocÌ of natural seiection cioes not require any information about the fitness
landscape that the solutions are being evolved on. The logical implementation of the
algorithm does not consider in any way how the fitness of solutions are evaluated.
Common-sense, and the "No Free Lunch" (NFL) theorem (see Appendix B), suggest
that ignoring fitness landscape features will not lead to efficient search in general.
However, it is frequently the case in machine learning that the reason for the problem
being of interest is that little is known about it. Evolution can automaticaily adapt
solutions to such problems.

Evolutionary computation can be used to evolve discrete structures for (often sym-
bolic) learning problems, and to evolve numeric vectors for parameter opìimisation.
Evolutionary artificial neural networks (trANNs) are an example of a structure where
both goals need to be performed; in general, the discrete architecture of the network
needs to be optimised, and the weights of the connections need to be optimised.
The optimisation of the architecture is a discrete problem, as individual nodes and
connections are added or deleted. The optimisation of the weights is a continuous
optimisation problem.

This thesis proposes a new rnethod for the optimisation of discrete structures and
continuous parameters. The method is applied to the evolution of discrete rule
set structures, which operates on symbols from the environment, and a parameter
vector which gives numeric meaning to the symbols referred to in the rule set.

1.3 Statement of Thesis

This thesis addresses the question: How can a representation be adapted to fit a
learning environment? It is argued that a new method of symbiotic seH-adaptation
of a discrete symbolic structure and associated numeric components is an effective
rnethod for achieving this. The method is demonstratecl by evolving comprehen-
sible controllers in a dynamic control domain, and predictive models of ecosystem
dynamics.

This thesis proposes the method of self-adaptivc symbiotic model evolution, 5ASME.
The proposed method enables evolutionary processes to successfully operate on a
range of representations and evolve solutions to difficult problems with those repre-
sentations' Simulated evolution is proposed as a method of adapting models to their
learning environment. The method of self-adaptation is proposed to facilitate this
process. It is demonstrated how self-adaptation can be exploited for the optimisation
of parameters and the symbiotic optimisation of cliscrete model structures.

The motivation of the SASME method is to allor,v flexibility in the choice of moclel
structures. The choice made in this thesis is to use rule set models which are designed
to be comprehensible and evolvable. Comprehensible models address the fact that



1..4. CONTRIBUTION OF THESIS

evolution does not supply optimal solutions to problems. A comprehensible model
allows for the models working to be elucidated and the method of relating input to
output, which the evolution has discovered to be observed.

I.4 Contribution of Thesis

o This thesis describes a novel method for the adaptation of discrete represen-

tations in learning domains, sASME. The method proceeds by symbiotically
evolving the parameters associated with a learning structure and the topology
of that structure.

o The method is applied to the evolution of a novel rule set structure which al-
lows the explicit formation of default hierarchies. The self-adaptive mechanism
is compared to a variety of mutation strategies to justify the self-adaptation
algorithm used.

o The method developed in this thesis is able to evolve comprehensible rule sets

by means of evolutionary adaptation.
o The sASME algorithm is applicable to a wide variety of problems, as is evi-

denced by the diverse problems solved with it in this thesis. Rule sets are

produced to give insights in two challenging learning tasks:

IJnsupervised learning of dynamic control strategies The SASME method
with the rule set structures is used to evolve controllers for the well known
cart-pole problem. The method is able to evolve robust controllers in a
one-step procedure which automatically discovers optimal quantisation
boundaries of the discretisation of the state space while evolving the rule
set structures. The method is then applied to the more difficult two-
pole problem which necessitates the addition of parameterised relations
to the antecedent of the rule sets. Finally a very difficult non-Markovian
variant of the two-pole problem is solved by using a novel recurrent rule
structure. The results for this problem produced in this thesis are the
only examples of machine learning, non-neural solutions to the two-pole
problems. The produced rule sets perform as well as the neuro-control
approaches, and are able to explicitly represent learnt knowledge about
the problem.

Data mining aquatic ecosystem data The SASME method is used to evolve

rule set models for the prediction of ecosystem dynamics. Ecosystems

contain noisy data with many interacting attributes affecting the dynam-
ics. The ability of the method to elucidate learnt knowledge is demon-
strated and the knowledge compared to domain knowledge for the learn-
ing task. The algorithm is a contribution to the emerging field of ecoin-

formatics. In the problem domain used in this thesis the sRstt¿p evolved

rule sets perform competitively with the neural solutions but represent

knowledge explicitly.

5
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1.5 Outline of Dissertation

Chapter 2 reviews the method of evolutionary strategies and self-adaptive mutation
for parameter optimisation. Evolutionary methods for learning problems, and the
need for numeric and structural optimisation in representations for learning problems
are discussed. Chapter 3 outlines the sASME algorithm. The method is described in
general terms before being applied to a novel rule set structure. The self-adaptive
mutation method is empirically validated by comparison with constant mutation
rates in a series of experiments.

Chapter 4 introduces the well-known cart pole problem and briefly discusses some of
the approaches used to solve it before evolving rule sets for controlling the system.
The rule set method has a number of advantages compared to previous approaches,
such as the ability to search for optimal discretisation boundaries instead of having
these set a priori. The two-pole problem is then introduced and the requirement
for the discovery of inter-attribute relationships in solving this problem discussed.
The discrete rule model is then extended to allow a parameterized relationship to
appear in the antecedent of rules in the rule set. The method is empirically verified
and some discovered rule set models for controlling the two-pole problem presented.
The problem is then made more difficult by removing velocity information. The two-
pole problem without velocity is a non-Markovian control problem, and a further
extension of the discrete representation is developed to solve this problem. It is
empirically verified that the method of self-adaptive symbiotic model evolution can
adapt this representation to solve the non-Markovian two-pole problem.

Chapter 5 discusses an aquatic ecosystem data mining problem. The sRsue algo-
rithm is used to adapt rule sets for the prediction of chlorophylt-a concentrations
in a freshwater lake given some chemical and physical properties of the lake. The
rule set models which are discovered are discussed and the premises with which the
rule sets base their predictions a,re compared with domain knowledge, The more
difficult question of species prediction is then attempted. Models are evolved for
the prediction of the two dominant species types in the lake and the premises of
the models are compared to elucidate on the observed changes in the lakes species
compositions. The results highlight the benefits of elucidative representations in
inductive learning problems.

Chapter 6 summarizes the thesis. Appendix A presents results on evolutionary
strategies convergence and the origin of some constants used in the standard algo-
rithm. Appendix B presents the No Free Lunch (NFL) theorem, and Appendix C
describes the standard Michigan approach to learning classifier systems.



Chapter 2

Evolutionary Methods:
Optimisation and Learning

The purpose of computing is insight, not numbers

Ri,chard Wesley Hamming, 1915 - 1998

Evolutionary algorithms are not the only example of simulating natural phenom-

ena to solve computational problems. Simulated annealing is another well known

example [134]. Evolutionary algorithms, and simulated annealing, belong to a class

of algorithms referred to as generate and test methods [253]. A generate and test
algorithm learns by proposing solutions to be tested in its environment and using

the results of the testing to generate new solutions to be tested in the environment.

Such methods are iterative. Table 2.1 shows the generic evolution algorithm.

The principal components in simulating evolution are the population, the method
of modification, and the method of selection. An initial population of solutions

are formed from which only some can survive. When generating new solutions,
they must have some variation from the generating solution. If ælt] represents the
population at time ú, then the evolutionary method can be written as the difference

equation:

ælt + 1l : s('u(ø[t])) (2'I)

Table 2.L. An euolutionaru alqorithm

Pre: A fitness function / e IR must be defined which allows solution vectors to be

evaluated

1 Generate a population of initial random parent solutions
2 Modify the solutions to form a child population
3 Select the next generation from the extant solutions by using the fitness function

/ to form the new parent population
4 Repeat from step 2 until stopping criteria is met

7
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Table 2.2. Fried,man's euolutionar!! alqorithm

Observation-I A very large variety of organisms exist, and a very large
number of each type are born

Observation-Il Under a given environment, only a limited number of
organisms survive and reproduce

Observation-Ill Random mutations often occur and one or more of an
offsprings characteristics are different from those of its parent(s)

observation-rV The survivors reproduce themselves and pass most of
their characteristics, including the mutations to their offspring

Conclusion-I Assuming the above facts and a constant environment, a
series of individuals is established which converges upon â type better
fitted for survival

where s(') is the selection operator and u(.) is the variation operatorr [80, 75]. u(.)
is the operator that implements step 2 in Table 2.1 and s(.) implements step 3.
Given a problem representation and operators for that representation, the resulting
evolutionary algorithm can be turned into a computer program and used to evolve
solutions.

2.L Evolution of Evolutionary Algorithms

The idea of using the algorithm of natural selection to simulate evolution for solving
problems on computer has arisen several times independently. One of the earli-
est proposals is contained in a thesis submitted in 1956 by George Friedman [90].
Friedman noted that the principal of natural selection as proposed by Darwin can
be expressed as a "Law of Natural Selection" in a number of steps consisting of 4
observations and a general conclusion as shown in Table 2.2.

Friedman's contribution was to propose that the mechanistic algorithm could be ab-
stracted and ttsed to evolve circuits for a variety of tasks. Friedman's experiments
were never implemented in practice [76, Page 29], but the ideas he developed antic-
ipated later work on evolving autonomous robotics, and are conceptually similar to
the circuits evolved by Koza 174r, 143, r44, rg,14b] and others [125]. Friedman's
thesis does not appear to be influential in later work and has remained largely
uncited.2

The well-known statistician George E. P. Box introduced the concept of mutation in

1In general the selection operator selects from the modified solutions and the parent solutions.2It was recently reprinted in David B. Fogel, editor. Euolutionary Computaiion : The Fossil
Record. IEEE, IEEE Press, 1998
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making changes to industrial processes as a means of optimising industrial output

[38] The method was termed "Evolutionary Operation" or EVOP and involved
essentially a factorial design where each parameter was varied in a low and high
setting. Box made the analogy with an evolutionary process explicit by comparing
the modification of parameters with mutation and the analysis of production output
and subsequent adoption of improved parameters with selection [38, page 83]. EVOP
apparently attracted attention and was put into practice in several chemical plants
in the US and is reported to be still in limited use [76, page 120].

R. M. Freidberg et al. plblished the first account of evolving a computer program

[S8, 39]. Although the word "evolution" does not appear in either paper,s it is widely
accepted that the intention was to simulate evolution [76, page 145]. Freidberg used

a binary string to represent computer programs, and the method contains some

similaritieswith the ideas developed later by Holland ll77l176, page 145]. The two
main similarities are the concept of implicit parallelism and schema analysis, and the
problem of credit assignment. Friedberg also discusses contemporary topics such as

the phenomena of "code bloat" in genetic programming and the issue of maintaining
the link between parent and child phenotypes [88, page 3]:

Form and intent, to be sure, are related quite discontinuously in the compact

economical programs that programmers write, but a learning machine would
probably develop much more inefficient programs in which many irrelevant
instructions were scattered among the instructions that were essential to the
intent. Among such programs, slight changes in form might well correspond to
slight changes in intent, so that programs falling into the same classes tended
to perform similar acts.

In this paragraph Freidberg introduces the idea that an evolved computer program
could insert redundant instructions which would increase the length of the program
without modifying the intent. The form of the evolved programs would be quite
different to the ones designed by a programmer. Modern research in Genetic Pro-
gramming has shown that evolved programs do, in fact, contain many irrelevant
instructions to the intent. One possible reason for this is that the evolved programs

add instructions in order to maintain parent-offspring fitness correlations in the
face of otherwise disruptive mutations. Darwin referred to parent-offspring fitness
correlations as the principal of inheritance.a

z.LJ Evolutionary Programming

L J Fogel proposed to use the concept of simulated evolution on a population of
algorithms to achieve a method of artificial intelligence 176, page 2271. Fogel pro-
posed modeling artificial intelligence as predicting ones environment and performing

3Curiously, the word "evolution" did not appear in Darwin's first edition of the The Origin of
Species [101, page 137]. Darwin never liked the word and first used \tin The Descent of Man.

aDarwin developed his ideas on natural selection before the discovery of modern genetics, and
refers to the passing of genes from parent to offspring as the principal of inheritance.

9
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2/a

0,L/a
L/c

0/a

2/c

2/b
0,L/a

Figure 2.L. A fi,ni,te state machine

Table 2.3
Figure 2.1

Response of the finite state rnachine in

State
A

Input
Output

Next State

appropriate actions within that environment to achieve a desired goal [79, page 60].
The chosen representation of the environment \ryas a string of symbols from a finite
alphabet, and allowable actions were to be chosen from a finite set of symbols. The
evolved program was a finite state machine, matching input symbols to output sym-
bols depending on its current state, which v¡as one of a finite number of possible
states.

A finite state machine (FSM) is shown in Figure 2.1. The machine starts in state A,
and takes an input symbol from a finite set of allowable input symbols, consisting in
this case of the set {0,1,2}. After receiving an input symbol the machine delivers an
output and changes its internal state. The FSM in Figure 2.1 produces an output
from the set {ø,ó,c} and switches to one of its internal states, i.e. {A,B,C}.
Table 2.3 summarizes the behaviour of the FSM in Figure 2.1. The outputs of a
FSM might be an action to perform within the environment, or might be a prediction
of the next input symbol. In the latter case, any applicable error measure could be
used, e.g. all-none, squared error) absolute error.
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Black Box

Action Reacti-on

Figure 2.2. A black bor

The number of possible configurations for a FSM given n inputs, ø input symbols

and ô output symbols was calculated by Atmar to be [79, page 66],

¡¡ : (n"b")

demonstrating that the search space of FSM's gro',vs large very quickly. Fogel pro-

posed to use the natural selection algorithm to adapt FSMs to a learning envi-

ronment. The algorithm searched the massive space of possible FSMs to find well

adapted machines for Fogel's chosen problems, such as the detection of prime num-

bers.

2.L.2 Evolutionary Experimentation

Evolutionary experimentation, like evolutionary operation, worked on physical ob-

jects with a number of parameters associated. Rechenberg likened the problems

considered to a black óoø problem (Figure 2.2). A number of actions are available

for variation which impact upon the reaction of the system in question. The func-

tion relating the actions to reactions is not known, and is referred to as a blackbox.

In such a conceptual framework, Rechenberg sug$ests that an experimenter can ask

3 possible questions of the experimental object [184]:

1 What is the reaction to a given action?
2 Why does the reaction to a given action occur in the observed way?

3 How (by means of what action) does one get a desired reaction?

Rechenberg's proposal of experimental experimentation attempts to answer ques-

tions of type 3. An initial action vector (or, or, . . . , an) is chosen where the blackbox

has n actions associated with it. In Rechenberg's conceptualization of a blackbox

problem there are a number, say n'L) of reactions associated with an action vector

(Figure 2.2), forming an optimisation problem in IR-.

It is shown that for an inclined plane the evolutionary strategy performs more effi-

ciently than steepest descent or what Rechenberg refers to as a Gauss-Seidel strat-
egy; proceeding in one direction until an extreme maximum is reached and then
proceeding in a direction perpendicular to the first, and so on.

In a classic experiment an evolution strategy is applied to a series of plane surfaces

attached by hinges in a wind tunnel with the aim of minimizing drag. The amount

of drag is modified by altering the angle of the planes. The evolution strategy

Unknown
Structure
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operates by altering the angle of all the hinges a random amount simultaneously.
This perturbation is the mutation which produces the next shape to be tested.
The hinges' positions are limited to a discrete number of angles and a binomial
distribution is used to generate a random value for altering each of the angles. If
the perturbed shape has less drag than the parent shape it is kept and the previous
shape discarded. Otherwise the perturbed shape is discarded and the angles are set
to the previous values. The shapes found by this procedure were superior to those
found by gradient descend methods.

2.L.3 Genetic Algorithms

Holland developed algorithms known as genetic algorithms, which modelled the
biological concepts of genes, mutation, crossover, inversion and selection along with
a theoretical analysis of the application of genetic algorithms to optimisation [112].
Genetic algorithms use a binary string to represent solutions in a population of
competing solutions. The idea of using a binary string representation can be traced
to Bremerman in 1958 [76, page 311], when Bremerman proposed a formalized
version of evolution operating on binary strings. The strings were manipulated by
mutation, reproduction (sexual and asexuat) and selection. Bremerman worked in
the field for 35 years, and anticipated later work on optimal mutation rates for
binary strings 1411176, page 311][10, page 206-T].

One of Holland's contribution is the schema theorem. The schema theorem is used
to justify the binary representation that Holland uses, through the princi,pal of min-
imum alphabets, and is seen as the central theorem for how GAs work lIl4lg4,
page 28-33][10, pages 723-126)[79, page 117]. The theorem predicts that genetic
algorithms work by optimally allocating trials between competing schema, or tem-
plates, and thereby maximizing the implicit parallelism of the method. This occurs
when the cardinality of the lepresentatiol is rninirnized, hence the choice of a binary
representation.

More recently, schema analysis has been criticized on theoretical grounds. The
idea of schema analysis ". . . is to discover a procedure for distributing an arbitrary
number of trials .. . so as to maximize the expected payoff" [rr7l. The method
by which Holland asserts this is done is through analogy with the k-armed bandit
problem. The problem with the derivation of the theorem stems from the expected
loss of allocating trials in Holland's analysis not being conditioned on the previous
trials, which it should correctly be [155]. Fogel states that the schema theorem is
the solution to the wrong problem [79, page 116-117]. Macready and Wolpert show
that a hill climbing Bayesian strategy based on previous trials performs better than
Hollands strategy for allocating trials [155]. Others have reinterpreted the definition
of schema to show that higher cardinality alphabets maximize implicit parallelism
[7]. Fogel writes that [79, page 117]:

In light of Macready and wolpert (1998), there now appears to be no sup-
port for viewing the schema theorem as having fundamental importance. The
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theorem simply describes the expected number of each schemata at the next
generation under proportionate selection when each complete solution is as-

signed a specified fitness value.

There is a large amount of critical literature on schema analysis and evolutionary
performance17,2,81, 78, 155, 79]. The view taken in this thesis is that the schema

theorem is not a relevant tool for analysis of the structures and operators which will
be used. Instead, other forms of analysis must be used.

2.L.4 Discussion

Evolution does not find optimal solutions. That is not the guaranteed results of the

natural selection algorithm. Simulating evolution will frequently fail to produce a

panda with thumbs. This is a strong motivation for using interesting representations

in evolutionary methods. Whether a representation is interesting or not depends on

the problem. One way representations can be of interest in learning problems is

when the representation is able to convey information about the problem it has

solved. If evolutionary learning produces a black box it will be hard to recognize

that the panda it has made has rro thumb.

This section has shown that there is no single, correct method, of representing

solutions in a simulation of natural selection. Table 2.4 shows some of the repre-

sentations used in the pioneering work on evolutionary simulation. The choice of
representation depends on the type of problem being solved.

This thesis is concerned with learning problems. Learning tasks are those where a
system has to learn from interacting with its environment. Objects which interact
with their environment are referred to as models in this thesis. They model the
inputs and outputs they observe in the environment.

Modern methods in evolutionary computation use a diverse range of operators and

representations. The current algorithms can be grouped as genetic algorithms (GA)

l7L7), evolutionary strategies (ES) [184, 208, 10], evolutionary programming (EP)

[S3, 70] and genetic programming (GP) [13S, 139], although other terms have been

used. All approaches adhere to the evolutionary computation algorithm in Table 2.1

and Equation 2.1, differing in representation of solutions, operators used and selec-

tion methods employed.

Until recently the development of the GA, ES and EP fields were entirely indepen-

dent from one another. The GA and ES communities had their first contact in 1990

through their respective international conferences. The EP and ES community are

reported to have had their first contact as recently as L992, despite the fact that the

two methodologies are very similar in nature [72,77].

Much of the evolutionary computation literature contains algorithms which can

not be comfortably classified as a GA, ES, GP etc. The terminology appears to be
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Table 2.4. A descri,ption of some of the di,fferent types of representations used w|th
euolut'ionaru alq orithms

Control circuits
FYiedman proposed a method for the generation of autonomous robotic be-
haviour by utilizing the processes of variation and selection [90][76, page 29].

Computer programs
Friedberg [88, 89] attempted to create a method for the automated. production
of computer programs capable of solving problems. Freidberg used a birrary
representation for the computer programs. Later, Koza [138] would use LISP
programs directly in the evolution of computer programs.

Parameters
Both Box [38] and later Rechenberg [184] mutate and select from sets of pa-
rameters i.e. vectors in IRz. Both procedures look at optimising a process; a
factory's output in the EVOP procedure [38], and the amount of drag in the
initial work on evolutionary strategies [184].

Finite state machines
Fogel [83] pioneered the application of evolutionary methods to the automatic
generation of finite state machines capable of solving "intelligent" applications
in the 1960's 176, page 2271.

Binary strings
Holland famously used binary strings to represent solutions in his genetic al-
gorithms [tt7], although earlier work also attempted to solve problems using
binary strings [88, 89, 84, 85].

blurred, and any distinction rather pointless. The algorithm developed in this thesis
contains a free mixing of ideas and methodologies from several different canonical
evolution algorithms.

2.2 Self-Adaptive evolutionary computation

With respect to operator probabilities in GAs, Mitchell writes [161, page 174]:

. . . it is not a choice between crossover or mutation but rather the balance
among crossover) mutation, and selection that is all important. The correct
balance also depends on details ofthe fitness function and the encoding. Fur-
thermore, crossover and mutation vary in relative usefulness over the course
of a run. Precisely how all this happens still needs to be elucidated.

An elegant solution to the problem of mutation strength setting is to have the
algorithm decide the rate of mutation. This is called self-adaptation. Self-adaptive
evolutionary methods operate by adjusting the rate of mutation in accordance to
the performance of the solution's descendants.
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Self-adaptive algorithms have been developed independently in the Evolution Strate-
gies and Evolutionary Programming literature.

2.2.L Evolution Strategies

ES are mostly used in numerical optimisation problems [11], where there is a function

f such that: ln"ì
f ,Mcl IR' l-n';M+o

lz" )

{r,2,. , -}l (2.2)

L tz")l I
where there are n parameters æ: {rr,rr,...,rn} and r¿ is either a binary, integer
(discrete) or real number. There are n'L constraints g¡(.) which must be satisfied,
where rn rri'ãy be 0. There are I objective function I : {h,lz,. . ., /¿} and the
problem is to find a non-dominated solution æ* such that:

fn@.): min{/*(')}

where the minimization problem is considered without loss of generality since:

max{/¿(.)} - -min{-/u( )}
The problem is to find an as* ín M such that

væ e Ml ¡:\*-) s f n@) vk and

| /t(æ.) < fnm,) for some k Q'3)

All of the problems considered in this thesis will be unconstrained (ie rn : 0) and
will have one objective function I : 1 (or multiple objectives rolled into one by
assigning F: hi lz-1 ...1fn, where the non-dominated solution of the scalar
function ,t' is of interest, which will be the extremum min{F'}).

A defining feature of the ES approach is the use of self-adaptive strategy parameters.

Where evolutionary methods usually have a set and unchanging mutation rate, the
ES approach adjusts the mutation rate during the run. The self-adaptive mutation
parameters are referred to as the strategy parameters or the step size. The strategy
parameter(s) are usually denoted ø. A solution, or individual, in an ES population
is represented by the tuple (*,o) where æ is referred to as the object variable and

/(æ) is the fitness evaluation of the individual.

Local and Global Optima

An important distinction should be made between local and global optima. A global
minimum is the extreme value of some function for every point in the functions
domain.
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.--Globaloptima
Local Optima

Step 3

Step 2

Step 1,

Figure 2.3. Gradient ascent hill climbing. The curue represents the search space and
the marlçs are the series of solutions generated. Success,iuely better solutions are generated
until a local rnarimum'is found.

Definition 2.L (Global Minimum) A solution û i,s defi,ned, as o global minimum
iff'

f@)<Í(*) væeM

The global optimum may not not be unique under this definition. A local minimum
is an extrema whose immediate neighborhood contains no point with a smaller
function value:

Definition 2.2 (Local Minimum) ,4 solution û is defined as ø local minimum
iff'

le )0 s.t. Væe M'll æ-âll<.+Í(û)<f@)

The global minimum is also a local minimum. Typically one is searching for the
global optimum. The question arises: when the global optimum is unknown, and
one reaches a local optimum, how can it be determined whether it is the global
optimum? There is no answer, other than to find a smaller function value, in which
case the global optimum can be been ruled out. This situation is shown in Figure 2.3
for an iterative steepest ascent hill climbing algorithm.

Evolutionary algorithms are said to be global optimisers because they do not climb
the nearest slope alone, but sample the search space for promising solutions. How-
ever, in common with natural evolution, simulated evolutionary methods do not
discover global optima. They adapt the solutions in the population to their envi-
ronment through a stochastic search. This may uncover the global optimum of a
search space, and it may not. One should bear this in mind whenever the products
of evolutionary search are being discussed.
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(¡-,, À) Evolution Strategies

The stand ard (¡1",1)-ES algorithm without rotation or recombination is presented

below

1 Set g <- 7 and generate an initial populationPn of À individuals. Each individ-
ual i is a pair of real-valued vectorst, (*(t),o@),V i € {1, . . ., )}. The initial
population of solutions re are chosen according to a uniform r¿-dimensional

probability distribution over the solution space M of equation 2.2.

2 Evaluate the fitness f(æ) for each individual (æ('),o$')¡,Y i e {1,...,À}.
Sort the individuals in ascending order according to their fitness values and

select the best p parents out of the I individuals for the next generation. The

truncation level is typically set at ¡rlÀ x 717.

3 Each parent(æ(i),oQ)),V i e {1,... ,þ}, creates Àlp, offspring on average, so

that a total of À offspring are generated: fori:1,...,1tr,, i : l,-.-,n,ànd
h:1r..., ),

ã:n) : olu) e*p(r'¡\r(O, 1) + 1¡rj(0, 1))) (2.4)

îto) : "f) + Nj(o,ã:h)) Q.5)

where ,l?,nln),olo) and. ôr(h) denote the 7-th component of the vectors æ(i),

¡(h), 6U), â(ä), respectively. ¡ú(0,1) denotes a normally distributed one-

dimensional random number with zero mean and standard deviation one. The
subscript j indicates that the random numbers are generated anew for each

value of j. The learni,ng parameters r and r' aîe set such that r x 116Þã)
and r' xtl$/n) where the constant of proportionality is usually chosen to
be 1 [10, page 72].

4 Stop if the stopping criterion has been satisfied and return the best feasible

individualfound: otherwise, g<- g-ll andtake (â(i), ù(n\,V¿ e {1,...,1}
to the next generation by going to step 2.

The order of equations 2.4 and 2.5 have been found to be important [14]. This
is because updating a solution with an old mutation vector allows a good solution
to be created with a mutation vector which did not create that solution and may

be mistuned. By updating the mutation vector first, any good solutions which are

formed are formed with the mutation vector that they carry into the next generation.

An often implemented extension in equation2.4 is to implement a lower bound. The

bound, dlowerr is set so that

alt , drower V7 e {1, ...,n}
sThe superscripts mean that (z(¿),a(¿)) is the i-th solution of the populationP
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This extension has been implicated empirically in helping the algorithm to escape
from local optima [152]. The lower bounds used by Liang et al. [152] are small but
not near the internal computer representation of zero.

Schwefel originally suggested using lower bounds to ensure that the computer rep-
resentation of the number is not zero, and that its effect on the phenotype is not
zero 1206][207, page 112]. That is,

o¿ ) eo Vz e {1, . ..,n}

and

o¿) e6lr¡l Vz e {1, ...,n}

where

€o)0
1+e6>1 chosen according to computational accuracy

Schwefel's suggestion for a lower bound is concerned only with computational accu-
racy. A computer will represent a number as a finite number of bits, and there is only
a finite number of numbers which will be represented. The stepsize is updated with
a multiplicative equation, and therefore its computer representation can become
smaller than the smallest representable digit, that is, zero. Once zero, the stepsize
can not become non-zero by Equation 2.4. Schwefel most likely proposed this strat-
egy because he was working in the early 1970s and the computational equipment of
the time would have used relatively few bits to represent a digit. Empirically the
update equation does not appear to become zero on modern equipment6 and hence
computational accuracy is not a problem for the algorithms developed here.

The implications of a lower bound for self-adaptation are not clear theoretically, and
no lower bounds are implemented in the results reported in this thesis.

Selection in Evolution Strategies

There are a number of selection methods used in ESs [210][10, page 78]. The elegant
notation is due to Schwefel 110, page 78]. The most common selection methods are
(ø + ,l¡ methods and (¡;, À) methods. In both cases the population size is À, and, ¡t
individuals are chosen as parents in the next generation. In (p+À) the p parents for
the next generation are chosen from the combined À offspring and ¡,t parents of the
current generation. In this scenario, the ¡.r" parents are chosen from a pool of p.+ 

^solutions. In (tt,À) selection the ¡l parents of the next generation are chosen from
the ) offspring of the current generation (p, À) selection is not elitist, which means
that the best found solution can be lost to the evolutionary process. This cannot

6The effect could still happen. It just hasn't been observed by the author and so a lower bound
is not implemented.
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happen in (p, + À) strategies, as the best found solution is guaranteed to remain in
the population.

(¡, + l) selection was originally used with a (t + t) algorithm. One offspring is
generated from the parent solution; it is kept if it is better than the parent and

is discarded otherwise [210]. The (p, À) method requires that I > p > 1, and is
normally implemented as truncation selection, where the best ¡; solutions are chosen

and the rest discarded. This is the method used in the algorithm description on
page 17.

The (p+À)-selection method guarantees a monotonic sequence of fitness evaluations

from successive generations. At first glance, this would appear to be a more effective

selection method. However, Bäck notes several disadvantages of the (p+l)-selection
compared with (p, À)-selection [10, page 79]:

1 In the event of applying the algorithm to a problem with a moving objective
function, the (p + l)-ES will maintain outdated solutions in the population.
The alternative is to re-evaluate the ¡; parents every generation, creating an

overhead of p extra evaluations compared to a (p,l)-selection method.

2 In the event of the solution reaching a small local optimum, it may be advanta-
geous to have a method which does not keep that optimum. A (p+l)-strategy
will be forced to search a local optimum until a better opl,itnutn is found.

3 Probably most importantly, a (p * À) strategy inhibits self-adaptation. The
offspring ir (p, ì)-selection are not chosen entirely based upon their fitness,

but also upon their ability to produce good offspring in turn. This is because

a solution has a lifetime of one generation, and so any lasting effects of a
solution must come through its offspring. These offspring are generated by

using the self-adaptive ø vector, which must be favourable for the generation

of high quality solutions. This applies the necessary pressure on the a vector
to provide good overall system dynamics.

Point 1 should also be extended to the case where the fitness evaluation is noisy, or
the solutions are evaluated in a stochastic environment.

Despite the risk of divergence, (þ,))-strategies are the preferred method for success-

ful self-adaptive evolution strategies search. As an extension to the (p f À)-selection

methods an extra parameter p € N can be introduced to signify the maximum life-
time of a solution in the population [210]. Ã 0t,À)-selection method corresponds

to every solution having a lifetime of one generation, p : 7. The (¡; * À)-selection

strategy corresponds to every solution having a non-finite maximum lifetime, p : æ.
This allows the advantages and disadvantages of the selection methods to be scaled

between one another. Throughout this thesis a (p, \) method will be used.

The selection pressure of the (p, À) selection can be varied by changing the ratio
pl^. This is normally set at 717 174], based on maximizing the acceleration in
convergence due to self-adaptation for the sphere model. The initial settings for the
step size ø must be large enough to avoid quick descent to poor local optima near

the initial positions of the solutions; if the step size is too small initially, the search
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does not explore the search space sufficiently. Schwefel [208, Page 143] suggests
setting the initial step size ã,s o¿ x Lr¿f 1/n, where Ar¿ is the estimated distance
between the starting point and the optimum. Bäck [14, Page 80], however, suggests
that in practice the initial deviations should be lower than this, and he uses a value
of. o4 :3 in all of his experiments. Obviously a constant value will not scale for all
problems.

Empirical data suggests the only problem with an initial step size which is too
large is that the evolution will take a few more generations to become stable and
not random. So long as any bounds on variable sizes are handled carefullyT, the
empirical studies in this thesis support the notion of using initial step values as
large as is practical to ensure coverage of the space. Pathological fitness functions
could be constructed which may not ever converge when the initial step size is too
large.

Many extensions to the above notation and selection schemes are proposed in [210],
including parameters to increase the lifespan of solutions and differentiate between
different recombination methods, however the basic (p,l) method will be used in
this thesis.

Recombination in Evolution Strategies

There are a number of recombination operations possible at Step 3 above. The
most commonly used types of recombination r(.) of the population at generation g,
r(Pò : (ñ(') ,¿(')) in (¡r, ))-ES are as follows [11, 206, 207, t0]; each component of
the objective variable in the new population is:

î:) :

(¿)r;'
,\") o, ,{t)
,1") +L@[u) -":ù)
,\") o, ,{øu)

,[") ++@:u") -rÍù)
,[") +x@[o) - rtù)
,1") +xn@Í'o) -"1ù

No Recombination

discrete

intermediate
global, discrete

global, intermediate
generalised, intermediate
generalised, global, intermediate

(2.6)

Where a,b,b¿ € {1,. ..,p,} Vz e {1, ...,n} and X, Xi àre uniformlyrandomly drawn
from [0,1] (independent for each z). The subscript z indicates that the value is
generated anew for each component of the vector. The discrete recombination men-
tioned above would correspond to uniform crossover in the GA. The "or" means
an equally likely decision. The non-generalized forms of recombination can be ex-
tracted from the generalized forms by setting x : + for non-global forms, and
Xo: I Vz e {1, . . .,n} in global forms.

7In practice, this requires the step size to be bounded above to prevent divergence. Once a good
solution vector is found in conjunction with a small oi va.Iuej the solution will continue produce
good offspring.
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Any of the recombination schemes in Equation 2.6 could be used on the strategy
vectors o('). Schwefel recommends using global intermediate recombination [208,
page 148] on the strategy parameters ø. Discrete recombination of the object vari-
ables æ has been identified as the preferred method [10, page 75], and both of these
recommendations will be used throughout this thesis.

Rotation angles

Early ES algorithms incorporated a single mutation stepsize ø, constant for each
dimension of the object variable æ [10, page 68]. Equation 2.4rhen becomes:

6(D - o(i) e*p(r,l/(O, 1))

This thesis uses the usual extension of incorporating a separate step size for each
component of the objective variable, ie,lf n € lR" then ø € IR". Most of the theo-
retical results about ES use a single global step size ø, which guarantees spherical
symmetry of the mutation distribution. This makes the mutations independent of
the co-ordinate system. When using more than one mutation step size, the muta-
tions will be dependent on the co-ordinate system, and hence rotating the fitness
function will change the performance of the ES on that fitness function.

To prevent this co-ordinate dependence, another set of parameters can be associated
with the solution to represent the rotation angle of the mutation vector, d* e
l-n,n], m e {7,.. .,no}.When there are n, step sizes, there will be

,.:W e.T)2

angles required [13]. The angles allow for arbitrary linear correlations amongst the
components of the object variable, thus enabling arbitrary orientation of the muta-
tion ellipsoids (that is, areas of equal probability under mutation). The mutation
vector is generated from the covariance matrix C, where

(o? - ) ran(2a¿¡)

2

and the mapping from the vector interpretation of a to the matrix interpretation
is given by the index transformation (2, j) € {1,...,n - I} x {z + 1,..., n} to
{1,...,n. (n - l)12} given by (r, j),+ }(zn - i)(i,+ 1) - 2n -t j [10, pages 69-20].
The mutation distribution is then JV(0, C). Bäck gives a generalized description of
the rotation angles where there are no € [1, . . . , n] different mutation step sizes.

The rotation angles are updated by

dj : oj + P .¡fr(0,1) Vj e {1, ...,n. (n - 1)12}

where B is usually 0.0873 (five degrees in radians) and where o is circularly mapped
onto the range l-n,nl [13][10, page T2], ie

l*¡l > n + aj : aj - 2r sign(a¡)

c¿j



22 CHAPTER 2. EVOLUTIONARY METHODS

The incorporation of rotation angles adds extra parameters and complexity to the

algorithrns. For the investigations conducted in this thesis, the extra overhead is

unwarranted. The reader is referred to Bäck for a discussion of rotation angles and

their implementation [10].

Step Control

A number of modifications to updating the step control have been studied. One

interesting method is the fast euoluti,on strategzes algorithm which changes the gaus-

sian distribution in Equation 2.5 with a Cauchy one [252,250,257,203, 48,254,25].
The Cauchy distribution is thought to provide a greater probability of escape from
local optima through its "fatter tails".

The oldest method of updating the strategy vector in an evolution strategy is

Rechenberg's 1/5 rule [10, page 67]. The rule is theoretically based to maintain
the highest convergence velocity. It states that ll5 of all mutations should be suc-

cessful. If it is more, then increase the strategy vector, if less, decrease the vector.
The 1/5 rule is discussed in the analysis of ES convergence results undertaken in
Appendix A. The principal disadvantage of the 1/5 rule is that it cannot be used

to scale the mutations of each component vector independent of one another.

In contemporary evolutionary strategies the step length is updated according to
Equation 2.4 at each generation. If the update probability distribution is labelled
Z,lhen the step length is adjusted according to the scheme:

(2 8)

Schwefel [208, Page 143] and Bäck [14, Page72] note several desirable characteristics
which the above step control equation should have:

1 The equation should be multiplicative so that negative values are excluded.

2 The median { of the distributio" ll[, Z¡ shotÌd be one so there is no deter-
ministic bias in the update of ø over several generations. That is

¿)Z^ l/¿l (oì' : oi

o: olIl
ôo

i:t

3 The above characteristic requires that the probability of occurrence of a par-

ticular random value must be the same as that of it's reciprocal. This will
mean that any overall trend in changes in the step length will be the product
of selection alone.

4 Smalt changes in the step length ø should occur more often than large ones.

(ie E(z) x I).
Schwefel [208, Page 143] notes that the above conditions are satisfied by the log-
normal distribution

Z : eY (29)
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where Y is normally distributed. Rechenberg proposed a symmetrical two-point
distribution for the update formula. When ø is updated by Rechenberg's distribution

124l

o:: oo(L + þ),
ool0 + p),

l<rl2
l>712

10,
(0, 1

ifu
ifu (2.10)

the update also obeys most of the characteristics for the update formula suggested by

Schwefel, where u(0, 1] is a uniform sampling from the interval (0,1], and 0 < P á Z

Schwefel [208] also argues that the length of the step size vector for the offspring
should be different to that of the parent, otherwise offspring would be generated

mostly at a constant distance from the parent vector. The vector resulting from
Equation 2.8 will be (ø1 .2t,. . . ,on.Z,) where Z¿ denotes an independent sampling
from the distribution Z for each 'i. The expected Euclidean distance of the new

objective variable from the current variable after the mutation vector is updated is

t- (ot' zr)' + . . . + (on' zn)'

If all the o¿ à,rê similar in size then an application of the (weak) law of large numbers,

n
PIim

?2-)OO

DT=o Xn : 
l-L 1

where each of the X¡ are independent with finite variance and mean ¡1,, and P denotes

the probability measure [37], shows that the modulus of the step size of the updated
vector will be the same as the original vector.s In practice, Schwefel suggests the
effect is important at around n x 30 [208j.

The eflect is undesirable, since the algorithm would not be exploring different vari-
ances in updating the objective variable in Equation 2.5. Children would always
be produced at the same expected distance from their parents. To solve this, the
lognormal distribution in Equation 2.9 has the normal variable Y composed of the
sum of two independent normal variables, one sampled anew for each component
and one sampled only once for the individual. By sampling only once per individ-
ual, each individual is given a bias in the change in size of the n-ellipsoid that the
mutations are generated in at each generation. There is still no overall bias in the
change in mutation volume since the volume is equally likely to increase as decrease.

Bäck states that the parameters r and r'in equation2.4 are robust [10, page 72].

8The method of fast euolution strateg'ies uses a Cauchy distribution in the update which does

not have a finite variance [250]. Therefore the law of large numbers effect would not hold, at least
as stated. In this case independent sampling of the distribution at each vector component update
may be all that is required.
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Convergence Results for Evolution Strategies

Most convergence results for ES use the sphere model to calculate convergence ve-
locities. There is a gap between theory and practice in ES implementations. Conver-
gence results in the limit exist only when the mutation distribution remains covering.
This says little about practical applications. Convergence speed results are of more
interest from an implementation perspective. Results are derived for a variety of
model fitness functions, and it is argued that these model functions approximate the
likely local topology of the search space. This is debatable. The convergence speed
analysis does, however, provide the basis for the 5 in Rechenberg's 1/5 rule and the
optimal number of offspring to produce from ) parents. Convergence results are
presented in Appendix A.

2.2.2 Evolutionary Programming

Evolutionary programming (EP) was developed as a method for the attainment of
intelligent behaviorrr hy computers. Intelligent behaviours are defined as the capa-
bili,ty of a system to ad,apt its behau'iour to meet i,ts goals in a range of enui,ronments

[72]. This goal was initially attempted by the use of finite state machines.

Like ES, EP is a method which simulates evolution from a phenotypic view point.
Parent solutions are modified so that there is a continuous range of possible offspring
behavious, and a strong behavioural link is maintained between parent and offspring

[82]. The emphasis in EP is placed on finding useful mathematical transformations
to modify solution p in phenotype space to a solution p' in phenotype space without
consideration of any underlying natural genetic operators 173,771.

Whilst there are no definitive classifications of EAs, there are some characteris-
tics that most practitioners would agree are typical of what people refer to as EP
approaches

1 Crossover is not used
2 Selection is stochastic
3 Many and varied solution representations are used
4 Self-adaptation is used

Crossover is typically not used as the algorithms utilize a phenotypic representation
of solutions where crossover makes no sense. This is illustrated in the FSMs in
Section 2.I1, page 9, where it is hard to construct a crossover operation that is
likely to produce useful oflspring, since the representation of the solution to the
problem is a phenotypic one.

The selection method employed in EP is typically a method known as tournament
selecti,on. In the tournament selection method, each individual r¡ from the combined
parent and offspring populations, 5, âre compared to a subset of q(> 1) individuals
randomly chosen from 5. r¿ is assigned a win score,.u e {0, ...,e}, according to
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how many individuals in the subset it outperforms (has higher fitness than). All
individuals in E are then ranked according to their win scores and the best are

chosen to form the next generation [12]. The selection method is therefore elitist,
and convergence results will hold while the mutation operator is covering.

EP has been used on a range of representation, including GP-like S-expressions

145,46,47], Neural Networks 174,255], FSM [128] and real vectors 12521.

Although the original EP work on FSM did not employ self-adaptation, EP most
commonly does use self-adaptation, eg [79]. The original method of self-adaptation
employed in EP was developed by D. Fogel in 1991 independently to that of Schwefel

in 1981 [207]. The scheme was

^ li)rì'
^ lr)oi'

"f) + Nj(o,o';t))

"jn) 
+ çoji) -w,ço 1)

(2.1 1)

(2.12)

in the notation of the corresponding ES equations (Equation 2.5 and Equation 2.4

on page 17). e is a scaling constant which is chosen so that the o¡ tends to remain
positive [79, page 15S]. Where the ø¡ become negative they are reset to some small
positive value e ) 0. Empirically equations 2.11 and 2.I2 were found to not perform
as well as the ES update equations, Equations 2.4 and 2.5, and the lognormal update
of Schwefel is widely used in the EP community now [79, pages 158-159].

2.2.3 Discussion

Self-adaptive evolutionary methods are strong optimisation procedures in a wide
variety of parameter optimisation tasks. They have been shown to be able to adapt
the mutation distribution effectively in a range of fitness domains including domains
where the fitness evaluation is noisy. The key to the step size control used is that
it is an unbiased update of the mutation probabilities, and will therefore only show

behaviour like net increases or decreases when such behaviour is beneficial to the
population. The mean mutation rate which is applied at each generation of a self-

adaptive method is an emergent property of the problem being solved.

Self-adaptive methods emphasise the phenotypic links between parent and offspring.
The methods are strongest where the selection scheme maintains the selection pres-

sure based on an ongoing link between parent and child behaviours. This is most
clearly done in non-elitist methods where the parent's objective value determines
the number of offspring the parent will have and not the survival time of the parent
in the population. Elitist methods allow parents with good objective values but
no ability to produce children which are similarly characterised to persist in the
population.

Empirically, self-adaptive methods appear to perform most effectively when the ob-
jective values of offspring are recombined by discrete recombination, and the strategy
vectors recombined by intermediate recombination. Relatively few empirical studies
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te

1 Evaluation

Figure 2.4. The learn,ing process

have been done to assess the performance of rotation angles. Theoretically, rota-
tion angles have some interest, however they can introduce a considerable number
of additional parameters (Equation2.7). This extra overhead is not seerì as war'-
ranted in the investigations conducted in this thesis and is unlikely to produce any
improvements.

For the reasons outlined in this section, this thesis will use a self-adaptive evolution-
ary strategies method with (p, À)-selection, discrete recombination of the objective
parameters, and intermediate recombination of the strategy vectors.

t-

r-onsI

2.3 Evolutionary Learning

This thesis describes a self-adaptive evolutionary learni,nq system. Evolutionary
Iearning has a long historl', dating from the pioneering work of Friedberg on evolv-
ing computer programs [90], Fogel's FSMs [83], and Rechenberg's drag reducing
evolution strategy [184], among others 176].

Figure 2.4 shows a generic learningsituation. The environment represents the prob-
lem, and the model is the proposed solution. The model and the environment
interact for a certain time before supplying the learning algorithm with some form
of feedback. The learner then proposes a new model which is similarly evaluated.
In the case of evolutionary algorithms the learner might be a population of models
or alternatively a population of parameters to be tried with a fixed model structure.

Learning problems can be divided into three broad categories depending on the
information supplied to the learning algorithm [16]:

ENVIRONMENT

MODEL

LEARNER

Supervised Learning Supervised learning problems supply the most inforrnation
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to the learning algorithm. For each input pattern seen by the learning algo-
rithm the correct output pattern is also supplied.

Example 2.1: Most data mining problems are examples of supervised
learning problems and prediction problems. An example is the famous
iris data of Anderson and Fischer 13, 66]. Measurements of the sepal
length and width and petal length and width from 50 examples of each
of 3 different species of iris were collected, as shown in Figure 2.5. A
supervised learning task from this data would be to predict the species
of iris from the measurements provided. The input pattern would consist
of 4 real quantities, the sepal length and width, and the petal length and
width. The output would be one of three classes corresponding to the
species. The problem is supervised since for each input pattern the model
could be told the correct output.

IJnsupervised Learning Unsupervised learning problems supply the least infor-
mation to the learning algorithm. No output pattern is provided to the learn-
ing algorithm, which must instead discover its own relationships between input
patterns. Evolutionary learning methods are seldom applied to unsupervised
learning problems, however there is some scope for them to be.

Example 2.2: Examples of an unsupervised learning algorithms include
Kohonen neural network, [tt6], and many clustering methods [126]. An
unsupervised learning problem could be formed from the iris data shown
in Figure 2.5 by presenting the learning algorithm with the input mea-
surements but not the species of the iris. The learner would divide the
data according to similarity criteria to try and learn similarities in the
150 examples presented, without any reference to the actual species.

Reinforcement Learning Reinforcement learning (RL) problems [17] can be thought
of as providing a level of information in between supervised and unsupervised.
Typically there is some occasional performance information provided to the
learning algorithm, but not for every input pattern seen. A typical RL problem
consists of an agent connected to its environment via perception and action

[130].

Example 2.3: An example of a reinforcement learning task is the
robot navigation problem, where a robot situated in a maze perceives
its environment and receives rewards by moving to food or energy. The
learning algorithm receives as input (the perception of the robot) and
produces an output (a direction for the robot to move in). The algorithm
has to learn to acquire the intermittent reward of food. There is no correct
action shown for a given input, however, the learning algorithm receives
some idea on whether its actions are correct from the value of food or
energy that it acquires over time.

Evolutionary methods have been applied to all three types of learning problems.
The methods used in this thesis will address RL problems and supervised learning
problems.
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Anderson's lris Data
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Figure 2.5. Scatter plots of Anderson and Fi,scher's iris data. Each plot shows the
distri,bution of the three different species, Iris setosa, L versicolor, and I. virginica, as a
pa'irwise functi,on of the measured data (in centimeters) [3, 66, 126].

There are a number of reasons one may consider evolving the solution to a learning
problem as opposed to traditional approaches:

1 Evolution is a global search procedure. It may not be guaranteed to find the
optimal solution, but empirically appears to find better optima than gradient
based search, such as back-propagation for neural network weight optimisa-
tion.e There is some evidence that evolution's global search ability can give it
an advantage over greedy approaches for rule generation, like CART and C4.5,
especially when there are many interactions between attributes [86, 123].

2 Evolution may be preferred because it can explore more sophisticated rep-
resentations. Rule sets, neural networks, equations and computer programs
have all been evolved. The fact that evolution can adapt many and varied
representations is exploited in this thesis to add modules to the representation
under evolution as required to solve increasingly difficult problems.

3 Most traditional learning methods make assumptions about the search space,
such as gradient information or the distribution of variables, which evolution
does not.

4 Evolutionary algorithms are able to be implemented in a parallel manner. This
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eA discussion of the relevant "No Free Lunch" results is conducted in Appendix B
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may make them more scalable than other methods in some domains.

There are also reasons why evolutionary methods may not be appropriate:

1 Evolutionary search is known to be slower than other methods for some ap-

plications 1249]1.

2 The products of evolutionary search are unproven. Gradient descent methods

guarantee a local optimum at least. Evolutionary methods do not. For this

reason evolutionary search is often complemented by local search procedures.

Evolutionary methods have commonly been applied to discrete rule structures. The

original structures used were Holland's learning classifier systems (LCS)'

2.3.L Learning Classifier SYstems

LCSs are one of the founding ideas in the modern field of evolutionary learning.

The LCS is a system designed to "infer environmental patterns from experience and

associate 'appropriate' responses sequences with them" [115]. Goldberg states that

a classifier system consists of 194, page 22Il:

1 Rule and message sYstem.

2 Apportionment of credit sYstem.

3 Genetic Algorithm.

Rules are generally of the form [94]:

lP conditio?? THEN acti'on

There are two main approaches to evolutionary learning with LCS [56, 246]157, page

626-62T1. In the Mi,chi,ganr\ approach, the entire population of the EA forms the

model in Figure 2.4. An individual in the EA population is a particular sub-part

of the solution, most commonly a rule. Individual rules compete to remain in the

population. This approach was developed by Holland [119, pages 171-181]'

The second approach is the Pi,ttsburgh approach. In this approach, each individual

in the population is a complete model. This approach more closely corresponds with

the ideas presented previously about what EAs are'

In the Michi,ganapproach, the emphasis is for competition amongst individual rules.

The population forms the complete rule set. The principal problem that occurs is

one of cred,i,t assi,gnment. what rules in the population are responsible for the

populations performance?

loThe names refer to the universities where the different approaches originated.
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2.3.2 The Michigan Approach

By emphasizing the competition between individual rules, Michigan-style classifier
systems attempt to learn complex concepts by discovering and combining simpler
bui'ld' blocks [121]. In this way it is thought that complex concepts can úe learnt
through the formation of de.fonrlt h,ierarchies.

A
Rule-II tp lane is blocked THEN send, alert mess a9e

lsa of w SU lna
are a the
lnr on

the
syst
the

by

first, both rules are better off. Rule-I and Rule-II
2.6

ln
The

Rules in Holland's classifier system are context dependent, where the context is
given by the other rules in the system. In Example2.4, the correctness of Rule-I is
dependent on the presence of Rule-II, and hence the algorithm's evaluation of the
correctness of R.ule-I is context dependent. Remove Rule-II and Rule-I may not
survive. Holland called this linking of rules a kind of symbiosis. He terms the first
rule the default rule and the second rule the "exception" rule, and notes that Rule-II may make mistakes which could be corrected by yet more specific exceptions.
Appendix C describes Holland-style classifier systems and some of the extensions
which have been made to them.

A more explicit representation of a kind of default hierarchy is furnished by a ripple
down rule set, as shown in Figure 2.7 [49]. When an antecedent is true the àxception
rule(s) antecedent is tested before the rules consequence is applied. The exception
rule is context dependent, its context being the previous rule. In this way entire
rulesets can be produced, as shown in Figure 2.g.

Ripple down rules were developed for use with expert systems where they can help in
the maintenance of such systems and the reuse of knowledge l4g,Ig4, tOS], atthougfr

sËphicallv the effects
.ttsåffi IEf, -ë'î'lt"tå€xcgPtions
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IncorrecL
Deci s ion
(Ru1e 2)

(Ru1e 1 boundary)

Incorrect
Decision
(Ru1e 1 )

Correct
Decision
(Ru1e 1 )

Figure 2.6. An emergent default hierarchy. The grey o,rea represents errors made by the

two rules, the dasheil lines are the boundaries of objects couered by the rules and' the bold

line is the decision bound,ary between objects whose correct acti,on d'i'ffers. Rule I is the

general rule. RuIe 2 increases rule L's payoff by preuenting it from making mistalces, and,

rule 2 increases the ouerall system performance.

(Decision boundary)

J

rp condition A rnprq action 1 oxcppl

I¡'condition D tttpN action 4

rp condition B rHpu actiòn 2

tr condition C IHPN action 3

Correct
Decision
(Rule 2)

A B C D Action

Figure 2.7. An erample ripple d,own rule and associated, action table. The O symbol

rneans that the condition can be ei,ther true or not true

they have also been used in inductive systems [205]. Other proposals for adding
exceptions include methods which can also negate the conditions of the initial rule

[219]. It has been noted that ripple down rules (RDR) are more compact than flat
rule lists [205]. That is, a flat decision list can be converted to a RDR with at most

as many tests. They are said to be more comprehensible, as they are similar to
the way that humans use knowledge. This was the motivation for their use as a
representation in expert systems.

Holland's default hierarchy decides the order of rules based on a complex formulation
of the bid strength and the specificity of the classifier, as discussed in Appendix C.

Rule lists with exceptions decide on the priority of rules according to the topographic
structure of the rule set. The latter makes it more obvious to an observer what rules
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Start
Here

I

Figure 2.8. A ripple down rule set. The bores represent rules. If a rule is triggered, (or
antescend'ant is true) then the rules to its right are checleed, i,f not then the rules beneath
it are checleed. The blaclc bores shows a hypothetical path through the ruleset. Rules to the
ri,ght are called erceptions, and their ualidity is dependent on their contert, ie..the rules
to their left.

are responsible for what consequences of the rule system

2.3.3 The Pittsburgh Approach

The Pittsburgh approach to classifier systems represents entire classifier sets as
individuals to be evolved by the evolutionary algorithm, as shown in Figure 2.9. This
approach simplifies many of the evaluation and credit assignment issues associated
with the Michigan model.

De Jong notes that when using a GA to adapt classifier sets there are two different
possibilities for choosing the representation [5S]. Either the GA can be modified to
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Figure 2.9. The Pittsburgh o,pproach to learning classifier systerns. Each indiuidual i'n

the euolutionary algorithm population represents a conxplete rule set (or model) which can

be tested,. A moilel is selected and, a number of input/output iterations are conducted wi'th

the enui,ronment. At the end of the testing the enuironment prouides some feed'baclc which

is conuerted, to the models fi,tness ualue. The fi,tness ualue is then used by the euolutionary

algorithm to euolue better models.

function with complex non-string objects, or a string can be created to represent

the complex concept description language.

When using a string to represent the concept description language a, method similar
to the following is usually applied. A rule is a conjunction of elements and the
elements are limited to conditions on each feature being in a particular value set.

Assuming that the feature language consists of a set of features Fi, i e {1,...,¡/}
each takingu¿,, i € {1,...,¡r} different nominal values, where 

"5n) 
i € {1, .'.,u¿}

represents the j-th nominal value of attribute 'd, then \rye can assign a binary string

to represent the disjunction of each of the nominal values of a particular feature, so

001101 represents Tt4 or rL4 ot rù6

A rule is then formed from the conjunction of the internal disjunction of each feature

[58]

F1

001101

Environment

F2

011

F3

101

F5

0100
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This forces the rule set to be represented as a fixed length binary string, and al-
lows the symbolic rule information to be extracted from the genotype. However
the method is most useful for inductive modelling of environments with nominal
attribute representations.

The GABIL algorithm institutes this kind of search, and is reported to perform
well when compared to a cluster of well known classification algorithms like C4.b
and AQ15 1129]. The method was improved by adding rule induction specific genetic
operators from the classification algorithms. However, this would seem to somewhat
negate the advantage of using a binary representation which was supposed to enable
an unmodified GA to be used as the learning algorithm.

A different approach to using a binary string is taken by Grefenstette et al. in
the development of San¿upr [702, 105, 213, 104, 103]. Sevupr, uses a high level
language to represent the condition and action part of the rules. An example of a
rule instance for a continuous feature in SevupL is

(Senno 100 2b0) (2.13)

representing the situation 100 < Spppo < 250. A nominal feature might be ex-
pressed like:

(WenrnoR rs lcr,ouDrr, wEr]) (2.I4)
whose attached action would be triggered when the weather was either cloudy or
wet. The allowable values for continuous Sen¿upr, rule conditions are predetermined
by dividing the known range of the variable by ,n/(e lN),where ,À¡/ is set by the
experimenter and was limited to 255 in some of the early work on Seuuol [102].
For example, the Spppo sensor might vary between 0 and 1000 and be discretised
into l/ : 20 equal segments. The mutation operator modifies the values by uniform
randomly choosing one of the ,^[ partition points as the new value.

Conditions such as (2.13) and (2.14) are combined in a conjunction and associated
with a similar conjunction of actions. The conjunctions are allocated a strength,
adjusted by a credit assignment algorithm and combined together to form a set
of decision rules which Grefenstette refers to as a tactical plan. The tactical plan
is an individual in the evolutionary algorithm. Crossover between tactical plans
occurs at the level of individual rules, creating offspring with some rules from either
parent. This is in contrast to typical GA crossover, which can break up individual
rules at any level. Crossover was found to be useful in SRvruol [10b]. Seuupr,
does not address issues relating to the number and size of partitions in the different
continuous features, which has been shown to be important in discretised machine
learning methods [153]. Serr,ruEr, has been extended to operate in a co-evolutionary
way where a number of independent populations of Seuupr, rule sets are evolved.
The rules are evaluated in their local population by combining them with the best
rules from the other population [180, 179]. The idea is to allow the algorithm to
automatically find a suitable problem decomposition [b2].

A similar approach to Saltupl has been taken by De Falco et atl55]. Each attribute
-4 was associated with two numbers Æ1 and k2, representing the low and high range



2.3. EVOLUTIONARY LEARNING 35

100.233.22.34t.2255.344.423.522.71.053.25

Internal vector:

Condition vector

Figure 2.LO, An erample of an internal and condition uector

of the particular attribute. Four different antecedent were considered

IF

IF

IF

IF

F¿ e lfu,k2l (1)

F¿ 1lq (2)

F¿ 2 kz (3)

F¿4Å4or-F¿>.k2 (4)

For each attribute i, a vector of parameters called the internal vector was constructed
as a list of maximum and minimum values for each test on the attribute i. A
condition vector is then formed with each component representing the choice of test
to perform from the corresponding attribute using the conditions. The rule is then
formed from the conjunction of the tests. The final value of the condition vector
corresponds to the class to be assigned to the rule. The internal vector in Figure 2.10

would give the following rule:

rF (.F'l < 3.25) AND (.F'2 e 122.I,23.51) .o.No (f'a < L.22 oR .F'4 > 2.34) .r.Nn

(-F's I 100.2) IHEN cr,ess Is 1

The condition vector is evolved by an algorithm referred to as the breeder genetic

algorithm (BGA) which is capable of directly dealing with real values [55]

Most evolutionary learning methods deal with propositional or zeroth order lan-
guages. There have been attempts to evolve relational, or first order descriptions

[9, 108, 109, 110]. The DOGMA system uses predefined relations between attributes,
for example, the relationship on(X,Y,lEes,no]) could be defined to be Ees rf. the po-

sition of the attribute X is greater than the position of the attribute Y and no

otherwise. Using the predefined definitions, DOGMA uses a language template A,
to define how the relations can be conjunctively combined. Â. defines the hypothe-
sis space that the GA operates on. Similarly to the rule systems described above,

DOGMA uses bit strings to define the presence or absence of particular nominal
values in the relationships defined by ,a. [109].

In addition to the direct representation by the GA of rules, a number of hybrid
approaches have been tried. GAs have been used to select features for use in standard
machine learning induction techniques 1221]. They have been hybridised with K-
nearest neighbour techniques 1132, 133]. GAs have been used to create rule sets in
a divide and conquer method similar to traditional inductive learning approaches

[15a]. Cooperative coevolution has been applied to populations of evolving finzy seL,

definition and rule sets [171, 179].

1t.)4012
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2.3.4 Other Discrete Representations

Rule sets are not the only discrete structures evolved by evolutionary algorithms.
The evolution of discrete structures is undertaken in a variety of evolutionary learn-
ing applications.

Genetic Programming

Genetic programming addresses the problem of automatic programming, which is
a form of evolutionary learning. Automati,c programm'i,ng aims to be a system that
f16, Forward by John R. Koza]:

1 Produces an entity which runs on a computer.
2 Solves a broad variety of problems.
3 Requires a minimum of user-supplied problem-specific information.
4 In particular, doesn't require the size or shape of the final solution to be

prespecified.
5 Implements, in some way, all the familiar and useful programming constructs

(such as memory, iteration, parameterizable subroutincs, hicrarchically callable
subroutines, data structures, and recursion).

6 Doesn't require the user to decompose the problem in advance, to identify
subgoals, to handcraft operators, or to tailor the system anew for each problem.

7 Scales to ever-larger problems.
8 Is capable of producing results that are competitive with those produced by

human programmers, mathematicians , and specialist designers or of producing
results that publishable in their own right or commercially usable.

9 Is well-defined, is replicable, has no hidden steps, and requires no human
intervention during the run.

It is the representation of solutions as computer programmes that is the most dis-
tinguishing feature of genetic programming.

Koza 1139] proposed the evolution of LISP or S-Expression by genetic algorithms to
address the problem of automatic programming.ll Instead of representing a program
as a binary string, a program is represented as an S-expression. An S-expression
consists of a function followed by zero or more arguments:

Example 2.5: The following mathematical expressions could map to these
S-expressions:

2+17 r+
1-4+3 ¡+

( uulrrei,v 2 1,7 )

(sunrnecr 1 (uulrrelv a 3))

A function is referred to as a node. A function with no arguments, such as a numeric
constant, is referred to as a terminal. The functions can also perform actions by

11As did several previous researcher. The key innovation of Koza was the recognition of the
breadth of application of the method [16, page 101]
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having terminal nodes such as (PusH-CaRr-To-RIGHT), or (Pusu-CeRT-WITH-
Foncp force-Newtons). All functions return some value. When the functions are
combined with looping, conditional, and memory array constructs, the S-expressions
form a Turing complete programming language capable of representing any struc-
tured program 1214]. A number of other Turing complete representations have been
evolved by evolutionary methods, including classifier systems with internal memory
and FSMs 116, pages 98-100].

The S-expressions are represented as tree structures which are interpreted postorder,
creating a long linear S-expression (similar to the short expressions shown in Ex-
ample 2.5). The tree structures are modified by subtree crossover, which swaps
all nodes and terminals below a selected node (or terminal) with another subtree
in another solution. The mutation in the tree structure is typically performed by
selecting a random subtree and replacing it with a randomly generated subtree.

Applying crossover and mutation to programs written in an arbitrary programming
language, such as C, is extremely unlikely to produce anything which would actually
compile. The operators on the S-expressions are designed to greatly increase the
chance of their application producing interesting computer programs. AII functions
in the S-expression are constrained to return the same type (usually a float) and to
accept arguments of only this type. Koza refers to this property as closure [139],
and it ensures that only valid programs can be generated.

The trees are usually induced from a finite set of primitive functions and terminal
nodes [139, 4].

GP theory is based on the building block hypothesis, and a version of the schema
theorem for GP [139, page 117-118]. However, the resultant building block hypoth-
esis for GP lacks empirical support [168].

Genetic programming has been used in a wide range of machine learning applications

[139], such as the evolution of circuits flg, L47, 143], the evolution of control laws

17471, classifying protein sequences lI42], ecosystem prediction 1232, 237,233, 189]

and others [139, 140, 146].

Program trees have also been evolved by evolutionary programming methods [45,
46, 471, and S-expressions have been used in classifier systems [150].

Context Flee Grammars

The rules of De Falco et al. 155] and DOGMA [109] demonstrate that the condition
part of a rule can be made more sophisticated in order to give the rule set a larger
range of behaviours. More generally, any allowable conditions of a rule could be
considered as a contert free grarnrnar [16, page 277]160, page 193].
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A context free grammar (CFG) is a language template which describes what sen-

tences are legal in the language. The grammar describes how term'i,nal nodes can be
related by defining a set of production rules of allowable relationships.

Definition 2.3 (Terminal Node) ,4 terminal node of a contert free grammaris
a symbol for whi,ch there 'is no producti,on rule.

Definition 2.4 (Production Rule) .4 production rule of a contert free grammar
i,s a rule of the form X -+ Y where X i,s a non-terminal andY i,s a conjunction of
t ermi,nals an d n o n- term'in al.s.

A non-terminal is implicitly defined from the definitions as an element which has
a production rule. Formally, a context free grammar can be considered as a four
tuple (¡/,7, P,S), where l/ and T are disjoint sets of non-terminals and terminals
respectively. P is a set of productions and ,9 is a special non-terminal start symbol.
The set of productions ,t € P for the non-terminal X e N U ,9 can be written as a
mapping to the conjunction: X -+ alla2lasl . . .lo¡ for a¿ € N U 7.

A simple if-then-else rule set can be constructed from the following grammar, eg

[230]:

¡/ : {-R, cond, result, A,V}
T : {o¿, i € {1,...,Number of Attributes},R¡,{,},rF,oR,AND}

P

^9 -)
R-+
COND -+

A-+
V-+
RESULT -+

R
IF COND R RESULT I RESULT
AND COND COND I on COND COND 

I

<AVl>AV
a¿,'i e {1, . . ., Number of Attributes}
Rj
Rj

s

The grammar describes how to derive a rule set which returns values k¡ and makes
comparisons between attributes and values R¡,whercj is the number of values, or
parameters, associated with the rule set. In the example grammar the comparison
and action values are of the same type, say reals, whereas a more complicated
grammar could limit certain attribute comparisons and actions to different types of
values. The rule set is constructed from the terminal nodes of the grammar.

The DOGMA system is constructed by adding certain types of relationships to the
set of non-terminals and productions. The rules derived by De Falco et al. are
constructed from a similar grammar to that offerecl. The consequent part of a rule
is also represented in the grammar) and could, for example, be made a (grammatical)
function of the attributes instead of real values Rjt". Viewing the rule systems as a

12For example, by modifying a rule grammar to allow the consequence to be a linear combination
of attributes, a regression tree could easily be represented.
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context free grammar makes explicit Lheir declarati,ue biasrs , ie. the possible forms

of solutions. Matching this bias to the problem is of central interest, since it allows

the search space to be meaningfully reduced.

Grammars have been used for the creation of equations and executable structures in
genetic programmíng 1226, 22711L6, page 2701. Grammatical genetic programming

(CFG-GP) makes explicit the inductive bias of the representation, and has been used

as a system for automatic bias generation in evolutionary learning systems 1226,2271.
Rule sets are not usually created explicitly from grammars in applications, however

it has been done and a GP algorithm used to induce the ruleset [230].

Self-Adaptive Finite State Machines

Evolutionary computation has been used to evolve other methods capable of learn-

ing from their environment. Finite state machines (introduced in Section 2.1.1 on

page 9) are an example of a representation used with evolutionary computation
with the goal of learning from the environment [S3]. A FSM (Figure 2.1, page 10)

is typically evolved through five different discrete mutation operators:

1 Add a state.
2 Delete a state.
3 Change the initial state.
4 Change an output symbol.
5 Change a next state transition.

The number of mutations per parent FSM is Poisson distributed with a rate of 3.0,

and the mutation operator is uniformly chosen from the list of 5 operators. The

maximum number of states was set to 25 and the minimum to 3. An extension to
the methodology incorporated self-adaptation to attempt to improve the evolvability
of the FSM [12S]. It has been shown in a GP-like algorithm that freezing mutation
on subtrees and treating them as modules can lead to a problem-specific co-evolved

representation [6]. Fogel et alhypothesized that the extreme of mutation or no mu-

tation of parts of discrete representations might be smoothed by using a self adaptive

mutation rate [128]. Two different approaches were tried. The first is called selec-

tive self-adaptation where for each of the 5 mutation operators the component which

was to be affected was chosen according to its self-adapted mutatability parameter

instead of uniformly as it is in the traditional FSM. In this approach the mutability
parameter decides the probability of the mutation operation affecting that part of
the FSM by the relative value in the mutability parameter. In the second approach

a mutability parameter was similarly defined, but the value was absolute, allowing

r3A declarative bias is one in which the constraint imposed by the bias is transparent. It may

be a language bias, a search bias, a selection bias or something else. A language bias is set before

learning starts and determines what types of solutions can be represented. search bi¿s is where the
types of solutions most likely to be generated are affected, for example, the self-adaptive mutation
vector is a search bías. Selection bias is the bias imposed be the fitness evaluation and selection

scheme and determines what types of solutions are favoured, for example, including an information
heuristic like the minimum description length (MDL) would affect the selection bias [229].
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Figure 2.11-. A hyperbor cluster. The bor is centered at the point (e,f), and, contains
the poi,nts F,D,B and c. The other po'ints are not couered by the cluster.

the probability of mutation of a component to be independent of all other com-
ponents. The results from the self-adaptive approaches are statistically equivocal
because of the experimental design, although there is definite empirical evidence of
improvement using self-adaptive techniques on the simple test problems [128]. The
problem identified by Fogel et al is that discrete representations are difficult to make
self-adaptive.

Self-Adaptive evolution of Hyperbox Clusters

Hyperbox cluster for classifying spatial data was evolved using evolutionary pro-
gramming to self-adaptively evolve hypercubes [92]. The experiments conducted
considered only two dimensional data, where each hyperbox was represented as a b
tuple

(r,y,0,w,h) (2.1b)

where (r,y) is the coordinates of the center of the box, á is the anticlockwise rota-
tion of the box, and '¿r and h, are the width and height respectively of the box. The
situation for a box centered at (e,/) and with á:0 is shown in Figure 2.11.The
representation was variable length, with the number of hyperboxes modified accord-
ing to a self adaptive addition or deletion probability ou¿¿ and ø¿.1. The mutation
vectors were updated by a formula similar to the standard ES formula (Equation 2.4,
page 17). The value for n used in the usual z and r/update formula was modified to

f
F

H
G

be
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Figure 2.12. A feed forward artifici,al neural networlc. Each arrow has a weight or
strength associated wi,th it, and each node has a function combi'n'ing the nodes 'inputs to

form the nodes output whi,ch is then modified by the uei,ghts as it i,s moued to the nert
layer

account for the number of boxes and the number of parameters in each box, so that
the 2-dimensional algorithm used n : NBox. 5. Although the problem addressed

was to look at clusters for spatial data, the similarities to rule-based representations

in other learning problems are clear. The box in Figure 2.11 could be represented

by the rule
(a111<ö) eNo (c<12<d)

which has the same form as the rules typically considered in CFS, for example, the
conjunction of type (1) rules on page 35 used by De Falco et all55]. Where the angle

of the box is used the learning task becomes equivalent to a second order task where

rules depend not only on feature values but on some relationship between features,

even of a restricted form such as the representation used by Ghozeil et al 192].

Multiple Interacting Programs and Artificial Neural Networks

Angeline introduces a representation for expressing complex behaviours which he

calls Multiple Interacting Programs (MIPS). MIPS are a combination of GP and

artificial neural networks (ANNs)[4,5]. Atthough it can be shown that ANNs are

capable of representing any computable function given enough hidden units [124],
Angeline notes that it is often the case that the number of nodes required for accept-

able performance in feedforward neural networks trained with the back propagation
(BP) algorithm can be prohibitively large to achieve acceptable generalization abil-

ity [5]. An ANN (Figure 2.72) can be described as a directed graph in which every

node contains a transfer function of the form

I w¿¡r¡ - 0¿

TL

E¿: f¿
j=r

(2.16)
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where E¿ is the output of node i, r¡ is the jth input to the node and w¡¡ is the
connection weight between the two nodes. á¿ is the threshold or bias of the node
1249]. ANNs are usually trained using the BP gradient descent training method,
or a similar training method. In the standard BP algorithm for an ANN with one
output node, the difference between the actual output of the node, denoted A, and
the correct output of the node (C) is calculated and multiplied by the derivative of
the transfer function: 

.ç _o : l,Q).Q _ A) (2.17)

where 'l' is the input of the output node. The error, ô, is propagated backwards in
a similar manner:

õi:Í,(Ii).W¿.6 (2.1S)

where ð¿ is the error of node e, d is the input of node ¿ and W¿isthe weight between
node i and the output node. The weights are updated according to:

w¿¡(t + 7) : w¿¡(t) * rl . õ¿. r¡ (2.19)

and:

Wi(t + I) : Wi(t) * r¡' 6 'r¡ (2.20)

where the w¿¡(t) is the weight from node 7 in the input layer to node ¿ at time
(epoch) t, r¡ is the learning rate, and r¡ is the output of node 7 in the previous layer,
as in Equation 2.16. In Equation 2.20,, W¡ is the weight from the output node to
the jth hidden node. The extension to multiple output nodes and multiple hidden
layers is trivial.

Angeline notes that the ubiquitous gradient descent methods used to optimise the
weights of an ANN put some limitations on the ANN model [5]. In particular, the
transfer function must be non-linear, non-decreasing and differentiable everywhere,
as can be observed from equations (2.77), (2.1S), (2.19) and (2.20). Instead of
using Equation 2.76 at each node of the ANN, Angeline uses a GP evolved equation
tree at each node. In this way, he conjectures that each node can evolve into an
environmental niche that best suits the computational requirements of that node in
delivering the desired output of the network. When the ANN topology underlying
the MIPS net is not strictly feedforward, that is the output of a node can be fed back
to itself and to other nodes, Figure 2.13, a recurrent MIPS net is created where the
system of equations generated can refer back to themselves. In such a situation the
initial values of the equations need to be specified. A recurrent ANN or MIPS net
has a memory which makes it computationally similar to the CFS with an internal
memory referred to in Section 2.3.1 on page 29.

Artificial neural networks are a discrete representation which have frequently been
used to solve learning problems by evolution. There are many different evolutionary
artificial neural network (EANN) algorithms, eg. Yao provides an extensive review
124e)

An ANN is commonly applied to a n-tuple of data and required to predict a real
value or class associated with that data. The learning task is to find the network
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Figure 2.13. A recurrent artifici,at neural network. Nodes can feed thei'r output baclc to

other nodes and to themselues

which corresponds to the function

f@):o detrf",oelR

where d is the input pattern and O is the output. Nominal values are frequently

mapped to IR. No assumptions about the function /(.) which is being approximated

are made. If /(-) is continuous then it can be shown that there exists an ANN which

can approximate it.

The principal problem for EANNs, in common with evolving all discrete representa-

tions, is maintaining the link between parent and offspring phenotype. In a classical

BP-trained network the architecture of the network is constant and the weights are

updated by small amounts at each epoch maintaining a functional similarity of off-

spring and parent. The BP and other gradient descent training methods are fast to
find a local minimum in the weight space. It may be the case that different opti-
misation procedures may find better minimum in the weight space, that is, find a

better set of weights that reduce the mean square error of the network when applied

to the training data. A further complication for ANN training is that minimising

the error on the training examples is not the goal of the method. An ANN is usu-

ally trained to generalize well. Generalisation requires that the network found will
correctly predict unseen data patterns. However, finding the best approximation

for the function /(.) i" Equation 2.2L does not guarantee finding the best /(') that
generalises, and it follows that finding the best optimisation procedure on the NN

weights will not guarantee the best results on independent test data.la

EAs have been used to optimise the networks weights. In a review on EANNs, Yao

cites 88 papers where this has been done 12491. The algorithms employed usually

concatenate the network weights as an evolvable string, a binary string or a real-

valued string. An individual in the population is assigned a fitness corresponding to
the network performance which occurs on the training set when the weights coded

on the string are used in the network. The choice of operators to apply will depend

14To guarantee that the best trained network would result in the best generalization the topology
of the network would need to be "correct".
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on the method of representation. The evolutionary training of ANNs is in general
slower than the BP algorithm and its variants, although counter examples to this
exist [249]. The principal advantage lies in the freedom to choose non-differentiable
transfer functions, problem specific error functions and the potential to find better
optima in the training space through the avoidance of local minima which might
otherwise capture gradient descent methods. Using an EA for weight modification
in this way works well since it is easy to preserve the behavioural link between parent
and offspring networks. The only requirement is that the genetic operators chosen
are chosen to not be disruptive to the fitness linkage.

The largest problem in ANN modeling is how to decide on the topology of the
network. EANNs are frequcntly applied to the problem of finding optimal topologies
of ANN models. Yao cites 85 different papers where the topology of the network
has been evolutionarily designed in his recent survey [2a9]. The central problem in
evolving topologies for ANNs is that the representation is discrete. This makes it
difficult to create an algorithm which can maintain some form of correlation between
parent and child fitness. This problem is tackled in a number of ways l24gl.

One algorithm which addresses the issue of correlating parent-offspring behaviour is
EPNet [255]. EPNet partially trains the network with a hybrid BP and simulated
annealing (SA) algorithm. If the networks fitness does not improve it undergoes a
structural mutation, starting with deletion of nodes/connections and then an addi-
tion. After a structural mutation the network is partially trained again to see if the
fitness of the network can be improved compared to its parent. If not, the network
undergoes a different structural mutation and further partial training. Once the
network has a better fitness than its parent it replaces its parent in the population.
The partial training is used to make the effect of the discrete mutations on the
phenotype more continuous.

2.3.5 Discussion

A wide range of structures have been evolved to solve learning problems. The
diversity of representations mirrors the diversity of learning problems, and nearly all
representations which are appropriate for learning tasks have a discrete component.

The evolution of discrete structures is usually performed with discrete mutations
applied with constant probabilities. The self-adaptive evolution of FSMs demon-
strates that it is possible, although difficult, to adapt the rates of mutations in
evolving discrete structures. There are two main advantages in being able to evolve
these rates:

1 Self-adaptive rates are not tuned by the experimenter for different problems.
Usually, there is nothing to set.

2 Self-adaptive mutation allows the parent to adapt the application rates of
operators to produce children with correlated fitness. Maintaining the parent-
child fitness correlation is important for evolutionary search to progress.
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Many learning structures require the adaptation of both discrete and numerical
values. In the case of rule sets, numerical values frequently correspond to parti-
tion values of continuous attributes, and the setting of these values is important in
learning information in many domains with continuous attributes. However, most
evolutionary rule learning methods concentrate on either the evolution of the dis-
crete rule set, with pre-defined partition points, or like De Falco eú ¿/. use a very
limited discrete rule structure and evolve the partition values. The optimisation of
both types of structure is important.

EANN algorithms frequently perform some limited structure, or architecture, op-
timisation while optimising the parameters, or weights, associated with the struc-
ture. However, neural network structures are relatively simple compared to symbolic
structures such as rule sets and programs (GP), and provide little insight about the
information learnt. They are a blackbox model.15

2.4 Conclusion

There are two choices when evolving solutions to learning problems:

1 Modify the learning task to fit the representation used by the evolutionary
process.

2 Modify the representation employed by the algorithm to fit the learning task.

Many applications demonstrate empirically that the second option is viable, allowing
flexibility in the choice of structures. Choosing representations to apply evolution-
ary methods to, usually means choosing a discrete structure with some numerical
components, especially in domains with continuous attributes.

Evolutionary methods are well established for the evolution of numerical compo-
nents. Methods such as ES make few assumptions about the fitness landscape.
Self-adaptive methods are able to adapt to changing landscapes, and are able to
reduce the size of mutations as the numerical solution approaches the optima.

Discrete structures require specially defined operators for modification, for example,
the evolution of FSM is performed with 5 discrete operators. Evolving the structures
successfully means choosing rates of operator application which are appropriate in
absolute and relative strength.

The ability to evolve the numeric components of the representation and simultane-
ously evolve the discrete structure of the representation would enable a greater level
of flexibility in the choice of representation for learning problems. Representations

15That is to say, the neural network consists of an architecture and weights vector. The weights
can be examined to produce rule sets, and sensitivity analysis can be done to elucidate some of the
underlying behaviours of the induced model. However, they are not transparently comprehensible
models.
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for learning problems are important because performance in the learning environ-
ment is often not the only consideration. The knowledge learnt in attaining that
performance is also important, and obtaining that knowledge is dependent upon the
choice of representation used to solve the problem.

This thesis proposes a new self-adaptive method for the evolution of discrete struc-
tures and the simultaneous, symbiotic evolution, of the associated parameters.



Chapter 3

SASME:

Model
Self-Adaptive, Symbiotic
Evolution

I must Create a System, or be enslav'd by another Man's;
I will not Reason and Compare: my business is to Create.

WiIIi,am Blake, Jerusalem

This chapter proposes the method of self-adaptive, symbiotic model evolution, SASME.

The snsup method segregates the task of parameter optimisation from the task of
discrete model discovery. The parameters form one of the symbiontsl and are op-

timised by a self-adaptive ES algorithm which is implemented in accordance with
the literature analysis in section 2.2.3 on page 25. Concurrent with the parameter

optimisation the other symbiont, the discrete structure, is optimised through the

application of a set of discrete operators. The rate of application of discrete opera-

tors are a parameter of the system and are optimised by the parameter optimisation
procedure. This makes them self-adaptive. Neither of the symbionts alone are a

solution to the problem, and must be combined to form a solution.

The SASME framework is developed in general terms before being applied to the

evolution of rule set structures. The rule set structure used explicitly represents

exceptions in the tree structure. This allows a complete rule set model to be evolved

in a Pittsburgh approach with an explicit representation of the default hierarchies.

Default hierarchies allow for incremental behaviour changes to the ruleset as newly

evolved exceptions to previously existing broader, more general rules, allow for more

precise categorization of the learning task.

After the exposition of the sasup algorithm the method of self-adaptation is com-

pared with optimal mutation settings in two constructed problems.

The SASMp method differs from those discussed previously in two important ways:

lsymbiosis: "An intimate partnership between two organisms, in which the mutual advantages

normally outweighs the disadvantages" [223]

47
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Method The evolutionary learning algorithm developed here will combine the real-
valued optimisation po\4/er of self-adaptive evolutionary algorithms with a
novel self-adaptive strategy for the evolution of discrete structures.

Representation The method presented in this chapter will evolve entire solutions
to problems as rule sets with exception lists allowing for the explicit represen-
tation of default hierarchies.

3.1 Algorithm Description

SASME consists of two parts. The model structure is represented directly with a
discrete symbolic representation. The symbols referred to within the model are
given quantitative definition through a set of associated parameters. The two are
then symbiotically evolved. Table 3.3 on page 72 shows the list of symbols used for
notation throughout this chapter.

3.1.1 Characterising the Learning Problem

The basic problem structure considered is one where the learner is able to sense a
number l/ of attributes at each time step. The l/-tuple vector of sensed attributes
at time ú is labelled

a(t) _ @f),...,"f))
where ú € IN. The superscript denotes an actual observation of the corresponding
attribute, whereas the attribute itself can be referred to as a¿, i e {r,. . . ,,À/}. For
example, if the environment is piloting an aeroplane then the attributes sensed might
be the air speed (1), height (?), pit.h (3), yaw (a) and heading (5) of the aircraft
respectively. The value of ol') would be the numerical airspeed of the aircraft at
time ú in some units. When referring to the air speed variable, it would be labelled
as attribute 1, or ai.

All of the problems considered in later chapters have only real valued observations,
ol" € lR, v ¿, i e {7,. . ., ¡/}. However, in developing the algorithm it is allowed
that the observations can come from unordered discrete sets as well, and handling
such attributes is discussed.

If the set of all possible observations is labelled i[¡ then a(t) € U/, V ¿. Given a
description of its environment a(¿), the model has to choose an action at time t, a(t),
to perform from some set of allowable actions2 N. A model zr can be represented as
a mapping from the set of possible observations to the set of possible actions

r:\I¡+N (3 1)

2The production of o(¿) will be from a finite number of functions, ø¿, which in general are
themselves maps from environmental states to allowed actions. This is discussed later.
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where neither ü nor N are necessarily enumerable. An application of the model at

time ú will give: r(a@¡ - a(t).

The observed attributes at time ú, o(t), may not completely describe the state of
the environment, s(¿). The observed values may be noisy, and may be incomplete.

Where the set of state variables is labelled 5, the environment T will be the mapping,

T:,SxN++5 (3 2)

and the observation function
,I:5r+V (3 3)

will map the actual state of the system to the observed state of the system, where

the observed state of the system here refers to one of the possible observed states,

accounting for the fact that the true state may not be entirely observable. A further
complication arises when noise is added to the outcome of the above mapping, as

will frequently be the case.

Note that the learning problems considered are not necessarily deterministic, that
is the same state-action pair at time step ú may not lead to the same state vector

att1-1. In general the problems can be considered to have the Markov propertg

that is the best action for any observed attribute vector will be independent of
previous actions and attribute vectors. However, in the next chapter an interesting

non-Markovian problem will be tackled.

The learning problem needs to also specify an initial state s(0) which will imply a

corresponding initial observation, /(s(0)) - ø(0).

A run of the model ø will consist of some finite number T > 0 of interactions between

the model and the environment. The set of inputs to the model and outputs from

the model at time ú form the run set of the model ft, that is

n:1a(t),o(t)¡ ú € {1, ...,7}

and the evaluation of the model is performed by some evaluation function

f):üxN¡+lR (3.4)

in general. Without loss of generality CI(ffi) can be considered a cost function, where

the best model run will have the lowest fl(ft) value. The cost function allows the

learning problem to be considered a,s an optimisation problem, where the problem

is to find zr such that min(Cl(n)) is achieved.

The problem faced by the evolutionary learner is to adapt the model r to the learning

environment, where the cost function, C¿(m), evaluates the adaptations present in zr.

The learning problems described cover a broad range of learning tasks such as se-

quential decision tasks [105, 164], reinforcement learning tasks [130, 165] and data

mining tasks. The learning problem does not need to be supervised, and the correct

action for each given state does not need to be known. All that is required is f)(') so
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that a model T car be evaluated after interacting in the environment. All problems
are finite time problems where feedback is achieved after some set number, T, of
iterations of zr and the environment.

3.1.2 The Model Structure

Evolutionary algorithms have been used to evolve a variety of different discrete struc-
tures. Genetic programming uses genetic algorithms to evolve computer programs,
most commonly as program trees [139, 140, 16], see Section 2.3.4 on page 36. Evolu-
tionary programming has been used to evolve program trees similar to GP [4, 5], see
Section 2.3.4 on page 41, and also to evolve finite state machines [83, 128, 7g], see
Section 2.1.1 on page 9 and Section2.3.4 on page 39. Classifier systems use genetic
algorithms to evolve a variety of discrete structures which represent rules, such as
binary strings [115, 58], S-expression [150] and explicit rules [55], see Section 2.3.1
on pages 29 32. The DOGMA classifier system, [109] uses relational functions in
rule premises, see Section 2.3.3 on page 35, and the SRruuu system also represents
rules explicitly in classifiers [102, 105, zlï, r04,103], see Section 2.8.3 on page 34.

The discrete structure and associated discrete operators form the model structure
used in the sRslr¿o method. This thesis introduces a novel rule list with exceptions
for that structure. However, the sRslr¡p algorithm could be employed on a variety
of model structures, requiring only that operators like those introduceci for the ru-le
sets in this section are implemented for the structure. The optimisation of symbols
within the model, and the rates of application of the operators are symbiotically
evolved along with the chosen model structure.

The two requirements to evolve a structure are to have a covering set of mutation
operations for that structure, and for the structure to be able to represent the
solution to the problem. A covering set of mutation operators ensures that any
solution will be reachable from a finite number of mutations. Although this is not
strictly a requirement, it allows convergence in the limit to be guaranteed under
certain circurnstances (see Appendix A), and in the absence of domain knowiedge it
would seem an odd idea to allow the generation of a population which for all future
generations could not reach some sections of the search space, when the solution
to the problem is not known to be in the section of the solution space which is
reachable. The second condition is obvious, for example, if the solution is not linear
then satisfactory results may not be obtained if the discrete structure is limited to
considering only linear equations.

A simple if then rule has the form

tp conditioz THEN acti,on

The condition, or antecedent, of the rule will be some form of comparison between
attribute values or functions of attribute values and model parameters. {or example,

tp air speed ) u1 THEN perform action ø1
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where the value u1 and the action a1àre treated as symbols by the SASME algorithm.
This allows linguistic constructions of rules to be made. The above rule could become

tp air speed is fast THEN reduce throttle

where the quantitative descriptions of. fast and reduce throttle will be given numerical
definitions by the parameter vector. This is similar to the way that finzy rule sets
operate, where conditions and actions of rules are considered to be fuzzy quantities
which are given quantitative values through the defuzzyification process using finzy
set membership functions. Rule sets of this form are also similar to those used in
Sluupr, and other forms of classifier systems.

Default hierarchies are a useful concept in rule sets which allow decision lists to
be more succinctly represented, and provide a means for incrementally changing
rule set behaviours. Incremental changes to phenotype behaviour is an important
property of all evolvable systems. Default hierarchies are said to form in Michigan
style CFSs due to the competitive bias in the rule bidding process in favour of more
specific rules (see Appendix C). This creates competition to find specific corrections
to existing behaviours in the evolving rule set. It is this competitive pressure which
is responsible for the formation of the default hierarchies.

Default hierarchies are implicitly created in Michigan style classifier systems. In
Pittsburgh style classifier systems default hierarchies are ignored and flat decision
lists are evolved.

It was noted in Section 2.3.2, page 30 that the implicit default hierarchy formation in
Michigan style classifier systems is similar in effect to the explicit representation of
exceptions in ripple down rule sets. With this in mind, the rule set model used will be
a Pittsburgh style classifier system, with rules represented as lists with exceptions,
like those in Figure 2.7, page 31 and Figure 2.8, page 32. By using a Pittsburgh
style CFS there is no need for complicated reinforcement distribution algorithms.
Each individual in the population is a complete rule set and as such can have a
fitness designation equal to the rule set's evaluation.

This gives a simple solution to one of the problems which has put serious limitations
on the performance of CFS-the maintenance of the default hierarchy. As noted
on page 166, the formation and maintenance of default hierarchies is frequently
problematic [197, 246, 215) and this combined with the overall complexity of the
Michigan style classifier system structure has limited its success in applications [240].
It has been noted that "classifier systems are a quagmire-a glorious, wondrous, and
inviting quagmire, but a quagmire nonetheless" [95].

Rules with explicit exceptions represent similar information to what default hierar-
chies are thought to represent. There are limitations, however. Classifier systems
use a variety of methods to weight rules matching a given environmental state in
order to choose an action to be performed. This allows any rule which matches a
state to compete in the bidding process. Exception lists are more hierarchical. Ex-
ception rules are fired only when the preceding rule is matched. When they match
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a given state, but their pa,rent rule in the tree does not, they are not able to bid
to have their action performed. A rule list with exceptions mimics only one of the
two classes of default hierarchies recognized by Holland [121]. They can represent
default hierarchies distributed in space-rules with exceptions-but not default hi-
erarchies distributed over time, or bridging hierarchies. The latter are difficult to
construct in classifier systems (see Appendix C), and may be of most benefit in
non-Markovian domains. Rules with exceptions have an advantage, however. They
are more comprehensible, and better model the way experts structure knowledge

149,, r94, r95].

Figure 3.1 shows an example of an incremental change made by adding exceptions
to a rule set. The figure shows how more specific rules can correct inaccuracies in
more general rules at different levels.

The simplest form of an evolved rule consists of a single comparison with the value
of some attribute variable and the choice of an action.

Ip attribute e values THEN action (3.5)

The majority of individual rules within a ruleset will be of the type shown, although
more complex rule structures will be considered in later chapters.

A rule set is a collection of rules. The rules will contain three parts available for
evolutionary modification. These can be modified in the following way:

attribute The attribute which the rule tests can be modified to be a test on another
attribute. This will also (normally) involve modifying the test values of the
attribute, since different attributes will have different value ranges or different
tvpes for comparison.

values The value test can be modified to test another value set. This is a symboli,c

change. For example, if the test is represented as IF temperature ts high,
it could be changed to Ir temperature Is medium. Changing the numerical
definitions of comparison symbols is explained in the next section. The change

is essentially one of choosing from a list of possible value symbols a different
value symbol. In the case of real attribute observations the value symbols will
be real intervals, and changing symbols will correspond to the attribute value
being in a different interval. If nominal values were to be evolved then the
value set would consist of a collection of nominal values which are grouped
together, and modifying the value set symbolically would mean substituting
the set of nominal values for a different set of nominal values. Only problems
with continuous values are considered in this thesis.

action The action comparison is modified in a similar manner to the value compar-
ison. Instead of performing action 5 when the temperature is high, a mutation
might lead to action 3 being chosen instead. The action symbol may represent
a procedure which is performed to attain the output. For example, the action
could specify the output to be some linear combination of a set of attribute
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Figure 3.L. Feature spo,ce description of ripple-down-rules. The graph shows the distribu-
ti'on of correct actions in a 2-feature space. The dashed lines show the areas of the feature
space classifi,ed, by the rule set. The bold, rule corresponds to the bold" reg,ion of the feature
space, and malces an'incremental improuernent to the ouerall classi,ficatí,on o,ccuracy of the
rule set by correcting the rule aboue it and, labelling the area of A actions withi,n the B
action area corcectly.

values. When the rule is true, a real valued output would be produced from
some linear combination of the current values of the attributes. Any parame-
ters which need to be coevolved along with the symbolic actions are contained
in the parameter vector, which is discussed later.

A rule can be made more general by allowing each attribute comparison to be a
disjunction of conditions. For example, the following rule could be constructed: rr
temperature IS ( high oR very high). . . . Disjunctive attribute comparisons can be
represented as a list of what value symbols are included in the condition. More than

A
A

A
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one attribute can be conjunctively added to the rule antececlent in a similar manner.

If we label the number of value symbols available for attribute i as V¿ and the value

symbols available for attribute z as rjo) *h"r. i € {1, ...,V¿} and z € {1,"',¡/},
then an example of a rule would be:

tr (ø5 e (rÍu) on rjt);¡ AND (ae e (rÍn) on r$n)¡¡ rHEN action 3 (3.6)

which would be true when attribute 5 has the value oft) o. ,ju) uttd attribute t has

the value ,jn) o, ,[n). Wn.n those conditions hold, the rule would output action 3

to be performed.

Rules of the fomr shown in (3.6) are quite general in structure. This presents

an interesting problem. If the value symbols shown in the rule correspond to a

discretisation of some real valued attribute3 a¿, then the possibility of finding unlikely
rule premises exists. For example, if the discretisation of the real attribute is into
5 divisions then the rule could be triggered when the attribute is in division 1 or

division 4, perhaps corresponding linguistically to the attribute having a value of
extremely small (1) or large (4), but not small (2), mediu- (3) or very large (5). It
is possible that such a comparison is sensible, however more commonly it will not
be. Even when it is sensible to compare attribute values in the union of real intelvals
which are not consecutive, it is likely that the rule set will be more comprehensible

by having two distinct rules with the same consequence for the particular situation.

The algorithm could have imposed upon it some a pri,ori bias in favour of testing
particular groups of value symbols, for example, ensuring that continuous attributes
are only compared on disjunctions of consecutive discretised symbols. Formally this
could be handled by defining a grammar, as discussed in Scction 2.3.4 on page 37,

which would limit the antecedent conditions that the mutation operator could make

and bias solutions towards more meaningful areas of the search space. For the
problems considered in this thesis single attribute value comparisons only were re-

quired, and no internal disjunctions were used. For simplicity this will be assumed

throughout the following chapters except where explicitly mentioned.

In a decision list single attribute value disjunctions are easily represented by two
rules. If one of the mutation operations is to copy a rule with a "rule-condition
mutation", then disjunctive rules will be effectively treated. Conjunctions between

attribute comparisons can be created by allowing a null action. If a rule has a null
action, then the rule's exception list is testecl. If none of the exceptions are true,
the rule is treated as false and parsing continues by checking its if-not list. The
first true exception is treated as a true rule, having either it or one of its exceptions

performed. In this way attribute conjunctions are effectively represented.

Simple rules, k¿ a,re combined into a rule set, E. The rule set, E, is one part of the
function, zr, relating attribute observations to actions in Equation 3.1, page 48. An
example of the evolved symbolic rule set, 3, and an example rule, 7?, is shown in
Figure 3.2. At this stage the representation is considered completely symbolically

3The argument here is concerned with any ordered attribute symbols
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IF parameter C IS high
THEN Action 5

+ EXCEPT IF
+ rF Nor

Figure 3.2. The rule set representation. The rule set is represented as a decision list
w'ith ercept'ions as in Figure 2.8 on page 32. Each rule in the euolued rule set is a symbolic
classi,fi,cati,on of an attri,bute ualue. The acti,on of the rule is chosen from some list of
possible actions. Rules to the right are tested only i,f the rule immedi,ately to thei,r Ieft was

tested and found true. Rules below are tested only i,f the rule i,mrnedi,ately aboue them was
tested and was false. Testing starts at the top Ieft of the list.

and is evolved according to an algorithm designed specifically for the evolution of
discrete structures.

The simple rule structure shown in Figure 3.2 is of the form (3.5), shown on page 52.

The observed value of attribute'd is compared to a particular symbolic value t"t rj'),
j € {1,...,V¿}, where % is the number of value sets associated with attribute'd, as

defined earlier. The intersection of the value sets for attribute i,

l¿

À,i
J:I

is typically empty, although it need not be so. Where 
"l') e IR, the value sets are

intervals of IR, eg.

(rto*"r, uupp".] .

Where the values of attribut" oQ e V¿ are nominal (that is, lü¿l is finite), the value
sets will be collections of nominal values. % will be less than or equal to lV¿1.

The set of allowable actions, N, is not necessarily finite. The rule set E will produce
only a finite number of different action symbols, u;, 'i € {1, . . . ,,4}. The set of all
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action symbols produced by E is labelled "4. Each of the produced action symbols
will be a mapping to an allowable action in the domain

a¿:\[rr+N (37)

such that a¡(a(t)) : q(t). Most commonly the action function will be independent
of tlre observecl attribute, so that for a real-valued problem domain u¿(a(t)) : ¡ç,

k e IR, Vø(Ú) e {/. It can, however, be some function of the observed state such as

a linear combination of observed values allowing the rule set to produce a discrete
number of action symbols, yet still produce actions in the environment from a (real)
value set, N. In the case where the set of possible actions in the environment is itself
finite then ø¿ may be a labelling of those actions, so that lNl : -4

The set of mutation operators for modifying symbolic rulesets of the form shown in
Figure 3.2 are as follows:

Add a rule A rule is added to the rule tree as follows.

1 A random rule, 71, is generated. The rule is of the form (3.5), shown on
page 52. An attribrrte, a¿, i e {L,. . . , N}, is chosen uniformly randomly
from the N attributes. Associated with the chosen attribute 'i are a num-
ber of discrete possible symbols or values, V¿, from which a particular
symbol is chosen ,In), j € {1, ...,V¡}, where I is chosen uniformly ran-
domly. The rule action, uk) k € {1, . . . , A}, is similarly chosen uniformly
randomly from the set of allowable actions, ,4.

2 Each rule except the first in the rule set E, Figure 3.2, is considered to
have 2 possible insertion positions for the new rule R. The first rule is
considered Lo have 4 irrsertion points. The insertion points of each rule
correspond to the exception or if-not rule associated with that rule. The
initial rule is more complex since a new rule can be inserted before that
rule, that is, the new rule becomes the initial rule and the previous initial
rule becomes either the exception or if-not of the new rule. The part of
the rule tree which is displaced by the addition of 7? is added with equal
likelihood to either the exception list or if-not list of 71. Where there are
n rules in the rule set there is 2*n12 random positions for the new rule,
and the position is selected uniformly randomly. The possible positions
for the new rule are shown in Figure 3.3.

Delete a rule A rule is deleted from the rule tree, E, in a similar manner. Of the
n rules in the rule set one is chosen uniformly randomly and deleted. Two
possible actions for the deleted rule's exception and if-not lists are considered.
Either the deleted rule can be replaced by the exception list and the if-not
list can be appended to the exception rules if-not list, or the deleted rule can
be replaced by the if-not rule and the exception list deleted. The first choice
corresponds to the assumption that the deleted rule is always true, and so

the exception list is always parsed. The second choice corresponds to the
assumption that the deleted rule is always false, and so its exception list is
never parsed. The situation is shown in Figure 3.4. The choice between the
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(A)

(B)

(c)

Figure 3.3. The ad,d, rule mutation. The shailed rule is the newly generated random rule

bei,ng ad,d,ed,. The bold rule i,s the rule which has been randomly selected lor the position of

the new rute. (A) shows the two possible results from add,ing a rule as an erception to an

earlier rule. (B) shows the effects of adding a rule as an if-not. (C) shows adding o, neu)

initial rule to the rule set.

two outcomes is chosen randomly, and the deletion is not performed if it would

remove all the rules in the rule-set.

Modify a rule A rule is chosen uniformly randomly and one of the following oc-

curs:

1 Its action cr.r¡ is changed to a new action ø¿, where le' e {L, ' ' ' , A} and

k+k'.
2 The condition is modified by the same algorithm for creating a random

rule, as in point (1) for adding a rule except that the original action coded
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Figure 3-4. The d,elete rule mutation. The bold, rule is the rule to be deleted, and the two
shaded rules are the rules ercept'ion li,st (Iightty shaded) and, i,f-not ti,st (d,arkty shaded).
The unshaded' rules are the possible positions of the parent rule to the rule to be d,elet;e,
only one of which can actually erist. When the rule is deleted,, there are L possibi,lities.
(1) its erception list is moued, to its position and, its if-not list is ad,d,ed to the end, af the
erception lists if-not list. (2) the erception ti,st is remoued and the rules if-not li,st talces
its place'in the tree. (1) corresponds to an assumption that the rule is always true, and,
(2) correspond,s to the assumption that the rule is neuer true.

on the ruleT øk, is kept and not modified.

Structural mutation A rule R,and is randomly chosen and is either generalised
or made more specific. Generalisation is performed on the rules exception
by taking the rules exception, Rexcepr, and making the random rule, 7?.o,r¿,
correspond to 71"*."o1's if-not. The exception rule R"*r"pt has it's if-not list
moved to the random rules, Rrund, exception list. The effect is to change the
action which occurs when ?-ru,'d. is false. If R"*."p1 is true then it or its exception
list has its action performed regardless of the truth status or R,.¿,,¿. That is
Re*cept is no longer considered under the context of 7?.u,,¿. The situation is
shown in Figure 3.5. A rule is specified by the inverse operation. The randomly
chosen rule 7l.un¿ is moved to the top of the exception list of its if-not list,
?.fi_not. This situation is shown in Figure 3.b

Crossover Crossover works like a macro-mutation operator. A random ruleset
E.u,'¿ is selected from the population of rule sets and a single offspring is created
from the crossover operation between the parent ruleset ancl the ranclomly
copied rule set E.u,'d. A rule set with exceptions has a special structure which
the crossover operator takes advantage of. In particular, only rules on the
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+

Figure 3.5. A rule has its structure modified by one of two procedures. In the first the

light grey rule is mad,e more general by no longer being in the contert of the bold rule. In
the second the light grey rule 'i,s made less general by becoming an ercept'ion to the bold

rule.

Figure 3.6. The effects of the crossouer mutation. A copy of a random rule in the

population is made, the li,ght grey rule set, and a crossoaer point selected at a random

d,epth down the spine of that rule, the bolil rule. A crossoaer point is chosen at a random

ilepth down the spine of the parent rule, the bold, rule in the white rule set. The two parts
are then combined as shown to create the chi,Id rule resulting from the crossouer mutation

"spine" of the rule set, that is rules which can be obtained by following the
if-not links from the root rule, are considered for crossover. The crossover
procedure then consists of descending a random distance down the spine of
the original tree and deleting the tree structure below the chosen position. The
copied tree is then descended a random distance and the tree structure above

the chosen point deleted. The two remaining structures are put together to
form the child ruleset. This situation is shown in Figure 3.6.

;r'r.^i--1

A rule set is evolved by creating a random population of rule sets and modifying
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those rule sets at each generation by applying lvith some probability the structural
mutations listed. The rule sets are then evaluated in the problem domain, ranked,
selected and the evolution continues. A natural question to ask at this point is:
How to assign the probability of applying the discrete operators? Most frequently
operators are applied with some low constant rate of mutation when evolving discrete
strttcttrres. However, it seems likely that the probability of applying the different
operators and also the relative probability of the operators will affect the evolvability
of the representation. If the deletion operator is applied more frequently than the
addition operator the mean number of rules in an offspring is going to be less than
that in parents, giving a search bias which may or may not be warranted.

To solve this dilemma a self-adaptive approach is used. The probability of applica-
tion of the different discrete operators is associated with each rule set. The evolution
of these probabilities and the parameterisation of the symbols used by the rule set
E are discussed next.

3.1.3 The Parameters

The evolved model zr consists of two parts: the symbolic, discrete rule set E discussed
in the previous section, and the parameter set.

A rule of the form (3.5), page 52, compares the value of an attribute to some
set of possible values. If the attribute in.question is i, then as bef'ore there are V¿

different value sets, or symbols, labelled uln), j € {1, . . .,vn}, where ,j) i. an interval
Y j e {1, . . . , P,}. Where the minimum value of attribute i, is mi,n¿ and maximum
value ffrar¿, a set of partition points p?, j € {1,. ..,(Vo- 1)} are created and the
value sets are defined as:

olo) : (--,pÍn)] where min¿ l pf) . p9)

,y) : @?,p91 where p? < pP . p{)

: 
" (38)

u:ù : (r[])-',, o"¡ where oÍ?-r. rÍl-r¡ 1 mar¿

The number of parameters associated with the value sets will be d : DI:rQo- 1), or
where each of the continuous attributes is divided into the same number of intervals
)/, then there will be r9 : l/ . V associated parameters.

The ordered tuple of partition points form a parameter vector

attributep : (plt),. . .,nll)r_r¡,rr\r),. . ., . .,pl*), . . .,e[T,l_rl) (3 g)

which is associatecl with the rule set and gives meaning to the symbols manipulated
bv the rule set.

The action part of a rule corresponds to a particular symbol from the set of possible
action symbols of the problem (rk, k € {1, ...,A}. As noted, the interpretation of
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an action symbol depends on the problem at hand. The action symbol coded onto

a rule can be used as an index for the corresponding action to be performed in the

environment, c.,,¡(.) Where there is a finite set of actions defined for the problem

there will be no parameters associated with the action symbols.

Example 3.L: An example might be a robot navigation task where the only
actions are movement directions, N, E, S or W. In this case a1 : N, a2 : E,

a3 : S, 04 : \M and N : {N,E,S,W}. In such a situation there are no

parameters associated with the models actions, and the action symbol a,,¡(')

maps all arguments to a¡, le e {L,... ,4}.

Alternatively the action symbol o¡ç rrra! be interpreted as a model requiring rc¿

parameters. If the actions in the environment are real then each action symbol

might correspond to some particular value in the range of the possible action values.

This value could be a constant value.

Example 3.2: An example might be a greenhouse heater controller which

can set a temperature between 0 and 100 degrees Celsius, and the problem

is to maximise plant growth, or flowering, or water uptake under different

conditions. In this case the set of allowable actions is a real interval N :
(0,100). Even though the cardinality of N is not finite, there are only ,4

possible actions symbols produced by the rule set E. The action symbol ø¡
will correspond to some temperature in the allowable range uh(') : temp¡ (e
(0,100)). The actual temperature level, temp¡ is a parameter of the learning

system. The problem will then require A different parameters, and Kk : l,
/c e {1, ...,A}

The action value could also be some function of the environment.

Example 3.3: Example 3.2 can be extended to a case where n* * I for some

k, by considering the temperature of the green house to be proportional to
some attribute value o,il say height of the plant. In this case the temperature

would be set to temp¡ : þt * þz' a¿ for appropriate values of B1 and þ2. T]|le

action would then have 2 parameters associated with it, n¡ :2. Temperature

might only need to be set proportional to plant height depending on some

other attribute, such as the season. In this example, not all of the action

variables need to have the same number of parameters associated with them'

The total number of parameters associated with the actions will be rc' : Ðt:, ^r.
The parameters associated with action a¡ Ð're labelled

p\*),. . .,pr)

where each parameter plo) e IR, for k e {t,...,A} and i € {1, '-.,rc*}. These

parameters can be put into an ordered rc'-tuple vector as:

actionp : þft),...,p[),p?),... 1...,pf),...,pf)) (3.10)

In order to initialise the action vector actionp each action parameter must also have

a maximum and minimum number defined for it.

The other set of parameters associated with the rule set are the probabilities of
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performing discrete mutations. These are represented directly as mutation prob-
abilities, P,n € (0,1). The number of mutation variables required depends on the
number of discrete mutation operators used in the symbolic evolution. Where there
are u mutation operators employed a parameter vector associated with the proba-
bility of applying mutation operators can be formed from the ordered z-tuple,

probabilitvp : (pt,pzr. . . rpr) (3.11)

Combining the ordered parameter vectors.in equations (3.9), (3.10) and (3.11) gives
the complete parameter vector "P € ¡ì(re+rc'+z) associated with the discrete rule
set. The cxact size of the vector will depend on the particular probletr and how
it is represented, and how many discrete mutation operators are employed in the
evolution. Fbr example, there may be N real valued attributes, each divided into
)/ discrete partitions (?9 : ¡/ .V), the action might also be a single real value and
divided into A(: rc') levels, or values, and the algorithm may use all b mutation
operations mentioned in the previous section (, : 5). This would give a parameter
vector composed of t9 f n' + u real components. Some of the components may have
bounds associated with them. The probabilities are bounded below by 0.0b and
above by 1.

The parameter vector is evolved by the evolution strategies method detailed in
Section 2.2.1 on page 17. This requires a stepsize vector "p, of length û + n, + u
which is also associated with the parameter vector. There are two kinds of bounds
that can be associated with the parameter vector, initial bounds and hard bounds.
The initial bounds are used to create the initial values of the parameter vector. The
initial values are uniformly distributed bctwcen the initial bounds, and the initial
sigma value is set Io Il3 of the range of the initial bounds for each component, or
to some specified initial value. The parameter vector values are maintained between
the hard bounds. If a mutation would modify the value to be beyond a hard bound
then the mutation is not performed and the original value is kept. The stepsize
parameters are kept less than 713 of the hard bounds, or some smaller predefined
number. Where a hard bound is not appropriate the values are set to -oo and
oo and the corresponding parameter is unbounded. The probability values have a
hard lower bound of 0.05 and a hard upper bound of 1. The lower bound on the
probability of applying a discrete mutation ensures that all solutions in the structure
space remain reachable to the algorithm. The initial value of the probability values
is set to 0.5, and the initial step size is set to 1/3, its maximum value.

A rule set may or may not use a particular objective value in the rule set structure.
For example, if the rule set only ever refers to speed when it is in its low range
the value associated with defining speeds high range is not used in that rule set.
In this case the objective value associated with defining the concept of high speecl
could converge to an arbitrary random number since there is likely to be an overall
downward trend in the mutation step sizes of all variables owing to the once sampled
normal distribution in the update formula, equation 2.4on page 17. To avoid this
effect the following condition is imposed on the parameter vector:
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o An unused object variable value is reset uniformally randomly to an allowable
value.

The condition ensures that the search space continues to be sampled to try and find
a useful value when a value is not used. Unused values are not used in recombination
to prevent recombination from adding too much noise to a value that is unused in
most of the population but used in a particular rule set in the population.

In this way all components of the parameter vector are treated the same by the
parameter evolution algorithm, which is essentially a typical ES instantiation. The
object vector æ is just "P, the (r9 + n'f z) real parameters associated with the rule
set E. The stepsize vector ø is oP, the (t9 + n' + u) real parameters created as
detailed above. The ES algorithm is searching for optimal values of the parameter
vector "P associated with the rule set E.

The rule model zr consists of the symbolic rule structure E and the parameter vector4
"P.

3.I.4 Evolving the Ruleset

The rule set, E, and the parameter vector, "P, together determine the mapping,
(3.1), that the evolved model makes between vectors supplied by the environment,
(3.2), and actions. Part of the problem specification will be some function fl which
evaluates the output produced by the model E, Equation 3.4.

An initial root rule is generated. A recursive procedure generates a random rule set
with a maximum of count rules. The chain of if-not rules descended from the root
rule are generated so that they cover the possible observable state space. Figure 3.7
shows the covering rules of the initial rule set shaded light grey. The maximum
number of rules generated in the exception list is set to 5, and the probability
of generating an exception and an if-not is set to 0.75. The performance of the
algorithm is not particularly sensitive to how it the population is initialised. In this
way the structure of the rule set, E, can be initialised.

The problems considered in this thesis are all real valued attribute problem. The
implementation described here requires an a priori decision about the number of
discrete segments V¿, i, € {1, . . . ,.1/}, to divide each of the l/ continuous attributes.
A minimum, rnin¿, and maximtÍfi,, Trùat¿, value must also be specified for each at-
tribute, z e {1,. .., ¡/}.

The (p,l) sesnao algorithm for symbiotically evolving the parameter vectot,'P,
and the rule set, E, can now be stated:

1 An initial population Po : g, g : 0, of À models zr, is constructed" Each

aThe probabilities of discrete mutation incorporated in 'P are not involved in the formation of
the model zr, only the (T9 * rc') parameters which actually give meaning to the symbols referred to
in E.
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Figure 3.7. The initi,al rule set. The shaded rules are generated to couer all possible i,nput

uectors, and their ercept'i,on l'ists are set to some random rule set containing a speci,fied

marimum number of rules

model 7r consists of three components, (E,"P,"P),a, rule set E, an objective
parameter vector 'P, and a mutation step size vector "P. Each of these are

initialised as follows:

Ruleset For each j e {I,. . . , )} a ruleset E¡ is created. The structure of the
nrleset is created as described above, Each rule in the rule set is created
as outlined in item 1 on page 56.

Parameter vector For each j € {7,. . . ,l} a parameter vector "P is created.
Each component is a real value, and the length of the vector is ú+ rc' +u as

discussed in section 3.1.3, page 60. Each objective value has a maximum
and minimum number associated with it, and it has its values initialised
,r-ifn--ìt, .o-.1^-ìr, Lrafr.raon fh^oo .rqìrraqurrrrvr ¡¡rrJ r ú¡¡uv¡¡raJ

Mutation vector For each j € {1,...,À} aparameter vector "P is created.
The stepsize vector has the same length as the parameter vector, and is

initialised to Il3 of the value of. (mar¿- mi,n¿), i e {7,..., (d + K'+u)}.
2 Each model n' in the population P, is evaluatecl on the problem by the fitness

criteria. Rules which never have their premises satisfied are removed from the
rule tree. Models are ranked according to their fitness evaluation and the best
p out of the À models are chosen as the parents of the next generation.

3 Each of the ¡; parent model generates À/p models on average so that a total
of À offspring are created. Using the notation on page 56, and with r and
r' set identically, the offspring are created as follows: fori : L,. . . , ¡,t,, and
h,: I,. . .,l,
3.1 Objective values which are not used in the evaluation of the rule set have

their values randomly assigned as described on page 62.
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Figure 3.8. The ma,in conxponents of the eaolutiono,ry process for model creation

3.2 The mutation and object vectors undergo recombination. The mutation
vector is recombined by intermediate recombination and the object vector
is recombined by discrete recombination.s

3.3 The mutation vector, oP, is updated according to

"Þtn' - "p? exp(r'tú(o,1) + 1¡üi(0,1))) (3.12)

forj:1,"',(t9+n'+u)'
3.4 The objective vector is updated according to

"Þ:n' :"pri, *t/¡(o,"PÍ') (3.13)

fot j :1,''', (Û + n' + u)'
3.5 The discrete model structure, =(i), is mutated by applyingthe u discrete

mutation operators with probability "P¡, i: (?r+ K'+7),. . . , (,9+ Kt +u).
Some possible operators are discussed in section 3.I.2, page 56. This is
repeated to obtain À structures, Ê(ä).

4 If the stopping criteria has been met, then terminate. Otherwise, set g <-

g +7,set the children ¡U) :1Ê(r),"p(';),oÞ(o)), Vz e {1,"',ì}, as the next
generation and repeat from step 2.

Equations 3.12 and 3.13 are the same as the standard evolutionary strategies and

evolutionary programming equations 2.4 and 2.5 on page 17. The algorithm is
described graphically in Figure 3.8.

3.2 Evolving Rule Sets: An ExamPle

To clarify operational aspects of the proposed method an example problem will now

be illustrated. The data which the model is learning from is generated from the

sdescribed in equation 2.6, page 20
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Figure 3.9. Mean uariable ualues. The mean ualue of the partiti,on po,ints and step s,izes

for each uariable at each generation is calculated and plotted i,n the aboue graphs. The step
sizes monotonically decrease in aalue as the uariables approach the partition aalues of 0.25
and 0.75.

Mean Partition Values

following condition:

rF u € (0.25,0.75) eNo A € (0.25,0.7b) aNo z e (0.25,0.7b) rHnr\r c: l
ELSEc:0 (3.14)

A set of 1000 examples were generated by uniformly randomly generating a triplet
(*,A,r), t,U,z € (0,1), and applying the condition above to obtain learning exam-
ples (r, U,z,c). The algorithm was applied with each of the three variables divided
into three ranges) {(-oo, utl,(ur,uz],(uz,oo)}, where the o1 andu2 were evolved for
each variable and are referred to as the partition points for the variable. The error
criteria used was the mean of the square of the difference between the model output
and the correct output.

Figure 3.9 shows the evolution of the partition points for a particular run with a
population of 100. Each point in the graphs is the mean value of the partition point
in the population at that generation. Initially the partition points in the population
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Figure S.Lo. Mean operator ualues. fn" r"lÍ'i"iiitiae rate of apptying a d'iscrete mutation
operator is aueraged for each generation and graphed aboue. The graphs o're a consequence

of a decline i,n the usefulness of discrete operators as they become d,isruptiue to the fit
populat'ion of rule sets. The trend li,ne i's for illustration only.

are random and the mean hovers around the middle of the range. As the rule set

learns useful rules with certain partition values in the population these partition
values are optimised to the decision planes bounding the region described in 3.14.

The partition points converge to the correct value reducing the utility of exploring
partition points at a large distance. This reduction causes selective pressure within
the population for a decrease in the value of the deviations, corresponding to a
decrease of the step size, "P, in equation 3.13 (also, ø in equation2.4 page 17).

The trajectories of the step sizes and the discrete operator probabilities are an

emergent property of the algorithm; the method is not programmed to self-adapt by

reducing the mutation step sizes, but rather the non-elitist (p, ))-selection method

and unbiased step size updates (Equation 3.12) produce the behaviour. This be-

haviour is widely seen in optimisation problems, and here exhibited in a learning
problem, showing that the self-adaptive strategy is operating correctly in a different
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domain.6

The averaged probabilities of applying discrete mutations at each generation are
shown in Figure 3.10. The operator probabilities decrease as the population evolves
better rule structures and the application of mutations becomes disruptive. The
relative and absolute rates of the different operators differ as the run proceeds,
which supports the widely held belief in evolutionary computation that the utility
of mutation and crossover operators change over the course of a run as discussed on
page 14. The fitted trend curves in Figure 3.10 are only for illustration.

3.2.I Evaluating the Self Adaptive Mutation Rates

To establish the performance of the self-adaptive mutation probabilities two sets
of 100 runs were conducted for the self-adaptive algorithm and for 10 constant
mutation values varying from 0.05 to 0.5. The first set of runs were performed with
a population of 100 and the second set with a population of 200. The runs used the
condition 3.14 and were halted at the generation where the solution rvas found or
else stopped after 1000 generations had elapsed. Stopped runs were recorded as a
failure and removed from the analysis, which biases the statistics in favour of the
trials which had failures. Summary information about the number of generations to
solve the problem were collected for all successful runs and are shown in table 3.1
for a population size of 100 and 3.2 for a population size of 200. The associated
plots are shown in figure 3.11 and figure 3.12 respectively.

It is clear from the tables that no constant mutation rate is significantly better than
the self adaptive rate for this particular problem. The optimal rate of mutation
for a particular application of an evolutionary algorithm is most frequently not
knowable. The pragmatic approach usually taken is to experiment with a number
of different rates and choose the most promising. The results from the parameter
tuning exercises are not normally published despite being part of the experimental
set up.

Table 3.1 shows that a mutation rate of 0.3 is around the optimal constant values.
The self-adaptive algorithm does at least as well and is able to find the solution in all
runs. Self adaptation of the mutation rate is likely to have two principal advantages
over a constant mutation rate:

1 The self adaptive mutation scheme can modify the rate of application of the
discrete mutation operators independently of each other. This would allow,
for example, the self adaptive scheme to apply the addition operator more
frequently than the deletion operator. This could then create a bias towards
larger rule sets at different stages of the evolutionary pïocess.

2 The rate of mutation does not need to be constant throughout the run. For

6The domain is different because at the same time as the parameters are being optimised for
the rule set, the rule set itself is being optimised to use and exploit the parameter settings to solve
the problem.
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Table 3.L. Results with a populati,on of 100. For each m,utat'ion rate 100
runs were performed with a population of 100 and the generat'ion number
at which the correct solut'ion was found is used in the table below. Runs
whi'ch did not fi,nd the solution in less than 1000 generations are recorded
as fa'ilures. Figure 3.11 shows a bor plot of these results.

Operator Probabilities
Mutation Rate Mean Quartile 1 Median Quartile 3 Failures
Self Adaptive

Rate:0.05
Rate:0.10
Rate:0.15
Rate:0.20
Rate:0.25
Rate:0.30
Rate:0.35
Rate:0.40
Rate:0.45
Rate:0.50

260.31
407.548

360.758
352.055
318.989
305.906
275.768
326.27r
326.844
328.688
373.207

139

2r7
t67
163

r49
772
L52
155

r57
t77
193

277

349
304

ZIÐ
253
249
2L7

272

269
259
311

346
581

550

548
470
400

351

439

436
409
493

0

27

9

I
5

4

5

4

10

4

8

Table 3.2. Results with a population of 200. For each mutation rate 100
runs uere performed with a population of 200 and, the generation number
at which the correct solution was found is used i,n the table below. Runs
which did not fi,nd the solut'ion 'in less than 1000 generations are recorded
as failures. Fi,gure 3.12 shows a bor plot of these results.

Operator Probabilities
Mutation Rate Mean Quartile 1 Median Quartile 3 Failures
Self Adaptive

Rate:0.05
Rate:O.10
Rate:0.15
Rate:0.20
Rate:0.25
Rate:0.30
Rate:0.35
Rate:0.40
Rate:0.45
Rate:0.50

183.38
295.67

244.042
190.04

198.374
182.333
210.388
206.394
2I7.606
227.54L
250.061

99

L28
109

89

r04
102
L20
119

131

131

I49

747

243
792
I48
t57
746
L74
775
164
176
207

235
477

34t
256
24t
229
257
249
263
2BB

328

0

72

5

1

1

1

2

1

1

2

1

example, âs the rule set becomes more complete and accurate the number
of children generated with new rules attached can be decreased, which may
improve the number of offspring which survive from a given parent.

Figure 3.11 indicates that the optimal single mutation rate has an isolated perfor-
mance minima at a rate of around 0.3. Values above or below this level decrease
performance, and those further away decrease performance most. The relationship
between performance and mutation rate could be much more complicated than this.
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Figure 3.1-1-. Results for a population of 100. Plots of the relatiue success at different
mutation rate. The graphs show the Self-Adaptiue (SA) mutation rate algorithm in com-

parison to a number of fired mutation rate ualues. The dashed I'ine corresponds to the

median of the SA algorithm.

It is unprovable and in fact unlikely that the self adaptive scheme is the optimal
mutation strategy. The self adaptive strategies provides a generationally dependent

mutation rate, and so has the potential to perform better than a constant rate due

to the increased ciegrees of freedom avaiiabie. Whether it does so or not is noi as

important as the fact that it appears to perform at least as well as any constant

strategy. This reduces the need for ad-hoc tuning of the mutation parameter.

Table 3"2 shows that the optimal constant mutation rate for a population of 200

is similar, although possibly lower. In general ii will be the case that the optimal
mutation rate will depend on the population size used. The self adaptive rate is

again as good as any of the constant mutation rates, and is again the only strategy
which was always able to find the solution in under 1000 generations.

A learning algorithm such as the one described in this chapter can be applied to
a wide variety of different problems. It is unlikely that a single constant mutation
rate will perform sufficiently for all problems the algorithm is applied to. The use of
a self adaptive rate is motivated not so much by the desire to use the optimal rate
for all problems, but rather to use an automatically tuned competitive rate for a

tl
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large number of problems. For the simple problem used here, 3.14, the self adaptive
rate can be said to be at least as good as any of the experimentally discovered
constant rates. For the non-trivial problems considered in this thesis there will not
be sufficient resources to statistically analyses constant mutation rate strategies for
comparisons with the self adaptive rate. It is clear, however, that the self adaptive
strategy is sufficient for solving the problems presented in this thesis, and it is clear
from this chapter that it is no worse than, and possibly better than, any constant
rate for at least one problem,3.l4.

The problem considered in this section is a simple supervised learning task chosen

to demonstrate some of the operating characteristics of the algorithm. This problem
could be solved by an inductive learning method such as C4.5 [181, 182, 183] in a
matter of seconds since the algorithm is presented with a set of examples and their
correct prediction. In the next chapter the more difficult case of an unsupervised
learning task is addressed.
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Table 3.3. Summary of symbols used throughout thi,s chapter

¡¡

N

V/

a(t)
s
s(¿)

T
I

The number of attributes
The (evolved) model mapping observed environment states to al-
lowable actions
The set of allowable actions
The set of observable states
The ll-tuple vector of sensed attribute values at time ú € IN
The set of possible states
The state at time ¿ € IN
The environment. A mapping of 5 x N to .S

The mapping of the actual state value s(¿) to the observed state
value ¿(¿)

The run set formed from the tuples 1a(t),a(t)¡, ú € {1, ...,7}
'I'he evaluation function which is applied to the run set of the model,
ie CI(W) (e IR)
A rule set
The parameters associated with a rule set, E
The mutation step size vector associated with the objective values
rP
The number of parameters associated with the value sets of the
model
The number of parameters associated with the consequences of the
model
The number of discrete evolutionary operators defined for the model

n
CI

øP
OP

ú

KI

u

3.3 Summary

This chapter has described the proposed sASME evolutionary framework. The gen-
eral frame\l/ork is designed to be a system capable of symbiotically evolving param-
eters and discrete rule structures in a self-adaptive manner. The discrete structures
used throughout this thesis ar'e a novel rule set structure which introduces an explicit
default hierarchy representation to an evolved Pittsburgh-style learning system.

The sesup framework is designed to evolve representations which have considerable
parameter components alongside discrete structures. Previous evolutionary methods
have concentrated on evolving structures (like GP) or evolving parameters (like
traditional ES/EP evolutionary systems).

The atomic parts of the evolved rule set are IF-THEN rules which are a high level,
symbolic knowledge representation. This aids in the comprehensibility of the evolved
knowledge [65].

There are several motivations behind the self-adaptation used in the sasup frame-
work.

1 Self-adaptation of the parameter vector allows the parameters to ad.just their
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mutation rates according to changes which occur in the discrete structure
which is symbiotically evolved with them.

2 Self-adaptation of the discrete structure allows the rate of change in the struc-
ture performed by different operators to be balanced by the algorithm. This
balance occurs according to the rates of application of other operators, as well

as the topology of the current structure. This allows the mutation rates of
various operators to change relative to one another during the course of a run.

Finding the optimal mutation rate for tasks in general is not possible, however it is
shown on a simple learning task that the proposed self-adaptation mechanism can

effectively learn in a learning domain. It is also shown on a simple task where the

optimal mutation rate is empirically established that the self-adaptation method
performs as well as, and most likely better than, the optimal constant mutation
strategy. Further, in two variants of the same problem the optimal constant rate

appears to change while the self-adaptive method is still the best mutation strategy
to employ. The best choice of mutation rate is a function of the structure of the
current population and the search space. This is the motivation behind using a
self-adaptive mutation rate.

The test case scenario presented demonstrates that for this particular learning prob-

lem the self-adaptive strategy presented is the best choice. Although it is only a

single empirical study, it provides some confidence that the self-adaptive strategy

will be effective more generally. However, under what conditions the self-adaptive

strategy will perform better than the best constant rate is an open question. Most

learning problem are sufficiently complex that only a handful of calibration exper-

iments can be performed. If this had been done to find a fixed rate on the test
problem used in this chapter then the likely performance of the algorithm would
have been significantly worse than the self-adaptive strateg¡ since the self-adaptive

strategy significantly outperformed nearly all constant strategies'

The principal innovation of the sRsli¡p framework is the explicit division of the pa-

rameter optimisation task from the discrete structure optimisation task. This allows

a standard self-adaptive evolutionary strategies algorithm to optimise the param-

eters whilst another self-adaptive algorithm optimises its symbiont, the discrete

structure.

The second innovation introduced in this chapter is the utilisation of rule lists with
exceptions as the choice of representation for the discrete structure. These rule sets

incorporate an explicit representation of a form of default hierarchy, allowing the
hierarchies to be evolved by a Pittsburgh style evolutionary algorithm.
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Chapter 4

Evolutionary Learning I:
I-Insupervised Learning of
Dynamic Control Systems

Living organisms are consummate problem solvers. They exhibit a versatility
that puts the best computer programs to shame.

John Holland [120]

This chapter introduces the cart-pole problems and applies the SASME algorithm to
evolve rule sets to solve some of these problems.

4.L Background

Control problems involve systems which are described by state variables, which have

some variables, called control variables, over which choices are made, and which have

some goal or desired state. A diagrammatic description of a control system is shown

in Figure 4.1.

Control problems are usually unsupervised learning problems since the correct action
for a given state is not known and instead must be discovered. The problems are

teleological, and this usually allows a fitness function to be defined. Often there is
a cost (or equivalently a reward) associated and the problem becomes to find the
optimal control. Costs are frequently measured in units like time, energy, fuel used,

money spent or similar'.

There has been a lot of research on finding mathematical solutions to optimal control
problems. One of the most common techniques employed is dynamic programming

[18, 216]. Dynamic programming is a suite of algorithms which compute the optimal

75
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Observed State

Control

State

Figure 4.L. A con'trol'prcblern. At any giuen ti,me the state uo,rio,hl,es describe the system
completely. The controller malces some obseruat'ion of the state uariables and can use this
in determini,ng what control signal to apply at a q'iuen time.

control, or policy, of a multi-step problem for which Bellman's principle is applica-
ble1. That is, problems whereby the optimal solution of an n-step problem is the
optimal solution of the n - l-step problem where the optimal outcome of the first
step is achieved [37]. This allows a recursive algorithm to be formulated which can
find the optimal policy of the n-step problem. In particular, dynamic programming
can be used to solve a Markov decision process, and is an important theoretical
underpinning to a lot of reinforcement learning algorithms [130, 216]. Dynamic
programming requires an accurate model of the system and for many problems is
infeasible due to the excessive computing and storage requirements of the method.
Much of the reinforcement learning literature is concerned with how to utilize the
ideas used in dynamic programming in environments where an exact model is not
known and how to make dynamic programming like algorithms which do not require
Iarge computational resources 12161.

In this chapter a number of questions will be asked about the application of the
self-adaptive rule-based induction system described in the previous chapter on a
well known and frequently used control problem. The questions of interest here will
L^.UU.

o How much information is required about the problem in order to find the
solution?

o can the system learn comprehensible control rules for the problem?
o Is the method able to automaticallv find an effective quantisation of the state

space?

4.L.L The Cart-Pole Problem

The test problem used in this chapter is the cart-pole balancing problem in trig-
ve 4.2. The problem is also referred to as the broom-balancing problem and the

rBellman's principle should not be confused with Lewis Carroll's "Bellman's principle" that

Sys Lem

what is said thrice is true.
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u

0

t#

Figure 4.2. The cart-pole system. The cart is si,tuated on a limited length tro,clc and

has mounted, on i,t a hinged pole. The aim i,s to keep the defl,ecti,on of the pole to within
prescribed bound,s while leeeping the cart on the limited traclc. The control is a constant

force applied horizontally to the cart. Usual perforTrLance m,easures are the sum of the

d,,ifferences between the system and a position with cart in the center of the track and pole

uertical, and the amount of time for which the system has remained balanced.

inverted pendulum problem. The system is a simple control scenario where the

controller must balance a hinged pole on a cart. The cart is on a track of finite
length and the pole must be maintained within a prescribed number of degree's

from the vertical position. The controller has two available control options, to push

the cart to the right or to the left, with some constant force. The problem can not

be sustained in the equilibrium position of having the pole balanced and the cart

stationary since some set non-zero force must always be applied to the cart.

The cart-pole problem is an example of a non-linear dynamic optimisation problem.

Although the goals and the statement of the problem differ slightly, the system has

been used extensively in the machine learning literature to test different control

techniques 1159,77,167,236,220,739,222,753,68, 151, 74,737, 47,321, and is
one of the earliest applications of machine learning [159]. The problem is interest-

ing because it is unstable, non-linear, and more than one state variable has to be

controlled by a single control 1222).

The state of the cart-pole system is described completely by 4 variables:

Cart Position The cart position in metres is labelled ø, where r is the distance

between the current center of the cart and the middle of the track.

Cart Velocity The cart velocity is labelled2 r and is measured in metres per sec-

ond.

Pole Angle The pole angle is labelled á and is measured in radians with a value

of 0 representing the pole in a vertical position.

Pole Velocity The angular velocity of the pole is labelled á and is measured in
radians per second.

2The dot notation is used to denote the derivative with respect to time, ie ù : S and ¡ : *#



The force applied to the cart
The position of the cart on the track
The angle of the pole from vertical
The mass of the cart
The mass of the pole
Acceleration due to gravity
Half the length of the pole
Coefficient of friction of the cart on the track
Coefficient of friction of the poles hinge

Description
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Table 4.1. Constants used, in Equat'ions 4.1,4./t
Symbol Value

u
ï
0

M
rn

I
I

þc

[-10,10] N

[-1.0,1.0] m

[-15,15] degrees

1.0 kg
0.1 kg
-9.8 m/s2
0.5 m
0.0005
0.000002

The control force is labelled z and is measured in Newtons. The equations of motion
describing the cart-pole system are:

u - lt" sgn(á) + ¡'
M +rn (4 1)

þp0
mI

where f is the effective force of the pole on the cart,

F : mto2siná * l-.or t ( 4+ gsi'B)4 \-¿ )
and m is the effective mass of the pole,

T

ë -*(rcoss*esind*

ñt:m(t-1\4

(4.2)

(4 3)

cos2g (4 4)

and the parameters used in Equations 4.1 4.4 are shown in Table 4.1. The system is
integrated numerically by using a fourth-order Runke Kutte method [3g, page 112]
with a time step of 0.02 seconds.

The cart-pole problem is intended as a test problem for the sASME algorithm. The
problem itself is of no interest per se for this thesis. Rather it is representative of
a type of non-linear dynamic control problem which has been extensively used in
the literature. If one \¡/ere interested in solving the problem there are a,t least two
doctoral dissertations3 which have been published on the control theoretic solutions
to the problem, by Higdon in 1963, [111] and Schaefer in 1965, [ZO4]. The intention
here is not to investigate solutions to the cart-pole problem but rather to investigate
the application of the sASMtr algorithm to evolving rules to control the cart-pole
system.

Iu order to put the current approach in perspective, a brief overview of some of the
other learning algorithms applied to the cart-pole problem is presented next.

a

3According to wieland, [236]. The author has sightecl neither reference.
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4.1.2 overview of Learning with the cart-Pole problem

Previous attempts are extensively reviewed by Ling and Buchal, [153] and Var5ek

et al. 12221. Representations of the controller for the cart pole system have been

implemented in a number of different ways.

Initial approaches were symbolic and were based on partitioning the state space

in some way. One of the earliest partitioning approach was Michie and Chambers

BOXES algorithm, [159]. In the BOXES approach to the cart-pole problem the state

space is divided intoZZS different boxes by partitioning the variables (r,h,0,4; ittto
5, 3, 5 and 3 ranges respectively. At any instance the system is in one of t'he 225

predefined boxes. The boxes algorithm associates an action with each box and

Iearns by modifying actions which are associated with large errors after a number

of iterations. The choice of the ranges in the state space is critical to the BOXES

algorithm, and the learned strategies proved to not be generic in the sense that they

failed to control the system from random initial states [153]. It was later shown that
some of the boxes could be amalgamated making the controller more comprehensible.

The algorithm could also be improved by BOXES learning being applied to a range

of initial states and the different results collated by a voting algorithm for each

box [202, 153]. The BOXES approach uses a representation similar to most of

the reinforcement learning methods which have been applied 1222]. In a number

of these approaches on the cart-pole problem the individual boxes were combined

or quantised by a panoply of different algorithms. Automatic quantisation of the

partitioning of the state space is seen as important since for many problems a correct

partitioning will not be known beforehand, and the results of the algorithms seem

to be dependent on the partitions chosen [153].

Another representation applied to the cart-pole problem is to learn a numerical

equation which approximates the control surface. This approach was taken by the

classification and regression tree algorithm, CART, for the cart-pole problem [222,
153]. In the CART approach the state space is not pre-partitioned, but the results

depended on some domain knowledge and heuristics, and the output was a very

complicated numerical equation which did not generate any understanding or rules

[153]. The approach was also unreliable 1222].

A third representation used for solving the cart-pole problem are neuron-like ap-

proaches. A single associ,ati,ue search element (ASE) and a single adapti'ue cri'ti'c

element (ACE) were used by Barto et al. to solve the problem [17]. The approach

used the same state space partitioning as the BOXES algorithm. The critic element

is charged with predicting the outcome should the ASE change a particular action

for a particular box, and is then used as reinforcement for the ASE as it learns by

modifying its weights.

A number of evolutionary learning approaches have also been applied. A boxes-like

approach was implemented by coding the boxes as a binary string corresponding to
the action to be taken when the state space entered a particular box [167]. Var5ek

et al. use a more complex system to solve the problem 1222]. The state space is
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partitioned into a boxes like array, each variable being divided into 3 different ranges,
giving 3a : 81 bits corresponding to actions for the given state. The partition points
for the chromosome were then also coded in binary and evolved. By assuming
symmetry, the number of bits needed can be halved and a controller for the cart
pole problem was evolved. The controller table was not comprehensible, and so a
rule induction system was used to derive a rule set from the induced control table.
The induced rule method was only supplied with actionfbox pairs for boxes which
had been entered during the evolution of the rule sets, and the system was set to
prune the rules drastically and to limit attribute comparisons to a single attribute-
value pair for each rule. The rulesets derived \4/ere now comprehensible, but no
longer reliable. The rule set was then optimised in a third stage by using a genetic
algorithrn to tttne the numerical values used in defining the partition points uscd in
the rule set. Again a binary genetic algorithm was used, this time with more bits to
represent a number to allow for better precision. This was then the final controller
for the cart pole system. The final controller \4/as comprehensible and performed
better than any of the previous controllers.

Another evolutionary approach to the cart pole problem is to evolve a neural network
to balance the system. This has been done with a binary encoded weights arrày L2g6l,
with an evolutionary programming algorithm [7a] and with the Symbiotic, Artificiál
Neuro-Evolution (SANE) method [97]. The resulting neural networks are able to
control the cart-pole system, but provide little information about how they are doing
so.

Genetic programming has also been used to evolve equations which can balance the
cart pole system. Koza [139, pages 289-307] evolves a controller for the 3-state
problem excluding the position of the cart. Evolutionary programming has also
been applied to symbolic regression with the same function and terminal set and
achieved similar results [47].

4.L.3 fmplementation

Although the cart-pole problem has been widely used, the typical statement of the
problem is not very difficult to solve. The most frequently used. success criteria
is the survival time of the system. The number of iterations used to evaluate the
survival time has been limited to 10,000 iterations in many studies 1159,222,1b3, 68],
representing just 3.3 minutes of simulated timea.

Value sets

The value sets that the evolvecl rule set E utilizes are a partitioning of the real valued
state space, s(¿) - (r,r,0,4). nacfr of the four variables in the state space is divided

aThe choice of 0.02s as the step size in the numerical integration appears to be universal
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The position of the cart on the track
The angle of the pole from vertical
The position of the cart on the track
The angle of the pole from vertical

Description

Table 4.2. Initial state aari,able ranges. Shows the limi,ts of the initi,al
position of the cart pole system used in trials.

Symbol

-0'5,0 m

l-2,2] degrees

[-0.1,0.1] m/s

-1,1

into three partitions,

Low (--,pr]
Medium (pt,pr]

High (pt,*)

ï
0

ù
è

(4.5)

(4.6)

(47)

where the real partition values are evolved as part of the object parameter "P. This
makes d : 8 parameters in "P associated with the evolution of the parameter set.

Action Parameters

Two different problems are addressed with respect to the set of allowable actions N

Constant Actions The allowable action set is restricted to a 10 Newton force
applied to the left or the right of the cart. That is, N : {-10, 10}. The
number of actions, A, is 2, with ø1 : -10 and u2: 10. Consequently there
are no evolved parameters associated with the consequence part of a rule, and
so K¡ : 0, lç € {1,2}, and K' : 0. Experiments using this set of allowable
actions have been used in the literature [159, 17,767,222,753,68].

Evolved Actions The allowable action set is restricted to a force in the range

[-15, 15] N to be applied to the cart. In this case N is the real interval [-15, 15].

The number of possible actions is restricteds to 2, A : 2. The number of
evolved parameters associated with each allowed action, rc¿ is 1, k e {7,2},
and the total number of evolved parameters associated with the evolved actions
is rc' : 2. This means that each rule can have one of two consequences, which
is to push the cart with one of the two evolved forces.

Initialisation of the system

When assessing the generality of the results it is usual to start the system from
a range of initial positions. The initial values used in this chapter are shown in

sExperiments with more allowable actions were conducted but are not reported here. Increasing
the number of allowable actions makes the problem easier to solve.
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Table 4.2 and are equal to the widest values which occur in the literature. Some
care has to be taken when evaluating individuals from random initial conditions.
If each rule set in the population is evaluated from a different random initial state
then some offspring may be eliminated because they were randomly applied to a very
difficult initial state. Other offspring may survive only because they were started on
an easier initial state. Generalisation can suffer when there is insufficient sampling
of the initial positions. If a parent rule set can only control the system from a limited
number of states, for example, only when the cart pole system is left of the centre
of the track, and its offspring are tested from a single random initial state, then half
of the offspring will end up being tested from the area of the search space that the
parent has specialised in. If this area gives those offspring good fitness evaluations
then they will persist in the population and the solutions will not be general.

To solve these issues the results reported in the next section use the following strat-
egy to generate initial positions to evaluate solutions:

o The same initial conditions are used for all members of the population.
o Conditions are generated from the edges of the initial state variable regions

described in Table 4.2. This strategy \/as found to effectively evaluate the
success of controllers on any initial state generated within the initial limits.

o The controller is given the mean value of its performance over all initial con-
ditions it is applied to.

o After the controller is evaluated on a particular initial condition it is always
immediately after evaluated on the refl,ection of that condition. That is, if
the condition is for the cart to be furthest to the right, going left as fast as
possible with the pole to the right and moving right, then it is applied to the
same state with left and right reversed.

o No two initial states in a set of states used for evaluation are identical.

Typically the population is evaluated from 2 different random points on the edge of
the feasible region and their reflection. The fitness is assigned to the mean of the 4
evaluations.

Evaluation

A number of different feedback options are possible for the cart-pole system.

Time Only The least informative feedback is the survival time of the cart-pole
system. This assumes no apriori knowledge about how to go about the prob-
lem. The main problem with using survival time alone is that the controller
is not punished for moving the system away from the middle of the track. It
is possible to generate controllers which do not take into account the position
of the cart but which nevertheless are able to control the system for the re-
quired periods of times. This occurs because the pole is the most important
state information for the system. The system cannot push the cart off the
end of the track without first unbalancing the pole from nearly every state.

o
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So the system often learns to balance the pole whilst moving the cart as little
as possible without ever learning to keep the cart away from the ends of the
tracks. There is nothing v¡rong with such a control strateg¡ since it solves the
problem given to the system.

Time and Position The survival time reinforcement can be augmented by the
mean distance from the centre of the track to make a reinforcement signal
which punishes solutions which keep the cart away from the centre of the
track. This is done by using the normalised distance of the cart from the
centre of the track at each time step and the normalised survival time of the
cart pole system. The fitness can then be calculated as follows:

PosErr¿ k:7,...,¡y'
S¡:t

i=L

lx

lma*
(4 8)

(4 e)

(4.10)

(4.11)

(4.13)

PosErr¡-^¡
: 1ç

¡¡.Lk:I
-]V: r\ì

1Y z-t
k:r

Põmrr

s

,S¡

S*

S-u*

Í : 3(t-PosErr)

where PosErr¡ is the sum of the normalised distance between the cart and the
center of the track at each time step, i,; r is the position of the cart and tr-u* is
the maximum allowed position of the cart from the centre of the track; PõsErr
is the average normalised position error, averaged over the number of trials,
l/ and normalised by. the survival time6 ,9¡, of the trial k e {1,. . . , N}; S,'o
is the maximum survival time; ,S is the mean normalised survival time, and /
is the normalised fitness, which is to be maximized

F\rll System State The position of the pole can also be used in the fitness calcu-
lation by replacing Equations 4.8 and 4.9 with the following:

(#.#) 1k ¡/ (4.12)

Err¿

,S*

where Err¿ is the k-th trials normalised error, d-o is the maximum allowed
angle of the pole, d is the angle from vertical of the pole and Err is the nor-
malised error. The other variables are identical to those described above, and
Equations 4.r2 and 4.13 combined with Equations 4.10 and 4.11 allow the
fitness to be calculated.

6The number of simulated time periods that the cart pole system remained in a valid state
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Table 4.3. Table of stati,stics from F'igure 1.3 and 1¡./¡ showi'ng the gener-

at'ion at which the system had balanced the cart and pole system

Fitness criteria Evolve Action Quartile 1 Median Quartile 3

Complete state
Position and time

Time only
Complete state

Position and time
Time only

No
No
No
Yes

Yes

Yes

11

11

10

11

t2
t4

32

r)r)

32

39

36

>39

18

16

16

22

77

23

4.2 Experimental Studies on the Cart-Pole Prob-
lem

Throughout this section a population of 100 rule sets are used to evolve controllers

that can balance the cart pole system for a minimum of 5.5 hours of simulated timeT

from a set of random initial position with the parameters shown in Table 4.1.

4.2.L Evolutionary performance

A set of 100 runs were conducted using each of the three fitness criteria discussed

in the previous section and using a choice of two constant action values, -10 N or

10 N. The reported survival time is the mean survival time of the cart pole system

when started from four different random initial conditions, as discussed on page 81.

The results shown in Figure 4.3 show the median survival time over the 100 runs of
the best rule set in the population at each generation. The shaded area indicates

the interquartile range of the best survival time. The results show that the choice

of fitness function does not greatly affect the performance of the SASME algorithm.
It also shows tirat a solution to the cari pole problem is most frequently evolved in
less than 40 generations.8

The experiment was repeated with the evolutionary method able to evolve the values

of the two applied control forces, as discussed on page 81. This makes the problem

somewhat more difficult since there are an extra two parameters to evolve. Figure 4.4

shows the median evolutionary performance of the algorithm on this problem after
100 runs were performed on each of the fitness criteria.

Table 4.3 summarizes the results of Figure 4.3 and 4.4 and shows the distribution
of the number of generations required to find a solution to the problem of balancing

the cart pole system for 5.5 hours.

71 000 000 time steps of the model integration.
sThese runs were terminated at 40 generations. By this time nearly all runs had found a

controller which would balance the systern for 5.5 hours.
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Figure 4.3. Results of euoluing controllers lor the cart pole problem. The graphs show the

med,ian suruiaal time of the best of generation oaer 700 runs. The shadeil, area indicates

the i,nterquørtile range of the best suruiual time at each generat'i,on. Time is measured

in 0.02 second, increments, as used i,n the numerical integration. The three sets of runs

correspond, to ilifferent fitness functions: Usi,ng the normalised, mean square error of the

state of the complete system and the suruiual time, using only position and suruiual time

and, using only the suruiual time of the system.

Discussion of Evolutionary Performance

From Table 4.3 it is clear that the sASME algorithm is able to reliably find a controller

which can balance the cart pole system for 5.5 hours. Increasing the amount of

feedback from the system to the learner does not improve the learning time in this

case. There are two likely factors which cause this. The first is the rapid speed

that the algorithm is able to solve the problem. This means that there is not much

opportunity for improvement. The second is that the increased feedback is not likely

to be as useful as the literature suggests in this case. Evolutionary learning uses

the environmental feedback to update the model after the model has completed its

interaction with the environment. There is no attempt to update the model onli,ne.

Therefore, errors in the physical state of the cart pole system are averaged over all

time steps and become s\4/amped by difference in the survival time when comparing

models. After the system is balanced the errors in the state can be reduced resulting

in a cart pole system which remains close to the center of the track with the poles
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Figure 4.4. Results of euoluing controllers for the cart pole problem when the applied, force
is subiect to euolut'ion- Graphs show the median performance of the atgorithrn ouer 100
runs with the shaded areas showing the interquartile range of that performance. Compare
with Figure 1.3 where the applied force is not euolued^

nearer to upright.

When the problem given to the system is extended to finding the numerical values of
the controller the system is still able to reliably find a controller which can balance
the cart and pole from a range of initial conditions for 5.5 hours. Table 4.3 shows
that the number of generations required to do so appears to increase by a small
amount. The requirement to search for solutions using an evolved force magnitude
increases the number of parameters which need to be evolved by two, increasing the
complexity of the problem. It also reduces the amount of symmetry supplied to the
learner, which usually discovers controllers which supply a different amount of force
to the left as to the right of the cart.

In summary it can be said that the evolutionary system is able to reliably evolve
controllers for the cart pole system for 5.5 hours of simulated time from a wide range
of initial conditions with only sparse success-failure time feedback.

I
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4.2.2 TYajectory of the Evolution

Section 3.2, page 65, demonstrates that the partition points of the evolutionary
method converge to the artificial values used to generate the data set used in that
section. In the case of the cart-pole problem used here there are no correct values
of the partition points of the state variable attributes. Whether a partition point
works depends on the particular control strategy that is being used by the rest of
the rule set. The precision in the value of a partition point is also likely to be less

important for the cart-pole problem. A rule which pushes the cart back to the left
when it is further than 0.31m from the center of the track may work as well as a rule
which pushes the cart left when it is further than 0.32m. Other values may require
more precision because of the interaction between the evolved values and the rest
of the rule set. The structure of the evolved rule sets will be considered in the next
section.

A population of 100 rule set models is evolved for 40 generations using the survival
time and with evolved actions. The fitness at each generation and the behaviour
of the best model are shown in Figure 4.5. The evolved strategy is able to control
the system for 5.5 hours of simulated time as shown in the bottom two graphs of
Figure 4.5. The graph on the top right shows a combined close up view of the
bottom two graphs over the first 30 seconds of simulated time. The graph shows the
evolved control strategy oscillating the pole so that it is pointed towards the centre
of the track (the deflection is to the right when the cart is to the left of the centre
of the track).

The evolution of the partitioning of the state space occurs while the rule set is
evolving. Figure 4.6 shows the evolution of the state space partitioning for the
run used in Figure 4.5. Each point in the graphs represent the mean value of that
partition point in the population at that generation. The graphs to the left show
the mean stepsize of the corresponding partition value in the population at each
generation. The values evolve to optimise the particular discrete rule set that they
are co-evolving with. The step sizes reduce as the fitness of the child models become
better when they mutate their parent values less.

The application rate of discrete mutation operators on the rule set is shown in
Figure 4.7. The mutation rate graphs show that the relative and absolute values of
mutation during a run vary significantly in this run. Overall the rate decreases as

the run progresses, increasing the evolvability of the population as children closer in
structure to their parents have a higher fitness.

Discussion of Evolutionary Trajectories

The evolution of the values associated with the rule sets for the cart pole problem are
different to the evolutionary trajectories the values followed in the simple example
problem of section 3.2 on page 65. In the earlier problem the values of the attributes
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Position of the cart and pole in the first 30 seconds
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Figure 4.6. Euolued action model graphs. The graphs show the suru'iual time of the best

found model at each generat'ion and the behauiour of the final best found mod,el ouer the

fi,rst 30 seconds and ouer the entire 5.5 hours of s,imulated, tzme.

converged to the values used to generate the learning examples, There are no such
corresponding values for the cart pole problem. A different run of the algorithm pro-
duces rule sets with different partition values. Different sets of partition values occur
because the best set of values will depend on the rule set which is used to generate
the control strategy. The self adaptive strategy shows some evidence of being able
to modify its mutation step size in response to the environmental circumstances in
which it finds itself. The step size does not monotonically decrease, which provides
evidence that the evolving parameters are searching within an increasing radius at
different stages in the search. This may occur when the discrete structure discovers
a new rule utilizing a value which can then be optimised or tuned.

Figure 4.7 shows that the mutation probabilities vary in a similar way to Figure 3.10
on page 67. Again, the rates of mutation applied to the discrete structure at each
generation vary in each run ofthe evolutionary algorithm according to the particular
trajectory that a particular run takes through the search space. Figure 3.10 shows
that in the last 3 generations the rate of application of the deletion operator acheived
its largest values. This is most likely a stochastic effect, since the ratee becomes
about 0.45, and a high rate will persist if enough high fitness individuals persist in

eNote that rate here refers to the probability of application of a particular mutation, not the
actual rate of application. The usage conforms with the algorithm description given in the previous
chapter.

o
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Figure 4.6. Cornparison of the euolut'ion of the state uariable partitions. Each point

represents the mean ualues of that particular partition point in the population at that

generation. The step sizes are the mean aalues of the stand,ard' deuiations used' to mutate

parent mod,els at that generation for that partition ualue.

the population with that rate. The expectation is that over half of these individuals
would not have experienced a deletion mutation. In this sense, the graphs show a

snapshot of a particular finite population undergoing evolution; however, the trend
remains for the rate of application of the mutation operators to decrease as the

evolution proceeds.

Figure 4.5 shows that the symbiotic evolution of the parameters shown in Figure 4.6

and Figure 4.7 is able to evolve an effective controller of the cart pole system. The

evolved model is able to control the system for 5.5 hours from a range of initial
conditions, one of which is shown in Figure 4.5.
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4.2.3 The Evolved Rule Structure

The snsup method symbiotically evolves the rule set along with the parameter
vectors. Rule set models are chosen because they are transparent, which allows the
reason'ing that the controller uses to make decisions to be ohserved.

The controllers which are evolved for the cart pole problem are usually succinct,
consisting of only a small number of rules. An example of an evolved rule set is
shown in Figure 4.8. Each rule used in the controller has an expected condition and
outcome. Rule 1 in Figure 4.8, for example, states that when the cart is moving
quickly to the left push it to the right. Rule 2 states that if the cart is near the center
or to the ieft of the track then it shoulcl be pushed to the right. Rule B corrects rule
2 by adding the exception that if the pole is leaning left then the cart should be
pushed to the left anyway (pushing to the left would have the effect of balancing the
pole). The pole falls quickly and so has the highest priority in the controller. The
numerical values which correspond to the linguisticl0 labels are shown in the table
below the rule set in Figure 4.8. The percentages to the right of the rules are the
number of times that the rules antecedent is found to be true. Whether the rules
consequence is used depends on whether the rule has any exceptions which have
their antecedent found true.11

10The linguistic labels are arbitrarily defined by the author. No attempt at objectively assigning
such labels has been made. For the SASME algorithm, the labels correspond to enumerated value
sets.

llThe sum of the usage of the rules along the main spine does not always add to 100% due to
rounding errors in the reported percentages.
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IF POSITION IS

right THEN pusH

To ÏrP left

IF POLE IS left
THEN PUSH TO THE
left

IF POLE ts right
THEN PUSH TO THE
right
TÞ NoT

IF POSITION IS Not
right THEN PUSH

ro rHe right
IF Nor ExcEPTroN

IF NoT

THEN PUSH TO THE
IF VELOCITY IS left

right1 t3%

2 62%

4 8%3 32%

b 78%

Description Value
Position of cart is not to the right
Position of cart is to the right
Pole is to the left
Pole is to the right
Velocity of cart is to the left

ø ( 0.3m
r ) 0.2m

á < 0.004rad (0.2")
d > 0.008rad (0.5")

ù < -0.4mf s

Figure 4.8. An euolued rule set and associated parameters for the cart pole problem. The
ualues of the numerical labels in the rule set are shown in the table. Rules joined to the
right are tested if and only if the rule immediately to their left i,s true. Rules joined from
aboue are tested if and only if the rules aboue are not true. The percentages refers to the
percentage of cases that the rule is used in controlling the cart and pole tor 5.5 hours from
a particular random i,niti,al position.

The table in Figure 4.8 shows that the two partition values evolvedl2 for the position
attribute are 0.3 m and 0.2 m. The first value set corresponds to a position of less
than 0.3 m from the center of the track, which has been labelled as not right in
this example. The second value set would correspond to a position on the track
between 0.2m and 0.3 m, and is not used in the rule set. The third value set is for
a position further right than 0.2 m from the center of the track. Rule 5 uses this
value set, although because of its position in the rule set this rule will only be tested
for positions greater than 0.3 m.

The rule set shown in Figure 4.8 does not use the angular velocity, 0 no, does it use
all of the partition points for the velocity and position attributes.

Unlike some other studies [222], the evolved partition points are not assumed to be

12All quoted values are rounded, the actual values produced and used in the simulation were of
double precision.
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Position of the cart and pole in the first 30 seconds
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Figure 4.9. Solution generated by controller i,n Figure f .8, showi,ng the behaui,our of the

controller appli,ed to the system.

symmetric. Because of this the rule set in Figure 4.8 does not maintain the cart near
the centre of the track. The rule in Figure 4.8 was evolved with the survival time
only as the fitness function. This fitness evaluation places no bias on the solution
to maintain the cart-pole position near the centre of the track. Figure 4.9 shows

the position of the cart and pole in the first 30 seconds of a simulation trial from
a random initial state and over the 5.5 hours of simulated time using the controller
shor¡.'n in Fiqrrre 4.8. The nìots of nosition and deflection asain-qt time over the 5.5

hours at the bottom of the figure show that the carts position is centred around
0.25m, and not around 0m.

Another rule set for the cart-pole problem is shown in Figure 4.10. This rule set

uses a conjunction as its root rule. Rule 2 will result in the cart being pushed in
a direction which would be expected to further unbalance the pole. However the
rule is only parsed when Rule 1 is false, which requires that the pole will be moving
quickly to the right (faster than 24" ls) even though it is currently left of upright.
Rules 4 and 5 state that when the pole is near upright the cart should be moved
to the left except when it is further right than 0.3m. This rule will have the affect
of moving the pole to the right of 0.3m and unbalancing the pole to the left of
upright. Presumably the preceding rules which deal with the unbalanced pole are

biased towards moving the cart to the left of the position where they are initially
used.

Hours

ffi F
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IF POSITIoN IS not right
THEN PUSH .fO .IHE IEft

IF PoLE IS near uPright
THEN PUSH rO rnn right

ExcEPTroN

rF PoLE ts right THEN PUSH

ro rnn right

lF Nor

rF PoLE ts left THEN PUSH

ro rno right

IF NoT

rF PoLE Is left AND PoLE vE-
LocITY IS not right rHnN
PUSH To rHs left
IF NoT

1 40%

, 72%

3

27%

26%

70%

4

5

Description Value

Position of cart is not to the right
Pole is to the left
Pole is near upright
Pole is to the right
Angular velocity of pole is not to the right

r ( 0.3m
d < -0.003rad (-0.2")

-.003rad (-0.2') <0 < 0.02rad (1'1")
0 > 0.02rad (1.1")

e < O.+Z ndf s (24 " ls)

Figure 4.LO. An euolued rule set lor the cart pole problem. The ualues of the numerical

labels are shown in the table. The output of thi,s rule set 'is shown in Figure 1.11

Figure 4.11 shows the long term trajectories of the cart and pole using this rule set'

The cart stays near 0.3m from the centre of the track. Again, the fitness evaluation

used considered only the survival time of the system. The behaviour of the system in

the first 30 seconds in Figure 4.9 and 4.11 are remarkably different, showing that the

evolved controllers for this problem utilize different strategies to control the system'

A more complicated case is where the algorithm has to also evolve the strength of

force to apply along with the rule set. The model which produced Figure 4.5 was

evolved with variable action strengths. The rule set which describes this controller

is shown in Figure 4.12.

Figure 4.12 also shows the evolved forces which the rule set uses. In the previous rule

sets the number of times a force to the right is applied is equal to the number of times

a force to the left is applied, since the two forces are equal and the system cannot

drift away from the centre of the track. In the case of different force magnitudes
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Figure 4.11-. Solution generated by controller in Figure 1.10, showing the behauiour of
the controller applied to the system.

applied in different directions the application rate of the two actions in the controller
shown in Figure 4.72 are within precision equal to the ratio of the applierì forces,

Value of action 1 Rate of use of action 1

Value of action 2 Rate of use of action 2
x 1.25

Discussion of Rule Set Models

The rule sets evolved by the system are a transparent control representation. By
looking at the resultant structures some insights into how the model is controlling
the system can be learnt. The models can be said to be comprehensible.

A different model is found with each new run of the evolutionary process. One reason
for this is the unconstrained nature of the probiem. Nevertheless some commonalities
between models can be found. All of the models shown use the condition that when
the pole is left the cart pole system should be pushed to the left. The process
has evidently learnt some aspects of the pole balancing problem. Although these
things may seem trivial to an onlooker-if the pole is about to fall over to the left
it seems simple to learn that the cart must be pushed to the right to prevent this
happening-the evolutionary process must learn these simple things automatically
through trial and error, and then represent them so that they can be understood.

O¡

a
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3 27%

L 24%

4 37%

21.1%

5 17%

67%

IF VELOCITY IS left
THEN USE action I

IF POLE VELOCITY IS

not right THEN usn
action 2

IF volocrrY ls right
THEN usE action 1

IF NoT

rF PosrrroN rs right
THEN USE action 2

IF PoLE IS not right
THEN usE action I

IF NoT ExcEPTIoN

IF POLE IS near up-
right nxo PoLE vE-
LocITY ts not right
THEN USE action 1
IF Nor ExcEPTroN

Description Value
Position of cart is to the right
Pole is not right
Pole is near upright
Velocity is left
Velocity is right
Angular velocity of pole is not to the right
Angular velocity of pole is to the right
Action 1

Action 2

z > 0.03m
d < 0.05rad (2.9')

-.01rad (-0.8') < 0 <0.05rad (2.9')
ù<-Lmfs
ù>-Imfs

e <O.Zg rad/s (77 "ls)
e > O.zg rad/s (LT " ls)

Apply a force to the right of 12.5N
Apply a force to the left of 10.1N

Figure 4.L2. An euolued rule set for the cart pole problem. The ualues of the numerical
Iabels are shown i,n the table below the ruleset. Rules to the ri,ght are tested iff the rule
immedi,ately to their left i,s true. Rules below are tested when the rules aboae are not true.
The percentages refers to the percentage of cases that the rule is used in controlli,ng the
cart and pole for 5.5 hours from a particular random ini,tial positi,on.

Balancing a pen upright on the palm of ones hand shows how quickly and intuitively
the rules behind the balancing problem are learnt by humans. The machine learning
has to discover for itself a symbolic representation of those human intuitions. In
addition, it must also discover a set of thresholds, or values, which can be linked to
the simple intuitions learnt to create a controller which can utilize a computer to
produce the necessary output to solve the problem.
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4.3 Summary of Results for the Cart-Pole Prob-
lem

Learning to control the cart pole system from a range of initial conditions for a long
stretch of time can be achieved by the evolutionary system. Further, the rule sets
produced demonstrate that some form of learnt knowledge can be extracted from the
process. Unlike most other algorithms which have been employed for solving these
kincls of dynamic control problems, the sesn¿n evolutionary approach automatically
finds the partition values of the discretisation of the state space, and does so while
simultaneously evolving the rule sets which control the system.

The results of Figure 4.3 and 4.4, summarized in Table 4.3, show that the learning
is robust to a number of different factors which modify the problem domain. At
first it seems surprising that the more informative fitness functions do not lead to
a reduction in the time required to learn a controller for the system. It appears
the information supplied by using the complete state to evaluate solutions, is effec-
tively swamped by the information contained in the length of time the system was
balanced. The different fitness evaluations lead to a qualitative difference in the
solutions, since solutions evolved with only survival time information are not effec-
tively punished for maintaining the cart position away from the centre of the track
so long as it does not hit the ends. Learning to maintain the pole in a near upright
position is likely to occur regardless of the fitness evaluation since the velocity of
the pole due to gravity can be more easily controlled with an upright pole.

This is evident in Figure 4.13 which shows the distribution of the normalised val-
ues of the two state variables, z and 0, for the two runs, one with complete state
information, the other with only survival time information. The run using only the
survival time learns to keep the pole near upright, however the cart is maintained
at an arbitrary median distance from the centre of the track.

The rule set controller can only apply one of a discrete number of control forces.
This prevents the system from performing fine control actions which could put the
system in balance. It is also consistent with many real world control tasks.

Figures 4.3 and 4.4 also indicates that the evolution of the cart pole system can
proceed when the controller is also required to evolve the values of the applied
forces. This problem has more parameters than the original controller, but may in
fact not be more difficult, as the more degrees of freedom the controller has the
easier it may be to find a solution.

The cart pole problem is an interesting dynamic control situation. It is, however,
not difficult to solve. In the next section a much harder variant will be described
and solved.
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Figure 4.L3. A comparison of the cart position and pole defl,ection ouer the 5.5 hours of
si,mulated time for two runs, one using the complete state of the system, the other using

only the suruiual time of the system for fitness. The medi,an position of the cart 'is away

lrom the centre o! the traclc when the suru'iual ti,me alone 'is used for eualuat'ion of the

solutions.

4.4 The Two Pole Problem

The one pole system has been used as a benchmark problem for over 30 years,

and many variations of the problem have been introduced to make the task more

difficult. All variants remain relatively easy to solve, however. This is in part due

to the system being able to be controlled by considering each of the state variables

independent of the others. In fact, the system can be effectively controlled by



98 CHAPTER 4. UNSUPERVISED LEARNING oF DYNAMIC CoNTRoL SYSTEMS

Figure 4.L4. The cart-two-pole system. The problem ,is similar in nature to the one-pole
problem shown in Figure 1.2. The second pole is able to moue independently of the first,
and a failure state is attained when the cart moues beyond the ends of the traclc or when
either pole declination is greater than largest allowed.

applying a force equivalent to

F : F^u* sgn(k1r + k2ù + h0 + k40) (4.I4)

where the constants k¿ depend on the choice of constants in the equations of mo-
tion,l3 Equations 4.7 .4.4, and.tLax is the maximal allowed force. If one knows the
form of Equation 4.14 then it is quite easy to evolve a controller which can solve the
single pole problem.

When a rule set is used as the controller the only rule conditions which need to
be considered to solve the system are single attribute comparisons. In particular,
there is no need to consider relationships between the attributes. In this section a
much more difficult and interesting variant of this form of control problem will be
considered.

4.4.L Description of the Problem Domain

The two pole problem is shown diagrammatically in Figure 4.14. The problem is
the same as the one pole problem shown in Figure 4.2: to apply a force to the cart
which keeps the poles from falling too far from vertical and maintains the position
of the cart on the track.

The state of the cart-two-pole system is described completely by 6 variables. The
position and velocity of the cart and pole are denoted the same as for the one pole
problem described on page 77, except that the inclination of the poles from vertical
is denoted by á¿ where i e {1,2} corresponds to pole one and pole two of the system.

The control force is again labelled z and is measured in Newtons. The equations of
13For the constants used in the previous examples the system can be controlled for at least 5.5

hours by setting h :2.22916, lcz - -2.00793, lcs : -|L\TT4, lea : -4.g427J in Equation 4.14.
This solution is not unique.
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The force applied to the cart
The position of the cart on the track
The angle of pole i from vertical
The mass of the cart
The mass of pole i

Acceleration due to gravity
Half length of pole z

Coefficient of friction of the cart on the track
Coefficient of friction of pole i's hinge

Description

Table 4.4. Constants used in Equations 4.15-4-18

Symbol
u
T

0¿

M
'mi

motion describing the cart-l/-pole system are [236]

u - tt. sgn(i) + t[, 4

Value

-15,151 N

I
l¿

l-2.4,2.41lr.
[-15,15] degrees

1.0 kg
(o.o, o.1l kg,
m¿: l¿15 kg
-9.8 mf s2

(o.o, o.5l m,

h :0.5 m
0.0005
0.000002

þc

.L (4.15)

¿ii

ttt +l[rrnn
"/-Zt (t coso¡* esind¿ -,-

¡t,ptït

m¿I¿
(4.16)

where 4 ir the effective force of the ¿-th pole on the cart,

F¿: m¿t¿g¿2 sínl¿ +]*,cos0¿ (*+ o si'a;) Ø"rr)

and rñ¿ is the effective mass of the 'd-th pole,

lrli:'trL¿ (t - 1to" dn) (4"18)'\ 4 "/

and the parameters used in Equations 4.15-4.18 are shown in Table 4.4. The system

is integrated numerically by using a fourth-order Runke Kutte method [39, page 112]

with a time step of 0.01 seconds.l4

The multiple pole problem was introduced by Wieland in 1990 as a reinforcement

learning problem [236]. It has recently been used as a difficult benchmark problem

for several evolutionary neurocontrol studi es 172, 228, L06, 96, 97, 98, 1721. The pre-

vious studies have compared different methods of evolving artificial neural networks

and can be divided into 4 different approaches:

L Direct -bvolution of artificial neural networks [236].
2 Evolutionary programming evolution of artificial neural networks [72].

laThe decrease in the value of the time step reflects the increased precision required for this
problem and is consistent with practice in the literature eg. [236]
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Figure 4.15. The jointed, pole problem cons'ists of a single jointed, pole. This problem is
more s'imilarin nature and dfficulty to the class'ic one-pole problern of Figure ,1¡.2 then the
more d,fficult two-pole system of Fi,gure 1.1/t

3 Cellular encoding approaches to the evolution of artificial neural networks
[228, 106].

4 Symbiotic, adaptive neuro-evolution (SANE) algorithm 196, 
gT, gg,l7zl.

There are no references to traditional reinforcement learning methods being applied
to the two-pole problem, nor to other evolutionary methods.

Equations 4.15-4.78look similar to the dynamics of the one-pole problem, Equa-
tions 4.1-4.4. The complication in the two-pole problem stems fïom the effects
of the relative lengths of the poles on the dynamics of the system. In particular,
Equation 4.16 shows that for a given calt acceleration, i, the angular acceleration
of a pole is greaLer the closer the pole is to vertical and is inversely proportional to
the length of the pole. This means that the shorter pole will accelerate faster than
the larger one. When the larger pole is tilted before it can be brought upright, the
smaller pole must be tilted to a larger angle. This requires the learning algorithm
to learn to take the system further away from equilibrium in order to maintain the
system in balance.

It is possible to derive the region of controllability for the two-pole problem [111,
236]l. That is, the region of the state space within which the system can still be
brought to equilibrium by the application of some allowable force. The important
characteristic of this region is its response to changes in the relative lengths of the
poles. The system is not able to be controlled when the poles are of equal length
unless it starts with the two poles at an identical inclination.ls As the relative
lengths of the poles becomes closer the system's region of controllability quickly
becomes narro\Mer.

Another pole problem which is often used in the literature for machine learning is

15In which case the two poles will act identically in simulation and the system will be equivalent
to the one-pole problem. Experiments on real systems will obviously not be able to exploit such a
measure!
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02

0 1

Figure 4.L6. A representation of the relation h 1 0z by bores. The light and rnedium

grey area shows the ualues whi,ch satisfy the relation. The medium and, dark grey areas

show the consequences of under or respect'iuely ouer estimation of the relation dependi,ng

on whether the corresponding bor is selected as belonging or not to the relat'ion.

the "jointed pole" problem,l6 shown in Figure 4.L5,1236,72,62,196]. This problem

is also solvable only when the lengths, and therefore the natural frequencies, of the

pole before and after the joint are sufficiently different. However this problem is

much easier to solve than the two-pole problem because any control signal which

moves the poles closer to vertical is always the correct control signal to apply [236].
This allows a strong selection scheme which operates on a small number of good

controllers to quickly evolve a solution to the problem. Saravanan and Fogel were

able to solve this problem with a population of 100 neural networks in 10 generations,

whereas the two-pole problem required 800 generations to evolve a solution [72]. The
jointed pole problem will not be used in this thesis.

From the above observations it is clear that to successfully control the two-pole

problem it is necessary to be able to make decisions based on the relative angles of
the two poles. This means that a relationship between two of the state variables must

be discovered which can then be used to partition the state space into appropriate

control options. The rule conditions used in the one-pole problem will be insufficient

for this task, as they can only consider single attribute comparisons in dividing the

16The corresponding system of differential equations which describe this system are far less

succinct to write down, and are provided in Wieland [236].
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Figure 4.17. A relational deci;ion boundary. In the first diagram the single attribute
comparison 0t 1V is shown as a projection on the 01-02 plane. In the second diagram the
simple relat'ion 0t + tan(þ) . 0z 1V is shown.

control space.

It is conceivable to solve this problem with attribute-only learning by discretising
the state space into sufficiently small boxes. In this case, a relationship between
the angles could be approximated by a large number of single attribute comparison
rules, as illustrated by the box approximation of the relation fi 1. á2 in Figure 4.16.
The boxes can be aggregated to form rules, however they can only form a rough
approximation of the decision boundary which the relation describes. Even when the
boundaries of the boxes are not regular the accuracy of the method will be decided
by the number of boxes used to describe the decision boundary. The corresponding
rule set or decision tree would be unwieldy and difficult to comprehend and to
induce. It is also unlikelv to be able to solve the problem as the domain is a very
sensitive control problem.

For this reason it is necessary for the controller to be able to represent a relationship
between some of the system attributes.

Representing Relationships

In addition to the state attributes, the rule set model is provided with the means of
being able to represent a relationship between á1 and 92. Looking at the projection
of the state space on the 0102-plane the hypothesised relationship will allow for any
linear decision boundary on that projection. The gradient of the decision boundary
is explicitly used and evolved alongside the other parameters associated with the
rule set.

The learnt relationship is coded as the parameterised relation:

Relation(0r,0r,0) : 0t I tan(p) . 02 (4.19)

where B is an evolved constant such that 0 e (-n,r). The difference between the
rule d1 < I/ and Relation(9t,0r,13) < I/ is shown graphically in Figure 4.lr for
some fixed V, P. The straight arrows in Figure 4.17 shows the effects of changing

lrl
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the comparison const arrt V , and the curved arrows show the effects of changing the

relationship parameter B. The parameterisation of the relation is to account for the

fact that the relationship between the angles is not known.

In addition to the 6 state variables two new relations are added. The second relation
is the reflection of the one described above with d1 and 02 exchanged and another

relation parameter, or angle, a added to the evolved parameter vector. The relation
is then treated identically to the other 6 state variables in the rule set. That is, for
a given observed state the relationship is evaluated and the value used in the same

way as the other state variables. The two relations add a total of 6 parameters to
the parameter vector, corresponding to the 2 partitions of the value setsl7 which the

relations will be compared against, and the angle that parameterizes the relation in
(4.1e).

Discussion of the Relational Representation

There are clear limits on the kinds of relationships the SASME algorithm can learn

for a given problem. Specifically, it learns those relationships the user specifies for
the current task. The algorithm does not create new relationships, nor does it build
relationships by composing one with the other. Such functionality may be able to
be incorporated, but the central theme of understanding the controllers which have

been discovered means that the current approach is better suited to the current task.

The relationship used by the sesMs algorithm to solve this task highlights the utility
of using relational over propositional logic for such tasks. Relational representations

have a larger hypothesis space, and can represent more objects. These objects may

contain the solution to the problem at hand.

4.4.2 Task Descriptions

Two popular tasks from the literature are attempted with the relational rule set

described above. Both tasks were attempted by means of a sequential learning task

of increasing difficulty. The first involves balancing the system from an increasingly

large range of initial conditions, and the second involves learning to balance the two
pole system with poles of increasingly similar lengths.

Enlarging the Initial Positions

A number of initial condition strategies are pursued in the literature. The exper-

iment attempted here use a similar initialisation strategy to that used by Polani

and Miikkulainen [L72, 773]. The cart-pole system is evaluated from 10 random

lTWhere the number of value sets for each allowed rule comparison is set to 3
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initial states and best of generation is tested from the edges of the initial region for
a number of time steps. In the experiments reported here this evolution proceeds
by starting with:

ï € [-0.05,0.05] m

(0r,0r) € [-0.0b,0.0b] rad

Once a solution is found which can balance the system for the required time the
intervals are increased by 0.05m and 0.05' respectively until the system is able to
balance the cart-pole problem from:

r € l-0.2,0.21m
(0r,0r) € l-0.2,0.21 rad

for 100,000 time steps. This task is meant to establish that the controller can find
a solution to the two pole problem which is general enough to balance the system
from a random initial position in the allowed range.

Changing pole lengths

As noted earlier, the more similar the pole lengths the more difficult the problem
is io solve. The algorithm is required to balance the two-pole system initially with
pole lengthsl8 of 0.1 m and 1.0 m. The length of the second pole is then increased
by 5% and the system has to be balanced again. The increments continue until the
length of the short pole is just 10% less than that of the long pole - an extremely
sensitive control problern 1236, 72]1.

A note on Incremental Evolution

The difficulty of the two pole problem has meant that all of the learning approaches
cited have used an incremental strategy for balancing the system with poles of near
^-.---l I- rr mIequar relrgtll lne lncremental approach requrres the learnlng algorithm to solve a
series of increasingly difficult problems. Incremental evolution appears to be a good
way of tackling complex problems where it is possible. If the first task is denoted
f1, and the next t2 and so on, then the evolutionary algorithm solves the sequence
of tasks:

tr -+ t2 -+ ... -+ tn
where úr, is the task which is of interest. For the initial condition problem mentioned
above, ú¿ corresponds to the task of balancing the cart-pole system from a random
initial condition in the range:

r e [(i . 0.05), (z . 0.05)] m

(0r,0r) € [-? . 0.05,2 . 0.05] rad
18Note that Table 4.4 shows the values of the half-pole lengths which are the values ¡sed in

Equations 4.15 4.18.
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Generat¡ons to balance two-pole problem

lncreasing inil¡alisation area Changing pole length

Exper¡ment

Figure 4.18. Comparison of 10 different euolutionary results for solu'i,ng the two-pole
problem from a large initi,al area and uith poles of similar length.

where i € 17,2,. . .,41. For the pole lengthening problem, the half-length of the
second pole in task'i will be

12 : 0.05 . (t + O.OS)i¿-1) m

where i e 17,2,...,471and in task ta7 lhe length is reduced to 0.45.

Self-adaptation of the evolutionary parâmeters should provide a natural way for the
evolutionary approach used here to adapt its search performance to the changing
nature of the problem being solved. The evaluation environment is simply changed
from f¿ to ú¿11 when task ú¿ is solved, without any other modification to the algorithm.

Another algorithm used for evolving solutions to sequences of tasks is the ô-Coding
extension of the GENITOR genetic algorithm 1234, L571. In this approach the
solution to a task is used as the template to form a new population which is then
charged with solving the next, incrementally more challenging task [96, 97, 98].

4.4.3 Results

The number of generations to solve the two pole problem was significantly more than
that required for the easier one pole problem. A generation size of 100 rulesets was

evolved for this problem, with typical runs requiring up to 4,000 generations to solve

the problem. The evolved rulesets operated on 3 partitions of each of the continuous
state space variables, as was done in the previous section. The rule consequences

were limited to one of 4 real values, requiring 4 evolved parameters in the parameter
vector.

Figure 4.18 shows the number of generations required to solve the two incremental
problems described in the previous section. Each run had to balance the two-pole
system for 500,000 time steps, or almost 83 minutes of real time. The graphs are
constructed from 10 independent runs, and so are indicative of performance.
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Incrernental Evolution
lncreas¡ng pole length lncreasing initialisation area
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Figure 4.L9. Incremental euolut'ion produced by inu'easing tlr,e pole lengLh, u¿d tlre ir¿itiul-
isation area of the two-pole problem. The controller had to balance the system for 500,000
t'ime steps, or 83 rninutes, before the problem was made more dfficult.
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Figure 4.20. Tracing the incli,nation oJ the fi,rst (Iong) and second (short) pole showing
the controller performi,ng the rnaneuure of making the state space worse by swi,nging the
second pole out past the first so that it can bring the system back in balance.

A typical run of the incremental evolutionary tasks is shown in Figure 4.19 for each
of the two problems. The graph shows that the evolutionary system is able to learn
the initial easier task and use this as a springboard to learn to control the next more
difficult task.

As was mentioned earlier, the controller has to learn to take the system away from
equilibrium in order to maintain control of the system. When the initial conditions
have the longer pole further from equilibrium than the shorter pole, the system has
to learn to swing the shorter pole out to a greater inclination than the longer pole
before starting to move the longer pole back towards upright. Figure 4.20 shows the
rule set moving the shorter second pole off balance further than the longer and slower
first pole before moving them both back towards equilibrium in the first second of
the simulation.

04



4.4. THE TWO POLE PROBLEM L07

Rule sets

Rule sets for the two pole problem are more complex then those evolved for the one

pole problem. However, the rule sets are still able to convey information about how

they are controlling the cart pole system.

The rule in Figure 4.2L is able to control the cart two-pole system for 500,000 time
steps with a small pole length 70% that of the longer pole. The figure displays the

symbolic value sets and action consequences on the rule nodes. The percentages to

the right of the rule nodes are the percent of times the rule is triggered in balancing

the system for 120,000 time steps. Rules to the left, or rules with only one parent,

are if-not rules. Rules connected to the bottom right of a node are exception rules.

Rule 1 uses the evolutionarily tuned relationship defined in Equation 4.19. The

angle of the evolved decision boundary is -61o, corresponding to a gradient of -1.8
in the projection of the state space on the 0102-plane. The value set for the relation

essentially defines the rule to be true when it is greater than 0. The consequence

of the rule is to push the cart strongly to the right, which has the effect of leaning

the poles to the left. All of the other rules in the rule set push the cart to the left
with varying forces, having the effect of moving the pole to the right. When the

long pole (01) is right of upright rule 1 will move the system to the right until the

short pole is 1.8 times as far to the left of vertical as the large pole is to the right.
Only then will the short pole be brought back to equilibrium (unless Rule 2 becomes

activated, which happens more often than not, when the system will be moved back

into equilibrium in response to the short pole excessive velocity to the left). When

the long is left of upright the other rules in the rule set will continue to move the

system right until the small pole is 1.8 times as far to the right as the long pole is

to the left. Then rule 1 will apply and move the short pole back into equilibrium.

4.4.4 A non-Markovian Variant of the Two-Pole Problem

A non-Markovian extension to the two pole problem was introduced and solved by

Gruau et al. in 1995 by a cellular encoded neural network [106], and later by the

SANE method of evolutionary neuro-control 198,172]. The non-Markovian extension

involves solving the problem with no velocity information.

Removing velocity information adds a hidden state to the problem, which the con-

troller must be able to compute in order to control the system. The resulting system

is no longer Markovian, since a correctly computed control force for a given state

position will depend on velocity information which will in turn depend on the con-

trollers previous actions. The state presented to the controller no longer contains

sufficient information to solve the problem. The neural network approaches solve

this problem by evolving a recurrent neural network. The recurrent links make it
possible for the network to calculate the velocity in some form internally.
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Figure 4.2L. A rule set for balanci,ng the two-pole problem.

A Recurrent Rule Set Model

The rule set approaches presented previously have only been able to make control
decisions based on the current state of the system. The rule set model with relations
can be further extended to allow for decisions based on previous actions. This is
easily possible in the SASME framework by adding some new parameters which allow
the controller to have a nxernorA of previous actions.

To address the problem of controlling the system without velocity information a new
state variable is introduced. The new state variable is the discounted sum of the
controllers past actions. The discount rate is evolved. The new state is equal to:

N

1

3

20%4

5

6

Dr'' output, (4.20)
ú=0

where Output, is the rule sets output at step f, l/ is the horizon and 7 € (0, 1) is the
evolved discount rate. A number of different possibilities are available for setting l/.
Setting ly' <- oo corresponds to the discounted model output since the trial began.
Setting -fy' to some finite number corresponds to considering the discounted sum of
previous actions up until some finite horizon of past actions. The evolved discount
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Table 4.5. Comparison of enforced sub-
populati,on (ESP) SANE and cellular en-

codi,ng on the two-pole problem wi,th ueloci-
ties [98]
Method Evaluations Population Size

CE
ESP

840,000
t69,466

16,384
1,000

rate ? can be interpreted as the discount rate, as an interest rate,le as a probability
of something relevant happening in the past or as a mathematical trick to bound an
infinite sum in the case of all previous actions being considered.20

Three new state variables were added to the model to replace the three velocity
variables. This was not done to try and model the three velocity variables, rather
to maintain a constant number of state variables in the model. Three arbitrary
different values of ly' were chosen, -fy' : oo, ly' : 50, and .l/ : 10. The three new
state variables added three nev¡ pârameters to model, j¿,'i e {I,2,3}, all of whose
values were kept positive and less than one, 7, € (0,1).

The non-Markovian variant of the two-pole problem is the hardest problem dealt
with in this thesis. Gruau eú ø/. used a population of 16,384 cellular encoded neural
networks distributed across 64 processors on a super computer to solve the problem
only once in 51 generations for 100,000 time steps. More recently a variant of the
SANE approach to neuro-control has reduced the number of function evaluations
by a factor of 5 [04], although generalisation suffered. Table 4.5 summarizes the
function evaluations of the two methods.

Gruat et al. show that it is possible for the controller to control the system for
100,000 time steps without needing to calculate the velocities. It can do this be-
cause the system can be controlled by oscillating the poles backwards and forwards
for 100,000 time steps. For the neural network study, Gruau et al. devise a lengthy
fitness evaluation method which biases the networks towards producing controllers
which move the system back to the centre of the track with the poles in an upright
position. One reason they can do this is that the neural networks produce a continu-
ous output which is capable of moving and keeping the system in a stable state. The
rule sets used in this chapter are producing a piecewise constant controller which
has only a small number of levels of force with which it can try and control the
system. This prevents the controller from maintaining an equilibrium position since
it must always apply a non-zero force to the cart and poles.

The principal difference between the continuous and discrete output controllers is

the shape of the resulting control functions over time. In some domains the control

leliterally. The closer 7 is to l the more interesting the model finds historical actions at any
particular time frame in the past!

20Similar to how traditional reinforcement learning interprets the discount of future rewards in
an infinite-horizon model [130].
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Table 4.6. Summary of results for euolu,ing rule sets for the two-pole
problem wi,thout ueloc'ity information for 120,000 time steps.

Generations
Min Quartile 1 Median Quartile 3 Max

Evaluations of
median

4902 8343 rr724 13678 30162 7,172,400

space must be discrete, which is the case for the problem which the sasup algorithm
solves in this section. For other problems there may be no discrete controller output
which will suitably control the system; this may be the case in a problem involving
following some signal such as an audio signal. If the audio output is constrained
to too few discrete values then the output may be very poor. For the cart-pole
problem, the sRstr¿p algorithm is able to solve the problem with the extra constraint
that it uses only a set number of discrete values for the controller output. It is the
problem domain, and the problem statement, that deterrnines whether a continuous
or discrete controller is appropriate.

A number of different experiments were run to see if the rule sets could be evolved
to balance this problem. AII experiments were computationally expensive on the
available hardware.

4.4.6 Results for the non-Markovian Two-Pole Problem

Due to the computational expense of nrnning algoril,hnrs l,o solve this problem clnly
a small number of runs are reported here. An evaluation of the performance of the
algorithm in terms of efficiency, or generations required to find a solution, can not
be performed. The significant point to be made in this section is that the sRstr¿p

algorithm can evolve a rule set model to solve this difficult non-Markovian problem
which previously has only been solved by neuro-control approaches.

Table 4.6 summarizes the results for 10 independent runs of the evolutionary system.
All runs were executed from a single initial position and had to balance the cart-
pole system for 120,000 time steps, or 20 minutes of simulated time, in common with
previous studies 1172, 1731. All runs ï,,/ere executed until they had found a solution.

Compared to the neuro-control methods the algorithm appeârs to have a higher
computational requirement. Some things to note about the computational require-
ments:

1 The number of evaluations does not represent the computational time taken
by the algorithm. This is because the computational time required depends
on how long the cart-pole system remains valid in an evaluation. Figure 4.22
shows the survival time at each generation of the best in solution for one of
the 10 runs. Note that the corresponding earlier figure (4.19) had the log of
the survival time graphed. The algorithm seems to take many generations to
tune the parameters into an appropriate range. This may also be the case for

ll
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Suruival time vs generation
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Figyole 4.22. This graph shows the norrnal'ised suruiual ti,me oJ the best of generation

solution d,uring the euoluti,on of a solution for the two-pole problem wi,thout ueloc'ity i,nfor-

mation

neuro-control, and should be accounted for when comparing learning efficiency.

2 The above point raises another issue. The parameters used in the algorithm
'were not optimised to any great extent. In particular, the setting of the initial
ranges of the evolvable parameters such as the value sets used in antecedent

containing the discount rate were arbitrarily set to 1000, as this was thought

to be much higher than required. The reason for the initial setting was to test
whether the evolutionary procedure could learn to evolve a suitable discount

rate for use in rules. The likely values that this rate might take were not
known, and in fact depend on the evolved forces applied and the discount rate
evolved. A large value maintains the generality of the algorithm.

3 Other specifically evolutionary parameters were not adjusted. In particular,
if the execution time is dependent on the algorithm moving parameters into
optimal ranges then the number of evaluations may benefit from an increase

in the population size.

To establish whether the algorithm was learning to control the system effectively

a longer run of 240,000 time steps, or 40 minutes, was conducted and a summary

of the state space of the cart-pole system using the evolved controller is shown in
Figure 4.23. Thefigure shows the range of the state variables over 50 second intervals

for the 2,,400 seconds of simulated time that the rule set controlled the system for.

It appears that the controller has effectively learnt to compute and use the velocity

information to control the cart-pole system. The behaviour of the velocity variables

in Figure 4.23 appears to be under control and not oscillating. A later run was

successfully evolved to balance the system for 500,000 time steps, or over an hour

of simulated time, in just over 5,000 generations.

Evolved Rule sets

Figure 4.24 shows a rule set for controlling the non-Markov version of the cart pole

problem. The evolved rule set uses the discounted sum of the previous outputs of
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Figure 4.23. Analysis of the controlled, cart two-pole system. The state space sunxnxary
shows no eu'idence of undamped oscillations which would arise from the controller not
computing the uelocities.

the rule set as a surrogate for the velocity information which is no longer available
to the rule sets. Rules I and 3 use the discounted sum of the previous 10 actions
to decide on future actions. The discount rate used by the controller is 0.57. Rule
t has the effect of moving the cart-pole system to the left when the discounted
sum of previous actions is to the left. However, this rule must be true before the
exception rule, Rule 2, is tested. Rule 2 says that when the largc polc is less than
-0.6 times the inclination of the small pole the system should be moved to the right.
The combined eflect of the rules is to move the system to the right whenever the
discounted sum of previous actions is left and when the large pole is not at a greater
inclination to the left than the small pole. This combination is used 37% of the
time. When the system has become very over-balanced then rule 1 will move the
system to the left regardless of the sum of previous actions.

The discounted sum of previous actions is being used by the rule set as a surrogate
for velocity information. The evolutionary system has evolved, a recurrenú rule set.

4.5 Discussion and conclusions

The cart-pole problems are an example of dynamic control problems where the
controller must learn to control a nurnber of state variables with only a single input
and with sparse feedback. The single pole problem is a well known test problem
which has been used extensively to demonstrate a wide variety of automated learning
techniques.
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Figure 4.24. A rule set for balancing the two-pole problenx with no ueloci,ty informati'on.

The sesn¿E framework evolves rule sets which operate and produce symbols to con-

trol this system. The symbiotic evolution of the parameters give meaning to the
symbols used in the rule set. This allows the efficient self-adaptive ES parameter

optimisation procedure to optimise parameter values while the self-adaptive dis-
crete mutations build the rule set model. The resulting system produces discrete
rule models which can be understood entirely in terms of the symbols they operate

on. These structures can be examined for the knowledge they contain. The model
which is learnt is not a black box.

The two-pole problem is a much more difficult variant of the single pole case, which
can be made even more difficult by excluding velocity information. To solve the
two-pole problem the discrete model structure has to be extended to consider simple
relationships between the inclinations of the two poles. A relationship with a single

parameter is added to the allowed predicates of the rule system and the evolutionary
process evolves rule sets which utilize this relationship to solve the two-pole problem

under a variety of conditions.
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When the problem is made incrementally harder by lengthening the short pole or ex-
tending the range of initial conditions the self-adaptive evolutionary process is able
to adapt the existing solutions to solve the more difficult problems. Self-adaptation
has been shown to effectively be able to raise and lower the self-adapted muta-
tion rate [14], and this ability is exploited in the so-called incremental evolutionary
problems posed.

To the authors knowledge, no-one has produced a controller which was not a neural
network to control any variant of the two-pole problem.

The value of non-neural network controllers lies in their explicit structure. A con-
troller which controls a system using a representation which is chosen to convey
information on some facet of the problem can be instructive and has the potential
to provide new knowledge about the problem domain. An explicit control structure
can be understood in part, and so the behaviour ofthe controller can be understood
to some extent.

The two-pole problem without velocity information represents a very challenging
problem for this system. The neural network controllers use recurrent links to enable
the non-Markovian variant to be controlled. The discounted sum of previous actions
is equivalent to a recurrent link in a network. The recurrent rule set methodology
which results from this addition is able to solve the non-Markovian problem. To do
this, it learns to use the recurrent information as a proxy for the velocity information
which is no longer available for the problem.



Chapter 5

Evolutionary Learning II:
Elucidation of Ecosystem
Processes

Everything should be made as simple as possible, but not simpler.

Albert Einstein

Evolutionary methods have recently been applied to a range of supervised knowledge

acquisition tasks 1729, 93, 67, 64, 109, 110, I7I, L54, 224, 766,,65]. Freitas provides

a survey of data mining with evolutionary methods [86], and Kovacs et al. provide

an extensive (478 papers) bibliography of classifier system papers [137]. There are

several reasons for using an evolutionary approach for data-mining:

1 Tladitional deterministic rule induction methods, such as ID3 [181], search for
decision trees with essentially a greedy hill climbing algorithm guided Iocally by
information theoretic measures [64, 166, 65, 86]. Evolutionary rule induction
systems take a global view of the rule-set generation problem.

2 There is little flexibility in the traditional rule induction systems, and obtaining
different rules with nearby accuracy is difficult [64]. Evolutionary approaches

often provide a different hypothesis on each run from the same data, which is

natural for many learning problems where there is redundancy and interactions
between variables.

3 The representation that the evolutionary search uses is easily modified to suit
either domain knowledge or questions about the data. The fitness function
is one mechanism whereby evolutionary search can be easily directed towards
finding more interesting results to many problems.

There are probably two main reasons to perform an inductive learning task. The first
is to correctly classify new situations. If an inductive system is applied to learning
stock market information, the principal motivation is likely to be to use the system

to correctly forecast future market movements. The other main reason is elucidation.
When inductive learning tasks are applied to epidemiological data the most common
purpose is to understand what is causing the phenomena the data is measured from.
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Naturally, the two are not mutually exclusive. In particular, a blackbox model which
successfully provides predictions of future stockmarket performance is unlikely to be
trusted when it goes against our expectations. The system will be more trusted if
the basis of its predictions are better understood.

This is one of the motivations for using a rule set as the representation for knowl-
edge. rn-rupN rules are a high-level, symbolic knowledge representation which aids
knowledge discovery [65].

This chapter addresses the issue of whether the sRsn¡p model can learn compre-
hensible rules in noisy real world data. The ecological data used in this chapter is
typical of many real world domainsl where measured data is inaccurate, incomplete,
noisy, contains many interactions, and contains unevenly distributed outcome vari-
ables which require obscure relationships to characterize correctly. Another domain
where this is important and where genetic learning has been applied is in discovering
rules in clinical research databases [123].

It is widely stated that by performing a global search, evolutionary methods are more
effective learners of rule based models than the usual greedy local search methods [64,
166, 65, 36]. The veracity of this statement is determined by empirical comparisons.
This chapter does not undertake to perform an exhaustive comparison between the
SASME induced rules and induced rules from other algorithms. However, a case
study with CART will be performed to establish that the system is a competitive
inductive Iearning algorithm.

One issue which will not be aclclressed by this work is that of selecting appropriate
error measures for ecological time series models. There is much to criticize in the
usual Root Mean Square Error (RMSE) measurement, principally its unit-specific
nature [8]. Alternative unit-free measures exist which perform essentially the same
task as the RMSE, [S]. However, these measures are appropriate for the reliable
comparison of a method which is applied to several different time series, their utility
is low for the application considered here where the comparisons are always with
the same time series. Of more interest to ecological studies are measures which
allow some distance between actual and predicted components of two series to be
more fairly evaluated. Such measures would solve the problem of a model predicting
a high point in the time series one time step early being unduly punished by the
RMSE measurement. The literature on time series comparisons measures is vast,
and includes some practicable algorithms for performing comparisons such as those
described, [34]. However, all other studies on the datasets considered in this chapter
have used the RMSE error measurement, [230, 238]. In Section 5.L.4 a modified
version of the RMStr measure is used, demonstrating that other error measures are
easily incorporated in the evolution of a sAsn¿p niodel.

The next section describes the data mining task used in this chapter and the prob-
lems associated with it. Two distinct problems are then addressed: the prediction
of chlorophyll-a concentration and the prediction of the dominant algal species.

lSuch as those found in the UCI data repository, [26].
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Table 6.L. A short glossary of some ecological terms used in this chapter [223]

Term Definition
Algae

Blue-green algae

Chlorophvll-a

Colonial

Eutrophic

Filamentous

MicrocAstis spp
Oscillatoria spp
Phormid,i,um spp
Stratification
Succession

Prokaryotic and eukaryotic photosynthetic organisms with
chlorophyll-a and other photosynthetic pigments releasing 02-

Plant body unicellular, colonial, filamentous, siphoneous or
parenchymatous, never with roots, stems or leaves. Not a natural
group, but the word is useful in many contexts.

Cyanophyceae, Cyanobacteria. Prokaryotic organisms with
chlorophyll-a and phycobilins. Unicellular, colonial, or filamentous.
Occur in fresh- and salt-water, in soils and as nitrogen-fixing sym-

bionts. Often of interest in man-made aquatic environments due to
toxins produced by some species, eg. Microcgsúis spp in Myponga
reservoir, South Australia.
Green pigment involved in photosynthesis. Chlorophyll-a is the pri-
mary photosynthetic pigment in all those organisms that release

oxygen ie. all plants and all algae including the blue-green algae'

The vegetative form of many species of algae in which the sister

cells are connected in a group to function as a unit'
State of a nutrient rich lake in which the hypolimnion (cold, lower

layer) becomes depleted of oxygen during the summer by the decay

of organic matter falling from the epilimnion (warm, upper layer)' A
eutrophic lake is usually shallow, with much primary productivity'
Generally a chain (unbranched or branched) of cells joined end on

end.
Colonial species of blue-green algae.

Filamentous species of blue-green algae.

Filamentous species of blue-green algae.

Thermal layering of lake water bodies
The sequence of communities which replace one another in a given

area, until a relatively stable community (ie the climax) is reached,

which is in equilibrium with local conditions.

5.1 Mining Data from an Aquatic Ecosystem

Table 5.1 is a short glossary of aquatic ecology terminology used in this chapter.

The structure of the problem considered in the previous chapter was such that the
model had to interact with the environment in order to receive the next input vector,

Figure 4.1, page 76. The model's output affected the trajectory of the system. In
the current chapter, the problem being considered is a supervised learning problem

where there is no interaction between the model and its environment, as shown in
Figure 5.1. In this case the next input will not be different regardless of the models

output.

This problem is often referred to as data mi,ni,ng 136]. The goal is to discover regu-

larities or patterns in the information supplied to the model.



118 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

Observations

Predicted
Measurement.

Actual
Measurement

Figure 5.1.
learning tasks

A block d'iagram show'ing some of the components 'inuolued in superu,ised

Research in modelling ecosystem dynamics can be divided into deductiue and i"nduc-
úz'ue approaches.

Deductive approaches use traditional mathematical techniques, like ordinary differ-
ential equations, and a detailed understanding of ccosystcm processes to produce a
model capable of simulating future ecosystem behaviour. Examples of determinis-
tic aquatic ecosystem models which address lake eutrophication modelling include
AQUAMOD, MSCLEANER, sALMo and SALMOSED 1187, 186, 1921. The accu-
racy of such models depends upon the correctness and completeness of the descrip-
tion of ecosystem processes upon which they are based. The first three models men-
tioned model the nutrient cycles and food web interactions of algae and zooplankton
in lakes in order to predict algal and zooplankton abundance. SALMOSED, by com-
parison, extends the nutrient cycles to the sediment allowing it to simulate impacts
of external and internal nutrient loadings to algal and zooplankton abundance. De-
ductive models have significant shortcomings when the knowledge upon which the
model is based is incomplete or incorrect, as comparisons of SALMOSED and the
other models demonstrate [192].

Another issue with deductive models is the problems associated with data availabil-
ity, accuracy and completeness. It is well known from normal ordinary differential
equations that modifying initial conditions or parameters a small amount can some-
times result in completely different dynamic behaviour (eg. [39, page a3b]). It has
been suggested that deductive modelling of eutrophication in aquatic ecosystems is
best suited to long term, strategic analysis of lakes [225]. By contrast, inductive
modelling appears more appropriate for short term predictions.

Machine learning based inductive methods, including sASME and ANNs, do not
require information about the ecological processes being modelled. Instead, they
require data which is exemplary of those processes. From the data, patterns and re-
lationships are learnt and used to make future predictions about the ecosystem [156].
Assumptions about the distribution of input and output attributes are not usually
made. Where there are insufficient data available from an ecosystem, methods based

Evaluat i on

EnvÍ ronmen t.Model

D
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on machine learning may fail.

There are growing databases of ecological information from a wide variety of sources

which cover a staggering range of natural phenomena. Freshwater aquatic ecosystem
data are being collected around the world as the importance of monitoring and being
able to better understand the changes that occur in freshwater systems like lakes
and rivers becomes more apparent. The freshwater data used in this study were
obtained from Lake Kasumigaura in Japan.

5.1.1 Model Validation and Representation

Inductive models learn by generalising the knowledge they acquire about the ecosys-
tem from the information they are shown. The model that is induced from the avail-
able data learns to associate environmental states that have equivalent consequences

but which appear differently. The complexity of the raw data is aggregated by the
model. A good model is a compressed form of the data. The compression is not
lossless, however.

There are many ways that knowledge can be represented in an induced model, in-
cluding neural networks, rule sets, finzy sets, learnt equations and regression trees.
Most learning applications in ecology have concentrated on acquiring accurate mod-
els of the systems as determined by independent test data. However, a predictive
model should provide not only accurate classification but also insight and under-
standing into the predictive structure of the data [40].

Model accuracy usually means how well the model represents the real world. Whilst
this is frequently measured by the predictive accuracy of the model according to
some criteria, an accurate model should also make those predictions according to
the way the world really interacts. This is assessed through the models performance.
A model which accurately predicts the outcome in every situation must have learnt
something about the way the world works. The knowledge can also be represented
by the model explicitly.

This chapter considers how ecosystem data can be used to induce models which are

both predictive and descriptive.

Evaluating models solely on their predictive error ignores any information the model
can provide about the relationships it has learnt and how they relate to the causal
explanations of ecosystem behaviour. For example, the application of machine learn-
ing methods such as neural networks for ecosystem prediction has focussed on min-
imising the root mean square error of predictions rather than understanding the
underlying processes by which the model decides its predictions. This chapter tries
to balance both issues by using the evolutionary rule induction method to provide
accurate predictive models which have some descriptive power.

Representing knowledge in a transparent manner is of great importance to inductive
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modeling. An inductively gained model is a hypothesis derived from the data, and
certainly not a proven law for underlying mechanisms. The quality of the inductively
gained model can be assessed from the performance on testing. However, in a

complex system like an ecosystem it is practically impossible to assure that the
testing data are representative. This is due to the infinite number of interactions
between variables which may determine the problem, yet are unknown, and the
noise and reliability of the data. A model derived from measured data can only
generalize to the extent that the data provided accurately represent the universe of
possible measurements. So while testing is important, examining the explicit learnt
knowledge contained in an inductive model ca,n provide better insight into how
accurate the model's representation of that ecosystem is. Improved understanding
of inductive ecosystem models may also increase our confidence in the model outputs
and gradually turn it into a "grey box".

Evolutionary methods are general optimisation methods which can be applied to
a range of representations which are of interest for knowledge discovery. Previous
work has used genetic programming to evolve equations relating input and output
data for aquatic ecosystems [189, 230], and neural networks. Neural networks learn
an equation relating input and output, but the equation is contained in the weights
of the networks a,nd ca,nnot easily he examinecl. The genetic programming induced
equations are an example of explicit knowledge representation. The prototypes for
the equations can be modified to search for equations of a particular form, and so
knowledge of interest can be discovered. The explicit symbolic rule sets evolved by
the slstvlo algorithm introduced in this thesis are another example of an explicit
knowledge representation. The type of knowledge representation which is most
appropriate to a given problem will depend on the problern and how Lhe inforrnation
in that problem is best understood. A variety of different representations would
appear to be a sound strategy with no a-priori bias.

A number of non evolutionary methods are also regularly applied to ecosystem
data, including methods for the production of equations and neural networks [237),
rules and more traditional statistical models. Breman's classification and regression
tree (CART) method produces decision trees on a continrrous outprrt variable (a
regression tree2)[40]. The representation of knowledge employed by CART is quite
different to the default hierarchy rule sets used by the evolutionary method presented
here. In the previous chapter it was demonstrated on a difficult problem that the
evolutionary rule sets are able to learn rules with relationships in the predicate. The
data available here does not support the learning of such rules.

5.L.2 Lake Kasumigaura

Lake Kasumigaura is situated 60 kms north east of Tokyo and is Japan's second
largest lake. The lake is shallow, with a maximum depth of 7 meters and a mean

2A regression tree is a piecewise constant or piecewise linear estimate of a regression function
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Table 5.2. Physical characterist'ics of Lake Ka-

sumigaura, Japan [190]

Tbophic State
Morphometry:
- Maximum depth
- Mean depth
- Surface area
- Volume
Range of water temperature
Mean water retention time

hypertrophic

7m
4m

220 krrr2

900 million m3

2.r-32.0 "c
200 days

depth of 4 meters. Because of the lakes shallowness and strong mixing of the lake

water by winds, persistent stratifi,cat'ior¿ of the water body does not occur' The lake

has been monitored for more than 20 years at different sampling sites providing a

long record of water quality data. The lake is hyper-eutrophic and very productive,

-ortly as a result of anthropogenic changes to the lake environment' The lake

\ryas an estuary before the construction of the Hitachigawa watergate near the lake

outlet. The lake is now mainly used for recreation and as a sanctuary for water

birds, although some aquaculture takes place in the lake itself. The catchment of

the lake is used by agriculture and is subject to urbanisation. Table 5.2 lists the

physical characteristics of the lake.

The lake experiences recurrent algal blooms, especially in the summer months, due

to its nutrient richness and shallorffness. It is the sudden growth and abundance of

the algae that is of interest in modeling. It is well known that algae abundances

,.rporrd positively to high nutrients, light and water temperatures. The modeling

quãstion ls twofold. Firstly, can the water quality data available be used to model

the abundance of algae in the lake, and secondly, what relationships exist between

the available water quality data and the changing algae abundance?

Lake Kasumigaura under went a transformation in the algal community during

the late 1g80is 12L7, 278, gL). From the mid 1970s until the late 1980s the lake

experienced dense summer blooms of. Mi,crocysúis spp, a colonial blue-green algae.

Over that time changing land use practices in the lake's catchment and increased

urbanisation of the towns around the lake shore, among other factors, led to a change

in the nutrient loadings of the lakes. It has been hypothesised that the anthropogenic

evolution of the lake has led to a higher ratio of nitrogen to phosphorus, which in turn

has favoured the occurrence of the filamentous blue green algae, Phormi,di,urn spp and

Osci,Ilatori,ø spp [91]. The relationship between available nutrients and dependent

species in the aquat-ic ecosystem is an active research area 1277, 2I8, 9I,20, 30]

The summer blooms of. Mi,crocysúzs spp are the highest density blooms in the database

Since the late 80s there has been a decrease in the observed magnitudes of the sum-

mer chlorophyll-a levels coincident with a sudden decrease of. Mi'crocysúzs spp cells

in the recurrent summer blooms. Chlorophyll-a measurements are often used as
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a proxy for total algal abundance, although the relationship between chlorophyll-
a meâsurements and algal cell counts is inexact due to the differing amounts of
chlorophyll-a found in different algae species and cells sizes, and in algae under
different conditions.

The problems addressed in this chapter are concerned with learning associations
between the abundance of algae in the lake and the measured physicaiand chemical
properties of the lake water. Algae abundance is based on measured cell counts of
the different species. An outline of the measurement methodologies is presented in
[21s].

It is not reasonable to expect a high degree of predictive accuracy in this kind of
problem domain. Inaccuracy in model outputs has several different sources [113]:

1 uncertainty in the measurement of the dependent variable.
2 Uncertainty in the measurement of the driving, or model variables.
3 Structuring of the model.

Uncertainties in measured quantities are inherent in the nature of aquatic ecosystem
modeling. Possibly the largest source of these uncertainties stems from using point
measurements to approximate aquatic ecosystem states and behaviours. For Lake
Kasumigaura the point source of data used in this chapter is ccntral to the upstream
Takahamairi Basin of the lake, and likely to be representative of many of the basin's
physical properties, such as water temperature [169]. However the measurement of
algal cells and physical properties like transparency are more problematic. Wind,
currents, weather and the time of day all affect the concentration of algae at a
particular point. The measurements were all taken around midday, however the
other factors are not, and cannot realistically, be controlled for [oa].

A further uncertainty in the measured physical parameters stems from the use of
a single depth for taking water samples and measurements. Although the lake is
shallow, it is possible that there are differing conditions at different ãepths in the
lake which are not correlated and which do affect algal growth rates.

The uncertainties due to model structure reflects the fact that the model onl¡, has
a limited amount of (noisy) information available to learn relationships from. Not
all of the environmental parameters that could determine algal proãuctivity are
present in the measured data. The choice of data with which to base the modeling
has been made with recourse to theory, and represents the most prominent physicai
features which are thought to contribute to algal productivity.3 This source of error
is somewhat mitigated by the likelihood that it will be swamped by measurement
errors of the known driving variables.

Another aspect of model structure which contributes to prediction errors is the bias
of the models learnt relationships. In general, ecological problems are highly non-
linear with many competing processes and interactions. When applying a classic

sThe problem of selecting what features of a systern to measure is ubiquitous in inductive
modeling, and is demonstrative of the philosophical problems of separating observation and theory"

ì
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Table 5.3. The di,stribution of the water quality data used for modeli'ng

Measured Data Abbreviation Quartile 1 Median Quartile 3 Units
Chlorophyll-a
Nitrate
Ortho Phosphate
ph
Nitrate:Phosphate
TÞansparencys

Water Temperature

Chl-a
NO3
P04
ph
6.8

Tbansp
Temp

44.740
r04

3

8.44
6B

70

70.293
640

5

8.98
302
90

18.5

93.608
1076

16

9.40

mslL
p,slL
pslL

t20
24.6 OC

cm
9.8

neural network model to this problem, an architecture with which to learn the
desired relationships must be first specified. This immediately puts some bounds
on the likely complexity of the relationship which will be learnt (both below and
above). If the model is not able to represent the relationships between the attributes
which affect the prediction then there will be more errors.

5.1.3 Data Handling

Table 5.3 shows the distribution of the water quality data used in the modeling.
Most of the variables which are applicable for modeling were sampled at periods
ranging from fortnightly to monthly. In most studies which have used data from
Lake Kasumigaura the data has been linearly interpolated to give daily values [188,
190, 191, 237,232,230]. This approach has been used, unless otherwise noted, for
the training and testing in this chapter. Interpolation adds no information that
is not already present in the data set, however it makes the model outputs more
comprehensible due to the time-series nature of the data. It should be noted that
the raw data displays little auto-correlation in most of the measured variables, and
it is likely that interpolation introduces an amount of noise to the modeling task. It
is, however, the nature of ecosystem data to be noisy.

The learning task the model faces is to associate environmental conditions with
measured values of algal abundance. As noted, the lake has transitioned from being
Mi,crocysti,s spp dominated to being Phormi,di,urr¿ spp and Oscillatoriaspp dominated
during the period over which the data were measured. For this reason a typical
Microcystis spp year, 1986, and a typical Phormidi,urn spp and Oscillatori,a spp
dominated year, 1993, are used for testing the model. This means that the error
rates achieved on the testing data will not be indicative of the error rates associated

with the modeling task of predicting values from the lake data in general. To
calculate those error rates some form of cross-validation should be used [23S]. In
this chapter, the testing set is chosen to evaluate the explanatory po\ryer of the
model in two interesting years which are kept hidden from the model learning. The
question being asked is: can the model learnt from the lake data correctly predict the
measured values in two different years which are representative of the successional
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change in algal species which has occurred in Kasumigaura?

5.L.4 Model Evaluation

A root mean square (RMS) error formula is used to evaluate the models produced
by the evolutionary process. The RMS error is far from perfect for ecological studies
as it fails to capture many of the characteristics about the problems which are of
interest to ecologists. Nevertheless, it has been used in numerous studies and will
be used here, albeit with a modification.

The first problem addressed in this chapter is the prediction of chlorophyll-a lev-
els from the measured data. The problem property of interest in the prediction of
chlorophyll-a levels is when the maximums will occur. The chosen test years are
not randomly selected, but have been chosen to assess the models ability to pre-
dict chlorophyll-a in a typical Mi,crocysúis spp and a typical Oscillatori,ø spp and
Phormi'di,urn spp dominated year. Both years \r/ere highly productive. To force the
model to concentrate on the maximums, the RMS error is modified to punish under-
estimation of chlorophyll-a level. The aim is to produce a model which successfully
predicts the chlorophyll-a peaks. The fitness function used is

r: Examples
4'(¿o.ua -ø""trrl)2

Examples

Ifrp."a ) zactuat

Ifrp.ea 1 fiact.ral

where Examples is the number of input vectors in the input set. The RMS error
values reported are the usual RMS error calculation, the above function is only used
:-r^--^tì-- f^-- îL--^^- - -1 -r:riluerrriltry lut rrLiless evaruaLtoll.

The number of rules in a model can be restricted. The smaller the rule set the
more comprehensible it is likely to be and the less prone to over-fitting [36]. In
the initial experiments the rule set is limited to only 10 rules. This limit combined
with the biased fitness evaluation ensures that the rule set is focussed on producing
rules which describe the peak algal abundance. In Section 5.3, experiments without
bounds on the number of rules and with the RMS error as the fitness evaluation will
be described.

The ability to choose the fitness function and other conditions to suit the questions
of interest in a modeling task is in fact a strength of the evolutionary method.
Evolution is a general purpose optimisation procedure that can work effectively
with a variety of fitness functions, representations and arbitrary conditions. Yet it
can still optimise to find a good solutions to these problems.
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Table 6.4. Table of input parameters for the lake model

Input Set Lake Data
Water Temperature, Secchi Depth, POa, N03, NO3 : POa

ratio, Dissolved Oxygen, Ph, Solar Radiation
Water Temperature, Secchi Depth, PO+ and NO3 concen-

tration
Water Temperature, Secchi Depth, NO3 : POa ratio
Water Temperature, Secchi Depth, POa and NO3 concen-

tration, NO3 : PO¿ ratio
Water Temperature, Solar Radiation, PO¿ and NO3 con-

centration
Water Temperature, Secchi Depth, Solar Radiation, POa

and NOs concentration
Water Temperature, Secchi Depth, POa, NO3, ph

Table 6.6. Summary of results for different input sets

Root Mean Square Error
Input Set Lowest Quartile 1 Median Quartile 3 Highest

1

2

3

4

5

6

7

3r.4
31.9

38.7
31.5

33.9

30.9
30.7

36

34

44.6

34

36.9
34.L

36.2

38.8

35.3
45.8

35.3
39.1

35.7
38.5

4r.9
37.5

46.6

37.2

40.7

37.7

40.7

48.3
45.2

5L.4

45

45.9

44.3

49.1

5.2 Predicting Chlorophyll-a Levels

The first problem considered is the prediction of chlorophyll-a levels from the mea-

sured physical and chemical properties of the lake. Chlorophyll-a is always present

in the lake and is mostly due to the abundance of algal cells in the lake. The level

of chlorophyll-a changes in accordance to the waxing and waning of different algae

species in the lake throughout the years.

The evolutionary algorithm is used to extract patterns in the measured chemical

and physical characteristics of the lake and the level of chlorophyll-a. A number of
different runs on different input sets were conducted. Each input set consisted of a set

of different measured lake characteristics. The different input sets are summarized

in Table 5.4.

The evolutionary algorithm made 120 independent runs with each of the input sets

in Table 5.4 with a population size of 200 and for 200 generations. The results on

the different input sets are summarized in Table 5.5 and displayed graphically in
Figure 5.2. The results on input sets 2, 4 and 6 are essentially the same. Input sets
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Fesults of the evolut¡onary algorithm

f] Errorfromtrainingsel E Errorfromtest¡ngset

o
IIJ
o
d¡
q
(t)
c
do

o(r

r;I
l',:1H
¿=t
t=l

U
LJ

oo

Ð

o

Ð

oo

o

o

?H

o

*'r
(€J
11

oool
or; o

oB I'
-lri tré ii

; ' :fêl !'

=' 
t9 !ü e-l- : iÉl :IB

'-i_

-E
.¡i
?t

o

2 4 5 b 7

lnput Set

Figure 5.2. Comparison of the root rnean square error of the best rule sets found, when
applied to the training and testing sets for the di,fferent i,nput sets shown in Table 5.1.

1 and 7 show the largest variance, and both sets contain the pH. Input sets 1, 2, 4,6
and 7 all have equivalent lowest bounds on the testing set. All of these runs contain
the secchi depth, or water transparency, and the phosphate and nitrate levels in the
lake. Input set 3 is lacking the nutrient levels and Input Set 5 is lacking the secchi
depth.

It seems likely based on both theory and results that nutrient levels in the form
of phosphate and nitrate measurements as well as transparency measurements are
important inputs for the prediction of chlorophyll-a levels. It can be noted that
secchi depth, which is a measure of water clarity, should be well correlated with
the current chlorophyll-a concentration since chlorophyll-a will tend to make the
water less transparent. There will be other events which will also make the water
less transparent, such as an increase in the amount of suspended sediment. Nutrient
levels are clearly going to be indicative of chlorophyll-a, since algae require nutrients
survive and multiply. However, the relationship is not straight forward. A high
chlorophyll-a level is indicative of a high algal abundance, and algae consume the
available nutrients leading to a low nutrient abundance! On the other hand, low
nutrient abundance inhibits the growth of algae.

Table 5.5 shows that Input Set 5 produces results which are better than Input Set
3 (ihe test set error of the 50% of runs between the first and third quartile of Input
Set 5 are all better than the 50% of runs between the first and third quartile of
Input Set 3). The implication is that available nutrient measurements in the form
of phosphate and nitrate are more important to modeling than the transparency, at
least for the models produced by applying the sASMn algorithm to evolve rule lists
with exceptions.

o
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Figure 6.3. Compo,rdson of rule set output on the unseen test data. The top graph shows

the model which uses Input Set 1 in Table 5./¡, and i,s shown in Figure 5.6. The lower
graph shows the model using Input Set 2 shown in Figure 5.5.

6.2.I Comparing Models

What causes the differences in the observed behaviour in the models? In this sec-

tion two different models from two different rule sets are compared to ans\Mer this
question. The first rule set is generated from Input Set 1, which consists of all of
the available input data, and the second rule set is from Input Set 2, which appears

to be one of the most promising input sets used in Table 5.5. A comparison of the
performance of two randomly chosen rule sets from the two input sets is shown in
Figures 5.3 and 5.4 for testing and training respectively.

Using Input Set 2

For Input Set 2 consisting of Temperature, Secchi Depth, Phosphate and Nitrate
concentrations, a typical run of the genetic algorithm discovered a model with a

RMS error of 37.80 when applied to the testing set, and a training set RMS error of
28.08. The rule for this model is shown in Figure 5.5.

Figure 5.5 shows that the model firstly uses the secchi depth to classify low algal
abundance. This rule is mostly true over the low algal winter months. The model
uses nitrate and phosphate concentrations to indicate algal consumption of available
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Figure 5.4. Compari,son of rule set output on the training data. The top graph shous the
model which uses Input Set 1 in Table 5.1, and is shown i,n Figure 5.6. The lower graph
shows the model using Input Set 2 shown i,n Fi,gure 5.5.

nutrients. It is interesting that the level of nitrate is used to indicate the most severe
blooms. For Kasumigaura, the model discovered that large algal abundance is well
correlated with low nitrate levels over the summer months. This may be explained
by the fact that blue-green algae, which are dominating in summer, are able to fix
nitrogen from the atmosphere for photosynthesis and do not depend on dissolved
nitrogen in the water. If phosphate is also low then the algal cell count is very high
(97 mglD. This indicates that the largest blooms (ertremely high chlorophyll-a in
the order of 140 mgll) occur when algae have consumed most of the available free
nitrogen (nitrate levels are low), but phosphate levels are not near to exhaustion.

This model does not, however, succeed in predicting all of the peaks in algal abun-
dance. The high algal abundance in early 1986 and also in the training set are not
predicted by this model. The median prediction of 120 independent runs using Input
Set 2 shows that the median model also misses these algal abundance peaks. This
suggests that either the driving forces for these peak abundances are not present
in the input set, or that the concepts required to predict the algal abundance at
this time cannot be represented or discovered by the learning algorithm. It can be
expected that there is a large amount of noise in the lake measurements, and this
noise may be the explanation.
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IF PHOSPHATE IS IOW

THEN OHL-A Is high

IF PHOSPHATE IS IOW

THEN CHL-A IS very
high

IF NITRATE IS IOV¡ THEN

CHL-A IS extrernelY
high
IF Nor ÐxcEPTIoN

IF NITRATE IS high
THEN CHL-A IS TNCdiUM

IF NoT

rF TRANSP rS high THEN

CHL-A ls low

IF NoT

1

2

3

4Ð

Description Value

Tlansparency is high
Nitrate is high
Nitrate is low
Phosphate is low
Chlorophyll-a is low
Chlorophyll-a is medium
Chlorophyll-a is high
Chlorophyll-a is very high
Chlorophyll-a is extremely

Figure 5.6. An euolued rule set for preilicting algae

Using all Input Set 1-

Input set 1 contains all of the available input parameters. The variance of the RMS

error for this data set is higher, which is possibly due to the higher degree of freedom

available from the larger number of input parameters when producing models with
this dataset. A random rule set from Input Set 1 is shown in Figure 5.6'

The different model structures produce qualitatively different predictions. In partic-

ular, the timing of high algal abundance are picked up by different model structures

differently. The model detailed in Figure 5.6 produced the prediction on the unseen

testing years of 1986 and 1993 shown in Figures 5.3 This model had a very good

root mean square error of 35.76.

Transp > 110cm
NO3 > 577wgll
NO3 < 577vslI

PO4 < 3awslr
Chl-a :34mgll
Chl-a: bbmg/l
Chl-a :67mgll
Chl-a :97mgll

high Chl-a : L4i}mgll
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b7

Description Value
Transparency is high
pH is high
pH is not high
Nitrate is low
Phosphate is medium
Oxygen is not high
Chlorophyll-a is low
Chlorophyll-a is medium
Chlorophyll-a is high
Chlorophyll-a is very high
Chlorophyll-a is extremely high

Figure 6.6. An euolued rule set for predicting algae

Even though the two models produce similar RMS errors they produce different
predictions. One example of a different prediction is the algal bloom around day
350 of 1986 in Figure 5.3. This small bloom is correctly predicted by the model
produced from Input Set 1, but not by the model produced from Input Set 2. Why?

The model in Figure 5.6 uses Rule 5 to categorize this peak. That is, it was a time
of low nitrate and medium phosphate levels ancl the pH level was less than 9.2. Had
the lake been in a more alkaline state then the prediction would have been for an
extremely high level of chlorophyll-a QTamgll). This rule tells us that the peak
chlorophyll-a level occurred at a time when the nutrient nitrate levels were low and
phosphate levels medium, and the pH was less than 9.16. It could be concluded from

Transp ) 93cm
pH > 9.2
pH < 9.2

NO3 < 560pg/l
25 <PO4 <:168pg/l

DO < 18ms/l
Chl-a :44mglI
Chl-a: 60mg/l

Chl-a: 101mg/l
Chl-a : tl2mg4
Chl-a : t7Lmgll

rr pH rs not high rHnN
CHL-A Is very high

l¡' pH rs not high rHnN
cHL-A rs very high

IF PHOSPHATE IS

medium THEN CHL-A IS

extremely high
ExcEPT¡oN

IF oxYGEN rs not high
THEN CHL-A ls rnediurn

ExcEPTloN

rF pH rs high THEN
CHL-A IS rnediurn

IF NITRATE IS IO\]1/ THEN
cHL-A rs high

IF NoT ExcEPTroN

rF TRANSe rs high :rHnN
OHL-A Is low

IF NoT ExcEPTloN
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Table 5.6. Summary of results for Input Set 1 with
normal fi,tness eualuation

Lowest Quartile 1 Median Quartile 3 Highest
39.18 40.48 42.2L 42.92 44.6t

the model that higher chlorophyll-a at approximately I74 mg/l would be expected
at pH levels above 9.16. Nevertheless, the validity of this conclusion is unconfirmed.
It is also unclear of what cause and effect relationship is occurring. Does the high
chlorophyll-a level increase the measured pH? What is clear, however, is how the
model is making its predictions. And that is the point.

5.2.2 Comparison with CART

The classification and regression tree method of decision tree generation is a greedy
recursive partitioning method which can be used to predict real outcome variables

[40]. This makes it a good candidate for the generation of solutions for compari-
son with the evolved rulesets. This comparison is conducted with the CART im-
plementation supplied with the R statistical package 11271. When applied to the
Kasumigaura data using Input Set 1 from Table 5.4, CART produced the decision
tree shown in Figure 5.7, and produced the training and testing output shown in
Figure 5.8. The value of n in a parent node is the number of training examples
which have not been classified by that node, and so are eligible for splitting into
the child nodes. The number in the nodes in Figure 5.7 is the expected value of the
outcome variable for the examples that reach that node. That is, it is the weighted
average of the outcomes of the leaf nodes below it.

CART produced an RMS error of 45.47 on the testing set. This is not directly
comparable with those in Table 5.5 since the evolutionary algorithm was trained
with a fitness function which explicitly punished under-prediction more than over-
prediction, and the algorithm was limited to 10 rules. To compare, the evolutionary
algorithm was applied to the same data set without a rule limit and with the usual
RMS error criteria for fitness. The number of levels of prediction for the rule set
was increased to 9, and the number of boxes for dividing variables was increased to
4. The results of 10 runs with a population of 200 for 200 generations are shown in
Table 5.6. An example of the predicted output of a snsir¿p evolved rule set is shown
in Figure 5.9.

The evolved rule set which produced the unlabelled output is shown in Figure 5.10.
The rule set in the figure has the value ranges of the attribute labels included on the
rules. The numbers to the right are the number of training examples which satisfied
the rules premise. This is different to the number of instances that the rule has its
consequence applied, since subsequent exception rules will have their consequence
performed when their premise is found to be true. The rule set structure is consistent
with the previous rule set figures. That is, any rule connected to the left of its parent
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Figure 5.7. Cart rule set produced from Input Set 1. The output of the rule set is shown
in Fi,gure 5.8.

or the sole child of a parent rule is tested when the parent rule is found to be not
true. Children connected to the right of the parent rule are tested only when the
parent rule is found true.

Table 5.6 shows that the sASME algorithm outperforms CARI in each of the 10

runs performed, that is, the worst test root mean square error of the evolved rules
is better than that produced by CART. The differences between the two algorithms
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is not large, and it shows that the evolutionary approach is able to find solutions
as good as those found by a greedy partitioning algorithm. The output graphs in
Figures 5.8 and 5.9 appear equivocal with regard to prediction quality, which is
indicative of the problems of using root mean square error in ecological time series
data.
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5.2.3 Discussion of Chlorophyll-a Prediction

The self-adaptive evolutionary rule induction method is able to symbiotically op-

timise symbolic rule structures and associated parameter vectors to discover rule
set models for predicting chlorophyll-a in Lake Kasumigaura. The models are com-
prehensible and questions about why particular predictions have been made can be

answered by tracing the decision process that the rule set model undertakes. Fur-
ther, there are no assumptions on the structure of the model itself, which enables

arbitrary criteria to be placed upon the model production to suit the questions of
interest. This was demonstrated by limiting the number of rules that a model could
contain and by modifying the fitness function to emphasise the problem character-
istic of interest. The first condition was imposed to maximise comprehensibility of
the evolved rule sets, and the second to force the rule sets to accurately predict the
peak algal abundances.

In situtime series hold unique information about ecosystem processes and behaviour.
Inductive modeling techniques can be used to explore this information. Machine
learning techniques offer a new quality of inductive modeling by extracting not only
seasonal and annual patterns, but related connectivity between key variables as well.

The rules produced for chlorophyll-a prediction are descriptive and comprehensible
and are likely to contain some information about actual ecosystem function. An issue

with inductive models in general is unraveling correlations between inputs measured

and unmeasured, and the cause and effect of the relationships. A classic example is
the observation that in New York over summer, drownings and lemonade sales both
increase. Deducing that lemonade sales are somehow implicated in drownings is the
mistake that inductive modeling could make on such a data set.

It is possible that some of the prediction results in this section have made that mis-
take. The strength of the transparent representation is that the basis of predictions
is explicitly apparent. If a neural network connects lemonade to drownings and is
asked to make a prediction in a summer where the lemonade factory is on strike, it
will incorrectly conclude that there will be a decrease in the number of drownings.
A rule set, by contrast, will make the same error, but the basis of the prediction is
apparent and the cause of the error easily observable. The other possibility is that
of finding a previously unknown relationship in the data. Maybe lemonade drinking
really does increase a persons chance of experiencing flotation difficulties in water!

Ultimately, the induced hypotheses need to be tested in the field. The inductive
model produces hypotheses which are able to be understood, and therefore can be

tested. It performs as well as neural network methods and so is likely to have learnt
similar relationships to the neural network models for the prediction of chlorophyll-a

[189,238].
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Table 6.7. Summøry of cell counts for colonial (Microcystis spp) and fi,Iamentous
( Oscillatoria spp and Phorrnidium spp) algae.

Type Lowest Quartile 1 Median Quartile 3 Highest Units
Colonial
Filamentous

0.0
0.0

0.0
0.0

18575.0

36997.5
6447L7.0
502320.0

362.5

4778.0
Cells/l
Cells/l

5.3 Species Prediction

The anthropogenically eutrophied waters of Lake Kasumigaura favour a range of
blue green algal species. The populations of these species has waxed and waned
throughout the monitoring period from 1984 to 1993. As noted in Section 5.1.2,
since the early 1980s the dominant species composition of the lake has changed
from Mi,crocystis spp to Oscillatori,¿ spp and Phormi,dium spp. It is of interest
both theoretically and also from a management perspective to understand why this
change has occurred.

Learning rules to associate algal species with the physical and chemical properties of
the lake is a more difficult problem than learning the association with chlorophyll-a
levels. Algal species are specialized for certain conditions and occur only temporarily
in the lake, which means that numbers of meâsurements indicate no species present.
Learning becomes impossible when there are too few non-zero cases for classifica-
tion. Microcysti,s spp is frequently present in the data, and raw data can be used.
Mi,crocysti,s spp is atr exa,rrr¡rle of ¿ colonial algal species, which formed large algae
cell colonies in Lake Kasumigaura up until the late 80s. The other species of interest,
Oscillatorio spp and Phormi,dium spp are less common in the lake. However, they
are both examples of filamentous algae, and they both appear to be favoured by
similar conditions in the lake. For the purposes of this study, the two cell counts are
combined to give a filamentous algae cell count. The ecological legitimacy of this
could be questioned, however aquatic ecosystem experts concur that it is acceptable
for the use it has in this section.6

A summary of the two output variables is shown in Table 5.7.

Two separate rule set models are constructed in this section. One model attempts
to predict the presence of Mi,crocystis spp in the lake given the current physical
and chemical parameters in the lake. The other model attempts to do the same
for Osci,llatori,a spp and Phormi,di,um spp. The explanations that the models use to
predict the algae species can then be compared to see what the model predicts is
the reason for the disappearance of Mi,crocysti,s spp from the lake in recent times,
and the dominance of the filamentous algae.

Two different experiments are attempted with this problem.

6 Friedrich Recknag el, personal communication, 2000
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Figure 6.LL. Results of the prediction o/Oscillatoria spp and,Phormidium spp counts in
both the training and testing data.

5.3.1 Experiment 1

The first experiment uses the data from Input Set 1 in Table 5.4 on page 125. The
problem the evolutionary algorithm faces is to cluster the species cell counts into
two clusters according to the measured physical and chemical properties of the lake.
The values of the cell counts around which the clusters form is to be decided by the
algorithm. Table 5.7 shows that more lhan2STo of the time the measured cell counts
are 0. An optimal cluster distribution on this data will therefore include one cluster
corresponding to a negligible cell count. A second cluster will then be associated
with the presence of some number of algal cells.

The filamentous algae Osci,llatori,ø spp and Phormidi,um spp \4/ere the most difficult
to predict . The output of the model is shown in Figure 5. 1 1 . The rule set produced
is shown in Figure 5.12.

The results for predicting Microcysti,s spp are shown in Figure 5.13. The rule set

which produced these results is shown in Figure 5.14.

The interesting parts of the rule sets are those rules which predict the presence of
the algae species. For the filamentous algae the rule set in Figure 5.12 uses rules
4, 5 and 7 to predict the presence of filamentous algae. AII of the positive algae
prediction rules occur as exceptions to the rule dealing with low Secchi depths, 2.
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PO4 (-oo,14.6)
NO3 (-oo,595.9)
FILAMENT:76,800

DO (-oo,9.196)
NO3 (-oo,595.9)
FILAMENT:0.164

P04
(14.6, 193)
FILAMENT:76,800

WTpup
(19.5,20.9)
FILAMENT:76,800

eH (-oo,8.577)
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FILAMENT:0.164

S-DnprH
(90.12, oo)
FILAMENT:0.164
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FILAMENT:0.164
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1 732
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Figure 5.1-2. An eaolued rule set for predi,cti,ng fiIarnentous blue green algae, as repre-
sented by the combined cell counts o/ Oscillatoria spp and Phormidium spp.

Rule 7 predicts for filamentous algae most often in the training set, and does so on
the condition of phosphate being low, and nitrate not being high.7 Rule 5 predicts
for the algae when the pH is low, the phosphate level is relatively high, and the
nitrate to phosphate ratio level is low. The final positive rule, 5, predicts based on
a narrow temperature band, and does so in only 3% of training examples. This rule
may be overfit to the data. Rule 9 in particular is consistent with filamentous algae
being able to grow during periods of low phosphate.

The rules f.or M'icrocysúis spp shown in Figure 5.14 are simpler to understand. The
positive predictions are made when phosphorus is not low, and either pH is extremely
high, rules 3 and 2, or else the water temperature is very high 5.

2

I

b

6

7

o

TQualitative description of attribute ranges are based on the distribution of attribute values in
Table 5.3
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Figure 5.L3. Results of the prediction o/ Microcystis spp counts i,n both the training and
testing data.

5.3.2 Experiment 2

In this experiment the problem of species prediction is also addressed, but a different
data base is used and the rules are forced to learn preclassified situations. In the
previous experiment the levels of the clusters that the algorithm learnt were subject
to evolution. In the current experiment these are set at 0 and 50,000 cells.

Measured Data

The experiments reported in this section use 1986 and 1993 as the testing years

as before. However, the model is trained on a raï¡ data set which contains only
105 records. Of those records, 91 are used for training and the remaining 74 are

from the two testing years.8 Because of the small number of training records a
different strategy is employed to try and prevent overfitting of the data. The current
experiments use a random sample of the training examples in each generation to
evaluate the population. From the 91 patterns in the training set, each generation

sThis particular data set ends in August 1993. The difference in time frame is due to a diflèrence
in the availability of some of the input data used in these experiments. This data is only available
until August, and not as commonly available throughout the sample period. Result graphs are from
linearly interpolated testing sets to give a sense of the time at which the different measurements
are taken.
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DO
(-oo, 15.24)
MrcRo:0.249

WTpup
(26.66, oo)
MrcRo:379 000

pH
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PO4
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DO
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278

2489 3 I70

31

68

Figure 5.L4. An euolued rule set for predicting Microcystis spp, an erampie of colonial
blue green algae.

a generational training set is constructed consisting of 91 examples made up by
sampling with replacement from the training set. This places 63%s of the training
examples in the generational training set, and presents every generation with a
different set of training patterns, helping to maintain the populations ability to
generalise.

Tabie 5.8 shows'uhe cÌretnicai arrci physicai lake parameiers usecì for ihis experimeni.
The parameters were chosen according to availability and perceived predictive poten-
tial based on algal growth requirements. The algorithm should be able to discover
the most useful lake parameters and discard less useful parameters. It is known
for many inductive techniques that redundant or unimportant inputs can make the
learning task harder, and so choosing a minimal input set is likely to achieve the
best results.

Two evolved lake classifiers were created. One classifier was trained on the task of
classifying when M'icrocysti,s spp cell counts \¡r'ere measured to be higher than 50,000
cells given the data in Table 5.8. The second classifier considered the combined cell
counts of Osci,llatoria, spp ancl Phormidi,um spp for the same task.

2

4

5

6

eThe probability of not selecting a training example ly' times is (1 - S)N, giving x 36.670 for
N : 91. The limit as ly' -+ oo is I x 36.7%
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Table 5.8. ,4 sunxnxary of the input parameters used in Erperiment 2

Measured Data Abbreviation 1't Quartile Median 3'd Quartile Units
Nitrate
Ortho Phosphate
ph
\Mater Temperature
Tlansparency
Diss. Total Phosphorus
Ammonia
Nitrite

NO3
P04
ph
Temp
TYansp
DTP
NH4
NO2

104

3

8.44
9.8

70

16

2t
I

640
5

8.98
18.5

90

20

63

1076

16

9.40
24.6
I20
34

L62
30

p,8lL
p,slL

"C
CIn

p,8lL
p.slL
p,slL18

5.3.3 Experimental Results and Discussion

All experiments were conducted with a population of 200 models for 100 genera-
tions. The combined cell counts of Osci,Ilatoriaspp and Phormidi,um spp were used

in one experiment and Microcgsti,s spp in the other. The aim is to elucidate pos-
sible environmental difference in the preferences of the two blue-green algal types.
Microcystis spp were again the easiest to predict. For both datasets a cutoff level
of 50,000 cells was chosen. Although the levels of the prediction are not subject
to evolution, the fitness function the model is trained with the RMS error of the
models predictions and not the misclassification rate. This means that the model is
punished more for missing high algae peaks than for missing low ones.

A true positive prediction (TPP) is when the model predicts that the algae are
present, and the measured data shows that there are more than 50,000 cells present.

Similarly for true negative predictions (TNPs).

The sensitivity of the model is defined as:

Sensitivity : True Positive Predictions
(5.1)

False Negative Predictions * True Positive Predictions

the specificity is similarly defined:

True Negative Predictions
Specificity

False Positive Predictions * True Negative Predictions

Sensitivity is the ratio of true predicted positive results to actual measured positive
results, and similarly for specificity. They measure the error rates of the model on
positive and negative outcomes respectively. A third measure which is useful is the
positive predictive porñ/er of the model. This is defined as the ratio of true positive
results to predicted positive results, and represents a measure of the confidence one

can have in a positive prediction of algal presence from the model. The error rate
is the ratio of true predictions to examples presented, whether positive or negative.
100 independent trials were conducted for each of the datasets. The error rate,
sensitivity, specificity and positive predictive power were calculated for each run
and the distribution of the error measures over the 100 runs are graphed.

(5.2)
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Figure 5.15. Microcystis spp error rate, sensitiuity, specificity and pos'it'iue predictiue
pouer for 100 independent runs.

5.3.4 Results of Species Prediction

Figure 5.15 shows the error rate, sensitivity, specificity and positive predictive power
of the best classifier found, based on training results, for each of 100 independent
evolutionarv runs. Figure 5.16 shows the results for the filamentous algae. Mi,cro-
cystis spp are easier for the model to predict compared to the filamentous algae.
Microcystis spp bloom events are more discrete compared Io Osci,llatori,a spp and
Phormi,di,urr¿ spp events, tending to be near zero most of the time with discrete
spikes lasting a few weeks of more than 50,000 cells. It could also be due to a clearer
environmental preference of Microcysti,s spp.

The evolved rule sets were condensed to show the conditions under which the model
predicts the algae species presence. The current database can be explained with
a small number of classification conditions. This is clearly not an exhaustive list
of the conditions preferred by the algal species, but rather a simplification of the
conditions in Kasumigaura under which the data indicates that the species will be
present. Different runs of the algorithm produce different conditions by considering
different lake attributes. This is due to the algorithm learning on data containing
redundant attributes. In different runs it substitutes different attributes to make
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Figure 5.16. Oscillatoria spp and Phormidium spp error rate, sensitiaity, specificity and

positiue predi,ctiue power for 100 independ,ent runs.

Figure 6.L7. A condensed classifier for the presence o/ Oscillatoria spp andPhorrnidium
spp in Lake Kasumigaura.
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Figure 6.L9. Comparison between rneasured and predicted abundance of coloniat (Micro-
cystis spp) and fiIamentous (Oscillatoria spp and Phormidium spp) in 1986 and, lgg7

the prediction. Since the inter-run variance of errors is not extreme, this acceptably
allows the examination of hypothesis based on different attributes which nevertheless
achieve similar error rates.

Figure 5.17 shows a typical ruleset found for Oscillatoria spp and Phorm,idium spp
and Figure 5.18 for Microcystis spp. The time series plots on the testing set are
shown in Figure 5.19.

Figure 5.19 shows the temporal distribution of model errors on the unseen test sets.
These plots were made by interpolating the lake data to produce daily values for
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E Mode
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the input and output variables. The 50,000 cell cutoff is drawn to show when the

species are considered to be in bloom. The Mi,crocystis spp model makes few errors

on the test years used. The filamentous model significantly misses the lake dynamics

on several occasions. It predicts two peaks for the 1986 algal bloom, one early and

one late, though both miss the interpolated cell counts for this peak, and it misses

the actual measured peak altogether. The other error is a slightly early onset of
the 1993 peaks. Given the noise and difficulty of the problem, these error rates

are quite acceptable. There is no temporal component in the model evaluation,

and so missing a peak by a few days can induce a higher error than missing a peak

altogether, which raises interesting questions about appropriate error measures. This
study has conformed to the types of error measures used in previous studies which
have utilized this data, however, there are other possabilities.

The Microcysti,s spp models consistently predict blooms of Microcysúzs spp under
extremely high water temperatures and pH levels, as shown by the model in Fig-
ure 5.18. Oscillatoria is predicted most often under low secchi depths, indicating the
presence of an algal bloom, and the absence of extremely high temperature and pH

levels, as shown in Figure 5.17. Nutrient preferences of the two species are harder

to contrast, although a preference for phosphorus levels not being extremely low in
both cases is discernible. Blue-green algae have some ability to fix gaséous nitrogen
from air, and it is possible that the blue greens are out competing other species

under nitrogen limited conditions in lake waters.

5.3.5 Discussion of Species Prediction Results

Although the data used in this study contain a lot of sampling noise the model

is still able to discover patterns in the measured data that relate the data to the
occurrence of certain abundance levels of the algae species. The basis of the model
predictions is clear and easily understood.

The rules discovered by the model are consistent with an algal succession based

on decreasing phosphorus levels in Kasumigaura. In both case studies, only the
rules for the prediction of filamentous algae contain positive predictions based on

phosphorus levels not being high. Both models also agree Lhat Mi,crocysti,s spp is
favoured by high pH and temperatures. This may be an environmental niche that
Mi,crocystis spp prefers, as suggested by many authors, eg. 1217, I93, I07,272].

5.4 Conclusions

Knowledge representation is an important issue for inductive learning algorithms.
Representations that allow direct expression of learnt knowledge can be used to
examine the underlying hypothesis of a learnt model. The modus operandi of the
model can then be compared to domain theory.
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In this chapter a number of different models have been evolved for the prediction of
algae in a hypereutrophic lake in Japan. Aquatic ecosystem data present a challeng-
ing problem for machine learning due to the noise, complexities, and interactions
of the measured data. The domain is also of interest because there is still a lack
of knowledge about the relationships between physical and chemical properties of
freshwater systems and their biological productivity.

The evolutionary models produced for ecosystem prediction perform no worse than
those produced by artificial neural network approaches, they are to some extent,
however, comprehensible. The sASME framework allows the choice of representation
to be made so that information about the problem at hand can be discovered and
communicated.

Evolutionary methods appear well suited due to their global rather than greedy
approach to model formation. This allows the arbitrary conditions to be placed on
the models while they are being evolved, and for representations to be chosen to
suit the modeling tasks of interest.

a



Chapter 6

Conclusron

. . . when the dust has settled, it is usually found that the new technique is

neither a miraculous cure-all nor a complete disaster, but rather an addition
to the analyst's toolkit which works well in some situations and not in others.

C Chatfield,144, page 446]

6.1 Summary of Thesis

This thesis has addressed the problem of evolving mixed symbolic and numerrc
representations by developing a method of self-adaptive, symbiotic model evolution,
sASME. The two parts of the representation were evolved as symbionts, each part
mutualistically dependent on the other. The symbolic part was modified by a self-
adaptive procedure which adapted the rates of discrete mutations during the course
of the evolution. The numeric part of the representation was simultaneously evolved
with a self-adaptive evolutionary strategies algorithm.

A discrete rule set model which explicitly represents exceptions was evolved by the
sASME framework. The numeric component defined partition values for the observed
continuous attributes, and these partitions defined symbols with which the rule set

operated. The numeric vector optimised the state space partitioning, while the
symbolic structure evolution optimised the rule set topology.

In Chapter 4 the sASME algorithm was applied to the evolution of control rules
for the cart-pole problem. The algorithm successfully optimised rule set topologies
whilst optimising state space partitions to solve this problem. The produced rule
sets contain information about the learning problem. The rule sets were applied to
the two-pole problem by including an evolvable relationship in the rule premises.

This relationship allowed the rule sets to make decisions based on the relative angles
of the two poles. The symbolic rule sets produced were comprehensible and able
to solve this difficult problem. A final cart-pole problem was formed by removing
the velocity information from the observed state. To solve this variant, a novel

t47



148 CHAPTER6. CONCLUSION

recurrent rule structure was developed which made decisions based on its previous
actions. The algorithm evolved the rate at which it discounts decisions made in the
past. This problem was also solved and explicit rule sets produced showing how the
evolved solutions were controlling the system.

In Chapter 5 the sASME rule sets were applied to the evolution of rule sets for
ecosystem prediction. The algorithm formed models relating water quality data to
chlorophyll-a concentrations. The evolved models explicitly displayed the knowledge
they learnt about the system. Different runs of the algorithm produced models with
similar predictive accuracy but with different rules. The algorithm was then applied
to the problem of discovering why the observed patterns in algae species abundances
had changed, and the models produced were compared to theory. The algorithm
was able to produce comprehensible rule sets for the prediction of algae without
domain knowledge.

6.2 Conclusions of Thesis

There are clear benefits in the utilisation of knowledge representations which enable
the transfer of knowledge learnt by evolutionary learning methods. This thesis has
demonstrated several times the ability of the sASME algorithm to evolve discrete rule
set structures and optimise parameters for those structures in order to solve machine
learning problems. The products of the evolutionary search can then be examined
and the knowledge learnt by the evolutionary learner is explicitlv rcprcscntcd.

The use of self-adaptive mutation rates for the discrete structures and the associated
continuous vectors allows the evolution to simultaneously optimise the two compo-
nents. As each component discovers new innovations, and presents to its symbiont
a new avenue of exploration, the self-adaptive mutation rate of the components
can adjust to exploit the new environment. Thus the self-adaptive evolutionary
search is able to evolve solutions to difficult problems and still maintain a level of
comprehensibiiity in the suppiied soiutions, as shown in this thesis.

The application of self-adaptive mutation rates for discrete operators appears to
allow rates of applications of different operators to adjust to the topology of the
structure they are operating on; they allow the operator rates to be a function of
the generation, and this is shown in this thesis to produce superior evolutionary
dynamics to most, and equivalent to the best, fixed operator rates. However, self-
adaptive operators require no domain tuning. Empirically they are shown to provide
satisfactory results in all the test problems used in this thesis.

The sAsvto approach allows the representation to learn models in disparate problem
domains. The learnt models from measured data can be shown to contain useful
information about the problem domains from which they were derived. The sesrr¿p
evolved rule sets provide a method for elucidation of ecological information, pro-
viding knowledge about model predictions of ecosystem behaviours. This allowed
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hypothesis to be derived about the causes of species successions from predictive
models of those species. Such problems are common in the emerging field of ecoin-
formatics.

A diverse range of discrete structures can be used by the sesvtp algorithm. This
allows representations to be constructed which elucidate problem information and

which can still solve difficult problems. Relational information can be incorporated
in rule sets and descriptive models produced which use those relationships. Non-
Markovian problems can be addressed by the inclusion of evolved discounts of past
output in the set of attributes with which the model makes predictions. The re-

current rule set models developed in this thesis proved to be useful tools for the
discovery of controllers in a difficult non-Markovian control problem. The sASME

algorithm provides the first comprehensible model of the two-pole control problem.
The evolved model is nevertheless able to control the system as well as the neuro-
control approaches.

6.3 Final 'Words and Future Work

The proposed slsvtp framework has been employed exclusively for the evolution
of rule lists with exceptions in this thesis. The design of the algorithm, holever,
is such that any discrete structure could be evolved. The implementation of the
algorithm has been carried out in Objective-C using the Swarm libraries,l with
the two different parts of the solution coded as separate objects. This allows any
discrete structure to be used as long as the object matches the required interface.
The structure object notifies the parameter object how many parameters have to
be adapted, and how many discrete mutation methods are defined for the object.
The evolution proceeds in the way outlined in Chapter 3. When there is no discrete
object the program reduces to an evolutionary strategy algorithm for parameter
optimisation.

Several discrete structures have been coded, or borrowed from libraries. Neural net-
works have been evolved by the algorithm using a set of discrete mutations similar
to those defined for the rule sets,2 however other types of mutations are possible,

including partial training by back propagation as is done in EPNet [255], and modifi-
cation of transfer functions. The rule set object has been implemented to use objects
as its consequence part. This allows arbitrary models to be performed as the con-

sequence of a rule. So far, linear equations and fixed topology neural networks have

been coded.

Future developments of the structures evolved by sASME will be based on the kinds
of problems which the algorithm is asked to solve. The idea behind the flexibility
of choosing representations is that knowledge can be learnt by the algorithm and

t http : / /www. sw arrn. org
2Currently only addition and deletion of network nodes have been created
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communicated. The discrete structure should be chosen so that evolved solutions to
problems are able to provide some insights into the problem which is being solved.
The nature of the insights being searched for will drive the development of the
representations.

ID



Appendix A

Convergence Results for
Evolutionary Strategies

This appendix considers some of the convergence results obtained for evolutionary

strategies, and what they mean for parameter settings in the algorithm.

A'.1 Global Convergence

These results consider convergence of the (t + t) ES, that is the algorithm where

one parent is replaced by it's single offspring if and only if the offspring has a better
fitness. The extension of the first set of results to the (p+À) case are trivial since the
population based results will be at least as good as the (t + t) case. Unfortunately,
there are few results for convergence of the (¡^r, À)-ES. Note that a (1, 1)-ES strategy

is equivalent to random search.

The criteria of interest in analyzing convergence of the ES approach is how long it
takes the algorithm to enter a vicinity of radius e of the optima in question (global

or local). So far results relating to the rate of convergence are only available in very

Iimited examples.

Following Schwefel and Bäck [209], consider the (1 + 1)-ES starting at initial point

ø(0) with a mutation operator x)(t+r) - r(t) * Z where Z is a n-dimensional normally
distributed vector with stochastically independent components along each of the

axis with the same constant variance o2. If .[", denotes the n-dimensional unit
vector then Z can be written N(O,,o2In). The simplification of Equation 2.5 to the

case of using a single variance o is common in convergence results. It means that the

lines of equal probability in the objective function update equation, Equation 2.5,

are circles (n-spheres) and not ellipsoids.

The convergence theorem presented by Schwefel and Bäck requires some weak as-

sumptions on the objective function. In practice these assumptions are very unlikely
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not to hold to for problems of interest. An optimisation problem for which the ES
convergence algorithm holds is called regular.

Definition 4.1 (Regular Optimisation Problem) The optimi,sati,on problem

f(æ-) : mi'n{f(æ) | n € Mc R"}

i,s regular if and only i,f

1 Í(*-) ) -oo
2 r* e int(M)
3 p({æe Mlf@)€tJ,(f(æ*)}) >0Ve >0

where ¡t" i,s the Lebesgue rneasure, int(M) the set of i,nternal poi,nts of M, and,U, a,n
e-enuironment of it's argument. One calls f the objectiue functi,on, f @) the global
m'inimum, and æ* the solution to the opti,misati,on problem.

Requirement 1 is obvious. Requirement 2 is used to simplify the analysis without
making any strong requirements on the objective function. The last requirement
(3) prevents the objective function from having isolated global optima, which would
not be able to be reached with a probability greater than zero [209].

The following theorem, which is a trivial application of the Borel-Cantelli lemma
[37], is stated by Schwefel and Bäck, [209].

Theorem A.L Let e ) 0 and pn : p(tþ) e {æ e M I f @) e U,(f (u*)}) be the
Ttrnbu'bili,ty that a population of the (1 + 1) ES has reached the po,int æg¡ at iteration
g, the objectiue function ualue bclongi,ng to which i,s closer to the goal f (æ") th,an e.
Then, assum'ing

å
àon: 

* (A 1)

impli,es that

n(]ryU@(s))- f@-):o) :1
for any starti,ng point æp¡ € M.

Condition 4.1 will be satisfied when the probability of generating a solution in
the e-neighbourhood of the optimal solution does not vanish. Condition 4.1 in
Theorem 4.3 is made clearer in the following lemma 1209]

Lemma A-I If M c support(fu), where fs denotes the probability density of the
randorn uector Z of the mutati,on operator, and M is bound,ed,, then Ecluati,on A.1
i,s uali,d.

Where support(/(r)) is the set of values {* I Í@) + 0}. This result is an extension
of a general random search result [10][page 37] [19S]. The theorem states that
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the optimum will be found with probability one given the reasonable criteria on the

search space presented above. Lemma 4.1 will also hold when the mutation variance

is bounded.

It should be noted that Theorem 4.3 only holds for (1 * 1) selection, which im-

plies (¡r * l) convergence. For (¡.r, À)-ES the sequence of solutions d consisting of
the best solution at generation g does not converge, although it does enter the e-

neighbourhood of the global optima infinitely often (see Theorem 2.2 in [200]). This

happens because the necessary condition for global convergence, that a solution has

a finite probability of generating an offspring in the vicinity of the global optima,

will mean that any parents in the vicinity of the global optima in a (p,, À)-ES have a

probability of 1 of generating no children in that vicinity at some later generation.

A simple hall of fame containing the best ever found solution (which would not be

put back into later generations) would allow the construction of a sequence that
would converge with probability 1 and would seem an intuitively obvious step when

implementing a (¡;, À) algorithm on an optimisation problem. That is, the best ever

solution is considered, and not the current populations best solution, as the result

of the (p,l)-ES. This obvious strategy is employed throughout this thesis.

The results for convergence can be summarized by the fact that if any EA solution

has a finite probability of generating any other solution then the e-neighbourhood

of the global optima will be entered with probability 1 after a finite number of
iterations. The argument is identical to that for convergence of the elitist-GA and

many other optimisation procedures. Some of the criteria can be weakened [200]'
although most implementations which can be shown to converge will do so under

the conditions presented. For the ES method, the requirement that any solution has

a finite probability of generating a solution in the region of the global optima can be

made exâct, and implies that the variance of the mutation distribution is bounded

below (and above) by some fixed positive boundl. Although this was effectively

proposed by Schwefel in terms of satisfying computational limitations and ensuring

that the variance is not zero, it, is rarely'implemented in such a way on modern

computers [201].

The problem of what happens in the limit when the variation is not bounded below

was answered in the negative by Rudolph [201]. Rudolph constructs a fitness func-

tion which the ES provably does not reach the global optima with probability 1. He

states the following theorem

Theorem A.2 A randomly ini,tialized (l + 
^)-EA 

with a self-adaptation method

resembli,ng the Ifî-success rule does not conuerge with probability I to the global

opti,mum of a continuous objecti,ue function in general.

Where essentially the 1/5-success rule means that the variance is not bounded below.

The result holds for Cauchy or Gaussian mutation distributions. The result means

that even elitist evolutionary algorithms with self-adaptation do not always enter

lThe variance, a, is required to be in a compact positive set
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the region of the global optima in finite-time, in contrast to other evolutionary
algorithms [201].

While comforting to know that as time tends to infinity the optima will be found,
not many computer scientists have the patience to wait that long. Instead results
on convergence speed are desirable. Global convergence results do not say as much
as might be expected about the likely utitity of an optimisation procedure. The
problem is that proof of entering the global optima in finite time with probability 1

says nothing about the probability of entering the global optima in some fixed finite
number of generations G. More important than global results are results which
analyses expected convergence velocities.

To maintain the theoretical possibility of entering the region of the global optima,
the self-adaptation must be updated to be bounded below. Any such lower bound
will affect convergence velocities to an optima when the distance to the optima is
of the same order as the lower bound. This suggests choosing the lower bound
to be in the same order as the desired precision of the solution. While such a
scheme would maintain in theory the convergence properties of the self-adaptive
evolutionary algorithm, there is little practical reason to implement the scheme.

A-2 convergence speed of Evolutionary strate-
gies: The 1/5 Success Rule

To estimate convergence speed one needs to assume a fitness function. In the anal-
ysis of ES's a sphere model is the most frequently used nonlinear model for the
objective2(eg. [10, page 85]), that is

n

,f.o¡.r.(t) : co * "r'D(l,o - ,î)': co * ct.12
i:t

where æ* : (rI,. ..,r;) denotes the minimum, r is the Euclidean distance between
the trial solution æ and the optimum solution æ* and c¡ and ct * 0 are arbitrary
constants determining the position of the centre of the sphere in IR" and the "steep-
ness" of the sphere respectively. The sphere model represents the simplest non-linear
function, and it is argued that a sphere model cân approximate the local topology of
a local minimum of any fitness function. Sometimes the class of objective functions
is extended to arbitrary strongly convex functions [199], however the sphere model
will be used here for simplicity and brevity.

If the mutation operation is denoted by the application of some (stochastic) function

m(n): s' (A'2)

a

2objective function and fitness function may be used interchangeably
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where the objective update equation,Equation 2.5, is simplified to consider only one

variation parameter again, that is

t'n:: r,¿ ¡ oØ) . 
^4(0, 

1) Vz e {1, . . .,n} (4.3)

then the (1 + 1) algorithm becomes:

aØ+r¡ : max(r(e),,*ç*Ø)¡7 (A 4)

The original convergence rate results for the sphere model were presented by Rechen-

berg3 [1S5]. Rechenberg also considered a linear corridor model, where the objective
function is modeled as

/corrido.(Ø) :to lq'rt
where Vi e {2,...,n} : -bl2 1 r¿ 1 bl2. The corridor model represents a corridor
of width å where improvement is made only by moving along the 11 axis [10, page

S5]. The convergence rate of the stochastic ES is defined as the expectation of the
distance 7 covered towards the optimum by mutation (ignoring recombination), ie

9: pØ)'t dt (A.5)

where p(7) denotes the probability for a mutation to cover a distance 7 towards the
optimum.

Convergence rates are expressed in terms of dimensionless normalized quantities,
ol: ot .nlb, g\: gt-nlb, oL : oz.nf r and gL : ez.nlr. For the (1 + l)-ES,
and for nÞ7 we have the followingconvergence rates for the two models [10, page

S5l[79, pase125]:

,p\ : h(' r"+)n-' = h"*o(-l-:",¡ (A6)

e''z: ft"*'(-7) -+('-"*(;)) (47)

where erf(r) : + ff exp(-t2)dt is called the error function [10, page 85]. These

results are obtained by applying Equation 4.5 i.e., by integrating the useful distance
covered by the mutation and the probability of covering that distance over the suc-

cess area for mutations. Note that there is no chance of the solution not improving,
since the elitist (1 + 1) strategy is being employed.

Using Equation 4.6 and Equation 4.7 it is possible to find the optimal standard
deviations o'n. that maximize the convergence rate and the corresponding optimal
convergence rate p'i by setting

0

3They are presented in Rechenberg's doctoral thesis, which is published in German and un-
sighted by the author, who can't read German anyway. The work is extensively cited and repro-
duced in English by Schwefel, 1207, 2081, and Bäck, [10] and others.
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i e {7,2} [10, page86]. Rechenberg also calculated the expected values for the
probabilities of an improvement occurring, i.e.

h : P{fo(^(*)) 3 f¿@)} (z e {1, 2}; n > t)

with the mutation function rn(.) in Equation 4.2. Equation 4.8 is the probability
of the child replacing the parent in Equation 4.4. The resulting probabilities for the
corridor and sphere models are:

exp
1

2

1(Pt: t\

Pz: ;(

oi
, ^t*v2
p;

o'i : JT
.^l* I
Yl 2e*1Pt:ú,

x 7.253
N 0.184
È 0.184

x I.224
È A.2425
N 0.270

(A s)

(A.e)

(A.10)

Using o'* and g'* ir Equation 4.8 and Equation 4.9, it is possible to find the optimal
success probabilities pi. The values found by Rcchcnbcrg are [1s5][10, page86]:

The 1/5-success rule is based on these results. By noting that the application of
optimal step sizes results in a (optimal) success probability, p'¿* of x If 5, it can
be seen that an algorithm that maintains a probability of generating a successful
offspring of xIlS will maintain an optimal rate of convergence, g'i* for both model
objective functions, í.e. i, e {1,2}.Rechenberg used the term euoluti,on windowto
describe the order of magnitude that the step size can vary within and still maintain
a convergence velocity at least I12thalu of the optimal. For the model functions in
Equation 4.7 and Equation 4.6 it is found that the step size can vary an order of
magnitude from the optimal and maintain an acceptable rate of convergence. This
allows us to say that the algorithm is not particular sensitive to the value of the step
size when it is around the optimal [10, pages 86-87], and the approximation of 1/5
is sufficient. The alternative would require a different probability of success to be
obtained to each new problem in order to maintain a reasonable rate of convergence.

The l/5-success rule is theoretically interesting, but it has a number of problems in
practice. If the objective function is such that the success rate is never above 1/5
the search will stagnate. It also provides no mechanism by which individual step
sizes o¡ can be handled so that the mutation vector can be scaled to the scale of
the relevant axis.
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4.3 Convergence Speed of Evolutionary Strate-
gies: The (p I À)-ES

Schwefel extended the convergence rate theory to apply to the (1' À)-ES strategy,

with a single standard deviation which does not change, i'e.

¡(h) : m@Ø)7 Vh e {1,. . ., À}

where the mutation of each component of æ(h) is:

^@ln)) - rÍn) + ø - tú(0, 1)

and the selection method for the (1, À) method means that Equation 4.4 will become:

û: max(æ(t),. .., æ(r)¡

where ô will be the parent vector of the next generation. The results are extended

by looking at the distance that the average of the p best offsprings makes towards

the optimum, and the theory derived by Schwefel was general enough to account for

the (p T l)-ES.

In this case, Iet p¡(ù be the probability that the ¿th best offspring covers the distance

7 towards the optimum, then the probability that the average of the best p offspring

will cover a distance 7 towards the optimum will be

.p
p0) :1)]o,(t)

u-
' i:l

The analog of Equation 4.5 will then become

p: p0)'t dt (A.11)

where 7mi. will be 0 in the (p * )) case, to reflect the fact that the elitist method

does not ever have make negative progress, and it will be -oo for the (p, À) case.

Schwefel presents the following expression for the probability of the ith individual
covering a distance of 7 towards the optimum:

p¿(t) : ÀC)--rt 'ptj=-t'eì;¿r'e'",;:, (A'12)

where ptj=t is the probability of offspring number j covering the distance 7 exactly,

p1¡>1, is the probability of 7 covering a distance greater than 1 an-.d P1i<t is the

probability of it covering less. The interested reader is referred to Bäck for more

discussion [10, pages 88-89]. Combining Equation 4.11 and Equation 4.12 allows

the statement of Schwefel's convergence rate theorem:

Theorem 4.3 (Convergence velocity of (p T À)-ES) Let (ptu+^) denote the er-

pectation of the progress rate of the populat'ion auerage for a (p I \-ES using one
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single standard deui,ati,on and no recombination or self-ad,aptation. Assumi,ng a min-
i,mi,zati,on task, gç+¡) can be calculated according to

)
ç@+\: i l,l_,^,.

.Y

Itt
i.:l

cl-rt' Ptj=t' e);¿,' (1 - pr,.r)o-t fi (A.13)

where ?min:0 for a (p,+ 
^)-øS 

andl^in: -oo for a (p,,À)-ES

Unfortunately Equation 4.13 in Theorem 4.3 can't be solved to calculate analytical
convergence velocities in most cases, including the sphere and corridor models.

In the case of the (1, l)-ES, Schwefel was able to calculate the maximum of the ratio
9i /^¿ and arrived at À = 5 for the sphere model and À = 6 for the corridor model.
This led Schwefel to suggest a ratio of p,/À of at least 7/7 to maintain a sufficient
convergence speed [10, pages 90-91].

Beyer provides some results for (p, À)-ES for the ,^/-dimensional sphere model with-
out recombination [23], and with recombination [21]. Beyer also extends the con-
vergence rate ideas in Theorem 4.3 to account the self-adaptive (1, À)-ES4 [24].
The self-adaptivc thcory confirms Schwefel's setting of the learning rate parame-
ter r x 7fN, and Beyer hypothesizes that Schwefel's empirical finding that self-
adaptation works best when intermediate recombination of the strategy parameters
is employed (see discussion and footnote on page 21) might be explained by his
genetic repai,r hypothesis of intermediate recombination [2I, 24].

a

4With a single self adaptive parameter ø



Appendix B

No Free Lunch Theorems

This appendix presents the no free lunch theorem, and discusses some of its impli-
cations.

Evolutionary algorithms are usually applied when existing algorithms cannot be

applied, or they simply fail to give satisfactory answers or fail to supply answers

in reasonable time frames. The performance of a given search, optimisation or
learning algorithm on a given problem is usually unknown. The computability and

complexity of a given problem are an estimate of how hard it is to solve a problem.

A fundamental concept in computational complexity is the Church-Turing Hypoth-
esis:

Hypothesis 8.1 (Church - T\rring Hypothesis) Theclassof decisionproblems

that can be solued by any reasonable model of computati,on is eractly the same as the

class of decision problems that can be solued by Turing machi,ne prograrns.

A number of related points can be noted:

1 If a given problem can be solved by a finite procedure (ie. is computable, see

note on page 2) then it can be solved by a universal Turing machine.

2 It is not necessary to build a new machine for solving every new problem.

3 Modern computers are essentially universal Turing machines.

The Church-Turing result gives us optimism that evolutionary algorithms can solve

a lot of computable problems by automatically generating solutions on a Turing
equivalent computational device. The No Free Lunch (NFL) result reduces our

hubris somewhat.

The NFL theorem by Wolpert and Macready 1248] sets up a mathematical framework

in which to evaluate search algorithms and then proceeds to show that without do-

main specific information, there is no way to justify claims of one search algorithm's
efficiency over another. The theorem can be stated simply:
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Theorern El.l (No Fþee Lunch) For any pair of algorithmß a1 and, a2,

Itf dkl f ,m,ar) : f "f 
d,kl f ,m,&z)rÍ

where a¿,,'i e {I,2} is an algorithm mapping previously visited points in the search
space and producing a new, unvisited point d; P( d,o,"l f ,m,at) is the conditional
probability of generating a particular previously unvisited point d* after iterating a¿

for m iterations on a cost function /. Then Theorem 8.1 says that the conditional
probabilities for visiting any two points will be the same over all cost functions
/ regardless of the algorithms chosen ø¿. An obvious corollary of Theorem 8.1 is
that given any performance measure A@r^), the average over all cost functions /
of P@(da,") I f ,m,a) is independent of the algorithm used ¿. In other words, no
algorithm performs better than all others on all cost functions, and on average, they
all perform equally [78].

Consider two finite spaces X and /. Each point in .T has a cost associated with it
which is in / and is given bv Í@)(e )). / is a single valued function f , x -+y.
Wolpert and Macre ady l2a7l consider all functions which take values from X Io J).
On two modest sized spaces of 100 elements each, this would represent 100! different
possible functions. If a search algorithm knows nothing about the functions it is
searching, then it could be confronted with any one of these functions. Wolpert and
Macready show that all blind search algorithms perform exactly the same in this
situation.

NFL results say something intuitive about blind search, and some ramifications will
now be infbrmally discussed. Culberson relates the following anecdote [51]:

In the movie UHF, there is a marvelous scene that every computing scientist
should consider. As the camera slowly pans across a small park setting, we
hear a voice repeatedly asking "Is this it?" followed each time by the response
úcNahl". As the camera continues to pan, it picks up two men on a park bench,
one of them blind and holding a Rubik's cube. He randomly gives it a twist,
then holds it up to his friend to repeat the question/answer sequence yet
again.

The depicted scene typifies the concept of blind search. The searcher has minimum
information about the space he is searching in. All search strategies which propose
only new states of the cube will perform equally in terms of the expected number
of iterations before the problem is complete.

When the envirortrnent returns a value for the state that the problem solver has
proposed we are still no better off. To see this, consider instead of a fixed problem an
adversary who assigns a value to each proposed solution. The value will be the value
previously assigned if the solution has been previously proposed (something which
the conditions of the NFL, Theorem 8.1, forbids, since algorithms which go over old
ground can be provably demonstrated to be inferior to algorithms which only ever
test new ground!). If the solution has not been previously proposed, the adversary
assigns it a random value. If the adversary chooses from an appropriate distribution
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than it can generate with equal probability a function from the class of functions

of interest. It is reasonable to suspect that there will be no best search method

when confronted with the adversary. By assuming nothing about the function being

searched the NFL theorem essentially allows an adversary to choose the evaluations

of solutions.



t62 APPENDIX B. NO FREE LUNCH THEOREMS

Ò



Appendix C

Classifier Systems: The Michigan
Approach

This appendix describes Hollands learning classifier system (LCS).

The LCS was designed to operate in a reinforcement learning environment [118, 130,

165, 216], such as that in Figure 2.4, page 26. A, reinforcement learning environment
is one where the environment returns information about a models output at some

point. The only information available to the learning algorithm is therefore perfor-

nùance related. A classifier consists of a optpcroR:MESSAGE pair. The DETECTOR

attempts to match symbols presented to the classifier by the environment and the
MESSAGE part of the classifier specifies an action to perform if the classifier is suc-

cessfully activated. The tr¿ossAco part of the classifier consists of a fixed length

string from the ternary alphabet {0, 1, O}. The O symbol represents a don't care

at that loci of the string. The binary alphabet was chosen to maximize schema

processing. Figure C.l shows an example pattern and some of the detectors that
would match it.

Holland likens the system to an office where at the beginning of each day there are

a number of memo's on a message list to be processed. Each classifier correspontls

to a desk that can process a certain type of memo. At the end of each day, the

desks perform an action based on the memo's processed that day. An action can

be either posting a message on the message list for the next days processing, or

PATTERN

010011001110
is matched by

DETECTOR

000011000010
010011001110
0 1 0000000000
010011001110

Figure C.L. An erample of a pattern and the classifi,ers that would match the pattern
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Message
List Rule

List
tch

t
¡nessages

outI)ut
mêssageE

Figure C.2. A Holland style classifi,er systenx ([115, page 164])

performing some action on the environment via the effectors. The environment
is assumed to give only sparse, intermittent payoff to the learning a,ìgorithm. The
payoff is divided amongst the classifiers by an algorithm known as the bucket brigad,e
algorithm. New rules are generated from old by a genetic algorithm. The situation
is shown in Figure C.2, [11S].

Each matching DETECToR is assigned a bid value depending on how specific the
classifier is and the expected payoff of the classifier. The number of wildcard ele-
ments in the classifier determines how specific it is-the more O symbols the less
specific. The more specific the classifier, the higher it's bid. The expected pay off,
or strength, of the rule is decided by the credit apportioning algorithm, the bucket
brigade, and depends on how successful the rule has previously been in getting pay-
off from the environment. The bid ó¿ of rule i is usually a proportion of the rules
strength si7 where the proportion is dependent on the rules specisifit¡ specisifityr,
and is usually set to:

soecificitv. _ Number of specified bits in rule i
' Number of bits in the rules

and the bid strength of rule z would then be:

ó¿ : specificity, .s¿

In the CS-11 classifier presented b¡' Holland [11b], the top ten classifiers are chosen

I

Environment

ff

Bucket brigade
adjusts rr¡le strengths)

Genetic Àlgorithm
(generates new rr¡les)

OutpuÈ inÈerface
effecÈors

Input ínterface
detectors

lCS stands for Cognitive System [115]
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and randomly weighted according to bid strength to determine the winning classifier.

The winning classifier has it's MESSAGE performed.

The bucket brigade algorithm works as follows. If a rules bid is successful then its

strength is reduced by an amount equal to the bid:

s¿(g * I) : to(s) - bo (C'1)

All rules which posted messages to the message list that were matched by rule i get

their strength increased by the bid of rule'i, so that if rule j had posted a message

matched by i it would have:

,¡(g +1) : r¡(g) .'+ (c.2)

where r¿ is the number of classifiers which posted messages that are matched by

i 1722, section 4.1.5]. Note that the message list is cleared at the end of each

time period ("day"). The analogy used by Holland is that of an economy where

information is bought and sold by the rules and payments are made from the rules

strength. The system recoups strength via reinforcement from the environment. If
rule i performs an action on the environment that results in some reward, it has its

strength boosted by an amount equal to that award. As rules grow stronger, they

make stronger bids [118].

The bucket brigade algorithm is motivated partly to help the formation of default

hi,erarchies. Default hierarchies are discussed in section 2.3.2 on page 30. The

bucket brigade promotes the coupling of different rules by dividing payoff amongst

rules with the bidding system. The algorithm promotes the formation of increasingly

specific, accurate rules.

The generation of rules in a Holland style classifier is conducted by a GA which

periodically replaces low strength rules in the population with new rules based on

the current rules in the population [118]. The use of the internal memory structure is

not always necessary. DeJong notes three reasons why an internal memory (message

list) might not be used [57, page 630]:

1 The application does not need the extra computational complexity'
2 The halting problem: how many internal actions are allowed to be performed

before the next external action must be?

3 Most of the work in traditional machine learning does not use an internal
memory.

An internal memory will increase the complexity of the model and make it a more

powerful computational engine than a simpler "stimulus-response" inference engine.

Nearly every part of the suggested classifier system has been altered and alternative

methods tested 12461.

1 Pattern Matching. Instead of detectors matching exactly the symbols supplied

by the environment, partial matches are possible.
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2 Credit Assignment. Many different credit assignment methods have been tried,
such as: Methods which reward all classifiers who were active since the last
payoff event equally (epochal); methods where classifiers pay a part of there
strength to classifiers active on the previous step (impticit bucket bri,gade).

Although default hierarchies have been observed in applications [246, 94], it has been
noted that their development and stability can be problematicllg7,2lb]. When a
rule that forms part of a hierarchy is modified it can cause the complete collapse of
the entire hierarchy. Rules which occur early in a long hierarchy chain are difficult
to reinforce becatrse of the number of iterations required to move payoff up the chain
to the early classifiers [246].

Holland's classifier system is a çomplicated structure with many interacting pro-
cesses determining its success. Wilson writes [240]:

' . . efforts to realize the framework's potential have met with mixed success,
primarily due to difficulty understanding the many interactions of the classifier
system that Hollancl outlined.

Despite this, there are a range of applications which Holland style classifiers have
successfully been applied to such as control problems [94], letter recognition prob-
lems [87] (but see [69]) and others 12461. In response to the complexity of the
LCS suggested by Holland, Wilson proposed a simplified "zeroth level" classifier
system, ZCS 12401. ZCS simplifies Holland's classifiers by removing the message
list, simplifying the bucket brigade, removing the bid competition and removing the
measurement of specificity from the system. Wilson asserts that specificity is not
desirable in classifier systems [239], and ZCS does not use it.

Wilson's credit assignment algorithm is related to the machine learning method of
(tabular) Q-learning 1240, 6l]. Q-learning and temporal difference (TD) methods
share a common goal with CFS research, although stemming from two different
traditions in artificial intelligence research, the behaviourist tradition in the case of
TD and Q-learning and the symbolic approach in the case of CFS [61]. When a
classifier system is drastically simplified by

1 removing its internal message list.
2 forbidding "don't care" symbols (ie. the o symbol in Figure C.1 on page 163).
3 allowing only one condition and one action on each classifier.
4 allowing the population to contain every possible condition-action pair (so that

a GA is not required).

and using the implicit bucket brigade where a classifier is selected probabilistically
from the match set on the basis of its strength and pays a proportionate amount
of its strength to the previously fired classifier, while receiving a proportion of the
subsequent classifiers strength, ie.:

t¿(s I 1) : (1 - a). s¿(g) + R+ a. s¡(s + a) (C 3)

where s¿(9) is the strength of classifier z' at generation (iteration) g, a is the pro-
portion of a classifiers strength that gets paid to other classifiers, R is the reward
from the environment after application of classifier z''s action and classifier 7 is the

I
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classifier whose action is performed at the next time step g + 1. It is beyond the
scope of this thesis to review the Q-learning literature, however it is interesting
to note that Equation C.3 corresponds to the Q-learning update formula with the
discount ra|,e 1 set to one and the strength (Q-value) of an action updated by the
action which is actually performed at g l1 rather than the action corresponding
to the maximum Q-value. These changes are minor, and Dorigo et al argte lhal,

Q-learning extensions often make the Q-learning algorithm more similar to the full
CFS algorithm [61].

Wilson extends the ZCS classifier system to update the method in which classifiers

are evaluated. In an algorithm referred to as XCS, Wilson allows each classifier to
maintain a prediction of its accuracy, but the fitness of the classifier is based on a
measure of the classifiers prediction estimate accuracy 124L,242,243,245,244, 42].

The strength parameter is removed, and classifiers are chosen from the action set on
the basis of their predicted value. Results of using the method indicate that XCS
can generate more general rules than ZCS. Wilson also modifies the method the GA
uses to generate new rules.

Extensions to the LCS algorithm's mentioned so far include using fi,nzy sets and
rules for the classifiers [50, 224, L7I,35, 36], real values for classifiers [244, 36],

messy codings [1a9] and S-expressions for rule conditions [150].

To the authors knowledge, Michigan style learning classifiers have only been imple-
mented using the genetic algorithm evolutionary paradigm.
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Appendix D

Schema Theorem and
Representation

The defining feature of genetic algorithms is the choice of binary strings to represent

solutions. This choice is popular due to Holland [117], although others, including

Bremerman [76, page 311][41] and Friedberg [88, 89], also used a binary representa-

tion.

D.l The Genetic Algorithm

Holland [117] proposed modeling the operators and structures of a search method

off an idealized understanding of genetic processes. The chosen representation most

closely simulates a unicellul ar, haploi,d organism [10, page 16]. He called his method

genetic algorithms (GAs). A population of solutions are modified by crossover'

mutation and inversion operators and the best of the resulting solutions are chosen

for the next generation. The operators are a simplification of the more complex

behaviour which underlies natural genetic systems [170]'

The essential components of the GA in common with all evolutionary methods are

reproduction, mutation, competition and selection. The unique aspect, as proposed

originally by Holland, is the representation of solutions as binary strings. The

canonical genetic algorithm is implemented as follows:

1 To implement a genetic algorithm the problem of interest must be able to be

defined as a fitness function, F(.) e IR, that represents the value of any given

solution. The value assigned is clearly dependent on what the problem is and

why we are solving it. Without loss of generality, we will assume the problem

to be to find max(,F'('))1

1A minimization problem redefines f.(.) to be -.t'(.), although the roulette wheel selection

method requires F (.) > 0 this is easily remedied by choosing the probability of selection to be I -p
where p is the calculated probability. If f r,A : F(æ) < 0,f.(g) > 0 then some other trick needs
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2 A population, P(0), of P candidate solutions,

r@) ePQ), k e {L,2,...,p}

are generated as binary strings, *Ír) e {0, 1}. This typically involves forcing
the representation onto the problem. For example [71], if the problem were to
find a scalar g which minimizes

g(ù : a3

then a finite range of values of y would be selected and then the minimum value
would be assigned {0,0, . . .,0} and the maximum would be {1, 1, . . . , 1}. The
desired precision would then be used to determine the size of the solution
vectors, ie. r(k) € {0, 1}". Biologically inspired terminology is usually used.
Solutions are referred to as chromosomes. Bits in the chromosome are referred
t'o as genes and the alternative values at a position, or locus, are referred to as
alleles. The binary string is the genotype of the solution and in this example
the real value E which the binary string æ(k) codes for is the phenotype.
If D is the domain of interest of F(.), then let d, : {0,1}" -+ D, where d,

is usually not one-to-one or onto the domain of F(.). We let the function
/(') b" the function resulting from applying the fitness function f'(.) to the
transformed binary string, ie f (n): F(d(n)), t e {0,1}". We also refer to
/(.) ur the fitness function.

3 The solution vectors in the population,

æ(k) €Pþ), ke{I,r,...r}, g€lN

are decoded and assigned a fitness, Í (æ(xl¡, according to the objective function.
g € IN is the generation number.

4 Each chromosome is assigned a probability of reproduction proportional to it's
fitness relative to the fitness of the other solutions in the population P(g). If
Yæ : f (æ) > 0, then this can be accomplished by roulette wheelselection where
the probability of selection of æ&) e Pþ) is

'f (æ(k))
Pt, : ffi, æe P(g)

5 With probability p¡ a solution is chosen for reproduction. Chosen chromo-
somes reproduce by the genetic operators of mutation, crossover and (rarely)
inversion, Figure D.1.

Mutation with a set probability pm* ã bit in a solution rs(k) is flipped. p-u1
is often set to an arbitrary small value between 0.01 and 0.001 [71].

Crossover With probability pcross crossover is performed. In a one-point
crossover operation a uniformly random number, r, between 1 ancl n
is chosen. The first r bits of a chosen solution are combined with the last

ln

to be used
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Crossover

Crossover Point

Mutation

Mutation Point
Inversion

Figure D.L. Genetic operators for binary representat'ions-

n - r bits of another chosen solution to create a new child offspring. A
second child offspring is created from the remaining bits' In a two-point
crossover operation two randomly chosen points are used' In uniform
crossover two offspring are created where with probability 0.5 each bit of
the first offspring comes from one of the parents. The second offspring

contains the bit from the parent not contributing to the first. P".o* is

usually arbitrarily set between 0.6 and 0.95 [71].

Inversion With a set probability Pir,.,, â part of a chromosome has it's order

reversed. Inversion is rarely used because it rarely produces offspring

with high fitness, it was, however, suggested in Holland's original work

[117].

6 The genetic algorithm is terminated when a desired solution is found or when

a set number of generations have elapsed.

The classical argument about how genetic algorithms work is based on three com-

ponents:

1 A large population of solutions are initialized randomly to provide random

sampling of the search space

2 Individuals with a high fitness are preserved through selection. This biases

sampling of the search space towards areas of higher than average fitness

3 Portions of different strings, called "building blocks" are combined onto the one

string by the process of crossover, thereby exploiting the parallelism provided

by maintaining a population of solutions

We now review the details of the above argument'

0001TLL1_

1_1-T00000

0000 0000 000Lrr000

L1_LI0000 0000I1_Tl_
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D.2 The Schema Theorem

The motivation behind the use of a binary representation is inextricably intertwined
with the notion of a schema. Consider an alphabet of symbols A with # ç A (using
the notation of Holland [117]). We consider fixed length strings from the alphabet
A and we define the f symbol to be a wild card or don't care symbol, meaning that
we do not care what symbol is at that particular loci. The set of fixed length strings
formed by the union of the alphabet Aand the symbol ff are referred to as schema.

consider the alphabet, A: {0,1} and the schema {00##}.The schema {00ff}
represents all of the strings {0000}, {0010}, {0011} and {0001}. Holland recognized
that the fitness of an individual with schema {00##} gave an implicit evaluation of
the expected fitness of the schema. That means that an evaluation of {0000} gives
some information about the fitness of {\\ffft}, {#0##}, {#0#0} and so on [71].
Holland called this i,mpli,ci,t paralleli,srn because it implied that a single evaluation
could give information about a large number of schema [81] at the same time (ie. in
parallel).

Definition D.1 (A Schema) A schema i,s a simi,lari,ty template d,escribing a sub-
set of strings wi,th si,rnilari,tics at certain string posi,tions2

A binary representation of length n will have 3" possible clifferent schema, since it
is an instantiation of the ternary alphabet {#,0, 1}. A binary string of length rz
describes 2' st:Ìtema, since each bit can have one of two possiblc values, either it's
binary value or the f symbol. A population of P chromosomes will then be sarnpli¡g
between 2 and P '2 different schema, depending on the number of different alleles
in the population3. Where rn is the number of f symbols in the schema, the order
of the schema is defined to be the number of fixed positions in the schema, or n - rn
[10]

Definition D.2 (Order of Schema) The order of a schema i,s equal to the nuTn-
ber of fi,red positions i,n the schema, ,ie o : {0,L,#}" + {0, I, . . . ,n} such that:

o(H):l{¿lhn€{0,1}}l

For a binary string of length n, there are4

2Schemata plural of schema can be illustrated as hyperplane partitions of the n-dimensional
hypercube where each vertex represents one of the 2n different possible states of the individuals
[22].

3In fact the number of schema sampled will be strictly less than P .2n whenever p > 1.

ck

4C7, is the combinatorial ope.ator, Cfr: ç=$f-a., also writte " (Z)
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different possible schemae of order rn represented [57, page 619]. Hence a single solu-

tion can implicitly evaluate a considerable number of different schema (hyperplanes,

partitions) in the search space.

Holland proposed that different representations in genetic algorithms could be com-

pared by considering the number of schema that the algorithm would process us-

ing that representation. For example, a decimal string of length 6 can represent

106 : 1 000 000 distinct objects. Similarly a binary string of length 20 can rep-

resent about the same number of objects 220 - 1048576. However the number of
possible schemata processed in a decimal string will be 116: L777567 where as the

binary string will process 320 : 3.49 x 10e [117, 81]. Holland proved that schema

processing is maximized when lAl:2 and a binary representation was suggested as

the universal representation [IL7, 7I].

The problem was then to decide how to allocate trials amongst the different schema.

Holland likened the problem to the gaussian two-armed bandit problem [116][117'
page 75-83][79, page 115]. In the gaussian two-armed bandit problem a poker ma-

chines with two arms is considered which provides a different normally distributed
random payoff upon pulling either arm. The payoff from the first arm has mean ¡;1

and varian ce ol, and the second arm has p,2 and o|. The problem is how to best

allocate trials between the two arms in order to minimize the expected loss from

pulling the wrong arm. If we perform n1 pulls of the first arm and n2 pulls of the

second, then we will have an observed mean payoff of 11 for the first arm and 12 for

the second. If we let the function q(u,nz) be the probability that after pulling arm

1 n1 times and arm 2 n2 limes the observed mean value for the first arm is greater

or less than the observed mean value of the second when the true mean is not, ie

q(nt,nz) : Pr(ø1 ;, nz) 1f h < pz

Pr(21 .*r) fi tq> trz
(D.1)

then the two-armed bandit problem is to minimize the expected loss function,

L(rr,rr):lq(rr,nz)nt+ (1 - q(n1,n2))nrl'I ttr- pzl (D'2)

Holland proved the following theorem about minimizing equation D.2 [116][117'
pages 77-781194, page 37][79, page 116]

Theorem D.L Gi,uen N trials to be allocated to two random uari,ables with n'Lel'ns

lh ) ltz and uari,ances o2, and ol, respecti,uelE, and the erpected loss function de-

scribed, in equation D.2, the minimum erpected loss results when the number of trials

allocated, to the rand,om uariable with the lower obserued auerage payoff i's6

r1,*-b2 I N2 I
' t" lçø t, N,] (D'3)

sReferred to as a slot machine in the USA
6the asymptotic notation A(t) - B(t) indicates that for arbitrary functions A(t),B(t) of the

same variable ú, we will have lim¿--¡- ffi:1 [117][37, page 37]
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where b : otl1h - pz). The number of tri,als to be allocated, to the rand,om uariable
with the higher obserued o,uero,ge paAoff is N - n*.

The proof is long and can be found in Holland [116][117, pages 7g-s3]. Equation D.3
can be rewritten as

N-n*--ôy'- Srbaln N2
n

. ¿ãF

indicating an exponentially growing number of trials N - n* to be allocated to the
observed best (see [117, page 83]) [10, page t2T].

The above analysis will also hold for the ft-armed bandit. Holland likened the
problem of allocating trials to schema to that of allocating trials in the k-armed
bandit problem. In order to minimize the expected loss, it was proposed to allocate
an exponential number of trials to the observed best solutions in order to minimize
the expected loss while sampling schema [79, page lt7llgL, page 30-31].

Reproduction will increase the frequency of successful schema in the population
by selecting those individuals with higher probability. Mutation will occasionally
disrupt schema and is seen as a slow background operator which ensures that no
schema are irrevocably lost to the population. The effect of crossover will depend
on the defining length of the schema.

Definition D.3 (Defining Length of Schema) The defini,ng length of a schema
is defi'ned to be the number of symbols between the first non-ff symbol and, the last
non-ff symbol, ie õ : {0,I,#}" -+ {0, L,. . .,n - L} such that

õ(H) : mar{'i I ho e {0, 1}} - min{i,l hn e {0, 1}}

Short low order schema are less likely to be disrupted than longer schema by the
typical one or two point crossover operators. This leads to the central theorem for
genetic algorithms and how they work, the schema theorem [117, 94][10, page 12b-
126], which describes the change in the number of copies of different schema in the
population during the execution of the genetic algorithm described on pages 16g-
171, with one-point crossover.

Theorem D.2 (The Schema Theorem) Short low order aboue o,aerage schemata
receiue erponentially i,ncreasing trials in subsequent generations.

r¿(g * t) >

o

where r¿(g) is the number of copies of schema 1¿ at generalion g. P is the population
size. /, is the average fitness of the fixed length binary strings containing schema
I¿. f is the average fitness of the entire population, that is

î:à?h: 
-,% 

(D 5)



D.3. PROBLEMS WITH SCHEMA ANALYSIS 175

n is the length of the bit string. o(I¿) is the number of non f symbols in the schema

.[¿, ie the order of the schema, Definition D.2. 6(Ic) is the defining length of schema

I¿ (Definition D.3) and p".o* and p-,r1 are the probabilities of mutation and crossover

respectively.

The proof of the schema theorem is straight forward and can be found in Holland

[117], Goldberg [94, page 28-33], Bäck [10, pages 123-126] and elsewhere. Theo-

rem D.2 says that the observed number of a particular schema in the next generation

will increase (decrease) according to a multiplicative equation, Equation D.4, which

depends on the fitness and order of the schema. In particular, schema with low

order (short) and above average fitness will increase in number exponentially as the

number of generations increase. Equation D.4 will increase the number of copies of
schema.[¿ when f (In) > / and ô(^I¿) and o(I¿) ate small.

The schema theorem gives us a concrete result about what is happening during a ge-

netic algorithm run. It provides the reason for the choice of a binary representation,

namely the principal of mi,ni,mum alphabeús; binary strings maximize the number of
schema the algorithm processes. With theorem D.1 it provides a reason for choos-

ing fitness proportionate selection; to optimally allocate trials amongst schema. It
provides reasons for choosing crossover methods; crossover is chosen to minimize

disruption to schema and hence to conform to the building block hypothesis

Hypothesis D.l (Building Block Hypothesis) Successi,uely better solutions can

be generated bE combi,ning useful parts of ertant soluti'ons.

It also dictates the mutation probabilities; mutation is a background operator which

is infrequent so that it does not significantly disrupt schema processing, however it
must be maintained in the algorithm to ensure that no schema are lost to the
population. The schema theorem is seen as the fundamental theorem for how genetic

algorithms work [94, page 33][79, page 117]. Genetic algorithm work by optimally
allocating trials in a manner which maximizes the implicit parallelism of the method.

The schema theorem states that the method will increase the frequency of short

above average fitness schema exponentially when they are rare in the population [2].

D.3 Problems with Schema AnalYsis

The previous analysis is important since it has guided genetic algorithm design

since it's conception with Holland in 1975. The theoretical analysis has many short

comings, some of which we will now consider.

The stated goal of Theorem D.1 ". . . is to discover a procedure for distributing an

arbitrary number of trials . . . so as to maximize the expected payoff" [117], however

a number of problems with both the derivation and utility of the Gaussian k-armed

bandit problem to this end have been identified:
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1 Holland considers only strategies where each arm has been pulled n times and
the remaining ,n/ - 2n trials are to be optimally allocated. It is not clear what
relevance this subset of strategies has to the general optimisation problem of
k-armed bandits [155] and by extension to the problem of allocating trials in
a GA.

2 The fact that equation D.3 on page 173 is independent of the standard devi-
ation o2 of the arm with the lower payoff is surprising. A higher value of ø2
would indicate that more work would be required to establish which arm has
the higher mean than otherwise. Macready and Wolpert state that ". . . the
fact that Holland's result is independent of o2 is i,pso facto rcason to suspect
ft." [155].

3 In fact, it has been shown that a simple greedy algorithm based on a Bayesian
[112] update from prior pulls performed better than Holland's strategy [1bb].
The derivation of Theorem D.1 assumes that the expected loss for allocating
trials is unconditioned instead of being conditioned on the previous trials,
which it should correctly be [155]. Theorem D.l is the solution to the \l/rong
problem [79, page 116-117].

4 In examining the problem of allocation of trials, the assumption is always
that the fitness distribution of schema is normalT. This requires the central
limit theorem to be applied, which in turn will require a sufficient number of
indcpendent evaluations of the schema. Only then can l,he separate fitness
evaluations of the schema be assumed to be normally distributed. Most GAs
codings violate thc assumption of independent evaluations, and the frequency
of schema in the GA population will frequently be iess than that required
for the central limit theorem, invalidating the assumption of a normally dis-
tributed fitness evaluation of the schema [29, page 118].

Altenberg notes that it has been shown that l,he link between the schema theorem
and performance of the GA is based on the building block hypothesis. The basic
idea is that by allocating exponentially many trials to promising schemata the GA is
searching promising area's of the search space and thereby more likely to find better
solutions [2]. The promising area's of the search space corresponds to above average
schemata, and the assumption is that the genetic algorithm procìnces high qualit;r
solutions from above average schemata. That is, the fitness of children and parent
is correlated. But this requirement is independent of the schema theorem [2].

Fogel writes that [79, page 117]:

In light of Macready and wolpert (1gg8), there now appears to be no sup-
port for viewing the schema theorem as having fundamental importance. The
theorem simply describes the expected number of each schemata at the next
generation under proportionate selection when each complete solution is as-
signed a specified fitness value.

The above problems go some way to explaining the proliferation of schema-theorem
defying GAs in the literature.

TThe assumption is always that the distribution of the payoffs in the k-armed bandit problem
is normal
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In Baker (unsighted [15]) and later Whitley [235] reported the first experiments

using a rank-based selection method, where the probability of selecting an individual
was independent of its fitness value, and instead dependent on its rank (according

to fitness) in the current population. Rank based selection helped slow down the

convergence of the genetic algorithm and stop domination of the method by a few

super individuals whose fitness would be so far higher than the rest of the population

that they become over represented in the consecutive population and the method
quickly convergences. Other selection methods are often used, not necessarily in
agreement with the schema theorem [27]

The princi,pat of mi,ni,mal alphabets is based on the idea that a binary alphabet can

process 3t schema, where as a k-ary alphabet which encodes the same number of
points as a binary alphabet of length n, ie 2n points, will have a length of

n' ln2: n' 
rrrlç

and will process (k+t)"' schemata. This number is always less than 3' for n > 2110,

page 128]. Interpreting genetic algorithms as schema processing machines gives that
a population of size l/ will process O(l/3), which is the i,mplicit paralleli'sm result

[94, pages 40-41][10, page 128]. Antonisse [7] has proposed a different interpretation
of the f character. Rather than representing any single symbol, Antonisse proposed

that the f symbol can be interpreted as representing all subsets of available symbols.

So the schema [0#02] in a ternary alphabet would be the sets {[0002] [0102]]'
{[0002] 102021], {[0102] [0202]] and {[0002] [0102] [0202]] as the ff symbol indicates

a (0 or 1), (0 or 2), (1 or 2) and (0 , l or 2). Viewed in this way implicit parallelism

is maximised by higher cardinality alphabets.

D.3.1 Operators and Representations in Evolutionary Com-
putation

Fogel [81] shows that no particular representation of a genetic algorithm can be

universally preferred over any other by showing that under appropriate mappings

all operators can be modified to give the exact same behaviour on any representation.

Where we use an EP/ES phenotypic representation on a problem with a enumerable

solution spaces we note the following, following an argument similar to that of Fogel

[7S]. We will let one representation be genotype space, G, and the other phenotype

space, P, where the fitness function is applied directly to members of P. EP and

ES typically represent solutions as elements of P. We will suppose that there is an

invertible mapping 7 between G and P. We will now show the equivalence of the

GA and EP representations.

sThe result should extend to an infinite space by considering a finite number of subsets of the
real coded EP/ES algorithm as corresponding to a binary structure in genotype space, as noted in

[81].
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rf rO is a mapping from genotype space G to phenotype space p, T : G -+ p, then
the population of an evolutionary program could be considered as T("),Vr € IP,
where tr c G is the current population. The probabilistic operators of a genetic
algorithm map elements of G to other elements of G. If O(.) is the operator mapping
applied at each generation, then O(*),Vr € IP is the child population generated
from the current population. That is, it is the next generation. OO generates a
probability distribution over elements of G where the probability is the probability
of. r € G being generated by the operator O(.). In an evolutionary programming
approach we can define the operator O"o, a map from P -+ P by using an inverse
mapping T-r to map solutions in P to the genotype space G and then applying
O : G -+ G and then 7 : G -+ P. By choosing the operator O"o: T-7 oO oT we
have identical behaviour between the GA and the EP/ES algorithm. Similarly, by
choosing O : T o Oep o T-r \rye can map the genotype to the solution, the solution
to another solution and back to the equivalent genotype.

A similar argument can be constructed for any crossover operator which acts on n
parents. Note that the mapping 7 will not be invertible when different genotypes
map to the same phenotype. When the EP algorithm visits such a phenotypic point,
the behaviour of the two algorithms diverge.

Reasoning like this we can argue that there is no difference between the representa-
tions chosen by the different approaches, GA and EP/ES. The difference lies in the
operators, since the operators can undo any mapping if carefully constructed. The
argument will hold for any problem representations for which \rye can build invert-
ible maps between. This leaves the question of how to best to represent a solution.
Part of the answer to this question will depend on why we ä,re solving the particular
problem, that is, what we hope to achieve and find in solving it. Another part of
the answer might follow from the next section on the emergence of evolvability in
EC.

JD



Appendix E

Fbture Development of the sASME

Framework

Despite this partisan flavor, the book shines in the few paragraphs where

Bentley pauses to discuss some of the limitations of the systems. "We cannot
prove that evolution will find us a good solution-but it almost invariably
does. And we certainly cannot predict the solutions that evolution generates,"

he notes as a caveat to everyone planning to use genetic programming to solve

world peace.

http : / / stashilot. ors /books / 0 2 / 0 3 / 0 I / 1 9 5 2 2 2. shtml

As far as the laws of mathematics refer to reality, they are not certain; and

as far as they are certain, they do not refer to reality.

Albert Einstein

In theory there is no difference between theory and practice. In practice there

is.

Yogi Berra

This appendix details some possible future directions for the work presented in this
thesis.

8.1 Theoretical Analysis of the sASME Algorithm

The 5ASME framework presented in this thesis was justified through heuristic argu-

ments concerning the nature of self-adaptive evolutionary processes. The principal
arguments used to justify the components of the new evolutionary search approach

can be summarized as follows:

Search Method
It was argued that evolution is a suitable search method for the learning prob-

lems used in this thesis. Whilst evolution is not guaranteed to find the best

179
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solution to the problem at hand, it is guaranteed to autonomously propose
solutions; this is the nature of the evolution algorithm discussed in Chapter 1.
The solutions proposed by evolution often have the appearance of design, with-
out there being a designer. Hence, it is argued, evolution is an appropriate
framework for problems where little is known about the search space, and little
is known about how to find good solutions in that space.

A similar argument can be made for using evolution with structures which
are able to represent the solution in a manner which elucidates some of the
characteristics of the problem which are of interest.

Representation
Rule lists with exceptions are used as the symbolic structure for the problems
tackled in this thesis. It is argued that these rule sets are capable of represent-
ing information that the evolutionary search process discovers. Further, the
addition of exceptions to rules allows the evolutionary search to make small
modifications to the behaviour of the phenotype-it is widely stated that this
is an important property of structures amendable to evolutionary search.

Self-adaptive Search
Self-adaptation is argued to be one solution to the problem of evolutionary
parameter setting. By allowing the mutation step sizes and probability of
application of discrete mutations to be self-adapted the algorithm gains the
flexibility to adapt the search strategy to the extant structures in the popula-
tion in any given problem domain. The utility of this approach is investigated
empirically on a specified problem in Chapter 4 and found to automatically
find a suitable level of discrete mutation operations.

These arguments provide a rationale for the development and implementation of the
SASME algorithm. The algorithm is then used to find good solutions to some diffi-
cult machine learning problems, demonstrating the power of heuristically motivated
algorithms. Indeed, many new machine learning methodologies owe their existence
and form to hcuristic argument rather than arguments grounded in any kind of
mathematical analysis. The development of the entire class of naturally-inspired
algorithms could be considered to be consistent with this statement, including Sim-
ulated Annealing, Evolutionary Computation, Artificial Immune Systems [114] etc.

However, it is interesting to review what analysis of the approach can show.

E.1.1 Schema Analysis

The well-known schema theorem has been extensively used as a basis for the anal-
ysis of different evolutionary algorithms. The original schema theorem discussed
in Appendix D was developed for the binary representation and the canonical GA.
The theorem itself describes the relationship between the number of short, low
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order schemata in one generation compared to the next under proportionate selec-

tion, one point cross-over and point mutation. Algorithms which propose different

operators and representations often have new schema theorems derived for them

1228,I77,176,778,,158, 175, 174]. Such theorems can provide some understanding

of the macroscopic behaviours of the evolutionary process. Holland's schema the-

orem provides proof that the GA allocates exponentially many trials to short, low

order schema. Along with Theorem D.1, it was believed that this showed that the

GA search was in some way optimal. That is, the GA optimally allocated trials

amongst competing short, low order schema.

This latter interpretation of the schema theorem is now untenable. The NFL theo-

rem (Appendix B) and the arguments presented in Appendix D independently show

this view cannot persist. The performance of a search algorithm cannot be assessed

independent to the domain within which it is applied. The usual assertion about

the schema theorem is that it describes the propagation of useful structures in the

population between generations-the principal issue is justifying why the structures

which have been used are useful to the problem at hand. The theorem does not

require there to be a correlation between the fitness of parents and the fitness of off-

spring, instead this becomes implicitly assumed when justifying the analysis. Some

work has been done on using parent-offspring fitness correlations to develop schema

theorems which describe the trajectories taken by those solution components which

do give rise to correlations between parent and offspring fitness [2].

This does not entirely negate the utility of schema theorems, however. The theo-

rems can be viewed as descriptive of certain macroscopic parameters of algorithmic
behaviours. As such, they can provide some light on some aspects of the trajec-

tories that the evolutionary search takes. When combined with knowledge about

the search space, this could lead to predictive statements about algorithmic perfor-

mance. Should the development of the SASME framework in the future incorporate

schema-like theorems for analysis, this is the approach which would be first at-

tempted.

There are two obstacles which need to be overcome in developing a schema analysis

of the 5ASME algorithm. The first is the definition of schema for non-binary strings.

This has been tackled extensively in tree-based GP schema theorems [174], and

some of these approaches could be used as a basis for an analysis in s¡'sn¿p. A
more difficult obstacle is dealing with the self-adaptive components of the SASME

approach, and the number of operators. Whilst the operator set could be simplified,

self-adaptation does not appear to be amendable to schema analysis, and is central

to the 5ASME framework. A final issue with schema analysis is that a schema

theorem will not shed any light on the question of whether the algorithm will solve

problem X in reasonable time, it will only provide a toolkit with which analysis of

the algorithms behaviour on problem X can be performed.
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8.L.2 Convergence Analysis

Most analysis questions about algorithms centre on the asymptotic behaviours of the
algorithm and bounds on worst case scenarios. Interesting questions such as bounds
on time and memory required to discover a solution, and predictions of solution
quality are the motivation for this kind of analysis [163].

In many evolutionary algorithms, convergence to the neighborhood of the optimal
solution as time tends to infinity can be proven under general conditions, as pre-
sented and discussed in Appendix A. For the sASME framework, if the rule set is
held constant, the parameter adaptation is a standard, (p,, À)-ES then the global
convergence caveat discussed in Appendix A will hold. That is, the parameter opti-
misation will not converge to the global optima with probability 1 when the fitness
landscape of the parameter space is continuous. However, global convergence is not
a particularly useful property without information on convergence velocity.

The convergence velocity analysis in Appendix A will likewise hold when the rule
structure is held constant. Where the local topology of the search space is assumed
to be a sphere, there can be a reasonable level of confidence that the parameter
optimisation procedure is efficiently approaching the optimum values. The goal of
the algorithm would then be to find a good set of parameters with which the problem
can be solved, not to find the optimal set of parameters. When the rule set is not
held constant it can be seen that the local topology of the search space seen by the
self-adaptive parâmeter evolution will change as the rule set changes. Towards the
end of a run it can be expected that the rule set is remaining unchanged from one
generation to the next.

The evolution of the discrete component of the slsrr¿p model is more difficult to
analyse. It can be noted that it is the evolution of a tree-based representation, and
as such much of the analysis which has been developed for GP may be applicable.
The principal question concerning the evolution of the discrete model is the utility of
self-adapting the discrete operator rates. This question was addressed empirically in
Chapter 3. Future work may look at methods to quantify when this self-adaptation
is beneficial in terms of time to solution.

The interaction between the parameter evolution and the discrete structure evolution
is the most interesting and difficult aspect of s¡,sn¿p from a theoretical viewpoint.

8.1.3 Further Empirical Validation

The most likely future developments in the understanding of the sASME framework
will come from further empirical studies of the interactions of the different compo-
nents of the framework. The algorithm was not designed with theoretical analysis in
mind' and as such is not readily amendable to a mathematical treatment. Analysis
similar to that conducted in Chapter 3 may tease out some relationships between
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the different components

8.2 Extentions of the Framework

A number of extensions to the sasn¡p algorithm presented in this thesis are being

considered for future work. One promising area is the utilization of domain spe-

cific operators as well as representations in the framework. Information theoretic

measures such as those used in classic rule induction systems are a possibility. The

inclusion of more discrete structures, and perhaps populations of mixed structures,

is also possible. The following section presents a recipe for including ne\¡/ discrete

structures in the sASME framework.

8.2.L A Recipe for Evolving New Representations with SASME

The algorithm presented in Chapter 3 is general and applicable with a wide variety

of discrete structures. The implementation used in this thesis utilized a rule set with
exceptions as the discrete structure. To implement a different discrete structure the

following steps need to be undertaken:

1 The structure has to be implemented along with the operators which will
manipulate it. In an object-oriented programming language the structure and

operators can be encapsulated as an object. The interface between this object

and the 5ASME object needs to communicate the number of operators which

have been implemented, and the number of parameters which are required to
realize the structure. In a neural network, for example, each weight in the

network is a parameter, and the number of weights is returned as the number

of parameters. As a minimum an add hidden node and delete hidden node

operator needs to be implemented. When affected, either of those operators

will modify the number of weights which the model requires. The structure

needs to inform the sesup object what parameters have been deleted, or the

values of new parameters which have been created.

2 The sASME object initializes a parameter object suitable for the structure,

containing the number of parameters required by the model and the number

of operators. The bounds for the parameters will depend on the nature of the

structure, and also need to be communicated. The values of the parameters

can likewise be communicated by the structure object.
3 The sASME object creates a population of parameter objects and their as-

sociated structure objects. The objects are evaluated by the SASME object

interacting with the problem environment, and then the population is evolved

by the method described in Chapter 3. The SASME object sets the value of r
and r' in the ES equations on the fly according to the size of the parameter

object. The parameter object contains the self-adaptive mutation step sizes.
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The structure object may also need to communicate directly with the problem en-
vironment, for example, when one of the operators uses information from the envi-
ronment to guide the creation of the structure. Future work will look at operators
which can adjust both the parameters and the structure, for example, using heuris-
tics to adjust the weights after a node has been deleted from a neural network. The
network could be partially trained by a back-propagation algorithm to smooth out
the effects of the discrete operator. This may be needed to maintain parent-offspring
fitness correlation.

Clearly a range of structures can be coded in this way. Future work will attempt to
categorize what problems a particular structure is well suited for.
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