SELF-ADAPTIVE EVOLUTION OF MODEL
STRUCTURES AND PARAMETERS

A THESIS
SUBMITTED TO
THE UNIVERSITY OF ADELAIDE
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Jason John Bobbin
Monday, 25 March 2002

(©) Copyright 2002
by
Jason John Bobbin

Certificate of Originality

I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person nor material which to a substantial extent has been accepted for the
award of any other degree or diploma of a university or other institute of higher
learning, except where due acknowledgement is made in the text.

I also hereby declare that this thesis is written in accordance with the University’s
Policy with respect to the Use of Project Reports and Higher Degree Theses. In
particular, I consent to this thesis being made available for photocopying and loan.

29 3- Lool

Jason Bobbin

i

Science is like sex: sometimes something useful comes out, but that is
not the reason we are doing it

Richard Feynman

Abstract

This thesis proposes a new method for the evolutionary design of models for appli-
cations in learning tasks. Evolving a model of the learning environment enables the
products of the evolutionary process to be more easily understood. The evolution-
ary methods employed in this thesis directly encode the structures of interest and
evolve the phenotype.

The models of interest are discrete structures. The evolution of discrete structures
can be problematic. Novel mutation operators for the manipulation of structures
need to be defined. Once defined, they have to be used to evolve useful models for
the learning environment. This thesis proposes and evaluates a novel self-adaptive
scheme for evolving discrete representations.

Most discrete model structures will require parameters to define the symbols with
which they operate. This thesis proposes to segregate the tasks of model param-
eter optimisation from model structure optimisation. The resulting symbiosis of
parameters and discrete structures is evolved by a consistent self adaptive scheme.

This thesis proposes a new self-adaptive, symbiotic model evolution framework,
SASME. SASME is described generally and then applied to the specific task of evolving
rule sets with explicit default hierarchies for learning problems. Experiments are
conducted on the SASME framework to establish the efficiency of the self-adaptive
mutation scheme when compared to aprior: settings of the mutation rate. The
self-adaptive scheme is found to perform optimally, removing the trial-and-error
experimentation often required to get satisfactory performance from fixed mutation-
rate evolutionary systems.

The sASME rule sets are evalutated on a number of difficult control tasks. In a
one step procedure controllers are able to be evolved for the well known cart-pole
problem under a variety of conditions. The much more difficult two-pole problem
is solved by the inclusion of relational information in the rule premises. A final
non-Markovian variant of the two-pole problem requiring a recurrent rule set is also
solved by the SASME approach.

The sAsSME framework is used to produce rules which predict the level of algae in
a lake from measured data. The rule sets produced in this data mining application
are comprehensible and transparently show how the system is predicting the algae.

The more difficult problem of predicting the presence of algae species from water
quality data is then undertaken and the resulting rule sets interpreted to discover
what they infer about the ultimate causes of species transitions in the lake.

vi

Acknowledgements

Firstly, I must gratefully acknowledge the intellectual, financial, and supporting role
my supervisors, initially Xin Yao in Canberra, and presently Xin (in Birmingham)
and Friedrich Recknagel in Adelaide have played in my PhD. Their supervision and
advice has been first rate.

I thank the people who made possible the conferences which I attended during my
studies, and more importantly my attendance of them, as it is through meeting
and discussing research with other researchers that ideas develop. In particular, the
workshops given by David Fogel, Hans—Paul Schwefel and Richard Sutton during
my time in Canberra, and the 2nd international conference on the Applications
of Machine Learning to Ecological Modelling held here in Adelaide all played an
important role in the development of the ideas presented in this thesis. I would like
to thank Xin, Bob McKay and Charles Newton in Canberra, and Fred in Adelaide
for making these possible.

I would like to thank David Fogel for his support and his prompt reply to emailed
requests for publications and other information, and indeed all of the people who
answered my unsolicited email requests for information and papers.

I thank Hugh Possingham for his help and the table tennis, and Drew Tyre and
all the people at PHLEM (Possingham Hyper-Laboratory in Ecological Modelling)
for the stimulating discussions which occurred at the meetings (and the beer after-
wards).

I would like to thank the people who volunteered and then actually read the thesis
chapters I gave them (supervisors don’t volunteer for this, it is their duty!); thanks
Ron Smernik and Claire Stephens.

Discussing research with supervisors is mostly serious, with students mostly flippant,
and this provides different insights; thanks Paul Darwen, Thomas Runarsson, Hugh
Wilson and Mardi van der Wielan.

The postgraduate co-ordinators provide an invaluable service, thank-you Bob McKay
and Miriam Ferguson in Canberra, and Rob Murray in Adelaide.

On the home-front, my house-mates have been understanding of my strange hours
and behaviours; thanks Anna, Damian, Brett, Jason 2, Fiona, Virginia, Craig,

vii

Michaela, Georgina, and Andy!

Finally, I must thank my family, and my dearest Claire, for their emotional support
and practical assistance in this endeavor.

The work described in this thesis and the thesis itself were all produced almost
exclusively with open-source software. This has included gcc, R, BTEX, linux, and
Swarm. The source code of the software developed over the course of this PhD will
be released back to the community.

viil

Publications arising from this
thesis to 2001

[32]: Jason Bobbin and Xin Yao. Evolving rules for nonlinear control. Proceedings of
the International Conference on Computational Intelligence for Modelling, Control
and Automation, Vienna, Austria, 1999

[33]: Jason Bobbin and Xin Yao. Automatic discovery of comprehensible control
rules by evolutionary algorithms. In Masoud Mohammadian, editor, New Frontier in
Computational Intelligence and its Applications, volume 57 of Frontiers in Artificial
Intelligence and Applications, pages 197-202. I0S Press, Amsterdam, 2000. Full
version of conference paper [32]

[28]: Jason Bobbin and Friedrich Recknagel. Mining water quality time series for
predictive rules of algal blooms by genetic algorithms. In Proc. of 1999 Modelling
and Simulation Society of Australia and New Zealand Conference (MODSIM’99),
volume 3, pages 691-696, Hamilton, New Zealand, 6-9 December 1999. The Mod-
elling and Simulation Society of Australia and New Zealand Inc

[31]: Jason Bobbin and Xin Yao. Automatic discovery of relational information in
comprehensible control rules by evolutionary algorithms. In Proc. of 1999 Australia-
Japan Workshop, Canberra, Australia, 23-26 November 1999

[29]: Jason Bobbin and Friedrich Recknagel. Inducing explanatory rules for the
prediction of algal blooms by genetic algorithms. Environment International, 27(2-
3):237-242, September 2001. Full version of conference paper [28]

[30]: Jason Bobbin and Friedrich Recknagel. Knowledge discovery for prediction
and explanation of blue-green algal dynamics in lakes by evolutionary algorithms.
Ecological Modelling, 146(1-3):253-262, December 2001

Contents

Certificate of Originality

Abstract

Acknowledgements

Publications arising from this thesis to 2001
Preface

1 Introduction
1.1 The Algorithm of Natural Selection
1.2 Evolution for Automated Knowledge Acquisition.
1.3 Statement of Thesis i i i e e e e e
1.4 Contribution of Thesis i e
1.5 OQutline of Dissertation« . . v i i i e e e e e

2 Evolutionary Methods
2.1 Evolution of Evolutionary Algorithms
2.1.1 Evolutionary Programming
2.1.2 Evolutionary Experimentation
2.1.3 Genetic Algorithms v i i oo in v e
2.1.4 DiscusSsion i e e e e e e e
2.2 Self-Adaptive evolutionary computation.
2.2.1 Evolution Strategieso
2.2.2 Evolutionary Programming
223 Discussion s es s ae s s we e e
2.3 Evolutionary Learning
2.3.1 Learning Classifier Systems
2.3.2 The Michigan Approach
2.3.3 The Pittsburgh Approach
2.3.4 Other Discrete Representations
2.3.5 Discussion e e e e
24 ConcluSion v v i i e e i i e e e e e ey e e s

3 sASME: Self-Adaptive, Symbiotic Model Evolution
3.1 Algorithm Description 000

Xl

iii

vii

1x

xix

3.1.1
3.1.2
3.1.3
3.1.4

Characterising the Learning Problem
The Model Structure i
The Parameters
Evolving the Ruleset

3.2 Evolving Rule Sets: An Example

3.2.1

Evaluating the Self Adaptive Mutation Rates

3.3 Summary

Unsupervised Learning of Dynamic Control Systems
41 Background

4.1.1 The Cart-Pole Problem
4.1.2 Overview of Learning with the Cart-Pole problem
4.1.3 Implementation
4.2 Experimental Studies on the Cart-Pole Problem
4.2.1 Evolutionary performance
4.2.2 Trajectory of the Evolution
4.2.3 The Evolved Rule Structure
4.3 Summary of Results for the Cart-Pole Problem
4.4 The Two Pole Problem
4.4.1 Description of the Problem Domain
4.4.2 Task Descriptions,
443 Results.
4.4.4 A non-Markovian Variant of the Two-Pole Problem
4.4.5 Results for the non-Markovian Two-Pole Problem
4.5 Discussion and conclusions

Elucidation of Ecosystem Processes

9.1 Mining Data from an Aquatic Ecosystem
9.1.1 Model Validation and Representation
0.1.2 Lake Kasumigaura
5.1.3 Data Handling
5.1.4 Model Evaluation

9.2 Predicting Chlorophyll-a Levels
5.2.1 Comparing Models
5.2.2 Comparison with CART
5.2.3 Discussion of Chlorophyll-a Prediction

5.3 Species Prediction
5.3.1 Experiment 1
5.3.2 Experiment 2, w5 eEc 83654 «.
5.3.3 Experimental Results and Discussion
9.3.4 Results of Species Prediction
5.3.0 Discussion of Species Prediction Results

5.4 Conclusions

Conclusion

6.1 Summary of Thesis i it e

X1l

75
75
76
79
80
84
84
87
90
96
97
98
103
105
107
110
112

115
117
119
120
123
124
125
127
131
135
136
137
139
141
142
145
145

147

6.2 Conclusions of Thesis v v v i e e e e e e e e e e e
6.3 Final Words and Future Work

A Convergence Results for Evolutionary Strategies
A1 Global Convergence v o v it
A2 Thel/5Success Rule
A.3 Convergence Speed of Evolutionary Strategies: The (u T A)-ES . . .

B No Free Lunch Theorems
C Classifier Systems: The Michigan Approach

D Schema Theorem and Representation
D.1 The Genetic Algorithm
D.2 The Schema Theorem
D.3 Problems with Schema Analysis
D.3.1 Operators and Representations in Evolutionary Computation .

E Future Development of the sASME Framework
E.1 Theoretical Analysis of the SASME Algorithm
E.1.1 Schema Analysis

E.1.2 Convergence Analysis

E.1.3 Further Empirical Validation.

E.2 Extentions of the Framework
E.2.1 A Recipe for Evolving New Representations with SASME

Bibliography

Index

X

151
151
154

. 187

159

163

169
169
172
175
177

179
179
180
182
182
183

. 183

184

205

AIX

List of Tables

2.1
2.2
2.3
24

3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5
4.6
5.1
5.2
9.3
5.4
5.5
5.6
5.7
5.8

An evolutionary algorithm L. [
Friedman’s evolutionary algorithm 8
Response of a finite state machine 10
A description of some of the different types of representations used

with evolutionary algorithms 14
Effect of Operator Probabilities table 1 69
Effect of Operator Probabilities table 2 69
Summary of symbols used oo 72
Constants used in cart-pole problem 78
Initial state variable ranges. o oL 81
Table of cart pole results 84
Constants used in cart-2-pole problem 99
Comparison of ESPand CE 109
Summary of results 110
Glossary of ecological terms 117
Characteristics of Lake Kasumigaura 121
Measured water quality data 123
Input parameters for the lake model 125
Input parameters for the lake model 125
Result summary e e 131
Cell count summary« v o v i e e e e 136
Summary of input parameters 0o 0. 141

XV

IAX

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411

A finite state machine 10
Ablackbor i i Ew Emima n 11
Gradient ascent Hill Climbing 16
The learning process« o« o i et e e e e 26
Fischer’saris data« . . . e e e 28
Emergent default hierarchy oo 31
A ripple down rule and truth table 31
A ripple down ruleset 32
The Pittsburgh approach to LCS 33
An example of an internal and condition vector 35
A hyperbox cluster e 40
Artificial neural networko oo 41
Recurrent artificial neural networko 43
Feature space description of ripple-down-rules 53
Rule set representationo 55
Add rule mutation e e 57
Delete rule mutation o e e e 58
Structural modification 59
Crossover mut@lion « o v v i e i e e 59
Initial covering ruleso 64
Components of the evolutionary method for model creation 65
Mean variable values e 66
Mean operator valueso 67
Relative success at different mutation levels 1. 70
Relative success at different mutation levels 2. 71
Control problem e 76
The cart-pole system 77
Cart pole results e 85
Evolving force values for the cart pole problem 86
Evolved action model graphs oo 88
Evolution of state-partition values 89
Evolution of operator probabilities 90
An evolved rule set for the cart-pole problem 91
Solution generated by controller in Figure 4.8. 92
An evolved Tule set e 93
Solution generated by controller in Figure 4.10 94

XVil

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
5.1
5.2
9.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
C.1
C.2
D1

An evolved rule set 95
Comparison of different control strategies 97
The cart-two-pole system, 98
The jointed-pole problem 100
A representation of the relation 0y <0y 101
A relational decision boundary 102
Evolutionary comparison 105
Incremental evolution, 106
Swinging the second pole 106
Rule set for two-pole problem 108
Fitness during evolution of two-pole problem without velocities 111
Analysis of model output 112
Rule set for two-pole problem without velocity 113
Block diagram of supervised learning 118
Comparison of input sets 126
Comparison of rule set results, 127
Comparison of rule set results 128
Algal ruleset 129
Algal ruleset 130
Cart rule set 132
Output from CART 133
Output from evolutionary rule learning 133
Rule set, 134
Prediction of Oscillatoria spp and Phormidium spp 137
Filamentous model 138
Prediction of Microcystis spp. 139
Filamentous model 140
Results for Microcystis spp 142
Results for Oscillatoria spp and Phormidium spp 143
Rule set for Oscillatoria spp and Phormidium spp 143
Rule set for Microcystis spp, 144
Time series plot 144
Classifier system detector 163
Holland style classifier 164
Genetic operators for binary representations. 171

XVl

Preface

The last thing one knows in constructing a work is what to put first.

Blaise Pascal

The original proposal for this thesis was to compare traditional learning methods
with the products of evolutionary learning systems. As I started to learn and read
about the evolutionary computation universe ideas of a comparison diminished as I
waded through the literature on evolutionary algorithms. They seemed like a very
neat idea. Make the computer do the work. I go down the pub while the computer
solves the problem. Surely this is the logical next step for Turing’s child!

Alas, many nights were spent away from the pub as the damnable machine decided to
not solve the problems that I ask it to. The final results are this thesis. Increasingly
I became enamoured with trying to understand what the computer had learnt. In
light of the no free lunch results it seemed even more important to value-add the
products of any automated optimisation procedure. One way of value adding is to
use the solution representation that I want to.

Initially I was interested in methods alone. Learning about how and why different
methods of simulated evolution does (and doesn’t) produce results was top of the
list. Like most people in the field I have far more questions about these issues than
anyone, including me, has been able to supply answers for. And again, this seemed
to lead me towards evolving things I could understand. I wanted to evolve anything.
Any solution whatever.

My initial toy problems in control theory led me to consider rule based systems.
At the time, the only evolutionary rule based systems I was aware of were classifier
systems, and my initial inclination (and advice) was not to use a Michigan approach.
In one of the few cases during my PhD, I took the advice offered and am glad I did
so. Perhaps I should have more often.

Theoretically I found the self-adaptive techniques of Fogel, Schwefel and Back to be
most interesting. The tutorial by David B. Fogel I attended in 1997 was possibly
the intellectual highlight of my ideas on methodology.

My interest in representations of solutions led to an interest in the applications I
was using. It occurred to me that I can’t say much about the representations I have

XIX

used to solve a problem if I don’t understand the problem I am solving. There are
large numbers of machine learning databases available for testing methods. But I
wanted to test learning. I didn’t really care about the mean square error or amount
of mis-classification, I wanted to see what the evolutionary method had learnt about
the problem. That is what automatic learning means to me. It doesn’t have to tell
me everything about the problem, but if it learns something interesting, I want to
know what it has discovered. Otherwise my computer seems to sit there consuming
power for hours before providing me with a number accurate to 5 decimal places on
its expected mean square error when applied to some kind of problem. Of course,
this is important, but it isn’t what I was interested in.

This idea of concentrating on methods, but examining applications in depth, is what
I have attempted to do in this thesis. I want this work to show that my method for
evolving things can learn interesting things about interesting problems.

XX

Chapter 1

Introduction

Darwinian evolution works by the indirect and inefficient mechanism of nat-
ural selection.

Life’s Grandeur Stephen Jay Gould!

The field of evolutionary science began with the publication of Charles Darwin’s
“The Origin of Species” in November 1859. Darwin’s work was influenced by earlier
work, particularly Thomas Malthus’s “An Essay on the Principle of Population”,
first published in 1798. Darwin’s argument for the derivation of the origin of species
is encapsulated in his summary of Chapter IV [53, p105]:

If during the long course of ages and under varying conditions of life, organic
beings vary at all in several parts of their organization, and I think this cannot
be disputed; if there be, owing to the high geometric ratio of increase of each
species, a severe struggle for life at some age, season, or year, and this certainly
cannot be disputed; then, considering the infinite complexity of the relations
of all organic beings to each other and to their conditions of existence, causing
an infinite diversity in structure, constitution, and habits, to be advantageous
to them, I think it would be a most extraordinary fact if no variation ever
occurred useful to each beings own welfare, in the same manner as so many
variations have occurred useful to man. But if variations useful to any organic
being do occur, assuredly individuals thus characterized will have the best
chance of being preserved in the struggle for life; and from the strong principle
of inheritance they tend to produce offspring similarly characterized. This
principle of preservation, I have called it, for the sake of brevity, Natural
Selection; and it leads to the improvement of each creature in relation to its
organic and inorganic conditions of life.

Darwin presents his argument in the origin of species as a series of observed facts that
lead inescapably to the process he calls natural selection. The “Origin of Species”
is a long collection of hard earned evidence about the observed facts referred to in
Darwin’s summary [59, page 49]. The choice of phrasing in this summary is striking
because it describes an algorithmic understanding of natural selection. Darwin had
no notion of what an algorithm is [162].

11101, page 221]

2 CHAPTER 1. INTRODUCTION

1.1 The Algorithm of Natural Selection

Informally, an algorithm is a step-by-step procedure which allows an operation to
be carried out without an application of intelligence [37]. Knuth [135, pages 5 6],
writes that an algorithm must have five properties:

1 They must terminate after a finite number of steps.

2 They must be unambiguous.

3 They must accept input.

4 They must generate output.

5 They must be reproducible, in principle, by someone using paper and pencil.

Darwin’s description of natural selection is a description of an algorithmic process,
a process which is “mindless, purposeless and mechanical” [162]. The products
of Darwin’s algorithm of natural selection have the appearance of design without
having been designed [59]:

Give me Order, [Darwin] says, and time, and I will give you Design. Let me
start with regularity—the mere purposeless, mindless, pointless regularity of
physics—and I will show you a process that eventually will yield products
that exhibit not just regularity but purposive design.

Dennet conjectures that it is the algorithmic nature of Darwin’s explanation that
gives it its power [59]. Dawkins likens Darwin’s process of natural selection to a
blind watchmaker [54, Page 5]:

Natural selection, the blind, unconscious, automatic process which Darwin
discovered, and which we now know is the explanation for the existence and
apparent purposeful form of all life, has no purpose in mind. It has no mind
and no mind’s eye. It does not plan for the future. It has no vision, no
foresight, no sight at all. If it can be said to play the role of a watchmaker, it
is a blind watchmaker.

The modern significance of an algorithm is that it can be expressed as a computer
program? and executed by a computer. According to Dennet [59, page 50], algo-
rithms are:

Substrate neutral They can be implemented with any medium, and they will
perform the same task.

Mindless An algorithm requires no thought to execute.

Consistent An algorithm will always do the same thing, wherever it is implemented

on whatever it is implemented. The results are guaranteed.

What does Dennet mean by guaranteed results? Gould cites the Burgess shale, a
collection of fossils from just after the Cambrian explosion® which contains many

2A computer program may be defined as the expression of a computational method in a com-
puter language, where a computational method is a procedure having the characteristics of an
algorithm (except possibly finiteness) [135, page 5][76, page 575]

3 About 570 million years ago.

1.2. EVOLUTION FOR AUTOMATED KNOWLEDGE ACQUISITION 3

species which do not belong to any modern phylum, as evidence that were one
to re-run evolutionary history, the same phylla would not be expected to become
established. A re-run of the history of life would produce different results. Natural
selection is a stochastic algorithm. The guaranteed results that it produces are
products which are adapted to their environment.

It is a common misunderstanding to suppose that the algorithm proposed by Darwin
is directed. That it leads to bigger, or smarter, or more complex individuals. It does
not. There are numerous examples, the panda’s thumb being a well known one [160,
page 352][100, page 61][99]. Bears do not have an opposable thumb. Panda’s are
the bamboo eating descendants of meat eating bears. In its meat eating mode of
existence the panda’s thumb was co-opted into the paw structure required for a
carnivorous mode of life.* The consumption of bamboo is greatly assisted by having
the extra flexibility which comes with having an opposable digit. The bears thumb
was already “committed” to the paw structure. The evolved solution was to adapt
a bone in the panda’s wrist, its radial sesamoid bone, into an effective but inelegant
thumb. Thus the panda has 6 digits. The opposable digit that evolution supplied
to the panda is not as useful as an opposable thumb. It is a suboptimal solution.
Evolution has simply adapted what it had to work with to become better suited to
the environment. If one were to design a panda, one would give it a thumb. What
evolution does is not directed towards designing the perfect panda. It has adapted
the extant forms to their ever changing environment.

The underlying mindlessness of an algorithm means that when executed on a com-
puter, which is essentially an automated algorithm executing device, an algorithm
does whatever it does automatically. One of the enduring goals of artificial intelli-
gence research is the production of automated learning methods. These are methods
which solve problems without the input of human intelligence. Simulating the nat-
ural selection algorithm is one way this goal may be accomplished.

1.2 Evolution for Automated Knowledge Acquisi-
tion

Using the algorithm of natural selection to adapt symbolic knowledge structures
has been undertaken by the evolutionary computation community to solve a large
number of different problems. The idea is to take Darwin’s algorithm of natural
selection and use it to adapt structures to learning problems. Although the evolution
algorithm does not guarantee any form of optimality in the evolved solutions, it
promises to be a flexible method capable of adapting a range of structures to different
environments.

The view taken in this thesis is that the lack of any optimality assurances about the
final solutions is prima facie reason to utilise representations which communicate

4The paw structure is common to all mammalian Carnivora.

4 CHAPTER 1. INTRODUCTION

discovered knowledge about the learning task.

The method of natural selection does not require any information about the fitness
landscape that the solutions are being evolved on. The logical implementation of the
algorithm does not consider in any way how the fitness of solutions are evaluated.
Common-sense, and the “No Free Lunch” (NFL) theorem (see Appendix B), suggest
that ignoring fitness landscape features will not lead to efficient search in general.
However, it is frequently the case in machine learning that the reason for the problem
being of interest is that little is known about it. Evolution can automatically adapt
solutions to such problems.

Evolutionary computation can be used to evolve discrete structures for (often sym-
bolic) learning problems, and to evolve numeric vectors for parameter optimisation.
Evolutionary artificial neural networks (EANN s) are an example of a structure where
both goals need to be performed; in general, the discrete architecture of the network
needs to be optimised, and the weights of the connections need to be optimised.
The optimisation of the architecture is a discrete problem, as individual nodes and
connections are added or deleted. The optimisation of the weights is a continuous
optimisation problem.

This thesis proposes a new method for the optimisation of discrete structures and
continuous parameters. The method is applied to the evolution of discrete rule
set structures, which operates on symbols from the environment, and a parameter
vector which gives numeric meaning to the symbols referred to in the rule set.

1.3 Statement of Thesis

This thesis addresses the question: How can a representation be adapted to fit a
learning environment? It is argued that a new method of symbiotic self-adaptation
of a discrete symbolic structure and associated numeric components is an effective
method for achieving this. The method is demonstrated by evolving comprehen-
sible controllers in a dynamic control domain, and predictive models of ecosystem
dynamics.

This thesis proposes the method of self-adaptive symbiotic model evolution, SASME.
The proposed method enables evolutionary processes to successfully operate on a
range of representations and evolve solutions to difficult problems with those repre-
sentations. Simulated evolution is proposed as a method of adapting models to their
learning environment. The method of self-adaptation is proposed to facilitate this
process. It is demonstrated how self-adaptation can be exploited for the optimisation
of parameters and the symbiotic optimisation of discrete model structures.

‘The motivation of the SASME method is to allow flexibility in the choice of model
structures. The choice made in this thesis is to use rule set models which are designed
to be comprehensible and evolvable. Comprehensible models address the fact that

1.4. CONTRIBUTION OF THESIS 5

evolution does not supply optimal solutions to problems. A comprehensible model
allows for the models working to be elucidated and the method of relating input to
output, which the evolution has discovered to be observed.

1.4 Contribution of Thesis

e This thesis describes a novel method for the adaptation of discrete represen-
tations in learning domains, SASME. The method proceeds by symbiotically
evolving the parameters associated with a learning structure and the topology
of that structure.

e The method is applied to the evolution of a novel rule set structure which al-
lows the explicit formation of default hierarchies. The self-adaptive mechanism
is compared to a variety of mutation strategies to justify the self-adaptation
algorithm used.

e The method developed in this thesis is able to evolve comprehensible rule sets
by means of evolutionary adaptation.

e The SASME algorithm is applicable to a wide variety of problems, as is evi-
denced by the diverse problems solved with it in this thesis. Rule sets are
produced to give insights in two challenging learning tasks:

Unsupervised learning of dynamic control strategies The SASME method
with the rule set structures is used to evolve controllers for the well known
cart-pole problem. The method is able to evolve robust controllers in a
one-step procedure which automatically discovers optimal quantisation
boundaries of the discretisation of the state space while evolving the rule
set structures. The method is then applied to the more difficult two-
pole problem which necessitates the addition of parameterised relations
to the antecedent of the rule sets. Finally a very difficult non-Markovian
variant of the two-pole problem is solved by using a novel recurrent rule
structure. The results for this problem produced in this thesis are the
only examples of machine learning, non-neural solutions to the two-pole
problems. The produced rule sets perform as well as the neuro-control
approaches, and are able to explicitly represent learnt knowledge about
the problem.

Data mining aquatic ecosystem data The SASME method is used to evolve
rule set models for the prediction of ecosystem dynamics. Ecosystems
contain noisy data with many interacting attributes affecting the dynam-
ics. The ability of the method to elucidate learnt knowledge is demon-
strated and the knowledge compared to domain knowledge for the learn-
ing task. The algorithm is a contribution to the emerging field of ecoin-
formatics. In the problem domain used in this thesis the SASME evolved
rule sets perform competitively with the neural solutions but represent
knowledge explicitly.

6 CHAPTER 1. INTRODUCTION

1.5 QOutline of Dissertation

Chapter 2 reviews the method of evolutionary strategies and self-adaptive mutation
for parameter optimisation. Evolutionary methods for learning problems, and the
need for numeric and structural optimisation in representations for learning problems
are discussed. Chapter 3 outlines the SASME algorithm. The method is described in
general terms before being applied to a novel rule set structure. The self-adaptive
mutation method is empirically validated by comparison with constant mutation
rates in a series of experiments.

Chapter 4 introduces the well-known cart pole problem and briefly discusses some of
the approaches used to solve it before evolving rule sets for controlling the system.
The rule set method has a number of advantages compared to previous approaches,
such as the ability to search for optimal discretisation boundaries instead of having
these set a priori. The two-pole problem is then introduced and the requirement
for the discovery of inter-attribute relationships in solving this problem discussed.
The discrete rule model is then extended to allow a parameterized relationship to
appear in the antecedent of rules in the rule set. The method is empirically verified
and some discovered rule set models for controlling the two-pole problem presented.
The problem is then made more difficult by removing velocity information. The two-
pole problem without velocity is a non-Markovian control problem, and a further
extension of the discrete representation is developed to solve this problem. It is
empirically verified that the method of self-adaptive symbiotic model evolution can
adapt this representation to solve the non-Markovian two-pole problem.

Chapter 5 discusses an aquatic ecosystem data mining problem. The SASME algo-
rithm is used to adapt rule sets for the prediction of chlorophyll-a concentrations
in a freshwater lake given some chemical and physical properties of the lake. The
rule set models which are discovered are discussed and the premises with which the
rule sets base their predictions are compared with domain knowledge. The more
difficult question of species prediction is then attempted. Models are evolved for
the prediction of the two dominant species types in the lake and the premises of
the models are compared to elucidate on the observed changes in the lakes species
compositions. The results highlight the benefits of elucidative representations in
inductive learning problems.

Chapter 6 summarizes the thesis. Appendix A presents results on evolutionary
strategies convergence and the origin of some constants used in the standard algo-
rithm. Appendix B presents the No Free Lunch (NFL) theorem, and Appendix C
describes the standard Michigan approach to learning classifier systems.

Chapter 2

Evolutionary Methods:
Optimisation and Learning

The purpose of computing is insight, not numbers.

Richard Wesley Hamming, 1915 - 1998

Evolutionary algorithms are not the only example of simulating natural phenom-
ena to solve computational problems. Simulated annealing is another well known
example [134]. Evolutionary algorithms, and simulated annealing, belong to a class
of algorithms referred to as generate and test methods [253]. A generate and test
algorithm learns by proposing solutions to be tested in its environment and using
the results of the testing to generate new solutions to be tested in the environment.
Such methods are iterative. Table 2.1 shows the generic evolution algorithm.

The principal components in simulating evolution are the population, the method
of modification, and the method of selection. An initial population of solutions
are formed from which only some can survive. When generating new solutions,
they must have some variation from the generating solution. If a[t] represents the
population at time ¢, then the evolutionary method can be written as the difference
equation:

[t + 1] = s(v(x[t])) (2.1)

Table 2.1. An evolutionary algorithm

Pre: A fitness function f € IR must be defined which allows solution vectors to be
evaluated

1 Generate a population of initial random parent solutions
Modify the solutions to form a child population

3 Select the next generation from the extant solutions by using the fitness function
f to form the new parent population

4 Repeat from step 2 until stopping criteria is met

8 CHAPTER 2. EVOLUTIONARY METHODS

Table 2.2. Friedman’s evolutionary algorithm

Observation—I A very large variety of organisms exist, and a very large
number of each type are born

Observation—II Under a given environment, only a limited number of
organisms survive and reproduce

Observation—III Random mutations often occur and one or more of an
offsprings characteristics are different from those of its parent(s)

Observation—-IV The survivors reproduce themselves and pass most of
their characteristics, including the mutations to their offspring

Conclusion—I Assuming the above facts and a constant environment, a
series of individuals is established which converges upon a type better
fitted for survival

where s(-) is the selection operator and v(-) is the variation operator® [80, 75]. v(:)
is the operator that implements step 2 in Table 2.1 and s(-) implements step 3.
Given a problem representation and operators for that representation, the resulting
evolutionary algorithm can be turned into a computer program and used to evolve
solutions.

2.1 Evolution of Evolutionary Algorithms

The idea of using the algorithm of natural selection to simulate evolution for solving
problems on computer has arisen several times independently. One of the earli-
est proposals is contained in a thesis submitted in 1956 by George Friedman [90)].
Friedman noted that the principal of natural selection as proposed by Darwin can
be expressed as a “Law of Natural Selection” in a number of steps consisting of 4
observations and a general conclusion as shown in Table 2.2.

Friedman’s contribution was to propose that the mechanistic algorithm could be ab-
stracted and used to evolve circuits for a variety of tasks. Friedman’s experiments
were never implemented in practice [76, Page 29], but the ideas he developed antic-
ipated later work on evolving autonomous robotics, and are conceptually similar to
the circuits evolved by Koza [141, 143, 144, 19, 145] and others [125]. Friedman’s
thesis does not appear to be influential in later work and has remained largely
uncited.?

The well-known statistician George E. P. Box introduced the concept of mutation in

'In general the selection operator selects from the modified solutions and the parent solutions.
2Tt was recently reprinted in David B. Fogel, editor. Ewolutionary Computation : The Fossil
Record. IEEE, IEEE Press, 1998.

2.1. EVOLUTION OF EVOLUTIONARY ALGORITHMS 9

making changes to industrial processes as a means of optimising industrial output
[38]. The method was termed “Evolutionary Operation” or EVOP and involved
essentially a factorial design where each parameter was varied in a low and high
setting. Box made the analogy with an evolutionary process explicit by comparing
the modification of parameters with mutation and the analysis of production output
and subsequent adoption of improved parameters with selection [38, page 83]. EVOP
apparently attracted attention and was put into practice in several chemical plants
in the US and is reported to be still in limited use [76, page 120].

R. M. Freidberg et al. published the first account of evolving a computer program
[88, 89]. Although the word “evolution” does not appear in either paper,? it is widely
accepted that the intention was to simulate evolution [76, page 145]. Freidberg used
a binary string to represent computer programs, and the method contains some
similarities with the ideas developed later by Holland [117] [76, page 145]. The two
main similarities are the concept of implicit parallelism and schema analysis, and the
problem of credit assignment. Friedberg also discusses contemporary topics such as
the phenomena of “code bloat” in genetic programming and the issue of maintaining
the link between parent and child phenotypes [88, page 3|:

Form and intent, to be sure, are related quite discontinuously in the compact
economical programs that programmers write, but a learning machine would
probably develop much more inefficient programs in which many irrelevant
instructions were scattered among the instructions that were essential to the
intent. Among such programs, slight changes in form might well correspond to
slight changes in intent, so that programs falling into the same classes tended
to perform similar acts.

In this paragraph Freidberg introduces the idea that an evolved computer program
could insert redundant instructions which would increase the length of the program
without modifying the intent. The form of the evolved programs would be quite
different to the ones designed by a programmer. Modern research in Genetic Pro-
gramming has shown that evolved programs do, in fact, contain many irrelevant
instructions to the intent. One possible reason for this is that the evolved programs
add instructions in order to maintain parent-offspring fitness correlations in the
face of otherwise disruptive mutations. Darwin referred to parent-offspring fitness
correlations as the principal of inheritance.*

2.1.1 Evolutionary Programming

L J Fogel proposed to use the concept of simulated evolution on a population of
algorithms to achieve a method of artificial intelligence [76, page 227]. Fogel pro-
posed modeling artificial intelligence as predicting ones environment and performing

8Curiously, the word “evolution” did not appear in Darwin’s first edition of the The Origin of
Species [101, page 137]. Darwin never liked the word and first used it in The Descent of Man.

4Darwin developed his ideas on natural selection before the discovery of modern genetics, and
refers to the passing of genes from parent to offspring as the principal of inheritance.

10 CHAPTER 2. EVOLUTIONARY METHODS

2/a
0,1/a e
1/c
0/a
i C
_/V
2/c

2/b
0,1/a

Figure 2.1. A finite state machine

Table 2.3. Response of the finite state machine in

Figure 2.1
State
A B C
Input 01 oj1f(2|0(1]2
Output alajc|lalalala|c|b
Next State | A|A|C|A|A|B|A|B|C

appropriate actions within that environment to achieve a desired goal [79, page 60].
The chosen representation of the environment was a string of symbols from a finite
alphabet, and allowable actions were to be chosen from a finite set of symbols. The
evolved program was a finite state machine, matching input symbols to output sym-
bols depending on its current state, which was one of a finite number of possible
states.

A finite state machine (FSM) is shown in Figure 2.1. The machine starts in state A,
and takes an input symbol from a finite set of allowable input symbols, consisting in
this case of the set {0,1,2}. After receiving an input symbol the machine delivers an
output and changes its internal state. The FSM in Figure 2.1 produces an output
from the set {a,b,c} and switches to one of its internal states, i.e. {A,B,C}.
Table 2.3 summarizes the behaviour of the FSM in Figure 2.1. The outputs of a
FSM might be an action to perform within the environment, or might be a prediction
of the next input symbol. In the latter case, any applicable error measure could be
used, e.g. all-none, squared error, absolute error.

2.1. EVOLUTION OF EVOLUTIONARY ALGORITHMS 11

Black Box
—P
—P —p
L —p Unknown —b .
Action Structure L p Reaction
—Ph —
—

Figure 2.2. A black box

The number of possible configurations for a FSM given n inputs, a input symbols
and b output symbols was calculated by Atmar to be [79, page 66],

N - (naba)n

demonstrating that the search space of FSM’s grows large very quickly. Fogel pro-
posed to use the natural selection algorithm to adapt FSMs to a learning envi-
ronment. The algorithm searched the massive space of possible FSMs to find well
adapted machines for Fogel’s chosen problems, such as the detection of prime num-
bers.

2.1.2 Evolutionary Experimentation

Evolutionary experimentation, like evolutionary operation, worked on physical ob-
jects with a number of parameters associated. Rechenberg likened the problems
considered to a black boz problem (Figure 2.2). A number of actions are available
for variation which impact upon the reaction of the system in question. The func-
tion relating the actions to reactions is not known, and is referred to as a blackbox.
In such a conceptual framework, Rechenberg suggests that an experimenter can ask
3 possible questions of the experimental object [184]:

1 What is the reaction to a given action?
2 Why does the reaction to a given action occur in the observed way?
3 How (by means of what action) does one get a desired reaction?

Rechenberg’s proposal of experimental experimentation attempts to answer ques-
tions of type 3. An initial action vector (ai, as, . . ., ay,) is chosen where the blackbox
has n actions associated with it. In Rechenberg’s conceptualization of a blackbox
problem there are a number, say m, of reactions associated with an action vector
(Figure 2.2), forming an optimisation problem in IR™.

It is shown that for an inclined plane the evolutionary strategy performs more effi-
ciently than steepest descent or what Rechenberg refers to as a Gauss-Seidel strat-
egy; proceeding in one direction until an extreme maximum is reached and then
proceeding in a direction perpendicular to the first, and so on.

In a classic experiment an evolution strategy is applied to a series of plane surfaces
attached by hinges in a wind tunnel with the aim of minimizing drag. The amount
of drag is modified by altering the angle of the planes. The evolution strategy

12 CHAPTER 2. EVOLUTIONARY METHODS

operates by altering the angle of all the hinges a random amount simultaneously.
This perturbation is the mutation which produces the next shape to be tested.
The hinges’ positions are limited to a discrete number of angles and a binomial
distribution is used to generate a random value for altering each of the angles. If
the perturbed shape has less drag than the parent shape it is kept and the previous
shape discarded. Otherwise the perturbed shape is discarded and the angles are set
to the previous values. The shapes found by this procedure were superior to those
found by gradient descend methods.

2.1.3 Genetic Algorithms

Holland developed algorithms known as genetic algorithms, which modelled the
biological concepts of genes, mutation, crossover, inversion and selection along with
a theoretical analysis of the application of genetic algorithms to optimisation [117].
Genetic algorithms use a binary string to represent solutions in a population of
competing solutions. The idea of using a binary string representation can be traced
to Bremerman in 1958 [76, page 311], when Bremerman proposed a formalized
version of evolution operating on binary strings. The strings were manipulated by
mutation, reproduction (sexual and asexual) and selection. Bremerman worked in
the field for 35 years, and anticipated later work on optimal mutation rates for
binary strings [41][76, page 311][10, page 206-7].

One of Holland’s contribution is the schema theorem. The schema theorem is used
to justify the binary representation that Holland uses, through the principal of min-
imum alphabets, and is seen as the central theorem for how GAs work [117][94,
page 28-33][10, pages 123-126][79, page 117]). The theorem predicts that genetic
algorithms work by optimally allocating trials between competing schema, or tem-
plates, and thereby maximizing the implicit parallelism of the method. This occurs
when the cardinality of the representation is minimized, hence the choice of a binary
representation.

More recently, schema analysis has been criticized on theoretical grounds. The
idea of schema analysis “...is to discover a procedure for distributing an arbitrary
number of trials ... so as to maximize the expected payoff” [117]. The method
by which Holland asserts this is done is through analogy with the k-armed bandit
problem. The problem with the derivation of the theorem stems from the expected
loss of allocating trials in Holland’s analysis not being conditioned on the previous
trials, which it should correctly be [155]. Fogel states that the schema theorem is
the solution to the wrong problem [79, page 116-117]. Macready and Wolpert show
that a hill climbing Bayesian strategy based on previous trials performs better than
Hollands strategy for allocating trials [155]. Others have reinterpreted the definition
of schema to show that higher cardinality alphabets maximize implicit parallelism
[7]. Fogel writes that [79, page 117]:

In light of Macready and Wolpert (1998), there now appears to be no sup-
port for viewing the schema theorem as having fundamental importance. The

2.1. EVOLUTION OF EVOLUTIONARY ALGORITHMS 13

theorem simply describes the expected number of each schemata at the next
generation under proportionate selection when each complete solution is as-
signed a specified fitness value.

There is a large amount of critical literature on schema analysis and evolutionary
performance [7, 2, 81, 78, 155, 79]. The view taken in this thesis is that the schema
theorem is not a relevant tool for analysis of the structures and operators which will
be used. Instead, other forms of analysis must be used.

2.1.4 Discussion

Evolution does not find optimal solutions. That is not the guaranteed results of the
natural selection algorithm. Simulating evolution will frequently fail to produce a
panda with thumbs. This is a strong motivation for using interesting representations
in evolutionary methods. Whether a representation is interesting or not depends on
the problem. One way representations can be of interest in learning problems is
when the representation is able to convey information about the problem it has
solved. If evolutionary learning produces a black box it will be hard to recognize
that the panda it has made has no thumb.

This section has shown that there is no single, correct method, of representing
solutions in a simulation of natural selection. Table 2.4 shows some of the repre-
sentations used in the pioneering work on evolutionary simulation. The choice of
representation depends on the type of problem being solved.

This thesis is concerned with learning problems. Learning tasks are those where a
system has to learn from interacting with its environment. Objects which interact
with their environment are referred to as models in this thesis. They model the
inputs and outputs they observe in the environment.

Modern methods in evolutionary computation use a diverse range of operators and
representations. The current algorithms can be grouped as genetic algorithms (GA)
[117], evolutionary strategies (ES) [184, 208, 10], evolutionary programming (EP)
[83, 70] and genetic programming (GP) [138, 139], although other terms have been
used. All approaches adhere to the evolutionary computation algorithm in Table 2.1
and Equation 2.1, differing in representation of solutions, operators used and selec-
tion methods employed.

Until recently the development of the GA, ES and EP fields were entirely indepen-
dent from one another. The GA and ES communities had their first contact in 1990
through their respective international conferences. The EP and ES community are
reported to have had their first contact as recently as 1992, despite the fact that the
two methodologies are very similar in nature [12, 77].

Much of the evolutionary computation literature contains algorithms which can
not be comfortably classified as a GA, ES, GP etc. The terminology appears to be

14 CHAPTER 2. EVOLUTIONARY METHODS

Table 2.4. A description of some of the different types of representations used with
evolutionary algorithms

Control circuits
Friedman proposed a method for the generation of autonomous robotic be-
haviour by utilizing the processes of variation and selection [90][76, page 29].

Computer programs
Friedberg (88, 89] attempted to create a method for the automated production
of computer programs capable of solving problems. Freidberg used a binary
representation for the computer programs. Later, Koza [138] would use LISP
programs directly in the evolution of computer programs.

Parameters
Both Box [38] and later Rechenberg [184] mutate and select from sets of pa-
rameters i.e. vectors in IR™. Both procedures look at optimising a process; a
factory’s output in the EVOP procedure [38], and the amount of drag in the
initial work on evolutionary strategies [184].

Finite state machines
Fogel [83] pioneered the application of evolutionary methods to the automatic
generation of finite state machines capable of solving “intelligent” applications
in the 1960’s [76, page 227].

Binary strings
Holland famously used binary strings to represent solutions in his genetic al-
gorithms [117], although earlier work also attempted to solve problems using
binary strings [88, 89, 84, 85].

blurred, and any distinction rather pointless. The algorithm developed in this thesis
contains a free mixing of ideas and methodologies from several different canonical
evolution algorithms.

2.2 Self-Adaptive evolutionary computation

With respect to operator probabilities in GAs, Mitchell writes [161, page 174]:

...1t is not a choice between crossover or mutation but rather the balance
among crossover, mutation, and selection that is all important. The correct
balance also depends on details of the fitness function and the encoding. Fur-
thermore, crossover and mutation vary in relative usefulness over the course
of a run. Precisely how all this happens still needs to be elucidated.

An elegant solution to the problem of mutation strength setting is to have the
algorithm decide the rate of mutation. This is called self-adaptation. Self-adaptive
evolutionary methods operate by adjusting the rate of mutation in accordance to
the performance of the solution’s descendants.

2.2. SELF-ADAPTIVE EVOLUTIONARY COMPUTATION 15

Self-adaptive algorithms have been developed independently in the Evolution Strate-
gies and Evolutionary Programming literature.

2.2.1 Evolution Strategies

ES are mostly used in numerical optimisation problems [11], where there is a function
f such that:

an
f:Mc{ R* 3 5RGMA0
Z’ﬂ
]B’n.
M=|ze R" gi(x) > (L) 0Vjie{1,2,...,m} (2.2)
Zn
where there are n parameters € = {zi, Zs,...,%,} and =; is either a binary, integer

(discrete) or real number. There are m constraints g;(-) which must be satisfied,
where m may be 0. There are [objective function f = {fi, f2,..., fi} and the
problem is to find a non-dominated solution z* such that:

fi(z*) = min{ fi()}

where the minimization problem is considered without loss of generality since:

max{f ()} = —min{—fi(-)}
The problem is to find an * in M such that

fe(xz*) < fe(x) Yk and

Ve e M fr(x*) < fr(z) for some k

(2.3)
All of the problems considered in this thesis will be unconstrained (ie m = 0) and
will have one objective function ! = 1 (or multiple objectives rolled into one by
assigning F' = fi + fo + ... + fx, where the non-dominated solution of the scalar
function F is of interest, which will be the extremum min{F'}).

A defining feature of the ES approach is the use of self-adaptive strategy parameters.
Where evolutionary methods usually have a set and unchanging mutation rate, the
ES approach adjusts the mutation rate during the run. The self-adaptive mutation
parameters are referred to as the strategy parameters or the step size. The strategy
parameter(s) are usually denoted o. A solution, or individual, in an ES population
is represented by the tuple (x, o) where x is referred to as the object variable and
f(x) is the fitness evaluation of the individual.

Local and Global Optima

An important distinction should be made between local and global optima. A global
minimum is the extreme value of some function for every point in the functions
domain.

16 CHAPTER 2. EVOLUTIONARY METHODS

«— CGlobal Optima

‘7Step 3
) Step 2

Step 1

Local Optima

T~

Figure 2.3. Gradient ascent hill climbing. The curve represents the search space and
the marks are the series of solutions generated. Successively better solutions are generated
until o local mazimum is found.

Definition 2.1 (Global Minimum) A solution % is defined as a global minimum

iff:
f@) < flx) VeeM

The global optimum may not not be unique under this definition. A local minimum
is an extrema whose immediate neighborhood contains no point with a smaller
function value:

Definition 2.2 (Local Minimum) A solution & is defined as a local minimum

iff:
dJe>0 st. VeeM:|z—-2|<e= f(&) < f(z)

The global minimum is also a local minimum. Typically one is searching for the
global optimum. The question arises: when the global optimum is unknown, and
one reaches a local optimum, how can it be determined whether it is the global
optimum? There is no answer, other than to find a smaller function value, in which
case the global optimum can be been ruled out. This situation is shown in Figure 2.3
for an iterative steepest ascent hill climbing algorithm.

Evolutionary algorithms are said to be global optimisers because they do not climb
the nearest slope alone, but sample the search space for promising solutions. How-
ever, in common with natural evolution, simulated evolutionary methods do not
discover global optima. They adapt the solutions in the population to their envi-
ronment through a stochastic search. This may uncover the global optimum of a
search space, and it may not. One should bear this in mind whenever the products
of evolutionary search are being discussed.

2.2. SELF-ADAPTIVE EVOLUTIONARY COMPUTATION 17

(4, A) Evolution Strategies

The standard (u, \)-ES algorithm without rotation or recombination is presented
below.

1 Set g < 1 and generate an initial population P, of A individuals. Each individ-
ual i is a pair of real-valued vectors®, (£, ®), Vi € {1,...,A}. The initial
population of solutions = are chosen according to a uniform n-dimensional
probability distribution over the solution space M of equation 2.2.

2 Evaluate the fitness f(z) for each individual (z®,o®), V ¢ € {1,...,A}
Sort the individuals in ascending order according to their fitness values and
select the best u parents out of the X individuals for the next generation. The
truncation level is typically set at u/\ ~ 1/7.

3 Each parent(z®,0®), Vi € {1,...,u}, creates A/ offspring on average, so
that a total of \ offspring are generated: for ¢ =1,...,4,j =1,...,n, and

h=1,...,],
5" = o\ exp('N(0,1) + 7N;(0,1))) (2.4)
2" =2 + N;(0,6) (2.5)
where wg-i), :Eg.h), orj(-i) and &J(.h) denote the j-th component of the vectors x®

&M a@ &M respectively. N(0,1) denotes a normally distributed one-
dimensional random number with zero mean and standard deviation one. The
subscript j indicates that the random numbers are generated anew for each
value of j. The learning parameters T and 7' are set such that 7 oc 1/(1/2v/n)
and 7' o 1/(v/2n) where the constant of proportionality is usually chosen to
be 1 [10, page 72].

4 Stop if the stopping criterion has been satisfied and return the best feasible
individual found: otherwise, g + ¢ + 1 and take (29,6®), Vie {1,...,)}
to the next generation by going to step 2.

The order of equations 2.4 and 2.5 have been found to be important [14]. This
is because updating a solution with an old mutation vector allows a good solution
to be created with a mutation vector which did not create that solution and may
be mistuned. By updating the mutation vector first, any good solutions which are
formed are formed with the mutation vector that they carry into the next generation.

An often implemented extension in equation 2.4 is to implement a lower bound. The
bound, giower, 18 set so that

a-J() > Olower Vj € {17 : .,TL}

5The superscripts mean that (x(9,(?) is the i-th solution of the population P.

18 CHAPTER 2. EVOLUTIONARY METHODS

This extension has been implicated empirically in helping the algorithm to escape
from local optima, [152]. The lower bounds used by Liang et al. [152] are small but
not near the internal computer representation of zero.

Schwefel originally suggested using lower bounds to ensure that the computer rep-
resentation of the number is not zero, and that its effect on the phenotype is not
zero [206][207, page 112]. That is,

and

where

€ >0

146 >1 } chosen according to computational accuracy

Schwefel’s suggestion for a lower bound is concerned only with computational accu-
racy. A computer will represent a number as a finite number of bits, and there is only
a finite number of numbers which will be represented. The stepsize is updated with
a multiplicative equation, and therefore its computer representation can become
smaller than the smallest representable digit, that is, zero. Once zero, the stepsize
can not become non-zero by Equation 2.4. Schwefel most likely proposed this strat-
egy because he was working in the early 1970s and the computational equipment of
the time would have used relatively few bits to represent a digit. Empirically the
update equation does not appear to become zero on modern equipment® and hence
computational accuracy is not a problem for the algorithms developed here.

The implications of a lower bound for self-adaptation are not clear theoretically, and
no lower bounds are implemented in the results reported in this thesis.

Selection in Evolution Strategies

There are a number of selection methods used in ESs [210][10, page 78]. The elegant
notation is due to Schwefel [10, page 78]. The most common selection methods are
(1 + A) methods and (p, A) methods. In both cases the population size is A, and
individuals are chosen as parents in the next generation. In (u+ \) the y parents for
the next generation are chosen from the combined A offspring and p parents of the
current generation. In this scenario, the p parents are chosen from a pool of 1 + A
solutions. In (4,) selection the u parents of the next generation are chosen from
the A offspring of the current generation. (u, A) selection is not elitist, which means
that the best found solution can be lost to the evolutionary process. This cannot

8The effect could still happen. It just hasn’t been observed by the author and so a lower bound
is not implemented.

2.2. SELF-ADAPTIVE EVOLUTIONARY COMPUTATION 19

happen in (u+ \) strategies, as the best found solution is guaranteed to remain in
the population.

(1 + A) selection was originally used with a (1 + 1) algorithm. One offspring is
generated from the parent solution; it is kept if it is better than the parent and
is discarded otherwise [210]. The (u, A\) method requires that A > p > 1, and is
normally implemented as truncation selection, where the best p solutions are chosen
and the rest discarded. This is the method used in the algorithm description on
page 17.

The (+\)-selection method guarantees a monotonic sequence of fitness evaluations
from successive generations. At first glance, this would appear to be a more effective
selection method. However, Bick notes several disadvantages of the (u+))-selection
compared with (u, A)-selection [10, page 79]:

1 In the event of applying the algorithm to a problem with a moving objective
function, the (u + A)-ES will maintain outdated solutions in the population.
The alternative is to re-evaluate the p parents every generation, creating an
overhead of y extra evaluations compared to a (u, A)-selection method.

2 In the event of the solution reaching a small local optimum, it may be advanta-
geous to have a method which does not keep that optimum. A (u+ A)-strategy
will be forced to search a local optimum until a better oplimum is found.

3 Probably most importantly, a (¢ + A) strategy inhibits self-adaptation. The
offspring in (u, A)-selection are not chosen entirely based upon their fitness,
but also upon their ability to produce good offspring in turn. This is because
a solution has a lifetime of one generation, and so any lasting effects of a
solution must come through its offspring. These offspring are generated by
using the self-adaptive o vector, which must be favourable for the generation
of high quality solutions. This applies the necessary pressure on the o vector
to provide good overall system dynamics.

Point 1 should also be extended to the case where the fitness evaluation is noisy, or
the solutions are evaluated in a stochastic environment.

Despite the risk of divergence, (u, A)-strategies are the preferred method for success-
ful self-adaptive evolution strategies search. As an extension to the (u T A)-selection
methods an extra parameter p € IN can be introduced to signify the maximum life-
time of a solution in the population [210]. A (u, A)-selection method corresponds
to every solution having a lifetime of one generation, p = 1. The (1 + X)-selection
strategy corresponds to every solution having a non-finite maximum lifetime, p = co.
This allows the advantages and disadvantages of the selection methods to be scaled
between one another. Throughout this thesis a (u, A\) method will be used.

The selection pressure of the (u, A) selection can be varied by changing the ratio
p/A. This is normally set at 1/7 [14], based on maximizing the acceleration in
convergence due to self-adaptation for the sphere model. The initial settings for the
step size o must be large enough to avoid quick descent to poor local optima near
the initial positions of the solutions; if the step size is too small initially, the search

20 CHAPTER 2. EVOLUTIONARY METHODS

does not explore the search space sufficiently. Schwefel [208, Page 143] suggests
setting the initial step size as 0; ~ Ax;/\/n, where Az; is the estimated distance
between the starting point and the optimum. Béck [14, Page 80], however, suggests
that in practice the initial deviations should be lower than this, and he uses a value
of o; = 3 in all of his experiments. Obviously a constant value will not scale for all
problems.

Empirical data suggests the only problem with an initial step size which is too
large is that the evolution will take a few more generations to become stable and
not random. So long as any bounds on variable sizes are handled carefully’, the
empirical studies in this thesis support the notion of using initial step values as
large as is practical to ensure coverage of the space. Pathological fitness functions
could be constructed which may not ever converge when the initial step size is too
large.

Many extensions to the above notation and selection schemes are proposed in [210],
including parameters to increase the lifespan of solutions and differentiate between
different recombination methods, however the basic (i, A) method will be used in
this thesis.

Recombination in Evolution Strategies

There are a number of recombination operations possible at Step 3 above. The
most commonly used types of recombination 7(-) of the population at generation g,
r(Py) = (0),60V) in (i, A)-ES are as follows [11, 206, 207, 10]; each component of
the objective variable in the new population is:

(.(a)

z; No Recombination
2 or 2! discrete
a:éa) + %(xfn — wga)) intermediate
:i'l(') = 4 xl(.a) or xy”') global, discrete (2.6)
2 4 %(xl(bl) — 2!} global, intermediate
2 + x5 - 2) generalised, intermediate
! an) + Xi(a:(bl) — x§“)) generalised, global, intermediate

Where a,b,b; € {1,...,u} Vi € {1,...,n} and ¥, x; are uniformly randomly drawn
from [0,1] (independent for each 7). The subscript ¢ indicates that the value is
generated anew for each component of the vector. The discrete recombination men-
tioned above would correspond to uniform crossover in the GA. The “or” means
an equally likely decision. The non-generalized forms of recombination can be ex-
tracted from the generalized forms by setting y = % for non-global forms, and
Xi =3 Vi € {1,...,n} in global forms.

"In practice, this requires the step size to be bounded above to prevent divergence. Once a good
solution vector is found in conjunction with a small o; value, the solution will continue produce
good offspring.

2.2. SELF-ADAPTIVE EVOLUTIONARY COMPUTATION 21

Any of the recombination schemes in Equation 2.6 could be used on the strategy
vectors (). Schwefel recommends using global intermediate recombination [208,
page 148] on the strategy parameters o. Discrete recombination of the object vari-
ables « has been identified as the preferred method [10, page 75], and both of these
recommendations will be used throughout this thesis.

Rotation angles

Early ES algorithms incorporated a single mutation stepsize o, constant for each
dimension of the object variable & [10, page 68]. Equation 2.4 then becomes:

™ = o exp(r'N(0,1))

This thesis uses the usual extension of incorporating a separate step size for each
component of the objective variable, ie, if € IR then o € IR". Most of the theo-
retical results about ES use a single global step size o, which guarantees spherical
symmetry of the mutation distribution. This makes the mutations independent of
the co-ordinate system. When using more than one mutation step size, the muta-
tions will be dependent on the co-ordinate system, and hence rotating the fitness
function will change the performance of the ES on that fitness function.

To prevent this co-ordinate dependence, another set of parameters can be associated
with the solution to represent the rotation angle of the mutation vector, a,, €
[-m, 7], m € {1,...,n,}. When there are n step sizes, there will be

S n(n — 1)
2
angles required [13]. The angles allow for arbitrary linear correlations amongst the
components of the object variable, thus enabling arbitrary orientation of the muta-
tion ellipsoids (that is, areas of equal probability under mutation). The mutation
vector is generated from the covariance matrix C, where

(07 — 07) tan(2a;)
Ci]' =
2
and the mapping from the vector interpretation of « to the matrix interpretation
is given by the index transformation (i,7) € {1,...,n — 1} x {i + 1,...,n} to
{1,...,n-(n—1)/2} given by (¢,5) — 1(2n — 0)(i + 1) — 2n + j [10, pages 69-70].
The mutation distribution is then IN(0, C). Bick gives a generalized description of
the rotation angles where there are n, € [1,...,n] different mutation step sizes.

(2.7)

The rotation angles are updated by
a; =a;+pB-N;(0,1) Vje{l,...,n-(n—1)/2}

where (3 is usually 0.0873 (five degrees in radians) and where « is circularly mapped
onto the range [—m, 7] [13][10, page 72], ie

loj| > 7 = o5 = a; — 27 sign(ay)

22 CHAPTER 2. EVOLUTIONARY METHODS

The incorporation of rotation angles adds extra parameters and complexity to the
algorithms. For the investigations conducted in this thesis, the extra overhead is
unwarranted. The reader is referred to Back for a discussion of rotation angles and
their implementation [10].

Step Control

A number of modifications to updating the step control have been studied. One
interesting method is the fast evolution strategies algorithm which changes the gaus-
sian distribution in Equation 2.5 with a Cauchy one [252, 250, 251, 203, 48, 254, 25].
The Cauchy distribution is thought to provide a greater probability of escape from
local optima through its “fatter tails”.

The oldest method of updating the strategy vector in an evolution strategy is
Rechenberg’s 1/5 rule [10, page 67]. The rule is theoretically based to maintain
the highest convergence velocity. It states that 1/5 of all mutations should be suc-
cessful. If it is more, then increase the strategy vector, if less, decrease the vector.
The 1/5 rule is discussed in the analysis of ES convergence results undertaken in
Appendix A. The principal disadvantage of the 1/5 rule is that it cannot be used
to scale the mutations of each component vector independent of one another.

In contemporary evolutionary strategies the step length is updated according to
Equation 2.4 at each generation. If the update probability distribution is labelled
Z, then the step length is adjusted according to the scheme:

60 — 007 2.9

Schwefel [208, Page 143] and Bick [14, Page 72] note several desirable characteristics
which the above step control equation should have:

1 The equation should be multiplicative so that negative values are excluded.
2 The median £ of the distribution [[;~, Z; should be one so there is no deter-
ministic bias in the update of o over several generations. That is

3 The above characteristic requires that the probability of occurrence of a par-
ticular random value must be the same as that of it’s reciprocal. This will
mean that any overall trend in changes in the step length will be the product
of selection alone.

4 Small changes in the step length o should occur more often than large ones.
(ie E(Z) =~ 1).

Schwefel [208, Page 143] notes that the above conditions are satisfied by the log-
normal distribution
=g (2.9)

2.2. SELF-ADAPTIVE EVOLUTIONARY COMPUTATION 23

where Y is normally distributed. Rechenberg proposed a symmetrical two-point
distribution for the update formula. When ¢ is updated by Rechenberg’s distribution
[24]

 f oo(1+p), if u(0,1]<1/2
d '_{ oo/ (L+8), if u(0,1]>1/2 (2.10)

the update also obeys most of the characteristics for the update formula suggested by
Schwefel, where u(0, 1] is a uniform sampling from the interval (0, 1], and 0 < § 5 3.

Schwefel [208] also argues that the length of the step size vector for the offspring
should be different to that of the parent, otherwise offspring would be generated
mostly at a constant distance from the parent vector. The vector resulting from
Equation 2.8 will be (0, Z1, ..., 0, Zy) where Z; denotes an independent sampling
from the distribution Z for each i. The expected Euclidean distance of the new
objective variable from the current variable after the mutation vector is updated is

r = o Z)rt .+ (on Za)?

If all the o; are similar in size then an application of the (weak) law of large numbers,

limP[M—i:u]zl
n

n—oo

where each of the X; are independent with finite variance and mean p, and P denotes
the probability measure [37], shows that the modulus of the step size of the updated
vector will be the same as the original vector.® In practice, Schwefel suggests the
effect is important at around n ~ 30 [208].

The effect is undesirable, since the algorithm would not be exploring different vari-
ances in updating the objective variable in Equation 2.5. Children would always
be produced at the same expected distance from their parents. To solve this, the
lognormal distribution in Equation 2.9 has the normal variable Y composed of the
sum of two independent normal variables, one sampled anew for each component
and one sampled only once for the individual. By sampling only once per individ-
ual, each individual is given a bias in the change in size of the n-ellipsoid that the
mutations are generated in at each generation. There is still no overall bias in the
change in mutation volume since the volume is equally likely to increase as decrease.

Bick states that the parameters 7 and 7’ in equation 2.4 are robust [10, page 72].

8The method of fast evolution strategies uses a Cauchy distribution in the update which does
not have a finite variance [250]. Therefore the law of large numbers effect would not hold, at least
as stated. In this case independent sampling of the distribution at each vector component update
may be all that is required.

24 CHAPTER 2. EVOLUTIONARY METHODS

Convergence Results for Evolution Strategies

Most convergence results for ES use the sphere model to calculate convergence ve-
locities. There is a gap between theory and practice in ES implementations. Conver-
gence results in the limit exist only when the mutation distribution remains covering.
This says little about practical applications. Convergence speed results are of more
interest from an implementation perspective. Results are derived for a variety of
model fitness functions, and it is argued that these model functions approximate the
likely local topology of the search space. This is debatable. The convergence speed
analysis does, however, provide the basis for the 5 in Rechenberg’s 1/5 rule and the
optimal number of offspring to produce from X parents. Convergence results are
presented in Appendix A.

2.2.2 Evolutionary Programming

Evolutionary programming (EP) was developed as a method for the attainment of
intelligent, behaviour by computers. Intelligent behaviours are defined as the capa-
bility of a system to adapt its behaviour to meet its goals in a range of environments
[72]. This goal was initially attempted by the use of finite state machines.

Like ES, EP is a method which simulates evolution from a phenotypic view point.
Parent solutions are modified so that there is a continuous range of possible offspring
behavious, and a strong behavioural link is maintained between parent and offspring
[82]. The emphasis in EP is placed on finding useful mathematical transformations
to modify solution p in phenotype space to a solution p’ in phenotype space without
consideration of any underlying natural genetic operators [73, 77].

Whilst there are no definitive classifications of EAs, there are some characteris-
tics that most practitioners would agree are typical of what people refer to as EP
approaches

1 Crossover is not used

2 Selection is stochastic

3 Many and varied solution representations are used
4 Self-adaptation is used

Crossover is typically not used as the algorithms utilize a phenotypic representation
of solutions where crossover makes no sense. This is illustrated in the FSMs in
Section 2.1.1, page 9, where it is hard to construct a crossover operation that is
likely to produce useful offspring, since the representation of the solution to the
problem is a phenotypic one.

The selection method employed in EP is typically a method known as tournament
selection. In the tournament selection method, each individual z;, from the combined
parent and offspring populations, S, are compared to a subset of ¢(> 1) individuals
randomly chosen from S. =y is assigned a win score, w € {0, ..., ¢}, according to

2.2. SELF-ADAPTIVE EVOLUTIONARY COMPUTATION 25

how many individuals in the subset it outperforms (has higher fitness than). All
individuals in & are then ranked according to their win scores and the best are
chosen to form the next generation [12]. The selection method is therefore elitist,
and convergence results will hold while the mutation operator is covering.

EP has been used on a range of representation, including GP-like S-expressions
[45, 46, 47], Neural Networks [74, 255], FSM [128] and real vectors [252].

Although the original EP work on FSM did not employ self-adaptation, EP most
commonly does use self-adaptation, eg [79]. The original method of self-adaptation
employed in EP was developed by D. Fogel in 1991 independently to that of Schwefel
in 1981 [207]. The scheme was

2 = 2P+ Ny(0,017) (2.11)

590 = o 4 ¢a? - N;(0,1) (2.12)
in the notation of the corresponding ES equations (Equation 2.5 and Equation 2.4
on page 17). (is a scaling constant which is chosen so that the o; tends to remain
positive [79, page 158]. Where the o; become negative they are reset to some small
positive value € > 0. Empirically equations 2.11 and 2.12 were found to not perform
as well as the ES update equations, Equations 2.4 and 2.5, and the lognormal update
of Schwefel is widely used in the EP community now [79, pages 158-159).

2.2.3 Discussion

Self-adaptive evolutionary methods are strong optimisation procedures in a wide
variety of parameter optimisation tasks. They have been shown to be able to adapt
the mutation distribution effectively in a range of fitness domains including domains
where the fitness evaluation is noisy. The key to the step size control used is that
it is an unbiased update of the mutation probabilities, and will therefore only show
behaviour like net increases or decreases when such behaviour is beneficial to the
population. The mean mutation rate which is applied at each generation of a self-
adaptive method is an emergent property of the problem being solved.

Self-adaptive methods emphasise the phenotypic links between parent and offspring.
The methods are strongest where the selection scheme maintains the selection pres-
sure based on an ongoing link between parent and child behaviours. This is most
clearly done in non-elitist methods where the parent’s objective value determines
the number of offspring the parent will have and not the survival time of the parent
in the population. Elitist methods allow parents with good objective values but
no ability to produce children which are similarly characterised to persist in the
population.

Empirically, self-adaptive methods appear to perform most effectively when the ob-
jective values of offspring are recombined by discrete recombination, and the strategy
vectors recombined by intermediate recombination. Relatively few empirical studies

26 CHAPTER 2. EVOLUTIONARY METHODS

Model Update

Model Evaluation

Figure 2.4. The learning process.

have been done to assess the performance of rotation angles. Theoretically, rota-
tion angles have some interest, however they can introduce a considerable number
of additional parameters (Equation 2.7). This extra overhead is not seen as war-
ranted in the investigations conducted in this thesis and is unlikely to produce any
improvements.

For the reasons outlined in this section, this thesis will use a self-adaptive evolution-
ary strategies method with (4, A)-selection, discrete recombination of the objective
parameters, and intermediate recombination of the strategy vectors.

2.3 Evolutionary Learning

This thesis describes a self-adaptive evolutionary learning system. Evolutionary
learning has a long history, dating from the pioneering work of Friedberg on evolv-
ing computer programs [90], Fogel’s FSMs [83], and Rechenberg’s drag reducing
evolution strategy [184], among others [76].

Figure 2.4 shows a generic learning situation. The environment represents the prob-
lem, and the model is the proposed solution. The model and the environment
interact for a certain time before supplying the learning algorithm with some form
of feedback. The learner then proposes a new model which is similarly evaluated.
In the case of evolutionary algorithms the learner might be a population of models
or alternatively a population of parameters to be tried with a fixed model structure.

Learning problems can be divided into three broad categories depending on the
information supplied to the learning algorithm [16]:

Supervised Learning Supervised learning problems supply the most information

2.3. EVOLUTIONARY LEARNING 27

to the learning algorithm. For each input pattern seen by the learning algo-
rithm the correct output pattern is also supplied.

Example 2.1: Most data mining problems are examples of supervised
learning problems and prediction problems. An example is the famous
iris data of Anderson and Fischer {3, 66]. Measurements of the sepal
length and width and petal length and width from 50 examples of each
of 3 different species of iris were collected, as shown in Figure 2.5. A
supervised learning task from this data would be to predict the species
of iris from the measurements provided. The input pattern would consist
of 4 real quantities, the sepal length and width, and the petal length and
width. The output would be one of three classes corresponding to the
species. The problem is supervised since for each input pattern the model
could be told the correct output.

Unsupervised Learning Unsupervised learning problems supply the least infor-
mation to the learning algorithm. No output pattern is provided to the learn-
ing algorithm, which must instead discover its own relationships between input
patterns. Evolutionary learning methods are seldom applied to unsupervised
learning problems, however there is some scope for them to be.

Example 2.2: Examples of an unsupervised learning algorithms include
Kohonen neural network, [136], and many clustering methods [126]. An
unsupervised learning problem could be formed from the iris data shown
in Figure 2.5 by presenting the learning algorithm with the input mea-
surements but not the species of the iris. The learner would divide the
data according to similarity criteria to try and learn similarities in the
150 examples presented, without any reference to the actual species.

Reinforcement Learning Reinforcement learning (RL) problems [17] can be thought
of as providing a level of information in between supervised and unsupervised.
Typically there is some occasional performance information provided to the
learning algorithm, but not for every input pattern seen. A typical RL problem
consists of an agent connected to its environment via perception and action
[130].

Example 2.3: An example of a reinforcement learning task is the
robot navigation problem, where a robot situated in a maze perceives
its environment and receives rewards by moving to food or energy. The
learning algorithm receives as input (the perception of the robot) and
produces an output (a direction for the robot to move in). The algorithm
has to learn to acquire the intermittent reward of food. There is no correct
action shown for a given input, however, the learning algorithm receives
some idea on whether its actions are correct from the value of food or
energy that it acquires over time.

Evolutionary methods have been applied to all three types of learning problems.
The methods used in this thesis will address RL problems and supervised learning
problems.

28

CHAPTER 2. EVOLUTIONARY METHODS

Figure 2.5.

Anderson’s Iris Data

20 25 30 35 40 a5 10 15 20 28
L L

YY) 2 AAAA éﬂ""
o

75

Sepal.Length

20 25 30 36 40
i
E-]
u'“g0
.]
o
° °
¥
B >
(33

Petal.Width

05 10 15 20 25

Scatter plots of Anderson and Fischer’s iris data. Each plot shows the

distribution of the three different species, Iris setosa, I. versicolor, and 1. virginica, as a
pairwise function of the measured data (in centimeters) [3, 66, 126].

There are a number of reasons one may consider evolving the solution to a learning
problem as opposed to traditional approaches:

1 Evolution is a global search procedure. It may not be guaranteed to find the

optimal solution, but empirically appears to find better optima than gradient
based search, such as back-propagation for neural network weight optimisa-
tion.? There is some evidence that evolution’s global search ability can give it
an advantage over greedy approaches for rule generation, like CART and C4.5,
especially when there are many interactions between attributes [86, 123].
Evolution may be preferred because it can explore more sophisticated rep-
resentations. Rule sets, neural networks, equations and computer programs
have all been evolved. The fact that evolution can adapt many and varied
representations is exploited in this thesis to add modules to the representation
under evolution as required to solve increasingly difficult problems.

Most traditional learning methods make assumptions about the search space,
such as gradient information or the distribution of variables, which evolution
does not.

4 Evolutionary algorithms are able to be implemented in a parallel manner. This

9A discussion of the relevant “No Free Lunch” results is conducted in Appendix B.

2.3. EVOLUTIONARY LEARNING 29

may make them more scalable than other methods in some domains.
There are also reasons why evolutionary methods may not be appropriate:

1 Evolutionary search is known to be slower than other methods for some ap-
plications [249].

2 The products of evolutionary search are unproven. Gradient descent methods
guarantee a local optimum at least. Evolutionary methods do not. For this
reason evolutionary search is often complemented by local search procedures.

Evolutionary methods have commonly been applied to discrete rule structures. The
original structures used were Holland’s learning classifier systems (LCS).

2.3.1 Learning Classifier Systems

LCSs are one of the founding ideas in the modern field of evolutionary learning.
The LCS is a system designed to “infer environmental patterns from experience and
associate ‘appropriate’ responses sequences with them” [115]. Goldberg states that
a classifier system consists of [94, page 221]:

1 Rule and message system.
2 Apportionment of credit system.
3 Genetic Algorithm.

Rules are generally of the form [94]:

IF condition THEN action

There are two main approaches to evolutionary learning with LCS [56, 246][57, page
626-627]. In the Michigan'® approach, the entire population of the EA forms the
model in Figure 2.4. An individual in the EA population is a particular sub-part
of the solution, most commonly a rule. Individual rules compete to remain in the
population. This approach was developed by Holland [119, pages 171-181].

The second approach is the Pittsburgh approach. In this approach, each individual
in the population is a complete model. This approach more closely corresponds with
the ideas presented previously about what EAs are.

In the Michigan approach, the emphasis is for competition amongst individual rules.
The population forms the complete rule set. The principal problem that occurs is
one of credit assignment. What rules in the population are responsible for the
populations performance?

10The names refer to the universities where the different approaches originated.

30 CHAPTER 2. EVOLUTIONARY METHODS

2.3.2 The Michigan Approach

By emphasizing the competition between individual rules, Michigan-style classifier
systems attempt to learn complex concepts by discovering and combining simpler
build blocks [121]. In this way it is thought that complex concepts can be learnt
through the formation of default hierarchies.

Rule-IT 1F lane is blocked THEN send alert message

gsage an stacrl

A defgult hjerarchy is a group of cou ;ﬁ'l((:ﬁl rules where subsecglenﬁ;{ rulfﬁ in a hierarchy
ule-1 1s a very genera rule w icl). wil réllqjﬁe mi €s. ule—1I is .more

are able ,O.corr(-i{:l. yoclassi y [pgre speeitic conditions. 1Y Jforim exce tions to the

‘ni tialsllqﬁ (lféc : will correct Rule-1."T'he fun '101'11E1 of Rule- (;\s id(%gell ent on,

e The ctiehion Ve piopotéd 1010k i She nBERCHSSin che
G T S S
the b*éﬁ@ﬁﬂ&’ Tf"ﬂﬂ#ﬁo%@@ﬂg%m'ﬁrst, both rules are better off. Rule-I and Rule-II

The i B el hicthichi i, Fiee 26 shong gpplically thoeflets
. ?d slmple %ﬂu hlel’al‘&l Consi1s ANg O.]];WO ruies, a general rule gn%f(anp

in tra)I{iél&;ﬁl. ule-based systemsyz

Rules in Holland’s classifier system are context dependent, where the context is
given by the other rules in the system. In Example 2.4, the correctness of Rule-I is
dependent on the presence of Rule-II, and hence the algorithm’s evaluation of the
correctness of Rule-I is context dependent. Remove Rule-II and Rule-I may not
survive. Holland called this linking of rules a kind of symbiosis. He terms the first
rule the default rule and the second rule the “exception” rule, and notes that Rule—
II may make mistakes which could be corrected by yet more specific exceptions.
Appendix C describes Holland-style classifier systems and some of the extensions
which have been made to them.

A more explicit representation of a kind of default hierarchy is furnished by a ripple
down rule set, as shown in Figure 2.7 [49]. When an antecedent is true the exception
rule(s) antecedent is tested before the rules consequence 1s applied. The exception
rule is context dependent, its context being the previous rule. In this way entire
rulesets can be produced, as shown in Figure 2.8.

Ripple down rules were developed for use with expert systems where they can help in
the maintenance of such systems and the reuse of knowledge [49, 194, 195], although

2.3. EVOLUTIONARY LEARNING 31

Incorrect
Decision
(Rule 2)

(Rule 1 boundary)

[' Correct
| | Decision

|
Incorrectl _}gpie_Zl
{(Rule 2 boundary

Decisionfrhhﬁﬁ

(Rule 1)

(Decision boundary)

I
' Correct
' Decision
I (Rule 1)
Figure 2.6. An emergent default hierarchy. The grey area represents errors made by the
two rules, the dashed lines are the boundaries of objects covered by the rules and the bold
line is the decision boundary between objects whose correct action differs. Rule 1 is the

general rule. Rule 2 increases rule 1’s payoff by preventing it from making mistakes, and
rule 2 increases the overall system performance.

IF condition B THEN action 2

IF condition A THEN action 1 EXCEPT L. =
IF condition C THEN action 3

IF condition D THEN action 4

A B C D Action
1 1 & 9 2
1 0 1 ¢ 3
1 0 0 ¢ 1
0 & <& 1 4

Figure 2.7. An example ripple down rule and associated action table. The O symbol
means that the condition can be either true or not true

they have also been used in inductive systems [205]. Other proposals for adding
exceptions include methods which can also negate the conditions of the initial rule
[219]. It has been noted that ripple down rules (RDR) are more compact than flat
rule lists [205]. That is, a flat decision list can be converted to a RDR with at most
as many tests. They are said to be more comprehensible, as they are similar to
the way that humans use knowledge. This was the motivation for their use as a
representation in expert systems. :

Holland’s default hierarchy decides the order of rules based on a complex formulation
of the bid strength and the specificity of the classifier, as discussed in Appendix C.
Rule lists with exceptions decide on the priority of rules according to the topographic
structure of the rule set. The latter makes it more obvious to an observer what rules

32 CHAPTER 2. EVOLUTIONARY METHODS

Figure 2.8. A ripple down rule set. The bozes represent rules. If a rule is triggered (or
antescendant is true) then the rules to its right are checked, if not then the rules beneath
it are checked. The black bozes shows a hypothetical path through the ruleset. Rules to the
right are called exzceptions, and their validity is dependent on their context, te. the rules
to their left.

are responsible for what consequences of the rule system.

2.3.3 The Pittsburgh Approach

The Pittsburgh approach to classifier systems represents entire classifier sets as
individuals to be evolved by the evolutionary algorithm, as shown in Figure 2.9. This
approach simplifies many of the evaluation and credit assignment issues associated
with the Michigan model.

De Jong notes that when using a GA to adapt classifier sets there are two different
possibilities for choosing the representation [58]. Either the GA can be modified to

2.3. EVOLUTIONARY LEARNING 33

—_— —_—

-~ -
-~ -~
Z TR
P ~
s i ~
/o ' Model Fitness ~ .
, - — =
e \ N
v

/ ,’feedback \\
! 7 |
(A] —— 4 /
7 Model : y
A Input to be s

Evaluated

1N\

Population of Models -~ =

-
-
—

_—

Evolutionary Algorithm

Figure 2.9. The Pittsburgh approach to learning classifier systems. Each individual in
the evolutionary algorithm population represents a complete rule set (or model) which can
be tested. A model is selected and a number of input/output iterations are conducted with
the environment. At the end of the testing the environment provides some feedback which
is converted to the models fitness value. The fitness value is then used by the evolutionary
algorithm to evolve better models.

function with complex non-string objects, or a string can be created to represent
the complex concept description language.

When using a string to represent the concept description language a method similar
to the following is usually applied. A rule is a conjunction of elements and the
elements are limited to conditions on each feature being in a particular value set.
Assuming that the feature language consists of a set of features Fj, i € {1,...,N}
each taking v;, 7 € {1,..., N} different nominal values, where ngz) je{l,...,v}
represents the j-th nominal value of attribute ¢, then we can assign a binary string
to represent the disjunction of each of the nominal values of a particular feature, so

001101 represents n3 Or 714 OI T

A rule is then formed from the conjunction of the internal disjunction of each feature
[68].

B F, F; F;
001101 011 101 0100

34 CHAPTER 2. EVOLUTIONARY METHODS

This forces the rule set to be represented as a fixed length binary string, and al-
lows the symbolic rule information to be extracted from the genotype. However
the method is most useful for inductive modelling of environments with nominal
attribute representations.

The GABIL algorithm institutes this kind of search, and is reported to perform
well when compared to a cluster of well known classification algorithms like C4.5
and AQ15 [129]. The method was improved by adding rule induction specific genetic
operators from the classification algorithms. However, this would seem to somewhat
negate the advantage of using a binary representation which was supposed to enable
an unmodified GA to be used as the learning algorithm.

A different approach to using a binary string is taken by Grefenstette et al. in
the development of SAMUEL [102, 105, 213, 104, 103]. SAMUEL uses a high level
language to represent the condition and action part of the rules. An example of a
rule instance for a continuous feature in SAMUEL is

(SPEED 100 250) (2.13)

representing the situation 100 < SPEED < 250. A nominal feature might be ex-
pressed like:
(WEATHER IS [CLOUDY, WET]) (2.14)

whose attached action would be triggered when the weather was either cloudy or
wet. The allowable values for continuous SAMUEL rule conditions are predetermined
by dividing the known range of the variable by N(€ IN),where N is set by the
experimenter and was limited to 255 in some of the early work on SAMUEL [102].
For example, the SPEED sensor might vary between 0 and 1000 and be discretised
into V = 20 equal segments. The mutation operator modifies the values by uniform
randomly choosing one of the N partition points as the new value.

Conditions such as (2.13) and (2.14) are combined in a conjunction and associated
with a similar conjunction of actions. The conjunctions are allocated strength,
adjusted by a credit assignment algorithm and combined together to form a set
of decision rules which Grefenstette refers to as a tactical plan. The tactical plan
1s an individual in the evolutionary algorithm. Crossover between tactical plans
occurs at the level of individual rules, creating offspring with some rules from either
parent. This is in contrast to typical GA crossover, which can break up individual
rules at any level. Crossover was found to be useful in SAMUEL [105]. SAMUEL
does not address issues relating to the number and size of partitions in the different
continuous features, which has been shown to be important in discretised machine
learning methods [153]. SAMUEL has been extended to operate in a co-evolutionary
way where a number of independent populations of SAMUEL rule sets are evolved.
The rules are evaluated in their local population by combining them with the best
rules from the other population [180, 179]. The idea is to allow the algorithm to
automatically find a suitable problem decomposition [52].

A similar approach to SAMUEL has been taken by De Falco et al [55]. Each attribute
F; was associated with two numbers k; and k,, representing the low and high range

2.3. EVOLUTIONARY LEARNING 35

Internal vector:
[3.25]1.05[22.1[235][44.4[55.3][1.22]234][33.2]100.2 |

Condition vector:
[2]1]0]4[3]1]

Figure 2.10. An example of an internal and condition vector

of the particular attribute. Four different antecedent were considered:

IF F; € [k1, ko] (1)
IF F, <k (2)
IF F, >k (3)
IF F;<k; ORF;>ky (4)

For each attribute 7, a vector of parameters called the internal vector was constructed
as a list of maximum and minimum values for each test on the attribute . A
condition vector is then formed with each component representing the choice of test
to perform from the corresponding attribute using the conditions. The rule is then
formed from the conjunction of the tests. The final value of the condition vector
corresponds to the class to be assigned to the rule. The internal vector in Figure 2.10
would give the following rule:

1IF (F; < 3.25) AND (F; € [22.1,23.5]) AND (Fy < 1.22 OR F, > 2.34) AND
(F5 > 100.2) THEN CLASS IS 1

The condition vector is evolved by an algorithm referred to as the breeder genetic
algorithm (BGA) which is capable of directly dealing with real values [55] -

Most evolutionary learning methods deal with propositional or zeroth order lan-
guages. There have been attempts to evolve relational, or first order descriptions
(9, 108, 109, 110]. The DOGMA system uses predefined relations between attributes,
for example, the relationship on(X, Y, [yes, no]) could be defined to be yes if the po-
sition of the attribute X is greater than the position of the attribute Y and no
otherwise. Using the predefined definitions, DOGMA uses a language template A,
to define how the relations can be conjunctively combined. A defines the hypothe-
sis space that the GA operates on. Similarly to the rule systems described above,
DOGMA uses bit strings to define the presence or absence of particular nominal
values in the relationships defined by A [109].

In addition to the direct representation by the GA of rules, a number of hybrid
approaches have been tried. GAs have been used to select features for use in standard
machine learning induction techniques [221]. They have been hybridised with K-
nearest neighbour techniques {132, 133]. GAs have been used to create rule sets in
a divide and conquer method similar to traditional inductive learning approaches
[154]. Cooperative coevolution has been applied to populations of evolving fuzzy set
definition and rule sets [171, 179].

36 CHAPTER 2. EVOLUTIONARY METHODS

2.3.4 Other Discrete Representations

Rule sets are not the only discrete structures evolved by evolutionary algorithms.
The evolution of discrete structures is undertaken in a variety of evolutionary learn-
ing applications.

Genetic Programming

Genetic programming addresses the problem of automatic programming, which is
a form of evolutionary learning. Automatic programming aims to be a system that
[16, Forward by John R. Koza]:

1 Produces an entity which runs on a computer.

Solves a broad variety of problems.

Requires a minimum of user-supplied problem-specific information.

In particular, doesn’t require the size or shape of the final solution to be

prespecified.

5 Implements, in some way, all the familiar and useful programming constructs
(such as memory, iteration, parameterizable subroutincs, hicrarchically callable
subroutines, data structures, and recursion).

6 Doesn’t require the user to decompose the problem in advance, to identify
subgoals, to handcraft operators, or to tailor the system anew for each problem.

7 Scales to ever-larger problems.

8 Is capable of producing results that are competitive with those produced by
human programmers, mathematicians , and specialist designers or of producing
results that publishable in their own right or commercially usable.

9 Is well-defined, is replicable, has no hidden steps, and requires no human
intervention during the run.

=N

It is the representation of solutions as computer programmes that is the most dis-
tinguishing feature of genetic programming.

Koza [139] proposed the evolution of LISP or S-Expression by genetic algorithms to
address the problem of automatic programming.!! Instead of representing a program
as a binary string, a program is represented as an S-expression. An S-expression
consists of a function followed by zero or more arguments:

Example 2.5: The following mathematical expressions could map to these
S-expressions:

2x17 +— (MULTIPLY 2 17)
1 — 4+ 3 — (SUBTRACT 1 (MULTIPLY 4 3))

A function is referred to as a node. A function with no arguments, such as a numeric
constant, is referred to as a terminal. The functions can also perform actions by

11As did several previous researcher. The key innovation of Koza was the recognition of the
breadth of application of the method [16, page 101]

2.3. EVOLUTIONARY LEARNING 37

having terminal nodes such as (PusH-CART-TO-RIGHT), or (PUsH-CART-WITH-
FORCE force-Newtons). All functions return some value. When the functions are
combined with looping, conditional, and memory array constructs, the S-expressions
form a Turing complete programming language capable of representing any struc-
tured program [214]. A number of other Turing complete representations have been
evolved by evolutionary methods, including classifier systems with internal memory
and FSMs [16, pages 98-100].

The S-expressions are represented as tree structures which are interpreted postorder,
creating a long linear S-expression (similar to the short expressions shown in Ex-
ample 2.5). The tree structures are modified by subtree crossover, which swaps
all nodes and terminals below a selected node (or terminal) with another subtree
in another solution. The mutation in the tree structure is typically performed by
selecting a random subtree and replacing it with a randomly generated subtree.

Applying crossover and mutation to programs written in an arbitrary programming
language, such as C, is extremely unlikely to produce anything which would actually
compile. The operators on the S-expressions are designed to greatly increase the
chance of their application producing interesting computer programs. All functions
in the S-expression are constrained to return the same type (usually a float) and to
accept arguments of only this type. Koza refers to this property as closure [139],
and it ensures that only valid programs can be generated.

The trees are usually induced from a finite set of primitive functions and terminal
nodes [139, 4].

GP theory is based on the building block hypothesis, and a version of the schema,
theorem for GP [139, page 117-118]. However, the resultant building block hypoth-
esis for GP lacks empirical support [168].

Genetic programming has been used in a wide range of machine learning applications
[139], such as the evolution of circuits [19, 141, 143], the evolution of control laws
[147], classifying protein sequences [142], ecosystem prediction [232, 231, 233, 189]
and others [139, 140, 146].

Program trees have also been evolved by evolutionary programming methods [45,
46, 47], and S-expressions have been used in classifier systems [150].

Context Free Grammars

The rules of De Falco et al. [55] and DOGMA [109] demonstrate that the condition
part of a rule can be made more sophisticated in order to give the rule set a larger
range of behaviours. More generally, any allowable conditions of a rule could be
considered as a context free grammar [16, page 271}[60, page 193].

38 CHAPTER 2. EVOLUTIONARY METHODS

A context free grammar (CFG) is a language template which describes what sen-
tences are legal in the language. The grammar describes how terminal nodes can be
related by defining a set of production rules of allowable relationships.

Definition 2.3 (Terminal Node) A terminal node of a context free grammar is
a symbol for which there is no production rule.

Definition 2.4 (Production Rule) A production rule of a contest free grammar
15 a rule of the form X — 'Y where X s a non-terminal and Y is a conjunction of
terminals and non-terminals.

A non-terminal is implicitly defined from the definitions as an element which has
a production rule. Formally, a context free grammar can be considered as a four
tuple (N, T, P,S), where N and T are disjoint sets of non-terminals and terminals
respectively. P is a set of productions and S is a special non-terminal start symbol.
The set of productions X € P for the non-terminal X € NV U S can be written as a
mapping to the conjunction: X — a;|az|as|...|a; for a; € NUT.

A simple if-then-else rule set can be constructed from the following grammar, eg
[230]:

N = {R,cond,result, A, V}
T = {a; i€ {1,...,Number of Attributes}, R;, <, >, IF, OR, AND}

b S - R)
R — 1F COND R RESULT | RESULT
COND — AnND COND COND | or COND COND |
P = \ <AV |>AV >
A — a;, © € {1,...,Number of Attributes}
|4 — Rj
| RESULT — R;)

S

The grammar describes how to derive a rule set which returns values R, and makes
comparisons between attributes and values R;, where j is the number of values, or
parameters, associated with the rule set. In the example grammar the comparison
and action values are of the same type, say reals, whereas a more complicated
grammar could limit certain attribute comparisons and actions to different types of
values. The rule set is constructed from the terminal nodes of the grammar.

The DOGMA system is constructed by adding certain types of relationships to the
set of non-terminals and productions. The rules derived by De Falco et al. are
constructed from a similar grammar to that offered. The consequent part of a rule
is also represented in the grammar, and could, for example, be made a (grammatical)
function of the attributes instead of real values R;'%. Viewing the rule systems as a

12For example, by modifying a rule grammar to allow the consequence to be a linear combination
of attributes, a regression tree could easily be represented.

2.3. EVOLUTIONARY LEARNING 39

context free grammar makes explicit their declarative bias'?, ie. the possible forms
of solutions. Matching this bias to the problem is of central interest, since it allows
the search space to be meaningfully reduced.

Grammars have been used for the creation of equations and executable structures in
genetic programming [226, 227][16, page 270]. Grammatical genetic programming
(CFG-GP) makes explicit the inductive bias of the representation, and has been used
as a system for automatic bias generation in evolutionary learning systems [226, 227].
Rule sets are not usually created explicitly from grammars in applications, however
it has been done and a GP algorithm used to induce the ruleset [230].

Self-Adaptive Finite State Machines

Evolutionary computation has been used to evolve other methods capable of learn-
ing from their environment. Finite state machines (introduced in Section 2.1.1 on
page 9) are an example of a representation used with evolutionary computation
with the goal of learning from the environment [83]. A FSM (Figure 2.1, page 10)
is typically evolved through five different discrete mutation operators:

1 Add a state.

2 Delete a state.

3 Change the initial state.

4 Change an output symbol.

5 Change a next state transition.

The number of mutations per parent FSM is Poisson distributed with a rate of 3.0,
and the mutation operator is uniformly chosen from the list of 5 operators. The
maximum number of states was set to 25 and the minimum to 3. An extension to
the methodology incorporated self-adaptation to attempt to improve the evolvability
of the FSM [128]. It has been shown in a GP-like algorithm that freezing mutation
on subtrees and treating them as modules can lead to a problem-specific co-evolved
representation [6]. Fogel et al hypothesized that the extreme of mutation or no mu-
tation of parts of discrete representations might be smoothed by using a self adaptive
mutation rate [128]. Two different approaches were tried. The first is called selec-
tive self-adaptation where for each of the 5 mutation operators the component which
was to be affected was chosen according to its self-adapted mutatability parameter
instead of uniformly as it is in the traditional FSM. In this approach the mutability
parameter decides the probability of the mutation operation affecting that part of
the FSM by the relative value in the mutability parameter. In the second approach
a mutability parameter was similarly defined, but the value was absolute, allowing

13 A declarative bias is one in which the constraint imposed by the bias is transparent. It may
be a language bias, a search bias, a selection bias or something else. A language bias is set before
learning starts and determines what types of solutions can be represented. search bias is where the
types of solutions most likely to be generated are affected, for example, the self-adaptive mutation
vector is a search bias. Selection bias is the bias imposed be the fitness evaluation and selection
scheme and determines what types of solutions are favoured, for example, including an information
heuristic like the minimum description length (MDL) would affect the selection bias [229].

40 CHAPTER 2. EVOLUTIONARY METHODS

XZA
A
d.
¢ B
Y e =i E
4 i D '
C -f--eeer . = e
E e E
! |- ?
A
: | ?
; I :
< : : ; >
a e b X1

Figure 2.11. A hyperboz cluster. The boz is centered at the point (e, f), and contains
the points F,D,B and C. The other points are not covered by the cluster.

the probability of mutation of a component to be independent of all other com-
ponents. The results from the self-adaptive approaches are statistically equivocal
because of the experimental design, although there is definite empirical evidence of
improvement using self-adaptive techniques on the simple test problems [128]. The
problem identified by Fogel et al is that discrete representations are difficult to make
self-adaptive.

Self-Adaptive evolution of Hyperbox Clusters

Hyperbox cluster for classifying spatial data was evolved using evolutionary pro-
gramming to self-adaptively evolve hypercubes [92]. The experiments conducted
considered only two dimensional data, where each hyperbox was represented as a 5
tuple

(z,y,0,w,h) (2.15)

where (z,y) is the coordinates of the center of the box, 6 is the anticlockwise rota-
tion of the box, and w and h are the width and height respectively of the box. The
situation for a box centered at (e, f) and with 6 = 0 is shown in Figure 2.11.The
representation was variable length, with the number of hyperboxes modified accord-
ing to a self adaptive addition or deletion probability Tadd and 040]- The mutation
vectors were updated by a formula similar to the standard ES formula (Equation 2.4,
page 17). The value for n used in the usual 7 and 7" update formula was modified to

2.3. EVOLUTIONARY LEARNING 41

Hidden Layer
Layer

Figure 2.12. A feed forward artificial neural network. Each arrow has a weight or
strength associated with it, and each node has a function combining the nodes inputs to
form the nodes output which is then modified by the weights as it is moved to the next
layer

account for the number of boxes and the number of parameters in each box, so that
the 2-dimensional algorithm used n = NBox - 5. Although the problem addressed
was to look at clusters for spatial data, the similarities to rule-based representations
in other learning problems are clear. The box in Figure 2.11 could be represented
by the rule

(a <1 <b) AND (c < 22 < d)

which has the same form as the rules typically considered in CFS, for example, the
conjunction of type (1) rules on page 35 used by De Falco et al [55]. Where the angle
of the box is used the learning task becomes equivalent to a second order task where
rules depend not only on feature values but on some relationship between features,
even of a restricted form such as the representation used by Ghozeil et al [92].

Multiple Interacting Programs and Artificial Neural Networks

Angeline introduces a representation for expressing complex behaviours which he
calls Multiple Interacting Programs (MIPS). MIPS are a combination of GP and
artificial neural networks (ANNs)[4, 5]. Although it can be shown that ANNs are
capable of representing any computable function given enough hidden units [124],
Angeline notes that it is often the case that the number of nodes required for accept-
able performance in feedforward neural networks trained with the back propagation
(BP) algorithm can be prohibitively large to achieve acceptable generalization abil-
ity [5]. An ANN (Figure 2.12) can be described as a directed graph in which every
node contains a transfer function of the form

Y, = fi (Z WijTj — 91> (216)
7=1

42 CHAPTER 2. EVOLUTIONARY METHODS

where y; is the output of node ¢, z; is the jth input to the node and w;; 1s the
connection weight between the two nodes. 6; is the threshold or bias of the node
[249]. ANNs are usually trained using the BP gradient descent training method,
or a similar training method. In the standard BP algorithm for an ANN with one
output node, the difference between the actual output of the node, denoted A, and
the correct output of the node (C) is calculated and multiplied by the derivative of
the transfer function:

5= f(I)-(C — A) (2.17)

where I is the input of the output node. The error, 6, is propagated backwards in
a similar manner:

8 = f'(I) W;-§ (2.18)

where ¢; is the error of node 4, I; is the input of node i and W; is the weight between
node ¢ and the output node. The weights are updated according to:

and:

where the w;;(t) is the weight from node j in the input layer to node i at time
(epoch) t, n is the learning rate, and z; 1s the output of node j in the previous layer,
as in Equation 2.16. In Equation 2.20, W, is the weight from the output node to
the jth hidden node. The extension to multiple output nodes and multiple hidden
layers is trivial.

Angeline notes that the ubiquitous gradient descent methods used to optimise the
weights of an ANN put some limitations on the ANN model [5]. In particular, the
transfer function must be non-linear, non-decreasing and differentiable everywhere,
as can be observed from equations (2.17), (2.18), (2.19) and (2.20). Instead of
using Equation 2.16 at each node of the ANN, Angeline uses a GP evolved equation
tree at each node. In this way, he conjectures that each node can evolve into an
environmental niche that best suits the computational requirements of that node in
delivering the desired output of the network. When the ANN topology underlying
the MIPS net is not strictly feedforward, that is the output of a node can be fed back
to itself and to other nodes, Figure 2.13, a recurrent MIPS net is created where the
system of equations generated can refer back to themselves. In such a situation the
initial values of the equations need to be specified. A recurrent ANN or MIPS net
has a memory which makes it computationally similar to the CFS with an internal
memory referred to in Section 2.3.1 on page 29.

Artificial neural networks are a discrete representation which have frequently been
used to solve learning problems by evolution. There are many different evolutionary
artificial neural network (EANN) algorithms, eg. Yao provides an extensive review
[249].

An ANN is commonly applied to a n-tuple of data and required to predict a real
value or class associated with that data. The learning task is to find the network

2.3. EVOLUTIONARY LEARNING 43

<>~
CNK

-~

....

Input Hidden Output
Layer Layer Layer

Figure 2.13. A recurrent artificial neural network. Nodes can feed their output back to
other nodes and to themselves

which corresponds to the function
fdy=0 deR" OelR

where d is the input pattern and O is the output. Nominal values are frequently
mapped to IR. No assumptions about the function f(-) which is being approximated
are made. If f(-) is continuous then it can be shown that there exists an ANN which
can approximate it.

The principal problem for EANNs, in common with evolving all discrete representa-
tions, is maintaining the link between parent and offspring phenotype. In a classical
BP-trained network the architecture of the network is constant and the weights are
updated by small amounts at each epoch maintaining a functional similarity of off-
spring and parent. The BP and other gradient descent training methods are fast to
find a local minimum in the weight space. It may be the case that different opti-
misation procedures may find better minimum in the weight space, that is, find a
better set of weights that reduce the mean square error of the network when applied
to the training data. A further complication for ANN training is that minimising
the error on the training examples is not the goal of the method. An ANN is usu-
ally trained to generalize well. Generalisation requires that the network found will
correctly predict unseen data patterns. However, finding the best approximation
for the function f(-) in Equation 2.21 does not guarantee finding the best f(-) that
generalises, and it follows that finding the best optimisation procedure on the NN
weights will not guarantee the best results on independent test data.!4

EAs have been used to optimise the networks weights. In a review on EANNs, Yao
cites 88 papers where this has been done [249]. The algorithms employed usually
concatenate the network weights as an evolvable string, a binary string or a real-
valued string. An individual in the population is assigned a fitness corresponding to
the network performance which occurs on the training set when the weights coded
on the string are used in the network. The choice of operators to apply will depend

14To guarantee that the best trained network would result in the best generalization the topology
of the network would need to be “correct”.

44 CHAPTER 2. EVOLUTIONARY METHODS

on the method of representation. The evolutionary training of ANNs is in general
slower than the BP algorithm and its variants, although counter examples to this
exist [249]. The principal advantage lies in the freedom to choose non-differentiable
transfer functions, problem specific error functions and the potential to find better
optima in the training space through the avoidance of local minima which might
otherwise capture gradient descent methods. Using an EA for weight modification
in this way works well since it is easy to preserve the behavioural link between parent
and offspring networks. The only requirement is that the genetic operators chosen
are chosen to not be disruptive to the fitness linkage.

The largest problem in ANN modeling is how to decide on the topology of the
network. EANNE are frequently applied to the problem of finding optimal topologies
of ANN models. Yao cites 85 different papers where the topology of the network
has been evolutionarily designed in his recent survey [249]. The central problem in
evolving topologies for ANNSs is that the representation is discrete. This makes it
difficult to create an algorithm which can maintain some form of correlation between
parent and child fitness. This problem is tackled in a number of ways [249).

One algorithm which addresses the issue of correlating parent-offspring behaviour is
EPNet [255]. EPNet partially trains the network with a hybrid BP and simulated
annealing (SA) algorithm. If the networks fitness does not improve it undergoes a
structural mutation, starting with deletion of nodes/connections and then an addi-
tion. After a structural mutation the network is partially trained again to see if the
fitness of the network can be improved compared to its parent. If not, the network
undergoes a different structural mutation and further partial training. Once the
network has a better fitness than its parent it replaces its parent in the population.
The partial training is used to make the effect of the discrete mutations on the
phenotype more continuous.

2.3.5 Discussion

A wide range of structures have been evolved to solve learning problems. The
diversity of representations mirrors the diversity of learning problems, and nearly all
representations which are appropriate for learning tasks have a discrete component.

The evolution of discrete structures is usually performed with discrete mutations
applied with constant probabilities. The self-adaptive evolution of FSMs demon-
strates that it is possible, although difficult, to adapt the rates of mutations in
evolving discrete structures. There are two main advantages in being able to evolve
these rates:

1 Self-adaptive rates are not tuned by the experimenter for different problems.
Usually, there is nothing to set.

2 Self-adaptive mutation allows the parent to adapt the application rates of
operators to produce children with correlated fitness. Maintaining the parent-
child fitness correlation is important for evolutionary search to progress.

2.4. CONCLUSION 45

Many learning structures require the adaptation of both discrete and numerical
values. In the case of rule sets, numerical values frequently correspond to parti-
tion values of continuous attributes, and the setting of these values is important in
learning information in many domains with continuous attributes. However, most
evolutionary rule learning methods concentrate on either the evolution of the dis-
crete rule set, with pre-defined partition points, or like De Falco et al. use a very
limited discrete rule structure and evolve the partition values. The optimisation of
both types of structure is important.

EANN algorithms frequently perform some limited structure, or architecture, op-
timisation while optimising the parameters, or weights, associated with the struc-
ture. However, neural network structures are relatively simple compared to symbolic
structures such as rule sets and programs (GP), and provide little insight about the
information learnt. They are a blackbox model.*?

2.4 Conclusion

There are two choices when evolving solutions to learning problems:

1 Modify the learning task to fit the representation used by the evolutionary
process.
2 Modify the representation employed by the algorithm to fit the learning task.

Many applications demonstrate empirically that the second option is viable, allowing
flexibility in the choice of structures. Choosing representations to apply evolution-
ary methods to, usually means choosing a discrete structure with some numerical
components, especially in domains with continuous attributes.

Evolutionary methods are well established for the evolution of numerical compo-
nents. Methods such as ES make few assumptions about the fitness landscape.
Self-adaptive methods are able to adapt to changing landscapes, and are able to
reduce the size of mutations as the numerical solution approaches the optima.

Discrete structures require specially defined operators for modification, for example,
the evolution of FSM is performed with 5 discrete operators. Evolving the structures
successfully means choosing rates of operator application which are appropriate in
absolute and relative strength.

The ability to evolve the numeric components of the representation and simultane-
ously evolve the discrete structure of the representation would enable a greater level
of flexibility in the choice of representation for learning problems. Representations

15That is to say, the neural network consists of an architecture and weights vector. The weights
can be examined to produce rule sets, and sensitivity analysis can be done to elucidate some of the
underlying behaviours of the induced model. However, they are not transparently comprehensible
models.

46 CHAPTER 2. EVOLUTIONARY METHODS

for learning problems are important because performance in the learning environ-
ment is often not the only consideration. The knowledge learnt in attaining that
performance is also important, and obtaining that knowledge is dependent upon the
choice of representation used to solve the problem.

This thesis proposes a new self-adaptive method for the evolution of discrete struc-
tures and the simultaneous, symbiotic evolution, of the associated parameters.

Chapter 3

SASME: Self-Adaptive, Symbiotic
Model Evolution

I must Create a System, or be enslav’d by another Man’s;
I will not Reason and Compare: my business is to Create.

William Blake, Jerusalem

This chapter proposes the method of self-adaptive, symbiotic model evolution, SASME.
The SASME method segregates the task of parameter optimisation from the task of
discrete model discovery. The parameters form one of the symbionts! and are op-
timised by a self-adaptive ES algorithm which is implemented in accordance with
the literature analysis in section 2.2.3 on page 25. Concurrent with the parameter
optimisation the other symbiont, the discrete structure, is optimised through the
application of a set of discrete operators. The rate of application of discrete opera-
tors are a parameter of the system and are optimised by the parameter optimisation
procedure. This makes them self-adaptive. Neither of the symbionts alone are a
solution to the problem, and must be combined to form a solution.

The SASME framework is developed in general terms before being applied to the
evolution of rule set structures. The rule set structure used explicitly represents
exceptions in the tree structure. This allows a complete rule set model to be evolved
in a Pittsburgh approach with an explicit representation of the default hierarchies.
Default hierarchies allow for incremental behaviour changes to the ruleset as newly
evolved exceptions to previously existing broader, more general rules, allow for more
precise categorization of the learning task.

After the exposition of the SASME algorithm the method of self-adaptation is com-
pared with optimal mutation settings in two constructed problems.

The sASME method differs from those discussed previously in two important ways:

1Symbiosis: “An intimate partnership between two organisms, in which the mutual advantages
normally outweighs the disadvantages” [223]

47

48 CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

Method The evolutionary learning algorithm developed here will combine the real-
valued optimisation power of self-adaptive evolutionary algorithms with a
novel self-adaptive strategy for the evolution of discrete structures.

Representation The method presented in this chapter will evolve entire solutions
to problems as rule sets with exception lists allowing for the explicit represen-
tation of default hierarchies.

3.1 Algorithm Description

SASME consists of two parts. The model structure is represented directly with a
discrete symbolic representation. The symbols referred to within the model are
given quantitative definition through a set of associated parameters. The two are
then symbiotically evolved. Table 3.3 on page 72 shows the list of symbols used for
notation throughout this chapter.

3.1.1 Characterising the Learning Problem

The basic problem structure considered is one where the learner is able to sense a
number N of attributes at each time step. The N-tuple vector of sensed attributes
at time ¢ is labelled

a® = (agt), e a%))

where ¢ € IN. The superscript denotes an actual observation of the corresponding
attribute, whereas the attribute itself can be referred to as a;, i € {1,...,N}. For
example, if the environment is piloting an aeroplane then the attributes sensed might
be the air speed (1), height (2), pitch (3), yaw (4) and heading (5) of the aircraft
respectively. The value of agt) would be the numerical airspeed of the aircraft at
time ¢ in some units. When referring to the air speed variable, it would be labelled
as attribute 1, or a;.

All of the problems considered in later chapters have only real valued observations,
agt) € R,Vt ie{l,...,N}. However, in developing the algorithm it is allowed
that the observations can come from unordered discrete sets as well, and handling
such attributes is discussed.

If the set of all possible observations is labelled ¥ then a® € ¥, V ¢. Given a
description of its environment a®, the model has to choose an action at time t, a®,
to perform from some set of allowable actions? 8. A model 7 can be represented as
a mapping from the set of possible observations to the set of possible actions

m: U R (3.1)

“The production of a(® will be from a finite number of functions, w;, which in general are
themselves maps from environmental states to allowed actions. This is discussed later.

3.1. ALGORITHM DESCRIPTION 49

where neither ¥ nor N are necessarily enumerable. An application of the model at
time ¢ will give: 7(a®) = a®.

The observed attributes at time ¢, a*), may not completely describe the state of
the environment, s®. The observed values may be noisy, and may be incomplete.
Where the set of state variables is labelled S, the environment Y will be the mapping,

T:SxR—=S (3.2)

and the observation function
[:S— T (3.3)

will map the actual state of the system to the observed state of the system, where
the observed state of the system here refers to one of the possible observed states,
accounting for the fact that the true state may not be entirely observable. A further
complication arises when noise is added to the outcome of the above mapping, as
will frequently be the case.

Note that the learning problems considered are not necessarily deterministic, that
is the same state-action pair at time step ¢ may not lead to the same state vector
at t + 1. In general the problems can be considered to have the Markov property,
that is the best action for any observed attribute vector will be independent of
previous actions and attribute vectors. However, in the next chapter an interesting
non-Markovian problem will be tackled.

The learning problem needs to also specify an initial state s which will imply a
corresponding initial observation, I(s®) = a(®.

A run of the model 7 will consist of some finite number 7' > 0 of interactions between
the model and the environment. The set of inputs to the model and outputs from
the model at time t form the run set of the model R, that is

R=(a®aY) te{y,...,T}
and the evaluation of the model is performed by some evaluation function
Q:TxNXN—>R (3.4)

in general. Without loss of generality 2(R) can be considered a cost function, where
the best model run will have the lowest Q(R) value. The cost function allows the
learning problem to be considered as an optimisation problem, where the problem
is to find 7 such that min(Q(R)) is achieved.

The problem faced by the evolutionary learner is to adapt the model 7 to the learning
environment, where the cost function, Q(R), evaluates the adaptations present in 7.

The learning problems described cover a broad range of learning tasks such as se-
quential decision tasks [105, 164], reinforcement learning tasks [130, 165] and data
mining tasks. The learning problem does not need to be supervised, and the correct
action for each given state does not need to be known. All that is required is (-) so

50 CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

that a model m can be evaluated after interacting in the environment. All problems
are finite time problems where feedback is achieved after some set number, T, of
iterations of 7 and the environment.

3.1.2 The Model Structure

Evolutionary algorithms have been used to evolve a variety of different discrete struc-
tures. Genetic programming uses genetic algorithms to evolve computer programs,
most commonly as program trees [139, 140, 16], see Section 2.3.4 on page 36. Evolu-
tionary programming has been used to evolve program trees similar to GP [4, 5], see
Section 2.3.4 on page 41, and also to evolve finite state machines [83, 128, 79|, see
Section 2.1.1 on page 9 and Section 2.3.4 on page 39. Classifier systems use genetic
algorithms to evolve a variety of discrete structures which represent rules, such as
binary strings [115, 58], S-expression [150] and explicit rules [55], see Section 2.3.1
on pages 29-32. The DOGMA classifier system, [109] uses relational functions in
rule premises, see Section 2.3.3 on page 35, and the SAMUEL system also represents
rules explicitly in classifiers [102, 105, 213, 104, 103], see Section 2.3.3 on page 34.

The discrete structure and associated discrete operators form the model structure
used in the SASME method. This thesis introduces a novel rule list with exceptions
for that structure. However, the SASME algorithm could be employed on a variety
of model structures, requiring only that operators like those introduced for the rule
sets in this section are implemented for the structure. The optimisation of symbols
within the model, and the rates of application of the operators are symbiotically
evolved along with the chosen model structure.

The two requirements to evolve a structure are to have a covering set of mutation
operations for that structure, and for the structure to be able to represent the
solution to the problem. A covering set of mutation operators ensures that any
solution will be reachable from a finite number of mutations. Although this is not
strictly a requirement, it allows convergence in the limit to be guaranteed under
certain circumstances (see Appendix A), and in the absence of domain knowledge it
would seem an odd idea to allow the generation of a population which for all future
generations could not reach some sections of the search space, when the solution
to the problem is not known to be in the section of the solution space which is
reachable. The second condition is obvious, for example, if the solution is not linear
then satisfactory results may not be obtained if the discrete structure is limited to
considering only linear equations.

A simple if then rule has the form
IF condilion THEN action

The condition, or antecedent, of the rule will be some form of comparison between
attribute values or functions of attribute values and model parameters. For example,

IF aur speed > v; THEN perform action a

3.1. ALGORITHM DESCRIPTION 51

where the value v; and the action a; are treated as symbols by the SASME algorithm.
This allows linguistic constructions of rules to be made. The above rule could become

IF air speed is fast THEN reduce throttle

where the quantitative descriptions of fast and reduce throttle will be given numerical
definitions by the parameter vector. This is similar to the way that fuzzy rule sets
operate, where conditions and actions of rules are considered to be fuzzy quantities
which are given quantitative values through the defuzzyification process using fuzzy
set membership functions. Rule sets of this form are also similar to those used in
SAMUEL and other forms of classifier systems.

Default hierarchies are a useful concept in rule sets which allow decision lists to
be more succinctly represented, and provide a means for incrementally changing
rule set behaviours. Incremental changes to phenotype behaviour is an important
property of all evolvable systems. Default hierarchies are said to form in Michigan
style CFSs due to the competitive bias in the rule bidding process in favour of more
specific rules (see Appendix C). This creates competition to find specific corrections
to existing behaviours in the evolving rule set. It is this competitive pressure which
is responsible for the formation of the default hierarchies.

Default hierarchies are implicitly created in Michigan style classifier systems. In
Pittsburgh style classifier systems default hierarchies are ignored and flat decision
lists are evolved.

It was noted in Section 2.3.2, page 30 that the implicit default hierarchy formation in
Michigan style classifier systems is similar in effect to the explicit representation of
exceptions in ripple down rule sets. With this in mind, the rule set model used will be
a Pittsburgh style classifier system, with rules represented as lists with exceptions,
like those in Figure 2.7, page 31 and Figure 2.8, page 32. By using a Pittsburgh
style CFS there is no need for complicated reinforcement distribution algorithms.
Each individual in the population is a complete rule set and as such can have a
fitness designation equal to the rule set’s evaluation.

This gives a simple solution to one of the problems which has put serious limitations
on the performance of CFS—the maintenance of the default hierarchy. As noted
on page 166, the formation and maintenance of default hierarchies is frequently
problematic [197, 246, 215] and this combined with the overall complexity of the
Michigan style classifier system structure has limited its success in applications [240].
It has been noted that “classifier systems are a quagmire—a glorious, wondrous, and
inviting quagmire, but a quagmire nonetheless” [95].

Rules with explicit exceptions represent similar information to what default hierar-
chies are thought to represent. There are limitations, however. Classifier systems
use a variety of methods to weight rules matching a given environmental state in
order to choose an action to be performed. This allows any rule which matches a
state to compete in the bidding process. Exception lists are more hierarchical. Ex-
ception rules are fired only when the preceding rule is matched. When they match

52 CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

a given state, but their parent rule in the tree does not, they are not able to bid
to have their action performed. A rule list with exceptions mimics only one of the
two classes of default hierarchies recognized by Holland [121]. They can represent
default hierarchies distributed in space—rules with exceptions—but not default hi-
erarchies distributed over time, or bridging hierarchies. The latter are difficult to
construct in classifier systems (see Appendix C), and may be of most benefit in
non-Markovian domains. Rules with exceptions have an advantage, however. They
are more comprehensible, and better model the way experts structure knowledge
[49, 194, 195].

Figure 3.1 shows an example of an incremental change made by adding exceptions
to a rule set. The figure shows how more specific rules can correct inaccuracies in
more general rules at different levels.

The simplest form of an evolved rule consists of a single comparison with the value
of some attribute variable and the choice of an action.

IF attribute € values THEN action (3.5)

The majority of individual rules within a ruleset will be of the type shown, although
more complex rule structures will be considered in later chapters.

A rule set is a collection of rules. The rules will contain three parts available for
evolutionary modification. These can be modified in the following way:

attribute The attribute which the rule tests can be modified to be a test on another
attribute. This will also (normally) involve modifying the test values of the
attribute, since different attributes will have different value ranges or different
types for comparison.

values The value test can be modified to test another value set. This is a symbolic
change. For example, if the test is represented as IF temperature 1S high,
it could be changed to IF temperature 1S medium. Changing the numerical
definitions of comparison symbols is explained in the next section. The change
is essentially one of choosing from a list of possible value symbols a different
value symbol. In the case of real attribute observations the value symbols will
be real intervals, and changing symbols will correspond to the attribute value
being in a different interval. If nominal values were to be evolved then the
value set would consist of a collection of nominal values which are grouped
together, and modifying the value set symbolically would mean substituting
the set of nominal values for a different set of nominal values. Only problems
with continuous values are considered in this thesis.

action The action comparison is modified in a similar manner to the value compar-
ison. Instead of performing action 5 when the temperature is high, a mutation
might lead to action 3 being chosen instead. The action symbol may represent
a procedure which is performed to attain the output. For example, the action
could specify the output to be some linear combination of a set of attribute

3.1. ALGORITHM DESCRIPTION 53

10

[0,10][0,10]=>A
EXCEPT
[.25,4.25][2.25,7.75]=>B
EXCEPT
[2.25,3.5][4.5,6.5]>A
IF NOT
[5.75,8.5][7.00,8.75]=>B

A\, 7

Figure 3.1. Feature space description of ripple-down-rules. The graph shows the distribu-
tion of correct actions in a 2-feature space. The dashed lines show the areas of the feature
space classified by the rule set. The bold rule corresponds to the bold region of the feature
space, and makes an incremental improvement to the overall classification accuracy of the
rule set by correcting the rule above it and labelling the area of A actions within the B
action area correctly.

values. When the rule is true, a real valued output would be produced from
some linear combination of the current values of the attributes. Any parame-
ters which need to be coevolved along with the symbolic actions are contained
in the parameter vector, which is discussed later.

A rule can be made more general by allowing each attribute comparison to be a
disjunction of conditions. For example, the following rule could be constructed: I1F
temperature 1s (high OR very high).... Disjunctive attribute comparisons can be
represented as a list of what value symbols are included in the condition. More than

54 CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

one attribute can be conjunctively added to the rule antecedent in a similar manner.
If we label the number of value symbols available for attribute i as V; and the value
symbols available for attribute ¢ as fuj(-l) where j € {1,...,V;} and i € {1,..., N},
then an example of a rule would be:

IF (a5 € (u§5) OR vi‘r’))) AND (a9 € (vff’) OR vég))) THEN action 3 (3.6)

which would be true when attribute 5 has the value v§5) or vf’) and attribute 9 has

the value vig) or Uég). When those conditions hold, the rule would output action 3

to be performed.

Rules of the lorm shown in (3.6) are quite general in structure. This presents
an interesting problem. If the value symbols shown in the rule correspond to a
discretisation of some real valued attribute® a;, then the possibility of finding unlikely
rule premises exists. For example, if the discretisation of the real attribute is into
5 divisions then the rule could be triggered when the attribute is in division 1 or
division 4, perhaps corresponding linguistically to the attribute having a value of
extremely small (1) or large (4), but not small (2), medium (3) or very large (5). It
is possible that such a comparison is sensible, however more commonly it will not
be. Even when it is sensible to compare attribute values in the union of real intervals
which are not consecutive, it is likely that the rule set will be more comprehensible
by having two distinct rules with the same consequence for the particular situation.

The algorithm could have imposed upon it some a priori bias in favour of testing
particular groups of value symbols, for example, ensuring that continuous attributes
are only compared on disjunctions of consecutive discretised symbols. Formally this
could be handled by defining a grammar, as discussed in Scction 2.3.4 on page 37,
which would limit the antecedent conditions that the mutation operator could make
and bias solutions towards more meaningful areas of the search space. For the
problems considered in this thesis single attribute value comparisons only were re-
quired, and no internal disjunctions were used. For simplicity this will be assumed
throughout the following chapters except where explicitly mentioned.

In a decision list single attribute value disjunctions are easily represented by two
rules. If one of the mutation operations is to copy a rule with a “rule-condition
mutation”, then disjunctive rules will be effectively treated. Conjunctions between
attribute comparisons can be created by allowing a null action. If a rule has a null
action, then the rule’s exception list is tested. If none of the exceptions are true,
the rule is treated as false and parsing continues by checking its if-not list. The
first true exception is treated as a true rule, having either it or one of its exceptions
performed. In this way attribute conjunctions are effectively represented.

Simple rules, R; are combined into a rule set, =. The rule set, =, is one part of the
function, 7, relating attribute observations to actions in Equation 3.1, page 48. An
example of the evolved symbolic rule set, =, and an example rule, R, is shown in
Figure 3.2. At this stage the representation is considered completely symbolically

3The argument here is concerned with any ordered attribute symbols

3.1. ALGORITHM DESCRIPTION 55

)
LW+

~

; IF parameter C 1S high

THEN Action 5

—» EXCEPT IF
v IF NOT

Figure 3.2. The rule set representation. The rule set is represented as a decision list
with exceptions as in Figure 2.8 on page 32. Each rule in the evolved rule set is a symbolic
classification of an attribute value. The action of the rule is chosen from some list of
possible actions. Rules to the right are tested only if the rule immediately to their left was
tested and found true. Rules below are tested only if the rule immediately above them was
tested and was false. Testing starts at the top left of the list.

and is evolved according to an algorithm designed specifically for the evolution of
discrete structures.

The simple rule structure shown in Figure 3.2 is of the form (3.5), shown on page 52.
The observed value of attribute 4 is compared to a particular symbolic value set 'U]@,
j€{1,...,V;}, where V; is the number of value sets associated with attribute 1, as

defined earlier. The intersection of the value sets for attribute ¢,
V; .
(e
j=1

) e IR, the value sets are

is typically empty, although it need not be so. Where ag'
intervals of IR, eg.

(Ulowera Uupper] i

Where the values of attribute ag') € ¥; are nominal (that is, | ;] is finite), the value
sets will be collections of nominal values. V; will be less than or equal to |¥;|.

The set of allowable actions, R, is not necessarily finite. The rule set = will produce
only a finite number of different action symbols, w;, ¢ € {1,..., A}. The set of all

56 CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

action symbols produced by = is labelled A. Each of the produced action symbols
will be a mapping to an allowable action in the domain

w;: ¥R (3.7)

such that w;(a®) = Y. Most, commonly the action function will be independent
of the observed attribute, so that for a real-valued problem domain w;(a®) = k,
k€ R, Va® € ¥. It can, however, be some function of the observed state such as
a linear combination of observed values allowing the rule set to produce a discrete
number of action symbols, yet still produce actions in the environment from a (real)
value set, N. In the case where the set of possible actions in the environment is itself
finite then w; may be a labelling of those actions, so that || = A

The set of mutation operators for modifying symbolic rulesets of the form shown in
Figure 3.2 are as follows:

Add a rule A rule is added to the rule tree as follows.

1 A random rule, R, is generated. The rule is of the form (3.5), shown on
page 52. An attribute, a;, 7 € {1,..., N}, is chosen uniformly randomly
from the N attributes. Associated with the chosen attribute ¢ are a num-
ber of discrete possible symbols or values, V;, from which a particular
symbol is chosen UJ(-Z), j € {1,...,Vi}, where j is chosen uniformly ran-
domly. The rule action, wy, k € {1,..., A}, is similarly chosen uniformly
randomly from the set of allowable actions, A.

2 EBach rule except the first in the rule set =, Figure 3.2, is considered to
have 2 possible insertion positions for the new rule R. The first rule is
considered o have 4 insertion points. The insertion points of each rule
correspond to the exception or if-not rule associated with that rule. The
initial rule is more complex since a new rule can be inserted before that
rule, that is, the new rule becomes the initial rule and the previous initial
rule becomes either the exception or if-not of the new rule. The part of
the rule tree which is displaced by the addition of R is added with equal
likelihood to either the exception list or if-not list of R. Where there are
n rules in the rule set there is 27+ 2 random positions for the new rule,
and the position is selected uniformly randomly. The possible positions
for the new rule are shown in Figure 3.3.

Delete a rule A rule is deleted from the rule tree, =, in a similar manner. Of the
n rules in the rule set one is chosen uniformly randomly and deleted. Two
possible actions for the deleted rule’s exception and if-not lists are considered.
BEither the deleted rule can be replaced by the exception list and the if-not
list can be appended to the exception rules if-not list, or the deleted rule can
be replaced by the if-not rule and the exception list deleted. The first choice
corresponds to the assumption that the deleted rule is always true, and so
the exception list is always parsed. The second choice corresponds to the
assumption that the deleted rule is always false, and so its exception list is
never parsed. The situation is shown in Figure 3.4. The choice between the

3.1. ALGORITHM DESCRIPTION 57

@) »{ HJ,J_.

Figure 3.3. The add rule mutation. The shaded rule is the newly generated random rule
being added. The bold rule is the rule which has been randomly selected for the position of
the new rule. (A) shows the two possible results from adding a rule as an exception o an
earlier rule. (B) shows the effects of adding a rule as an if-not. (C) shows adding a new
initial rule to the rule set.

two outcomes is chosen randomly, and the deletion is not performed if it would
remove all the rules in the rule-set.

Modify a rule A rule is chosen uniformly randomly and one of the following oc-
curs:

1 Tts action wy is changed to a new action wy where k' € {1,..., A} and
k#E.

2 The condition is modified by the same algorithm for creating a random
rule, as in point (1) for adding a rule except that the original action coded

58

CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

@

Figure 3.4. The delete rule mutation. The bold rule is the rule to be deleted and the two
shaded rules are the rules exception list (lightly shaded) and if-not list (darkly shaded).
The unshaded rules are the possible positions of the parent rule to the rule to be delete,
only one of which can actually exist. When the rule is deleted, there are 2 possibilities.
(1) its exception list is moved to its position and its if-not list is added to the end of the
exception lists if-not list. (2) the exception list is removed and the rules if-not list takes
its place in the tree. (1) corresponds to an assumption that the rule is always true, and
(2) corresponds to the assumption that the rule is never true.

on the rule, wy, is kept and not modified.

Structural mutation A rule R,,,q is randomly chosen and is either generalised

or made more specific. Generalisation is performed on the rules exception
by taking the rules exception, Rexcept; and making the random rule, R g,
correspond t0 Rexcept’s if-not. The exception rule Rexcept has it’s if-not list
moved to the random rules, R,..4, exception list. The effect is to change the
action which occurs when R, 4,4 is false. If Rexcept is true then it or its exception
list has its action performed regardless of the truth status or Rrana- That is
Rexcept 15 no longer considered under the context of Rrang- The situation is
shown in Figure 3.5. A rule is specified by the inverse operation. The randomly
chosen rule Rrynq is moved to the top of the exception list of its if-not list,
Rit—not- This situation is shown in Figure 3.5

Crossover Crossover works like a macro-mutation operator. A random ruleset

Srang 15 selected from the population of rule sets and a single offspring is created
from the crossover operation between the parent ruleset = and the randomly
copied rule set Zp,5q4. A rule set with exceptions has a special structure which
the crossover operator takes advantage of. In particular, only rules on the

3.1. ALGORITHM DESCRIPTION 59
> — . > —>CD—~;)—>

—

-

h

:

i

Figure 3.5. A rule has its structure modified by one of two procedures. In the first the
light grey rule is made more general by no longer being in the context of the bold rule. In
the second the light grey rule is made less general by becoming an exception to the bold
rule.

Figure 3.6. The effects of the crossover mutation. A copy of a random rule in the
population is made, the light grey rule set, and a crossover point selected at a random
depth down the spine of that rule, the bold rule. A crossover point is chosen at a random
depth down the spine of the parent rule, the bold rule in the white rule set. The two parts
are then combined as shown to create the child rule resulting from the crossover mutation

“spine” of the rule set, that is rules which can be obtained by following the
if-not links from the root rule, are considered for crossover. The crossover
procedure then consists of descending a random distance down the spine of
the original tree and deleting the tree structure below the chosen position. The
copied tree is then descended a random distance and the tree structure above
the chosen point deleted. The two remaining structures are put together to
form the child ruleset. This situation is shown in Figure 3.6.

A rule set is evolved by creating a random population of rule sets and modifying

60 CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

those rule sets at each generation by applying with some probability the structural
mutations listed. The rule sets are then evaluated in the problem domain, ranked,
selected and the evolution continues. A natural question to ask at this point is:
How to assign the probability of applying the discrete operators? Most frequently
operators are applied with some low constant rate of mutation when evolving discrete
structures. However, it seems likely that the probability of applying the different
operators and also the relative probability of the operators will affect the evolvability
of the representation. If the deletion operator is applied more frequently than the
addition operator the mean number of rules in an offspring is going to be less than
that in parents, giving a search bias which may or may not be warranted.

To solve this dilemma a self-adaptive approach is used. The probability of applica-
tion of the different discrete operators is associated with each rule set. The evolution
of these probabilities and the parameterisation of the symbols used by the rule set
= are discussed next.

3.1.3 The Parameters

The evolved model 7 consists of two parts: the symbolic, discrete rule set = discussed
in the previous section, and the parameter set.

A rule of the form (3.5), page 52, compares the value of an attribute to some
set of possible values. If the attribute in question is 4, then as before there are V;

different value sets, or symbols, labelled vj(-i), Jj€{1,...,V;}, where v](-') is an interval
Vje{l,...,V;}. Where the minimum value of attribute i is min; and maximum
value maz;, a set of partition points pg-l), je{l,...,(¥i— 1)} are created and the

value sets are defined as:
vf) = (—oo,pgi)] where min; < p{ < pgi)
o) = @] where p{’ < p{’ < p{’ (3.8)

v](.l) = (pé;)‘ 1),oo) where pE;)_Q) < pg.)_l) < maz;

The number of parameters associated with the value sets will be 9 = Ef\il (V;—1), or
where each of the continuous attributes is divided into the same number of intervals
V), then there will be ¥ = N -V associated parameters.

The ordered tuple of partition points form a parameter vector

ri 1 ! 2 o o
wbstep— (o0, p e, a0) (3.9)

which is associated with the rule set and gives meaning to the symbols manipulated
by the rule set.

The action part of a rule corresponds to a particular symbol from the set of possible
action symbols of the problem wg, k£ € {1,..., A}. As noted, the interpretation of

3.1. ALGORITHM DESCRIPTION 61

an action symbol depends on the problem at hand. The action symbol coded onto
a rule can be used as an index for the corresponding action to be performed in the
environment, wi(-) Where there is a finite set of actions defined for the problem
there will be no parameters associated with the action symbols.

Example 3.1: An example might be a robot navigation task where the only
actions are movement directions, N, E, S or W. In this case oy = N, ap = E,
a3 =S, oy = W and R = {N,E,S,W}. In such a situation there are no
parameters associated with the models actions, and the action symbol wy(-)
maps all arguments to ag, k € {1,...,4}.

Alternatively the action symbol o) may be interpreted as a model requiring k
parameters. If the actions in the environment are real then each action symbol
might correspond to some particular value in the range of the possible action values.
This value could be a constant value.

Example 3.2: An example might be a greenhouse heater controller which
can set a temperature between 0 and 100 degrees Celsius, and the problem
is to maximise plant growth, or flowering, or water uptake under different
conditions. In this case the set of allowable actions is a real interval R =
(0,100). . Even though the cardinality of N is not finite, there are only A
possible actions symbols produced by the rule set Z. The action symbol wy
will correspond to some temperature in the allowable range wi(-) = tempy, (€
(0,100)). The actual temperature level, tempy, is a parameter of the learning
system. The problem will then require A different parameters, and s = 1,
ke{l,...,A}

The action value could also be some function of the environment.

Example 3.3: Example 3.2 can be extended to a case where s # 1 for some
k, by considering the temperature of the green house to be proportional to
some attribute value a;, say height of the plant. In this case the temperature
would be set to tempy, = (8 + B2 - a; for appropriate values of 8; and 8. The
action would then have 2 parameters associated with it, kx = 2. Temperature
might only need to be set proportional to plant height depending on some
other attribute, such as the season. In this example, not all of the action
variables need to have the same number of parameters associated with them.

The total number of parameters associated with the actions will be &' = Z;?:l K-
The parameters associated with action wy are labelled

pg.k)""’pl({k;c)

where each parameter pgk) € R, for k€ {1,...,A} and ¢ € {1,...,kx}. These
parameters can be put into an ordered x'-tuple vector as:

action A
’ P:(p(ll)a---:pfgll)apgz),---a--wpg),---,P,(gi)) (3-10)

In order to initialise the action vector 2*°" P each action parameter must also have
a maximum and minimum number defined for it.

The other set of parameters associated with the rule set are the probabilities of

62 CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

performing discrete mutations. These are represented directly as mutation prob-
abilities, p,, € (0,1). The number of mutation variables required depends on the
number of discrete mutation operators used in the symbolic evolution. Where there
are v mutation operators employed a parameter vector associated with the proba-
bility of applying mutation operators can be formed from the ordered v-tuple,

probabilityP — (p1)p27 o ,py) (311)

Combining the ordered parameter vectors in equations (3.9), (3.10) and (3.11) gives
the complete parameter vector *P € RP+<+") asg0ciated with the discrete rule
set. The exact size of the vector will depend on the particular problem and how
it is represented, and how many discrete mutation operators are employed in the
evolution. For example, there may be N real valued attributes, each divided into
V discrete partitions (¢ = N - V), the action might also be a single real value and
divided into A(= «') levels, or values, and the algorithm may use all 5 mutation
operations mentioned in the previous section (v = 5). This would give a parameter
vector composed of J + &’ + v real components. Some of the components may have
bounds associated with them. The probabilities are bounded below by 0.05 and
above by 1.

The parameter vector is evolved by the evolution strategies method detailed in
Section 2.2.1 on page 17. This requires a stepsize vector P, of length 9 + «' + v
which is also associated with the parameter vector. There are two kinds of bounds
that can be associated with the parameter vector, initial bounds and hard bounds.
The initial bounds are used to create the initial values of the parameter vector. The
initial values are uniformly distributed between the initial bounds, and the initial
sigma value is set to 1/3 of the range of the initial bounds for each component, or
to some specified initial value. The parameter vector values are maintained between
the hard bounds. If a mutation would modify the value to be beyond a hard bound
then the mutation is not performed and the original value is kept. The stepsize
parameters are kept less than 1/3 of the hard bounds, or some smaller predefined
number. Where a hard bound is not appropriate the values are set to —oo and
oo and the corresponding parameter is unbounded. The probability values have a
hard lower bound of 0.05 and a hard upper bound of 1. The lower bound on the
probability of applying a discrete mutation ensures that all solutions in the structure
space remain reachable to the algorithm. The initial value of the probability values
is set to 0.5, and the initial step size is set to 1/3, its maximum value.

A rule set may or may not use a particular objective value in the rule set structure.
For example, if the rule set only ever refers to speed when it is in its low range
the value associated with defining speeds high range is not used in that rule set.
In this case the objective value associated with defining the concept of high speed
could converge to an arbitrary random number since there is likely to be an overall
downward trend in the mutation step sizes of all variables owing to the once sampled
normal distribution in the update formula, equation 2.4 on page 17. To avoid this
effect the following condition is imposed on the parameter vector:

3.1. ALGORITHM DESCRIPTION 63

e An unused object variable value is reset uniformally randomly to an allowable
value.

The condition ensures that the search space continues to be sampled to try and find
a useful value when a value is not used. Unused values are not used in recombination
to prevent recombination from adding too much noise to a value that is unused in
most of the population but used in a particular rule set in the population.

In this way all components of the parameter vector are treated the same by the
parameter evolution algorithm, which is essentially a typical ES instantiation. The
object vector x is just *P, the (J + k' 4+) real parameters associated with the rule
set Z. The stepsize vector o is P, the (U + ' + v) real parameters created as
detailed above. The ES algorithm is searching for optimal values of the parameter
vector *P associated with the rule set =.

The rule model 7 consists of the symbolic rule structure = and the parameter vector?
P,

3.1.4 Evolving the Ruleset

The rule set, =, and the parameter vector, *P, together determine the mapping,
(3.1), that the evolved model makes between vectors supplied by the environment,
(3.2), and actions. Part of the problem specification will be some function € which
evaluates the output produced by the model Z, Equation 3.4.

An initial root rule is generated. A recursive procedure generates a random rule set
with a maximum of count rules. The chain of if-not rules descended from the root
rule are generated so that they cover the possible observable state space. Figure 3.7
shows the covering rules of the initial rule set shaded light grey. The maximum
number of rules generated in the exception list is set to 5, and the probability
of generating an exception and an if-not is set to 0.75. The performance of the
algorithm is not particularly sensitive to how it the population is initialised. In this
way the structure of the rule set, =, can be initialised.

The problems considered in this thesis are all real valued attribute problem. The
implementation described here requires an a prior: decision about the number of
discrete segments V;, i € {1,..., N}, to divide each of the N continuous attributes.
A minimum, min,;, and maximum, maz;, value must also be specified for each at-
tribute, i € {1,...,N}.

The (u,A) SASME algorithm for symbiotically evolving the parameter vector, *P,
and the rule set, =, can now be stated:

1 An initial population Py = g, g = 0, of X\ models 7, is constructed. Each

“The probabilities of discrete mutation incorporated in “P are not involved in the formation of
the model 7, only the (9 + ') parameters which actually give meaning to the symbols referred to
in 2.

64

CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

C 1 Pl g]

Figure 3.7. The initial rule set. The shaded rules are generated to cover all possible input
vectors, and their exception lists are set to some random rule set containing a specified
mazimum number of rules

model 7 consists of three components, (Z,%P,“P), a rule set =, an objective
parameter vector P, and a mutation step size vector “P. Each of these are
initialised as follows:

Ruleset For each j € {1,...,A} a ruleset Z; is created. The structure of the
ruleset is created as described above. Each rule in the rule set is created
as outlined in item 1 on page 56.

Parameter vector Foreach j € {1,..., A} a parameter vector P is created.
Each component is a real value, and the length of the vector is 9+«'+v as
discussed in section 3.1.3, page 60. Each objective value has a maximum
and minimum number associated with it, and it has its values initialised
uniformly randomly between those values

Mutation vector For each j € {1,..., A} a parameter vector “P is created.
The stepsize vector has the same length as the parameter vector, and is
initialised to 1/3 of the value of (maz; — min;), 1 € {1,...,(9+«"+v)}.

Each model 7 in the population P, is evaluated on the problem by the fitness
criteria. Rules which never have their premises satisfied are removed from the
rule tree. Models are ranked according to their fitness evaluation and the best
1 out of the A models are chosen as the parents of the next generation.

Each of the p parent model generates A/p models on average so that a total
of X offspring are created. Using the notation on page 56, and with 7 and
7' set identically, the offspring are created as follows: for ¢ = 1,..., 4, and
h=1,...,],

3.1 Objective values which are not used in the evaluation of the rule set have

their values randomly assigned as described on page 62.

3.2. EVOLVING RULE SETS: AN EXAMPLE

65

Generate an injtial
population of A

!

Evaluate models on

R T

Update the mutation
vector o

)

d !

With probability Pyag
add a new rule

!

traini ' ! ; o
raining examples Update the parameter X With probability Pge
l 4 vector , elete a rule
' i ¢ |
Sel((eict1 the best u ’ ‘*
t, ' e
B i g | S ' Update probability of| / With probability P
‘ f mutation i modily a rale
I
/
Gm{mralu A{'p children| l i ‘
Eon B pare . Perform discrete With probability Pser
¥ mutations modltg the structure
Y .
NO |8 | N I
- .
i Y With probability Pero
{YES . perform crossover
AY
~
Test the best model 5 l

Figure 3.8. The main components of the evolutionary process for model creation.

3.2

3.3

3.4

3.5

The mutation and object vectors undergo recombination. The mutation
vector is recombined by intermediate recombination and the object vector
is recombined by discrete recombination.®

The mutation vector, P, is updated according to

Sk e
P, = 7P exp(r'N(0,1) + 7N;(0,1))) (3.12)
forj=1,...,(0+ K +v).
The objective vector is updated according to
~ (h i ~ (h
D" — 2P0 4 N;(0,°P)) (3.13)

forj=1,...,(0+k +v).

The discrete model structure, Z®, is mutated by applying the v discrete
mutation operators with probability °P;, j = (9+«'+1),..., (F+K"+v).
Some possible operators are discussed in section 3.1.2, page 56. This is

repeated to obtain A structures, ™.

4 If the stopping criteria has been met, then terminate. Otherwise, set g +

g + 1, set the children #) = (20 <P

(i),"j?(i)), Vi € {1,...,A}, as the next

generation and repeat from step 2.

Equations 3.12 and 3.13 are the same as the standard evolutionary strategies and
evolutionary programming equations 2.4 and 2.5 on page 17. The algorithm is
described graphically in Figure 3.8.

3.2 Evolving Rule Sets: An Example

To clarify operational aspects of the proposed method an example problem will now
be illustrated. The data which the model is learning from is generated from the

described in equation 2.6, page 20

66

CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

X Value

Y Value

Z Vaiue

00 02 04 06 08 1.0 00 02 04 06 0B 1.0

00 02 04 06 08 1.0

Mean Partition Values

Mean value of the X variable

Mean X stepsize

‘ {a:’?ﬁw
4 :.a., .; N

X Value

00 02 04 06 08 1.0

L T T T T T T T T T — 1
0 20 40 60 80 100 0 20 40 60 80 100
Generation Generatlon
Mean value of the Y variable Mean Y stepsize
-3 o
i m
o
%% R . o W B
1 Rt 5
& LS & s,
i : ‘? @ .~ * > o
| Lot (g S — o
o
=]
T T T T T 1 ° T T T 1 T
0 20 40 60 80 100 0 20 40 80 80 100

Generalion
Mean value of the Z varlable

Generation
Mean Z stepsize

o
[
5
X b
] o&’& g 3
‘aﬁ‘ 0 e 3 .
° ¢ o N o
® %
o
o
)
T T T T T T oy T T T T 1
0 20 40 60 80 100 0 20 40 60 80 100

Generation

Generation

Figure 3.9. Mean variable values. The mean value of the partition points and step sizes
for each variable at each generation is calculated and plotted in the above graphs. The step
sizes monotonically decrease in value as the variables approach the partition values of 0.25
and 0.75.

following condition:

IF z € (0.25,0.75) AND y € (0.25,0.75) AND 2 € (0.25,0.75) THEN ¢ = 1

ELSE ¢ =0 (3'14)

A set of 1000 examples were generated by uniformly randomly generating a triplet
(#,9,2), z,y,2 € (0,1), and applying the condition above to obtain learning exam-
ples (z,y, z,¢). The algorithm was applied with each of the three variables divided
into three ranges, {(—o0,v1], (v1,v2], (va,00)}, where the v; and v, were evolved for
each variable and are referred to as the partition points for the variable. The error
criteria used was the mean of the square of the difference between the model output
and the correct output.

Figure 3.9 shows the evolution of the partition points for a particular run with a
population of 100. Each point in the graphs is the mean value of the partition point
in the population at that generation. Initially the partition points in the population

3.2. EVOLVING RULE SETS: AN EXAMPLE 67

Mean Operator Rates

Mean addnode rate Mean delnode rate

05
i

Rate
0.3 0.4
1
Rate
02 03 04 05 06

02
!

0.1

Generalion Generation
Mean actlon rate Mean modify rate

Rate

Rate
02 03 04 05

01 02 03 04 05 06

0.1

0 20 40 60 80 100

Generation Generation
Mean crossover rate

Rate

i

02 03 04 05

1

0.1

Generation

Figure 3.10. Mean operator values. The self adaptive rate of applying a discrete mutation
operator is averaged for each generation and graphed above. The graphs are a consequence
of a decline in the usefulness of discrete operators as they become disruptive to the fit
population of rule sets. The trend line is for illustration only.

are random and the mean hovers around the middle of the range. As the rule set
learns useful rules with certain partition values in the population these partition
values are optimised to the decision planes bounding the region described in 3.14.
The partition points converge to the correct value reducing the utility of exploring
partition points at a large distance. This reduction causes selective pressure within
the population for a decrease in the value of the deviations, corresponding to a
decrease of the step size, °P, in equation 3.13 (also, o in equation 2.4 page 17).

The trajectories of the step sizes and the discrete operator probabilities are an
emergent property of the algorithm; the method is not programmed to self-adapt by
reducing the mutation step sizes, but rather the non-elitist (4, A)-selection method
and unbiased step size updates (Equation 3.12) produce the behaviour. This be-
haviour is widely seen in optimisation problems, and here exhibited in a learning
problem, showing that the self-adaptive strategy is operating correctly in a different

68 CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

domain.b

The averaged probabilities of applying discrete mutations at each generation are
shown in Figure 3.10. The operator probabilities decrease as the population evolves
better rule structures and the application of mutations becomes disruptive. The
relative and absolute rates of the different operators differ as the run proceeds,
which supports the widely held belief in evolutionary computation that the utility
of mutation and crossover operators change over the course of a run as discussed on
page 14. The fitted trend curves in Figure 3.10 are only for illustration.

3.2.1 Evaluating the Self Adaptive Mutation Rates

To establish the performance of the self-adaptive mutation probabilities two sets
of 100 runs were conducted for the self-adaptive algorithm and for 10 constant
mutation values varying from 0.05 to 0.5. The first set of runs were performed with
a population of 100 and the second set with a population of 200. The runs used the
condition 3.14 and were halted at the generation where the solution was found or
else stopped after 1000 generations had elapsed. Stopped runs were recorded as a
failure and removed from the analysis, which biases the statistics in favour of the
trials which had failures. Summary information about the number of generations to
solve the problem were collected for all successful runs and are shown in table 3.1
for a population size of 100 and 3.2 for a population size of 200. The associated
plots are shown in figure 3.11 and figure 3.12 respectively.

It is clear from the tables that no constant mutation rate is significantly better than
the self adaptive rate for this particular problem. The optimal rate of mutation
for a particular application of an evolutionary algorithm is most frequently not
knowable. The pragmatic approach usually taken is to experiment with a number
of different rates and choose the most promising. The results from the parameter
tuning exercises are not normally published despite being part of the experimental
set up.

Table 3.1 shows that a mutation rate of 0.3 is around the optimal constant values.
The self-adaptive algorithm does at least as well and is able to find the solution in all
runs. Self adaptation of the mutation rate is likely to have two principal advantages
over a constant mutation rate:

1 The self adaptive mutation scheme can modify the rate of application of the
discrete mutation operators independently of each other. This would allow,
for example, the self adaptive scheme to apply the addition operator more
frequently than the deletion operator. This could then create a bias towards
larger rule sets at different stages of the evolutionary process.

2 The rate of mutation does not need to be constant throughout the run. For

®The domain is different because at the same time as the parameters are being optimised for
the rule set, the rule set itself is being optimised to use and exploit the parameter settings to solve
the problem.

3.2. EVOLVING RULE SETS: AN EXAMPLE 69

Table 3.1. Results with a population of 100. For each mutation rate 100
runs were performed with a population of 100 and the generation number
at which the correct solution was found is used in the table below. Runs
which did not find the solution in less than 1000 generations are recorded
as failures. Figure 8.11 shows a boz plot of these results.

Operator Probabilities
Mutation Rate Mean Quartile 1 Median Quartile 3 Failures

Self Adaptive 260.31 139 217 346 0
Rate=0.05 407.548 217 349 581 27
Rate=0.10 360.758 167 304 550 9
Rate=0.15 352.055 163 275 548 9
Rate=0.20 318.989 149 253 470)
Rate=0.25 305.906 172 249 400 4
Rate=0.30 275.768 152 217 351 5
Rate=0.35 326.271 155 272 439 4
Rate=0.40 326.844 157 269 436 10
Rate=0.45 328.688 177 259 409 4
Rate=0.50 373.207 193 311 493 8

Table 3.2. Results with a population of 200. For each mutation rate 100
runs were performed with a population of 200 and the generation number
at which the correct solution was found is used in the table below. Runs
which did not find the solution in less than 1000 generations are recorded
as failures. Figure 3.12 shows a bozx plot of these results.

Operator Probabilities
Mutation Rate Mean Quartile 1 Median Quartile 3 Failures

Self Adaptive 183.38 99 147 235 0
Rate=0.05 295.67 128 243 417 12
Rate=0.10 244.042 109 192 341 5
Rate=0.15 190.04 89 148 256 1
Rate=0.20 198.374 104 157 241 1
Rate=0.25 182.333 102 146 229 1
Rate=0.30 210.388 120 174 257 2
Rate=0.35 206.394 119 175 249 1
Rate=0.40 217.606 131 164 263 1
Rate=0.45 221.541 131 176 288 2
Rate=0.50 250.061 149 201 328 1

example, as the rule set becomes more complete and accurate the number
of children generated with new rules attached can be decreased, which may
improve the number of offspring which survive from a given parent.

Figure 3.11 indicates that the optimal single mutation rate has an isolated perfor-
mance minima at a rate of around 0.3. Values above or below this level decrease
performance, and those further away decrease performance most. The relationship
between performance and mutation rate could be much more complicated than this.

70 CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

Number of generations to find solution

04 045 05

1 i

- :

T '

5 '

) '

'

‘

1 ata

Poo

-

o]

° 8
(o]

Mutation Rate

025 03 035

1 1

: "

: |

» '

C '

.)

M 1]

¢ H

_ "

° q
—_—

8

o

o

o [o]

01 015 0.2
1
- T
Voo
\ ¥
: ¢
L

A

0.05
|
i
bt
'
'
'
-

SA
|
—_
'

'

'

'

1
'

'
-
o
[=]

Generations

Figure 3.11. Results for a population of 100. Plots of the relative success at different
mutation rate. The graphs show the Self-Adaptive (SA) mutation rate algorithm in com-
parison to a number of fived mutation rate values. The dashed line corresponds to the
median of the SA algorithm.

It is unprovable and in fact unlikely that the self adaptive scheme is the optimal
mutation strategy. The self adaptive strategies provides a generationally dependent
mutation rate, and so has the potential to perform better than a constant rate due
to the increased degrees of freedom available. Whether it does so or not is not as
important as the fact that it appears to perform at least as well as any constant
strategy. This reduces the need for ad-hoc tuning of the mutation parameter.

Table 3.2 shows that the optimal constant mutation rate for a population of 200
is similar, although possibly lower. In general it will be the case that the optimal
mutation rate will depend on the population size used. The self adaptive rate is
again as good as any of the constant mutation rates, and is again the only strategy
which was always able to find the solution in under 1000 generations.

A learning algorithm such as the one described in this chapter can be applied to
a wide variety of different problems. It is unlikely that a single constant mutation
rate will perform sufficiently for all problems the algorithm is applied to. The use of
a self adaptive rate is motivated not so much by the desire to use the optimal rate
for all problems, but rather to use an automatically tuned competitive rate for a

3.2. EVOLVING RULE SETS: AN EXAMPLE 71

Number of generations to find solution

0.45 5
| 1
-— -
1 B
' '
P

o
o
fo) [o]
o
o
8

03 035 04
L i
E -
] :
i .
i |
R
e o©

o
g ©
o

)
o

o

Mutation Rate

1
e

)
o

[o]

o

8

o

o

015 02 025
1
=
]

1
'
-
[}
o]
o
o
o]}

1
-
'

i
l
i
I
I
l
'

'

'

!

‘
—_
o

o]

005 O.1t
|
—_
"

'

'

'

'

'
-
o
o

SA
1
=
i
o
o
o
8

Generations

Figure 3.12. Results for a population of 200. Plots of the relative success at different
mutation rate. The graphs show the Self-Adaptive (SA) mutation rate algorithm in com-
parison to a number of fired mutation rate values. The dashed line corresponds to the
median of the SA algorithm.

large number of problems. For the simple problem used here, 3.14, the self adaptive
rate can be said to be at least as good as any of the experimentally discovered
constant rates. For the non-trivial problems considered in this thesis there will not
be sufficient resources to statistically analyses constant mutation rate strategies for
comparisons with the self adaptive rate. It is clear, however, that the self adaptive
strategy is sufficient for solving the problems presented in this thesis, and it is clear
from this chapter that it is no worse than, and possibly better than, any constant
rate for at least one problem, 3.14.

The problem considered in this section is a simple supervised learning task chosen
to demonstrate some of the operating characteristics of the algorithm. This problem
could be solved by an inductive learning method such as C4.5 [181, 182, 183] in a
matter of seconds since the algorithm is presented with a set of examples and their
correct prediction. In the next chapter the more difficult case of an unsupervised
learning task is addressed.

72 CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

Table 3.3. Summary of symbols used throughout this chapter
N The number of attributes

s The (evolved) model mapping observed environment states to al-
lowable actions
N The set of allowable actions

¥ The set of observable states

a®) The N -tuple vector of sensed attribute values at time t € IN

S The set of possible states

s{) The state at time ¢ € N

T The environment. A mapping of S X R to S

I The mapping of the actual state value s to the observed state
value a(®)

R The run set formed from the tuples (a®, o), t € {1,... , T}

Q 'I'he evaluation function which is applied to the run set of the model,
ie Q(R) (¢ R)

= A rule set

TP The parameters associated with a rule set, 2

P The mutation step size vector associated with the objective values

P

9 The number of parameters associated with the value sets of the
model

k' The number of parameters associated with the consequences of the
model

v The number of discrete evolutionary operators defined for the model

3.3 Summary

This chapter has described the proposed SASME evolutionary framework. The gen-
eral framework is designed to be a system capable of symbiotically evolving param-
eters and discrete rule structures in a self-adaptive manner. The discrete structures
used throughout this thesis are a novel rule set structure which introduces an explicit
default hierarchy representation to an evolved Pittsburgh-style learning system.

The sSASME framework is designed to evolve representations which have considerable
parameter components alongside discrete structures. Previous evolutionary methods
have concentrated on evolving structures (like GP) or evolving parameters (like
traditional ES/EP evolutionary systems).

The atomic parts of the evolved rule set are IF-THEN rules which are a high level,
symbolic knowledge representation. This aids in the comprehensibility of the evolved
knowledge [65].

There are several motivations behind the self-adaptation used in the SASME frame-
work.

1 Self-adaptation of the parameter vector allows the parameters to adjust their

3.3. SUMMARY 73

mutation rates according to changes which occur in the discrete structure
which is symbiotically evolved with them.

2 Self-adaptation of the discrete structure allows the rate of change in the struc-
ture performed by different operators to be balanced by the algorithm. This
balance occurs according to the rates of application of other operators, as well
as the topology of the current structure. This allows the mutation rates of
various operators to change relative to one another during the course of a run.

Finding the optimal mutation rate for tasks in general is not possible, however it is
shown on a simple learning task that the proposed self-adaptation mechanism can
effectively learn in a learning domain. It is also shown on a simple task where the
optimal mutation rate is empirically established that the self-adaptation method
performs as well as, and most likely better than, the optimal constant mutation
strategy. Further, in two variants of the same problem the optimal constant rate
appears to change while the self-adaptive method is still the best mutation strategy
to employ. The best choice of mutation rate is a function of the structure of the
current population and the search space. This is the motivation behind using a
self-adaptive mutation rate.

The test case scenario presented demonstrates that for this particular learning prob-
lem the self-adaptive strategy presented is the best choice. Although it is only a
single empirical study, it provides some confidence that the self-adaptive strategy
will be effective more generally. However, under what conditions the self-adaptive
strategy will perform better than the best constant rate is an open question. Most
learning problem are sufficiently complex that only a handful of calibration exper-
iments can be performed. If this had been done to find a fixed rate on the test
problem used in this chapter then the likely performance of the algorithm would
have been significantly worse than the self-adaptive strategy, since the self-adaptive
strategy significantly outperformed nearly all constant strategies.

The principal innovation of the SASME framework is the explicit division of the pa-
rameter optimisation task from the discrete structure optimisation task. This allows
a standard self-adaptive evolutionary strategies algorithm to optimise the param-
eters whilst another self-adaptive algorithm optimises its symbiont, the discrete
structure.

The second innovation introduced in this chapter is the utilisation of rule lists with
exceptions as the choice of representation for the discrete structure. These rule sets
incorporate an explicit representation of a form of default hierarchy, allowing the
hierarchies to be evolved by a Pittsburgh style evolutionary algorithm.

74 CHAPTER 3. SASME: SELF-ADAPTIVE, SYMBIOTIC MODEL EVOLUTION

Chapter 4

Evolutionary Learning I:
Unsupervised Learning of
Dynamic Control Systems

Living organisms are consummate problem solvers. They exhibit a versatility
that puts the best computer programs to shame.

John Holland [120]

This chapter introduces the cart-pole problems and applies the SASME algorithm to
evolve rule sets to solve some of these problems.

4.1 Background

Control problems involve systems which are described by state variables, which have
some variables, called control variables, over which choices are made, and which have
some goal or desired state. A diagrammatic description of a control system is shown
in Figure 4.1.

Control problems are usually unsupervised learning problems since the correct action
for a given state is not known and instead must be discovered. The problems are
teleological, and this usually allows a fitness function to be defined. Often there is
a cost (or equivalently a reward) associated and the problem becomes to find the
optimal control. Costs are frequently measured in units like time, energy, fuel used,
money spent or similar.

There has been a lot of research on finding mathematical solutions to optimal control
problems. One of the most common techniques employed is dynamic programming
[18, 216]. Dynamic programming is a suite of algorithms which compute the optimal

75

76 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

l

@ = 17 Control
) System

State

Observed State

Figure 4.1. A conlrol problem. At any given time the state variables describe the system
completely. The controller makes some observation of the state variables and can use this
in determining what control signal to apply at a given time.

control, or policy, of a multi-step problem for which Bellman’s principle is applica-
ble!. That is, problems whereby the optimal solution of an n-step problem is the
optimal solution of the n — 1-step problem where the optimal outcome of the first
step is achieved [37]. This allows a recursive algorithm to be formulated which can
find the optimal policy of the n-step problem. In particular, dynamic programming
can be used to solve a Markov decision process, and is an important theoretical
underpinning to a lot of reinforcement learning algorithms [130, 216]. Dynamic
programming requires an accurate model of the system and for many problems is
infeasible due to the excessive computing and storage requirements of the method.
Much of the reinforcement learning literature is concerned with how to utilize the
ideas used in dynamic programming in environments where an exact model is not
known and how to make dynamic programming like algorithms which do not require
large computational resources [216].

In this chapter a number of questions will be asked about the application of the
self-adaptive rule-based induction system described in the previous chapter on a
well known and frequently used control problem. The questions of interest here will
be:

e How much information is required about the problem in order to find the
solution?

e Can the system learn comprehensible control rules for the problem?

e Is the method able to automatically find an effective quantisation of the state
space?

4.1.1 The Cart-Pole Problem

The test problem used in this chapter is the cart-pole balancing problem in Fig-
ure 4.2. The problem is also referred to as the broom-balancing problem and the

'Bellman’s principle should not be confused with Lewis Carroll’s “Bellman’s principle” that
what is said thrice is true.

4.1. BACKGROUND 7

Figure 4.2. The cart-pole system. The cart is situated on a limited length track and
has mounted on it a hinged pole. The aim is to keep the deflection of the pole to within
prescribed bounds while keeping the cart on the limited track. The control is a constant
force applied horizontally to the cart. Usual performance measures are the sum of the
differences between the system and a position with cart in the center of the track and pole
vertical, and the amount of time for which the system has remained balanced.

l——

inverted pendulum problem. The system is a simple control scenario where the
controller must balance a hinged pole on a cart. The cart is on a track of finite
length and the pole must be maintained within a prescribed number of degree’s
from the vertical position. The controller has two available control options, to push
the cart to the right or to the left, with some constant force. The problem can not
be sustained in the equilibrium position of having the pole balanced and the cart
stationary since some set non-zero force must always be applied to the cart.

The cart-pole problem is an example of a non-linear dynamic optimisation problem.
Although the goals and the statement of the problem differ slightly, the system has
been used extensively in the machine learning literature to test different control
techniques [159, 17, 167, 236, 220, 139, 222, 153, 68, 151, 74, 131, 47, 32|, and is
one of the earliest applications of machine learning [159]. The problem is interest-
ing because it is unstable, non-linear, and more than one state variable has to be
controlled by a single control [222].

The state of the cart-pole system is described completely by 4 variables:
Cart Position The cart position in metres is labelled x, where z is the distance
between the current center of the cart and the middle of the track.

Cart Velocity The cart velocity is labelled® # and is measured in metres per sec-
ond.

Pole Angle The pole angle is labelled # and is measured in radians with a value
of 0 representing the pole in a vertical position.

Pole Velocity The angular velocity of the pole is labelled 0 and is measured in
radians per second.

2The dot notation is used to denote the derivative with respect to time, ie & = ?j—f and £ = 5.

78 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

Table 4.1. Constants used in Equations 4.1-4.4

Symbol Description Value
u The force applied to the cart [-10,10] N
x The position of the cart on the track [—1.0,1.0] m
0 The angle of the pole from vertical [—15,15] degrees
M The mass of the cart 1.0 kg
m The mass of the pole 0.1 kg
g Acceleration due to gravity -9.8 m/s?
l Half the length of the pole 0.5 m
Le Coeflicient of friction of the cart on the track | 0.0005
fep Coeflicient of friction of the poles hinge 0.000002

The control force is labelled v and is measured in Newtons. The equations of motion
describing the cart-pole system are:

u — e sgn(z) + F

= 4.1
: M +m (4.1
b = —% (a’v’cos@—kgsinﬁ—&-%) (4.2)
where F is the effective force of the pole on the cart,
. . 9
F =mlf*sing + " cosf | 227 1 gsing (4.3)
4 ml

and m is the effective mass of the pole,
- 3 .,
m=m 1—Zcos ¢ (4.4)

and the parameters used in Equations 4.1-4.4 are shown in Table 4.1. The system is
integrated numerically by using a fourth-order Runke Kutte method (39, page 112]
with a time step of 0.02 seconds.

The cart-pole problem is intended as a test problem for the SASME algorithm. The
problem itself is of no interest per se for this thesis. Rather it is representative of
a type of non-linear dynamic control problem which has been extensively used in
the literature. If one were interested in solving the problem there are at least two
doctoral dissertations® which have been published on the control theoretic solutions
to the problem, by Higdon in 1963, [111] and Schaefer in 1965, [204]. The intention
here is not to investigate solutions to the cart-pole problem but rather to investigate
the application of the SASME algorithm to evolving rules to control the cart-pole
system.

In order to put the current approach in perspective, a brief overview of some of the
other learning algorithms applied to the cart-pole problem is presented next.

3 According to Wieland, (236]. The author has sighted neither reference.

4.1. BACKGROUND 79

4.1.2 Overview of Learning with the Cart-Pole problem

Previous attempts are extensively reviewed by Ling and Buchal, [153] and VarSek
et al. [222]. Representations of the controller for the cart pole system have been
implemented in a number of different ways.

Initial approaches were symbolic and were based on partitioning the state space
in some way. One of the earliest partitioning approach was Michie and Chambers
BOXES algorithm, [159]. In the BOXES approach to the cart-pole problem the state
space is divided into 225 different boxes by partitioning the variables (x,%,0 0) into
5, 3, 5 and 3 ranges respectively. At any instance the system is in one of the 225
predefined boxes. The boxes algorithm associates an action with each box and
learns by modifying actions which are associated with large errors after a number
of iterations. The choice of the ranges in the state space is critical to the BOXES
algorithm, and the learned strategies proved to not be generic in the sense that they
failed to control the system from random initial states [153]. It was later shown that
some of the boxes could be amalgamated making the controller more comprehensible.
The algorithm could also be improved by BOXES learning being applied to a range
of initial states and the different results collated by a voting algorithm for each
box [202, 153]. The BOXES approach uses a representation similar to most of
the reinforcement learning methods which have been applied [222]. In a number
of these approaches on the cart-pole problem the individual boxes were combined
or quantised by a panoply of different algorithms. Automatic quantisation of the
partitioning of the state space is seen as important since for many problems a correct
partitioning will not be known beforehand, and the results of the algorithms seem
to be dependent on the partitions chosen [153].

Another representation applied to the cart-pole problem is to learn a numerical
equation which approximates the control surface. This approach was taken by the
classification and regression tree algorithm, CART, for the cart-pole problem (222,
153]. In the CART approach the state space is not pre-partitioned, but the results
depended on some domain knowledge and heuristics, and the output was a very
complicated numerical equation which did not generate any understanding or rules
[153]. The approach was also unreliable [222].

A third representation used for solving the cart-pole problem are neuron-like ap-
proaches. A single associative search element (ASE) and a single adaptive critic
element (ACE) were used by Barto et al. to solve the problem [17]. The approach
used the same state space partitioning as the BOXES algorithm. The critic element
is charged with predicting the outcome should the ASE change a particular action
for a particular box, and is then used as reinforcement for the ASE as it learns by
modifying its weights.

A number of evolutionary learning approaches have also been applied. A boxes-like
approach was implemented by coding the boxes as a binary string corresponding to
the action to be taken when the state space entered a particular box [167]. VarSek
et al. use a more complex system to solve the problem [222]. The state space is

80 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

partitioned into a boxes like array, each variable being divided into 3 different ranges,
giving 3* = 81 bits corresponding to actions for the given state. The partition points
for the chromosome were then also coded in binary and evolved. By assuming
symmetry, the number of bits needed can be halved and a controller for the cart
pole problem was evolved. The controller table was not comprehensible, and so a
rule induction system was used to derive a rule set from the induced control table.
The induced rule method was only supplied with action/box pairs for boxes which
had been entered during the evolution of the rule sets, and the system was set to
prune the rules drastically and to limit attribute comparisons to a single attribute-
value pair for each rule. The rulesets derived were now comprehensible, but no
longer reliable. The rule set was then optimised in a third stage by using a genetic
algorithm to tune the numerical values used in defining the partition points used in
the rule set. Again a binary genetic algorithm was used, this time with more bits to
represent a number to allow for better precision. This was then the final controller
for the cart pole system. The final controller was comprehensible and performed
better than any of the previous controllers.

Another evolutionary approach to the cart pole problem is to evolve a neural network
to balance the system. This has been done with a binary encoded weights array [236],
with an evolutionary programming algorithm [74] and with the Symbiotic, Artificial
Neuro-Evolution (SANE) method [97]. The resulting neural networks are able to
control the cart-pole system, but provide little information about how they are doing
SO.

Genetic programming has also been used to evolve equations which can balance the
cart pole system. Koza [139, pages 289-307] evolves a controller for the 3-state
problem excluding the position of the cart. Evolutionary programming has also
been applied to symbolic regression with the same function and terminal set and
achieved similar results [47].

4.1.3 Implementation

Although the cart-pole problem has been widely used, the typical statement of the
problem is not very difficult to solve. The most frequently used success criteria
is the survival time of the system. The number of iterations used to evaluate the
survival time has been limited to 10,000 iterations in many studies [159, 222, 153, 68],
representing just 3.3 minutes of simulated time?.

Value sets

The value sets that the evolved rule set = utilizes are a partitioning of the real valued
state space, s = (z,%,6,0). BEach of the four variables in the state space is divided

4The choice of 0.02s as the step size in the numerical integration appears to be universal.

4.1. BACKGROUND 81

Table 4.2. Initial state variable ranges. Shows the limits of the initial
position of the cart pole system used in trials.

Symbol Description Range
T The position of the cart on the track | [-0.5,0.5] m
0 The angle of the pole from vertical [—2, 2] degrees
z The position of the cart on the track | [-0.1,0.1] m/s
0 The angle of the pole from vertical [—1,1] degrees/s

into three partitions,

Low (—o0,p] (4.5)
Medium (p1, p2))
High (p;,00) (4.7)

where the real partition values are evolved as part of the object parameter *P. This
makes ¥ = 8 parameters in P associated with the evolution of the parameter set.

Action Parameters

Two different problems are addressed with respect to the set of allowable actions N.

Constant Actions The allowable action set is restricted to a 10 Newton force
applied to the left or the right of the cart. That is, X = {—10,10}. The
number of actions, A, is 2, with w; = —10 and wy = 10. Consequently there
are no evolved parameters associated with the consequence part of a rule, and
so ky = 0, k € {1,2}, and «’ = 0. Experiments using this set of allowable
actions have been used in the literature [159, 17, 167, 222, 153, 68].

Evolved Actions The allowable action set is restricted to a force in the range
[—15, 15] N to be applied to the cart. In this case N is the real interval [—15, 15].
The number of possible actions is restricted® to 2, A = 2. The number of
evolved parameters associated with each allowed action, x; is 1, k € {1,2},
and the total number of evolved parameters associated with the evolved actions
is k' = 2. This means that each rule can have one of two consequences, which
is to push the cart with one of the two evolved forces.

Initialisation of the system

When assessing the generality of the results it is usual to start the system from
a range of initial positions. The initial values used in this chapter are shown in

SExperiments with more allowable actions were conducted but are not reported here. Increasing
the number of allowable actions makes the problem easier to solve.

82 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

Table 4.2 and are equal to the widest values which occur in the literature. Some
care has to be taken when evaluating individuals from random initial conditions.
If each rule set in the population is evaluated from a different random initial state
then some offspring may be eliminated because they were randomly applied to a very
difficult initial state. Other offspring may survive only because they were started on
an easier initial state. Generalisation can suffer when there is insufficient sampling
of the initial positions. If a parent rule set can only control the system from a limited
number of states, for example, only when the cart pole system is left of the centre
of the track, and its offspring are tested from a single random initial state, then half
of the offspring will end up being tested from the area of the search space that the
parent has specialised in. If this area gives those offspring good fitness evaluations
then they will persist in the population and the solutions will not be general.

To solve these issues the results reported in the next section use the following strat-
egy to generate initial positions to evaluate solutions:

e The same initial conditions are used for all members of the population.

e Conditions are generated from the edges of the initial state variable regions
described in Table 4.2. This strategy was found to effectively evaluate the
success of controllers on any initial state generated within the initial limits.

e The controller is given the mean value of its performance over all initial con-
ditions it is applied to.

o After the controller is evaluated on a particular initial condition it is always
immediately after evaluated on the reflection of that condition. That is, if
the condition is for the cart to be furthest to the right, going left as fast as
possible with the pole to the right and moving right, then it is applied to the
same state with left and right reversed.

e No two initial states in a set of states used for evaluation are identical.

Typically the population is evaluated from 2 different random points on the edge of
the feasible region and their reflection. The fitness is assigned to the mean of the 4
evaluations.

Evaluation

A number of different feedback options are possible for the cart-pole system.

Time Only The least informative feedback is the survival time of the cart-pole
system. This assumes no aprior: knowledge about how to go about the prob-
lem. The main problem with using survival time alone is that the controller
is not punished for moving the system away from the middle of the track. It
is possible to generate controllers which do not take into account the position
of the cart but which nevertheless are able to control the system for the re-
quired periods of times. This occurs because the pole is the most important
state information for the system. The system cannot push the cart off the
end of the track without first unbalancing the pole from nearly every state.

4.1. BACKGROUND 83

So the system often learns to balance the pole whilst moving the cart as little
as possible without ever learning to keep the cart away from the ends of the
tracks. There is nothing wrong with such a control strategy, since it solves the
problem given to the system.

Time and Position The survival time reinforcement can be augmented by the
mean distance from the centre of the track to make a reinforcement signal
which punishes solutions which keep the cart away from the centre of the
track. This is done by using the normalised distance of the cart from the
centre of the track at each time step and the normalised survival time of the
cart pole system. The fitness can then be calculated as follows:

Sk
|i]
PosErr, = — k=1,...,N 4.8
RPN ws
PosErr = £ M (4.9)
N Sk
k=1
N
- 1 Sk
S = N 5 (4.10)
k=1
f = S(1 — PosErr) (4.11)

where PosErry is the sum of the normalised distance between the cart and the
center of the track at each time step, ; z is the position of the cart and ., is
the maximum allowed position of the cart from the centre of the track; PosErr
is the average normalised position error, averaged over the number of trials,
N and normalised by the survival time® S, of the trial k£ € {1,..., N}; Smax
is the maximum survival time; S is the mean normalised surv1val tlme and f
is the normalised fitness, which is to be maximized. '

Full System State The position of the pole can also be used in the fitness calcu-
lation by replacing Equations 4.8 and 4.9 with the following:

St

) 1 5 |z | 16

IT}; 9 - (.’L‘max + emax]-1) (4 1)
— EI‘I‘k

Err = N Z (4.13)

where Erry is the k-th trials normalised error, 6,,,, is the maximum allowed
angle of the pole, 6 is the angle from vertical of the pole and Err is the nor-
malised error. The other variables are identical to those described above, and
Equations 4.12 and 4.13 combined with Equations 4.10 and 4.11 allow the
fitness to be calculated.

8The number of simulated time periods that the cart pole system remained in a valid state.

84 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

Table 4.3. Table of statistics from Figure 4.8 and 4.4 showing the gener-
ation at which the system had balanced the cart and pole system

Fitness criterian. Evolve Action Quartile 1 Median Quartile 3

Complete state No 1 18 32
Position and time No 11 16 33
Time only No 10 16 32
Complete state Yes 11 22 39
Position and time Yes 12 17 36
Time only Yes 14 23 >39

4.2 Experimental Studies on the Cart-Pole Prob-
lem

Throughout this section a population of 100 rule sets are used to evolve controllers
that can balance the cart pole system for a minimum of 5.5 hours of simulated time’
from a set of random initial position with the parameters shown in Table 4.1.

4.2.1 Evolutionary performance

A set of 100 runs were conducted using each of the three fitness criteria discussed
in the previous section and using a choice of two constant action values, -10 N or
10 N. The reported survival time is the mean survival time of the cart pole system
when started from four different random initial conditions, as discussed on page 81.

The results shown in Figure 4.3 show the median survival time over the 100 runs of
the best rule set in the population at each generation. The shaded area indicates
the interquartile range of the best survival time. The results show that the choice
of fitness function does not greatly affect the performance of the SASME algorithm.
It also shows that a solution to the cart pole problem is most frequently evolved in
less than 40 generations.®

The experiment was repeated with the evolutionary method able to evolve the values
of the two applied control forces, as discussed on page 81. This makes the problem
somewhat more difficult since there are an extra two parameters to evolve. Figure 4.4
shows the median evolutionary performance of the algorithm on this problem after
100 runs were performed on each of the fitness criteria.

Table 4.3 summarizes the results of Figure 4.3 and 4.4 and shows the distribution
of the number of generations required to find a solution to the problem of balancing
the cart pole system for 5.5 hours.

71 000 000 time steps of the model integration.
8These runs were terminated at 40 generations. By this time nearly all runs had found a
controller which would balance the system for 5.5 hours.

4.2. EXPERIMENTAL STUDIES ON THE CART-POLE PROBLEM 85

Using complete state to calculate fiiness

Time Steps

0e+00 4e+05 B8e+05
i1

T T T
0 10 0 a0 40

Generation

Using only position and time to calculate fitness

Time Steps

20 a0 40

Generation

Using only time to calculate fitness

Time Steps

Generatlon

Figure 4.3. Results of evolving controllers for the cart pole problem. The graphs show the
median survival time of the best of generation over 100 runs. The shaded area indicates
the interquartile range of the best survival time at each generation. Time is measured
in 0.02 second increments, as used in the numerical integration. The three sets of runs
correspond to different fitness functions: Using the normalised mean square error of the
state of the complete system and the survival time, using only position and survival time
and using only the survivel time of the system.

Discussion of Evolutionary Performance

From Table 4.3 it is clear that the SASME algorithm is able to reliably find a controller
which can balance the cart pole system for 5.5 hours. Increasing the amount of
feedback from the system to the learner does not improve the learning time in this
case. There are two likely factors which cause this. The first is the rapid speed
that the algorithm is able to solve the problem. This means that there is not much
opportunity for improvement. The second is that the increased feedback is not likely
to be as useful as the literature suggests in this case. Evolutionary learning uses
the environmental feedback to update the model after the model has completed its
interaction with the environment. There is no attempt to update the model online.
Therefore, errors in the physical state of the cart pole system are averaged over all
time steps and become swamped by difference in the survival time when comparing
models. After the system is balanced the errors in the state can be reduced resulting
in a cart pole system which remains close to the center of the track with the poles

86 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

Using complete state to calculate fitness

R e [

Time Steps

R

Qe+00 40+05 Be+05

&
5

Generation

Using only posttion and time to calculate fitness

I]

Time Steps

-

0Oe+00 40+05 B8a+05

Generation

Using only time to calculate fitness

Time Steps

0o+00 49+05 86405
S A |

T
L] 10 20 30 40
Generation

Figure 4.4. Results of evolving controllers for the cart pole problem when the applied force
is subject to evolution. Graphs show the median performance of the algorithm over 100
runs with the shaded areas showing the interquartile range of that performance. Compare
with Figure 4.3 where the applied force is not evolved.

nearer to upright.

When the problem given to the system is extended to finding the numerical values of
the controller the system is still able to reliably find a controller which can balance
the cart and pole from a range of initial conditions for 5.5 hours. Table 4.3 shows
that the number of generations required to do so appears to increase by a small
amount. The requirement to search for solutions using an evolved force magnitude
increases the number of parameters which need to be evolved by two, increasing the
complexity of the problem. It also reduces the amount of symmetry supplied to the
learner, which usually discovers controllers which supply a different amount of force
to the left as to the right of the cart.

In summary it can be said that the evolutionary system is able to reliably evolve
controllers for the cart pole system for 5.5 hours of simulated time from a wide range
of initial conditions with only sparse success—failure time feedback.

4.2. EXPERIMENTAL STUDIES ON THE CART-POLE PROBLEM 87

4.2.2 Trajectory of the Evolution

Section 3.2, page 65, demonstrates that the partition points of the evolutionary
method converge to the artificial values used to generate the data set used in that
section. In the case of the cart-pole problem used here there are no correct values
of the partition points of the state variable attributes. Whether a partition point
works depends on the particular control strategy that is being used by the rest of
the rule set. The precision in the value of a partition point is also likely to be less
important for the cart-pole problem. A rule which pushes the cart back to the left
when it is further than 0.31m from the center of the track may work as well as a rule
which pushes the cart left when it is further than 0.32m. Other values may require
more precision because of the interaction between the evolved values and the rest
of the rule set. The structure of the evolved rule sets will be considered in the next
section.

A population of 100 rule set models is evolved for 40 generations using the survival
time and with evolved actions. The fitness at each generation and the behaviour
of the best model are shown in Figure 4.5. The evolved strategy is able to control
the system for 5.5 hours of simulated time as shown in the bottom two graphs of
Figure 4.5. The graph on the top right shows a combined close up view of the
bottom two graphs over the first 30 seconds of simulated time. The graph shows the
evolved control strategy oscillating the pole so that it is pointed towards the centre
of the track (the deflection is to the right when the cart is to the left of the centre
of the track).

The evolution of the partitioning of the state space occurs while the rule set is
evolving. Figure 4.6 shows the evolution of the state space partitioning for the
run used in Figure 4.5. Each point in the graphs represent the mean value of that
partition point in the population at that generation. The graphs to the left show
the mean stepsize of the corresponding partition value in the population at each
generation. The values evolve to optimise the particular discrete rule set that they
are co-evolving with. The step sizes reduce as the fitness of the child models become
better when they mutate their parent values less.

The application rate of discrete mutation operators on the rule set is shown in
Figure 4.7. The mutation rate graphs show that the relative and absolute values of
mutation during a run vary significantly in this run. Overall the rate decreases as
the run progresses, increasing the evolvability of the population as children closer in
structure to their parents have a higher fitness.

Discussion of Evolutionary Trajectories

The evolution of the values associated with the rule sets for the cart pole problem are
different to the evolutionary trajectories the values followed in the simple example
problem of section 3.2 on page 65. In the earlier problem the values of the attributes

88 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

Position of the cart and pole in the first 30 seconds

Degrees ---- Deflection of pole —— Position of cart Metres
wn

<+ - =
s . e

|
0.00

Position of cart and pole
0
]

-0.75

0 5 10 15 20 25 30
Seconds

Position of the cart Deflection of the pole

1.0
10
1

Metres
0.0

1l

Degrees
0

| I |

1.0
-10

Figure 4.5. Evolved action model graphs. The graphs show the survival time of the best
found model at each generation and the behaviour of the final best found model over the
first 30 seconds and over the entire 5.5 hours of simulated time.

converged to the values used to generate the learning examples. There are no such
corresponding values for the cart pole problem. A different run of the algorithm pro-
duces rule sets with different partition values. Different sets of partition values occur
because the best set of values will depend on the rule set which is used to generate
the control strategy. The self adaptive strategy shows some evidence of being able
to modify its mutation step size in response to the environmental circumstances in
which it finds itself. The step size does not monotonically decrease, which provides
evidence that the evolving parameters are searching within an increasing radius at
different stages in the search. This may occur when the discrete structure discovers
a new rule utilizing a value which can then be optimised or tuned.

Figure 4.7 shows that the mutation probabilities vary in a similar way to Figure 3.10
on page 67. Again, the rates of mutation applied to the discrete structure at each
generation vary in each run of the evolutionary algorithm according to the particular
trajectory that a particular run takes through the search space. Figure 3.10 shows
that in the last 3 generations the rate of application of the deletion operator acheived
its largest values. This is most likely a stochastic effect, since the rate® becomes
about 0.45, and a high rate will persist if enough high fitness individuals persist in

9Note that rate here refers to the probability of application of a particular mutation, not the
actual rate of application. The usage conforms with the algorithm description given in the previous
chapter.

4.2. EXPERIMENTAL STUDIES ON THE CART-POLE PROBLEM

89

metres per second melres

degrees

degrees per second

Newtans

Figure 4
represents

parent models at that generation for that partition value.

0.0 03
| I

-03

0.5

-05

2
I B |

-4

20
| .

-20 0

o 10

-15

Mean Partition Values

Mean value of the position varlable

5] =.° °
850,

o
o o
o
0070 500 ®g%, 008 @0 2

e ©
e e o @_00
000%,% ° ...308 H

@0
°

0% o
°

T T T T T
L] 10 20 30 40

Generalion

Mean value of the velocity variable

-]
00% 0 Og

Generation
Mean value of the pole deflection

09%

00000
0,0 ceg® 8ge0830°0 00000005000
0...9.039... 0°8500° e0egee
[]

T T T T T
1] 10 20 30 40

Generalion
Mean value of the angular velocity of the pole
ooonooogoooooonoao
° .o.. o o0 0-.0
L} L
° % o ® .

o
9000 o
oo 009%3
OG°=°°°]
® %ea”

T L] L} T
0 10 20 30 40

Generation

Mean value of the applied force

o, 005000°
oo 00006045000%0000000070000 0000
00 o
00gp0

8985508,500"°" ®e000a40,

| I

T T T T T
10 20 30 40

Generatlon

metres per second metres

degrees

degrees per second

Newlons

000 015 030

06

012 8 4 00 03

20

0

Mean position stepsize

=1 L]
L]
] 800,0,
" ® o8 o
280830 oo 000

J . o8 9933900°83°0200g, o 0°

3 L4 ®ge00000®

i T T T
0 10 20 30 40

Generalion
Mean velocity stepsize

- o

- %

- oBgpe0 * o®

7 8% 40 o®sse®,®

7] 9'0;.39.00035383300 d secq

i LL1d 0006000°0008

T T T T T
0 10 20 30 40

Generation
Mean pole deflection stepsize
®

- “ge

B.ais.. o

T 9.3.3:000

N ."i.ﬂao 1)

i 8%0%00000ap0000808
T T T T T
1] 10 20 30 40

Generation
Mean angular veloclty stepsize
e
= 0o,
0% °0°s o
- on B 022
@, eon - oQgepgo0

) s.“' Ds'l.ggﬂi.oiiz..‘ .,
T T T T T
0 10 20 30 40

Generalion
Mean applled force stepsize

Te

T eeg

- 04,000

] .°22°°°8°ooo°°°°°o°° o%0%%0

00, %0000 400,090

] .00'000...000.10.....
T T T T T
Q 10 20 30 40

Generalion

.6. Comparison of the evolution of the state variable partitions. FEach point

the mean values of that particular partition point in the population at that
generation. The step sizes are the mean values of the standard deviations used to mutate

the population with that rate. The expectation is that over half of these individuals
would not have experienced a deletion mutation. In this sense, the graphs show a
snapshot of a particular finite population undergoing evolution; however, the trend
remains for the rate of application of the mutation operators to decrease as the
evolution proceeds.

Figure 4.5 shows that the symbiotic evolution of the parameters shown in Figure 4.6
and Figure 4.7 is able to evolve an effective controller of the cart pole system. The
evolved model is able to control the system for 5.5 hours from a range of initial
conditions, one of which is shown in Figure 4.5.

90 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

Mean Operator Rates

Mean addnode rate Mean delnode rate

Rate

Rate
0,15 030 045
T A

w0
o
i Q. ©
(=]
o o
o
o T L] T I T
] 10 20 40 40
Generation Generallon
Mean action rate Mean modify rate
2 [L
O -1 o,
o
e o g u | 9
T 9 - @ o s 2 o °
o] o [id 3]
o o0
1n = @
= oo » UQ%DM o] hd I
R | T T T T T T T T T
o 10 20 30 a0 0 10 20 3o 40
Gonoration Generallon
Mean crossover rate
b+ o
[To I
o
- o,
2 5] < o %20
& 3] oo o
- ° %
8 .. o o o o
o ¥ T T Ll T
[10 20 30 40

Generalion

Figure 4.7. Probabilities of discrete mutations. The mean value of the application rate
of each mutation operator in the population at each generation is graphed.

4.2.3 The Evolved Rule Structure

The SASME method symbiotically evolves the rule set along with the parameter
vectors. Rule set models are chosen because they are transparent, which allows the
reasoning that the controller uses to make decisions to be ohserved.

The controllers which are evolved for the cart pole problem are usually succinct,
consisting of only a small number of rules. An example of an evolved rule set is
shown in Figure 4.8. Each rule used in the controller has an expected condition and
outcome. Rule 1 in Figure 4.8, for example, states that when the cart is moving
quickly to the left push it to the right. Rule 2 states that if the cart is near the center
or to the left of the track then it should be pushed to the right. Rule 3 corrects rule
2 by adding the exception that if the pole is leaning left then the cart should be
pushed to the left anyway (pushing to the left would have the effect of balancing the
pole). The pole falls quickly and so has the highest priority in the controller. The
numerical values which correspond to the linguistic'® labels are shown in the table
below the rule set in Figure 4.8. The percentages to the right of the rules are the
number of times that the rules antecedent is found to be true. Whether the rules
consequence is used depends on whether the rule has any exceptions which have
their antecedent found true.!!

19The linguistic labels are arbitrarily defined by the author. No attempt at objectively assigning
such labels has been made. For the SASME algorithm, the labels correspond to enumerated value
sets.

1The sum of the usage of the rules along the main spine does not always add to 100% due to
rounding errors in the reported percentages.

4.2. EXPERIMENTAL STUDIES ON THE CART-POLE PROBLEM 91

IF VELOCITY IS left
PUSH TO TH

right

Ir Not
IF POSITION IS not

right THEN PUSH

2|8 ; 62%
TO THE right

IF Not EXCEPTION

IF POLE 1S right
THEN PUSH TO THE

4 8% 3

IF POLE IS left
THEN PUSH TO THE | 32%

:;lgjzt left
£
IF POSITION IS
5 | right TuEN PpusH |18%

TO THE left
Description Value
Position of cart is not to the right z < 0.3m
Position of cart is to the right z > 0.2m
Pole is to the left 6 < 0.004rad (0.2°)
Pole is to the right 6 > 0.008rad (0.5°)
Velocity of cart is to the left & < —0.4m/s

Figure 4.8. An evolved rule set and associated parameters for the cart pole problem. The
values of the numerical labels in the rule set are shown in the table. Rules joined to the
right are tested if and only if the rule immediately to their left is true. Rules joined from
above are tested if and only if the rules above are not true. The percentages refers to the
percentage of cases that the rule is used in controlling the cart and pole for 5.5 hours from
a particular random initial position.

The table in Figure 4.8 shows that the two partition values evolved'? for the position
attribute are 0.3 m and 0.2 m. The first value set corresponds to a position of less
than 0.3 m from the center of the track, which has been labelled as not right in
this example. The second value set would correspond to a position on the track
between 0.2 m and 0.3 m, and is not used in the rule set. The third value set is for
a position further right than 0.2 m from the center of the track. Rule 5 uses this
value set, although because of its position in the rule set this rule will only be tested
for positions greater than 0.3 m.

The rule set shown in Figure 4.8 does not use the angular velocity, 6 nor does it use
all of the partition points for the velocity and position attributes.

Unlike some other studies [222], the evolved partition points are not assumed to be

12 A1l quoted values are rounded, the actual values produced and used in the simulation were of
double precision.

92 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

Position of the cart and pole in the first 30 seconds

Degrees ---- Deflection of pole —— Position of cart Metres
PR ol
g 5]
R
«©
T
8 o 4 - 8
— o
o
§ -

2 0
O ks ICF
[T T . T T 1
0 5 10 15 20 25 30
Seconds
Position of the cart Deflection of the pole

1
10

0.0

Metres
1 1
[
.’

Degrees
0

I O

1.0
-10

Figure 4.9. Solution generated by controller in Figure 4.8, showing the behaviour of the
controller applied to the system.

symmetric. Because of this the rule set in Figure 4.8 does not maintain the cart near
the centre of the track. The rule in Figure 4.8 was evolved with the survival time
only as the fitness function. This fitness evaluation places no bias on the solution
to maintain the cart-pole position near the centre of the track. Figure 4.9 shows
the position of the cart and pole in the first 30 seconds of a simulation trial from
a random initial state and over the 5.5 hours of simulated time using the controller
shown in Figure 4.8. The plots of position and deflection against time over the 5.5
hours at the bottom of the figure show that the carts position is centred around
0.25m, and not around Om.

Another rule set for the cart-pole problem is shown in Figure 4.10. This rule set
uses a conjunction as its root rule. Rule 2 will result in the cart being pushed in
a direction which would be expected to further unbalance the pole. However the
rule is only parsed when Rule 1 is false, which requires that the pole will be moving
quickly to the right (faster than 24°/s) even though it is currently left of upright.
Rules 4 and 5 state that when the pole is near upright the cart should be moved
to the left except when it is further right than 0.3m. This rule will have the affect
of moving the pole to the right of 0.3m and unbalancing the pole to the left of
upright. Presumably the preceding rules which deal with the unbalanced pole are
biased towards moving the cart to the left of the position where they are initially
used.

4.2. EXPERIMENTAL STUDIES ON THE CART-POLE PROBLEM 93

IF POLE IS left AND POLE VE-
LOCITY IS not right THEN

1 g 40%
PUSH TO THE left

Ir NoT

IF POLE IS left THEN PUSH

Ir NoT
i

IF POLE IS right THEN PUSH
g | TO THE right 26%

Ir NoT

IF POLE IS mear upright
4 | THEN PUSH TO THE right 21%
EXCEPTION
N
IF POSITION 1S not right
5 | THEN PUSH TO THE left 10%
Description Value
Position of cart is not to the right z < 0.3m
Pole is to the left 6 < —0.003rad (-0.2°)
Pole is near upright —.003rad (—0.2°) < 0 < 0.02rad (1.1°)
Pole is to the right ~ 6>0.02rad (1.1°)
Angular velocity of pole is not to the right 6 < 0.43 rad/s (24 °/s)

Figure 4.10. An evolved rule set for the cart pole problem. The values of the numerical
labels are shown in the table. The output of this rule set is shown in Figure 4.11

Figure 4.11 shows the long term trajectories of the cart and pole using this rule set.
The cart stays near 0.3m from the centre of the track. Again, the fitness evaluation
used considered only the survival time of the system. The behaviour of the system in
the first 30 seconds in Figure 4.9 and 4.11 are remarkably different, showing that the
evolved controllers for this problem utilize different strategies to control the system.

A more complicated case is where the algorithm has to also evolve the strength of
force to apply along with the rule set. The model which produced Figure 4.5 was
evolved with variable action strengths. The rule set which describes this controller
is shown in Figure 4.12.

Figure 4.12 also shows the evolved forces which the rule set uses. In the previous rule
sets the number of times a force to the right is applied is equal to the number of times
a force to the left is applied, since the two forces are equal and the system cannot
drift away from the centre of the track. In the case of different force magnitudes

94 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

Position of the cart and pole in the first 30 seconds

Degrees ---- Deflection of pole —— Position of cart Metres

@ - B P . 1 . T sa ad N &
2 o
B o« o
L]
T
8 o 8
u— (=
]
c
g ¥
7] [Te]
O : L~
I S 2 voir 3

I I I | | | |

0 5 10 15 20 25 30

Seconds
Position of the cart Deflection of the pole

q
10

Metres
0.0
It 1
°
°
@
®
Degrees
-10 0
O O |
®
°

1.0

Figure 4.11. Solution generated by controller in Figure 4.10, showing the behaviour of
the controller applied to the system.

applied in different directions the application rate of the two actions in the controller
shown in Figure 4.12 are within precision equal to the ratio of the applied forces,

Value of action 1 _ Rate of use of action 1 N

- ~ 1.25
Value of action 2 Rate of use of action 2

Discussion of Rule Set Models

The rule sets evolved by the system are a transparent control representation. By
looking at the resultant structures some insights into how the model is controlling
the system can be learnt. The models can be said to be comprehensible.

A different model is found with each new run of the evolutionary process. One reason
for this is the unconstrained nature of the problem. Nevertheless some commonalities
between models can be found. All of the models shown use the condition that when
the pole is left the cart pole system should be pushed to the left. The process
has evidently learnt some aspects of the pole balancing problem. Although these
things may seem trivial to an onlooker—if the pole is about to fall over to the left
it seems simple to learn that the cart must be pushed to the right to prevent this
happening—the evolutionary process must learn these simple things automatically
through trial and error, and then represent them so that they can be understood.

4.2. EXPERIMENTAL STUDIES ON THE CART-POLE PROBLEM 95

IF POLE IS near up-
right AND POLE VE-
1 24% | LociTY 1S not right
THEN USE action 1

IF Not EXCEPTION
7. X
IF POLE IS not right IF POSITION IS right
THEN USE action 1 THEN USE action 2
3 21% 2 11%
Ir NoT EXCEPTION
Z
IF VELOCITY IS right IF POLE VELOCITY IS
THEN USE action 1 not right THEN USE
511% 4 31% | action 2
Ir Not
[
IF VELOCITY IS left
THEN USE action 1
6 1%
Description Value
Position of cart is to the right z > 0.03m
Pole is not right 6 < 0.05rad (2.9°)
Pole is near upright —.01rad (—0.8°) < 6 < 0.05rad (2.9°)
Velocity is left &< —1m/s
Velocity is right z>—-1m/s
Angular velocity of pole is not to the right 6 < 0.29 rad/s (17 °/s)
Angular velocity of pole is to the right 6 > 0.29 rad/s (17 °/s)
Action 1 Apply a force to the right of 12.5N
Action 2 Apply a force to the left of 10.1N

Figure 4.12. An evolved rule set for the cart pole problem. The values of the numerical
labels are shown in the table below the ruleset. Rules to the right are tested iff the rule
immediately to their left is true. Rules below are tested when the rules above are not true.
The percentages refers to the percentage of cases that the rule is used in controlling the
cart and pole for 5.5 hours from a particular random initial position.

Balancing a pen upright on the palm of ones hand shows how quickly and intuitively
the rules behind the balancing problem are learnt by humans. The machine learning
has to discover for itself a symbolic representation of those human intuitions. In
addition, it must also discover a set of thresholds, or values, which can be linked to
the simple intuitions learnt to create a controller which can utilize a computer to
produce the necessary output to solve the problem.

96 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

4.3 Summary of Results for the Cart-Pole Prob-
lem

Learning to control the cart pole system from a range of initial conditions for a long
stretch of time can be achieved by the evolutionary system. Further, the rule sets
produced demonstrate that some form of learnt knowledge can be extracted from the
process. Unlike most other algorithms which have been employed for solving these
kinds of dynamic control problems, the SASME evolutionary approach automatically
finds the partition values of the discretisation of the state space, and does so while
simultaneously evolving the rule sets which control the system.

The results of Figure 4.3 and 4.4, summarized in Table 4.3, show that the learning
is robust to a number of different factors which modify the problem domain. At
first it seems surprising that the more informative fitness functions do not lead to
a reduction in the time required to learn a controller for the system. It appears
the information supplied by using the complete state to evaluate solutions, is effec-
tively swamped by the information contained in the length of time the system was
balanced. The different fitness evaluations lead to a qualitative difference in the
solutions, since solutions evolved with only survival time information are nat effec-
tively punished for maintaining the cart position away from the centre of the track
so long as it does not hit the ends. Learning to maintain the pole in a near upright
position is likely to occur regardless of the fitness evaluation since the velocity of
the pole due to gravity can be more easily controlled with an upright pole.

This is evident in Figure 4.13 which shows the distribution of the normalised val-
ues of the two state variables, z and 6, for the two runs, one with complete state
information, the other with only survival time information. The run using only the
survival time learns to keep the pole near upright, however the cart is maintained
at an arbitrary median distance from the centre of the track.

The rule set controller can only apply one of a discrete number of control forces.
This prevents the system from performing fine control actions which could put the
system in balance. It is also consistent with many real world control tasks.

Figures 4.3 and 4.4 also indicates that the evolution of the cart pole system can
proceed when the controller is also required to evolve the values of the applied
forces. This problem has more parameters than the original controller, but may in
fact not be more difficult, as the more degrees of freedom the controller has the
easier it may be to find a solution.

The cart pole problem is an interesting dynamic control situation. It is, however,
not difficult to solve. In the next section a much harder variant will be described
and solved.

4.4, THE TWO POLE PROBLEM o7

Normalised position of the cart and pole

Q
-)
O Position of cart
Deflection of pole
|
o
s

c '
K<l 5
"6 "
m 1
= '
-o L}
°
9 -
«©
§ o _
s o
[72]
Q
a
°
@
0
©
E
[=]
Zz

0 i :

o ' —_

1 ! g

E i

e

-

]

I T T |
Complete State Survival Time Only

Fitness criteria

Figure 4.13. A comparison of the cart position and pole deflection over the 5.5 hours of
simulated time for two runs, one using the complete state of the system, the other using
only the survival time of the system for fitness. The median position of the cart is away
from the centre of the track when the survival time alone is used for evaluation of the
solutions.

4.4 The Two Pole Problem

The one pole system has been used as a benchmark problem for over 30 years,
and many variations of the problem have been introduced to make the task more
difficult. All variants remain relatively easy to solve, however. This is in part due
to the system being able to be controlled by considering each of the state variables
independent of the others. In fact, the system can be effectively controlled by

98 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

Figure 4.14. The cart-two-pole system. The problem is similar in nature to the one-pole
problem shown in Figure 4.2. The second pole is able to move independently of the first,
and a failure state is attained when the cart moves beyond the ends of the track or when
either pole declination is greater than largest allowed.

applying a force equivalent to
F = Frax sgn(kiz + ko + ks + ky) (4.14)

where the constants k; depend on the choice of constants in the equations of mo-
tion," Equations 4.1-4.4, and F},,, is the maximal allowed force. If one knows the
form of Equation 4.14 then it is quite easy to evolve a controller which can solve the
single pole problem.

When a rule set is used as the controller the only rule conditions which need to
be considered to solve the system are single attribute comparisons. In particular,
there is no need to consider relationships between the attributes. In this section a
much more difficult and interesting variant of this form of control problem will be
considered.

4.4.1 Description of the Problem Domain

The two pole problem is shown diagrammatically in Figure 4.14. The problem is
the same as the one pole problem shown in Figure 4.2: to apply a force to the cart
which keeps the poles from falling too far from vertical and maintains the position
of the cart on the track.

The state of the cart-two-pole system is described completely by 6 variables. The
position and velocity of the cart and pole are denoted the same as for the one pole
problem described on page 77, except that the inclination of the poles from vertical
is denoted by 0; where ¢ € {1, 2} corresponds to pole one and pole two of the system.

The control force is again labelled u and is measured in Newtons. The equations of

13For the constants used in the previous examples the system can be controlled for at least 5.5
hours by setting k) = 2.22916, ky = —2.00793, ks = —11.0774, ks = —4.94273 in Equation 4.14.
This solution is not unique.

44. THE TWO POLE PROBLEM 99

Table 4.4. Constants used in Equations 4.15-4.18

Symbol Description Value
u The force applied to the cart [—15,15] N
z The position of the cart on the track [~2.4,2.4] m
0; The angle of pole i from vertical [—15,15] degrees
M The mass of the cart 1.0 kg
m; The mass of pole 1 (0.0,0.1] kg,

m; = li / 5 kg
g Acceleration due to gravity -9.8 m/s?
l; Half length of pole 4 (0.0,0.5] m,
l1 =0.5m
Le Coefficient of friction of the cart on the track | 0.0005
i Coefficient of friction of pole ¢’s hinge 0.000002

motion describing the cart-N-pole system are [236]:

u— pe sgn(d) + 3,

= 4.15
M + Zz]il m; ()
- 3 (. : 19i0;
0, = ——— ; 6, + =~ 4.
; m (:c cosb; + gsinf; + il) (4.16)
where F} is the effective force of the i-th pole on the cart,
~ 2, 3 ,upiéi .
F, = m;l;0; sin6; + Zmi cos 6; e + gsin6; (4.17)
and 77; is the effective mass of the i-th pole,
. 3 2
m; =m; | 1— 7 608 6; (4.18)

and the parameters used in Equations 4.15-4.18 are shown in Table 4.4. The system
is integrated numerically by using a fourth-order Runke Kutte method {39, page 112]
with a time step of 0.01 seconds.*

The multiple pole problem was introduced by Wieland in 1990 as a reinforcement
learning problem [236]. It has recently been used as a difficult benchmark problem
for several evolutionary neurocontrol studies [72, 228, 106, 96, 97, 98, 172]. The pre-
vious studies have compared different methods of evolving artificial neural networks
and can be divided into 4 different approaches:

1 Direct Evolution of artificial neural networks [236].
2 Evolutionary programming evolution of artificial neural networks [72].

14The decrease in the value of the time step reflects the increased precision required for this
problem and is consistent with practice in the literature eg. [236)].

100 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

Figure 4.15. The jointed pole problem consists of a single jointed pole. This problem is
more similar in nature and difficulty to the classic one-pole problem of Figure 4.2 then the
more difficult two-pole system of Figure 4.1/

3 Cellular encoding approaches to the evolution of artificial neural networks
[228, 106].
4 Symbiotic, adaptive neuro-evolution (SANE) algorithm [96, 97, 98, 172].

There are no references to traditional reinforcement learning methods being applied
to the two-pole problem, nor to other evolutionary methods.

Equations 4.15-4.18 look similar to the dynamics of the one-pole problem, Equa-
tions 4.1-4.4. The complication in the two-pole problem stems from the effects
of the relative lengths of the poles on the dynamics of the system. In particular,
Equation 4.16 shows that for a given cart acceleration, i, the angular acceleration
of a pole is greater the closer the pole is to vertical and is inversely proportional to
the length of the pole. This means that the shorter pole will accelerate faster than
the larger one. When the larger pole is tilted before it can be brought upright, the
smaller pole must be tilted to a larger angle. This requires the learning algorithm
to learn to take the system further away from equilibrium in order to maintain the
system in balance.

It is possible to derive the region of controllability for the two-pole problem [111,
236]. That is, the region of the state space within which the system can still be
brought to equilibrium by the application of some allowable force. The important
characteristic of this region is its response to changes in the relative lengths of the
poles. The system is not able to be controlled when the poles are of equal length
unless it starts with the two poles at an identical inclination.!> As the relative
lengths of the poles becomes closer the system’s region of controllability quickly
becomes narrower.

Another pole problem which is often used in the literature for machine learning is

15Tn which case the two poles will act identically in simulation and the system will be equivalent
to the one-pole problem. Experiments on real systems will obviously not be able to exploit such a
measure!

4.4. THE TWO POLE PROBLEM 101

Figure 4.16. A representation of the relation 61 < 02 by bozes. The light and medium
grey area shows the values which satisfy the relation. The medium and dark grey areas
show the consequences of under or respectively over estimation of the relation depending
on whether the corresponding boz is selected as belonging or not to the relation.

the “jointed pole” problem,' shown in Figure 4.15, [236, 72, 62, 196]. This problem
is also solvable only when the lengths, and therefore the natural frequencies, of the
pole before and after the joint are sufficiently different. However this problem is
much easier to solve than the two-pole problem because any control signal which
moves the poles closer to vertical is always the correct control signal to apply [236].
This allows a strong selection scheme which operates on a small number of good
controllers to quickly evolve a solution to the problem. Saravanan and Fogel were
able to solve this problem with a population of 100 neural networks in 10 generations,
whereas the two-pole problem required 800 generations to evolve a solution [72]. The
jointed pole problem will not be used in this thesis.

From the above observations it is clear that to successfully control the two-pole
problem it is necessary to be able to make decisions based on the relative angles of
the two poles. This means that a relationship between two of the state variables must
be discovered which can then be used to partition the state space into appropriate
control options. The rule conditions used in the one-pole problem will be insufficient
for this task, as they can only consider single attribute comparisons in dividing the

16The corresponding system of differential equations which describe this system are far less
succinct to write down, and are provided in Wieland [236].

102 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

9, 6,
JF A 17
«—|— 4—{;‘—»
/ |
J
< 0, <+ ;}\B #0,
v ’,f v
/
/
v Y .",

Figure 4.17. A relational decision boundary. In the first diagram the single attribute
comparison ¢y <V is shown as a projection on the 81-0 plane. In the second diagram the
simple relation 0y + tan(B) - 62 <V is shown.

control space.

It is conceivable to solve this problem with attribute-only learning by discretising
the state space into sufficiently small boxes. In this case, a relationship between
the angles could be approximated by a large number of single attribute comparison
rules, as illustrated by the box approximation of the relation #; < 6, in Figure 4.16.
The boxes can be aggregated to form rules, however they can only form a rough
approximation of the decision boundary which the relation describes. Even when the
boundaries of the boxes are not regular the accuracy of the method will be decided
by the number of boxes used to describe the decision boundary. The corresponding
rule set or decision tree would be unwieldy and difficult to comprehend and to
induce. It is also unlikely to be able to solve the problem as the domain is a very
sensitive control problem.

For this reason it is necessary for the controller to be able to represent a relationship
between some of the system attributes.

Representing Relationships

In addition to the state attributes, the rule set model is provided with the means of
being able to represent a relationship between) and 6,. Looking at the projection
of the state space on the 6,6,-plane the hypothesised relationship will allow for any
linear decision boundary on that projection. The gradient of the decision boundary
is explicitly used and evolved alongside the other parameters associated with the
rule set.

The learnt relationship is coded as the parameterised relation:
Relation(6,, 65, 8) = 6, + tan(3) - 0, (4.19)

where § is an evolved constant such that 8 € (—, 7). The difference between the
rule 6, < V and Relation(fy,6,,8) < V is shown graphically in Figure 4.17 for
some fixed V', 8. The straight arrows in Figure 4.17 shows the effects of changing

44. THE TWO POLE PROBLEM 103

the comparison constant V, and the curved arrows show the effects of changing the
relationship parameter 3. The parameterisation of the relation is to account for the
fact that the relationship between the angles is not known.

In addition to the 6 state variables two new relations are added. The second relation
is the reflection of the one described above with 6; and 6, exchanged and another
relation parameter, or angle, o added to the evolved parameter vector. The relation
is then treated identically to the other 6 state variables in the rule set. That is, for
a given observed state the relationship is evaluated and the value used in the same
way as the other state variables. The two relations add a total of 6 parameters to
the parameter vector, corresponding to the 2 partitions of the value sets'” which the
relations will be compared against, and the angle that parameterizes the relation in
(4.19).

Discussion of the Relational Representation

There are clear limits on the kinds of relationships the SASME algorithm can learn
for a given problem. Specifically, it learns those relationships the user specifies for
the current task. The algorithm does not create new relationships, nor does it build
relationships by composing one with the other. Such functionality may be able to
be incorporated, but the central theme of understanding the controllers which have
been discovered means that the current approach is better suited to the current task.

The relationship used by the SASME algorithm to solve this task highlights the utility
of using relational over propositional logic for such tasks. Relational representations
have a larger hypothesis space, and can represent more objects. These objects may
contain the solution to the problem at hand.

4.4.2 Task Descriptions

Two popular tasks from the literature are attempted with the relational rule set
described above. Both tasks were attempted by means of a sequential learning task
of increasing difficulty. The first involves balancing the system from an increasingly
large range of initial conditions, and the second involves learning to balance the two
pole system with poles of increasingly similar lengths.

Enlarging the Initial Positions

A number of initial condition strategies are pursued in the literature. The exper-
iment attempted here use a similar initialisation strategy to that used by Polani
and Miikkulainen [172, 173]. The cart-pole system is evaluated from 10 random

17Where the number of value sets for each allowed rule comparison is set to 3.

104 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

initial states and best of generation is tested from the edges of the initial region for
a number of time steps. In the experiments reported here this evolution proceeds
by starting with:

z € [-0.05,0.05] m
(61,6;) € [—0.05,0.05] rad

Once a solution is found which can balance the system for the required time the
intervals are increased by 0.05m and 0.05° respectively until the system is able to
balance the cart-pole problem from:

z € [-0.2,02] m
(91,02) € [—02,02] rad

for 100,000 time steps. This task is meant to establish that the controller can find
a solution to the two pole problem which is general enough to balance the system
from a random initial position in the allowed range.

Changing pole lengths

As noted earlier, the more similar the pole lengths the more difficult the problem
is to solve. The algorithm is required to balance the two-pole system initially with
pole lengths'® of 0.1 m and 1.0 m. The length of the second pole is then increased
by 5% and the system has to be balanced again. The increments continue until the
length of the short pole is just 10% less than that of the long pole - an extremely
sensitive control problem [236, 72].

A note on Incremental Evolution

The difficulty of the two pole problem has meant that all of the learning approaches
cited have used an incremental strategy for balancing the system with poles of near
equal length. The incremental approach requires the learning algorithm to solve a
series of increasingly difficult problems. Incremental evolution appears to be a good
way of tackling complex problems where it is possible. If the first task is denoted
t1, and the next ¢, and so on, then the evolutionary algorithm solves the sequence
of tasks:
L=ty — ...,

where 2, is the task which is of interest. For the initial condition problem mentioned
above, t; corresponds to the task of balancing the cart-pole system from a random
initial condition in the range:

z € [(¢-0.05),(:-0.05)] m
(01,8,) € [—i-0.05,i-0.05] rad

"®Note that Table 4.4 shows the values of the half-pole lengths which are the values used in
Equations 4.15-4.18.

4.4. THE TWO POLE PROBLEM 105

Generations to balance two-pole problem

3500
i

2500
1

Generations

1500
|

T T T 1
Increasing initialisation area Changing pole length

500
L

Experiment

Figure 4.18. Comparison of 10 different evolutionary results for solving the two-pole
problem from a large initial area and with poles of similar length.

where i € [1,2,...,4]. For the pole lengthening problem, the half-length of the
second pole in task 4 will be

lp = 0.05-(1+0.05) Y m
where ¢ € [1,2,...,47] and in task t47 the length is reduced to 0.45.

Self-adaptation of the evolutionary parameters should provide a natural way for the
evolutionary approach used here to adapt its search performance to the changing
nature of the problem being solved. The evaluation environment is simply changed
from t; to t; ;1 when task t; is solved, without any other modification to the algorithm.

Another algorithm used for evolving solutions to sequences of tasks is the §-Coding
extension of the GENITOR genetic algorithm [234, 157]. In this approach the
solution to a task is used as the template to form a new population which is then
charged with solving the next, incrementally more challenging task [96, 97, 98|.

4.4.3 Results

The number of generations to solve the two pole problem was significantly more than
that required for the easier one pole problem. A generation size of 100 rulesets was
evolved for this problem, with typical runs requiring up to 4,000 generations to solve
the problem. The evolved rulesets operated on 3 partitions of each of the continuous
state space variables, as was done in the previous section. The rule consequences
were limited to one of 4 real values, requiring 4 evolved parameters in the parameter
vector.

Figure 4.18 shows the number of generations required to solve the two incremental
problems described in the previous section. Each run had to balance the two-pole
system for 500,000 time steps, or almost 83 minutes of real time. The graphs are
constructed from 10 independent runs, and so are indicative of performance.

106 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

Incremental Evolution

Increasing pole length Increasing initialisation area

1e+05
L
1?515:;
1e+05
o | i

Log survival time

Log survival time
5e+03
5e+03

i

1e+02

L I
1e+02

L 1

T T T 1 I T T T 1
0 200 400 600 800 0 200 400 600 800

Generalion Generation

Figure 4.19. Incremental evolution produced by increasing the pole length und the initial-
isation area of the two-pole problem. The controller had to balance the system for 500,000
time steps, or 83 minutes, before the problem was made more difficult.

Inclination of the poles in the first second
—— Longpole - - Shor Pole

degree's

-2
!

-4
L

Seconds

Figure 4.20. Tracing the inclination of the first (long) and second (short) pole showing
the controller performing the maneuvre of making the state space worse by swinging the
second pole out past the first so that it can bring the system back in balance.

A typical run of the incremental evolutionary tasks is shown in Figure 4.19 for each
of the two problems. The graph shows that the evolutionary system is able to learn
the initial easier task and use this as a springboard to learn to control the next more
difficult task.

As was mentioned earlier, the controller has to learn to take the system away from
equilibrium in order to maintain control of the system. When the initial conditions
have the longer pole further from equilibrium than the shorter pole, the system has
to learn to swing the shorter pole out to a greater inclination than the longer pole
before starting to move the longer pole back towards upright. Figure 4.20 shows the
rule set moving the shorter second pole off balance further than the longer and slower
first pole before moving them both back towards equilibrium in the first second of
the simulation.

4.4. THE TWO POLE PROBLEM 107

Rule sets

Rule sets for the two pole problem are more complex then those evolved for the one
pole problem. However, the rule sets are still able to convey information about how
they are controlling the cart pole system.

The rule in Figure 4.21 is able to control the cart two-pole system for 500,000 time
steps with a small pole length 10% that of the longer pole. The figure displays the
symbolic value sets and action consequences on the rule nodes. The percentages to
the right of the rule nodes are the percent of times the rule is triggered in balancing
the system for 120,000 time steps. Rules to the left, or rules with only one parent,
are if-not rules. Rules connected to the bottom right of a node are exception rules.

Rule 1 uses the evolutionarily tuned relationship defined in Equation 4.19. The
angle of the evolved decision boundary is —61°, corresponding to a gradient of —1.8
in the projection of the state space on the 6;62-plane. The value set for the relation
essentially defines the rule to be true when it is greater than 0. The consequence
of the rule is to push the cart strongly to the right, which has the effect of leaning
the poles to the left. All of the other rules in the rule set push the cart to the left
with varying forces, having the effect of moving the pole to the right. When the
long pole () is right of upright rule 1 will move the system to the right until the
short pole is 1.8 times as far to the left of vertical as the large pole is to the right.
Only then will the short pole be brought back to equilibrium (unless Rule 2 becomes
activated, which happens more often than not, when the system will be moved back
into equilibrium in response to the short pole excessive velocity to the left). When
the long is left of upright the other rules in the rule set will continue to move the
system right until the small pole is 1.8 times as far to the right as the long pole is
to the left. Then rule 1 will apply and move the short pole back into equilibrium.

4.4.4 A non-Markovian Variant of the Two-Pole Problem

A non-Markovian extension to the two pole problem was introduced and solved by
Gruau et al. in 1995 by a cellular encoded neural network [106], and later by the
SANE method of evolutionary neuro-control [98, 172]. The non-Markovian extension
involves solving the problem with no velocity information.

Removing velocity information adds a hidden state to the problem, which the con-
troller must be able to compute in order to control the system. The resulting system
is no longer Markovian, since a correctly computed control force for a given state
position will depend on velocity information which will in turn depend on the con-
trollers previous actions. The state presented to the controller no longer contains
sufficient information to solve the problem. The neural network approaches solve
this problem by evolving a recurrent neural network. The recurrent links make it
possible for the network to calculate the velocity in some form internally.

108 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

0 + 1.86;
1| (-0.01153, 00) 28%
14.5
el BN
6, 6,
3| e (—o00,-0.5325) THEN | 9% 2| e (—00,-0.5325) THEN |33%
-11.1 -3.98
I
2
4 | (—00,0.1666) 20%
-5.36
I
z (—o0,—0.0479)
5 |6, (0.167,0.359) 5%
-3.98
|
& (—00,0.3774)
6 -11.1 5%

Figure 4.21. A rule set for balancing the two-pole problem.

A Recurrent Rule Set Model

The rule set approaches presented previously have only been able to make control
decisions based on the current state of the system. The rule set model with relations
can be further extended to allow for decisions based on previous actions. This is
easily possible in the SASME framework by adding some new parameters which allow
the controller to have a memory of previous actions.

To address the problem of controlling the system without velocity information a new
state variable is introduced. The new state variable is the discounted sum of the
controllers past actions. The discount rate is evolved. The new state is equal to:

N

Z 7' Output, (4.20)

t=0

where Output, is the rule sets output at step ¢, N is the horizon and y € (0,1) is the
evolved discount rate. A number of different possibilities are available for setting N.
Setting NV <— oo corresponds to the discounted model output since the trial began.
Setting N to some finite number corresponds to considering the discounted sum of
previous actions up until some finite horizon of past actions. The evolved discount

4.4. THE TWO POLE PROBLEM 109

Table 4.5. Comparison of enforced sub-
population (ESP) SANE and cellular en-
coding on the two-pole problem with veloci-

ties [98]
Method | Evaluations Population Size
CE 840,000 16,384
ESP 169,466 1,000

rate y can be interpreted as the discount rate, as an interest rate,'® as a probability
of something relevant happening in the past or as a mathematical trick to bound an
infinite sum in the case of all previous actions being considered.?

Three new state variables were added to the model to replace the three velocity
variables. This was not done to try and model the three velocity variables, rather
to maintain a constant number of state variables in the model. Three arbitrary
different values of N were chosen, N = oo, N = 50, and N = 10. The three new
state variables added three new parameters to model, v;, 7 € {1, 2,3}, all of whose
values were kept positive and less than one, ; € (0,1).

The non-Markovian variant of the two-pole problem is the hardest problem dealt
with in this thesis. Gruau et al. used a population of 16,384 cellular encoded neural
networks distributed across 64 processors on a super computer to solve the problem
only once in 51 generations for 100,000 time steps. More recently a variant of the
SANE approach to neuro-control has reduced the number of function evaluations
by a factor of 5 [98], although generalisation suffered. Table 4.5 summarizes the
function evaluations of the two methods.

Gruau et al. show that it is possible for the controller to control the system for
100,000 time steps without needing to calculate the velocities. It can do this be-
cause the system can be controlled by oscillating the poles backwards and forwards
for 100,000 time steps. For the neural network study, Gruau et al. devise a lengthy
fitness evaluation method which biases the networks towards producing controllers
which move the system back to the centre of the track with the poles in an upright
position. One reason they can do this is that the neural networks produce a continu-
ous output which is capable of moving and keeping the system in a stable state. The
rule sets used in this chapter are producing a piecewise constant controller which
has only a small number of levels of force with which it can try and control the
system. This prevents the controller from maintaining an equilibrium position since
it must always apply a non-zero force to the cart and poles.

The principal difference between the continuous and discrete output controllers is
the shape of the resulting control functions over time. In some domains the control

9Literally. The closer «y is to 1 the more 4nteresting the model finds historical actions at any
particular time frame in the past!

29Gimilar to how traditional reinforcement learning interprets the discount of future rewards in
an infinite-horizon model [130].

110 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

Table 4.6. Summary of results for evolving rule sets for the two-pole
problem without velocity information for 120,000 time steps.

Generations Evaluations of
Min Quartile 1 Median Quartile 3 Max median
4902 8343 11724 13678 30162 1,172,400

space must be discrete, which is the case for the problem which the SASME algorithm
solves in this section. For other problems there may be no discrete controller output
which will suitably control the system; this may be the case in a problem involving
following some signal such as an audio signal. If the audio output is constrained
to too few discrete values then the output may be very poor. For the cart-pole
problem, the SASME algorithm is able to solve the problem with the extra constraint
that it uses only a set number of discrete values for the controller output. It is the
problem domain, and the problem statement, that determines whether a continuous
or discrete controller is appropriate.

A number of different experiments were run to see if the rule sets could be evolved
to balance this problem. All experiments were computationally expensive on the
available hardware.

4.4.5 Results for the non-Markovian Two-Pole Problem

Due to the computational expense of running algorithms to solve this problem only
a small number of runs are reported here. An evaluation of the performance of the
algorithm in terms of efficiency, or generations required to find a solution, can not
be performed. The significant point to be made in this section is that the SASME
algorithm can evolve a rule set model to solve this difficult non-Markovian problem
which previously has only been solved by neuro-control approaches.

Table 4.6 summarizes the results for 10 independent runs of the evolutionary system.
All runs were executed from a single initial position and had to balance the cart-
pole system for 120,000 time steps, or 20 minutes of simulated time, in common with
previous studies [172, 173]. All runs were executed until they had found a solution.

Compared to the neuro-control methods the algorithm appears to have a higher
computational requirement. Some things to note about the computational require-
ments:

1 The number of evaluations does not represent the computational time taken
by the algorithm. This is because the computational time required depends
on how long the cart-pole system remains valid in an evaluation. Figure 4.22
shows the survival time at each generation of the best in solution for one of
the 10 runs. Note that the corresponding earlier figure (4.19) had the log of
the survival time graphed. The algorithm seems to take many generations to
tune the parameters into an appropriate range. This may also be the case for

4.4. THE TWO POLE PROBLEM 111

Survival time vs generation

0 2000 4000 6000 8000 10000 12000

Mormalised Survival Time
00 04 03

Gene ration

Figure 4.22. This graph shows the normalised survival time of the best of generation
solution during the evolution of a solution for the two-pole problem without velocity infor-
mation

neuro-control, and should be accounted for when comparing learning efficiency.

2 The above point raises another issue. The parameters used in the algorithm
were not optimised to any great extent. In particular, the setting of the initial
ranges of the evolvable parameters such as the value sets used in antecedent
containing the discount rate were arbitrarily set to 1000, as this was thought
to be much higher than required. The reason for the initial setting was to test
whether the evolutionary procedure could learn to evolve a suitable discount
rate for use in rules. The likely values that this rate might take were not
known, and in fact depend on the evolved forces applied and the discount rate
evolved. A large value maintains the generality of the algorithm.

3 Other specifically evolutionary parameters were not adjusted. In particular,
if the execution time is dependent on the algorithm moving parameters into
optimal ranges then the number of evaluations may benefit from an increase
in the population size.

To establish whether the algorithm was learning to control the system effectively
a longer run of 240,000 time steps, or 40 minutes, was conducted and a summary
of the state space of the cart-pole system using the evolved controller is shown in
Figure 4.23. The figure shows the range of the state variables over 50 second intervals
for the 2,400 seconds of simulated time that the rule set controlled the system for.
It appears that the controller has effectively learnt to compute and use the velocity
information to control the cart-pole system. The behaviour of the velocity variables
in Figure 4.23 appears to be under control and not oscillating. A later run was
successfully evolved to balance the system for 500,000 time steps, or over an hour
of simulated time, in just over 5,000 generations.

Evolved Rule sets

Figure 4.24 shows a rule set for controlling the non-Markov version of the cart pole
problem. The evolved rule set uses the discounted sum of the previous outputs of

112 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

Summary of state variables

Cart Position Cart Veloclty
v

melres
metras per second
5 05
| I —]

T
o 480 960 1440 1820 2400

seconds saconds
Angle1 Veloclty

radians

-0.10 0.00 0.10
radians per sacond
04 02 0B

v
' T

T 1

[. 1,00
byt . '
i 0
LT i
N T

T

T T T T T
o 480 9260 1440 1920 2400

seconds seconds

Angle2 Deflection Angle1 Velocity

L L
% LRI | E s 1} vearna,he
j T Ii L p P I LA LT P

i

CHEpEELE :
[} Ll 1 1 1

aadd it bty

radians

B T T T T Lo T e I
T T T T 1 T T T d
1] 480 9560 1440 2400 o 480 960 1440 1520 2400

radians per second

seconds saconds

Figure 4.23. Analysis of the controlled cart two-pole system. The state space summary
shows no evidence of undamped oscillations which would arise from the controller not
computing the velocities.

the rule set as a surrogate for the velocity information which is no longer available
to the rule sets. Rules 1 and 3 use the discounted sum of the previous 10 actions
to decide on future actions. The discount rate used by the controller is 0.57. Rule
1 has the effect of moving the cart-pole system to the left when the discounted
sum of previous actions is to the left. However, this rule must be true before the
exception rule, Rule 2, is tested. Rule 2 says that when the large polc is less than
-0.6 times the inclination of the small pole the system should be moved to the right.
The combined effect of the rules is to move the system to the right whenever the
discounted sum of previous actions is left and when the large pole is not at a greater
inclination to the left than the small pole. This combination is used 37% of the
time. When the system has become very over-balanced then rule 1 will move the
system to the left regardless of the sum of previous actions.

The discounted sum of previous actions is being used by the rule set as a surrogate
for velocity information. The evolutionary system has evolved a recurrent rule set.

4.5 Discussion and conclusions

The cart-pole problems are an example of dynamic control problems where the
controller must learn to control a number of state variables with only a single input
and with sparse feedback. The single pole problem is a well known test problem
which has been used extensively to demonstrate a wide variety of automated learning
techniques.

4.5. DISCUSSION AND CONCLUSIONS 113

y=057, N=10
1| (—00,0.01109) 6%

-5.59
7 X
¥ = 0.57, N =10 61+ 0.6 05
3 | ((—39.62,00) 20% 2| (—00,0.006329) 37%
2.16 11.5
AN
61 +0.6 6,
4| (—0.003645, o) 10%
-12.8
AN
61
5 | (—0.0551, —0.0161)| 0.88%
-5.59
. ~
z 62
8 | (—00,0.2375) 27% 6| (—00,-0.05347) | 0.12%
-11.5 -11.5
AN
6, +0.6 65
7 | (—00,0.006329) 0.006%
2.16

Figure 4.24. A rule set for balancing the two-pole problem with no velocity information.

The sASME framework evolves rule sets which operate and produce symbols to con-
trol this system. The symbiotic evolution of the parameters give meaning to the
symbols used in the rule set. This allows the efficient self-adaptive ES parameter
optimisation procedure to optimise parameter values while the self-adaptive dis-
crete mutations build the rule set model. The resulting system produces discrete
rule models which can be understood entirely in terms of the symbols they operate
on. These structures can be examined for the knowledge they contain. The model
which is learnt is not a black box.

The two-pole problem is a much more difficult variant of the single pole case, which
can be made even more difficult by excluding velocity information. To solve the
two-pole problem the discrete model structure has to be extended to consider simple
relationships between the inclinations of the two poles. A relationship with a single
parameter is added to the allowed predicates of the rule system and the evolutionary
process evolves rule sets which utilize this relationship to solve the two-pole problem
under a variety of conditions.

114 CHAPTER 4. UNSUPERVISED LEARNING OF DYNAMIC CONTROL SYSTEMS

When the problem is made incrementally harder by lengthening the short pole or ex-
tending the range of initial conditions the self-adaptive evolutionary process is able
to adapt the existing solutions to solve the more difficult problems. Self-adaptation
has been shown to effectively be able to raise and lower the self-adapted muta-
tion rate [14], and this ability is exploited in the so-called incremental evolutionary
problems posed.

To the authors knowledge, no-one has produced a controller which was not a neural
network to control any variant of the two-pole problem.

The value of non-neural network controllers lies in their explicit structure. A con-
troller which controls a system using a representation which is chosen to convey
information on some facet of the problem can be instructive and has the potential
to provide new knowledge about the problem domain. An explicit control structure
can be understood in part, and so the behaviour of the controller can be understood
to some extent.

The two-pole problem without velocity information represents a very challenging
problem for this system. The neural network controllers use recurrent links to enable
the non-Markovian variant to be controlled. The discounted sum of previous actions
is equivalent to a recurrent link in a network. The recurrent rule set methodology
which results from this addition is able to solve the non-Markovian problem. To do
this, it learns to use the recurrent information as a proxy for the velocity information
which is no longer available for the problem.

Chapter 5

Evolutionary Learning II:
Elucidation of Ecosystem
Processes

Everything should be made as simple as possible, but not simpler.

Albert Einstein

Evolutionary methods have recently been applied to a range of supervised knowledge
acquisition tasks [129, 93, 67, 64, 109, 110, 171, 154, 224, 166, 65]. Freitas provides
a survey of data mining with evolutionary methods [86], and Kovacs et al. provide
an extensive (478 papers) bibliography of classifier system papers {137]. There are
several reasons for using an evolutionary approach for data-mining:

1 Traditional deterministic rule induction methods, such as ID3 [181], search for
decision trees with essentially a greedy hill climbing algorithm guided locally by
information theoretic measures [64, 166, 65, 86]. Evolutionary rule induction
systems take a global view of the rule-set generation problem.

2 There is little flexibility in the traditional rule induction systems, and obtaining
different rules with nearby accuracy is difficult [64]. Evolutionary approaches
often provide a different hypothesis on each run from the same data, which is
natural for many learning problems where there is redundancy and interactions
between variables.

3 The representation that the evolutionary search uses is easily modified to suit
either domain knowledge or questions about the data. The fitness function
is one mechanism whereby evolutionary search can be easily directed towards
finding more interesting results to many problems.

There are probably two main reasons to perform an inductive learning task. The first
is to correctly classify new situations. If an inductive system is applied to learning
stock market information, the principal motivation is likely to be to use the system
to correctly forecast future market movements. The other main reason is elucidation.
When inductive learning tasks are applied to epidemiological data the most common
purpose is to understand what is causing the phenomena the data is measured from.

115

116 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

Naturally, the two are not mutually exclusive. In particular, a blackbox model which
successfully provides predictions of future stockmarket performance is unlikely to be
trusted when it goes against our expectations. The system will be more trusted if
the basis of its predictions are better understood.

This is one of the motivations for using a rule set as the representation for knowl-
edge. IF-THEN rules are a high-level, symbolic knowledge representation which aids
knowledge discovery [65].

This chapter addresses the issue of whether the SASME model can learn compre-
hensible rules in noisy real world data. The ecological data used in this chapter is
typical of many real world domains! where measured data is inaccurate, incomplete,
noisy, contains many interactions, and contains unevenly distributed outcome vari-
ables which require obscure relationships to characterize correctly. Another domain
where this is important and where genetic learning has been applied is in discovering
rules in clinical research databases [123].

It is widely stated that by performing a global search, evolutionary methods are more
effective learners of rule based models than the usual greedy local search methods [64,
166, 65, 86]. The veracity of this statement is determined by empirical comparisons.
This chapter does not undertake to perform an exhaustive comparison between the
SASME induced rules and induced rules from other algorithms. However, a case
study with CART will be performed to establish that the system is a competitive
inductive learning algorithm.

One issue which will not be addressed by this work is that of selecting appropriate
error measures for ecological time series models. There is much to criticize in the
usual Root Mean Square Error (RMSE) measurement, principally its unit-specific
nature [8]. Alternative unit-free measures exist which perform essentially the same
task as the RMSE, [8]. However, these measures are appropriate for the reliable
comparison of a method which is applied to several different time series, their utility
is low for the application considered here where the comparisons are always with
the same time series. Of more interest to ecological studies are measures which
allow some distance between actual and predicted components of two series to be
more fairly evaluated. Such measures would solve the problem of a model predicting
a high point in the time series one time step early being unduly punished by the
RMSE measurement. The literature on time series comparisons measures is vast,
and includes some practicable algorithms for performing comparisons such as those
described, [34]. However, all other studies on the datasets considered in this chapter
have used the RMSE error measurement, [230, 238]. In Section 5.1.4 a modified
version of the RMSE measure is used, demonstrating that other error measures are
easily incorporated in the evolution of a SASME model.

The next section describes the data mining task used in this chapter and the prob-
lems associated with it. Two distinct problems are then addressed: the prediction
of chlorophyll-a concentration and the prediction of the dominant algal species.

!Such as those found in the UCT data repository, [26).

5.1. MINING DATA FROM AN AQUATIC ECOSYSTEM 117

Table 5.1. A short glossary of some ecological terms used in this chapter [223]

Term

Definition

Algae

Blue-green algae

Chlorophyll-a

Colonial

Eutrophic

Filamentous

Microcystis spp
Oscillatoria spp
Phormidium spp
Stratification
Succession

Prokaryotic and eukaryotic photosynthetic organisms with
chlorophyll-a and other photosynthetic pigments releasing Os.
Plant body unicellular, colonial, filamentous, siphoneous or
parenchymatous, never with roots, stems or leaves. Not a natural
group, but the word is useful in many contexts.

Cyanophyceae, Cyanobacteria. Prokaryotic organisms with
chlorophyll-a and phycobilins. Unicellular, colonial, or filamentous.
Occur in fresh- and salt-water, in soils and as nitrogen-fixing sym-
bionts. Often of interest in man-made aquatic environments due to
toxins produced by some species, eg. Microcystis spp in Myponga
reservoir, South Australia.

Green pigment involved in photosynthesis. Chlorophyll-a is the pri-
mary photosynthetic pigment in all those organisms that release
oxygen ie. all plants and all algae including the blue-green algae.
The vegetative form of many species of algae in which the sister
cells are connected in a group to function as a unit.

State of a nutrient rich lake in which the hypolimnion (cold, lower
layer) becomes depleted of oxygen during the summer by the decay
of organic matter falling from the epilimnion (warm, upper layer). A
eutrophic lake is usually shallow, with much primary productivity.
Generally a chain (unbranched or branched) of cells joined end on
end.

Colonial species of blue-green algae.

Filamentous species of blue-green algae.

Filamentous species of blue-green algae.

Thermal layering of lake water bodies

The sequence of communities which replace one another in a given
area, until a relatively stable community (ie the climax) is reached,
which is in equilibrium with local conditions.

5.1 Mining Data from an Aquatic Ecosystem

Table 5.1 is a short glossary of aquatic ecology terminology used in this chapter.

The structure of the problem considered in the previous chapter was such that the
model had to interact with the environment in order to receive the next input vector,
Figure 4.1, page 76. The model’s output affected the trajectory of the system. In
the current chapter, the problem being considered is a supervised learning problem
where there is no interaction between the model and its environment, as shown in
Figure 5.1. In this case the next input will not be different regardless of the models

output.

This problem is often referred to as data mining [86]. The goal is to discover regu-
larities or patterns in the information supplied to the model.

118 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

Observations
Y
Model Environment
Predicted U
Measurement :
Lyl Evaluation fgdMeasurement

Figure 5.1. A block diagram showing some of the components involved in supervised
learning tasks.

Research in modelling ecosystem dynamics can be divided into deductive and induc-
tive approaches.

Deductive approaches use traditional mathematical techniques, like ordinary differ-
ential equations, and a detailed understanding of ccosystem processes to produce a
model capable of simulating future ecosystem behaviour. Examples of determinis-
tic aquatic ecosystem models which address lake eutrophication modelling include
AQUAMOD, MSCLEANER, SALMO and SALMOSED [187, 186, 192]. The accu-
racy of such models depends upon the correctness and completeness of the descrip-
tion of ecosystem processes upon which they are based. The first three models men-
tioned model the nutrient cycles and food web interactions of algae and zooplankton
in lakes in order to predict algal and zooplankton abundance. SALMOSED, by com-
parison, extends the nutrient cycles to the sediment allowing it to simulate impacts
of external and internal nutrient loadings to algal and zooplankton abundance. De-
ductive models have significant shortcomings when the knowledge upon which the
model is based is incomplete or incorrect, as comparisons of SALMOSED and the
other models demonstrate [192].

Another issue with deductive models is the problems associated with data availabil-
ity, accuracy and completeness. It is well known from normal ordinary differential
equations that modifying initial conditions or parameters a small amount can some-
times result in completely different dynamic behaviour (eg. [39, page 435]). It has
been suggested that deductive modelling of eutrophication in aquatic ecosystems is
best suited to long term, strategic analysis of lakes [225]. By contrast, inductive
modelling appears more appropriate for short term predictions.

Machine learning based inductive methods, including SASME and ANNs, do not
require information about the ecological processes being modelled. Instead, they
require data which is exemplary of those processes. From the data, patterns and re-
lationships are learnt and used to make future predictions about the ecosystem [156].
Assumptions about the distribution of input and output attributes are not usually
made. Where there are insufficient data available from an ecosystem, methods based

5.1. MINING DATA FROM AN AQUATIC ECOSYSTEM 119

on machine learning may fail.

There are growing databases of ecological information from a wide variety of sources
which cover a staggering range of natural phenomena. Freshwater aquatic ecosystem
data are being collected around the world as the importance of monitoring and being
able to better understand the changes that occur in freshwater systems like lakes
and rivers becomes more apparent. The freshwater data used in this study were
obtained from Lake Kasumigaura in Japan.

5.1.1 Model Validation and Representation

Inductive models learn by generalising the knowledge they acquire about the ecosys-
tem from the information they are shown. The model that is induced from the avail-
able data learns to associate environmental states that have equivalent consequences
but which appear differently. The complexity of the raw data is aggregated by the
model. A good model is a compressed form of the data. The compression is not
lossless, however.

There are many ways that knowledge can be represented in an induced model, in-
cluding neural networks, rule sets, fuzzy sets, learnt equations and regression trees.
Most learning applications in ecology have concentrated on acquiring accurate mod-
els of the systems as determined by independent test data. However, a predictive
model should provide not only accurate classification but also insight and under-
standing into the predictive structure of the data [40].

Model accuracy usually means how well the model represents the real world. Whilst
this is frequently measured by the predictive accuracy of the model according to
some criteria, an accurate model should also make those predictions according to
the way the world really interacts. This is assessed through the models performance.
A model which accurately predicts the outcome in every situation must have learnt
something about the way the world works. The knowledge can also be represented
by the model explicitly.

This chapter considers how ecosystem data can be used to induce models which are
both predictive and descriptive.

Evaluating models solely on their predictive error ignores any information the model
can provide about the relationships it has learnt and how they relate to the causal
explanations of ecosystem behaviour. For example, the application of machine learn-
ing methods such as neural networks for ecosystem prediction has focussed on min-
imising the root mean square error of predictions rather than understanding the
underlying processes by which the model decides its predictions. This chapter tries
to balance both issues by using the evolutionary rule induction method to provide
accurate predictive models which have some descriptive power.

Representing knowledge in a transparent manner is of great importance to inductive

120 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

modeling. An inductively gained model is a hypothesis derived from the data, and
certainly not a proven law for underlying mechanisms. The quality of the inductively
gained model can be assessed from the performance on testing. However, in a
complex system like an ecosystem it is practically impossible to assure that the
testing data are representative. This is due to the infinite number of interactions
between variables which may determine the problem, yet are unknown, and the
noise and reliability of the data. A model derived from measured data can only
generalize to the extent that the data provided accurately represent the universe of
possible measurements. So while testing is important, examining the explicit learnt
knowledge contained in an inductive model can provide better insight into how
accurate the model’s representation of that ecosystem is. Improved understanding
of inductive ecosystem models may also increase our confidence in the model outputs
and gradually turn it into a “grey box”.

Evolutionary methods are general optimisation methods which can be applied to
a range of representations which are of interest for knowledge discovery. Previous
work has used genetic programming to evolve equations relating input and output
data for aquatic ecosystems [189, 230], and neural networks. Neural networks learn
an equation relating input and output, but the equation is contained in the weights
of the networks and cannot, easily be examined. The genetic programming induced
equations are an example of explicit knowledge representation. The prototypes for
the equations can be modified to search for equations of a particular form, and so
knowledge of interest can be discovered. The explicit symbolic rule sets evolved by
the SASME algorithm introduced in this thesis are another example of an explicit
knowledge representation. The type of knowledge representation which is most
appropriate to a given problem will depend on the problem and how the information
in that problem is best understood. A variety of different representations would
appear to be a sound strategy with no a-priori bias.

A number of non evolutionary methods are also regularly applied to ecosystem
data, including methods for the production of equations and neural networks [237],
rules and more traditional statistical models. Breman’s classification and regression
tree (CART) method produces decision trees on a continuous output variable (a
regression tree?)[40]. The representation of knowledge employed by CART is quite
different to the default hierarchy rule sets used by the evolutionary method presented
here. In the previous chapter it was demonstrated on a difficult problem that the
evolutionary rule sets are able to learn rules with relationships in the predicate. The
data available here does not support the learning of such rules.

5.1.2 Lake Kasumigaura

Lake Kasumigaura is situated 60 kms north east of Tokyo and is Japan’s second
largest lake. The lake is shallow, with a maximum depth of 7 meters and a mean

2A regression tree is a piecewise constant or piecewise linear estimate of a regression function

5.1. MINING DATA FROM AN AQUATIC ECOSYSTEM 121

Table 5.2. Physical characteristics of Lake Ka-
sumigaura, Japan [190]

Trophic State hypertrophic
Morphometry:

- Maximum depth 7 m

- Mean depth 4 m

- Surface area 220 km?

- Volume 900 million m?3
Range of water temperature ~ 2.1-32.0 °C
Mean water retention time 200 days

depth of 4 meters. Because of the lakes shallowness and strong mixing of the lake
water by winds, persistent stratification of the water body does not occur. The lake
has been monitored for more than 20 years at different sampling sites providing a
long record of water quality data. The lake is hyper-eutrophic and very productive,
mostly as a result of anthropogenic changes to the lake environment. The lake
was an estuary before the construction of the Hitachigawa watergate near the lake
outlet. The lake is now mainly used for recreation and as a sanctuary for water
birds, although some aquaculture takes place in the lake itself. The catchment of
the lake is used by agriculture and is subject to urbanisation. Table 5.2 lists the
physical characteristics of the lake.

The lake experiences recurrent algal blooms, especially in the summer months, due
to its nutrient richness and shallowness. It is the sudden growth and abundance of
the algae that is of interest in modeling. It is well known that algae abundances
respond positively to high nutrients, light and water temperatures. The modeling
question is twofold. Firstly, can the water quality data available be used to model
the abundance of algae in the lake, and secondly, what relationships exist between
the available water quality data and the changing algae abundance?

Lake Kasumigaura under went a transformation in the algal community during
the late 1980’s [217, 218, 91]. From the mid 1970s until the late 1980s the lake
experienced dense summer blooms of Microcystis spp, colonial blue-green algae.
Over that time changing land use practices in the lake’s catchment and increased
urbanisation of the towns around the lake shore, among other factors, led to a change
in the nutrient loadings of the lakes. It has been hypothesised that the anthropogenic
evolution of the lake has led to a higher ratio of nitrogen to phosphorus, which in turn
has favoured the occurrence of the filamentous blue green algae, Phormidium spp and
Oscillatoria spp [91]. The relationship between available nutrients and dependent
species in the aquatic ecosystem is an active research area [217, 218, 91, 20, 30]

The summer blooms of Microcystis spp are the highest density blooms in the database.
Since the late 80s there has been a decrease in the observed magnitudes of the sum-
mer chlorophyll-a levels coincident with a sudden decrease of Microcystis spp cells
in the recurrent summer blooms. Chlorophyll-a measurements are often used as

122 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

a proxy for total algal abundance, although the relationship between chlorophyll-
a measurements and algal cell counts is inexact due to the differing amounts of
chlorophyll-a found in different algae species and cells sizes, and in algae under
different conditions.

The problems addressed in this chapter are concerned with learning associations
between the abundance of algae in the lake and the measured physical and chemical
properties of the lake water. Algae abundance is based on measured cell counts of
the different species. An outline of the measurement methodologies is presented in
[218].

It is not reasonable to expect a high degree of predictive accuracy in this kind of
problem domain. Inaccuracy in model outputs has several different sources [113]:

1 Uncertainty in the measurement of the dependent variable.
2 Uncertainty in the measurement of the driving, or model variables.
3 Structuring of the model.

Uncertainties in measured quantities are inherent in the nature of aquatic ecosystem
modeling. Possibly the largest source of these uncertainties stems from using point
measurements to approximate aquatic ecosystem states and behaviours. For Lake
Kasumigaura the point source of data used in this chapter is central to the upstream
Takahamairi Basin of the lake, and likely to be representative of many of the basin’s
physical properties, such as water temperature [169]. However the measurement of
algal cells and physical properties like transparency are more problematic. Wind,
currents, weather and the time of day all affect the concentration of algae at a
particular point. The measurements were all taken around midday, however the
other factors are not, and cannot realistically, be controlled for [63].

A further uncertainty in the measured physical parameters stems from the use of
a single depth for taking water samples and measurements. Although the lake is
shallow, it is possible that there are differing conditions at different depths in the
lake which are not correlated and which do affect algal growth rates.

The uncertainties due to model structure reflects the fact that the model only has
a limited amount of (noisy) information available to learn relationships from. Not
all of the environmental parameters that could determine algal productivity are
present in the measured data. The choice of data with which to base the modeling
has been made with recourse to theory, and represents the most prominent physical
features which are thought to contribute to algal productivity.® This source of error
1s somewhat mitigated by the likelihood that it will be swamped by measurement
errors of the known driving variables.

Another aspect of model structure which contributes to prediction errors is the bias
of the models learnt relationships. In general, ecological problems are highly non-
linear with many competing processes and interactions. When applying a classic

3The problem of selecting what features of a system to measure is ubiquitous in inductive
modeling, and is demonstrative of the philosophical problems of separating observation and theory.

5.1. MINING DATA FROM AN AQUATIC ECOSYSTEM 123

Table 5.3. The distribution of the water quality data used for modeling

Measured Data, Abbreviation Quartile 1 Median Quartile 3 Units
Chlorophyll-a Chl-a 44.740 70.293 93.608 mg/L
Nitrate NO3 104 640 1076 peg/L
Ortho Phosphate PO4 3 5 16 pg/L
ph ph 8.44 8.98 9.40
Nitrate:Phosphate 6.8 68 302

Transparency® Transp 70 90 120 cm
Water Temperature Temp 9.8 18.5 24.6 °C

neural network model to this problem, an architecture with which to learn the
desired relationships must be first specified. This immediately puts some bounds
on the likely complexity of the relationship which will be learnt (both below and
above). If the model is not able to represent the relationships between the attributes
which affect the prediction then there will be more errors.

5.1.3 Data Handling

Table 5.3 shows the distribution of the water quality data used in the modeling.
Most of the variables which are applicable for modeling were sampled at periods
ranging from fortnightly to monthly. In most studies which have used data from
Lake Kasumigaura the data has been linearly interpolated to give daily values [188,
190, 191, 237, 232, 230]. This approach has been used, unless otherwise noted, for
the training and testing in this chapter. Interpolation adds no information that
is not already present in the data set, however it makes the model outputs more
comprehensible due to the time-series nature of the data. It should be noted that
the raw data displays little auto-correlation in most of the measured variables, and
it is likely that interpolation introduces an amount of noise to the modeling task. It
is, however, the nature of ecosystem data to be noisy.

The learning task the model faces is to associate environmental conditions with
measured values of algal abundance. As noted, the lake has transitioned from being
Microcystis spp dominated to being Phormidium spp and Oscillatoria spp dominated
during the period over which the data were measured. For this reason a typical
Microcystis spp year, 1986, and a typical Phormidium spp and Oscillatoria spp
dominated year, 1993, are used for testing the model. This means that the error
rates achieved on the testing data will not be indicative of the error rates associated
with the modeling task of predicting values from the lake data in general. To
calculate those error rates some form of cross-validation should be used [238]. In
this chapter, the testing set is chosen to evaluate the explanatory power of the
model in two interesting years which are kept hidden from the model learning. The
question being asked is: can the model learnt from the lake data correctly predict the
measured values in two different years which are representative of the successional

124 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

change in algal species which has occurred in Kasumigaura?

5.1.4 Model Evaluation

A root mean square (RMS) error formula is used to evaluate the models produced
by the evolutionary process. The RMS error is far from perfect for ecological studies
as it fails to capture many of the characteristics about the problems which are of
interest to ecologists. Nevertheless, it has been used in numerous studies and will
be used here, albeit with a modification.

The first problem addressed in this chapter is the prediction of chlorophyll-a lev-
els from the measured data. The problem property of interest in the prediction of
chlorophyll-a levels is when the maximums will occur. The chosen test years are
not randomly selected, but have been chosen to assess the models ability to pre-
dict chlorophyll-a in a typical Microcystis spp and a typical Oscillatoria spp and
Phormidium spp dominated year. Both years were highly productive. To force the
model to concentrate on the maximums, the RMS error is modified to punish under-
estimation of chlorophyll-a level. The aim is to produce a model which successfully
predicts the chlorophyll-a peaks. The fitness function used is

\Zpred—Factual)” i‘ll)
— \/ Jr}';‘:xamp‘ie:;. Ifxpred > Tactual

N [4-(Tpred —Tactua)?
—\~wpred ‘actual/
]Er):campalcesm1 Ifxpred < Zactual

where Examples is the number of input vectors in the input set. The RMS error
values reported are the usual RMS error calculation, the above function is only used
internally for fitness evaluation.

The number of rules in a model can be restricted. The smaller the rule set the
more comprehensible it is likely to be and the less prone to over-fitting [86].
the initial experiments the rule set is limited to only 10 rules. This limit combined
with the biased fitness evaluation ensures that the rule set is focussed on producing
rules which describe the peak algal abundance. In Section 5.3, experiments without
bounds on the number of rules and with the RMS error as the fitness evaluation will
be described.

The ability to choose the fitness function and other conditions to suit the questions
of interest in a modeling task is in fact a strength of the evolutionary method.
Evolution is a general purpose optimisation procedure that can work effectively
with a variety of fitness functions, representations and arbitrary conditions. Yet it
can still optimise to find a good solutions to these problems.

5.2. PREDICTING CHLOROPHYLL-A LEVELS 125

Table 5.4. Table of input parameters for the lake model
Input Set Lake Data

1 Water Temperature, Secchi Depth, POy4, NO3, NO3 : POy
ratio, Dissolved Oxygen, ph, Solar Radiation

2 Water Temperature, Secchi Depth, PO4 and NOj3 concen-
tration

3 Water Temperature, Secchi Depth, NO3 : POy ratio

4 Water Temperature, Secchi Depth, PO4 and NO3 concen-
tration, NOg : POy ratio

5 Water Temperature, Solar Radiation, PO4 and NO3 con-
centration

6 Water Temperature, Secchi Depth, Solar Radiation, POy
and NOj3 concentration

7 Water Temperature, Secchi Depth, POy, NO3, ph

Table 5.5. Summary of results for different input sets

Root Mean Square Error
Input Set Lowest Quartilel Median Quartile 3 Highest

1 314 36 38.8 41.9 48.3
2 31.9 34 35.3 37.5 45.2
3 38.7 44.6 45.8 46.6 51.4
4 31.5 34 35.3 37.2 45

) 33.9 36.9 39.1 40.7 45.9
6 30.9 34.1 35.7 37.7 44.3
7 30.7 36.2 38.5 40.7 49.1

5.2 Predicting Chlorophyll-a Levels

The first problem considered is the prediction of chlorophyll-a levels from the mea-
sured physical and chemical properties of the lake. Chlorophyll-a is always present
in the lake and is mostly due to the abundance of algal cells in the lake. The level
of chlorophyll-a changes in accordance to the waxing and waning of different algae
species in the lake throughout the years.

The evolutionary algorithm is used to extract patterns in the measured chemical
and physical characteristics of the lake and the level of chlorophyll-a. A number of
different runs on different input sets were conducted. Each input set consisted of a set

of different measured lake characteristics. The different input sets are summarized
in Table 5.4.

The evolutionary algorithm made 120 independent runs with each of the input sets
in Table 5.4 with a population size of 200 and for 200 generations. The results on
the different input sets are summarized in Table 5.5 and displayed graphically in
Figure 5.2. The results on input sets 2, 4 and 6 are essentially the same. Input sets

126 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

Results of the evolutionary algorithm

| 1 Error from training set Error from testing set]

50

In] ! L b
[COT, R ' - o o T)
g - : > <8 g8 L o :
L} 1

o " o 8 ! 1
?] o7 B8 7 By 11 4
g S i o H - = 5
! o Yo ' | =
: o 8 Og eE
2 . 0 S g9 ¢ Hy el
T & - 8. = = N < -
[b ! - '
' ' U Bc
__I e > -~ 4 g Es

3 - &

l T T T T I T T 1
1 2 3 4 5 6 7

Input Set

Figure 5.2. Comparison of the root mean square error of the best rule sets found when
applied to the training and testing sets for the different input sets shown in Table 5.4.

1 and 7 show the largest variance, and both sets contain the pH. Input sets 1, 2, 4, 6
and 7 all have equivalent lowest bounds on the testing set. All of these runs contain
the secchi depth, or water transparency, and the phosphate and nitrate levels in the
lake. Input set 3 is lacking the nutrient levels and Input Set 5 is lacking the secchi
depth.

It seems likely based on both theory and results that nutrient levels in the form
of phosphate and nitrate measurements as well as transparency measurements are
important inputs for the prediction of chlorophyll-a levels. It can be noted that
secchi depth, which is a measure of water clarity, should be well correlated with
the current chlorophyll-a concentration since chlorophyll-a will tend to make the
water less transparent. There will be other events which will also make the water
less transparent, such as an increase in the amount of suspended sediment. Nutrient
levels are clearly going to be indicative of chlorophyli-a, since algae require nutrients
survive and multiply. However, the relationship is not straight forward. A high
chlorophyll-a level is indicative of a high algal abundance, and algae consume the
available nutrients leading to a low nutrient abundance! On the other hand, low
nutrient abundance inhibits the growth of algae.

Table 5.5 shows that Input Set 5 produces results which are better than Input Set
3 (the test set error of the 50% of runs between the first and third quartile of Input
Set 5 are all better than the 50% of runs between the first and third quartile of
Input Set 3). The implication is that available nutrient measurements in the form
of phosphate and nitrate are more important to modeling than the transparency, at
least for the models produced by applying the SASME algorithm to evolve rule lists
with exceptions.

5.2. PREDICTING CHLOROPHYLL-A LEVELS 127

Comparison of two runs on unseen test years

Predicted and actual chlorophyll-a level using input set 1

<1+ Aclual —— Predicled
aQ
&
3
g R
k4
B
g
g8
2
o
8
r . T T L] L T L) 1 r T T T T T T 1
V] 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
19886 1983
Predicted and actual chlorophyll—a level using input set 2
++ Aclual —— Predicled
o
&
3
g 8
3
B
&
£ 8
2
o
3

T = T T T T] T 1 L} T T T T L] T '
o 50 100 160 200 250 300 350 O 24 100 150 200 250 300 350

1986 1993

Figure 5.3. Comparison of rule set output on the unseen test data. The top graph shows
the model which uses Input Set 1 in Table 5.4, and is shown in Figure 5.6. The lower
graph shows the model using Input Set 2 shown in Figure 5.5.

5.2.1 Comparing Models

What causes the differences in the observed behaviour in the models? In this sec-
tion two different models from two different rule sets are compared to answer this
question. The first rule set is generated from Input Set 1, which consists of all of
the available input data, and the second rule set is from Input Set 2, which appears
to be one of the most promising input sets used in Table 5.5. A comparison of the
performance of two randomly chosen rule sets from the two input sets is shown in
Figures 5.3 and 5.4 for testing and training respectively.

Using Input Set 2

For Input Set 2 consisting of Temperature, Secchi Depth, Phosphate and Nitrate
concentrations, a typical run of the genetic algorithm discovered a model with a
RMS error of 37.80 when applied to the testing set, and a training set RMS error of
28.08. The rule for this model is shown in Figure 5.5.

Figure 5.5 shows that the model firstly uses the secchi depth to classify low algal
abundance. This rule is mostly true over the low algal winter months. The model
uses nitrate and phosphate concentrations to indicate algal consumption of available

128 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

Comparison of two runs on training years

Predicted and actual chlorophyll—a level using input set 1

=+ Aclual —— Predicled

150 200
[

Chloropohyll-a {(mg/L)
100

eTa]

M T AT AT T T CTT T AT FTT T T
0 150 3000 150 3000 150 8000 150 3000 150 3000 150 3000 150 3000 150 300

1984 1985 1967 1988 1989 1990 1991 1992
Predicted and actual chlorophyll—a level using input set 2

- Aclual — Predicled

Chioropohyfi-a {mgl)
1ot

0 150 3000 150 3000 150 3000 150 3000 150 3000 150 3000 150 3000 150 800

1984 1985 1987 1988 1989 1980 1991 1992

Figure 5.4. Comparison of rule set output on the training data. The top graph shows the
model which uses Input Set 1 in Table 5.4, and is shown in Figure 5.6. The lower graph
shows the model using Input Set 2 shown in Figure 5.5.

nutrients. It is interesting that the level of nitrate is used to indicate the most severe
blooms. For Kasumigaura, the model discovered that large algal abundance is well
correlated with low nitrate levels over the summer months. This may be explained
by the fact that blue-green algae, which are dominating in summer, are able to fix
nitrogen from the atmosphere for photosynthesis and do not depend on dissolved
nitrogen in the water. If phosphate is also low then the algal cell count is very high
(97 mg/1). This indicates that the largest blooms (extremely high chlorophyll-a in
the order of 140 mg/l) occur when algae have consumed most of the available free
nitrogen (nitrate levels are low), but phosphate levels are not near to exhaustion.

This model does not, however, succeed in predicting all of the peaks in algal abun-
dance. The high algal abundance in early 1986 and also in the training set are not
predicted by this model. The median prediction of 120 independent runs using Input
Set 2 shows that the median model also misses these algal abundance peaks. This
suggests that either the driving forces for these peak abundances are not present
in the input set, or that the concepts required to predict the algal abundance at
this time cannot be represented or discovered by the learning algorithm. It can be
expected that there is a large amount of noise in the lake measurements, and this
noise may be the explanation.

5.2. PREDICTING CHLOROPHYLL-A LEVELS 129

IF TRANSP IS high THEN
1 | CHL-A I8 low

Ir Not

IF NITRATE 1S high
o |THEN CHL-A 1S medium

Ir Not

IF NITRATE IS low THEN
CHL-A IS extremely

3 .

high

Ir NoT EXCEPTION

IF PHOSPHATE 1S low
THEN CHL-A IS very

4 .

high

IF PHOSPHATE IS low
5 | THEN CHL-A IS high

Description Value
Transparency is high Transp > 110cm
Nitrate is high NO3 > 577ug/1
Nitrate is low NO3 < 577ug/1
Phosphate is low PO4 < 34ug/l
Chlorophyll-a is low Chl-a = 34mg/1
Chlorophyll-a is medium Chl-a = 55mg/1
Chlorophyll-a is high Chl-a = 67mg/1
Chlorophyll-a is very high Chl-a = 97mg/1

Chlorophyll-a is extremely high Chl-a = 140mg/1

Figure 5.5. An evolved rule set for predicting algae

Using all Input Set 1

Input set 1 contains all of the available input parameters. The variance of the RMS
error for this data set is higher, which is possibly due to the higher degree of freedom
available from the larger number of input parameters when producing models with
this dataset. A random rule set from Input Set 1 is shown in Figure 5.6.

The different model structures produce qualitatively different predictions. In partic-
ular, the timing of high algal abundance are picked up by different model structures
differently. The model detailed in Figure 5.6 produced the prediction on the unseen
testing years of 1986 and 1993 shown in Figures 5.3 This model had a very good
root mean square error of 35.76.

130 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

IF TRANSP IS high THEN
1 |CHL-A IS low

Ir NoT EXCEPTION

AN

IF PH 1S high THEN

IF NITRATE IS low THEN

3 | CHL-A IS high 2 | cHL-A 15 medium
IF OXYGEN IS not high IF PHOSPHATE IS
THEN CHL-A IS medium medium THEN CHL-A IS
i 4 extremely high
EXGCEPTION ﬁnow
IF PH IS not high THEN IF PH 1S not high THEN
7 | cHL-A 1S very high 5 | cHL-A Is very high
Description Value
Transparency is high Transp > 93cm
pH is high pH > 9.2
pH is not high pH < 9.2
Nitrate is low NO3 < 560ug/1
Phosphate is medium 25 < PO4 <= 168ug/1
Oxygen is not high DO < 18mg/1
Chlorophyll-a is low Chl-a = 44mg/1
Chlorophyll-a is medium Chl-a = 60mg/1
Chlorophyll-a is high Chl-a = 101mg/1
Chlorophyll-a is very high Chl-a = 112mg/1
Chlorophyll-a is extremely high Chl-a = 174mg/1

Figure 5.6. An evolved rule set for predicting algae

Even though the two models produce similar RMS errors they produce different
predictions. One example of a different prediction is the algal bloom around day
350 of 1986 in Figure 5.3. This small bloom is correctly predicted by the model
produced from Input Set 1, but not by the model produced from Input Set 2. Why?

The model in Figure 5.6 uses Rule 5 to categorize this peak. That is, it was a time
of low nitrate and medium phosphate levels and the pH level was less than 9.2. Had
the lake been in a more alkaline state then the prediction would have been for an
extremely high level of chlorophyll-a (174mg/1). This rule tells us that the peak
chlorophyll-a level occurred at a time when the nutrient nitrate levels were low and
phosphate levels medium, and the pH was less than 9.16. It could be concluded from

5.2. PREDICTING CHLOROPHYLL-A LEVELS 131

Table 5.6. Summary of results for Input Set 1 with
normal fitness evaluation
Lowest Quartile 1 Median Quartile 3 Highest
39.18 40.48 42.21 42.92 44.61

the model that higher chlorophyll-a at approximately 174 mg/1 would be expected
at pH levels above 9.16. Nevertheless, the validity of this conclusion is unconfirmed.
It is also unclear of what cause and effect relationship is occurring. Does the high
chlorophyll-a level increase the measured pH? What is clear, however, is how the
model is making its predictions. And that is the point.

5.2.2 Comparison with CART

The classification and regression tree method of decision tree generation is a greedy
recursive partitioning method which can be used to predict real outcome variables
[40]. This makes it a good candidate for the generation of solutions for compari-
son with the evolved rulesets. This comparison is conducted with the CART im-
plementation supplied with the R statistical package [127]. When applied to the
Kasumigaura data using Input Set 1 from Table 5.4, CART produced the decision
tree shown in Figure 5.7, and produced the training and testing output shown in
Figure 5.8. The value of n in a parent node is the number of training examples
which have not been classified by that node, and so are eligible for splitting into
the child nodes. The number in the nodes in Figure 5.7 is the expected value of the
outcome variable for the examples that reach that node. That is, it is the weighted
average of the outcomes of the leaf nodes below it.

CART produced an RMS error of 45.47 on the testing set. This is not directly
comparable with those in Table 5.5 since the evolutionary algorithm was trained
with a fitness function which explicitly punished under-prediction more than over-
prediction, and the algorithm was limited to 10 rules. To compare, the evolutionary
algorithm was applied to the same data set without a rule limit and with the usual
RMS error criteria for fitness. The number of levels of prediction for the rule set
was increased to 9, and the number of boxes for dividing variables was increased to
4. The results of 10 runs with a population of 200 for 200 generations are shown in
Table 5.6. An example of the predicted output of a SASME evolved rule set is shown
in Figure 5.9.

The evolved rule set which produced the unlabelled output is shown in Figure 5.10.
The rule set in the figure has the value ranges of the attribute labels included on the
rules. The numbers to the right are the number of training examples which satisfied
the rules premise. This is different to the number of instances that the rule has its
consequence applied, since subsequent exception rules will have their consequence
performed when their premise is found to be true. The rule set structure is consistent
with the previous rule set figures. That is, any rule connected to the left of its parent

132 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

Endpoint = Chla

Figure 5.7. Cart rule set produced from Input Set 1. The output of the rule set is shown
in Figure 5.8.

or the sole child of a parent rule is tested when the parent rule is found to be not
true. Children connected to the right of the parent rule are tested only when the
parent rule is found true.

Table 5.6 shows that the SASME algorithm outperforms CART in each of the 10
runs performed, that is, the worst test root mean square error of the evolved rules
is better than that produced by CART. The differences between the two algorithms

5.2. PREDICTING CHLOROPHYLL-A LEVELS 133

CART analysis on Kasumigaura

Predicted and actual chlorophyll—-a level

- Aclual —— Predicled
I
®
4
Z
2
2
K
£
o
0 150 3000 150 3000 150 300C 150 3000 150 3000 150 8000 150 3000 150 300
1984 1985 1987 1988 1989 1990 1931 1982
Predicted and actual chlorophyll—-a level using input set 1
+ Actual — Predicled

3
—_ N
e g
T
: 8
g
£ 8
£
o

3

T T T T T T T 1
0 50 100 160 200 250 300 350

1986 1553

Figure 5.8. Output of the CART model applied to Lake Kasumigaura.

Evolutionary analysis of Kasumigaura

Predicted and actual chlorophyll—a level
- Aclual —— Predicled

Chloropohyll-a (mg/L)

0O 150 3000 150 3000 150 3000 150 3000 160 3000 150 3000 150 3000 150 300

1984 1985 1987 1988 1989 1990 1991 1992
Predicted and actual chlorophyll—a level using input set 1
- Aclual — Predicled

100 150 200 250

Chioropohyli-a (mg/L)

50

L]] L] T T T 1 I ¥] Ll T T T 1
o 50 100 150 200 250 300 350 O 50 100 150 200 250 300 as0

1988 1943

Figure 5.9. Output from the evolutionary model trained using the root mean square error.
The model is shown in Figure 5.10

134 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

7 2 g
~=
" T
=5 g - :E;S
=8| .= 3=
4 — 13
=9 = = = /055
=23 |FAS S&T
- L -
Pt
-]
=i B °
<
:R-
= L8
& ®
2
a1 *=
2 |22
- 3 =2z |2k 2
= 3 ~2a) |F24
©
2 o 2

DO
1{15.73, 00)
Oitrh=1AT
PO4
3| (44,7, 132)
Ciftam 1§

ROIPO
13 | {—2c. 1T3.9)

2
k2
|

P
~ (1823

o gy ==

hd + = A

= ey

el
=74
ord
255
-
2

o
R4

-
" 2 3
R = -
=
L
-
= -
e 22
g% =73 o =
=9 L 3 g 5 2 g
=Rd |=82
=ag] [=Lg g
2 E ¥
= o b a9 we
=5 8g 8 |8gs 2R
Egd: 1 a0 255 lis
47 < Bad N o Fol
odal |24 |=24 |o8d |ER2
#=d | 220 [F=g |=Llg] |[FL8
o =] [~ o o
- N o N "

Figure 5.10. Rule set for any length

is not large, and it shows that the evolutionary approach is able to find solutions
as good as those found by a greedy partitioning algorithm. The output graphs in
Figures 5.8 and 5.9 appear equivocal with regard to prediction quality, which is
indicative of the problems of using root mean square error in ecological time series
data.

5.2. PREDICTING CHLOROPHYLL-A LEVELS 135

5.2.3 Discussion of Chlorophyll-a Prediction

The self-adaptive evolutionary rule induction method is able to symbiotically op-
timise symbolic rule structures and associated parameter vectors to discover rule
set models for predicting chlorophyll-a in Lake Kasumigaura. The models are com-
prehensible and questions about why particular predictions have been made can be
answered by tracing the decision process that the rule set model undertakes. Fur-
ther, there are no assumptions on the structure of the model itself, which enables
arbitrary criteria to be placed upon the model production to suit the questions of
interest. This was demonstrated by limiting the number of rules that a model could
contain and by modifying the fitness function to emphasise the problem character-
istic of interest. The first condition was imposed to maximise comprehensibility of
the evolved rule sets, and the second to force the rule sets to accurately predict the
peak algal abundances.

In situ time series hold unique information about ecosystem processes and behaviour.
Inductive modeling techniques can be used to explore this information. Machine
learning techniques offer a new quality of inductive modeling by extracting not only
seasonal and annual patterns, but related connectivity between key variables as well.

The rules produced for chlorophyll-a prediction are descriptive and comprehensible
and are likely to contain some information about actual ecosystem function. An issue
with inductive models in general is unraveling correlations between inputs measured
and unmeasured, and the cause and effect of the relationships. A classic example is
the observation that in New York over summer, drownings and lemonade sales both
increase. Deducing that lemonade sales are somehow implicated in drownings is the
mistake that inductive modeling could make on such a data set.

It is possible that some of the prediction results in this section have made that mis-
take. The strength of the transparent representation is that the basis of predictions
is explicitly apparent. If a neural network connects lemonade to drownings and is
asked to make a prediction in a summer where the lemonade factory is on strike, it
will incorrectly conclude that there will be a decrease in the number of drownings.
A rule set, by contrast, will make the same error, but the basis of the prediction is
apparent and the cause of the error easily observable. The other possibility is that
of finding a previously unknown relationship in the data. Maybe lemonade drinking
really does increase a persons chance of experiencing flotation difficulties in water!

Ultimately, the induced hypotheses need to be tested in the field. The inductive
model produces hypotheses which are able to be understood, and therefore can be
tested. It performs as well as neural network methods and so is likely to have learnt
similar relationships to the neural network models for the prediction of chlorophyll-a

[189, 238].

136 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

Table 5.7. Summary of cell counts for colonial (Microcystis spp) and filamentous
(Oscillatoria spp and Phormidium spp) algae.

Type Lowest Quartile 1 Median Quartile 3 Highest Units
Colonial 0.0 0.0 362.5 18575.0 644117.0 Cells/1
Filamentous 0.0 0.0 4778.0 36997.5 502320.0 Cells/1

5.3 Species Prediction

The anthropogenically eutrophied waters of Lake Kasumigaura favour a range of
blue green algal species. The populations of these species has waxed and waned
throughout the monitoring period from 1984 to 1993. As noted in Section 5.1.2,
since the early 1980s the dominant species composition of the lake has changed
from Microcystis spp to Oscillatoria spp and Phormidium spp. It is of interest
both theoretically and also from a management perspective to understand why this
change has occurred.

Learning rules to associate algal species with the physical and chemical properties of
the lake is a more difficult problem than learning the association with chlorophyll-a
levels. Algal species are specialized for certain conditions and occur only temporarily
in the lake, which means that numbers of measurements indicate no species present.
Learning becomes impossible when there are too few non-zero cases for classifica-
tion. Microcystis spp is frequently present in the data, and raw data can be used.
Microcystis spp is an example of a colonial algal species, which formed large algae
cell colonies in Lake Kasumigaura up until the late 80s. The other species of interest,
Oscillatoria spp and Phormidium spp are less common in the lake. However, they
are both examples of filamentous algae, and they both appear to be favoured by
similar conditions in the lake. For the purposes of this study, the two cell counts are
combined to give a filamentous algae cell count. The ecological legitimacy of this
could be questioned, however aquatic ecosystem experts concur that it is acceptable
for the use it has in this section.®

A summary of the two output variables is shown in Table 5.7.

Two separate rule set models are constructed in this section. One model attempts
to predict the presence of Microcystis spp in the lake given the current physical
and chemical parameters in the lake. The other model attempts to do the same
for Oscillatoria spp and Phormidium spp. The explanations that the models use to
predict the algae species can then be compared to see what the model predicts is
the reason for the disappearance of Microcystis spp from the lake in recent times,
and the dominance of the filamentous algae.

Two different experiments are attempted with this problem.

6 Friedrich Recknagel, personal communication, 2000

5.3. SPECIES PREDICTION 137

Filamentous algae prediction in Kasumigaura

Predicion of filamentous algae on training data

-+ Aclual —— Predicted
w
Q :
-~ & H
3 %
2 H .
= N et N
a . b
§ 5 J : £
s © 8 i)
] } . I =N
o __ LT i 7
o I . AN
Y
c rrrrrnl L e e

0 150 3000 150 3000 150 3000 150 3000 150 3000 150 3000 150 3000 150 300

1984 1985 1987 1988 1989 1990 1891 1992
Prediction of filamentous algae on testing data
++ Actual —— Predicled

150000
1

Cell counls {Cells/L)

50000

L] T T T T T 1 T L L] T T T T 1
[+] 50 100 150 200 250 300 350 O 50 100 150 200 250 300 350

1986 1993

Figure 5.11. Results of the prediction of Oscillatoria spp and Phormidium spp counts in
both the training and testing data.

5.3.1 Experiment 1

The first experiment uses the data from Input Set 1 in Table 5.4 on page 125. The
problem the evolutionary algorithm faces is to cluster the species cell counts into
two clusters according to the measured physical and chemical properties of the lake.
The values of the cell counts around which the clusters form is to be decided by the
algorithm. Table 5.7 shows that more than 25% of the time the measured cell counts
are 0. An optimal cluster distribution on this data will therefore include one cluster
corresponding to a negligible cell count. A second cluster will then be associated
with the presence of some number of algal cells.

The filamentous algae Oscillatoria spp and Phormidium spp were the most difficult
to predict. The output of the model is shown in Figure 5.11. The rule set produced
is shown in Figure 5.12.

The results for predicting Microcystis spp are shown in Figure 5.13. The rule set
which produced these results is shown in Figure 5.14.

The interesting parts of the rule sets are those rules which predict the presence of
the algae species. For the filamentous algae the rule set in Figure 5.12 uses rules
4, 5 and 7 to predict the presence of filamentous algae. All of the positive algae
prediction rules occur as exceptions to the rule dealing with low Secchi depths, 2.

138 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

PO4 € (76.4,193)
1 FILAMENT=0.164 lige

S-DEPTH
2| e (-00,90.12) 1803
FILAMENT=0.164
-
S-DEPTH PH (—00,8.577)
8 [(90.12, 00) 945 3 |NO3:PO4 (—00,24.07) 213
FILAMENT=0.164 FILAMENT=0.164
7 R
WTEMP PO4
5 |(19.5,20.9) 93 4 | (14.6,193) 108
FILAMENT=76,800 FILAMENT=76,800

[

DO (—00,9.196)
6 | NO3 (—o0,595.9) 132
FILAMENT=0.164

[

PO4 (-00,14.6)
7 |NO3 (~o0,595.9) 761
FILAMENT=76,800

Figure 5.12. An evolved rule set for predicting filamentous blue green algae, as repre-
sented by the combined cell counts of Oscillatoria spp and Phormidium spp.

Rule 7 predicts for filamentous algae most often in the training set, and does so on
the condition of phosphate being low, and nitrate not being high.” Rule 5 predicts
for the algae when the pH is low, the phosphate level is relatively high, and the
nitrate to phosphate ratio level is low. The final positive rule, 5, predicts based on
a narrow temperature band, and does so in only 3% of training examples. This rule
may be overfit to the data. Rule 9 in particular is consistent with filamentous algae
being able to grow during periods of low phosphate.

The rules for Microcystis spp shown in Figure 5.14 are simpler to understand. The
positive predictions are made when phosphorus is not low, and either pH is extremely
high, rules 3 and 2, or else the water temperature is very high 5.

"Qualitative description of attribute ranges are based on the distribution of attribute values in
Table 5.3

5.3. SPECIES PREDICTION 139

Microcystis prediction in Kasumigaura

Predicion of Microcystis on training data
<+ Actual —— Predicled

40405 6e+0S

Cell counls (Calls/L}
20405

0Oe+00

FMTTTT T TTIII I T I T A T T T AT T T I T T I T T I rrrrirrrrrrm
0 150 3000 150 8000 150 3000 150 3000 150 3000 150 3000 1650 3000 150 300
1984 1985 1987 1988 1989 1990 1991 1982

Prediction of Microcystis on testing data

" - Actual —— Predicled
=3
+
o
©
oy
§3
°
=3
o
T
5
a
£ 3
g 3
2 r T T T T T T 1 i T T ¥ L] i T 1
o 50 100 150 200 250 300 350 0O 50 100 150 200 250 300 350
1986 1993

Figure 5.13. Results of the prediction of Microcystis spp counts in both the training and
testing data.

5.3.2 Experiment 2

In this experiment the problem of species prediction is also addressed, but a different
data base is used and the rules are forced to learn preclassified situations. In the
previous experiment the levels of the clusters that the algorithm learnt were subject
to evolution. In the current experiment these are set at 0 and 50,000 cells.

Measured Data

The experiments reported in this section use 1986 and 1993 as the testing years
as before. However, the model is trained on a raw data set which contains only
105 records. Of those records, 91 are used for training and the remaining 14 are
from the two testing years.! Because of the small number of training records a
different strategy is employed to try and prevent overfitting of the data. The current
experiments use a random sample of the training examples in each generation to
evaluate the population. From the 91 patterns in the training set, each generation

8 This particular data set ends in August 1993. The difference in time frame is due to a difference
in the availability of some of the input data used in these experiments. This data is only available
until August, and not as commonly available throughout the sample period. Result graphs are from
linearly interpolated testing sets to give a sense of the time at which the different measurements
are taken.

140 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

DO
1€ (15.2,17.3) 14
Micro=0.249
|
PO4
2 (42.38, 00) 278
Micro=379 000
/ N
PO4 FPH
4| (—00,25.32) 2489 3 [(-00,9.365) 170
Micro=0.249 MIicro=0.249
I
WTEMP
5 [(26.66, 00) 31
MIcro=379 000
|
DO
6 [(—co,15.24) 68
Micro=0.249

Figure 5.14. An evolved rule set for predicting Microcystis spp, an example of colonial
blue green algae.

a generational training set is constructed consisting of 91 examples made up by
sampling with replacement from the training set. This places 63%° of the training
examples in the generational training set, and presents every generation with a
different set of training patterns, helping to maintain the populations ability to
generalise.

| I I

Table 5.8 shows the chemical and physical lake parameters used for this experiment.
The parameters were chosen according to availability and perceived predictive poten-
tial based on algal growth requirements. The algorithm should be able to discover
the most useful lake parameters and discard less useful parameters. It is known
for many inductive techniques that redundant or unimportant inputs can make the
learning task harder, and so choosing a minimal input set is likely to achieve the
best results.

Two evolved lake classifiers were created. One classifier was trained on the task of
classifying when Microcystis spp cell counts were measured to be higher than 50,000
cells given the data in Table 5.8. The second classifier considered the combined cell
counts of Oscillatoria spp and Phormidium spp for the same task.

9The probability of not selecting a training example N times is (1- %)N, giving ~ 36.6% for
N = 91. The limit as N — oo is % ~ 36.7%

5.3. SPECIES PREDICTION 141

Table 5.8. A summary of the input parameters used in Ezperiment 2

Measured Data Abbreviation 15 Quartile Median 3 Quartile Units
Nitrate NO3 104 640 1076 pe/L
Ortho Phosphate PO4 3 5 16 pg/L
ph ph 8.44 8.98 9.40

Water Temperature Temp 9.8 18.5 24.6 °C
Transparency Transp 70 90 120 cm
Diss. Total Phosphorus DTP 16 20 34 pg/L
Ammonia NH4 21 63 162 rg/L
Nitrite NO2 9 18 30 pg/L

5.3.3 Experimental Results and Discussion

All experiments were conducted with a population of 200 models for 100 genera-
tions. The combined cell counts of Oscillatoria spp and Phormidium spp were used
in one experiment and Microcystis spp in the other. The aim is to elucidate pos-
sible environmental difference in the preferences of the two blue-green algal types.
Microcystis spp were again the easiest to predict. For both datasets a cutoff level
of 50,000 cells was chosen. Although the levels of the prediction are not subject
to evolution, the fitness function the model is trained with the RMS error of the
models predictions and not the misclassification rate. This means that the model is
punished more for missing high algae peaks than for missing low ones.

A true positive prediction (TPP) is when the model predicts that the algae are
present, and the measured data shows that there are more than 50,000 cells present.
Similarly for true negative predictions (TNPs).

The sensitivity of the model is defined as:

e True Positive Predictions
Sensitivity = - — — S— (5.1)
False Negative Predictions + True Positive Predictions

the specificity is similarly defined:

True Negative Predictions

Specificity = (5.2)

False Positive Predictions 4+ True Negative Predictions
Sensitivity is the ratio of true predicted positive results to actual measured positive
results, and similarly for specificity. They measure the error rates of the model on
positive and negative outcomes respectively. A third measure which is useful is the
positive predictive power of the model. This is defined as the ratio of true positive
results to predicted positive results, and represents a measure of the confidence one
can have in a positive prediction of algal presence from the model. The error rate
is the ratio of true predictions to examples presented, whether positive or negative.
100 independent trials were conducted for each of the datasets. The error rate,
sensitivity, specificity and positive predictive power were calculated for each run
and the distribution of the error measures over the 100 runs are graphed.

142 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

Training Testing
o o
- T — b
= , - =3/
]
8 - i ——
I —_—t
3 - : : 3 o
(o]
©o | o ©
o ' . S
i) i © o
[! © T T
o —_ o T i
< < : ;
o 7 © S ' '
: :
N N | ; '
o o]]
] 1
I [
o | o _ -
o o
T T i i I I T T
Correct Sens. Spec. PPP Correct Sens. Spec. PPP

Figure 5.15. Microcystis spp error rate, sensitivity, specificity and positive predictive
power for 100 independent runs.

5.3.4 Results of Species Prediction

Figure 5.15 shows the error rate, sensitivity, specificity and positive predictive power
of the best classifier found, based on training results, for each of 100 independent
evolutionary runs. Figure 5.16 shows the results for the filamentous algae. Micro-
cystis spp are easier for the model to predict compared to the filamentous algae.
Mzcrocystis spp bloom events are more discrete compared to Oscillatoria spp and
Phormidium spp events, tending to be near zero most of the time with discrete
spikes lasting a few weeks of more than 50,000 cells. It could also be due to a clearer
environmental preference of Microcystis spp.

The evolved rule sets were condensed to show the conditions under which the model
predicts the algae species presence. The current database can be explained with
a small number of classification conditions. This is clearly not an exhaustive list
of the conditions preferred by the algal species, but rather a simplification of the
conditions in Kasumigaura under which the data indicates that the species will be
present. Different runs of the algorithm produce different conditions by considering
different lake attributes. This is due to the algorithm learning on data containing
redundant attributes. In different runs it substitutes different attributes to make

5.3. SPECIES PREDICTION 143

Training Testing

1.0
1.0

=
.
U

:
.

=R =t

i
Rate
0.6

2 :
g o —_— i ;
—r— L}
< | <] —_ :
o lo] © 1
(o] o o —_
o]
N N
o o o o o o
(o]
o o
S 7 S . o
| 1] I T T T T
Correct Sens. Spec. PPP Correct Sens. Spec. PPP

Figure 5.16. Oscillatoria spp and Phormidium spp error rate, sensitivity, specificity and
positive predictive power for 100 independent runs.

(NH4 < 236) anD (TraNsP < 103) AND
1| (TEMP < 21.7) anD (DTP < 22.3)

Ir NoT

(8.01 < PH < 9.37) AND (60 < TRANSP <
2 103) aAND (TEMP < 21.7) AND (DTP > 22.3)

Ir NoT

(NH4 < 236) AND (8.01 < PH < 9.37) AND
3| (60 < TraNsSP < 103) anD (DTP > 22.3)

Figure 5.17. A condensed classifier for the presence of Oscillatoria spp and Phormidium
spp in Lake Kasumigaura.

144 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

(TEmMP > 29) AND (DTP > 74.2) aND (PH >
1/8.15)

Figure 5.18. A condensed classifier for the presence of Microcystis spp in lake Kasumi-
gaura.

Microcystis spp. Oscillatoria and Phormidium
o
(=]
S
= Model - - - Threshold Ky Model ~ - - Threshold
e Measured e Measured
7o} o
< 8 i
@ = |
[{e] « |
g f?
- E3 8 = i
§ ° E 3
o 3 - o -
o 2 o
E = o
3 8 &
o
m —
9
& g
Q
wn
o
o
T o
[0}
© I I I I I | I I | | I I
0 100 200 300 400 500 600 0O 100 200 300 400 500 600
Day Number Day Number

Figure 5.19. Comparison between measured and predicted abundance of colonial (Micro-
cystis spp) and filamentous (Oscillatoria spp and Phormidium spp) in 1986 and 1993

the prediction. Since the inter-run variance of errors is not extreme, this acceptably
allows the examination of hypothesis based on different attributes which nevertheless
achieve similar error rates.

Figure 5.17 shows a typical ruleset found for Oscillatoria spp and Phormidium Spp
and Figure 5.18 for Microcystis spp. The time series plots on the testing set are
shown in Figure 5.19.

Figure 5.19 shows the temporal distribution of model errors on the unseen test sets.
These plots were made by interpolating the lake data to produce daily values for

5.4. CONCLUSIONS 145

the input and output variables. The 50,000 cell cutoff is drawn to show when the
species are considered to be in bloom. The Microcystis spp model makes few errors
on the test years used. The filamentous model significantly misses the lake dynamics
on several occasions. It predicts two peaks for the 1986 algal bloom, one early and
one late, though both miss the interpolated cell counts for this peak, and it misses
the actual measured peak altogether. The other error is a slightly early onset of
the 1993 peaks. Given the noise and difficulty of the problem, these error rates
are quite acceptable. There is no temporal component in the model evaluation,
and so missing a peak by a few days can induce a higher error than missing a peak
altogether, which raises interesting questions about appropriate error measures. This
study has conformed to the types of error measures used in previous studies which
have utilized this data, however, there are other possabilities.

The Microcystis spp models consistently predict blooms of Microcystis spp under
extremely high water temperatures and pH levels, as shown by the model in Fig-
ure 5.18. Oscillatoria is predicted most often under low secchi depths, indicating the
presence of an algal bloom, and the absence of extremely high temperature and pH
levels, as shown in Figure 5.17. Nutrient preferences of the two species are harder
to contrast, although a preference for phosphorus levels not being extremely low in
both cases is discernible. Blue-green algae have some ability to fix gaseous nitrogen
from air, and it is possible that the blue greens are out competing other species
under nitrogen limited conditions in lake waters.

5.3.5 Discussion of Species Prediction Results

Although the data used in this study contain a lot of sampling noise the model
is still able to discover patterns in the measured data that relate the data to the
occurrence of certain abundance levels of the algae species. The basis of the model
predictions is clear and easily understood.

The rules discovered by the model are consistent with an algal succession based
on decreasing phosphorus levels in Kasumigaura. In both case studies, only the
rules for the prediction of filamentous algae contain positive predictions based on
phosphorus levels not being high. Both models also agree that Microcystis spp is
favoured by high pH and temperatures. This may be an environmental niche that
Microcystis spp prefers, as suggested by many authors, eg. [211, 193, 107, 212].

5.4 Conclusions

Knowledge representation is an important issue for inductive learning algorithms.
Representations that allow direct expression of learnt knowledge can be used to
examine the underlying hypothesis of a learnt model. The modus operandi of the
model can then be compared to domain theory.

146 CHAPTER 5. ELUCIDATION OF ECOSYSTEM PROCESSES

In this chapter a number of different models have been evolved for the prediction of
algae in a hypereutrophic lake in Japan. Aquatic ecosystem data present a challeng-
ing problem for machine learning due to the noise, complexities, and interactions
of the measured data. The domain is also of interest because there is still a lack
of knowledge about the relationships between physical and chemical properties of
freshwater systems and their biological productivity.

The evolutionary models produced for ecosystem prediction perform no worse than
those produced by artificial neural network approaches, they are to some extent,
however, comprehensible. The SASME framework allows the choice of representation
to be made so that information about the problem at hand can be discovered and
communicated.

Evolutionary methods appear well suited due to their global rather than greedy
approach to model formation. This allows the arbitrary conditions to be placed on
the models while they are being evolved, and for representations to be chosen to
suit the modeling tasks of interest.

Chapter 6

Conclusion

...when the dust has settled, it is usually found that the new technique is
neither a miraculous cure-all nor a complete disaster, but rather an addition
to the analyst’s toolkit which works well in some situations and not in others.

C Chatfield, [44, page 446]

6.1 Summary of Thesis

This thesis has addressed the problem of evolving mixed symbolic and numeric
representations by developing a method of self-adaptive, symbiotic model evolution,
SASME. The two parts of the representation were evolved as symbionts, each part
mutualistically dependent on the other. The symbolic part was modified by a self-
adaptive procedure which adapted the rates of discrete mutations during the course
of the evolution. The numeric part of the representation was simultaneously evolved
with a self-adaptive evolutionary strategies algorithm.

A discrete rule set model which explicitly represents exceptions was evolved by the
SASME framework. The numeric component defined partition values for the observed
continuous attributes, and these partitions defined symbols with which the rule set
operated. The numeric vector optimised the state space partitioning, while the
symbolic structure evolution optimised the rule set topology.

In Chapter 4 the SASME algorithm was applied to the evolution of control rules
for the cart-pole problem. The algorithm successfully optimised rule set topologies
whilst optimising state space partitions to solve this problem. The produced rule
sets contain information about the learning problem. The rule sets were applied to
the two-pole problem by including an evolvable relationship in the rule premises.
This relationship allowed the rule sets to make decisions based on the relative angles
of the two poles. The symbolic rule sets produced were comprehensible and able
to solve this difficult problem. A final cart-pole problem was formed by removing
the velocity information from the observed state. To solve this variant, a novel

147

148 CHAPTER 6. CONCLUSION

recurrent rule structure was developed which made decisions based on its previous
actions. The algorithm evolved the rate at which it discounts decisions made in the
past. This problem was also solved and explicit rule sets produced showing how the
evolved solutions were controlling the system.

In Chapter 5 the SASME rule sets were applied to the evolution of rule sets for
ecosystem prediction. The algorithm formed models relating water quality data to
chlorophyll-a concentrations. The evolved models explicitly displayed the knowledge
they learnt about the system. Different runs of the algorithm produced models with
similar predictive accuracy but with different rules. The algorithm was then applied
to the problem of discovering why the observed patterns in algae species abundances
had changed, and the models produced were compared to theory. The algorithm
was able to produce comprehensible rule sets for the prediction of algae without
domain knowledge.

6.2 Conclusions of Thesis

There are clear benefits in the utilisation of knowledge representations which enable
the transfer of knowledge learnt by evolutionary learning methods. This thesis has
demonstrated several times the ability of the SASME algorithm to evolve discrete rule
set structures and optimise parameters for those structures in order to solve machine
learning problems. The products of the evolutionary search can then be examined
and the knowledge learnt by the evolutionary learner is explicitly represented.

The use of self-adaptive mutation rates for the discrete structures and the associated
continuous vectors allows the evolution to simultaneously optimise the two compo-
nents. As each component discovers new innovations, and presents to its symbiont
a new avenue of exploration, the self-adaptive mutation rate of the components
can adjust to exploit the new environment. Thus the self-adaptive evolutionary
search is able to evolve solutions to difficult problems and still maintain a level of
comprehensibility in the supplied solutions, as shown in this thesis.

The application of self-adaptive mutation rates for discrete operators appears to
allow rates of applications of different operators to adjust to the topology of the
structure they are operating on; they allow the operator rates to be a function of
the generation, and this is shown in this thesis to produce superior evolutionary
dynamics to most, and equivalent to the best, fixed operator rates. However, self-
adaptive operators require no domain tuning. Empirically they are shown to provide
satisfactory results in all the test problems used in this thesis.

The SASME approach allows the representation to learn models in disparate problem
domains. The learnt models from measured data can be shown to contain useful
information about the problem domains from which they were derived. The SASME
evolved rule sets provide a method for elucidation of ecological information, pro-
viding knowledge about model predictions of ecosystem behaviours. This allowed

6.3. FINAL WORDS AND FUTURE WORK 149

hypothesis to be derived about the causes of species successions from predictive
models of those species. Such problems are common in the emerging field of ecoin-
formatics.

A diverse range of discrete structures can be used by the SASME algorithm. This
allows representations to be constructed which elucidate problem information and
which can still solve difficult problems. Relational information can be incorporated
in rule sets and descriptive models produced which use those relationships. Non-
Markovian problems can be addressed by the inclusion of evolved discounts of past
output in the set of attributes with which the model makes predictions. The re-
current rule set models developed in this thesis proved to be useful tools for the
discovery of controllers in a difficult non-Markovian control problem. The SASME
algorithm provides the first comprehensible model of the two-pole control problem.
The evolved model is nevertheless able to control the system as well as the neuro-
control approaches.

6.3 Final Words and Future Work

The proposed SASME framework has been employed exclusively for the evolution
of rule lists with exceptions in this thesis. The design of the algorithm, however,
is such that any discrete structure could be evolved. The implementation of the
algorithm has been carried out in Objective-C using the Swarm libraries,! with
the two different parts of the solution coded as separate objects. This allows any
discrete structure to be used as long as the object matches the required interface.
The structure object notifies the parameter object how many parameters have to
be adapted, and how many discrete mutation methods are defined for the object.
The evolution proceeds in the way outlined in Chapter 3. When there is no discrete
object the program reduces to an evolutionary strategy algorithm for parameter
optimisation.

Several discrete structures have been coded, or borrowed from libraries. Neural net-
works have been evolved by the algorithm using a set of discrete mutations similar
to those defined for the rule sets,®> however other types of mutations are possible,
including partial training by back propagation as is done in EPNet [255], and modifi-
cation of transfer functions. The rule set object has been implemented to use objects
as its consequence part. This allows arbitrary models to be performed as the con-
sequence of a rule. So far, linear equations and fixed topology neural networks have
been coded.

Future developments of the structures evolved by SASME will be based on the kinds
of problems which the algorithm is asked to solve. The idea behind the flexibility
of choosing representations is that knowledge can be learnt by the algorithm and

Lhttp://www.swarm.org
2Currently only addition and deletion of network nodes have been created.

150 CHAPTER 6. CONCLUSION

communicated. The discrete structure should be chosen so that evolved solutions to
problems are able to provide some insights into the problem which is being solved.
The nature of the insights being searched for will drive the development of the
representations.

Appendix A

Convergence Results for
Evolutionary Strategies

This appendix considers some of the convergence results obtained for evolutionary
strategies, and what they mean for parameter settings in the algorithm.

A.1 Global Convergence

These results consider convergence of the (1 + 1) ES, that is the algorithm where
one parent is replaced by it’s single offspring if and only if the offspring has a better
fitness. The extension of the first set of results to the (4) case are trivial since the
population based results will be at least as good as the (1 +1) case. Unfortunately,
there are few results for convergence of the (u, A)-ES. Note that a (1,1)-ES strategy
is equivalent to random search.

The criteria of interest in analyzing convergence of the ES approach is how long it
takes the algorithm to enter a vicinity of radius € of the optima in question (global
or local). So far results relating to the rate of convergence are only available in very
limited examples.

Following Schwefel and Bick [209], consider the (1 4 1)-ES starting at initial point
7(® with a mutation operator (*t1) = z(® 4 Z where Z is a n-dimensional normally
distributed vector with stochastically independent components along each of the
axis with the same constant variance o2. If I,, denotes the n-dimensional unit
vector then Z can be written N(0,0%I,). The simplification of Equation 2.5 to the
case of using a single variance ¢ is common in convergence results. It means that the
lines of equal probability in the objective function update equation, Equation 2.5,

are circles (n-spheres) and not ellipsoids.

The convergence theorem presented by Schwefel and Béack requires some weak as-
sumptions on the objective function. In practice these assumptions are very unlikely

151

152 APPENDIX A. CONVERGENCE RESULTS FOR EVOLUTIONARY STRATEGIES

not to hold to for problems of interest. An optimisation problem for which the ES
convergence algorithm holds is called regular.

Definition A.1 (Regular Optimisation Problem) The optimisation problem
f(x*) = min{f(z) | € e M CR"}

18 regular if and only if

1 f(z*) > -0

2 x* € int(M)

8 p{zeM| f(z) e U(f(z*)}) >0 Ve>0
where p is the Lebesgue measure, int(M) the set of internal points of M, and U, an
e-environment of it’s argument. One calls f the objective function, f(x*) the global
minimum, and x* the solution to the optimisation problem.

Requirement 1 is obvious. Requirement 2 is used to simplify the analysis without
making any strong requirements on the objective function. The last requirement
(3) prevents the objective function from having isolated global optima, which would
not be able to be reached with a probability greater than zero [209].

The following theorem, which is a trivial application of the Borel-Cantelli lemma
[37], is stated by Schwefel and Bick, [209].

Theorem A.1 Let € > 0 and p, = p(x(g) € {x € M | f(z) € U(f(x*)}) be the
probability that a population of the (1+1) ES has reached the point T(q) at iteration
g, the objective function value belonging to which is closer to the goal f(x*) than e.
Then, assuming

Zpg =00 (Al)

implies that
p(lim (f(@(q)) — f@*) = 0) =1

for any starting point x) € M.

Condition A.1 will be satisfied when the probability of generating a solution in
the e-neighbourhood of the optimal solution does not vanish. Condition A.l in
Theorem A.3 is made clearer in the following lemma [209]

Lemma A.1 If M C support(fz), where f; denotes the probability density of the
random vector Z of the mutation operator, and M is bounded, then Equation A.1
18 valid.

Where support(f(z)) is the set of values {z | f(x) # 0}. This result is an extension
of a general random search result [10][page 87] [198]. The theorem states that

A.1. GLOBAL CONVERGENCE 153

the optimum will be found with probability one given the reasonable criteria on the
search space presented above. Lemma A.1 will also hold when the mutation variance
is bounded.

It should be noted that Theorem A.3 only holds for (1 + 1) selection, which im-
plies (4 + A) convergence. For (u, \)-ES the sequence of solutions Fy consisting of
the best solution at generation g does not converge, although it does enter the -
neighbourhood of the global optima infinitely often (see Theorem 2.2 in [200]). This
happens because the necessary condition for global convergence, that a solution has
a finite probability of generating an offspring in the vicinity of the global optima,
will mean that any parents in the vicinity of the global optima in a (i, A)-ES have a
probability of 1 of generating no children in that vicinity at some later generation.
A simple hall of fame containing the best ever found solution (which would not be
put back into later generations) would allow the construction of a sequence that
would converge with probability 1 and would seem an intuitively obvious step when
implementing a (u, \) algorithm on an optimisation problem. That is, the best ever
solution is considered, and not the current populations best solution, as the result
of the (i1, \)-ES. This obvious strategy is employed throughout this thesis.

The results for convergence can be summarized by the fact that if any EA solution
has a finite probability of generating any other solution then the e-neighbourhood
of the global optima will be entered with probability 1 after a finite number of
iterations. The argument is identical to that for convergence of the elitist-GA and
many other optimisation procedures. Some of the criteria can be weakened [200],
although most implementations which can be shown to converge will do so under
the conditions presented. For the ES method, the requirement that any solution has
a finite probability of generating a solution in the region of the global optima can be
made exact, and implies that the variance of the mutation distribution is bounded
below (and above) by some fixed positive bound'. Although this was effectively
proposed by Schwefel in terms of satisfying computational limitations and ensuring
that the variance is not zero, it is rarely implemented in such a way on modern
computers [201].

The problem of what happens in the limit when the variation is not bounded below
was answered in the negative by Rudolph [201]. Rudolph constructs a fitness func-
tion which the ES provably does not reach the global optima with probability 1. He
states the following theorem

Theorem A.2 A randomly initialized (1 + \)-EA with a self-adaptation method
resembling the 1/5-success rule does not converge with probability 1 to the global
optimum of a continuous objective function in general.

Where essentially the 1/5-success rule means that the variance is not bounded below.
The result holds for Cauchy or Gaussian mutation distributions. The result means
that even elitist evolutionary algorithms with self-adaptation do not always enter

IThe variance, o, is required to be in a compact positive set

154 APPENDIX A. CONVERGENCE RESULTS FOR EVOLUTIONARY STRATEGIES

the region of the global optima in finite-time, in contrast to other evolutionary
algorithms [201].

While comforting to know that as time tends to infinity the optima will be found,
not many computer scientists have the patience to wait that long. Instead results
on convergence speed are desirable. Global convergence results do not say as much
as might be expected about the likely utility of an optimisation procedure. The
problem is that proof of entering the global optima in finite time with probability 1
says nothing about the probability of entering the global optima in some fixed finite
number of generations G. More important than global results are results which
analyses expected convergence velocities.

To maintain the theoretical possibility of entering the region of the global optima,
the self-adaptation must be updated to be bounded below. Any such lower bound
will affect convergence velocities to an optima when the distance to the optima is
of the same order as the lower bound. This suggests choosing the lower bound
to be in the same order as the desired precision of the solution. While such a
scheme would maintain in theory the convergence properties of the self-adaptive
evolutionary algorithm, there is little practical reason to implement the scheme.

A.2 Convergence Speed of Evolutionary Strate-
gies: The 1/5 Success Rule

To estimate convergence speed one needs to assume a fitness function. In the anal-
ysis of ES’s a sphere model is the most frequently used nonlinear model for the
objective®(eg. [10, page 85]), that is

n
fsphere(w) =Ctcere Z(xz -z} =co+c - r?
i=1

where &* = (27,...,2}) denotes the minimum, r is the Euclidean distance between
the trial solution & and the optimum solution * and ¢, and ¢; # 0 are arbitrary
constants determining the position of the centre of the sphere in IR” and the “steep-
ness” of the sphere respectively. The sphere model represents the simplest non-linear
function, and it is argued that a sphere model can approximate the local topology of
a local minimum of any fitness function. Sometimes the class of objective functions
is extended to arbitrary strongly convex functions [199], however the sphere model
will be used here for simplicity and brevity.

If the mutation operation is denoted by the application of some (stochastic) function

m(x) = x’ (A.2)

2objective function and fitness function may be used interchangeably

A.2. THE 1/5 SUCCESS RULE 155

where the objective update equation,Equation 2.5, is simplified to consider only one
variation parameter again, that is

zh = 1;+ 09 - N;(0,1) Vie{1,...,n} (A.3)
then the (1 + 1) algorithm becomes:
29 = max(z\9, m(z)) (A.4)

The original convergence rate results for the sphere model were presented by Rechen-
berg? [185]. Rechenberg also considered a linear corridor model, where the objective
function is modeled as
feorridor(®) = co +c1 -2

where Vi € {2,...,n} : =b/2 < z; < b/2. The corridor model represents a corridor
of width b where improvement is made only by moving along the z; axis [10, page
85]. The convergence rate of the stochastic ES is defined as the expectation of the
distance v covered towards the optimum by mutation (ignoring recombination), ie

@ = /bp(v) -y dy (A.5)

where p(7) denotes the probability for a mutation to cover a distance v towards the
optimum.

Convergence rates are expressed in terms of dimensionless normalized quantities,
o, = o1 -n/b, o) = @1 -n/b, 0y = 0y -n/r and ¢y = @, - n/r. For the (1 + 1)-ES,
and for n > 1 we have the following convergence rates for the two models [10, page
85][79, pagel25]:

n—1
, ¥} 20} o1 \/5 ,
= 1—4/== ~ — /= A.6
©1 o (\/; N) o €Xp (7T‘71 ()

! 2 2 !

’ L))) O
= exp|—= | ——(1l—erf| —= A7
i o) Flw(h)
where erf(z) = = [exp(—t?)dt is called the error function [10, page 85]. These
results are obtained by applying Equation A.5 i.e., by integrating the useful distance
covered by the mutation and the probability of covering that distance over the suc-
cess area for mutations. Note that there is no chance of the solution not improving,

since the elitist (1 + 1) strategy is being employed.

Using Equation A.6 and Equation A.7 it is possible to find the optimal standard
deviations o!* that maximize the convergence rate and the corresponding optimal
convergence rate @) by setting

d

"
do; ol

=0

3They are presented in Rechenberg’s doctoral thesis, which is published in German and un-
sighted by the author, who can’t read German anyway. The work is extensively cited and repro-
duced in English by Schwefel, [207, 208], and Béck, [10] and others.

156 APPENDIX A. CONVERGENCE RESULTS FOR EVOLUTIONARY STRATEGIES

i € {1,2} [10, page86]. Rechenberg also calculated the expected values for the
probabilities of an improvement occurring, i.e.

pi =P{film(z)) < filx)} (i€{1,2}; n>1)

with the mutation function m(-) in Equation A.2. Equation A.8 is the probability
of the child replacing the parent in Equation A.4. The resulting probabilities for the
corridor and sphere models are:

n—1
1 2 o} 1 2 ,
1/ o!

Using 0™ and ¢™ in Equation A.8 and Equation A.9, it is possible to find the optimal
success probabilities pf. The values found by Rechenberg are [185][10, page86]:

of = /5 &~ 1253 of = 1224
OF = L o~ 0184 of ~ 0.2025 (A.10)
pio= 5 = 0184 p; =~ 0.270

The 1/5-success rule is based on these results. By noting that the application of
optimal step sizes results in a (optimal) success probability, pi* of ~ 1/5, it can
be seen that an algorithm that maintains a probability of generating a successful
offspring of ~ 1/5 will maintain an optimal rate of convergence, ¢;* for both model
objective functions, i.e. i € {1,2}. Rechenberg used the term evolution window to
describe the order of magnitude that the step size can vary within and still maintain
a convergence velocity at least 1/2 that of the optimal. For the model functions in
Equation A.7 and Equation A.6 it is found that the step size can vary an order of
magnitude from the optimal and maintain an acceptable rate of convergence. This
allows us to say that the algorithm is not particular sensitive to the value of the step
size when it is around the optimal [10, pages 86-87], and the approximation of 1/5
1s sufficient. The alternative would require a different probability of success to be
obtained to each new problem in order to maintain a reasonable rate of convergence.

The 1/5-success rule is theoretically interesting, but it has a number of problems in
practice. If the objective function is such that the success rate is never above 1/5
the search will stagnate. It also provides no mechanism by which individual step
sizes oy, can be handled so that the mutation vector can be scaled to the scale of
the relevant axis.

A.3. CONVERGENCE SPEED OF EVOLUTIONARY STRATEGIES: THE (u 1 A)-ES 157

A.3 Convergence Speed of Evolutionary Strate-
gies: The (u T V)-ES

Schwefel extended the convergence rate theory to apply to the (1, A)-ES strategy,
with a single standard deviation which does not change, i.e.

g™ =m(z®™) Vhe {1,...,\}
where the mutation of each component of ™ is:
m(z{M) =z + o - N(0,1)
and the selection method for the (1, \) method means that Equation A.4 will become:
& = max(z®,...,z™)

where & will be the parent vector of the next generation. The results are extended
by looking at the distance that the average of the u best offsprings makes towards
the optimum, and the theory derived by Schwefel was general enough to account for
the (u T A)-ES.

In this case, let p;(7y) be the probability that the ith best offspring covers the distance
~ towards the optimum, then the probability that the average of the best v offspring
will cover a distance «y towards the optimum will be

1
p(y) ==Y o)

gy

The analog of Equation A.5 will then become

oo

o= [sy (A1)
VY=Tmin

where Ymin will be 0 in the (pu + A) case, to reflect the fact that the elitist method

does not ever have make negative progress, and it will be —oo for the (u, A) case.

Schwefel presents the following expression for the probability of the ith individual

covering a distance of v towards the optimum:

pi(7) = ACYT - Pyymy - DY 2 - Posy (A.12)

where p,.—, is the probability of offspring number j covering the distance v exactly,
Dy;>y, 1S the probability of j covering a distance greater than vy and p,,<, is the
probability of it covering less. The interested reader is referred to Béack for more
discussion [10, pages 88-89]. Combining Equation A.11 and Equation A.12 allows
the statement of Schwefel’s convergence rate theorem:

Theorem A.3 (Convergence velocity of (u 1 A\)-ES) Let ¢4,y denote the ez-
pectation of the progress rate of the population average for a (u t X)-ES using one

158 APPENDIX A. CONVERGENCE RESULTS FOR EVOLUTIONARY STRATEGIES

single standard deviation and no recombination or self-adaptation. Assuming a min-
imization task, Putxy can be calculated according to

) 00 B B » .
Plutr) = ;/7 [7 . ch_f " Pyj=y 'p$j<’7 (L= pyy<y) ™ | dy (A.13)

=Ymin =1

where Ymin = 0 for a (u+ A)-ES and ymin = —00 for a (u, \)-ES.

Unfortunately Equation A.13 in Theorem A.3 can’t be solved to calculate analytical
convergence velocities in most cases, including the sphere and corridor models.

In the case of the (1, A)-ES, Schwefel was able to calculate the maximum of the ratio
©i/Ai and arrived at A = 5 for the sphere model and A a2 6 for the corridor model.
This led Schwefel to suggest a ratio of p/) of at least 1/7 to maintain a sufficient
convergence speed [10, pages 90-91].

Beyer provides some results for (u, A)-ES for the N-dimensional sphere model with-
out recombination [23], and with recombination [21]. Beyer also extends the con-
vergence rate ideas in Theorem A.3 to account the self-adaptive (1,))-ES* [24].
The self-adaptive theory confirms Schwefel’s setting of the learning rate parame-
ter 7 o« 1/N, and Beyer hypothesizes that Schwefel’s empirical finding that self-
adaptation works best when intermediate recombination of the strategy parameters
is employed (see discussion and footnote on page 21) might be explained by his
genetic repair hypothesis of intermediate recombination [21, 24].

4With a single self adaptive parameter o.

Appendix B
No Free Lunch Theorems

This appendix presents the no free lunch theorem, and discusses some of its impli-
cations.

Evolutionary algorithms are usually applied when existing algorithms cannot be
applied, or they simply fail to give satisfactory answers or fail to supply answers
in reasonable time frames. The performance of a given search, optimisation or
learning algorithm on a given problem is usually unknown. The computability and
complexity of a given problem are an estimate of how hard it is to solve a problem.

A fundamental concept in computational complexity is the Church-Turing Hypoth-
esis:

Hypothesis B.1 (Church - Turing Hypothesis) The class of decision problems
that can be solved by any reasonable model of computation is exactly the same as the
class of decision problems that can be solved by Turing machine programs.

A number of related points can be noted:

1 If a given problem can be solved by a finite procedure (ie. is computable, see
note on page 2) then it can be solved by a universal Turing machine.

2 It is not necessary to build a new machine for solving every new problem.

3 Modern computers are essentially universal Turing machines.

The Church-Turing result gives us optimism that evolutionary algorithms can solve
a lot of computable problems by automatically generating solutions on a Turing
equivalent computational device. The No Free Lunch (NFL) result reduces our
hubris somewhat.

The NFL theorem by Wolpert and Macready [248] sets up a mathematical framework
in which to evaluate search algorithms and then proceeds to show that without do-
main specific information, there is no way to justify claims of one search algorithm’s
efficiency over another. The theorem can be stated simply:

159

160 APPENDIX B. NO FREE LUNCH THEOREMS

Theorem B.1 (No Free Lunch) For any pair of algorithms a; and as,
Y oP(a& | fymea) = > P(dY | f,m,a)
0 f

where a;, ¢ € {1,2} is an algorithm mapping previously visited points in the search
space and producing a new, unvisited point d; P(d¥, | f,m,a;) is the conditional
probability of generating a particular previously unvisited point d,, after iterating a;
for m iterations on a cost function f. Then Theorem B.1 says that the conditional
probabilities for visiting any two points will be the same over all cost functions
f regardless of the algorithms chosen a;. An obvious corollary of Theorem B.1 is
that given any performance measure ®(dY)), the average over all cost functions f
of P(®(d¥,) | f,m,a) is independent of the algorithm used a. In other words, no
algorithm performs better than all others on all cost functions, and on average, they
all perform equally [78].

Consider two finite spaces X' and). Each point in X has a cost associated with it
which is in Y and is given by f(z)(€ Y). f is a single valued function f: X — V.
Wolpert and Macready [247] consider all functions which take values from X to).
On two modest sized spaces of 100 elements each, this would represent 100! different
possible functions. If a search algorithm knows nothing about the functions it is
searching, then it could be confronted with any one of these functions. Wolpert and
Macready show that all blind search algorithms perform exactly the same in this
situation.

NFL results say something intuitive about blind search, and some ramifications will
now be informally discussed. Culberson relates the following anecdote [51]:

In the movie UHF, there is a marvelous scene that every computing scientist
should consider. As the camera slowly pans across a small park setting, we
hear a voice repeatedly asking “Is this it7” followed each time by the response
“Nah!”. As the camera continues to pan, it picks up two men on a park bench,
one of them blind and holding a Rubik’s cube. He randomly gives it a twist,
then holds it up to his friend to repeat the question/answer sequence yet
again.

The depicted scene typifies the concept of blind search. The searcher has minimum
information about the space he is searching in. All search strategies which propose
only new states of the cube will perform equally in terms of the expected number
of iterations before the problem is complete.

When the environment returns a value for the state that the problem solver has
proposed we are still no better off. To see this, consider instead of a fixed problem an
adversary who assigns a value to each proposed solution. The value will be the value
previously assigned if the solution has been previously proposed (something which
the conditions of the NFL, Theorem B.1, forbids, since algorithms which go over old
ground can be provably demonstrated to be inferior to algorithms which only ever
test new ground!). If the solution has not been previously proposed, the adversary
assigns it a random value. If the adversary chooses from an appropriate distribution

161

than it can generate with equal probability a function from the class of functions
of interest. It is reasonable to suspect that there will be no best search method
when confronted with the adversary. By assuming nothing about the function being
searched the NFL theorem essentially allows an adversary to choose the evaluations
of solutions.

162 APPENDIX B. NO FREE LUNCH THEOREMS

Appendix C

Classifier Systems: The Michigan
Approach

This appendix describes Hollands learning classifier system (LCS).

The LCS was designed to operate in a reinforcement learning environment [118, 130,
165, 216], such as that in Figure 2.4, page 26. A reinforcement learning environment
is one where the environment returns information about a models output at some
point. The only information available to the learning algorithm is therefore perfor-
mance related. A classifier consists of a DETECTOR:MESSAGE pair. The DETECTOR
attempts to match symbols presented to the classifier by the environment and the
MESSAGE part of the classifier specifies an action to perform if the classifier is suc-
cessfully activated. The MESSAGE part of the classifier consists of a fixed length
string from the ternary alphabet {0,1,<}. The < symbol represents a don’t care
at that loci of the string. The binary alphabet was chosen to maximize schema
processing. Figure C.1 shows an example pattern and some of the detectors that
would match it.

Holland likens the system to an office where at the beginning of each day there are
a number of memo’s on a message list to be processed. Each classifier corresponds
to a desk that can process a certain type of memo. At the end of each day, the
desks perform an action based on the memo’s processed that day. An action can
be either posting a message on the message list for the next days processing, or

DETECTOR
000011000410
is matched by ©10011001110
0 100OTOOOOO0
010011001110

PATTERN
010011001110

Figure C.1. An ezample of o pattern and the classifiers that would match the pattern

163

164 APPENDIX C. CLASSIFIER SYSTEMS: THE MICHIGAN APPROACH

Message Rule
List List
Ll.l.at Ch ‘ ‘
— b
F'3 1 |
| | -
post
input output
messages messages
| [
Input interface Output interface
detectors effectors

3

Bucket brigade
(adjusts rule strengths)
Genetic Algorithm
(generates new rules)

Environment

Figure C.2. A Holland style classifier system ([118, page 464])

performing some action on the environment via the effectors. The environment
is assumed to give only sparse, intermittent payoff to the learning algorithm. The
payoft is divided amongst the classifiers by an algorithm known as the bucket brigade
algorithm. New rules are generated from old by a genetic algorithm. The situation
is shown in Figure C.2, [118].

Each matching DETECTOR is assigned a bid value depending on how specific the
classifier is and the expected payoff of the classifier. The number of wildcard ele-
ments in the classifier determines how specific it is—the more & symbols the less
specific. The more specific the classifier, the higher it’s bid. The expected pay off,
or strength, of the rule is decided by the credit apportioning algorithm, the bucket
brigade, and depends on how successful the rule has previously been in getting pay-
off from the environment. The bid b; of rule 4 is usually a proportion of the rules
strength s;, where the proportion is dependent on the rules specisifity, specisifity;,
and is usually set to:

Number of specified bits in rule 7
Number of bits in the rules

and the bid strength of rule 7 would then be:

specificity, =

b; = specificity, - s;

In the CS-1" classifier presented by Holland [115], the top ten classifiers are chosen

1CS stands for Cognitive System [115]

165

and randomly weighted according to bid strength to determine the winning classifier.
The winning classifier has it’s MESSAGE performed.

The bucket brigade algorithm works as follows. If a rules bid is successful then its
strength is reduced by an amount equal to the bid:

si(g+1) =si(g9) — b (C.1)

All rules which posted messages to the message list that were matched by rule i get
their strength increased by the bid of rule ¢, so that if rule j had posted a message
matched by 4 it would have:

s5(g+1) = 5,(0) + 2 (©2)

where n is the number of classifiers which posted messages that are matched by
i [122, section 4.1.5]. Note that the message list is cleared at the end of each
time period (“day”). The analogy used by Holland is that of an economy where
information is bought and sold by the rules and payments are made from the rules
strength. The system recoups strength via reinforcement from the environment. If
rule i performs an action on the environment that results in some reward, it has its
strength boosted by an amount equal to that award. As rules grow stronger, they
make stronger bids [118].

The bucket brigade algorithm is motivated partly to help the formation of default
hierarchies. Default hierarchies are discussed in section 2.3.2 on page 30. The
bucket brigade promotes the coupling of different rules by dividing payoff amongst
rules with the bidding system. The algorithm promotes the formation of increasingly
specific, accurate rules.

The generation of rules in a Holland style classifier is conducted by a GA which
periodically replaces low strength rules in the population with new rules based on
the current rules in the population [118]. The use of the internal memory structure is
not always necessary. DeJong notes three reasons why an internal memory (message
list) might not be used [57, page 630]:

1 The application does not need the extra computational complexity.

2 The halting problem: how many internal actions are allowed to be performed
before the next external action must be?

3 Most of the work in traditional machine learning does not use an internal
memory.

An internal memory will increase the complexity of the model and make it a more
powerful computational engine than a simpler “stimulus-response” inference engine.

Nearly every part of the suggested classifier system has been altered and alternative
methods tested [246].

1 Pattern Matching. Instead of detectors matching exactly the symbols supplied
by the environment, partial matches are possible.

166 APPENDIX C. CLASSIFIER SYSTEMS: THE MICHIGAN APPROACH

2 Credit Assignment. Many different credit assignment methods have been tried,
such as: Methods which reward all classifiers who were active since the last
payoft event equally (epochal); methods where classifiers pay a part of there
strength to classifiers active on the previous step (implicit bucket brigade).

Although default hierarchies have been observed in applications [246, 94], it has been
noted that their development and stability can be problematic (197, 215]. When a
rule that forms part of a hierarchy is modified it can cause the complete collapse of
the entire hierarchy. Rules which occur early in a long hierarchy chain are difficult
to reinforce because of the number of iterations required to move payoff up the chain
to the early classifiers [246].

Holland’s classifier system is a complicated structure with many interacting pro-
cesses determining its success. Wilson writes [240]:

.. .efforts to realize the framework’s potential have met with mixed success,
primarily due to difficulty understanding the many interactions of the classifier
system that Holland outlined.

Despite this, there are a range of applications which Holland style classifiers have
successfully been applied to such as control problems [94], letter recognition prob-
lems [87] (but see [69]) and others [246]. In response to the complexity of the
LCS suggested by Holland, Wilson proposed a simplified “zeroth level” classifier
system, ZCS [240]. ZCS simplifies Holland’s classifiers by removing the message
list, simplifying the bucket brigade, removing the bid competition and removing the
measurement of specificity from the system. Wilson asserts that specificity is not
desirable in classifier systems [239], and ZCS does not use it.

Wilson’s credit assignment algorithm is related to the machine learning method of
(tabular) Q-learning [240, 61]. Q-learning and temporal difference (TD) methods
share a common goal with CFS research, although stemming from two different
traditions in artificial intelligence research, the behaviourist tradition in the case of
TD and Q-learning and the symbolic approach in the case of CFS [61]. When a
classifier system is drastically simplified by

1 removing its internal message list.

2 forbidding “don’t care” symbols (ie. the < symbol in Figure C.1 on page 163).

3 allowing only one condition and one action on each classifier.

4 allowing the population to contain every possible condition-action pair (so that
a GA is not required).

and using the implicit bucket brigade where a classifier is selected probabilistically
from the match set on the basis of its strength and pays a proporfionate amount
of its strength to the previously fired classifier, while receiving a proportion of the
subsequent classifiers strength, ie.:

sifg+1) =(1—-a) si(9) + R+ s5;(9+a) (C.3)

where s;(g) is the strength of classifier i at generation (iteration) ¢, « is the pro-
portion of a classifiers strength that gets paid to other classifiers, R is the reward
from the environment after application of classifier i’s action and classifier j is the

167

classifier whose action is performed at the next time step g + 1. It is beyond the
scope of this thesis to review the Q-learning literature, however it is interesting
to note that Equation C.3 corresponds to the Q-learning update formula with the
discount rate v set to one and the strength (Q-value) of an action updated by the
action which is actually performed at g + 1 rather than the action corresponding
to the maximum Q-value. These changes are minor, and Dorigo et al argue that
Q-learning extensions often make the Q-learning algorithm more similar to the full
CFS algorithm [61].

Wilson extends the ZCS classifier system to update the method in which classifiers
are evaluated. In an algorithm referred to as XCS, Wilson allows each classifier to
maintain a prediction of its accuracy, but the fitness of the classifier is based on a
measure of the classifiers prediction estimate accuracy [241, 242, 243, 245, 244, 42].
The strength parameter is removed, and classifiers are chosen from the action set on
the basis of their predicted value. Results of using the method indicate that XCS
can generate more general rules than ZCS. Wilson also modifies the method the GA
uses to generate new rules.

Extensions to the LCS algorithm’s mentioned so far include using fuzzy sets and
rules for the classifiers [50, 224, 171, 35, 36], real values for classifiers [244, 36],
messy codings [149] and S-expressions for rule conditions [150].

To the authors knowledge, Michigan style learning classifiers have only been imple-
mented using the genetic algorithm evolutionary paradigm.

168 APPENDIX C. CLASSIFIER SYSTEMS: THE MICHIGAN APPROACH

Appendix D

Schema Theorem and
Representation

The defining feature of genetic algorithms is the choice of binary strings to represent
solutions. This choice is popular due to Holland [117], although others, including
Bremerman [76, page 311][41] and Friedberg [88, 89], also used a binary representa-
tion.

D.1 The Genetic Algorithm

Holland [117] proposed modeling the operators and structures of a search method
off an idealized understanding of genetic processes. The chosen representation most
closely simulates a unicellular, haploid organism [10, page 16]. He called his method
genetic algorithms (GAs). A population of solutions are modified by crossover,
mutation and inversion operators and the best of the resulting solutions are chosen
for the next generation. The operators are a simplification of the more complex
behaviour which underlies natural genetic systems [170].

The essential components of the GA in common with all evolutionary methods are
reproduction, mutation, competition and selection. The unique aspect, as proposed
originally by Holland, is the representation of solutions as binary strings. The
canonical genetic algorithm is implemented as follows:

1 To implement a genetic algorithm the problem of interest must be able to be
defined as a fitness function, F(-) € IR, that represents the value of any given
solution. The value assigned is clearly dependent on what the problem is and
why we are solving it. Without loss of generality, we will assume the problem
to be to find max(F(-))!

1A minimization problem redefines F(-) to be —F(-), although the roulette wheel selection
method requires F'(-) > 0 this is easily remedied by choosing the probability of selection to bel—p
where p is the calculated probability. If 3 z,y : F(z) < 0, F(y) > 0 then some other trick needs

169

170 APPENDIX D. SCHEMA THEOREM AND REPRESENTATION

2 A population, P(0), of P candidate solutions,
z® e P(0), ke {1,2,...,P}

are generated as binary strings, xl(-k) € {0,1}. This typically involves forcing
the representation onto the problem. For example [71], if the problem were to
find a scalar y which minimizes

9(y) =y

then a finite range of values of y would be selected and then the minimum value
would be assigned {0,0,...,0} and the maximum would be {1,1,..., 1}. The
desired precision would then be used to determine the size of the solution
vectors, ie. x(®*) ¢ {0,1}". Biologically inspired terminology is usually used.
Solutions are referred to as chromosomes. Bits in the chromosome are referred
to as genes and the alternative values at a position, or locus, are referred to as
alleles. The binary string is the genotype of the solution and in this example
the real value y which the binary string *) codes for is the phenotype.

If D is the domain of interest of F(-), then let d : {0,1}* — D, where d
is usually not one-to-one or onto the domain of F(-). We let the function
f(-) be the function resulting from applying the fitness function F (-) to the
transformed binary string, ie f(z) = F(d(x)), = € {0,1}". We also refer to
f(+) as the fitness function.

3 The solution vectors in the population,

x®) € P(g), k€ {1,2,...P}, ge N

are decoded and assigned a fitness, f(z*)), according to the objective function.
g € N is the generation number.

4 Each chromosome is assigned a probability of reproduction proportional to it’s
fitness relative to the fitness of the other solutions in the population P(g). If
Vz : f(x) > 0, then this can be accomplished by roulette wheel selection where
the probability of selection of z®) € P(g) is

f(m(k))
Py = m, z € P(g)

5 With probability p; a solution is chosen for reproduction. Chosen chromo-
somes reproduce by the genetic operators of mutation, crossover and (rarely)
inversion, Figure D.1.

Mutation With a set probability py.,. a bit in a solution 2®) is flipped. pmut
is often set to an arbitrary small value between 0.01 and 0.001 [71].

Crossover With probability peoss crossover is performed. In a one-point
crossover operation a uniformly random number, r, between 1 and n
is chosen. The first r bits of a chosen solution are combined with the last

to be used.

D.1. THE GENETIC ALGORITHM 171

Crossover
Crossover, Point

lo]oJo ofololofo]— [1]z]a]z]2]o]o]0]

LTalalafalafa]e]—— [ofofofoofs]s]1}

Mutation

[oJoTofo oo oo]— [ofo]ofof1]o]o]0]

Mutation Point
Inversion

[oToToTola aala]—— [2]a]a]s]o]ofo]o]

Figure D.1. Genetic operators for binary representations.

n — r bits of another chosen solution to create a new child offspring. A
second child offspring is created from the remaining bits. In a two-point
crossover operation two randomly chosen points are used. In uniform
crossover two offspring are created where with probability 0.5 each bit of
the first offspring comes from one of the parents. The second offspring
contains the bit from the parent not contributing to the first. pcross is
usually arbitrarily set between 0.6 and 0.95 [71].

Inversion With a set probability pi,, a part of a chromosome has it’s order
reversed. Inversion is rarely used because it rarely produces offspring
with high fitness, it was, however, suggested in Holland’s original work
[117].

6 The genetic algorithm is terminated when a desired solution is found or when
a set number of generations have elapsed.

The classical argument about how genetic algorithms work is based on three com-
ponents:

1 A large population of solutions are initialized randomly to provide random
sampling of the search space

2 Individuals with a high fitness are preserved through selection. This biases
sampling of the search space towards areas of higher than average fitness

3 Portions of different strings, called “building blocks” are combined onto the one
string by the process of crossover, thereby exploiting the parallelism provided
by maintaining a population of solutions

We now review the details of the above argument.

172 APPENDIX D. SCHEMA THEOREM AND REPRESENTATION

D.2 The Schema Theorem

The motivation behind the use of a binary representation is inextricably intertwined
with the notion of a schema. Consider an alphabet of symbols A with # ¢ A (using
the notation of Holland [117]). We consider fixed length strings from the alphabet
A and we define the # symbol to be a wild card or don’t care symbol, meaning that
we do not care what symbol is at that particular loci. The set of fixed length strings
formed by the union of the alphabet A and the symbol # are referred to as schema.

Consider the alphabet A = {0,1} and the schema {00#%#}. The schema {0044}
represents all of the strings {0000}, {0010}, {0011} and {0001}. Holland recognized
that the fitness of an individual with schema {00#+#} gave an implicit evaluation of
the expected fitness of the schema. That means that an evaluation of {0000} gives
some information about the fitness of {00##}, {#0##}, {#040} and so on [71].
Holland called this implicit parallelism because it implied that a single evaluation
could give information about a large number of schema [81] at the same time (ie. in
parallel).

Definition D.1 (A Schema) A schema is a similarity template describing a sub-
set of strings with similaritics at certain string positions®

A binary representation of length n will have 3" possible different schema, since it
is an instantiation of the ternary alphabet {#,0, 1}. A binary string of length n
describes 2" schema, since each bit can have one of two possible values, either it’s
binary value or the # symbol. A population of P chromosomes will then be sampling
between 2" and P -2 different schema, depending on the number of different alleles
in the population®. Where m is the number of # symbols in the schema, the order
of the schema is defined to be the number of fixed positions in the schema, or n —m
(10].

Definition D.2 (Order of Schema) The order of a schema is equal to the num-
ber of fived positions in the schema, ie 0: {0,1, #}™* — {0,1,...,n} such that:

o(H) = | {7 | hs € {0,1}} |

For a binary string of length n, there are?

G

2Schemata plural of schema can be illustrated as hyperplane partitions of the n-dimensional
hypercube where each vertex represents one of the 2" different possible states of the individuals
[22].

3In fact the number of schema sampled will be strictly less than P - 2" whenever P > 1.

4Cn, is the combinatorial operator, cr = (n+'),m,, also written (2)

D.2. THE SCHEMA THEOREM 173

different possible schemae of order m represented [57, page 619]. Hence a single solu-
tion can implicitly evaluate a considerable number of different schema (hyperplanes,
partitions) in the search space.

Holland proposed that different representations in genetic algorithms could be com-
pared by considering the number of schema that the algorithm would process us-
ing that representation. For example, a decimal string of length 6 can represent
10 = 1 000 000 distinct objects. Similarly a binary string of length 20 can rep-
resent about the same number of objects 22° = 1048576. However the number of
possible schemata processed in a decimal string will be 116 = 1771561 where as the
binary string will process 3% = 3.49 x 10° [117, 81]. Holland proved that schema
processing is maximized when |A] = 2 and a binary representation was suggested as
the universal representation [117, 71].

The problem was then to decide how to allocate trials amongst the different schema.
Holland likened the problem to the gaussian two-armed bandit problem {116][117,
page 75-83][79, page 115]. In the gaussian two-armed bandit problem a poker ma-
chine® with two arms is considered which provides a different normally distributed
random payoff upon pulling either arm. The payoff from the first arm has mean px,
and variance o2, and the second arm has p, and 03. The problem is how to best
allocate trials between the two arms in order to minimize the expected loss from
pulling the wrong arm. If we perform n; pulls of the first arm and np pulls of the
second, then we will have an observed mean payoff of Z; for the first arm and Z for
the second. If we let the function q(ny, ny) be the probability that after pulling arm
1 n; times and arm 2 n, times the observed mean value for the first arm is greater
or less than the observed mean value of the second when the true mean is not, ie

_ Pr(@ > Z2) i < g
q(n1,m2) = { Pr(z1 < Z2) if pn > po -

then the two-armed bandit problem is to minimize the expected loss function,
L(ny,n2) = [g(na, n2)n + (1 — g(ma, na))nal | w1 — pe | (D.2)
Holland proved the following theorem about minimizing equation D.2 [116][117,

pages 77-78][94, page 37][79, page 116]

Theorem D.1 Given N trials to be allocated to two random variables with means
1 > o and variances o and o, respectively, and the expected loss function de-
scribed in equation D.2, the minimum expected loss results when the number of trials
allocated to the random variable with the lower observed average payoff is®

n* ~ b In —L (D.3)
8mbt In N2

5Referred to as a slot machine in the USA
6the asymptotic notation A(t) ~ B(t) indicates that for arbitrary functions A(t), B(t) of the

same variable ¢, we will have lim;_, o %% =1 [117][37, page 37]

174 APPENDIX D. SCHEMA THEOREM AND REPRESENTATION

where b = o1 /(g1 — p2). The number of trials to be allocated to the random variable
with the higher observed average payoff is N — n*.

The proof is long and can be found in Holland [116][117, pages 78-83]. Equation D.3

can be rewritten as .
N—-—n*~ N~ V8rbtIn N2 . e2?

indicating an exponentially growing number of trials N — n* to be allocated to the
observed best (see [117, page 83]) [10, page 127).

The above analysis will also hold for the k-armed bandit. Holland likened the
problem of allocating trials to schema to that of allocating trials in the k-armed
bandit problem. In order to minimize the expected loss, it was proposed to allocate
an exponential number of trials to the observed best solutions in order to minimize
the expected loss while sampling schema [79, page 117][94, page 30-31].

Reproduction will increase the frequency of successful schema in the population
by selecting those individuals with higher probability. Mutation will occasionally
disrupt schema and is seen as a slow background operator which ensures that no
schema are irrevocably lost to the population. The effect of crossover will depend
on the defining length of the schema.

Definition D.3 (Defining Length of Schema) The defining length of a schema
is defined to be the number of symbols between the first non-# symbol and the last
non-# symbol, ie § : {0,1,#}™ — {0,1,...,n — 1} such that

6(H) = maz{i | h; € {0,1}} — min{i | h; € {0,1}}

Short low order schema are less likely to be disrupted than longer schema by the
typical one or two point crossover operators. This leads to the central theorem for
genetic algorithms and how they work, the schema theorem [117, 94][10, page 125
126], which describes the change in the number of copies of different schema in the
population during the execution of the genetic algorithm described on pages 169—
171, with one-point crossover.

Theorem D.2 (The Schema Theorem) Short low order above average schemata
recewve exponentially increasing trials in subsequent generations.

xz(g + 1) 2 xz(g)@ (1 e pcross:i(fi)l l:l - xl;g):') (1 - pmut)O(Ii) (D4)

where z;(g) is the number of copies of schema I; at generation g. P is the population
size. f; is the average fitness of the fixed length binary strings containing schema,
I;. f is the average fitness of the entire population, that is

-

D.3. PROBLEMS WITH SCHEMA ANALYSIS 175

n is the length of the bit string. o(I;) is the number of non # symbols in the schema
I, ie the order of the schema, Definition D.2. §(I;) is the defining length of schema
I; (Definition D.3) and peross and pmys are the probabilities of mutation and crossover
respectively.

The proof of the schema theorem is straight forward and can be found in Holland
[117], Goldberg [94, page 28-33], Bick [10, pages 123-126] and elsewhere. Theo-
rem D.2 says that the observed number of a particular schema in the next generation
will increase (decrease) according to a multiplicative equation, Equation D.4, which
depends on the fitness and order of the schema. In particular, schema with low
order (short) and above average fitness will increase in number exponentially as the
number of generations increase. Equation D.4 will increase the number of copies of
schema I; when f(I;) > f and 6(I;) and o(I;) are small.

The schema theorem gives us a concrete result about what is happening during a ge-
netic algorithm run. It provides the reason for the choice of a binary representation,
namely the principal of minimum alphabets; binary strings maximize the number of
schema the algorithm processes. With theorem D.1 it provides a reason for choos-
ing fitness proportionate selection; to optimally allocate trials amongst schema. It
provides reasons for choosing crossover methods; crossover is chosen to minimize
disruption to schema and hence to conform to the building block hypothesis

Hypothesis D.1 (Building Block Hypothesis) Successively better solutions can
be generated by combining useful parts of extant solutions.

It also dictates the mutation probabilities; mutation is a background operator which
is infrequent so that it does not significantly disrupt schema processing, however it
must be maintained in the algorithm to ensure that no schema are lost to the
population. The schema theorem is seen as the fundamental theorem for how genetic
algorithms work [94, page 33][79, page 117]. Genetic algorithm work by optimally
allocating trials in a manner which maximizes the implicit parallelism of the method.
The schema theorem states that the method will increase the frequency of short
above average fitness schema exponentially when they are rare in the population [2].

D.3 Problems with Schema Analysis

The previous analysis is important since it has guided genetic algorithm design
since it’s conception with Holland in 1975. The theoretical analysis has many short
comings, some of which we will now consider.

The stated goal of Theorem D.1 “...is to discover a procedure for distributing an
arbitrary number of trials ...so as to maximize the expected payoft” [117], however
a number of problems with both the derivation and utility of the Gaussian k-armed
bandit problem to this end have been identified:

176 APPENDIX D. SCHEMA THEOREM AND REPRESENTATION

1 Holland considers only strategies where each arm has been pulled n times and
the remaining N — 2n trials are to be optimally allocated. It is not clear what
relevance this subset of strategies has to the general optimisation problem of
k-armed bandits [155] and by extension to the problem of allocating trials in
a GA.

2 The fact that equation D.3 on page 173 is independent of the standard devi-
ation oy of the arm with the lower payoff is surprising. A higher value of o
would indicate that more work would be required to establish which arm has
the higher mean than otherwise. Macready and Wolpert state that “...the
fact that Holland’s result is independent of 5 is ipso facto reason to suspect
it.” [155].

3 In fact, it has been shown that a simple greedy algorithm based on a Bayesian
[112] update from prior pulls performed better than Holland’s strategy [155].
The derivation of Theorem D.1 assumes that the expected loss for allocating
trials is unconditioned instead of being conditioned on the previous trials,
which it should correctly be [155]. Theorem D.1 is the solution to the wrong
problem [79, page 116-117].

4 In examining the problem of allocation of trials, the assumption is always
that the fitness distribution of schema is normal”. This requires the central
limit theorem to be applied, which in turn will require a sufficient number of
independent evaluations of the schema. Only then can the separate fitness
evaluations of the schema be assumed to be normally distributed. Most GAs
codings violate the assumption of independent evaluations, and the frequency
of schema in the GA population will frequently be less than that required
for the central limit theorem, invalidating the assumption of a normally dis-
tributed fitness evaluation of the schema [79, page 118].

Altenberg notes that it has been shown that the link between the schema theorem
and performance of the GA is based on the building block hypothesis. The basic
idea is that by allocating exponentially many trials to promising schemata the GA is
searching promising area’s of the search space and thereby more likely to find better
solutions [2]. The promising area’s of the search space corresponds to above average
schemata, and the assumption is that the genetic algorithm produces high quality
solutions from above average schemata. That is, the fitness of children and parent
is correlated. But this requirement is independent of the schema theorem [2].

Fogel writes that [79, page 117]:

In light of Macready and Wolpert (1998), there now appears to be no sup-
port for viewing the schema theorem as having fundamental importance. The
theorem simply describes the expected number of each schemata at the next
generation under proportionate selection when each complete solution is as-
signed a specified fitness value.

The above problems go some way to explaining the proliferation of schema-theorem
defying GAs in the literature.

"The assumption is always that the distribution of the payoffs in the k-armed bandit problem
is normal

D.3. PROBLEMS WITH SCHEMA ANALYSIS 177

In Baker (unsighted [15]) and later Whitley [235] reported the first experiments
using a rank-based selection method, where the probability of selecting an individual
was independent of its fitness value, and instead dependent on its rank (according
to fitness) in the current population. Rank based selection helped slow down the
convergence of the genetic algorithm and stop domination of the method by a few
super individuals whose fitness would be so far higher than the rest of the population
that they become over represented in the consecutive population and the method
quickly convergences. Other selection methods are often used, not necessarily in
agreement with the schema theorem [27]

The principal of minimal alphabets is based on the idea that a binary alphabet can
process 3" schema, where as a k-ary alphabet which encodes the same number of
points as a binary alphabet of length n, ie 2" points, will have a length of

In2
Ink

n=n-

and will process (k+1)" schemata. This number is always less than 3" for n > 2 [10,
page 128]. Interpreting genetic algorithms as schema processing machines gives that
a population of size N will process O(N?), which is the implicit parallelism result
[94, pages 40-41][10, page 128]. Antonisse [7] has proposed a different interpretation
of the # character. Rather than representing any single symbol, Antonisse proposed
that the # symbol can be interpreted as representing all subsets of available symbols.
So the schema [0#02] in a ternary alphabet would be the sets {[0002] [0102]},
{[0002] [0202]}, {[0102] [0202]} and {[0002] [0102] [0202]} as the # symbol indicates
a(0or1), (0or2),(1or2)and (0,1 or2). Viewed in this way implicit parallelism
is maximised by higher cardinality alphabets.

D.3.1 Operators and Representations in Evolutionary Com-
putation

Fogel [81] shows that no particular representation of a genetic algorithm can be
universally preferred over any other by showing that under appropriate mappings
all operators can be modified to give the exact same behaviour on any representation.

Where we use an EP/ES phenotypic representation on a problem with a enumerable
solution space® we note the following, following an argument similar to that of Fogel
[78]. We will let one representation be genotype space, G, and the other phenotype
space, P, where the fitness function is applied directly to members of P. EP and
ES typically represent solutions as elements of P. We will suppose that there is an
invertible mapping T between G and P. We will now show the equivalence of the
GA and EP representations.

8The result should extend to an infinite space by considering a finite number of subsets of the
real coded EP/ES algorithm as corresponding to a binary structure in genotype space, as noted in
[81].

178 APPENDIX D. SCHEMA THEOREM AND REPRESENTATION

If T'(-) is a mapping from genotype space G to phenotype space P, T : G — P, then
the population of an evolutionary program could be considered as T(z),Vz € P,
where IP C G is the current population. The probabilistic operators of a genetic
algorithm map elements of G to other elements of G. If O(-) is the operator mapping
applied at each generation, then O(z),Vz € IP is the child population generated
from the current population. That is, it is the next generation. O(-) generates a
probability distribution over elements of G where the probability is the probability
of z € G being generated by the operator O(-). In an evolutionary programming
approach we can define the operator O, a map from P — P by using an inverse
mapping T~ to map solutions in P to the genotype space G and then applying
O:G — G and then T : G — P. By choosing the operator Op =T '000T we
have identical behaviour between the GA and the EP/ES algorithm. Similarly, by
choosing O = T 0 O, o T™! we can map the genotype to the solution, the solution
to another solution and back to the equivalent genotype.

A similar argument can be constructed for any crossover operator which acts on n
parents. Note that the mapping 7" will not be invertible when different genotypes
map to the same phenotype. When the EP algorithm visits such a phenotypic point,
the behaviour of the two algorithms diverge.

Reasoning like this we can argue that there is no difference between the representa-
tions chosen by the different approaches, GA and EP/ES. The difference lies in the
operators, since the operators can undo any mapping if carefully constructed. The
argument will hold for any problem representations for which we can build invert-
ible maps between. This leaves the question of how to best to represent a solution.
Part of the answer to this question will depend on why we are solving the particular
problem, that is, what we hope to achieve and find in solving it. Another part of
the answer might follow from the next section on the emergence of evolvability in

EC.

Appendix E

Future Development of the SASME
Framework

Despite this partisan flavor, the book shines in the few paragraphs where
Bentley pauses to discuss some of the limitations of the systems. “We cannot
prove that evolution will find us a good solution—but it almost invariably
does. And we certainly cannot predict the solutions that evolution generates,”
he notes as a caveat to everyone planning to use genetic programming to solve
world peace.

http://slashdot.org/books/02/03/04/195222.shtml
As far as the laws of mathematics refer to reality, they are not certain; and
as far as they are certain, they do not refer to reality.
Albert Einstein
In theory there is no difference between theory and practice. In practice there
is.
Yogi Berra

This appendix details some possible future directions for the work presented in this
thesis.

E.1 Theoretical Analysis of the SASME Algorithm

The SASME framework presented in this thesis was justified through heuristic argu-
ments concerning the nature of self-adaptive evolutionary processes. The principal
arguments used to justify the components of the new evolutionary search approach
can be summarized as follows:

Search Method
It was argued that evolution is a suitable search method for the learning prob-
lems used in this thesis. Whilst evolution is not guaranteed to find the best

179

180 APPENDIX E. FUTURE DEVELOPMENT OF THE SASME FRAMEWORK

solution to the problem at hand, it is guaranteed to autonomously propose
solutions; this is the nature of the evolution algorithm discussed in Chapter 1.
The solutions proposed by evolution often have the appearance of design, with-
out there being a designer. Hence, it is argued, evolution is an appropriate
framework for problems where little is known about the search space, and little
is known about how to find good solutions in that space.

A similar argument can be made for using evolution with structures which
are able to represent the solution in a manner which elucidates some of the
characteristics of the problem which are of interest.

Representation
Rule lists with exceptions are used as the symbolic structure for the problems
tackled in this thesis. It is argued that these rule sets are capable of represent-
ing information that the evolutionary search process discovers. Further, the
addition of exceptions to rules allows the evolutionary search to make small
modifications to the behaviour of the phenotype—it is widely stated that this
is an important property of structures amendable to evolutionary search.

Self-adaptive Search

Self-adaptation is argued to be one solution to the problem of evolutionary
parameter setting. By allowing the mutation step sizes and probability of
application of discrete mutations to be self-adapted the algorithm gains the
flexibility to adapt the search strategy to the extant structures in the popula-
tion in any given problem domain. The utility of this approach is investigated
empirically on a specified problem in Chapter 4 and found to automatically
find a suitable level of discrete mutation operations.

These arguments provide a rationale for the development and implementation of the
SASME algorithm. The algorithm is then used to find good solutions to some diffi-
cult machine learning problems, demonstrating the power of heuristically motivated
algorithms. Indeed, many new machine learning methodologies owe their existence
and form to heuristic argument rather than arguments grounded in any kind of
mathematical analysis. The development of the entire class of naturally-inspired
algorithms could be considered to be consistent with this statement, including Sim-
ulated Annealing, Evolutionary Computation, Artificial Immune Systems [114] etc.

However, it is interesting to review what analysis of the approach can show.

E.1.1 Schema Analysis

The well-known schema theorem has been extensively used as a basis for the anal-
ysis of different evolutionary algorithms. The original schema theorem discussed
in Appendix D was developed for the binary representation and the canonical GA.
The theorem itself describes the relationship between the number of short, low

E.l. THEORETICAL ANALYSIS OF THE SASME ALGORITHM 181

order schemata in one generation compared to the next under proportionate selec-
tion, one point cross-over and point mutation. Algorithms which propose different
operators and representations often have new schema theorems derived for them
[228, 177, 176, 178, 158, 175, 174]. Such theorems can provide some understanding
of the macroscopic behaviours of the evolutionary process. Holland’s schema the-
orem provides proof that the GA allocates exponentially many trials to short, low
order schema. Along with Theorem D.1, it was believed that this showed that the
GA search was in some way optimal. That is, the GA optimally allocated trials
amongst competing short, low order schema.

This latter interpretation of the schema theorem is now untenable. The NFL theo-
rem (Appendix B) and the arguments presented in Appendix D independently show
this view cannot persist. The performance of a search algorithm cannot be assessed
independent to the domain within which it is applied. The usual assertion about
the schema theorem is that it describes the propagation of useful structures in the
population between generations—the principal issue is justifying why the structures
which have been used are useful to the problem at hand. The theorem does not
require there to be a correlation between the fitness of parents and the fitness of off-
spring, instead this becomes implicitly assumed when justifying the analysis. Some
work has been done on using parent-offspring fitness correlations to develop schema
theorems which describe the trajectories taken by those solution components which
do give rise to correlations between parent and offspring fitness [2].

This does not entirely negate the utility of schema theorems, however. The theo-
rems can be viewed as descriptive of certain macroscopic parameters of algorithmic
behaviours. As such, they can provide some light on some aspects of the trajec-
tories that the evolutionary search takes. When combined with knowledge about
the search space, this could lead to predictive statements about algorithmic perfor-
mance. Should the development of the SASME framework in the future incorporate
schema-like theorems for analysis, this is the approach which would be first at-
tempted.

There are two obstacles which need to be overcome in developing a schema analysis
of the SASME algorithm. The first is the definition of schema for non-binary strings.
This has been tackled extensively in tree-based GP schema theorems [174], and
some of these approaches could be used as a basis for an analysis in SASME. A
more difficult obstacle is dealing with the self-adaptive components of the SASME
approach, and the number of operators. Whilst the operator set could be simplified,
self-adaptation does not appear to be amendable to schema analysis, and is central
to the SASME framework. A final issue with schema analysis is that a schema
theorem will not shed any light on the question of whether the algorithm will solve
problem X in reasonable time, it will only provide a toolkit with which analysis of
the algorithms behaviour on problem X can be performed.

182 APPENDIX E. FUTURE DEVELOPMENT OF THE SASME FRAMEWORK

E.1.2 Convergence Analysis

Most analysis questions about algorithms centre on the asymptotic behaviours of the
algorithm and bounds on worst case scenarios. Interesting questions such as bounds
on time and memory required to discover a solution, and predictions of solution
quality are the motivation for this kind of analysis [163].

In many evolutionary algorithms, convergence to the neighborhood of the optimal
solution as time tends to infinity can be proven under general conditions, as pre-
sented and discussed in Appendix A. For the SASME framework, if the rule set is
held constant, the parameter adaptation is a standard (u, A)-ES then the global
convergence caveat discussed in Appendix A will hold. That is, the parameter opti-
misation will not converge to the global optima with probability 1 when the fitness
landscape of the parameter space is continuous. However, global convergence is not
a particularly useful property without information on convergence velocity.

The convergence velocity analysis in Appendix A will likewise hold when the rule
structure is held constant. Where the local topology of the search space is assumed
to be a sphere, there can be a reasonable level of confidence that the parameter
optimisation procedure is efficiently approaching the optimum values. The goal of
the algorithm would then be to find a good set of parameters with which the problem
can be solved, not to find the optimal set of parameters. When the rule set is not
held constant it can be seen that the local topology of the search space seen by the
self-adaptive parameter evolution will change as the rule set changes. Towards the
end of a run it can be expected that the rule set is remaining unchanged from one
generation to the next.

The evolution of the discrete component of the SASME model is more difficult to
analyse. It can be noted that it is the evolution of a tree-based representation, and
as such much of the analysis which has been developed for GP may be applicable.
The principal question concerning the evolution of the discrete model is the utility of
self-adapting the discrete operator rates. This question was addressed empirically in
Chapter 3. Future work may look at methods to quantify when this self-adaptation
is beneficial in terms of time to solution.

The interaction between the parameter evolution and the discrete structure evolution
is the most interesting and difficult aspect of SASME from a theoretical viewpoint.

E.1.3 Further Empirical Validation

The most likely future developments in the understanding of the SASME framework
will come from further empirical studies of the interactions of the different compo-
nents of the framework. The algorithm was not designed with theoretical analysis in
mind, and as such is not readily amendable to a mathematical treatment. Analysis
similar to that conducted in Chapter 3 may tease out some relationships between

E.2. EXTENTIONS OF THE FRAMEWORK 183

the different components.

E.2 Extentions of the Framework

A number of extensions to the SASME algorithm presented in this thesis are being
considered for future work. One promising area is the utilization of domain spe-
cific operators as well as representations in the framework. Information theoretic
measures such as those used in classic rule induction systems are a possibility. The
inclusion of more discrete structures, and perhaps populations of mixed structures,
is also possible. The following section presents a recipe for including new discrete
structures in the SASME framework.

E.2.1 A Recipe for Evolving New Representations with SASME

The algorithm presented in Chapter 3 is general and applicable with a wide variety
of discrete structures. The implementation used in this thesis utilized a rule set with
exceptions as the discrete structure. To implement a different discrete structure the
following steps need to be undertaken:

1 The structure has to be implemented along with the operators which will
manipulate it. In an object-oriented programming language the structure and
operators can be encapsulated as an object. The interface between this object
and the SASME object needs to communicate the number of operators which
have been implemented, and the number of parameters which are required to
realize the structure. In a neural network, for example, each weight in the
network is a parameter, and the number of weights is returned as the number
of parameters. As a minimum an add hidden node and delete hidden node
operator needs to be implemented. When affected, either of those operators
will modify the number of weights which the model requires. The structure
needs to inform the SASME object what parameters have been deleted, or the
values of new parameters which have been created.

2 The SASME object initializes a parameter object suitable for the structure,
containing the number of parameters required by the model and the number
of operators. The bounds for the parameters will depend on the nature of the
structure, and also need to be communicated. The values of the parameters
can likewise be communicated by the structure object.

3 The SASME object creates a population of parameter objects and their as-
sociated structure objects. The objects are evaluated by the SASME object
interacting with the problem environment, and then the population is evolved
by the method described in Chapter 3. The SASME object sets the value of 7
and 7' in the ES equations on the fly according to the size of the parameter
object. The parameter object contains the self-adaptive mutation step sizes.

184 APPENDIX E. FUTURE DEVELOPMENT OF THE SASME FRAMEWORK

The structure object may also need to communicate directly with the problem en-
vironment, for example, when one of the operators uses information from the envi-
ronment to guide the creation of the structure. Future work will look at operators
which can adjust both the parameters and the structure, for example, using heuris-
tics to adjust the weights after a node has been deleted from a neural network. The
network could be partially trained by a back-propagation algorithm to smooth out
the effects of the discrete operator. This may be needed to maintain parent-offspring
fitness correlation.

Clearly a range of structures can be coded in this way. Future work will attempt to
categorize what problems a particular structure is well suited for.

Bibliography

[1] Handbook on Evolutionary Computation. IOP Publishing Ltd and Oxford Uni-
versity Press, 1997. Release 97/1.

[2] Lee Altenberg. The Schema Theorem and Price’s Theorem. In Darrell Whitley
and Michael D. Vose, editors, Foundations of Genetic Algorithms 3, pages 23—
49. Morgan Kaufmann, San Mateo, CA, 1995.

[3] Edgar Anderson. The irises of the Gaspe Peninsula. Bulletin of the American
Iris Society, 59:2-5, 1935.

[4] P. J. Angeline. A historical perspective on the evolution of executable struc-
tures. Fundamenta Informaticae, 36(1-4):179-195, August 1998.

[5] Peter J. Angeline. Multiple interacting programs: A representation for evolv-
ing complex behaviors. Cybernetics and Systems, 29(8):779-806, 1998.

[6] Peter J. Angeline and Jordan B. Pollack. Coevolving high-level representa-
tions. In C. G. Langton, editor, Artificial Life III, pages 55-71. Addison-
Wesley, Reading MA, 1994.

[7] J Antonisse. A new interpretation of schema notation that overturns the
binary encoding constraint. In J D Schaffer, editor, Proceedings of the 3rd
International Conference on Genetic Algorithms, pages 86-91, San Mateo CA,
1989. Morgan Kaufmann. Reprinted [76, pages 558-563)].

[8] J. Armstrong and F. Collopy. Exrror measures for generalizing about forecasting
methods - empirical comparisons, 1992.

[9] S. Augier, G. Venturini, and Y. Kodratoff. Learning first order logic rules
with a genetic algorithm. In Usama M. Fayyad and Ramasamy Uthurusamy,

editors, The First International Conference on Knowledge Discovery and Data
Mining, pages 21-26, Montreal, Canada, 20-21 1995. AAAI Press.

[10] Thomas Bick. Evolutionary Algorithms in Theory and Practice. Oxford Uni-
versity Press, 198 Madison Avenue, New York, New York 10016, 1996.

[11] Thomas Bick, Frank Hoffmeister, and Hans-Paul Shwefel. A survey of evolu-
tion strategies. In Richard K. Belew, editor, Proceedings of the Fourth Inter-
national Conference on Genetic Algorithms and their Applications, pages 2--9,
San Diego, California, 1991. Morgan Kaufmann Publishers.

185

186

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

18]

[19]

[20]

[21]

22]

[23]

[24]

Thomas Back, G. Rudolph, and Hans-Paul Schwefel. Evolutionary program-
ming and evolution strategies: Similarities and differences. In D.B. Fogel and
W. Atmar, editors, Proceedings of the Second Annual Conference on Evolu-
tionary Programming, pages 11-22, San Diego CA, 1993. Evolutionary Pro-
gramming Society.

Thomas Bick and Hans-Paul Schwefel. An overview of evolutionary algorithms
for parameter optimization. Evolutionary Computation, 1(1):1-23, 1993.

Thomas Béack and Hans-Paul Schwefel. Evolutionary computation: An
overview. In T. Fukuda, T. Furuhashi, and D. B. Fogel, editors, Proc. 1996
IEEE Conf. Evolutionary Computation (ICEC’96), pages 20-29, Nagoya,
Japan, May 20-22, 1996. IEEE Press, Piscataway NJ.

James Baker. Adaptive selection methods for genetic algorithms. In John
Grefenstette, editor, Proceedings of an International Conference on Genetic
Algorithms and Their Applications, pages 101-111. L. Erlbaum, 1988, original
proceedings 1985, 1985.

Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone.
Genetic Programming-—an Introduction : on the automatic evolution of com-
puter programs and its applications. Morgan Kauffmann, Heidelberg, 1998.

Andrew G. Barto, Richard Sutton, and Charles Anderson. Neuronlike adaptive
elements that can solve difficult learning problems. IEEE Transactions on
Systems, Man, And Cybernetics, 13(5):834-846, September/October 1983.

R. Bellman. Dynamic Programming. Princeton University Press, Princeton,
N.J., 1957.

Forrest H. Bennett III, John R. Koza, David Andre, and Martin A. Keane.
Evolution of a 60 decibel op amp using genetic programming. In First Inter-
national Conference on Evolvable Systems (ICES-96), October 7-8 1996.

Tom Berman and Sara Chava. Algal growth on organic compounds as nitrogen
sources. Journal of Plankton Research, 21(8):1423-1437, 1999.

H.-G. Beyer. Toward a Theory of Evolution Strategies: On the Benefit of Sex
— the (pu/p, A)-Theory. Evolutionary Computation, 3(1):81-111, 1995.

H.-G. Beyer. An alternative explanation for the manner in which genetic
algorithms operate. BioSystems, 41:1-15, 1997.

Hans-Georg Beyer. Toward a theory of evolution strategies: The (u, A)-theory.
FEvolutionary Computation, 2(4):381-407, 1995.

Hans-Georg Beyer. Toward a theory of evolution strategies: Self-adaptation.
Evolutionary Computation, 3(3):311-347, 1996.

BIBLIOGRAPHY 187

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

H Birru, K Chellapilla, and S. S. Rao. Local search operators in fast evolu-
tionary programming. In Proceedings of the 1999 Congress on Evolutionary
Computation, Washington D.C., USA, volume 2, pages 1506-1513, Piscataway
NJ, July 6-9 1999. IEEE Press.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
1998. hitp://www.ics.uci.edu/~mlearn/MLRepository. html.

Tobias Blicke and Lothar Thiele. A comparison of selection schemes used in
genetic algorithms. Technical report, Seiss Federal Institute of Technology
(ETH), Computer Engineering and Communication Networks Lab, Glorias-
trasse 35, 8092 Zurich, Swizerland, June 1995. Nr. 11, Version 1.1b.

Jason Bobbin and Friedrich Recknagel. Mining water quality time series
for predictive rules of algal blooms by genetic algorithms. In Proc. of 1999
Modelling and Simulation Society of Australia and New Zealand Conference
(MODSIM’99), volume 3, pages 691-696, Hamilton, New Zealand, 6-9 De-
cember 1999. The Modelling and Simulation Society of Australia and New
Zealand Inc.

Jason Bobbin and Friedrich Recknagel. Inducing explanatory rules for the
prediction of algal blooms by genetic algorithms. Environment International,
27(2-3):237-242, September 2001. Full version of conference paper [28].

Jason Bobbin and Friedrich Recknagel. Knowledge discovery for prediction
and explanation of blue-green algal dynamics in lakes by evolutionary algo-
rithms. Ecological Modelling, 146(1-3):253-262, December 2001.

Jason Bobbin and Xin Yao. Automatic discovery of relational information
in comprehensible control rules by evolutionary algorithms. In Proc. of 1999
Australia-Japan Workshop, Canberra, Australia, 23-26 November 1999.

Jason Bobbin and Xin Yao. Evolving rules for nonlinear control. Proceedings
of the International Conference on Computational Intelligence for Modelling,
Control and Automation, Vienna, Austria, 1999.

Jason Bobbin and Xin Yao. Automatic discovery of comprehensible control
rules by evolutionary algorithms. In Masoud Mohammadian, editor, New Fron-
tier in Computational Intelligence and its Applications, volume 57 of Frontiers
in Artificial Intelligence and Applications, pages 197-202. I0S Press, Amster-
dam, 2000. Full version of conference paper [32].

Bela Bollobas, Gautam Das, Dimitrios Gunopulos, and Heikki Mannila. Time-
series similarity problems and well-separated geometric sets. In Symposium
on Computational Geometry, pages 454-456, 1997.

Andrea Bonarini. An introduction to learning fuzzy classifier systems. In
Lanzai et al. [148].

188

BIBLIOGRAPHY

[36]

[37]
(38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[47]

[48]

Andrea Bonarini, Claudio Bonacina, and Matteo Matteucci. Fuzzy and crisp
representations of real-valued input for learning classifier systems. In Lanzai
et al. [148].

E J Borowski and J M Borwein. Dictionary of Mathematics. Collins, 1989.

George E P Box. Evolutionary operation: A method for increasing industrial
productivity. In Applied Statistics, volume 6, pages 81-101, 1957. Reprinted
page 121 [76].

Martin Braun. Differential Equations and Their Applications, volume 15 of
Applied Mathematical Sciences. Springer-Verlag, Heidelberg, 3rd edition edi-
tion, 1986. This is an excellent book.

Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone.
Classification and Regression Trees. Statistical/Probability Series. Wadsworth
International Group, New York, 1984.

H J Bremermann, M Rogson, and S Salaff. Global properties of evolution
processes. In H H Pattee, E A Edlsack, L Fein, and A B Callahan, editors,
Natural Automata and Useful Simulations, pages 3—41. Spartan Books, Wash-
ington D.C., 1966. Reprinted [76, page314].

Martin V. Butz and Stewart W. Wilson. An algorithmic description of XCS.
IIiGAL report no. 2000017, University of Illinois at Urbana-Champaign, April
2000.

Congress on Evolutionary Computation 2000, 16-19 July 2000.

C Chatfield. Neural networks: Forecasting breakthrough or just a passing fad?
Journal of Research Statistics Society B, 56(3):409-446, 1994.

K Chellapilla. Evolutionary programming with tree mutations: Evolving com-
puter programs with crossover. In J. Koza et al., editor, Proceedings of the
Second Annual Conference on Genetic Programming, pages 431-438, Stanford
University, CA, Jul 13-16 1997. Morgan Kaufmann.

K Chellapilla. Automatic generation of nonlinear optimal control laws for
broom balancing using evolutionary programming. In Proceedings of the 1998
IEEE Conference on FEvolutionary Computation, pages 195-200, Orlando,
Florida, 1998.

Kumar Chellapilla. Evolving nonlinear controllers for backing up a truck-
and-trailer using evolutionary programming. Proceedings of the 1998 IEEE
Conference on Evolutionary Computation, pages 195-200, 1998.

Kumar Chellapilla and David Fogel. Two new mutation operators for en-
hanced search and optimization in evolution programming. In B Bosacchi, J C
Bezdek, and D B Fogel, editors, SPIE’s International Symposium on Optical
Science, Engineering, and Instrumentation, Conference 8165: Applications of
Soft Computing, pages 260-269, July 27th — Aug 1st 1997. San Diego, CA.

BIBLIOGRAPHY 189

[49] P. Compton and R. Jansen. Knowledge in context: A strategy for expert sys-
tem maintenance. In C.J.Barter and M.J.Brooks, editors, AI’88: Proceedings
of the second Australian Conference in Artificial Intelligence, pages 292-306,
Berlin, 1989. Springer-Verlag.

[50] O. Cordén, F. Herrera-Viedma, and M. Lozano. Genetic algorithm and fuzzy
logic in control processes. DESCAI Technical report #decsai-95109, ETS de
Ingenieria Informatica, Universidad Granada, March 1995.

[561] Joseph C. Culberson. On the futility of blind search. Technical Report TR
96-18, University of Alberta, Edmonton, Alberta, Canada, July 1996.

[52] Paul J Darwen. Co-Evolutionary Learning by Automatic Modularisation with
Speciation. Phd thesis, University College, The University of New South Wales,
Australian Defence Force Academy, Northcotte Drive, Canberra, 18th July
1996.

[53] Charles Darwin. On the Origin of Species by means of Natural Selection, or
the Preservation of Favoured Races in the Struggle for Life. Oxford University
Press, Walton Street, Oxford, 2nd edition, 1860.

[54] Richard Dawkins. The Blind Watchmaker. Penguin Books, 1986.

[55] I. De Falco, A. lazzetta, and E. Tarantino. An evolutionary system for auto-
matic explicit rule extraction. In CEC00 [43], pages 450-457.

[56] Kenneth De Jong. Learning with genetic algorithms: An overview. Machine
Learning, 3:121-138, 1988.

[57] Kenneth A. De Jong. Genetic-Algorithm-Based Learning, volume IIT of Ma-
chine Learning, chapter 21, pages 611-638. Morgan Kaufmann, 1990.

[58] Kenneth A. De Jong and William M. Spears. Learning concept classification
rules using genetic algorithms. Learning and Knowledge Acquisition, 1989.

[59] Daniel Dennet. Darwin’s dangerous idea. Penguin Books, 1995.

[60] Sas0 Dzeroski, Ljupco Todorovski, Ivan Bratko, Boris Kompare, and Viljem
Krizman. Equation discovery with ecological applications. In Alan H. Field-
ing, editor, Machine Learning Methods for Ecological Applications, chapter 7.
Kluwer, 1998.

[61] Marco Dorigo and Hugues Bersini. A comparison of Q-learning and classifier
systems. In Proceedings of from Animals to Animats, Third International

Conference on Simulation of Adaptive Behavior (SAB94), August 8-12 1994.

[62] Saso Dzeroski, Luc De Raedt, and Hendrik Blockeel. Relational reinforcement
learning. In International Workshop on Inductive Logic Programming, pages
11-22; 1998.

190

BIBLIOGRAPHY

[63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

[71]

[72]

[74]

Senchi Ebise, Morihiro Aizaki, Masaaki Hosomi, Hideaki Ozawa, Toshio
Iwakuma, Noriko Takamura, Takayoshi Kawai, Yukihiro Nojiri, Takehiko
Fukushima, Takayuki Hanazato, and Kazuho Inaba. Environmental Data for
Lake Kasumigaura, chapter 1: Limnological Data for Lake Kasumigaura. Na-
tional Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki
305 Japan, 1994.

V. Estivill-Castro. Collaborative knowledge acquisition with a genetic algo-
rithm. In Proceedings of the Ninth IEEE International Conference on Tools
with Articial Intelligence, pages 270-277. IEEE Computer Society Press, Los
Alamitos, CA, 3.-8. November 1997.

M. V. Fidelis, H. S. Lopes, and A. A. Freitas. Discovering comprehensible clas-
sification rules with a genetic algorithm. In Proceedings of the 2000 Congress
on Evolutionary Computation, pages 805-810, Piscataway, NJ, 2000. IEEE
Service Center.

R. A. Fischer. The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7:179-188, 1936. Part II.

Ian W. Flockhart and Nicholas J. Radcliffe. A genetic algorithm-based ap-
proach to data mining. In Evangelos Simoudis, Jia Wei Han, and Usama
Fayyad, editors, Proceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining (KDD-96), pages 299-302, Portland, Oregon,
USA, 2-4 1996. AAAI Press.

T. C. Fogarty and R. Huang. Evolving prototype control rules for a dynamic
system. Knowledge-Based Systems, 7(2):142-145, 1994. KBS Letter.

Terence C. Fogarty. Technical note: First nearest neighbor classification on
frey and slate’s letter recognition problem. Machine Learning, 9:387-388, 1992.

David B. Fogel. An analysis of evolutionary programming. In D. B. Fogel and
W. Atmar, editors, First International Conference on Evolutionary Program-
ming, pages 43-51, La Jolla, CA, 1992. Evolutionary Programming Society.

David B Fogel. An introduction to simulated evolutionary optimisation. JEEE
Transactions on Neural Networks, 5(1):3-14, January 1994.

David B. Fogel. Evolutionary Computation: Towards a New Philosophy of
Machine Intelligence. IEEE Press, Piscataway, NJ, 1 edition, 1995. 2nd edition
[79].

David B. Fogel. Phenotypes, genotypes and operators in evolutionary com-
putation. In Proceedings of the 1995 IEEFE International Conference on Evo-
lutionary Computation, Perth, Australia, pages 193-198, Piscataway, 1995.
IEEE Press.

David B. Fogel. A “correction” to some cart-pole experiments. Evolutionary
Programming V, pages 67-71, 1996.

BIBLIOGRAPHY 191

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

David B. Fogel. The advantages of evolutionary computation. In D. Lundh,
B. Olsson, and A. Narayanan, editors, Bio-Computing and Emergent Compu-
tation, pages 1-11. World Scientific Press, Singapore, 1997.

David B. Fogel, editor. Evolutionary Computation : The Fossil Record. IEEE,
IEEE Press, 1998.

David B Fogel. An overview of evolutionary programming. In Lawrence David
Davis, Kenneth De Jong, Michael D Vose, and L Darrell Whitley, editors,
Evolutionary Algorithms, volume 111 of The IMA Volumes in Mathematics
and its Applications, pages 89-109. Springer-Verlag, New York, 1999.

David B. Fogel. Some recent important foundational results in evolutionary
computation. In K. Miettinen, M.M. Mékela, P.Neittaanmaki, and K.Periaux,
editors, Evolutionary Algorithms in Engineering and Computer Science, pages
55-71. John Wiley, Chichester, U.K., 1999.

David B Fogel. FEwolutionary Computation: Towards a New Philosophy of
Machine Intelligence. IEEE Press, Piscataway, NJ, 2nd edition, 2000. 1st
edition [72].

David B. Fogel and Adam Ghozeil. Using fitness distributions to design more
efficient evolutionary computations. Third IEEFE International Conference on
Evolutionary Computation(ICEC’96),Nagoya 1996, pages 11-19, 1996.

David B Fogel and Adam Ghozeil. A note on representations and variation
operators. IEEE Transactions on Evolutionary Computation, 1(2):159-161,
July 1997.

Lawrence J. Fogel. A retrospective view and outlook on evolutionary algo-
rithms. In B. Reusch, editor, Computational Intelligence: Theory and Appli-
cations, 5th Fuzzy Days, pages 337-342, Berlin, 1997. Springer-Verlag.

Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial intel-
ligence through a simulation of evolution. In M. Maxfield, A. Calahan, and
L. J. Fogel, editors, Biophysics and Cybernetic Systems: Proceedings of the
2nd Cybernetic Sciences Symposium, pages 131-155, Washington, D.C., 1965.
Spartan Books. Reprinted [76, page 230].

A S Fraser. Simulation of genetic systems by automatic digital computers.
In Australian Journal of Biological Sciences, volume 10, pages 282-291, 1957.
Reprinted [76, page 87].

A S Fraser. The evolution of purposive behavior. In H von Foerster, J D
White, L J Pererson, and J K Russell, editors, Purposive Systems, pages 15—
23. Spartan Books, Washington D.C., 1968. Reprinted [76, page 109].

A.A. Freitas. A survey of evolutionary algorithms for data mining and knowl-
edge discovery. In A. Ghosh and S. Tsutsui, editors, Advances in Evolutionary
Computation. Springer-Verlag, 2002. To Appear.

192

BIBLIOGRAPHY

(87]

[88]

[89]

90]

[91]

[92]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

P.W. Frey and D.J. Slate. Letter recognition using holland-style adaptive
classifiers. Machine Learning, 6(2):161-182, 1991.

R. M. Friedberg. A learning machine: Part I. In IBM Journal of Research
and Development, volume 2, pages 2-13, 1958. Reprinted [76, page 145].

R. M. Friedberg, B. Dunham, and J. H. North. A learning machine: Part II.
In IBM Journal of Research and Development, volume 3, pages 282-287, 1959.
Reprinted [76, page 157].

George J. Friedman. Selective Feedback Computers for Engineering Synthe-
sis and Nervous System Analogy. Master of Science in Engineering Thesis,
University of California, Los Angeles, February 1956. Reprinted in [76].

Naoshi Fujimoto and Ryuichi Sudo. Nutrient-limited growth of Microcystis
aeruginosa and Phormidium tenue and competition under various N:P supply
ratios and temperatures. Limnology and Oceanography, 2(42):250-256, 1997.

Adam Ghozeil and David B. Fogel. Discovering patterns in spatial data using
evolutionary programming. In J R Koza, D E Goldberg, D B Fogel, and R L
Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 521-527, Cambridge,MA, 1996. MIT Press.

Antonella Giani, Fabrizio Baiardi, and Antonina Starita. PANIC: A parallel
evolutionary rule based system. In Fvolutionary Programming, pages 753771,
1995.

David E. Goldberg. Genetic Algorithms in Search, Optimisation, and Machine
Learning. Addison-Wesley, 1989.

David E. Goldberg, Jeffrey Hown, and Kalyanmoy Deb. What makes a prob-
lem hard for a classifier system? Technical Report IIliGAL Report No. 92007,
University of Illinois, Illinois Genetic Algorithms Laboratory, University of
Ilinois at Urbana-Champaign, Urbana, IL 61801, May 1992.

Faustino Gomez and Risto Miikkulainen. Incremental evolution of complex
general behavior. Technical Report AI96-248, 1 1996.

Faustino Gomez and Risto Miikkulainen. Incremental evolution of complex
general behavior. Adaptive Behaviour, (5):317-342, 1997.

Faustino J. Gomez and Risto Miikkulainen. Solving non-Markovian control
tasks with neuro-evolution. In International Joint Conference on Artificial
Intelligence IJCAI pages 1356-1361, 1999.

Stephen Jay Gould. The Panda’s Thumb: More Reflections in Natural History.
Norton, Chichester, New York, 1980.

Stephen Jay Gould. Bully for Brontosaurus. Penguin Books, 1991.

BIBLIOGRAPHY 193

[101]

[102]

103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

114]

Stephen Jay Gould. Life’s Grandeur: The spread of excellence from Plato to
Darwin. Vintage, Random House, 20 Vauxhall Bridge Road, London SW1V
2SA, 1996. Published as Full House in the United States.

John J. Grefenstette. A system for learning control strategies with genetic
algorithms. In International Conference on Genetic Algorithms, pages 183—
190, 1989.

John J. Grefenstette. The evolution of strategies for multiagent environments.
Adaptive Behaviour, 1(1):65-89, 1991.

John J. Grefenstette. Strategy acquisition with genetic algorithms. In L. Davis,
editor, Handbook of Genetic Algorithms, chapter 14, pages 186-201. Von Nos-
trand, Boston, 1991.

John J. Grefenstette, Connie Loggia Remsey, and Allan C. Shultz. Learning
sequential decision rules using simulation models and competition. Machine
Learning, 5:355-381, 1990.

F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular encoding
and direct encoding for genetic neural networks. In J. R. Koza, D. E. Goldberg,
D. B. Fogel, and R. L. Riolo, editors, Genetic Programming 1996: Proceedings
of the First Annual Conference, pages 81-89, Cambridge, MA, 1996. MIT

Press.

G P Harris. Plankton Ecology - Structure, Function, and Fluctuation. Chap-
man and Hall, New York, 1986.

Jukka Hekanaho. A GA-based approach to disjunctive concept learning. Tech-
nical Report TUCS-TR-72, 11, 1996.

Jukka Hekanaho. DOGMA: A GA-based relational learner. TUCS Technical
report no. 168, Turku Centre for Computer Science, Abo Akademi University,
Finland, May 1997. ISBN 952-12-0181-9.

Jukka Hekanaho. GA-based rule enhancement in concept learning. In Knowl-
edge Discovery and Data Mining, pages 183-186, 1997.

D. T. Higdon. Automatic Control of Inherently Unstable Systems with Bounded
Control inputs. Ph.D. Dissertation, Department of Aeronautics and Astronau-
tics, Stanford University, 1963.

Ray Hilborn and Marc Mangel. The Ecological Detective. Number 28 in
Monographs in Population Biology. Princeton University Press, 1997.

Lars Hakanson. On the principles and factors determining the predictive suc-
cess of ecosystem models, with a focus on lake eutrophication models. Ecolog-
ical Modelling, 121:139-160, 1999.

Steven A. Hofmeyer and S. Forrest. Architecture for an artificial immune
system. Evolutionary Computation, 7(1):45-68, 2000.

194 BIBLIOGRAPHY

[115] J. H. Holland and J. S. Reitman. Cognitive systems based on adaptive al-
gorithms. In D. A. Waterman and F. Hayes-Roth, editors, Pattern-Directed
Inference Systems, pages 313-329, NY, 1978. Academic Press. Reprinted [76,
pages 464-480].

[116] John H. Holland. Genetic algorithms and the optimal allocation of trials.
SIAM Journal of Computing, 2(2):88-105, 1973. Reprinted [76, page 443
460).

[117] John H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor:
University of Michigan Press, 1975.

[118] John H. Holland. Using classifier systems to study adaptive nonlinear net-
works. In D. Stein, editor, Lectures in the science of complexity, SFI Studies
in the Science of Complezity. Addison Wedley, 1989.

[119] John H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 2nd edition, 1992.

[120] John H. Holland. Genetic algorithms. Scientific American, 267(1):44-50, 1992.

[121] John H. Holland et al. What is a learning classifies system? In Lanzai et al.
[148].

[122] John H. Holland, Keith J. Holyoak, Richard E. Nisbell, and Paul R. Tha-
gard. Induction: Processes of Inference, Learning, and Discovery. MIT Press,
Cambridge, Massachusetts, 1986.

[123] John H. Holmes. Learning classifier systems applied to knowledge discovery
in clinical research databases. In Lanzai et al. [148], pages 243-261.

[124] K Hornik, M Stichcombe, and H White. Multi-layer feed-forward networks
are universal approximators. Neural Networks, 3:359-366, 1989.

[125] David H. Horricks and Mark C. Spittle. Component value selection for an
active filter using genetic algorithms. Internet journal thing *** 1996.

[126] Ross Thaka and Robert Gentleman. R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5(3):299-314,
1996.

[127] Ross Ihaka and Robert Gentleman. R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5(3):299-314,
1996.

[128] Fogel L. J., Angeline P. J., and Fogel D. B. An evolutionary programming
approach to self-adaptation in finite state machines. In J. R. mcDonnell, R. G.
Reynolds, and D. B. Fogel, editors, Fvolutionary Programming IV: Proceedings
of the Fourth Annual Conference on Fvolutionary Programming, pages 355—
365, Cambridge MA, 1995. MIT Press.

BIBLIOGRAPHY 195

[129] Kenneth A. De Jong, William M. Spears, and Diana F. Gordon. Using genetic
algorithms for concept learning. Machine Learning, 13:161-188, 1993.

[130] Leslie Pack Kaebling, Michael L Littman, and Abdrew W Moore. Reinforce-
ment learning: A survey. Journal of Artificial Intelligence Research, 4:237-285,
1996.

[131] C. L. Karr. A cart-pole system. In Handbook on Evolutionary Computation
[1], chapter D2.2, pages D2.2:1-D2.2:9. Release 97/1.

[132] James D. Kelley and Lawrence Davies. A hybrid genetic algorithm for clas-
sification. In Proceedings of the Twelth International Conference on Artificial
Intelligence IJCAI-91, volume 2, 1991.

[133] J. Kelly and L. Davis. Hybridizing the genetic algorithm and the k-nearest
neighbors classification algorithm. In Proceedings of the fourth international
conference on genetic algorithms, 1991.

[134] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimisation by simulated
annealing. Science, 220(4598):671-680, 1983.

[135] Donald Knuth. The Art of Computer Programming: Fundamental Algorithms,
volume 1. Addison-Wesley, Reading, MA, 2nd edition, 1973.

[136] T Kohonen. Self-organisation and Associative Memory. Sringer-Verlag, Berlin,
2nd edition, 1989.

[137] Tim Kovacs and Pier Luca Lanzi. A Learning Classifier Systems Bibliogra-
phy. Technical Report CSRP-99-19, School of Computer Science, University
of Birmingham, 1999.

[138] J R Koza. Evolving programs using symbolic expressions. In N S Sridharan,
editor, Proc. of the 11th Intern. Joint Conf. on Artificial Intelligence, pages
768-774. Morgan Kaufmann, San Mateo, CA, 1989. Reprinted [76, page578].

[139] John R. Koza. Genetic Programming. MIT, Stanford University. Cambridge,
MA, 1992.

[140] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge, MA, 1994.

[141] John R. Koza, David Andre, Forrest H. Bennett III, and Martin A. Keane.
Design of a 96 decibel operational amplifier and other problems for which a
computer program evolved by genetic programming is competitive with human
performance. In Mitsuo Gen and Weixuan Zu, editors, Proceedings of 1996

Japan-China Joint International Workshop on Information Systems, pages
30-49, Ashikaga, 1996. Ashikaga Institute of Technology.

196

BIBLIOGRAPHY

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

John R. Koza, Forrest H. Bennett III, and David Andre. Using programmatic
motifs and genetics programming to classify protein sequences as to cellular
location. In Seventh Annual Conference on Evolutionary Programming. San
Diego, March 26 1998.

John R. Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane.
Automated wywiwig design of both the topology and component values of
electrical circuits using genetic programming. In Genetic Programming 1996:
Proceedings of the First Annual Conference, pages 123-131, Stanford Univer-
sity. Cambridge, MA, July 28-31 1996. The MIT Press.

John R. Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane.
Four problems for which a computer program evolved by genetic programming
is competitive with human performance. In Proceedings of the 1996 IEEE In-
ternational Conference on Evolutionary Computation, pages 1-10. IEEE Press,
1996.

John R. Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane.
Evolutionary design of analog electrical circuits using genetic programming.
In Adaptive Computing in Design and Manufacture conference (ACDM-98),
April 21-23 1998.

John R. Koza, Martin A. Keane, Jessen Yu, Forrest H. Bennett III, and
William Mydlowec. Automatic creation of human-competitive programs and
controllers by means of genetic programming. In Genetic Programming and
Evolvable Machines, volume 1, pages 121-164. Kluwer Academic Publishers,
The Netherlands, 2000.

John R. Koza, Martin A. Keane, Jessen Yu, William Mydlowec, and Forrest H.
Bennet III. Automatic synthesis of both the control law and parameters for a
controller for a three-lag plant with five-second delay using genetic program-
ming and simulation texhniques. In Proceedings of the 2000 American Control
Conference, pages 453-459, Chicago, Illinois, June 28-30, 2000. Evanston, IL:
American Automatic Control Council.

Pier Luca Lanzai, Wolfgang Stolzmann, and Stewart W. Wilson, editors.
Learning Classifier Systems: An Introduction to Contemporary Research, vol-
ume 1813 of LNAI Berlin, 2000. Springer-Verlag.

Pier Luca Lanzi. Extending the representation of classifier conditions part I:
From binary to messy coding. In Wolfgang Banzhaf, Jason Daida, Agoston E.
Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith,
editors, Proceedings of the Genetic and Evolutionary Computation Conference
- GECCO-99, volume 1, pages 11-18, San Francisco, CA 94104, USA, July
1999. Morgan Kaufmann.

Pier Luca Lanzi and Alessandro Perrucci. Extending the represextending
the representation of classifier conditions part II: From messy coding to S-
expressions. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H.

BIBLIOGRAPHY 197

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]
[162]

[163]

Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors, Pro-
ceedings of the Genetic and Evolutionary Computation Conference, volume 1,
pages 345-352, San Francisco, CA 94104, USA, July 1999. Morgan Kaufman.

F.H.F. Leung, L.K. Wong, and P.K.S. Tam. Fuzzy model based controller for
an inverted pendulum. Electronics Letters, 32(18):1683-1685, August 1996.

K. H. Liang, X. Yao, Y. Liu, C. Newton, and D. Hoffman. An experimental
investigation of self-adaptation in evolutionary programming. In Evolutionary
Programming VII: Proceedings of the 7th Annual Conference on Ewvolution-
ary Programming, Lecture Notes in Computer Science, pages 291-300, Berlin,
1998. Springer-Verlag.

Charles X. Ling and Ralph Buchal. Learning to control dynamic systems with
automatic quantization. Adaptive Behaviour, 3(1):29-49, 1994.

Juliet Juan Liu and James Tin-Yau Kwok. An extended genetic rule induction
algorithm. In CEC00 [43], pages 458-463.

W G Macready and D H Wolpert. Bandit problems and the explo-
ration/exploitation tradeoff. IEEE Transactions on Evolutionary Computa-
tion, 2(1):2-22, 1998.

Holger R Maier and Graeme C Dandy. Neural networks for the prediction
and forecasting of water resources variables: a review of modelling issues and
applications. Environmental Modelling and Software, 15:101-124, 2000.

Keith E. Mathias and L. Darrell Whitley. Initial performance comparisons for
the delta coding algorithm. In IEEE Conference on Evolutionary Computa-
tion., volume 1, pages 433-438, 1994.

Nicholas Freitag McPhee and Riccardo Poli. A schema theory analysis of
the evolution of size in genetic programming with linear representations. In
European Conference on Genetic Programming, pages 108-125, 2001.

D. Michie and R. A. Chambers. BOXES: An experiment in adaptive control. In
E. Dale and D. Michie, editors, Machine Learning 2, pages 132-152. Edinburgh
University Press, Edinburgh, 1968.

Richard Milner. The Encyclopaedia of Evolution. Facts on File, 1990. Forward
by Stephen Jay Gould.

M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

Melanie Mitchell. Review of darwin’s dangerous idea by Daniel C. Dennet. In
Complezity, volume 2, pages 32-36. 1996.

Bernard M.E. Moret and Henry D. Shapiro. Algorithms and experiments:
The new (and old) methodology. Journal of Universal Computer Science,
7(5):434-446, 2001.

198

BIBLIOGRAPHY

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

David E. Moriarty and Risto Miikkulainen. Learning sequential decision tasks.
Technical report ai95-229, The University of Texas, Austin, Texas, January
1995.

David E Moriarty, Alan C Schultz, and John J Grefenstette. Evolutionary
algorithms for reinforcement learning. Journal of Artificial Intelligence Re-
search, 11:241-276, 1999.

Edgar Noda. Discovering interesting prediction rules with a genetic algorithm.
In Una-May O’Reilly, editor, Graduate Student Workshop, pages 386-387,
Orlando, Florida, USA, 13 1999.

M.O. Odetayo and D.R. McGregor. Genetic algorithms for inducing rules for
a dynamic system. International Conference on Genetic Algorithms, pages
177-182, 1989.

Una-May O’Reilly and Franz Oppacher. The troubling aspects of a build-
ing block hypothesis for genetic programming. In L. Darrell Whitley and
D. Vose, editors, Foundations of Genetic Algorithms 3, pages 73-88. Morgan
Kaufmann, 1995.

Akira Otsuki, Mohrihiro Aizaki, and Takayoshi Kawai. Long-term variations
of three types of phosphorus concentrations in highly eutrophic shallow lake
kasumigaura, with special reference to dissolved organic phosphorus. The
Japanese Journal of Limnology, 48:1-11, December 1987. Kasumigaura —
Characteristics of Water Quality and Ecosystem —.

Raymond C Paton. Principles of genetics. In Handbook on Evolutionary Com-
putation [1], chapter A2.2, pages A2.2:1-A2.2:9. Release 97/1.

Carlos Andrés Pefia-Reyes and Moshe Sipper. Applying fuzzy coco to breast
cancer diagnosis. In CECO00 [43], pages 1168-1174.

Daniel Polani and Risto Miikkulainen. Fast reinforcement learning through
eugenic neuro-evolution. Technical Report AI99-277, University of Texas at
Austin, 27, 1999.

Daniel Polani and Risto Miikkulainen. Eugenic neuro-evolution for reinforce-
ment learning. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2000), San Francisco, 2000. Kaufmann.

Riccardo Poli. Exact schema theory for genetic programming and variable-
length genetic algorithms with one-point crossover. Genetic Programming and
Evolvable Machines, 2(2):123-163, 2001.

Riccardo Poli. General schema theory for genetic programming with subtree-
swapping crossover. In European Conference on Genetic Programming, pages
143-159, 2001.

BIBLIOGRAFPHY 199

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186)

[187]

[188]

Riccardo Poli and W. B. Langdon. A review of theoretical and experimental
results on schemata in genetic programming. In Wolfgang Banzhaf, Riccardo
Poli, Marc Schoenauer, and Terence C. Fogarty, editors, Proceedings of the
First European Workshop on Genetic Programming, volume 1391, pages 1-15,
Paris, 14-15 1998. Springer-Verlag.

Riccardo Poli and William B. Langdon. Schema theory for genetic program-
ming with one-point crossover and point mutation. Evolutionary Computation,
6(3):231-252, 1998.

Riccardo Poli and Nicholas F McPhee. Exact schema theorems for GP with
one-point and standard crossover operating on linear structures and their ap-
plication to the study of the evolution of size. Technical Report CSRP-00-14,
2000.

Mitchell A. Potter. The Design and Analysis of a Computational Model of
Cooperative Coevolution. Phd Thesis, George Mason University, Fairfax, Vir-
ginia, 1997.

Mitchell A. Potter, Kenneth A. De Jong, and John J. Grefenstette. A coevolu-
tionary approach to learning sequential decision rules. In Genetic Algorithms:
Proceedings of the Sizth International Conference (ICGA’95), pages 366-372.
Morgan Kauffman, July 15-19 1995.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106,
1986.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Mateo, 1993.

J. R. Quinlan. Improved use of continuous attributes in c4.5. Journal of
Artificial Intelligence Research, 4:77-90, 1996.

I Rechenberg. Cybernetic solution path of an experimental problem. In Royal
Aireraft Establishment, 1965. Library Translation, 1122. Reprinted [76, page
301].

I. Rechenberg. Konvergenzraten von Random Search Vergahren zur globalen
Optimierung. Doctoral dissertation, Hochschule der Bundeswehr Miinchen,
Germany, 1973. Not seen by author.

F Recknagel. Applied Systems Ecology: Approaches and Case Studies in
aquatic ecology. Akademie-Verlag, Berlin, 1989.

Frieder Recknagel and Jiirgen Benndorf. Validation of the ecological simulation
model “SALMOQ”. International Revue Hydrobiology, 67(1):113-125, 1982.

Friedrich Recknagel. ANNA - artificial neural network model for predicting
species abundance and succession of blue-green algae. Hydrobiologia, 349:47—
57, 1997.

200

BIBLIOGRAPHY

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

Friedrich Recknagel, Jason Bobbin, Peter Whigham, and Hugh Wilson. Mul-
tivariate time series modelling of algal blooms in freshwater lakes by machine
learning. In Proceedings of the 5th WATERMATICS international conference
on systems analysis and computing in water quality management, pages 9.17—
9.24, London, September 18-20 2000. International Water Association.

Friedrich Recknagel, Mark French, Pia Harkonen, and Ken-Ichi Yabunaka. Ar-
tificial neural network approach for modelling and prediction of algal blooms.
Ecological Modelling, 96(1-3):11-28, March 1997.

Friedrich Recknagel, Takehiko Fukushima, Takayuki Hanazato, Noriko Taka-
mura, and Hugh Wilson. Modelling and prediction of phyto- and zooplankton
dynamics in Lake Kasumigaura by artificial neural networks. Lakes é Reser-
voirs: Research and Management, 3:123-133, 1998.

Friedrich Recknagel, Masaaki Hosomi, Takehiko Fukushima, and Dong-Soo
Kong. Short- and long-term control of external and internal phosphorus loads
in lakes—a scenario analysis. Water Resources, 29(7):1767-1779, 1995.

C S Reynolds. The Ecology of Freshwater Phytoplankton. Cambridge Univer-
sity Press, New York, 384pp, 1984.

Debbie Richards, Vijaletchmee Chellen, and Paul Compton. The reuse of rip-
ple down rule knowledge bases: Using machine learning to remove repetition.
In Proceedings of Pacific Knowledge Acquisition Workshop PKAW’96, Coogee,
Australia, October 23-25 1996.

Debbie Richards and Paul Compton. Comhining formal concept analysis and
ripple down rules to support the reuse of knowledge. In Proceedings of 1997
Conference on Software Engineering & Knowledge Engineering, Madrid, 1997.

M. Riedmiller. Concepts and facilities of a neural reinforcement learning con-
trol architecture for technical process control. Journal of Neural Computing
and Application, (8):323-338, 2000.

Rick L. Riolo. The emergence of default hierarchies in learning classifier sys-
tems. In International Conference on Genetic Algorithms 8, pages 322-327,
1989.

Giinter Rudolph. Parallel approaches to stochastic global optimization. In
W Joosen and E Milgrom, editors, Parallel Computing: From Theory to
Sound Practice, Proceedings of the European Workshop on Parallel Computing
(EWPC 92), pages 256-267, Amsterdam, 1992. IOS Press.

Giinter Rudolph. Convergence rates of evolutionary algorithms for a class of
convex objective functions. Control and Cybernetics, 26(3):375-390, 1997.

Giinter Rudolph. Finite markov chain results in evolutionary computation: A
tour d’horizon. Fundamenta Informaticae, pages 1-22, 1998. IOS Press.

BIBLIOGRAPHY 201

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

Giinter Rudolph. Self-adaptation and global convergence: A counter-example.
In Proceedings of the Congress on Evolutionary Computation (CEC’99), vol-
ume 1, pages 646651, Piscataway, 1999. IEEE Press.

C. Sammut and J. Cribb. Is learning rate a good performance criterion for
learning? In Proceedings of the Seventh International Workshop on Machine
Learning, pages 170-178, Austin, Texas. Morgan Kaufmann.

N. Saravanan and D. B. Fogel. Multi-operator evolutionary programming:
A preliminary study on function optimisation. In P. J. Angeline, R. G. Ret-
nolds, J. R. McDonnell, and R. Eberhart, editors, Proceedings of the Sizth An-
nual Conference on Evolutionary Programming, pages 215221, Berlin, 1997.
Springer.

J. F. Scheafer. On the Bounded Control of Some Unstable Mechanical Systems.
Ph.D. Dissertation, Department of Electrical Engineering, Stanford University,
1965.

Tobias Scheffer. Learning rules with nested exceptions. In P. Brazdil, edi-
tor, Proceedings International Workshop on Artificial Intelligence Techniques,
Brno, Czech Republic, 1995.

Hans-Paul Schwefel. Numerische Optimierung vin Computer-Modellen mit-
tles der Evolutoinstrategie, volume 26 of Interdisciplinary Systems Research.
Birkhauser Verlag, Basel, 1977. Not seen by author.

Hans-Paul Schwefel. Numerical Optimization of Computer Models. John Wiley
and Sons, Chichester, 1st edition, 1981. English translation of [206].

Hans-Paul Schwefel. Evolution and Optimum Seeking. John Wiley and Sons,
New York, 2nd edition edition, 1995.

Hans-Paul Schwefel and Thomas Béck. Evolution strategies II: Theoretical
aspects. In G. Winter, J. Périaux, M. Galdn, and P. Cuesta, editors, Genetic
Algorithms in Engineering and Computer Science, Proc. First Short Course
EUROGEN-95, pages 127-140. Wiley, Chichester, Las Palmas de Gran Ca-
naria, Spain, December 4-8, 1995.

Hans-Paul Schwefel, Giinter Rudolph, and Thomas Béck. Contemporary evo-
lution stategies. In Proceedings of the Furopean Conference on Artificial Life,
Interdisciplinary Systems Research, pages 893-907, Basel, 1995. Birkhauser
Verlag.

J Shapiro. Blue-green algae: why they become dominant. Science, 179:382—
384, 1973.

J Shapiro. Current beliefs regarding dominance by blue-greens: the case for the
importance of pH and CO,. International Revue Ges. Hydrobiology, 24:38-54,
1990.

202

BIBLIOGRAPHY

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

Alan C. Shultz. Improving tactical plans with genetic algorithms. In Proceesing
of IEEE Conference on Tools for Artificial Intelligence, TAI’90, pages 328-
334. IEEE Society Press, November 6-9 1990.

Andy Singleton. Some assembly required. Byte Magazine, Februrary 1994.

Robert E. Smith and David E. Goldberg. Reinforcement learning with classifier
systems: Adaptive default hierarchy formation. Applied Artificial Intelligence,
6:79-102, 1992.

Richard Sutton. Reinforcement Learning: an Introduction. MIT Press, 1998.

Noriko Takamura and Morihiro Aizaki. Change in primary production in Lake
Kasumigaura (1986-1989) accompanied by transition of dominant species.
Japanese Journal of Limnology, 52(3):173-187, 1991.

Noriko Takamura, Akira Otsuki, Morihiro Aizaki, and Yukihiro Nojiri. Phyto-
plankton species shift accompanied by transition from nitrogen dependence to
phosphorus dependence of primary production in Lake Kasumigaura, Japan.
Archiv Hydrobiologie, 1992.

P. L. Tan, T. S. Dillon, and J. Zeleznikow. Representing exceptions in rule-
based systerms. In C J Barter and M J Brooks, editors, AI’88: Proc. of the
2nd Australian Joint Artificial Intelligence Conference, pages 240255, Berlin,
Heidelberg, 1990. Springer.

Tanja Urbanci¢ and Ivan Bratko. Knowledge acquisition for dynamic system
control. In B. Soucek, editor, Dynamic, Genetic and Chaotic Programming:
The Sizth Generation, pages 65-83. New York: Wiley, 1992.

H. Vafaie and K. De Jong. Improving a rule induction system using genetic
algorithms. In R Michalski and G Tecuci, editors, Machine Learning IV: A
Multistrategy Approach, pages 453-470. Morgan-Kaufmann, 1994.

Alan VarSek, Tanja Urbanéi¢, and Bodgan Filipi¢. Genetic algorithms in
controller design and tuning. IEEE Transactions on Systems, Man, and Cy-
bernetics, 23(5):1330-1339, September/October 1993.

Peter M B Walker, editor. Chambers science and technology dictionary, 43-45
Annadale Street, Edinburgh EH7 4AZ, 1991. W & R Chambers Ltd.

David Walter and Chilukuri K. Mohan. Cladia: A fuzzy classifier system for
diease diagnosis. In Congress on Evolutionary Computation, pages 1429-1435,
2000.

Mark Walter, Friedrich Recknagel, Craig Carpenter, and Myriam Bormans.
Predicting eutrophication effects in the Burrinjuck reservoir (Australia) by
means of the deterministic model SALMO and the recurrent neural network
model ANNA. Ecological Modelling, 146:97-113, 2001.

BIBLIOGRAPHY 203

[226] P. A. Whigham. Grammatically-based genetic programming. In Proceedings
of the Workshop on Genetic Programming : From Theory to Real-World Ap-
plications, pages 33-41. Morgan Kauffmann, 1995.

[227] P. A. Whigham. Inductive bias and genetic programming. In First Interna-
tional Conference on Genetic Algorithms in Engineering Systems : Innova-
tions and Applications, pages 461-466, UK, 1995. IEE.

[228] P. A. Whigham. A schema theorem for context-free grammars. In 1995 IEEFE
Conference on FEvolutionary Computation, volume 1, pages 178-181, Perth,
Australia, 29 - 1 1995. IEEE Press.

[229] P. A. Whigham. Search bias, language bias and genetic programming. In
Genetic Programming, pages 230-237. MIT Press, 1996.

[230] P. A. Whigham. An inductive approach to ecological time series modelling by
evolutionary computation. Ecological Modelling, 2001. In Press.

[231] Peter A. Whigham. Induction of a marsupial density model using genetic
programming and spatial relationships. FEcological Modelling, 131(2-3):299—
317, 2000.

[232] Peter A Whigham and Friedrich Recknagel. Predictive modelling of plank-
ton dynamics in fresh water lakes using genetic programming. In Les Oxley
and Frank Scrimgeor, editors, International Congress on Modelling and Sim-
ulation, MODSIM 99, 6-9 December 1999, Hamilton, New Zealand, pages
679-684, 1999.

[233] Peter A. Whigham and Friedrich Recknagel. Evolving difference equations to
model freshwater phytoplankton. In 2000 Congress on Evolutionary Compu-
tation, San Diego, USA, Piscataway, NJ, 2000. IEEE Press.

[234] D. Whitley, K. Mathias, and P. Fitzhorn. Delta coding: An iterative search
strategy for genetic algorithms. In D Whitley, K Mathias, and P Fitzhorn, ed-
itors, Proceedings of Fourth International Conference on Genetic Algorithms,
pages 77-84, San Diego, CA, 1991. Morgan Kaufmann.

[235] Darrell Whitley. The genitor algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best. Proc. of the Third Int’l Conf.
on International Conference on Genetic Algorithms and Their Applications,
pages 116-121, 1989.

[236] Alexis P. Wieland. Evolving controls for unstable systems. Connectionist
Models: Proceedings of the 1990 Summer School, pages 91-102, 1991.

[237] Hugh Wilson and Friedrich Recknagel. Advances in modelling and prediction
of algal blooms in freshwater lakes by artificial neural networks. In Proceed-
ings of the International Congress on Modelling and Simulation MODSIM 97,
Hobart, Tasmania, volume 4, pages 1772-1777, 811 December 1997.

204 BIBLIOGRAPHY

[238] Hugh Wilson and Friedrich Recknagel. Towards a generic artificial neural
network model for dynamic predictions of algal abundance in freshwater lakes.
Ecological Modelling, 146(1-3):69-84, December 2001.

[239] Stewart W. Wilson. Bid competition and specificity reconsidered. Complex
Systems, 2:705-723, 1989.

[240] Stewart W. Wilson. ZCS: A zeroth level classifier system. Evolutionary Com-
putation, 2(1):1-18, 1994.

[241] Stewart W. Wilson. Classifier fitness based on accuracy. Evolutionary Com-
putation, 3(2):149-175, 1995.

[242] Stewart W. Wilson. Generalisation in the XCS classifier system. In Genetic
Programming 1998: Proceedings of the Third Annual Conference, San Fran-
cisco, CA, 1998. Morgan Kaufmann.

[243] Stewart W. Wilson. State of XCS classifier system research. Technical report
no. 99.1.1, PREDICTION DYNAMICS, Concord, MA, March 18 1999.

[244] Stewart W. Wilson. Get real! XCS with continuous-valued inputs. In Lanzai
et al. [148].

[245] Stewart W. Wilson. Mining oblique data with XCS. Technical report, Univer-
sity of Illinois at Urbana-Champaign, July 2000. Illinois Genetic Algorithms
Laboratory, Technical Report No. 2000028.

[246] Stewart W. Wilson and David E. Goldberg. A critical review of classifier
systems. In Proccedings of the Third International Conference on Genetic
Algorithms, pages 244-255, San Mateo, CA, 1989. Morgan Kaufman.

[247] David H. Wolpert and William G. Macready. No free lunch theorems for
search. Technical Report SFI-TR-95-02-010, Santa Fe Institute, 1995.

[248] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimisation.
IEEE Transactions on Evolutionary Computation, 1(1):67-82, 1997.

[249] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423-1447, September 1999.

[250] X. Yao and Y. Liu. Fast evolution strategies. Control and Cybernetics,
26(3):467-496, 1997.

[251] X. Yao and Y. Liu. Fast evolution strategies. In P. J. Angeline, R. G.
Reynolds, J.R. McDonnell, and R. Eberhart, editors, Proceedings of the Sizth
Annual Conference on Fvolutionary Programming, pages 151-161, Berlin,
1997. Springer.

[252] X. Yao and Y.Liu. Fast evolutionary programming. In L. J. Fogel, P. J.
Angeline, and T. Béack, editors, Proceedings of the Sizth Annual Conference

on Bvolutionary Programming, pages 451-460, Cambridge, MA, 1996. MIT
Press.

BIBLIOGRAPHY 205

[253] Xin Yao. How does evolutionary computation fit into it postgraduate teaching.
In Proceedings of the 1999 Congress on Evolutionary Computation, volume 3,
pages 1707-1713, Piscataway, NJ, USA, July 1999. IEEE Press.

[254] Xin Yao, Yon Liu, and Guangming Lin. Evolutionary programming made
faster. IEEE Transactions on Ewvolutionary Computation, 3(2):82-102, July
1999.

[255] Xin Yao and Yong Liu. A new evolutionary system for evolving artificial neural
networks. IEEE Transactions on Neural Networks, 8(3):694-713, May 1997.

Index

(1 + A)-strategy, 18

(u, A)-strategy, 17, 18
a, 21

1/5-success rule, 22, 156

algae

prediction, 128

role of pH, 131

algorithm, 2

properties, 2
ANN, see neural network
artificial intelligence, 9
artificial neural network, see neural net-

work

automatic programming, 36

binary string, 9, 12, 14, 169

black box, 11

blind watch maker, 2

blue-green algae, see algae, blue-green
bucket brigade, 30, 165

building block hypothesis, 175
building blocks, 171

Burgess shale, 2

CART, 131

cart-pole, 76
description, 98
equations, 78
evaluation, 82
initialisation, 81
two-pole, see two-pole

CFS, see classifier system

Charles Darwin, 1

classifier systems, 29, 163
default hierarchies, 30
Michigan, 29, 163
Pittsburgh, 29, 32

code bloat, 9

colonial algae, see algae, colonial

206

context free grammars, 37
credit assignment, 9
crossover, 169, 171
n-point, 171
uniform, 171

default hierarchies, 30, 51
DOGMA, 35

EA, see evolutionary algorithms
EANN, see evolutionary artificial neu-
ral network
EC, see evolutionary computation
EP, see evolutionary programming
ES, see evolutionary strategy
evolution
as an algorithm, 2
not directed, 3
evolution algorithm, 7
difference equation, 7
evolution strategies, 11, 14-24
1/5-rule, 154
convergence, 24
global, 151
speed, 154, 157
fast evolution strategies, 22
history, 11
lower bound, 17
recombination, 20
rotation angles, 21
selection, 18
self adaptation, 22
step control, 22
evolution window, 156
evolutionary artificial neural network,
42
evolutionary computation
history, 8
evolutionary experimentation, 11

INDEX

207

evolutionary learning, 26
evolutionary operation, 9, 14
evolutionary programming, 9, 14, 24
history, 9
selection, 24
self adaptation, 25
EVOP, see evolutionary operation

filamentous algae, see algae, filamen-
tous
finite state machine, 10, 14, 39
self adaptive, 39
FSM, see finite state machine

GA, see genetic algorithms
GABIL, 34
Gauss-Seidel strategy, 11
generate and test, 7
Genetic Algorithm
canonical, 169
Genetic Algorithm, 169
building block hypothesis, 175
building blocks, 171
implementation, 169
operators
crossover, 171
inversion, 171
mutation, 170
representation, 173
schema, 172
selection, 170
genetic algorithm, 12, 14
representation, 14
schema theorem, 12
genetic programming, 9, 36
functions, 37
terminal node, 37
genetic repair, 158
global optimum, 16
GP, see genetic programming

hill climbing, 16

implicit parallelism, 9, 172

incremental evolution, 104

intrinsic parallelism, see implicit par-
allelism

inversion, 169, 171

Lake Kasumigaura, 120

algae species, 136
law of natural selection, 8
LCS, see learning classifier system
learning

reinforcement, 27

supervised, 26

unsupervised, 27
learning classifier system, 29, 163
local optimum, 16

Michigan-style classifier system, 29, 163
MIPS, see mulitple interacting programs
multiple interacting programs, 41
mutation, 12, 169, 170

natural selection, 2, 8
simulation, 2
neural networks, 41
recurrent, 42
NFL, see no free lunch theorem
NN, see neural network
no free lunch theorem, 159

Origin of Species, 1

panda’s thumb, 3, 13

Pittsburgh-style classifier system, 29,
32

principle of minimum alphabets, 12

regular optimisation problem, 152
reinforcement learning, 27

ripple down rule set, 30

RMS error, see root mean square error
root mean square error, 124

roulette wheel selection, 170

- SA, see simulated annealing

SALMO, 118
SAMUEL, 34
SASME, 47
algorithm, 63
model structure, 50
mutation, 56
parameters, 60

208

INDEX

recurrent rule sets, 108

self adaptation, 68

with relationships, 102
schema, 9, 172

defining length, 174

definition, 172

order, 172
schema theorem, 12, 172, 174
selection

Genetic Algorithm, 170
self adaptation, 14
simulated annealing, 7
supervised learning, 26

tournament selection, 24
two-armed bandit problem, 173
two-pole, 97

equations, 99

non-Markovian, 108

tasks, 103

unsupervised learning, 27

