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Abstract

The development in recent years of improvement schemes for the action and topo-

Iogical charge in the context of lattice gauge theory has proven to be an extremely

fruitfui area of research. These schemes have enabled numerical simulations of

Quantum Chromodynamics to accurately approximate continuum behaviour for

substantially less computational cost than would be required with unimproved

operators. Following the work of LePage [1] [2], and de Forcrand, Perez, and

Stamatescu [3] we deduce the form for action and topological charge operators

which eliminate O("') and O(aa) discretization errors. The improved action is

incorporated into an algorithm to cool a range of gauge fieid configurations, in

order to access the classical behaviour of the fields. We find that we can generate

self-dual confrgurations containing different numbers of instantons, which remain

stable after thousands of cooling sweeps. A novel method of improving both

operators is introduced which enables us to reconstruct the action as a double-

checking mechanism against the more traditionally improved action. Analysis

of single-instanton configurations with highly improved operators is used to in-

vestigate evidence of the instability of such configurations implied by the Nahm

transform [a] on the lattice to extremely high numerical accuracy.
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Chapter 1

Introduction

"By space, the uniuerse encornpl,sses rne and swal-

lows me up like an atom. By thought I comprehend

the world."

Blaise Pascal

Pensées

By far the most successful physical theory humans have ever formulated is Quan-

tum Electrodynamics - QED, which underlies the behaviour of the electromag-

netic force. QED describes the dynamics of electrically charged particles in terms

of the exchange of gauge bosons (photons), massless uncharged particles with in-

teger spin. QED can be described by the Lagrangian density [5]

,Cqeo : LDir^"*.CM.*well * L:.-¡

: Eçr¡çt1'a, - M)rþ(r) - F,,,Ft"' - e1þ(r)1'rþ(")A, (1.1)
1

4

where the first term describes fermions, the second term describes the dynamics of

boson fields, and the third term describes the interaction of fermions with bosons.

The t/ and t/(ø) are therefore fermion creation and annihilation operators while

2
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the A, are photon annihilation and creation operators, and e: -lel is the charge

on the electron. From now on we shall refer to the second term in Equation (1.1)

as giving rise to the Yang-Mills action, but here we have denoted it .4¡4'*."¡¡ to

make explicit that Maxwell's Bquations (with no sources) follow from the action

It
S : -; J 

darF*Fe, (1.2)

as the Euler-Lagrange equations of motion.

Equation (1.1) may be simplified by replacing the partial derivative in the Dirac

term by lhe gauge couariant deriuatiue

Dr=ðr+ieA, (1.3)

The interaction between fermions and bosons is now encapsulated by the covariant

derivative and we may write the QED Lagrangian density as

Lqøo : $(r)(i1, D, - M)rþ(*) - Io*r* (1.4)

This Lagrangian density is invariant under local phase rotations (as we shall see

in Section 2.2).

Experimental tests of the predictions of QED have confirmed its accuracy to very

high orders. The most impressive example is ø", the anomalous magnetic moment

of the electron, the calculated value of which agrees to eleven decimal places with

the experimentally deduced value (1064" : 11'596521869 + 0'0000041) '

The successes of QED in turn inspired the formulation of an analogous theory,

Quantum Chromodynamics - QCD, intended to describe the strong nuclear force

(QpO has of course been quite successfully unifred with the weale ntclear force by

Glashow, Salam, and Weinberg who received the i971 Nobel Prize in Physics for

their work). However the fundamental differences between the electromagnetic

and strong nuclear forces have made the solution of QCD a far more vexing task

than the solution of QED. Whereas there is only one kind of electric charge, and
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particles may carry this charge or its opposite (denoted as positive and negative

charge respectively) there are three kinds of strong charge (often denoted by the

primary colours red, green, and blue) and particles may be charged red, anti-red,

green, anti-green, blue, or anti-blue. Furthermore the gauge bosons that carry

the strong nuclear force (gluons) themselves carry colour charge. The dynam-

ics of gluons is consequently far more complex than that of photons, as gluons

may interact directly with each other, which has profound consequences for any

attempts to solve QCD. These differences are reflected in the mathematical rep-

resentations of the gauge fields. In QED the gauge fields at any point in space are

described by complex scalars with unit modulus. These scalars are elements of

the Abelian group U(l). By contrast the three colour charges of QCD mean that

the frelds are represented as 3 x 3 hermitian matrices, elements of the non-Abelian

sroup SU(3).

Whereas the electromagnetic force diminishes with the square of distance, and a

single charged particle may exist in isolation from its counterparts, QCD displays

the property of asymptotic freedom. At short distances as probed by asymptoti-

cally large momentum transfer, quarks behave as free particles.

It is well established that quarks are always confined within colour-neutral group-

ings to form heavier particles (either red plus green plus blue in the case of

baryons, anti-red pius anti-green plus anti-blue in the case of anti-baryons, or

a colour and the corresponding anti-colour in the case of mesons), but never

observed as single isolated particles the way electrons are. As the separation be-

tween quarks within a hadron is increased the force between them saturates to

a constant value, a very different effect to what is seen with the inverse-square

law from eiectromagnetism. It was the attempt to understand the confrnement of

quarks which led Wilson (Ig74) to formulate QCD as a iattice gauge theory [6]'

Lattice gauge theory derìves its name from the fact that we replace the contin-

uum of space-time by a hyper-cubic lattice of discrete points. Such theories are of
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6 CHAPTER 1. INTRODUCTION

did not simply correspond to the empty, fl.at vacuum. These solutions are what

we call instantons. They are a consequence of the non-Abelian, self interacting

nature of the QCD fields and may be represented as gauge fields of the form

A,(*): ! ( ,*,' ,) (a,c)"-' (1.6)
I \r-tp-/

for an SU(2) gauge transformation

G(r) : *1t,i.i,;i 
(1.2)

(rz¡t tz

with ¿2 : ,1 + i2 and p is a scale parameter referred to as instanton size. The

name instantons is suggestive of their particle-like nature. They have distinct

spatial locations, are spherically symmetrical with finite size, and carry a topo-

logical "charge" which is conserved in interactions between instantons.

Aside from their intrinsic interest as features of the QCD vacuum, instantons are

believed to play an important role in determining the nature of hadronic physics,

by affecting the propagation and interaction of quarks (instantons are, after all,

non-trivial configurations of the gluon frelds, and it is the gluons which mediate

the strong interaction between quarks). Instantons have an associated topolog-

ical charge of +1, while anti-instantons have a topological charge of -1. In the

presence of light fermions the instanton confrgurations give rise to fermionic zero

modes, as demonstrated by the Atiyah-Singer index theorem [9], which states

that for the Dirac operator D : 'yr(D p + iAp) the topological charge of the back-

ground gauge field is equal to the index of D, that is the difference of the number

of negative and positive chirality zero-modes. Instantons and anti-instantons act

as "potential wells" which allow quarks to hop from one well to the next, covering

large distances [10]. By thus promoting the formation of delocalized zero modes,

a collective quark condensate which breaks chiral symmetry may be produced.

Furthermore the restrictions placed upon the propagation of quarks via instan-

tons are believed to have a defining role in the types and properties of hadrons
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Figure 1.1: The instantons, I, and anti-instantons, A, serve to propagate certain

bound quark states such as an up quark and a down anti-quark. Figure after

Schaëfer and Shuryak [10].

which may be formed by associated quarks. Since there is only one zero mode per

flavour, only quarks of different flavours may travel together, leading for instance

to the propagation of a pion formed from an up quark and a down anti-quark, as

illustrated in Figure 1.1. Furthermore, quarks flip chirality as they pass through

an instanton (or anti-instanton), and hence must pass between instantons and

anti-instantons, rather than from one instanton to another, or one anti-instanton

to another. Clearly then the density and behaviour of instantons in the QCD

vacuum should have a strong bearing on the structure and properties of mesons

and nucleons. A more detailed description of the role of instantons in QCD can

be found in [10], while other potentially interesting roles for instantons may occur

in baryon-number-violating reactions that may be observable in the region where

semi-classical calculations are reliable [11], and in direct contributions to deep

inelastic scattering [12] [13] [14].

Since instantons are non-trivial classical solutions (minima of the action) of the

field equations their dynamics may be investigated by recursively modifying the

fields to minimise the action at each lattice site. This procedure is known as cool-

ing, and is based upon a simple prescription for the minimisation of the action.

Within the quenched approximation one simply maximises the real part of the

trace of Wilson loop terms (as will be discussed in Chapter 6). If one were to

consider unquenched QCD, cooling would become substantially more difficult, as

%



8 CHAPTER 1. INTRODUCTION

the minimization of the determinant of the fermion matrix is a highly non-trivial

problem.

Unfortunately the larger the discretization errors present, the less weli cooling

works. Since errors in the calculation of the action mean that the cooling pro-

cess is not perfectly matched to the true structure of the fields, there is a ten-

dency to smooth out their topological structure, eventually rendering it trivial

and reducing the total action of the field to zero. Discretization errors may be

reduced by simply decreasing the lattice spacing (approaching the continuum

limit ¿ -+ 0). However this approach rapidly increases the computational cost

(for a fixed lattice volume) of performing the necessary calculations. Over the

Iast decade or so, scale-independent schemes for eliminating discretization errors

have been devised, most notably Symanzik improvement [15] which has been

applied by many researchers to eliminate O(a2) errors arising in the calculation

of the action (a further source of errors is the non-classical self-couplings of the

gluon fields. These errors are reduced by the process of tadpole improvement [1]).

Cooling with these actions is characterised by a substantial improvement in the

stability of instantons. Rather than falling to zero the action tends to plateau for

an extended period. However studies of locally self-dual configurations require

stability for thousands, not merely hundreds, of cooling sweeps. To achieve the

kind of precision required over so many iterations of the cooling algorithm re-

quires improvement beyond the O(a2) Ievel'

More recently de Forcran d et al. [3] deduced the form for action and topological

charge operators which eliminate O(o') and O(aa) errors. These highly improved

operators are based upon the strategic combination of five distinct planar Wilson

loop terms, but also incorporate a free variable which can.be tuned to control

or eliminate the effect of each loop upon the behaviour of the total resultant op-

erator. By tuning this variable it is possible to create 3-1oop, 4-loop and 5-loop

operators which all eliminate the errors up to O(on). The question then automat-
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ically arises as to whether these highly improved operators are equivalent, since

they require different amounts of computational effort, and it would be advanta-

geous to obtain the best results for the least computational cost.

By studying the long-term stability of instantons, de Forcrand et al. concluded

that the 5-loop operator produces the best results. Following on from this group's

work, we are concerned with investigating several properties of instantons on the

lattice, each of which is related to the question of which operators have the

smallest discretization errors. Since we assume that the closest reproduction of

the expected continuum behaviour is characteristic of the smallest errors, this

question may be addressed in the following ways;

o All continuum instantons are expected to have an associated action of

So :8¡rz lg2. Therefore the total action of the field divided by ,90 will be

equal to the number of instantons present. When we calculate S/^9¡ then

for the whole lattice, we should get an integer value (in the dilute instan-

ton gas approximation). Likewise since each instanton (or anti-instanton)

should have an associated topological charge of *1 (or -1) the total topo-

Iogical charge of the field will be equal to the number of instantons minus

the number of anti-instantons. In both cases the closer the value calculated

on the lattice is to an integer, the smaller the discretization errors must be.

o Recursive local minimization of the action should ideally approach a value

consistent with the structure of the gauge fields on the lattice, that is to

say that as instantons come to dominate the configuration, the total action

measured on the lattice will arise primarily (and eventually, exclusively)

from the associated So: 8tr2 I 92 action of each instanton or anti-instanton

present. However, as noted above, unimproved cooling eventually elases

all information from any field configuration, reducing its action to zeto-

Successfully improved cooling is characterised by a plateauing of the action'
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However the question of how many cooling sv/eeps these plateaux persist

for remains an open one. It seems reasonable to use the long-term stability

of cooled instantons as a criteria for assessing the validity of various cooling

schemes.

o Likewise we expect that instantons should be spherically symmetrical and

retain a nearly constant radius as they are cooled, although it must be noted

that the action S¡ is independent of instanton size. If the instantons shrink

or smear out this may be attributed to discretization errors.

o As cooling proceeds the instantons and anti-instantons should eventually

annihilate, their topoiogical windings neutralizing each other in the pro-

cess. Ultimately there will be only instantons or anti-instantons remaining,

and the field configuration will be self-dual. At this stage the total action

and topological charge over the lattice will be characterised by the relation

S f So : lQ l. The long-term stability of this self-duality is another important

sign of a successfully improved cooling scheme.

This thesis is set out as follows; In Chapter 2 we give an overview of the for-

mulation of lattice gauge theory with the motivation and definition of important

concepts, initially for the case of an Abelian field theory, then carrying these over

to the non-Abelian case. In Chapter 3 we look at improvement of the action.

Chapter 4 deals with the topology of gauge fields and with instanton dynamics.

The details of calculating the topological charge are given in Chapter 5 and a

novel method of improving both the action and topological charge operators is

introduced. In Chapter 6 we present our results by firstly demonstrating that

self-dual gluon configurations can reì.iably be produced by cooling Monte-Carlo-

generated gauge fields. To the best of our knowledge this is the first time that

self-duality achieved in this manner has been explicitly demonstrated to such

high numerical accuracy on the lattice (as high as one part in 104). The stability
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criteria discussed above are used to determine which cooling scheme suffers from

the smallest discretization errors.

Once we have determined which operators most accurately reproduce the ex-

pected continuum behaviour we examine a range of single-instanton configura-

tions to determine if any consequences of the Nahm Transform [16] are manifest

in our numericai simulations. The Nahm Transform is a duality transformation

which maps a conflguration of Q instantons on the 4-torus in ^9tl(.nú) to a con-

figuration of Iú instantons on the dual 4-torus in Stl(Q) (which implies that a

completeiy self-dual single instanton or anti-instanton configuration cannot exist

on the 4-torus, since it would be mappable to an /ú-instanton configuration in

U(L),, and there are known to be no instantons in as simple a field theory as

U(1)). Our conclusions are presented in Chapter 7.
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Chapter 2

Formulatittg Lattice Field Theory

"Plagiarise!

Let no-one else's worlc euade your eyes!

Remernber why the good Lord made AouI" eyes,

so don't shade your eyes,

just plagiarise, plagiari,se, plagiarise!

Only be sure alwags to call it please, 'Research'."

Tom Lehrer

Lobacheuski

2.L Definitions

Let us begin our investigation with a brief overview of the formulation of lattice

gauge theory. The seemingly straightforward act of approximating continuous

space-time by a hyper-cubic lattice leads to a series of definitions and gives rise

to many problems. The alleviation of some of these problems will form the central

theme of the first half of this thesis.

We start by considering a finite volume of space-time. Let us subdivide this vol-

ume into a series of cubic cells defined by a regular lattice with spacing ø. The

13



L4 CHAPTER 2. FORMULATING LATTICE FIELD THEORY

value of any gauge field in this region of space is represented by a value at the

positions corresponding to the lattice vertices or sites.

In general, continuum symmetries like Lorentz invariance and rotational invari-

ance are compromised on the lattice. However if we work in a quantum field

theory in the vicinity of a phase transition where all correlation lengths diverge

one can expect that the fact that space-time has been made discrete will not

matter. QCD is often argued to exhibit a second-order phase transition as g + 0

and perturbative renormalisation group equations tell us that as g à 0., ø + 0

and hence we can make contact with continuum results through the use of per-

turbation theory. In this case we assume that this commonly-accepted view is

accurate enough that our results will remain valid as we extrapolate from the

lattice to the continuum.

Because of the discrete step size on the lattice, derivatives are replaced by finite

differences, Iike those seen in basic high school calculus. For instance, if we define

the forward derivative of some arbitrary function /(r) as

at.¡fA:ltrø + p) - r@)1, (2.1)

and the backward derivative as

1
aor¡(t) [/(') - f@-p)], (2.2)

o,

we can define the total derivative on the lattice as

ô,f (r) : r;al + ar;¡ø¡

: *UO+tù-r@- p)l (2 3)

Notice the use of a hat over the derivative symbol to denote that we're on the

lattice, not the continuum.

On the lattice, integrals are replaced with discrete sums over the lattice sites,
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incorporating a factor of the lattice spacing for each dimension over which the

integral is taken. For four-dimensional space-time

I on, ---+ onÐ. (2.4)
J

2.2 Continuum QED

Let us now look at the simple case of finding a gauge-invariant action for QED,

an Abelian gauge theory, in the continuum, and then moving to the lattice to

find a gauge-invariant action for iattice QED in an analogous way [17].

Firstly consider the fermion action arising from the Dirac equation

Sr: Id,axþ(r)(i1*0r-M)rþ(*) (2.5).J
which arises from the Lagrangian density discussed in Chapter 1

s da rL(tþ, Arrþ). (2.6)

This action is invariant under global I/(1) transformations

,þ(*) 
-> 

Grþ(*) (2.7)

,þ(*) ---+ ú(*)G-' (2.8)

where G : ei^ and the condition that G is a t/(1) transformation means that

GtG :.I and Â is l-dimensional (a scalar).

Unfortunately ,9p is not invariant under local t/(1) transformations, G(x) : 
"i¿t(x).

This is bad news because local transformations can be regarded as equivalent to

passive transformations arising from an r-dependent change of basis. But the

laws of physics must be independent of the 1ocal choice of basis.

The solution to this dilemma is to make ^9p 
invariant under local transformations.

We achieve this by making the replacement

0, + ap + igAp(æ) : D, (2.9)
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where Ar(r) is referred to as a gauge field. Having introduced a local gauge

tränsformation G(r) we can now say that tþ,,t/ and A transform as

,þ(*) -+ G(r)tþ(r),

ú(,) -+ $1x¡c-'ç"¡,

A,(*) + G(r)A,(x)G-'(*) - lc@)a,@)G-t(r)g

under this transformation. We can ailow A*(*) to propagate by introducing the

Yang-Mills action

1
(2.10)Sw daxFr,(r)FP'(x)

4

where

F*"(x) : ðrA,(r) - ô,Ar(x) (2.11)

is the continuum field-strength tensor.

The gauge-independent action is now

Sqeo

Sr'*,9vu (2.r2)

2.3 Lattice QED

Lattice QED is formulated in Euclidean space-time. The Hamiltonian is inde-

pendent of whether we work in Minkowski space-time or Euclidean space-time

and so continuum QED may be transferred to the lattice by simply replacing the

time parameter ú,

I a^*,¡,ç*¡(it'D,- u),þ(*) -i I d.arF,,(r)Fp'(r)

t ---+ -it (2.13)
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In Euclidean space we employ the 7-matrices,1r, (p : L,2,3,4), which obey the

algebra {l,lr} - 26p,. The action now becomes

isqno * -Så"o : i I dax$(a)(1,D, - Ørþ(r) - i I d,arF,,(x)F*,(n),

(2.14)

where the ,E superscript denotes Euclidean space-time. Next we rewrite the action

in terms of dimensionless lattice variables

¡4Phvs --)

Atn"" ---+

,/5t"(") ---+

úf,n'"(r) -->

!¡a
a

Lt
o,

1

" ^tþ"(x)o,"t '.t 
_

-i^rþ'(*)
o,'t "

ôrrþr,n""(r) -+ þarrtr,r.)
where symbols are dimensionless and the o carries the dimension of length. Notice

the hat on the right-hand-side to distinguish the lattice derivative (defined in the

Introduction) from the continuum derivative.

The lattice Dirac action becomes

Sr : \- 
t 
rt'øl.rrfrl@ + F) - ,þ(* - p)) - sÐ'y,A,1þ(r)7þ(r) -l twr¡çr¡r¡'ç*¡

(2.15)

We wish this action to be invariant under iocal transformations as before, however

we find that terms of the form r/(r)r/(g) transform as

,þ("),þ(y) -+ tþ(x)G-'(r)G(y)rþ(y). (2.16)

What we need is a term which we can introduce, which transforms in exactiy the

opposite way, to cancel out this gauge variance. Fortunately, such a term exists.

It is the Schwinger line integral

tl(r,y) - ¿is ll ctz¡"A,(z) (2.I7)
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which transforms as IJ(x,A) -+ G(r)U(x,a)G-t(A). So we find that

tþ(x)U (x, a).þ(y),

,þ(y)UI (r,y)rþ(x),

are invariant under local gauge transformations, where

ut (r,y) u(v,,)

slnce

$(r)U(r,y)rþ(a) -+ $ (r)G-L (r) (G (r)u (x., y)G-' (y)) G (y),þ @)

and clearly the analogous resuit is true for Ut(n,y). With regard to notation, as

noted in the Introduction the lattice axes shall be denoted by Greek letters þ,v...

while Roman letters shall be used for points in space-time corresponding to the

lattice sites. The unit vector in the p direction is ¡r, and since the lattice spacing

is denoted by o, p : aû, is a vector with length one iattice spacing, pointing in

the ¡.r, direction. Therefore r represents a vertex of the lattice, while r + p would

represent a lattice site adjacent to ¿ in the positive p direction. With this in mind

from now on ,vve shall write Ur(r) in place of. u(r,r * p). Hence tl*(r) is the

parallel transport operator that takes us from the site r on the lattice, one step

in the positive ¡l direction, and its conjugate takes us one step in the negative ¡.1

direction to arrive at the point æ (Figure 2.1).

The gauge-invariant lattice action now becomes

,sr : t { L,,þ(*)-,,r,(*)rþ(' + tr) - il,l| + tòt,ul"(*)rþ(r) - u,¡,ç*¡çç,:\
^t1, - 

?\zY\e)tpvu\*)Y\* 
| rt 2tr* 't')ut-p\-'/Y\-/ --¡\ /r \ ')

(2.18)



2.3. LATTTCE QED

u*(r)

ufitx)

x+F

19

(2.1e)

X

X

Figure 2.1: The link operator takes us one step forward along a lattice axis from

the point c, while its conjugate takes us one step backwards to ¿.

(we shali deal with the F*,Fþ' gauge action term below)

Note that with the appropriate substitutions, namely

Uu(x)

"*o {,n fo" 
ar.e,*l* + "[ù]

"*o {on Io" 
o, (tr@) * zo,A,(r) + oç"'¡;}

exp {i7aAr(r) t O(o')}

TtisaAr(r)+O(a2),

l+P

we readily see that this action goes to the continuum action as ø -l 0.

In order to complete our construction of the lattice action for QED we wish to

find a lattice version of the Yang-Mills action. We want it to be gauge invariant,

which means it must be made of closed loops, and we want it to be as local as

possible to facilitate computer simulations on the lattice, so it should be made

of the smallest loops possible. The obvious candidate then is an elementary

plaquette. The operator that takes us around a closed path'is called the Wilson

loop operator, and is the path-ordered product of the link operators along the

path. Remember that path-ordering means we keep the products arranged in

the order that we move around the path (in this Abelian case the path-ordering
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x+v x+p+v

x+p

Figure 2.2: The elementary plaquette formed from the product of four link

operators.

is irrelevant, but in the non-Abelian case we will look at later it will be very

important). The 1 x 1 Wilson loop (plaquette) operator at the point r is usuall5'

given by

w[t"r)@) : u*(r)u,(x + ùul"(r + u)u)(x), (2'20)

as shown in Figure 2.2. Unfortunately constructing the action on the basis of

this definition of the plaquette (see Section 2.4) leads to an action beset by quite

large discretization errors, when compared to the continuum action. A first step

to reducing these errors is the foilowing; rather than expanding the Wilson loop

operator around one corner, we shall expand it around the centre point 26, â,rì.d

take the values of A, and A, at the midpoints of the links as illustrated in

Figure 2.3.

We know that

w[,*\ (ro) : rt,(xo - i)u,lro + l)utr@, + i)uJ@t - 
L;, Q.2r)

where

I r"' .lU,(r*): eXp l¡n I A,(*** zþ)dzl (2.22)

t'J_i--P\--t'þt 
t/ 

I

x



2.3. LATTTCE }ED 27

Au(

A"(tt-å) A"(t 
"+å)

Au(x"-i)

Figure 2.3: How we expand the loop around its centre and evaluate each link at

its midpoint. Note that rs is a half-integer value ro: r+ pl2*u12, and so A,

and A, are correctly defined at the midpoints of the links.

and in this case Ír¿ represents the midpoint of each link. Let us now Taylor

expand the A's as we did in Equation (2.19). We can expiicitly perform this

calculation for a link in the ¡; direction

Ur(*",): exp Ar(r* * zþ)dz

I
2

g

exp

exp

on l-

nn 
l_

o
2

d
2

@

2

ø
2

1

) 
r,\

'ì, zAr(r^) + "3olAr(x^) + 0(26) (2.23)
a

o
2 I

Ar(r^) * zôrAr(x^) ¡ "2AlAr(x*) + clçr"¡
2

6

where the terms arising from z0rAr(*^) and O(23) terms in the Tayìor expansion

have been ignored since the symmetric integration limits render their integrals

equal to zero.

We therefore conclude that

U*(*^) - exp {ieaA*(r^) + tCç"37¡ , (2.24)



22 CHAPTER 2. FORMULATING LATTICE FIELD THEORY

U,(r^): eXp {igaA,(a^) + Clça"¡} . (2.25)

It follows that Equation (2.21) can be written in the form

w[!,"\(xo) : u,(*o - i)u"{*, + l)ul@'+ iluJa, - ll
: exp{isaA*(ro - il * oçæ¡¡

x exp{isaAr(ro + ll + rClæ¡¡

x exp{-i9aAr(x6 + ) + ct1""¡¡

and equivalently

u

x exp{-i9aA*(rs
p

) + ctç"'¡¡
2

2

\Me can rewrite this product in terms of the loop midpoint 16 by Taylor expanding

agarn,

: exp{isa(Ar(ro - i) + e- r" * l)
- A*(*o * ;) - A*(ro - tl * o(o'))j

w[t"t)çro¡ : exp{isa(Ar(ro) - }a,'t rçro¡

+ A,(xs) + ?rðr'1,,çxo¡

-A,(ro) - |a,,1,,çro¡

-A,(xo) + |0r'1,'(ro¡
+O(a2))¡

: exp{iga(aðrA,(rs) - a7,Ar(æo) + {lça"\¡¡

: exp{iga2 Fr" + O(a37¡.

(2.26)

(2.27)

We have therefore been able to extract the continuum field strength tensor from

the plaquette. We now return to the task of constructing a lattice version of the

Yang-Mills action.
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2.4 The \Milson Action

s*rlw!"!,"t)l : p Ð,D *.,

: þÐ,Ð*.,

: ßt \-r /_¿r L/ p1u

23

Wilson (1974) proposed a form for the action for the pure gauge field (Yang-Mills)

action on the lattice, based upon the plaquette [6],

^ewllr4zjl*,)l : uÐP_lt - # grw[l,"rt+ rrwj;.rx;] e.2s)

: uÐÐl'-#(Retrl4ri)""))] Qzs)

for an SU(¡\I) theory, where .Re denotes taking the real part of the function, and

Tr denotes taking the trace. Note that since the trace of any loop will be complex,

taking the real part of the trace is equivalent to taking the average of the trace

of the loop and the trace of its conjugate. For if we assume that the elements of

W* are of the the form ar, * ib* then we see that

f, {rr*,, + Trw),) : Iþ- * ibtt+ ... + ø¡,,¡,, * iå¡¿¡¡

*at - iht *... * ø¡¿ru - iå¡,t¡¡)

/f¿ir* azzl...*ø¡,t¡r)

: Re(a111ibn + ... + ø¡¡¡¡ * iöry¡¿)

: ReTrW*,.

In this case however, .lú : 1 and as a consequence, the trace is trivial. Now we

may expand the Wilson loop operator, using the standard Taylor expansion for

an exponential function, and find that

[t - ; (, * 
nn"' F,, - lrs'onrtr,

*r - iga2Ê'r, -1ro'onr3,* o(rt))]

[t - 
t + 

rro'r] r',, * o('\)

f;s'onr'r, + o(a6).
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Therefore we have

swllw[:,"l)] N 
'n I on*r,,r* (setting U : ]¡. (2.30)

Notice that when we switch from summing over ¡t, and u given the condition

I S l.t 1u 14 to summingover all ¡t,u:I,2,3,,4 we double-up on each Fl,in
our expression, since Fr,: -Fup.Therefore we have introduced an additional

factor of one-half to cancel the effect of this double-counting.

Although we have not dealt with the problem of fermion doubling (see reference

[17], Chapter 4), we shall conclude our construction of the lattice action for QED

at this point. Our approach has none-the-less motivated the introduction of the

Iink operators and loop operators, and the introduction of the Wilson action.

From now on, throughout our discussion of non-Abelian lattice gauge theory'

we'Il concern ourselves exclusively with the pure gauge action.

2.5 Non-Abelian Gauge Field Theory on the Lat-

tice

Now we will extend our analysis to non-Abelian field theory, specifically QCD,

using the mathematical formalism developed in the Abelian case. The physics

in this case is characterised by gauge transformations which are elements of the

group S¿l(¡/). This means that

, -ts \o:, (231)"*- 2 2"t",

where the À" are generators of the group S¿l(¡f), i.e., these are ly' x 1/ hermitian

matrices. We similarly find that

N2 -t )ø

2
F*r: L

a=l

F;, (2.32)
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This ensures that F* is an element of the Lie algebra of the group SU(N).

We are interested in finding a lattice version of the Euclidean action

S:+ [ aarr;,ri,, (2.3s)
4J

where

Tr(À")ò) - 26ot (2.34)

and therefore

.ç:1 [dnæTrF*Fr,. (2.35)"-zJ
Also note that in the non-Abelian case the derivatives in the continuum field

strength tensor have been changed from partial derivatives to covariant deriva-

tives,

Fr'(x) : D'A'(a) - D'A*(x; (Z't0)

: ôrA,(r) - ô,Ar(r) ] islAr(x), A,(*)) (2.37)

: lDþ D,l (2.38)

Because things are no\¡/ non-Abelian path ordering is important. Since A, and

A, are now non-commutative we use the Baker-Cambell-Haussdorf rule to find

the form of the loop operator as a single exponential,

"A"B 
:*o 

{o 
+ B +'¡ro, tl- 

} , (2.3e)

where the dots (...) denote higher order commutators of the form lA,lB,c]]. In

the case of the 1 x 1 Wilson loop there are four link operators and so the BCH

rule implies a more compiicated form for the expansion of the loop operator

"A"B"c"D 
: exp{A + B +C + D+

1

[A, Bl + lA, C] + [A, D)
2

+lB,cl + lB, Dl + lc,Dl) + ...Ì,



where again the dots represent commutators of higher order. Now we are in a

position to evaluate the Wilson loop for a non-Abelian theory. Analogously to

Equation (2.26) we find that

w[|,"'\çro¡ = "*p {tos (o,@o - il * ,q,@o + l)
-A,(*o *i) - A,(*o - T¡ 

* o@)

+@{te,(*o -Ç),'+,{*o * +)l

+$v+*(*o - Lr), - A,{", + ill
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(iog)"
2

(iog)'
2

*@{w,(,o+

+ O(g3as,n'on)\,

where the g3a3 errors correspond with higher order commutators, the d2 errors

correspond with higher order terms in the Taylor expansion of the A's outside

the commutators and the 92aa errors correspond with higher order terms in the

Taylor expansion of the A's inside the commutators. Then as before we Taylor

expand around 16 and find that

w[t'Ðçxo¡ : .*, 
{oon 

(or,t., - 
Lrol,Ar('o) 

+ A,(*o) +7ral*A,(xg)

+

+

),-A,('o - in
),-Ar(*o*?l

)', A,(*o - in+$te,(,o-

v
,
a_

2

v_

2

v
,

lA,(ro -

lA"(*o +

-Ar(*o) -lraL,Ar("o) - A,(ro) +lral*A,(ro) * O(t\)

-@{ {[,t,{*o-'r), ,+,{*o+ln * lA*(*o-"¡), - e,{r"*;)l

*lA,(xs - il, -A,(æo - ill * lA,(rs * l),-A,(*o * ?f
*lA,(rs * l), - A r(*o + ill
lA,(ro - il, A,(*o - in * o@2)\ + oçn" 

"" , s' o\\ .
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Collecting terms and expanding the commutators we obtain

wl:,*L)@o)
""p { ia2s (0rA,(ro) - ô,Ar(rs) + O(a)

+!(te,Ao),A,(ro)l - lA,(ro),A,(*o)l - lA*(*o), A,(*o)l

-lA, (* o), A r(* o)l - IA, (, o), A, (, o)l * lA r(n 6), A, (, o)l+ O (, ) ) )

"*p {to's (a*e,çro¡ - ð,Ar(rs) + islAt"(ro), A,(ro)l * oø))}

exp {ia2gFr,(ro) + O(go")}

exp {io2gFr"(ro)} as ¿ + o_\ (2.40)

(consistent with the result in the Abelian case) and in this limit F*, is the non-

Abelian continuum field strength tensor.r

Clearly, trying to find the higher order terms for a non-Abelian field theory would

be prohibitatively difrcult. Taking the Taylor expansions of the A's out to higher

orders will rapidly increase the number of terms and the number of commutators.

Similarly, trying to calculate the form of the Wilson loop for paths with more

than four links will rapidly introduce a daunting profusion of terms. We need a

better way.

Fortunately, there is one. As was done by LePage [1] we firstly define the closed-

loop Product Operator Pl"T"") (ø6) in line with the form of the Wilson action for

an ^9U(/ú) theory

pl"T""t ("0) : fin*rew;T*ù@o), Q.4r)

(where the P on the right-hand side denotes path-ordering) so that

,Swir: P>,Ð it - P[t"')) (2.42)
r p<v

lAs a side point on notation, it is worth mentioning that in some of the literature on this

topic the relation Wp,: exp{ia2gGr,} where Gp, = Fr" + 0(a) is used.
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For the time being we shall only concern ourselves with the plaquette, for the

sake of simplicity. The Product Operator is an exponential function, which we

can write as a function of an integral around a closed path,

pl"t"'t : fir n"t 
{"on 

t ".0,¡ , e.4J)

and the expansion of this exponential will be a polynomial in powets of ø, the lat-

tice spacing (actually, powers of a2, as we can see by inspecting Equation (2.a0)).

We know that PÍ:,"r) is invariant under axis interchange (p <+ z), since it is

proportionai to the action, which must be invariant under a change of basis, so

the terms at each order in ø must also have this property. Since we know that

Fr,: -Fvp we may conclude that the lowest order term must contain F],,and

all higher order terms must contain even po\4/ers of F¡r,. We also know that the

terms at each order must be dimensionless so that the action remains dimen-

sionless. Since F* has dimensions of inverse-length-squared,, ',ve can conclude

that the lowest order term (the Fl, term) will be the aa term (note also that

each factor of F,", carries a factor of g with it). The other factors we expect to

find in this expansion are covariant derivatives (because we require local gauge

invariance), which have dimensions of inverse-length. Applying the requirements

for symmetry and dimensional consistency \¡/e deduce that the expansion will be

Pr'"," = L - g' (bronT 1r'r,(ro)) + a6Tr{Fr,(bzD2, + hD7)F1,,}

+ a,6T1 {F p,(b4D t"D, + b5 D, D t") F r,} + O (t\)

to(saaa) (2.44)

where b.,...,ö5 are scalar constants, and the O(gnon) errors are perturbative cor-

rections which can be removed in the act of cooling, as discirssed in Section 6.2'

Assuming b2,b",... are non-zeto, the non-leading order terms in the expansion

will introduce tree-leveL errors which we shall wish to remove in order to make

our definition of the lattice action more accurate. We can find the values of these
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constants by the use of a clever trick [1]. Rewriting the line integral f Ad,r in

Equation (2.43) as f (ArdxrlA,d,r,) we see that we can apply the 2-dimensional

version of Stoke's theorem (that is, Green's theorem)

f"{to*+Kd,y): I [(#- H)d,xdy (24s)

Therefore we see that we can readily rewrite our integral around the loop as

f oor: I 1".!,'rd,x,d,r,(0*A,(rs*') - ô,A,(xs+')) . (2.46)

Note that we have lost the concept of path-ordering in the transition from a line

integral to a double-integral over an a¡ea. We will find however, that the differ-

ences between Abelian and non-Abelian expansions of the Wilson loop correspond

to terms of order g. These are removed rapidly by the process of cooling. As a

consequence we achieve improvement of both the action and topological charge

through the use of an Abelian analysis. A more detailed discussion of this matter

will be withheld until the process of cooling is fully described in Section 6.2.

Now we expand the A's around the point 16. If we choose to work in coordinate

gauge A.r :0 the derivative terms arising from the Taylor expansion can be seen

to be equivalent to covariant derivatives rr0r: x,Dt". Hence we find

f oo, : I l::,d,rd,r, (n,.t,ç*o¡ ! xoD,D,A,(*o)

1-l'rr. r B D, D B D * A, (ro ) - D, A r(x s) - x o D, D, A *(* o)

-f,*o*,DrD"D,Ar(rr) + ff{tt¡) .

Next we sum over the repeated indices, and since our plaquette is a 2-D object

we are simply summing over the ¡t and ¡z directions, thus we find

f o.o. = I f:"dx,d,r, ({n,e,{,g) - D,A,(rg)}

I {rrD* I r,D,} {DrA,(rs) - D,Ar(xs)}
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* {r*x,DrD,} {DpA"(ro) - D,A*(rs)}

+r{.'-D', + r',ni¡ {DrA,(rs) - D,Ar(rs)}

+o(r3))

I l::,d'x,dx' (','(*o) t {r*D, * r'D'} F"(rs)

* {r rr,D rD,) Fr,(xù * tt 
{r'rn', + x'z,Dl} F*,(ro)

+ctç."1) .

When we take the integral the terms with odd pov¡ers of ¿ vanish, because of

the symmetric integration limits. This means that by choosing to expand the

plaquette around its centre_point we have set ba,b5 = 0. Therefore v/e can neglect

these terms in the expansion of the double-integral and hence obtain

(2.47)

(2.4e)

t' o o, : I l::,d.r,dn, (0,,r*, + t {,',D', + r7D7} F,,(rs)+ (r(,'))

(2.48)

We now square this result and insert it into the expansion of the plaquette oper-

ator

a4

24
: a2 Frr(ro) + (D', * n2,) rr,@o) + clçou\

r[1,"Ð @o) : lr n*, 
{"nn 

t oo'¡

: !ra"r,{o * rs f ea, - *rf Ad,r)z * o(n\}

: åot {t - *rf Adn)2 * otn\\ ,

where the leading term in the expansion is the 3 x 3 identity matrix, since we are

dealing not with the exponential of a scaiar quantity, but with matrices. Note

that the covariant derivatives in the following and subsequent equations only act
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upon the Fr,'s inside the square brackets with them. This then gives

2 2
a4

a2 Fr,(xs) _t_
'24 l@', + D'z,) r*@o)l + o(a6, u'2¡

: aaF2r,(ro) + fir-,ç*r) l@', + o?) Fr,(*o)]

+#KD', + n?) F,,(ro)l F,,(x6) * o(a.).

Therefore we find

(2.50)

(2.51)

(2.52)

rj).')("0) : o"' {, - *rf A.dr)2 * ors\}

{r - Ç*r,,,r,¡ - #r,,(*o) l@,,+ n?) F*(*o)l

1

3

1

3
Tr

-# KD + n2,) r*,@o)] F*(ro) + o(as, sa¡\

, - #rrll,(ro) - ff rrr,,@o) (D'r + n?) F*,(rs)

lO(a", gn),

where we have reordered the factors in the two O(a6) terms between Equa-

tions (2.51) and (2.52) to make them equal using h(AB):Tr(BA). We have

therefore determined that û : Il6 and b2, bs:1172.

This is an extremely powerful approach because it avoids explicitly dealing with

commutators, and because the steps are identical for any plaquette up to the

point where the double integrals are taken. This means that once the expansion

in Equation Q.al has been found, to the desired order, it is possible to evaluate

the expression for a larger square, ,uy P[',"')(ø6), or fot a2 x 1 rectangle, or any

other Wilson loop simply by changing the integration limits!

We then have, for example,

r[!,*2)@ù : I"ror, f""or,(D,A,(xs-r 
r) - D,Ar(rs+ "))

e[]*t) (ro) : [""'' or, ["'' o*, (D rA,(rs* ,) - D,Ar(rs+ r)) .

J -zdl2 J -al2
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In order to find the expansions for various loop sizes more easily, a package was

developed for use with the algebraic manipulation software Mathematica. This

package takes the integration limits and the order to which the expansion should

be found as arguments, and returns an answer corresponding to the step shown

in Equation (2.a8). The code for this package is included in Appendix A.

Note that by inserting the expression for fj)"l)1re) into the term for the Wilson

action and setting þ:2Nlg' :6lg'we obtain the Yang-Mills action, accurate

to O(az),

,Swil [r - rj)-1)1øo;1:p>,Ð
x ¡t1v

:u+Ð 
f'-'+ffr,r].@o)
+ffrrr,,@o) (D', + D?) F*,(xs) + o(a8 , g^¡f

:uÐÐ l#*':.('o) + o(ou,g\f

: ,n t t ltrFl,@o) * o(a2,s4¡) (setting B
6

92

:ontt I
2
TrF],(xs) * O(a2,sa)

r p<v

t P,u

Therefore we have

,Swil : ¿ar TrFl,@s)+O(o',gn) (2.53)

2.6 Summary

In this Chapter we have shown that a gauge theory may'be transferred to a

space-time lattice. When we do so we find that the links between lattice sites

contain the information about the gauge fields. By multiplying these link opera-

tors to form gauge-invariant closed loops we obtain a formula for the action which

1

,
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approximates the continuum Yang-Mills action, but also contains error terms of

order O("t) and higher. In the next Chapter we shall turn to the problem of

eliminating some of these errors.



Chapter 3

Improved Actions

"Your fri,end is right Julian, you can't break the

Iaws of physics. But you can bend thern!"

Jack

Star Trek: Deep Space Nine

'Chrysalis'

3.1- Tree-Level Improvement

Deviations from the continuum action are one of the foremost problems arising

with iattice gauge theory, and consequently many approaches to minimising these

errors (improvement) have been formulated. A straightforward summary of im-

proved gauge actions is presented in Chapter 12, and of improvements to the

Dirac action (which we shall not consider here) in Chapter 13 of [18]. In the

following sections we shall consider improvement based primarily upon the ap-

proach pioneered by Symanzik [15], and further developed by Lüscher and Weisz

[1e].

While it is true that we can obtain the Yang-Mills action from the expression for

a 1 x 1 loop (plaquette), it is also important to note that the O(aa) terms for

34
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any other loop differ from those for the plaquette only by a scalar constant, and

hence we could equally well use a 1 x 2 rectangle or any other loop, and obtain

the Yang-Mills action by simply choosing an appropriate value for B. Apart from

being the most local choice of loop there's nothing special about the plaquette.

In fact there's no reason why we couldn't obtain the Yang-Mills action using a

linear combination of different loop terms. This fact will enable us to classically

improve the action, by combining loops to eliminate the lowest order deviations

from the continuum action.

So iet us consider the terms arising from the 2 x 1 and 1 x 2 rectangular loops,

r - 
4t^6g'-TrF',(*o)

-ry{rrF,,(rs) (+oi + Dl) r*,@o) + o(a8 , s4¡

r - 
4"^6g"-TrF',(*o)

e[!,'2)ç*o)

-ffrror,(*o) (D'r+ 4D7) Fr,(ro) t o(a8,sa). (3.1)

The mix of terms is not symmetric as in the plaquette, but we can overcome this

by adding the two expansions together. This ensures that the resulting operator

is symmetric under axis interchange, as we required in the previous Chapter.

Hence we have

((r- p[?"t)@ù) + (tr- P[:""')@ù)

: (2 - pl"',"t)(".) - P[lx2)@ù)

: ffrrri,('o) + ff r0,,(rù (aD2* + n?) F,,(ro)

*!#r,rl,@o) + ffrF,,(xs) (D', * +D2,) F*(ro)

iO(a8, ga)

4oug"

72

8on g'
TrF],(ro) *

r[?,"')@o)

6

iO(a8,, ga)

TrFr,(ro) (sni + sDl) F,"(co)
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ffmri,(".) + ffr,r,,(,o) (D7+ o?) F,,(rs)

IO(a8, ga).

Now that we have an expression symmetric in ¡,t, and u we can see that $/e can

create an improved action, Sl, by forming a linear combination with the expression

arising from the plaquette to eliminate the O(ou) terms:

sr : iuÐ,Ðl,t -r[.*Ðçx.)) - #{ e-r¡7.'tç,0)) - Q-r¡¡"t(,,))}]

l#*rr"('o) 
+ ffr,r,,(,") (D7+ n?) F,,(rs)

(ff*fi"('o) + 'Sr,r,,(,o) (D'*+ o?)r,,('o))

+ O(o", gn¡]

iuÐ ,,Ð*il^rr"l,or.o, 
*ff"',.(*o) (D7+ o?) F,.(rs)

Tttl,@s) - ffrr,,@o) (D7+ D7) F,,(ts) + o(as,sa¡)

il#*rl,@o) *ff"',,('o) (D',+ n?) F,,(rs)

-2+TrF',,(ro) - ffrrr,,(xo) (D2, + n?) F,,(ro) + o(a',sa¡f

* 
u Ð>-i lry rr Fl. @ o) + o (o8, sn ¡)

lal\-
3' ¿-,/ ¿-./

3on g'
Tr Fj,(ro) * O(aB , sa)

:3rff
o u<v

tt
r u<v

t

: ',DÐ

1

20

_ 2on g'
t)

1a
3',

30

5^
-t)
3',

r tl<v

r p<v
t ffr4,(,0) + o(o',n\)

t t laatrl,@o) + o(a",s2¡1 (setting B : 6
---=
g' )

t ltlv

t þ,u lf,r, 
ri.a o) + ct çon, n' ¡f
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Therefore

Sr:: I an*rrrtr,(ro) + O(on,g'). (3 2)2l
We can see by comparing equations (2.53) and (3.2) that the combination of terms

from the square and rectangular plaquettes has given us an action which matches

the continuum action to the next order in ø2 beyond that of the unimproved

Wilson action.

Notice that tree-level improvement has dealt only with those discretization errors

which are leading order in g. The O(g') errors remain, and we shall examine a

process by which these errors are minimised in Section 3.2. Having noted their

existence, and the fact that tree-level improvement does not deal with them, we

shall henceforth leave the errors of higher order in g as implicit rather than explicit

components of our equations. Although such errors are of similar magnitude to

O(on), these corrections will be shown to vanish in the process of cooling (see

Section 6.2).

Before we proceed any further let us define

y@,,)(æs) : lQ - e[y"")ç*o) - p[i"^)(",)), (3.3)

so that

s,:|øÐ*.+r[],')('o). (34)

The point of this approach is to average the contribution from rectangular loops

oriented in different directions. From this definition we can easily see that

r[!,r\(xo) : * {#"F;,@o) 
+ ffnr,,@o) (D', + D?) F,,(ro)+ (2("')}

: { onrrrl,çzo) * {rrr,,ç*r) (D7 + n7) F,,(æo)+ {2(ø8)} ,

I 
uv' -t 12 -/\ P " ' )
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r[);'z)1xo¡ :
6

rrFl,@o) * \{r,F*,(ro) (+ni + n2,) r*çro)

: 
{+#rrrl,('o) 

+ '$rrr,,(*ù (n',+ n?) F,,(rs) * rr{.')\ .

It is a fairly straightforward. exercise to show that f!,T*l may be used to define

an improved action as was demonstrated above,

sr : iu ÐÐ" l{rllu ø,)) - å (rtr''?r1ro;)]

åurDa lonrrrl,{*o) 
+ $r,r,,þo) (D', + n?) F,,(rs)

* {rrr;,("o) + Srrr,,ç*o) (D', + 4D?) F,,(rs) * ot \}

4on g'

t tt<v

1

(+onrr;,('o) + $r,r,,(*,) (D'- + n',) ,,,{,o))
10

* O(aB)

: i, Ð Ð.+lonr,Fl.@ù 
+ fit r,.@o) (D7 + o?) F*.(rs)

-{rrr3,(ro) - $rrr,,q*") (D',+ o',) F,,(rs)* ofr')]

: iuÐÐ,+l{r,r',.("0) + $"',.ç',)(D',+ n7) F*.(rs)

-'#rrri,(ro) - $rrr,,1*r) (D',+ n?) F,,(ro)* rr(r')]

: iuÐÐ"+ lY*'1"('o) 
+ oi")]

: iuÐÐ.lffirr F]'(ro)*'{")]

: iulÐl#*rl.@;*ot")]
: Ð t laaTrrl,@o) + oça8¡l (setting þ = las 

above)'
r p<v
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Hence we see that

St: on tt

39

2
TrFl,@s) -l O(a4) (3.5)

1

t þ,v

In future we will find it more convenient to work with the T[7'"1" rather than the

P[7""¡ 's when creating improved actions, since they are symmetrica] in terms of

¡-t. and u, and they automatically eliminate an irrelevant factor of 7 f 6, making our

aigebraic manipulations neater.

3.2 Tadpole Improvement

As we've seen above (Section 2.3) the leading term that couples quarks and gluons

is of the form t/(r)Ur(*)trrþ(û + ti). Taking

1
(3.6)Ur(r)=1*igaAr(r) 92 a2 A2r(x) + o(a3)

2

we see that this contains therþ(x)gAr(r)lrrþ(rf ¡r) quark-gluon vertex, but it also

contains higher terms that involve couplings of the gluon field to itself. These

couplings, arising from terms like lg'a2A'rþ) are called'tadpoles', because of

their diagrammatic representation as closed loops [20].

Naively we expect these terms to be suppressed by powers of a2, however since

the tadpole loop integral associated with A2r(r) diverges ut (ä)' the effect of the

poners of the lattice spacing are cancelled, and the only thing suppressing the

tadpoles is powers of 92, which are inadequate to the task. The solution to this

problem is to rescale the links with zq, the value of the mean link. In essence

us is a renormalization factor which accounts for the effect of the short-range

(ultraviolet) fluctuations arising from the presence of tadpoles [2]. 
'We 

rescale the

link variables

u,(*)-+, (3.7)
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where we have defined the mean link in a gauge-invariant way

uo: (r[1,"')("))å . (3.8 )

Having defined the mean link, our next step is to introduce it into the action.

Doing so to the improved action we found above would result in an action of the

form

s':f,ott# 
[t LL<v

1flt't)1ro¡) (rÍi')@")) (3 e)
I

I0u2o

An example of how well this improvement scheme restores continuum-like be-

haviour is given by the restoration of rotational invariance in the static quark-anti-

quark potential, V(r). For unimproved actions, the computed value of the po-

tential for distances on-axis (rf a: L,2,3,4...) and off-axis (rf a: Jr,J3,J5 --)

may be off by as much as 38%, for coarse lattices with ¿ = 0.4 fm. With im-

proved actions of the kind discussed above these errors are reduced to the order

of one-percent [1].

3.3 Order ø4 Tree-Level Improvement

We have already seen how a simple tree-level improvement scheme can be em-

ployed to eliminate the O(o') deviations from the continuum action on the lattice.

We now wish to extend this idea to the elimination of the next order of errors.

To this end we will begin by looking at the expansion of the loop operator to

order ¿8.

we can tell from Equation (2.47) that for the elementary plaquette

f^a,4
{ ,+.a, : o2Fr,(ro) + u@'r+ D?) Fr,(xo)
J

.# @^, + nf) r,,@o) * * @',D?) F,,(rs)

*O(a8) (3.10)
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+O(g2,a8)

Tr aaFl, +Tr fir,,1@'-+ n?) F*,1

47

(3.1 1)

(3.12)

For simplicitywe will refrain from substituting this result into Equation (2.49),

and instead we will simply use it to find the expression corresponding ø Tl"t;'),

TÍtt) : Tr aaFl,+n frr,,|@'-+ D?) Fp,l

*r, #KD', + D?) F,,l Fp, + r, Sr-, l@î + Dl) F*,)

*t # Kn^, + Dl,) F,,l Fp, + n fir* l(D'z,D1) F,,)

*". # KD"D?)F,,fF,,+r, fiKo"+D?")F,,)l@"+ D") F,")

+r, Sr', ,l@^, + o|) F,,f -rr ftr* (nini) r,,l

*r. # ID',F,,1 lD',F,,) + lnl r,,1 ln? r,,))

*t 
's 

lo',r,,) ln?p,,1

+O(g2,a8).

Since we wili be looking at a number of expansions of this type, corresponding

to different loops, let us simplify our results by making use of the notation:

A : Tr aaF],

B = Tr a6F*l(o',+ D?) F-,1

c : Tr a8F*l(D^-+ Dl,) Fr,)

D : Tr a8Fr,l(DTD?) Fr"]

t : Tr ø8 (lntrrr,l ln'rrr") + lDTFr,) loTpr"l)

F = Tr ø8 lD'rF*f ln?Pr,l

Using these definitions we may say that

1
_L_
'12

1
_!-

288

1 1
I-
'288T[:";) : A s*fic D+

576
c

(J F + O(ato). (3.i3)
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In order to find an O(aa)-improved action we will need to eliminate the terms

ß,C,D,t, and .F from the expansions of the loop terms. We will consider five

other loop terms in addition to ?(1*1), remembering that the rectangular terms

of equal dimensions but different orientation must be added together as was the

case for the O(a2) case in Section 3.1. Therefore we choose the following terms

as the basis for our highly-improved gluon action

r[;t) : ,a+ [s* Oht * *o * ht * *,
,r(z,z)
t rlv r6A+t*u *åt * To *lt *

4A+lu*#r* rLro*ffie**,

sA+f, * '#, *å, *frt *'fnr

81,4 + 'fn *'#, *#" *Ht *#,

I_/tr
gt

.nG,2\
t rlv

rr,( r,3)
t t",

r(¡,3)t 
Lru

Notice that in each case the coefficient of D and -F is the same, meaning 'tve can

regard these two terms as a singie term for the purposes of their elimination. We

then have only five unknowns, and five equations, meaning that we should freely

be able to solve this system of equations to obtain a highly improved action.

Further insight can be gained by dividing the term for each loop by the product

of the extent of the loop in the ¡;-direction squared with the extent of the loop

in the z-direction squared, so that for each loop the coefficient of the "4 term is

made equal to 1. This gives us f[T'") ¡1*'n2) for each loop (see Table 3.1).

A number of very interesting results emerge from this analysis. Firstly, rüe see

from Table 3.1 that just as the coefficients for D and F for any given loop are

the same, the numerators of the coefficients of C and t are the same, meaning
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Table 3.1: Factors from various loops, for the coefficients in the expansion of the

action.

that D and F can be combined behind a single coefficient

D':(D+3)

and C and t can likewise be combined behind a single coefficient

(r.#')

(3.14)

c' (3.15)

Secondly we see that when the denominators of the various terms are set to the

same value, the numerators of B for any loop are given by m2 ¡n2, the numerators

for C,are given by *n *na, and the numeratorsfor D'are given by m2n2 (the

area of the loop squared).

In order to find the form of an improved action we start by assuming that

the terms corresponding to each loop are to be multiplied by some constants,

ct,c2,c3,... so that the improved action may be written

sr-p : þU,Ð+ þtr[l;L) + c2TQ'2) I csTop) + ...] .

c tt<v

A B c D ça F
(1 1) 1

t
u

2

1920
I

288 1l:l¿
I

284

( )2 2 1
8
24

co

rno
16

288
32

7152
16

288

)
t1 1

5

24
l7

1920
4

288
T7

7152
4

288

(i,3) 1
10
24

82
L920

9
2a8

a2
lL52

o

288

(3,3) 1
18
24

162
1920

81
288

t62
tL62

81
288

(3.16)
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(3.17)

(3.18)

(3.1e)

(3.20)

This equation actually represents a series of equations;

cr¿Q'r) + c2AQ'2) + caAG'2) + ... :

cr30't) * crg?,z) + caBG,2) + ... :

crct(L'r) + c2C'Q'2) ¡ csC'0'2) ¡ ... :

crDt(LJ) + c2Dt(2,2) ¡ c"p'(1,2) ¡ ... :

1

0

0

0

where A(m,n) represents the coefficient of the Aterm from the expansion of T[7'"1

and so forth, with the values taken from Table 3.1. de Forcrand et al. [3] have

already deduced a form for a 5-loop improved action (*5Li" ) using 7(^'") f (m2n2)

where (*,r): (1,1), (2,2),(L,2),(1,3), (3,3). We wish to reproduce their resuits

by deducing the same values for the constants c1,c2,,csr...

To find the values of the improvement constants we use the coefficients in Table 3.1

to construct an equivalent matrix equation with the coefficient matrix ,4. and the

constraint vector B

-A (3.21)

_B (3.22)

11111
2851018
24 24 24 24 24

2 32 17 a2 162
1920 1920 1920 1920 1920

1164981
2AA 288 288 288 288

1

0

0

0
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We can now write Equations (3.17-3.20) in the form

(3.23)

and the values of c1,c2,c3,...may be found by using Gauss-Jordan elimination.

After performing a series of eiementary row operations to reduce A to echelon

form, and the same series of row operation on the vector B we find that

11111
2851018
24 24 24 24 24

2 32 17 82 162
1920 1920 1920 1920 1920

1164981
288 288 288 288 288

1

0

0

0

C1

C2

C3

C4

C5

i000
0100

55
9

64
9

C1

C2

C3

C4

C5

64

19
ã-

t
o

(3.24)0o1o -w
0001 2

45

!
5

Therefore we deduce that

: (19 - 55c5)19

: Q-6ac5)19

= (640c5 -64)145

: Il5 - 2c5

and c5 is a free variable which we can use to "tune" the action. Of course, we

have divid.ed the terms in the actions by the leading order so that the coefficients

for A are ali equal to 1. Hence we must compensate by 'including factors of

If m2n2 in the final form of the improved action. This can be illustrated by

noting, as above, that the terms we used to construct the matrix A were in fact

not T[7,") butT[T'") l(*"n').Once we have incorporated these factors and the

C1

C2

C3

C4
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relevant tadpole improvement terms the final form of the improved action we

have deduced is

St-o :|oÐt* [(19 - 55cs) 7Í,r)_,_ 1 (1 - 64cs) Te,2)
I S -ttv 'I6u[ g -t"'

t u<v

+
1 (640c5 - 64)

Tf,i;2) + {r^{tls -2c5)z'0'3)

+

au\ 45

#"'f"''] (3.25)

It is easy to see that by tuning the variable c5 we can create 3-, 4-, and 5-loop

improved actions. If we set cs :71!0 we eliminate the contribution from f[],'2)

und T[],'"),leaving only three of the five terms and creating a "3-loop" improved

action (from now on we shall write S(3) for brevity) and by setting cs : 0 we

eliminate the contribution f.o- ?,Íi't), Ieaving four terms and creating a "4-loop"

improved action (S(4) for short).

When retaining all five terms corresponding to using a "5-loop" improved action

we shall typically choose cs: L120, midway between the ^9(3) and s(a) values.

This value was selected by de Forcrand et al. to stabilize the size of instantons

on a lattice with twisted boundary conditions in the time direction [3]'

To ensure that the reader is clear about what we mean when we speak of each

improvement scheme, let us state the following facts explicitly;

o The lloop action is the standard Wilson action constructed from the pla-

quette alone. It contains errors of order O(o')-

o The 2-loop action is constructed from the plaquette and the average of the

a x 2a anð,2a X a rectangular loops. It contains errors of order O(aa),,bú

is free lrom O(a2) errors.

o The 3-loop action is constructed from the plaquette,2a x 2a and 3¿ x 3¿

Wilson loops.
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o The 4-loop action is constructed from the plaquette, 2a x 2a and the re-

spective averages of the a x2a and 2a x ø rectangular loops, and the a x 3a

and 3o x ø rectangular loops.

o The 5-loop action is constructed from the plaquette,2a x 2a, 3a x 3ø, and

the respective averages of the o.x20, and2a x ¿ rectangular loops, and the

o, x 3a and 3¿ x ø rectangular loops.

o The 3-loop, 4-loop, and 5-loop actions are all free from order O(on) errors,

but contain (in general) different order O(ou) errors. However they still

contain O(g') errors at O(aa) and higher, as is clear from the error term

in Equation Q.a9). If not for tadpole improvement the scale of such error

terms would be large enough to interfere with the improvement process,

rendering the 3-loop, 4-loop, and 5-loop actions approximately as accurate

as the 2-loop.

o Since c5 is a tunable parameter, there are actually an infinite number of

possible forms for the 5-loop actìon. We have chosen to concentrate on the

action obtained by setting cs : rl20' The 3-loop and 4-loop actions are

just other special cases of the 5-loop action.

3.4 Alternate Improvement Schemes

As mentioned in the introduction to this Chapter, the improvement scheme we

have adopted is based upon that developed by Lüscher and Weisz [19]. It is

worth taking the time to describe their improvement procedure and detail the

differences with the approach we have adopted'

As we have seen,, an arbitrary planar loop ,L can be expanded as

L--ryL+rzß1.. (3.26)
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Figure 3.1: Examples of possible non-planar Wilson loops, the parallelogram

(left) and bent rectangle (right). Of course, other non-planar loops are possible,

involving more than six links.

If we consider the more general case of non-planar loops, other terms arise bearing

indices beyond the p,,u that we have so far examined. Additional loops outside

the p, - u plane are required to cancel these extra terms. Once again the lattice

action can be written as a sum of loop terms weighted with appropriate coef-

ficients. Lüscher and Weisz considered the plaquette pius I x 2 rectangle and

the two other possible choices of six-link Wiison loop depicted in Figure (3 1).

Such an improvement scheme eliminates O("') errors from the lattice action. The

O(a2)-improved action we have described in Section 3.1 is really a special case of

this improvement, in which we achieve tree-level improvement while neglecting

the non-planar loops. The Lüscher-Weisz action includes very small corrections

of order 92, however since the contributions from non-planar loops are so small

(the parallelogram term is equal to -0.0044192 while the bent rectangle term is

equal to zero) the action can be improved classically to an excellent approxima-

tion, and then tadpoie improved to deal with non-classical corrections.

Our calculations are performed on a supercomputer with pàrallel processing ar-

chitecture. Since several processors are working on different parts of the lattice

at once this approach is extremely rapid, however a "masking" algorithm must

be applied, to define which areas of the lattice are to be updated and which are
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Improved Action

Wilson Action

O Fixedpoint

Figure 3.2: The renormalization group transformations define a flow within

coupling space. The renormalized trajectory is an attractor for this flow, and

improvement of the action aims to approach the RT arbitrarily closel¡,-. Diagram

after Gupta [18].

ofi-iimits at any given time, to prevent the Wilson loops used to update different

links from overlapping [21]. Restricting our consideration to planar loops greatly

improves the efficiency of the masking algorithm. Thirdly, consideration of non-

planar loops introduces 92 terms which may be seen as suitable for cancelling the

O(g') corrections to the action. However the process of cooling a configuration,

to be discussed in Chapter 6, removes such errors anyway. Therefore O(g2) cor-

rections are only of concern during the first few sweeps of cooling, and since the

research detailed in this thesis is concerned with the behaviour of configurations

after several hundred to thousand cooling sweeps, the inclusion of terms to com-

pensate for such corrections would seem unnecessary.

Before concluding, some mention should be made of other approaches to gauge

action improvement, especially the "perfect actions" based upon renormalization

group transformations (RGT). An RGT may be considered in the space of all
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couplings {K "}, and specifically we are interested in the hypersurfaces formed by

critical points {K""} with correlation length €lo: oo. At certain fixed points on

such hypersurfaces the theory reproduces itself at all length scales, as the renor-

malized couplings are equal to the original couplings. The sequence of theories

defined by repeated use of a RGT induces a flow of couplings, and of particular

interest a flow trajectory along the critical hypersurface towards a fixed point,

see Figure (3.2). The renormalized trajectory (RT) is the trajectory from a fixed

point, to which all critical points sufficiently close to the fixed point eventually

tend. What makes this interesting is that an action along the exact RT will be

completely free of discretization errors, as there are no scaling violations along

the RT. Attempts to improve the action based upon this theoretical framework

must contend with the fact that correlation lengths in simulations tend to be

much smaller than the extent of the (finite) lattice, € < L. Since the RT attracts

flows within the vicinity of the fixed point from which it starts, the action can be

improved by estimating the location of the fixed point and adjusting the action

to start nearer to it. An example of an approach to improvement based on this

idea is the Iwasaki action [22]. Hasenfratz and Neidermayer's classically perfect

action [23] is based upon the attempt to take a saddle-point integration of the

RGT about the coupling g : g-

The work of Morningstar and Peardon l2al is also worth mentioning. In order

to obtain more statistically significant results in the attempt to calculate masses

of glueball states, an anisotropic lattice with at K' øs was adopted' This step

is not really an improvement, since it merely corresponds to approaching the

continuum limit, albeit in only one dimension. However they then adopted the

Lüscher-Weisz action (with tadpole improvement) with the piaquette represented

in both the fundamental and adjoint coupling space, in order to avoid a phase

transition between weak coupling and strong coupling phases. This approach has

been shown to improve the scaling of masses calculated for the gluebali spectrum.
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3.5 Summary

In this Chapter we have seen how the expansions of Wilson loops may be combined

to improve the action by removing the classical error terms arising from the lattice

discretization of space-time. This process can be extended to any number of loops

(in principle), allowing us to remove the errors to any order in a. In practice

however we have chosen to eliminate the errors up to and including order O(on).

We have also seen how tadpole improvement may be employed to improve the

action by renormalizing the value of each loop, eliminating the non-classical error

terms arising from self-coupiings of the gluon fields. In the next Chapter we

shall look at the topology of gauge fields and turn our attention to improving the

calculation of the topological charge analogously with the improvement of the

action.



Chapter 4

Topology and Instantons

"To use the rigorous method of 'handwauing' for

soluing problems rnore cornpler than the addition

of positiue real integers."

Item 3

The Physicists' Bill of Rights

Anonymous

When we perform simulations on the lattice we attempt to de-emphasise the finite

volume of our lattices by imposing periodic boundary conditions to eliminate

the existence of an "edge" (although this is not a necessary feature of lattice

simulations, and other boundary conditions may be employed). For these reasons

it should be specified that what we are studying is an approximation to true

QCD, an .9tl(3) theory on a 4-toroidal mesh of discrete points which approaches

fuli QCD as we take the limit ø -+ 0 (continuum limit), followed by the limit

V + oo (infinite volume limit). It is expected that topologicai structures in

the Stl(3) gauge fields will play a significant role in the physics we simulate on

the lattice, and so we would iike to examine the field topology that emerges in
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the continuum when we examine the semi-classical (low action) solutions to the

field equations. We shall find structures that are analogous to particies, and are

referred to as instantons and anti-instantons [25]. The presence of instantons and

anti-instantons in the QCD vacuum is believed to have an effect on the nature of

hadronic physics [10] [14], specifically by acting as "potential wells" which quarks

may hop between, thus affecting the possible combination of these quarks to form

composite hadronic particles. Both types of pseudo-particles have an associated

action of ^9¡ - 8n' lgt . Instantons in the continuum carry a topological "charge"

of *,S0, while anti-instantons carry a corresponding charge of -,50. In coming

Chapters we shall see that since instantons have discrete action and topological

charge, one test of the validity of our simulations is associated with counting the

number of instantons and anti-instantons on the lattice.

4.L Homotopy Classes

To understand properly what instantons are and what we mean by topological

charge, we will first discuss some introductory topology. Consider the unit circle

eie and consider two functions;

fo(o)

l'(Ð

exp{i(n0 + áo)}

exp{f(nd + P')i

Consider also the function

F (0,t) exp{ifnï + (1 - t)0o + t?tl}

Obviously F(0,0) : fo?) and F(0,1) : å(d). We see that F(0,ú) is a continuous

function, and both /6(d) and fi(d) map the unit circle to itself (St * ,S1). Since

/s(d) and f1(0) r'lLay be continuously deformed into each other we say that they

are homotopic to each other , and F(0,ú) is called a homotopg of these functions.



We will further notice that /e(d) and fi(d) map from a single rotation a¡ound

the unit circle (the domain is 0 € {0,2n}) to n rotations around the unit circle

(the range is /(d) € {0,zntr}). This gives us a sense that the functions /e(d)

and fi(d) 'wind around' the unit circle n times, and we call n the 'winding

number' or Pontryagin index of these functions. We can therefore divide the

space of such mappings into subspaces, called homotopy classes or equiualence

classes, composed of all the functions with the same winding number which can

be deformed into each other. Each homotopy class is then characterised by its

winding number. This is represented in Figure 4.I. It is also easy and important

to observe that we can generate transformations which map between different

homotopy classes. A simple example of this is to take powers of the mapping

with the lowest non-trivial winding number (n : 1)
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f (0)

and produce mappings with higher winding numbers

f(0)
"i0n

One example of a mapping which will become important later is the general

function

ie
e

/(") : "*P

It is easy to show that the winding number, given by the equation

,: ;; I_: d,(- ir-L(r)ô"r@))

(4.1)

(4.2)

reproduces the value n.
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M

Figure 4.1: The space M of mappings from one topological space to another ma.v*

be subdivided into distinct equivalence classes, each characterised by its own

winding number n. Homotopies like F deform mappings into other mappings

within one equivalence class. We can also define mappings like G between

different equivalence classes.

4.2 Vacuum States

Let us begin this Section by noting that points in n-dimensional Euclidean space

as lzl -+ oo define the same topology as the points on the surface of a sphere

^9"-r (Figure @.2)). Therefore, IRa as Irl + oo is topologicaliy equivalent to s3.

Now consider the gauge group SU(z).r SU(z) is defined by three parameters,

since all elements of the group can be written in the forrn [/ : exp{i€.r} :

lSince any gÌoup Stl(N) can be constructed from subgroups which are elements of SU(2),

the results of the following Sections will readily generalise to arbitrary values of .lú, so long as

N>2.
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R,

Figure 4.2: Points at infinity in Euclidean n-space can be uniquely defined by

n - I angles 0t,02,,..ïn_t and therefore may be treated as if they were points on

a sphere S"-r.

øoll * id.í. We can see that

azo+d,2:I (4.3)

f¡om the property [JUl : UIIJ : n. Ciearly Equation (4.3) is the equation of a

sphere, so we are justified in treatiîg SU(2) as topologically equivalent to,93.

The value of the gauge fields at any point in space is given by a function which

assigns an element of the gauge group manifold (in this case SU(2)) to each

point in space-time. In other words the vacuum state is a mapping from IR'a -+

SU (2), which as we have just seen is equivalent to a mapping ,S3 -+ 53. It seems

reasonable to anticipate that such mappings exhibit a winding number, as did

the simple ,91 + ,S1 mappings i¡/e examined above. In the Stl(2) case, we f-nd

[26] that the generalisation of Equation @.2) yields

-1n: -.-
2tr

(4.4)I d3x (e¿¡¡A¿A¡Ar)
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t,t

tt
I

Figure 4.3: Space-time within a hyper-cyiinder capped by two 3-spheres, with

extent t ¡ - t¿ in the time direction.

where

A¿(*): f-L@)0;f (r). (4.5)

Let us now consider some region of space-time contained within a hyper-cylinder,

with extent t e lt¿,ú¡] in the temporal direction. We require that Fr,(r) -+ 0

at spatial infinity, so that the action will be finite, but as we have already seen

Irl + oo in n*l dimensionsdefines the samegeometry as the sphere,9'and so

we shall say that Fr,(r): 0 outside some very large radius lrl: R as depicted in

Figure 4.3. From this point on we shall work in the temporai gauge An(r): 0 for

simplicity, although our results shall be gauge-invariant and therefore this choice

does not matter.

Under a gauge transformation G we have that

A, à A', -- G-r ApG + G-t ApG (4.6)

In order for the action to be finite we require that Fr, --) 0 as lr I goes to infinity.

At fi.rst glance this may appear to imply that the fields go to zero at infinity, but
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ti t:t¡

Figure 4.4: A hyper-cylinder section of a space-time torus capped by two spheres

(S2), with extent t¡ - t¿ in the time direction.

in fact it only requires the weaker condition

Ar(") + A'r(x): G-rðrG (4.7)

as løl goes to infinity, which in turn implies that

An(") + A'n@) :0: ð+G (4.8)

because of our gauge-fixing condition. The requirement that Fr,(x) -- 0 as

l"l -+ oo means that the field is pure gauge and time-independent

A¡(*) -+ Alo@) : G-10¿G where i: I,2,3. (4.9)

Let us choose a form for the gauge fleld at the top and bottom surfaces of our

hyper-cylinder to be pure gauge and have Ar(i) be independent of direction d

as ldl -> oo. This iatter condition ensures that the gauge field on these surfaces

hasfiniteenergy. In 3*l space-timethis impliesthat at t:t¿ and Ú:f/ the

gauge field is given by a pure gauge mapping of ,53 -+ SU(2). Since at t : t;

and ú : t f the gauge field is pure gauge and since we have Ar(i) independent

of direction as d -+ oo on these surfaces, we can compactify these surfaces to ,93

and hence define a winding number on each surface,2 n¿ aîd n¡rlor the Ú¿ and

2This is of course analogous to mapping R2 u {oo} to a sphere

t

identified with all points at infinity

52 with the "north pole"
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/¡ surfaces respectively. These integers n¿ and n¡ characterize different classical

vacua of QCD and we can study the tunnelling between them. The difference

of the winding numbers nJ - n¿ will be identified with the "topological charge"

between the equal time surfaces /¿ and t¡ ' H nJ -n¡: 1 the tunnelling probability

[27] is given by the exponential

where Sir,rt is the action associated with a single instanton. In the next Section

we will determine this value and relate it to the topological charge.

As we are working in the temporai gauge, Equation (a.6) implies that G takes

the form [28]

exp {-Si".t},

)aG(x): -Aa(x)G(r),

(4.10)

(4.11)

(4.r4)

which in turn implies that

G(x) -",.0{ #Lo,)v,(tu'-' @tp*r.)} Ø.n)

Since we are free to choose a value for the integration constant 0s we define it to

be

to: (n*t)", (4 13)

then if we take the spatial components of Ar(r) to be zero at t4: f oo it follows

that as the field configuration evolves from time t4: -æ to ra : f oo

G(x)1,^=-* - exp

and

G(z)1,.=a- : exp {r"ffiV(?¿ + 1)}. (4.15)

We therefore see that the instanton field defines a gauge transformation that con-

tinuously deforms a vacuum state with winding number n into a vacuum state

+í.i
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JI

--tl-

rF
'---:__----

-cIg

Figure 4.5: Comparison of mappings between homotopy classes and gauge

transformations between vacuum states. The function F is a homotopy that

connects the mappings /s and fi within the same class. The function G

represents mapping f, to fi. Analogously a gauge transformation G takes us

from one vacuum state A to another state A'with a different winding number.

with winding number n I I. The gauge transformation defined by an instan-

ton is therefore a mapping between homotopy classes that differ by one unit of

winding number. Figure 4.5 represents this situation, and compares it with the

situation discussed for ^91 + 51 mappings dealt with in Section 4.1 We there-

fore conclude that if the vacuum state at t : t¿ has a different winding number

to that at t : ú¡, then somewhere within our hyper-cylinder there will exist an

instanton which tunnels between the two vacuum states. If we now embed our

hyper-cylinder within a 4-torus as in Figure 4.4 we see that if we wrap the initial

and final times around completely so that the vacuum states are equal, the wind-

ing within the hyper-cylinder must be contained within the transformation G.

G

Á

,--A

G

.-{
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4.3 Instanton Solutions to Field Theory

Let us now turn our attention to the type of structures we expect to see in the

continuum occurring as classical (low-action) solutions to the fieId equations. Is a

trivial condition, in which the action is zero everywhere, the only stable minimum

action solution? At first this may be what we expect, but in 1975 Belavin et al.

[8] showed that it is possible for non-zero local minima of the action to exist.

These solutions are non-dissipative configurations whose (finite) energy remains

localised rather than being radiated to infinity (although we shall see that they

have an arbitrary scale and hence may approach infinite size). We shall now

follow their reasoning to deduce the form of the solutions to Euclidean Yang-Mills

theory in SU(2) which we identify as instantons. This theory is characterised by

the action

with the gauge fields

Sø
1

2s'
daxTr(F*Fþ')

A
To

2

2

AO,,t
a=l

t

(4.16)

(4.t7)

(4.18)

(4.20)

ll

the field strength tensor

F,, Fi,
a=l

(remember that we're working in SU(2) not ^9Il(3), so there are three generators,

not eight, and the ro ate the three Pauli matrices), and the Lagrangian density

1

t: 
*tTrFp,Ft"' 

(4'19)

with A, + iArf g,,Fr, -+ iFp,lg for convenience, as per 128]. It follows therefore

that

J
0,T

Fr, : 0rA, - ArAp + lA, A"l
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is the field strength tensor, and the dual field strength tensor is defined by

(4.2r)

We may write the winding number of a configuration in terms of the (unobserv-

able) gauge-dependent current [28] [29]

K t" = -e ¡",xoTr(Arõ¡Ap *
2

3
A,A Ap (4.22)

It can be easily shown that

1 (4.23)ôrK, Tr F¡"rF¡",

1

Fr, : 'rerrxoFs,

))

2

Therefore we may convert between a volume integral and a surface integral over

53 at infinity

1I darTrFpF, I ao,N,
Js

(4.24)

(4.26)

v-

Rewriting K, in terms of the A, and comparing with Bquation (4'4) we find that

1

'o - r6n,
darTrF*F* (4.25)

Let us now look at the action of a field configuration. It is trivial to see that

and we can show that

2

ITr (F,",+Fr,¡tdnr>o

(Ft", +. Fr,)' :Z(F*F* t F*F*,), (4.27)
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because F¡rrF¡", : F¡"rF¡", arLd F,"rFþ, = FrrF,", from the Equation (4.21) and

the properties of the Levi-Cevita symbol. Therefore we have

t, 

| "ç"' 
+ F')2dn* >

- I, I rr(F*F¡", + F*Fr,)d x >

^1t*tJdarTrFwFr, ) I
I

0

0

ti

ti

darTrF*Fr,l

darTrF*,F*l : 8n',

èSa 8tr2n

92
Son, (4.28)

where we have used Equation (4.25). Clearly the Euclidean action is bounded

below by the quantity ,9on and is minimised when Ft", : +F* i.e., when the

configuration is locally self-dual or anti-self duai. It is obvious that the trivial

solution Ar:0 with winding number n : 0 satisfies this self-duality condition.

What is interesting is that other non-trivial solutions are also allowed.

Without going into explicit detail [S] let us just state that SU(2) transformations

of the form

G(r):*+I1i,;í. (4.2s)
(tz¡t¡z '

where 12 : 11* i2 give rise to a gauge field

Aa(r\: *í'i.,- Ã@)-(G:Ð+ira) (4'30)\ú/ - g(r2 + p2)' g\r" + p2)

for z ) p where p is an arbitrary parameter usually referred to as instanton size

[28]. Note that we are working in Euciidean space-time and so the time compo-

nent of 4-vectors carries the fourth index, not the zeroth'

Given the name'instantons'and the fact that they have a'charge-like property

which is conserved in interactions (analogously with the processes of pair-creation

and annihilation observed with fermions) it is tempting to think of them as parti-

cles. However the standard interpretation of instantons treats them as tunnelling

+Sø
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amplitudes between vacuum states with different winding numbers (as we have

seen in Equations (4.I4) and (a.15)).

The topological charge may be related to a quantity called the Chern-Simons

term which is related to the current I{*in an obvious manner [30]

C Sluil: - | dÍæe¿¡¡Tr(A¿L¡An +zreo,+¡e*). (4.31)

At classical minima this quantity is related to the winding number

c slu-L aiul : ! I
çtón'n

d3 n e;¡ ¡Tr(U -t 0¿t l t l -' 0 ¡U U-r A kU )

U¡

where ny is the winding number of [/. We can show that the winding number is

additive since

c slu-t A¿u + u-t0¿u) : c slA,l * 
å | atrrn¡rrr(l-Laiuu-t \¡(JtJ-r ðn(J).

(4.32)

We therefore deduce that the topological charge in the case of a tunnelling event

from a state ,Ã: 0 to a state Ã: U-rô¿U as illustrated in Section 4.2 is given

by

Q u. CSIU-'ð¿|JI - Cslol. (4.33)

The topological charge associated with an instanton is therefore the di'fference of

the winding numbers of the vacuum states between which it tunnels,

Q : nJ - n¿. (4.34)

As noted in Chapter 1 instantons are believed to play an important role in

hadronic physics by acting as "potential wells" within the gluon fields, modifying

the manner in which quarks may associate with each other, dependent upon their

flavours and chiralities. The density of instantons within the QCD vacuum may

therefore be expected to play a major role in determining the type of hadrons

that are permitted to form, and their physical properties.
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4.4 Summary

In this Chapter we have made a cursory examination of the non-trivial local

minima of the Yang-Mills action in the continuum. These solutions to classical

Yang-Mills theory are referred to as instantons. We have seen that they are self-

dual field configurations which correspond to tunnelling events between vacuum

states with different winding numbers. We have furthermore seen that instan-

tons (and in the anti-self dual case, anti-instantons) have an associated action of

So : 8r2l92 (independent of their size) and a quantity called topological charge

which is related to their roie as tunnelling amplitudes. It follows from these obser-

vations that in a configuration consisting purely of instantons and anti-instantons

the total action and topological charge will fulfil the conditions S f So : n ¡ * n ¿,

and Q - nr - n/ where TLr, TtA are the number of instantons and anti-instantons

respectively.

In the coming Chapters we shall use the action and topological charge as impor-

tant "observables" in our lattice simulations. In the next Chapter we shall turn

to the task of eiiminating discretization errors from the lattice topological charge

operator, in anaiogy to the improvement of the action carried out in Chapter 3.



Chapter 5

Topology on the Lattice

"science i,s a way of trying not to fool yourself."

Richard Feynmann

In order to study topology on the lattice, ï'üe can take the straightforward step

of shifting the continuum formula for the .9U(3) topological charge, which is an

integral over ail space-time of the charge density [31]

q(x): firr,*Tr(rr,çr¡ro"(")) (5.1)

to the lattice, and replace the integral in the continuum with a sum over all lattice

sites.

q:lør") (5.2)

As one would expect, discretization errors affect the lattice topological charge

operator, and it is desirable to improve this operator analogously with the im-

provement procedure carried out on the action. There are two obvious ways of

achieving this.

The first is to calculate a series of operators 8t, ...,Qu which are then combined

66
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to create an improved operator. This method is exactly analogous to the action

improvement procedure detailed in Chapter 3.

The second method involves combining loop terms to create an improved ver-

sion of Fr,,, and then using this improved field strength tensor directly in Equa-

tion (5.4) to perform an improved calculation of the topological charge. Further-

more, since the action is ultimately based upon F' it is also possible to directly

"reconstruct" the action from the improved field strength tensor as an alternative

to the procedure used in Chapter 3.

5.1 Topology on the Lattice

The SU(3) topological charge in the continuum takes the form

a
1

32n2
d,4rerrroFwFoo (5:3)

Correspondingly the ^9tl(3) topological charge density on the lattice is given by

11q(r): _,._, "._zr*ooFf,T*"1ç"¡r!7"")@) 
(5.4)

n'¿'n' ó¿11-

and we sum over all lattice sites (equivalently to taking the integral in the con-

tinuum form) to obtain the total topological charge.

To determine the topological charge we choose to calculat. p(mxn) not from a sin-

gle m x n loop but from the clover term (Figure (5.1)) used in the Sheikholeslami-

Wohlert improved quark action [32] [33]. In the standard clover term we would

set m :n:1, so that we are making a calculationbased on the plaquette.

Just as it is desirable to improve the action to obtain more continuum-like results,

so it is desirabie to produce an improved topological charge operator. de Forcrand

et al. calatlate the topological charge operator using a variation of the standard

clover operator which is improved similarly to the action. That is, they employ
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+

Figure 5.1: The four nz x n loops and four n x m loops used to construct the

clover term from which we determine the topological charge. Notice that this

reduces to one-eighth of eight plaquettes in the case m: n : I.

a set of loops of various sizes to calculate a set of topological charge operators

Qr,...rQ5 based upon clover terms corresponding to different choices of m and

n. These operators are then combined, each being weighted by a constant, so

as to produce an improved topological charge operator. Their .l/-loop improved

topological charge operator is therefore defined as

N

f "oQn, (5.5)

t,
where the c¿ are improvement constants (de Forcrand et al. use the same val-

ues as in the improved action [3]), and the Q¡ are topological charge operators

corresponding to a particular choice of m x n loop. In our construction of the

improved action and topological charge operators we have chosen to incorporate

appropriate tadpole improvement factors, u6, the values of which are updated

during the cooling process, however de Forcrand et al. use a fixed mean-link

value of one.

There is another way of improving the topological charge which we have chosen

to employ, and which is the topic of the next Section.

1

8
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5.2 Improving the Field-Strength Tensor

Consider the form taken by the equation for the expansion of the (1 x 1) Ioop

operator

w!,I.' - "is 
$ Ad't - rti.s (f aa¿'- if oo.

cg
(5.6)

2

The third term on the right-hand side is simply the second term squared, so in

principle vÍe can construct both the action (which requires the first and third

terms) and the topoiogical charge (which requires only the second term) from the

second term on the right. In order to extract this term we cannot simply take

the imaginary part of W[l"L) since A has real and imaginary parts. Instead we

make the following construction

wÍ:,"'t : 7 * ig f oo, - Çrf Ad,r)2 + o(g')

wt"'tt : r-igf oo.-trf Ad,r)2+o(g').

Hence we have

-;/*; (*1"t", -r¡¡(rxr)r -Irrrr[,,*,) - wjl-rrt¡) : n t' Ad.x-ro(g') (5.7)

where we have subtracted one-third of the trace to enforce the tracelessness of

the Gell-Mann matrices.

This definition introduces an extremely important difference between the im-

proved action and the improved topological charge operator in our calculation.

Rectangular loops in perpendicular directions must be added and averaged. But

to calculate the action, the terms corresponding to Equation (2.48) are squared

first, while for the topological charge the rectangular terms are averaged and then

the result is squared. This makes the values of the O("') terms in the topological
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charge operator different from those in the action, and therefore \¡¡e would expect

the improvement coefficients \tt,...,k5 to be different to the values of the action

improvement constants c1, ...rc5. In the next Section we shall look in more detail

at determining the values of these constantsl.

In order to construct an improved field-strength tensor we will need to expand

the integral term in the Wilson loop operator, to determine the coefficients of

the terms at various orders in ø. We can do this in the manner described in

Section 2.5 using Green's theorem to convert the surface integral to a double in-

tegral. But first, since we intend to calculate the topological charge from a clover

term we must calculate a series of clover terms, then combine these to create our

improved F¡",, and construct the topological charge operator from this tensor.

Let us begin by following similar steps to those used in the improvement of the

action. We define

: a2 F*,

on (D" * D?) F*

= ou (Dn, + Dî) Fp"

: a6 (D2rDf,) F*,.

Let us now denot e by C(*'") the combination of terms extracted from the ex-

pansion of a Wilson loop as per Equation (5.7) corresponding with the loops

used to construct a clover term (Figure 5.1). Hence from Equation (2.a6) with

lde Forcrand et aI. üsê c1 ,...,c5 for the improvement of both the action and topological

charge. as their improved operators are consttucted from a combination of unimproved oper-

ators built from individual loops. By contrast we construct an improved field-strength from

combinations of loops, and define our improved operators from this quantity.

A

ß

c

D
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appropriate choices of integration limits, we see that

7T

(5.8)

s(*,n) : å {lr^" 
o*, 

Io" 
d,r,(0,A, - o,A,)

* l:^"0** lo" 
d,x,(ð,A,- ð,A,)

* l:^"0,, l:^"
?md ¡0

* J" d,, 
J_,"

* 
Io"" 

0,, 
lo^

* I:,"0*' Io*
¡O rO

* 
J-."d*, J-*"

îna ¡O

* J" d,, 
J_*"

dx, (0rA, - ô,Ar)

dr, (ðrA, - ô,Ar)

dx, (0*A, - 0,Ar)

dr, (ô*A, - 0,Ar)

dr, (0rA, - 0,Ar)

dr, (0*A, - 0"Ar)

In order to determine the forms of these elements of the clover term we may use

the Mathematica package detailed in Appendix A. We find that

g(r,t) : ,q+!n*f-c*Lo6"'r20"'J6"

ç(z,z) : 4A +Tu * frc *'fo

g(r,z) 2A ,!^c *'u"*ls *

g(r,.) : sA+2ru *foc *]"

6'(s,a) : gA+TS *UC *\O' 2" t 40" t 4

and of course we also include appropriate tadpole improvement factors. Notice

that since the order O("u) terms in each F' will be "promoted" to O(48) (and
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Table 5.1: Coefficients from various loops, for the expansion of F¡",

higher) by taking the product F¡",Fpo,, while the O(a8) terms will be promoted to

O(oto) (and higher). Consequently since we wish to eliminate O("') errors from

the product, we need only expand out to (and eliminate) order O("u) corrections

in Fr,. We therefore have five equations and four unknowns, so we may freely

solve the equations arising from the values listed in Table 5.1.

Next, as in Section 3.3 we construct a matrix from the values of these coefficients

and perform Gauss-Jordan elimination to determine the values of the improve-

ment constants. We find that they are

kr : l9l9-55k6

k2 : Il36-I6k5

k3 : 64ks-32145

lc4 : llIS-6k5

and once again the coefficient of the 3 x 3 loop (in this case k5) is a tunable

free parameter. We can see that if we set ks:1190 we will make k2: ka - Q,

eliminating the contribution from the CG'2) and C(r'3) loops - creating a "3-1oop"

improved field strength tensor. We may create a "4-loop" improved field strength

tensor in three different ways' by setting ks :0, rgl495, or r1576' For simplicity

we have concentrated on a 4-loop improved tensor with ks : 0 throughout this

A B c D

(1 i) 1 I
6

1

120
I

36

(2,2) 4 q
J

8
15

16
9

(t,2) 2 Þ
6

17
t20

z
9

(1,3) 3 Þ
2

4l
40 4

(3,3) 9 243
40

81
4
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investigation, as we have seen no evidence that either of the other two choices

produce a better operator, in preliminary investigations. From now on when we

refer to the 4-loop improved fieid strength tensor, topological charge, or recon-

structed action we shall mean that ks : 0 rather than either of the other two

possible values.

In this thesis we shall use the value ks : Ll20 when we calculate a 5-loop im-

proved field strength tensor, analogous to the improved action.

5.3 The Reconstructed Action

As mentioned in the introduction to this Chapter, the topological charge operator

is not the only useful operator which can be constructed from the improved F¡",.

We may also square our improved F* and construct an improved action from it,

to compare with the improved action we have already calculated. This simple

procedure merely involves taking the improved tensor we have already described

above, with the same improvement coefficients, and inserting it directly into the

equation for the Yang-Mills action on the lattice,

s : þ+Ðlro"onr;,. (5.e)

This "reconstructed" action may serve to let us double-check that the improve-

ment scheme for F* is in agreement with the standard improvement scheme for

the action. Since the improvement constants are different to those previously

calculated for the action the comparison of the "teconstructed" action with the

corresponding improved action2 should serve to provide two separate lines of anal-

ysrs.

2From now on we shall refer to the reconstructed action and the cooling action, for reasons

which will become clear in Chapter 6.
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5.4 Summary

In this Chapter we have seen how the continuum form of the topological charge

operator may be transferred to the lattice. After considering one method of

removing discretization errors from the topological charge operator, we have de-

tailed a method based on the direct improvement of the lattice field strength

tensor. This improved tensor may be inserted into the definitions of the topolog-

ical charge and the Yang-Mills action.

The reconstructed action which we obtain from this procedure is a useful tool

for checking the validity of our improvement schemes, since we would hope that

the cooling action and reconstructed action (when both constructed from the

same number of loops) will calculate consistent values for the action of any given

configuration. Furthermore, since they are constructed in different ways we shall

expect that they will differ in the size of their discretization errors at (2(ø6) (in

other words, at orders higher than the order of improvement). Therefore the

magnitude of the discrepancies between the cooling action and the reconstructed

action indicate the relative magnitude of the O(ou) errors in each.

The improved topological charge operator is an important tool for determining

the number of instantons present in a configuration. These operators shall be put

to direct use in the next ChaPter.
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Chapter 6

Results

"Do not condemn rne foreuer to the treadmill of

mathematical calculations. Leaue n'¿e sorne room

for philosophicøl speculation - my sole delight."

Johannes Kepler

We have now reached the point where we understand some of the interesting

properties of gauge fields in the continuum and can transfer these to the lattice.

When we do so, the values of the fields at any point in space-time are assumed

by values assigned to the lattice links. We can use our lattice approximations to

compute numerical quantities related to the topological properties of gauge fields,

eliminating discretization errors to high order. The approach we shall use to gen-

erate fields with non-trivial topology to study is thermalisation, which creates

Monte-Carlo.generated gauge field configurations, foilowed by cooling, which re-

moves the short-range quantum fluctuations.

The cooling algorithm relies upon a recursive calculation of the local action, fol-

lowed by a consequent updating of the link values to minimise the local action at

each lattice site. We use the improved actions calculated in Sections 3.2 and 3.3
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for this purpose and refer to these as the cooling acti,ons. The value of the cooling

action at each sweep determines how the links are updated in order to minimise

the action. The reconstructed actions (Section 5.3) are used as an independent

means of assessing the action of the field configuration at each sweep, but play no

role in updating the link values. Each iteration, in which the cooling algorithm

is applied to each link once and once only, is called a sweep. Each sweep may be

thought of as a step that takes us through configuration space towards a mini-

mum value of the action. As the minima of the action at each point in space-time

correspond with either a trivial field or an (anti-)instanton, many sweeps (i.e.,

many iterations of the cooling algorithm) should cause the entire configuration

to approach a self-dual configuration.

In the continuum, as we approach self-duality, we would expect a volume of the

QCD vacuum to contain some number of instantons and anti-instantons. Since

each (anti-)instanton has, in theory, a topological charge of (-1) + 1 it is only

unpaired (anti-)instantons which will contribute to the topological charge mea-

sured in this volume. If we allow the topological structures within the fields to

move, instanton-anti-instanton (I-A) pairs will annihilate (since such pairs are

not minima of the action) but these annihilation processes will not alter the total

topological charge.

On the lattice we expect a similar behaviour. When we apply the cooling al-

gorithm to a field configuration \rye expect the short-range high-frequency com-

ponents of the field to be removed rapidly, and as cooling proceeds instanton-

anti-instanton (I-A) pairs will move together. We would hope that, as in the

continuum, the total topological charge will be given by Q : r7I - nA where n¡

is the number of instantons and n¿ is the number of anti-instantons. Unfortu-

nately discretization errors, when too large, can be expected to ruin this result,

leading to non-integer topological charge. We would hope that improved topo-

logical charge operators will diminish these discretization errors, and therefore
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rri/e may judge which improvement scheme works best based upon how close the

topological charge it produces comes to an integer value. Since the I-A pairs

do not contribute to the total topological charge on the whole lattice we would

expect the total charge to settle down after very few cooling sweeps (after the

short-range components of the field have been suppressed) and remain roughly

constant thereafter. However since all (anti-)instantons will contribute to the

action, we should expect that the action will continue to shrink until all I-A pairs

annihilate. At this stage we shouid be converging towards a completely self-dual

configuration, consisting solely of instantons or anti-instantons or a trivial back-

ground.

In this Chapter we will demonstrate that cooling with an algorithm based on the

naive Wilson (plaquette) action eventually erases all information from the lat-

tice, not only eliminating short-range fluctuations and annihilating I-A pairs but

spoiling single (anti-)instantons until they disappear altogether. This is because

the discretizationerrors in the plaquette action are so large. We will demonstrate

that improved actions alleviate this problem, causing the action to stabilise at

a certain point, beyond which the (anti-)instantons do not shrink significantly,

in fact remaining stable for hundreds to thousands of cooling sweeps. We will

investigate which action is the best using the difference between the achieved

stable values and the closest integer, and the duration for which this stability is

maintained as criteria. We will similarly assess which topological charge operator

is best using the same criteria.

Throughout the remainder of this thesis we shall use the foliowing notation, which

was partially introduced in Section 3.3. The n-loop improved cooling action, di-

vided by So, shall be referred to as S(n). The reconstructed action based on an

rz-loop improved field-strength tensor, and likewise divided by So, will be denoted

by S¿(n). Hence we expect that (neglecting discretization errors), in a configura-

tion consisting wholiy of instantons and antiinstantons, ,Sp(n) : ,9(") : nI lnA'
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We shall continue to use the notation S I So when discussing instanton behaviour

in the continuum, or in the general case, when no particular improvement scheme

is being considered. The topological charge operator based on an n-loop improved

field-strength tensor will be denoted Q(").

6.1- Thermalization

In Lattice Gauge Theory the values of the fields at each point in the region of

space-time simulated by our lattice are represented by values assigned to the

links. In the case of a U(I) theory (QED), the links would assume (complex)

scalar values. In the case of the .9U(3) theory which is relevant to the stud¡, of

the QCD vacuum, an Stl(3) matrix will be assigned as a value to each of the

lattice links. To simulate the quantum nature of the fields, we wish to introduce

an element of randomness to these values. However we do not want to assign

these values in a completely random manner, since such randomly generated field

configurations would most likely have enormous actions, and hence they would

correspond to states far from the classicaliy preferred low-action configurations.

Therefore the values assigned to the link fietd configurations must be weighted

with an appropriate Boltzmann factor.

The configurations used in our investigations are generated using the Cabibbo-

Marinari pseudo-heatbath algorithm [34]. This is a general procedure for up-

dating the values of ^9U(,n{) link variables for any value of lú. In outline, the

algorithm consists of the following steps:

o select a set of SU(z) subgroups of Stl(lú) (call this set B) such that there

is no left ideal (this means that, with the exception of the whole group,

there is no subset of SU(,nú) which is invariant under left multiplication by

B). Let us denote each of these subgroups by SU(2); for i : I,-.-,ffi
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o update each link variable by multiplying each value by rn matrices belonging

to the subgroups SU(2\. The new value of the link variable is then given

by the product

Ut : amo,*-t...a1,U, (6.1)

where U is the old link value, and the matrices ar,...,,annate selected ran-

domly with the measure

dP(a¡): d(k)ak
e"p {-BS (ar,U{n-t)¡¡

(6.2)

(z)r
da exp{-BS(oU{r-ti;1

where d(k)ax is the Haar measure on SU(2)k and ø¡ e SU(z)n

We generate ,9U(3) configurations by working explicitiy with three .9tl(2) sub-

groups which are then diagonally embedded in SU(3). At each link update we

cycle over these SU(z) subgroups twice. From a cold start (all link values set

to the identity) we thermalize for 5000 sweeps using a 2-loop improved action

and a fixed mean-link value, and then select configurations every 500 sweeps to

create an ensemble of configurations with non-trivial topology, but which are

statistically distinct from each other.

6.2 Cooling

Once the process of thermalization is complete we have a set of gauge field config-

urations on the iattice to study, however for typical lattice spacings these config-

urations are extremely "rough" , i."-, they vary significantly over very short scales

(typically from one lattice site to the next). In order to study the topological

structure of the field we need to find a way of smoothing the short-range (ultra-

violet) fluctuations out of the fields. Several schemes for doing this have been

developed and utilised, but the particular scheme we are concerned with is called
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(6.4)

v

p

Figure 6.1

(bold).

The positive and negative staples [/, (dotted) adjoining a Iink U,

cooling. Cooling is a recursive process which locally drives the action towards

a minimum value, but (hopefully) leaves the larger scale structure of the gauge

fields unaffected. The algorithm is simple to understand in SU(z) and may be

extended to SIl(3) by embedding the SU(2) matrices as subgroups within Stl(3).

Each element of SU(z) may be parametrized as [/ : aon + iã.i with ø real and

af;+ ã,2 : 1. We will here consider minimisation of the action calculated from the

plaquette for simplicity, so let Û, be a staple (the section of the plaquette not

including the link to be updated)

Ú,: U,(x + p')U)(x + u)Ui(r) (6.3)

Therefore the plaquette is

w!"!,"'¡ : u*@)Ûr.

Since we calculate the action by summing over ali lattice directions at each site

there are six staples associated with each link (in the positive and negative direc-

tions of the three axes perpendicular to the link - see Figure 6.1). Hence we are
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where [/ is an element of ,9tl(2) and
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(6.5)
6t

a=l

Ðu"

KU úo,

t)

lc2 : det (6.6)
a=1

The local action is proportional to

rBeTr(lt - Ur(x)Ur), (6.7)

which is clearly minimized when we maxim ize u r(x)U, i.e. , when ReTr(U ,(x)Û) :

ËeTr(ll.). This may be achieved by updating the link values such that

Ur(r) --+ U-t -

In practice, a naive cooiing scheme based upon the plaquette action will destroy

topological structure over the whole lattice if it proceeds for long enough. There

are two main ways of dealing with this probiem. The first is to use the fact

that cooling affects the small-scale properties of the fieid faster than it affects the

large-scale properties and hence try to stop or limit or scale the cooling process

at an appropriate stage or in an appropriate manner so that parts of the lattice

far from each other remain thermally isolated. The approach we adopt is to cool

the lattice using an improved action calculation, on the basis that most of the

loss of information in the cooling process comes about because the action 'ñ/e are

minimising has discretization errors and hence if we use a more accurate action,

the cooling process will become more stable. As detailed'previously, our im-

proved action incorporates tadpole improvement which accounts for non-classical

self-couplings of the gluon fields. The cooling process rapidly wipes out the short-

range fluctuations of the fields, eliminating the small-scale physics responsible for



6.3. COOLING CODE USED IA/ ?HIS RESEARCH 83

the perturbative O(g) and higher corrections to the action mentioned) among

other places, in Section 3.1. Similarly the tadpole improvement factor us rapidly

tends to one. Hence the cooling process makes a classically improved action more

accurate over the course of the first few dozen sweeps as these perturbative short-

range effects, neglected in the derivation of the improved action, are removed.

Since the cooiing iterations gradually bring separated parts of the lattice into

contact with each other, as cooling proceeds we should expect to see annihila-

tion of instanton-anti-instanton pairs, as these regions of the field with opposite

winding come together and "untwist", like oppositely directed twists in a ribbon

spontaneously flattening out.

Throughout the remainder of this Chapter we shall be dealing with configura-

tions that are cooled towards a self-dual configuration containing only instantons

or anti-instantons. It is important to note that instantons are completely self-dual

objects. For ease of discussion we shall from-time-to-time refer to both nearly-self

dual objects and completely self-dual objects as instantons. However, when we

need to be precise we shall refer to nearly-self dual objects as pseudo-instantons,

because they will become instantons if cooled sufficiently, and completely self-dual

objects shall be referred to as true instantons.

6.3 Cooling Code used in this Research

The code used to produce the finai results contained in this thesis was developed

originally as Connection Machine Fortran (CMF) running on a CM-5 supercom-

puter. This software v/as then ported across to the Sun super-cluster (Orion) used

by the National Computing Facility for Lattice Gauge Theoiy, and converted to

High-Performance Fortran. In its final form, the code consists of a series of shared

modules to perform the input and output of data, and standard functions such

as the multiplication of link variables. The modules directly related to the calcu-
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lation of highly-improved operators total approximately 2500 lines of code. Since

this does not include the other shared modules which are required to complete the

functionality of the software, we have deemed it unnecessary and inappropriate

to include this code in an appendix to this thesis.

6.4 Effect of cooling on Gauge Field structure

Let us begin by examining the difference between cooling with the standard Wil-

son action and with the ^9(2) action - that is, the order O(a2)-improved action

constructed from T[i'¡ uoð,Tl"l,'') ,which we deduced the form of in Section 3.1. To

analyse the effect of cooiing algorithms incorporating different action operators

we have proceeded as follows: From an original collection of one hundred config-

urations (numbered as they were saved in the process of thermalization i.e., the

1.t configuration saved is denoted configuration 01, the 2"d configuration saved

is denoted configuration 02, and so on), we cooled each for twenty sweeps with

3-loop cooling and a 3-loop improved topological charge operator to find what

value their topological charges would plateau at (since, as mentioned above, Q

plateaus much sooner than the action). The configurations were then grouped

together according to the modulus of their topological charge. Configurations

were then chosen at random from groups with different topological charges. This

is intended to demonstrate that the observed behaviour of the action and topo-

logical charge as we cool are consequences of the chosen cooling scheme, rather

than consequences of the total number of (anti-)instantons present. This mat-

ter will be looked at in further detail when we discuss the Nahm transform in

Section 6.6. Once a configuration was selected on the basis of its topological

charge we cooled the original thermalised configuration in our investigations (not

the corresponding configuration that had already been cooled for twenty sweeps'

unless otherwise explicitly stated). The results which follow were produced on a
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Figure 6.2: Action (left) and topological charge (right) of configuration 89 cooled

with l-loop (solid line) and 2-loop (dashed line) cooling schemes after 1000 sweeps.

123 x24lattice, at þ - 4.60 with a lattice spacing of a:0.125 fm.

The diagram on the left of Figure 6.2 shows the action against sweep number for a

configuration cooled with the Wilson action and S(2). It can be clearly seen that

the Wilson action drops to a temporary plateau, but eventually destabilises and

drops by approximately one unit around sweep number 250, and again alound

sweep number 750. It should also be noted that these plateaux occur somewhat

below integer values. However the ^9(2) cooling scheme plateaus at a value much

closer to integer (in this case 6.00) and remains at this value without destabiìising.

On the right of Figure 6.2 we see the comparable plot of the topological char-ge

(calculated with the Q(1) operator in the 1-loop cooling case, and with the Q(2)

operator in the 2-loop cooling case) of the same configuration as it is cooled with

the Wilson action and S(2). Again we can see that when cooled with the Wilson

action the configuration destabilises at various intervals. Since the annihilation

of an I-A pair does not change the total topological charge we must conclude that

these drops in charge are.due to the destruction of single instantons by the high

level of discretization errors in the Wilson action. The topological charge curve

corresponding to S(2) cooling is significantly more stable. Figures 6.3 and 6.4
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Figure 6.3: Action (left) and topological charge (right) of configuration 14 cooled

with l-loop (solid line) and 2-loop (dashed line) cooling schemes after 600 sweeps.

Notice the difierent vertical scale used for this configuration, compared with con-

figurations 89 and 22 (Figures 6.2 and 6.4).

show equivalent results for two other configurations at the same lattice size and

spacing.

In Figures 6.2 and 6.4 (configurations 89 and 22 rcspectively) we can clearly see

that the action and topological charge corresponding to cooling with the Wilson

action plateau repeatedly for a period of several hundred sweeps but then drop

by an increment of approximately one over a very brief interval. We interpret this

as clear evidence that the Wilson cooling scheme not only eliminates short-range

fluctuations and annihilates I-A pairs, but because of the large discretization er-

rors present it also destroys single instantons. This is not observed with O(a2)

or (as we shall see shortly) O(aa)-improved cooling.

It is obvious from these resuits (but worth noting explicitly) that the charge and

action drop (eventually to zero, if cooling proceeds for long enough) after achiev-

ing nearly equal values. In other words, an approximately self-dual condition is

reached globally.

Let us now turn to an examination of Figure 6.3 (configuration 1a). Unlike the
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Figure 6.4: Action (left) and topological charge (right) of configuration 22 cooled

with l-loop (solid line) and 2-ioop (dashed line) cooling schemes after 800 sweeps.

other two configurations, this one does not destabilise under cooling with the

Wilson action, at least not in the first 600 cooling sweeps. What are we to make

of this result? It is clear that even though the Wilson action does not destabilise

as dramatically as we have seen above, the values of the action and topological

charge obtained from Wilson cooling are still significantly further from integer

values than those obtained with S(2) cooling, as can be clearly seen at the scale

we have chosen to use for Figure 6.3. Furthermore the topological charge calcu-

lated in the 1-ioop cooling case is observed to drop steadily, having peaked after

approximately 100 cooling sì /eeps. Presumably the configuration could desta-

bilise if it was ailowed to cool for long enough. But perhaps the main lesson we

should learn from this observation is that each confrguration reacts in a different

way to cooling in general, and to different cooling schemes in particular, depend-

ing on its initial structure. This may become important later when we attempt

to determine which of the o(aa)-improved cooling schemes is best.

Based upon these results we shall henceforth disregard the l-loop cooling action,

as it is obviously beset by pathological discretization errors.
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Figure 6.5: Action values over the first 1000 cooling sweeps of configuration 89

cooled with the 2-loop (crosses, ,9(2)), 3-loop (triangles, ^9(3)), 4-loop (vertical

line, S(4)) and 5-loop (circles, S(5)) actions. Note that the 4 loop action drops

to a value near 5.00, while the other actions plateau near 6.00. Configuration 89

is clearly sensitive to the detailed form of the improvement scheme in the early

stages of cooling.

6.5 Non-Trivial Self-Duality from Improved Cool-

As we have observed above, improving the action is an effective means of pre-

venting (anti)instanton configurations from destabilising. We have seen that if

we cool a configuration for long enough all the high-frequency fluctuations in the

field wilt be eliminated, all I-A pairs will annihilate, and we will be left with

a configuration which will consist exclusively of either instantons only or anti-

instantons only. This configuration will be characterised by the condition that

S I So : 1q1. Of course, we wish this self-duality to be stable for hundreds of
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Figure 6.6: Action values over the first 2600 cooling sweeps of configuration

32 cooled with the .9(2) action (crosses), ^9(3) action (triangles), S(4) action

(squares) and S(5) action (circles).

cooling s\/eeps, and therefore we shall wish to cool with an action other than the

standard Wilson action. It is also desirable to come as close as possible to true

self-duality, not merely to approximate it, in order to study instanton dynamics.

Since we know that both the action and topologicai charge in the continuum

will be integers, we shall now attempt to determine which cooling scheme gives

the most continuum-like results, that is, which improved action and topologi-

cal charge operators produce results that are the closest to integers. We reason

that these operators have the smallest discretization errors and are therefore best

suited to studying the development of ,9/S¡ and lQl of any configuration as we

cool it towards self-duality.

The most obvious way to compare the accuracy of different operators is to plot

the values of the action that we obtain over several hundred cooling sweeps,

when we cool with each different improvement scheme (and do likewise with the
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Table 6.1: Action values from various improvement schemes for configuration 89

Sweep s(1) S(2) s(3) s(4) s(5)

50

100

200

500

1000

8.25034

6.21981

5.97257

4.94277

3.95857

10.07139

7.01505

6.04598

5.99802

5.99796

9.72154

6.85311

6.03297

5.99995

5.99992

10.76830

6.7r974

5.13985

4.99965

4.99943

r0.15204

7.05783

6.05030

5.99960

5.99956

Table 6.2: Action values from various improvement schemes for configuration 32.

Sweep s(1) s(2) s(3) s(4) s(5)

50

100

200

500

1000

10.58719

7.56851

5.95054

4.90163

2.96931

12.11866

8.72035

6.28744

5.99681

5.99647

12.52197

9.33105

6.19932

6.00061

6.00051

13.42492

9.84850

6.38768

5.99946

5.99910

12.96696

9.59557

6.28359

6.00000

5.99984

topoiogical charge). Figures 6.5 and 6.6 show examples of this on configurations

89 and 32 respectively. It can be quite clearly seen that the 3-loop and 5-loop

improvement appear to give the most integerlike results. Table 6.1 shows some

values of the action obtained with the various cooling schemes on configuration 89

against sweep number. We can see that the 1-loop, 2-loop, and 4-loop operators

all underestimate the action (they produce values which may be close to 6.00,

but have none-the-less dropped well below it, and of course the l-loop cooling is

unstable). The 3-loop and 5-loop improved actions drop slightly below 6.00, but

remain within 1 part in 10a of an integer value. For comparison Table 6.2 shows a

set of equivalently produced data for configuration 32. One of the most notewor-
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Figure 6.7: Action values over the first 1000 cooling sweeps of configuration 39

cooled with the ,S(3) action and ^9(5) action.

thy results of this anaìysis is the fact that the 4-loop cooling stabilises at a value

one unit below the values attained by the 2-1oop and the other O(aa)-improved

cooling schemes when appiied to configuration 89. Whiie all of our improvement

schemes have no O(on) errors by construction, they will in general have different

O(ou) errors. It is furthermore known that a newly thermalized configuration is

very rough on the scale of the lattice spacing. It is therefore likely that the effect

of ,ilifferently improved cooiing schemes on thermalized configurations will be de-

termined by the O(ou) errors in each cooling action. It is unsurprising then that

some cooling schemes should eliminate structures that others ieave intact. How-

ever, we are attempting to stabilise the large-scale and medium-scale structures

in the gauge fields we study. Since the other improved cooling schemes appear

to produce mutually consistent results on all configurations, and stabilise closer

to integer values, we shall disregard the 4-loop cooling scheme for now. Other

3 loo

5 loop
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Figure 6.8: Topological charge of configuration 27 cooied with the 3-loop cooling

scheme after 2500 sweeps. The 3-loop and 4-loop topological charge improvement

schemes appear to be significantly more accurate than either the 2-loop or 5-loop

improvement schemes. This demonstrates that ks:1120 was not the optimal

choice fo¡ this improvement constant.

possible comparisons of results arising from 4-loop cooling and other O(aa) im-

provement schemes (i.e., calculations of topological susceptibility [35], the static

quark-anti-quark potential, and chiral symmetry breaking [36]) are left for future

investigation. We shall henceforth concentrate on the 3-loop and 5-loop cooling.

This leaves us in a somewhat ambiguous position with regard to the relative mer-

its of the 3-loop and 5-loop cooling schemes. We therefore examine one further

randomly selected configuration. This configuration (configuration 39) plateaus

at an ^9/^9e value of approximately 3.00 under 3-loop and 5-loop improved cool-

ing. The profiles of S/S¡ against sweep number for this configuration are shown

in Figure 6.7. In this case the 3-loop comes slightly closer to an integer value

although both actions are extremely close to each other as they plateau. This

is a 2-l result in favour of the 3-loop cooling, but the sample size is admittedly

Ç(5)

a(3)

a@)

a@)
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Figure 6.9: Topological charge of configuration 89 cooled with 3-loop cooling

schemes after 1200 sweeps. As with configuration 27, the 3-loop and 4-loop

topological charge improvement schemes appear to be significantiy more accurate

than either the 2-loop or 5-loop improvement schemes.

quite small, and the results obtained from 3-loop and 5-loop cooling are both

extremely close to the integer values we would expect in the continuum. These

results then seem to indicate above ail else that there is no single O(on) improve-

ment scheme (i.e., no single choice for the constant c5, since as noted previously

3-loop and 4-loop improvement are merely special cases of 5-loop improvement)

which unambiguously gives the best performance in all cases. Each configuration

is different, and reacts to differently improved cooling in a unique way. Since the

3-1oop and 5-loop cooling both produce excellent results, without arLy o, priori

knowledge to guide us the decision to use 3-loop or 5-loop improvement for the

action should be based upon considerations other than the long-term stability of

the results they produce and how continuum-like these results are.

From this point onwards then we choose to study configurations cooled with the

,S(3) action, since this requires less computational cost than the ,9(5) action.

a(5)

a(3)

ae)

a(2)
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Table 6.3: Reconstructed action, SÊ, and topologicai char1e, Q, values from

various configurations, each cooled with the ,9(3) action.

Config Sweep S(3) action Sn(2) ^9n(3) Sn(a) ,9n(5)

89

27

90

56

1071

1400

1046

2446

5.99992

2.00013

i.99999

1.99996

5.98908

1.99687

1.99849

1.99878

6.001i0

2.00055

2.00012

2.00002

5.99777

1.99965

1.99978

1.99979

6.01278

2.00370

2.00133

2.00083

Config Sweep ^9(3) action 8(2) 8(3) Qe) A(5)

89

27

90

bb

1071

1400

1046

2446

5.99992

2.00013

1.99999

1.99996

5.98899

1.99680

1.99848

1.99878

6.00109

2.00050

2.00011

2.00002

5.99777

1.99961

1.99977

1.99979

6.01267

2.00364

2.00132

2.00083

Let us now assess which topological charge operator gives the most accurate re-

suits. This is of course equivalent to determining which improvement scheme for

F* is the best. Figure 6.8 shows the development of the topological charge of

configuratior_ 27 over the course of four thousand cooling s\/eeps with the 3-loop

improved cooling action. The 1-loop topological charge ìs too far from an inte-

ger value to be seen on the scale we have chosen for this diagram. Of course,

all improvement schemes are doing extremely well here overall, in the sense that

they take Q to within0.2% of an integer within a few hundred sweeps. We are

looking at very fine differences in performance indeed, but we can clearly see that

the 3-loop and 4-loop operators produce noticeably better results than either the

2-loop or 5-loop operators. Figure 6.9 shows equivalent results for configuration

89, over 1000 sweeps. This time we see that the 3-loop operator gives marginally

more integer-like results than those observed with the 4-loop operator. Again the
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Table 6.4: Reconstructed action, S¡, and cooling action, S, values from configu-

rations 89 and 32 cooled with the S(3) and ,9(5) actions.

Config Sweep S(3) ^9n(3) .9a(5) S(5) ^9n(3) ,9a(5)

89 200

600

1000

6.03297

6.00010

5.99992

6.03417

6.00130

6.00i i0

6.04644

6.01296

6.07284

6.05030

5.99957

5.99956

6.05190

6.00116

6.00115

6.06444

6.01320

6.0i314

32 500

1000

2000

6.00061

6.00051

6.00044

6.00300

6.00284

6.00266

6.02465

6.02385

6.02260

6.00000

5.99984

5.99983

6.00319

6.00298

6.00290

6.0254r

6.02486

6.02429

l-loop, 2-loop and 5-loop operators are substantially more inaccurate.

Since the improved F¡", plays no role in the link updates as we cool the configu-

rations, \4/e may safely take an ensemble of configurations that have already been

cooled to near self-duality and assess their topological charge and reconstructed

action from this point only. To assess the performance of the F* improvement

on other configurations we have presented the values of.2-, 3-, 4-, and 5-loop

reconstructed actions and topological charges calculated on four different config-

urations, all cooled with a 3-loop improved action, in Table 6.3. The columns

are the configuration number, the sweep number at which the calculation was

performed, the vaiue of the cooling action, the values of S¡(2), Sa(3)' ,Sp(4), and

^9a(5), and the values of QQ),8(3), QØ), and Q(5). We can see that in each

case the 3-loop and 4-loop improved topological charge and reconstructed actions

produce results that are both closest to integer values, and in closest agreement

to the value of the cooling action. In the majority of cases the 3-ioop operators

produce the most integer-like results, and in all cases the 3-loop results most

closely match the values of the cooling action (and hence seem to be accurately
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assessing the structure of the fields which is produced by the cooling algorithm).

A further comparison, between results for 3-loop cooling and 5-loop cooling, is

presented in Table 6.4. In this case we wish to determine whether the choice

of cooling action affects the dependability of the reconstructed action. We have

not chosen to consider the 4-loop cooling action as it has already been deemed

unsuitable. We see that the 3-loop reconstructed action gives values closer to the

cooling action used in each case (whether the cooling action is 3-loop or 5-loop),

and hence appears to be a more accurate probe of the structure of the fields

produced by the cooling algorithm, as noted in the previous paragraph, than the

5-loop operator.

For these reasons we conclude that the 3-loop improved field-strength tensor is the

most dependable of those assessed. The 3-loop operator is also slightly cheaper

(in a computational sense) than the 4- or 5-loop operators. While the numerical

evidence therefore suggests that the 3-loop improvement has the smallest O(a6)

errors of those examined, it would be possible, but time-consuming, to verify this

algebraically and this issue is left for future work.

6.6 The Nahm TYansform on the Lattice

As mentioned in the Introduction, the Nahm transform is a mapping from a

configuration on a torus to the corresponding dual configuration on the dual-

torus. Suppose A, is a self-dual Stl(¡ú) potential with topological charge Q on

the torus, where the operator D" : op(ôp* Arl2trizr) with z, € R. has Q

zero-modes satisfying D"(r)Vi(t) : 0, then

a
,+XP çr¡ : t darúi@)t

ap
up,(r) (6.e)
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defines the Nahm transform of. A, [16]. Applying the transform to A, gives back

Ar. Bllt what is really interesting about this transform is that A, is an.9U(Q)

potential with topoiogical charge lü. In other words, the Nahm transform ex-

changes the roles of coiour and topological charge.

It has been known for some time [37] that there are no lQl:1 instanton solutions

on the 4-torus. A corollary of the Nahm transform [4] provides a straightforward

way of explaining this situation. This corollary states that it is impossible for

a single lQl = 1 instanton to exist on the torus, because this would require the

existence of lü instantons in U(l) on the dual torus, but this is not allowed since

there are no instantons in t/(1) field theory (as it is too simple, lacking the self-

interactions of a non-Abelian field theory). We should note explicitly that it is

self-dual Sf So:1 solutions which are forbidden on the torus. There is nothing

to prevent either lQl or,S/^9e from being exactly equal to one, but they may not

both be equal to one at the same time. Since the lattices upon which we are

performing our simulations have untwisted periodic boundary conditions, this

consequence of the Nahm transform will be relevant in our simulations when the

gauge fields are sufficiently smooth that the topological charge and S/^9e take

near-integer values.

Now that we have determined that the 3-loop action and topological charge op-

erators are the most favourable for studying continuum-like physics we are in a

position to analyse the behaviour of l8l : 1 configurations to determine if any

evidence of the effect of the instability of such configurations implied by the Nahm

transform can be detected numerically, for sufficiently smooth gauge fields on the

lattice.

If single-instanton configurations (i.e., strictly self-dual) are not allowed on the

torus, how would we expect Q and S I Ss to behave as such a configuration is

cooled towards self-duality? It seems reasonable that the action and topologi-

cal charge will approach each other to within a certain range, but never become
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Figure 6.10: Topological charge and action values of configuration 11 (single

instanton).

equal. In that case the action may stabilise at some non-integer value. We may

also anticipate that the instanton size compared to the torus size will be a relevant

parameter. The instanton action is independent of its size p in the continuum and

hence an arbitrarily small instanton on a finite 4-torus will look like a finite-size

instanton on an arbitrarily large 4-torus. This is relevant because as the torus

becomes arbitrarily large it will better approximate Euclidean space-time. As the

cooling algorithm monotonically decreases the action, we may expect the topo-

iogical charge to be "forced" downwards as the action decreases, and perhaps the

instanton will destabilise, but this is not an a priori certainty. It is possible that

the action will simply stabilise, as we observed for multiple-instanton configura-

tions, but at a value well above integer.

Fortunately we do not have to guess, and we shall not keep the reader in suspense.

Figure 6.10 shows the action and topological charge of configuration 11, which

cools towards a single-instanton state. At the scale we have chosen to represent

5.0
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4.0

o 3.5
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G r.s
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Figure 6.11: Topologicai charge, action, and reconstructed action values of

configuration 11 (single instanton). AII operators are 3-loop improved.

in this graph, the configuration looks highly self-dual. However it is obvious

that the configuration destabiiises and the single instanton present on the lattice

disappears. This disappearance can be attributed to the instability implied by

the Nahm transform, however to be certain let us examine the behaviour of this

configuration at a smalier scale (Figure 6.11). Now we see that the configuration

clearly never reaches self duality (at least, not until it destabilises and becomes

trivially self-dual). In fact, if we look beyond the dramatic collapse of both the

action and topological charge we will notice that for at least 1000 cooling sweeps

before the final collapse the topological charge was rising and then slowly falling

back down. It appears as though the configuration was somehow prevented from

becoming self dual by letting ^9/^90 fall to the same value as the topological charge.

To be certain that this behaviour is not simply an instability in the cooling al-

gorithm which has not manifested itself previously in a noticeable manner' we

compare the results from configuration 11 with the results from configuration

^s(3)

e,(3)

0(3)
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Figure 6.12: Topological charge and reconstructed action values of configuration

11 (single instanton, solid lines) and configuration 27 (two instantons, dashed

Iines). The values for configuration 27 have been reduced by an increment of

1.00 to overlap them with those of confi.guration 11. Clearly configuration 11 is

not behaving in a stable manner (see text).

27., a two-instanton configuration. In order that we may easily compare their

behaviour, we have subtracted one from the value of ^9/56 and lQl for confi.gu-

ration 27 (so that these values approach 1.00 not 2.00) and overlayed the two

sets of data in Figure 6.12. Clearly configuration 27 achieves a remarkable levei

of self-duality, and actually comes within 0.0005 units of an integer value, re-

maining stable well after the point at which the configuration 11 has undergone

its dramatic collapse. It therefore seems reasonable to ascribe this difference in

behaviour to the different structures of the gauge fields in each configuration. We

have indeed discovered numerical confirmation of the consequences of the Nahm

transform.

We shall now attempt to answer the question of how a single-instanton configu-

sR(3)
\\sF(3)

0(3)

.q(1_

\
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Figure 6.13: Size of the single instanton (p measured in lattice units) in configu-

ration 11. Before sweep 500 many peaks are present in the action density, making

it difficult to accurately determine the parameters of a specific peak. After sweep

2500 the instanton rapidly disappears and hence its size parameter cannot be

measured accurately.

ration on the torus destabilises. One hypothesis, proposed by Van Baal, suggests

that on the lattice any single instanton will shrink until it becomes too small

to be accurately represented on a discrete space-time and "drops through" the

Iattice. Alternatively it is possible that the instanton simply "fades away", main-

taining a fairly constant size (as measured by the parameter p) while the action

everywhere on the lattice decreases uniformly. In order to answer this question

we fit the structure of the gauge fields on the lattice to the theoretical form in

Equation (4.30).1 The relevant fit parameters are the coordinates of the cen-

tre of each instanton, the scale parameter p and an overall scale factor which

normalises the field values to the theoretical values for a continuum instanton.

lOther studies using cooling and fiiting with instantons have been performed. See

1000 1500 2000
Sweeps

[38], for instance.

reference
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Figure 6.14 Size of the two instantons (p measured in lattice units) in configu-

ration 27. The sudden drop in size of one instanton is attributed to a complex

interaction between the two instantons as they move apart.

In Figure 6.13 we can see how the instanton radius varies with sweep number.

Clearly the instanton is shrinking, by a factor of approximately three as the cool-

ing proceeds over the course of two thousand sweeps. We can also see that the

instanton shrinks rapidly at the point where it destabilises. For comparison we

also show the sizes of the two instantons in configuration 27 (Figure 6.14) and

their separations (Figure 6.15). We can see that after an initial period of fluctua-

tion the instantons settle on very stable, mutually consistent sizes. Furthermore

each instanton changes size by a factor of no more than 1.10, much less than the

dramatic changes observed over the same range of cooling sweeps for the single

instanton in Figure 6.13.

To demonstrate the reproducible nature of these results, we have carried out an

equivalent analysis on another configuration with a single pseudo-instanton (con-

figuration 64), and another configuration with two instantons (configuration 90)'

\
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Figure 6.15: Separation of the two instantons (measured in lattice units) in con-

figuration 27. The sudden jnmp at around sweep number 700 is believed to be

due to an interaction between the two instantons as they move apart, since this

may affect how well the fitting algorithm judges their size and position.

In Figures 6.16, 6.17, and 6.18 'ñ/e can see the same type of behaviour of the ac-

tion, topological charge, and size parameter p as \4/as observed with configuration

11. In Figures 6.19 and 6.20 we can see that the two instantons in configuration

90 remain stable for at least 3000 cooling sweeps, converging upon the same size,

and ultimately drifting apart very slowly.

A further detail to be noted when we consider Figures 6.11 and 6.17 is the fact

that the topological charge remains almost flat at 1'00 from s\l/eep 200 to sweep

500. This is a dramatic confirmation of the consequences of the Nahm trans-

form, because these plateaux coincide with the presence of 'a group of what we

may call 'transitory instantons'. As the configuration is cooled, some regions

become triviai, while others become instantons. But some parts of the field cool

to become closely associated I-A pairs. Thus they do not affect the overall topo-
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Figure 6.16: Action and topological charge of the single instanton in configuration

64. As with configuration 11 we can see that the configuration destabilises around

sweep 2500.

Iogical charge. Their presence is detected by the code developed to determrne

instanton size and location, since during the early stages of the cooling process

the number of instantons identified by the fitting code often increases and then

decreases gradually as the I-A pairs annihilate.2 While there is more than one

instanton on the lattice, the Nahm transform will not make them unstable. It

does not appear to be a coincidence that in the period leading up to sweep 400

the instanton fitting code identifies multiple peaks, but only identifies a single

peak for each configuration shortly before the point where the topological charge

begins to rise, as seen in Figure 6.21. We may therefore confidently assert that

the instability we observe with configurations l1 and 64 is due solely to the fact

that they contain only a single instanton.

,s(3)

a(3)

2Other instances of such multiple peaks have been observed in [39]
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Figure 6.17: Small-scale plot of the action and topological charge of the single

instanton in configuration 64. As with configuration 11 we can see that the charge

plateaus briefly, rises above 1.00 and then drops again, as the entire configuration

destabilises.

6.7 Summary

In this Chapter we have numerically examined the various improvement schemes

for the cooling action and lattice fieid-strength tensor described in earlier Chap-

ters. Our results indicate that the best cooling actions are those free from

O("n) discretization errors, and of these the 3-loop and 5-loop actions appear to

give equally good resuits in general, although some configurations achieve more

continuum-like values of the action and topological charge when cooled with one

action or the other. Given this near equivalence, the extra computational cost and

time required to use the 5-loop action recommends the 3-loop action as the best

choice for studies requiring many hundreds to thousands of cooling sweeps- We

have also determined that the 3-loop improvement of the field-strength tensor

produces the most continuum-like values of the topological charge and recon-

a(3)

sÂ(3)

s(3)
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Figure 6.18: Size of the single instanton (p measured in lattice units) in configu-

ration 64. The similarity to Figure 6.13 is remarkable.

structed action over a range of configurations, when used with either the 3-loop

or 5-loop cooling action. The extremely small differences between the calculated

values and those we would expect in the continuum, and the extra computational

cost of implementing higher-level improvement make it seem unlikely that tree-

Ievel improvement to order O("u) will be either necessary or desirable in the near

future.

We have applied O(aa)-irnproved cooling and an O(aa)-improved topoiogical

charge operator to the analysis of the relative stabitity and self-duality of sin-

gle and multiple-instanton configurations on the (untwisted) 4-torus' We have

found that lQl - 2 configurations achieve a very high level of self-duality and re-

main stablefor at least 3000 cooling sweeps' However 18l :1 configurations do

not achieve self-duality and eventually destabilise, becoming topologically trivial-

Our results suggest the foliowing model for how such configurations destabilize:

when a single pseudo-instanton exists on the 4-torus, it is impossible for this ob-

7
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q-4
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Figure 6.19: Size of the two instantons (p measured in lattice units) in configu-

ration 90.

ject to become a true instanton by achieving a self-dual state lQl: Sf So:1.

The periodic boundary of the torus allows the pseudo-instanton to wrap around

each direction and interact with itself in some destructive or destabilizing manner.

Since the only scale parameters in this situation are the size of the instanton and

the dimensions of the torus (which may be regarded as one parameter - instanton

size as a fraction of torus size), the pseudo-instanton shrinks, so that the torus on

which it exists effectively approaches the infinite volume limit, thereby becom-

ing more similar to Euclidean 4-space. The action (and topological charge) of a

continuum instanton is independent of its size, however since the space-time in

which this lattice pseudo-instanton exists is discrete, once it has shrunk below a

certain size, the improvement used to minimize discretization errors becomes over-

whelmed and the action and topological charge of the pseudo'instanton are driven

away from consistent (i.e., self-dual) values. At this poìnt the pseudo-instanton

becomes critically unstable under the influence of the cooling algorithm and it is

destroyed. The pseudo-instanton therefore succeeds in becoming self-dual, but it

I
I
I
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is a Pyrrhic victory, as it only manages to achieve a trivial self-duality.

One further interesting point remains to be made, regarding the dynamics of

tweinstanton configurations. If we consider Figure 6.20 we can see that the two

instantons in configuration 90 are drifting apart, albeit slowly. Since the instan-

tons overlap (i.e., the instanton separation is less than Æ * p2) this seems to

indicate that the instantons are in some manner repelling each other. This idea

is compatibie with the view that a single instanton shrinks in order to minimise

the extent to which it interacts with itself, as it rtrraps around the periodic bound-

ary of the lattice. By contrast, multiple instantons are able to move apart rather

than being forced to shrink. An interesting question that then arises is how the

instantons would behave if allowed to cool for a sufficiently long time that they

no longer overlap. Would they stop separating, or drift until they were opposite

each other on the torus (the maximum possible separation)? If they did achieve

maximum separation would they then begin to shrink and eventually disappear?

These are interesting questions, but since we estimate that it would require ap-

proximateiy one million cooling s\4/eeps, at the observed rate of separation, for

the instantons to achieve this maximum separation, the answers shall be left for

future work.
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Figure 6.20: Separation of the two instantons (measured in lattice units) in con-

figuration 90. Clearly they are drifting apart, but only very slowly.

o
Ð
õ
tr
õ
P.
o)
Ø

23I

822

NPr"L"

1.008

1.006

1.004

1.002

1.000

0.998

0.996

0.994

0.992

0.990
0 500 1000 1500 2000 2500 3000

Sweeps

Figure 6.21: Topological charge for the first 3000 s\¡/eeps (left scale) and num-

ber of instanton-like peaks in the local action density (right scale) for the first

1000 sweeps, of the single-instanton configuration 64. Notice that the topological

charge is almost a perfect integer until Np""ks : 1.

lc
1.010

(3)l

5

4
oJ

2

I
0



Chapter 7

Concluslons

"It may be a tad fanciful, and to be honest I'm not

sure if the physics holds up. But it could happen.

We'ue been wrong so ftLany times before, why stop

nola?"

Nicola Jones

Lattice gauge theory has deveioped over the last two decades into a highly suc-

cessful and useful method for studying non-perturbative physics. While much

work remains to be done it is clear that the deveiopment of algorithms based

upon improved operators show great promise for minimizing discretization er-

rors, allowing lattice simulations to reproduce continuum physics very precisely,

and in some cases to shed light on continuum behaviour which is not yet fully

understood in an analytical sense.

Of particular interest are methods for smoothing out short-range fluctuations in

the fields. We have here investigated cooling, an iterative numerical method for

finding minima of the local action density of the fields.

We have seen in the preceeding discussion that the use of cooling to examine the

a
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continuum behaviour of gauge fields is a useful tool, but it is essential to improve

the action utilised in the cooling algorithm in order to obtain resuits that agree

with those we expect from continuum analyses. Unimproved cooling is beset by

pathological discretization errors which eventually eliminate all non-trivial local

minima of the action.

The action is improved by algebraically combining gauge-invariant terms calcu-

iated on the lattice. The combination of these terms removes classical errors

arising from the fact that we have transferred our continuum field theory to a

discrete space-time. This method works well, but grou¡s complicated as we move

to higher orders of improvement. We have seen that eliminatingO("") discretiza-

tion errors produces a great improvement in the quality of results, and further

work to eliminate O("n) discretization errors produces noticeable, but less pro-

nounced, subsequent improvement. Considering that the values of S lSs and Q

calculated with this level of improvement achieve values within I% of integers

after at most a few hundred cooling sweeps it seems unlikely that there will be

enough gained by moving to O(a6) improvement to make the associated extra

computational effort worthwhile.

In addition to this classical improvement, tadpole improvement may be employed

to mitigate the effect of non-classical self-couplings of the gluon fields.

We have utilised the total action and the total topological charge of configura-

tions as we cool them to investigate the behaviour of these configurations. We

have seen that (when normaiised by So) the values attained come within fractions

of a percent of integer values. These results remain stable for several thousand

iterations of the cooling algorithm (except in the special case of S f So :1 config-

urations). Furthermore, measurements of the size parameters of the instantons

produced by this cooling process maintain the extreme stability exhibited by the

total action and total topological charge, indicating that the instantons are not

being "spread out" or forced to shrink by the effect of the cooling algorithm'
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reinforcing the viewpoint that these instantons are stable objects. This excellent

agreement with continuum results makes us confident that all results obtained by

the same methods are likewise physically valid, and hence we should be able to re-

produce other continuum quantities and effects in our simulations. This facilitates

the use of highly-improved cooling to investigate the stabiiity of 18l : 1 configu-

rations. We have found that when such configurations approach self-duality, the

single pseudo-instanton present shrinks rapidly. We theorise that this occurs as

a means of minimizing the extent to which the pseudo-instanton wraps around

the periodic boundary of the lattice. As this occurs) the topological charge of the

configuration moves away from an integer value. Since the topological charge is

bounded above by the action, both quantities are eventually forced downwards as

the cooling algorithm monotonically decreases the action. Eventually the pseudo-

instanton becomes too small, crossing the dislocation threshold. At this point it

destabilises totally and the cooling algorithm destroys it.

Multi-instanton configurations appear to remain permanently stable. Further

work will be needed to determine if this stability is indeed permanent, but all

indications at present suggest that such analysis will require precision cooling

studies for durations (measured in sweep numbers) orders of magnitude longer

than those hitherto performed. Such analyses will probably have to await the

arrival of a new generation of supercomputers, and a ne\4/ generation of PhD

students.



Appendix A

M athemat'i,ca package for

expanding Wilson loops

The foliowing Mathematica code calculates the form of the expansion of the closed

rectanguiar loop defined by the range {rt,rr} in the z-direction and {y1, az} in

the y-direction.

(* Expansion of the tern A.dx as a double integral over

the rectangular area defined by (xt,x2) and (y1,y2) *)

(* trlC denotes non-commutative nultiplication, which is

necessary to rnale the chain rule easy to inplenent

when we want to differentiate. These rules also show

how to perforn the chain rule, with a change of

variable fron dee to Dee to avoid recursion problens *)

i13
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NC [x--- , NC [y---] ,z---) : = NC [x, y , z]

NC[x---, 1,y---] := NC[x,yJ

NC[x---, â- * b-, y---]:= NC[x,a,yJ + tc[x,b,yJ

uc [y--- , dee [nu] , x [a [n-] I ,z---f ' = (Nc [y, x [a [n] I , d"" [t.] , =l 
*

NC [y, Dee [mu] , x [a [n] f ,zf )

(* chain rule *)

Itlc [y---, dee [nu], x [a [n-] l,z---f ' = (Nc [y, x [a [n] l, d"" [t,t], =l 
*

NC [y,Dee [nu],x[a[n]1, zl )

(* Chain rule *)

(* Starting fron the assumed forn of the expansion

\partial-{\nu} A-{\nu}(x-0 + x)

- \partial-{\nu} A-{\nu}(x-0 + x)

we create a Taylor expansion. The displ and deriv

functions recursivety give us the displacernent and

derivative terns, and conbi conbines then to give us the

required coefficients in the expansion. stretch[n-IntegerJ

expands the Taylor series' out to n orders in the lattice

spacíng (for n even). *)

displ [Q] :=1

displ [n-Integer] : = NC [displ [n-1],x [a[n] ll

deriv [0] : =1

deriv[n-Intege¡] : = NC [deriv[n-1],¿ee[a[n]ll

conbi [n-Integer] := NC [dispf [n],deriv[n]l
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stretch [n-Integer] : = ExpandAII I

(Sun INC l1l í ! ) , conbi [i] , dee [nu] , A [nu] I , {i , 0 , n}l

sunINCI(J/ ¡! ),conbi [i],dee[nu],4[nu]1, {i,0,n}l )l

(* DltoF converts dee A - dee A tenns into F's *)

DAtoF[expr-J:=

(expr //. xc[x---, dee[nu],4[nu]l

NC[x---, dee[nu],4[nu]l :) NC[x, F[nu,nuJJ)

(* XpandMuNu expands out the a[n] indices

into nu's and nu's *)

XpandMuNu[expr-J 7= (expr / / .

Nc [xx---, x[a[n-rnteger] l,Yy---,dee [a[n-rntegerl7,zz---f

: ) NC [xx,x [nu],YY, dee [nu],zzf+Nc[xx,x [nu],YY, dee [nu],zz))

(* Cleanup tales the integer factors outside the

NC brackets +)

CleanUp [expr-J : =

( expr /. Irlc[xX---, n- , YY---] :) n NC[xx,YY] )

(* Xs0ut moves all the x's outside the NC brackets. Sone

r¿il1 already have been noved outside by the previous

function *)
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XsOut[expr-J 2= ( expr //. Nc[xx---, x[n-J, YY---]

: > x [n] Nc [xx, YY] )

(* ReorderDs moves all the dee terns together and orders

then in the sâne way, so tre can cancel and add to

simplify terns properly *)

ReorderDs[expr-J:= ( expr //. Nc[x- ,dee[a-],Y---l
:) NC[x dee[a], Yl)

(+ Xpan¿Thelot brings it all together *)

XpandThelot [n-IntegerJ := ExPandAll I

ReorderDs I
Xs0ut I

CIeanUp I

XpandMuNu I

DAtoF I

stretchtnlllllll

(* Now we start to integrate around our chosen path *)

IntegRectangle[x1-, x2-, y!-, V2-, expr-]:=

ExpandA1I [Integrate I

expr, {x[nu] , a x1 ,. a x2],

{1[nuJ, a y1, a y2]JJ

(* CleanNC gets rid of that annoying factor of NC[], purely
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for aesthetic reasons *)

CleanNC[expr-] := (expr /. NCtl :> 1 )

(* trlilsonloop gives us the whole lot in one package *)

!,lilsonloop[x1- , x2-, y1- , y2-, n-Integer];=

CleanNC I

IntegRectangle lxl- ,x2,yL ,y2, XpandThelot [n-2] l
l

(* Plaquette gives us the expansion of the plaquette *)

Plaquette [n-Integer] : = !üilsonloop l-t/Z,t/2 ,-t/2,1/2,nf

(* CloverTern gives us the clover tern expansion for the

calculation of F-nunu *)

CloverTern [en-Integer, en-Integer, n-Integer] : =

ExpandAll [(
hlilsonloop [0, en, O , en,n] +

hlilsonloop [-en,O, O, en,n] +

!'Iilsonl.oop [0, en, -en, 0, n] +

Ïlilsonl.oop [-en, 0, -en,0,n] +

tlilsonloop[O,en,O,en,n] +

!'lilsonloop [-en, 0, 0, en,n] +

!'lilsonloop [0, en, -ê8, 0,n] +

t'lilsonloop [-en, 0, -en, O, n]

) /87
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Possible topics for future work

The scope of the research carried out in this PhD project by no means exhausts

the range of applications possible with the mathematical tools developed. Possìble

future applications include the following;

o Analysis on lattices with various sizes and spacings, and for differing choices

of improvement scheme (3-1oop, 4-loop, 5-loop), to determine more accu-

rately how the critical size at which single pseudo-instantons "drop through"

the lattice is affected by the lattice parameters and the analytic reduction

of discretization errors.

o The improved field-strength tensor F¡,, could be decomposed into its colour

magnetic and colour electric components, which could in turn be used to

create hybrid and glueball source operators, to investigate the spectra of

glueball and hybrid states [40].

. The work detailed herein could be adapted to the study of glueball spectra

by transferring the improved operators to an anisotropic lattice, similarly

to the work with the Lüscher-Weisz action by Morningstar and Peardon

124]l.
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o As mentioned in the Introduction, the Atiyah-Singer index theorem [9] re-

lates the number of chiral fermion zero modes in the continuum to the

topological charge. Comparative calculations of topological charge to test

the index theorem on the lattice have been performed l4lll42]l43][aa]. The

3-loop gluonic topological charge described in this thesis has been used in

a paper (see Section C.1) to assess the Atiyah-Singer index theorem on

uncooled and cooled field configurations.

o Further investigations could be performed to assess the performance of the

improved action and topological charge operators against other types of

improvement (e.g., the Iwasaki action 122]), and to investigate how coarse

the lattice can be made before a substantial reduction ìn the quality of data

results.
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