FROM INTIMATE CHROMOSOME ASSOCIATIONS TO WILD SEX IN WHEAT (TRITICUM AESTIVUM)

by

Ryan Whitford

B.Ag.Sc. Hons
University of Western Australia
Perth, Western Australia

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Plant Science

Waite Agricultural Research Institute

Adelaide University
\qquad

Abstract
 FROM INTIMATE CHROMOSOME ASSOCIATIONS TO WILD SEX IN WHEAT (TRITICUM AESTIVUM)

by Ryan Whitford

Meiosis occupies only a short period of the life cycle of higher plants but it is a crucial process ensuring the correct passage and maintenance of genetic information from parent to offspring. The ability of allohexaploid bread wheat (Triticum aestivum L.) to act as a diploid, although it consists of three closely related genomes, at meiosis makes it an ideal organism for the study of the mechanisms which ensure correct homologous chromosome pairing at early prophase of meiosis I. Wheat contains several diploidising systems, which act to restrict chromosome pairing to homologous chromosomes. One of these genes, and the one which this study addresses, is termed Ph2 (Pairing Homeologous), a dominant gene that is located on the short arm of chromosome 3D (3DS). Ph2 is believed to be one of the principal genes responsible for the diploid like behaviour of T. aestivum, acting to prevent pairing between homeologous chromosomes of different genomes and also in inter-specific and inter-generic hybrids.

Several approaches have been taken in this study to isolate and analyse genes expressed at early meiosis which may play a role in homologous chromosome pairing.

The first approach was the structural analysis of Wheat Meiosis 1 (WM1) gene family in relation to its localation within the region deleted in the ph2a wheat mutant. This work has resulted in the isolation of a cluster of nine, predominantly type la plasma membrane-anchored leucine rich repeat-like receptor genes that are predominantly expressed in floral tissue at early meiosis. Importantly, these genes have been identified, sequenced and located in the region of the Ph2 gene.

The second approach in the systematic analysis of potential meiosis genes was an attempt at the functional analysis of the Wheat Meiosis 5 (WM5) gene through biolistic transformation of wheat. Successful transformation of four wheat genotypes showed that antisense and overexpression of the WM5 gene showed no significant observable phenotype in the T_{0} and T_{1} generations as compared to the controls. Analysis of GFP and GUS reporter genes across all 26 independent transgenic wheat lines suggested that the WM5 gene is under complex transcriptional control and further research with respect to promoter analyses needs to be performed to elucidate this complex control.

The final approach undertaken in identifying the genes controlling chromosome pairing and recombination was comparative mapping among the grasses. This approach used the available rice genome sequence to identify those genes that may represent the Ph2 gene. Comparative mapping of the rice region homologous to that deleted in the ph2a mutant highlighted two clear candidate genes that are likely to explain the Ph2 phenotype. These genes encode a rice Asy1 (Arabidopsis asynaptic mutant 1) protein homologue and a mismatch repair protein (Arabidopsis AtMSH7) homologue.

Through the structural, functional and comparative analysis of genes within the grasses, this study aimed to increase our awareness of grass genome structure and draw attention to those genes likely to control the process of chromosome pairing and recombination during meiosis.

STATEMENT

This thesis contains no material, which has been accepted for the award of any other degree or diploma in any University or other tertiary institution. To the best of my knowledge and belief, this thesis contains no material previously published or written by any other person, except where due reference is made in the text.

I consent to this thesis being made available for photocopying and loan.

Ryan Mark Whitford

October 2001

TABLE OF CONTENTS

Statement iv
1 CHAPTER 5
Literature review 5
1.1 General introduction 5
1.2 Mitosis and meiosis 6
1.3 Model organisms for the study of meiosis 9
1.3.1 Chromosome pairing 9
1.3.2 Homologous recombination 10
1.3.2.1 Double strand break repair 11
1.3.2.2 Mismatch repair system 13
1.4 Meiosis in allohexaploid wheat 15
1.4.1 Genome organisation 15
1.4.2 Chromosome pairing and recombination 17
1.4.2.1 Suppressors of homeologous chromosome pairing 18
1.4.2.1.1 The mechanistic action of $P h$ genes 19
1.4.2.1.2 Pairing Homeologous gene 1 (Ph1) 20
1.4.2.1.3 Pairing Homeologous gene 2 (Ph2) 21
1.4.2.2 Promoters of homeologous chromosome pairing 22
1.4.2.3 Molecular models of chromosome pairing in wheat 23
1.4.2.3.1 Spatial distribution of chromosomes 23
1.4.2.3.2 Timing of chromosome interactions 24
1.4.2.3.3 Stringency of both synapsis and homologous exchanges. 24
1.4.3 Improvement of wheat breeding by the control of the Ph genes 25
1.5 Aims of this study 26
2 CHAPTER 27
General Materials and Methods 27
2.1 Materials 27
2.1.1 Chemicals 27
2.1.2 Enzymes 28
2.1.3 Molecular weight markers and cloning vectors 28
2.1.4 Agaroses 29
2.1.5 Kits 29
2.2 Methods 29
2.2.1 Plant growth conditions 29
2.2.2 Growth of bacteria 29
2.2.3 Transformation of E. coli with plasmids by electroporation 30
2.2.4 Mini-preparation of plasmid DNA 31
2.2.4.1 PCR amplification of cloned insert DNA 31
2.2.4.2 Recovery of insert DNA from agarose gels using glass-milk and Qiagen gel extraction kit 32
2.2.5 Large scale preparations of plasmid DNA 32
2.2.6 Phenol:chloroform extraction and ethanol precipitation of DNA 33
2.2.7 Agarose gel electrophoresis 34
2.2.8 Polyacrylamide gel electrophoresis 34
2.2.9 Cereal genomic DNA preparation 35
2.2.9.1 Small-scale genomic DNA preparation 35
2.2.9.2 Medium scale genomic DNA preparation 36
2.2.10 DNA restriction, electrophoresis and Southern transfer. 36
2.2.11 Preparation of ${ }^{32}$ P-labelled DNA based probes 37
2.2.12 Hybridisation and autoradiography 37
2.2.13 Total plant RNA isolation 38
2.2.14 Northern blot hybridisation 38
2.2.15 Purification of DNA clone inserts 39
3 CHAPTER 41
Structural analysis of the WM1 gene family 41
3.1 Introduction 41
3.2 Materials and methods 42
3.2.1 Genetic stocks 42
3.2.2 DNA sequence and partial genomic clones of WM1 genes 42
3.2.3 Amplification of WM1.1, WM1.2 and WM1.3 specific sequences. 43
3.2.4 Nullisomic tetrasomic determined chromosome localisation 43
3.2.5 Pulse field gel electrophoresis 43
3.2.5.1 Protoplasts 45
3.2.5.2 Restriction enzyme digestion of HMW DNA 46
3.2.5.3 PFGE separation, transfer and hybridisation 46
3.2.6 BAC library screening 48
3.2.6.1 Screening of a barley and wheat bacterial artificial chromosome (BAC) library 48
3.2.6.1.1 Purification of DNA probe template 48
3.2.6.1.2 BAC filter preparation 48
3.2.6.1.3 Growth of BAC clones 49
3.2.6.1.4 Mini-preparation of BAC plasmid DNA 49
3.2.6.1.5 Confirmation of BAC clones 50
3.2.6.1.6 Southern fingerprint analysis of BAC clones 50
3.2.6.1.7 Preparation of ${ }^{32} \mathrm{P}$-labelled total BAC DNA probes. 51
3.2.6.1.8 Pulsed field gel electrophoresis 51
3.2.7 BAC fingerprinting 51
3.2.8 BAC contig assembly 52
3.2.9 BAC DNA sequencing 52
3.2.9.1 BAC subcloning 52
3.2.9.2 Removal of subcloned BAC vector 55
3.2.9.3 DNA sequencing 56
3.2.9.4 DNA sequence assembly 56
3.2.9.5 Sequence analysis. 56
3.2.9.5.1 BLAST on non-redundant and EST databases 56
3.2.9.5.2 Gene prediction 56
3.2.9.5.2.1 Signal prediction 57
3.2.9.5.2.2 Promoter prediction 57
3.2.9.5.2.3 cis-acting regulatory element binding site prediction 57
3.2.9.5.3 Identification of repetitive elements and sequence charactersistics 57
3.2.9.5.4 Matrix attachment region prediction 58
3.2.10 Structural analysis of the WM1 predicted peptides 58
3.2.10.1 Transmembrane domains 58
3.2.10.2 Leucine zipper and leucine rich repeats 58
3.2.10.3 Signal peptides 58
3.2.10.4 Predicted subcellular localisation 59
3.2.11 Genes homologous to WM1 genes 59
3.2.12 Northerns of WM1 genes 59
3.2.13 RT-PCR of WM1 genes 59
3.2.13.1 Gene specific primers 60
3.3 Results 60
3.3.1 Nullisomic tetrasomic determined chromosome localisation 60
3.3.2 Pulse field gel electrophoresis 63
3.3.3 BAC library screening 67
3.3.3.1 Southern fingerprint analysis of BAC clones 67
3.3.3.2 Pulsed field gel electrophoresis 71
3.3.4 BAC fingerprinting 71
3.3.5 BAC contig assembly 71
3.3.6 BAC sequence analysis 73
3.3.6.1 WM1 genes 76
3.3.6.1.1 Prediction of transcription regulatory elements 76
3.3.6.1.2 Prediction of poly-adenylation signals 80
3.3.6.2 WM1 predicted primary peptide structure 80
3.3.6.2.1 Transmembrane domains 83
3.3.6.2.2 Leucine zippers 83
3.3.6.2.3 Leucine rich repeats 87
3.3.6.2.4 Signal Peptide 89
3.3.6.2.5 Predicted subcellular localisation 89
3.3.6.2.6 Structural conservation 91
3.3.6.3 Genes homologous to WM1 genes 91
3.3.7 Northern analysis of WM1 genes 94
3.3.8 RT-PCR of WM1 genes 94
3.4 Discussion 97
3.4.1 WM1 genes cluster 97
3.4.1.1 WM1 gene structural organisation 98
3.4.1.2 WM1 gene evolution 99
3.4.2 WM1 gene analysis 100
3.4.2.1 Leucine rich repeats. 101
3.4.2.2 Leucine zipper 103
3.4.2.3 Sorting signals 103
3.4.3 Relating developmental regulation to disease resistance 104
3.4.4 A tentative model for developmental signal transduction. 105
3.5 Conclusions 105
4 CHAPTER 108
In planta analysis of the meiotic gene WM5 108
4.1 Introduction 108
4.2 Materials and methods 111
4.2.1 Plant material and growth conditions 111
4.2.2 Gene constructs 112
4.2.3 Microprojectile bombardment 112
4.2.4 Culture and selection conditions 112
4.2.5 Antibiotic selection in glasshouse 118
4.2.6 Histochemical GUS staining 118
4.2.7 Microscopic detection of GFP fluorescence 120
4.2.7.1 GFP reporter gene in monocots 120
4.2.8 PCR analysis 120
4.2.9 Southern analysis 123
4.2.10 Northern analysis 123
4.3 Results 123
4.3.1 Plant regeneration and selection of transformants 123
4.3.2 $\quad T_{0}$ and T_{1} analysis 125
4.3.2.1 $P C R$ analysis of T_{0} and T_{1} 125
4.3.2.2 Southern analysis of T_{0} and T_{1} 125
4.3.3 Transformation efficiency 128
4.3.4 Northern analysis 128
4.3.5 WM5 promoter analysis 132
4.3.5.1 Analysis of the GFP reporter gene in monocots 132
4.3.5.2 WM5 GFP reporter analysis 132
4.3.5.3 WM5 GUS reporter analysis 134
4.3.6 WM5 phenotypic analysis 134
4.4 Discussion 137
4.4.1 Plant regeneration and selection of transformants 137
4.4.2 $\quad \mathrm{T}_{0}$ and T_{1} analysis 137
4.4.2.1 PCR analysis of T_{0} and T_{1} 137
4.4.2.2 Southern analysis of T_{0} and T_{1} 138
4.4.3 Transformation efficiency 138
4.4.4 Northern analysis 139
4.4.5 WM5 promoter analysis 140
4.4.5.1 Analysis of the GFP reporter gene in monocots 140
4.4.5.2 WM5 GFP reporter analysis 141
4.4.5.3 WM5 GUS reporter analysis 142
4.4.6 WM5 phenotypic analysis 143
5 CHAPTER 144
Structure of the Ph2 locus 144
5.1 Introduction 144
5.2 Materials and methods 145
5.2.1 Plant material 145
5.2.1.1 Genetic stocks 145
5.2.1.2 Mapping populations 146
5.2.2 RFLP analysis 146
5.2.2.1 Southern blot analysis 146
5.2.2.1.1 WM1, WM3, WM5 and TaMSH7 gene family RFLP mapping 146
5.2.2.1.2 RFLP probes for determining ph2a deletion size 147
5.2.2.2 Genetic analysis 147
5.2.3 Comparative mapping between barley, wheat and rice 147
5.2.3.1 YAC, PAC and BAC contig development 148
5.2.3.2 Identification of wheat ESTs from PAC and BAC clones 148
5.2.3.3 Structural analysis of putative meiosis genes 148
5.2.3.4 Analysis of rice and barley meiosis related phenotypic traits 148
5.3 Results 150
5.3.1 RFLP probes for determining ph2a deletion size 150
5.3.2 Comparative mapping between barley, wheat and rice 150
5.3.2.1 YAC, PAC and BAC physical map 150
5.3 .2 Identification of wheat ESTs from PAC and BAC clones 153
5.3.2.3 Structural analysis of putative meiosis genes 153
5.3.2.4 Analysis of rice and barley meiosis related phenotypic traits 153
5.4 Discussion 162
5.4.1 Physical size of $p h 2 a$ deletion in wheat 162
5.4.2 Putative gene content of $p h 2 a$ region 162
5.4.2.1 Structural aspects of the Ph2 region 163
5.4.2.2 Candidate Ph2 genes 163
5.4.2.2.1 Asy1-like protein 163
5.4.2.2.2 TaMSH7 protein 165
5.4.2.2.3 MFP1-like protein 166
5.4.2.2.4 Scll protein 168
5.4.2.2.5 Damage-specific DNA binding protein 170
5.4.2.2.6 WD40 repeat like protein 170
5.4.2.2.7 Other predicted genes 171
5.4.2.3 Possible role for multiple Ph2 candidate genes in maintaing strict diploid-like behaviour 171
5.5 Conclusions 172
6 CHAPTER 174
General Discussion 174
6.1 Future direction 174
6.2 Wheat genes have multiple levels of complexity 175
6.2.1 Structural organisation of the Ph 2 region 175
6.2.2 Transcriptional control of meiotic wheat genes 176
6.3 Cereal genome and wheat breeding 177
BIBLIOGRAPHY 178

LIST OF FIGURES

Number Page
Figure 1: Mitosis 7
Figure 2: Meiosis 8
Figure 3: Homologous recombination as a mechanism to repair damaged DNA. 12
Figure 4: Resolution of the Holliday junction 14
Figure 5: The synaptonemal complex (SC). 16
Figure 6: Chromosomal assignment of the WM1 gene family. 62
Figure 7: Sub-chromosomal arm assignment and localisation of WM1 gene family members within the region deleted in the ph2a mutant. 64
Figure 8: Sub-chromosomal arm assignment of WM1 gene family members WM1.1, WM1.2 and WM1.3. 65
Figure 9: Physical linkage between WM1 gene family members WM1.1, WM1. 2 and WM1.3. 66
Figure 10: Determination of overlapping barley and wheat BAC clones through commonality in banding patterns. 68
Figure 11: Co-localisation of WM1 gene family members on overlapping wheat BAC clones 69
Figure 12: Co-localisation of homologues to the WM1 gene family members on overlapping barley BAC clones. 70
Figure 13: Pulsed field gel electrophesis (PFGE) separated wheat BAC DNA of nine overlapping clones known to encode WM1.1, WM1.2 and WM1.3 72
Figure 14: Physical alignment of insert DNA of three overlapping wheat BAC clones (TtBAC3, TtBAC6 and TtBAC11) based on Southern hybridisation, pulsed field gel electrophoresis and fingerprinting data 74
Figure 15: Predicted gene content and structure of a 226 Kb DNA subfragment within 270 Kb of DNA sequence derived from Triticum taushii BAC clones TtBAC3, TtBAC6, TtBAC11 75
Figure 16: Diagram of the predicted nucleotide coding sequence for seven members of the WM1 gene family. 78
Figure 17: Promoter and terminator analysis of the predicted WM1 gene family. 79
Figure 18: Relationship between the predicted primary polypeptide sequences for seven members of the WM1 gene family 81
Figure 19: Diagram of the structural relationship between the predicted primary polypeptide sequences for seven members of the WM1 gene family 85
Figure 20: Structure of leucine rich repeat and leucine zipper-like motifs fromwithin the predicted primary polypeptide sequences for members of theWM1 gene family86
Figure 21: Highly conserved N-terminal and C-terminal blocks of tandemly arrayed leucine rich repeats 88
Figure 22: Diagram of the structural relationship between the predicted primarypolypeptide of Triticum tauschii WM1.1 and those polypeptides found to bemost homologous.92
Figure 23: Relationship between the predicted primary polypeptide of Triticum tauschii WM1.1 and those polypeptides found to be most homologous 95
Figure 24: Southern blot analysis of electrophoretically separated RT-PCR products of individual members of the WM1 gene family 96
Figure 25: A speculative model for the role of the predicted membrane bound recepetor-like WM1 peptides in perception and signaling leading to the regulation in development of floral tissue of wheat 107
Figure 26: Diagram of the nucleotide and polypeptide sequence of WM5. 109
Figure 27: Diagramatic representation of constructs used in biolistic transformation of wheat 113
Figure 28: In vitro culture of wheat explants. 117
Figure 29: In vitro culture of wheat calli. 119
Figure 30: Diagramatic representation of the constructs used in the transient bombardment assay 121
Figure 31: PCR analysis of T_{0} wheat lines. 126
Figure 32: Example of Southern analysis performed on all T_{0} and T_{1} wheat lines. 130
Figure 33: Northern analysis showing expression pattern of A- Npt II, B- GFP C- GUS (no expression), D- WM5 and E- Glyceraldehyde-6-phosphate dehydrogenase (GAPDH - loading control), F- Ethidium bromide stained ribosomal RNA in the segregating T_{1} transgenic wheat lines. 131
Figure 35: A. Transient expression assay of green fluorescent protein (GFP) in wheat scutella from 1-Cambridge GFP, 2- Monsanto GFP, 3- Cambia GFP and 4-pBluescript $S K(+)$ control. B. Whole scutella image of transient expression assay of GFP from Monsanto GFP construct 133
Figure 36: Fluorescent microscopy for GFP fluorescence in the T_{1} progeny of transgenic line 16.Y 135
Figure 37: GUS expression of pre-meiotic spikes from T_{1} progeny of $24 . Z$ and $30 . Z$ 136
Figure 38: The region deleted in the ph2a mutant of wheat delimited in the three- barley mapping populations Chebec x Harrington, Clipper x Sahara and Galleon x Haruna Nijo). 151
Figure 39: The syntenous Ph2 regions in rice, wheat and barley 152
Figure 40: Physical alignment of the YAC clones with respect to the rice genetic map, highlighting the estimated physical size of the homologous Ph2 region in rice with the physical positions of the putative meiotic or meiosis related genes. 154
Figure 41: Putative structure of rice Asy1-like protein 156
Figure 42: Putative structure of rice TaMSH7-like protein 157
Figure 43: Putative structure of rice MFP1-like protein 158
Figure 44: Putative structure of rice Scll-like protein 159
Figure 45: Putative structure of rice damage-specific DNA binding protein 160
Figure 46: Putative structure of rice WD40 repeat like protein 161

LIST OF TABLES

Number Page
Table 1: DNA sequences of primers designed to amplify hypervariable and coding sequences for members of the WM1 gene family 44
Table 2: Electrophoretic parameters used to resolve restricted HMW DNA 47
Table 3: BAC fingerprinting reaction components and conditions 53
Table 4: Type II restriction enzymes and corresponding incubation temperatures used for BAC fingerprinting 54
Table 5: Gene specific RT-PCR primers for individual members of the WM1 gene family. RT-PCR control primers for MSH7 and Thioredoxin H 61
Table 6: RiceGAAS software identified coding sequences from 270 Kb of Triticum tauschii genomic sequence 77
Table 7: Polypeptide sequence similarity and divergence between the predicted primary peptides of seven members of the WM1 gene family 82
Table 8: Properties of predicted WM1 primary peptides 84
Table 9: Prediction of subcellular localisation, membrane topology and signa sequence for WM1 predicted polypeptides 90
Table 10: Polypeptide sequence similarity and divergence between the predicted primary polypeptide of Triticum tauschii WM1.1 and those polypeptides found to be most homologous 93
Table 11: Experimental design for co-bombardment of transgene constructs into wheat scutellum 114
Table 12: Parameters used in microprojectile bombardment of scutellar tissue in wheat 115
Table 13: PCR primers designed for the amplification of antisense WM5 (pWM53.1), sense WM5 (pWM54), 35S WM5 (pWM55.6), WM5 GUS (pWM51) and WM5 GFP (pWM52.1), and pAct1-F/Npt II. 122
Table 14: Restriction endonucleases used for digestion of genomic DNA from T_{0} and T_{1} plantlets to estimate both copy number and whole transgene integration 124
Table 15: Kanamycin selected wheat regenerants identified as being transgenic through both PCR and Southern analysis. 127
Table 16: Inheritance of transgenes from T_{0} to 10 random T_{1} progeny as identified through both PCR and Southern analysis. 129
Table 17: Restriction fragment length polymorphism probes (molecular markers) for determining ph2a deletion size 149
Table 18: Putative meiosis related genes identified from rice PAC and BAC sequence along with cereal ESTs 155
Table 19: Transgenic plants produced from individual microprojectile bombardment experiments 6

ACKNOWLEDGMENTS

I wish to express sincere appreciation to the following people and institutions for their support and assistance during the course of this study:

My supervisor, Professor Peter Langridge for his advice, encouragement, patient supervision, and the critical reading of this manuscript. The unique opportunities provided during my studies are sincerely appreciated and has resulted in extremely fulfilling research.

Research fellows Dr Chongmei Dong and Dr Ute Baumann for their constructive criticism and suggestions throughout the course of my studies.

Friend and colleague Tim Sutton for those many interesting and stimulating discussions about our research that occurred over a few beers both in Adelaide and in the USA.

Dr Jason Able for the critical reading of this manuscript. Dr Petra Wolters, and Dr Dirk Becker for all their technical assistance in DNA sequence analysis and wheat genetic transformation. All the members of the Langridge Lab and those people from the Plant Science Department who helped me during my studies. In particular I would like to thank Patricia Warner, Jodie Kretschmer, Dr Ursula Langridge, Angelo Karakousis, Dr Brendon King and Juan Juttner for their help and friendship.

The Grains Research and Development Corporation, Agriculture Western Australia, Coorporative Research Centre for Molecular Plant Breeding and DuPont Ag Biotech for financial support over the couse of my research.

My friends and family for their support and encouragement over the last few years

Finally I would like to acknowledge the love and support of my soul mate and best friend Nadja.

DEDICATION

This thesis is dedicated to my late grandfather Stanley Harold Whitford (1916 1988). I hope that my pursuit for a career in Agricultural Science, rather than working Springhill Farm, would have made him proud.

ABBREVIATIONS

aa	amino acid
BAC	bacterial artificial chromosome
bp	base pairs
cDNA	complementary DNA
cv	cultivar
DNA	deoxyribonucleic acid
DT	ditelosomic
DTT	dithiothreitol
EDTA	ethylenediaminetetracetic acid
EMC	embryo mother cell
EST	expressed sequence tag
g	grams
$\mathbf{x ~ g ~}$	9.81 m/s ${ }^{2}$
GFP	green fluorescent protein
GUS	β-glucuronidase
HMW	high molecular weight
hr(s)	hour(s)
Kb	kilobase
KDa	kilodalton
L	litre
lx	lux
M	molar
mA	milliampere
Mb	megabase
mbar	millibar
min	minutes
mg	milligrams
mJoules	mega Joules
mL	millilitres
mm	millimetres
mM	millimolar

MOPS	morpholino propanesulfonic acid
ng	nanograms
nos	nopaline synthase gene
Npt II	neomycin phosphotransferase
NT	nullisomic-tetrasomic
ORF	open reading frame
PCR	polymerase chain reaction
RT-PCR	reverse transcription polymerase chain reaction
PFGE	pulse field gel electrophoresis
pfu	plaque forming units
PDS	particle delivery system
PMC	pollen mother cell
psi	pounds per square inch
rpm	revolutions per minute
RNA	ribonucleic acid
RT	room temperature
SDS	sodium dodecyl sulphate
sec	seconds
TEMED	tetramethylethylethylenediamine
Tris	tris(hydroxymethyl)aminomethane
w/v	weight per volume
X-gluc	5 -bromo-4chloro-3-indolyl- β-D-glucuronic acid
UV	ultraviolet
YAC	yeast artificial chromosome
2,4-D	2,4 -dichlorophenoxyacetic acid
μ m	micrograms
μ L	microlitres

LITERATURE REVIEW

1.1 General introduction

The dynamic cellular processes within higher eukaryotic organisms remain largely unknown. Our growing awareness of cellular development including mitosis and meiosis often results in a tendency to manipulate these processes for further understanding and ultimately for economic and sociological benefit. The pursuit for understanding the mechanisms controlling the developmental process of meiosis is of crucial importance given that it is the basis of sexual reproduction. In bread wheat (Triticum aestivum), sexual reproduction followed by fertilisation results in the formation of seed. Derivatives of this seed forms the foundation of the staple diet for the much of the world's population.

Model organisms such as yeast (Saccharomyces cereviseae) have provided valuable insight into the genetic control of meiosis, more specifically chromosome pairing and recombination. However, it is still largely unproven whether there is strict commonality in fundamental mechanisms controlling meiosis among all eukaryotic organisms. The polyploid nature of wheat poses an added level of complexity when trying to understand the mechanisms of chromosome pairing. This literature review explores classical views of meiosis through understanding in model organisms and endeavours to shed light on the genetic control of meiosis in polyploid organisms, specifically the control of chromosome pairing and recombination in bread wheat (T. aestivum). Additionally, it aims to highlight the importance of manipulating chromosome pairing and recombination with respect to wheat breeding.

1.2 Mitosis and meiosis

Mitosis and meiosis represent two fundamental processes in eukaryote cell division.

Mitosis constitutes a phase in the cell cycle, alternating with interphase that combines two growth periods (G1 and G2), between which the chromosomes replicate (S phase). Following the second growth period, the cell enters the mitotic phase (M) (Figure 1).

Meiosis shares many corresponding steps to the events in mitosis. However, meiosis is the essential complement to the genome doubling at fertilisation that occurs in sexually reproducing organisms, as it provides a mechanism to reduce the genome size in half. For the daughter cells and products of fertilisation to be viable, this must be a precise reduction into two functionally equivalent halves each cell must possess a full haploid genome complement. The way this is achieved by the great majority of organisms is the pairing of homologous chromosomes during prophase of the first meiotic division. When homologous chromosomes are paired, they are able to orient their kinetochores in opposite directions so that at anaphase, half of the chromosomes are pulled to each spindle pole (Figure 2). This simple description of pairing belies a cell biological process of immense complexity.

Two important properties distinguish meiosis from mitosis:

1. In meiosis, the homologous chromosomes pair lengthwise and their chromatids exchange genetic material by crossing-over.
2. The sister chromatids, which are not identical after crossing-over, do not separate from one another in the first nuclear division, and the chromosomes do not replicate between the two nuclear divisions.
(Raven \& Johnson, 1992)

Figure 1: Mitosis. The photographs show nuclei of root tip cells of Lilium regale. Modified from (Grimes et al., 2001; McLeish \& Snoad, 1958).

Interphase

Mitotic Metaphase

Early Mitotic Prophase

Mitotic Anaphase

Late Mitotic Prophase

Mitotic Telophase

Figure 2: Meiosis. The photographs are of Lilium regale. Note: For simplicity, multiple chiasmata are drawn as involving only two chromatids; in reality, all four chromatids can be involved. Modified from (Grimes et al., 2001; McLeish \& Snoad, 1958).

The meiosis specific mechanism of genetic recombination or crossing over is the exchange of DNA sequences on maternal and paternal chromatids resulting in new combinations of genes. This provides a mechanism for generating genetic diversity beyond that achieved by the independent assortment of chromosomes.

1.3 Model organisms for the study of meiosis

The budding yeast S. cereviseae has been extensively studied in relation to meiosis largely due to its ease of manipulation (eg. mutagenesis), availability and production of developmentally defined material, and the availability of whole genome sequence information. Through the use of S. cereviseae as a model for the genetic control of meiosis, molecular mechanisms underlying chromosome pairing and recombination are outlined and compared with plant systems.

1.3.1 Chromosome pairing

The literature provides us with an intense debate on the sequence of events surrounding chromosome homology recognition, alignment, synapsis and synaptonemal complex formation (Bennett, 1984; Loidl, 1990; Moens, 1994). Does it follow this particular sequence, another sequence, or does it occur simultaneously? How do homologous chromosomes recognise each other?

Chromosome pairing is generally agreed to be the close association of homologous or homeologous chromosomes at late leptotene in wheat. This chromosome pairing and subsequent chiasmata formation is the mechanism by which genetic information is exchanged between homologous or homeologous chromosomes resulting in new gene combinations.

Meiotic homologues come into homology-directed physical contact with one another no later than leptotene. In yeast, homologues put side by side prior to meiotic S-phase are dislocated during S-phase, and then re-established towards the end of S-phase or directly thereafter (Scherthan et al., 1994; Weiner \&

Kleckner, 1994). Whether all monocots conform to this generalisation remains to be determined (Franklin et al., 1999).

In yeast, homologues identify one another in the apparent absence of any chemical interruptions in their DNA, not only during somatic pairing but also during meiotic prophase (Loidl et al., 1994; Nag et al., 1995; Weiner \& Kleckner, 1994). This homologue recognition seems to be independent of recombination (Loidl et al., 1994; Weiner \& Kleckner, 1994). Chromosome pairing has been associated with heterochromatic regions, along with specific or specialised chromatin structures or compartments in plants, humans and Drosophila. Many hypotheses attempting to explain this process occur in the literature. It has been suggested that pairing contacts are unstable and it is expected that there is necessity for the synergistic cooperation of multiple elements to stabilise the contacts. This is likely to be associated with the number and proximity of interacting copies, receptiveness of underlying DNA sequence to DNA/DNA interactions and suitable "stickiness" factors (Zickler \& Kleckner, 1999). Certain sequences at the DNA level have been implicated directly in homologous interactions (Zickler \& Kleckner, 1998). However, aside from homology at the DNA level, pattern recognition has also been implicated in chromosome pairing (Albini \& Jones, 1987; Chandley, 1986).

1.3.2 Homologous recombination

Recombination is any process generating new combinations of pre-existing genetic material. Homologous recombination is specifically homology dependent, but not sequence-dependent, so any two DNA molecules of related sequence can undergo recombination by this process.

The isolation of S. cerevisiae mutants defective in DNA damage repair, and blocked during meiosis has been useful for the identification of recombination genes. Recombination repair is any DNA repair or damage tolerance tactic involving homologous recombination.

There are two substrates for homology dependent recombination repair: double strand breaks (DSBs) and single strand gaps. Figure 3 outlines mechanisms
involved in this homology dependent recombination repair. Interestingly, comparable mechanisms form the basis for both double strand breaks and single strand gaps. Described below is the molecular basis for double strand break repair.

1.3.2.1 Double strand break repair

Recombination at the molecular level is a result of a specific pathway involving the processing of DNA double-strand breaks (DSBs) (Game et al., 1989; Sun et al., 1989). These DSBs are site-specific and take place during early to mid prophase (Padmore et al., 1991). They are also accountable for much or allmeiotic recombination in yeast (Sun et al., 1989). DSBs are 5' resected leaving 3' ssDNA of about 600 nucleotides in length (Weiner \& Kleckner, 1994). Meiosis-specific DSBs have been shown to arise prior to or at the same time as the synaptonemal complex formation. Ensuing stable joint molecules take shape (Schwacha \& Kleckner, 1994) and recombination is achieved by the end of pachytene (Padmore et al., 1991). Such a process would suggest that a RecA-like protein (functions in pairing homologous DNA molecules and the subsequent exchange of DNA strands in Escherisha coli) would bind to the ssDNA and assist in the homology searching. However, meiotic homologue pairing transpires in the absence of all four RecA homologues (Kleckner, 1996). Instead the Rad52 epistasis group of genes from yeast have been shown to be involved in recombination repair (Cameriniotero \& Hsieh, 1995). Rad51 (inducible by DNA damage) is the major gene of the group with homologues having been isolated from many eukaryotes. Other genes from the Rad52 epistasis group have mutant phenotypes, which implicate them in having roles in both mitosis and meiosis.

Other genes have been observed to be involved in recombination repair with six genes accepted to be meiosis-specific and involved specifically in this DSB establishment. These consist of Spo11, Me14, Mer2, Rec102, Rec104 and Rec114. There are also three required for the repair of DSBs in non-meiotic cells. These include Rad50, Mre11 and Xrs2 (Keeney et al., 1997).

Figure 3: Homologous recombination as a mechanism to repair damaged DNA. Repair of single-strand gaps (a) and double strand breaks (b) involves new replication across the lesion using a strand from the undamaged duplex as a template. Completion of the replication is followed by strand ligation, forming Holliday junctions, which can be resolved as shown in Figure 4. Recombination involving a partial chromosome (c) generates a Holliday junction intermediate, which is resolved as a replication fork. Arrows represent the direction of new DNA synthesis (Twyman, 1998). Outlined on the left are those genes of yeast found to be involved in the recombination process (Zickler \& Kleckner, 1998; Zickler \& Kleckner, 1999).

Mechanistically these double strand breaks occur at hotspots of recombination and are made, in conjunction with other proteins, by the Spo11 protein, which becomes covalently attached to the 5 ' ends at the break. Progressive shortening of the 5' - ended strands, perhaps by the Rad50-Mre11-Xrs2 complex, exposes 3' - ended single strands (Figure 3) (Davis \& Smith, 2001). Assisted by Rad51, Dmc1 and other strand exchange proteins, these single strands are believed to invade homologue duplex DNA to form a displacement loop (D-loop). D-loop joint molecules are altered into Holliday junctions, which are then transformed into recombinant molecules with either a cross-over or noncrossover configuration (Figure 4) (Davis \& Smith, 2001). The heteroduplex DNA formed in the Holliday junction is typically corrected by the mismatch repair system.

1.3.2.2 Mismatch repair system

The yeast mismatch repair system is understood to be involved in meiotic recombination through the processing of non-homologous ends during doublestrand break-induced recombination (Sugawara et al., 1997). A mismatch repair protein complex, MSH2-MSH6, has also been observed to bind to Holliday junctions during meiotic recombination (Alani et al., 1994; Marsischky et al., 1999).

The affinity of the MSH2-MSH6 complex for Holliday junctions was shown to be at a level comparable to that as for mispaired bases (Marsischky et al., 1999). Apart from mismatch correction, MSH2, MSH3 and MSH6 additionally play a role in inhibiting recombination between divergent DNA sequences (Chambers et al., 1996; Chen \& Jinks-Robertson, 1998; Datta et al., 1996; Hunter et al., 1996; Selva et al., 1997; Selva et al., 1995; Sugawara et al., 1997). The suppression of homeologous recombination mediated by the mismatch repair system is believed to be through the detection of mispairs within the recombination intermediates and the prevention of processing of these recombination intermediates (Baker et al., 1995; de Wind et al., 1995; Edelmann et al., 1996).

Figure 4: Resolution of the Holliday junction in either of two planes (a) and (b), generating different products. Only one resolution pathway generates a molecule, which is recombinant for flanking markers A and B, although both pathways generate a region of heteroduplex DNA (Twyman, 1998).

Noncrossover conformation
(b)

Consequently the mismatch repair system plays a crucial role in maintaining genetic stability by recognising and processing mismatched nucleotides that may occur during DNA replication, genetic recombination and some types of chemical damage to DNA.

Chromosome associations instigated through DSBs and the mismatch repair system result in the formation of the long "ribbon-like" synaptonemal complex (Figure 5). The synaptonemal complex is a meiosis specific proteinaceous structure (Klein, 1994), which initiates at late leptotene and degrades by early diplotene. This synaptonemal complex is termed the chaperone of crossing over and is characterised by a tripartite structure consisting of two lateral elements, a central element and a complex array of transverse filaments (Hasenkampf, 1996). The synaptonemal complex is absolutely crucial in fastening the pairing chromosomes together and mediating the resolution of homologous recombination.

1.4 Meiosis in allohexaploid wheat

1.4.1 Genome organisation

The common bread wheat, T. aestivum, is generally considered as an allopolyploid. Bread wheat being an allohexaploid ($2 n=6 x=42$) consists of three separate genomes, the A, B and D genomes, which seem to have arisen by two successive hybridisation events. The A genome arising from Triticum uratu $(2 x=14)$; the B genome from Aegilops speltoides $(2 x=14)$ (Blake et al., 1998); and the D genome from Triticum tauschii $(2 x=14)$ (Sears, 1976).

Chromosomes from each of the separate genomes are termed homeologues whilst those chromosomes within each genome are termed homologues. Although homeologues share extensive sequence homology, hexaploid wheat behaves in a diploid manner where pairing is strictly between true homologues. Even in haploids very little homeologous chromosome association is observed (Riley, 1960). Consequently homeologous chromosomes do not recombine with each other and this helps maintain genome stability.

Figure 5: The synaptonemal complex (SC). (a) Longitudinal section of Blaps cribrosa SC with clear scalariform central element (CE) and two lateral elements (Karpen et al., 1996) surrounded by chromatin (ch). (b) Cross section showing the complex four layered CE. (c) Lateral section with three of the CE layers indicated by arrows (the round dark ball on top of the layers is a recombination nodule). (d) Three-dimensional model of the central region in B. cribosa. The multilayered CE are in purple, the flanking LEs in pale yellow (indicated as plates), the transverse filaments (TF) crossing the central region in red, and the surrounding chromatin is in grey. Directions of views indicated F, frontal, L, lateral, C, cross-sectional view. Bar $=50 \mathrm{~nm}$ (Schmekel et al., 1993).

At meiotic prophase bread wheat undergoes a two-phase pattern of synaptonemal complex associations. Firstly, a complex network of synaptic interactions establishes at zygotene and early pachytene (Holm, 1986; Holm \& Wang, 1988) meaning homology detection and synaptonemal complex formation is taking place between homeologues as well as homologues. Synapsis is progressively limited to homologues by the end of pachytene (Holm, 1986) and by metaphase I, only chiasmate bivalents are present, meaning that crossing over has occurred strictly between homologues and not between homeologues (Feldman \& Avivi, 1988; Holm, 1988a; Holm, 1988b; Holm \& Wang, 1988; Martinez-Perez et al., 1999; Mikhailova et al., 1998; Sears, 1976). It seems as though chromosome synapsis in bread wheat undergoes a corrective or adjustment step at mid-pachytene to allow only homologous chromosome pairing.

Most allopolyploids, whether natural (Scilla autumnalis, Avena sativa, Avena maroccana, Aegilops biuncialis) or hybrids (Lolium spp.), seem to behave like bread wheat (Cunado et al., 1996; Jenkins \& Jimenez, 1995; Jenkins et al., 1988; Peterson et al., 1996; Thomas, 1990). Synapsis is confined mainly to homologues even as early as zygotene, before the corrective phase of midpachytene, as observed in wheat.

Chromosome pairing in autopolyploids is greatly different. Autopolyploids stem from from the multiplication of a single genome. This consequently causes multivalent associations at prophase and metaphase I. Associations between these homologous chromosomes are still mediated by crossovers and synaptonemal complexes (Sherman et al., 1989; Vincent \& Jones, 1993). Multivalent formation in autopolyploids often results in reduced fertility.

1.4.2 Chromosome pairing and recombination

Homologues seem to find their counterparts in a very short time; in wheat this is in a matter of hours. This is such a remarkable process considering the nucleus is crowded with chromosomes, which are entangled. In wheat these chromosomes contain large stretches of repeated sequences of which all
homeologous chromosomes share. How each homologous chromosome recognises each other at the molecular level considering these adversities remains a mystery.

It is interesting that plant breeders have been unable to create synthetic allopolyploids that undergo regular bivalent formation as seen in wheat and oats (Benavente \& Orellana, 1991). This suggests that the naturally occurring allopolyploids or progenitors must have evolved special mechanisms for determining stringency control in chromosome pairing so as to promote viability.

Genetic determinants have been found that manage the stringency of chromosome pairing in allopolyploids. A complex group of genes have been defined that control the level of pairing between homologous and homeologous chromosomes. These genes have been studied in detail for many decades (Driscoll, 1972; Driscoll, 1973; Feldman, 1966; Riley \& Chapman, 1958; Riley et al., 1966; Sears, 1976; Sears, 1977; Sears, 1982; Sears \& Okamoto, 1958). These $\underline{\text { Pairing Homeologous (}}$ (Ph) genes were described based on wheat euploid and mutant lines that had varying abilities to promote or suppress pairing between homeologous chromosomes. Other factors that have been found to regulate chromosome pairing in allopolyploids and amphiploids include heterochromatic B chromosomes. The heterochromatic B chromosomes affect the regularity of chiasmatic associations within complex genomes (Sears, 1976).

1.4.2.1 Suppressors of homeologous chromosome pairing

Suppressors of chromosome pairing act to restrict chiasma formation strictly to homologous chromosomes resulting in strict bivalents forming at metaphase I. The gene expressing the strongest influence on the suppression of homeologous chromosome pairing has been localised to the long arm of chromosome 5 (5BL) and has been termed Ph1 (Okamoto, 1957; Riley \& Chapman, 1958; Sears \& Okamoto, 1958). Minor suppressors have been found on 3DS and 3AS. The gene located on 3DS, termed Ph2, is a stronger suppressor of pairing than the gene located on 3AS (Cuadrado et al., 1991; Driscoll, 1972; Mello-Sampayo, 1971; Mello-Sampayo \& Canas, 1973; Uphadya
\& Swaminathan, 1967). An even weaker suppressor of pairing has been located on chromosome 4D (Driscoll, 1973). These suppressors of homeologous chromosome pairing have primarily been identified through euploid wheat lines or mutagenesis.

1.4.2.1.1 The mechanistic action of Ph genes

There have been many proposals for the mechanism controlling the actions of the Ph genes. One of the earliest models, suggested that pairing involved the ratio of DNA to histones during synapsis (Ansley, 1958). It was found that cells undergoing synapsis had a low ratio of DNA to histones. How this affected the stringency of chromosome pairing was unknown at the time. Ansley's model was superseded by Feldman and colleague's (Avivi \& Feldman, 1973a; Avivi \& Feldman, 1973b; Feldman \& Avivi, 1973) who suggested that Ph genes regulated chromosome proximity. Studies were based on the effect of $P h$ gene dosage and colchicine treatment on somatic chromosome associations. It was proposed that pairing suppressors destabilised the interaction between chromosomes and both the microtubules and spindle, whereas the pairing promoters stabilised these interactions. Studies on chromosomes from early meiotic prophase showed that the chromosomes lie closer together in the absence of a certain Ph gene, whilst when there are six copies of the same Ph gene, chromosomes lie nearly at random. Driscoll et al. (1979) on the other hand hypothesised that there is an enzyme system affected which allows pairing events to proceed to chiasma formation. Recently Liu et al. (1998) suggested that homology search and initiation of pairing is controlled both on the genic level (ie Ph genes) and by homeologous differentiation. Homeologous differentiation is based on low-copy, non-coding, chromosome specific sequences (CSSs) that are clustered in interstitial, subterminal and terminal (subtelomeric) regions of the chromosome.

The debate on the mode of action of Ph genes has been raised since the 1960's and to date still continues.

1.4.2.1.2 Pairing Homeologous gene 1 (Ph1)

Taking Pairing Homeologous gene 1 (Ph1) as an example, ph1/ph1 mutant wheat lines (eg ph1b, ph1c) and those euploid wheat lines missing both copies of chromosome 5BL, chiasma formation is no longer strictly between homologues. Both homologous chromosome synapsis and multivalent formation is observed, which is associated with a decrease in the total number of chiasmata (Holm \& Wang, 1988; Vega \&.Feldman, 1998a). Conversely, six copies of Ph1 by way of multiplication of 5BL, results in primarily univalent arrangement at metaphase I with a reduction in the levels of chiasmata, even between homologues. It has been shown however that the chromosomes are still interacting, even with high levels of interlocking homeologues (Feldman, 1966; Feldman \& Avivi, 1988; Holm, 1988a; Holm, 1988b; Holm \& Wang, 1988; Luo et al., 1996; Sears, 1976; Yacobi et al., 1982). These interlockings, which may represent first stages of homology searching, do not result in the formation of chiasmata. This suggests that the dosage effect of Ph1 results in a loss in the discrimination between homologues and homeologues. Too many (six copies) or too few Ph1 (zero copies) ultimately results in lower levels of chiasmata both between homologues and between homeologues. Such variations in chiasmata formation are directly reflected in the formation of the synaptonemal complex. Either zero or six copies of Ph1 results in incomplete synaptonemal complex formation along with a greater number of multiple homologous and homeologous synaptic associations (Holm, 1988a; Holm, 1988b; Holm \& Wang, 1988).

Recent studies using fluorescent in situ hybridisation on mutant lines of Ph1 have helped our understanding of the mode of action of the Ph1 gene. Findings suggest that mutants of Ph1 have altered chromosome/chromatin organisation and compaction, not only in meiotic cells but also in somatic cells (AragonAlcaide et al., 1997; Mikhailova et al., 1998; Vega \& Feldman, 1998b). There seems to be a premature separation of sister chromatids and extension of the centromeric chromatin in univalents at anaphase I. Observations also show that there is breakage of centromeres such that the two arms of a chromatid (or chromatid pair) are estranged from one another (Aragon-Alcaide et al., 1997;

Vega \& Feldman, 1998b). Ph1 mutants also seem to have alterations in the relative arrangement of homologous chromosomes both in meiotic and somatic cells (tapetal cells) (Mikhailova et al., 1998). This alteration occurs in meiotic cells from pre-meiotic interphase. It seems that Ph1 specifies or affects some basic component of chromosome structure.

1.4.2.1.3 Pairing Homeologous gene 2 (Ph2)

Pairing Homeologous gene 2 (Ph2) is a minor suppressor of homeologous chromosome pairing as compared to Ph1, which is located on chromosome 3DS. An X-ray induced deletion of the Ph2 gene, ph2a (Sears, 1977) and a point mutation, ph2b (Wall et al., 1971), reveal that the removal of the gene induces higher levels of homeologous chromosome pairing in wheat hybrids with alien species, but does not effect chromosome pairing in wheat itself (Sears, 1977).

Ph2 being a minor suppressor of homeologous chromosome pairing as compared to Ph1 holds true when comparing metaphase I pairing associations within wheat x rye hybrids. The X-ray deletion mutant, ph1b, has an average of 10.71 chiasmatic associations per cell, whilst ph $2 b$ has an average of 3.43 chiasmatic associations per cell. This compares to 1.36 chiasmatic associations in wild-type Ph1Ph2 wheat (Benavente et al., 1998). In the same study it was suggested that whatever the meiotic mechanism actually affected by a mutation at the Ph2 locus, the ability to discriminate chromosome similarity among related partners seemed not to be influenced. The greater pairing promotion effect of the ph1b mutation appears to be relatively more on distant homeologous partner metaphase I associations, whereas the lower promoting effect of $p h 2 b$ is evenly distributed among all types of homeologous associations. It is also suggested that the resolution of wheat x rye metaphase I associations into wheat x rye recombination events in $p h 2 b$ is lower than that for $p h 1 b$. This finding reveals that distinct mechanisms are involved in the control on homeologous synapsis and/or chiasma formation by the two Ph genes (Benavente et al., 1998).

More detailed ultrastructural analysis comparing ph1b and ph2b illustrates that only a few nuclei accomplish synapsis (synaptonemal complex formation) in the ph2b genotype, whereas most nuclei completed synapsis in the wild type and ph1b genotypes (Martinez et al., 2001). Results of this study suggest that neither Ph1 or Ph2 affect synaptic restriction to bivalents at early prophase but do have a different effect on later synaptic behaviour. This result further illustrates that Ph1 and Ph2 bring about diploidisation of allohexaploid wheat by different mechanisms. Ph2 seems to affect synaptic progression, probably in a similar way to a diploid species. It has been suggested that Ph2 itself may not represent a pairing homeologous (Ph) locus but a synaptic (Syn) locus (Martinez et al., 2001). This raises the question of whether homeologous chromosome pairing as phenotypically determined through analysis of the Ph2 locus is a consequence of asynapsis?

It is also interesting that less attention has been paid to the effect of ph2/ph2 in wheat x alien hybrids, even though its intermediate level of promotion of homeologous chromosome pairing is thought to be more appropriate for genetic transfers from closely related species (Sears, 1982). If Ph1 and Ph2 do indeed represent different mechanisms influencing homeologous chromosome pairing, further understanding of these mechanisms at a molecular level may help in their synergistic integration to produce wheat lines of increased homeologous chromosome pairing and recombination capacity.

1.4.2.2 Promoters of homeologous chromosome pairing

Unlike the suppressors of pairing, Ph3, which is located on 5BS is a promoter of pairing (Sears, 1972). Other promoters of pairing have been located on chromosomes 3DL (Driscoll, 1972; Mello-Sampayo \& Lorente, 1968), 3BL (Kempanna \& Riley, 1962; Sears, 1954), 3AL (Mello-Sampayo \& Canas, 1973), 5DL (Feldman, 1966; Feldman, 1968; Mello-Sampayo, 1972; Riley et al., 1966), and 5AL (Feldman, 1966; Feldman, 1968; Riley et al., 1966). These studies revealed that promoters of homeologous chromosome pairing increase levels of multiple chromosome associations. However, there are no proportional
correlations between dosage of suppressors or promoters. More detailed ultrastructural analysis using electron microscopy illustrated that altering the balance of promoters and suppressors causes synapsis arrest in both wheat itself and in interspecific hybrids (Holm \& Wang, 1988).

1.4.2.3 Molecular models of chromosome pairing in wheat

Recent studies have increased basic understanding of the mechanistic action of Ph genes on chromosome behaviour in allohexapoid wheat. Of particular interest is the recent comparison of Ph1 to Ph2, suggesting two different mechanisms resulting in homeologous chromosome pairing (Martinez et al., 2001). Accordingly several hypotheses have progressed to explain the observed chromosome behaviour.

1.4.2.3.1 Spatial distribution of chromosomes

Feldman and colleague's (Feldman \& Avivi, 1988) have suggested that homologous chromosomes pair up before the onset of meiosis (described in Section 1.4.2.1.1). Discrimination between homologues and homeologues occurs prior to meiosis via effects on somatic pairing related to spatial distribution within the nucleus. It is anticipated that the Ph genes directly or indirectly influence this spatial distribution and therefore chromosomes would not be completely dispersed within the nucleus. In a haploid cell the chromosomes would be spatially separated, lying side by side or around each other (Schwarzacher, 1997), unlike a diploid cell where the homologues and homeologues would be associated and have relatively fixed positions in relation to each other (Flavell et al., 1987). It was also suggested that there may be "elastic connectors" controlling the position of chromosome homologues or homeologues (Maguire, 1977). This has led to suggestions of the possible presence of intranuclear fibrillar material that has the same influence on the positioning of the chromosomes (Bennett \& Smith, 1979). This is certainly the case for dipterans such as Aedes aegypti and some higher plants such as maize (Maguire, 1983). However, this is untrue for plants such as Lilium (Del Fosse \& Church, 1981; Walters, 1970). Weiner and Kleckner (1994) have observed in yeast, pre-meiotic homologous chromosome associations but these
weaken as DNA replication commences. As these cells undergo meiosis the chromosomal associations re-establish. Wheat has been shown to behave slightly differently to other eukaryotes in that centromeres of homologous chromosomes become associated first during floral development. At pre-meiotic interphase over 90% of homologues are already completely associated with their pairing partner (Moore, 1998). Somatic chromosome disposition seems to vary among eukaryotes and no strict rule applies to all.

1.4.2.3.2 Timing of chromosome interactions

Hobolth (1981) and Von Wettstein et al., (1984) suggest that timing of crossovers and chromosome exchanges after diploidisation is the key factor controlled by the Ph genes. Hobolth (1981) observed that multivalent synaptonemal complexes regularly form at zygotene but become corrected into strict bivalents at pachytene in euploid wheat. However, with six copies of Ph1 (trisomic 5BL) the number of multivalents increased. Following these observations, Hobolth believed that with two copies of Ph1 (wild type), crossing over is delayed until after multivalents are corrected into bivalents. However, with six copies of Ph1 crossing-over is delayed until diplotene when the synaptonemal complexes begin to degrade and when the condition for recombination has become sub-optimal. Holm and Wang (1988) disagree with this mechanistic model for Ph1 based on observations in monosomic 5BL and occasionally in euploid wheat, where multivalent associations sometime persist through the crossing-over interval yet chiasmata are not formed between homeologues. Holm and Wang (1988) also argue that it is expected that there would be a reduction of chiasmata in trisomic 5BL, however there is pairing arrest.

1.4.2.3.3 Stringency of both synapsis and homologous exchanges

It has been proposed that the observed chromosome behaviour of mutants at Ph loci is a result of alterations in the control of stringency of both synapsis and homologous exchanges (Holm \& Wang, 1988). It was also proposed that the control is likely to lie within the DNA mismatch repair system (Holm \& Wang, 1988) as crossover suppression in bread wheat can be attributable, at least in
part, to the fact that homeologue DNA affects the basic biochemistry of the recombination process. This is supported by the fact that recombinant chromosomes containing homeologous or alien segments, upon undergoing synapsis, have a reduced number of chiasma between the homologous and homeologous/alien segments (Liharska et al., 1996; Luo et al., 1996). This suggests that homology is processed along the entire length of the chromosomes yet there is disruption at specific sites where there are likely to be recombination interactions.

1.4.3 Improvement of wheat breeding by the control of the Ph genes

Plant breeding essentially relies on and makes use of genetic variation, which occurs naturally within and between members of a family, a genus, a species or a subspecies, or through the introduction of genes from other organisms, which may or may not be related to the host plant.

From a plant breeder's perspective, the limits of homeologous recombination define a genetic barrier to the introduction of new and desirable traits into existing plant varieties. This means that land races and related species such as rye are hard to use for wheat improvement. Problems with chromosome pairing and recombination limit the ability of breeders to exploit useful genes through introgression. Homeologous recombination is thus of great importance for plant breeding. Accordingly there is a need for a process of enhancing the frequency of homeologous recombination in plants. In particular, there is a need for a process of increasing homeologous recombination to significantly shorten the length of breeding programs by reducing the number of crosses required to obtain an otherwise rare recombination event.

Understanding the action of the Ph2 gene for alien gene introgression aims to help increase the frequency of recombination between the genomes. The Ph genes of T. aestivum maintain a strong barrier to gene flow between crossable species having homeologous chromosomal relationships (Ceoloni \& Donini, 1993). Increasing the frequency of recombination will reduce capital costs for wheat breeding programs by reducing the numbers of plants required within
breeding populations. The introduction of alien traits into T. aestivum would help increase the genetic base from which breeders can work.

Breeders currently use ph1b, a deletion mutant at the Ph1 locus of Chinese Spring (Sears, 1977) in their alien gene introgression crosses. The effectiveness of the ph1b mutant has been demonstrated in wide crosses (Gale \& Miller, 1987) but in some cases it's usefulness is limited. With crosses between wheat (lacking Ph1 locus) and rye, as well as crosses between wheat and barley, desired levels of pairing and recombination are laborious and difficult to obtain (Islam \& Shepherd, 1988; Koebner \& Shepherd, 1985). To solve the problem of such crosses their needs to be an understanding of the molecular mechanisms involved in chromosome pairing and recombination. Once understood, the system can then be manipulated to increase the efficiency of alien gene introgression.

1.5 Aims of this study

This study primarily aims to outline a systematic method for the analysis of genes likely to be involved in meiosis, in particular, those genes that could possibly represent the Ph2 gene. Specifically structural analysis of the Wheat Meiosis 1 (WM1) gene family in relation to its localition within the region deleted in the ph2a wheat mutant was examined. In addition, an attempt at functional analysis of the Wheat Meiosis 5 (WM5) gene through the use of biolistic wheat transformation was conducted. Finally comparative mapping among the grasses aims to use the currently available rice genome sequence to identify those genes that may represent the Ph2 gene. Through the structural, functional and comparative analysis of genes within the grasses, this study aims to increase our awareness of grass genome structure and meiosis

What are the gene(s) controlling the Pairing \underline{H} omeologous ($P h$) phenotype and how do they work? This question has been studied for 40 years and it is anticipated that the approaches taken in this study will shed light on this unanswered question.

GENERAL MATERIALS AND METHODS

2.1 Materials

Materials used in this study are listed below, together with the suppliers' names. All chemicals for in vitro use were at least analytical grade. Where appropriate, solutions were prepared using MilliQ $\mathrm{H}_{2} \mathrm{O}$, and subsequently autoclaved. Descriptions of RFLP clones and genetic material used in this study can be found in the individual chapters.

2.1.1 Chemicals

Bovine serum albumen (BSA) fraction V , spermidine, ampicillin, kanamycin, salmon sperm DNA, N-(2-hydroxyethyl) piperazine-N'-(2-ethane-sulfonic acid (HEPES), Tris (hydroxymethyl) amino-methane (trizma base), ethidium bromide, poly vinyl pyrillidone (PVP, 40,000 molecular weight), Eschericia coli t-RNA, salmon sperm DNA, dithiothreitol (DTT): Sigma Chemicals (USA).

Dextran sulphate, ficoll 400: Pharmacia (USA)

Phenol: Wako Industries (Japan).
$\mathrm{NaCl}, \mathrm{NaOH}, \mathrm{Na}_{2} \mathrm{EDTA}, \mathrm{MgCl}_{2}$, potassium acetate (KOAc), sodium acetate (NaOAc), urea, sucrose, glucose, ethanol (EtOH), iso-propyl alcohol, iso-amyl alcohol, chloroform, bromophenol blue, HCl , glacial acetic acid, sodium dodecyl sulphate (SDS): BDH.

Xylene cyanol: Ajax Chemicals.

Oligodeoxyribonucleotides: Synthetic oligodeoxyribonucleotides were either made on an Applied Biosystems (USA) Model 380B DNA synthesiser by Neil Shirley in the Department of Plant Science, University of Adelaide or through

Parallel Array Synthesis (Invitrogen, Australia) comprising of standard cyanoethyl phosphoramidite chemistry. Subsequently oligonucleotides were purified by ion exchange HPLC using a MonoQ column (Pharmacia, USA).

Nucleotides and Radionucleotides: Ultrapure nucleotide triphosphates (NTPs) and deoxynuclotide triphosphates (dNTPs) were obtained from Pharmacia. [$\alpha-$ $\left.{ }^{32} \mathrm{P}\right]$ dATP $(10 \mu \mathrm{Ci} / \mu \mathrm{l})$, and $\left[\alpha-{ }^{32} \mathrm{P}\right] \mathrm{dCTP}(10 \mu \mathrm{Ci} / \mu \mathrm{l})$, were obtained from Bresatec and Amersham (Australia).

2.1.2 Enzymes

Mung bean nuclease: New England Biolabs.
Calf intestinal alkaline phosphatase (CIAP): Boehringer Mannheim (Germany).

Pancreatic RNase A: Sigma (USA).

Taq DNA polymerase, Klenow fragment (large fragment of Eschericia coli DNA polymerase I), Thermoscript and Superscript Reverse Transcriptase: Life Technologies (Rockville, MD, USA).

Pfu DNA polymerase: Stratagene (La Jolla, CA)

Restriction enzymes: Bresatec (Australia), Boehringer Mannheim (Germany), New England Biolabs and Promega (USA).

2.1.3 Molecular weight markers and cloning vectors

λ DNA cut with Hind $/ / /$ and λ DNA cut with Bst EIIISal I.
pBluescript SK(+) : Stratagene (USA).

Bacterial strains: Escherichia coli DH5 α : Stratagene (USA).

Bacterial media ingredients: bacto-agar, bacto-tryptone and yeast extract: Difco Laboratories (USA).

2.1.4 Agaroses

Low melting point agarose: BRL (USA).

Other agarose (NuSeive GTG grade): FMC Bioproducts (USA).

2.1.5 Kits

Bresa-Clean: Bresatec (Australia).

Qiagen tip-20: Qiagen (Australia)

Qiagen gel extraction kit: Qiagen (Australia).

Qiagen PCR clean-up kit: Qiagen (Australia)

2.2 Methods

Methods were carried out according to standard procedures (Sambrook et al., 1989) or using manufacturers specifications (except where cited in text). Methods used routinely throughout this study are described below. Specific methods that were used only in particular parts of this study are described in the individual chapters.

2.2.1 Plant growth conditions

Potting soil was prepared by the plant growth facility at the Waite Institute (University of Adelaide). Unless otherwise stated, recycled soil made from discarded soil and plant material was used. UC (University of California) soil mix consisting of four parts washed river sand and three parts (dry volume) moss peat was used when a more consistent soil was required. Both types of soil were steam treated to reduce the viability of contaminating seeds and microorganisms. Unless otherwise stated, plants were grown in 13 to 25 cm pots in the glasshouse, at 18 to $25^{\circ} \mathrm{C}$.

2.2.2 Growth of bacteria

Cultures of E. coli bacteria were grown overnight at $37^{\circ} \mathrm{C}$, using solid or liquid media. Solid media was prepared by dissolving bacterialogical agar ($1.5 \% \mathrm{w} / \mathrm{v}$)
in boiling LB broth ($1.0 \%(\mathrm{w} / \mathrm{v})$ bacto-tryptone, $0.5 \%(\mathrm{w} / \mathrm{v})$ yeast extract, 1.0% $(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}, \mathrm{pH} 7.0)$. Liquid cultures were grown in 10 mL tubes containing 3.0 mL LB broth or 2YT broth ($1.6 \%(\mathrm{w} / \mathrm{v})$ bacto-tryptone, $1.0 \%(\mathrm{w} / \mathrm{v})$ yeast extract, $0.5 \%(w / v) \mathrm{NaCl}, \mathrm{pH} 7.0)$. Each liquid culture was inoculated using a single bacterial colony or a scraping from a frozen glycerol culture, and grown on a rotator. The antibiotic ampicillin or kanamycin was added to bacterial growth media at concentrations of $100 \mu \mathrm{~g} \mathrm{~mL}^{-1}$ or $50 \mu \mathrm{~g} \mathrm{~mL}^{-1}$ respectively.

2.2.3 Transformation of E. coli with plasmids by electroporation

Procedures used to prepare electrocompetent cells were those supplied with the Gene-Pulser (Bio-Rad, USA). One litre of LB culture was inoculated using 10 mL of an overnight culture of E. coli strain $\mathrm{DH} 5 \alpha$ (BRL, USA), grown to an optical density ($\lambda 600$) of 0.9) with the flask chilled on ice for 15 to 30 min . The culture was transferred to 200 mL tubes and the cells pelleted in a GSA rotor at $3,000 \mathrm{rpm}$ for 15 min at $4^{\circ} \mathrm{C}$. The supernatant was discarded and the cells gently resuspended in 0.5 L of ice-cold 10% glycerol solution. The cells were then pelleted as above, the supernatant discarded, and resuspended in 20 mL of icecold 10% glycerol solution. Cells were transferred to 30 mL tubes, pelleted in a HB4 rotor at $4,000 \mathrm{rpm}$ for 15 min at $4^{\circ} \mathrm{C}$, and resuspended in 2.0 mL of icecold, 10% glycerol solution. The electrocompetent cells were transferred to 1.5 mL Eppendorf tubes in aliquots of $140 \mu \mathrm{l}$, snap frozen in liquid nitrogen, and stored at $-80^{\circ} \mathrm{C}$ until use.

Transformation of electrocompetent cells with plasmids was performed according to the recommendations supplied with the Gene-Pulser. Electrocompetent cells $(40 \mu \mathrm{l})$ were combined with $1.0 \mu \mathrm{~L}$ MilliQ $\mathrm{H}_{2} \mathrm{O}$ containing 5.0 ng of plasmid DNA or 60 ng of DNA from a ligation reaction. The mixture was transferred to an ice-cold, disposable electroporation cell $(0.1 \mathrm{~cm}$ electrode gap, supplied with the Gene-Pulser), and subject to electroporation using a Gene-Pulser (Bio-Rad), set at $1.8 \mathrm{kV}, 125 \mu \mathrm{FD}$ and 200Ω. Immediately following electroporation, the cells were mixed with 1.0 mL LB broth without antibiotic, and grown at $37^{\circ} \mathrm{C}$ in a 1.5 mL Eppendorf tube for 1 hr on a shaker.

Two-hundred $\mu \mathrm{L}$ aliquots of culture were then plated onto solid media containing antibiotic, and grown at $37^{\circ} \mathrm{C}$ overnight.

2.2.4 Mini-preparation of plasmid DNA

The protocol used for plasmid DNA isolation was essentially the procedure described by Sambrook et al. (1989) for the small-scale isolation of plasmid DNA by alkaline lysis. All steps were performed at room temperature unless otherwise stated, and centrifugations were performed in an Eppendorf 5415C bench centrifuge. Liquid culture of plasmid-containing bacteria was used to fill a 1.5 mL Eppendorf tube and the cells pelleted by centrifuging at $14,000 \mathrm{rpm}$ for 30 sec. The supernatant was discarded and the cells resuspended in $100 \mu \mathrm{~L}$ ice-cold Plasmid I buffer (50 mM glucose, 25 mM Tris- $\mathrm{HCl}, 10 \mathrm{mM} \mathrm{Na} 2$ EDTA, pH 8.0) by vortexing for 1 min . Two-hundred $\mu \mathrm{L}$ of freshly made, ice-cold 0.2 M $\mathrm{NaOH}, 1.0 \%$ SDS was added and mixed in by gentle inversion of the tube. Onehundred and fifty $\mu \mathrm{L}$ of $3.0 \mathrm{M} \mathrm{KOAc}, 11.5 \%$ glacial acetic acid was added to the lysate and the tube vortexed gently before placing on ice for 3 to 5 min . The tube was then centrifuged for 5 min at $14,000 \mathrm{rpm}$ and $350 \mu \mathrm{~L}$ of the supernatant transferred to a new tube. Nucleic acid was precipitated by combining the supernatant with $35 \mu \mathrm{~L}$ of $3.0 \mathrm{M} \mathrm{NaOAc}, \mathrm{pH} 5.2$, and $400 \mu \mathrm{~L}$ ice-cold ethanol, and pelleted by centrifugation at $14,000 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$. Pellets were washed in 1.0 mL ice-cold 70% ethanol, dried completely, and resuspended in $20 \mu \mathrm{~L}$ of 10 mM Tris- $\mathrm{HCl}, 0.1 \mathrm{mM} \mathrm{Na} 2$ EDTA, pH 8.0, containing $40 \mathrm{mg} \mathrm{mL}^{-1}$ pancreatic RNase A.

2.2.4.1 PCR amplification of cloned insert DNA

The cloned insert DNA was amplified using the polymerase chain reaction with M13 forward and reverse primers. The oligonucleotide primers M13-40P (5'CAG GGT TTT CCC AGT CAC GAC -3^{\prime}) and M13 RSP (5'- ACA GGA AAC AGC TAT GAC CAT G -3^{\prime}) for clones in the plasmid vectors pBluescript SK(+), pUC18, pUC19 and pUC119, or the primers SP6 (5'- GAT TTA GGT GAC ACT ATA G -3^{\prime}) and T7 (5^{\prime} - TAA TAC GAC TCA CTA TAG GG - 3^{\prime}) for clones in pGEM-4. These primers were synthesised using an Applied Biosystems 392
oligonucleotide synthesiser according to the manufacturers instructions. The reaction mix contained 50 mM Tris $\mathrm{HCl}, 6.5 \mathrm{mM} \mathrm{MgCl} 2$ (25 mM), $48 \mu \mathrm{M}$ each dNTP, $0.3 \mu \mathrm{~g}$ each primer, $1 \mu \mathrm{~g}$ plasmid DNA and 1 unit Taq polymerase in a total volume of $50 \mu \mathrm{l}$. Temperature conditions for PCR were $95^{\circ} \mathrm{C}$ for 3 min , followed by 35 cycles of $96^{\circ} \mathrm{C}$ for 1 minute, $55^{\circ} \mathrm{C}$ or $58^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 2 min with a final step of $72^{\circ} \mathrm{C}$ for 5 min and $25^{\circ} \mathrm{C}$ for 5 min . This reaction was performed in a PTC-150 Mini Cycler (MJ Research, USA). A MgCl ${ }_{2}$ concentration of 1.3 mM was effective for the amplification of most inserts, although inserts larger than 1.5 Kb generally required the MgCl_{2} concentration to be optimised

2.2.4.2 Recovery of insert DNA from agarose gels using glass-milk and Qiagen gel extraction kit

Following gel electrophoresis of the PCR product, the required band was excised from the gel after staining with ethidium bromide and visualising on a long wave ultraviolet transilluminator (340 nm). The excised agarose block was transferred to a 1.5 mL eppendorf tube and weighed. The DNA was recovered according to the standard protocol supplied with the Geneclean kit (Bio 101) [Bresatec, Australia] or with the standard protocol that was supplied with Qiagen gel extraction kit (Qiagen, Australia).

2.2.5 Large scale preparations of plasmid DNA

The following method was used to purify large amounts ($150 \mu \mathrm{~g}$) of plasmid DNA. A plasmid-containing bacterial culture was grown overnight to stationary phase ($\sim 16 \mathrm{hr}$) in 400 mL of LB containing appropriate antibiotic(s), in a baffled 2 litre flask at $37^{\circ} \mathrm{C}$. Cells were sedimented by centrifugation ($5,000 \mathrm{rpm}, 15$ $\mathrm{min}, 4^{\circ} \mathrm{C}$, Sorvall GSA rotor) and washed in STE buffer ($50 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 25 mM Tris-HCl, pH 8.0). The cells were pelleted by centrifugation as before then resuspended in 4 mL of Plasmid I buffer containing $1 \mathrm{mg} \mathrm{mL}^{-1}$ lysozyme. The resuspended cells were incubated on ice for 10 min , before the addition of 8 mL of freshly prepared $0.2 \mathrm{M} \mathrm{NaOH}, 1 \%$ SDS, followed by gentle mixing. After incubation on ice for 10 min the mixture was centrifuged as
previously except that centrifugation was at $10,000 \mathrm{rpm}$ for 10 min . The supernatant was removed and strained through four layers of cheesecloth, before precipitation of nucleic acids by the addition of 12 mL of ice-cold 2propanol. The pellet was washed with ice-cold 70% ethanol, after which it was dried in air at RT before resuspension in 3 mL TE. $\mathrm{LiCl}(10 \mathrm{M})$ was added to a final concentration of 2.5 M to precipitate RNA, and the solution placed on ice for 10 min . RNA was pelleted by centrifugation in a Sorvall HB4 rotor at $10,000 \mathrm{rpm}$ for 15 min at $4^{\circ} \mathrm{C}$. The supernatant was removed and DNA precipitated by addition of an equal volume of ice-cold 2-propanol, followed by centrifugation as previously described to pellet DNA. The pellet was washed in ice-cold 70% ethanol and air-dried at RT. DNA was resuspended in $400 \mu \mathrm{~L}$ TE and transferred to a micro-centrifuge tube. RNase A was added to $20 \mu \mathrm{~g} \mathrm{~m}^{-1}$ and the mixture incubated at $37^{\circ} \mathrm{C}$ for 1 hr . The solution was extracted twice with phenol:chloroform (2.2.6), and once with chloroform to remove proteins. Plasmid DNA was precipitated from solution by the addition of an equal volume of 13% PEG $8000,1.6 \mathrm{M} \mathrm{NaCl}$, followed by incubation at RT for 5 min . DNA was recovered by centrifugation at full speed in a bench micro-centrifuge for 5 min at RT, and the pellet resuspended in $400 \mu \mathrm{~L}$ TE. DNA was again precipitated from solution by addition of 3 M sodium acetate pH 4.6 to a concentration of 0.3 M , and 2.5 volumes of ice-cold ethanol. The DNA was pelleted by centrifugation as previously described, and the pellet washed in 400 $\mu \mathrm{L}$ ice-cold 70% ethanol before re-centrifugation. The pellet was dried and resuspended in $400 \mu \mathrm{~L}$ TE.

2.2.6 Phenol:chloroform extraction and ethanol precipitation of DNA

DNA solutions were mixed with one volume of phenol:chloroform (containing one volume of redistilled phenol (BDH, Australia) equilibrated in 50 mM Tris- HCl , pH 8.0 , and one volume of chloroform) and centrifuged for 10 min at RT (full speed in an Eppendorf micro-centrifuge for small quantities, or $10,000 \mathrm{rpm}$ in a Sorvall HB4 rotor for larger solutions). The aqueous phase was recovered and the extraction repeated as necessary.

DNA was routinely precipitated from solutions with ethanol. Briefly, $1 / 10^{\text {th }}$ volume of 3 M sodium acetate (pH 4.6) was added followed by 2.5 volumes of ice-cold ethanol. The solutions were incubated on ice for 15 min , followed by centrifugation at high speed at RT for 15 min in an Eppendorf micro-centrifuge for small volumes, or at $10,000 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 15 min in a Sorvall HB4 rotor for larger volumes. Pellets were washed in 70% ethanol prior to drying in a speedyvac or on the bench at RT.

2.2.7 Agarose gel electrophoresis

Large-scale agarose gels were cast from 100 mL of 0.9 to $1.3 \%(\mathrm{w} / \mathrm{v})$ molten agarose solution containing $1 \times$ TAE buffer (0.04 M Tris-acetate, 1.0 mM Na_{2} EDTA, pH 8.0), using a $15 \times 20 \mathrm{~cm}$ mould and a comb for making wells of 15 $\mu \mathrm{L}$ volume (for Southern analysis) or 30 to $50 \mu \mathrm{~L}$ volume (preparative electrophoresis). DNA samples were mixed with 0.2 volume $6 \times$ FLB loading buffer ($15 \%(\mathrm{w} / \mathrm{v})$ ficoll 400, $0.25 \%(\mathrm{w} / \mathrm{v})$ bromophenol blue, $0.25 \%(\mathrm{w} / \mathrm{v})$ xylene cyanol) and electrophoresed overnight at 40 to 50 V and 18 to 50 mA in $1 \times$ TAE buffer. DNA size markers made from Hind III cut λ DNA or Bst EIIISal I cut λ DNA (0.2 to $0.5 \mu \mathrm{~g}$) were run alongside the sample DNAs when needed. Gels were soaked in $0.5 \mathrm{mg} / \mathrm{l}$ solution of ethidium bromide for 10 min , de-stained by rinsing in water for 10 min and photographed for future reference using UV light at 302 nm (preparative gels) or 260 nm (gels for Southern analysis).

Mini agarose gels were cast by pouring 15 mL of 0.9 to $1.5 \%(\mathrm{w} / \mathrm{v})$ molten agarose solution containing $1 \times$ TAE buffer (0.04 M Tris-acetate, 1.0 mM Na_{2} EDTA, pH 8.0) onto a $6.0 \times 7.0 \mathrm{~cm}$ glass plate with the appropriate comb set above it. DNA samples were mixed with 0.2 volumes of $6 \times$ FLB loading buffer (15% (w / v) ficoll 400, $0.25 \% ~(\mathrm{w} / \mathrm{v}$) bromophenol blue, $0.25 \% ~(\mathrm{w} / \mathrm{v})$ xylene cyanol) prior to electrophoresis at 80 to 180 mA in $1 \times$ TAE buffer. Mini agarose gels were stained and photographed as described for large-scale agarose gels.

2.2.8 Polyacrylamide gel electrophoresis

Denaturing polyacrylamide gels were prepared from 50 mL solutions containing $6 \% ~(w / v)$ acrylamide, $0.3 \% ~(w / v)$ bisacrylamide, 7 M urea, and 1xTBE.

Polymerisation was initiated by the addition of $400 \mu \mathrm{~L}$ freshly prepared 10% (w / v) ammonium persulfate and $40 \mu \mathrm{~L}$ of TEMED. The polymerising solution was poured into gels of $20 \times 40 \times 0.04 \mathrm{~cm}$, with well formation by a shark toothcomb. Gels were allowed to set for at least 60 min , and then preelectrophoresed at 50 W until gel temperature was approximately $50^{\circ} \mathrm{C}$. Gels were electrophoresed at $50^{\circ} \mathrm{C}$ at constant power after loading and denaturing of samples in formamide loading solution (95% (V / v) formamide, 0.1% bromophenol blue, 0.1% xylene cyanol, 10 mM EDTA).

2.2.9 Cereal genomic DNA preparation

The method for genomic plant DNA preparation is based on Guidet et al., (1991). All centrifugations were performed at $14,000 \mathrm{rpm}$ in an Eppendorf bench centifuge at RT.

2.2.9.1 Small-scale genomic DNA preparation

The method used for the small-scale extraction of DNA from leaves was modified from Guidet et al., (1991). A 10 cm long piece of healthy leaf was placed in a 2 mL Eppendorf tube and frozen in liquid nitrogen. The sample was then crushed with a small pestle to a fine powder after which 600μ DNA extraction buffer (1% sarkosyl, 100 mM Tris- $\mathrm{HCl}, 100 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ EDTA, pH 8.5) was added and homogenised with the leaf powder to form a slurry. Extraction was performed by adding $600 \mu \mathrm{~L}$ of cold phenol solution (phenol:chloroform:iso-amylalcohol (25:24:1) equilibrated with 1 M Tris- $\mathrm{HCl}, \mathrm{pH}$ 8.0) and mixing on an orbital rotor for 10 min . The sample was centrifuged for 10 min at $20,160 \times \mathrm{g}$ and the supernatant transferred to a fresh tube to repeat the phenol extraction step. After the supernatant was collected, $60 \mu \mathrm{~L}$ of 3 M $\mathrm{NaAc}(\mathrm{pH} 4.8)$ and $600 \mu \mathrm{~L}$ isopropanol was added and mixed gently at room temperature to allow the DNA to precipitate. The DNA was then pelleted by centrifugation for 5 min at $20,160 \times \mathrm{g}$ and the supernatant discarded. After washing the pellet with $1 \mathrm{~mL} 70 \%$ ethanol, the DNA was air-dried and resuspended overnight at $4^{\circ} \mathrm{C}$ in $50 \mu \mathrm{~L}$ R40 ($40 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$ RNAse A in TE buffer).

2.2.9.2 Medium scale genomic DNA preparation

For medium scale genomic DNA preparation approximately 2 g of the harvested leaf material was crushed to a fine powder in liquid nitrogen using a mortar and pestle. When the powder had partially thawed, 4 mL of extraction buffer was added and mixed to form a slurry. The slurry was transferred to a 10 mL plastic tube together with 4 mL of cold phenol solution and mixed on an orbital rotor for 10 min .

After centrifugation for 10 min at $12,900 \mathrm{~g}$ the supernatant was dispensed into a silica matrix tube and re-extracted with 4 mL phenol/chloroform/iso-amylalcohol (25:24:1). The tubes were centrifuged again for 10 min at 2060 g and the extraction step repeated. After the third extraction the supernatant was dispensed into fresh 10 mL plastic tubes to which $400 \mu \mathrm{~L} 3 \mathrm{M} \mathrm{NaAc}(\mathrm{pH} 4.8)$ and 4 mL isopropanol were added. The tubes were mixed gently to precipitate the DNA and centrifuged for 10 min at $12,900 \mathrm{~g}$ to pellet the DNA. The supernatant was poured off and the pellet washed with $4 \mathrm{~mL} 70 \%$ ethanol, airdried and resuspended overnight at $4^{\circ} \mathrm{C}$ in $350 \mu \mathrm{~L}$ R40 (Guidet et al., 1991).

To calculate the concentration of the DNA, $10 \mu \mathrm{~L}$ of the sample was added to $990 \mu \mathrm{~L}$ TE buffer and vortexed before reading the absorption in a spectrophotometer at A^{260} (concentration $\mu \mathrm{g} \mu \mathrm{L}^{-1}=\mathrm{A}^{260} \times 100 \times 50 / 1000$).

2.2.10 DNA restriction, electrophoresis and Southern transfer

For RFLP analysis, $7.0 \mu \mathrm{~L}$ of genomic DNA preparation (approximately $3.0 \mu \mathrm{~g}$ DNA) was digested at $37^{\circ} \mathrm{C}$ for 3 to 5 hrs in $11 \mu \mathrm{~L}$ reactions containing 1.0 mg $\mathrm{mL}^{-1} \mathrm{BSA}, 1.3 \mathrm{mM}$ spermidine and 1 x concentration of the buffer supplied with the enzyme. Genomic DNA digests were electrophoresed on 1.3\% agarose gels (Section 2.2.7), until the bromophenol blue had run $3 / 4$ of the gel length. DNA transfer procedures used were essentially those supplied by Amersham with the Hybond $\mathrm{N}+$ membrane. Each gel was shaken gently in 300 mL denaturing solution ($1.5 \mathrm{M} \mathrm{NaCl}, 0.5 \mathrm{M} \mathrm{NaOH}$) for 30 min , rinsed briefly in water, and shaken gently in 300 mL neutralising solution (1.5 M NaCl . 0.5 M Tris- $\mathrm{HCl}, 1.0$ $\mathrm{mM} \mathrm{Na}_{2}$ EDTA, pH 7.2) for a further 30 min . DNA was transferred from the gels
to Hybond $N+$ membrane (Amersham) by Southern transfer (Southern, 1975) overnight, using $20 \times$ SSC ($3.0 \mathrm{M} \mathrm{NaCl}, 0.3 \mathrm{M}$ trisodium citrate, pH 7.0) as the transfer buffer. DNA was fixed to the membrane by placing the membrane DNA side up on a pad made from three sheets of Whatmann 3MM paper, soaked in 0.5 M NaOH . After 20 min , membranes were shaken in a solution of $2 \times$ SSC for at least 5 min .

2.2.11 Preparation of ${ }^{32} \mathrm{P}$-labelled DNA based probes

Radioactively labelled probes were synthesised by random priming (Feinberg \& Vogelstein, 1983). Purified cloned insert DNA (20 ng) was combined with $6.0 \mu \mathrm{~L}$ random sequence $9-\mathrm{mer}$ oligonucleotide $\left(0.1 \mathrm{mg} \mathrm{mL}{ }^{-1}\right)$, and the mixture incubated at $95^{\circ} \mathrm{C}$ for 3 min to denature the DNA. The mixture was cooled on ice for 5 min and combined with $10 \mu \mathrm{~L}$ probe labelling buffer (0.5 M HEPES, 0.125 M Tris- $\mathrm{HCl}, 12.5 \mathrm{mM}$ DTT, $\left.12.5 \mathrm{mM} \mathrm{MgCl} 2,1.0 \mathrm{mg} \mathrm{mL}^{-1} \mathrm{BSA}\right)^{1}, 2.5 \mu \mathrm{~L}$ dNTP mixture (0.2 mM dATP, 0.2 mM dTTP, 0.2 mM dGTP), 1.0 U Klenow fragment, $3.0 \mu \mathrm{~L}\left[\alpha-{ }^{32} \mathrm{P}\right] \mathrm{dCTP}(10 \mu \mathrm{Ci} / \mu \mathrm{l})$, and enough MilliQ $\mathrm{H}_{2} \mathrm{O}$ to make the total volume $25 \mu \mathrm{~L}$. This mix was incubated for 1 hr at $37^{\circ} \mathrm{C}$ and then passed through a Sephadex G-100 mini-column saturated with TE buffer to separate the labelled probe from the unincorporated $\left[\alpha-{ }^{32}\right.$ P]dCTP. A total volume of $200 \mu \mathrm{~L}$ salmon sperm DNA ($5 \mathrm{mg} \mathrm{mL}^{-1}$) was then added to the sample.

2.2.12 Hybridisation and autoradiography

The pre-hybridisation and hybridisation procedures used were based on protocols supplied with the Hybond $\mathrm{N}+$ membrane (Amersham). Each 10 mL of pre-hybridisation/hybridisation solution was made by combining 3.0 mL of 5 x HSB solution ($3.0 \mathrm{M} \mathrm{NaCl}, 0.1 \mathrm{M}$ PIPES, 25 mM Na 2 EDTA, pH 6.8), 2.0 mL of $50 \times$ Denhardt's solution (2.0% (w/v) BSA, 2.0\% (w/v) ficoll 400, 2.0\% (w/v) PVP), $3.0 \mathrm{~mL} 25 \%(\mathrm{w} / \mathrm{v})$ dextran sulphate, 2.0 mL MilliQ $\mathrm{H}_{2} \mathrm{O}$, and $200 \mu \mathrm{~L}$ of 10 $\mathrm{mg} \mathrm{mL}^{-1}$ salmon sperm DNA which had been denatured at $95^{\circ} \mathrm{C}$ for 10 min prior to its addition. Membranes were placed in hybridisation bottles containing 5.0 to

[^0]20 mL of pre-hybridisation/hybridisation solution (up to 10 membranes per bottle) and pre-hybridised for 3 to 5 hr at $65^{\circ} \mathrm{C}$. Following pre-hybridisation, the probe(s) was denatured by heating for 10 min at $95^{\circ} \mathrm{C}$, cooled on ice for 5 min , added to the hybridisation mixture, and hybridisation performed at $65^{\circ} \mathrm{C}$ for 12 to 20 hrs. Membranes were then washed (i) three times for 5 min in $2.0 \times$ SSC, 0.1% SDS at $65^{\circ} \mathrm{C}$, and then (ii) two times for 10 min in $0.2 \times \mathrm{SSC}, 0.1 \%$ SDS at $65^{\circ} \mathrm{C}$. Two final washes of 10 min in $1.0 \times \mathrm{SSC}, 0.1 \%$ SDS at $55^{\circ} \mathrm{C}$ were used instead of step (ii) when probes derived from non-wheat species were used. Autoradiography was performed for 5 to 25 days at $-80^{\circ} \mathrm{C}$ with Konica-HR X-ray film and an intensifying screen.

Following autoradiography, the probes were stripped from the membranes by placing the membranes in a container with between 0.5 -1.0 L of boiling 0.1% SDS solution. The container was left on a shaker at room temperature for at least 10 min before replacing the solution with fresh 0.1% SDS at room temperature. Membranes were stored in this solution at $4^{\circ} \mathrm{C}$ until reused.

2.2.13 Total plant RNA isolation

Total plant RNA was isolated using Trizol reageant (Gibco-BRL, Australia) from approximately 1 g of tissue according to manufacturers specifications. The isolated RNA pellet was washed in 70% ethanol and then sedimented, air-dried and dissolved in $1 \times$ TE buffer. Quality and concentration was determined using a spectrophotomer and gel electrophoresis.

2.2.14 Northern blot hybridisation

Gel preparation: 2.16 g of agarose was boiled in 156.6 mL of water and cooled to $60^{\circ} \mathrm{C}$. A volume of $5.4 \mathrm{~mL} 37 \%$ formaldehyde (BDH, Australia) and 18 mL of $10 \times$ MOPS buffer [0.23 M MOPS (3-N-Morpholino) propanesulfonic acid; Sigma, Australia) (pH7.0), 0.01 M EDTA and 0.05 M NaAC$]$ were then added before the gel was poured into a gel box $(14 \times 2 \mathrm{~cm})$. The running buffer was 1 x MOPS.

Sample preparation: $5 \mu \mathrm{~g}$ of RNA, $2.5 \mu \mathrm{~L}$ of $10 \times$ MOPS, $4.4 \mu \mathrm{~L}$ formaldehyde and $12.5 \mu \mathrm{~L}$ formamide (BHD, Australia) were incubated at $65^{\circ} \mathrm{C}$ for 15 min . A 5 $\mu \mathrm{L}$ volume of formamide loading buffer (FLB: 95\% formamide, 20 mM EDTA, 0.5% bromophenol blue, 0.05% xylene cyanol) was then added before loading. The gel was run at $6 \mathrm{~V} / \mathrm{cm}$ until the first bromophenol blue was approximately $3 / 4$ of the gel length.

Northern blotting and hybridisation: Before transfer, the gel was soaked in 10 x SSC for 15 min . The RNA transfer sandwich consisted of the following layers (from bottom to top): 4 sheets of Whatmann 3MM pre-soaked with $10 \times$ SSC, the gel (upside down), the nylon membrane (Hybond $\mathrm{N}+$, Amersham), 2 sheets of Whatmann 3MM pre-soaked with $10 \times$ SSC and dry paper towels. After overnight transfer, the sandwich was disassembled. RNA on the membrane was fixed by UV light (GS Genelinker, BIORAD) and photographed under short wavelength UV light. Pre-hybridisation was performed at $45^{\circ} \mathrm{C}$ for a minimum of 8 hrs in a bottle containing 20 mL of solution consisting of $3 \mathrm{~mL} 50 \times$ Denhardts reagent, $5 \mathrm{~mL} 20 \times \mathrm{SSC}, 1 \mathrm{~mL} 10 \% \mathrm{SDS}, 2 \mathrm{~mL}$ carrier DNA ($10 \mathrm{mg} \mathrm{mL}^{-1}$) and 9 mL of deionised formamide (BDH, Australia). The hybridisation was performed at $45^{\circ} \mathrm{C}$ in a bottle containing 20 mL of hybridisation solution consisting of 2 mL of $50 \times$ Denhardts reagent, 5 mL of $20 \times$ SSC, 1 mL of 10% SDS, 1 mL of carrier DNA ($10 \mathrm{mg} \mathrm{mL}^{-1}$) and 9 mL of deionised formamide (BDH, Australia) and 2 mL of dextran sulphate (25%). Membranes where then washed, subjected to autoradiography and stripped and stored as described for Southern analysis in Section 2.2.12.

2.2.15 Purification of DNA clone inserts

To excise insert DNA from DNA clones, $10 \mu \mathrm{~L}$ of plasmid mini-preparation was digested for 3 hr at $37^{\circ} \mathrm{C}$, in $20 \mu \mathrm{~L}$ reactions containing 20 U of the appropriate restriction enzyme, $1.0 \mathrm{mg} \mathrm{mL}^{-1} \mathrm{BSA}, 1.3 \mathrm{mM}$ spermidine and $1 \times$ concentration of the buffer supplied with the enzyme. Alternatively the cloned insert was amplified via PCR as outlined in Section 2.2.4.1.

Plasmid digests and PCR reactions were electrophoresed in large scale agarose gels (Section 2.2.7), the bands corresponding to the insert DNA excised, and the DNA purified from the gel slices using either Bresa-Clean kit (Bresatec, Australia) or Qiagen gel extraction kit, according to the manufacturer's instructions. Samples of the purified clone insert DNA preparations were electrophoresed on mini agarose gels (Section 2.2.7), alongside known quantities of DNA markers in order to verify the sizes of the inserts and to estimate concentration.

STRUCTURAL ANALYSIS OF THE WM1 GENE FAMILY

3.1 Introduction

A partial cDNA sequence from wheat meiocytes encoding a leucine rich repeat (LRR)-containing protein has previously been described (Ji \& Langridge, 1994). This cDNA was termed AWJL3 (Ji \& Langridge, 1994) and is now described as Wheat Meiosis 1.0 (WM1.0). The encoded protein has three 24 amino acid long leucine-rich repeats at the N -terminus and a leucine-zipper-like domain at the C terminus. The WM1.0 cDNA is interesting, as it represents a family of 21 genes of which certain members have meiosis specific expression (Ji, 1992). The genes identified by the WM1.0 cDNA clone have been named WM1.1 to WM1.21 (Wheat Meiosis genes 1.1 to 1.21). A few members of the family have been mapped to the chromosome groups three and five in bread wheat (T. aestivum L.). These chromosomes are known to contain several genes involved in the control of chromosome pairing in wheat. The strongest effects on pairing are shown by Ph1 on the long arm of chromosome 5B (5BL) and Ph2 on 3DS. Both genes are suppressors of chromosome pairing while Ph3, on 5BS, is a promoter of pairing (Sears, 1972). The WM1.0 cDNA clone previously identified three or four genes on the short arm of chromosome 3DS all of which were found to be missing in wheat lines with a deletion at the Ph2 locus (Ji, 1992). The deletion mutant of Ph2, ph2a, shows altered meiotic chromosome pairing in interspecific hybrids (Sears, 1982). On this basis it was proposed that one or more of these genes may represent the Ph2 locus (Ji \& Langridge, 1994).

This study looks specifically at those WM1 genes that seem to be localised on chromosome 3DS in the vicinity of the Ph2 locus. Two of these genes are termed WM1.1 and WM1.2. Earlier RT-PCR studies suggested that WM1.1 and WM1.2 have peak expression at leptotene and diplotene/diakinesis respectively (Ji, 1992). The chromosome localisation and expression patterns of putative 41
meiosis-specific genes suggest that they are important in the developmental process of meiosis. This chapter attempts to describe the structure and confirm expression of these WM1 family members.

3.2 Materials and methods

3.2.1 Genetic stocks

Seeds of euploid wheat (Triticum aestivum cv. Chinese Spring) and aneuploids were obtained from Dr Ken Shepherd, Waite Agricultural Research Institute. The ph2a and ph2b mutants were obtained from Prof. Moshe Feldman, Plant Genetics Institute, IsraeI.

Plants were grown in a glasshouse and leaves of young seedlings were harvested for DNA extraction. Plants used for anther collection were kept under controlled growth conditions with a 16 hr photoperiod at $18^{\circ} \mathrm{C} / 14^{\circ} \mathrm{C}$.

Wheat nullisomic-tetrasomic lines were obtained from Terry Miller (John Innes Centre, Norwich). Each nullisomic-tetrasomic line is deficient for one of the 21 wheat chromosomes, with the missing chromosome compensated by the addition of an extra copy of one of its homeologous chromosomes from a different genome. Four seeds of each line were grown in small pots in the glasshouse at $25{ }^{\circ} \mathrm{C}$ for several weeks before leaf material was collected for DNA extraction. The DNA extracted from these lines were used to assign the WM1 gene family members to specific chromosomes.

3.2.2 DNA sequence and partial genomic clones of WM1 genes

The DNA sequence and partial genomic clones for WM1 genes were provided for this study ($\mathrm{Ji}, 1992$). The genomic clones were isolated from two wheat genomic libraries using the cDNA clone AWJL3 now described as WM1.0 (Ji \& Langridge, 1994), with each library consisting of about 1×10^{6} pfu. Hybridising clones were subcloned and sequenced with clones being designated WM1.1 to WM1.21.

3.2.3 Amplification of WM1.1, WM1.2 and WM1.3 specific sequences

PCR primers were designed based on partial genomic sequence for WM1.1, WM1.2, WM1.3 and WM1.5 (Ji, 1992). A hypervariable region within the coding sequence for WM1.1, WM1.2, WM1.3 and WM1.5 was amplified from each of the respective genomic clones using primers as described in Table 1. These amplicons were termed a "linker" based on the deduced structural characteristics of the peptide sequence in this region. Additionally the whole putative coding sequence for WM1.1 was amplified from Chinese Spring DNA using primers of the WM1.1 ORF (Table 1).

3.2.4 Nullisomic tetrasomic determined chromosome localisation

The WM1 family was mapped using Southern membranes of Chinese spring and the full set of nullisomic tetrasomic wheat lines (refer to Section 3.2.1). The DNA on these membranes had been digested with Eco RV and Dra I and were screened with the WM1.1 ORF probe (refer to Section 3.2.3) according to the procedures outlined in Sections 2.2 .9 to 2.2.12. After chromosome localisation, selected nullisomic tetrasomic, ditelosomic and meiotic mutant wheat lines were analysed by Southern analysis, using the same restriction endonuclease digestions, for sub-chromosomal localisation. These membranes were firstly screened with the WM1.1 ORF probe and subsequently with the WM1.1 linker, WM1.2 linker, and WM1.3 linker probes (refer to Section 3.2.3).

3.2.5 Pulse field gel electrophoresis

Southern membranes of restriction endonuclease digested Chinese Spring DNA that had been separated by pulse field gel electrophoresis (PFGE) was kindly provided by Dr Ursula Langridge. All protocols used in DNA isolation, digestion and PFGE separation are outlined in Sections 3.2.5.1 to 3.2.5.3

Table 1: DNA sequences of primers designed to amplify hypervariable and coding sequences for members of the WM1 gene family.

Amplicon	Forward Primer $5^{\prime} \rightarrow 3^{\prime}$	Reverse Primer 5 ' $\rightarrow 3^{\prime}$
WM1.1 linker	AGAATTCAATACCTCGGCATCTGT	AGAATTCATATAAGTTGCTGCCCTTT
WM1.2 linker	AGAATTCAATACCTTGTCATCTGT	AGAATTCATATAAGATGTTGTCTTTT
WM1.3 linker	GAGCCACAGTGCACTTTCTGG	TGCCTCGATTATCAGACCTA
WM1.1 ORF	TCATTCAATAGGTTGCAGCAC	TGGGCCTGTAGCATACTCTAGTGT

${ }^{N B}$. Conditions for the polymerase chain reaction are outlined in section 2.2.4.1

3.2.5.1 Protoplasts

HMW DNA was isolated from protoplasts obtained from leaf material of 14-dayold Chinese Spring wheat seedlings (Cheung \& Gale, 1990). The leaves were removed and surface sterilised for 15 min in 10% Domestos, followed by 4 washes in sterile distilled water. Leaves were then transferred to a petri dish containing 4 mL of protoplast buffer ($10 \mathrm{mM} \mathrm{CaCl} \mathrm{C}_{2}, 1 \mu \mathrm{M} \mathrm{CuSO} 4,0.2 \mathrm{mM}$ $\mathrm{KH}_{2} \mathrm{PO}_{4}, 10 \mu \mathrm{M} \mathrm{KI}, 1 \mathrm{mM} \mathrm{KNO} 3,0.7 \mathrm{M}$ Mannitol, 2 mM MES, $1 \mathrm{mM} \mathrm{MgSO} 4, \mathrm{pH}$ 5.8 with KOH), and 2 mL of enzyme solution. The enzyme solution contained 0.8\% Cellulase Onokzuka R-10 (Yakult, Tokyo, Japan), 0.4\% Macerocyme Onokzuka R-10 (Yakult, Tokyo, Japan), and 0.04\% Pectoylase Y23 (Seishin, Tokyo, Japan) made to volume in protoplast buffer. Leaf tissue was sliced longitudinally into very fine pieces with a scalpel blade and placed in a vacuum for 20 min at 700 mbar . Petri dishes containing leaf material were then removed and incubated at normal pressure at $25^{\circ} \mathrm{C}$ in the dark for 4 hrs for cell wall digestion. Petri dishes were then transferred to an orbital shaker with gentle shaking (25 rpm) for protoplast release, which was monitored by microscopic observation. Tissue was then flushed with 4 mL of protoplast buffer for further protoplast release, before being sequentially filtered through $40 \mu \mathrm{~m}$ and $20 \mu \mathrm{~m}$ nylon sieves and then pelleted at $26 \times \mathrm{g}$ for 10 min . Protoplasts were then washed in protoplast buffer before being pelleted again at $26 \times \mathrm{g}$ for 10 min . Protoplasts were resuspended at a final concentration of 4.5×10^{6} protoplasts mL^{-1}, mixed with an equal volume of low melt agarose solution containing 2% agarose, 0.17 M EDTA, in protoplast buffer, at $45^{\circ} \mathrm{C}$. The molten mixture was aliquoted into plastic moulds (10 mm height $\times 5 \mathrm{~mm}$ width $\times 1.5 \mathrm{~mm}$ thickness) and allowed to solidify at $4^{\circ} \mathrm{C}$ for 30 min . The blocks were incubated for 48 hrs at $50^{\circ} \mathrm{C}$ in two changes of lysis buffer (0.5 M EDTA pH $8.0,10 \mathrm{mM}$ Tris pH 8.0 , 1% sarkosyl, $2 \mathrm{mg} \mathrm{mL}^{-1}$ proteinase K) followed by 4 washes of 0.5 M EDTA at $50^{\circ} \mathrm{C}$. The resulting DNA plugs were then stored at $4^{\circ} \mathrm{C}$ in 0.5 M EDTA.

3.2.5.2 Restriction enzyme digestion of HMW DNA

Before restriction enzyme digestion, agarose plugs containing HMW DNA were washed 6 times in 10-20 volumes of ice-cold TE (10 mM Tris-HCl, pH 8.0, 1 mM EDTA, pH 8.0). The first wash for 2 hrs, the second wash overnight, the following 4 washes each for duration of 15 min . The plugs were then ready for restriction enzyme digestion. The agarose plugs were incubated in $500 \mu \mathrm{~L}$ of restriction digestion buffer at $4^{\circ} \mathrm{C}$, in the presence of 8 mM spermidine and 2 mg mL^{-1} of BSA for 2 hrs. Restriction enzyme digestions were carried out in $500 \mu \mathrm{~L}$ of the same buffer with fresh reaction mix and 20 units of enzyme at temperatures recommended by the manufacturers, between 4 to 12 hrs . Restriction enzymes used for restriction of HMW DNA were Not I, Sma I, and Xho I. After digestion, the activity of the restriction endonuclease in each sample was stopped by incubation in 0.5 M EDTA. The agarose blocks were then ready for electrophoresis and were stored at $4^{\circ} \mathrm{C}$.

3.2.5.3 PFGE separation, transfer and hybridisation

The digested HMW DNA was loaded onto a $0.5 \times$ TBE 1% agarose gel and sealed in position using the same agarose as the gel. Pulsed-field gel electrophoresis was performed using a CHEF DRII (Bio-Rad, USA) run at $14^{\circ} \mathrm{C}$ and 200 volts. Pulse and run times used to separate HMW DNA are presented in Table 2. The DNA was stained with ethidium bromide, photographed, and nicked using 60 mJoules of UV light in the GS gene linker (Bio-Rad, USA). The DNA was blotted onto Hybond-N+ membrane (Amersham, USA) in 0.4 M NaOH instead of $20 \times$ SSC as described in 2.2.10. ${ }^{32} \mathrm{P}$ labelled probe preparation and hybridisation conditions were as described in Sections 2.2.11 and 2.2.12 respectively. Kodak double emulsion BIOMAX MS film and a BIOMAX MS intensifying screen were used for PFGE autoradiography. Filters were exposed from $24-144$ hrs at $-80^{\circ} \mathrm{C}$.

Table 2: Electrophoretic parameters used to resolve restricted HMW DNA

Switch Time	Run Time		Gel	

3.2.6 BAC library screening

3.2.6.1 Screening of a barley and wheat bacterial artificial chromosome (BAC) library

Filters of a 6.5 fold haploid genome equivalent barley BAC library constructed from barley (Hordeum vulgare) cultivar Morex were imported from the Clemson University Genomics Institute (USA). Tim Sutton performed initial screening of BAC filters as described in Sections 3.2.6.1.1 \rightarrow 3.2.6.1.5.

A 3.7 fold haploid genome equivalent wheat BAC library, from the diploid Dgenome progenitor of wheat (Triticum tauschii) was kindly screened by Dr E. Lagudah (CSIRO Plant Industry, Canberra) (Moullet et al., 1999).

3.2.6.1.1 Purification of DNA probe template

Wheat and barley BAC clones were isolated by hybridisation with a 3-Kb WM1.1 ORF probe generated by the amplification of a genomic clone from wheat (T. aestivum cv. Chinese Spring) with primers WM1.1 ORF (refer to Table 1). No vector sequence was present in the probe since this could result in crosshybridisation with vector sequence of the BAC vector.

3.2.6.1.2 BAC filter preparation

Barley BAC filters were pre-hybridised in 30 mL of hybridisation buffer (160 mL of 1 M sodium phosphate pH 7.2 buffer, 112 mL of 20% SDS, 0.6 mL of 0.5 M EDTA, $330 \mu \mathrm{~L}$ of $10 \mathrm{mg} \mathrm{mL}^{-1}$ denatured salmon sperm and $27 \mathrm{~mL} \mathrm{MQH}_{2} \mathrm{O}$) at $65^{\circ} \mathrm{C}$ overnight. The pre-hybridisation solution was then discarded and fresh hybridisation solution containing denatured probe was added and incubated for 24 hrs at $65^{\circ} \mathrm{C}$. Filters were then washed in the bottle twice with $2 \times$ SSC, 0.1% SDS at RT. Radioactive counts were measured to check signal strength before subsequent washing down to $0.5 \times \mathrm{SSC}$ at $50^{\circ} \mathrm{C}$. Subsequent washes were undertaken until membrane signal strength was no greater than counts 15 counts/second but not less than 10 counts/second. After washing, filters were wrapped in plastic film and exposed to Konica-HR X-ray film with an intensifying
screen at $-80^{\circ} \mathrm{C}$ for a minimum of 10 days to ensure that background was sufficiently strong enough to help correctly address positive BAC signals. This overexposure was used to help with the orientation and identification of autoradiographs of barley BAC membranes. Barley BAC addresses (positions on the filter) were identified according to instructions at the Clemson University Genomics Institute homepage (http://www.genome.clemson.edu).

Wheat BACs identified, in the primary library screen, to hybridise strongly to WM1.1 ORF were isolated by Dr E. Lagudah (CSIRO, Plant Industry, Canberra).

3.2.6.1.3 Growth of BAC clones

Clones received as stab cultures from CSIRO Plant Industry (Canberra) and Clemson University Genomics Institute were immediately grown in a liquid LB broth as described in Section 2.2.2. The antibiotic chloramphenicol was added to bacterial growth media at $25 \mu \mathrm{~g} \mathrm{~mL}$. . Single colonies were picked and glycerol cultures made for each clone.

3.2.6.1.4 Mini-preparation of BAC plasmid DNA

A single colony was picked and grown in 1.5 mL of L-broth with $25 \mu \mathrm{~g} \mathrm{~mL}$ chloramphenicol in a 10 mL cap tube overnight at $37^{\circ} \mathrm{C}$ on a rotating wheel. The culture was then poured into an eppendorf tube and the cells pelleted by centrifugation for 3 min at $14,000 \mathrm{rpm}$. The supernatant was discarded and the cell pellet resuspended in $90 \mu \mathrm{~L}$ of TES (25 mM Tris-HCl (pH 8.0), 10 mM EDTA, $15 \% \mathrm{w} / \mathrm{s}$ sucrose) buffer by vortexing. Lysis solution ($180 \mu \mathrm{~L})(0.2 \mathrm{M}$ $\mathrm{NaOH}, 1 \%$ SDS) was added and gently mixed by inversion without vortexing. One volume of $135 \mu \mathrm{~L} 3 \mathrm{M} \mathrm{NaOAc}, \mathrm{pH} 4.6$ was added and gently mixed by inversion. The bacterial chromosome DNA was then pelleted by centrifugation at $14,000 \mathrm{rpm}$ for 15 min . The supernatant was removed to a fresh tube. A 2 $\mu \mathrm{L}$ volume of $10 \mathrm{mg} \mathrm{mL}^{-1}$ RNase A was added at $37^{\circ} \mathrm{C}$ for 1 hr . TE-saturated phenol ($400 \mu \mathrm{~L}$) and chloroform ($400 \mu \mathrm{~L}$) were added to samples, and then gently mixed by inversion. Samples were centrifuged at $14,000 \mathrm{rpm}$ for 5 min and the supernatant extracted. BAC DNA was then precipitated using 2-3 volumes of $-20^{\circ} \mathrm{C}$ absolute ethanol for 10 min at RT. DNA was then pelleted at
$14,000 \mathrm{rpm}$ for 15 min before being washed with $500 \mu \mathrm{~L} 70 \%$ ethanol. DNA was resuspended in 20-50 $\mu \mathrm{L}$ of TE (10 mM Tris-HCl, 1.0 mM EDTA) buffer. DNA was stored at $4^{\circ} \mathrm{C}$ prior to subsequent analysis.

3.2.6.1.5 Confirmation of BAC clones

To confirm positive identification of barley and wheat BACs imported from Clemson University and CSIRO Plant Industry, Tim Sutton performed dot blot analysis on all BAC clones received. Samples of purified BAC DNA ($10 \mu \mathrm{~L}$) were incubated at $94^{\circ} \mathrm{C}$ for 5 min before being put on ice. Samples ($5 \mu \mathrm{~L}$) were then spotted on Hybond N^{+}membrane and left to air dry for 10 min . DNA was then cross-linked to the nylon membrane using 125 mJoules of UV light using a BIORAD GS gene linker. Membranes were washed three times in $2 \times$ SSC before being ready for hybridisation. General ${ }^{32} \mathrm{P}$ labelled probe preparation, hybridisation, and autoradiography were as described in Sections 2.2.12 and 2.2.11.

Hybridising wheat and barley BAC clones were verified with the same $3-\mathrm{Kb}$ WM1.1 ORF probe used for the initial library screen (Section 3.2.6.1.1).

Individual members of the WM1 gene family were identified by hybridisation with PCR amplified probes from linker regions of WM1.1, WM1.2 and WM1.3 (Table 1).

3.2.6.1.6 Southern fingerprint analysis of BAC clones

Purified BAC DNA ($10 \mu \mathrm{~g}$) was digested with Hind III to release the BAC vector and digest wheat and barley DNA inserts so BAC clones could be compared using Southern analysis for common restriction fragment bands of the same molecular weight that may infer an overlap between two or more different BAC clones. Dra I and Eco RV restriction endonuclease digests were also performed in order to determine overlapping BAC clones. Southern transfers were performed on gels as described in 2.2.10. Membranes were then hybridised with radiolabelled BAC vector DNA (Section 3.2.6.1.7). PCR amplified WM1.1 ORF, WM1.1 linker, WM1.2 linker and WM1.3 linker (refer to Section 3.2.3 and

Table 1) were also radiolabelled and used as probes in Southern analysis to identify the whole WM1 gene family and it's individual members.

3.2.6.1.7 Preparation of ${ }^{32} P$-labelled total BAC DNA probes

Total BAC vector DNA $(200 \mathrm{ng})$ nicked with 60 mJoules of UV was radiolabelled with ${ }^{32} \mathrm{P}$ (Feinberg \& Vogelstein, 1983) according to Section 2.2.11.

3.2.6.1.8 Pulsed field gel electrophoresis

Wheat and barley BAC clones containing WM1 genes were sized using PFGE as described in 3.2.5. Purified BAC ($15 \mu \mathrm{~g}$) was first digested with Not I to release the insert and linearise the DNA so it could be sized. All pulse field gels were run for 22 hrs at 200 volts with a linear ramp of 5-20 sec.

3.2.7 BAC fingerprinting

BAC DNA of clones was isolated by using alkaline lysis procedure (Sambrook et al., 1989). BAC fingerprinting was performed according to procedures developed by DuPont (Morgante, pers. commun.) and is outlined below.

BAC DNA (500 ng) for clones TtBAC3, TtBAC6, TtBAC11 was used as template for a type II restriction endonuclease digest according to Table 3. These individual type II restriction endonuclease (Table 4) digests were each performed in combination with a Taq I restriction endonuclease digest. The addition of Taq FS polymerase using big dye terminators ddATP, ddTTP and ddGTP and unlabelled ddCTP allowed the specific fluorescent labelling of the ambiguous restriction sites generated by the type II restriction enzymes. The materials for the restriction digests and dye incorporation are outlined in Table 3 and Table 4. Unincorporated dyes were removed from the fingerprinting reaction through Centrisep clean-up spin columns (pre-warmed before use). The sample was rehydrated with loading dye ($2.5 \mu \mathrm{l}$) and Rox500 size standard (0.5 $\mu \mathrm{l}$) and subsequently electrophoretically separated on either an ABI 377 or 3700 (PE Applied Biosystems).

3.2.8 BAC contig assembly

WM1.1 ORF probed Southerns of Hind III, Dra I, and Eco RV digested barley and wheat BACs were analysed manually for common bands inferring overlap. This was compared to the Not / digested, PFGE data of the wheat BACs.

This data allowed an approximate physical size to be assigned to component fragments and overall BAC insert size.

The fingerprinting data from each of TtBAC3, TtBAC6 and TtBAC11 generated from the ABI 377 or 3700 (PE Applied Biosystems) was analysed for commonality in banding patterns. The analysis performed on the computing software at DuPont (Morgante, pers. commun.) resulted in a probable contig assignment of the three wheat BAC clones. The contig generated manually through Southern analysis was confirmed by the BAC fingerprint analysis.

3.2.9 BAC DNA sequencing

Overlapping clones consisting of TtBAC3, TtBAC6 and TtBAC11 were chosen for complete sequencing (refer to Figure 14). Each of these BAC clones was sequenced using a shotgun approach (Qiagen, 1998). BAC subcloning and removal of subcloned vector were performed by Luke Gumaelius (DuPont, USA) with details outlined in 3.2.9.1 and 3.2.9.2

3.2.9.1 BAC subcloning

BAC DNA was purified according to manufacturers specifications for the Qiagen Large-Construct Kit and was sheared by nebulisation (Qiagen, 1998). End repair was performed by using Pfu DNA polymerase (Stratagene, La Jolla, CA) treatment according to the manufacturer's directions. DNA fragments were then size fractionated by gel electrophoresis and cloned into the Sma I site of pUC18 (Amershan Pharmacia Biotech, Piscataway, NJ). Three separate subcloned libraries were constructed for each individual BAC clone.

Table 3: BAC fingerprinting reaction components and conditions

Reactant	Volume
BAC DNA template (500 ng)	$18 \mu \mathrm{~L}$
ddATP (big dye terminator)	$0.5 \mu \mathrm{~L}$
ddTTP (big dye terminator)	$0.5 \mu \mathrm{~L}$
ddGTP (big dye terminator)	$0.5 \mu \mathrm{~L}$
ddCTP	$0.5 \mu \mathrm{~L}$
Taq FS (8U/ LL)	$0.67 \mu \mathrm{~L}$
Type II restriction enzyme (eg. Ear1 - 8U/ $\mu \mathrm{L}$)	$1.0 \mu \mathrm{~L}$
Taq / restriction enzyme	$0.5 \mu \mathrm{~L}$
10xBuffer	$2.5 \mu \mathrm{~L}$
ddH2O	$0.33 \mu \mathrm{~L}$
Final volume	$25.0 \mu \mathrm{~L}$
Incubation at optimal temperature for Type II restriction enzyme (refer to Table 4) for 1 hr. For an additional 1	
hr the reaction is heated to $72^{\circ} \mathrm{C}$ for the Taq I restriction and for Taq FS polymerase activity.	

Table 4: Type II restriction enzymes and corresponding incubation temperatures used for BAC fingerprinting

Enzyme	Recognition Site	Optimal Incubation Temperature
Bsp MI	$\begin{aligned} & 5^{\prime} \ldots . . A C C T G C(N)_{4} \nabla \ldots 3^{\prime} \\ & 3^{\prime} \ldots \text { TGGACG }(N)_{8} \nabla \ldots 5^{\prime} \end{aligned}$	$37^{\circ} \mathrm{C}$
Bbs I	$5^{\prime} \ldots .$. GAAGAC $(\mathrm{N})_{2} \nabla \ldots 3^{\prime}$	$37^{\circ} \mathrm{C}$
	$3^{\prime} \ldots . . \mathrm{CTTCTG}(\mathrm{N})_{6} \nabla \ldots . .5{ }^{\prime}$	
Bsal	$5^{\prime} \ldots . . \mathrm{GGTCTC}(\mathrm{N})_{1} \nabla \ldots .3^{\prime}$	$50^{\circ} \mathrm{C}$
	3'...CCAGAG(N) 5 $^{\text {V }}$. . 5^{\prime}	
Bsb MI	5'...CGTCTC(N) 1 ®...3'	$55^{\circ} \mathrm{C}$
	3'...GCAGAG(N) ${ }^{\text {D }}$... 5^{\prime}	
Eco NI	5'...CCTNNDNNNAGG...3'	$37^{\circ} \mathrm{C}$
	3'...GGANNNVNNTCC...5'	
Bsm FI	$5^{\prime} \ldots .$. GGGAC(N) ${ }_{10}$ V...3'	$65^{\circ} \mathrm{C}$
	$3^{\prime} . . . C C C T G(N)_{14} \nabla \ldots . .5{ }^{\prime}$	
Fnu4 HI	5'...GCDNGC...3'	$37^{\circ} \mathrm{C}$
	3'...CGNVCG...5'	
Ear I	$5^{\prime} \ldots \text { CTCTTC }(N)_{1} \nabla \ldots 3^{\prime}$	$37^{\circ} \mathrm{C}$

Two 1-2 Kb and one $5-6 \mathrm{~Kb}$ subclone library was constructed for each BAC clone through transformation into electrocompetent cells of E. coli DH10B (Life Technologies, Rockville, MD). For each BAC clone 786 random recombinant clones were picked from $1-2 \mathrm{~Kb}$ subclone library and 384 from the $5-6 \mathrm{~Kb}$ subclone library using a Q-bot (http://www.genetix.co.uk/qbot.html).

3.2.9.2 Removal of subcloned BAC vector

Binary BAC vector $p C L D 0454$ subclones were eliminated from DNA sequencing through vector hybridisation to clones arrayed on Hybond $\mathrm{N}+$ membranes (Amersham, UK). Duplicates of each of the 3456 bacterial clones were arrayed on Hybond $\mathrm{N}+$ membranes utilising a 384 prong high density-replicating tool (http://www.genetix.co.uk/qbot.html). Bacterial colonies were grown on membranes at $37^{\circ} \mathrm{C}$ until the colonies were 1 to 2 mm in diameter. Membranes were then removed and placed colony side up on a single pad of absorbent Whatmann filter paper soaked firstly in $0.5 \mathrm{~N} \mathrm{NaOH}, 1.5 \mathrm{M} \mathrm{NaCl}$ for 4 min. Secondly the membrane was placed on soaked Whatmann filter paper containing $1.5 \mathrm{M} \mathrm{NaCl}, 1.0 \mathrm{M}$ Tris-base, pH 7.4 for 4 min . Finally the membrane was immersed with shaking at $55^{\circ} \mathrm{C}$ for 1 hr in 1% sarkosyl, $100 \mathrm{mM} \mathrm{NaCl}, 50$ mM Tris- HCl (pH 7.4), 50 mM EDTA and $250 \mu \mathrm{~g} \mathrm{~mL}^{-1}$ proteinase K. Membranes were then UV crosslinked and dried at RT. pCLD0454 vector was digoxigeninlabeled (Boehringer Mannheim, Germany) and mixed with unlabelled pUC18 then hybridised to the Hybond $\mathrm{N}+$ membranes according to manufacturers specifications. Autoradiography was performed for $10-15 \mathrm{~min}$ as per Section 2.2.12.

The autoradiographs were manually analysed for strong hybridisation signals of the p CLD0454 vector to individual colonies. Those clones that showed a strong signal were highlighted and subsequently removed from sequencing by the rearraying of the 384-well microtitre plates with only those clones showing no or weak hybridisation (http://www.genetix.co.uk/qbot.html).

3.2.9.3 DNA sequencing

DNA templates for sequencing were prepared using a 96-well alkaline lysis miniprep kit (Advanced Genetic Technologies Corp, Gaithersberg, MD). Sequencing reactions were performed by using the ABI Prism Dye Terminator Cycle Sequencing Ready Reaction kit with FS AmpliTaq DNA Polymerase (PE Applied Biosystems, Foster City, CA) and analysed on both ABI 377 sequencing gels and by capillary electrophoresis on an ABI 3700 (PE Applied Biosystems).

3.2.9.4 DNA sequence assembly

The sequence data was assembled into contigs by PHRED/PHRAP, CROSSMATCH software in combination with CONSED (Gordon et al., 1998). Utilising CROSSMATCH software, vector sequence of the subcloning ($p U C 18$) and BAC vector (cosmid binary vector pCLD0454) was removed from the alignment. Sequence alignment was cross-checked via CONSED for misalignment of repetitive sequences (Wolters, pers. commun.).

3.2.9.5 Sequence analysis

3.2.9.5.1 BLAST on non-redundant and EST databases

Homology searches against public (ITEC) and private (DuPont Ag Biotechnology) databases were used to identify candidate genes in the region. The final sequences of the region were divided into $3-\mathrm{Kb}$ overlapping fragments and searched for nucleic or protein homologies by using the BLAST 2.0 blastn program (Altschul et al., 1997).

3.2.9.5.2 Gene prediction

The assembled BAC sequence data was analysed using RiceGAAS software (http://rgp.dna.affrc.go.jp/) for identification of possible coding sequences. RiceGAAS software bases gene prediction on Arabidopsis thaliana and Zea mays GENSCAN (Burge \& Karlin, 1997; Burset \& Guigo, 1996), and Rice HMM (Sakata et al., 1999) incorporating results from BLAST 2.0 blastn and blastp (Altschul et al., 1997) searches against the rice EST database (Rice Genome Project, Japan) and the non-redundant database (NCBI, USA). Rice GAAS
predicted genes were annotated through the use of Vector NTI Suite Version 6.0 software (Bethesda, MD, USA).

3.2.9.5.2.1 Signal prediction

TATA-box and poly-adenylation signals were predicted with HcTATA and HcPOLYA respectively (Milanesi et al., 1999; Milanesi et al., 1996). The TATAbox prediction was performed on the consensus sequence generated from an AlignX (Vector NTI Suite Version 6.0 software) alignment of 1 Kb of sequence 5' to the predicted translation start site for each of the predicted WM1 genes Likewise the poly-adenylation signal prediction was performed on the consensus sequence generated from the AlignX alignment of 500 bp of sequence 3 ' to the predicted translation stop site for each of the predicted WM1 genes.

3.2.9.5.2.2Promoter prediction

One kilobase 5' from the precited tanslation start site for each of the predicted WM1 genes was analysed for promoter-like sequences. Promoters were predicted using the Neural Network Promoter Prediction program (http://www.fruitfly.org/seq tools/promoter.html).

3.2.9.5.2.3cis-acting regulatory element binding site prediction

One kilobase of sequence 5' to the predicted translation start site for each of the predicted WM1 genes, was aligned using AlignX program in Vector NTI. The consensus sequence was analysed for plant cis-acting regulatory elements using the PLACE program (Higo et al., 1999; Prestridge, 1991). Transcription factor binding sites were predicted by the TfSitescan program (http://www.ifti.org/cgi-bin/ifti/Tfsitescan.pl). Both cis-acting regulatory elements and transcription factor binding sites were annotated through the use of Vector NTI.
3.2.9.5.3 Identification of repetitive elements and sequence charactersistics

For all 270 Kb of genomic sequence, structural (CpG islands) and repetitive elements such as retrotransposons, and microsatellites were determined by both REPEATMASKER (http://ftp.genome.washington.edu/.html) and GrailEXP
(Hyatt et al., 2000a; Hyatt et al., 2000b). GrailEXP- and REPEATMASKERidentified repeat sequences were annotated through the use of Vector NTI.

3.2.9.5.4 Matrix attachment region prediction

Matrix attachment regions (MARs) or scaffold attachment regions (SARs) were predicted by the program MAR-FINDER (http://www.futuresoft.org/). MARs were annotated in Vector NTI.

3.2.10 Structural analysis of the WM1 predicted peptides

All predicted structural features of the WM1 primary peptides were annotated on the sequence in Vector NTI. Peptide alignments and phylogenetic analysis were performed by the use of AlignX within Vector NTI and Megalign program (DNASTAR, 1997).

3.2.10.1 Transmembrane domains

For each of the predicted WM1 primary peptides the TMpred program (Hofmann \& Stoffel, 1993) was used to make predictions of membrane-spanning regions and their orientation for each of the predicted WM1 primary peptides.

3.2.10.2 Leucine zipper and leucine rich repeats

Every predicted WM1 primary peptide was screened against both the PROSITE peptide motif database (Hofmann et al., 1999) and INTERPRO V3.2 (Apweiler et al., 2001) to identify peptide structural motifs. Leucine zipper motifs from each of the predicted WM1 primary peptides were compared using AlignX program in Vector NTI. The leucine zipper consensus of the alignment was then analysed using HelicalWheel (GCG program, Accelrys Inc.).

3.2.10.3 Signal peptides

SignalP V2.0 (Nielsen et al., 1997) was used to predict and distinguish between signal peptides and non-signal peptides as well as the recognition of cleavage sites and the prediction of their cleavability of all predicted WM1 primary peptides. Signal peptides and their cleavage were also confirmed with PSORT (Nakai \& Kanehisa, 1992; von Heijne, 1986).

3.2.10.4 Predicted subcellular localisation

Every predicted WM1 primary peptide sequence was analysed with the PSORT program (Nakai \& Kanehisa, 1992). PSORT was used to predict protein localisation sites in cells. Specific motifs including the tyrosine YXX ϕ endosomal/lysosomal sorting signal sequences, were determined by manual analysis of the sequence (Letourneur \& Klausner, 1992; Marks et al., 1996).

3.2.11 Genes homologous to WM1 genes

Each predicted WM1 primary peptide sequence was screened using the BLAST 2.0 blastp program (Altschul et al., 1997) across the non-redundant Genbank database. Peptide sequences were aligned in AlignX, and annotated within the Vector NTI.

3.2.12 Northerns of WM1 genes

Genomic DNA amplified WM1.1 ORF (Table 1) was purified and probed onto a Northern blot containing total RNA isolated from various wheat tissue as per Sections 2.2.13 and 2.2.14. The same WM1.1 ORF PCR fragment was used to probe a Northern blot of $10 \mu \mathrm{~g}$ of polyA isolated mRNA from a young wheat spike with meiocytes at metaphase I. The mRNA was isolated from wheat meiotic spike total RNA using the Message Maker kit (Gibco-BRL) according to manufacturers specifications.

3.2.13 RT-PCR of WM1 genes

First strand cDNA was synthesized from $5 \mu \mathrm{~g}$ of total RNA extracted from; root tissue, young leaf tissue (3 weeks old), and spikes at early meiosis (Chinese Spring, ph2a and ph2b). Thermoscript reverse transcriptase (Gibco-BRL, Australia) and WM1FamRT, WM1ZFRT, TOLP, WtMSHLo1 as the initiation primers (Table 5) were used for first strand cDNA synthesis. The composition of each reaction was as follows 20 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.4), 50 \mathrm{mM} \mathrm{KCl}, 2.5 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 10 \mathrm{mM}$ DTT, 30 ng for each reverse transcrition primer (Table 5), 500 $\mu \mathrm{M}$ of each dNTP and 200 units Superscript II reverse transcriptase. Reverse transcription was carried out at $45^{\circ} \mathrm{C}$ for 1 hr and terminated by heating to $75^{\circ} \mathrm{C}$ for 15 min. RNA was degraded by the addition of 2 units of RNase H and

RNase T1 (Gibco-BRL) and incubation at $37^{\circ} \mathrm{C}$ for 10 min . cDNA was recovered by ethanol precipitation and the concentration determined by spectrometric measurement. Approximately $0.1 \mu \mathrm{~g}$ cDNA was used per PCR reaction.

3.2.13.1 Gene specific primers

Specific WM1 gene family RT-PCR primers were designed from TtBAC DNA sequence using Vector NTI. Primers were targeted to the non-conserved regions (refer to Figure 16) of the predicted coding sequences for each member of the WM1 gene family. Table 5 describes RT-PCR primer sequences for the WM1 genes and for three control sets; Thioredoxin H, MSH7 (positive controls) and Glutenin promoter (genomic contamination control). The specific PCR was performed with the primer pairs as outlined in Table 5 using a Programmable Thermal Controller (MRJ, USA).

Amplifications were performed under the following conditions: $1 \mathrm{~min} 94^{\circ} \mathrm{C}, 1 \mathrm{~min}$ annealing temperature ${ }^{2}, 1 \mathrm{~min} 72^{\circ} \mathrm{C}$ for 36 cycles and final extension of 10 min at $72^{\circ} \mathrm{C}$.

RT-PCR products were electrophoretically separated on 2% agarose gel and blotted onto Hybond-N+ (Amersham). Southern hybridisation was performed using WM1.1 ORF PCR fragment as a probe (refer to Sections 2.2.10 to 2.2.12).

3.3 Results

3.3.1 Nullisomic tetrasomic determined chromosome localisation

Southern analysis of WM1.1 ORF probe on CS and nulli-tetra lines (Section 3.2.4) shows a high level of cross-hybridisation between different members of the WM1 gene family given that probe hybridisation was at $65^{\circ} \mathrm{C}$ and the washing stringency was $0.2 \times$ SSC. Both the Eco RV and Dra I Southerns (Figure 6) suggest that there are 14 members in this gene family. Eleven of these 14 potential genes were located to chromosome 3D.

[^1]Table 6: RiceGAAS software identified coding sequences from 270 Kb of Triticum tauschii genomic sequence.

Predicted Proteins	Number of encoding genes			
WM1 family proteins	7			
Putative ripening-related proteins from grapevine	3			
Bowman-Birk type trypsin inhibitor proteins	4			
Transposable element component proteins with homology to hypothetical proteins from Arabidopsis thaliana, Oryza sativa, Triticum aestivum.	17			
Predicted proteins				
Total				25

Figure 6: Chromosomal assignment of the WM1 gene family. Southern hybridisation of WM1.1 ORF to wheat genomic DNA restriction endonuclease digested with A-Eco RV and B- Dra I. All lines prefixed with NT are nullisomictetrasomics (ie N1A-T1D, nullisomic chromosome 1A, tetrasomic 1D) whilst CS represents Chinese Spring euploid wheat.

A

Dral

B
3D

Figure 6 also showed that a further 3 potential genes were scattered across the genome with one being located on chromosome 3A, one on chromosome 1B and the last on chromosome 5B.

Given that the majority of the gene family was located on chromosome 3D, Southern analysis on chromosome 3 selected nullisomic tetrasomic, ditelosomic and meiotic mutants was performed using the WM1.1 ORF probe. Results (Figure 8 - A and Figure 8 - B) confirmed that 11 of the 14 potential genes in the WM1 gene family were located on chromosome 3D. Furthermore ditelosomic lines allow localisation to the short arm of chromosome 3D and with the meiotic mutants also showing that all 11 potential WM1 genes on chromosome 3DS were located within the region defined by the ph2a deletion mutant. However no restriction fragment length polymorphisms were observable between the Chinese Spring and the ph2b mutant. Southern analysis of specific members of the WM1 gene family for which genomic sequence was available (Ji, 1992), showed that WM1.1, WM1.2 and WM1.3 were all located within the region defined by the ph2a deletion mutant (Figure 8).

3.3.2 Pulse field gel electrophoresis

In order to determine if the 11 potential WM1 genes were clustered within the region defined by the deletion in the ph2a meiotic mutant, restriction analysis on high molecular weight (HMW) DNA was performed.

Restriction endonucleases (Sma I, Not I and Xho I) known to cut at low frequency were used to yield large fragments of DNA (between 40 and 600 Kb). Southern analysis of Chinese Spring HMW DNA restricted with Sma I, Not I and Xho I and probed with WM1.1 linker, WM1.2 linker and WM1.3 linker probes (refer to Section 3.2.3) showed that WM1.1 and WM1.3 members of the WM1 gene family were not co-localised on restriction fragments greater than 100 Kb (Figure 9). Because of the reduced resolution in size of bands less than 100 Kb (Xho / digest) co-localisation of WM1.1, WM1.2 and WM1.3 genes could not be deciphered (Figure 9).

Figure 7: Sub-chromosomal arm assignment and localisation of WM1 gene family members within the region deleted in the ph2a mutant. Southern hybridisation of WM1.1 ORF to wheat genomic DNA restriction endonuclease digested with A- Eco RV, B- Dra I and C- Eco RI, Bam HI, Hind III, Dra I and Eco RV. All lines prefixed with NT are nullisomic-tetrasomics (ie N1A-T1D, nullisomic chromosome 1A, tetrasomic 1D), DT are ditelosomic (ie DT3AS, ditelosomic short arm of chromosome 3), whilst CS represents Chinese Spring euploid wheat and ph2a and ph2b are the deletion and point mutant lines for the Ph2 locus in euploid wheat.

A Ecorv

B Dral

C

$\begin{aligned} & \overline{\text { r}} \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & \bar{\Sigma} \\ & \underset{\sim}{E} \\ & \underset{\sim}{n} \end{aligned}$		$\overline{0}$	$\begin{aligned} & \text { 주 } \\ & \text { O} \\ & \text { B } \end{aligned}$
듬	$\tilde{\sim}$	$\frac{N}{\square}$	\mathfrak{y}	\mathfrak{N}

Figure 8: Sub-chromosomal arm assignment of WM1 gene family members WM1.1, WM1.2 and WM1.3. Southern hybridisation of WM1.1 linker, WM1.2 linker and WM1.3 linker to wheat genomic DNA restriction endonuclease digested with A-Eco RV and B-Dra I. All lines prefixed with NT are nullisomictetrasomics (ie N1A-T1D, nullisomic chromosome 1A, tetrasomic 1D), DT are ditelosomic (ie DT3AS, ditelosomic short arm of chromosome 3A), whilst CS represents Chinese Spring euploid wheat and $p h 2 a$ and $p h 2 b$ are the deletion and point mutant lines for the Ph2 locus in euploid wheat.

Figure 9: Physical linkage between WM1 gene family members WM1.1, WM1.2 and WM1.3. Southern hybridisation of WM1.1 linker, WM1.2 linker and WM1.3 linker to wheat high molecular weight (HMW) genomic DNA restriction endonuclease digested with Sma I, Not I and Xho I. All genomic DNA is derived from Chinese Spring euploid wheat. Each hybridising band size is estimated based on long-range λ concatemer DNA ladder (Marker - New England Biolabs).

3.3.3 BAC library screening

Fourteen individual barley BAC clones were isolated from the preliminary H. vulgare library screen whilst 20 individual wheat BAC clones were isolated from the preliminary T. tauschii library screen.

The barley clones have been described as Hordeum vulgare BAC clone numbers 1 to $14(H v B A C 1 \rightarrow 14)$

The wheat clones have been described as Triticum tauschii BAC clone numbers 1 to 20 (TtBAC1 $\rightarrow 20$).

3.3.3.1 Southern fingerprint analysis of BAC clones

Hind III, Dra I, and Eco RV restriction endonuclease digests and subsequent Southern analysis was performed in order to determine overlapping barley and wheat BAC clones. Both barley and wheat membranes that were hybridised with radiolabelled total BAC DNA (barley - Figure 10 - A, wheat - Figure 10 - B) showed numerous common bands suggesting overlap between barley clones and overlap between wheat clones.

Further Southern analysis of the wheat BAC clones with WM1.1 ORF (Figure 11), WM1.1 linker (Figure 11), WM1.2 linker (Figure 11) and WM1.3 linker (Figure 11) (refer to Section 3.2 .3 and Table 1) probes showed the WM1 gene family cluster in wheat. It is anticipated that there is approximately 11 genes located within the region. Only an estimate can be made as it is unknown whether or not multiple Hind III, Dra I or Eco RV restriction sites within the coding sequences for individual WM1 genes are causing duplication of bands. Such an analysis in barley could not be performed due to the sequence specificity for wheat for each of the linker probes from WM1.1, WM1.2 and WM1.3 (data not shown). However, probing barley BAC clones that had been digested with Hind III, with WM1.1 ORF suggests that a similar gene cluster is present in barley (Figure 12).

Figure 10: Determination of overlapping barley and wheat BAC clones through commonality in banding patterns. Commonality in banding patterns as determined by Southern hybridisation of total BAC DNA to restriction endonuclease digested barley (A - Hind III) and wheat (B - Eco RV) BAC DNA. For both Panels A and B each separate lane corresponds to an independent BAC clone labelled either HvBAC\# (Hordeum vulgare BAC clone number \#) or TtBAC\# (Triticum tauschii BAC clone number \#). Lanes labelled marker contain Bst EII/Sal I restriction endonuclease digested λ DNA.

Hind III

A

Eco RV

Figure 11: Co-localisation of WM1 gene family members on overlapping wheat BAC clones. Physical co-localisation of WM1 genes as determined by Southern hybridisation of WM1.1 linker, WM1.2 linker and WM1.3 linker to restriction endonuclease digested wheat (A - EcoRV, B - Dra I and C - Hind III) $B A C$ DNA. For panels A, B and C each separate lane corresponds to an independent BAC clone labelled TtBAC\# (Triticum tauschii BAC clone number \#). Lanes labelled Marker contain Bst Ell/Sal / restriction endonuclease digested λ DNA.

WM1.1 linker

WM1. 2 linker

\& WM1.1

C

-

登以

Figure 12: Co-localisation of homologues to the WM1 gene family members on overlapping barley BAC clones. Physical co-localisation of barley homologues to the WM1 gene family as determined by Southern analysis using A- total BAC DNA and B-WM1.1 ORFprobes on Hind III restriction endonuclease digested barley BAC DNA. For Panels A and B each separate lane corresponds to an independent BAC clone labelled HvBAC\# (Hordeum vulgare BAC clone number \#). Lanes labelled Marker 1 and Marker 2 contain Hind III and Bst Ell/Sal I restriction endonuclease digested λ DNA respectively.

A

Hind III

B

Hind III

$14.1 \mathrm{~kb} \rightarrow$	
	-eッemeeo-0
$3.7 \mathrm{~kb} \rightarrow$	-
	--- -- --
$1.9 \mathrm{~kb} \rightarrow$	

Southern analysis on barley BACs suggests that there are 4 or 5 genes comprising the WM1 gene cluster in barley as opposed to the anticipated 11 genes in T. tauschii. Observations on commonality in Southern banding patterns for each of the wheat BAC and each of the barley BAC clones suggests that the insert DNA sequence was derived from two different regions of the genome in wheat whilst in barley it was from one region.

3.3.3.2 Pulsed field gel electrophoresis

Figure 13 illustrates the PFGE separated BAC DNA that has been probed with WM1.1 ORF and illustrates that the insert sizes for the BAC clones range from 36 Kb to 92 Kb . Given that Not I cuts DNA in GC rich sequences, the multiple banding patterns in Figure 13 show the region harbouring the cluster of WM1 genes is likely to contain GC rich DNA sequences.

3.3.4 BAC fingerprinting

The fingerprinting data from each of TtBAC3, TtBAC6 and TtBAC11 generated from the ABI 377 or 3700 was analysed using the computing software at DuPont (Morgante, pers. commun.). The raw fingerprinting data for each of the eight type II restriction endonuclease digests (Table 4) was firstly converted into the three classes based on the type of ddNTP big dye terminator incorporated into the ambiguous type II restriction endonuclease site. Each restriction fragment for each BAC clone was then assigned a size (bp) based on the Rox500 size standard. Band sizes and ddNTP classes were analysed for each BAC clone and commonality in banding patterns was deciphered (data not shown).

3.3.5 BAC contig assembly

WM1.1 ORF probed Southerns of Hind III, Dra I, and Eco RV digested barley and wheat BACs were analysed manually for commonality in banding patterns inferring overlap. The results were compared to the Not I digested, PFGE data of the wheat BACs. This allowed an approximation of physical size to be assigned to component fragments and overall BAC insert size.

Figure 13: Pulsed field gel electrophesis (PFGE) separated wheat BAC DNA of nine overlapping clones known to encode WM1.1, WM1.2 and WM1.3. Each of the nine overlapping BAC clones is restriction endonuclease digested with Not I to release insert DNA and size separated by PFGE (Panel A). Panel B shows Southern hybridisation of WM1.1 ORF to the size seperated BAC DNA for each of the nine BAC clones. Lanes labelled marker contain low range λ concatomer DNA ladder (New England Biolabs).

Not I

Not 1
B

$\begin{aligned} & \overline{0} \\ & \stackrel{y}{0} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \mathbb{U} \\ & \text { X } \\ & \text { M } \end{aligned}$	3 S §		$\begin{aligned} & \hat{U} \\ & \text { M } \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbb{N} \\ & \mathbb{N} \\ & \end{aligned}$	$\begin{aligned} & \text { O} \\ & \underset{1}{4} \\ & \text { M } \end{aligned}$						-

Based on commonality in banding patterns between BAC clones for individual fingerprints (Section 3.3.4) a probable contig assignment of the three wheat BAC clones is illustrated (Figure 14). The contig generated manually through Southern analysis was confirmed by the BAC fingerprint analysis.

3.3.6 BAC sequence analysis

Sequence data generated from BAC subclones minus the BAC vector subclones (refer to Sections 3.2 .9 .1 to 3.2.9.3) for each of TtBAC3, TtBAC6 and TtBAC11 were compiled through the use of the bioinformatic software available at DuPont. Computer programs PHRED/PHRAP, CROSSMATCH and CONSED generated 46 independent stretches of DNA from 272617 bp of DNA sequence. Orientations of the DNA stretches were determined by comparison of the DNA sequence to Southern analysis data (3.3.3.1 and 3.3.3.2) and a database of barley and wheat transposable and repetitive elements (Wicker et al., 2001). Gaps in the sequence were predominantly caused by $(G)_{n}$ repeats (n $=\sim 20 \mathrm{bp}$). Other gaps were caused by misalignment of DNA sequences encoding the long terminal repeats (LTR) of transposable elements. Figure 15 displays the predicted gene content within a 226 Kb subfragment from the 270 Kb of DNA sequence derived from TtBAC3, TtBAC6, and TtBAC11.

Of the total 56 coding sequences predicted from the 270 Kb of sequence, 17 were component genes of transposable elements. This demonstrates a gene density of one gene every 19 Kb excluding transposable element coding sequences and predicted proteins with no homology to Genbank.

Figure 14: Physical alignment of insert DNA of three overlapping wheat BAC clones (TtBAC3, TtBAC6 and TtBAC11) based on Southern hybridisation, pulsed field gel electrophoresis and fingerprinting data. Physical location of WM1.1, WM1.2 and WM1.3 to individual Not I restriction fragments within the BAC contig is illustrated.

Figure 15: Predicted gene content and structure of a 226 Kb DNA subfragment within 270 Kb of DNA sequence derived from Triticum taushii BAC clones TtBAC3, TtBAC6, TtBAC11.

Panel A - Diagramatic representation of the transposable and unclassified repetitive element distribution as determined by homology to a characterised transposable element database (Wicker, pers. commun.).

Panel B - Diagramatic representation of the RiceGAAS
(http://rgp.dna.affrc.go.jp/) predicted genes, minus those genes with homology to transposable elements and predicted matrix attachment regions. Gaps in the DNA sequence are labelled as GAP.

Panel C - Diagramatic representation of the microsatellite distribution as determined by both REPEATMASKER (http://ftp.genome.washington.edu/) and GrailEXP (Hyatt et al., 2000a; Hyatt et al., 2000b).

A
Triticum Tauschii BAC clone DNA sequence

C

Autonomous trransposons

sequences

\pm

Microsatellite-like sequence

Stowaway-like MITE

Table 6 lists the predicted gene content from the three BAC clones.

3.3.6.1 WM1 genes

Seven WM1 genes (WM1.1-1.3, WM1.7 and WM1.10-12) were predicted in the 270 Kb of T. tauschii DNA (Figure 16). Four (WM1.1, WM1.2, WM1.7 and WM1.10) of the seven WM1 genes have a single open reading frame suggesting that they do not contain introns.

The three remaining WM1 genes (WM1.3, WM1.11, and WM1.12) have multiple stop codons within what seemed to be an original single open reading frame.

3.3.6.1.1 Prediction of transcription regulatory elements

The promoters of class II genes, such as the WM1 genes, can be subdivided into the basal promoter located at the transcriptional start site and the upstream promoter elements, comprising of consititutive and regulatory motifs. Alignment of approximately 1 Kb of 5 ' DNA sequence to the predicted coding regions of the WM1 genes and analysis of the resulting consensus sequence highlights the common location of the predicted basal promoter (Figure 17 - A and B). Within the basal promoter there is a TATA-box, which is expected to be at a position 25 from the transcription start site (Figure 17 - A). Neural Network Promoter Prediction of this region including a CDF1-RS binding signature (Figure 17-A and B), found to bind to basal promoters of chloroplastic genes (Lam et al., 1988) helps support the hypothesis that this region is responsible for RNA polymerase II binding. Figure 17 - B shows that this basal-like promoter region also posesses a binding signature for plant specific Dof transcription factors (Yanagisawa, 1997; Yanagisawa, 1998; Yanagisawa, 2000; Yanagisawa \& Schmidt, 1999; Yanagisawa \& Sheen, 1998). It is anticipated that CDF1-RS proteins represent basal transcription initiation factors and will form a part of the pre-initation complex at the basal promoter. This is a likely requirement for RNA polymerase binding and subsequent activity.

Table 6: RiceGAAS software identified coding sequences from 270 Kb of Triticum tauschii genomic sequence.

Predicted Proteins	Number of encoding genes
WM1 family proteins	7
Putative ripening-related proteins from grapevine	3
Bowman-Birk type trypsin inhibitor proteins	4
Transposable element component proteins with homology to hypothetical proteins from Arabidopsis thaliana, Oryza sativa, Triticum aestivum.	17
Predicted proteins	
	Total

Figure 16: Diagram of the predicted nucleotide coding sequence for seven members of the WM1 gene family. For each predicted coding sequence (orange arrows), green arrows outline open reading frame maps and blue arrows designate the relative position of RT-PCR primers used to distinguish the different members of the gene family.

WM1. 10

Homology N-terminus of Yr10 protein (likely leucine zipper) 62% amino acid identity (Laroche et al., 2000)

WM1.11

WM1. 12

Figure 17: Promoter and terminator analysis of the predicted WM1 gene family.
A - Prettybox alignment of DNA sequence 5 ' to the predicted coding regions for each of WM1.1, WM1.2, WM1.7, WM1.10-12. Highlighted by a red line is the predicted basal promoter; a blue line, the predicted TATA-box; in green letters is the predicted binding site for the CDF1-RS cis-regulatory element and red letters, the predicted transcription start site.
$B-1$. Diagram of the predicted cis-acting regulatory element binding sites on WM1 gene family promoter consensus sequence. The consensus sequence produced by an AlignX alignment of 1 Kb of DNA sequence 5 ' to the predicted coding regions for each of WM1.1, WM1.2, WM1.7, WM1.10-12.
C - Prettybox alignment of 500 bp of DNA sequence 3 ' to the predicted coding regions for each of WM1.1-3, WM1.7, WM1.10-12. Predicted A and T rich polyadenylation signals are highlighted by red lines.

WM1. 1	AGTCGAGTGG	CtGGTGACTC	CTAACATAGT	CTGGCCACAA	ATtTGTC	TGAACCA	815
WM1. 11	AGTtGAGTAG	C CGC		CAA	AGTTGAT	. tGAATGG	832
WM1. 12	AGTCAAGTGG	CTGGTGACTC	CCATCACACT	CTGGCCACAA	ATTTGTA	. TGAACCA	871
WM1. 2	AGTC.AGTGG	CCGC		CAG	AGTTGAT	TGAATGG	848
WM1. 7	AAATAGCTTG	C T G A	A AAAAAAT	TACTGGTTAA	AGATCTG	gGaAtca	288
WM1. 10							0
WM1. 1	AA.CT. . T	GATTCAGTTC	CCtGAAGGAC	GGCTACTTTG	ACCGTAGACT	CCATGAGTCT	870
WM1.11	GATCT. C	CAtGGAGCAC	A. . GAAGGAC	GAAGACTTTG	ACCGCAGACt	CCGTCGGTCT	88
WM1. 12	G A		Actitg	ACCGTAGACT	CCGTGAGTCT	898
WM1. 2	GATCT..C.	CATGGAGCAC	C. CAAGGAC	GACAACTTTG	ACCGTAGACT	CCATCGGTCA	902
WM1. 7	TACCA..AAG	GACTCAGTTC	CGTGAAGGAC	GGGTACTTGG	ACCGtaga. GTCT	33
WM1. 10					Acceraga	. . TCT	
WM1. 1	囫gGtatattc	TGGCCAAACA	TCTCCGGTAG	T A...TGGCT	CTGGTAC. GT		926
WM1. 11	\%GTTTTG...	tggccacaca	TCCCTGGCAG	CA...tAGCT	CTGCCACAG		940
WM1. 12	AGGAAT. . TC	tGgCCAAACA	TCTCTGCTAG	TA...IGECT	CTGGTAC. G		95
WM1. 2	A		. CCATGGCAG	CA. . TAECT	CTGgCACAAT	AGCTARATA	93
WM1. 7	AGGTAT. . TC	tGgCCAAACA	TCTCTGGTAG	TA...tGGCT	CTTCTAC.AT	AC. Thatain	391
WM1. 10	AGTTTTG.	TGGCCCACAT	CCCTGGGCAG	CA...TAGCT	CTGCCACAGT	AGC Andia	57

WM1. 1	т ATAAAACT	GGGCCTGTAG	CATACTCTAG	TGTGCATECT	TTGCTMCCCC	AGCTAGACAG	986
WM1.11	TAA.....CC	GAGCCTGTAA	Catactct	. $\mathrm{CGT}^{\text {c }}$	TTGATTCCCC	AGCTAGACAG	986
WM1. 12	A A T	A AAACtGg	GCT	CTGGTTCC.C	AGCTAGACGG	986
WM1. 2	TAC.....cc	GAGCCTGTAA	CATACTCT ${ }^{\text {C CT }}$	T TGCTTCCCC	AGCTAGACAG	985
WM1. 7	T ATAAAACT	GGGCCTGTAG	CATACTCTAG	TGIGTATGCA	TTGCTTCCTC	A cctacacga	451
WM1. 10	TㄹA. C C	GAGCCTGTAA	CATACTCT	G C T	THGAgTeccc	AGCTAGACAG	103

WM1． 1	TAACCAA．TT	TCTCTGAAGG	AGGtagtett	TGTECTGCAA	CCtategant	GAAAGGTCTG	59
WM1． 2	TAAGCAA．tit	ATTCTGAAGG	ATGCAGT © TA	IATGCTGCAA	CCCACTGAAT	GAGAGCTC	57
WM1． 3	TAEGCAA．t．t	ATTCTGAAGG	AGGCAGTGTA	TGTGETGCAA	CCCACTGAA	CAGA GCTCTG	59
WM1． 7	TAACCAA．TT	TCTCTGAAGG	AgGCAGTGTT	TGTGCTGCAA	CCTATTGAAT	GAGAGCTCTG	59
WM1． 10	TAAGCAACTI	TTICTGAAGG	AGGTAGTGTT	TGTGCTGCAA	CCTATTGAAT	GAGAGGTCTT	60
WM1． 11	TAATCAA．tM	GTTCTGAAGG	AGACAGTAAA	TGTGCTGCAA	CCCACTGAAT	GAGA＠CTCTG	59
WM1． 12	TAACCAA．TH	TCICTGAAGG	AGGTGGAGTT	TGTECTGCAA	Cctatugat	GAGAGCTCTG	59
WM1． 1	GAATATTAAC	$C A G G G T E T$ GG	A AGATCTCCA	（A．．．．目G	ATGTGTTATA	C G T G T ．．T	110
WM1． 2	．C	CAGGGTETGG	AAGATCTTCA	GC．．．．AGC	ATATGTTATA	TCGTETGCCT	10
WM1． 3	GACTATTAAC	CAGGGTCTMG	TAGATCTTCA	¢C．．．．AGC	ATTTGTTATA	TTGTCTGCCA	11
WM1． 7	GAATATTAAC	CAEGGTETGG	AAGATATTCA	¢C．．．．AGGC	ATATGTTAT	TCGTGTGCCT	11
WM1． 10	gat ${ }^{\text {a }}$ AT TAAC	CAGGGTGTGC	AAGATCTCCA	GC．．．．A AC	ACATGTTAT	TCGTECGCCT	11
wM1． 11	GATtATTA．A	CAGGGTGAGG	AAGACCTTCA	$\mathrm{c}^{\text {C．．．A A C }}$	ATATGTTAT	TCGTETGCCT	11
WM1． 12	GAATATTAAC	CAG．TGTGC	AAGATCTCCA	caccagatag	ATATGTTATA	TTGTETGCCT	117
wM1．1	TGTACCT．C	－tatctana	taAA．ARTGA	ACATGTGTAG	CTCTTCTGAT	ACATTTAT GA	165
WM1． 2	TGITGGTAC	．．Cctetara	TAAA．GATGA	AGACGTCTAG	TTCTTTTEAC	ACATTTATEA	15
WM1． 3	TGITTGTA	．．cctctana	TAAA．GATGA	AGATGTCTAG	CTCTTCAGAT	A CATTTTAT GA	16
WM1． 7	TGITTGTA	．．ccterara	IAAA．AATGA	AGATGTCTAG	CTCTTCTCAT	A CATTT ©	16
WM1． 10	TGTTTGTAC	．．cctectana	t A A ．GATGA	AGATGTCTAG	CTICTTCTGAT	ACACTTATEA	170
WM1． 11	且Attegtac．	$\cdots \mathrm{TCTCTAAA}$	TAA．GATGA	AGATGTCTA G	CTCTTCTGAT	ACATTTATEA	168
WM1． 12	mGITTGCACC	TCTATCTAAA	TAAAAAETGA	AGATGCCTAT	CTCTTCTGAT	ACATTHATGA	
WM1． 1	CCTCACTATG	GTCGAECTAT	TGTCGTAAAT	GTAAGA．AT T	CAGTATTGTT		216
WM1． 2	CTTTACTACT	GCTGAACTAT	IGTGGTAAAT	GTAAGA．CIT	CAATATTAT	TCGCTATTCT	21
WM1． 3	ATtTACTATT	GTCGAACTAT	IGTGGTAAAT	¢TAAGA．CTT	－AATATTATT	TCGTAATTCT	227
WM1． 7		－tcasactas	TGTGGTAAAC	G TAAGG．CTT	CAGTATTATT	TAGTTATTCC	214
WM1． 10	С TTTACTATT	GTCAAACTAT	f GTTGTAAAT	GTAAGA．CTT	CAGTATTGTT	IAGTTATTCA	229
WM1．11	СТTTATTATT	ATCAAACTAT	IGTCGTAAAT	GTAAGA．CTT	CAGTATTTTT	tagt TATTCG	227
WM1． 12	CTGCACTACT	GTCAAATTAT	TGTGGTA A AT	GTAAGATCTT	CAGAAGCATA	TG．．．．T T	231
WM1． 1	TAATCTTGTA	A 困 TCTA．CT	ATTCTTCTGG	ACteratata	tGAGGGTGG	TCTTTCC	271
WM1． 2	gatagatgca	A © A C T T TACT	GTTETTGTGG	GTTGTAATCA	TCATCAGGG	TCTTTCT	274
WM1． 3	gacacaicta	A © A T T TAC	A T T T TCTGG	GATGTACTCC	CTCCGTTCCT	AAATATTTGT	287
WM1． 7	gatacat gta	A GACTTCACT	ATTCTTCTGG	ACtGTAATCA	TGAGGGT	CTTCCC	267
WM1． 10	gatacatgta	G © A © T T TACT	ATTCTTCTGG	GTtGTAATAA	TCATGAGGG	TCTTCCC	285
WM1． 11	TATACAIGTA	A A A T T A A C T	ATTCTTCTAG	ACtGTAATCA	TGAGGGT	－CTTTCC	280
WM1． 12	ATA．tTgTG	TGCCTTGTCM	G－ACCCCCTA	AA．tAAAGA	tGAAGATG	．TCTAGCT	282

The prediction of the basal promoter is supported by the identification by BLAST 2.0 blastn program (Altschul et al., 1997), of an Expressed Sequence Tag (EST) from a bread wheat endosperm, 8-12 days post anthesis, cDNA library. This EST encodes the very 5 ' end of the coding sequence for WM1.11, which initiates 7 base pairs 3 ' to the TATA-box (Figure 17 - A and B).

The 5' consensus sequence for the predicted WM1 genes does not clearly identify any unique regulatory element-binding sites upstream from the predicted basal promoter. Instead many regulatory element-binding sites were predicted (Figure 17 - B). Localisation of these regulatory element-binding sites suggests that the predicted WM1 genes are likely to possess a collection of upstream promoter elements.

3.3.6.1.2 Prediction of poly-adenylation signals

Most RNA polymerase II transcripts are processed by 3' cleavage and polyadenylation, however the intrinsic termination of transcription is unclear. It is expected that polyadenylation signals play a crucial part in transcription termination. The 3' consensus sequence for the predicted WM1 genes clearly possesses two poly-adenylation signals (Figure 17- C).

3.3.6.2 WM1 predicted primary peptide structure

RiceGAAS predicted primary peptides for the WM1 genes show high levels of sequence homology (Table 7). Primary polypeptide comparisons show that the WM1 proteins have between 70.5% and 85.9% similarity, with sequence divergence between 13.8% and 31.6%. The predicted phylogenetic relationships between WM1 predicted proteins illustrates that WM1.3 is the most distantly related of the WM1 gene family (Figure 18). Based on the number of amino acid substitution events distinguishing members of the WM1 gene family it seems as though WM1.1, WM1.10 and WM1. 12 are the most closely related. WM1.1, WM1.10 and WM1.12 can be distinguished based upon between 8 and 9 amino acid substitution events across a total of 660 amino acids (Figure 18).

Figure 18: Relationship between the predicted primary polypeptide sequences for seven members of the WM1 gene family.
A - Prettybox alignment of the predicted primary polypeptide sequences for seven members of the WM1 gene family.
B - A rooted phylogenetic tree depicting the relationship between the predicted primary polypeptide sequences for seven members of the WM1 gene family. Phylogentic tree describes the number of substitution events at each branch point that allow discrimination between related members of the WM1 gene family (DNAstar Inc., 1997).

wml 12	TKGQCLTY具K	T LeYFVSIDI	SCNSLTGKIP	TDITSLAALM	NINLSSNQLS	G Q I P N M I G A V	505
wnl． 11	TKGQQITYHK	TLEYFVSIDL	SCNSLTGKIP	TDITSLAALM	NLNLSSNQLS	GQ I PNMIGAV	505
wnl． 10	TKGQQLIYHG	TLAYFVSIDL	SCNSITGEIP	TDITSLAALM	NLNLSSNQLS	GQ I PSMIGAM	905
wni． 1	TKGQQLIYHR	TLAYFVSIDL	SCNSLTGKIP	TDITSLAALN	NLNLSSNQIS	GQ I PNM G GAM	877
wm1． 7	TKGQQLTYHR	TLAYFVSIDL	SCNSLTGEIP	TDITSLAALM	NLNLSSNQLS	GOIPSMIGAM	947
wml 2	TKGQHLIYHM	IL A Y F VGID L	SXNSLTGEIP	TDITSIDALV	NLNISSNQLS		905
wm1． 3	TKGQKLI YGS	TIEXYVNIDI	SSNSLTGEIP	TDITSLVALI	NLNLSSNQLS	GQIPNMIGTV	242
Consensus	TKGQQLIYH	TLAYFVSID	SCNSLTGEIP	TDIMSLAAL國	NLNLSSMOLS	GOIPNMIGA圆	960
wnl． 12	QSIVSLDIS	NKISGEIPSS	LSS LT S L S I	NIS Y N S L S GI	IFSGPQLDIL	N L D N Q S IIY I	565
wm1． 11	Q S LVSLDLSQ	NKISGEIPSS	LSSLTSLSYL	NLSYNSLSGI．	IFSGEQLDIL	NLDNQSIIYI	565
wnl． 10	QSIVSLDLSQ	NKISGEIPSS	LSNLTSLSYM	NLSCNSLSGR．	IPSGPQLDIL	NLDNQSIIYI	965
wnh． 1	QSIESLDLSQ	NKIYGEIPSS	LTNLTSLSYL	DIS SYNSLSER	IPSGPQLDTL	NMDNQTLMYI	937
wmi． 7	QSIVSLDISQ	NKISGEIPSS	LSNLTSLSYM	NLSCNSLSGR	IPSGRCLDTL	NMDNPSIMYI	1007
wn1． 2	QSIESLDISQ	NKIYGEIPSS	LTNLTSLSYL	DISYNSLSGE	IPSGPQLDTL	SAENQSLMYI	965
wnt． 3	QSLVSLDLEO	NKLYGEIPLS	LSSLTSLSYL	NLSYNSLSGM	IESGPQLDIL	NLDNOSLMY	302
Consensus	QSLVSLDLS迤	NKISGEIPSS	S L S Y L	NLSYNSISGR	IPSMPMOLDIL		1020
wn1． 12	SNSGLCGPPV	HKNCSGNDPF	I H G D L ESSKE	EFDPLTFHFG	LVILGFVVGLN	MVFCALIFRK	625
wm1． 11	SNSGLCGPPV	HKNCSGNDPE	IHGDLESSKE	EFDPLTFGFG	LVLGFVVGLW	MVFCALIFXK	625
wml． 10	GNTGLCGDEV	HKNCSGNDPY	IHSDLESSKE	EFDELTFYFG	LVLGFVVGL ${ }^{\text {d }}$	MVFCALIFKK	1025
wm1． 1	GNNGICGPFV	HKNCSGNDAY	IHEDLESSKE	EFDPLT F YFG	LVL GFVVGL ${ }^{\text {V }}$	MVFCALIEKK	997
wm1． 7	GNNGICGPEV	HKNCSENDPF	IHGDIRSSNQ	EVDPLTFYFG	LVLGFVVGLW	MVFCALIFKK	1067
wml． 2	GNSGICGPEV	HKNCSGNEPS	I HDDLKSSKK	EFDPLNFYFG	LVLGEVVGLW	M V FCXILIEKR	1025
wn1． 3	GNSGLCGEEV	HKNCPGNDSS	IHEDLKSSNE	EFDPLTFYFG	L V LEEVVGLK	MVFCALLFKK	362
Consensus	GNSGICGPEV	HKNCSGNDEF	IHGDLESSKE	EFDPITEYEG	IVLGEVVGI國	M V F CALLFKK	1080
wm1． 12	TWRIAYERIF	DKVYDHVYVF	VVVKWAGEAK	K T D E E 660			
wm1． 11	TWRIAYFRIF	DKVYDHVYVF	VVVK＊AGFA	KTDEE660			
wmı． 10	TWRIAYFRFF	DKVYDQVYVF	VVVK NASFAK	NTPAE1060			
wn1． 1	TWRIAYFRIF	DKVYDQVYVF	V V V K A A S A K	K T DEE 1032			
wm1． 7	TWRIAYFRIF	DKVYDQVYVF	V V V Kifa S FAK	K T D E Ell02			
wm1． 2	TNRIAYERIF	D醄VYDQVYVF	VVVR的XSFTK	N T D A E1060			
wm1． 3	IWRIAYFRLF	DKVYDQVYVF	AAVKNASFAK	NTDAE 397			
Consensus	TWRIAYFELF	DKVYDQVYVF	VVVKNASEAK	KTDE 1115			

B

1	T	1	I	
20	15	10	5	0
Distance Between Sequences				

Table 7: Polypeptide sequence similarity and divergence between the predicted primary peptides of seven members of the WM1 gene family.

	Percent Similarity							
8 0 		$\underset{\sum}{\stackrel{N}{\Sigma}}$	\sum_{3}^{M}	$\stackrel{\stackrel{N}{\Sigma}}{\sum}$	$\underset{\underset{3}{\stackrel{~}{ }} \underset{3}{\circ}}{ }$	$\underset{j}{\stackrel{\rightharpoonup}{ }}$	$\stackrel{N}{\underset{S}{\dot{S}}}$	
		78.7	74.6	78.8	81.9	81.0	85.9	WM1.1
	22.1		71.0	73.7	75.6	78.1	75.8	WM1.2
	28.5	31.5		72.3	73.6	70.5	73.8	WM1.3
	23.5	27.9	30.1		77.5	80.6	81.4	WM1.7
	18.5	24.6	29.6	24.9		80.6	84.4	WM1.10
	19.5	20.7	31.6	19.5	20.8		75.6	WM1.11
	13.8	25.7	30.4	20.6	15.9	21.3		WM1.12

WM1.7 and WM1.11 predicted primary peptides are also highly similar as they can only be distinguished based on 10 substitution events across 516 amino acids (Figure 18). Table 8 outlines predicted peptide properties for each of the predicted WM1 primary peptides whilst Figure 19 displays the structural features and similarity between peptides.

3.3.6.2.1 Transmembrane domains

The TMpred program (Hofmann \& Stoffel, 1993) was used to make predictions of membrane-spanning regions and their orientation. The algorithm is based on the statistical analysis of TMbase, a database of naturally occuring transmembrane proteins. Figure 19 illustrates the prediction of transmembranes within the predicted WM1 primary peptides. All predicted peptides of the WM1 gene cluster seem to encode a highly conserved Cterminal putative transmembrane domain.

3.3.6.2.2 Leucine zippers

Several predicted WM1 proteins (WM1.1, 1.2, and WM1.10-WM1.12) have 100% identity with a zipper-like domain (Figure 20) as predicted by searches against the PROSITE database (Hofmann et al., 1999). WM1.1, WM1.2, WM1.10 and WM1.12 each have a leucine zipper within the tandemly arrayed LRRs specifically at a position between 414-436 amino acids from the Cterminus. On the other hand WM1.11 has a leucine zipper at the C -terminus of the predicted peptide within the predicted C -terminal transmembrane domain.

Table 8: Properties of predicted WM1 primary peptides.

| WM1 predicted
 primary peptide | Length
 (aa) | Molecular
 Weight (kDa) | | Isoelectric
 Point |
| :--- | :--- | :--- | :--- | :--- | Charge at pH 7

Figure 19: Diagram of the structural relationship between the predicted primary polypeptide sequences for seven members of the WM1 gene family. Whole predicted polypeptide sequences are represented for WM1.1, WM1.2, WM1.3, WM1.7, WM1.10, WM1.11 and WM1.12. For each predicted polypeptide sequence the legend identifies structural motifs and regions of high homology.

Leucine Zipper
Leucine Rich Repeats
Signal Peptide
0 Transmembrane Domain
Regions of High Amino Acid Conservation

A Negative Charge Cluster

- Positive Charge Cluster
∇ Endocytosis Signal

Figure 20: Structure of leucine rich repeat and leucine zipper-like motifs from within the predicted primary polypeptide sequences for members of the WM1 gene family.
A - Leucine zipper consensus generated from the alignment of leucine zipperlike motifs from WM1.1, WM1.2, WM1.10 and WM1.12, also comparing the Cterminal leucine zipper-like motif from WM1.11.
B - WM1 gene family leucine rich repeat consensus generated from the alignment of leucine rich repeat consensus sequences of predicted primary polypeptides WM1.1, WM1.2, WM1.3, WM1.7, WM1.10, WM1.11 and WM1.12.

A

B

WM1.1 consensus

3.3.6.2.3 Leucine rich repeats

All predicted WM1 proteins have varying lengths in stretches of tandemly arrayed leucine rich repeat signatures (LRRs) as predicted by INTERPRO (Apweiler et al., 2001) and BLOCKS database (Henikoff et al., 2000; Henikoff et al., 1999) searches (Figure 19). Figure 19 displays that the number of LRRs varies between 9 and 30 for the predicted peptides of the WM1 gene family cluster. Conservation of LRRs between the different members of the gene family is primarily within the N - and C-terminal blocks of LRRs (refer to Figure 21). The C-terminus of all the predicted WM1 primary peptides share 68.2% identity and 100\% similarity (Figure 21-A), whilst the N-terminus shares 60\% identity and 99% similarity (the truncated WM1.3 was excluded from the alignment) (Figure 21-B). This shows that there is high conservation in sequence similarity between the predicted WM1 primary peptides and most variation relates to the length of the tandem array of LRRs. However, variation is observed in the amino acid composition between individual LRRs within each of the predicted WM1 primary peptides. Typically LRRs within a predicted peptide share between 31.7% and 58.3% similarity and share between 0% and 12.5% identity. Similarity and identity between LRRs within a predicted peptide seems to decrease with the increasing length of the LRR tandem arrays. Similarity in the amino acid divergence is comparible with the Cf-2 and Cf-9 primary peptides (Dixon et al., 1996; Jones et al., 1994). A barley homologue of Cf-2 and Cf-9 shows similar patterns of LRR divergence within the primary peptide (data not shown).

Figure 21: Highly conserved N-terminal and C-terminal blocks of tandemly arrayed leucine rich repeats.
A - Alignment of the N-terminal region of predicted polypetides WM1.1, WM1.1, WM1.7, WM1.10, WM1.11 and WM1.12.
B - Alignment of the C-terminal region of predicted polypetides WM1.1, WM1.1, WM1.3, WM1.7, WM1.10, WM1.11 and WM1.12.

A	WM1.1	(1)	
	WM1. 7	(1)	P K P SLI P N A QHe GG I A P A E E
	WM1. 10	(1)	
	WM1. 11	(1)	
	WM1. 12	(1)	P KiF SLI L N A PQ HA GG I A A S E
	WM1. 2	(1)	
	Consensus	(1)	MCRTTNLLLTLISISIFPFFTNGALQPQHQHAHGGGCIPAERAALLSFKE 51 100
	WM1. 1	(51)	
	WM1. 7	(51)	
	WM1. 10	(51)	
	WM1. 11	(51)	ITS DA I T Q Q QDeerwr V E S R HEHMUX H FMRMALDTY E
	WM1. 12	(51)	
	WM1. 2	(49)	
	Consensus	(51)	GITSNNTNLLASWQGQDCCRWRGVSCSNRTGHVIKLHLRNPNVALD YGY 101
	WM1. 1	(101)	$H D A$
	WM1. 7	(101)	YDV G
	WM1. 10	(101)	DHA A
	WM1.11	(101)	YDV G
	WM1. 12	(101)	YDA G
	WM1. 2	(99)	$Y D T A$
	Consensus	(101)	YDACA

Consensu

WM1. 1	(910)	Y Y
WM1. 7	(980)	C RLSER R THMD PS M GM N KGEPRYAKNGSGMPF
WM1. 10	(938)	
WM1. 11	(394)	R P
WM1. 12	(538)	
WM1. 2	(938)	R P P T SAE QS M G S
WM1. 3	(275)	
Consensus	(993)	SYNSLSGRIPSGPQLDTLNLDNQSLMYIGNSGLCGPPVHKNCSGNDPFIH 1043 1092
WM1. 1	(960)	
WM1. 7	(1030)	
WM1. 10	(988)	
WM1. 11	(444)	
WM1. 12	(588)	
wM1. 2	(988)	
WM1. 3	(325)	G这KS
Consensus	(1043)	GDLESSKEEFDPLTFYFGLVLGFVVGLWMVFCALLFKKTWRIAYFRLFDK 1093
WM1. 1	(1010)	Q VVI ASFA K DE
WM1. 7	(1080)	Q VV ASEA K DE
WM1. 10	(1038)	Q
WM1.11	(494)	HVCYVV ASITX DA
WM1. 12	(638)	
WM1. 2	(1038)	QVVVVV KWSET N DA
WM1. 3	(375)	
Consensus	(1093)	VYDQVYVFVVVKWASFAKNTDAE

3.3.6.2.4 Signal Peptide

All WM1 predicted primary peptides, except WM1.3, possess a signal peptide. This however, does not preclude cleavage and therefore predictions from both the SignalP V2.0 (Nielsen et al., 1997) and PSORT (Nakai \& Kanehisa, 1992; von Heijne, 1986) (Table 9) programs were assessed. Results of these predictions suggest that neither WM1.1 or WM1.10 have a cleavable signal peptide, whilst WM1.2, WM1.7, WM1.11, and WM1.12 signal peptides are all likely to be cleaved.

3.3.6.2.5 Predicted subcellular localisation

PSORT program (Nakai \& Kanehisa, 1992) was used to predict potential protein localisation sites in eukaryotic plant cells (summarised in Table 9). All predicted WM1 primary peptides revealed that the WM1 family are all localised to plasma membranes and can be classified into three classes. The first classification is the type la membrane proteins which include WM1.2, WM1.7, WM1.11 and WM1.12. Secondly WM1.3 is categorised as a type lb (N-terminus extracellular, cytosolic C-terminus) membrane protein. Finally there are the type II (N-terminus cytosolic, extracellular C-terminus) membrane proteins, which include WM1.1, and WM1.10. It should be noted that membrane topology prediction is highly dependant on the prediction of signal sequence cleavage. Manual analysis of cytoplasmic domains for all WM1 predicted peptides show that all except WM1.10 possess a YFRL motif. This matches to the mammalian consensus for the typrosine $\mathrm{YXX} \phi$ endosomal/lysosomal sorting signal sequences, where ϕ is an amino acid with a hydrophobic side chain, that stimulates receptor mediated endocytosis and degradation of cell-surface receptors (Letourneur \& Klausner, 1992; Marks et al., 1996).

Table 9: Prediction of subcellular localisation, membrane topology and signal sequence for WM1 predicted polypeptides. Predictions and assigned probabilities are based on the PSORT program (Nakai \& Kanehisa, 1992) for each predicted primary peptides of WM1.1, WM1.2, WM1.3, WM1.7, WM1.10, WM1.11 and WM1.12.

Predicted Polypeptide	Signal Sequence		Pembrane Topology	Subcellular localisation	
WM1.1	Uncleavable N-terminal signal sequence	Type II membrane protein	Plasma Membrane	69.8%	
WM1.2	Cleavable N-terminal signal sequence	Type la membrane protein	Plasma Membrane	46.0%	
WM1.3	No N-terminal signal sequence	Type Ib membrane protein	Plasma Membrane	70.0%	
WM1.7	Cleavable N-terminal signal sequence	Type la membrane protein	Plasma Membrane	46.0%	
WM1.10	Uncleavable N-terminal signal sequence	Type II membrane protein	Endoplasmic Reticulum	64.0%	
WM1.11	Cleavable N-terminal signal sequence	Type la membrane protein	Plasma Membrane	46.0%	
WM1.12	Cleavable N-terminal signal sequence	Type la membrane protein	Plasma Membrane	46.0%	

3.3.6.2.6 Structural conservation

Figure 18 and Figure 19 highlight the areas of conservation in amino acid sequence within WM1 putative peptides. Conservation in amino acid sequence extends to the N -terminal region of the putative signal peptide and to the blocks of tandemly arrayed LRRs at the C-terminus. Differences between the lengths of the tandemly arrayed LRRs lies mainly on the RiceGAAS prediction (Figure 16) of the coding sequence and the presence of several stop codons in what seems to be an original single open reading frame.

3.3.6.3 Genes homologous to WM1 genes

Each predicted WM1 primary peptide sequence was screened using the BLAST 2.0 blastp program (Altschul et al., 1997) across the non-redundant Genbank database. Homologous proteins at the primary peptide level included the Cf-2/Cf-5-like protein from barley (H. vulgare), the disease resistance proteins Cf2.1 and Cf-9 from current tomato (Lycopersicon pimpinellifolium), a putative disease resistance protein from A. thaliana, an LRR-like protein from soybean (Glycine max), verticillium wilt disease resistance protein from tomato Ve-2 (Lycopersicon esculentum), three rice (Oryza sativa) Cf-2-like predicted proteins and the HcrVf1 protein from apple (Figure 22).

Primary polypeptide comparisons show that the WM1.1 protein has between 28.8% and 52.7% similarity and 100% sequence divergence with most other type la plasma membrane anchored LRR-like proteins (Table 10). The only exception is the comparison between the barley Cf-2/Cf-9-like peptide and wheat WM1.1 peptide, which seems to have a sequence divergence of only 75.2\%. The phylogeny assumed evolutionary relatedness of wheat WM1.1 with other LRR proteins and aligns peptide sequences so as to minimise evolutionary change.

Figure 22: Diagram of the structural relationship between the predicted primary polypeptide of T. tauschii WM1.1 and those polypeptides found to be most homologous as determined by the BLAST 2.0 blastp program (Altschul et al., 1997). WM1-like peptides are from barley (H. vulgare), tomato (Lycopersicon pimpinellifolium and esculentum), A. thaliana, soybean (Glycine max), rice (Oryza sativa) and apple (Malus floribunda) (refer to Figure 23). For each predicted polypeptide sequence the legend displays structural motifs and regions of high homology. Genbank accession numbers are included in brackets.

Table 10: Polypeptide sequence similarity and divergence between the predicted primary polypeptide of T. tauschii WM1.1 and those polypeptides found to be most homologous as determined by the BLAST 2.0 blastp program (Altschul et al., 1997). WM1-like peptides are from barley (H. vulgare), tomato (Lycopersicon pimpinellifolium and esculentum), A. thaliana, soybean (Glycine max), rice (Oryza sativa) and apple (Malus floribunda) (refer to Figure 23).

	Percent Similarity											
8 8 0	$\begin{array}{\|l\|} \hline \text { Tomato } \\ \text { Cf-9 } \end{array}$	Arabidop sis	Barley	Tomato Ve-2	Rice 1	Apple HcrVf1	Tomato Cf-2	Wheat WM1.1	Soybean	Rice 2	Rice 3	
		43.3	41.4	34.3	29.4	33.4	36.4	35.0	43.5	38.2	36.2	Tomato Cf-9
	100		32.0	34.5	29.1	31.4	30.2	32.7	31.6	37.4	36.4	Arabidopsis
	100	100		31.2	26.5	40.5	29.2	52.7	44.4	35.4	33.6	Barley
	100	100	100		36.2	31.4	34.2	32.9	27.0	39.6	38.1	Tomato Ve-2
	100	100	100	100		26.1	30.8	28.8	21.1	37.0	36.3	Rice 1
	100	100	100	100	100		29.9	40.3	32.7	34.3	33.8	Apple HcrVF1
	100	100	100	100	100	100		29.7	25.4	35.1	32.0	Tomato Cf-2
	100	100	75.2	100	100	100	100		32.9	36.8	35.3	Wheat WM1.1
	100	100	100	100	100	100	100	100		32.9	28.8	Soybean
	100	100	100	100	100	100	100	100	100		60.7	Rice 2
	100	100	100	100	100	100	100	100	100	69.2		Rice 3

Figure 23 shows that tomato Cf-9 is most closely related to the common ancestral type la plasma membrane anchored LRR-like protein. Based on the number of amino acid substitution events distinguishing the different LRR-like peptides it seems as though LRR-like proteins within the monocotyledonous species (barley, wheat and rice) are the most closely related.

3.3.7 Northern analysis of WM1 genes

Northern analysis of total RNA and polyA isolated mRNA on a range of wheat tissues was unable to detect any signal using the WM1.1 ORF PCR fragment as a probe (data not shown), even though hybridisation and washing conditions (refer to 2.2.14) for the Northern analysis was standardised to replicate the conditions as seen for Southern analysis.

3.3.8 RT-PCR of WM1 genes

RT-PCR of WM1.1-WM1.3, WM1.10, and WM1.11 was performed on $5 \mu \mathrm{~g}$ of total RNA extracted from; root tissue, young leaf tissue (3 weeks old), and spikes undergoing early meiosis (Chinese Spring, ph2a and ph2b). As most WM1 genes do not contain introns it is difficult to discern a PCR product derived from WM1 mRNA as opposed to a PCR product from genomic contamination. To counteract this problem DNAase treament (DNAse treated BAC DNA control) of RNA samples, PCR positive controls (MSH7 and Thioredoxin H) and a genomic contamination control PCR (Glutenin Promoter) was incorporated into all RT-PCR samples (Figure 24). Southern hybridisation of RT-PCR products (Figure 24) shows that WM1 genes are expressed in all tissues but differentially. WM1.1 is expressed in leaf, and meiotic spikes, WM1.11 is expressed only in meiotic spikes whilst WM1.2, WM1.3, and WM1.10 are all expressed in root and meiotic spike tissues. The only RT-PCR products, which were clearly visible after ethidium bromide staining was from WM1.10 in both wild type (Chinese Spring) and ph2b meiotic spikes. As $5 \mu \mathrm{~g}$ of total RNA was used for each sample, RT-PCR products are partially quantitative when comparisons are made within samples for individual genes.

Figure 23: Relationship between the predicted primary polypeptide of T. tauschii WM1.1 and those polypeptides found to be most homologous as determined by the BLAST 2.0 blastp program (Altschul et al., 1997). WM1-like peptides are from barley (H. vulgare), tomato (Lycopersicon pimpinellifolium and esculentum), A. thaliana, soybean (Glycine max), rice (Oryza sativa) and apple (Malus floribunda).
A - Prettybox alignment of the primary polypeptide sequences of LRR genes of tomato Cf-9 (Jones et al., 1994), Arabidopsis, barley (Tokunaga et al., 1999), tomato Ve-2 (Kawchuk et al., 2001), rice 1, apple HcrVf1 (Vinatzer et al., 2001), tomato Cf-2 (Dixon et al., 1996), wheat WM1.1, soybean (de Barros et al., 1999), rice 2 and 3.
$B-A$ rooted phylogenetic tree illustrating the relationship between the primary polypeptide sequences for all LRR-like proteins (alignment as per panel-A). Phylogentic tree illustrates the number of substitution events that allow discrimination between all LRR-like proteins analysed.

Tomato Cf－9		$R \mathrm{I}$ PKSESHETT	S IHETMMMGC	NLSGPIPKPI国	WNLTNTVEEH	LGD NHESEPT	329
Arabidopsis	IKIQQSAFSG	RIPSSIRSLS	HISNLVISEN	NFVGEIPSSV	SNIKQITLFD	VSDNN \mathbb{N}（ ${ }^{\text {NF }}$	366
Barley	IKLS SNNMVG	M P N RMDYLT	NLSSLDLSYN	NITGAIPPW国	ENCTSIS屋IS	LSSNSLT ¢PT	399
Tomato Ve－2	IDFSFNNFTG			LTGLLSRAHF	EGESEIVYIN	IGNNSLNGSL	42
Rice 1	IEIAACRESG	PIPYSIGOLK	ELRATFIEGC	NMSGRIPNSI	VNMSKIIX IG	IP PA Y L S CKir	499
Apple Hervfi	In ESNYENS	TIPKWLYGLN	NLESTILSYN	A PRGEISSSI	GNMTSLVNLN	LENNQLQCKI	401
Tomato Cf－2	LY Y Y NQ LS C	SIEASLGNIN	NLSMIYLYNN	QISGSIPASI	CNINNISRIY	IT Y N N Q L S GS I	423
Wheat WM1．1	MDIRYNNETG	T LipNLVSDFT	R LRILSLSSGN	NLVGSIP PWi	VNLTRETTLE	LFSNHLTESI	6
Soybean	IRTSWTNLFL	SVNSGWAPPF	Q LEYVLLSS F	GIGPKFPEWL	KRQS SVKVIT	MSKAG槹ADIV	112
Rice 2	IL VIS STNFSG	P I PNVGNI园	SLENTGVASS	DFSQELP SSIT	CQLRSINSLE	ITGAGVVGAV	365
Rice 3	LLVGHTNFSG	TIESFISNLK	SLKKIGGLDAS	GFSSEELDSII	GTLRHINSLQ	ISGLEVVESF	407
Tomato Cf－9	S．HFTIFEK	KRESLVENNF	DGGLEFLSFN	T Q L ER			36
Arabidopsis	PSSELNLNQL	RYIDICSNHE	TGFLPPTISQ	［ S N．		．．．㑑E	402
Barley	PVGIGRC的L	DIEDISYNNI	IGAIPLGIGN	FTT	R	．．．．．．． $\mathrm{Y}^{\text {I }}$	35
Tomato Ve－2	B AYIF EIPPSI	KQ LFIYSNQF	VGQVDEFRNA	5 S	D	．．．．．．． $\mathrm{T}^{\text {T }}$	458
Rice 1	PARLFTLPAL	LFLDLEGNHF	SGPICEFDAV	P S	M	．．．S	35
Apple HerVfi	PNSL宜HLCKI	KVVDLSENHE	TVRRPSEIFE	SLSGCGPDGI	K	．．．．S	443
Tomato Cf－2	PEEIGYISSI．	TYMDISNNSI	NGFIIPASFGN	M S Laflely	E $\dot{N} \dot{Q} \dot{L} \dot{A} \dot{S} \dot{S} \dot{V} \dot{P}$	EIGYLRSLNV	483
Wheat WM1． 1	PR囫LGNLTCL	TSUELSDNLL	TGSIPAEFGK	LMY．L	T	．．．．．．．．I	4
Soybean	PS ${ }^{\text {P W W W T L }}$	IEFLDLSNNL		NSS		．．．．．．．．V	146
Rice 2	PS WIANLT S［il	TLDDFSNCGL	SGKIPSAIGA			．．．．．．．R	401
Rice 3	PKNITNLTSL	EVI赏FSCGL	HGTIPSSIAD	LTK		．．．．．．．． K	443
Tomato Cf－9	LDISSNS戊TG	pip SNis Gilq		L NGSIPSWI		DLSNNTFSG	421
Arabidopsis	FSACDNSFTG	SIPSSLENIS	StTTHGLSYN	Q L NDTTNEKN	IS L L HNLQRI，	LIDNNNFKAS	462
Barley	GVISHNLTSG	HVPSKIGMEG	DISDIDLSNN	NLDGLFTREH		DL SHN	490
Tomato Ve－2	VDIRNNHLNG	SIPKSMEEVG	R IKVISSLSSN	FFRGTVP蔖L	IGRISNLSRL	EISYNNTTV	517
Rice 1	HQITSNELTG	EFPKSFEELT	SIIATEIDLN	NLACSVDISS	EKRIKKIRD	NLSHNNLSV	594
Apple Hervfi	HSTRYTNIS	PIPMSLGNLS	SHEKIDISGN	HFENGTFTEVI	G．Q LKMIT	DISSYNFEG	501
Tomato Cf－2	LDLSENATNG	SIAASFGNLN	NTSRINTVN	Q LSGSIPEEI	G．Y LRSIN V	D LSENA戊N	541
Wheat WM1． 1	LDLSSNHLNE	SVPAEIGSLV	NLIFLDISN	SFTGVITEEH	LANLTSIKQ	D L SLN NFK等	511
Soybean	INLSSNLFKG	RLPSVSANVE	\checkmark INANNSIS	GTISPFLCGN	PNATNKISV	DFSNN．	201
Rice 2	1AAYKCNES	QI PQDLFNLT	QLRVIYIQY ${ }_{\text {L }}$	NFIGTLELSS	FWKLPDLFS	NLSNNKISV	460
Rice 3	LATYACNIFG	EIRRHIFNLT	QLDTIFIHSN	SFTETVELAS	FLTLPNLFDL	NLSHNK SHT	502
Tomato Cf－9			K I Q EFKSKT				
Arabidopsis	QVDLDVFLSL	KRLVSLALS	PLSTTNITS		EİS G CiNİİ	EPEF䈠RNQR	521
Barley					LS GN－	－	490
Tomato Ve－2 Rice 1				$\dot{T} \overline{\mathrm{~F}} \mathrm{~T} \dot{\mathrm{P}} \dot{\mathrm{Q}} \mathrm{~L} \dot{\mathrm{I}}$		FPDEKNQSR	553
Rice 1 Apple Hervfl			MDEEGDNS	STYUSELKE	LGLACENITK	FPSTIETRLS．	632
Apple Hervil			VVSEISFSN	LTKLKHEVAK		SFTHKTSRDW	532
Wheat WM1．1			SIPASFGNL	N NLSRLNLVN	NQLSGSIPEE	IGYITRSLNDL	580
Soybean						LFPPWLQQL	544
Rice 2			VDGEKN	．WVSINYFY T	LR LAYCNIS		201
Rice 3			INGE．SNSS	．LTSEPA嚊GY	LGLSSCNMTR	EPNIIKKHLNK	539

Tomato Cf－9	－EEEEDSPMI		C GLvagrsvi	－	WFSRMDLK⿴E		859
Arabidopsis	SSSSEEDELII	SWIAACLEFA	PGMVFGLTMG	Y IM TSHKHE䌊	FMDTEGRRKG	RSTRTR	994
Barley	－DNVYEAKMF	FYFGLGSGYV	AGLTVVFCAM	LFRKA国VEY	ORIFDKIYDK	AYVFAVLTWG	884
Tomato Ve－2	－QDDSYDWQE	IFTGVGYGVG	A AIS ITAPLLF	YKQGNKYFDK		PRYWFSYTRF	1056
Rice 1	．SEHV國IVM回	LFVGVGFGVG	FAVGILMKTS	2］InWFHSAV	SRQRT．		1120
Apple Hervfi	．GYRLLEDEW	FYMTLGVGFF	TGE园IVLGSL	L ${ }^{\text {n M M P W }}$ SIL		MYHVIVEYV	1015
Tomato Cf－2	QESNS國FFND	FWKAALMGYG	SGECIGISMI	YILISTGNLR	WLARIIEKLE	HK I M Q R $\mathrm{Cl}_{\text {\％}} \mathrm{K}$	1098
Wheat WM1．1	．SXE國FDPT	FYFGIVIGEV	VGL WMVFCAL	LFKKTWRIA	FRIFFDKVYDQ	VYVFVVVKWA	1023
Soybean	－DGNFFGTSE	FYIGMGVGEA	AGFwGFCSVV	RFNRTNRLE	EHYLDHERDL		572
Rice 2	EKHVDVILF	LFVGLGVGIG	FAVIIVVTWG	IRIKKRSQDS			987
Rice 3	－RKSIDIVI	LFSESLGFGIC		VPIRKWSLIG	Q⿴囗 R P．		1022
Tomato Cf－9	轇KRY						863
Arabidopsis		．．．．．．	．．．．．．．				863 994
Barley	RINGKASTS．						893
Tomato Ve－2	DPGKVVAVEH	YEDETPDDTE	DDDEGGKEAS	LGRYCVFCSK	LDFQKNEAMH	DPKCTCHMS	1116
Rice 1							1120
Apple HcrVfi Tomato Cf－2	Q R G Q 管	N NHF					1015
Wheat WM1． 1	SFAKKTDEE	．．．．．．．．					1112
Soybean	國LL GKL	．．．．．．					578
Rice 2						．．．．．．．．	
Rice 3							1022

Figure 24: Southern blot analysis of electrophoretically separated RT-PCR products of individual members of the WM1 gene family. Positive controls include MSH7 and Thioredoxin H whilst the genomic contamination control is the Glutenin promoter. A- 2 hr exposure at room temperature, B- overnight exposure at $-80^{\circ} \mathrm{C}$.

A 2 hour exposure \quad Wositive Control WM1.11

| Overnight exposure | WM1.1 |
| :--- | :--- | :--- |
| WM1.2 | |
| WM1.3 | |

Results therefore suggest that WM1 genes are preferentially expressed in floral tissues (Figure 24), and Northern analysis (data not shown) suggests that the overall expression level is extremely low.

3.4 Discussion

3.4.1 WM1 genes cluster

The genes identified by hybridisation to WM1.0 cDNA clone were named WM1.1 to WM1.21 (Wheat Meiosis genes 1.1 to 1.21) (Ji, 1992). Using the WM1.1 open reading frame (WM1.1 ORF) as a probe in Southern analysis of wheat DNA the WM1 gene family of approximately 21 genes is revealed (Figure 7), 14 members of the WM1 gene family reside within the region deleted on chromosome 3DS in the wheat ph2a mutant (Figure 8). Additionally, 2 WM1 genes are located on chromosome 3AS. However, no WM1 genes were detected on chromosome 3BS. Sub-chromosomal assignment suggests that WM1 genes are not represented across all chromosomes within homeogroup 3 and seem to be clustered on chromosome 3DS.

WM1 genes are not detectable by Northern analysis on either total RNA or polyA enriched RNA from wheat floral tissue. However mRNA transcripts were detected with RT-PCR, suggesting expression at very low levels. RT-PCR indicates that WM1 genes are expressed predominantly in floral tissue, but some members have mRNA transcripts detectable in leaf and root tissues. The identification of an EST derived from WM1.11 shows that this particular member of the gene family is likely to be expressed in endosperm 8-12 days postanthesis. In light of the results so far, the only conclusion that can be drawn is that the WM1 genes are differentially expressed between roots, leaves and floral tissue and are likely to be developmentally regulated.

Does the clustering of the WM1 genes relate to developmental regulation? To what degree are the WM1 genes clustered?

Genetic mapping of the WM1 gene family in three barley-mapping populations Chebec x Harrington, Clipper x Sahara and Galleon x Haruna Nijo showed that
all genes co-segregate and are therefore tightly linked (refer to 5.3.1 and Figure 37). Consequently genetic mapping provides evidence that the WM1 gene family clustered within 5 centimorgans.

Considering that WM1 genes are genetically linked, Southern analysis of PFGE separated HMW DNA was utilised in determining physical linkage. Results were unable to demonstrate physical linkage between members of the WM1 gene family (Figure 9). However, screening of both a barley and diploid wheat (T. tauschii) BAC library proved otherwise. Barley and wheat BAC clones showed that the WM1 genes were indeed physically linked and clustering within a region of approximately 200 Kb . There are up to 11 WM1 genes within this region (Figure 13 and Figure 14).

To determine structural organisation of the WM1 gene family three T. tauschii BAC clones, TtBAC3, TtBAC6, and TtBAC11 were shotgun sequenced. Shotgun sequencing revealed the presence of seven WM1 genes within a 270 Kb region (Figure 19). The seven WM1 genes (WM1.1-1.3, WM1.7, and WM1.10-1.12) that were predicted in this region, are likely to be intron-less (Figure 16) and predominantly encode type la plasma membrane anchored leucine rich repeat proteins.

WM1 genes encode LRR receptor-like proteins and appear to be co-localised within a small region on chromosome 3DS of hexaploid wheat. Localisation of the WM1 genes within such a defined region of the genome poses the question; Is this region of the genome structurally important and does this relate to the function of the WM1 genes. Additionally, what are the likely evolutionary mechanisms that have operated on the WM1 gene cluster?

3.4.1.1 WM1 gene structural organisation

WM1 genes are tandemly arranged in both a head-to-tail and tail-to-tail orientation (Figure 15) spanning the 270 Kb region. Flanking the WM1 gene family cluster are multiple copies of genes encoding putative ripening-related proteins (3 copies), Bowman-Birk type trypsin inhibitor proteins (4 copies) and a single Pst19-like protein. Furthermore, 17 transposable element component
proteins with homology to hypothetical proteins of A. thaliana, Oryza sativa, and T. aestivum were located between the WM1 genes. Interestingly a Pst19 protein has previously been found to be co-localised with a LRR-receptor like kinase gene cluster on chromosome $1 \mathrm{~A}^{\mathrm{m}} \mathrm{S}$ of T. monococcum (A^{m} genome) (Feuillet et al., 2001; Stein et al., 2000; Wicker et al., 2001). This cluster of genes was found whilst in the pursuit of the Lr10 resistance gene. Further analysis may highlight an important evolutionary relationship between LRR-like genes and this Pst19-like sequence.

Most WM1 genes seem to be separated by large stretches of transposable element-like sequences. Some of these repetitive sequences show homology to BARE-1 and Wis21-A-like retrolelements. Preliminary analysis of the 270 Kb region shows that it contains approximately 80% repetitive sequence. It is anticipated that further analysis will allow a greater understanding of transposable element evolution and help reveal their impact on the origin of LRR gene clusters both in terms of gene expression and function.

3.4.1.2 WM1 gene evolution

When looking at the physical arrangement of WM1 genes with respect to one another, similarities can be drawn to other LRR gene clusters. The presence of tandemly duplicated homologous sequences at the WM1 locus could promote chromosomal mispairing, resulting in non-reciprocal homologue exchange or unequal crossing-over. This may induce meiotic instability of different WM1 alleles as has been shown with alleles at the Rp1 rust resistance locus in maize (Hulbert, 1997) and furthermore this could result in sequence homogenisation within a gene family through frequent intergenic sequence exchange. This would be desirable at developmental gene loci where conservation in LRR genes maintains integrity, which is likely to be crucial for development. On the other hand it is undesirable at resistance gene loci where novel variants in LRR genes are required to combat a constantly changing pathogen population (Thomas et al., 1998).

Despite the prospect for gene homogenisation, analysis of the sequence 3 ' and 5 ' to the WM1 coding regions shows high sequence divergence suggesting that these genes were not generated from a recent crossover or gene conversion event as was shown for several Cf genes (Parniske et al., 1997; Parniske \& Jones, 1999; Parniske et al., 1999). It is anticipated that the rate of such crossing-over or gene conversion, resulting in duplication and deletion of whole WM1 genes or blocks of LRRs with genes, is extremely low. Such changes in the Cf-9 LRR gene resulting in loss of function are believed to occur once in 22,000 meiotic events (Parniske et al., 1997).

Interestingly, the 5' sequence for WM1.11 includes a short region with homology to the leucine zipper region of the Yr10 (Laroche et al., 2000) and Rpm1 (Grant et al., 1995) disease resistance genes (refer to Figure 16). This region is upstream from the predicted basal promoter region and is not a part of the coding sequence. The WM1.11 EST derived from endosperm 8-12 days post anthesis confirms this. These results suggest that there may be an evolutionary relationship between the leucine zipper - nucleotide binding site - LRR (LZ-NBS-LRR) class of disease resistance proteins and the purely LRR receptor-like class of proteins (WM1 gene family). Further analysis of the WM1 gene cluster may highlight the importance of this evolutionary link in terms of function.

The developmental expression pattern, co-localisation and genic structure around the region of WM1 genes is interesting but what is their likely function in the plant? Without transformants, the predicted peptide sequences of the WM1 genes must be used to elucidate potential functions?

3.4.2 WM1 gene analysis

Several gene classes, including histones (Chaboute et al., 1993) and polyphenol oxidases (Newman et al., 1993), have been identified in plants that generally lack introns and encode short polypeptides ($<62 \mathrm{kDa}$). It appears that the WM1 family of LRR receptor-like proteins ($\sim 112 \mathrm{kDa}$) encode the largest genes believed to be intron-less in plants.

The WM1 primary peptides show highest homology and structural similarity with the Cf-2 (Dixon et al., 1996), Cf-9 (Jones et al., 1994), Ve-2 (Kawchuk et al., 2001), and HcrVf1 (Vinatzer et al., 2001) receptor-like disease resistance genes from plants. The WM1 predicted proteins possess a hydrophobic N-terminus, which is typical for a signal peptide. Signal peptide cleavage is likely to be important for targeting these receptor-like proteins to the plasma membrane.

3.4.2.1 Leucine rich repeats

The signal peptide precedes a long stretch of tandemly arrayed LRRs with between 9 and 30 imperfect copies of a 23 amino acid consensus [XXLXXLXLXXLDLSXNXLSGXIP]. These tandemly arrayed LRRs have been found in many proteins with diverse functions. As with many LRR-like genes, the WM1 primary peptides have length variation in the N -termini. This region is not only heterogenous in repeat number but also in repeat length. The Drosophila chaoptin (Reinke et al., 1988), for example, has 41 repeats, whereas the Rec-A like protein of Arabidopsis (Pang et al., 1992) has only four. The LRRs are generally believed to be involved in protein-protein interaction (Gay et al., 1991; Suzuki et al., 1990) but the mode and specificity of the interaction is unclear. A glycine present within the consensus sequence is consistent with the expectation that they are extracellular, with its location likely to assist in the detection of a signalling ligand (Jones et al., 1994; Song et al., 1995). In plants, several LRR proteins have been isolated in recent years. They fall into several major classes, the receptor-kinase like proteins and the disease resistance proteins (Braun \& Walker, 1996; Dangl, 1995). One of the former types, the Xa21 gene product from rice, has been found to function as a disease resistance molecule (Song et al., 1995).

Although LRR-like proteins are associated with diverse functions, a common property involves protein-protein interaction. The 3-D structure of a ribonuclease inhibitor, a protein containing 15 LRRs, has been determined (Kobe \& Deisenhofer, 1993), revealing LRRs forming α / β coil structures. These 15 LRR's folded in an unusual horseshoe structure, which has the ability to clamp onto the ribonuclease. The LRRs of WM1 proteins suggest that they are
not likely to adopt the α / β coil structure as they are highly homologous to other plant LRRs which have been shown to contain residues not common in α helices (Dixon et al., 1996; Thomas et al., 1997). The likely β-helical structure (Kobe \& Deisenhofer, 1994) of these plant LRRs would aid the parallel stacking of the β-strand $/ \beta$-turn motif, resulting in the formation of a rod-like structure with an extensive and potentially variable ligand-binding surface (Thomas et al., 1998).

The greatest homology of the WM1 primary peptides is with Cf-2 and Cf-9 Cladosporium fulvum disease resistance genes of tomato (Dixon et al., 1996; Jones et al., 1994). Highest homology lies in the C-terminal region of these proteins, composed of one 23 and three 24 amino acid LRRs, as well as a transmembrane domain (Figure 22). Variation in the amino-terminal LRRs of Cf genes, as with WM1 genes, is likely to have arisen through mutation, segmental exchange between adjacent homologues within tandem arrays (either by repeated rounds of unequal exchange or by gene conversion) and duplication or deletion of complete LRR units: For example, Cf-4 differs from Cf-9 by a precise deletion of two complete LRRs (Thomas et al., 1997). It has been suggested that this N -terminal region plays a role in ligand binding specificity. This has implications when assessing the potential tertiary structure of the LRRs. The predicted parallel stacking of the β-sheet arrangement of LRRs means that any given amino acid has both a horizontal context, the neighbouring amino acids within its own LRR unit, and a vertical context, amino acids in a similar position in the two flanking LRRs. Segmental exchange, deletion and duplication of whole LRRs, have limited roles in producing novel combinations of amino acids in the horizontal context, but would seem to have a more important role in producing novel combinations of amino acids in the vertical context. This is likely to have important repercussions in specificity of recognition of protein ligands (Ellis \& Jones, 1998) and may prove extremely important when determining the role of individual members of the WM1 gene family.

Between 7 and 27 sequences matching the N-glycosylation consensus sequence $N X(S / T)$ were observed within the predicted LRR regions of the WM1
primary peptides (data not shown). This would suggest WM1 protein glycosylation, which may disrupt the regular tertiary structure of LRRs and subsequently influence potential ligand binding. Such suggestions have been made based on the Cf-9 gene (Piedras et al., 2000; Thomas et al., 1998).

3.4.2.2 Leucine zipper

Several WM1 proteins (WM1.1, WM1.2, WM1.10, and WM1.12) have 100\% identity with a leucine zipper-like domain (Figure 19). The leucine zipper consists of a periodic repetition of leucine residues at every seventh position over a distance covering eight helical turns. These predicted leucine zippers are embedded within two LRRs; consequently the two structures would be mutually incompatible based on secondary structural characteristics. Leucine zippers require an α-helix conformation whilst leucine rich repeats form a β-strand flanked by β-turns. The presence of multiple helix-breaking prolines within the potential leucine zipper of WM1 peptides would oppose the formation of a leucine zipper. Given the leucine zipper structure is unlikely to form, the potential for LRRs to be involved in the dimerisation process is not negated. The involvement of LRRs in heterodimerisation of such type la plasma membrane anchored LRR proteins is yet to be proven.

3.4.2.3 Sorting signals

A hydrophobic sequence with a predicted α-helical secondary structure, which is bordered by a negatively charged extracytoplasmic domain and a positively charged cytoplasmic domain, are typical in membrane-spanning proteins (Figure 19). Importantly cytoplasmic domains for all WM1 predicted peptides except WM1.10 possess a YFRL motif. This matches the mammalian consensus for the typrosine $\mathrm{YXX} \phi$ endosomal/lysosomal sorting signal sequences, where ϕ is an amino acid with a hydrophobic side chain that stimulates receptor mediated endocytosis and degradation of cell-surface receptors (Letourneur \& Klausner, 1992; Marks et al., 1996). Whether the tyrosine $\mathrm{YXX} \phi$ motif functions as an endocytosis signal in plants is yet to be proven experimentally. Availability of complete DNA sequence for WM1 genes
will help in experimental confirmation of the localisation of the WM1 proteins, through GFP fusion proteins, to the cell membrane and consequently determine the function of the $\mathrm{YXX} \phi$ motif in receptor mediated endocytosis and degradation.

Unlike the tomato Verticillium resistance (Ve-1 and Ve-2) peptides, the WM1 peptides do not possess Pro-Glu-Ser-Thr (PEST) sequences that are commonly found in proteins with short cytoplasmic half-lives (Rechsteiner \& Rogers, 1996; Rogers et al., 1986) (Figure 22). Additionally WM1 peptides do not possess KKX motifs that signal endoplasmic reticulum retention in plants (Benghezal et al., 2000).

3.4.3 Relating developmental regulation to disease resistance

It would be interesting to investigate if WM1 genes are upregulated in response to pathogen attack as would be expected based on the high level of peptide homology to disease resistance genes (Cf-2, Cf-9, Ve-2) (Kawchuk et al., 2001; Thomas et al., 1998) and the induced barley Cf-2/Cf-5 like LRR gene isolated by differential display of BTH-treated plants (Tokunaga et al., 1999). BTH (benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester) is a new class of commercial agrochemicals that indirectly control fungal plant diseases through the activation of the plant's own defences (Kessman \& Nordmeyer, 1996). In dicots, BTH is thought to act as a functional analogue of the endogenous defence-signalling molecule, salicyclic acid, and induce systemic aquired resistance (Du \& Klessig, 1997; Hunt \& Ryals, 1996; Ryals et al., 1996).

The first step in determining if WM1 genes have a role in plant defence is to determine if any known genes for disease resistance reside on chromosome 3DS in the locality of the WM1 gene cluster. One such example is leaf rust resistance gene 32 (Lr32) (Kerber, 1988). It would need to be determined whether any of the WM1 genes are upregulated upon infection by this pathogen. It is also important to assess whether WM1 genes are upregulated upon BTH treatment, which may suggest a role in SAR. Results of these experiments may
prove a link between developmental regulation and disease resistance as well as the possible recruitment of developmental genes for disease resistance.

3.4.4 A tentative model for developmental signal transduction

As has been shown with the Cf genes, WM1 peptide conservation is at the Cterminus. A model proposed by de Wit and Joosten (1999) for perception of avirulence factors (Avr9) suggests that Cf-9 is one of at least three molecules required in Cf-9-dependant signal transduction leading to a hypersensitive response (Figure 25). The conserved C-terminal domain of Cf-9 is proposed to interact with the HABS-Avr9 complex. HABS is known to be a high affinity binding site for Avr9 in the mesophyll cells of tomato. It was suggested that the HABS molecule might represent an LRR-receptor-like kinase similar to the Xa21 disease resistance gene from rice (de Wit \& Joosten, 1999).

The Cf-9/Avr9 model of signal transduction shows similarities to the CLAVATA (CLV) family's role in Arabidopsis shoot apical meristem development (Becraft, 1998). Mutations in the CLV family of genes result in the apical meristem developing into a club-like structure. CLV1 is a LRR receptor like kinase (analogous to HABS) (Clark et al., 1997), while CLV3 might be a ligand analogous to Avr9 (Clark et al., 1995). Similarly CLV2 could be analogous to Cf9 and consequently the WM1 genes. A tentative model is proposed for developmental signal transduction of the WM1 genes based on models for the CLV gene family and Cf-9/Avr9 interaction (Figure 25). However, a role for the WM1 genes in disease resistance should not be disregarded.

3.5 Conclusions

The WM1 genes represent a complex gene family that seem to be developmentally regulated with low but preferential expression in floral tissues. The WM1 genes are located on chromosome 3DS within a region of the wheat genome that is deleted in the ph2a mutant. Whether any of these WM1 genes represent the Ph2 gene(s) requires cytological examination of chromosome pairing behaviour in both "knock-out" and over expression transformants. A role
for the WM1 genes in the perception of pathogen attack cannot be excluded and should also be investigated further.

Figure 25: A speculative model for the role of the predicted membrane bound receptor-like WM1 peptides in perception and signaling leading to regulation of floral tissue development in wheat (D). The model is based on evidence from the Cf-9/Avr9 disease perception model (A) and the model of the CLAVATA gene family's role in apical meristem development (B) (de Wit \& Joosten, 1999). Membrane topology and relative predicted structure of individual members of the WM1 gene family is shown in (C).

IN PLANTA ANALYSIS OF THE MEIOTIC GENE WM5

4.1 Introduction

The Wheat Meiosis 5 (WM5) gene was isolated by subtractive hybridisation of mRNA from pollen mother cells at pre-meiotic interphase with mRNA from immature pollen (Thomas, 1997). WM5 is strongly and preferentially expressed during early meiosis in the flower bud and expression gradually reduces as meiosis proceeds. Lower levels of expression have also been detected in actively growing young shoot apices. The gene is not expressed in highly active mitotic tissue such as the root. Given this expression pattern, WM5 may be involved in the establishment of and development of the shoot meristem including both the vegetative and reproductive apex. WM5 may also have functions associated with early meiotic activity, such as chromosome pairing and recombination.

DNA sequence analysis of WM5 (Dong et al., 2001a) has shown no significant homology to known genes. Figure $\mathbf{2 6}$ describes the structure of WM5 both from the nucleotide and the polypeptide level. The deduced polypeptide of WM5 is rich in glycine (16.3\%), serine (15.1\%), proline (10.8\%) and alanine (12.9\%) and is likely to possess two hydrophobic regions, one in the amino terminus (residues 1-25), which suggests a signal peptide for either membrane targeting and possibly for secretion of the processed protein. The second hydrophobic domain is in the carboxy-terminal region, which suggests a possible membrane anchoring function. Both regions contain a high percentage of alanine. The central region is rich in glycine, serine and proline, and is highly repeated. The repeating motifs include PSHGG, GGAYGSSPTP.

Figure 26: Diagram of the nucleotide and polypeptide sequence of WM5 as described by (Dong et al., 2001a). A - nucleotide diagram illustrates 3' and 5' untranslated regions, TATA signal, poly-adenylation signal and the coding sequence showing exon/intron boundaries. B - primary polypetide sequence highlighting putative transmembrahne domains, cleavage site for N -terminal signal sequence, PSHGG-like repeats, GGAYGSSPTP-like repeats, and a putative amidation site. The green arrows depict all possible open reading frames.

B

The overall WM5 amino acid sequence shows no significant homology with other known proteins. However, the carboxy-terminal end of WM5 protein shares homology with Arabidopsis PDF1 (protodermal factor actor 1) protein (Genbank accession number AF141375) (Abe et al., 1999; Abe et al., 2001). Arabidopsis PDF1 gene encodes a proline-rich protein, that is produced in the protodermal L1 layer of meristematic tissues (Abe et al., 1999). Comparison of WM5 and PDF1 reveals that two proteins have very similar hydropathy plots and predicted secondary structure, which indicates that they have a similar function.

Southern analysis (Dong et al., 2001a) has revealed that there is a copy of WM5 on the short arm of each group three chromosome in the bread wheat variety Chinese Spring. Importantly, one copy is located within the region deleted in the ph2a mutant.

Given that WM5 has a preferential meiotic expression pattern and is localised within the region deleted in the homeologous chromosome pairing mutant ph2a, it is a candidate for the Ph2 gene. To confirm the function of WM5 in either apical meristematic development (similar to PDF1 of Arabidopsis) or homeologous chromosome pairing and recombination (as described in the ph2a wheat mutant), transgenic wheat lines were generated with altered expression of WM5.

Three different transformation systems have been successfully used for wheat.

Direct gene transfer into wheat via protoplasts (He et al., 1994). This technique has been technically difficult and requires a long period in culture often resulting in the regenerants having reduced fertility and vigour.

The use of Agrobacterium tumefaciens (Cheng et al., 1997) offers advantages of single copy transgene integration. However the time required in the production of transgenic plants is longer ($2.5-3$ months) than required for microprojectile bombardment ($8-9$ weeks).

Microprojectile bombardment is the most common transformation method used in wheat (Lörz et al., 1998). The advantage of microprojectile bombardment comes from its ease of use, range of source tissue and high levels of transformation frequency relative to the other transformation techniques.

In summary, this chapter describes the use of microprojectile bombarment of wheat scutella in the production of transgenic wheat harbouring modified forms of the WM5 gene. In addition, analysis of promoter specificity and WM5 functionality in planta was also investigated.

4.2 Materials and methods

4.2.1 Plant material and growth conditions

Four wheat (Triticum aestivum L.) genotypes were used in biolistic transformation experiments.

Spring type:
"Veery N ${ }^{\circ}$ 5", CIMMYT variety listing (CIMMYT, Mexico);
"Combi", German variety listing 1998 (Federal variety names, Hannover, Germany);
"Pavon", German variety listing 1998 (Federal variety names, Hannover, Germany).

Winter type:
"Florida", German variety listing 1998 (Federal variety names, Hannover, Germany).

Vernalisation of winter wheat was undertaken 14 days after germination for eight weeks at $2^{\circ} \mathrm{C}$ in a growth incubator ($9 \mathrm{hr}, 4000 \mathrm{Ix}$). Winter wheat was then placed in the glasshouse under controlled lighting and temperature $\left(18^{\circ} \mathrm{C} / 16^{\circ} \mathrm{C}\right.$ Day/Night, 16 hr light at $23000-25000 \mathrm{~lx}$). Fertilisation took place 8 weeks after
vernalisation. The fertiliser mixture was made up with 0.7% Wuxal Top N 12:4:6 ($12 \% \mathrm{~N}, 4 \% \mathrm{P}_{2} \mathrm{O}_{5}, 6 \% \mathrm{~K}_{2} \mathrm{O}$, Trace elements, Aglukon, Düsseldorf, Germany).

Spring wheats were grown for 6 weeks in a phytotron $\left(18^{\circ} \mathrm{C} / 16^{\circ} \mathrm{C}\right.$ Day/Night, 16 hr light at 10000-16000 lx) and then placed in the glasshouse until mature. Growth conditions and fertilisation were the same as for winter wheat.

4.2.2 Gene constructs

Microprojectile bombardment was performed using plasmid constructs as described in Figure 27. Design for co-bombardment of constructs is outlined in Table 11. According to the experimental design outlined in Table 11, regenerant plantlets $\left(R_{0}\right)$ were labelled according to experimental cobombardment class (eg. X, Y or Z).

4.2.3 Microprojectile bombardment

Plasmid DNA was adsorbed onto gold particles of an average size between 0.4 and $1.2 \mu \mathrm{~m}$ (Heraeus, Karlsruhe, Germany) as described previously (Becker et al., 1994). The particle-DNA pellet was re-suspended in $240 \mu \mathrm{~L}$ of ethanol of which $3.5 \mu \mathrm{~L}$ of the particle-DNA suspension was spread onto the surface of the macrocarrier for each experiment.

The particle gun employed in these experiments was a PDS 1000/He gun (Biorad, München, Germany). Microprojectile bombardment details are outlined in Table 12.

4.2.4 Culture and selection conditions

Developing grains from the four wheat genotypes were harvested 12 to 14 days after pollination (Becker et al., 1994).

Figure 27: Diagramatic representation of constructs used in biolistic transformation of wheat.

A - Antisense WM5 (pWM53.1) pBluescript KS(+) containing antisense WM5 cDNA (1.1 Kb) with NOS terminator $(0.25 \mathrm{~Kb}$) driven under 2.3 Kb of native promoter.
B - Sense WM5 (pWM54) pBluescript SK(+) containing sense WM5 genomic DNA with both native terminator and promoter (total 4 Kb). The third exon with a 30bp linker insertion (at Bst Ell restriction endonuclease site) harbouring a Bam HI restriction endonuclease site.
C - 35S WM5 (pWM55.6) pTZ18U containing sense WM5 cDNA (1.1 Kb) with NOS terminator (0.25 Kb) driven under Cauliflower Mosaic Virus (CaMV) 35Spromoter (0.77 Kb).
D - WM5 GUS ($p W M 51$) pBluescript $K S(+)$ containing β-glucuronidase (GUS) $(2 \mathrm{~Kb})$ with NOS terminator $(0.25 \mathrm{~Kb})$ driven under 2.3 Kb of WM5 promoter.
E - WM5 GFP ($p W M 52.1$) pBluescript $K S(+)$ containing green fluorescent protein gene from $p M O N 30049$ (Pang et al., 1996) (1.75 Kb) with NOS terminator driven under 1.4 Kb of WM5 promoter.
F - pAct1-F/Npt II pBluescript $K S(+)$ containing Kanamycin resistance gene Npt I/ (795bp) with NOS terminator driven under 1.25 Kb Act1-F fragment of the rice actin promoter (McElroy et al., 1991).

Table 11: Experimental design for co-bombardment of transgene constructs into wheat scutellum.

Co-Bombardment Class			
	X	Y	Z
	Antisense WM5	Sense WM5	35S WM5
\%	WM5 GUS	WM5 GUS	WM5 GUS
\pm	WM5 GFP	WM5 GFP	WM5 GFP
O	pAct1-F/Npt II	pAct1-F/Npt II	pAct1-F/Npt II

Table 12: Parameters used in microprojectile bombardment of scutellar tissue in wheat.

Parameters	
Distance between	
A: rupture disk and microcarrier	2.5 cm
B: macrocarrier and stopping screen	0.8 cm
C: stopping screen and target cells	5.5 cm
Gas pressure	$900-1550 \mathrm{psi}$
Partial vacuum	27 inch Hg
Particles	$\mathrm{Gold}, 0.4-1.2 \mu \mathrm{~m}$
Particle amount per bombardment	$29 \mu \mathrm{~g}$

Immature caryopses were then surface sterilised (1\% sodium hypochlorite, 0.5\% Mucasol) for 20 min and washed three times with sterile distilled water. Between 20 and 30 embryos of approximately 0.8 to 1.5 mm in length (Figure 28- A), were aseptically excised from the caryopses and placed clustered in the centre of a 6 cm petri dish with the embryo axis embedded in the solidified MS media (Murashige \& Skoog, 1962; Nehra et al., 1994). Generally, embryos were chosen that were translucent or deposition of starch in the scutellar tissue had initiated (visually semitransparent).

Immature embryos were cultured on modified MS^{-}medium. MS^{-}media (1 Litre) was made using 200 mL MS Macro (10x), 2 mL MS Micro (1000x), 4 mL FeNaEDTA (500x) and 60 g sucrose, pH 5.7 . All media was prepared in a double concentrated form, sterilised by filtration and mixed with the same volume of Gelrite (Roth, Germany) to give a final concentration of 0.3% Gelrite (Becker, 1999).

Embryo's were pre-cultured at $26^{\circ} \mathrm{C}$ for 2-3 days in the dark on callus induction medium, which was a modified MS" medium containing $2 \mathrm{mg} \mathrm{L}^{-1}$ of $2,4-\mathrm{D}$ (2,4dichlorophenoxy acetic acid). Embryos were transferred to a high osmotic potential (0.7 M Sucrose) modified MS^{-}medium containing $2 \mathrm{mg} \mathrm{L}^{-1}$ of 2,4-D three to four hrs before microprojectile bombardment. Embryos were left on this media for 20-24 hrs post-bombardment and then transferred to callus induction medium.

For somatic embryogenesis induction, MS^{-1} medium was modified by the addition of $2 \mathrm{mg} \mathrm{L}^{-1}$ of 2,4-D. Somatic embryogenesis induction was carried out at $26^{\circ} \mathrm{C}$ in the dark for 14 days without antibiotic selection, and a further 14 days with the selection agent ($150 \mathrm{mg} \mathrm{L}^{-1}$ kanamycin).

Figure 28: In vitro culture of wheat explants.
A - Size range of immature embryos dissected 10-12 days-post-anthesis for use in biolistic transformation of scutellar tissue.
B - Wheat calli showing induced shoot development with (1-selected) and without (2-unselected) kanamycin selection after 14 days on MS media containing $0.1 \mathrm{mg} \mathrm{L}^{-1}$ of 2,4-D and $150 \mathrm{mg} \mathrm{L}^{-1}$ of Kanamycin.
C-Regenerated plantlets from each of the co-bombardment classes grown on solidified $1 / 2$ MS" medium (0.4% agarose) without phytohormones for 2 weeks. Control- regenerated unselected shoot material, X, Y and Z - regenerated selected shoot material from each of the co-bombardment classes (Table 11).
D- Regenerants from the selection experiments $\left(R_{0}\right)$ depicting the selection phenotype with A- unselected and B- selected by application of an aqueous solution of 2.5% Kanamycin containing 0.2% Tween 20.

A
B

C

D

Plant regeneration was performed at $26^{\circ} \mathrm{C}$ under fluorescent light (3000 lx for 16 hr). Calli were transferred to MS^{-}medium containing $0.1 \mathrm{mg} \mathrm{L}^{-1}$ of 2,4-D and $150 \mathrm{mg} \mathrm{L}^{-1}$ of Kanamycin for 14 days to induce selectable shoot development as described in Figure 29. Calli were subcultured after 4 weeks if there was sufficient root initiation. Selection was continued during the plant regeneration phase. Once plantlets reached a height of approximately 1.5 cm , they were transferred to solidified $1 / 2$ MS' $^{-}$medium (0.3% Gelrite) without phytohormones (refer to Figure 29).

4.2.5 Antibiotic selection in glasshouse

After 3 weeks, developing plantlets were transferred to soil and placed in the glasshouse under growth conditions as described in Section 4.2.1. All regenerants from the selection experiments $\left(\mathrm{R}_{0}\right)$ were sprayed with an aqueous solution of 2.5% Kanamycin containing 0.2% Tween 20 . One to two weeks later, the plants with at least one functional Npt // gene were normal and no damage could be observed, whereas the negative control plants (derived from non-bombarded cultured embryos) were bleached completely. The phenotype of the selected regenerants is depicted in Figure 29. Plantlets surviving selection were grown until maturity in a glasshouse according to conditions outlined in Section 4.2.1.

Ten seeds from each of the R_{0} lines were planted in the glasshouse and fresh leaf material was collected for DNA extraction. However, for lines 7.X, 8.X, 9.X, 12.Y, 22. Y and $30 . Z$ fewer than 10 seeds were available due to partial sterility.

4.2.6 Histochemical GUS staining

β-glucuronidase (GUS) activity was determined histochemically using the following buffer: 0.1 mM sodium phosphate buffer, pH 7.0 , containing 0.5 mM potassium ferricyanide, 0.5 mM potassium ferrocyanide, 10 mM ethylenediaminetetraacetic acid, disodium salt (EDTA) and 0.1% (v/v) Triton X100.

Figure 29: In vitro culture of wheat calli: A- 2 week old callus on callus induction media. B- 14 days of somatic embryogenesis induction of callus on modified MS^{-}media containing 2,4-D. C- Green shoots developing from embryogenic calli under $150 \mathrm{mg} \mathrm{L}^{-1}$ selection of kanamycin. D- Chimeric regenerated shoot under $150 \mathrm{mg} \mathrm{L}^{-1}$ selection of kanamycin.

C

B

In this buffer, $1 \mathrm{mg} \mathrm{mL}^{-1} 5$-bromo-4-chloro-3-indolyl- β-D-glucuronic acid (X-gluc, Nalgene, USA) was dissolved. The mixture was filter-sterilized and stored at $20^{\circ} \mathrm{C}$.

Spikes from R_{1} plants, containing anthers microscopically determined to be at the developmental stage of meiosis, were assayed for GUS activity. Spikes were aseptically dissected and vacuum infiltrated with staining buffer for 18-24 hrs at $37^{\circ} \mathrm{C}$. Chlorophyll was subsequently extracted by incubating the spikes in a solution of 70% ethanol for 48 hrs at room temperature.

4.2.7 Microscopic detection of GFP fluorescence

GFP fluorescence of individual organs or tissue sections was monitored under a fluorescence phase contrast microscope (Zeiss Axioscope; Carl Zeiss, Jena, Germany) after excitation with light of $460-$ to $500-\mathrm{nm}$ wavelengths. Emitted fluorescence was photographed on Kodak Extachrome 400 film, using a filter for the detection of fluorescence light at wavelengths longer than 510 nm . Anthers of GFP-expressing wheat plants were viewed with an MRC 1000 confocal laser scanning microscope (BIORAD) using blue laser excitation light (488 nm).

4.2.7.1 GFP reporter gene in monocots

Intensity of GFP fluorescence in a transient assay on microprojectile bombarded wheat scutella (refer to Sections 4.2.3) was measured to determine differences between three different GFP constructs (Figure 30) modified for plant expression. Twenty-four hrs post-bombardment, immature scutella were visualised for GFP fluorescence.

4.2.8 PCR analysis

DNA extraction and general polymerase chain reaction protocols used in identifying transgenic wheat lines from the R_{0} plantlets are outlined in Sections 2.2.4.1 and 2.2.9. PCR primers for each construct used in biolistic transformation are described in Table 13. Thermal cycling conditions for specific amplicons are outlined below:

Figure 30: Diagramatic representation of the constructs used in the transient bombardment assay. A - Cambridge GFP from pBIN m-gfp5-ER (Haseloff et al., 1997), B- Monsanto GFP from pMON30049 (Pang et al., 1996) and CCambia GFP from pCAMBIA-1302 (Hajdukiewicz et al., 1994).

Table 13: PCR primers designed for the amplification of antisense WM5 (pWM53.1), sense WM5 (pWM54), 35S WM5 (pWM55.6), WM5 GUS (pWM 51) and WM5 GFP (pWM52.1), and pAct1-F/Npt II.

Amplicon		Forward Primer

NB. Refer also to Figure 30 for relative primer positions

Both antisense and sense WM5 amplicons were generated by thermocycling 35 times on a MJR thermal cycler. Each cycle consisted of 1 min at $94^{\circ} \mathrm{C}$ for denaturation, 2 mins at $60^{\circ} \mathrm{C}$ for annealing and 2 mins at $72^{\circ} \mathrm{C}$ for extension.

GUS, CaMV 35S, and Npt // amplicons were generated under the same conditions as for antisense and sense WM5 amplicons with the exception of a $62^{\circ} \mathrm{C}$ annealing temperature.

GFP amplicons were generated under the same conditions as for antisense and sense WM5 amplicons with the exception of a $57^{\circ} \mathrm{C}$ annealing temperature.

4.2.9 Southern analysis

DNA extraction, Southern hybridisation and autoradiography protocols used in identifying transgenic wheat lines from the R_{0} plantlets are outlined in Sections 2.2.9 through to 2.2.11. Southern analysis was used to estimate the copy number and whether there was whole construct insertion for each of the individual constructs (Figure 27) used bombardment experiments. All restriction endonucleases used for digestion of genomic DNA from T_{0} and T_{1} plantlets are given in Table 14.

4.2.10 Northern analysis

RNA extraction, Northern hybridisation and autoradiography protocols used in identifying transgenic wheat lines expressing transgenes are outlined in Sections 2.2.13 through to 2.2.11. Northern analysis was used to determine expression pattern for each of the individual constructs (Figure 27) used in the bombardment experiments.

4.3 Results

4.3.1 Plant regeneration and selection of transformants

Isolated scutella (5832) of wheat varieties Veery, Combi, Pavon and Florida were subjected to microprojectile bombardment with constructs of cobombardment classes X, Y and Z (experimental details are outlined in Table 19 - Appendix).

Table 14: Restriction endonucleases used for digestion of genomic DNA from T_{0} and T_{1} plantlets to estimate both copy number and whole transgene integration. Expected sizes of fragments yielded by enzymatic digestion are shown in parenthesis.

	Restriction Endonucleases	
Construct	Copy Number	Whole Transgene Integration
Antisense WM5	Hind III	Bam HI $(1.22 \mathrm{~Kb})$
Sense WM5	Hind III	Bam HI $(0.88 \mathrm{~Kb}$ and 0.74 Kb$)$
35S WM5	Eco RI	Hind III $(2.34 \mathrm{~Kb})$
WM5 GUS	Hind III	Eco RI (4.4 Kb)
WM5 GFP	Hind III	Eco RV and Sac I $(3.45 \mathrm{~Kb})$
pAct1-F/Npt II	Eco RV	Undetermined

NB. Refer also to Figure 27 for relative primer positions

4.3.2 T_{0} and T_{1} analysis

4.3.2.1 PCR analysis of T_{0} and T_{1}

The majority of transgenic plants identified by PCR amplification (Figure 31) were of transgenes isolated from genomic DNA of plantlets (totalling 30) that survived kanamycin selection in culture and in the glasshouse (Table 15). Twenty-three of the 30 regenerant lines possessed the expected 700 bp Npt II PCR product whilst 15 and 20 of the regenerant lines possessed the 219 bp and 637 bp PCR products for the GFP and GUS reporter genes respectively. Antisense, Sense and 35 S WM5 PCR amplicons ($1.2 \mathrm{~Kb}, 1.5 \mathrm{~Kb}$ and 476 bp respectively) were detected in 3,5 and 7 of the 30 regenerant lines respectively. Four of the 30 regenerent lines were shown to be non-transgenic.

Those plants identified as transgenic (T_{0}) were grown in the glasshouse and evaluated morphologically. All lines were observed to be morphologically similar and on further analysis, no lines were observed to be totally sterile. The majority (77%) of the transformed plants produced as many seeds as the seed-derived control plants whilst (23\%) showed partial sterility.

4.3.2.2 Southern analysis of T_{0} and T_{1}

Each of the 26 PCR identified transgenic T_{0} wheat lines, plus the 4 lines not confirmed transgenic by PCR, were also analysed for stable integration of respective transgenes based on co-bombardment class via Southern hybridisation (Table 15). Southern analysis also included the T_{1} lines to determine the heritability of the transgene(s). The same genomic DNA used in the PCR assay was used in the Southern analysis.

Figure 31: PCR analysis of T_{0} wheat lines. Genomic DNA isolated from T_{0} plants was amplified for Npt II selectable marker (A), GUS reporter (B), GFP reporter (C), Antisense WM5 (D), Sense WM5 (E) and 35S promoter (F) transgene constructs. $\mathrm{M}-1 \mathrm{~Kb}$ ladder, 1-30 T_{0} plant labels, -ve - negative control, +ve - positive plasmid control.

GUS

B

GFP

Antisense WM5
D $\begin{array}{lllllllllllllll}\text { M } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \stackrel{y y}{>} & \underset{+}{2} & M\end{array}$

Sense WM5
E M $\quad \begin{array}{llllllllllllllll}\# \\ \underset{y}{*} & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & M\end{array}$

35S WM5
F $\begin{array}{lllllllll}M & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$ $\underset{+}{\geq} \quad M$

Table 15: Kanamycin selected wheat regenerants identified as being transgenic through both PCR and Southern analysis. Regenerant wheat lines are labelled $1-30$ with a suffix of X, Y or Z depending on their co-bombardment class. "+" represents the presence of transgene, whilst "-" represents the absence of transgene.

Co-bombardment class	Variety	Bombardment Date	Plant Label	pAct1-F/Npt II	WM5 GFP	WM5 GUS	Sense WM5	Antisense WM5	35S WM5
Group X	Veery	26/4/99	1.X	+	+	-		Antisense	
	Veery	06/03/95	$2 . \mathrm{x}$	+	+	+		+	
	Veery	16/4/99	$3 . \mathrm{X}$	+	+	+		+	
	Veery	31/3/99		-		-		-	
	Veery	14/5/99		-		.		.	
	Combi	18/3/99	$6 . \times$	+	+	+		-	
	Combi	22/4/99	$7 . \mathrm{X}$	+	+	+		+	
	Combi	22/4/99	8.X	-	-	+		-	
	Florida	26/4/99	9. X	-	-	+		.	
	Florida	26/4/99	$10 . \mathrm{x}$	-	-	-		-	
	Florida	26/4/99	$11 . \mathrm{X}$	-	-	-		-	
Group Y	Veery	18/3/99	12.Y	+	-	+	+		
	Veery	05/03/95	$13 . Y$	+	+	+	-		
	Veery	05/03/95	14.Y	+	-	+	-		
	Veery	05/03/95	15.Y	+	+	+	-		
	Veery	09/03/95	16.Y	+	+	+	+		
	Veery	16/4/99	$17 . Y$	+	+	+	-		
	Veery	16/4/99	18.Y	+	+	+	+		
	Veery	26/4/99	19.Y	+	+	+	+		
	Combi	13/4/99	$20 . Y$	+	+	+	+		
	Combi	22/4/99	$21 . Y$	+	+	+	-		
	Pavon	22/3/99	$22 . Y$	+	.	+	-		
Group Z	Veery	26/3/99	23.2	-	-	-			+
	Veery	16/4/99	24.2	+	+	+			+
	Veery	16/4/99	$25 . Z$	+	-	-			+
	Veery	29/4/99	26.7	+	+	+			+
	Veery	03/04/95	27.7	+	-	-			.
	Pavon	22/3/99	28.2	+	-	-			+
	Pavon	13/3/99	29.2	+	-	-			+
	Pavon	18/3/99	30.2	+	-	+			+

NB. Grey overshadow are those wheat lines that were not transformed.

Figure 32 shows an example (transgenic wheat line $3 . X$) of the Southern analysis that was performed on all 26 transgenic lines to estimate copy number and whether there was whole transgene integration. The estimation of transgene copy number and the verification of whole transgene integration for each of the Southern confirmed transgenic lines are displayed in Table 14.

The pattern and intensity of hybridisation varied greatly among all the transformants and this reflects variation in the number of inserted copies of the gene (Table 14).

4.3.3 Transformation efficiency

Both the PCR and Southern analysis confirmed the production of 26 independent transformation events giving a transformation frequency of 0.45%. The transgenic plants produced from each of the individual microprojectile bombardment experiments are outlined in Table 14. Results show that there was a co-transformation frequency of 81%. Five of the 26 transformed lines had integration of a single construct type; a further 5 had integrated two different constructs; 10 had integration of three constructs whilst integration of all four different construct types occurred in only 6 of the 26 wheat lines.

4.3.4 Northern analysis

Northern analysis was used to determine the expression pattern, in the segregating T_{1} transgenic wheat lines, of the pAct1-F/Npt II, WM5 GFP, and WM5 GUS transgenes. Figure 33 shows that all wheat lines except $26 . Z$ have
 pAct1-F/Npt II varied between lines and within the T_{1} progeny of individual transgenic lines (17.Y and 24.Z). Analysis of GFP expression (Figure 33) showed that all lines had some level of transgene expression except lines 19.Y and 26.Z.

Table 16: Inheritance of transgenes from T_{0} to 10 random T_{1} progeny as identified through both PCR and Southern analysis. Transgenic lines are labelled $1-30$ with a suffix of X, Y or Z depending on their co-bombardment class. Red boxes represent those individual wheat lines that contain Npt // selectable marker, green boxes the GFP reporter gene construct, blue boxes the GUS reporter gene construct, yellow boxes the Antisense WM5 construct, purple boxes the Sense WM5 construct and orange boxes represent those lines possessing the 35 S WM5 construct. Numbers within the boxes highlight the number of copies for each construct respectively. Light grey boxes represent lines that possess no transgenes whilst dark grey boxes representthose wheat lines with no seed available.

Co-bombardment	Variety	Plant Label	T_{0}	T_{1}									
				1	2	3	4	5	6	7	8	9	10
	Veery	1.X	$1 \cdot$	-	**	*	-	*	*	*	-	*	-
	Veery	$2 . \mathrm{x}$	7535	7535	753	53 *	7535	$7 \begin{array}{llll}7 & 3 & 5\end{array}$		7535	533	7535	
	Veery	3. x	209618			209618		209618		1209618	9618		9618
Group X	Combi	$6 . \mathrm{x}$	- **										
	Combi	$7 . \mathrm{X}$	* 1	21									
	Combi	8. X	*										
	Florida	$9 . \mathrm{X}$					II						
	Veery	12.Y	- ${ }^{-}$										
	Veery	13.Y	67		423	762	23	632		63 *	9.3 *		$8 \cdot *$
	Veery	14.Y	迢										
	Veery	15.Y	72	772	772		772		772	772			772
	Veery	16.Y	43		11	11		42	142		11		
Group Y	Veery	17.Y	11 \%	1111	1 1 1						11	111	111
	Veery	18.Y	5755	糨 7	5755	$5 \quad 55$				2	5 W ${ }^{\text {W }}$	5. 25	
	Veery	19.Y	975	6 75	675		2. 3337	6 55	6. 515	675	675	- 55	-
	Combi	20.Y	974	1974	974		974	974	9747	97	974	- 74	- *
	Combi	21.Y											4×3
	Pavon	$22 . Y$											
	Veery	23.2											
	Veery	24.7	3623	312	2	3423	3423	3423	2	2	3. 423	323	- *
	Veery	25.7											
Group Z	Veery	26.2	14		12		112	116	16	1.12			
	Veery	27.2											
	Pavon	28.7											
	Pavon	29.2											
	Pavon	30.2	1	3		2	3	3	3				

Figure 32: Example of Southern analysis performed on all T_{0} and T_{1} wheat lines. Southern analysis of T_{0} wheat line $3 . X$ including all T_{1} progeny. All Southern probes were PCR amplified from each construct as per Table 13 and Figure 31.
A - GUS probe on Hind III digested genomic DNA to estimate copy number of the WM5 GUS constuct.
B - GUS probe on Eco RI digested genomic DNA to determine whole integration of the WM5 GUS construct (expected 4.4 Kb restriction fragment).
C - WM5 probe on Bam HI digested genomic DNA to determine whole integration of the Antisense WM5 construct (expected 1.22 Kb restriction fragment).
D - GFP probe on Eco RV/Sac / digested genomic DNA to determine whole integration of the WM5 GFP construct (expected 3.45 Kb restriction fragment).
E - Npt II probe on Eco RI digested genomic DNA to estimate copy number of the pAct1-F/Npt I/ constuct
For each construct refer to restriction maps in Figure 27. Lanes M refers to λ DNA digested with Bst Ell and Sac I. -ve refers to the negative control (untransformed regenerated wheat DNA).

WM5 GUS Hind III
WM5 GUS Eco RI
A

Antisense WM5 Bam HI
C
то \qquad

WM5 GFP Eco RV/Sac I
D

pAct1-F/Npt II Eco RI
E

Figure 33: Northern analysis showing expression pattern of A- Npt II, B- GFP C- GUS (no expression), D- WM5 and E- Glyceraldehyde-6-phosphate dehydrogenase (GAPDH - loading control), F- Ethidium bromide stained ribosomal RNA in the segregating T_{1} transgenic wheat lines. The transgenic wheat lines analysed include 16.Y, 17.Y, 19.Y, $24 . Z$ and $26 . Z$.

Furthermore Northern analysis of WM5 showed variation in the levels of expression within the different developmental stages of the spike analysed (Figure 33). As for Npt II expression, GFP expression varied between lines (16.Y versus 24.Z) and within the T_{1} progeny of individual transgenic lines (17.Y). GFP expression was only detected in those lines where the RNA was extracted from spike tissue that was older than the tetrad stage of pollen mother cell development. It is also interesting that Figure 33 suggests that not all transgenic lines process the GFP transcript the same way, as line 16.Y produced an abundance of a 0.9 Kb transcript whilst line $17 . \mathrm{Y}$ seemed to lack a 0.9 Kb transcript and instead contained a 2 Kb transcript. This suggests that line 16.Y was able to correctly splice the GFP transcript whilst line 17.Y was unable to splice the two introns (refer to Figure 27) from the primary transcript (2 Kb).

Interestingly, no GUS expression was detected in the Northern analysis of the transgenic wheat lines 16.Y, 17.Y, 19.Y, $24 . Z$ and $26 . Z$ (Figure 33).

4.3.5 WM5 promoter analysis

4.3.5.1 Analysis of the GFP reporter gene in monocots

Transient expression of three modified plant GFP constructs in wheat scutella was analysed to determine the most suitable modified form of GFP for WM5 GFP reporter construct construction.

The construct showing highest level of fluorescence in wheat scutella, given that all transformation and microscopy parameters were kept the same, was Monsanto's GFP (refer to Figure 34). Consequently this version of GFP was used in the construction of the WM5 GFP reporter construct.

4.3.5.2 WM5 GFP reporter analysis

According to Table 1415 of the $26 \mathrm{~T}_{0}$ wheat lines possessed the WM5 GFP reporter construct. Fluorescent microscopy of the T_{1} progeny confirmed high levels of expression of GFP in at least 4 of 15 transgenic lines. Line 16.Y was chosen for further analysis.

Figure 34: A. Transient expression assay of green fluorescent protein (GFP) in wheat scutella from 1- Cambridge GFP, 2- Monsanto GFP, 3- Cambia GFP and 4- pBluescript $S K(+)$ control. B. Whole scutella image of transient expression assay of GFP from Monsanto GFP construct (refer to Figure 30 for construct details).

A

2

3

4

B

Fluorescence of GFP was primarily visualised in immature pollen grains (binucleate stage) from the developing anther (Figure 35) utilising a fluorescent dissecting microscope. Laser confocal microscopy allowed sectioning of the anther with the visualisation of GFP fluorescence. Confocal microscopy not only showed GFP fluorescence in the developing pollen, but also in the tapetal cells of the anther (Figure 35). Temporally, GFP fluorescence initiated at the late tetrad stage and persisted through at low levels until pollen maturation (data not shown). Fluorescent microscopy was unable to detect GFP fluorescence in female meiocytes, roots, leaves or mitotic apices.

4.3.5.3 WM5 GUS reporter analysis

According to Table 14, 20 of the $26 \mathrm{~T}_{0}$ wheat lines possessed the WM5 GUS reporter construct. Histochemical GUS staining of pre- to post-meiotic spikes of the T_{1} progeny confirmed expression of GUS in at least 2 of 28 transgenic lines. Line $24 . Z$ and $30 . Z$ were chosen for further analysis.

Strongest GUS expression was visualised in longitudinal strips on each of the lobes of pre-meiotic anthers (Figure 36). Low levels of unspecific GUS expression were detected on cut edges of all tissues examined. No GUS expression was detected in female meiocytes, roots, leaves or mitotic apices.

4.3.6 WM5 phenotypic analysis

Each of the 26 analysed transgenic wheat lines were compared to the control wheat lines for significant differences in fertility, and general plant morphology. No significant differences were detected between the controls and the transgenic wheat lines.

Figure 35: Fluorescent microscopy for GFP fluorescence in the T_{1} progeny of transgenic line 16.Y. A- Fluorescence of GFP in immature pollen grains from the developing anther of 16.Y.5; B- Autofluorescence from a developing anther containing immature pollen grains from Veery control; C- Laser confocal micrographs of GFP fluorescence emitted from 1) immature pollen and 2) tapetal cells (highlighted by arrows) from within a developing anther of 16.Y.5; D- Laser confocal micrographs of autofluorescence emitted from 1) immature pollen and 2) tapetal cells (highlighted by arrows) from within a developing anther of Veery control.

A
B

C

1

Figure 36: GUS expression of pre-meiotic spikes from T_{1} progeny of 24.2 and 30.Z. A- GUS expression in anthers of transgenic wheat line 30.Z.6; B- and CGUS expression in anthers of transgenic wheat line $24 . Z .2$ (highlighted by arrows); D- GUS expression absent in anthers of Veery control wheat line.

4.4 Discussion

This chapter describes the use of genetic transformation of wheat for functional analysis of meiotic genes.

4.4.1 Plant regeneration and selection of transformants

Of the 26 transgenic wheat lines produced, no significant phenotypic abnormalities were observed. Reduced fertility was observed in 6 of the transgenic lines but shows that it is similar to reports of the occurrence of sterility in transgenic maize, and wheat plants (Fromm et al., 1990; Gordon-Kamm et al., 1990; Vasil et al., 1992) produced through the regeneration of both embryogenic callus and morphogenic suspension cultures. These reports attributed sterility to long-term cultures and not to the transformation procedure per se. However, transformation of wheat via microparticle bombardment of scutellar tissue generally results in low levels of sterility (Becker et al., 1994; Nehra et al., 1994) given that the culture period before embryogenesis is short ($2-3$ weeks).

Selection of transformed wheat tissues showed that kanamycin ($150 \mathrm{mg} \mathrm{L}^{-1}$) was an effective selection agent. Observations suggested that without two glasshouse selections with a spray solution of kanamycin ($2.5 \% \mathrm{w} / \mathrm{v}$) there would have been significant numbers of escapes. This is unfavourable when compared to use of the bar gene as a selectable marker, as fewer plantlets escape from tissue culture selection (Christou et al., 1991; Gordon-Kamm et al., 1990).

4.4.2 T_{0} and T_{1} analysis

4.4.2.1 PCR analysis of T_{0} and T_{1}

The use of PCR to ascertain the T_{0} transgenic lines is relatively quick and easy. However, during this study it was observed that some transgenic lines were not detected as a result of difficult PCR amplicons (eg. sense WM5 construct). This does not exclude the use of PCR if rigorous conditions for the reproducible amplification of transgene constructs can be determined. However it is essential that PCR results be subsequently confirmed through Southern hybridisation.

4.4.2.2 Southern analysis of T_{0} and T_{1}

Microprojectile bombardment commonly results in complex integration patterns (Birch \& Franks, 1991). The most practical and informative genetic engineering would involve the integration of a single transgene copy to avoid potential problems of co-suppression. However multiple gene integration does not necessarily preclude lower levels of gene expression. This study generated transgenic wheat lines with both multiple transgene integration and single transgene integration. Thirty-five percent of lines contained all four different constructs (Table 11).

4.4.3 Transformation efficiency

Utilising microprojectile bombardment as a transformation procedure, PCR and Southern analysis confirmed transgenic wheat plants were generated at a frequency of 0.45% (refer to Table 19 - Appendix). This is comparable to the 0.5-2.5\% transformation frequency that has previously been reported in wheat (Becker et al., 1994; Nehra et al., 1994). Summarising the results, one transgenic wheat plant is recovered for every 224 embryos bombarded. This estimation of stable transformation frequency is substantially lower than that determined for the immature embryos of rice (one every 27 embryos (Christou et al., 1991)) and maize (one every 100 embryos (Koziel et al., 1993)).

Co-transformation frequency was at 81% showing that microprojectile bombardment with multiple constructs is an efficient method of delivery for more than one gene. These results are comparible to the cotransformation frequency (67-79\%) seen in sugarcane callus (Bower et al., 1996). Preliminary transgene segregation results based on Southern analysis of a limited number of T_{1} progeny (ten plants) suggest that all three constructs were integrated at one or two independent loci within the wheat genome. It should be noted that larger T_{1} and T_{2} progeny populations should be analysed to confirm these preliminary conclusions. Further analysis of the T_{2} progeny is likely to provide further details on the number of integration events of the transgene(s) into the wheat genome.

4.4.4 Northern analysis

This study has also demonstrated the transcriptional activity of the integrated transgenes. Northern analysis has demonstrated expression of both the Npt I/ selectable marker and GFP, under the transcriptional control of the 1.4 Kb WM5 promoter fragment. Expression levels of Npt /I and GFP varied between T_{0} transgenic lines and within the segregating T_{1} progeny.

As WM5 is highly expressed in pollen mother cells at meiosis, it was expected that the WM5 promoter (1.4 Kb fragment) driven GFP expression would also be seen at this developmental stage. This was not observed.

The developmental process of meiosis takes 24 hrs to complete in wheat (Bennett et al., 1973) and is difficult to observe with limited numbers of tillers per plant. Limited spikes of T_{1} plants from previously confirmed pAct1-F/Npt II, WM5 GFP and WM5 GUS T_{0} lines were available for Northern analysis. GFP expression was detected in only 3 of the 5 analysed transgenic lines. Northern analysis suggests that the 1.4 Kb promoter fragment of WM5 drives GFP expression from tetrad stage of development. These results are not definitive as the number of spikes analysed at varying stages was limited. Compounding this, the T_{1} lines analysed were segregating for the integrated transgenes. Timing did not allow analysis of more homozygous T_{2} transgenic lines.

Not all transgenic lines seemed to express GFP in the same manner. Results suggest that line 16.Y was able to correctly splice the GFP transcript whilst line 17.Y was unable to splice the two introns from the primary transcript (2 Kb) (Figure 33). However this is not the only possible explanation of the observed results. The observed banding pattern (Figure 33) could possibly be an abberation in the coding sequence due to multiple transgene integrations disrupting the true coding sequence for GFP. This is a possibility given that transgenic line 17.Y has a single copy of each of the WM5 GFP pAct1-F/Npt II, and WM5 GUS constructs present in the genome (Table 14).

WM5 showed variation in expression pattern in different spikes analysed (Figure 33). This variation is not directly attributable to the transgenes 139
integrated as the endogenous WM5 gene could not be differentiated from the WM5 transgenes in this hybridisation study. Variation in WM5 expression was probably due to the variation known to occur in the endogenous WM5 gene during floral development. Further analysis of these transgenic lines with transgene specific RT-PCR may help determine if both the endogenous WM5 and the WM5 transgenes have an altered expression level.

No GUS expression was detected through Northern analysis of 5 transgenic wheat lines (Figure 33). This result is likely to be due to either the lack of functional copies of the WM5 GUS transgene or that the tissues in which the GUS transcript would be highly expressed are not represented in the RNA samples. This does not discount that GUS could be expressed in these tissues but is not detectable via Northern analysis. Further analysis through RT-PCR could confirm expression of the GUS gene in these T_{1} progeny.

4.4.5 WM5 promoter analysis

4.4.5.1 Analysis of the GFP reporter gene in monocots

GFP is a 21 kDa apo-protein that spontaneously folds into a bright-green fluorescing structure. GFP was chosen as a reporter gene in these experiments as it can be expressed and visualised in many cell types, both animal and plant. In spite of successful transient expression of the wild-type GFP in plant protoplasts (Hu \& Cheng, 1995; Niedz et al., 1995; Sheen et al., 1995) and from virus-based vectors (Baulcombe et al., 1995; Casper \& Holt, 1996; Oparka et al., 1995), its expression in stably transformed plants has typically yielded very faint or no green fluorescence.

Experiments were designed to test the level of fluorescence of GFP in a transient assay of three "plant-modified" GFP constructs in wheat scutella. Results highlighted that the construct showing highest level of fluorescence in wheat scutella, was Monsanto's GFP (refer to Figure 34) and was comparable with that seen in maize protoplasts and tobacco plants (Chiu et al., 1996). The high level of fluorescence has been attributed to the removal of a cryptic splice site (Haseloff et al., 1997) and altered codon usage (higher G/C content) than
used for human proteins. A mutation in which the serine at position 65 is modified to a threonine (S65T) plus the introduction of both the potato ST-LS1 intron into the coding region of GFP and the heat shock protein 70 intron before the start codon have all shown to yield higher levels of fluorescence in monocots.

4.4.5.2 WM5 GFP reporter analysis

Laser confocal microscopy of GFP expressing transgenic line 16.Y, showed GFP fluorescence primarily in immature pollen grains (binucleate stage) from the developing anther (Figure 35). These results support the observed presence of the GFP transcript only in those RNA samples from spikes cytologically staged to be at the tetrad stage of meiotic development (Figure 33). Confocal microscopy sectioning not only showed GFP fluorescence in the developing pollen, but also in the tapetal cells of the anther (Figure 35). GFP fluorescence was not detected in female meiocytes, roots, leaves or mitotic apices. These results are not strictly comparable to the expected expression pattern of WM5. Northern analysis (Dong et al., 2001a) has shown the WM5 transcript to be strongly expressed during early meiosis with expression gradually reducing as meiosis proceeds. Low levels of expression have also been detected in shoot apices. The WM5 gene is not expressed in highly active mitotic tissue such as the root. Additionally the WM5 protein has been immunolocalised to pollen mother cells, tapetal cells and floral tissue epidermal cells (Dong et al., 2001a).

Spatially GFP fluorescence was visualised in the same cells where WM5 is known to be highly expressed (pollen mother cells and tapetal cells). However temporally, the delay of GFP expression as compared to WM5 suggests that the 1.4 Kb fragment 5' to the WM5 coding sequence does not contain the whole WM5 promoter. This 1.4 Kb fragment does possess the ability to drive expression, just not at the early stages of meiosis, as expected.

The use of the GFP reporter gene and laser confocal microscopy illustrates the usefulness of the green fluorescent protein in determining the spatial expression pattern for genes of interest.

4.4.5.3 WM5 GUS reporter analysis

Histochemical GUS expression in T_{1} progeny in pre- to post- meiotic spikes confirmed a similar spatial expression to GFP. GUS expression was observed in longitudinal strips on each of the lobes of pre-meiotic anthers (Figure 36). No GUS expression was detected in female meiocytes, roots, leaves or mitotic apices. Temporal expression of GUS in the pollen mother cells conflicted with both results of GFP fluorescence and the expected WM5 expression pattern. GUS is predominantly expressed in pre-meiotic anthers; native WM5 is predominantly expressed in meiotic anthers whilst GFP is predominantly expressed in post-meiotic anthers. Differences in the observed expression of both the GFP and GUS protein can possibly be attributed to the lengths of the promoter fragments transcriptionally controlling each of these genes. The WM5 GUS possesses a 2.5 Kb fragment 5^{\prime} to the WM5 coding sequence whilst the WM5 GFP possesses a smaller 1.4 Kb fragment 5 ' to the WM5 coding sequence. Time constraints and cloning difficulties prevented the construction of GUS and GFP reporter constructs possessing the same size WM5 promoter fragment. Nevertheless, analysis of the reporter genes from both the WM5 GUS and WM5 GFP transgenic lines suggest that neither the 2.5 Kb or the $1.4 \mathrm{~Kb} 5^{\prime}$ fragments represent the whole native WM5 promoter. Varying temporal but highly similar spatial expression patterns in reporter gene transgenic lines suggest that WM5 is under complex transcriptional control.

Given the small number of transgenic lines showing GUS and GFP expression the impact of transgene intergration site could also be influencing observed variation in expression patterns. For correct transcriptional activity of reporter genes, as defined by the endogenous WM5 expression, the site of integration could prove vitally important. The transgene may have to be integrated into a region of the genome that would confer meiotic expression. This could correspond to the Ph2 region.

4.4.6 WM5 phenotypic analysis

Of the 26 transgenic wheat lines analysed no significant phenotypic differences were seen in the T_{1} progeny as compared to the controls. Further phenotypic analysis on homozygous T_{2} plants needs to be performed on those transgenic lines confirmed to be expressing each of Antisense WM5, Sense WM5 and 35S WM5. Specifically, the analysis of WM5's potential influence on a Ph2-like phenotype, cytological examination of bivalent formation at metaphase I, needs to be examined. Additionally, homozygous T_{2} lines should be crossed to Triticum kotschyi var. variablis (Sears, 1982) to examine their ability for interspecific chromosome pairing. However, these lines also need to be studied in detail with respect to apical meristematic development. Antisense WM5 transgenic wheat lines may also show altered development of the protodermal L1 layer as has been shown with the PDF1 gene of Arabidopsis thaliana (Abe et al., 1999; Abe et al., 2001). Such detailed analysis of the wheat transformants produced in this study may help decifer the function of the WM5 gene.

STRUCTURE OF THE PH2 LOCUS

5.1 Introduction

Hexaploid wheat behaves strictly as a diploid during meiosis, which results in 21 bivalents at metaphase I. This phenotype is controlled by a major locus on the long arm of chromosome 5B (Okamoto, 1957; Riley \& Chapman, 1958) termed Ph1. Given the physiological complexity of meiotic processes such as chromosome pairing and recombination, it is foreseeable that Ph1 is not the only locus controlling wheat's strictly diploid behaviour. The Ph2 locus, although a minor suppressor of homeologous chromosome pairing in comparison to Ph1, indicates that chromosome pairing is a multigenic trait. A mutation at the Ph2 locus termed ph2a was originally identified in an X-ray irradiated population of hexaploid wheat during an attempt to isolate mutants of the Ph1 locus (Sears, 1977). Current knowledge of meiotic processes is largely based on detailed studies in yeast. A large number of genes have shown importance during meiosis in yeast including chromosome pairing and recombination (reviewed in Kleckner, 1996). Phenotypic studies of the ph1b mutant have shown that deletion of the Ph1 locus may affect several premeiotic and meiotic processes (Feldman, 1993; Luo et al., 1996; Shaw \& Moore, 1998), and that both the Ph1 and the Ph2 loci are unlikely to be controlled by single genes (Roberts et al., 1999).

This study aims to analyse the complexity of the Ph2 locus; is this a single gene, a multigene family or a complex of linked genes influencing different meiotic processes? Utilising a similar approach in identifying the Ph1 gene(s) (Roberts et al., 1999), this study uses comparative mapping between rice and the Triticeae to investigate the complexity of the Ph2 locus.

Comparative mapping has been demonstrated in various crop plants through the use of a common set of DNA probes (Bonierbale et al., 1988). Genetic maps of the Triticeae (T. aestivum, T. tauschii, and Hordeum spp.) have been compared to maps of rice, maize and oat (Vandeynze et al., 1995) and have shown molecular markers on the linkage maps for these species detected with the same probes are essentially homosequential. The Gramineae share extensive synteny across their genomes, allowing for one species to serve as the base for comparative genomics within the family (Moore et al., 1995). Within the cereals, rice presents the most tractable species for genomic applications in a cereal. Small genome size and agricultural importance make rice an ideal model species for genome analysis. The diploid rice genome consists of 431 Mb per 1C nucleus whilst the hexaploid wheat genome consists of $15,966 \mathrm{Mb}$ per 1C nucleus (Arumuganathan \& Earle, 1991). In comparison to other cereals, rice contains half the DNA content of sorghum (760 Mb), 17% and 8.8% of the DNA content of maize ($2,504 \mathrm{Mb}$) and barley ($4,873 \mathrm{Mb}$) respectively. The major difference in genome size is due to ploidy, however some difference can be attributed to wheat possessing approximately 80% repetitive sequences compared to 50% in rice (Bennett \& Smith, 1991). The selection of rice as a model organism can also be ascribed to extensive genetic and molecular resources. High-density rice maps have recently allowed contig generation from BAC libraries in preparation for map based cloning (Yang et al., 1997). Extensive comparative mapping between grasses (Vandeynze et al., 1995) demonstrated that the genes present on rice chromosome 1 are in a similar order to those on wheat homoeogroup 3 (Smilde et al., 2001). This makes rice the logical choice for molecular characterisation of the Ph 2 locus.

5.2 Materials and methods

5.2.1 Plant material

5.2.1.1 Genetic stocks

The following hexaploid wheat (Triticum aestivum; $2 \mathrm{n}=6 \mathrm{x}=42$; genome AABBDD) lines were used; seeds of euploid wheat (Triticum aestivum cv. Chinese Spring) were obtained from Dr Ken Shepherd, Waite Agricultural

Research Institute. The Chinese Spring mutant lines ph2a and ph2b were obtained from Prof. Moshe Feldman, Plant Genetics Institute, Israel.

5.2.1.2 Mapping populations

Three double haploid populations derived of barley were used for mapping. These three mapping populations consisted of 150 lines from crosses between the Australian cultivars Chebec x Harrington, Galleon x Haruna Nijo (Dr S. Logue, Waite Agricultural Research Institute) and Clipper x Sahara (Dr A. K. R. M. Islam, Waite Agricultural Research Institute).

5.2.2 RFLP analysis

A total of 26 RFLP markers were screened for their ability to identify polymorphisms between Chinese Spring and the meiotic mutants. These DNA clones were obtained through the Australian Triticeae Mapping Initiative and from IPK, Gaterslaben (Germany). The majority of these markers have been mapped in wheat and barley and their chromosomal locations identified (Marino et al., 1996; Nelson et al., 1995a; Nelson et al., 1995b; Nelson et al., 1995c; Vandeynze et al., 1995). The clones were selected on the basis of their availability and map location. The WM1 family was also mapped with respect to these clones in order to ascertain the relative position of the gene family on the chromosome arm and in position within the deletion.

5.2.2.1 Southern blot analysis

Hybond $\mathrm{N}+$ membranes (Amersham, Australia) prepared from restriction endonuclease digested DNA from each of the double haploid plants (including parental lines), of the three barley mapping populations were kindly supplied by the Barley National Molecular Marker Program (Waite Institute, Adelaide). Protocols for the preparation of these membranes are outlined in Sections 2.2.9 to 2.2.12.

5.2.2.1.1 WM1, WM3, WM5 and TaMSH7 gene family RFLP mapping

PCR primers were designed based on partial genomic sequence for WM1.1 (Ji, 1992; Ji \& Langridge, 1994). The whole putative coding sequence for WM 1.1 was amplified from Chinese Spring genomic DNA using primers WM1.1 ORF in 146

Table 1, whilst the whole cDNA for Wheat Meiosis 3 (abbreviated WM3 (Letarte, 1996)), WM5 (Dong et al., 2001a; Thomas, 1997) and T. aestivum mismatch repair protein homologue 7 (abbreviated TaMSH7 (Dong et al., 2001b)) were used as probes for Southern analysis. WM1.1 ORF, WM3, WM5, and TaMSH7 probes were screened across Chebec x Harrington, Clipper x Sahara and Galleon x Haruna Nijo barley mapping population membranes as supplied by the Barley National Molecular Marker Program. Mappable polymorphisms for WM3 and TaMSH7 were only detected in the Galleon x Haruna Nijo (Dong et al., 2001b; Letarte, 1996), whilst for WM5; polymorphisms were only detected in the Clipper x Sahara mapping population (Dong et al., 2001a).

5.2.2.1.2 RFLP probes for determining ph2a deletion size

Total genomic DNA of wheat lines Chinese Spring, ph2a and ph2b were digested with Bam HI, Dra I, Eco RI, Eco RV or Hind III according to protocols outlined in Section 2.2.10. RFLP probes obtained through the Australian Triticeae Mapping Initiative and from IPK, Gaterslaben (Germany) were hybridised to Southern blots of these wheat lines. A total of 14 probes were screened across these wheat lines (Table 17).

5.2.2.2 Genetic analysis

Data obtained from scoring segregation patterns of the WM1 gene family, WM5, TaMSH7 and WM3 RFLP markers were analysed with MapManager QT (Version 8.0) software (Manly, 1993) using the Kosambi mapping function (Lander et al., 1987).

5.2.3 Comparative mapping between barley, wheat and rice

Putative meiosis genes WM5, TaMSH7, WM3 and the WM1 gene family have been localised to the region deleted in the ph2a mutant. Using these markers in combination with RFLP probes (Australian Triticeae Mapping Initiative) localised both inside and outside the ph2a deletion, Graingenes database was screened for comparative genetic maps between the grasses. Utilising comparative anchor probes (Vandeynze et al., 1995) that flanked the ph2a deletion region in wheat, the syntenous Ph2 regions were determined in barley, wheat and rice.

5.2.3.1 YAC, PAC and BAC contig development

A total of 19 rice YACs located on rice chromosome 1 region comparable to the region deleted in ph2a on wheat chromosome 3DS were selected from the Rice Genome Program (Japan) to identify a partial physical map (http://rgp.dna.affrc.go.jp/). P1 artificial chromosome (PAC) and BAC clones were further identified that represented a partial physical map of the rice chromsome 1 region comparable to the Ph2 locus. All clones were derived from rice variety Nipponbare. Sequence data for each of the 53 identified PAC/BAC clones was available through the Rice Genome Program. The RiceGAAS software (http://rgp.dna.affrc.go.jp/) was used for visualisation of the predicted coding sequences.

5.2.3.2 Identification of wheat ESTs from PAC and BAC clones

Each of the 53 identified PAC/BAC clones was used in a BLAST 2.0 blastn (Altschul et al., 1997) search of the public EST database for wheat ESTs (International Triticeae EST Corporative) that had an expectation $\leq 1 \mathrm{xE}^{-50}$.

5.2.3.3 Structural analysis of putative meiosis genes

The RiceGAAS software (http://rgp.dna.affrc.go.jp/) was used for predicting the intron-exon structure of each of the rice predicted coding sequences. Putative cDNAs were translated into the primary peptide (VectorNTI Suite Version 6.0) and compared to various motif databases including the Conserved Domain Database v1.51 (Altschul et al., 1997), INTERPRO (Apweiler et al., 2001), and the PROSITE database (Hofmann et al., 1999). Finally, annotations on DNA sequence and peptide sequence were compiled through the use of VectorNTI Suite Version 6.0 software (Informax, Inc. USA).

5.2.3.4 Analysis of rice and barley meiosis related phenotypic traits

RiceGenes and GrainGenes databases were screened for both mutant lines and Quantitative Trait Loci (QTLs) that correlate with phenotypes associated with meiosis. All phenotypic traits on the databases likely to be associated with meiosis were screened for their map localisation to respective Ph2 homologous regions in rice and barley.

Table 17: Restriction fragment length polymorphism probes (molecular markers) for determining ph2a deletion size.
$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Molecular } \\ \text { Marker }\end{array} \text { Source } & \text { Type } & \text { Repetition }\end{array} \begin{array}{l}\text { Location with } \\ \text { respect to ph2a } \\ \text { deletion }\end{array}\right]$
${ }^{1}$ Sc - single copy, Lc - low copy

5.3 Results

5.3.1 RFLP probes for determining ph2a deletion size

The homologous region corresponding to the region deleted in the ph2a mutant of wheat was identified in the three-barley mapping populations (Chebec x Harrington, Clipper x Sahara and Galleon x Haruna Nijo) using molecular markers (genomic DNA or cDNA clones - refer to Table 17) (Figure 37).

This region was also determined in barley using four different molecular markers for putative meiotic genes known to reside within the region deleted in the ph2a mutant. These molecular markers code for the WM1 gene family (Ji \& Langridge, 1994), WM5 (Thomas, 1997), TaMSH7 (Dong et al., 2001b) and WM3 (Letarte, 1996) genes. Figure 38 shows that the molecular marker order in wheat, barley and rice (3DS, 3HS, rice chromosome 1, respectively) is syntenous across the region defined by the ph2a mutant in wheat. Putative wheat meiosis genes are ordered on rice chromosome 1 as follows; WM1 gene family, TaMSH7, WM5 and WM3 with the WM1 gene family located distal and WM3 proximal to the centromere. This order is consistent for all four markers across three barley-mapping populations (Figure 37).

5.3.2 Comparative mapping between barley, wheat and rice

Utilising the molecular markers found to be located within the region deleted in the ph2a mutant, regions syntenous to Ph2 regions were determined in both wheat and rice. The syntenous Ph2 regions in rice, wheat and barley are outlined in Figure 38. The maximum estimated genetic size of the homologous region in barley that is deleted in the ph2a wheat mutant is 15 cM whilst the minimum genetic size is 6.5 cM . Exact size was not determined due to the lack of molecular markers close to the deletion breakpoints in the wheat ph2a mutant.

5.3.2.1 YAC, PAC and BAC physical map

Comparative mapping using grass anchor probes (Vandeynze et al., 1995) highlighted 19 rice YACs located on the rice chromosome 1 region homologous to the region deleted in ph2a on wheat chromosome 3DS.

Figure 37: The region deleted in the ph2a mutant of wheat delimited in the three-barley mapping populations Chebec x Harrington, Clipper x Sahara and Galleon \times Haruna Nijo. The data from each of the mapping populations is compiled into the consensus map (Langridge et al., 1995).

Figure 38: The syntenous Ph2 regions in rice, wheat and barley (Ahn et al., 1993; Langridge et al., 1995; Nelson et al., 1995c)

Figure 39 depicts the physical alignment of the YAC clones with respect to the rice genetic map (Harushima et al., 1998; Saji et al., 2001). From all the putative coding sequences in the region homologous to the ph2a deleted region in rice, the most likely meiotic or meiosis related genes are listed in Table 18 and displayed in Figure 39.

5.3.2.2 Identification of wheat ESTs from PAC and BAC clones

Although the rice sequence data highlights potential coding sequences, there is no evidence that these genes are present or even expressed in wheat. To address this problem the rice PAC/BAC clones were used to identify wheat ESTs. BLAST 2.0 blastn (Altschul et al., 1997) search results highlighted 280 wheat ESTs from the 5.5 Mb of rice PAC/BAC sequence. This 5.5 Mb of rice sequence contains approximately 900 putative coding sequences. The 280 wheat ESTs were then screened across the non-redundant database at NCBI via BLAST 2.0 tblastx (Altschul et al., 1997) to give an indication of homologous proteins, which were subsequently, examined for homology to known meiotic or meiosis related genes (Table 18).

5.3.2.3 Structural analysis of putative meiosis genes

The structure of predicted rice coding sequences that show homology to known meiosis related genes are displayed in Figure 40 to Figure 45.

5.3.2.4 Analysis of rice and barley meiosis related phenotypic traits

Both the RiceGenes and GrainGenes database were screened for QTLs in the region of Ph 2 that could be associated to a meiotic gene effect. Only one such significant QTL (LOD >2.5, p-value $=0.0001$) was found localised to the delimited homologous Ph2 region on rice chromosome 1. Interestingly the QTL was for spikelet fertility and is illustrated in Figure 38. No other mapped phenotypic traits related to meiosis were found localised to the short arm of rice chromosome 1. However, a gene termed msg5 (male sterile 5) is located on the short arm of barley chromosome 3. It is not known if this gene resides in the homologous ph2a deletion region.

Figure 39: Physical alignment of the YAC clones with respect to the rice genetic map (Harushima et al., 1998; Saji et al., 2001), highlighting the estimated physical size of the homologous Ph2 region in rice with the physical positions of the putative meiotic or meiosis related genes.

Putative rice meiosis related genes

Rice chromosome 1 overlaid on wheat chromosome 3

Table 18: Putative meiosis related genes identified from rice PAC and BAC sequence along with cereal ESTs.

Gene	tblastx Expectation value	Homologue(s)	Putative Function	Reference
Wheat putative Asy1 EST	$\begin{aligned} & 3 x E^{-45} \\ & 3 x E^{-06} \end{aligned}$	Arabidopsis asynaptic mutant 1 Yeast HOP1 protein.	Chromosome synapsis via synaptonemal complex formation.	(Caryl et al., 2000)
Wheat TaMSH7 coding sequence	$\begin{aligned} & 0 \\ & 3 x^{-58} \\ & \hline \end{aligned}$	Arabidopsis AtMSH6-2 protein Yeast MSH6 protein.	DNA mismatch repair.	(Dong et al., 2001b)
Wheat WM5 coding sequence	$2 \mathrm{xE}{ }^{-66}$	Rice hypothetical protein.	Meiotic expression pattern. Function not determined.	(Dong et al., 2001a)
Wheat WM1 gene family (coding sequence for WM1.1)	$\begin{aligned} & 0 \\ & 3 \mathrm{XE}^{-80} \end{aligned}$	Barley Cf2/Cf5 disease-like resistance protein homolog. Tomato Cf2.1 disease resistance protein.	Low level meiotic expression pattern. Function not determined.	(Ji, 1992; Ji \& Langridge, 1994)
Wheat WM3 coding sequence	$\begin{aligned} & 2 x^{-18} \\ & 6 x^{-18} \end{aligned}$	Sugar Beet non-specific lipid transfer protein precursor. Cotton lipid transfer protein precursor.	Meiotic expression pattern. Function not determined.	(Letarte, 1996)
Rice putative damagespecific DNA binding protein coding sequence	$\begin{aligned} & 0 \\ & 2 x^{-25} \end{aligned}$	Arabidopsis damage-specific DNA binding protein. Human damage-specific DNA binding protein.	Lesion recognition of UV-light damaged DNA. Potential role in DNA repair.	(Abramic et al., 1991; Hirschfeld et al., 1990; Protic et al., 1989)
Rice putative Scll-like coding sequence	$\begin{aligned} & 0 \\ & 3 x E^{-11} \end{aligned}$	Putative Arabidopsis coding sequence. Chicken chromosomal scaffold protein.	Chromosome structural protein important for chromosome condensation.	(Saitoh et al., 1995)
Wheat putative WD40 protein EST	$\begin{aligned} & 5 x^{-67} \\ & 3 x E^{-32} \end{aligned}$	Arabidopsis WD40 protein. Rat WD40 protein.	Potential role in metaphaseanaphase transition and recombination.	(Townsley \& Ruderman, 1998) (Ito et al., 2001)
Wheat putative MARbinding protein EST	$\begin{aligned} & 4 x^{-18} \\ & 3 x E^{-23} \\ & 4 x E^{-22} \end{aligned}$	Arabidopsis MAR-binding protein MFP1. Tobacco MAR-binding protein MFP1. Tomato MAR-binding protein MFP1.	Chromatin structural protein important for interaction between chromatin and the nuclear matrix. Particularly related to gene expression.	(Harder et al., 2000)

Figure 40: Putative structure of rice Asy1-like protein. A - Genomic sequence, B - Predicted cDNA highlighting corresponding cereal ESTs, C - Diagramatic representation of the primary peptide sequence depicting putative structural motifs, D - Comparison of peptide sequence diagrams highlighting commonality in areas of conserved structural motifs (boxed), E-Alignment of primary peptide sequence structural motifs within areas of conservation as determined by the Conserved Domain Database v1.51 at NCBI.

A

(Rice putative primary peptide structure for Asy1-like protein

Arginine rich region
Proline rich region

Figure 41: Putative structure of rice TaMSH7-like protein. A - Genomic sequence, B - Predicted cDNA highlighting corresponding cereal ESTs, C Diagramatic representation of the primary peptide sequence depicting putative structural motifs, D - Comparison of peptide sequence diagrams highlighting commonality in areas of conserved structural motifs (boxed), E-Alignment of primary peptide sequence within areas of high conservation as displayed in D.

Rice putative primary peptide
structure for mismatch repair protein

Figure 42: Putative structure of rice MFP1-like protein. A - Genomic sequence, B - Predicted cDNA highlighting corresponding cereal ESTs, C - Diagramatic representation of the primary peptide sequence depicting putative structural motifs, D - Comparison of peptide sequence diagrams highlighting commonality in areas of conserved structural motifs (boxed), E - Alignment of primary peptide sequence within areas of high conservation as displayed in D .

D
Rice putative primary peptide
structure for MAR-bindling
protein MFP1

Tobacco MAR-binding protein MFP1 Arabidopsis MAR-binding protein MFP1 Tomato MAR-binding protein MFP1 Rice Putative MAR-binding protein MFP1 Consensus
Tobacco MAR-binding protein MFP Arabidopsis MAR-binding protein MFPI romato MAR-binding protein MFPI Rice Putative MAR-binding protein MFP Consensus

Tobacco MAR-binding protein MFP Arabidopsis MAR-binding protein MFP Tomato MAR-binding protein MFP1 Rice Putative MAR-binding protein MFP Consensus

Tobacco MAR-binding protein MFP1 Arabidopsia MAR-binding protein MFPI

Tomato MAR-binding protein MFP1 Rice Putative MAR-binding protein MFP1 Consensus

Tobacco MAR-binding protein MFP1 Arabidopsis MAR-binding protein MFP1

Tomato MAR-binding protein MFP1 Rice Putative MAR-binding protein MFP1 Consensus

Tobacco MAR-binding protein MFP1 Arabidopsis MAR-binding protein MFP Tomato MAR-binding protein MFP1 Rice Putative MAR-binding protein MFPI Consensus

Tobacco MAR-binding protein MFP1 Arabidopsis MAR-binding protein MFPI

Tomato MAR-binding protein MFP1 Rice Putative MAR-binding protein MFP1 Consensus

Tobacco MAR-binding protein MFP1 Arabidopsis MAR-binding protein MFP1

Tomato MAR-binding protein MFP Rice Putative MAR-binding protein MrPI Consensus

Tobacco MAR-binding protein MFPI Arabidopsis MAR-binding protein MFP1

Tomato MAR-binding protein MFP Rice Putative MAR-binding protein MFP1 Consensus

Tobacco MAR-binding protein MFP1 Arabidopsis MAR-binding protein MFP1 Tomato MAR-binding protein MFP1 Rice Putative MAR-binding protein MFP Consensus

 (1) --n MGYLLLAPSBAPRPLAFRCRRGGR RRGAAIVA SSA SSS GDAG SHSAAAAGAYVLARRGVLLGVEALPLLRAREA 81 160
((55) RRZ LIVGISUPILIRSP LADERGEIKTSKVDL81) A AAAVAT PNSGDI/TVYGMSFPQGFIRRKRVDFPRIDHOAOT YKTEKI RN VICRPNE IV ETK IOKPDPQ81)
(97) 110) (485) DETKRGAELLAA TTIRELLKKTTE MHTMSH AAVTENCDMOT VDVY (477) DETKHSSELLAA TTTTKRHLKKTNE MHTMS E VAVSENRDS OT VNVY R HTRN KO KKI RT NK LKGM
 (561) DETK SELLAAELTTTKELLKKTNEELHTMSHELAAVSENRDSLQTELVDVYKKLESTANELKQEKKTVLTLNKELKFL

Figure 43: Putative structure of rice Scll-like protein. A - Genomic sequence, B - Predicted cDNA highlighting corresponding cereal ESTs, C - Diagramatic representation of the primary peptide sequence depicting putative structural motifs, D - Comparison of peptide sequence diagrams highlighting commonality in areas of conserved structural motifs (boxed), E-Alignment of primary peptide sequence within areas of high conservation as displayed in D .

440 aa

D

E

Chicken Chromosomal Scaffold Protein Xenopus Chromosome Assembly Protein Rice Putative Chromosomal Scaffold Protein Consensus

Chicken Chromosomal Scaffold Protein
Xenopus Chromosome Assenbly Protein Rice Putative Chromosomal Scaffold Protein Consensus

Chicken Chromosomal Scaffold Protein Xenopus Chromosome Assembly Protein Rice Putative Chromosomal Scaffold Protein Consensus

Chicken Chromosomal Scaffold Protein
Xonopus Chromosome Assembly Protein
Rice Putative Chromosomal Scaffold Protein Consensus

845

(751) TIAECEETLKKTEESQRKAEEEYKALENKMKNAEA -...........--RGKEI NAOOKLNSAKKKADDSS 842) AAAPD NQQKCMEKNLETLKKEYEKVAEKAGKVEZ VKRLHKLIVDINNHKI AOODKLDKVITKEIDECA
(1) TRCQCEKLEEKLNDSHSEISSLQKELEGULAHHDH -..............-IEKCKEE HVHEKYS DKSTL: (845) T A CE KKLEDS I EYK LE KLA EAE K IK Q KLDK SKD DD A 915 I EYK LE KLA EAE K IK Q KLDK SKD DD A (810) RKMK K QEVEALVLE ECLKQEQASYKQOSEAAQQAIAS KEQVSALEAEAVK RESLKNAENELSSEK
(912) SAITKA VSIKTADR KKSEEAVARTEKFIVAND SIEE TEDL KLEEKATIVMMECKEAFC LPEVO
(60) WEIIKLIDIVKNFEGD AKMSQEKLQLKAOVKELEOASRS DDSSAQIMKLQEIIKDLQRRIDNDSN-EK (915) S I K Q VK D DL KL QE A K QI A DQAI SLE LA LE A IKD K AENDL EK
(880) GLMEERTKDIKAKSAKIEKYREONNELO1S NALEHDINKYOQETADASSTEDKLLKEYKWIAS KOLFG
982) EOHPSLLOEIKAIOEKEHALOKEALNTRL OTDSUA HOSIIVYWOVEITKUSIHKIEDTP RVIPG (129) KMLEERAIEF OVRK LEGSRTEVAELQAT NNLKADLGRALEEKSQLESRINDLEHTIACNLE (985) LLEER EIKAI KIEA R E ELQLSINNLDADIAKHQ E A S I KL் I E LFG

(950) QADTIYDFEANNPKETGQKLOKL TKKEKLEKSLN
(1052) LAQFFLEAIKO-PDO--IINOIA LEA SHEMKPN
(196) QEKSSL/FAEIQKLKEANASL,GKKTSTESQLQQLH
(1055) QA SSLDAE N PKE LQ LT ES E LN

Figure 44: Putative structure of rice damage-specific DNA binding protein. A Genomic sequence, B - Predicted cDNA highlighting corresponding cereal ESTs, C - Diagramatic representation of the primary peptide sequence depicting putative structural motifs, D - Comparison of peptide sequence diagrams highlighting commonality in areas of conserved structural motifs (boxed), E - Alignment of primary peptide sequence within areas of high conservation as displayed in D.

583 aa

Rice putatlve primary pepilde
D
DNA binding protain

E

Figure 45: Putative structure of rice WD40 repeat like protein. A - Genomic sequence, B - Predicted CDNA highlighting corresponding cereal ESTs, C diagrammatic representation of the primary peptide sequence depicting putative structural motifs, D - Comparison of peptide sequence diagrams highlighting commonality in areas of conserved structural motifs (boxed), E-Alignment of primary peptide sequence within areas of high conservation as displayed in D.

A

ATP/GTP-binding site
C Rice putative primary peptide motif A (P-loop) WD40 repeats - $\begin{aligned} & \text { Rice putative primary peptide } \\ & \text { structure for WD40 repeat protein }\end{aligned}$

610 aa
D

Rice putative primary peptlde structure for WD40 repeat proteln

Chicken peptide structure for WD40 repeat protein

Dictyostium peptide structure for WD40 repeat protein

5.4 Discussion

This study used colinearity of molecular markers in the grasses, in combination with the rice genome sequence, to identify potential Ph 2 gene(s). Comparative mapping between rice, barley and wheat, utilising molecular markers spanning the Ph2 locus, has identified nine putative meiosis related genes in a 5.5 Mb region of rice.

5.4.1 Physical size of ph2a deletion in wheat

Comparison of the wheat and rice linkage maps has highlighted that the region homologous to the wheat deleted ph2a region in rice is between 3 and 5.5 Mb . Utilising this estimation of physical size and the difference between the genome size and chromosome complement between hexaploid wheat (15,966 Mb per 1C nucleus, $2 \mathrm{n}=42$) and rice (431 Mb per 1 C nucleus, $2 \mathrm{n}=22$) (Arumuganathan \& Earle, 1991), the estimated size of the ph2a deletion is likely to be between 58 and 107 Mb .

5.4.2 Putative gene content of ph2a region

Analysis of the RiceGenes and GrainGenes databases highlighted genes corresponding to fertility on the Triticeae homoeogroup 3 and the corresponding syntenous region on rice chromosome 1. Specifically a significant QTL (LOD >2.5, p-value $=0.0001$) for spikelet fertility (Lin et al., 1996) was found in rice and a male sterility gene termed msg5, in barley (Franckowiak, 1997). These results demonstrate that there is a common fertility locus among the Gramineae. It is anticipated that similar genes controlling fertility and more specifically meiosis would be present in rice, wheat and barley.

This rice 5.5 Mb region homologous to the ph2a deleted region harbours approximately 900 predicted coding sequences of which nine are likely to be specifically involved in meiotic cell development. The predicted gene density within this region of rice is one every 6 Kb whilst it is expected to be one every 64 to 118 Kb in wheat. However, analysis of the WM1 gene cluster in T. tauschii suggests that there is one gene every 19 Kb (refer to 3.3.6). This conflicting result can best be explained by genes being located in "gene islands" flanked by
large stretches of repetitive transposable element-like sequences. From the 900 predicted coding sequences, 280 wheat ESTs were identified. This suggests that at least 31% of the likely wheat orthologues to the predicted rice genes are expressed. It should be noted that the rice gene prediction program is likely to have given an overestimate of gene number.

5.4.2.1 Structural aspects of the Ph2 region

The presence of nine potentially meiosis related genes in the region deleted in the homeologous chromosome pairing mutant, ph2a, suggests that the Ph2 locus is most likely to be a complex of linked genes influencing different meiotic processes, rather than a single gene. However, the pairing homeologous wheat mutant ph2b, which was generated through ethyl methanesulfonate (EMS) treatment contradicts the idea of a complex of linked meiotic genes. EMS is thought to induce random point mutations (G-C base pair replaced with an A-T pair) and if the Ph2 locus is a complex of nine linked meiosis genes, the likelihood of having a deleterious EMS induced mutation in each of the linked meiosis genes is low but not inconceivable. It is more likely that only a few of the nine putative meiosis genes are responsible for the Ph2 phenotype. Further study of each of the potential meiotic genes in the ph2b mutant will clarify whether the Ph2 locus is indeed controlled by a complex of linked genes or a single gene.

5.4.2.2 Candidate Ph2 genes

The most likely Ph2 candidates determined by peptide sequence homology (BLAST 2.0 tblastx) to functionally characterised proteins (Table 18) are described below. Possible function of these characterised proteins in terms of meiotic processes and specifically their relevance to the Ph2 phenotype, are described.

5.4.2.2.1 Asy1-like protein

Homology of the wheat putative Asy1-like EST to the A. thaliana asynaptic mutant 1 protein is particularly interesting as Asy1 shows homology with the yeast HOP1 meiotic gene (Figure 40). Mutants of the yeast HOP1 gene show
reduced meiotic recombination (10-25\% of wild-type levels), and extremely low levels of spore viability ($<1 \%$) (Hollingsworth et al., 1990). HOP1 is found to be localised within the axial elements of the synaptonemal complex with the protein accumulating at numerous discrete foci on meiotic chromosomes during early prophase. Little protein persists by the time the chromosomes have fully synapsed at pachytene. HOP1 protein accumulation is dependant upon another synaptonemal complex protein, Red1 and their interaction is suggested to be mediated by Mek1, a serine-threonine protein kinase (Hollingsworth \& Ponte, 1997).

HOP1 is a 605 amino acid peptide with a non-classical zinc finger about position 371, which has been implicated in DNA binding activity. Asy1 shows homology to HOP1 at the N-terminal HORMA-like domain. This extends to conservation in the HORMA-like domain within the predicted peptide sequence of the wheat and rye putative Asy1-like ESTs (Figure 40). HORMA domains have been seen in a variety of proteins that; interact with chromatin, are involved in synaptonemal complex formation, DNA repair or DNA synthesis (Aravind \& Koonin, 1998). Homology between Asy1 and HOP1 at the N-terminus of the predicted peptides suggests substantial functional differentlces but it may be the case that although the proteins are functionally homologous, this does not extend to primary amino acid sequence (Caryl et al., 2000). Similar functionality, not extended to the primary peptide sequence, has been reported for other synaptonemal complex proteins including Scp1 from rat (Meuwissen et al., 1992) and yeast Zip1 (Sym et al., 1993). It is yet to be seen whether Asy1 is directly involved in the meiotic recombination process of plants.

The meiotic phenotype of Asy1 Arabidopsis T-DNA insertion mutant has been described as partially asynaptic, because a low level of synapsis is indicated by the presence of from one to three bivalents in some metaphase I cells, with an overall average of 1.5 bivalents per cell (Caryl et al., 2000; Ross et al., 1997). Characteristically, mutant embryo and pollen mother cells fail to undergo extensive chromosome synapsis during early prophase I, resulting in frequent univalent formation at diakinesis and metaphase I. This contrasts to wild-type
meiosis where normal chromosome synapsis during zygotene leads to full synpasis at pachytene and the regular presence of five chiasmate bivalents at diakinesis and metaphase I (Caryl et al., 2000).

If the wheat putative Asy1-like EST does represent the wheat orthologue to the Arabidopsis Asy1 protein then it is a strong candidate for the Ph2 gene or is functionally important in the Ph2 phenotype. This proposal is based firstly, on the homology between conserved peptide domains (HORMA domain) of the wheat putative Asy1-like EST (Figure 40), Arabidopsis Asy1 protein and the known meiotic HOP1 protein of yeast. Secondly, the proposed wheat Asy1 orthologue is likely to be localised within the region deleted in the ph2a mutant (Figure 39). Thirdly, Ph2 has also been implicated in the control of homeologous chromosome pairing and recombination as a consequence of asynapsis (Martinez et al., 2001) and any mutation in the orthologous Ph2 gene in a diploid species like Arabidopsis is likely to result in almost complete sterility. T-DNA insertion mutant of Asy1 is sterilite. Ph2 mutants of wheat do not show complete sterility. Along with Ph2 on chromosome 3DS, 3AS possesses another suppressor of homeologous chromosome pairing which may complement the loss of Ph2. Essential meiotic genes, such as Asy1, may give an insight into the role of ploidy in the control of meiosis. Polyploidy has been shown to modulate gene expression in yeast (Galitski et al., 1999) and in Arabidopsis (Mittelsten Scheid et al., 1996). This potential buffering system is likely to be useful in the detailed study of genes that control meiosis.

5.4.2.2.2 TaMSH7 protein

The mismatch repair system plays a critical role in maintaining genetic stability by recognising and processing mismatched nucleotides that may occur during DNA replication, genetic recombination and some types of chemical damage to DNA. Yeast and animal MSH2, MSH3 and MSH6 proteins are major components involved in DNA mismatch repair. A special feature in plants is the presence of two MSH6-like proteins. AtMSH6 and AtMSH7 in Arabidopsis have been shown to be homologues of MSH6 (Ade et al., 1999; Culligan \& Hays, 2000). Apart from mismatch correction, MSH2, MSH3 and MSH6 also play a
role in preventing recombination between divergent DNA sequences (Chambers et al., 1996; Chen \& Jinks-Robertson, 1998; Datta et al., 1996; Hunter et al., 1996; Selva et al., 1997; Selva et al., 1995; Sugawara et al., 1997). In bacteria, the mismatch repair system acts as a barrier to recombination between divergent sequences (Rayssiguier et al., 1989; Vulic et al., 1997). Loss of mismatch repair function results in dramatically elevated homeologous recombination even if the sequence divergence is as high as 20\% (Rayssiguier et al., 1989). Further evidence shows that MSH2, MSH3, MSH6 are involved in meiotic recombination. A MSH2-MSH3 complex is required in the processing of non-homologous ends during double-strand break-induced recombination (Sugawara et al., 1997). The MSH2-MSH6 complex has also been shown to bind to Holliday junctions during meiotic recombination (Alani et al., 1994; Marsischky et al., 1999). The suppression of homeologous recombination mediated by the mismatch repair system is thought to be through the recognition of mispairs in the recombination intermediates and the prevention of processing of these recombination intermediates (Baker et al., 1995; de Wind et al., 1995; Edelmann et al., 1996). Given the role of the yeast and animal mismatch repair system in meiosis there is still no evidence in plants that the mismatch repair system is involved in meiotic recombination. Localisation of wheat TaMSH7 gene (Figure 39) within the region deleted in the ph2a mutant suggests that a mismatch repair system is involved in chromosome pairing and recombination (Dong et al., 2001b). Specifically TaMSH7 protein (Figure 41) could represent the Ph2 gene product or be functionally important in the Ph2 phenotype.

5.4.2.2.3 MFP1-like protein

The interaction of chromatin with the nuclear matrix via matrix attachment regions (MARs) on the DNA is considered to be of fundamental importance for higher-order chromatin organisation and the regulation of gene expression (Harder et al., 2000). The MAR-nuclear matrix interactions are believed to create independent chromatin loop domains, and the location of a gene with respect to this domain structure is thought to influence its expression level (Spiker \& William, 1996). The nuclear matrix has been biochemically defined as the insoluble component that remains after treatment of isolated nuclei with 166
nucleases and extraction of proteins with different methods (Berezney \& Coffey, 1974; Mirkovitch et al., 1984). Structurally, the nuclear matrix resembles the dense network of fibers seen in the cytoplasmic skeleton (He et al., 1990). The chromatin loops are presumed to attach to these matrix fibers by protein-DNA interactions with the MARs.

A barley MFP1-like EST shows homology with the predicted rice MFP1-like protein (Figure 42), which in turn has homology to the plant MAR-binding protein, MFP1, from tomato (Meier et al., 1996). MFP1 has the structural features of a filament-like protein, shows similarity to nuclear and cytoplasmic filament proteins and preferentially binds to MAR sequences from both animals and plants.

MARs are generally AT-rich DNA sequences that range from approximately 300 bp to 2.5 Kb in length and are ubiquitous. Currently the consensus sequence for MARs is "TCTTTAATTTCTAATATATTTAGAA" (Wang et al., 1995) but MARs can also be defined by the ATC rule (Tikhonov, pers. commun.), which highlights the significance of structural characteristics such as DNA bending and a narrow minor groove due to oligo (dA) tracts. MARs have been shown to increase transcriptional activity of a linked gene and to confer positionindependent, copy-number dependent expression in stably transfected cells (Loc \& Stratling, 1988; Mlynarova et al., 1995).

The impact of MFP1 protein on the binding of MARs has direct implications on both local and genome wide chromatin structure and is directly related to the control of transcriptionally active regions. Local chromatin structure and its modification at early meiosis are important in the positioning and frequency of meiotic double-strand breaks in DNA that enable recombination in yeast (Ohta et al., 1994; Wu \& Lichten, 1994). Earlier studies (Chandley \& McBeath, 1987; Raman \& Nanda, 1986) have also described regions of the human genome where the chromatin undergoes conformational changes from mitosis to meiosis could encompass recombinational hot spots. The lack of condensation of early replicating chromosomal segments during pre-meiotic interphase could be a
pre-requisite for crossover at pachytene. This leads to the observation that homologous chromosome pairing occurs when the chromosomes are transcriptionally active, so pairing may be an inevitable consequence of the transcription of partially condensed chromosomes (Cook, 1997). It has been proposed that DNA-protein structures (like that for MFP1 and MARs), inherent to heterochromatin in Drosophila, could produce a self-complementary chromosome "landscape" that ensures partner recognition and alignment by "best-fit" mechanisms (Karpen et al., 1996). Specific coiling patterns that could promote strict homologous chromosome pairing, showing apparent denser and weaker zones, presumably reflecting more or less condensed chromatin, were observed at stages before meiotic prophase in the homologous domains of wheat (Schwarzacher, 1997).

This highlights the potential impact of the MFP1-like protein on chromosome pairing and subsequent recombination as correlated with the $P h 2$ phenotype.

5.4.2.2.4 Sc/l protein

A barley putative Sc/l-like EST shows homology primarily to the rice putative Scll-like protein (Figure 43) located within the region of rice chromosome 1 that is syntenous to the region deleted in the ph2a wheat mutant (Figure 39). This rice Scll-like protein in turn shows significant homology to the chicken Scll protein. The chicken Scll protein, otherwise known as a chromosomal scaffold protein, is a member of the large structural maintenance chromosome (SMC) family of proteins. SMCs are considered to be crucial modulators of chromosome architecture and are involved in chromosome condensation and segregation (Hirano \& Mitchison, 1994; Saitoh et al., 1994; Saka et al., 1994; Strunnikov et al., 1995), sister chromatid cohesion (Guacci et al., 1997; Michaelis et al., 1997), transcriptional repression (Chuang et al., 1994) and possibly homologous recombination (Jessberger et al., 1996; Lehmann et al., 1995).

SMC proteins are putative ATPases and are characterised by five conserved structural features: an N-terminal globular domain with an NTP-binding motif
(Walker A type), two α-helical regions with the potential to form a coiled-coiled structure separated by a hinge, and a second globular domain in the C-terminal region harbouring the DA-box, a signature motif for the SMC family (Strunnikov et al., 1993), which includes an NTP-binding motif (Walker B) (Walker et al., 1982). Mutations at the DA-box or NTP-binding domains have shown that they are required for SMC function (Chuang et al., 1994; Strunnikov et al., 1993).

In vitro, SMC proteins can perform recombination-related activities such as DNA renaturation (Jessberger et al., 1996; Sutani \& Yanagida, 1997). The SMC protein RC-1 is a component of the bovine recombination complex and is involved in in vitro recombination, and the repair of gaps and deletions in DNA (Jessberger et al., 1996). SMC proteins, Rad18 (Saccharomyces pombe), RHC18 (S. cerevisiae), MIM (A. thaliana) are involved in the recombinational repair pathway. Although the exact role of SMC-like proteins in DNA repair is general and in recombination in particular, remains to be determined, it is thought that the structural features of chromatin conferred by SMCs are required for recognition of DNA damage and the recruitment of repair complexes. Data on Arabidopsis MIM SMC-like protein suggests that chromatin remodelling may be a crucial step in regulating in vivo accessibility of chromosomal DNA for recombination in plants (Mengiste et al., 1999).

The wheat orthologue(s) to both the barley Sc/l-like EST and rice putative Sclllike protein could represent the Ph2 gene or be functionally important in the Ph2 phenotype. This suggestion is based on homology of both the barley and rice sequences to a representative member of the SMC family (chicken chromosomal scaffold protein). Some members of the SMC family have been implicated in homologous recombination and chromosome structure. Secondly, the wheat orthologue(s) to the barley and rice Scll-like sequences are likely to be located on chromosome 3DS within the region deleted in the ph2a mutant (Figure 39). Proposed function of SMC proteins would complement the idea that Ph2 influences homeologous chromosome pairing and recombination.

5.4.2.2.5 Damage-specific DNA binding protein

The rare human hereditary disease, Xeroderma pigmentosum (XP), is characterised biochemically by defective nucleotide excision repair, which manifests clinically as sensitivity to ultraviolet light and a high incidence of skin cancer. A putative rice "damage-specific DNA binding protein" shows homology to the human DDB2 (p48) protein (Figure 44), which is part of a complex that binds specifically to damaged DNA (Nichols et al., 2000). In addition to its high affinity for UV-damaged DNA, the DDB complex also recognises a wide spectrum of DNA lesions (Carew \& Feldberg, 1985; Chu \& Chang, 1988; Feldberg, 1980; Hirschfeld et al., 1990; Payne \& Chu, 1994; Protic et al., 1989). It has been proposed that the DDB complex has a DNA repair function, possibly acting in damage recognition prior to nucleotide excision repair (Liu et al., 2000). Since the "damage specific DNA binding protein" may have a recognition role in DNA repair, it could be involved in detecting and resolving mis-pairing in heteroduplex DNA during the process of chromosome pairing and/or recombination. Effective disruption of such a protein could result in pairing of divergent DNA sequences (homeologous chromosome pairing) or allowing mispairs in the recombination intermediates (homeologous recombination). Consequently, the wheat orthologue to the rice, "damage specific DNA binding protein" could represent the $P h 2$ gene(s).

5.4.2.2.6 WD4O repeat like protein

The large family of proteins that contain the WD repeat are found in all eukaryotes and are implicated in a wide variety of crucial functions. One group of WD repeat proteins are involved in RNA-processing complexes with some members forming part of snRNP particles (Bjorn et al., 1989). Another group comprises of transcriptional regulators, including the TFIID subunit of the TATA-box-binding complex (Hoey et al., 1993; Keleher et al., 1992; Williams et al., 1991). Others play roles in the regulation of vesicle formation and vesicular trafficking (Pryer et al., 1993), control various aspects of cell division or regulate sulfur metabolism in fungi. More importantly, some WD repeat proteins have been found to be involved in cyto-skeleton assembly and mitotic-spindle formation (de Hostos et al., 1991; Vaisman et al., 1995). The WD-repeat 170
'propeller-like structure' is a conserved motif with 4 to 16 repeats in any single protein. If there is a common functional theme, it appears to be that the WDrepeat propeller structure creates a stable platform that can form complexes reversibly with several proteins, thus coordinating sequential and/or simultaneous interactions involving several sets of proteins (Smith et al., 1999). Although the WD repeat proteins are a large family, there is the possibility that the wheat orthologue to the putative rice WD-40 protein (Figure 45) represents the Ph2 gene(s).

5.4.2.2.7 Other predicted genes

Previously described as Wm5.12-tap, the WM3 messenger transcript is specifically and highly expressed in wheat floral tissue (carpels and anthers) and preferentially in the tapetum of meiotic anthers. The complete sequence of the cDNA revealed that it was similar to non-specific plant lipid transfer proteins (LTPs) (Letarte, 1996). This group of extracellularly secreted proteins has been found in several aerial organs of diverse plant species and more specifically in the tapetum of both Nicotiana sp. (Crossland and Tuttle pers. commun.) and Brassica sp. (Foster et al., 1992). Although unlikely to represent the Ph2 gene or be functionally important in the Ph2 phenotype, the WM3 protein may be important in pollen mother cell development through meiosis.

5.4.2.3 Possible role for multiple Ph2 candidate genes in maintaing strict diploid-like behaviour

Interestingly, of the nine potential meiosis genes, four are likely to be involved in recombination and two of which may be specifically involved in heteroduplex DNA pairing and recombination (Asy1 and TaMSH7 proteins). Of the remaining two proteins that are likely to be involved in the recombination process, the SMC-like protein, Scll, may induce an altered chromatin structure, required for the recognition by damage-specific DNA binding proteins of mis-pairing in heteroduplex DNA. Chromatin structural change and recognition of mispairing is a likely precursor for recruitment of repair complexes such as TaMSH7 of the mismatch repair system. Local and genome wide structure of the chromatin (possible role of MFP1 protein) is also likely to be crucial for the pairing process.

Each of these proteins highlights a potential structural role of the Ph2 gene product(s) in maintaining a strict diploid-like behaviour in allohexaploid wheat. However the WD40 repeat-like protein may temporally control meiotic development. Interestingly, functionality is not likely to be exclusive for all described proteins. For example, the Asy1-like protein is likely to have a role in DNA repair/synthesis but may also form an important structural component of the synaptonemal complex.

The clustering of these potential meiotic genes in both wheat and rice is intriguing as it suggests that structural co-localisation of meiosis genes may be important for their function. Apparent clustering of functionally related genes within the Ph2 region shows similarity to the Dopa decarboxylase (Ddc) gene cluster of Drosophila, which is responsible for cuticle morphology (Wright, 1996). The function of the clustered meiosis genes within the ph2a deletion region may be dependent on a common coordinate regulatory mechanism. This has been suggested for the cluster of neurally expressing genes in the 14D region of the Drosophila genome. These genes have been implicated in the common physiological process of neuron Na+ transport (Hong \& Ganetzky, 1996). The structural importance of this region would agree with the idea that as chromatin continually condenses from interphase to metaphase I, it would be expected that less of the chromatin is likely to be transcriptionally active due to the inaccessibility of the transcription enzymes to the euchromatic regions of DNA. Those genes that are essential for the processes of meiosis have to maintain transcriptional activity and therefore they are likely to be clustered in regions of the genome that are structurally different for this reason. This study tentatively supports the idea that the region deleted in the ph2a wheat mutant is one such structurally important region.

5.5 Conclusions

The suggestion that Ph1 and Ph2 bring about diploidisation of allohexaploid wheat by different mechanisms has important implications on interpretation of the comparative mapping of the Ph2 locus. It was specifically suggested Ph2
affects synaptic progression, probably in a similar way to a diploid species, and that Ph2 itself may not represent a pairing homeologous (Ph) locus but a synaptic (Syn) locus (Martinez et al., 2001).

The identification of a rice Asy1 orthologue within the rice chromosome 1 region homologous to the region deleted in the ph2a mutant supports the findings of Martinez et al. (2001). This tentatively suggests that the wheat orthologue to Asy1 plays an important role in synaptic progression contributing to the wheat Ph2 phenotype. However, the identification of TaMSH7 within the region deleted in the wheat ph2a mutant can account for the homoeologous chromosome recombination aspect of the Ph2 phenotype. This disagrees with the suggestion by Martinez et al. (2001) that Ph2 represents a synaptic locus as opposed to a pairing homoeologous $(P h)$ locus.

Further study through transformation and protein localisation of both the wheat Asy1 homologue and TaMSH7 will help elucidate the role each of these genes plays in the $P h 2$ phenotype.

GENERAL DISCUSSION

Although studies in budding yeast S. cereviseae have lead to the identification and cloning of a large number of meiosis-specific genes, little is known about their counterparts in higher eukaryotes. This is particularly true in plants, where in many cases there is the added complexity of polyploidy. The ability of allohexaploid T. aestivum to act as a diploid at meiosis poses special questions related to the mechanisms that ensure correct homologous chromosome pairing at early prophase of meiosis 1.

This study illustrates a systematic approach to the analysis of T. aestivum genes likely to be involved in meiosis, in particular, the genes that could represent the Ph2 gene(s). Based on the results of this study and the aim to isolate the Ph2 gene(s), a series of new research opportunities can be considered.

6.1 Future direction

The WM1 gene family can be further investigated from two perspectives; firstly in relation to its possible role in floral development leading to meiosis and secondly in the potential role of these genes in the perception of pathogen attack. Protein immunolocalisation of individual WM1 gene products within floral tissues may clarify the role of these genes. GFP reporter constructs using WM1 gene promoter regions could help identify regulatory control of these genes whilst GFP protein fusions will validate predictions of the subcellular localisation of the WM1 proteins and may confirm the receptor-like function of these type la plasma membrane anchored LRR proteins.

WM5 transgenic lines also need further study. Lines expressing both reporter and introduced WM5 genes require more detailed phenotypic and reporter gene analysis. Suspected phenotypic changes in apical meristems and meiotic
development need to be assessed closely. Further reporter gene transgenics will help define the structure of the full-length promoter segment of the WM5 gene.

Comparative mapping among the grasses identified two strong candidates for the Ph2 gene(s). However, wheat ESTs identified from the homologous rice sequence to the region deleted in the ph2a mutant need to be mapped back to the wild-type Chinese Spring to confirm localition within the region deleted in the ph2a mutant. Each wheat EST also needs to be assessed for temporal expression pattern during meiosis and differential expression between wild-type and mutant lines. Particular attention should be paid to the candidate Ph2 gene(s) Asy1 and mismatch repair protein homologues. An Arabidopsis mutant is available for Asy1 and complementation with the wheat homologue should be a prelude to complementation of wheat mutants, ph2a and ph2b. Similarly, complementation should be attempted with TaMSH7.

6.2 Wheat genes have multiple levels of complexity

Analysis of the WM1 and WM5 gene families, as well as comparative mapping among the grasses have confirmed that wheat genes are more complex than expected in both their structural organisation and transcriptional control relative to rice.

6.2.1 Structural organisation of the Ph2 region

The availablility of mutants in this study proved important. The deletion mutant ph2a aided in comparative mapping across the grasses and led to the identification of candidate Ph2 gene(s). This study identified what appears to be a meiotic gene cluster. Such a complex cluster of structurally different genes, but likely to influence the same developmental process, has not previously been described in p lants a nd f urther r esearch m ay r eveal w hether t he o bserved clustering is coincidental or functionally important.

Additionally, structural analysis of the complex WM1 gene family revealed that gene content across homeologous genomes differs greatly. Although this result
has only been shown with the WM1 gene family, it may apply to other genes within the region of Ph2. It is clear that the three homeologous genomes have diverged in gene content but whether this occurred before or after the polyploidisation events is unclear. Nevertheless analysis of the 220 Kb of T. tauschii D NA p rovided c lues of the likely evolutionary mechanisms causing divergence in WM1 gene content. Studying this 220 Kb region also revealed several novel transposable elements, highlighting the complex organisation of the wheat genome.

The complexity of the Ph2 region and the WM1 gene cluster raises many questions with respect to polyploidisation and meiosis:

What is the significance of the apparent clustering of meiotic genes in grasses (barley, wheat and rice) and what was the impact of polyploidisation on these genes? The observed diversity in gene content between homeologues in allohexaploid T. aestivum raises the question; did this variation arise before (as appears to have been the case for the WM1 family) or after allopolyploidisation? Is this variation observed only in the physical presence/absence of genes across the homeologues, as shown with the WM1 genes, or is variation observed in the functionality of the genes across the homeologues? If this diversity was present before polyploidisation, did this pre-dispose diploid progenitors to allopolyploidisation? What was the selective advantage derived from the apparent clustering of meiotic genes and how did it occur?

These are just some of the questions that may be answered through further understanding of genome changes during polyploidisation.

6.2.2 Transcriptional control of meiotic wheat genes

In addition to the genome complexity revealed through the study of the WM1 gene family, transcriptional complexity was found for the WM5 genes. WM5 shows c omplex temporal c ontrol int ranscription. S trict temporal control of transcription at meiosis for specific genes is expected to be critical for the progression of meiocytes through to haploid, pollen cells. Although WM5 may not represent the Ph2 gene(s) its preferential expression at meiosis suggests 176
that a search for the Ph2 gene(s) through meiosis specificity alone may not yield the Ph2 gene(s). The criteria for identifying Ph2 candidates needs to be reassessed and it will be important to analyse both the temporal transcription and the protein localisation for genes of interest.

Through the structural, functional and comparative analysis of genes within the grasses, this study has successfully increased awareness of the complexity associated with genome structure and gene expression during meiosis.

6.3 Cereal genome and wheat breeding

A detailed understanding of genome changes, transcription and posttranslational modifications of gene products involved in chromosome pairing and recombination will help enhance cereal breeding programs. This knowledge will specifically help plant breeders develop meiotically stable synthetic polyploids and wheat lines that can be used for alien gene introgression. Through the use of s uch s ynthetic p olyploids a nd w heat I ines, cereal-breeding programs will benefit from the greater number of landraces and wild relatives available for alien gene introgression into commercial wheat cultivars. It is also expected that the time required for these breeding strageties will be greatly reduced, allowing breeders to react more quickly to consumer demand in the global market place.

BIBLIOGRAPHY

Abe M., Takahashi T., and Komeda Y. (1999). Cloning and characterization of an L1 layer-specific gene in Arabidopsis thaliana. Plant Cell Physiology 40: 571-80.

Abe M., Takahashi T., and Komeda Y. (2001). Identification of a cis-regulatory element for L1 layer-specific gene expression, which is targeted by an L1specific homeodomain protein. Plant Journal 26: 487-94.

Abramic M., Levine A. S., and Protic M. (1991). Purification of an ultravioletinducible, damage-specific DNA-binding protein from primate cells. Journal of Biological Chemistry 266: 22493-500.

Ade J., Belzile F., Philippe H., and Doutriaux M. P. (1999). Four mismatch repair paralogues coexist in Arabidopsis thaliana: AtMSH2, AtMSH3, AtMSH6-1 and AtMSH6-2. Molecular \& General Genetics 262: 239-49.

Ahn S., Anderson J. A., Sorrells M. E., and Tanksley S. D. (1993). Homoeologous relationships of rice, wheat and maize chromosomes. Molecular \& General Genetics 241: 483-90.

Abstract

Alani E., Reenan R. A., and Kolodner R. D. (1994). Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137: 19-39.

Albini S. M., and Jones G. H. (1987). Synaptonemal complex spreading in Allium cepa and A. fistulosum. I. The initiation and sequence of pairing. Chromosoma 95: 324-338.

Altschul S. F., Madden T. L., Schaffer A. A., Zhang J. H., Zhang Z., Miller W., and Lipman D. J. (1997). Gapped blast and psi-blast - a new generation of protein database search programs. Nucleic Acids Research 25: 3389-3402.

Ansley H. R. (1958). Histones of mitosis and meiosis in Loxa flavicolis (hemipteran). Journal of Biophysical \& Biochemical Cytology 4: 59-62.

Apweiler R., Attwood T. K., Bairoch A., Bateman A., Birney E., Biswas M., Bucher P., Cerutti L., Corpet F., Croning M. D., Durbin R., Falquet L., Fleischmann W., Gouzy J., Hermjakob H., Hulo N., Jonassen I., Kahn D., Kanapin A., Karavidopoulou Y., Lopez R., Marx B., Mulder N. J., Oinn T. M., Pagni M., and Servant F. (2001). The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Research 29: 37-40.

Aragon-Alcaide L., Reader S., Miller T., and Moore G. (1997). Centromeric behaviour in wheat with h igh a nd I ow h omeologous c hromosomal p airing. Chromosoma 106: 327-333.

Aravind L., and Koonin E. V. (1998). The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends in Biochemical Sciences 23: 284-6.

Arumuganathan K., and Earle E. D. (1991). Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9: 208-219.

Avivi L., and Feldman M. (1973a). Mechanism of non-random chromosome placement in common wheat. In "Proceedings of the 4th International Wheat Genetics Symposium", pp. 629-633, Columbia, Missouri, USA.

Avivi L., and Feldman M. (1973b). The mechanism of somatic association in common wheat, Triticum aestivum L. IV. Further evidence for modification of spindle tubulin through the somatic association genes as measured by vinblastine binding. Genetics 73: 379-385.

Baker S. M., Bronner C. E., Zhang L., Plug A. W., Robatzek M., Warren G., Elliott E. A., Yu J., Ashley T., Arnheim N., Flavell R. A., and Liskay R. M.
(1995). Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82: 309-19.

Baulcombe D. C., Chapman S., and Cruz S. S. (1995). Jellyfish green fluorescent protein as a reporter for virus infections. Plant Journal 7: 10451053.

Becker D. (1999). (personal communication).

Becker D., Brettschneider R., and Lorz H. (1994). Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant Journal 5: 299-307.

Becraft P. W. (1998). Receptor kinases in plant development. Trends in Plant Science 3: 384-388.

Benavente E., and Orellana J. (1991). Chromosome differentiation and pairing behavior of polyploids: an assessment on preferential metaphase I associations in colchicine- induced autotetraploid hybrids within the genus Secale. Genetics 128: 433-42.

Benavente E., Orellana J., and Fernandezcalvin B. (1998). Comparative analysis of the meiotic effects of wheat ph1b and ph2b mutations in wheat X rye hybrids. Theoretical \& Applied Genetics 96: 1200-1204.

Benghezal M., Wasteneys G. O., a nd J ones D. A. (2000). T he C -terminal dilysine motif confers endoplasmic reticulum localization to type I membrane proteins in plants. Plant Cell 12: 1179-201.

Bennett M. D. (1984). Premeiotic events and meiotic chromosome pairing. Symposia of the Society for Experimental Biology 38: 87-121.

Bennett M. D., Finch R. A., Smith J. B., and Rao M. K. (1973). The time and duration of female meiosis in wheat, rye and barley. Proceedings of the Royal Society of London. Series B. Biological Sciences 183: 301-319.

Bennett M. D., and Smith J. B. (1979). The effect of colchicine on fibrillar material in wheat meiocytes. Journal of Cell Science 38: 33-47.

Bennett M. D., and Smith J. B. (1991). Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 334: 309-345.

Berezney R., and Coffey D. S. (1974). Identification of a nuclear protein matrix. Biochemical \& Biophysical Research Communications 60: 1410-7.

Birch R. G., and Franks T. (1991). Development and optimisation of microprojectile systems for plant genetic transformation. Australian Journal of Plant Physiology 18: 453-469.

Bjorn S. P., Soltyk A., Beggs J. D., and Friesen J. D. (1989). PRP4 (RNA4) from Saccharomyces cerevisiae: its gene product is associated with the U4/U6 small nuclear ribonucleoprotein particle. Molecular \& Cellular Biology 9: 3698-709.

Blake N. K., Lehfeldt B. R., Hemphill A., Shan X., and Talbert L. E. (1998). DNA sequence analysis suggests a monophyletic origin of the wheat B genome. In "Proceedings of the 9th International Wheat Genetics Symposium" (A. E. Slinkard, Ed.), pp. 14-16, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

Bonierbale M., Plaisted R. L., and Tanksley S. D. (1988). RFLP maps of potato and tomato based on a common set of clones reveal modes of chromosomal evolution. Genetics 120: 1095-1103.

Bower R., Elliott A. R., Potier B. A. M., and Birch R. G. (1996). High-efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. Molecular Breeding 2: 239-249.

Braun D. M., and Walker J. C. (1996). Plant transmembrane receptors - New pieces in the signaling puzzle. Trends in Biochemical Sciences 21: 70-73.

Burge C., and Karlin S. (1997). Prediction of complete gene structures in human genomic DNA. Journal of Molecular Biology 268: 78-94.

Burset M., and Guigo R. (1996). Evaluation of gene structure prediction programs. Genomics 34: 353-67.

Cameriniotero R. D., and Hsieh P. (1995). Homologous recombination proteins in prokaryotes and eukaryotes. Annual Review of Genetics 29: 509-552.

Carew J. A., and Feldberg R. S. (1985). Recognition of a cytosine base lesion by a human damage-specific DNA binding protein. Nucleic Acids Research 13: 303-15.

Caryl A. B., Armstrong S. J., Jones G. H., and Franklin F. C. H. (2000). A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1. Chromosoma 109: 62-71.

Casper S. J., and Holt C. A. (1996). Expression of the green fluorescent proteinencoding gene from a tobacco mosaic virus-based vector. Gene 173: 69-73.

Ceoloni C., and Donini P. (1993). Combining mutations for the two homoeologous pairing suppressor genes Ph1 and Ph2 in common wheat and in hybrids with alien Triticeae. Genome 36: 377-386.

Chaboute M. E., Chaubet N., Gigot C., and Philipps G. (1993). Histones and histone genes in higher plants: structure and genomic organization. Biochimie 75: 523-31.

Chambers S. R., Hunter N., Louis E. J., and Borts R. H. (1996). The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Molecular \& Cellular Biology 16: 6110-20.

Chandley A. C. (1986). A model for effective pairing and recombination at meiosis of early replicating sites (R-bands) along chromosomes. Human Genetics 72: 50-57.

Chandley A. C., and McBeath S. (1987). DNase I hypersensitive sites along the XY bivalent at meiosis in man include the XpYp pairing region. Cytogenetics \& Cell Genetics 44: 22-31.

Chen W., and Jinks-Robertson S. (1998). Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast. Molecular \& Cellular Biology 18: 6525-37.

Cheng M., Fry J. E., Pang S. Z., Zhou H. P., Hironaka C. M., Duncan D. R., Conner T. W., and Wan Y. C. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology 115: 971-980.

Cheung W. Y., and Gale M. D. (1990). The isolation of high molecular weight DNA from wheat, barley and rye for analysis by pulse-field gel electrophoresis. Plant Molecular Biology 14: 881-8.

Chiu W., Niwa Y., Zeng W., Hirano T., Kobayashi H., and Sheen J. (1996). Engineered GFP as a vital reporter in plants. Current Biology 6: 325-30.

Christou P., Ford T. L., and Kofron M. (1991). Production of transgenic rice (Oryza sativa L.) plants from agronomically indica and japonica varieties via electrical discharge particle acceleration of exogenous DNA into immature zygotic embryos. Biotechnology 9: 957-962.

Chu G., and Chang E. (1988). Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242: 564-7.

Chuang P. T., Albertson D. G., and Meyer B. J. (1994). DPY-27:a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79: 459-74.

Clark S. E., Running M. P., and Meyerwitz E. M. (1995). CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121: 2057-2067.

Clark S. E., Williams R. W., and Meyerowitz E. M. (1997). The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89: 575-585.

Cook P. R. (1997). The transcriptional basis of chromosome pairing. Journal of Cell Science 110: 1033-40.

Cuadrado C., Romero C., and Lacadena J. R. (1991). Meiotic pairing control in wheat-rye hybrids. I. Effects of different wheat chromosome arms of homoeologous groups 3 and 5. Genome 34: 72-75.

Culligan K. M., and Hays J. B. (2000). Arabidopsis MutS homologs-AtMSH2, AtMSH3, AtMSH6, and a novel AtMSH7-form three distinct protein heterodimers with different specificities for mismatched DNA. Plant Cell 12: 991-1002.

Cunado N., Callejas S., Garcia M. J., Fernandez A., and Santos J. L. (1996). Chromosome pairing in the allotetraploid Aegilops biuncialis a nd a triploid intergeneric hybrid. Genome 39: 664-670.

Dangl J. L. (1995). Piece de Resistance: novel classes of plant disease resistance genes. Cell 80: 363-6.

Datta A., Adjiri A., New L., Crouse G. F., and Jinks Robertson S. (1996). Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccaromyces cerevisiae. Molecular \& Cellular Biology 16: 108593.

Davis L., and Smith G. R. (2001). Meiotic recombination and chromosome segregation in Schizosaccharomyces pombe. Proceedings of the National Academy of Sciences of the United States of America 98: 8395-402.
de Barros E. G., Tingey S., and Rafalski A. (1999). Sequence characterisation of hypervariable region in the soybean genome: leucine-rich repeats and SSRs.
de Hostos E. L., Bradtke B., Lottspeich F., Guggenheim R., and Gerisch G. (1991). Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G protein beta subunits. EMBO Journal 10: 4097-104.
de Wind N., Dekker M., Berns A., Radman M., and te Riele H. (1995). Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82: 321-30.
de Wit P. J. G. M., and Joosten M. H. A. J. (1999). Avirulence and resistance genes in the Cladosporium fulvum-tomato interaction. Current Opinion in Microbiology 2: 368-373.

Del Fosse F. E., and Church K. (1981). Presynaptic chromosome behaviour in Lilium. I. Centromere orientation and movement during premeiotic interphase in Lilium speciosum cv. Rosemede. Chromosoma 81: 701-716.

Dixon M. S., Jones D. A., Keddie J. S., Thomas C. M., Harrison K., and Jones J. D. G. (1996). The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84: 451-459.

DNASTAR I. (1997). DNASTAR, DNASTAR Inc., Madison, WI 53715 USA.

Dong C., Thomas S. W., Guo R., and Langridge P. (2001a). Isolation and characterisation of WM5, a gene preferentially expressed during meiosis in wheat. Plant Journal (submitted).

Dong C., Whitford R., and Langridge P. (2001b). A mismatch repair gene linked to the Ph2 locus in wheat. Genome (in press).

Driscoll C. J. (1972). Genetic suppression of homoeologous chromosome pairing in hexaploid wheat. Canadian Journal of Genetics \& Cytology 14: 3942.

Driscoll C. J. (1973). Minor genes affecting homoeologous pairing in hybrids between wheat and related genera. Genetics 74s: 566.

Du H., and Klessig D. F. (1997). Identification of a soluble, high-affinity salicylic acid binding protein in tobacco. Plant Physiology 113: 1319-1327.

Edelmann W., Cohen P. E., Kane M., Lau K., Morrow B., Bennett S., Umar A., Kunkel T ., C attoretti G ., C haganti R ., P ollard J. W ., K olodner R . D ., a nd Kucherlapati R. (1996). Meiotic pachytene arrest in MLH1-deficient mice. Cell 85: 1125-34.

Ellis J., and Jones D. (1998). Structure and function of proteins controlling strain-specific pathogen resistance in plants. Current Opinion in Plant Biology 1: 288-293.

Feinberg A. P., and Vogelstein B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132: 6-13.

Feldberg R. S. (1980). On the substrate specificity of a damage-specific DNA binding protein from human cells. Nucleic Acids Research 8: 1133-43.

Feldman M. (1966). The effect of chromosomes 5B, 5D and 5A on chromosomal pairing in Triticum aestivum. Proceedings of the National Academy of Sciences of the United States of America 55: 1447-1453.

Feldman M. (1968). Regulation of somatic association and meiotic pairing in common wheat. In "Proceedings of the Third International Wheat Genetics Symposium" (K. W. Finlay, and K. W. Shepherd, Eds.), pp. 31-40, Australian Academy of Science, Canberra.

Feldman M. (1993). C ytogenetic a ctivity and mode of action of the pairing homoeologous (Ph1) gene of wheat. Crop Science 33: 894-897.

Feldman M., and Avivi L. (1973). The pattern of chromosomal arrangement in nuclei of common wheat and its genetic control. In "Proceedings of the 4th International Wheat Genetics Symposium", pp. 675-684, Columbia, Missouri, USA.

Feldman M., and Avivi L. (1988). Genetic control of bivalent pairing in common wheat: the mode of Ph1 action. In "Kew Chromosome Conference. 3rd Proceedings Chromosome Conference." (P. E. Brandham, Ed.), pp. 269-279, HMSO, Jodress Lab. Royal Botanical Gardens, Kew, England.

Feuillet C., Penger A., Gellner K., Mast A., and Keller B. (2001). Molecular evolution of receptor-like kinase genes in hexaploid wheat. Independent evolution of orthologs after polyploidization and mechanisms of local rearrangements at paralogous loci. Plant Physiology 125: 1304-13.

Flavell R. B., Bennett M. D., Seal A. G., and and Hutchinson J. (1987). Chromosome structure and o rganisation. In" Wheat B reeding: its s cientific basis" (F. G. H. Lupton, Ed.), pp. 211-268, Chapman and Hall Ltd, London.

Foster G. D., Robinson S. W., Blundell R. P., Robert M. R., Hodge R., Draper J., and Scott R. J. (1992). A Brassica napus mRNA encoding a protein homologous to phospholipid transfer proteins, is expressed specifically in the tapetum and developing microspores. Plant Science 84: 187-192.

Franckowiak J. (1997). Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genetics Newsletter 26: 9-21.

Franklin A. E., McElver J., Sunjevaric I., Rothstein R., Bowen B., and Cande W. Z. (1999). Three-dimensional microscopy of the rad51 recombination protein during early meiotic prophase. Plant Cell 11: 809-824.

Fromm M. E., Morrish F., Armstrong C., Williams R., Thomas J., and Klein T. M. (1990). Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology 8: 833-9.

Gale M. D., and Miller T. E. (1987). The introduction of alien genetic variation into wheat. In "Wheat Breeding: Its Scientific Basis" (F. G. H. Lupton, Ed.), pp. 173-210, Chapman and Hall Ltd., London.

Galitski T., Saldanha A. J., Styles C. A., Lander E. S., and Fink G. R. (1999). Ploidy regulation of gene expression. Science 285: 251-254.

Game J. C., Sitney K. C., Cook V. E., and Mortimer R. K. (1989). Use of a ring chromosome and pulsed field gels to study interhomologue recombination, double-strand DNA breaks and sister chromatid exchange in yeast. Genetics 123: 695-713.

Gay N. J., Packman L. C., Weldon M. A., and Barna J. C. J. (1991). A leucinerich repeat peptide derived from the Drosophila toll receptor forms extended filaments with β-sheet structure. FEBS Letters 291: 87-91.

Gordon D., Abajian C., and Green P. (1998). CONSED - a graphical tool for sequence finishing. PCR Methods \& Applications 8: 195-202.

Gordon-Kamm W. J., Spencer T. M., Mangano M. L., Adams T. R., Daines R. J., Start W. G., O'Brian J. V., Chambers S. A., Adams J. W. R., Willets N. G., Rice T. B., Mackey C. J., Krueger W., Kausch A. P., and Lemaux P. G. (1990). Transformation of maize cells and regeneration of fertile ransgenic plants. Plant Cell 2: 603-618.

Grant M. R., Godiard L., Straube E., Ashfield T., Lewald J., Sattler A., Innes R. W., and Dangl J. L. (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269: 843-6.

Grimes B., Hallick R., Williams K., Wells M., Lapointe M., Ryan C., Wagenheim M., and Hersoff R. (2001). The Biology Project, University of Arizona.

Guacci V., Koshland D., and Strunnikov A. (1997). A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91: 47-57.

Guidet F., Rogowsky P., Taylor C., Song W., and Langridge P. (1991). Cloning and characterisation of a new rye-specific repeated sequence. Genome 34: 8187.

Hajdukiewicz P., Svab Z., and Maliga P. (1994). The small, versatile Ppzp family of Agrobacterium binary vectors for plant transformation. Plant Molecular Biology 25: 989-994.

Harder P. A., Silverstein R. A., and Meier I. (2000). Conservation of matrix attachment region-binding filament-like protein 1 among higher plants. Plant Physiology 122: 225-34.

Harushima Y., Yano M., Shomura P., Sato M., Shimano T., Kuboki Y., Yamamoto T., Lin S. Y., Antonio B. A., Parco A., Kajiya H., Huang N., Yamamoto K., Nagamura Y., Kurata N., Khush G. S., and Sasaki T. (1998). A high-density rice genetic linkage map with 2275 markers using a single F-2 population. Genetics 148: 479-494.

Haseloff J., Siemering K. R., Prasher D. C., and Hodge S. (1997). Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proceedings of the National Academy of Sciences of the United States of America 94: 2122-2127.

Hasenkampf C. A. (1996). The synaptonemal complex - The chaperone of crossing over. Chromosome Research 4: 133-140.

He D. C., Nickerson J. A., and Penman S. (1990). Core filaments of the nuclear matrix. Journal of Cell Biology 110: 569-80.

He D. G., Mouradov A., Yang Y. M., Mouradova E., and Scott K. J. (1994). Transformation of wheat (Triticum aestivum L) through electroporation of protoplasts. Plant Cell Reports 14: 192-196.

Henikoff J. G., Greene E. A., Pietrokovski S., and Henikoff S. (2000). Increased coverage of protein families with the blocks database servers. Nucleic Acids Research 28: 228-30.

Henikoff S., Henikoff J. G., and Pietrokovski S. (1999). Blocks+: a nonredundant database of protein alignment blocks derived from multiple compilations. Bioinformatics 15: 471-9.

Higo K., U gawa Y ., I wamoto M ., a nd K orenaga T . (1999). P lant c is-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Research 27: 297-300.

Hirano T., and Mitchison T. J. (1994). A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79: 449-458.

Hirschfeld S ., L evine A . S ., O zato K ., a nd Protic M. (1990). A constitutive damage-specific DNA-binding protein is synthesized at higher levels in UVirradiated primate cells. Molecular \& Cellular Biology 10: 2041-8.

Hobolth P. (1981). Chromosome pairing in allohexaploid wheat var. Chinese Spring. Transformation of multivalents into bivalents, a mechanism for exclusive bivalent formation. Carlsberg Research Communication 46: 129-173.

Hoey T., Weinzierl R. O., Gill G., Chen J. L., Dynlacht B. D., and Tjian R. (1993). Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72: 247-60.

Hofmann K., Bucher P., Falquet L., and Bairoch A. (1999). The PROSITE database, its status in 1999. Nucleic Acids Research 27: 215-9.

Hofmann K., and Stoffel W. (1993). TMbase - A database of membrane spanning proteins segments. Biological Chemistry 374: 166.

Hollingsworth N. M., Goetsch L., and Byers B. (1990). The HOP1 gene encodes a meiosis-specific component of yeast chromosomes. Cell 61: 73-84.

Hollingsworth N. M., and Ponte L. (1997). Genetic interactions between HOP1, RED1 and MEK1 suggest that MEK1 regulates assembly of axial element components during meiosis in the yeast Saccharomyces cerevisiae. Genetics 147: 33-42.

Holm P. B. (1986). Chromosome pairing and chiasmata formation in allohexaploid wheat, Triticum aestivum analysed by spreading of meiotic nuclei. Carlsberg Research Communication 51: 239-294.

Holm P. B. (1988a). Chromosome pairing and synaptonemal complex formation in allohexaploid wheat, monosomic for chromosome 5B. Carlsberg Research Communication 53: 57-89.

Holm P. B. (1988b). Chromosome pairing and synaptonemal complex formation in allohexaploid wheat, nullisomic for chromosome 5B. Carlsberg Research Communication 53: 91-110.

Holm P. B., and Wang X. (1988). The effect of chromosome 5B on synapsis and chiasma formation in wheat Triticum aestivum cv. Chinese Spring. Carlsberg Research Communication 53: 191-208.

Hong C. S., and Ganetzky B. (1996). Molecular characterization of neurally expressing genes in the para sodium channel gene cluster of Drosophila. Genetics 142: 879-892.

Hu W., and Cheng C. L. (1995). Expression of Aequorea green fluorescent protein in plant cells. FEBS Letters 369: 331-334

Hulbert S. H. (1997). Structure and evolution of the rp1 complex conferring rust resistance in maize. Annual Review of Phytopatholgy 35: 293-310.

Hunt M. D., and Ryals J. A. (1996). Systemic acquired resistance signal transduction. Critical Reviews in Plant Sciences 15: 583-606.

Hunter N., Chambers S. R., Louis E. J., and Borts R. H. (1996). The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO Journal 15: 1726-33.

Hyatt D., Snoddy J., Schmoyer D., Chen G., Fischer K., Parang M., Vokler I., Petrov S., Locascio P., Olman V., Miriam Land, Shah M., and Uberbacher E. (2000a). GRAIL-EXP and the genome analysis toolkit. The 13th Annual Cold Spring Harbor Meeting on Genome Sequencing \& Biology.

Hyatt D., Snoddy J., Schmoyer D., Chen G., Fischer K., Parang M., Vokler I., Petrov S., Locascio P., Olman V., Miriam Land, Shah M., and Uberbacher E. (2000b). Improved analysis and annotation tools for whole-genome computational annotation and analysis: GRAIL-EXP genome analysis toolkit and related analysis tools. Genome Sequencing \& Biology Meeting.

Islam A. K. M. R., and Shepherd K. W. (1988). Induced pairing between wheat and barley chromosomes. In "Proceedings of the 7th International Wheat Genetics Symposium", pp. 309-314, Cambridge.

Ito S., Sakai A., Nomura T., Miki Y., Ouchida M., Sasaki J., and Shimizu K. (2001). A novel WD40 repeat protein, WDC146, highly expressed during spermatogenesis in a stage-specific manner. Biochemical \& Biophysical Research Communications 280: 656-663.

Jenkins G., and Jimenez G. (1995). Genetic control of synapsis and recombination in Lolium amphidiploids. Chromosoma 104: 164-168.

Jenkins G., White J., and Parker J. S. (1988). Elimination of multialents during meiotic prophase in Scilla autumnalis. II. Tetraploids. Genome 30: 940-946.

Jessberger R ., R iwar B ., B aechtold H ., a nd A khmedov A . T. (1996). SMC proteins constitute two subunits of the mammalian recombination complex RC 1. EMBO Journal 15: 4061-8.

Ji L. H. (1992). A study of meiosis in allohexaploid wheat: The molecular aspects. In "Department of Plant Science", Adelaide University, Adelaide: Australia.

Ji L. H., and Langridge P. (1994). An early meiosis cDNA clone from wheat. Molecular \& General Genetics 243: 17-23.

Jones D. A., Thomas C. M., Hammond-Kosack K. E., Balintkurti P. J., and Jones J. D. G. (1994). Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789-793.

Karpen G. H., Le M. H., and Le H. (1996). Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273: 118-22.

Kawchuk L. M., Hachey J., Lynch D. R., Kulcsar F., van Rooijen G., Waterer D. R., Robertson A., Kokko E., Byers R., Howard R. J., Fischer R., and Prufer D. (2001). Tomato $V e$ disease resistance genes encode cell surface-like receptors. Proceedings of the National Academy of Sciences of the United States of America 98: 6511-5.

Keeney S., Giroux C. N., and Kleckner N. (1997). Meiosis-specific DNA doublestrand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88: 375-384.

Keleher C. A., Redd M. J., Schultz J., Carlson M., and Johnson A. D. (1992). Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68: 709-19.

Kempanna C., and Riley R. (1962). Relationships between the genetic effects of deficiencies for chromosomes III and V on meiotic pairing in Triticum aestivum. Nature 195: 1270-1273.

Kerber E. R. (1988). Telocentric mapping in wheat of the Lr32 for resistance to leaf rust. Crop Science 28: 178-179.

Kessman H., and Nordmeyer D. (1996). Plant activation - a new technology for disease control. Agrow Supplement Autumn: 23-27.

Kleckner N. (1996). Meiosis - how could it work. Proceedings of the National Academy of Sciences of the United States of America 93: 8167-8174.

Klein S. (1994). Choose your partner: chromosome pairing in yeast meiosis. BioEssays 16: 869-871.

Kobe B., and Deisenhofer J. (1993). Crystal structure of Porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 366: 751-756.

Kobe B., and Deisenhofer J. (1994). The leucine-rich repeat - A versatile binding motif. Trends in Biochemical Sciences 19: 415-421.

Koebner R. M. D., and Shepherd K. W. (1985). Induction of recombination between rye chromosome 1RL and wheat chromosomes. Theoretical \& Applied Genetics 71: 208-215.

Koziel G. M., Beland G. L., and Bowman C. (1993). Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 1: 194-200.

Lam E., Hanley-Bowdoin L., and Chua N. H. (1988). Characterization of a chloroplast sequence-specific DNA binding factor. Journal of Biological Chemistry 263: 8288-93.

Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., and Newburg L. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-81.

Langridge P., Karakousis A., Collins N., Kretschmer J., and Manning S. (1995). A consensus linkage map of barley. Molecular Breeding 1: 389-395.

Laroche A., Frick M. M., Huel R., Nykiforuk C., Conner B., and Kuzyk A. (2000). Molecular identification of the wheat stripe rust resistance gene Yr10, the first full-length leucine zipper-nucleotide binding site-leucine-rich-repeat resistance gene in cereals, GenBank Accession Number AF149112 (Crop Sciences, Agriculture and Agri-Food Canada, 5403 1st Avenue S., PO Box 3000, Lethbridge, AB T1J 4B1, Canada).

Lehmann A. R., Walicka M., Griffiths D. J., Murray J. M., Watts F. Z., McCready S., and Carr A. M. (1995). The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Molecular \& Cellular Biology 15: 7067-80.

Letarte J. (1996). Identification and characterisation of early meiotic genes in wheat. In "Department of Plant Science", Adelaide University, Adelaide.

Letourneur F., and Klausner R. D. (1992). A novel di-leucine motif and a tyrosine-based motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 69: 1143-57.

Liharska T., Koornneef M., van Wordragen M., van Kammen A. B., and Zabel P. (1996). Tomato chromosome 6: effect of alien chromosomal segments on recombinant frequencies. Genome 39: 485-491.

Lin H. X., Qian H. R., Zhuang J. Y., Lu J., Min S. K., Xiong Z. M., Huang N., and Zheng K. L. (1996). RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L). Theoretical \& Applied Genetics 92: 920-927.

Liu B., Vega J. M., and Feldman M. (1998). Differentiation of homoeologous chromosomes in polyploid wheat. In "9th International Wheat Genetics Symposium" (A. E. Slinkard, Ed.), pp. 70-71, University Extension Press, Saskatoon, Saskatchewan, Canada.

Liu W., Nichols A. F., Graham J. A., Dualan R., Abbas A., and Linn S. (2000). Nuclear transport of human DDB protein induced by ultraviolet light. The Journal of Biological Chemistry 275: 21429-21434.

Loc P. V., and Stratling W. H. (1988). The matrix attachment regions of the chicken lysozyme gene co-map with the boundaries of the chromatin domain. EMBO Journal 7: 655-64.

Loidl J. (1990). The initiation of meiotic chromosome pairing: The cytological view. Genome 33: 759-778.

Loidl J., Klein F., and Scherthan H. (1994). Homologous pairing is reduced but not abolished in asynaptic mutants of yeast. Journal of Cell Biology 125: 11911200.

Lörz H., Becker D., and Lutticke S. (1998). Molecular wheat breeding by direct gene transfer. Euphytica 100: 219-223.

Luo M. C., Dubcovsky J., and Dvorak J. (1996). Recognition of homeology by the wheat Ph1 locus. Genetics 144: 1195-1203.

Maguire M. P. (1977). Homologous chromosome pairing. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 277: 245-258.

Maguire M. P. (1983). Chromosome behaviour at premeiotic mitosis in maize. The Journal of Heredity 74: 93-96.

Manly K. F. (1993). A Macintosh program for storage and analysis of experimental genetic mapping data. Mammalian Genome 4: 303-13.

Marino C. L., Nelson J. C., Lu Y. H., Sorrells M. E., Leroy P., Tuleen N. A., Lopes C. R., and Hart G. E. (1996). Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L Em Thell). Genome 39: 359-366.

Marks M. S., Woodruff L., Ohno H., and Bonifacino J. S. (1996). Protein targeting by tyrosine- and di-leucine-based signals: evidence for distinct saturable components. Journal of Cell Biology 135: 341-54.

Marsischky G. T., Lee S., Griffith J., and Kolodner R. D. (1999). Saccharomyces cerevisiae MSH2/6 complex interacts with Holliday junctions and facilitates their cleavage by phage resolution enzymes. Journal of Biological Chemistry 274: 7200-6.

Martinez M., Cunado N., Carcelen N., and Romero C. (2001). The Ph1 and Ph2 loci play different roles in synaptic behaviour of hexaploid wheat Triticum aestivum. Theoretical \& Applied Genetics 103: 398-405.

Martinez-Perez E., Shaw P., Reader S., Aragon-Alcaide L., Miller T., and Moore G. (1999). Homologous chromosome pairing in wheat. Journal of Cell Science 112: 1761-1769.

McElroy D., Blowers A. D., Jenes B., and Wu R. (1991). Construction of expression vectors based on rice actin 1 (Act1) 5^{\prime} region for use in monocot transformation. Molecular \& General Genetics 231: 150-160.

McLeish J., and Snoad B. (1958). "Looking at Chromosomes," St Martin's, Macmillon.

Meier I., Phelan T., Gruissem W., Spiker S., and Schneider D. (1996). MFP1, a novel plant filament-like protein with affinity for matrix attachment region DNA. Plant Cell 8: 2105-15.

Mello-Sampayo T. (1971). Genetic regulation of meiotic chromosome pairing by chromosome 3D of Triticum aestivum. Nature New Biology 230: 23-24.

Mello-Sampayo T. (1972). Compensated monosomic 5B-trisomic 5A plants in tetraploid wheat. Canadian Journal of Genetics \& Cytology 14: 463-475.

Mello-Sampayo T., and Canas P. (1973). Suppressors of meiotic chromosome pairing in common wheat. In "Proceedings of the Fourth International Wheat Genetics Symposium", pp. 709-713, Columbia, Missouri.

Mello-Sampayo T., and Lorente R. (1968). The role of chromosome 3D in the regulation of meiotic pairing in hexaploid wheat. EWAC Newsletter 2: 16-24.

Mengiste T., Revenkova E., Bechtold N., and Paszkowski J. (1999). An SMClike protein is required for efficient homologous recombination in Arabidopsis. EMBO Journal 18: 4505-12.

Meuwissen R. L., Offenberg H. H., Dietrich A. J., Riesewijk A., van lersel M., and Heyting C. (1992). A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO Journal 11: 5091-100.

Michaelis C., Ciosk R., and Nasmyth K. (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91: 35-45.

Mikhailova E. I., Naranjo T., Shepherd K., Eden J. W., Heyting C., and de Jong J. H. (1998). The effect of the wheat Ph1 locus on chromatin organisation and meiotic chromosome pairing analysed by genome painting. Chromosoma 107: 339-350.

Milanesi L., D'Angelo D., and Rogozin I. B. (1999). GeneBuilder: interactive in silico prediction of gene structure. Bioinformatics 15: 612-21.

Milanesi L., Muselli M., and Arrigo P. (1996). Hamming-Clustering method for signals p rediction in 5 'a nd 3^{\prime} regions of eukaryotic genes. Computational Applied Bioscience 12: 399-404.

Mirkovitch J., Mirault M. E., and Laemmli U. K. (1984). Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39: 223-32.

Mittelsten Scheid O., Jakovleva L., Afsar K., Maluszynska J., and Paszkowski J. (1996). A change of ploidy can modify epigenetic silencing. Proceedings of the National Academy of Sciences of the United States of America 93: 7114-9.

Mlynarova L., Jansen R. C., Conner A. J., Stiekema W. J., and Nap J. P. (1995). The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. Plant Cell 7: 599-609.

Moens P. B. (1994). Molecular perspectives of chromosome pairing at meiosis. BioEssays 16: 101-106.

Moore G. (1998). To pair or not to pair - Chromosome pairing and evolution. Current Opinion in Plant Biology 1: 116-122.

Moore G., Devos K. M., Wang Z., and Gale M. D. (1995). Cereal genome evolution - Grasses, line up and form a circle. Current Biology 5: 737-739.

Morgante M. (2000). (personal communication).

Moullet O., Zhang H. B., and Lagudah E. S. (1999). Construction and characterisation of a large DNA insert library from the D genome of wheat. Theoretical \& Applied Genetics 99: 305-313.

Murashige T., and Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.

Nag D. K., Scherthan H., Rockmill B., Bhargava J., and Roeder G. S. (1995). Heteroduplex DNA formation and homolog pairing in yeast meiotic mutants. Genetics 141: 75-86.

Nakai K., and Kanehisa M. (1992). A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897-911.

Nehra N. S., Chibbar R. N., Leung N., Caswell K., Mallard C., Steinhauer L., Baga M., and Kartha K. K. (1994). Self-fertile transgenic wheat plants
regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant Journal 5: 285-297

Nelson J. C., Sorrells M. E., Vandeynze A. E., Lu Y. H., Atkinson M., Bernard M., Leroy P., Faris J. D., and Anderson J. A. (1995a). Molecular mapping of wheat - Major genes and rearrangements in homoeologous groups 4, 5, and 7 . Genetics 141: 721-731.

Nelson J. C., Vandeynze A. E., Autrique E., Sorrells M. E., Lu Y. H., Merlino M., Atkinson M., and Leroy P. (1995b). Molecular mapping of wheat Homoeologous group 2. Genome 38: 516-524.

Nelson J. C., Vandeynze A. E., Autrique E., Sorrells M. E., Lu Y. H., Negre S., Bernard M., and Leroy P. (1995c). Molecular mapping of wheat Homoeologous group 3. Genome 38: 525-533

Newman S. M., Eannetta N. T., Yu H., Prince J. P., de Vicente M. C., Tanksley S. D., and Steffens J. C. (1993). Organisation of the tomato polyphenol oxidase gene family. Plant Molecular Biology 21: 1035-51.

Nichols A. F., Itoh T., Graham J. A., Liu W., Yamaizumi M., and Linn S. (2000). Human damage-specific DNA binding protein p48. The Journal of Biological Chemistry 275: 21422-21428.

Niedz R. P., Sussman M. R., and Satterlee J. S. (1995). Green fluorescent protein - an in vivo reporter of plant gene expression. Plant Cell Reports 14: 403-406.

Nielsen H., Engelbrecht J., Brunak S., and von Heijne G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 10: 1-6.

Ohta K., Shibata T., and Nicolas A. (1994). Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO Journal 13: 5754-63.

Okamoto M. (1957). Asynaptic effect of chromosome V. In "Wheat Information Server" (R. J. Callanan, and K. Scogna, Eds.), pp. 6, Mosby-Year Book, Inc, St. Louis, Missouri.

Oparka K. J., Roberts A. G., Prior D. A. M., Chapman S., Baulcombe D., and Santacruz S. (1995). Imaging the green fluorescent protein in plants - Viruses carry the torch. Protoplasma 189: 133-141.

Padmore R., Cao L., and Kleckner N. (1991). Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66: 1239-1256.

Pang Q., Hays J. B., and Rajagopal I. (1992). A plant cDNA that partially complements Escherichia coli recA mutations predicts a polypeptide not strongly homologous to RecA proteins. Proceedings of the National Academy of Sciences of the United States of America 89: 8073-7.

Pang S. Z., Deboer D. L., Wan Y., Ye G. B., Layton J. G., Neher M. K., Armstrong C. L., Fry J. E., Hinchee M. A. W., and Fromm M. E. (1996). An improved green fluorescent protein gene as a vital marker in plants. Plant Physiology 112: 893-900.

Parniske M., Hammondkosack K. E., Golstein C., Thomas C. M., Jones D. A., Harrison K., Wulff B. B. H., and Jones J. D. G. (1997). Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91: 821-832.

Parniske M., a nd J ones J.D.G. (1999). R ecombination between diverged clusters of the tomato Cf-9 plant disease resistance gene family. Proceedings of the National Academy of Sciences of the United States of America 96: 58505855.

Parniske M., Wulff B. B. H., Bonnema G., Thomas C. M., Jones D. A., and Jones J. D. G. (1999). Homologues of the Cf-9 disease resistance gene
(Hcr9s) are present at multiple loci on the short arm of tomato chromosome 1. Molecular Plant-Microbe Interactions 12: 93-102.

Payne A., and Chu G. (1994). Xeroderma pigmentosum group E binding factor recognizes a broad spectrum of DNA damage. Mutation Research 310: 89102.

Peterson D. G., Price H. J., Johnston J. S., and Stack S. M. (1996). DNA content of heterochromatin and euchromatin in tomato (Lycopersicum esculentum) pachytene chromosomes. Genome 39: 77-82.

Piedras P., Rivas S., Droge S., Hillmer S., and Jones J. D. G. (2000). Functional, C-Myc-tagged Cf-9 resistance gene products are plasmamembrane localized and glycosylated. Plant Journal 21: 529-536.

Prestridge D. S. (1991). SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Computational Applied Bioscience 7: 203-6.

Protic M., Hirschfeld S., Tsang A. P., Wagner M., Dixon K., and Levine A. S. (1989). Induction of a novel damage-specific DNA binding protein correlates with enhanced DNA repair in primate cells. Molecular Toxicology 2: 255-70.

Pryer N. K., Salama N. R., Schekman R., and Kaiser C. A. (1993). Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. Journal of Cell Biology 120: 865-75.

Qiagen (1998). The Qiagen guide to template purification and DNA sequencing, Qiagen Pty Ltd.

Raman R., and Nanda I. (1986). Mammalian sex chromosomes. I. Cytological changes in the chiasmatic sex chromosomes of the male musk shrew, Suncus murinus. Chromosoma 93: 367-74.

Raven P. H., and Johnson G. B. (1992). "Biology," Mosby-Year Book, Inc, St. Louis, Missouri.

Rayssiguier C., Thaler D. S., and Radman M. (1989). The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342: 396-401.

Rechsteiner M., and Rogers S. W. (1996). PEST sequences and regulation by proteolysis. Trends in Biochemical Sciences 21: 267-271.

Reinke R., Krantz D. E., Yen D., and Zipursky S. L. (1988). Chaoptin, a cell surface glycoprotein required for Drosophila photoreceptor cell morphogenesis, contains a repeat motif found in yeast and human. Cell 52: 291-301.

Riley R. (1960). The diploidisation of polyploid wheat. Heredity 15: 407-429.

Riley R., and Chapman V. (1958). Genetic control of the cytologically diploid behavior of hexaploid wheat. Nature 182: 713-715.

Riley R., Chapman V., Young R. M., and Belfield A. M. (1966). Control of meiotic chromosome pairing by the chromosomes of homoeologous group 5 of Triticum aestivum. Nature 212: 1475-1477.

Roberts M. A., Reader S. M., Dalgliesh C., Miller T. E., Foote T. N., Fish L. J., Snape J. W., and Moore G. (1999). Induction and characterization of Ph1 wheat mutants. Genetics 153: 1909-1918.

Rogers S. W., Wells R., and Rechsteiner M. (1986). Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis. Science 234: 364-368.

Ross K. J., Fransz P., Armstrong S. J., Vizir I., Mulligan B., Franklin F. C. H., and Jones G. H. (1997). Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines. Chromosome Research 5: 551-559.

Ryals J. A., Neuenschwander U. H., Willits M. G., Molina A., Steiner H.-Y., and Hunt M. D. (1996). Systemic aquired resistance. Plant Cell 8: 1809-1819.

Saitoh N., Goldberg I., and Earnshaw W. C. (1995). The SMC proteins and the coming of age of the chromosome scaffold hypothesis. BioEssays 17: 759-766.

Saitoh N., Goldberg I. G., Wood E. R., and Earnshaw W. C. (1994). Scll - an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. Journal of Cell Biology 127: 303-318.

Saji S., Umehara Y., Antonio B., Yamane H., Tanoue H., Baba T., Aoki H., Ishige N., Wu J. Z., Koike K., Matsumoto T., and Sasaki T. (2001). A physical map with yeast artificial chromosome (YAC) clones covering 63\% of the 12 rice chromosomes. Genome 44: 32-37.

Saka Y., Sutani T., Yamashita Y., Saitoh S., Takeuchi M., Nakaseko Y., and Yanagida M. (1994). Fission yeast Cut3 and Cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO Journal 13: 4938-4952.

Sakata K., Nagasaki H., Idonuma A., Waki K., Kise M., and Sasaki T. (1999). A computer program for prediction of gene domain on rice genome sequence. The 2nd Georgia Technical International Conference on Bioinformatics Abstracts: 78.

Sambrook F., Fritsch E. F., and Maniatis F. (1989). "Molecular cloning: A laboratory manual," Cold Spring Harbour Laboratory, New York.

Scherthan H., Bahler J., and Kohli J. (1994). Dynamics of chromosome organisation and pairing during meiotic prophase in fission yeast. Journal of Cell Biology 127: 273-85.

Schmekel K., Wahrman J., Skoglund U., and Daneholt B. (1993). The central region of the synaptonemal complex in Blaps cribrosa studied by electron microscope tomography. Chromosoma 102: 669-681.

Schwacha A., and Kleckner N. (1994). Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76: 51-63.

Schwarzacher T. (1997). Three stages of meiotic homologous chromosome pairing in wheat - Cognition, alignment and synapsis. Sexual Plant Reproduction 10: 324-331.

Sears E. R. (1954). The aneuploids of common wheat. Missouri Agricultural Experimental Station Research Bulletin 572: 58.

Sears E.R. (1972). The n ature of mutation in hexaploid wheat. Symposia Biologica Hungarica 12: 73-82.

Sears E. R. (1976). Genetic control of chromosome pairing in wheat. Annual Review of Genetics 10: 31-51.

Sears E. R. (1977). An induced mutant with homoeologous pairing in common wheat. Canadian Journal of Genetics \& Cytology 19: 585-593.

Sears E. R. (1982). A wheat mutant conditioning an intermediate level of homoeologous chromosome pairing. Canadian Journal of Genetics \& Cytology 24: 715-719.

Sears E. R., and Okamoto M. (1958). Intergenomic chromosome relationships in hexaploid wheat. In "Proceedings of the Tenth International Congress of Genetics", pp. 258-259.

Selva E. M., Maderazo A. B., and Lahue R. S. (1997). Differential effects of the mismatch repair genes MSH 2 and MSH 3 on homeologous recombination in Saccharomyces cerevisiae. Molecular \& General Genetics 257: 71-82.

Selva E. M., New L., Crouse G. F., and Lahue R. S. (1995). Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139: 1175-88.

Shaw P., and Moore G. (1998). Meiosis: vive la difference! Current Opinion in Plant Biology 1: 458-62.

Sheen J., Hwang S. B., Niwa Y., Kobayashi H., and Galbraith D. W. (1995). Green-fluorescent protein as a new vital marker in plant cells. Plant Journal 8: 777-784.

Sherman J. D., Stack S. M., and Anderson L. K. (1989). Two-dimensional spreads of synaptonemal complexes from solanaceous plants IV. Synaptic irregularities. Genome 32: 743-753.

Smilde W. D., Haluskova J., Sasaki T., and Graner A. (2001). New evidence for the synteny of rice chromosome 1 and barley chromosome $3 H$ from rice expressed sequence tags. Genome 44: 361-7.

Smith T. F., Gaitatzes C., Saxena K., and Neer E. J. (1999). The WD repeat: a common architecture for diverse functions. Trends in Biochemical Sciences 24: 181-5.

Song W. Y., Wang G. L., Chen L. L., Kim H. S., Pi L. Y., Holsten T., Gardner J., Wang B., Zhai W. X., Zhu L. H., Fauquet C., and Ronald P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804-1806.

Southern E. M. (1975). Detection of s pecific D NA s equences a mong D NA fragments seperated by gel electrophoresis. Journal of Molecular Biology 98: 503-517.

Spiker S., and William F. (1996). Nuclear matrix attachment regions and transgene expression in plants. Plant Physiology 110: 15-21.

Stein N., Feuillet C., Wicker T., Schlagenhauf E., and Keller B. (2000). Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proceedings of the National Academy of Sciences of the United States of America 97: 13436-41.

Strunnikov A. V., Hogan E., and Koshland D. (1995). SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes \& Development 9: 587-599.

Strunnikov A. V., Larionov V. L., and Koshland D. (1993). SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division a nd d efines a new ubiquitous protein family. Journal of Biological Chemistry 123: 1635-48.

Sugawara N ., P aques F ., Colaiacovo M., and Haber J. E. (1997). Role of Saccharomyces cerevisiae MSH2 and MSH3 repair proteins in double-strand break-induced recombination. Proceedings of the National Academy of Sciences of the United States of America 94: 9214-9.

Sun H., Treco D., Schultes N. P., and Szostak J. W. (1989). Double strand breaks at an initiation site for meiotic gene conversion. Nature 338: 87-90.

Sutani T., and Yanagida M. (1997). DNA renaturation activity of the SMC complex implicated in chromosome condensation. Nature 388: 798-801.

Suzuki N., Choe H.-R., Nishida Y., Yamawaki-Kataoka Y., Ohnishi S., Tamaoki T., and Kataoka T. (1990). Leucine-rich repeats and carboxyl terminus are required for interaction of yeast adenylate cyclase with RAS proteins. Proceedings of the National Academy of Sciences of the United States of America 87: 8711-8715.

Sym M., Engebrecht J. A., and Roeder G. S. (1993). Zip1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72: 365-78.

Thomas C. M., Dixon M. S., Parniske M., Golstein C., and Jones J. D. (1998). Genetic and molecular analysis of tomato Cf genes for resistance to Cladosporium fulvum. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 353: 1413-24.

Thomas C. M., Jones D. A., Parniske M., Harrison K., Balint-Kurti P., Hatzixanthis K., and Jones J. D. G. (1997). Characterisation of the Cf-4 gene for r esistance to C ladosporium f ulvum i dentifies s equences t hat determine recognitional specificity in Cf-4 and Cf-9. The Plant Cell 9: 2209-2224.

Thomas H. M. (1990). Analysis of synaptonemal complexes in the amphidiploid of Lolium multiflorum x Festuca drymeja. Genome 33: 903-907.

Thomas S. W. (1997). Molecular studies of homologous chromosome pairing in Triticum aestivum. In "Department of Plant Science", pp. 173, Adelaide University, Adelaide.

Tokunaga Y., Keon J. P. R., and Hargreaves J. A. (1999). Isolation of a barley homolog of Cf2/Cf5 disease resistance genes by differential display of benzothiodiazole-treated plants, GenBank Accession Number AF166121(Cell Biology, IACR-Long Ashton, Long Ashton, Bristol BS41 9AF, UK).

Townsley F. M., and Ruderman J. V. (1998). Proteolytic ratchets that control progression through mitosis. Trends in Cell Biology 8: 238-244.

Twyman R. M., Ed. (1998). "Advanced molecular biology: A concise reference," BIOS Scientific Publishers Ltd, Oxford.

Uphadya M. D., and Swaminathan M. S. (1967). Mechanisms regulating chromosome pairing in Triticum. Biologisches Zentralblatt 87s: 239-255.

Vaisman N., Tsouladze A., Robzyk K., Ben-Yehuda S., Kupiec M., and Kassir Y. (1995). The role of Saccharomyces cerevisiae Cdc40p in DNA replication and mitotic spindle formation and/or maintenance. Molecular \& General Genetics 247: 123-36.

Vandeynze A. E., Nelson J. C., Odonoughue L. S., Ahn S. N., Siripoonwiwat W., Harrington S. E., Yglesias E. S., Braga D. P., McCouch S. R., and Sorrells M. E. (1995). Comparative mapping in grasses - Oat relationships. Molecular \& General Genetics 249: 349-356.

Vasil V., Castillo A. M., Fromm M. E., and Vasil I. K. (1992). Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology 10: 667-674.

Vega J. M., and Feldman M. (1998a). Effect of the pairing gene Ph1 and premeiotic colchicine treatment on intra- and interchromosome pairing of isochromosomes in common wheat. Genetics 150: 1199-1208.

Vega J. M., and Feldman M. (1998b). Effect of the pairing gene Ph1 on centromere misdivision in common wheat. Genetics 148: 1285-1294.

Vinatzer B. A., Patocchi A., Gianfranceschi L., Tartarini S., Zhang H. B., Gessler C., and Sansavini S. (2001). Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Molecular Plant-Microbe Interactions 14: 508-15.

Vincent J. E., and Jones G. H. (1993). Meiosis in autopolyploid Crepis capillaris. I. Triploids and trisomics; implications for models of chromosome pairing. Chromosoma 102: 195-206.
von Heijne G. (1986). A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14: 4683-90.
von Wettstein D., Rasmussen S. W., and Holm P. B. (1984). The synaptonemal complex in genetic segregation. Annual Review of Genetics 18: 331-413.

Vulic M., Dionisio F., Taddei F., and Radman M. (1997). Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in
enterobacteria. Proceedings of the National Academy of Sciences of the United States of America 94: 9763-7.

Walker J. E., Saraste M., Runswick M. J., and Gay N. J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO Journal 1: 945-51.

Wall A. M., Riley R., and Chapman V. (1971). Wheat mutants permitting homoeologous meiotic chromosomes pairing. Genetical Research 18: 311328.

Walters M. S. (1970). Evidence of the time of chromosome pairing from the preleptotene spiral stage in Lolium longiflorum 'Croft'. Chromosoma 29: 375418.

Wang B. C., Dickinson L. A., Koivunen E., Ruoslahti E., and Kohwishigematsu T. (1995). A novel matrix attachment region DNA binding motif identified using a random phage peptide library. Journal of Biological Chemistry 270: 2323923242.

Weiner B. M., and Kleckner N. (1994). Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77: 977-991.

Wicker T. (2001). (personal communication).

Wicker T., Stein N., Albar L., Feuillet C., Schlagenhauf E., and Keller B. (2001). Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant Journal 26: 307-16.

Williams F. E., Varanasi U., and Trumbly R. J. (1991). The CYC8 and TUP1 proteins involved in glucose repression in Saccharomyces cerevisiae are associated in a protein complex. Molecular \& Cellular Biology 11: 3307-16.

Wolters P. (2000). (personal communication).

Wright T. R. F. (1996). Phenotypic analysis of the DOPA decarboxylase gene cluster mutants in Drosophila melanogaster. Journal of Heredity 87: 175-190.

Wu T. C., and Lichten M. (1994). Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263: 515-8.

Yacobi Y. Z., Mello-Sampayo T., and Feldman M. (1982). Genetic induction of bivalent interlocking in common wheat. Chromosoma 87: 165-175.

Yanagisawa S. (1997). Dof DNA-binding domains of plant transcription factors contribute to multiple protein-protein interactions. European Journal of Biochemistry 250: 403-10.

Yanagisawa S. (1998). Dof proteins: involvement of transcription factors with a novel DNA- binding domain in tissue-specific and signal-responsive gene expression [Japanese]. Seikagaku 70: 280-5.

Yanagisawa S. (2000). Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant Journal 21: 281-8.

Yanagisawa S., and Schmidt R. J. (1999). Diversity and similarity among recognition sequences of Dof transcription factors. Plant Journal 17: 209-14.

Yanagisawa S., and Sheen J. (1998). Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10: 75-89.

Yang D., Parco A., Nandi S., Subudhi P., Zhu Y., Wang G., and Huang N. (1997). Construction of a bacterial artificial chromosome (BAC) library and identification of overlapping BAC clones with chromosome 4-specific RFLP markers in rice. Theoretical \& Applied Genetics 95: 1147-1154.

Zickler D., and Kleckner N. (1998). The leptotene-zygotene transition of meiosis. Annual Review of Genetics 32: 619-+.

Zickler D., and Kleckner N. (1999). Meiotic chromosomes: Integrating structure and function. Annual Review of Genetics 33: 603-754.

Appendix

Table 19: Transgenic plants produced from individual microprojectile bombardment experiments. Each experiment is determined by date of microprojectile bombardment and the cultivar plus number of isolated scutella. The co-bombardment class, number of plantlet regenerants into glasshouse and the identified number of transformation events for each experiment are given.

Date	Cultivar	Number of Scutella bombarded	Co-bombardment class (refer to Table 11)	Plantlet regenerants	Transformation Events
1/3	Veery	$\begin{aligned} & 90(C) \\ & 20 \end{aligned}$	x^{2} Control	0	0
5/3	Veery Pavon Combi	$\begin{aligned} & 45(A+C) \\ & 23 \text { (B) } \\ & 24 \text { (D) } \\ & 10 \\ & 64 \text { (A + C) } \\ & 32 \text { (B) } \\ & 28 \text { (D) } \\ & 10 \\ & 28 \text { (A) } \\ & 27 \text { (B) } \\ & 10 \end{aligned}$	X Y^{1} Z^{3} Control X Y^{1} Z^{3} Control X^{1} Y^{1} Control	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
8/3	Veery	$\begin{aligned} & 20(\mathrm{C}) \\ & 60(\mathrm{~B}) \\ & 60\left(\mathrm{D}^{\prime}\right) \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline X^{2} \\ & Y^{1} \\ & Z^{1} \\ & \text { Control } \end{aligned}$	$\begin{aligned} & 0 \\ & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
13/3	Veery Pavon Combi	$54\left(C^{\prime}\right)$ 54 (B') 54 ($\left.D^{\prime}\right)$ 10 $36\left(C^{\prime}\right)$ 54 (B') 36 (D') 10 15 (D')	X^{2} Y^{1} Z^{1} Control X^{2} Y^{1} Z^{1} Control Z^{1} X^{1}	0 0 1 0 1 2 2	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$
18/3	Veery Pavon Combi	$\begin{array}{\|l} \hline 72 \text { (A) } \\ 48 \text { (B) } \\ 48 \text { (E) } \\ 16 \\ 44(A) \\ 44(B) \\ 44(E) \\ 18(A) \\ 17(B) \\ \hline \end{array}$	Z^{1} Y^{1} Z^{3} Control X^{1} Y^{1} Z^{3} X^{1} Y^{1} X	$\begin{aligned} & \hline 0 \\ & 2 \\ & 1 \\ & \\ & 0 \\ & 0 \\ & 1 \\ & 3 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$
22/3	Veery Pavon	$\begin{array}{\|l\|} \hline 140 \\ 96 \\ 112 \\ 66 \\ 44 \\ 66 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline X \\ Y \\ Z \\ X \\ X \\ X \\ Z \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 0 \\ 0 \\ 0 \\ 2 \\ 3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ \hline \end{array}$
26/3	Veery Pavon	$\begin{array}{\|l\|} \hline 72 \\ 78 \\ 78 \\ 14 \\ 24 \\ 24 \end{array}$	X X Y Z Control X Y	$\begin{array}{\|l\|} \hline 4 \\ 10 \\ 16 \\ \\ 1 \\ 1 \end{array}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \[
\begin{aligned}
\& 24 \\
\& 10 \\
\& \hline
\end{aligned}
\] \& Z Control \& 0 \& 0 \\
\hline 31/3 \& \begin{tabular}{l}
Veery \\
Pavon
\end{tabular} \& 114
86
114
12
24
24
24 \& X
\(Y\)
\(Z\)
Control
\(X\)
\(Y\)
\(Z\) \& 12
24
8
2
2
0 \& \[
\begin{aligned}
\& \hline 0 \\
\& 0 \\
\& 0 \\
\& \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \\
\hline 4/4 \& Veery \& \[
\begin{array}{|l}
\hline 82 \\
56 \\
56 \\
12 \\
\hline
\end{array}
\] \& \(X\)
\(X\)
\(Z\)
\(Z\)
Control \& \[
\begin{aligned}
\& \hline 26 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 0 \\
\& 0
\end{aligned}
\] \\
\hline 5/4 \& Veery \& \[
\begin{array}{|l|}
\hline 84 \\
56 \\
84 \\
20 \\
\hline
\end{array}
\] \& X
Y
Z
Control \& \[
\begin{aligned}
\& \hline 28 \\
\& 47 \\
\& 19
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline 0 \\
3 \\
0
\end{array}
\] \\
\hline 9/4 \& Veery \& \[
\begin{array}{|l}
\hline 72 \\
48 \\
72 \\
5 \\
\hline
\end{array}
\] \& Con
\(X\)
\(Y\)
\(Z\)
Control \& \[
\begin{array}{|l|}
\hline 28 \\
7 \\
1
\end{array}
\] \& \[
\begin{array}{|l|}
\hline 0 \\
1 \\
0
\end{array}
\] \\
\hline 13/4 \& \begin{tabular}{l}
Veery \\
Combi \\
Florida
\end{tabular} \& \[
\begin{array}{|l|}
\hline 54 \\
54 \\
27 \\
6 \\
24 \\
24 \\
24 \\
12 \\
26 \\
26 \\
6 \\
\hline
\end{array}
\] \& \& \[
\begin{aligned}
\& \hline 0 \\
\& 0 \\
\& 1 \\
\& 14 \\
\& 12 \\
\& 7 \\
\& 7 \\
\& 1 \\
\& 1
\end{aligned}
\] \& \[
\begin{array}{|l}
\hline 0 \\
0 \\
0 \\
\\
1 \\
0 \\
\\
0 \\
0
\end{array}
\] \\
\hline 16/4 \& \begin{tabular}{l}
Veery \\
Combi \\
Florida
\end{tabular} \& \[
\begin{array}{|l|}
\hline 60 \\
60 \\
60 \\
25 \\
60 \\
60 \\
90 \\
10 \\
\hline
\end{array}
\] \& \begin{tabular}{l}
X \\
Y \\
Z \\
X \\
X \\
Y \\
Z \\
Control
\end{tabular} \& \[
\begin{array}{|l|}
\hline 28 \\
25 \\
18 \\
7 \\
1 \\
4 \\
4 \\
\hline
\end{array}
\] \& \[
\begin{array}{|l}
\hline 1 \\
2 \\
2 \\
0 \\
0 \\
0 \\
0
\end{array}
\] \\
\hline 19/4 \& \begin{tabular}{l}
Veery \\
Florida
\end{tabular} \& \[
\begin{aligned}
\& 24 \\
\& 24 \\
\& 24 \\
\& 60 \\
\& 30 \\
\& 30 \\
\& 6
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \hline 1 \\
\& 0 \\
\& 0 \\
\& 2 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\begin{array}{|l}
\hline 0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\] \\
\hline 22/4 \& \begin{tabular}{l}
Veery \\
Combi \\
Florida
\end{tabular} \& \[
\begin{aligned}
\& 30 \\
\& 30 \\
\& 30 \\
\& 12 \\
\& 26 \\
\& 26 \\
\& 26 \\
\& 8 \\
\& 62 \\
\& 62
\end{aligned}
\] \& \(X\)
\(X\)
\(Z\)
Control
\(X\)
\(Y\)
\(Z\)
Control
\(X\)
\(Y\) \& \[
\begin{array}{|l}
\hline 3 \\
0 \\
1 \\
\\
11 \\
17 \\
23 \\
\\
0 \\
1
\end{array}
\] \& 0
0
0

2
1
0

0
0

\hline
\end{tabular}

		$\begin{aligned} & 62 \\ & 8 \end{aligned}$	Z Control	3	0
26/4	Veery Florida	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 12 \\ & 60 \\ & 60 \\ & 60 \\ & 12 \end{aligned}$	X X Y Z Control X Y Z Control	$\begin{aligned} & 15 \\ & 11 \\ & 8 \\ & 28 \\ & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$
29/4	Veery	$\begin{aligned} & \hline 140 \\ & 120 \\ & 140 \\ & 12 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline X \\ Y \\ Z \\ \text { Control } \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & 0 \\ & 25 \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 1 \end{array}$
3/5	Veery Combi	$\begin{array}{\|l} \hline 90 \\ 90 \\ 90 \\ 10 \\ 21 \\ 21 \\ 21 \\ \hline \end{array}$	X X Y Z Control X Y Z	$\begin{array}{\|l\|} \hline 6 \\ 4 \\ 4 \\ \hline \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
6/5	Veery	$\begin{aligned} & 120 \\ & 120 \\ & 120 \\ & 10 \\ & \hline \end{aligned}$	X Y Z Control	$\begin{array}{\|l\|} \hline 8 \\ 30 \\ 19 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \end{array}$
14/5	Veery Combi	$\begin{array}{\|l\|} \hline 120 \\ 120 \\ 12 \\ 25 \\ 25 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline X \\ Z \\ \text { Control } \\ X \\ Z \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 9 \\ 1 \\ \\ \hline \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$
Total		5832		637	26

except WM5 GUS and WM5 GFP reporter gene constructs
${ }^{2}$ except Antisense WM5 and WM5 GFP constructs
${ }^{3}$ except WM5 GUS reporter gene construct
${ }^{4}$ except WM5 GFP reporter gene construct

[^0]: ${ }^{1}$ The Tris-HCI and HEPES stock solutions used to make the probe labelling buffer were $1 \mathrm{M}, \mathrm{pH} 8.0$ and 0.8 $\mathrm{M}, \mathrm{pH} 6.6$, respectively.

[^1]: ${ }^{2}$ Optimum annealing temperature for each primer pair was determined using VectorNTI Suite (V6.0) software (Bethesda, MD, USA).

