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Chiral Symmetry and the Extraction of Hadron

Properties from Lattice QCD

Stewart V. Wright, Ph.D.
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Dr. D. B. Leinweber

The extraction of the physical properties of hadrons from lattice Quantum Chro-

modynamics (QCD) calculations is an important and urgent area of research. It

is difficult to make calculations of hadronic properties because QCD is a highly

non-linear field theory. Lattice gauge theory is the only known ab initio way of

making nonperturbative calculations of QCD. The lattice has been highly success-

ful but the computational cost of simulating light quark masses means that hadronic

calculations at physical quark masses are some way off.

We present a method of extrapolating from the heavy quark regime, where

lattice calculations now occur, to physical quark masses, which carefully incor-

porates key, model independent constraints - especially those imposed by chiral

symmetry. This extrapolation method not only allows one to extract physical hadron

masses with high accuracy, but also allows the extraction of other properties, includ-

ing the pion-nucleon sigma term and the J parameter for the vector mesons.

v1



Contents

Acknowledgments

Abstract

Chapter 1 Introduction

Chapter 2 Lattice QCD

2.1 Lattice Field Theory

2.1.1 General Foundation .

2.1.2 Building the Lattice

2.1.3 Region of APPlicabilitY .

u

vt

1

2.2

2.3

2.4

2.5

Nucleon Mass .

Setting the Scale

Results

Conclusion

7

8

8

10

t2

13

15

l7

20

Chapter 3 Chiral Perturbation Theory

3.1 Chiral Symmetry

3.1.1 DYnamical SYmmetry Breaking

3.I.2 Goldstone'sTheorem

3.1.3 The Gell-Mann-Oakes-Renner Relation

22

22

25

26

27

v11



3.2 Chiral Perturbation Theory

3.2.1 Leading Non-Analytic Contribution to the l/ mass

3.2.2 Next-To-Leading Non-Anal¡ic Contribution to the -lü mass

3.3 Summary

Chapter 4 The Cloudy Bag Model

4.1 The MIT Bag Model

4.1.1 Excited States and Radius Determination

4.1.2 Massive Quarks

4.1.3 Charge Current Conservation .

4.1.4 Isospin Conservation

4.1.5 Axial CurrentNon-conservation

4.2 Description of the CBM

4.2.1 Coupling Constants

4.2.2 The Physical Nucleon

4.2.3 Hadron Masses

4.3 Summary

Chapter 5 The Rho Meson

5.1 ExtrapolationFormula

5.1.1 SelÊEnergY Contributions

5.1.2 ExtraPolation formula

5.2 LimitingBehaviour

5.2.1 The Chiral Limit

5.2.2 The Static Quark Limit

5.2.3 The Mass in the Chiral Limit '

5.3 The Width of The P-Meson

28

30

31

JJ

34

35

38

39

40

4l

42

43

45

47

48

51

52

54

55

65

66

66

69

69

70

vl11



5.5

5.6

5.7

5.4 Fitting to Lattice Results

5.4.1 Naive Chiral Fits

5.4.2 Improved Chiral Fits

The J-Parameter

The prr Phase Shift

Summary

6.2.2 The Static Quark Limit . . .

6.2.3 The Mass in the Chiral Limit

The A Baryon

6.3.1 SelÊEnergY Contributions

6.3.2 ExtrapolationFormula

Limiting Conditions For rn4

6.4.1 The Chiral Limit

6.5

6.6

6.4.2 The Static Quark Limit

6.4.3 The A Mass in the Chiral Limit

Cloudy Bag Model Results

Fitting to Lattice Results

6.6.1 Sharp Cut-OffForm Factor .

6.6.2 Naïve Chiral Fits

6.6.3 Improved Chiral Fits

7l

73

76

79

82

84

Chapter 6 Baryon Masses

6.1 The Nucleon

6.1.1 Self-Energy Contributions

6.1.2 ExtrapolationFormula

6-2 Limiting Conditions For rnTv

6.2.1 The Chiral Limit

85

86

87

88

88

89

9l

92

92

93

94

94

95

97

99

99

104

105

t07

108

6.3

6.4

lx



6.6.4 Series Expansion

Sigma Commutator6.7

6.8 Summary

Chapter 7 Edinburgh Plots

7.l Predictions for the Finite Lattice

7.1.1 The N Edinburgh Plot

7.1.2 The A Edinburgh Plot

7.2 Quenched vs. Dynamical Quarks . .

Chapter I Summary and Outlook

Appendix A Mathematical Conventions

4.1 Useful Identities

,A..1.1 Residue Theorem .

A.2 Wick Contractions

4.3 Dirac Matrices

4.3.1 Dirac Representation

A.3.2 Chiral Representation '

Bibliography

Related Publications by the Author

. t25

..115

111

120

t2t
124

t26

t28

135

136

136

136

138

148

130

t34

. t34

. r35

x



Chapter 1

fntroduction

We shall not ceaseJi"om exploration

And the end of all our exploring

Will be to arrive where we started

And lcnow the placefor thefirst time.

T.S. Euor, "LITTLE GIDDING"

n the surface it seems remarkable that still the primary unresolved problem

in the Standard Model ofparticle physics relates to the strong interaction and

its description from first principles. Quantum Chromodynamics (QCD), originally

proposed by Gell-Mann [] and Zweig[2] in the 1960s and 1970s, came about

as a result of the exploding number of new particles being created by high energy

particle colliders. To get a grasp on this variety of new matter, building blocks called

quarl<s were introduced as simply a book-keeping trick. When it was found that one

of these new particles, the A**, was predicted to have a totally symmetric wave

function, but was known to obey Fermi-Dirac statistics a hurdle was encountered.

Following the cavalier approach of the initial formulation, a colour quantum number

was assigned to the quarks. The baryons were required to be anti-symmetric under
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the colour indices and the problems vanished. Imposing local gauge invariance on

the colour frelds and having the quarks interact by vector gluons crystallised the

theory into the QCD we know todaY.

QCD is an asymptotically free theory - the effective strong coupling con-

stant decreases at short distances. Perturbative QCD may be applied to processes

involving large momentum transfer, for instance hadronic jets in high energy parti-

cle collisions. In principle all the properties of strongly interacting particles could

be exhacted from the QCD Lagrang¡an It has been saidl that "In theory there is no

dffirence between theory and practice; In practice there ls. " This is especially true

in the case of QCD in the low energy sector. The difficulty lies in the fact that QCD

is formulated in terms of quarks and gluons,yet at low energy the world appears to

be constructed of hadrons. To this date, no anal¡ic studies of QCD have been able

to extract non-perturbative results from first principles.

There are many approaches that have been applied to QCD in attempts to

extract results in the non-perturbative region. The difficulty is that fundamental

issues such as confinement and chiral symmetry are still not well understood. QCD

motivated models atternpt to build in some of the known properties whilst allowing

the exploration of and extrapolation to, other regions. There is of course a method

that allows ab initio calculations in QCD to be performed - Lattice QCD.

On the lattice the entire theory of QCD is discretised. Space-time itself is

discretised into a finite lattice. The quark fields are averaged about the grid-points

and the gluon fields are defined on the links between the grid-points. The act of

discretising the theory introduces, at a first approximation, errors of O(a), where ø

is the lattice spacing. The strength of the lattice is that these discretisation errors

scale, that is, as the lattice gets finer, the errors reduce, and in the continuum limit

lattice eCD is identical to QCD. Recent breakthroughs now allow the elimination

2
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of 0(a) errors, and the rønaining 0(o') errors are small.

The Standard Model parameters of full QCD, the quark masses and the

strong coupling constant, are also the parameters of freedom in lattice calculations.

'Where experimentally these are fixed quantities, the lattice allows investigation of

how the theory of QCD behaves under variation of these parameters. The insights

gained from exploring non-physical parameter sets is not only of interest as an in-

tellectual exercise, but also forced upon us by technical issues. Computational and

algorithmic limitations prevent fulI QCD lattice calculations at light quark masses'

and force the extraction ofhadron properties to occur at very heavy, entirely un-

physical, quark masses. Improvønents in actions, algorithms and computing power

are occurring continuously, but it is a widely held view that we are still many years

away from QCD calculations near the physical region. Two approaches to this dif-

ficulty have evolved.

The first is quenching where the theory is modified in a way as to effectively

remove sea-quark loops. This approximation, whilst mutilating the theory allows

orders of magnitude reduction in computing costs. The other approach, which is the

basis of this thesis, and in a modified form still important for the quenched theory

is to extrapolate the hadron properties from the heavy quark masses to physical

masses. We investigate, as a first instance, the extrapolation of dynamical fermion

lattice QCD results. Currently there is research under way to extend this approach

to quenched and partially quenched results, but discussion of such is left to a future

work.

The lattice approach is in its prime as a non-perturbative tool to explore

QCD and hadronic properties. It has been observed that massless QCD obeys chi-

ral symmetry and this motivated the derivation of an effective field theory Chiral

Perturbation Theory (XPT). XPT is an effective theory containing the important low

energy symmetries of QCD, and a theory in which it was simple enough to make
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calculations. In chapter 3 we investigate the basis behind yPT, and derive the lead-

ing and next-to-leading non-analytic (in quark mass) contributions to the mass of

the nucleon. We show that XPT predicts this non-analytic behaviour, including the

model independent values for the coefficients, and that it is induced by Goldstone

boson (pion) loops that are naturally associated with hadrons. XPT is a systematic

approach to QCD that predicts the presence of non-analytic behaviour, and offers a

systernatic way to calculate the coefficients.

Chapter 4 discusses a phenomenologically motivated model of baryons -
the Cloudy Bag Model (CBM). The CBM builds on the successful MIT bag model

to allow investigation of baryons over a wide region of parameter space. The MIT

bag introducedphenomenological constraints to enforce confinement, and the CBM

introduced pions coupling to the quarks confined inside the bags. In the chiral limit,

the CBM gives the correct behaviour that ¡PT tells us QCD possesses. In addition

to this, form factors appear naturally in the model allowing it to be applied over a

much greater range in quark, or equivalently pion mass. The radius of convergence

of XPT is unknown, but since it is a perhrbation about massless quarks, instinc-

tively one feels that it would be surprising if it applied in the region where lattice

eCD calculations occur (somewhere above four times the physical pion mass). The

CBM however, through the introduction of form factors, which are related to the

size of the sogrce of the pion field, is able to probe from the chiral limit, through a

region well into the available lattice calculations. We stress that this model is not

eCD, but it does give an insight into the behaviour of the physics in the intermedi-

ate region. The CBM gives an intuitive feel for why the hadron properties behave

as they do.

The many methods used to study hadronic physics including models, effec-

tive theories, perturbation theory and heavy quark theory are only giving insights

from a few isolated vantage points. The need remains to use non-perturbative meth-
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ods, and as we have stated, the only successful approach at this time is the lattice.

We have alluded to the fact that whilst there are difficulties in making calculations

on the lattice with physical parameters, one may extrapolate results calculated in a

region with heavier quark masses to the physical. The exploration of extrapolation

forms has not been a particularly active area of research and at first sight this is

not surprising. Until quite recently there was no obvious need to extrapolate with

anything other than a linear Ansatz - the lattice results appeared to be linear inmf;

to a good approximation. This linear behaviour is entirely expected, it is predicted

as a precgrsor to Heavy Quark Effective Theory (HQET). The critical point is that

HeET does nothave XPT as a limit, but we know that lattice QCD does. In partic-

ular we know the non-anal¡ic behaviour near the chiral limit. In chapter 3 we will

show that the mass of the nucleon behaves like

TrL¡¡ æ rno i am?, + þ*t, + yrn* + {ma-lnrn| +'''

However fitting a form similar to this to lattice data is not reasonable. We show

in chapters 5 and 6 that by fixing the coefficients p and € to their values known

from Xp! it is impossible to frnd a fit. The other extreme is equally unpalatable.

Relaxing the constraints on þ and {, letting them become fit parameters means

the loss of the benefits gained by using XPT in the first place' Our approach uses

insights from the phenomenological cBM as to the behaviour of the mass in the

region between the chiral limit and lattice results'

In chapters 5, 6 and 7 this work presents the development of an extrapolation

scherne, one easily extended to other hadronic properties, that allows the extrapola-

tion of dynamical fermion lattice QCD calculations ofhadron masses to the physical

region. We also discuss how this method allows the extraction of other properties

of the hadrons, including the pion-nucleon sigma tem, o7y, and the J parameter

for the vector mesons. We also present the first Edinburgh plots to display the cor-
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rect behaviour in the extrapolation to the chiral limit. This scheme builds in the

known behaviour in the chiral limit, in particular the leading and next-to-leading

non-analytic behaviour with the correct coefficients as may be found in XPT. The

extrapolation form smoothly interpolates between this chiral limit and the heavy

quark regime, where hadron properties show smooth mass dependence. Finally the

form automatically includes, and corrects for, the finite size effects introduced by

the discretisation process. The functional form contains only three parameters, and

the fitting involves an analytic sum which may be evaluated on a desktop PC in a

short time frame. An analysis extrapolating to the chiral limit performed with this

functional form would require virtually indistinguishable computing resources to

the current analyses, and yet would contain the correct, known, physics' Having

confidence in extrapolated values will allow a direct juxtaposition with experiment

- testing QCD like never before.
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Chapter 2

Lattice QCD

The particle physics cornmunity sowed its wild

oats in a torríd affair with a beautiful gauge

theory called Quantum Chromodynamics. It is the

task of nuclear physics to bring up the unruly

non-p erturb ativ e offs p ríng.

Tnouls ConBN

quantum field theory is a complex beast. In a weak coupling theory like

at high energy, it may be expanded as a perturbative series of its n-point

functions. The success of such an approach is highlighted by Quantum Electrody-

namics where the theoretical prediction for the electron magnetic moment anomaly

is known to 4 parts in 10-12. The difficulty lies in the strong coupling region where

a perturbative series often fails even to converge. The naïve perturbation, in QCD,

around free particles is not well defined as the quarks are confined. Calculations in

this region afe, not surprisingly, known as non-Perturbative. The coupling of QCD

in the world we see around us runs with the scale of the process. Where in QED
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the coupling was small at long distances, it is exactly the opposite in QCD. There is

asymptotic freedom for hard processes, but for low energy processes there is con-

finement and perturbation theory breaks down. Therefore we realise that QCD is

genuinely non-perturbative, and therefore we need tools in this region.

In the introduction to path integrals in Ref. [3] the following quote was at-

tributed to Feynman:l "every theoretical physicist who is any good knows six or

seven different theoretical representations for exactly the same physics." It is re-

markably apt in this case. Quantum field theories may be formulated in the method

of a path, or functional, integral. Effectively the n-point Green function of the the-

ory is formulated in terms of an integral over all possible values of the fields at all

space-time points. One of the strengths of lattice gauge theory is that it provides a

method for approximating this functional path integral. The application offinite nu-

merical methods to an infinite problem introduces approximations, but the strength

of the lattice approach is that these approximations are systematically removable. In

the words of one practitioner [4] "It is this possibility of controlling the systønatic

effors that makes lattice gauge theory increasingly popular."

A brief introduction to the construction of lattice gauge theory will be pre-

sented in this chapter. Additional information as well as a more detailed introduc-

tion can be found in [5, 6, 7,8,9,10, 11, 12].

2.1 Lattice Field TheorY

2.1.1 General Foundation

One builds aLagrangian density, L(O,AøQ), of a theory from the appropriate de-

grees of freedom, the set of fields, Q. The fields themselves are functions of the

tThe Character of Physical Law (MlT Press, 1965)' p' 168
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space-time they are embedded in, for example in Minkowski space time 0 : O(r)

where ru : (ro , i) : (t,d). In the specific case of QCD these degrees of freedom

are associated with the quark and gluon fields. The action of such a Lagrangian is

then found to be

slol : dar L(a@),}Pa@)) . (2.r)

The generating functional of the theory is constructed as

zlrt@n)l : ) IWrletstoi[ 
aa'rt@òa@;) 

,
(2.2)

with the source terms in the theory denoted r¡, and the normalisation, Z, g;venby

17_z)- [dolerstol (2.3)

The n-point, or Greenfunctions2, of the theory which are the vacuum expectatton

values of time ordered products of the fields, then completely determine the theory:

g@)(q,...,rn):vv(017[o(r')...o(ø")]10)' (2'4')

where,A/ is anormalisation constant. The Green functions are constructedbytaking

the derivative of the generating functional, Eq. (2.2),withrespect to the sources, and

then setting them to zero:

ç(n)(rt,... ,rn) : !, Irr1Õ("r) 
. . .o(ø,,)e'stol . Q.s)

It should now be obvious that the normalisation constant, ,Â,/, is identically Z-1 . The

mass of a particle, and all other physical observables of the system described by s

can be derived from the Green functions. Returning to Feynman's quote, solving

the field theory and solving Eq. (2.5) - with the explicit functional integration -
are different ways of expressing the same physics'

2There is some discrepancy in the literature as whether these functions are Green functions ot

Green'sfunctions. we follow the convention of [13] and use the former.
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2.1.2 Building the Lattice

The difficulties of numerical calculations in a Minkowski space-time theory are

removed by shifting to Euclidean space-time. This is the prevalent practice in the

lattice QCD community and is not an approximation, but a complete transformation

between the geometries. The transformation is a simple shift from regular time to

imaginary time:

t -+ -i,t. Q.6)

This approach is justified as the Hamiltonian of QCD is time independent - it is

unchanged by this transformation, and therefore so is the physics it describes. This

change results in the following clean transformation from the original action to the

Euclidean space action:

S : iSn. Q'7)

The highly oscillatory behaviour of the Green functions becomes exponentially

damped, eislÕ] -+ e-su[a),making them numerical soluble. This exponential damp-

ing is rerniniscent of statistical mechanics, and we shall return to this point shortly.

The lattice quantum field theory can then be represented in terms of well defined

functional integrals taken over the Euclidean lattice hypercube of length L andlat-

tice spacing a. In an ideal world, the continuum limit, a -+ 0, would be taken'

However this is not possible because of the finite computational resources avail-

able. As was mentioned previously, this source of error is systematically improv-

able. The difficulty of finding a compromise between larger lattices and smaller

lattice spacing is the subject of much work. The difficulty is by reducing o, to

represent the continuous space, the size of the lattice, aL, will also decrease. How-

ever the lattice must be large enough to hold not only the object being explored but

also longer range effects introduced by intermediate states. It is believed that the

physical lattice size should be between 2.5 and 3.0 fu to avoid finite-size effects

10



ll4, 15,16, 17 ,18]. We shall show in subsequent chapters that any finite size lattice

will exclude some important physics.

Placing the theory on the lattice introduces two additional properties that a¡e

important to consider when extracting quantities from a calculation. By discretising

the coordinate space in terms of a finite a and L, we change the available momenta.

Since there is a finite number of laffice sites, it can be shown that the available

momenta, k, in the finite periodic volume are also discrete

k, :2J?' (2'8)
oL,'

where.L, is the number of lattice sites in the p direction, and the integer n, obeys

-Lr . r,,,. L-'l'- . ç2.g)
2 F- 2

We see from Eq. (2.8) that the short distance (ultraviolet) physics, lÇ^o: f,, is de-

termined by the lattice spacing ¿. This UV regularisation is required in any renor-

malisable quantum field theory as it allows the elimination of infinities in calculated

observables. Naturally as the observables will be dependent on ¿ one must ensure

that they scale correctly as ¿ -+ 0. The lattice síze, L¡r, determines the spacing

between the allowed momenta. Thus, on a small lattice there is alatge minimum

non-zero momentum. In the particular case of ù p-wave decay, where one unit of

momentum is required, the decay is prevented because of the large energies re-

quired.

The realisation of the similarity between the formulation of lattice gauge

theory and statistical mechanics - 
that is, systems with a large number of degrees

of freedom, but with bulk properties - 
has allowed some of the experience and ma-

chinery of the field to be utilised. In particular the e-su is reminiscent of the Boltz-

mann factor. Using this insight allows the generation of fields using the Markoff

chain process. This ensures that the fields created are of the typical weight distribu-

tion of eCD. Such a generation process reduces the number of fields required for a
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calculation by generating a larger percentage of fields that have a higher probability

of being physically important. We leave the precise details of putting QCD on the

lattice to the review texts mentioned in the introduction.

2.1.3 Region of ApPlicabitity

Lattice gauge theory is well defined over all lattice sizes, spacing, and quark masses.

It obeys scaling, so for arbitrarily large and fine lattices with light enough quarks

the properties will approach those of continuum QCD. There are some constraints

however on how close to the physical world a calculation may be pushed:

o Simulations are expensive - the cost of a calculation is proportional to the

square of the lattice volume and inversely proportional to the sixth power of

the lattice spacing [4].

o Light quarks are non-local - thus they are extremely sensitive to finite vol-

ume effects. Technical reasons, in particular critical slowing in the fermion

matrix inversion algorithms, also force the use of unphysical heavy quarks.

o Dynamical quarks are expensi they increase by at least two orders of

magnitude the cost of the simulation.

o Large lattices are needed - to avoid the major finite-size effects the physical

lattice size must be at least 2.5 - 3.0 frn. U4, 15,16,17, 181'

These constraints convey the need to extrapolate results of lattice calculations to the

physical region. The subsequent chapters will present a method of extrapolating

masses in a way that reproduces the low energy properties of QCD whilst allowing

contact with the region where lattice calculations occur.
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2.2 Nucleon Mass

The most basic quantity to extract from a lattice calculation is the nucleon mass. It

may be deduced from the asymptotic behaviour of the single particle Green function

in large Euclidean time. We present below the derivation for the positive parity

particle, which easily generalises to the negative parity case.

Consider first the generalised case of the two point Green function in Min-

kowski space, where a three-quark state is created with momentum q-:

Iç@,t) ¿2, 
"-t'd'i 10lT{y(r)7(0)} l0) (2.10)

(2.1t)

(2.12)

(2.13)

I e-ø'e plr{x(r)z(o) } lo),
r

where X is an interpolating field for the nucleon, and we have presented both the

continuum space and lattice form of the Green function. The construction of an ap-

propriate Green function for the nucleon requires an interpolating field representing

a three-quark state, with the quantum numbers of a nucleon, in terms of t}ne quark

fields. There are many possible choices, and in practice only a reasonable overlap

with the physical nucleon wave function is required. The standard choices for such

a field are

with it having been shown in [19] that any spin-], isospin-] nucleon interpolating

field without derivatives may be simplified as a linear combination of Eqs. (2.12)

and (2.13). We now insert a complete set of nucleon states, lú¿ with spin s and

momentum f, into Eq. (2. I l)

ç@,t): t e-¿i't (olx(")lN¿(F,s))(¡'/,(p-, s) l¡(0)10) ' (2-14)

Xt : eo6"(uoT?lud')u' ,

Xz : eo6"(u"T Cdu'Yu¡u",

t,P$,x
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and only consider positive time. The annihilation of a nucleon to the vacuum is

defined as

(olx(O)lN,i(F,")): À¿u(i,E¿,s), (z.ts)

with À¿ being the ability of the interpolating field to annihilate the nucleon, E¿ :

F, + M? , and uis a spinor satisffing the Dirac equation. Using translation (Eq. (A.a))

allows the following simplification:

ç(î,t) : I e-ø'e rolx(o)l¡4)(¡t/,ln(O)lo)et(F 
a-n'tt

t rI)rs rI

I etfø-ø'd-EitllÀ,|"u(f, E¿,, s)u(f, E¿, s) . (2.17)

l rprs tx

By using the definition of the Kronecker-delta, D-ei(F-ù'õ = 6ø¡we simplifu the

above expression as

ç@,t): t "-t'n;tlÀ¿l2u(q, 
s)a(q, s) . (2.18)

3tx

The sum over the spins of the spinors is simply [13]

(2.16)

(2.1e)

(2.2r)

Du(q,s)u(q, ù: +#,
I

resulting in the Green function being grven by

ç(d,t): T "-iù;tlx,tzffi. (2.20)

At the quark level one contracts time ordered pairs of quark wave functions, which

gives the non-perturbative quark propagator. Using the Dirac representation (Sec.

4.3.1) we can see the Dirac matrix of the above expression has the form

d+ Mn:
(E¿ + uo)I

-d. õ
i.õ

(-Eo + ¡uI¿)I
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In the particular case of a particle at rest (í :- 0), the only non-zero elements

are the (1, 1) and (2,2) components. Changing to Euclidean space, t -+ -'it, it
becomes clear that in large Euclidean times the ground state dominates, because

of the mass dependence of the exponential damping. Practically, this ground state

mass! M¿ : E¿(q :0), is extracted from lattice evaluations of the two-point Green

function, Eq. (2.10), by looking at the local slope of the (natural) logarithm of the

ratio of the Green functions att andt * I:

In
Ç(t + t)

ç(t
(2.22)

(2.23)

2.3 Setting the Scale

An issue suppressed in the previous discussion is that all quantities determined on

the lattice, including masses, are actually dimensionless quantities. Thus there is

the need, if we wish to represent the mass in physical units, to determine the scale

of the lattice ¿. In this work, results from two collaborations [20, 2l] are utilised.

Since both groups use methods relating to the static quark potential to determine ø

we shall only mention that approach. An alternative relies on surrendering one ob-

servable O, for instance a mass, and extracting the lattice spacing from the quantity

calculated on the lattice, ¿O. As we shall show in subsequent chapters, the extrap-

olations to physical quark masses that have previously been used are flawed, and

hence these values will be incorrect.

We follow the work of Sommer [22] by utilising the force between static

quarks at intermediate distances to set the hadronic scale. The calculation of the

static quark potential at a separation r is conceptually one of the simplest quantities
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that can be calculated on the lattice 123, for example], can be calculated to a high

precision and may be parameterised as 124,25,26):

V(r) : -i + or IVo. Q.24)r

The force between the quarks is then simply given by the change in the potential as

a function of the separation

(2.2s)

where the parameters are often determined by the static quark potential floâr rs.

It is known that both the öó and cc spectra may both be described by a single

effective non-relativistic Schrödinger equation potential [27]. Model calculations

indicate that the rms radii of bb states is 0.2-0.7 fin, and the cc states have rms radii

of 0.4-1.0 frn. Thus these spectrarnay be used to determine the effective potential

in the range r - 0.2 fin to r - 1.0 frn, however it is clear that the best information

is at a radius of around r - 0.5 frn. This information is then used to set the scale of

the lattice by looking at the quantity

AVe
F(ro) :-- --6 Ioor ,=rn r=f O

rlr?s) c (2.26)

(2.27)(fr. "),t
In principle \rye can set rfrF(r¡) to any value. However it is common practice

to choose c : 1 .63 following Sommer's initial estimate of 1.65 and motivated by the

comell [28] and Richardson [29]heavy quark models. This choice of c corresponds

to r¡ : 0.4g fu. Thus we have a relationship between the string tension, o, that is

used by the CP-PACS collaboration, and r¡ favoured by UKQCD

(2.28)

with the constant e equal to 0.43 in agreement with [25]. Equation (2'26) is the pre-

ferred method for determining the scale on the lattice for a number of reasons' One

t6



compelling argr¡ment is this approach only requires the evaluation of the force at

moderate separations of the static quark-antiquark pair. This removes the difficulty

associated with the extraction of the string tension, as beyond a certain separation

it is expected that string breaking - qq creation - 
will occur. Virtual Qq creation

will act to screen the potential, rendering a precise definition of a string tension

impossible. The above method is well defined in both quenched and dynamical

calculations.

2.4 Results

There is a considerable difficulty and cost associated with calculating dynamical

fermion results on the lattice. Until quite recently there were only two sets [20, 2l]

of results that were at sufficiently light quark mass for us to begin our investiga-

tions. In the following work we use dynamical, two-flavour fermion results from

the Cp-pACS t20l and UKQCD t2ll collaborations. 
'We note that in both data sets

the continuum extrapolation has not been taken, resulting in a residual O(a") (for

some n) error in the published results. The effects of the continuum extrapola-

tion are beyond the scope of this work and are not considered in this thesis. We

have, however, established a new formalism in this work, based on the excellent

data mentioned, and anticipate the approach established here will become standard

practice in future lattice publications.

CP-PACS

The GP-PACS t20] calculations, presented in Table 2.1, were made on either a

I23 x}2or 163 x 32 lattice. The calculations were performed using an Iwasaki [30]

- plaquette plus rectangle gluon and clover fermion - ¿çfis¡1, with the Sheik-
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holeslami and Wohlert [31] clover coefficient, cs\¡/, determined via mean-field im-

provement. Since the publication of the work the value of csy¡ has been determined

non-perturbatively and is somewhat different from value used in [20]. Throughout

this work we have used the results found with the perturbativo csw to avoid intro-

ducing any systematic errors part-way through the analysis. As we have previously

discussed, there is a relationship between o and 16, found from the static quark

potential V (r). However this approach neglects the quark-antiquark separation, r,

dependence of e and o in Eq. (2.26), meaning the result is not exact. As different

methods for setting the scale were used by the CP-PACS and UKQCD collabora-

tions (as discussed below) there is some uncertainty in setting the physical scale.

However, for a particular choice ol o at the physical quark mass, for example CP-

PACS sets /ã : 440 MeV, we may extract a value of rs from Eq. (2.28). We

then use this value of r¡ in the UKQCD formalism for seffing the scale, avoiding

possible string breaking effects. V/e shall use this ambiguity later to improve the

pK TP"pSA ITLVA ffùNA lntA oa2

1.9o 0.1420 0.6992(19) 1.0134(60) r.4e4 (t2) r.662(17) 0.2375(60)

1.9o 0.1430 0.5414(13) 0.8861(71) 1.2S3 (13) 1.501(17) 0.2094(51)

1.9o 0.1440 0.2e06(41) 0.706 (15) 0.972 (25) 7.77I(32) 0.1755(57)

1.9ö 0.1370 1.1el8(12) 1.4091(28) 2.2I72(9t) 2.358(20) 0.3243(87)

1.9b 0.1400 0.9334(17) 1.2033(39) 1.8573(95) 2.009(12) 0.2750(75)

1.9ô 0.L420 0.6983(18) 1.0149(45) 1.5195(73) 7.7I2(It) 0.2465(46)

Table 2.1: Results from the CP-PACS collaboration [20]. The lattice size for the

rows indicated by the ¿ is L63 x 32,whilst the rows indicated by b ate on a 723 x 32

lattice.

agreement between the data sets we are investigating.

We feel some encouragement for our present work because of a staternent in

the article regarding the quark mass dependence of the hadron masses:

"The existence of curvature lat small quark masses] ís observed,
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necessitating a cubic ansatzfor extrapolation to the chiral limit." l20l

The first section of this statement is related to the motivation of this work. This

curvature is expected to be seen as the chiral limit is approached. It is a model

independent result, that may be implicitly included in extrapolations, as we shall

discuss in subsequent chapters. The second part of this statement is motivated by

chiral perturbation theory. It is known from XPT that the leading non-analflic term

in the mass of, for example, the p-meson is a term ín ml, thus a fit of the type

ffipa: Ao + Bo(mno)' I Co(m*a)s (2.29)

has some theoretical motivation. Unfortunately such a simplistic approach is only

correct in a small region around the chiral limit, not at the quark masses where

lattice calculations occur, as we investigate in sections 5.4.1 and 6.6.2. The final

issue we wish to raise is with regards to the CP-PACS result at mof m, - 0.4.

Although CP-PACS.finds no evidence ofresidual finite size errors at this mass point,

they caution that it is premature to draw flrm conclusions based on the present low

stati stics of approximately 1 000 traj ectories.

UKQCI)

The second source of results we have utilised is Ref. [21] from the UKQCD collab-

oration (Table 2.2). Thesedynamical fermion results were calculated on aL23 x 24

lattice at B : b.2. They used the standard plaquette action for the gauge fields' and

an O(a) improved Wilson fermion action. The lattice size was chosen so that the

volume of the lattice was greater than (1 fm)3 in the spatial dimensions. The phys-

ical scale was set by comparing the force, calculated from the interquark potential,

to quarkonia models as was the justification for F,q. (2.26). Phenomenologically

it is found that re - 0.49 frn, and this value is used to extract the physical lattice

spacing, a.
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ta

0.1370

0.1380

0.1390

0.1395

0.1398

2.404 !)l
2.155 !y8

1.e16 113

1.73s 1å1

2.er5 !12

2.746 !641

2.700 ln
2.578 !21

4.52s 1!;
4.2æ !t23
4.045 lzz
3.765 1'1å

4.707 !t?l
4.565 !"?
ß4e !i:01

fTùpsTo lTtvTO ?IlN?"0 TftArO

2.54t +26 2.9ß +
3l 4.770 -69 4.907 +

4.763 +

Tg o,

2.294 +23-249
99
56

2.568 1;å r;å
3.046 lti!'tr
3.435 !îi !^3

3.652 !7? !,1

Table 2.2: Results from the UKQCD collaborationlzll. All results were calculated

on a 123 x 24lattice. The lattice spacing is determined from rsf a where rs has the

value 0.49 frn.

We present plots showing the data sets which we use in Fig. 2.1. The left

hand plot shows the results using the central values for setting the physical scale. It

is clear that the two data sets are not consistont, so we use the uncertainty in setting

the physical scale to rescale both data sets by 5% to improve the agreement. This

improved data is presented in the second plot. V/e also show linear (mn : a+bm?*)

fits to the data. This Ansatz reproduces the lattice results well between m?* - 0.2

GeV2 and m?^ - 0.8 GeV2, but fails at both ends. The divergence at light pion mass

(or equivalently quark mass, Sec. 3.1.3) is expected from chiral perturbation theory

and is the motivation of this work. The curvature at high pion mass, is an indication

of higher order (in m?*) terms coming from the Gell-Mann-Oakes-Renner relation,

or perhaps an indication that it does not apply. The details of the divergence are not

of interest in this work, and so we reshict our investigation to data that lies below

m7 - 0'8 GeV2'

2.5 Conclusion

Lattice gauge theory is the only known way to explore the properties of Quantum

Chromodynamics from first principles. Whilst there are current limitations imposed

by finite computing resources, they are systematically improvable, and the lattice is
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Figure 2.1: V/e present, in the left-hand plot, the results for the p, N and A masses

from the CP-PACS [20] (filled symbols) and UKQCD [21] (open symbols) data sets

presented in Tables 2.1 and2.2. The right-hand plot uses the uncertainty in setting

the physical scale to shift both masses by 5% to improve agreement. The vertical

short-dashed line indicates the physical pion mass.

the only ab initio approach available. It is this property that has made the lattice an

attractive field of research.

'We discuss other approaches to investigating the predictions of QCD in the

following chapters. In chapter 3 we briefly discuss the approaches of chiral sym-

metry and chiral perturbation theory an effective theory in the low energy regime.

Chapter 4 presents a model approach to the phenomenology of QCD, whilst pre-

serving the symmetries of QCD. Each of these methods has their own strengths and

weaknesses, and it is through utilising all of them we gain a greater insight. Truly

the whole is gteater than the sum of the parts.
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Chapter 3

Chiral Perturbation TheorY

Although this may seem a paradox, all exact

science is dominated bY the idea of

approximation.

BERTRAND Russpn

¡/^lhiral perturbation theory (¡PT) is a complete field in and of itself. A chapter

Ur" this thesis would not, and could not, do justice to the richness and diversity

of the field. We do not attempt to present XPT in anything but generality, developing

some of the concepts that will be important in the following chapters. There are

many reviews 132]thatallow the interested reader insights into the development of

the field and the basic methodology used

3.1 Chiral SymmetrY

Chiral perturbation theory is built on the basis of chiral symmetry' We give a brief

overview of chiral symmetry as an introduction to xPT. The starting point is the

Dirac equation. For a vector wave functions, Ü, the Dirac equation satisfies the
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following requirernents I I 3 ] :

L The components of Ü must satisff the Klein-Gordon equation, so that a plane

wave with E2 : p2 + m2 is asolution.

2. There exists a conserved four-vector current density, with positive density,

3. The components of Ü are independent functions of ø'

A free relativistic fermion is completely characterised by its energy, E, momentum,

i, arrdhelicity ît : ã . Fllpl.Thus for a massless, spin-lf 2, free particle the Dirac

equation may be written as

r - iv øv. (3.1)

For the particular case of massless fermions, helicity and chirálity are identical con-

cepts, thus we may decompose the spinor into left- and right-handed components,

using the chirality operator 75:

1 1+tiú (1 - rys)il, (1 + rs)ü
2

PLV + PRV

\Ú¿ * \Úa '

Here P¡,,pare projection operators which obey the expected properties that'the pro-

jection of a chirality eigenstate does not change its chirality, and that the group is

closed under chirality projection. Mathematically these may be written as [33]:

P?, : Pt , P'^: P., P1 ' P¡¿: Q, P7 * PP: I

We also have the proPertY that

îrv ",^: 
tü¿,R,
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however this is only exact in the case of massless fermions. This can be seen when

one introduces mass into the Dirac equation, as one would find mixing between the

left- and right-handed states:

úmú:útmúni-Ú¡¿mÚ1. (3.2)

In this case the P7,¡¡ ãÍê still projectors, but not of exact helicity. The helicity of

massive particles is a frame dependent concept, a right-handed particle moving in

the positive r-direction in one frame is left-handed and moving in the negative t-

direction in a suitably boosted frame.

Returning to the massless state, it is clear we can separate the Lagrangian of

Eq. (3.1) into a sum of the two helicity eigenstates

L:iúrØú¡*iúpflúp, (3.3)

where there is no interaction between the left- and right-handed fermions. Thus the

Lagrangian rernains invariant under an arbitrary transformation of either the left- or

right-handed fields by a generator of SU(3), e :

Ü¿ -+ Ú'L : ei'"Ú L, \Un -+ Ü'o : e"'*Ú R (3.4)

In particular the group of these transformations is SU(3)¿ x SU(3)¡, where there

are 3 light quarks, and the symmetry is referred to as the chiral symmetry. There

are sixteen conserved currents, found from the application of Noether's theorem. It

is common practice when describing the system to use the vector and axial currents

(rather than the left- and right-handed currents)

(3.s)V: : Vr'**
Al : ú'yr'yu

Ào 
{,

2
(3.6)
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with the corresponding conserved charges

a asrvf (r),

dsr Af;(r) .

v (3.7)

(3.8)

a

A
aa

3.1.1 Dynamical Symmetry Breaking

If the ground state (vacuum) of QCD was chirally symmetric then, the Wigner-

Weyl representation of chiral symmetry with a "trivial" vacuum would be realised

and both vector and axial charge operators would annihilate the vacuum:

aYl}) : gî10) :0. (3.e)

There is however, evidence from both low-energy hadron phenomenology and from

lattice QCD calculations that chiral symmetry ís dynamicallybroken These results

indicate the ground state of QCD does not share the chiral symmetry of the Lagran-

gian. If Wigner-Weyl was realised, the spectra of positive and negative parity states

would have a close correspondence, as indicated by Eq. (3.9). There are many ex-

amples of where this correspondence breaks down. Two of the most striking include

the lack of agreement in the masses of the vector and axial vector mesons and the

mass gap of pseudoscalar meson parity partners'

Assuming Eq. (3.9) was correct would imply that the correlation functions

of vector and axial vector currents would be identical : (olvfvi l0) : (0 lAá Ail}) .

As a direct consequence, one would expect that the spectra of vector (J" :1-) and

axial vector (J" : 1+) mesons would also be identical. This is patently not true,

the p meson has a mass (mp = 0.77 GeV) much smaller than that of the axial a1

meson (mo, = 1.23 GeV). Another indication that chiral s¡zmmetry does not hold

is seen in the light pseudoscalar (J" :0-) meson s, (n, K ,. . . ), which have masses

much lower that the lightest scalar (J" :0+) mesons.
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An alternate realisation of chiral symmetry is the Nambu-Goldstone repre-

sentation. Here the observed, approximate validity of SU(3) flavour symmetry is

found to be compatible with the assumption that

SYlo) :0 . (3.10)

One must therefore conclude

a:lo) + o. (3.11)

Thus we see that the larger SU(3)¿ x SU(3)n symmetry must be broken down to

the flavour group SU(3)y, which is consistent with observation'

3,1,2 Goldstonets Theorem

Goldstone's theorem states that for every broken continuous symmetry, the theory

must contain a massless particle, the Goldstone boson 134,35,36]. We saw above

that QCD has such a broken symmetry, and so we may apply Goldstone's theorem.

Since the axial charge does not leave the vacuum invariant (Eq. (3.11)), there must

be a physical state created from the vacuum

ló"):a:p). (3.t2)

As the axial charge commutes with the Hamiltonian, we can apply the Hamiltonian

to the above expression with the result

?tló") : Q:?tlo). (3.13)

That is, the energy of the state þo is that of the vacuum. Thus, since there are

eight generators of the axial charge, we have an equivalent number of massless

pseudoscalar mesons.

This prediction is indeed reflected in nature as the lightest hadrons observed

are eight in number and are pseudoscalar (tr+, To, Kt, Ko, Ro,4)' The reason
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that these mesons are not massless is that the exact SU(3)¿ x SU(3)¿ symmetry of

chiral symmetry is explicitly broken by massive quarks. As the quark masses are

so small (a few MeV for the u and d quarks and around 150 MeV for the s quark)

the predictions of SU(3) chiral symmetry are quite reasonable. In the SU(2) case

fiust the u and d quarks are assumed to be massless) we find just three Goldstone

bosons, and a much better realisation of the approximate symmetry.

3.1.3 The Gell-Mann-Oakes-Renner Relation

Goldstone's theorem implies the existence of pseudoscalar bosons. 
'We may define

their state to be ln"(p)), normalised as (tr"(fl1"0(p')) : 2ûpõou(2r)363(f - P'),

where the four-momentum is defined as pu - (Er,ir).Additionally the divergence

in the axial current (this is the Partially Conserved Axial Current (PCAC) of Gell-

Mann, and Lây andNambu [37,36)) is givenby

ðrAä : iú {*,*\x't,
ðrAT : (*u+^o)ú¡trIrþ, (3.1s)

with the matrix M defined to be diagonal with the zth light quark mass at "Âl¿¿.

Goldstone's theorem also implies that the transition matrix element of the axial

current is

(0lAt@)l"r(p)) :'ipq loõoue-zP'n, (3.16)

and hence the axial current is

ß@:(t: o)l¡ru(ù) : iõoafoÛp(2tr)3õ3(fl . (3.t7)

Evaluating the vacuum expectation of the commutator of the axial current with the

divergence of the axial current:

(0 | laf , a,At]l o) : -i@" * ^o) 
(nu + aa) ' (3'1s)
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Inserting a complete set of states, normalised such that

fdtp,
Jffi1""(P))(n"(P)l 

:r' (3'1e)

it is simple to derive the Gell-Mann-Oakes-Renner (GMOR) relation [38]

m?* : -h@' + n'Ld)(uu +ãd) + o(m?',.)' (3'20)
zJo

The pion decay constant in the vacuum is given by fo, which is related to the phys-

ical decay constant by f *: /o(1 + 0(m)). Thus the difference from the physical

value (92.4+ 0.3 MeV [39]) is of 0(m2,,0).

We now have a way of relating the observable world of hadrons, where we

may measure the pion mass and decay constant, to the properties of QCD, expressed

in terms of the fundamental quark degrees of freedom.

3.2 Chiral Perturbation TheorY

The theory of elemental particle interactions that is presently accepted for the strong

interaction, Quantum Chromodynamics, has proved to be a successful theory' It is

elegant, and simple to writel

Lqco :\UP - m)q -|tt G*G" , (3'21)

it is asymptotically free and more importantly for calculation purposes it is renor-

malisable. However, for the most important criteria, that it represents the physical

world, there are some difficulties making comparisons in the low energy region'

Some fundamental diffi culties include

l. The theory is highly non-linear because of the gluon self interactions'

| "If you are out to describe lhe truth, leave elegønce to the tqilor'" - ALBERT EtNSTen,

illusion it is to suppose that beauty is goodness.""llhat a strqnge
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2. Usual perturbation theory is difficult to apply as the coupling, 92 f 4tr, is of

order 1

A way of dealing with these problems is via an effective theory in which the pre-

dictions of QCD in the low energy regime are reproduced, with hadronic degrees of

freedom. The low energy effective Lagrangian, É, must also have the same symme-

tries as the QCD Lagrangian, Lgcn. Weinberg suggested a method [a0] in which

all terms allowed by the symmetries, to a particular order, of the fundamental the-

ory are explicitly included, ensuring that any calculation to such an order will be

consistent.

If we rewrite the QCD Lagrangian as a sum of a chirally symmetric piece

and one that breaks chiral symmetry

n _ nS rr'SBr.,QCD - r,qCD -r 
^,QCD '

(3.22)

our effective theory could, in an analogous manne¡ be separated into two parts, one

where chiral chiral symmetry held, and one where is was broken

Løn:Lo*Lss.

In this approach the symmetries of ,C6 would be those of 4f,co, and the symmetry

breaking term, Lss is small and may be treated perturbatively. Finally, by construc-

tion, the Goldstone bosons are the only massless, strongly interacting particles in

the theory. Applying these constraints an effective theory of the strong interaction

may be derived.

Numerous authors, for example [41, 42,33),have investigated the derivation

of the effective chiral Lagrangian for the meson, baryon and heavy baryon sectors.

We leave the details to these authors, and will limit the further discussion to general

comments on XPT. We derive the leading and next-to-leading non-analytic contri-
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butions for the nucleon as a guide how to proceed. In the following sections we

follow closely the works þ31andþal.

3.2.1 Leading Non-Analytic Contribution to the /ü mass

The derivation of the leading non-analytic contribution to the -fy' mass is presented in

Refs. [45, 33,43]. The nucleon propagator extracted from the lowest order effective

Lagrangian for QCD has the form

S¡¿(ø) : -: . , r') :'t) 'I , r¡ > 0, (3.23)
u+xrl

where the nucleon four-velocity is given by up and I, is the momenta of the pions

in the theory. In this effective theory the Feynman insertion for the emission of a

pion with momentum I from a nucleon is

?ar"g.¡, (3.24)
Fn

where 
^S 

is the covariant spin operator, with the anti-commutation relation

{5, S,} : 
f,@rr, - Qp,) . (3.25)

Consider the case of a nucleon that emits a pion of momentum l, which is

re-absorbed some time later. The mass shift ôrn is

ddl L L

(Zn)d 12 - M7 * ir¡ -u . I + irl ^9 
. (-¿)S.¿, (3.26)

where we have used the identity roTo :3. We use the property of the spin operator,

Eq. (3.25), to simpliff as

st s,lpl,:|{, 'lu 't + M: - P - MÐ (3'27\

Thus we may rewrite Eq. (3.26) as

õm "4Fl I Qn)olr'ta+
M?

õm:rWI

u.l
M?-lz-irt

(3.28)
(Ml - tz - iù(u .t - i,rt)
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Under dimensional regularisation it can be shown that the first term in the integral

vanishes [46], and the second term also does not contribute as it is odd under I ->

-1. Thus the integral may be simplified to

3n2.6m: ffitço¡tw], (3.2e)
'7t

where the following definition has been made

r(o) : +l# (330)

Reference [43] discusses how to simplifu this expression. The details do not add to

discussion presented here and we just take the solution as

/(o) : -+. (3.31)
8r

Substituting into E;q. (3.29) we see that the leading non-analytic contribution to the

mass of the nucleon from the pion loop (to one loop order) is given by

MÎ
F]

õm:
2
A3s

32¡r
(3.32)

3.2.2 Next-To-Leading Non-Analytic Contribution to the lrl mass

The work of Lebed [44] follows an alternative approach to deriving an effective

chiral Lagrangian. This common method relies on creating an SU(3) matrix, U :

ein/f ,from some freld lI, and defining the effective Lagrangian as a series of terms

with an increasing number of derivatives of U:

Len: t"?ì + L"9ì + ..' , (3'33)

where 4!p contains terms with n derivatives. Lorentz invariance requires the La-

grangian contain only terms with an even number of derivatives. Each of the terms
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in the series contains both a chirally symmetric part and a symmetry breaking piece.

For example the ûrst term in Eq. (3.33) would have the form

L"?ì : Çr p,uaputl + |f'r luq * ¿rt)J , ( 3.34)

where M is the quark mass matrix'

As discussed above it is the octet that generates the leading non-analytic

contribution to the selÊenergy of the nucleon. The next-toJeading non-analytic

contribution is introduced by extending the formalism to include the baryon decu-

plet with non-degenerate masses. The correction to the baryon mass [44] is of the

form

t*{irnB - ß;;htrnm2¡: o(M?rnM). (3.3s)

We note that this term is at the same order as one-loop diagrams in XPT, and thus

must be included in any discussion to one-loop order. The proof that this mass

correction appears in the Lagrangian at the same order as one-loop diagrams is

presented in Lebed [44].

We now have the leading two non-analytic (in quark mass) contributions to

the mass of the baryon: Eqs. (3.32) and (3.35). The quark mass, M, expansion of

the baryon masses is thus

rn ¡¡ æ rno i aM + þMtl' + 7M' + tM'ln M * (3.36)

In SU(2) flavour, a more accurate representation of reality, Eq. (3.36) becomes

Trù¡¡ æ rno * am?* + þ*t, +'YTII + (ma*lnrn? + (3.37)

with, as discussed above, the coefficients p and ( of the non-analytic contributions

known explicitly.
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3.3 Summary

The theory of the strong interaction, QCD, whilst being elegant in construction ts

none-the-less constructed in terms of degrees of freedom that make simple compar-

ison with experiment impossible. An effective field theory will be representative of

QCD in some region, by constructing it about the symmetries of the larger theory.

If quarks were massless, chiral symmetry would be exact in QCD. As the masses

of the u andd quarks are so small this approximate symmetry is good to a few per-

cent observationally. Whilst for the heavier strange quark the approximation is not

so good. This approximate symmetry allows the construction of XPT, an effective

theory which is equivalent to QCD at low energy' but fashioned from mesons and

baryons.

The effective field theory yPT, atlow energy and small quark mass reveals

the behaviour of the strong interaction in a more accessible way than QCD. Proper-

ties of the baryons, and in particular the quark mass dependence of these properties,

are able to be extracted. Of particular interest for this work is the prediction of the

leading and next-toJeading non-anal¡ic (in quark mass) contributions to the self-

energy of the nucleon, and the model independent results for the coefficients of

these terms. Whilst we do not present the details here, there are analogous results

for the A and p meson. In the subsequent work we shall be using this known non-

analytic behaviour as well as the known coefficients to constrain the extrapolation

of lattice QCD results rear the chiral limit.

The caveat that accompanies the XPT results is simple. Chiral symmetry is

only aviable concept for massive fermions whilst the energy scale of the system is

much larger than the eigenvalues of the quark mass matrix, but much less than the

mass of the resonances, like the p meson.
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Chapter 4

The Cloudy Bag Model

The opposite of a correct statement is aJizlse

statement. But the opposite of a proþund truth

may well be another proþund truth.

Nrcrs Bonn

ne of the observed properties of nature is quark confinement. Any model

or theory describing hadrons needs to include this property. The MIT bag

model evolved from a model developed by Bogolubov l47l in the late 1960's. This

model was created in an attempt to phenomenologically describe confined, rela-

tivistic quarks in a finite region of space. Bogolubov considered the simplest case:

a massless Dirac particle, moving freely within a spherical volume of radius R, sur-

rounded by an attractive scalar potential. Bogolubov enforced confinement in the

model by setting the potential equal to the quark mass and taking the limit of in-

finitely massive quarks. The phenomenological reshictions on Bogolubov's model

resulted in the non-conservation of energy-momentum. This catastrophic failure of

the model resulted in an improved model, which would obey energy-momentum
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conservation.

4.1 The MIT Bag Model

The MIT bag model, developed in the mid 1970's, had composite hadrons con-

structed from light quarks moving freely inside a restricted volume, the bag. Con-

finement was achieved by constraining the bag to have a positive energy per unit

volume, B. This Lorentzinvariant restriction not only confines the quarks, but al-

lows the internal structure to reproduce the general properties of Bjorken scaling.

The simplest case has massless quarks confined in abagof volume V with surface

S. The Lagrangian density is then

1_
L¡vtr : (irþl,ïrrþ - B) 0v - 

-rrt',pdt, (4.1)

where dv is defined to be one inside the volume and zero outside, and ôs is a surface

delta function. For practical reasons this model is most commonly simplified to the

case of a static spherical bag of radius -8. The wave function of the confined quarks

is [48]:

,þn, X-t, r<R,, (4.2)

where X-r is a Pauli spinor, n is the principal quantum number. The quark eigen

frequency, ttn,K) ate solutions of

jo(un,o): jt(un,o), Ø3)

where jsJ are Bessel functions, and this is a product of confinement in the Bogol-

ubov model' For example the 1s state has u)t-L : 2'04' The normalisation of the

wave-function is

Nrr,-r
1::-r ,/+n

io (fiu,'-t¡
id.îjr(t*r,,-t)

(4.4)
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The action of this model

is dernanded to be stationary under variations of the field (T/ -+ 1þ + õtþ) and the

bag surface S (rR -+ ,R + e). This gives three constraints on the fields, the Euler-

Lagrange equations of motion. The first relationship is the free Dirac equation for

massless quarks, inside the bag

i4qôrþ :0. (4.6)

The next gives confinement in the bag

Sn¡Ir: d,ar L¡¡1a(r)

i4Pn¡þ(r):rþ(r), r€S,

in¡"ip : in¡ÞlqtÞ

: (rltttrnr) rþ : -úrþ

: ,þ þlr"rrþ) : +rþrþ

rìU.

(4.s)

(4.7)

(4.e)

where n, is anormal to the surface of the bag and has n2 : -1. Equation 4.7 is

known as the linear boundary condition (l.b.c.). We can show that this results in

confinement by looking at the hermitian conjugate of Eq. (a'f (multþlied by an

appropriate factor of 70)

'þ('): -ttþ(rþunr' (4'8)

At the bag surface the current, jþ : tþlP'þ, normal to the surface is (up to a factor

of -z)

Since there is no component of the quark current normal to the surface, they are

confined in the bag. The final relationship is the non-linear boundary condition
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(n.l.b.c.)
1_n: -irraq (út(r)ú(r)) : Po, ø € s, (4.10)

which equates the Dirac pressure of the quarks, P¿, with the vacuum pressure B

thereby providing stability.

The model of Bogolubov 1471, which forms the basis of the MIT bag model,

did not conserve energy-momentum. However the inclusion of the energy density

term, B, solves this problem. The energy-momentum tensor can be written as

rrPvrMIT (Tß'+ Bg")0u

(;raú+as'"),,v,

(4.1l)

(4.r2)

(4.14)

where Tl' is the energy-momentum tensor for a Íiee Dirac field. The n.l.b.c.,

Eq. (4.10), ensures that

ðrTffo: g' (4'13)

The energy of the lowest level, that is the ls-state, is found to be

tE(R) dsrToo

YF +{n"a

The first term is the same as it would be found in Bogolubov's model and represents

the kinetic energy of the quarks in the bag. The second term is a remnant of the

introduction of the bag constant, and is a volume (Tn\ dependent term. That is, it

suggests that an energy BV is required to make the bubble, orbag, in the vacuum.

It is assumed that, in the MIT bag model, the value for B is constant for

all hadrons. The implications of this phenomenological addition, mocking up con-

frnement, have been investigated by a number of authors. A different approach is

suggested by Jin and Jennings [49], in which a discussion of a density dependent

bag constant is undertaken. An alternative comes from Hasenfratz and Kuti [50]
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who show that a surface tension term, or a linear combination of the surface tension

and the bag constant, can produce results similar to those found for the MIT model.

However by making this assumption we may investigate excited states directly.

4.1.1 Excited States and Radius Determination

The above calculation is only for quarks in the ground state. A theory allowing

only non-excited quarks would be both naïve, and not much use in real calculations.

Fortunately generalisingBq. (4.14) to include excited states is straight forward:

E(R): 
T 

9*+{n'a. (4.rs)

Applying the n.l.b.c., Eq. (a.10) to the above equation leads to the following rela-

tionship

aE@) (4.16)

(4.17)
AR

Initially a fit to some data is needed to determine B, but from that point the internal

energy of the quarks determine the radius R of the bag uniquely. Solving for R we

find it is given by

P4-ç u¡tL - + 4"8'

Using this definition of R, Eq. (a'15) can be simplified as

0

: -t ffi+4trR2B'

4
E(R) : E (+nA¡tt+ D,o

3/4

(4.18)
3

Further refinements were undertaken by the MIT team, including looking at

t1¡e hyperfine structure leading to a spin-dependent one gluon exchange term' They

also investigated how the zero point energy of the fields, and how centre of mass
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corrections effected the mass. The details are beyond this work and we refer the

reader to Ref. [aS] for a fulIreview of these refinements. A final improvement the

MIT team included was non-zero quark mass, which we discuss below.

4.1.2 Massive Quarks

The discussion to this point has been purely for massless quarks. However, if the

model is to be compared to the experimental observations, massless quarks are

a problem. Under Stl(3) flavour symmetry the members of the octet containing

the nucleon would all have degenerate mass. This is obviously not so. A natural

solution to this discrepancy is to assign a non-zero rnur. io the strange quark, as

discussed below.

Introducing a strange quark mass to the Dirac equation for the MIT bag

model as simple as

(-¿trv, +.yo E + m) ú(r) : o.

Solving this for the wave function in the ls state results in the solution

¡'I
,þ(Ò -- tÆ

"* 
jo (i)

a-iõ.ri'(i) X-t (4.te)

with the quark energy, E, andnormalisation constant, ly', related to the spatial eigen

frequency,r,by 
.-,

E : YR A: Jr, + (rnRY , (4.20)

rr2 Cl(CI - rnr?)lv:6
and

Applying the Lb.c. to Eq. (4.10) it can be seen that the eigen frequency, r, satisfies:

tan(ø) : T:;R4,
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and the coefficients a¡ ãra given by EIm E.

Introducing all the above elements into a mass formula for the MIT bag

model results in the following equation

M(R): t ? *!aÊ +vn{ - t, (4.2t)\ / ?R 3 "

The final two terms in the above expression are respectively the spin-dependent one

gluon exchange interaction, and a consolidation of the zero point energy and centre

of mass energies. There are four parameters in this formula to be determined: the

mass of the skange quark n't",the bag constant B, and the parameters describing

the one gluon exchange and centre of mass corrections, e," artd Z respectively. The

last two parameters relate to the last 2 terms in the above formula. For a further

description of the last two terms the reader is directed to Refs. [48, 51].

4.1.3 Charge Current Conservation

Conserved currents are readily calculated from the Lagrangian density given in

Eq. (a.1). This is achieved using Noether's theorem which states simply that for

each symmetry of the Lagrangian there exists a conserved quantity. It is entirely

analogous to the procedure used in chapter 3. We return to the massless case for

this discussion to simpliff the calculations.

Consider the following gauge transformation to give the simplest possible

example of a conserved current:

,þ(r) + rþ(u) + i,etþ(r),

Ú(r) -+ ,þ(r) - i,e$(r). (4.22)

It is a trivial exercise to see that Eq. (a.1) is invariant under this transformation.

There are only terms of the formtþtþ in ,C which transform as

úrþ -Úrt, - ¿etþú + ¿etþÚ + O(r') :1þ1þ ' (4'23)
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Therefore, from Noether's theorem, there exists a conserved current

i, : |ú {*)t, l¿,þ (,)l t" - i l-iø(,)l f ú (r)rv,

which, up to a relative minus sign, is

j, : rþ@)lrrþ(r)ïu,

(4.24)

(4.2s)

the exact result used to show confinement in the MIT bag model. The charge dis-

tribution, j0, andmagnetic moment, i, are simply evaluated from the above expres-

slon.

4.1.4 Isospin Conservation

Another symmetry may be obtained by making an arbifrary, infinitesimal rotation,

with e-constant, in isospin:

(4.26)

Once again since ,C is invariant there is a conserved curent, this time isospin 1-ø:

i'(") : ,þ'v' (i 12) ,þ . (4.27)

It must also be noted that since isospin is a conserved quantity, ïriu :0, the total

isospin of the bag,í, given by the integral of the isospin density

rí: J aTr ío@) , (4.28)

is also a constant of the motion.

1þ -+ 1þ + i,(i - e-12) tþ ,

ø -+ ú-¿ú(i.dl2).
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4.1.5 Axial Current Non-conservation

One can extend the symmetry of Eq. (4.26) by introducing explicit dependence on

the quarks helicity. This is simply achieved by introducing the chirality operator 75

as such:

,þ -+ ,þ - i (í . e-12)'ystþ ,,

ø -+ Ú - ¿rþtu (i . e-12) , (4.2e)

resulting in the Lagrangian density hansforming like

L -+ L + 
+ø 

(tut, + lnt"^y') 8, G . e-12) g 0y

+iøt.d,þ6s. (4.30)

The application of Eq. (4.11) makes it clear that the second term in this expression

vanishes, but equally as obvious is the fact that the last term does not. A conserved

current as defined by Noether's theorem requires that the Lagrangian density be

invariant under a transformation. For the transformation given in Eq. (4.29) the

Lagrangian is not invariant, and so Noether's theorem does not apply. The axial

current associated with the transformations in Eq. (4.29) is

fu @) : rþ.yrjs (í 12) 1þ0v, (4.31)

and an alternative method of showing that this is not a conserved current is through

the divergence

Lrfu: -l{rufttds # 0. (4.32)

The last term in Eq. (a.30) is a surface term, is known as"chirally odd", and

implies a violation of chiral symmetry. Physically one may visualise confinement

as resulting in a reflection of the quark at the bag boundary. However there is no

resultant spin-flip of the quark, thus there is a effective change in the chirality, as
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Figure 4.1: Violation of chiral symmetry at the bag surface [48].

illustrated in Fig. 4.1. This is in violation of the PCAC (Partially Conserved Axial

Current) hypothesis of Gell-Mann andLêvy and Nambu 137,361. Chiral symmetry

may be restored by the introduction of a Goldstone boson, as we shall explore in

the Cloudy Bag Model next.

4.2 Description of the CBM

It is apparent that the MIT bag describes reasonably well the valence structure ofthe

nucleon. There is however the problem of chiral symmetry violation. Chiral pertur-

bation theory was discussed in chapter 3, and it is clear the objects of XPT - the

pions - at'e missing from the formulation of the MIT bag model. The introduction

of pions which may move freely through the bag, couple to the quarks at the sur-

face, and only modiff the bag perturbatively, are fundamental to an understanding

of nuclear structure. This concept of a "pion cloud" surrounding and permeating

the hadrons crystallised into the Cloudy Bag Model (CBM) of Théberge, Thomas

and Miller f48,52,531. The inclusion of pions to the MIT model to form the CBM

is as simple as

LceNr o 4vrr i Ln * Li*, (4-33)
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where Ln is the Lagrangian density for free pions, and all the interactions between

the bag and pions is contained in the term .Ci,,t. The act of truncating this expression

results in a reduction of chiral symmetry in the model to an approximate symmetry,

however at the order we discuss we retain the leading and next-toJeading non-

analytic terms from XPI which as we shall show later are the two most important

contributions in an extrapolation form. Retaining only terms to the second order in

pion field, the linearised CBM is

Lc]gNr âr (iÚlryrrþ - n'ùÚIþ - B) e, -'rørtt|"
1 4 1, o ù- í

+ r(ðutr)" - i*i"' - OrÞts¡rþ' 
iõs. Ø34)

This linearised version of the CBM is required as the general, non-linear, case

contains sets of highly non-linear equations [54] which are extrernely difficult or

possibly impossible to solve directly. Linearising the model has introduced two

constraints into the system. Firstly there is the constraint that there are îot "too

many" pions in the air at one time. Mathernatically this may be stated that the first

order expansion of the (nonJinear) Lagrangian density is adequate to describe the

system. Secondly that the quark wave-functions are not perturbed by the pion field.

This at first seems an unusual statement. The pions are themselves hadrons, and so

constructed of quarks. In the CBM the pion is considered elementary and in the low

energy (long wavelength) region in which this model is applied, the internal struc-

ture of the pion may indeed be neglected. If we apply the treatment of Sec. 4.1.5

now to F,q.4.34 we find that the axial current becomes

1_
Ãu : )út'xírÞov * f*ðPft, (4.35)

and the divergence is exactly what is predicted by PCAC

lrfu : -f*mli + o (ft'z) (4.36)
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4.2.1 Coupling Constants

The form of the Hamiltonian for the CBM is simple to write down from Eq. (4.33).

Since there is a clean separation of MIT model, free pion, and pion-bag interaction,

it is not surprising that the Hamiltonian has a similar break-down. If abag model

state is created by the operator Bi (an SU(6) spin-isospin bag state B is created,

lB) : Bt l0) , where Bl can be written in terms of products of three quark creation

operators) we may write the Hamiltonian of the CBM as [51]:

H

t
B,Brk

lataorrf"+h.c.]

where the creation operator al creates a pion with momentum Ë andisospin i (we

follow the convention of [51] and define k : {Ë,4} for simplicity), and w¡ is the

energy of the pion 1/FT@,. The matrix element for the pions coupling to baryon

states is given by [51,48]:

,?? : ++ [ a', 
"-t'É''5ç, - R)(Blø(ûxr¡rþ(ûlB) . (4.3e)"k,i 2f" {2w* J

This expression allows the calculation of all the ÉBr vertices within the CBM.

The l/l/zr Vertex

The simplest vertex we consider calculating in the model is the l/lúzr vertex. In this

case all the quarks inthe initial and final states are in the !\p orbital excitation and

thus we may use the result of Eq. $.2):

ú,.,-t(tturþr,-r(ô1,:^ : þ'ntrru)j1(u)õ 'î (4'40)

o i--_---:-----=;d.f , (4.41)
Q-14rR3

: flun * Hn -F I/i,,t

: lenata + I,
BK

¡aIoa¡ t

(4.37)

(4.38)

45



where we have assumed, for simpliciry massless quarks. Substituting this result

into Eq. (4.39) we see

'l;* : +rà#'+P" ('' lP--''u' 
tl')' Ø 42)

and we have evaluated the angular integral using the result [54]:

I on6 . ¡ 
"-iÉ'r- - - 

rid-'Ër 
Uo&R) + iz&R)l . (4.43)

We define the form factor for the CBM to be

u(k) : jo(ka)+iz(kB)

: 3.ilk¿) lkg . Ø.44)

Note that this form factor appears naturally in the model, as the outcome of includ-

ing the baryon internal structure. Finally, it may be shown that the axial coupling

to the bag is given by [48]:

(4.4s)

Comparison of the result of Eq. (4.42) with the usual NIúzr coupling gives the

relationship
qrNN_Qo. (4.46)
2MN - 2l*'

This is the Goldberger-Treiman relation and thus means one may evaluate the lúlúz-

coupling consistently within the CBM.

Additional Vertices

In an analogous way to that presented above, the pion coupling between any bag

model states, É and B,may be calculated. The details of specific calculations are

available in [48, 51, 54), and so we just present Table 4.1 from [54] giving the

92""
5f¿
9c¿-1
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AB

¡/
A

^B'
F*

E

4

¡\¡

5

ú
0

0

0

0

0

2 5

0

0

0

0

0

0

0

0

-2
2

0

0

0

0

2J3
4'/613
2'/613

0

0

t*
0

0

2'/6
-4\/313
2\Æ13

0

0

0

0

0

0

0
_2J'
J5/s

0

0

0

0

0

-1
2

Table 4.1: The nnn bare coupling constant" Íf" lÍq. The value of /oBB is cal-

culated in an analogous manner to Eq. (4.42). The bare coupling /q has a value

of approximately 0. },however it is unimportant in the context of this work as we

shall always be taking the ratio of coupling constants. The results are from [54].

nAn bare coupling constants for the SU(3) flavour, baryon octet and decuplet. An

extension to SU(3)¿ x SU(3)n would allow the evaluation of kaon couplings in an

equivalent manner.

4.2.2 The Physical Nucleon

It is clear in Eq. (4.3S) that a physical hadron in this definition consists of a valence

quark core "dressed" by a cloud of pions. In particular the CBM Hamiltonian has

an eigenstate, the physical nucleon, with eigenvalue M¡¡:

HlÐ:¡¿¡vlÑ) . (4.47)

In first order perturbation theory the nucleon is given by the following states

lN) fr 
{ 

r 
¡/ ) + pr #*4L, - - * "t 

B n o) (4.48)

(4.4e)â, JZIw) + cll[zr) * c'lar)
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4.2.3 Hadron Masses

The shift in the mass of the nucleon, to lowest non-trivial order is given by the two

processes shown in Fig. 4.2(a,b). This corresponds to the second order of f/¡,,¿:

kau2**(k)
M¡¡ ni I,*

lo* 
or

dk
w2(k)
k4u2*o(k)

(4.50)
l6tr2 f] 25 w(k)(LM + tø(k)) '

where LM : M(0) - Mlp and we have related the ,^ú -+ L¡r coupling to 9a

through the use of the SU(6) relation. To simplifu this, and following calculations

332
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Figure 4.2: Theprocesses that contribute in the lowest, non-trivial, order to the shift

in the mass of the nucleon and A.

in this work, we have made a static approximation for the propagator of the heavy

baryon. The correct chiral behaviour as rnr -+ 0 is nevertheless preserved in this

approximation. The leading non-analytic behaviour in the quark mass (rn' - m)
arising from Fig. 4.2(a) is:

ôMk*o : -:rg'o*t-, (4.51)
¿.^ J Í

A
(d)
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as indicated by XPT. Equivalently the mass of the A, with selÊenergy corrections

corresponding to Fig. 4.2(cd), may be calculated:

Mt: M@-ffitZ¡,*or4#
3 go

+--o'^' l6tr2 f2 25"^ I,*
kau (k)2

w(k)(A,M - w(k))'
(4.s2)

The factor s of 32 I 25 and 8 I 25 in Eqs. (4.50) and @.52) are a result of SU(6) sym-

metry and may be understood from the discussion in Sec. 4.2.1, and particular the

results presented in Table 4.1. The coupling of a .f/ -+ L'r is given by

32 t2
J NNn t

25

and equivalently for the case of A + Nzr':

rlo* : (#:) Ík**
\./ivivn,,

(4.s3)

(4.s4)

¡2
J Lwr

t2
J N¡¡n

Thus we are able to rewrite couplings of the îorm ÉBr as a constant times the bare

l/l/zr coupling, which is known from the Goldberger-Treiman relation.

'We 
have plotted the masses of the nucleon (circles) and A (hiangles), Eqs. (4.50)

and @.52) respectively, in Fig. 4.3 as a function of pion mass. Rather than using the

Bessel function form factor, Eq. (4.44),we have chosen a phenomenological dipole

form:

' \'=- l?\. (4.5s)u(k): \ø¡a 1 
,

where r\. : 1.0 GeV and p, is the physical pion mass, as the form factor for the

calculation. The justification for such a choice will be explored in subsequent chap-

ters. It is clear that the non-anal¡ic behaviour introduced by the pions coupling to
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Figure 4.3: The pion mass dependence of the I/ (circles) and A (triangles) baryons
generated in the CBM using a dipole form factor with .¿\. : 1.0 GeV. Fits of
Eqs. (4.56) and (4.57) using a ?-f:urrrction cut-offto the CBM results are illustrated
by the curves.

other states than the bare bag is quickly suppressed, resulting in, an almost linear

increase in both the lú and A masses. We have atternpted a fit to this data with the

forms

M¡¡

Mt

where the o¿ represent the self-energy terms presented in Eqs. (4.50) and (4.52)'

with the particular choice of a 9-function cut-off. The motivation and derivation

of such a form is discussed in the following chapters. It is not surprising that our

simple three parameter phenomenological fitting functions, shown as the solid lines

in Fig. 4.3 (evaluated with a á-function cut-oft), can reproduce .lü and A masses

^

N
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calculated within the CBM (evaluated with a dipole form factor). It is not entirely

unexpected that this agreement extends even to the non-analytic curvature at small

pion masses. However, as the correct chiral behaviour of the baryons is being re-

spected by the additional selÊenergy terms, it suggests that this method should also

provide a reliable form for extrapolating lattice data into the region of small pion

mass.

4.3 Summary

The Cloudy Bag Model is a natural extension of XPT. In the chiral limit it re-

produces the results of XPT, whilst allowing a smooth transition to heavier quark

masses. A form factor appears naturally in the formalism, mocking up the higher

order terms introduced by the internal structure of the hadron. As the CBM may

be applied across a wide range of mn it is used to give insight as to the behaviour

of hadron masses between the limits of xPT (mo - 139 Mev) and lattice QCD

calculations (mn > 139 MeV). We use this direction in the subsequent chapters.
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Chapter 5

The Rho Meson

A little learning is a dangerous thing;

Drink deep, or taste not the Pierian Spring:

There shallow draughts intoxicate the brain,

And drinking largely sobers us again.

ArBxeNnEn PonE, "EssAY oN CRITICISM"

s the lightest vector meson, the p is of fundamental importance in the task of

hadronproperties from QCD. As was mentioned inchapter2, within

lattice QCD the ratio of n to p masses is often used as a measure of the approach

to the chiral limit. Until quite recently lattice calculations have been restricted

to values of mnf mo above 0.8. As was mentioned in chapter 2 because of the

remarkable improvements in actions, algorithms and computing power, there are

now lattice QCD results with dynamical fermions available for hadron masses with

current quark masses such that mnlmp is entering the chiral regime. Nevertheless,

in order to compare with the properties of physical hadrons it is still necessary to

extrapolate the results to realistic quark masses [55].

We show in this, and following chapters, that a formal expansion of hadron
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properties in terms of mn fails to converge up to the region where lattice data exists.

The crucial physics insight which renders an accurate chiral extrapolation possible

is that the source of the pion field is a complex system of quarks and gluons, with a

finite size characterised by a scale r\.. When the pion mass is greater than.Â., so that

the Compton wavelength of the pion is smaller than the extended source, pion loops

are suppressed as powers of m* f lt and hadron properties are smooth, slowly vary-

ing functions of the quark mass. However, for pion Compton wavelengths bigger

than the source (mn 1Â) one sees rapid, non-linear variations. Phenomenologi-

cally this transition occurs at mn - 500 MeV, or mnlmp around 0'5 - the region

now being addressed by lattice simulations with dynamical fermions.

Another difficulty associated with the extrapolation of lattice results that is

investigated, in part, is the discretisation of momenta inherent in all lattice calcula-

tions. In this regard we mention not only the finite lattice spacing but the fact that

there is a minimum possible non-zero momentum available because of the finite

volume of the lattice. This issue is absolutely critical to the interpretation of the re-

cent Cp-PACS data for dynamical fermions [20], in which a first resultr is reported

atmnf m, - 0.4. As we explain in detail, the only reason that it is possible to

measure the p mass there is that the calculation is done in a finite volume. We show

that taking the finite lattice size and finite lattice spacing into account is a necessary

requirement when extrapolating to the physical region. These effects become espe-

cially significant for the case of the p meson which has a p-wave, two-pion decay

mode.

In the next section we sufltmarise the key physical ideas and the necessary

formulas for extrapolating the mass of the p meson to the physical pion mass. This

includes a discussion of the limiting behaviour at small and large quark mass. We

lAlthough Cp-pACS finds no evidence of residual errors for the lowest mass point,

that it is premature to draw frrm conclusions based on the present low statistics'
they caution
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then show the result of our fitting procedure and analyse the uncertainty in extract-

ing the p mass at the physical point. We show that a factor of 10 increase in the

number of gauge field configurations at the lowest quark mass presently accessible

would be sufficient to determine the physical p mass to within \Yo. We also discuss

the consequences of this analysis for the ,I-parameter and the prr phase shift. The

successes of the work presented in this chapter are used as additional motivation for

investigations into the baryon sector presented in the next chapter.

5.L ExtrapolationFormula

The successful extrapolation of the Cloudy Bag Model (CBM) model results dis-

cussed in chapter 4 are used to motivate a functional form. The CBM calculations

indicate that an extrapolation based upon the inclusion of the self-energy contribu-

tions that vary the most rapidly with the quark mass near the chiral limit is required

to accurately model the data.

The formal solution to the Dyson-Schwinger equation for the p propaga-

tor places the self-energy contributions in the denominator of the propagator and

thereby modifies the p mass as [56] :

n'Ip mf;+Do
Dp

N tTro* ^ ;
ZrTùO

where rns is the bare mass and Ep is the selÊenergy of the p-meson.

As has been discussed previously, lattice data at latge mn (that is, up to

around 1 GeV) behaves lineady in m?,. Figure 5.1 shows this linear fit to the p-

meson lattice results for m?, > 0.2 GeV2. Guided by the lattice data, we take rn¡ to

be anal¡ic in the quark mass:

rno: cs I c2ml . $.2)

(s.1)
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o.o 0.2 0.4 0.6 0.8 1.0
rn*z (Geyz)

Figure 5.1 : Vector (p) meson mass from CP-PACS [20] (filled circles) and UKQCD

[21] (open circles) as a function of m?*. The linear (in m?") fit is to the CP-PACS

results for data having 0.2 GeV2 < m?* < 0'8 GeV2.

5.1.1 Self-Energy Contributions

For the case of the p meson thá selÊenergy contributions that vary the most rapidly

in the quark mass near the chiral limit are given by the p -+ ntu and p -) TT

processes shown in Fig. 5.2. We will show below that these two terms yield the

leading non-analytic (LNA) and next-toJeading non-analytic (NLNA) behaviour in

the mass of the p meson, as predicted by XPT. Thus we define Ep in Eq. (5.1) to be

S'P-SrP rFP2 
- 

2Íif I uTfLt'

Naturally there are other meson intermediate states that contribute to the self-energy,

however these are suppressed by large mass terms in the denominators of the prop-

agators, and also by smaller couplings. Most importantly, as these processes will

8 1.0
(ú

Ê 0.9
o
(n
(¡)

¡r
o

+)g 0.7

0.6

+

CP_PACS
UKQCD
Linear Fit
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not vary rapidly near the chiral limit, they are mocked up in the definition of ms

,.---ri---./\ .-' Il '..,\

p p

TE o)

la) fb)

Figure 5.2: Themost significant self-energy contributions to the p meson mass.

In order to evaluate the self-energy terms that contribute, we take the usual

interactions [57, 58]:

(5.3)

and

Lrpn : guptr €¡tvaB (ð'r") (a" îu) ' t . (5.4)

Using Eq. (4.2) we can rewrite Eq. (5.3) as

Lptrr: fpnn€ou"/ltr6(0¿r"). (5'5)

The Feynman diagram for the p -+ 7t7t self-energy process is shown in Fig' 5'3' We

frkt

pp

Lprtr :tyro-- i' '@ x (ôri) - (ari) x î) ,

p.
J

¡, n,+
,\

p
l

x\ vs,

nþ

Figure 5.3: Feynman diagram for the p -+ Ttit self-energy

follow the conventions of Pichowsþ et al.flgl,where the self-energy contribution
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to the mass of the p is given by

which can be simplified to

1il jj' : -; z
t2

J prrrEabc¿a'btc' dar d}y (pj,;p'o,llil {/l(r)16(r) (0¡r"(r))

pv",@),ra,@) (0"n¿(aÐj lp¡;pp, 
^) 

. (5.7)

rrjj, : (pj,,p'p,)lT 
{ f; I o^. dnu (Ír**eo6"rt,(r)r6(r) (0¡r"(r)))

(f pntrea,b,c,pï,(a)no,(a) @,n¿{v)))} lpi;pr,^> , (5.6)

There are four possible Wick contractions for this expression:

(Pj,iP'p, 
^lpt@)

lrb @)(a, lrc Pi,,@) 'tf b, @)(a" îf c' ipp, À) (5.8)("))

"))

("))

("))

(E))

(s)) 
|
pj(Pi'; P'0, ¡lü@) 'r6 @)(a,

(Pi,iP'p, 
^lpt@

7fc

Pi,,@) 'tf b, @)(a" îf c' ;Pr, À) (5'9)

(pj,;p'0, 
^lpt@)

716(,)(a, 'Jf c pi,@) 'lf b, @) (a" 'If c, pj ipp, À) (5.10)(s))l

(s))l(,)(a, pi,(a @)(a" îf cl pj ;pp, À) (5.11)

We note that under the interchange of the space-time variables r and gt, and the

dummy indices (a,b, c) and (a' ,b' , c') t}]le expressions for Eq. (5.8) and Eq. (5.10)

are equal, as are Eqs. (5.9) and (5.11). Thus we can replace the sum of these four

expression as twice the sum of Eq. (5.8) and Eq. (5'9):

njj, : -Í|nneoa"eo,6,", f dar daY x

(pj,;P'p, 
^lpt@

@)(a, pi,(a @)(a" îf c' pj lPp, À)'tf c (") ) (g') ) |

116(,)(ar 'lf c pi,(v @)(a" ;Pr, À)(")) 7rb, 'tf c, (E)) (s.t2)
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We know from field theory that the notion of the contraction of two fields is defined

to be a Feynman propagator. The contraction of a field with an extemal leg is de-

fined to give an exponential of the extemal momenta and position of the interaction,

and a polarisation factor for the extemal leg (as discussed in Appendix 4.2). We

can therefore write

fljj, : -f2.neoa"e o,r,", I 
d,ar d,ay elï(\)6"yei(À)õ",¡eiep''e-iP'p'a

x {666,6"",Dr(, - y)AfiÜ"Dr(* - a)

Iõ6.,õ"6, (4,Dr(, - ù) (Ai"Dr(, - s))) (5.13)

Using these insights we can substitute the Feynman propagators and simpliff:

fIjj, : - Í]*neou"eo,u,", I d,ar d}y e!Ï (À)6'¡,ei(À)6"' ¡eie'p''-ipp'v

lí2 ¡"1e2, e- i(k r + kz)' (t - s)

{
x (-1) õ66' õ""' t (k? - ^7 

+ ie) (k'¿, - m2" + ie)

k e-ù(kt+kz)'("-a)
*66",6.6' - m2* + ie) (kl - m2^ + i,e

(s.14)

Naturally, since the process is elastic, the sum of the intermediate pion mo-

menta, ki and l@, îÍa equal to the momenta of the incoming rho meson, Pp,i.e.

h * lcz: Pp.

We use the degree of freedom in defining the polarisation vector to set e¡ ()) 'Pp : 0'

This is easily seen for the case of a p at rest, and we apply Lorentz covariance to

generalise the result for a p-meson with arbittary 4-momentum, Pp. We use these

results to express the dot products of the polarisation with momentum k2 as dot

products with k1:

(

kz"j

^t^e j'n2

-ti'kt'
-e j 'kt'

(5. r s)

(s.16)
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A simplification may also be made by collecting the exponentials together in the

following manner:

"i(ptr'x)-i(pr'ù"-tlter¡¡r)'("-s) 
-ei(P'o-kt-kz)'x"-i(pe-¡,'-kz)'a. 6.17)

If we now look at the integral oveÍ r, it is exactly of the form of the identity for the

Dirac Delta function, Eq. (4.3):

¿4, 
"i(rto-kt-tçz).x 

: (a)464(p,o _ k, _ kz) . (s. l 8)

Taking the result of Eq. (5.18) means the integrations over k2 simpliff as:

I W "i(pto- 
tev - kz) 

" F @r) : I a^nrõn(p', - kr - k2)F(k2)

: F(p'o - kt) ,

-+ p'o - k,.k2

(s.le)

(s.20)

(s.21)

(s.22)

Finally, the integration over E is, once again, the identity for the Dirac delta func-

tion

¿a, 
"-i(no-kt-hz).a 

: (Ar)464(tr, * kz _ pp)

: (ztr)aõa(p'o - pp) .

After making these simplifications we now just have a single integration over the

variable k1. For simplicity, we rename the variable such that h -+ k, and apply the

delta functions rslatin1 a, a' and j, j':

fIj j, : - Í|nnr¡,r", jb,",(2r)464(p'o - pr)(-l) (666'6."' - õ6"'õ"6')

d4l{ Gi,'k) (r¡'k)
(s.23)X

(2n)n (k, - *7 + ie) ((p'o - k)' - m2* + ie)'
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where e¡ : e¡(À). We now simpliff this expression by

€¡t6¿€.¡6r¿r (õ66,6"., - õ6",õ"6,) : €¡rbc€¡bc - € jtbc€ jcb

ô-: zEjtbc¿jbc

: 2(36j,j - õ¡,¡)

: 4õ¡,¡.

Thus we come to the following expression for the p + 'ttlt process shown in

Fig. 5.3:

Iljj, : (hr)a6a(p'o - Pp)6¡,¡ x

d4k

øæ
(e .k) (e¡.k)

4f'^" (k2-m2"+ie) (n'o-k¡z-m2,+ie
(s.24)

The normalisation factor in the above expression, (2r)aõa(p'o - Pp)6¡¡,, is related

to contribution from abare p propagator. Thus the self-energy contribution to the

p-meson mass from the ¡rr intermediate state is related to the above expression by

DPnn : l(ar)Aõ(p'o - p)n¡¡ . (s.2s)

Non-Relativistic Reduction

We now make the non-relativistic reduction, assuming the p is at rest

or: (mød) ,,
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and sum over the polarisation vectors e¡(À):

D G;r^l .k) (e¡(t)'k) : kt"k" -gp" *
PppPp"

*ro
I

t-2 , @o'k)'
-/!-T---------;-mi

'*oko)': -(k3 -ñr) + -tr
: fr2. (s.26)

In the denominator of Eq. (5.24) we have the following term, involving the differ-

ence of the 4-momentum of the p and of the pion in the loop. This can be rewritten

AS

@o-k)' : *'r-2Po'k+k2
: *'o - 2moles + k2o - Ê'z

: kf; - 2moko + m] - fiz ' 6.27)

After making these simple substitutions, the selÊenergy is of a simpler form

-¿D,^* : 4t'^- I ffin 6 _4_F . .
1

(s.28)
k! - 2moko * m2, - m2" - k2 + i,e

We can now integrate out another degree of freedom, that is, the k6 contribution. We

use the Residue Theorem, Eq. (4.5), to integrate the function in a counter clockwise

direction in the complex k¡ plane:

L#r(ko) 
: ¿f Res f (koo), 6.2s)

ko;

where ks¿ are the poles of the function /. There are two terms in the denominator

of the integrand of ofl, that could conhibute poles. The first is

n3 - *7 - Ë' + i,e:o. (s.30)
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This expression may be factorised as:

(ko - un I i'e) (ks * wn - ie) -- 0 ' (5.31)

where we define w"(k) to be the energy of the pion in the loop. We take the usual

contour for the integral, as discussed in [13]. The pole that then contributes to the

residue is

m7+k2+ie

: -w,lË) + te. (5.32)

The other pole in this integral is of the form

kfi - zmoko * ^', - m2- - Ê' + ie :0, (5.33)

with k¡ found by completing the squares

(ko-mp-wn*ie)(ks-n1,p*un- ie) : ¡' (5'34)

Once again, if we take the usual contour for we find that the contributing residue is

les : n'Lp - rn?+Ë'+i,

= n'ùp - w,(Ë) + te . (5.35)

The application of the Residue Theorem means we can replace the numerator of

the integral in Eq. (5.28) by the sum over the residues. We also have made the

definition that the magnitude of the pion momenta, l,kl, is to be k. The integrand, -I,

of Eq. (5.24) is now simPlified as

1

l: (fr)) '*o(*r-2w"(k))(-2w"(k))
1 1

2mrwn(k)(mo * 2ran (k)) 2mow*(k)(*o - 2w"(k))

1 1 (5.36)
4
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Averaging over the spins of the incoming p introduces a furttrer factor of 1/3, and

leads to the final expression:

fizif3**

FP2Í11

d3k

(2n)3 w*(k) (.7@ - *"r14)

1

;srp
- LL¡n

\-pu Írt)

(r"(k) - 2-ie)

i,f'^"
3

6trz

l"*

(s.37)

(s.38)

(5.3e)

where Do*n is the selÊenergy.

The Self Energies

The evaluation of the p -+ lTu selÊenergy is a similarprocess to that outlined above

and therefore we do not present the intermediate working here. The expressions for

the self energies for the r¡r and w¡r processes that we use here are:

r2
- J ptrr

6t'fr

t2 
^oo-+tr l, dk

(k)

and

w"(k) (*7(t') - p2pl4

dk kau2*.(k)

w"(k)-w,(k)*p'o
1

(r"(k) - ie)(w"(k) + w,(k) * P,, - i'e

1

(r"(k) - ie)(w"(k) +'u.',(/c) - tto - i,

)

)
(s.40)

)

: -g2,pnttp ¡* dkka:t',0r.(k). (5.41)
7212 J o ,'"(k)

where we have set the mass of the on-shell p-meson to the physical value, denoted

l.tp. Iîobtaining Equations (5.39) and (5.41) we have taken the limit where the mass
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of the vector mesons (p andat, taken to be degenerate) is much bigger than the mass

of the pion. Also, in analogy with the heavy baryon limit, we have neglected the

kinetic energy of the heavy vector mesons. The pion (omega) energy is given by

w"øt(k) -- k2 + m?*r,,

'We have introduced form factors 2,r,, and ttn, to model the finite size of the

pion source. We have done this because a formal expansion ofhadron properties in

terms of mn fails to converge up to the region where lattice data exists. The crucial

physics insight which renders an accurate chiral extrapolation possible is that the

sourco of the pion field is a complex system of quarks and gluons, with a finite

size characterised by a scale A. When the pion mass is greater than A, so that the

Compton wavelength of the pion is smaller than the extended source, pion loops are

suppressed as powers of lt f m* and hadron properties are smooth, slowly varying

functions of the quark mass. However, for pion Compton wavelengths bigger than

the source (mn 1 Â.) one sees rapid, non-linear variations. Phenomenologically

this transition occurs at n'tn - 500 MeV, ot mn f mo around 0'5 - the region now

being addressed by lattice simulations with dynamical fermions.

The form factors are chosen to be dipoles defined as

2

u""(k) (s.42)

u",(k) (s.43)

where ¡,to and þtr ãrethe physical masses of the p andTr mesons. The normalisation

of Lrnnischosentobeunity atthe ppoleandthecouplingconstant, f pnn:6.028,is

chosen to reproduce the width of the p (as discussed in section 5'3)' In the p -+ tw

case we take gron: 16 GeV-t [00].
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5.1.2 Extrapolation formula

Collecting these results together, we define the expression for the mass of the p-

meson as a functionof m?, as'.

(s.44)

with Xf" andDo^, defined by Eqs. (5.39) and (5.a1) respectively.

We find in our research that the lattice data alone cannot separately deter-

mine Âr,r. and Â.rrr. In order to constrain them we make the reasonable physical

assumption that the size of the source of the pion field should be the same regard-

less of whether the intermediate state involves an ø or a r. This is achieved by

requiring that Âr,o is chosen so as to reproduce the same mean-square radius of the

source as would be generated by the choice of Ä,,r.

The size of the source is determined by the choice of form factor, and can be

foundby comparing the Taylor series expansion of the form factor, Eq. (5.45), with

Eq. (s.46):

u(k): u(0) +k2u'(o)+$u"(0)+... (s'4s)

: ,to) fr -trr,\+...ì . (s.46)
L 6\' " "')'

where u' : d,uld,k2. For the dipoles chosen here' Eqs. (5.42) and (5.a3) we find

(r2)nn :
48 (5.47)

(Ìv7* + apT)'
L2

ffip: cs * c2m?,r ¡EJ*(L'o'mn) 
*Epn'(/tn''mn)

2(cs -f czmT)

(r2)*. :

^7,
Equating the mean-square radii results in the following relationship:

Lnn :2 L7" - p7 (s.4e)

An alternative procedure, which could be imposed in future analyses, would be to

constrain the difference in the meson selÊenergy terms to reproduce the observed

p - u mass difference [59, 61,62,63].
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5.2 Limiting Behaviour

It is important to know both the large and small rn, limit behaviour of E;q. (5.a$.

As has been discussed previously, chiral symmetry is a useful tool for exploring the

properties of QCD near the chiral limit. Chiral symmetry has been used in obtaining

results in Chiral Perturbation Theory (XPT). The behaviour of hadron properties for

large quark masses is not quite so well known, but we do have insights from Heavy

Quark Effective Theory GQET), Dyson Schwinger equation investigations and the

static quark limit.

5.2.1 The Chiral Limit

It was mentioned in section 3.2 that some important, but limited, information ts

calculable in XPT. Of particular use here is the behaviour and coefficients of the

non-analytic (in quark mass) term in the self-energy expression for the p meson. In

the particular case of the p-meson, the leading non-analytic term is O(ml), with a

known coefficient.

From the form of Eq. (5.44) it is easy to see that all non-analytic behaviour

must come from the Ep** and Xeo, terms. We find that in the chiral limit (rn" + 0)

these expressions for the p-meson selÊenergy can be evaluated analytically. Using

a sharp cutoff (P(^ - k)) for the form factor, the p -+ øzr self-energy is easily

evaluated:

Epn,:-W(*'-u,"tu (#) .+ -n*r") (s.s0)

The coefficients of the mn terms of various powers can be obtained by expanding

inmn aboutthe chiral limit:

Dpn,: -W(+ - Lml +î*'^ - l*i * o(*'^)) ,I2r2 \ 3
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with the leading non-anal¡ic term being of order rn|:

xf,lr"o : -fuú-*t, (5'51)

The p + zrzr self-energy contribution is slightly more complicated. If

we again choose a á-function for the form factor we can analytically integrate

Eq. (5.39) giving

5lp
" î1Í rn2. - (tt, I z)' (*? - 0r, I z)') "

)+
^

+

ml - (t'olz)'

Ìt + (p,o12) + m2"+

m2* - (tto/2)'
- arctan

- arctan
rn - (pplz)

m2- - (ttrlZ)'

-tt(p, l2) It2 + m2*

- Q*7 - z(t', I 2)') (p, 
o I 2) rn

{*""" 
( ^-

m+(pt ,12)

))
f arctan

m2, - (ttrlz)'

1\2+rn|+L
n'Lr

(s.s2)

where Â. once again regulates the cutoffof the integral.

The region in which we afe interested has mn < 0trl2). we replace all

the terms of the form m2* - (p,rl2)2 by i jtrlz)' - m?, making the complex

nature of these terms explicit. We then rewrite the arctans (which have complex

arguments) as logarithms of real arguments by using [64]

arcran(z) :îrn(#). (s.53)
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Simpliffing the expression by collecting logarithms together we now have

Eo** : -kthl- {tr,t'l' - *7)'''tn{m?,(m'z- - 0'olz)')

lt'(*? - z(tto|z)') - zlt(¡t o/2) (Âr+^Ð(0'ol2)'-^?)

-tn (m?,(/t' + *? - 0rolz)')) - (z^? - 2(t'rl2)')

x(p,ol2)rn - L!rol2) , +*? (s.s4)

Looking at just the lowest order, non-anal¡ic terms in the expansion about m7 : 0

we have

1

2 Pol2)
(z*? - z(trolz)') 0"olz))rn(m*)

r2: -:++rnltn(m*). (s.ss)
ó7t'p'p

Whilst these expressions were found for the particular choice of a sharp cutoff for

the form factor, the results are more general than that. In fact, these results are

independent of the form chosen for the ultra-violet regulators, L!,nn and rrnr.

To compare these results to xPT we use the result of Eq. (5.1) that

oo:20. (5.56)
2mo

In principal these expressions should be evaluated at the chiral limit. However the

variations of the masses (e.g. the p mass, þp) and coupling constants from the

physical values are typically of the order 107o, and we therefore use the physical

values. We find that both the LNA and NLNA behaviour predicted by XPT are

reproduced. For example, in Ref. [65] the rn,, dependence of the LNA term to the

p mass is given by

' 1 

- (?o?+ o?l -1 . (5.s7)dplrNn : - Lznf, (ãr; * gi 
)rn;

t2
srp I - -Jpnr2zrzrlNLNA 

612 ((rrr,,rr' - so,otz)*? +iffi)
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This results in a value of the zn| coefficient of _1.71GeV2, in excellent agreement

with the value (O',0.1+tn : -1.70 GeV2) found here.

5.2.2 The Static Quark Limit

It is expected from the naive quark model and from heavy quark effective theory

(HQET) that the mass of the hadrons should become proportional to the masses of

their constituent quarks as the quark mass increases. Whilst the data sets investi-

gated here do not truly enter the HQET region, Dyson Schwinger equation studies

suggest that in the mass range investigated the constituent quark mass in fact does

vary linearly with the (current) quark mass. In addition, other lattice calculations

suggest an approximate proportionality between m?* and the quark mass, and thus

there is the expectation that the mass of the hadron should become proportional to

the square of the pion mass. This behaviour is indeed seen in lattice results'

The expression we use for the bare p-meson is of the required form, it only

remains to investigate the properties of the self energies in this limit. We have found

that for the choice of a dipole for the form factors, the self energies aro suppressed as

inverse powers of rnn, orrce rLjr is comparable with the dipole mass (this behaviour

may be seen in Fig. 5.a). Naturally for other choices of form factor we have a

similar suppression.

5.2.3 The Mass in the Chiral Limit

It must be noted that the bare mass, rn6 is not the mass of the p in the chiral limit.

The self-energy terms Dpnn andEpn, ate non-vanishing at rTLr :0, as indicated by

Eqs. (5.50) and (5.54). The mass of the p in the chiral limit is in fact given by the
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evaluation of Eq. (5.44) at the point where TTL, : Q.

Donn(Lnn,TnÍ :0) + tlr( /\nrrmn :0)
(5.58)

2co

5.3 The Width of The p-Meson

It is well know that the p-meson has a decay channel to two pions. It is possible

to calculate the width for this process with the Feynman rules we are using here- It

is also an experimentally known result [39]. We extract a theoretical estimate for

the width by taking the imaginary partof the p -+ 7t1T self-energy. By equating this

result with the experimental value, we have away of determining the ptrr cottpling,

lprt, coîsistently. If we simpliff Eq. (5.38)

*f):'o+

\-pu 7f1f

t2
J prt:

6ltrn,
r2

J ptrr
^õb'lTo

I,*

I,*

dk ka u2**(k) -þp
u,(k) (r"(k) - ir)' - t-414

dkkL u?**(k) 1

w"(k) -?(k) - u?olL - te

We use the definition of the energy of the pion in the loop, w*(k) :

re-write the denominator as

,',(k) - ¡folL - ie : rn? + k2 - ¡Ìrf4- ie

: k' - (t""rlL - m?,) - le ,

and by using Dirac's exPression

7P
r-k:;+xTrò\r)'

we can now write

Í'^"
6n2

k2+ ,to

(s.se)

slp2rr

(5.60)
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The d-function can be split into two terms, one of which corresponds to a positive

k and one to a negative loop momentum k (Eq. (4.1)). However a value of k which

is negative is unphysical, therefore we retain only the positive k contribution to the

imaginary part of the p -+ it't( selÊenergy:

* dlçk4 
"7"@) X

w"(k)

ô k- 0'71Ð - m2"

r2

I*EP*, : -# I,
7f

t2
J ptrr

- 48"

¡tt
u)"(k)

(s.61)

(s.62)

(s.63)

(s.64)

2 }t'olÐ - m|

u7"Ø)

0'7/Ð - m2" *=rffi/+y*?2

,,,(r_T)'''

Thus we frnd that the width ofthe p,l p,is givenby the following simple expression:

,,:rkr,('-T)''' (565)

The experimental value for the width of the p is 149 MeV and this naturally is

measured at the physical pion mass. Vy'e can replace mn in Eq. (5.65) and extract

the value of the ptrn coupling to be 6.028.

5.4 Fitting to Lattice Results

At first sight the fact that CP-PACS [20] is able to extract a measurement of the p

mass, in fuIl QCD, at mnf mo < 0.5 is extremely surprising. once the p is able

to decay one would expect to measure not the p mass but the two-pion threshold.

The origin of this result is in the quantisation of the pion momentum on the lattice

and, in particular, the fact that the lowest (non-zero) pion momentum available is

7t



2tr f aL, where is ,L is the spatial dimension of the lattice. This result was discussed

in some detail in Sec. 2.1.2. For the relatively small lattice used by CP-PACS at

the lowest pion mass this corresponds to more than 400 MeV/c momentum. This is

why the p remains stable.
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Figure 5.4: Yanation with pion mass ofthe self-energy contributions to the p moson,

nqs. (S.+f) and (5.39), for a dipole form factor with Â', : 630 MeV. The solid

points indicate the value of this self-energy when calculated at the discrete momenta

allowed on the lattices considered in this investigation. The difference between the

cgrves and points is an indication of the physics missing because of finite lattice

size and spacing.

We use the results discussed in Sec. 2.7.2to evaluate the self-energy integrals

of Eq. (5.44) by summing the integrands at the allowed values of the lattice 3-

momenta

nn 
Io* 

tc2dk: I o'o = + (+)' n},u", (s 66)

where the k, are defined by Eq. (2.S). The results for the selÊenergy contributions

0.6

a

I

¿L---
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--L-)¿

z /Zrnan' p

E /Zrnøî' p
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are presented in Fig. 5.4. The self-energy calculated on the lattice (the solid circles

and triangles) differs little from the full selÊenergy calculation in the high quark

mass (rn]) region. Furthermore, the effect in the p -+ ar selÊenergy contribution

is also small at low pion mass. The biggest change is in the p -+ 1t7t self-energy

calculation at lower quark mass. This is the region in which one might expect the

biggest corrections because one is approximating a principal value integral on a

finite mesh. This change in behaviour, particularly atthe lowest data point (*? =
0.1 GeV2), indicates that the z'n self-energy contribution is significantly understated

in the lattice simulations. Upon calculating the full self-energy contribution via the

continuous integrals, the magnitude of the self-energy is increased by about 10

MeV, which is 30o/o of the selÊenergy contribution at this point. These results for

Ðpnn andEnn, are used in Eq.6.aÐ to fit the lattice data.

That the self-energy is understated is a function of the lattice size, spacing

and choice of mn. Figure 5.5 shows the same p -+ Trit continuous integral, but

also the behaviour of the selÊenergy evaluated as a discrete sum over a variety of

quark masses. We choose the lattice size and spacing to be that of the lowest CP-

PACS data point (L : !6, ¿ : 0.18 frn). As can be clearly seen, the dashed curve

reproduces the full results well at large quark mass, but severely breaks down at

lower quark mass (rn|). If the CP-PACS data point was at 'rnr :250 MeV the self-

energy contribution would have been overestimated, unlike the underestimation we

find here.

5.4.1 Naiïe Chiral Fits

The recent dynamical fermion lattice QCD results of the CP-PACS and UKQCD

collaborations (listed in Tables 2.1 and2.2) arepresented in Fig. 5.6. The scale pa-

rameters relating the lattice QCD results to physical quantities have been adjusted
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Figure5.5: VariationwithpionmassoftheselÊenergycontributionstothepmeson,
for a dipole form factor with Ln, :630 MeV. The solid curves are the respective

selÊenergy contributions calculated over the discrete momenta permitted on the

lattice.

t66l bV 5%o for the CP-PACS and UKQCD results. The effect is to increase the p

mass from CP-PACS and decrease the mass from UKQCD, providing better agree-

ment between the two independent simulations. This discrepancy is an interesting

observation which may be related to the different choices of fermion and gluon

actions used by the groups. As the X2 of the following fits is dominated by the

CP-PACS data, we focus on this data set.

In Fig. 5.1 we presented a linear frt to the lattice results. Another popular

method within the lattice community is to fit using the following three parameter

form:

ffip: cs * c2m?n i csms* . (5.67)

The inclusion of a term of order zn| is motivated by chiral perturbation theory.

\

Ð /zmrî' p

E /2moÍ' p
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Figure 5.6: Vector meson (p) mass from CP-PACS [20] (filled circles) and UKQCD

[21] (open circles) as a frmction of m?*. The dash-dot curve is the naive three pa-

rameter fit, Eq. (5.67). The open squares (which are barely distinguishable from
the data) represent the fit of Eq. (5.44) to the data with the self-energy contributions

calculated as a discrete sum of allowed lattice momenta. We have used a dipole

form factoç with Âo, : 630 MeV. The solid curve is Eq. (5.67) with the parameter

ca fixed to the value given by chiral perturbation theory.

In Fig. 5.6, the dash-dot curve re,presents a fit of this form to the data, with the

parameters of the fit listed in Table 5.1. Since the value of ca in Eq. (5.67) is

treated as a fitting parameter, we are not guaranteed that it has the correct value

required by Chiral Perturbation Theory kPT). The value for the best fit is found to

be -0.21 GeV-2. As outlined above, our expressions for the p selÊenergies have

the correct LNA and NLNA coefficients by construction. Indeed, if the coefficient

ca is constrained to the correct value2 (-O'ro ¡ætr : _L.70 GeV-2), the best fit

2In Ref. [65] the rn, dependence of the LNA term to the p mass is given by - o#GsZ +

S?)rn3,. Thiswouldresultinavalue of them3, coefficientof -1.71 GeV-2,inexcellentagreement

o .4 0.6
rrl 2 (GeVz)

7f\

0.8 1.0

3 Parameter Fit
Discrete Sum Fit
¡PT LNA term
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possible by varying h aîd c2 is shown as the solid line in Fig. 5.6. As was also found

in the case of the nucleon [66], the lack of convergence of the formal expansion is

such that it is not sufÂcient to fix the coefficient of the LNA term in a cubic fit to

that predicted by XPI as the resulting form will not fit the data.

5.4.2 Improved Chiral Fits

Our fits to the data use Eq. (5.aa) with the integrals evaluated at the discrete values

of the allowed momentum on the lattice. The fits are based on the lowest five lattice

masses given by CP-PACS. We selected the lowest lying masses because to move

further away from the chiral limit would necessitate additional terms beyond the

first two analytic terms of Eq. (5.44). The results of the fit are shown as the open

squares in Figs. 5.6,5.'7, and 5.8. The parameters of the fit c¡, c2,arîd Â,,r, are then

used in an exact evaluation of Eq. (5.44) using the full integrals in Eqs. (5.39) and

(5.41). This result is illustrated by the solid lines in Figs. 5'7 and 5.8.

The best fit value of Â'', : 630 MeV results in the p meson having a radius

of about 0.6 fm from Eq. (5.48). We do not consider the fact that the form factor is

softer than found in some earlier work to be of concern because, as we discuss be-

low, the current lattice results at low n'Lr are not yet sufficiently precise to constrain

the chiral behaviour.

It is interesting to note the similarity of the predictions for the value of the

physical p mass from the cubic and dipole calculations with that of other authors.

An analogous result was found in Ref. [56]. There it was found that fitting quenched

lattice data with a linear extrapolation, and improving the extrapolation by adding

on the p -+ itiT effects, predicted essentially the same physical mass, but that the

chiral behaviour was significantly different. This is exactly the behaviour we see

with the value used here.
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Figure 5.7: Analysis of the lattice data for the vector meson (p) mass calculated by
CP-PACS as a functio n of m?*. The squares represent the fit of Eq. (5.44) to the data

with the selÊenergy contributions calculated as a discrete sum of allowed lattice
momenta. The solid curve is for continuous (integral) self-energy contributions to

Eq. (5.aa). We have used a dipole form factor, with optimal l\n,: 630 MeV. The

shaded area is bounded below by a lo error bar. The upper bound is limited by the

constraint l\n, ) ¡l' as discussed in the text.

here.

The importance of the accuracy of the lowest mass point cannot be over-

stated. We stress that CP-PACS emphasised the preliminary nature of the lowest

data point, because of the relatively low statistics. Nevertheless, in order to pre-

pare for future more accurate data, we have carried out a standard error analysis

including this point and the results are presented in Fig. 5.7. The lower bound on

the shaded area was found by increasing the minimum X2 per degree of freedom of

the fit by 1. V/e were unable to do this with the upper bound. The result is actually

limited by the physics of the process. In the case of a dipole form factor this means

Discrete Sum Fit
Continuous SeIf Energy Result

a

77



Â,,, ) p,n (from Eq. (5.a9)), and that is the upper limit we have shown here.

Improved Statistics
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Figure 5.8: The graph is as described in Fig. 5.7 except that the error bar on the

lowest data point (*7 = 0.1 GeV2) has been reduced by a factor of l,/tO. ttris
equates to an improvement of l0 times in the statistics, which we do not consider an

unreasonable goal for the future. The dipole mass of the best fit is then Âo, : 660

MeV. The shaded area is bounded above and below by alo error bar.

It is not unreasonable to expect an improvement in the accvracy of the cal-

culated lattice mass values, and as a Gedanken experiment we have explored the

possibility of a ten-fold increase in the number of gauge configurations at the low-

est pion mass. For the purposes of the simulation we did not change the value of

the data point, but simply reduced the size of the error bar bv t/n' As can be seen

in Fig. 5.8 the improvement in the predictive power is dramatic. The uncertainty in

the physical mass has been reduced to the 2Yolet¡el. Additional improvement in the

0.4 0.6

^n' (Gevz)

Discrete Sum Fit
Continuous Self Energy Result
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accuracy of the extrapolation would result from the availability of additional d,ata

in the low pion mass region. However, it must be noted that the provision of data

around 0.2 GeY2 and higher would probably not assist greatly in the determina-

tion of the dipole mass (Á.); it is primarily determined by points nearer the physical

region. We present the parameters of these fits in Table 5.1.

Fit Form cs c2

Cubic 0.723 0.668 -0.207 0.735 0.44(8 0.223

Dipole 0.776 0.427 0.630 0.731 0.45 (7) 0.225 (4)

(I-p) 0.77s 0.425 0.660 0.725 0.45 (3) 0.225 (2)

Table 5.1: Table of fit parameters c6, c2, cz, Â,rr, the p-meson mass at p,n, the value
of the J-paraneter, and the pion mass at which the J parameter is calculated. All
values are in appropriate powers of GeV. The Cubic fit refers to Eq. (5.67) while
the Dipole refers to Eq. (5.44) with a dipole forrr-r factor, Imp is a dipole fit with
the increased statistics. We find that the error in the ,I-parameter is halved if the
statistics on the lowest point are increased by a factor of 10.

Form Factor l)ependence

We have examined the model dependence of our work by repeating the above fits

with a monopole form factor. As can be seen in Fig. 5.9 the model dependence is

at the level of 15 MeV at the physical pion mass with current data, and at the few

MeV level had the error bar been reduced by a factor of rÁ0. This reinforces the

claim in Ref. [66] that this extrapolation method is not very sensitive to the form

chosen for the ultra-violet cut-off. In Sec. 6.6 we investigate the extrapolation form

factor dependence in greater detail for the specific cases of the -ô/ and A masses.

5.5 The J-Parameter

A commonly perceived failure with quenched lattice QCD calculations of meson

masses is the inability to correctly determine the J-parameter. This dimensionless

cs Ln, J m2"
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Figure 5.9: A magnification of the physical pion mass region of our extrapolation

results. The solid and long dashed lines represent the best fit dipole and monopole

results for a fit with the present accuracy of the lattice QCD results. The dash-dot

and short dashed lines are the dipole and monopole results for a reduction in the

error bar of the lowest lattice data by a factor of .tÁ0. The model dependence of
the choice of form factor is O(2%).

parameter was proposed as a quantitative measure, independent of chiral extrapola-

tions, thus making it an ideal lattice observable16Tl. The form of the "I-parameter

ls:

J (s.68)
mrf mo:1.9

(s.6e)

By using Eq. (5.69) and the experimentally measured masses of the K (495 .7 MeV),

K. (892.1 MeV), zr (138.0 MeV) and p (770.0 MeV) Lacock and Michael [67]

/2
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/,

/,

Dipole
Monopole
Dipole
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determined

J :0.a8(z) .

However previous attempts by the lattice community to reproduce this value have

been around2\%too small. In the case of quenched calculations this has been cited

as evidence of a quenching error (see, for example the review in [68]). It was noted

by Lee and Leinweber [69] that the inclusion of the self-energy of the p-meson

generated by two-pion intermediate states (excluded in the quenched calculations)

acts to increase the J-puameter. This fact has not been addressed in many analyses

by the lattice community.

0.8
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\ 0.4
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Figure 5.10: The solid curve is a plot of the value of the "/-parameter as a func-

tion of m2* obtained from Eq. (5.63) and the best fit to the lattice results given by

Eq. (5.aa). The vertical dotted line shows the point at which the .I-parameter is

evaluated (molmn : 1.8). The horizontal line displays the experimental value

(0.4S) plotted between the physical values of m2^ and m2*.

In Fig. 5.10 we present the value of the .I parameter obtained from Eq. (5.68)

J

7np Tfù : 1.8
7f
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and our best fit to the lattice results using Eq. $.aQ. The vertical dotted line indi-

cates the value of m2^ where the J parameter is to be evaluated, i.e. mof mn : 1'8.

The horizontal dashed line, plotted between the values of the squares of the physi-

cal pion and kaon masses, shows the experimental estimate of the .,I parameter from

(5.69). This equation suggests that the evaluation of J may be approximated by the

slope of the vector meson mass extrapolation between these points. The cusp shown

in Fig. 5.10, associated with the cut inDpno, suggests otherwise. We stress that while

the detailed slope of the curve is parameter dependent, the presence of the cusp is a

model independent consequence of the two pion cut in the p spectral function.

As a point of comparison we have also calculated "I using the naive cubic

chiral extrapolation, Eq. (5.67), described above. The results of our investigations

are summarised in Table 5.1. The value of the ../ parameter is similar for both fits as

it is evaluated at m2^ - 0.22 GeV2. The effects introduced into the extrapolations

by chiral physics do not begin playrng a large role until m?, falls below 0.2 GeV2.

Had the J parameter been evaluated at m?^: 0'19 GeV2 or 0'09 Gev2 one would

find perfect agreement with the linear Ansatz of Eq. (5.69).

5.6 The p'ftnt Phase Shift

The pnr phase shift is related to the transition matrix for the p. The transitton

matrix is proportional to d

f @) x eid sin ô , (5.70)

and the value of d may be measured experimentally. The form of the transition

matrix is

r(E):ø_+r@, 6.71)
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We can evaluate the scattering phase shift using

ImT
ReT tan ð '

We know that E : Fp atthe p pole, and that ô : 90o. This implies that the tealpart

of ? vanishes, and so we have a constraint on n'Lp. The imaginary part of 7 is just

the inverse of Eq. (5.63) with the p mass, lrp,rcplaced by the energy of the system,

E.

where
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Figure 5.11: The gnr phase shift as a function of energy. The experimental points

are from [70].

Figure 5.11 shows the phase shift for ¡zr scattering in the p channel, as

calculated with our best fit l\n, :630 MeV. We reproduce the experimental results
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of [70] in the resonance region, however the fit is not perfect in the higher and lower

energy regions. Additional resonances, that have been ignored in our analysis, are

expected to play a role in the high energy region, while there can be other small,

background contributions in the low energy regime.

5.7 Summary

'We have found our method for extrapolating lattice QCD results for the lightest

vector meson at large quark masses to lighter masses successful. For the best fit

parameters, not only have we reproduced a realistic physical mass for the p me-

son, whilst implicitly building in the correct chiral behaviour, but in addition the p

of our calculations has the correct decay width to two pions. The extrapolation

method reproduces the experimentally extracted value of the "/-parameter (with

some caveats), and it reproduces the prr phase shift in the 2r resonance region.

These results are ternpered by the error analysis, which shows that with data of the

accuracy currently available the true predictive power of an extrapolation is negli-

gible. The redeerning feature is that a ten-fold increase in the statistics of the lowest

data point will result in a tool with predictive power at the 5o/o level. In the next

section we apply a similar analysis to investigate the lightest two baryons: the I/

and A.
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Chapter 6

Baryon Masses

. That man is best who reasonsþr himself,

Considering the future. Also good

Is he who takes another's good advice.

But he who neither thinks himself nor learns

From others, is afaílure as a man.

Heslon, "WORKS AND DAYS"

7Tlh" two most studied particles on both the lattice and in chiral perturbatron

I ,n"ory are the lightest spin-| (lú) and spin-| (A) baryons. The lowest mass

full QCD lattice data avallable is indeed for these baryons. 'We present a study

of these two baryons as a general example of the issues involved with any baryon

extrapolation. As in the previous chapter we show that an expansion in mn of

hadron properties fails to converge, and in particular has the wrong functional form

in the large quark mass region (Sec. 6.6.4). The sigma commutator, investigated

in Sec. 6.7, is a direct source of information on chiral symmetry breaking within

QCD. V/e will show that provided the correct chiral behaviour of QCD is respected
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in the extrapolation, one can indeed obtain a fairly reliable determination.

6.1 The Nucleon

The successes of the previous chapter concerning the extrapolation of the p-meson

mass leads us to consider a similar approach to the latest two-flavour, dynamical

QCD data on the nucleon. Once again our guiding principle is to retain those self-

energy contributions which yield the most rapid variation with mn near the chiral

limit - i.e. those terms which yield the leading non-anal¡ic (LNA) behaviour and

the next-toJeading non-analytic (NLNA) behaviour. In the limit where the baryons

are heavy, the pion induced self-energies of the N and A, to one loop, are given

by the processes shown in Fig. 6.1. Note that we have restricted the intermediate

baryon states to those most strongly coupled, namely the lrr and A states. The

discussion of the A baryon calculations are deferred to section 6.3.
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Figure 6.1: The one-loop pion induced self-energy of the ,^/ and A'

As the nucleon propagator is linear in the baryon mass' it is natural to intro-
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In the case of the p-meson we motivated the definition of ms by observations of

lattice results. Here we use both the insights gained from the linear behaviour of

the results of lattice QCD, as shown in Fig. 2.1, and the CBM results Fig. 6.3. Iñ/e

again take the bare mass, ms, to be anal¡ic in the quark mass:

duce the self-energy correction as:

rnN:mg*ON

ffì¡: cs I c2m?n.

(6.1)

(6.2)

6.1.1 Self-Energy Contributions

Once again we only include in the expression for the baryon masses the self-energy

contributions that vary the most rapidly in quark mass near the chiral limit. In

the case of the nucleon the two processes that contribute the most significantly are

lú + Nn and lú -+ Azr. In chapter 5 we saw that the two contributing selÊenergy

terms yielded the leading non-analytic and next-toleading non-analytic behaviour

of the p meson mass. It is not surprising that the selÊenergy contributions we

investigate for the nucleon (and the Delta discussed below) also contribute the same

LNA and NLNA chiral behaviour to the nucleon.

As was discussed in Ref. [66], the formal analytic expression for the pion

cloud correction to the masses of the l/ are of the form [71]:

oN* : (6.3)

o[" : 332 oo

dk
k4u2*oQt)

(6.4)
1612 f] 25 u"(k)(LM + w"(k)

where g¡ is the axial charge of the nucleon and has the value 1.26. The mass

difference between the A and l/ is given by L,M, and once again the energy of the

fol,*onffi,
ni I, )'
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pion with momentum k is given by u"(k).The coupling constants have been related

to the N Nr coupling through SU(6) symmetry, which itself has been related, by

chiral symmetry, to gAf 2f1r. These relationship are discussed in some detail in

1ec.4.2.1. V/e again use the insight that the size of the source ofthe pions is finite in

extent, to motivate the introduction of the form factors z,¿y¡¡, and z7ya. This simple

physical insight will regulate the integrals so that they do not become divergent.

As for the case of the p we choose a dipole for the form factors, which is a

common phenomenological choice. We have investigated the model dependence of

this choice in Sec. 6.6. We take our prefened dipole for the form factors:

/ 
^2 - 

,,2\2
,rr(k) :urua(k) :(ffi,) , (6.s)

where we follow the convention of this thesis by defining þo to be the physical

pion mass, and Ic being the magnitude of the loop (3-)momentum. We define the

dipole mass, for the case of the nucleon, to be Â.¡y. This definition will allow us to

distinguish the result from that of the A, À4, discussed later in this chapter.

6.1.2 Extrapolation Formula

If we collect together the definition of the nucleon mass, Eq. (6.1), with the defini-

tion of the bare mass, Eq. (6.2), and the results of Eqs. (6'3) and (6.4) we have the

following expression of the nucleon mass, as a function of mn:

rrL¡¡ - cs I c2m?n + oil"(AN, mn) * oL(Â", mn)- (6'6)

6.2 Limiting Conditions For rrL¡¡

Chiral symmetry for the nucleon is well defined for both the leading and next-to-

leading non-analytic behaviour in the quark mass. The case of the p -+ 1tTt had the
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inherent difficulty that both intermediate state particles were light. This is not the

case here, both the l/ and A are considered heavy in XPT. As was discussed in the

case of the p-meson, by construction, all the non-analytic behaviour of Eq. (6.6) is

restricted to the selÊenergy terms øff" and ø{,. Thus we need only to investigate

the self-energy terms to see how they behave in the limits.

6.2.1 The Chiral Limit

The LNA and NLNA behaviour of Eqs. (6.3) and (6.4) is associated with the in-

frared behaviour of the integrals, i.e. the behaviour as ft -+ 0. As a consequence,

the leading non-analytic behaviour should not depend on the details of the high mo-

mentum cut-off, or the form factors. In particular, it should be sufÊcient for study-

ing the LNA contributions to evaluate the selÊenergy integrals using a simple sharp

cut-off, u(k) : d(^ - k). Another perspective on this is to say the leading non-

anal¡ic (LNA) terms are those which correspond to the lowest order non-anal¡ic

functions of mn - i.e. odd powers or logarithms of mn.

using a á-function for the form factors, the I/I/zr integral (c.f. Fig. 6.1(a))

is easily evaluated in the heavy baryon approximation used here:

o{,*
¡+

w7&)
3

dkg,A
76n2 f]

3g'o
(-lur.tur,(#)

,r3_1\ _ I+ 
- - l\m1-'D^

t)

(6.7)
I6tr2 r2Jr

Looking at the behaviour of Eq. (6.7) in the limit IrLn ) 0, allows the extractron

of the non-analytic behaviour. It should be noted that the integrand is of exactly

the same form as Eq. (5.41), and therefore it should come as no surprise that the

leading non-analytic term is O(ml), in agreement with [72]:

oil-|"*o : -#g'A^t^. (6.s)
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The integral corresponding to the process shown in Fig. 6.1(b), the N -+

Aø'self-energy, with a d-function form factor, may be analytically evaluated' For

m, > L,M

o[- : - ffirL2(mz* - 
LM2)rt' 

{ur.t"r, 
(W)

-arctan(ffi)\
/-\

+r L,M (Bm?* - z t rw2) r" (It#j!)
-3 m2" + Ìt2LM lv + 6LM2lt - em?*lt + 243) ,

(6.e)

(6.10)

while for mn < LM we find

oXn ,L*, ¡l (a1trø' - m?)'/2 x

i'' ( A
+ +^2+A,M+lt

+^ -LM-L
+ LM * rr;r

)l-ln

-3

-LM-rflr

+3LM(3m?, - zntw2)tn

m2* + lt2 LML+6LM2L- om?^L+2^3)

This result is reminiscent of the result for Ep,*. Both selÊenergies involve transi-

tions, p -+ 7t and ,nr/ -ì A, which are characterised by branch points at nzn : þpl2

and mn : L.M respectively. The effect of this branch point is reduced by a can-

cellation in the logarithmic terms at nzn - LM,unlike the result for the A + -lúr'

self-energy which is explored in section 6-4-7.

An expansion of Eq. (6.10) leads to the result for the NLNA term in the
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nucleon self-energy

o{"1*"*o : ffiX# n}h(m^), (6'rl)

which is a ain as expected from XPT [44].

Of course, ot concem with respr ct to lattice QCD is not so rch the be-

haviour as n'tr I 0, but the extrapolation from high pion masses to the physical

pion mass. In this o ntext the branch point at m?* LM2 is at least a important

as the LNA near TrLr :0. We ;hall return to this point later. We note that Banerjee

and Milana t73] fo d the samt non-analytic behaviour as n'LÍ -+ L'M Lat we find.

However they were not conc ed with finding a )rrn that c uld be used at large

pion masses - 
i.e. rne that is onsistent with heavy quark effective theory.

6.2.2 The Static Quark Limit

Heavy quark effective theory suggests that as rù,r è oo the quarks become static

and hadron masses become proportional to the quark mass. This has been rather

well explored in the context of successful non-relativistic quark models of char-

monium and bottomium [74]. However, as discussed previously, we are not in the

heavy quark limit (where n'Lr x mo),but in the region where the baryon masses

are indeed becoming proportional to the quark mass and yet m?, x ffiq still' In this

spirit, corrections are expected to be of order 7f mn whete rno is the heavy quark

mass. Thus we would expect the pion induced selÊenergy to vanish at least as fast

as L f mo as the pion mass increases. The presence of a fixed cut-off Â acts to sup-

press the pion induced self-energy for increasing pion masses, as evidenced by the

m2* inthe denominators of Eqs. (6.3) and (6.4). \Mhile some m?, dependence in 'A'

is expected, this is a second-order effect and does not alter the qualitative features.
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By expanding the arctan ({yl*) term in Eq. (6.7) for small Ll*n, we find

oN* : -ffi**å"t# (#)".' (6t2)

_ zs'o Lu * o ( t\. (ó.13): -16"ry1srn2^-"\**) '

whichvanishes for n'ùir -+ oo. Indeed' inthe latgemn (heavyquark) limit, Eq' (6'10)

also tends to zero as Ilm?r.

6.2.3 The Mass in the Chiral Limit

It was mentioned in section 5.2.3 that the bare Íulss rls that is discussed here is

not actually the mass of the hadron in the chiral limit. We onphasise the point

again here. The fact that the bare mass is only part of the chiral mass, is a direct

consequence of the concepts argued for here in requiring the self-energy terms in

the extrapolation. The non-analytic structure of the chiral mass is predicted by

chiral perturbation theory. 'We have shown above that we do in fact reproduce the

leading and next-toJeading non-anal¡ic behaviour of this chiral mass, but that this

non-analytic structure comes only from the self-energy contributions. Without such

terms an extrapolation formula has little grounding in physics, missing well known

behaviour. As can be seen in Fig. 6.4 ttre contributions from the self-energy terms

ofl*, Eq. (6.3), and o[n,Ei.(6.4) are non-vanishing at the chiral limit, and so our

mass for the nucleon in the chiral limit is

*\T) : c¡ + ofl"(Â' ¡¡,TrLn: 0) * oL(Àt, rnn :0) ' (6'14)

6.3 The A Baryon

The functional form for the mass of the A is motivated in exactly the same way as

were the nucleon and p-meson masses discussed previously' We follow our golden
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rule of retaining the self-energy contributions which yield the most rapid variation

with mn near the chiral limit. The point has been made previously that these terms

in fact yield the leading, and next-to-leading, non-analytic behaviour. We presented

in Fig. 6.1 the pion induced self-energies to A. Once again we have restricted the

intermediate baryon states to those most strongly coupled, namely the lú and A

states. As was the case for the nucleon, we have the A mass modified as

rna: ms * o^ . (6.15)

Observation of lattice results motivates the definition of the bare mass, ms, to be

anal¡ic in the quark mass:

rno : co I czmT. (6.16)

This is the exactly the same form as was used in Eq. (6.2) for the nucleon and

¡¡q. (5.2) for the p-meson. This behaviour is indicated by the lattice, and not entirely

unexpected. The concept of abare object that is dressed in some manner is common

in both nuclear and particle physics. The Dyson-Schwinger equation is a perfect

example. Here we see that, to one pion loop, that lattice is indicatingthat hadrons

are a bare core withcorrections that are quark mass dependent.

6.3.1 Self-Energy Contributions

The greatest contributions to the selÊenergy of the A are from the two processes

shown in Fig. 6.1, that is A -+ Azr and A + /üzr. These are retained as they satisff

our requirement of providing the most rapid variation with quark mass near the

chiral limit. We show below that as was the case for the nucleon and the p-meson

these two terms contain both the LNA and NLNA chiral behaviour. we define the

self-energy contribution to the mass' oa,bY

oL : of;*+oft*.
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References 166,7ll present the formal analytic expressions for these pion

cloud correction to the mass of the A. We reproduce those results here:

of;,(Ìt6,m*) o{In

-fil,*an k4u2oo(k (6.17)
u7@) '

øff,,1Âo, m,-l : 1 .= 
8 ^ r@ k'Au'2o*(k) 

'|zotr) 
L6n2fl25s'o Jo 

ouffi' (6'18)

where we use the notation and definitions described below Eq. (6.a). We take the

phenomenologically motivated dipole for our form factors

um(k): z¡,,¡(fr) : (#+\' , (6'1e)
\lLA-rtù /

with the dipole mass given by A¡, and the usual definitions for the magnitude of

the loop (3-)momentum, k, and the physical pion mass pr,,'

6.3.2 Extrapolation Formula

We showed in Eq. (6.15) how the mass of the A would be modified by pion induced

self-energy contributions. By substituting the appropriate definitions for the bare

mass, Eq. (6.16), and the pion induced self energies, Eqs. (6.17) and (6.18), we

come to the following expression for the A mass, as a function of mn:

Tn^'- co * czm?+ of;,(,Ào, mn) *of"(A¡, rn")' (6'20)

6.4 Limiting Conditions For rna

As was discussed in section 6.2 the non-analytic behaviour of the nucleon mass ls

well defined in chiral symmetry. The same is true for the A, which is also consid-

ered heavy in the XPT framework. Once agatn,by construction, all the non-analytic
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(in quark mass) behaviour of Eq. (6.20) is limited to the pion induced self-energy

contributions, of,, and of . Thus when we investigate the behaviour near the chiral

limit we need only to look at the behaviour of the self-energy terms.

6.4.1 The Chiral Limit

we have previously motivated the use of a sharp cut-ofl u(k) : p(^ - k), for the

form factors when investigating the infrared behaviour of the self-energy contribu-

tions to the baryon masses. The behaviour as the loop momentum k -+ 0 allows the

extraction of the lowest order non-anal¡ic behaviour of these expressions as func-

tions of rn,,. We then compare this behaviour to the model independent predictions

of Xp! showing that we reproduce the LNA and NLNA behaviour that is expected

to be present in the functional form for the mass.

Since the form of øf, is exactly that of the øff" we may use the result of

Eq. (6.7) to write down directly the analytic form for this integral:

o^, = ol,*

: -fil,^*L'r*,
= -#h(-lu"tu"(#) .+ -n*?) u21)

Naturally we have exactly the same result for the chiral limit, that is n'Ir -+ 0, as

we had in the off,, case. The leading non-analytic term is once again o(m!*):

oâ"l"ro : -&g'Amt^. (6'22)

The other self-energy contribution to the a mass is from that shown in Fig'

6.1(c), the a -+ lúzr self-energy. when we evaluate the integral, with a 0-function

form factor, the result is similar to that of Eq. (6.9)' Again, as there is a branch point
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atmn : L.M we present the two limits independently. For Ifln ) L,M wehave

ofr* : ffien(m?*- LMz¡t¡z{*"t* (
JñÆ-L,M+tt

_A

(6.23)

* arctan

A
N

)

(+3A,M(3rn?* - zn,u2¡tn

Ð_J rn|+L?Á.ML- 6LM2L+ 6m?-lt - 2L') ,

whilst the form for mn < AM is

g,A
(oçtttt'z - *?)3/2 xo 1f L00r2 f]

['" 
( A

M2_ + + L2-LM+L
m2" + lt +LM-lY

)l*ln JNMI=@+LM-n'Lr
-m2"-ô.M*rnn

+BL,M(B,?. - zn m2r t" ( tÆîl¡u * n)
rvr ) LtL 

\-_, )

4/@TñaML - 6r.M2L+ 6m?*L- ,n') rc-24)

It should be noted that the branch point at nÙIt : AM is important in this situation'

In the case of the nucleon, there was a cancellation between the first two terms at

the opening of the cut, resulting in a zero weighting there. However, in the case of

the A, there is a reinforcement between these terms'

The effect of this branch point at rrLr : AM is seen as a point of inflection

at m2* - 0.1 GeV2 in, for example, Fig. 6.4. It occurs exactly at the point where

the decay of the A to -l/zr is energetically allowed. The correct description of this

curvature is clearly very important if one wishes to obtain the A-l/ mass difference

at the physical pion mass. It must be noted that the previous attempts at extrapo-

lation formulae, as discussed in section 5.4.1, and also below, do not include this
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behaviour. We showed that in the case of the p-meson the opening of a decay chan-

nel is important, and we show below that this is even more important in the case of

the extrapolation of the A mass.

Though there is the important distinction between the behaviour of ø{,, and

ø$,, around the cut, the non-analyiic behaviour is quite similar. The leading non-

analytic term contributed by ø$," is 0 (*Iln(m*)), and so in Eq. (6.20) it will

contribute the NLNA term (the LNA term is O(ml) from ø{"):

of"l*"*o : -ffi*#*aJn(rn*). (6.2s)

As has been the case in the previous cases presented in this thesis we have

evaluated these self-energy contributions in the heavy baryon approximation.

6.4.2 The Static Quark Limit

Observationally it is clear that the functional differences between the expressions

for ø{, and øS, become less important as the quarks become heavier. Equivalently

since the expressions for øff and øf" are identical, we therefore can use the results

presented in section 6.2.2 to explore the behaviour of the extrapolation formula in

this limit.

We explored the large mn behaviour of Eq. (6.21) (which is analogous to

Eq. (6.12)) and found

oî*:-ffi#.'(#), G26)

which, as expected, vanishes for mn -+ oo. 'We also state (without further explana-

tion) that in the large mn limit, Eq. (6.2$also tends to zeto as I I m?,'

As has been previously mentioned these expressions are only a first order

approximation, and the corrections to the baryon mass are expected to be of order
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of the inverse of the heavy quark mass. This is exactly the behaviour we already see,

suggesting such effects will not change the general detail of the results presented.

It is also expected that this characteristic feature would not be altered by second-

order effects, including possible m2* dependence in Â. We reiterate that Ä is related

7

6

5

4

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 6.2: The mean charge square radius of the proton calculated in the Cloudy

Bag Model (CBM). The solid line is the value calculated within the CBM including

the pion cloud eflects. The dot{ashed line is the contribution from the bare bag.

The change in the size of the bag over the range is at the 10% level.

to size of the baryon core. The size of the core, or bare baryon, is not expected

to vary significantly over the range of pion masses we are investigating. Indeed a

simple CBM calculation of the mean square radius of the proton, Fig. 6.2, suggests

that the change in the size of the core is only at the l0o/o level over the range we

discuss.
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6,4.3 The A Mass in the Chiral Limit

The inclusion of the self-energy terms in the mass formula for the A provides the

correct leading non-analytic and next-toleading non-analytic structure that is re-

quired by XPT. Notionally we have dressed the bare A with a pion cloud, in a

simila¡ way to the Cloudy Bag Model dressing ab'are bag, with a pion cloud. This

means however that the chiral mass is not simply that of the bare A. 'We have

seen in the cases of the nucleon and p that the physical mass is only slightly more

complicated though, and that is also the case here:

*f) : cs * of;n(/\t,*n: 0) * o$"(Â¡, rnn :0) ' (6'27)

The self-energy contributions to the A (and also nucleon) mass for a 1 GeV

dipole are shown in Fig. (6.4). It is clear that they are non-vanishing at the chiral

limit, reinforcing the need to retain these terms when taking the chiral limit'

6.5 Cloudy Bag Model Results

The Cloudy Bag Model (CBM) was discussed in chapter 4, and so there is little need

to go into the reasoning behind why we undertook investigations in the model. The

benefits that were gained by having a model that incorporated both chiral symmetry

and the heavy quark limit, whilst allowing us to access the region between these two

limits was extremely useful. We needed some insight into how the hadron masses

might behave between these limits, and the cBM did this admirably.

In Sec. 4.2.3 Fig.4.3, reproduced here as Fig. 6.3, was presented showing

how both the CBM results, and our extrapolation formulae depend on m?*' At the

time the derivation of, and reasoning behind, the formula was not presented' The

previous sections of this chapter will hopefully have made some of this clearer'
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Figure 6.3: The pion mass dependence of the ,A/ and A baryons generated in the

cgNd using a dipole form factor with .4, : 1.0 GeV. This is a reproduction of

Fig.4.3.

Figure 6.3 shows the behaviour of the Iú and A masses in the CBM as a

function of m2* for the particular choice of a 1 GeV dipole. The solid lines show

the fits using Eqs. (6.6) and (6.20) 
- with a sharp (0-function) cut-off' We choose

a sharp cut-off as we wish to explore what model dependence there is in the ex-

trapolation of the CBM data. This different perspective on model dependence from

strictly lattice results removes some inherent bias.

Baryon cs c2 
^ 

ITLy Error

(cev) (GeV-1) (GeV) (GeV)

N 1.09 0.739 0.455 0.948 0.8%

a r.37 0.72s 0.419 r.236 03%

Table 6.1: Parameter sets for the fit to the cBM data. The form factor used in

Eqs. (6.6) and (6.20) is a sharp cut-off, the CBM data was calculated with a 1'0

GeV dipole form factor.

0.5 1.0
rn^z (GeYz)

1.5 2.O

A

N
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It can be seen that our extrapolation to the physical pion mass is in good

agreement with the CBM calculations. At the physical pion mass the extrapolated

.lr/ mass is within 0.8% of the experimental value to which the CBM was fitted,

while the A is within 0.3% of the experimental value. We present the parameters of

our fit in Table 6. 1 . The value for the sharp cut-off (Âr, A¡) is (0.455, 0.419) GeV,

compared to A : 1.0 GeV for the dipole form factor used to generate the CBM

results.

It was noted in sections 6.2.3 and 6.4.3 thatthe constant cs in our functional

form is not the mass of the baryon in the chiral limit, but rather this is given by

^(f,) 
: co + o#,(Â,0) + oL(^,0) - 

with an analogous expression for the A.

We find that the extrapolated Iú and A masses in the chiral (SU(2)-flavour) limit

are (Mrf) , t tf)): (905,1210) MeV, compared with the CBM values (898, 1197)

MeV.

The mass dependence of the pion induced self-energíes, oln, for the I GeV

dipole form factor, is displayed in Fig. 6.4. The choice of a 1.0 GeV dipole corre-

sponds to the observed axial form factor of the nucleon [75], which is probably our

best phenomenological guide to the pion-nucleon form factor [76]. We note that

øff tends to zero smoothly as n'L,t grows and it is only below m2n - 0.2 GeV2 that

there is any rapid variation. That this behaviour cannot be well described by a poly-

nomial expansion is illustrated by the dotted curve in Fig. 6.4. There we expanded

off,, about Tnr : 0 as a simple polynomial, c¡ * c2m?* + csrns¡, with ca fixed at

the value required by chiral symmetry, in analogy with section 5.4.1' Clearly the

expansion fails badly for mn beyond 300-400 MeV.

The behaviour of the /úz' contribution to the self-energy of the A is espe-

cially interesting. In particular, the effect of the branch point at mn : L'M is seen

in the curvature at ml - 0.1 GeV2. For comparison, we note that while there is

also a branch point in the nucleon self-energy at the same point - see Eq' (6'9) -
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Figure 6.4: Variation with pion mass of the self-energy contributions to the nucleon

*ã A, Eqs. (6.3), (6.4), and (6.18), for a dipole form factor with A : 1.0 GeV.

We note that øf, = ofln in this case. The LNA term of ¡PT tracks the .f[-f[z- con-

tribution tp to mn - 0.2 GeV, beyond which the internal structure of the nucleon

becomes important.

the coefficient of (*? - LM2)3/2 vanishes at this point. As a consequence there is

little or no curvature visible in the latter quantity at the same point.

Figure 6.5 illustrates the degree of residual model dependence in our use

of Eqs. (6.6) and (6.20). There the variation of the nucleon self-energy, øfi,

calculated with a 1.0 GeV dipole form factor (solid curve) is fit using the form

a + þm?+ øff"(.^,, rn") (dash curve' with o : -0'L2 GeY, þ: 0'39 GeV-1 and

Ä : 0.57 GeV). Note that the deviations are at the level of a few MeV' For the A

the self-en ergy, oftn,is again calculated using a 1.0 GeV dipole form factor and fit

with our standard fitting function, a + 0m? + o#?r(^, m,)' The quality of the fit

(with o : _0.062GeV 0 :0,024GeV_1 and Â' : 0.53 GeV) is not as good as for

NN

NA

AN

¡PT LNA term
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Figure 6.5: Comparison between the nucleon and A self-energies, off, and øf,,,
calculated using a dipole form factor (solid and long-dash dot curyes, respectively)

and fits using the form a + Bm2* * oti(L,mn), based on a sharp cut-offin the

momentum of the vir¡¡al pion (dash and short-dash dotted curves respectively).

the nucleon case. Nevertheless, the difference between the two curves at the phys-

ical pion mass (vertical dotted line) is only about 20 MeV. At the present stage of

lattice calculations this seems to be an acceptable level of form factor dependence

for such a subtle extrapolation. However, in the following sections we will show

that the choice of the sharp cut-off is not a reasonable choice for the form factor,

and the model dependence for a reasonable choice of form factor (the meaning of

reasonable will become obvious shortly) is quite small'
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6.6 Fitting to Larttice Results

In chapter 5 we showed that taking in to account the discretisation of available mo-

menta on the lattice was important. We also discussed that the model dependence of

the results, based on the choice of form factor, was small. Here we will expand the

discussion by presenting more results for three choices of form factor, and also by

looking further at the dependence of the results on the discretisation of momenta.

In particular we will be investigating our preferred form factor, the dipole

uD(k\: (\"=- li\' . (6.28)q \,,.,r _ 
\tlz + tez ) )

as discussed below Eq. (6.5), with p,n being the physical pion mass. It is a simple

extension from the dipole to the choice of a monopole. However we will show, that

the monopole / ^2 ..2 \

",(k):1ffi) , 6ze)

does not give as good a fit to the lattice data as a dipole. The goodness of fit (we

use the X2 per degree of freedom as this measure) for the monopole is sufficient

however for it to be considered a reasonable choice of form factor, reinforcing our

claims that this work is only weakly model dependent. The final form factor that

we investigate is the 9-function, or sharp cut-off:

"s&):o(L-k)
(6.30)

We know that the behaviour of the self-energies in the chiral, or infrared, limit is

independent of the choice of form factor, and we used the sharp cutoff to derive

the leading, and next-toJeading behaviour in this limit. The appropriateness of

such a form factor at higher masses however was not as well known before the

investigations outlined below. In Fig. 6.6 we present the shapes of these form factors

as a function of loop momentum, k. The solid and dashed lines are for the values
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Figure 6.6: Loop momentum, le , dependence of three choices of form factor. The

solid curve, a dipole given in Eq' (6'28) has A'¿ : 1'0 Gev' The monopole'

Eq. (6.29), has the s¿tme mean-squared radius as the dipole, this results in lt, :
L"lJ2 GeV. The dashed curve is a sharp cut-offwith Â chosen to give the best fit
to the CBM results (A : 0.455 GeV).

of .4, discussed in section 6.5 for the best fits to the Cloudy Bag Model. It is clear

that whilst the majority of the chiral behaviour of the self-energies comes from the

infrared, or equivalently low-/c, region the significant difference between the non-

vanishing dipole and the identically zero sharp cut-off0-function in the region up to

2.0 GeV undoubtedly makes a difference in the contributions from the self-energies.

6.6.1 Sharp Cut-Off Form Factor

V/e begin by considering the functional forms suggested in section 6.1.2 and 6.3.2

with the form factor chosen to be a 0-function with Â fixed to the value determined

by fitting the CBM calculations. As has been mentioned previously the data sets

Dipole

Monopole

0-function
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from the UKQCD l2Il, andCP-PACS [20] collaborations are not consistent at their

quoted values (Fig. 2.1). It has been our practice to shift the results within the

quoted etïors, as discussed in section 2.4,to improve the consistency.

The resulting fits to the baryon masses were investigated in our previous

work [66]. There we explored the dependence of the parameters on the scaling of

the data. Since there is 10olo uncertainty in setting the scale for both the UKQCD

and CP-PACS results we calculated fits for no scaling of the data, a 5olo scaling on

both data sets, and also adjusting just one data set to match the other. We found that

even though the scaling adjusts the parameters of the extrapolation, the variance at

the physical pion mass is of the order of l0%o.

The evaluation of the self-energy contributions as a sum over discrete mo-

menta was not undertaken in this case. However, we realise that a sharp cut offin

the momenta of the pions emitted from a hadron is not at all realistic. The sharp

cut off is an acceptable choice in the low momentum region. It permits anal¡ic

evaluation of the selÊenergy integrals which then allow the physical structure to be

obserr¡ed. Away from this region however the approximation breaks down'

Another reason for not investigating the sharp cut off is related to the dis-

cretisation of momenta itself. In our CBM investigations we found that the cut off

was at a momenta about 450 MeV. The lowest available momenta on the lattices in-

vestigated are greater than this value! To have any contribution from the selÊenergy

terms the cutoff must be pushed above the minimum non-zero lattice momenta,

which would then decrease the goodness-of-fit. These two opposing pressures play

offagainst each other resulting in an unacceptable goodness-of-fi1.
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6.6.2 Naive Chiral Fits

In section 5.4.1 we commented that a popular approach to fitting lattice data in-

volves a functional form motivated by chiral symmetry. The idea is to add to a

linear (in m2*) formula a term that is of the same order as the leading non-analytic

term predicted by chiral symmetry. In Sec 6.4.1 we saw that the LNA term for

the nucleon is O(mT-). This is also the same order as the LNA term for the A and

p-meson. Thus Eq. (5.67) is identically the result that the community uses as a

t.2
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Figure 6.7: Acomparisonbetween phenomenological fitting functions forthe mass

of tt" nucleon. The solid curve corresponds to using Eq. 6.31 with ca set equal to

the value known from ¡PT. The three parameter fit corresponds to letting ca vâr/ as

an unconstrained fit Parameter.

chirally motivated extrapolation formula:

TfL¡y : cs I c2rn?* * csms^ ' (6.31)

)

3 parameter fit

¡PT LNA term
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The results of such a fit for the nucleon are shown as the dashed-dot curve in Fig.

6.7. There is an analogous result for the A. We present the results of the fits for the

Ir/ and A in Tâble 6.2. lnsection 5.4.1 we mentioned that the value of ca is known in

Fit cs c2 cs ITIB

(Gev-1) (Gev-2) (cev)
N (a)

(b)
0.18

0.95

6.68
1.42

-5.60
-0.48

0.293
0.973

A (a) 0.44 6.50 -5.60 0.556

(b) 1.19 1.31 -0.55 L.22

Table 6.2: Paratrteter sets for the fits to the nucleon (shown in Fig. 6.7) and A. Set

(a) is for the 2 pararneter fit of (6.31) with ca from the known XPT result, and (b)

for the 3 parameter fit of (6.31).

¡PT for the p-meson. The same claim applies here. In section 6.4.L we showed that

our extrapolation formula has the correct coefficient for the leading non-analytic

term in the selÊenergy for the nucleon. \ühen we fix the value of ca in Eq. (6.31) to

that of XPT and repeat the fit we find a similar result as that of section 5.4.1. The fit

(shown as the solid line in Fig. 6.7) is reminiscent of the result we found with the

p meson. This expression fails to converge in the region in which the lattice results

exist. Chiral perturbation theory is applied outside the region in which it is expected

to be valid. If we do not force the coefficient of the cubic term to be that of XPT we

expect, and indeed find it to be small. The cubic term will attempt to mock-up the

slight curvature in the masses at heavy quark masses. The act of allowing it to be

a fit parameter has resulted in the loss of the advantages introduced by including a

term motivated by XPT.

6.6.3 Improved Chiral Fits

'We again base out fits on lattice results restricted to the region below 0.8 GeV2.

The rational as previously stated is that to move further away from the chiral limit
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would dictate higher order analytic terms beyond the first two in our extrapolation

formulae, Eqs. (6.6) and (6.20). We have used a dipole as our preferred fitting

form, and evaluated the self-energy contributions using the discrete sum, Eq. (5.66),

discussed in Secs. 2.1.2 and 5.4. The results of this fit, following the convention set

in chapter 5, are shown as the open squares in the following graphs of the hadron

mass. The parameters of the frt cs, c2, and Âiv are then used in an exact evaluation of

Eq. (6.6) using the integrals Eqs. (6.3), (6.4) for the nucleon. A similarprescription

applies to the A where we evaluate the selÊenergy integrals (6.17) and (6.18) for

the appropriate parameters. We do not consider that there is enough information

currently provided in the data to independently constrain both Aiy and Â'4, and so

we constrain out fits to have the same form factor dependence (Âiv : Âa). Thus

we have 5 independent parameters for our fits: c¡N, c2N, coa, c2a and Â'

Figure 6.8 shows the behaviour of the selÊenergy contributions to the nu-

cleon and A as a function of pion mass. The effect of the A + Iúzr decay channel

opening is clearly visible in the oS" plot. As has been previously mentioned, this

behaviour is neglected in other extrapolation methods, but is important in obtaining

the correct behaviour of the A in this region. We also indicate the fall off of the

self-energy terms as m2* increases as we expected.

The fits to the nucleon and A data is presented in Fig. 6.9 with the parameters

in Table 6.3. We find predictions for the physical masses of the nucleon and the A

to be 940 MeV and 1173 MeV respectively.l As was in the case of the p meson, it

is the lowest data point that influences the curvature of the fit. We shall investigate

the effect of decreasing the el.rrors on this lowest point shortly.

V/e also investigate the effects of requiring the fit to reproduce the physical

mass of the baryons. The large uncertainty in setting the scale of the CP-PACS and

I The excellent agreement with the experimantal mass of the nucleon is coincidental, but encour-

agmg.
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Figure 6.8: Variation with pionmass ofthe nucleon and A self-energy contributions

to their respective masses. The form factor is chosen to be a dipole with Â.¡,' -
Â,a and set the best fit values of 921 MeV. The solid points indicated the value

of the selÊenergy when calculated at the discrete momenta allowed on the lattices

considered in this investigation. The difference between the curves and points is an

indication of the missing physics because of finite lattice size and spacing.

UKQCD results realistically suggests a mass within 10% is acce,ptable. However,

we introdu ce pseudo-data points at the physical pion mass with the mass of the nu-

cleon and A. We repeat the fit, with the proviso that the self energies are calculated

as integrals at this physical point. At the other points we evaluate the sum over the

discrete momenta. Effectively we are mocking up an infinite volume lattice with

infinitesimal lattice spacing at the physical point. A surprisingly acceptable value

for the goodness-oÊfit is found with this artificial data. We present the value of the

fit in Table 6.3. As can be seen, even with the restriction introduced by the pseudo-

data points the y2 per degree of freedom are still of order unity. We shall use these
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Figure 6.9: Analysis of the lattice data for the Iú and A baryon masses calculated

by the CP-PACS (filled symbols) and UKQCD (open symbols) collaborations as a

function of m2*. The squares represent the fit of Eqs. (6.6) and (6.20) respectively to

the data with the self-energy contributions calculated as a discrete sum of allowed

lattice momenta. The solid curves are for continuous (integral) self-energy contri-

butions to the same equations. 
'We have used a dipole form factor, with optimal

Âry : A¡ : 921 MeV. The vertical line is at the physical pion mass.

fits in chapter 7.

6.6.4 Series Expansion

Section 6,6.2 contains a discussion regarding the use of a chirally motivated formula

for fitting lattice hadron masses. We explore the properties of a series expansion

further in this section. The series of Eq. (6.31) is motivated by taking the first

three terms that are known to contribute to the selÊenergy of the hadron from XPT.

These terms were calculated by taking the series expansion of the chiral Lagrangian
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Cg

[cev]
c2^

[Gev-l] [GeV] (

y2lDotr
t\r: Â¡)

y2 fDotr rnP

(Forced) [GeV]
¡/ 1.36

1.36

1.18
L.22

0.710
0.715
0.830
0.811

0.92L
0.917
0.394
0.4r7

3.72

5.21

0.282

0.578

0.940 Dipole
0.940
0.958 Monopole
0.940

A T.54

1.38

1.39

1.37

0.565
0.647
0.669
0.681

0.92L
0.715

0.394
0.374

3.12

5.27

1.55

2.03

L.L73 Dipole
t.232
L.220 Monopole
7.232

Table 6.3: Parameters of the fits to the lr/ and A data for dipole (Eq. (6.28)) and

monopole (Eq. (6.29)) form factors with the requirement that Â¡,. = Ât' The

calculation is repeated with the .A.ru and Â6 unconstrained, however requiring the

physical -u5 oith" N or A is reproduced. This fit is indicated by the "(Forced)"

label.

around massless quarks, or more accurately n'Iî -+ 0-

For the investigation we wish to undertake, we simpliff our extrapolation

formula to

'tfÙ¡¡: csi- c2m?*+ol'*' (6'32)

dropping the Iú -+ Azr contribution. To allow a simple analytic investigation we

take a sharp cut-off for the form factor and analytically integrate the self-energy

contribution (Eq. (6.7)). We then fit this analytic expression, rather than the sum

over the discrete momenta. This process is to simpliff the mechanics of our model

fit, allowing a clarification ofthe significant issues. In short, the functional form we

fit with is:

TrL¡¡:cs,.c2m?n- ffi(*'-u,"tu (#) . + -n*?) ' (6'33)

The parameters of the fit are (c¡, cz, l\) : (1.18, 0.78, 0.62) and it is presented as

the solid curve in Fig. 6.10. This expression is exact for all values oîrnn, and so we

are able to expand it in both the small- andlatge-m,, limits. The coefficients of all

terms in both expansions are explicitly determined, thus we can calculate a series
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Figgre 6.10: Fit of Eq. (6.33), and the analytic series expansion in both the heavy

*ã Hght mn limit,to various po\¡/ers. The anallic forms of (i) - (vii) are presented

in the text.

expansion in both limits with full knowledge of all the terms. We have done this for

both limits. In the small mass limit we have plotted the following series expansions

truncated at different orders (where we make the substitution rc : -&\

i. m¡,t: (ro * +) * k, - ntt)m2,

ií. m¡¡: (ro * #) t kr- K^) rn? + (i) 
^'"

äi. mN: (ro * +) * þr- K^) rn? + (ry) *', - (*,) *+

iv. m¡¡: (ro*+) *k -,c^) rn?+ (Ð*'"- (f) n'ùl+ (¡ft) -i

Note the coefficient of the m3^ tetm is, as we have previously stated, exactly as

predicted by xPT. The series expansions in the heavy quark limit are given by:

vil üi,it

VII

ii vv i
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v. trLN : Co * "r*| + ffi
vi. m¡¡:co*cznl?+#-#

vä. m¡¡ : co * c2m?* + # - # * #
It can be seen in Fig. 6.10 that none of the curves (i) - (vii) reproduce the

solid curve over 6 the region where the lattice data lies. It is clear that the series in

the small mass region, given by

,ù¡¡ : (* * +) i k, - nl)m?, * (T) *'"

*nm,*ååË (T)"*', (6'34)

will never converge to the series in the large mass region:

rnN:cs*c2m?1,*nmr*åá# (#) (6.3s)

This result may be extended to show that no series expansion f chiral perturbation

theory to any order, will reproduce the correct m?*behaviour of a mass in the heavy

quark region. The only way to reproduce both regions is by having an interpolating

function, like Eq. (6.33), that reproduces both limits.

This failure of a series expansion to reproduce a known function has been

explored in the case of effective field theory inl77l. Here the exact solution of the

Euler-Heisenberg QED effective action is known, and the series expansion in the

large and small electron mass, rn, limits can to be evaluated. In the small mass

(strong external field B) limit logarithmic terms and odd powers of m2 f eB appear'

However the large mass (weak external field) expansion has no logarithmic terms

and only even powers of eB f m2. Thus it can be seen that the exact integral ex-

pression for the one-loop Euler-Heisenberg effective action has two very different

expansions in the limits, similar to the result we have presented above.
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6.7 Sigma Commutator

In the quest to understand hadron structure within QCD, small violations of funda-

mental symmetries play a vital role. The sigma commutator, o¡¡l

'l

oN : 
ã 

(¡úl LQou,lQ,u,Ull l¡q , (6-36)

(with Q¿5 being the two-flavour (i : 1,2,3) axial charge) is an extrernely important

example. Because Q¿5 commutes with the QCD Hamiltonian in the chiral SU(2)

limit, the effect of the double commutator is to pick out the light quark mass term

fromTl:

oN : (Nl (m"au + m¿ãa) lN) . (6.37)

Neglecting the very small effect of the z-d mass difference we can write Eq. (6.37)

in the form

o¡¡ (¡rl'7, (nu + dZ) l¡/)
- }mx,lTl----=- .

¿Jrn

(6.38)

(6.3e)

with rn : (mu + m¿)lZ. Equation (6.39) follows from the Feynman-Hellman

theorem [78].

While there is no direct experimental measurement of ø7y, the value inferred

from world data has been 45 :t 8 MeV l79l for some time. Recently there has

been considerable interest in this value because of progress in the determination

of the pion-nucleon scattering lengths [80, 81] and new phase shift analyses [82,

83]. For an excellent summary of the sources of the proposed variations and the

disagreements between various investigators we refer to the excellent review of

Kneckt [84]. For our purposes the experimental value is of limited interest as the

full lattice QCD calculations upon which our work is based involve only two active

flavours.
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Numerous calculations of o¡y have been made within QCD motivated mod-

els [85] and there has been considerable work within the framework of chiral per-

turbation theory [86]. However, direct calculations of ø1y within QCD itself have

proven to be difficult. Early attempts [S7] to extract ø7y from the quark mass depen-

dence of the nucleon mass in quenched QCD (usingEq. (6.39)) produced values

in the range 15 to 25 MeV. Attention subsequently turned to determining ø¡r by

calculating the scalar matrix element of the nucleon (Nlnu + ãdlNll. There it was

discovered that the sea quark loops make a dominant contribution to ø1v [88, 89].

These works, based on quenched QCD simulation, found values in the 40 to 60

MeV range, which are more compatible with the experimental values quoted above.

On the otherhand, the most recent estimate of o¡y, and the only one based on

a two-flavour, dynamical-fermion lattice QCD calculation, comes from the SESAM

collaboration. They obtain a value of 18 t 5 MeV [90], through a direct calculation

of the scalar matrix element (Nlau + ddlN).

The discrepancy from the quenched results of Refs. [88, 89] is not so much

an unquenching effect in the scalar matrix elernent but rather a significant suppres-

sion of the quark mass in going from quenched to full QCD. The difficulty in all

approaches which evaluate (Nlau + ddl¡\r) is that neither it nor rn is renormaliza-

tion group invariant. One must reconstruct the scale invariant result from the prod-

uct of the scale dependent matrix elernent and the scale dependent quark masses'

The latter are extremely difficult to determine precisely and are the chief source of

uncertainty in this aPProach.

An additional difficulty in extracting ø7y from lattice studies is the need to

extrapolate from quite large pion masses' typically above 500 or 600 MeV' An im-

portant innovation adopted by Dong et al., but not by the SESAM collaboration,

was to extrapolate the computed values of (NlUz + d?l¡\I) using a form motivated

by chiral symmetry namely a + bmrl2. On the other hand, the value of b used was
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not constrained by chiral s¡rmmetry and higher order terms of the chiral expansion

were not considered. Furthermore, since the work was based on a quenched cal-

culation, the chiral behaviour implicit in the lattice results involves incorrect chiral

coefficients [91].
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Figure 6.11: Nucleon mass calculated by CP-PACS (solid points) and UKQCD

(open points), as a function of m2n, both are scaled by 5% to improve consistency'

The solid curve is a fit to Eq. (6.6) with a 921 MeV dipole form factor, the dashed

curve is a fit using a sharp (d-function) cut-ofl Á. : 513 MeV with the self-energy

contributions evaluated as integrals. The dash-dot curve is a fit to Eq' (6'31)' The

vertical line indicates the physical pion mass.

In section 6.6.2 we discussed the relative merits of extrapolating the baryon

masses with a chirally motivated, cubic, form (Eq. (6.31). The corresponding fit

to the combined UKQCD and GP-PACS data set, is shown as the short-dashed

curve in Fig. (6.11) and the parameters (õ0,õr,õs) : (0.946, I.42,-0.483) (the

units are appropriate powers of GeV). This yields a value for the sigma commutator'

Dipole Cut-Off

SharP Cut-Off

Cubic Form
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oll) :25.7 MeY,where the superscript stands for'þhenomenological".

The difficulty with such a purely phenomenological analysis has been dis-

cussed above and also in Ref. [66]. The point we wish to emphasise is that the

value of õ3 (-0.483) is almost an order of magnitude smaller than the model in-

dependent LNA term, ,!*o : -5.60 GeV2. Clearly this discrepancy must present

concern when evaluating ø¡¡, because of the requirernent of taking the derivative

of the mass formula. If one evaluates the LNA contribution to the value of olv

with this phenomenological value of ca the contribution is about -2 MeV. With

the model independent value of ca this contribution jumps to -23 MeV about 50%

of the absolute value of the sigma commutator. It should be noted that the con-

tribution from the cubic term in both cases actually acts to decrease the value of

o¡¡. Undoubtedly the curvature associated with the chiral corrections at low quark

mass is extremely important in the evaluation of o¡y. The extrapolation method we

present not only includes the conect coefficient for the cubic term, but includes

higher order terms which conspire to increase the value of the sigma commutator.

The extracted value of o¡y is determined by the present data, the result being 37.3

MeV. The result is somewhat reduced from our previously published calculation

[92] because of two factors. In this calculation we have constrained the form factor

parameter.¿\, between the fits of the N and A, and secondly we have fit taking into

account the discretisation of the momenta available to the pion on the lattice. These

two improvements in the procedure whilst reducing the value of o¡¡, still reproduce

a value that is consistent, within erïors, to the experimental prediction. It is this

relative stability of the predictions that give confidence to our assertions.

Since the process of setting the physical mass scale via the string tension is

thought to have a systematic error of L}To,one might naively expect this to apply to

o¡y. Howev er, allmasses in the problem including the pion (or quark) mass' as well

as that of the nucleon, scale with the lattice parameter a. It turns out that when one
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uses Eq. (6.39) at the physical pion mass (which means a slightly different value of

ma if a changes), the value of o¡y is extremely stable. If, for example, one raises

the CP-PACS data by 15% and the UKQCD data by 5% (instead of 5% and -5%,

respectively) the value of o¡¡ shifts from 37.3 to 36.7 MeV. We present calculations

in Table 6.4 that show, for a variety of scalings of the lattice data, how stable our

results are.

Scaling (%) o¡¡
CP-PACS UKQCD DiPole SharP Cubic

5

10

0

-5
0

-10

37.3

37.0

37.4

43.2

43.2
43.2

29.7

28.6

31.0

Table 6.4: Sigma Commutator Values. The Dipote and Sharp results were calcu-

lated with ouipreferred form of cs * c2m?*+o#"(4, mn) * o{^(^, m,) witheither

a dipole or monopole form factor for the -|y'ø' vertex. The values of dipole parameter

(Â,) were (g2L,927,910) MeV and for the sharp (513, 520, 506) MeV. The Cubic

results are for the c¡ * c2m?* -l csml extrapolation function, with ca unconstrained

by chiral symmetry - as explained in the text this produces an unreliable value for

o¡¡ -

The remaining issue, for the present data, is the model dependence associ-

ated with the choice of a dipole form factor. We believe that any model satisffing

the essential chiral constraints and fitting the lattice data should give essentially the

same answer. We checked this by numerically fitting the lattice data (long-dashed

curve in Fig. 6.1 1) with the form of Eq. (6.6) but with øff, and o{" calculated over

a continuum of momenta with a sharp cut-off(d-function) form factor at all pion-

baryon vertices. This is the procedure discussed in Ref' [92]. We recognise that the

sharp cut-offis not as physically sensible as the dipole form factor, however, even

this approach gives an acceptable result for o7y. Since the preferred phenomeno-

logical form of the .fvrzr form factor is a dipole, we regard the dipole result shown

in the first line of Table 6.4 as our best estimate, namely aN : 37.3 MeV with fit
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parameters ("0,"r,^¿) : (1.36,0.710,0.921). A remaining source of error is that,

although the lattice results are calculated with an improved action, there still is an

error associated with the extrapolation to the infinite volume, continuum limit.

6.8 Summary

The importance of the inclusion of the correct chiral behaviour has again been em-

phasised by the fact that it increases the value of the sigma commutator from less

than 30 MeV of the unconstrained cubic fit to around 37 MeV for our functional

form which explicitly includes this correct chiral behaviour. Clearly an enoÍnous

amount of work remains to be done before we will fully understand the structure

of the baryons within QCD. It is vital that the rapid progress on improved actions

and faster computers continue and that we have three flavour calculations within

full QCD at masses as close as possible to the physical quark masses. Nevertheless,

it is a remarkable result that the present lattice data for dynamical-fermion, two-

flavour QCD, yields such a stable and accurate answer for the sigma commutatoç

an answer which is already within the range of the experimental values. In addi-

tion, we have also shown that functional forms that interpolate between the known

behaviour in the chiral and heavy quark mass limits are able to give insight into the

mass dependence of the lightest spin-] *d * baryons. Finally an investigation of

the applicability of a series expansion over such a range has shown that a chiral se-

ries expansion, to any finite order, will never reproduce the heavy quark behaviour

of the baryons.
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Chapter 7

Edinburgh Plots

ll'hat you can't do on your own, yott don't

understand.

RIcHRRI FpvttueN

A 
r discussed in Sec. 6.7,there are difficulties in calculating the sigma conutru-

{ \tator, in some approaches, because of the need to set the scale at which the

masses are calculated. The Edinburgh (mo /mp vs. m¡¡ f rnø), an6 APE ((m" lm)2
vs. m¡¡ f mr), plots avoid this difficulty as the scale is removed in taking the ratio of

the masses.

In the case of the Edinburgh plot we know the exact values of the ratios in the

heavy quark and physical limits. The physical masses of the r, p and l/ are known,

giving us the ratio at the physical point. In the heavy quark limit we expect the

mass of the hadrons to become proportional to the mass of the constituent quarks.

Assuming equal current quark masses, we have the ratio of the r to p masses being

l, and the ratio of the nucleon to the pbeingSl2.

The data from CP-PACS [20] (filled symbols) and UKQCD [21] (open svm-
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Figure 7.1 : Edinburgh plot for CP-PACS and UKQCD results as used previously in
this work. The stars rqrresent the known limiting cases, at the physical and heavy

quark limits respectively. The solid line is the infinite volume, continuum limit
behaviour predicted by our functional forms for the extrapolation of the ,^/ and p

masses.

bols), as previously used in this thesis, are presented in the subsequent figures. The

stars at mnlnlp - 0.2 and 1.0 are the known limits of the ratios. -The first point

to note is that some of the data lies above the heavy quark limit. This behaviour

is not unexpected and is explained by forms that attempt to extrapolate from the

heavy quark limit down to somewhat lighter masses [93]. There is a tum over in the

extrapolation form allowing matching to not only heavy quark lattice data, but also

the theoretical point atmnf mo: 1.0. These extrapolations, however, do not at-

tempt to enter the chiral region in which we are working. The region in which these

heavy quark extrapolation methods overlap our chiral extrapolation is not explored

in this work.

O CP-PACS
O UKQCD

Prediction

*
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As the value in the physical limit is known for the Edinburgh plot, we in-

troduced a pseudo-data point, at the physical mass of the appropriate hadron, and

repeated the fits of Eqs. (5.44), (6.6) and (6.20). The changes in the y2 fDoF fot

y2 fDoF
¡\rp A

Unconstrained L.34 0.332 1'53

Constrained 7.37 0'282 1.55

Table 7 .l: The y2 lDoF for the extrapolation formulae Eqs. (5.44) 
' 
(6.6) and (6.20).

Constrained refers to the inclusion of a data point at the physical mass of the hadron.

The fits without this extra data point (Unconstrained) are the standard fits presented

in previous chapters.

the various fits are shown in Table 7.1. ft can be clearly seen that the extra, phe-

nomenological, requirement does not significantly effect the ability of the extrap-

olation forms to reproduce the lattice data. We take this as an indication that the

general structure of the prediction for the Edinburgh curve is stable.

The alternative method used for calculating the extrapolation for the Edin-

bwgh (APE) curve to the physical point have involved using a form

rn : co -l c2m?n * csms*, (7'1)

for the extrapolation of the baryon/meson mass. Discussions in chapters 5 and 6

have presented evidence as to why such an extrapolation is flawed.

In Fig. 7.I we present our prediction (solid curve) for the infinite volume'

continuum limit behaviour of the ratio of the N/p masses. As mentioned above'

we have constrained our fits to reproduce the physical masses, and hence the curve

goes through the point at the physical ratio. The negligible difference between

our continuum prediction and the data is expected. It is because of the fact that

both the UKeCD and CP-PACS collaborations have used non-perturbative clover

improvements in their actions. The expectation of such an improvement is that there

t23



will be only a small O(a2) dependence in the calculations at large quark masses.

The pion-induced self-energy effects are suppressed at these masses, and we see

effectively the ratio of a bare ,n/ and p. There is a point of inflexion in the curve

around mn/mp - 0.5. This aspect is a result of the p -+ itit decay channel opening

at this point. This behaviour is not reproduced in other extrapolations, as they do

not include the physics of this decay channel. We see similar points of inflexion in

the A Edinburgþ plot, as there is an analogous decay channel, A -+ lúzr.

7.1 Predictions for the Finite Lattice

In previous sections we have discussed how the construction of the lattice restricts

the available momenta of the intermediate particles. The momenta available in the

finite periodic volume are (Eq. (2.8)):

lçp
L,,

where -= 1nu1
2

2rn,
aLt"

We have used this information to make predictions for the behaviour of the Edin-

burgh plots for the two data sets we have been analysing'

'We have taken the lattice size, L, and spacing, a, of the lowest data point for

the UKeCD and CP-PACS data sets and calculated the selÊenergy contributions to

the mass extrapolation formulae Eqs. (5.44), (6.6) and (6'20), for a variety of quark

masses. We present L, a, and the minimum available momentum ínTableT '2'

0 (frn) L k¡a¡n (MeV)

Lp

2
(7.2)

UKQCD
CP-PACS

0.13
0.18

t2
16

795
408

Table 7.2: The lattice spacing (ø) and size (L) for the lightest mass points in the

CP-PACS and UKQCD data sets used in this work. We also present the minimum

momenta available on that lattice - as found from Eq' (2'8)'
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7.1.1 The I/ Edinburgh Plot

1.6

z
Èè

1.3
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0.0 0.2 0.4 0.6 0.8 1.0
TN TN

P

Figure 7.2: Edinburgh plot with data as described in Fig. 7.1. The solid line is the

infinite volume, continuum limit behaviour predicted by our functional forms for
the extrapolation of the Iú and p masses. The dashed and dashed-dot curves are the

predicted behaviour of the UKQCD and CP-PACS lattices respectively.

1.5
a.

j

È

\ L.4

We present the predicted Edinburgh plot for both UKQCD and CP-PACS in

Fig.7 .2. The prediction for the CP-PACS lattice (dashed-dot curve) rqrroduces our

continuum prediction for mn f mo above 0.5. V/e expect the larger volume lattices

of CP-PACS to be less effected by volume effects for heavy quarks. This is because

of the use of an (?(ø) improved fermion action which is known to have small (?(ø2)

artifacts. Thus the heavy quark masses should be an excellent approximation to

the continuum limit. The discrepancy between the CP-PACS and continuum curves

below mn/mp - 0.5 is caused by the inclusion of the opening of the p -+ ltiT

decay channel, previously noticed in Fig. 5.7. Since the nucleon is stable on the

fÎ

O CP_PACSO UKQCD
Prediction
UKQCD
CP_PACS

\.-¿

\ *
\
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lattice we do not see another inflexion in the continuum limit curve. The predicted

behaviour on the CP-PACS lattice diverges (but remains finite) below mnlmp -
0.2, a consequence of our approximation for the mass of the p-meson. Equation

(5.1) does not apply here as the selÊenergies are of the order of the square of the

bare p-".., -[').
The prediction for the UKQCD lattice (dashed curve) lies high purely be-

cause the fits to the lú and p masses are dominated by the smaller errors of the

CP-PACS data. In Figs. (5.7) and (6.9) the squares representing the UKQCD data

do not overlap the data points, as is the case for the CP-PACS results. This dif-

ference, in predictions of both the l/ and p masses is the cause of the discrepancy

between the data and the predicted line here. As the minimum momentum accessi-

ble on the UKQCD lattice is much larger than the p -+ itr threshold in this case,

thus the curve is smooth over the entire region. This is another example of our

claim that whilst the precise details of the fits are not entirely determined at this

time, the structure of the extrapolation is well defined. The conclusion that may be

drawn from these plots is that we do not expect, on a finite lattice, that the Edin-

burgh ptot will reproduce the physical N I p mass ratio even if a calculation could be

performed at the physical pion mass. The exclusion of important, low momentum,

contributions to the pion induced self-energy prevents an accurate mass calculation.

7.1.2 The A Edinburgh Plot

An analogous plot to that presented for the Iú above may be made for the A/p mass

ratio. This calculation is interesting as it contains two open channels, A -+ lúzr and

p -+ ,îit, at the physical quark mass. As has been previously stated, prior attempts

at extrapolation formulae have ignored these decay channels, and will therefore

miss the effects that are undoubtedly important near the chiral limit.
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Figure 7.3: Edinburgh plot for the A, p ffid zr with data as described in Fig. 7'1'

The solid line is the infinite volume, continuum limit behaviour predicted by our

functional forms for the extrapolation of the A md p masses. The dashed and

dashed-dot curves are the predicted behaviour of the UKQCD and CP-PACS lattices

respectively. The opening of the p -> ltit channel is missed by both lattices, but the

inflexion at the opening of the A -+ lúzr channel is visible around mnlmp - 0'35

GeV.

The solid curve in Fig. 7.3 againrepresents the infinite volume, continuum

limit as predicted by our functional forms for the A and p masses. Again a point

of inflexion may be seen at mn/mp - 0'5 which is, as previously explained' the

2tr chawtel opening for the p-meson. There is also another point of inflexion at

mnlrnp - 0.35, the point where the A + Nr channel opens'

As was the case for the ,À[ Edinburgh plot, the dashed-dot curve showing

the predicted behaviour for the CP-PACS lattice, reproduce the continuum curve

above mn/mp - 0.b. Once again there is an obvious discrepancy, occurring at the

opening of the p -+ itit channel. We note again the behaviour as the self-energy

O CP-PACSO UKQCD
Prediction
UKQCD
CP_PACS

\

*
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grows, making our extrapolation unreliable below mn /mp - 0.3 for the CP-PACS

lattice. 'We 
stress that the movement predicted is a robust effect, however the details

require a more thorough treatment of the self-energy contributions.

The predicted UKQCD curve (dashed) shows no effect induced by the 2r

channel opening, but does show effects because ofthe A -+ lúzr decay channel.

Therefore we again state that we do not expect to see lattice data reproducing the

physical mass ratios because of the missing chiral physics.

7.2 Quenched vs. Dynamical Quarks

It is appropriate at this point to make a brief diversion into the quenched approxima-

tion. Quenching can be thought of as removing dynamical quark loops. FiguteT '4

(a) (b)

Figure 7.4: The quark flow lines corresponding to a pion loop dressing a baryon.

Diagram (a) is included in both dynamical fermion and quenched lattice calcula-

tions, whilst diagram (b) is only present in dynamical fermion calculations because

of the presence of the sea quark loop.

is an example of the two types of diagrams that contribute to the selÊenergy terms

in fuIl, dynamical fermion, QCD. Diagram (b), with the disconnected quark loop

is not included in quenched calculations. There are other contributing diagrams in

the quenched case, however we will not discuss thern further. The effects of such a

quenched chiral extrapolation are explored in [9a]. A recent publication of Bernard

et at. lgllinvestigated how dynamical quarks affected the light hadron spectrum, as
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have several other groups 196,971. The comparison between quenched and dynam-

ical fermions is interesting because of the use of an Edinburgh plot. The conclusion

drawn was that there was "no discernible change when dynamical quark are in-

troduced". The data set used in the calculation is at masses above mn/rnp: 0.5,

save a single quenched point. The effects of the pion induced self energies have

been shown to be suppressed as Ilm2* in this region, resulting in a linear form for

the extrapolation. This result is general statement for the quenched and unquenched

cases, meaning that it is expected that the pion induced effects are negligible in both

cases at such masses. The other difficulty in comparing quenched and unquenched

results is the difficulty in setting the scale, but as has been mentioned earlier in this

chapter, by taking the ratios, as in the Edinburgh plot, this scale is removed. Thus

the results of Ref. [95] are entirely consistent with the results found here, as well as

in Ref. t941. A prediction of our work is that quenched and full QCD should agree

well for Tn?, Z 0.2 GeV2. Differences between quenched and unquenched results

will only be seen in lighter rno calculations.
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Chapter I

Summary and Outlook

Nature will bear the closest inspection. She

invites us to lay our E)e level with her smallest

leaf, and talæ an insect view of its plain.

HSNRY DRvIP Tnon¡nu

Tn" 
extraction, from theory of the properties ofthe lightest octet (N) and decu-

I plet (A) baryons and the vector (p) meson are of great practical interest. The

comparison of the predictions of QCD to experiment is the most fundamental test

of the theory. As has been discussed in this work, the only non-perturbative tool

available at low energy is a lattice QCD calculation, but technical reasons restrict

these lattice calculations to large quark masses.

This work provides a scheme for extrapolating hadronic properties to lighter

quark masses, and in particular to physical quark masses. It has been shown that

it is possible to obtain very good predictions for the physical masses of these low

lying hadrons.

Chiral Perturbation Theory kPT), a description of QCD at light quark mass'
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will describe results from lattice calculations at sufficiently light quark mass' How-

ever, the radius of convergence is unknown. We have utilised the Cloudy Bag Model

(CBM), a successful phenomenological chiral quark model to give direction as to

the behaviour of the masses away from the chiral limit. The extrapolation form

derived here, has been shown to reproduce to better thanlTo the physical mass pre-

dicted by the CBM, and it also reproduces the general behaviour over an extended

range of pion (or equivalently quark) mass.

The functional forms derived herein may be generalised to

tTù¡¡ : cs i c2m?n I o(lt,mn) ,

where ø contains the selÊenergy corrections to the hadron being extrapolated. We

have applied this form to two-flavour, dynamical fermion,lattice QCD calculations

performed by the Cp-PACS [20] and UKQCD [21] collaborations. Among the vari-

ous successes of this approach are predicting the physical masses of the /ú, A and p

to within 0.1%,4.7To, and 5.0%respectively. Work rernains because the uncertainty

in these results is significant, as we showed in the case of the p meson. Fortunately

this uncertainty is entirely because of the statistical effors associated with the lat-

tice results, and a reasonable r40 reduction in the statistical errors at the lightest

mass point considered will bring the uncertainty to the 2To level. Additionally we

have been able to calculate the sigma commutato;the J parameter and the p -+ Tt1T

phase shift. Finally we have presented the first Edinburgh plots showing the correct

chiral behaviour in the extrapolation to the chiral limit'

The main features of our functional forms are as follows

o Includes the correct chiral and heavy quark physics - 
The extrapolation

forms reproduce the known non-analytic behaviour, with the correct model

independent coefficients, in the chiral limit. The form smoothly interpolates
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between this chiral limit and the heavy quark regime where hadron properties

show smooth quark mass dependence.

o Includes channel opening effects - The effects of decay channels are in-

cluded. This is particularly important in reproducing the hyperfine splitting

between the lü and A, the latter having an open zrN channel, and the be-

haviour of the p which has an open 2tr channel at the physical quark mass.

Such effects have been ignored in previous extrapolation methods. The branch

points in the self energies because of the channels opening is important phys-

ics that has previously been ignored.

o Systematic way of extending corrections - Higher order effects may be in-

corporated by the straightforward inclusion of additional self-energy contri-

butions.

o Includes, and corrects for, finite size effects - The discretisation ofmomenta

on the finite volume lattice means some decay channels are not accessible on

the lattice, but would be in the continuum. The extrapolation form takes these

effects into account.

o 'Weak model dependence - We have investigated the model dependence of

the form factor used to regulate the integrals and we find that it is at most a

few MeV.

o Computationally cheap - The extrapolation procedure is not significantly

more computationally expensive than current linear, or polynomial, extrapo-

lations.

o Intuitive - The effects influencing the extrapolation are simple to under-

stand, from a basic nuclear physics perspective'
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In summary, this extrapolation method offers a new method of moving towards the

goal of comparing lattice QCD with experimental results. Even with ne% more

powerful computers coming online regularty and improvements in actions, calcula-

tions near the physical region are some time off The extrapolation of the new data

remains an exciting challenge. Currently, the approach presented here is the only

way known for connecting lattice QCD to experiment, incorporating the physics

known to be essential.
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Appendix A

Mathematical C onventions

Arithmetic is where the answer is right and

everything is níce and you can look out of the

window and see the blue sþ - or the answer is

wrong and you have to start all over and try

again and see how it comes out this time.

C¡,nL SeNosunc, "CoMPLETE PoEMS"

A..1 Useful Identities

The Dirac delta function of the difference between the squares of the variable and a

constant may be simplified as

õ (" - o') : jUø- a) + ô(ø + ø)) . (4.1)

The vector cross product may be written in terms of the elements of the vectors as

( .2)dxb:e Ø*aú¡
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The Dirac delta function is defined as

I dnr"nu'* : (2r)4õ4(k). (4.3)
J

Translation in quantum mechanics is given as the property

X@): "-t{.Ë'*nÐ*(0¡etE't-øt) 
,, (4.4)

where the state being described has energy E andassociated 3-momentum Ë'

4.1,.1 Residue Theorem

Let f (z) be a function that is analytic inside a simple closed path C and on C,

except for finitely many singular points zt, 22, . . . , zk inside C' Then

f"
k

j=L
f (z)d,z :2rif Res,:,, Í(r) ,

(A.s)

(A.6)

(A.7)

(A.8)

(A.e)

the integral being taken counterclockwise around the path C. [98]

^.2 
Wick Contractions

The contraction of two scalar fields is defined as

6ofø : De(r - a) ,

where the Feynman propagator is defined as

I dop L

e-iP'(''Y)De@ - v): (Zn)n p' - m2 + i,e

Whilst the contraction of a field with external states is given by

d(")lP) : e-'P'' ,

þld(") : etiP'' 
'
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4.3 Dirac Matrices

The Dirac matrices satisff

4.3.1 DiracRepresentation

^.3.2 
Chiral RePresentation

{'y',1"} : 'yP j' *'Y"YP - 2gP'

{"ys,l'} : o

: ó.yo.yt.y'.y'

IO
0-/

(A.10)

(A.1r)

(A.12)

(A.13)

(A.r4)

(A.1s)

(A.16)

(A.17)

^'/s : 'Y5

0/
IO

0

-I

'y5 : i'yo''''l''yt

î)

î)
0

-oi
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(A.18)
0

-1

Where the o'are the Pauli matrices

1 -1,

0 0
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Hadron Mass Extraction from Lattice QCD
S. V. Wright'*, D.B.Leinweber", A. W. Thomas" and K. Tsushima"l

aDepartmeni of Physics and Mathematical Physics
and Special Research Centre for the Subatomic Structure of Matter,
University of Adelaide, Adelaide 5005, Australia

The extraction of quantities from lattice QCD calculations at realistic quark masses is of considerable impor-
tance. Whilst physical quark masses are some way ofl, the recent advances in the calcu-lation of hadron masses

within full QCD now invite improved extrapolation methods. We show that, provided the correct chiral behaviour

of QCD is respected in the extrapolation to realistic quark masses, one can indeed obtain a fairly reliable deier-

mination of masses, the sigma commubator and the ,./ parameter. We summarise these findings by presenting the

nonanalytic behaviour of nucleon and rho masses in the standard Edinburgh plot.
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1. INTRODUCTION

There are well-known difficulties associated

with making dynamical fermion lattice QCD cal-
culations at light quark masses. There is the need

however, to relate quantities calculated on the lat-
tice with physical observables, hence results are

required at physical quark masses. These two
mutually exclusive restrictions on the field have

motivated the necessity for extrapolation from
the region in which calculations are able to be
performed - that is, the region of unphysically
heavy quarks - to lighter masses, including ihe
physical quark masses. In this paper we discuss

the construction and application of an extrapo-
lation method for masses [1,2] that respects the
correct chiral behaviour of QCD and also allows
the extraction of other quantities [2,3] . This ap-
proach is not limited to ihe case of masses in dy-
namical ferrnion lattice QCD calculations. Other
successes of this approach may be found, for ex-

ample, in the extrapolation of baryon charge radii

[4], magnetic moments [5] , structure functions

[6,7] and quenched QCD data [8].

"Plesenc address: Division of Theoretical Physics, Depart-
ment of Mathematical Sciences, University of Liverpool,
Liverpool L69 3BX, UK
lPresent address: Department o{ Physics and Astronomy,
University of Georgia, Athens, GA 30602, USA

1.1. Goldstone Boson Loops
It is accepted that Goldstone Boson loops play

an important role in all hadronic properties -
their role is in one sense the basis of Chiral Pertur-
bation Theory (xPT). Lattice QCD calculations,
as an ab initio approach to calculating quantities
in QCD, impìicitly includes these loop contribu-
tions. It has become clear recently, with calcu-

lations appearing at lighter quark masses [9,10],
that the naïve linear extrapolation methods are

not reproducing the data. In particular in [10] it
was stated

"The existence of curvature [at
small quark masses] is observed, ne-

cessitating a cubic Ansatz for extrap-
olation to the chiral limit."

The following section reviews how the inclusion
of chiral physics allows reliable extrapolations of
Iattice QCD calculations [1,2] . Section 3 reports
new results for the Edinburgh plot.

2. EXTRAPOLATION METHODS

In QCD chiral syrnmetry is dynamically bro-

ken, and the pion is almost a Goldstone boson. It
plays a significant role in the self-energy contribu-
tions to the ly' and A, because of the strong cou-

pling to the baryons. Chiral sytnmetry requires
that, in the region where perturbations around
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light quarks makes sense, the mass of the nucleon
has the form

mN(m,) : r"f!) + o^l + þ*t, +
1*f Inrnn l ... , (1)

*h"." -$), a, B and.7 are functions of the strong
coupling constant. In particular the values of the
coefficients of the non-analytic (in quark mass)
terms - recall that m2n x mn - are known ex-
actly from ¡PT. However it is only recent results
from the lattice that have indicated any need of
higher order terms beyond that of a linear extrap-
olation in quark mass (or rn]).

2.1. Chirally Motivated Form
An attempt at having a chirally motivated form

for extrapolating masses has been

rnN(rn,): n¿ola*2, + Þ*3r, (2)

where rns, ã and þ are fit parameters. Naïvely
this is a good choice. It reflects the known non-
analyticity from ¡PT and still reproduces the lat-
tice results. The problem with this method is as-
sociated with the choice of þ. tUe value of the
coefficient of the cubic term is known explicitly in
¡PT. So a functional form, motivated by chiral
symmetry, should pÌeserve the known value of B.
Optimising B via a best fit to existing lattice data
provides -0.55 GeV-2. However, the result from
¡PT is -5.6 GeV-2. That the coefficient is so

small is not surprising. The functional form at-
tempts to reproduce the lattice data over a large
range of m2o, wherc the data is predominantly lin-
ear - as can be seen in Fig. 1. However XPT is
an expansion about the massless quark limit and
would not be expected to be applicable (or even
convergent) at such large quark masses.

2.2. Current Calculation
It has been found [1,2] that by retaining the

contributions to the self-energy of the hadlon
mass that vary the most rapidly witÌi rno near the
chiral limit, a successful extrapolation method
may be formed. This methodology includes the
most important non-analytic structure in the
hadron mass near the chiral limit with exactly the
colrect coefficients. The pion mass dependence of

the masses of the 11, A and p are:

rjì,N : as | ú2n'¿2r * øwryr (Â7y , rn,)

loyyn (Â¡0, -") (3)

lnl : bs¡b2m?, lo¿,d,(/ro,*r)
*øa¡¡r (lrt,*n) (4)

rnp = cg ! c2m2r * oorn(ltp,mo)

!cprr(ltr,m,) (5)

where o¡pç indicates the contribution from the
A -+ BC + ,4 self-energy process. The expres-

sions for these self-energy contributions for the /y'

and A may be found in [1]. The two significant
processes for the p are the p -+ uir and p -+ nr
self-energies a,nd they are presented in [2] .

An additional level of detail expliciily included
in these extrapolation methods is the inclusion
of the decay channels (in the case of the A the
process A -+ Nn) . This process is not included in
other methods, and yet is a vitally important and
physically based consideration. However, because

of the finite nature of the lattice, decays are not
always possible. The finite periodic volume of the
lattice restricts the available momenta to discrete
values

, 2rn,, L,, L,,k,,:--=!, rvith -+<n,, 1! (6)
' oLu' 2 - ts- 

2

where .L, and a are the lattice size and spacing
in the ¡l direction, respectively.

Figure 1 indicates the expected behaviour of
the rnasses of the lú, A and p using Eqs. (3), (a)
and (5), with the physical masses being 0.940,
I.173, 0.773 GeV respectively.3 We also present
an error analysis of the fitting for the particular
case of the p meson in Fig. 2. The shaded region
is bounded beÌow by an increase of la in the y2
per degree of freedom of the fit, and above by a
physical constraint in our approach. It is clear
that whilst the central value of the extrapolation
gives an acceptable value for the physical mass,
the uncertainties are large. A Gedanken exper-
iment performed in [2] suggests that a ten-fold
increase in the number of configurations at the
lowest pion mass data point (*7 - 0.1 GeV2)

3The excellenb agreement with the experimental mass o{
the nucleon is coincidental.
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Figure 1. Two-flavour, dynamical fermion lattice

QCD data for the A, 1y' and vector meson (p)

mass data from UKQCD [9] (open circles) and
CP-PACS [10] (frlled circles). The solid lines are

the continuum limit, infinite volume predictions
of Eqs. (4), (3) and (5). The squares (barely dis-
cernable from the data) are the predicted masses

on a lattice of the same dimensions as the data
at that pion mass.

would reduce the uncertainty in the extrapolated
value to the 5% Ievel.

3. OTHER. QUANTITIES

The advantage of calculating the mass of the
hadrons in the manner described above is that the

form allows the direct extraction of other proper-

ties of the hadron that depend upon the quark

mass dependence of the hadron mass.

3.1. The Sigma Comrnutator
The sigma commutator is a direct source of in-

formation about chiral symmetry breaking within

QCD [11]. As such it is a quantity of considerable
importance to extract from lattice QCD calcula-
tions. The form of the commutator is

Figure 2. Analysis of the lattice data for the vec-

tor meson (p) mass calculated by CP-PACS [10]
as a function of ml . The shaded area is bounded
below by a la error bar. The upper bound is
limited by a physical constraint discussed in [2].

where ræ is the average mass of the up and down

quarks.
ø7y is not directly accessible via experiment,

however world data suggests a value of 45 I 8

MeV [12]. Early attempts at evaluating Eq (8)

found results in the range 15 to 25 MeV, and the

attention soon changed to evaluating the matrix
element, Eq. (7), directly. In quenched calcula-
tions the results were in the 40-60 MeV range,

but a two flavour dynamical fermion calculation
by the SESAM collaboration [13] found a value

of 18 * 5 MeV. The difficulties associated with
these approaches are two-fold. Firstly, the scale

independent quantity of ø¡¿ must be constructed
from the renormalisation depended quantities rn

and (1/lùu* ddlN>. Addiiionally there still is the

need to extrapolate the quantities to the physicaì
pron mass.

Our recent work showed that provided the ex-

trapolation method is under control the evalua-

tion of c¡¡ at mo - 140 MeV, is a straightforward
caÌculation. The important advantage of this ap-

proach is ihat one need only work with renormal-
isation group invariant quantities.

We discussed previously how a chirally moti-

0.0 02 0.4 0.6
rn,z (GeY")

1.008.4
(ceV'?)TN

2

oN (7)

(8)

m(Nluu + ddlN)

- ðmw
'lTl,-

drn

DiscreLe Sum Fil-

Continuous Self Energy ResulL
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vated form, Eq. (2), will not reproduce the lat-
tice data if the coefficient of the m3* term is the
value required by ¡PT. However we aiso showed
that allowing this coefficient to be a fit param-
eter results in a value that is wrong by almost
an order of magnitude. This becomes even mote
significant in the case of the sigma commutator.
The required derivative promotes this coefficient
to greater significance and lhe sign of the terms
acts to reduce the value of o¡¡. However this is
not an issue with the extrapolation lbrms dis-
cussed above. The sign and magnitude of the
cubic term is exactly that predicted by ¡PT, but
the effects are countered by higher order terms

- resulting in a prediction for the value of a¡¡
that included the correct chiral physics. We find
[3] that the value of the sigma commutator is ap-
proximateìy 45 MeV.

3.2. The J Parameter
This dimensionless parameter was proposed as

a quantitative measure, independent of the need
for extrapolation - an ideal lattice observable

[14]. It has the form

dm."l,1 - nL^ -- '' | (9)" d*?lmo/**-t a

ffIK' - rnP

mk - m'"

which, by substituting the experimental mass val-
ues, yields the value [14]

J = 0.48(2) ,

In Fig. 3 we present the value of the J parameter
as obtained from Eqs. (5) and (9). The detailed
slope of the curve is parameter dependent, how-
ever the presence of the cusp is model indepen-
dent. The cusp is a result of the two pion cut in
the rho spectral function and has been ignored in
previous attempts at evaluating the .r parameter.
We find a value for the ,/ parameter of 45(7) in
good agreement with the experimental value. We
note, however, that if the point of evaluation cor-
responded to m2, - 0.15 GeV2 the .I parameter
would have been around 50% larger.

3.3. Edint¡urgh Plot
The baryon and meson masses on the lattice

are all determined modulo the lattice spacing - a

0.8

0.6

\ 0.4

o.2

0.0
0.0 01 o.2 0.3

rn," (GeY")

Figure 3. The solid curve is a plot of the value
of the .I-parameter as a function of ml obtained
from Eq. (9) and the best fit to the lattice re-
sults. The vertical dotted line shows the point at
which the ,.I-parameter is evaluated (mof m, -
1.8). The horizontal line displays the experimen-
tal value (0.48) plotted between the physical val-
ues of m2n and m,2o.

scale that must be determined from some piece of
data external to the lattice. One method of re-
moving this scale is by plotting a ratio of masses

- the Edinburgh plot. In Fig. 4 we present a pre-
diction for the infinite volume, continuum limit
extrapolation of the lattice data previously pre-
sented. The two points known explicitly are indi-
cated by open stars ou the plot. The first known
point is ratio of the physical masses of the n, p

and 1/. The second point is the heavy quark limit,
when the masses of the hadrons become propor-
tional to the constituent quarks. The effect of the
opening of the decay channel of the rho is visibÌe
at' mnf m, = 0.5. The eflects induced, and the
expected behaviour on the finite sized laitice will
be presented in a future work [15].

4. SUMMARY

The importance of including the correct chi-
ral behaviour in extrapoìation methods is becom-
ing more important as dynamical lattice QCD re-

-J rn/tn:1.8
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Figure 4. Edinburgh plot for CP-PACS (filled
symbols) and UKQCD (open symbols) results.
The stars represent the known limiting cases, at
the physical and heavy quark limits respectively.
The solid line is the infinite volume, continuum
limit behaviour predicted by our functional forms
for the extrapolation of the ll and p masses.

sults appear at lighter quark masses. The suc-

cesses of the approach outlined above include not
only predictions for the physical masses of the
hadrons investigated, but other quantities suc-

cessfully reproduced. These other successes in-
clude the sigma commutator and the .I parame-
ter - both of which have been a thorn in the side

of dynamical fermion calculations. It is through
the inclusion of the dominant chiral physics, the
recognition that decay channels are important,
and the understanding of some of the finite size

lattice artifacts that we have been able to suc-

cessfully extrapolate the Edinburgh plot to the
known physical limit.
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We extend a technique for the chiral extrapolation of lattice QCD data for hadron masses to
quenched simulations. The mebhod ensures the correct leading and next-to-leading non-analytic
behaviour for either QCD or quenched QCD in the chiral limit, as well as the correct large quark mass

behaviour. The results for the nucleon and delta suggest that within current errors the quenched

and dynamical daba are in agreement once one corrects for those pion loops which give rise to the

diflereni leading and next-bo-leading non-analyiic behaviour. Since the chiral corrections should

be largest for the nucleon and delta, bhis result opens bhe possibility of systematically correcting
quenched mass calculations and hence allowing a direct comparison with experimental data.
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Modern computing facilities, combined with innova-
tions in improved actions for lattice QCD, mean that
it is now possible to perform accurate quenched QCD
(QQCD) simulations at quite low quark masses [1-3].
For simulations with dynamical fermions (full QCD) the
situation is much more difficult, but there are initial re-
sults at quark masses as low as 30 MeV [4] . The latter
development has inspired studies of chiral extrapolation
aimed at using the full QCD data over a range of masses
to reliably extract the physical hadron mass.

In general, effective field theories, such as chiral per-
turbation theory, lead to divergent or asymptotic ex-
pansions [5,6]. While this raises doubts about the di-
rect application of chiral perturbation theory to lattice
data, studies of the mass dependence of hadron proper-
ties in QCD-inspired models [7-9], as well as the exactly
solubie Euler-Heisenberg problem [10] , suggest that one
can develop surprisingly accurate extrapolation formu-
las, provided one builds in the correct behaviour in both
the small and large mass limits. For the nucleon (//)
and delta (A) masses (and by trivial extension all other
baryons), Leinweber et al. [11] have suggested an extrap-
olation method lvhich ensures both the exact low mass
ìinit of chiral perturbation theory (technically its lead-
ing (LNA) and next-to-leading non-analytic (NLNA) be-
haviour) and the heavy quark limit of heavy quark effec-
tive theory (HQET). The transition betweeu the chiral
and heavy quark regimes is characterised by a mass scale
Â., related to the inverse of the size of the hadron "core"
(i.e. the size of the pion cloud source) . The rapid, non-
analytic variation of had¡on properties, chalacteristic of
chiral perturbation theory, is rapidly suppressed once the
pion Compton wavelength is srnaller than this size (i.e.
m" > 

^).It is straightforward to extend the method of Ref, [11]
to QQCD. One simply includes all the Goldstone loops
(including both r and 4') which give rise to the LNA and
NLNA behaviour of quenched chiral perturbation theory
(QXPf) [12,13]. Phenornenological investigations [8,14]
of the role of tìre pion cloud in hadronic charge radii

indicate that results consistent with experiment can be
obtained by adding full-QCD chiral corrections to the re-
sults of quenched sirnulations [15] at moderate to heavy
quark masses. This suggests that the size of the pion-
cloud source is not changed in going from the quenched

approximation to full QCD. By taking the "core" to have
the same size in QQCD and QCD (i.e. parameter .A is un-
changed), there are no unconsttained parameters and one
can not only study the mass dependence of the QQCD
data, but by replacing the QQCD chiral loops by those
in fuìl QCD one can make a direct comparison to dy-
namical fermion simulations. The results reported here,
based on this approach, have profound implications for
our understanding of hadron structure.

By replacing the chiral loops which give rise to the
LNA and NLNA behaviour in QQCD by the correspond-
ing chiral loops in full QCD we find that the quenched
and dynamical lattice data sets are in excellent agree-
ment for the entire quark mass dependence of M¡¡ and
M¡. Since the chiral corrections are expected to be larger
for these two baryons than for others, this suggests that a
similar technique may be applicable to oll baryons. This
would be a tremendous step forward for hadron spec-
troscopy within the framework of lattice QCD.

With regard to the properties of the 1ú and A we find
a spectacular difference in QQCD. Whereas the extrap-
olation of the .ly' tnass is essentially linear in the quark
mass, the A exhibits some upward curvature in the chiral
iimit. As a result, the A mass in QQCD is expected to
be of the order 400-500 MeV above its mass in full QCD.
The success of the extrapolation scheme also lends con-
fidence to the interpretation of the A - 1/ mass splitting
as receiving a contribution of order 100 MeV frorn pion
Ioops in full QCD and up to 400 MeV in QQCD. The
residual splitting in full QCD would then be naturally
ascribed to some shorter range mechanism, such as the
traditional one-gluon-exchange [16].

The method for extrapolating baryon masses proposed
by Leinweber et al. [11] is to fit the lattice data with the
form:
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Ms - an * þ8m2, * Ds(rn",,4.), (1)

where X6 is the sum of those pion loop induced self-

energies which give rise to the LNA and NLNA behaviour
of the mass, Mp.ln the case of the N this is the sum of
the processes N -+ Nzr -+ N and 1/ -+ Âzr -+ N , while
for the A it involves A -+ Azr -+ Â and A -+ l/zr -+ A.
In the heavy baryon ìimit, these four contributions (B -+
Btr -+ B) can be summarised as:

oþsi = ffir"", ¡r* 
orrffiffi , e)

where ø(k) : JFl@ and upp, - (Mn' - Mp), and
the constants Gpp, are standard SU(6) couplings [11].

The factor u(fr), which acts as an ultraviolet regulator,
may be interpreted physically as the Fourier transform of
the source of the pion field. Whatever choice is made, the
form of these meson loop contributions guarantees the ex-

act LNA and NLNA structure of chiral perturbation the-
ory (¡PT) . Furthermore, such a form factor causes the

self-energies to decrease as Ilm2* for mn >> 
^. 

One com-
monly uses a dipole, u(k) = (L'- p\ l(lt2 +k2)2 (with ¡-r

the physical pion mass). Unfortunately full QCD data is

not sufficiently accurate at low mass to constrain Á, well,
but a best frt to the ly' and A data, assuming a common
value, yields a value around 0.92 GeV (with [ary, þt¡]=
[1.36(4),0.71(8)] and [oa, 13d] : [i.54(5)' 0.56(10)] and

all masses in GeV) . This agrees with quite general ex-

pectations that it should be somewhat smaller than that
for the axial form factor [17-19].

Quenched ¡PT is a low energy effective theory for
quenched QCD [12,13], analogous to ¡PT for full QCD
[20]. Sea quark loops are formaìly removed from QCD
by including a set of degenerate, bosonic quarks. These

bosonic fields have the effect of cancelling the fermion
determinant in the functional integration over the quark
fields. This gives a Lagrangian field theory which is
equivalent to the quenched approximation simulated on

the lattice. The low energy effective theory is then con-

structed using the symnetry groups of this Lagrangian.
A study of the chiral structure of baryon masses within

the quenched approximation has been carried out by
Labrenz and Sharpe [13]. The essential differences from
full QCD are: a) in the quenched theory the chiral co-

efficients differ from their standard vaìues and b) new

non-analytic structure is also introduced. The leading
order form of the baryon nrass expansion about ffir :0
IS

Mp - ruf) + "f 
*o + "! ^', + "!*3,

+cfml + cf,ml losm,-r... (3)

where the coefficients of terms non-analytic in the quark
mass are model-independent [13] (thLoughout we use cou-
plings as given in this reference) . We note that, whereas

in Ref. [13] the 1ú and A are treated as degenerate states

(a) O)

FIG. 1. Quark flow diagrams of chiral 4' Ioop contributions
appearing in QQCD: (a) single hairpin, (b) double hairpin.

in the chiral limit, we have replaced this with a more ac-

curate expression which takes into account the explicit
octet-decuplet mass splitting [21] . As a consequence the

corresponding rn| terms become instead mllogm'. 'We

also stress that the term in ræo is absent in full QCD -
such a term being unique to the quenched case.

In fitting quenched data we wish to replicate the anal-
ysis for full QCD while incorporating the known chiral
structure of the quenched theory. The meson-loop, self-

energy corrections to baryon masses can be modelled in
the same form as for full QCD. The effect of quenching

can be absorbed into a redefinition of the couplings in
the loop diagrams in order that they yield exactly the

same LNA and NLNA structure as given by Q¡PT' For

example, the analytic expressions fo¡ the pion cloud cor-

rections to the masses of the N and Â have the same

form as the full QCD integrals (Eq. 2) with redefined
quenched couplings (again using SU(6) symmetry) - we

refer to Ref. [21] for details.
In addition to the usual pion loop contributions,

QQCD contains loop diagrams involving the flavour sin-
gle| r¡t which also give rise to important non-analytic
structure. Within full QCD such loops do not play a role
in the chiral expansion because the 4/ remains massive

in the chiral limit. On the other hand, in the quenched

approximation the 17' is also a Goldstone boson [12,22]
and the 4/ propagator is exactly the same as that of the
pion. As a consequence there are two new chiral loop
contributions unique to the quenched theory. The first

of these, oi!), corresponds to a single hairpin diagram
such as that indicated in Fig. 1(a). This diagram is the

source of the term proportional to mfl (involving the cou-

plings 7 and 7/ [13])in the chirai expansion Eq. (3). The

structure of this diagram is exactly the same as the pion
loop contribution where the internal baryon is degenerate
with the external state. The second of these new 4' loop

diagrams, õLQ) , arises from the double hairpin vertex as

pictured in Fig. 1(b). This contribution is particularly in-
teresting because it involves two Goldstone boson prop-
agators and is therefore the source of the non-analytic
term linear in mn.

The total meson loop contribution to the baryon self

energy within the quenched approximation is given by

the sum of these four diagrams:

i3 = ãþ3 * ãhn, + õLQ) + of;p) (4)
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As the pion couplings in QQCD are quite a bit smaller
than the corresponding full QCD couplings, X6 is smaller
in magnitude than XB. It is also notable that ,if,¡¿, ã[(1)

aîd o!2) are all repulsive, so that the total quenched chi-
ral loop contribution to the Â mass is repulsive, whereas
it is attractive in full QCD. (We leave a presentation of
the details of the calculation to Ref. [21].)

It is now straightforward to fit the quenched lattice
data with the form:

ñt" : oB * þn*? )- is(m,,.t\), (b)

which is directly analogous to that used for full QCD.
Once again the linear part should be thought of as ac-
counting for the baryon "core" (not dressed by its pion
cloud) . It includes the expected behaviour of HQET
where the zr and 7/ loop contributions are suppressed.
Since, as discussed earlier, the meson-baryon vertices
are characterised by the source distribution, which is ex-
pected to be similar in quenched and full QCD, we take
all vertices to have the same momentum dependence -i.e. a common form factor mass, 4., equal to the value
found earlier in the full QCD fit. With this parameter
fixed there are just two free parameters, ã and B, to fit
the quenched data for each baryon. We demonstrate the
insensitivity of our results to the 4' coupling by show-
ing a comparison of the fit wiih the couplings half their
prefèrred values.

of resuÌts are obtained using a non-perturbatively im-
proved clover fermion action, which is known to have
smal|(c(a2) scaling violations [25]. Unlike the standard
Wilson fermion action, masses determined at finite Iattice
spacing are excellent estiurates of the continuum limit re-
sults. A plot of the fit to quenched N and A masses is
showl in Fig. 2, with [ãN, þN]: U.34(7),0.66(12)l and

l"d, þtl = [1.54(9),0.62(15)]. Note that, the physical
scale has been set via the static quark poiential where
chiral corrections are negligible [21].

In fact, the fit parameters, a and B, obtained in both
the quenched and full fits agree within errors
Iike the case of a purely linear extrapolation, where the
self-energy terms are omitted. This suggests that the
structure of the core baryon is quite similar in full and
qrrenched QCI), meaning that the dominant errors asso-
ciated with quenching can be attributed to the first order
meson loop corrections. As a demonstration of the size
of this effect we subtract the self-energy terms from the
fit to quenched data, retain the fit parameters à and p

and resto¡e the self-energy corrections as appropriate to
full QCD. Because we only expect the form factor to be
of similar size in the quenched theory we aìlow Á. to vary
by t I\Vo. This then gives a band indicative of the size
of the error involved in predicting full QCD masses from
QQCD data. Results of these adjustments are shown in
Figs. 3 and 4 for the 1/ and A, respectively.
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FIG. 2, Fit to quenched lattice data (UI{QCD: A [1],
L [24]) with form factor regulated meson-loop self-energies,
for ihe ly' (lower curve) and A (upper curve). The dashed
curves show fiis wiih the 4' couplings half their preferred
value.

As described in Ref. [23] we replace the continuurn in-
tegral ovet' the intermediate pion mornentum by a dis-
crete sum over the pion momenta available on tlie lat-
tice. The quenched lattice data which we use comes
from two papers of the UKQCD Collaboration [1,24] , irì
which both 1/ and A masses are reported. Both sets

1.0

0.8
.0 .2 .4 .6 .B

m^2 (Gevz)
FIG. 3. Correcting the quenched approximabion for the nu-

cleon. Full QCD data 14,26)is shown by the circles. The cen-
iral dash-dot line shows bhe correction for the preferred form
factor mass, Ä : 0.92 GeV, while the upper and lower dashed
lines are for,A.:0.85 GeV and Â: 1.00 GeV, respectively.

We have investigated the quark mass dependence of
the 1/ and Ä masses within the quenched approxirna-
tion. The leading chilal behaviour of hadron masses in
quenched QCD is known to differ from the full theory.
This knowledge has been used to guide the construction
of a functional form which both reproduces this correct
chiral structure, and is consistent with cu¡rent lattice
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FIG. 4. Correcting ihe quenched approximation for the A

- triangles are from QQCD simulations and circles from full
QCD. The curves are as in Fig. 3.

simulations. The success of this method in the quenched

case further verifies the importance of including meson
loop diagrams when extrapolating lattice results.

We find that, although the quenched approximation
gives rise to more singular behaviour in the chiral limit,
this is not likely to be observed in lattice simulations as

these contributions are quickly suppressed with increas-

ing quark mass. In the nucleon, the effects of quench-

ing reduce the amount of curvature expected as lighter
quark masses are simulated. In contrast, for the A we

find some upward curvature of the mass in QQCD as the
quark mass approaches zero. In addition, the A-Iy' mass

splitting increases to 400-500 MeV at the physical point.
As a consequence of this behaviour, the À mass in the
quenched approximation is expected to differ from the
physical mass by approximately 25%.

Our calculations suggest that the one loop meson
graphs which generate the leading and next-to-leading
non-analytic behaviour are the primary diflerence be-

tween baryon masses in quenched and full QCD' In
particular, if the chiral loops appearing in the fits to
quenched data are replaced by the corresponding loops
in full QCD, we find a remarkable agreement with exist-
ing full QCD lattice data - as shown in Figs. 3 and 4.

Thus, rather than quenched lattice QCD being regarded

as an uncontrolled approximation, in combination with
appropriate chiral corrections it may actually provide an

efficient and accurate estimate of hadron properties. It is

vital to test this result with data at lower quark masses

and other baryons. Nevertheless, this discovery repre-

sents a remarkable step forward in relating lattice QCD
to observed hadronic properties.
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We draw an analogy between the chiral extrapolation of lattice QCD calculations from large

bo small quark masses and the inberpolation between the large mass (weak field) and small mass

(strong field) ìimits of ihe EuÌe¡-Heisenberg QED effective action. In the latter case, where the

exact answer is known, a simple extrapolabion of a form analogous to those proposed for the QCD
applications is shown to be surprisingly accurate over the entire parameter range.

r_r I. INTRODUCTION

Õ The challenge to find an accurate and reliable method of chiral extrapolation for hadronic properties calculated in
Oì lattice QCD at large quark mass is a matter of considerable current importance. While compute¡ limitations mean

li that lattice simul masses are many years away, recent progress in chiral extrapolatiotr suggests

,)< that it may well curate hadronic properties based on the calculations which will be possible
\/ with the next gen rs, available within just a few years, in the 10 Tera-flops range. Fundamental

F- to this scheme is the development of extrapolation methods which incorporate the model independent constraints of
F-i chiral symmetry [1,2] , notably the leading non-analytic (LNA) behaviour of chiral perturbation theory [3,4] , as well

as the heavy quark limit [5].
t/ì Although these extrapolations are designed to match the leading behaviour in the extreme limits of small and large
\ñ quark mass, there has been little guidance as to their reliability in the intermediate mass region. It is very unclear
F{

õ what precision to expect from such a simple extrapolation into the intermediate mass region, because the large mass

= 
expansion is presumably asymptotic, and the small mass limit has a log divergence plus finite corrections with a small

-i 
radius of convergence. Here we attack this question from a novel direction by considering a remarkably close analogy

C between this problem and ys enberg

= 

effective action [6-8]. The ts ations:
+| at small electron mass (equ th e mass

I

ò- (equivalentlv, weak external es ter, we
l-¡() show that a simpie two-parameter interpolation formula (of the form used in the contexi of chiral extrapolation) , which

+ builds in the correct leading behaviour in both the small and large mass limits, yields an excellent approximation to

! the exact Euler-Heisenberg answer over the entire range of mass. We discuss possible consequences of this observation

U for the chiral extrapolation of lattice data,

t Bffective field theory (EFT) plays an important role in modern theoretical physics [9-1 1] . In pioneering work in
eü the 1930's, Heisenberg and Euler [6], and Weisskopf [7], studied the quantum corrections to classical electrodynamics

associated with vacuum polarization effects. Renormalization properties and a rnore formal "proper-time" version
were later studied by Schwinger [8]. In modern language, they computed the low energy effective action for the
electrorlagnetic field, to leading order in the derivative expansion, by integrating out the electron degrees of freedom
in the presence of a constant background electromagnetic field. This one-loop eflective action can be expressed as [12]

S = -ilndet(ip - m), (1)

wlrerep={(0r!ieA,),andA,isthefixedclassicalgaugepotentialwithfieldstrengthtensor Fp,:ðpA,-A,Ap.
As shown in [6-8] , this effective action can be computed in a simple closed f'orm when the background field strength
F' is constant. For simplicity, we consider the case lvhen the background is a constant magnetic field of strength B
(and we choose eB to be positive) . Then the exact, renormaÌized, one-fermion-loopeffective action has the following
integral representation :

.s - - *4 [* ! (,"rn - 1- 9) e--"/("4). Q)
ölf' Jo s' \ s ,J/
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The I term is a subtraction of the zero field (B = 0) effective action, while the I subtraction corresponds to a

Iogarithmically divergent charge renormalization [8] '

We stress that Eq. (2) is an exact, non-perturbative result. However, it can of course be expanded in two obvious

Iimits. In the large mass 1irnit,rn2 ) eB (which is equivalently the weak field limit) , ii is straightforward to develop

an (asymptotic) expansion of this integral:

2e2 B2 / eB\2 *(:- l-l\-
T2 \m2/ L

n=O

812 l-hffi)

22,ß2,+q (g\'"M\*')
.# (#)--# (#)'* 

]

e2 82 (3)

Here the B2n ate the Bernouìli numbers [13]. The large mass expansion, Eq. (3) , of the effective action has the

sLandard form, S - rn4Ðnffi, ota low energy efiective action [9,10], where the higher-dimension operators gØ) þ1
dimension n) are balan..d'1i"" powers of the mass scale m, below which the low energy effective action is meaningful.

In this case, t'low energy" means that the cyclotron energy scale fl is much smaller than the energy scale set by

the electron mass rn, That is, # < 1. An alternate perspective on the large mass expansion is as a perturbative

expansion in powers of the coupiing e, with the nth power of e being associated with a one-fermion-loop diagram with
n external photon lines (the divergent O(e2 B2) self-energy term is not included, as it contributes to the bare action

by charge renormalization [8]). We note that, as a consequence of charge conjugation (Furry's theorem) , only even

powers ãf ffi .pp"rr in the perturbative expansion of Eq. (3). It is interesting to note that the series expansion of

Eq (3) is divergent, because the Bernoulli numbers grow factorially as Bzn - 2(-t¡"+t ffi t", large n, consistent

with very general results for perturbation theory [14,15] . Ii is in fact an asymptotic series, and the proper-time

integral repiesentation in Eq. (2) is just the straightforward Borel sum [16] of this asymptoticseries [17].

The large mass limit may equivalently be characterized by the relevant length scales: the electron Compton wave-

Iength À"-= j, and the cyclotron radius ("magnetic length") 
^B 

= J"BL. In terms of these length scales' the large

mass limit corresponds to the situation where the electro r Compton wavelength is much smaller than the cyclotron

radius: À" < Às.
Since the Euler-Heisenberg system is exactiy soluble, we can also use the exact integral representation (2) to study

the small mass, or strong field, Iimit where rn2 K eB. In te¡ms of the length scales, in this limit the electron

Compton wavelength is much greater than the cyclotron radius: l" ) À¡. Then, from Eq.(2), one finds (using

results in Ref. [18]):

s=-#{ l;. #.;(#)'f,",#* lå -}r",2-4('(-1)] *rrogr -,t#

. l-i + î -å,.*,] (#)' - ^Ð--#f (#)r.'\

" !: I !',^**' -L (\ 7^ / m2 m2 m'2 \ ì: -nn, I B '-ö ea , -', -3e6e + o (ä' åtot ,tt )l ' (4)

Note that the coefficienL, -#, of the leading term, the log S 'ætn, is fixed by the (one-loop) QED betafunction

[19]. In (4), 7 is Euler's conõtint, and ((s) is the Rieman r zelifunction [13]. Note that (/(-1) nv -0.165421.
It is i¡structive to contrast this small mass expansion, Eq.(4) , with the large mass expansion, Eq.(3). In the small

mass limit, analogous to the chiral limit in QCD, we see the appearance of logarithmic terms, analogous to the "chiral

logs" of QCD. In addition, note that both even and odd powers of $ app"ar in the small mass expansion, Eq (a)

On the other hand, in the large mass expansion, Eq. (3), there are no non-analytic log terms, and only even powers

of ffi appear. So, we see that the one-loop Euler-Heisenberg effective by the exact integral

."piår.nlution (2) , has two very different expansions in the two limits of mass. The transition

between these two extreme regions is governed by whether the electron ", 
is larger or smaller

than the cyclotron radius, Às. In Fig. 1 we plot the exact Euler-Heisenberg effective action, Eq'(2) 
' 
with an overall

factor of -ç removed, u, . tr.r.tion of $, andcompare it to the leading large mass term -*! (ffi)t tt" Eq. (3),

and to the leading small mass terms I loe# + 0.763969 fiorn Eq. (4). From this figure it is clear that these leading

terms accurately 
-apture 

the extremet"haulour. of the exact result, but do not interpolate in the intermediate region

where the scales are comparable.
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FIG. 1. Comparison between the exact action (solid curve) for ffiT"1".-U"isenberg model and the leading terms in the

expansions aboub the weak (dashed curve) and sirong fielcl (dash-dot, curve) limits. Note that rn2 is m"a.rl.ed in uniis of eB.

Having reviewed these pertinent aspects of the Euler Heisenberg effective action, we now turn to what appears at
first glance to be a completely different problem: the calculation of hadron properties as a function of quark mass) or
through the Gell-Mann-Oakes Renner relation (*? o rnn), pion mass. Chiral perturbation theory permits arigorous
expansion of hadron properties about the chiral limit, where m, -+ 0. For example, for the nucleon charge radius one

finds [20]

(r2)B=qlxNlog*" +c2m2,+... (5)
I,r

where I refers to the proton or neutron respectively. (Here ¡l just sets the scale against which the pion mass is
measured. Ii is arbitrary in the sense that a change in p is equivalent to a change in the constant term, c1 .) Note
that the charge radius diverges ìogariühmically in the chiral limit, with a model independent coefficient

(r + 5gï)
(6)

4n f")2
On the other hand, in the large m^ limit, heavy quark effective theory suggests that the charge radius should decrease

AS

(rt)" = := * .. (7)
mi

plus higher inverse powers of m2*.

As discussed at length in Ref. [3], current lattice data for charge radii are confined to pion masses greater than
600 MeV. The corresponding pion Compton wavelength, ìo, is then smaller than the calculated charge radius, which
we may take as an indication of the size, R, of the soui'ce of the pion field. The lattice data shows only a very slow
variation of (r2)n in the rnass range lvhere the lattice calculations have been made, with no indication of a chiral log.
Yet, in order to compare with the physical charge radii one must extrapolate these lattice results to the chiral regime
rvhet'e Ào ) Ã and the chiral log is irnportant. This is the challenge of chiraì extrapolation.

We lvish to draw an analogy between the Euler Heisenberg systern discussed above and this system. In this analogy,
the pion Compton wavelength, Àn, plays the role of the electron Compton wavelength, À", and the source size, Ã,
plays the role of the magletic cyclotron radius, À¡, (equivalently, the mass scale ¡;2 plays the role of the magnetic field
strength eB). The chiral perturbation theory expansion of Eq. (5), where À, ) Ã, is analogous to the leading terms
in the sniall rnass expansion of Eq (a) , where )" )) À-a. The heavy quark efective theory result presented in Eq. (7),
where Ào ( R, is similarly analogous to the leading term in the large mass expansion in Eq. (3) where À" ( )s.
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Exact Euler-Heisenberg Result

-t/45*(eB/rnz)z
0.?63968 + l/3+ tog(m'z,/eB)



In the QCD context, following earlier studies of magnetic moments [2] , where it was found that a simple Padé

approximant was able to describe the mass dependence arising in a particular chiral quark model, Hackett-Jones

et al. l3) extrapolated the lattice data from m2* > 0.4GeV2 to m2, :0.02 GeV2 (the physical point) using an

interpolating formula which was chosen as the simplest two-parameter form consistent with the constraints imposed

by the e1treme behaviours in the large and small pion mass limits, Eq.(7) and Eq. (5) respectively. (Recalì that ¡¡¿
is model independent, and note that the data could constrain no more than two parameters.) In the light of later

experience [1] , we choose to use a slightly modified argument in the chiral log:

(r2)B =
c1 t$log

(8)
I*cz

Here, rather than being arbitrary, p assumes physical significance as the scale above which ihe chiral log is suppressed

- of course, Eq. (8) preserves the correct behaviour in the chiral limit. From experience with moments of structure

functions, magnetic moments and hadron masses, this scale is expected to be ¡-t - 500 MeV. As the lattice data is
not yet able to constrain p, we simplyfix it to 500 MeV and adjust only c1 and ð2. Figure 2 shows the resulting fit
to the proton charge radius and the corresponding extrapolation to the physical pion mass. As discussed in [3], this

chiral extrapoÌation fit is closer to the physical value than a naive linear fit through the lattice data. However, in the

absence of lattice data at lower quark masses) it is difficult to be more precise about the quality of the fit.

1.0

0.8

Ê¡

0.6

0.4

0.0
0.0 0.2 0.4 0.6 0.8 1.0 r.2 r.4

-rflnz (GeVz)
FIG. 2. Fit to the lattice QCD data for the square of the pioton charge radius as a function of pion mass squared, using

Eq.(e). The extrapolated value at the physical pion mass (indicaied by the vertical dotted line) is shown by bhe solid dot with
the large error bar, while the star indicates the experimentally observed value.

In view of the close parallel between this hadronic problem and the Euler Heisenberg system in QED, we return to
the Euler-Heisenberg system, where we can be much more quantitative concerning the accuracy of an interpolating

fit. We ask the following question. Suppose that we did not know the exact integral representation answer (2) for the

effective action, but that we did know the leading terms in each of the extreme large and small mass limits. Would it
then be possible to find a simple two-parameter interpolating formuÌa, analogous to (8), that connected the extreme

limits in a smooth manner? And if so, how accurate would such an interpolating formula be in the intermediate

regioD?

The leacling terms are determined as follows. In the large mass limit, this is the first te.m, 5$ (#)n, in (3),

corresponding to the first nonlinear correctiou to classical electrodynamics, whose coefficient comes from the one-

fermio¡ loop with four external photon iines, a straightforward perturbative calculation. In the small mass limit,
the leading term in (4) is the logarithmic tern.^, -ffi e3)'l"e$, *hor" coefficient is fixed by the one-loop QED

¡r

l{
oÐ
o
¡i

0.

(\¡

o.2
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beta function [19]. Motivated by the interpolation formula, Eq.(8), which was used in the QCD case, we propose the
following interpolating function for tìre effective action

^ e2B2
\'.utnterDolattnø 

- ófi" r + 45dr(#)

¿,+åroe( m2
m2+eB

,m2u2 ?B
(e)

This interpolating formula has the correct leading behaviour in both the large and small m limits. Figure 3 shows a

comparison of the fit obtained witìr this form by adjusting the two parameters d1 and d2 (dash-dot curve) with the
exact result (solid curve) . Our best fit was obtained with parameter values: dr : 0.7059, and d2 = 1.5541. Figure
3 also shows the percentage difference between the exact result and approximate expressions (dashed line) . (Note

that ¡n2 is expressed in units of eB.) Over the entire range of #, the interpolating function is within I0%o of the
exact answer. Such precision is very surprising when we recaìl that the Euler-Heisenberg effective action has the
problems (shared by the analogous QCD calculations) that the large mass expansion is asymptotic and the small
mass expansion has a log divergence and a small radius of convergence.

10
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-o.2

-o.4

-0.6

-5
-0.80.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

TfLz
FIG. 3. Comparison between the exact expression for the action in the Euler-Heisenberg model (soÌid line) and the inberpo-

lating approximation given in Eq. (g) which builds in the correct chiral and heavy quark ìimiis (dot-dashed line). Note bhat the
agreement is so good that, ib is difficult to distinguish between the two curves on this scale. The percentage difference between
the two is indicated by the dashed line.

In summary, the Euler-Heisenberg system presents a problem which exhibits many of the rnathematical complica-
tions of the chiral extrapolation problem in QCD, yet it is exactly soluble. By carefully respecting both the high and
low mass limits of the exact solution, we showed how to construct a simple extrapolation fortnula which reproduced
the exact solution over the entire pararneter range with surprisingly good accuracy. Since the mathematical structure
of the problem of chiral extrapolation of tlie proton charge radius in QCD is essentially identical, this gives one con-

fidence that a similar level of accuracy may be obtainable there. It is therefore extremely encouraging that the chiral
extrapolation of even the present crude lattice data at very large quark masses yields a physical proton charge radius
within one standard deviation of the experimental value. Even more important, this result lends enormous impetus
to the quest for new la,ttice data at lowel quark mass which will better constrain the chiral extrapolation. It suggests

that the next generation of supercomputers (available within 2-3 years) may well provide sufficient information that,
in combination with these chiral extrapolation techniques, one should be able to calculate accutate hadron properties
at the physical quark mass.
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In order to guide the extrapolation of the mass of the rho meson calculated in lattice QCD with dynamical
fermions, we study the cont¡ibutions to its self-energy, wbich vary most rapidly as the quark mass approaches

zero, from the processes p+@iÍ and p+¡¡.It turns out that in analyzing the most recent data from the

CP-PACS Collaboration, it is crucial to estimate the self-energy from p-q¡1¡ using the same grid of discrete
momenta as included implicitly in the lattice simulation. The cor¡ection associated with the continuum infrnite
volume limit can then be found by calculating the corresponding integrals exactly. Our error analysis suggests

that â factor of l0 improvement in statistics at the lowest quark mass fo¡ which data currently exists would
allow one to determine the physical rho mass to within 5Vo. Finally, our analysis throws light on a long-
standing problem with the "/ parameter.

DOI: l0.ll03/PhysRevD.64.094502 PACS number(s): 12.38.Gc, ll.l5.Ha

I. INTRODUCTION

As the lightest vector meson, the p is of fundamental
importance in the task of deriving hadron properties from
QCD. Within lattice QCD, the ratio of ø to p masses is often
used as a measure of the approach to the chiral limit. For a
long time lattice calculations were restricted to values of
mnlmo above 0.8. However, with the rema¡kable improve-
ments in actions, algorithms, and computing power, there are
now lattice QCD results with dynamical fermions available
for hadron masses with cunent quark masses such that
mo/mo is entering the chiral regime. Nevertheless, in order
to compare with the properties of physical hadrons it is still
necessary to extrapolate the results to realistic quark masses

trl
In the past few years there have been some very promis-

ing developments in our understanding of how to extrapolate
lattice data for hadron properties, such as mass Il], magnetic
moments [2], charge radii [3], and the moments of structure
functions [4], to the physical region. In doing so it is vital to
include the rapid variation at small pion masses associated
with those pion loops, which yield the leading and next-to-
leading nonanalytic behavior. (This was crucial in arriving at
a reasonable value for the sigma commutator l5], for ex-
ample.) However, a formal expansion of hadron properties in
terms of mn falls to converge up to the region where lattice
data exist. The crucial physics insight, which renders an ac-
curate chiral extrapolation possible, is that the source of the
pion field is a complex system of quarks and gluons, with a

finite size cha¡acterized by a scale Â. When the pion mass is
greater than Â, so that the Compton wavelength of the pion
is smaller than the extended source, pion loops are sup-
pressed as powers of mnll\ and hadron properties are

smooth slowly varying functions of the quark mass. How-
ever, for pion Compton wavelengths bigger than the source
(*.<lt) one sees rapid, nonlinea¡ variations. Phenomeno-
logically this transition occurs at mn-500 MeV or mrlnto
around 0.5-the region now being addressed by lattice simu-
lations with dynamical fermions.

Another difflculty associated with the extrapolation of lat-

tice results that needs further investigation is the discretiza-
tion of momenta inherent in all lattice calculations. In this

regard we mention not only the ûnite lattice spacing but the

fact that there is a minimum possible nonzero momentum
available because of the ûnite volume of the lattice. This
issue is absolutely critical to the interpretation of the recent

CP-PACS data for dynamical fermions [6], in which a first
resultr is reported at mn/mr-\.4. As we explain in detail,
the only reason that it is possible to measure the p mass there
is that the calculation is done in a finite volume. We show
that taking the finite lattice size a¡rd finite lattice spacing into
account is a necessary requirement when extrapolating to the

physical region. These effects become especially signiûcant
for the case of the p meson, which has a p-wave, two-pion
decay mode.

In Sec. II we summaize the key physical ideas and the

necessary formulas for extrapolating the mass of the p meson

to the physical pion mass. This includes a discussion of the
limiting behavior at small and large quark mass. We then

show the result of our ûtting procedure and analyze the un-
certainty in extracting the p mass at the physical point. We

show that a factor of l0 increase in the number of gauge freld
contgurations at the lowest quark mass presently accessible
would be sufficient to determine the physical p mass to
within 5Vo. In Sec. III, we discuss the consequences of this
analysis for the -/ parameter and conclude with a brief sum-

mary and outlook for the future.

II. CHIRAL EXTRAPOLATION FORMT.ILA

The success of our ea¡lier work concerning the extrapola-
tion of the l/ and A masses [1] leads us to consider a similar
approach to the latest two-flavor, dynamical QCD data on the
p meson [6,7]. Once again our guiding principle is to retain
those self-energy contributions which yield the most rapid

lAlthough CP-PACS finds no evidence of residual errors for the

lowest mass point, they caution that it is premature to draw firm
conclusions based on the present low statistics.
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sp -_
82.orl'o kk4 u2,.1k)

(4)
12nz w2,(k)

In analogy with the heavy baryon limit, we have neglected

the kinetic energy of the heavy vector mesons. Here )p, and

Ip,, conespond to the processes shown in Figs. 1(a) and

1(b), respectively. The pion energy is given by w"(k)
: Jnfi, arrrd u,o and uo. are dipole form factors gov-

erned by a mass parameter reflecting the finite size of the

pion source, In the chi¡al limit these have the standard LNA
and NLNA behavior (independent of the forms chosen for

unn and unr):

f2
rå.|^.,uo: - :-!!" - 

^t 1n(m.)'
41r'l-L;

lo.,lr-No= - 
*'jrU*" 

^',, (5)

while they are suppressed as inverse Powers of mn orrce m,
(l) is comparable wiìh the dipole mass parameter.z Finally, the

p+nrr term contains the unita¡ity cut for mn<pol2 (as

well as an imaginary piece determined by the width).
The formal solution to the Dyson-Schwinger equation for

the p propagator places the self-energy contributions in the
(2) denominator of the propagator and thereby modiûes the p

mass as [10]

*r:Jffi

(3) where I:Ip",*2T. and the ba¡e mass ms, is taken to be

analytic in the quark mass. Guided by the lattice data at large

mT,we will take rzg to be cslc2mzn.
The dipole form factors are defined as

unn(k):( !ri"lr*ir\', (7)

\ltrr-r+wrl

I . ¡\2

un,(k):("1- *:\ . (8)

\ 1r2..+ *2 J '

where p,n and p,o are the physical masses of the zr and p

mesons. The normalization of ør, is chosen to be unity at

the p pole and the coupling constant f ,nn:6.028, is chosen

to reproduce the width of the p (i.e., the imaginary part of the

self-ãnergy). In the p+ ar case we lake g,ro:16 GeV-l

[11]. The n2, dependence of the self-energies of Eqs. (3) and

(4) is shown in Fig. 2 by the dordash and dashed curves,

,,-- -Í-- -... ,.---r'i-'..

pp p p

n

FIG. l. The most significant self-energy cont¡ibutions to the p

meson mass

variation w\fh m, nea¡ the chiral limit - i.e., those terms

which yield the leading nonanalytic (LNA) behavio¡ and the

dominant nexGto-leading nonanalytic (NLNA) behavior'

These processes are illustrated in Fig. l. The p+c,rø'term,
shown in Fig. 1(b), yields the LNA contribution to the p
mass. The p+ Í7r term [Fig. 1(a)] not only yields the NLNA
behavior but, of course, the width of the p once,?1r goes

below mrl2.
In order to evaluate these self-energy terms, we take the

usual interactions [8,9]:

(ù

(b)(a)

Lp,n: if 0,.õu '¡ãx la rå¡ - (a t ;)x;)

and

Lrpo: g.po' p,,p(ðþa')(ð"õþ)- å

These lead to the following expressions in the limit, where

the mass of the vector mesons (p and a, taken to be degen-

erate) is much bigger than the mass of the pion:
(6)

so f7-,f* dkk,uzn,(k)
à',n: - 6., )o;"&\@*>Et4)'

*-rs
_D^

!

Al -éu

^ -30
-35
-40
-45

5

0

^- 10

o.2 0.8

FIG. 2. Variation with pion mass of the self-energy contributions

to the p meson, Eqs. (3) and (4), for a dipole form factor with
L,.:630 MeV. The solid points indicate the value of the self-

energy when calculated at the discrete momenta allowed on the

lattices considered in this investigation. The difference between the

curves and points is an indication of the physics missing because of
finite lattice size and spacing.

2Note that all masses (e.g , the p mass, P) and coupling con-

stants should, in principle, be evaluated in the chiral limit. However,

as the variations from the physical values are typically of the order

lj%o, we use the physical values
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CHIRAL BEHAVIOR OF TTIE RHO MESON IN LATTICE QCD

respectively. The interesting behavior of the p+nø self-
energy has been noted in many earlier works. In the context
of lattice QCD, it was discussed by DeGrand [12] and by
Leinweber and Cohen [10] and most recently by Szczepa-
niak and Swanson [13]. Other studies have looked at the
self-energy as a function of p2 (invariant mass of the vector
meson) for mixed m, 114-161.

Finally, the lattice data alone cannot separately determine
/\n, and Á.r,. In order to constrain them we have therefore
made the reasonable, physical assumption that the size of the
source of the pion field should be the same regardless of
whether the intermediate state involves an tlr or a ø. Thus u,e

require that Â-- is chosen so as to reproduce the same

mean-squ¿ue radius of the source as would be generated by
the choice of Â,, . Equating the mean-square radii results in
the following relationship:

tr,,:z.tSjfi. (e)

An alternative procedure, which could be imposed in future
analyses, would be to constrain the difference in the meson
self-energy terms to reproduce the observed p - a,r mass dif-
ference U4-171.

Fitting procedure

As we hinted in the Introduction, the fact that CP-PACS is
able to extract a measurement of the p mass at mn/mo
<0.5 is at flrst sight extremely surprising. Once the p is able
to decay one would expect to measure not the p mass but the
two-pion threshold. The origin of this result is the quantiza-
tion of the pion momentum on the lattice and in particular
the fact that the lowest (nonzero) pion momentum available
is 2¡laL, where is.L is the spatial dimension of the lattice.
For the relatively small lattice used by CP-PACS at the low-
est pion mass this corresponds to more than 400 MeV/c mo-
mentum. This is why the p remains stable.

Motivated by Eq. (6), and wishing to preserve the conect
leading nonanalytic behavior of the self-energies, we have
chosen to fit the p mass with the simple phenomenological
form:

PHYSICAL REVIEW D ø 094502

-t;.,,=t; (12)

Therefore to simulate the calculations that are donc on thc

lattice, we should replace the continuous integrals over k in

Eqs. (3) and (4) with a discrete sum over l[l . However when

lËl ls 
"e.o, 

the case of a pion emitted with zero momentum,
the integrands vanish, and hence do not contribute to the

self-energy. In fact there is no contribution to the self-
energies until ftr: +2daL*. There is therefore a momen-
tum gap on the lattice forp-wave channels, produced by this
discretization of momenta.

We have investigated this momentum dependence by
evaluating the self-energy integrals, Eqs. (3) and (a), by sum-

ming the integrand at the allowed values of the lattice th¡ee-

momenta

+,[* nz oo: I *r-+(+)'0.ì 
0,

(10)

Given the constraint relating Âo. and À,r, this involves
three adjustable parameters. At large mnthe self-energies are

suppressed by inverse powers of mn and the p mass becomes
a simple linear function of m2n (or the quark mass).

In the finite periodic volume, of the lattice, the available
momenta ft are discrete:

, >+-(A,.,m,) +2p,,( l\ îr,m r)
,t r: cgr c2t/t;- 

2'.o+ ,r^r)

, 2rtt rrp: 
"L,

where the k, are deflned by Eqs. (11) a¡rd (12) and V is the
spatial volume of the lattice. The results for the self-energy
contributions are presented in Fig. 2. The self-energy calcu-
lated on the lattice (the solid circles and triangles) differs
little from the full self-energy calculation in the high quark

mass (ru|) region. Furthermore, the effect in the p+an
self-energy contribution is also small at low pion mass. The
biggest change is in the p---+¡rn self-energy calculation, at

lower quark mass. This is the region in which one might
expect the biggest corrections because one is approximating
a principal value integral on a finite mesh. This change in
behavior, particularly at the lowest data point (*',
:0.1 GeV2), indicates that the ø'ø self-energy contribution
is signif,cantly understated in the lattice simulations. Upon
calculating the full self-energy contribution via the continu-
ous integrals, the magnitude of the self-energy is increased
by about l0 MeV which is 30Vo of the self-energy contribu-
tion at this point. These results for 2p.. aúZpn. are used in
Eq. (10) to ût the lattice data.

Recent dynamical fermion lattice QCD results are pre-
sented in Fig. 3. The scale parameters relating the lattice

QCD results to physical quantities have been adjusted [1] by
5Vo for the CP-PACS and UKQCD results. The effect is to

increase the p mass from CP-PACS and decrease the mass

from UKQCD, providing better agreement between the two
independent simulations. As the ¡2 of the following ûts is

dominated by the CP-PACS data, we focus on this data set.

Our fits using Eq. (10) are based on the lowest five lattice
masses given by CP-PACS. We selected the lowest lying
masses because to move further away from the chiral limit
would necessitate additional terms beyond the first t\/o ana-

lytic terms of Eq. (10). The results of the ût a¡e shown as the

open squares in Figs. 3,4, and 5. The parameters of the fit
co, cz, and Â,,, are then used in an exact evaluation of Eq.
(10) using the full integrals in Eqs. (3) and (4). This result is
illustrated by the solid lines in Figs. 4 and 5. We note that the

value r\..,:630 MeV for the best fit, results in a softer form
factor than one might expect. We do not consider this to be

(11)

where L, is the number of lattice sites in the ¡.c direction, and
the integer n, obeys
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FIG. 5. The graph is as described in Fig. 3 except that the eror
ba¡ on the lowest data poinf (m2,*ç.1 GeV2) has been reduced by

a factor of .,/Iõ. this equates to an improvement of ten times in the

statistics, which we do not consider an un¡easonable goal for the

future. The dipole mass of the best fit is then Ìrn.:660 MeV. The

shaded area is bounded above and below by a I ø error bar.

For comparison, we also show a popular three parameter

fit, motivated by chiral perturbation theory:

m ,: c g* c 2m2.+ ,3^3, ( t3)

This narve thee pararneter fit is illustrated by the dash-dot

curve in Fig. 3. However, since the value of ca in Eq. (13) is

commonly treated as a fltting parameter, we are not Suaran-
teed that it has the correct value required by chiral perturba-

tion theory (XPT). The value for the best fit is found to be

-0.27 GeY'2. As outlined above, our expressions for the p

self-energies have the correct LNA and NLNA coefficients

by construction. Indeed, ifthe coefflcient ca is constrained to

the correct value3 (-glo J48r¡: - 1.70 GeV-2), the best fit
possible by varying c1 and c2 is shown as the solid line in
Fig. 3. As was also found in the case of the nucleon [1], the

lack of convergence of the formal expansion is such that it is
not sufficient to ûx the coefûcient of the LNA term in a cubic

f,t to that predicted by ¡PT, as the resulting form will not ût
the data.

The importance of the accuracy of the lowest mass point

cannot be overstated. We stress that CP-PACS emphasized

the preliminary nature of the lowest data point, because of
the relatively low statistics. Nevertheless, in order to prepare

for future more accurate data, we have carried out a standard

error analysis including this point and the results are pre-

sented in Fig. 4. The lower bound on the shaded area was

found by increasing the minimum ¡2 per degree of freedom

of the fit by l. We were unable to do this with the upper

bound. The result is actually l-imited by the physics of the

3In Ref. [18] the nr, dependence of the LNA term to the p mass is

given by -(tttzßf?)(?etr+sï^I. This would result in a value

of tbe m3n coefficient of - |.71 GeV-2, in excellent agreement with

00 02 0.4 0.6
rn*" (Ge"l")

0.6
eV')

0.8 1.0 00 0.2 0.8 1.0

FIG. 3. Vector meson (p) mass from CP-PACS [6] (filled

circles) and UKQCD [7] (open circles) as a function of m2,. The

dash-dot curve is the naïve three parameter fit, Eq. (13)- The open

squares (which are barely distinguishable from the data) represent

the fit of Eq. (10) to the data with the self-energy contributions
calculated as a discrete sum of allowed lattice momenta. We have

used a dipole form facto¡ with r\,.:636 MeV. The solid curve is

Eq. (13) with the pârameter ca fixed to the value given by chiral
perturbation theory.

of signiflcant concern in the present paper because, as we

shall discuss below, the current lattice results atlow m, ue
not precise enough to constrain the chiral behavior.

It is interesting to note the similarity of the results to those

of Ref. [10]. There it was found that fitting quenched lattice

data with a linear extrapolation, and improving the extrapo-

lation by adding on Íhe p+ nn effects, predicted essentially
the same physical mass, but that the chiral behavior was

significantly different.

t2

ì r.r
t\

3 r.o
õ

É o.9
Ø
c)E o.e
k
o
g 0.7

06
0.0 02 o4

tnz (G
0.8 10

FIG. 4. Analysis of the lattice data for the vector meson (p)

mass calculated by CP-PACS as a function of m2n. The squares

represent the fit ofEq. (10) to the data with the self-energy contri-

butions calculated as a discrete sum of allowed lattice momenta.

The solid curve is for continuous (integral) self-energy contribu-

tions to Eq. (10). We have used a dipole form factor, with optimal

.4,.,:630 MeV. The shaded area is bounded below by a 1o enor

ba¡. The upper bound ¡s timited by the constraint À,,)¡r.,, as

the value used here.
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TABLE I. Table of fit parameters cs, c2, c3, l\,,, the p-meson mass at ¡.t,o, the value of the J
parameter, and the pion mass at which the -/ parameter is calculated. All values are in appropriate powers of
GeV. The cubic fit refers to Eq. (13) while the dipole refers to Eq. (10) with a dipole form factor. We find that

the efior in the "/ parameter is halved if the statistics on the lowest point are increased by a factor of 10.

Fit form Cg C2 C3 Ln, M J 2mÌ

-0.207

process. In the case of a dipole form factor this means Â.,
) p"n, and that is the upper limit we have shown here.

It is not unreasonable to cxpect an improvcmcnt in thc
accuracy of the calculated lattice mass values, and as a

Gedanken experiment we have explored the possibility of a

tenfold increase in the number of gauge configurations at the
lowest pion mass. For the purposes of the simulation, we did
not change the value of the data point, but simply reduced
the size of the error bar by fiO. As can be seen in Fig. 5, the
improvement in the predictive power is dramatic. The uncer-
tainty in the physical mass has been reduced to the2Vo level.
Additional improvement in the accuracy of the extrapolation
would result from the availability of additional data in the
low pion mass region. However, it must be noted that the
provision of data around 0.2 GeYz and higher would prob-
ably not assist greatly in the determination of the dipole mass
(À); it is primarily determined by points nearer the physical
region. We present the parameters of these fits in Table I.

We have examined the model dependence of our paper by
repeating the above fits with a monopole form factor. As can
be seen in Fig. 6, the model dependence is at the level of 15

MeV at the physical pion mass with current data, and would
have been at the few MeV level had the error bar been re-
duced by a factor of .,Æõ'. This reinforces the claim in Ref.

[1] that this extrapolation method is not very sensitive to the
form chosen for the ultraviolet cutoff.

000 005 010 015
rn,z (GeYz)

FIG. 6. A magnification of the physical pion mass region of our
extrapolation results. The solid and long dashed lines represent the
best fit dipole and monopole results for a fit with the present accu-
racy of the lattice QCD results The dash-dot and short dashed lines
are the dipole and monopole results for a reduction in the error ba¡
of the lowest lattice data by a factor of '[0. The model dependence
of the choice of the form the factor is O(2Vo).

Cubic

Dipole
o;t23
0.776

0.668

0.427 32 0.630

0.735

0.731

o.44 (8)
o.4s (7)

0.223 (7)
o.22s (4)

a
III. 

"T 
PARAMETER

A commonly pcrceivcd failure with quenched lattice QCD
caÌculations of meson masses is the inability to correctly
determine the ,/ parameter. This dimensionless parameter was
proposed as a quarititative measure, independent of chiral
extrapolations, thus making it an ideal lattice obse¡vable

[19]. The form of the J parameter is

(14)

molmn=1.8

17tr ç* - lll ,
-tt1¡ç*-j----lffiK-ffin

By using Eq. (15) and the experimentally measured masses

of the K(495.7 MeV), K*(892.1MeV), ø(138.0 MeV),
and p(770.0 MeV), Lacock and Michael [19] determined

J:0.48(2)

However, previous attempts by the lattice community to re-
produce this value have been around 20Vo too small. In the
case of quenched calculations, this has been cited as evi-
dence of a quenching error (see, for example, the review in

[20]). It was noted by Lee and Leinweber [21] that the in-
clusion of the self-energy of the p meson generated by two-
pion intermediate states (excluded in the quenched calcula-
tions) acts to increase the J parameter.

In Fig. 7 we present the value of the "/ pa¡ameter obtained
from Eq. (14) and our best fit to the lattice ¡esults using Eq.
(10). The vertical dotted line indicates the value of m2n,

where the J parameter is to be evaluated, i.e., molmr:1.8.
The horizontal dashed line, plotted between the values of the

squares of the physical pion and kaon masses, shows the
experimental estimate of the -/ parameter from Eq. (15). This
equation suggests that the evaluation of J may be approxi-
mated by the slope of the vector meson mass extrapolatiou
between these points. The cusp shown in Fig. 7, associated

with the cut in )po,, suggests otherwise. We stress that while
the detailed slope of the curve is parameter dependent, the
presence of the cusp is a model independent consequence of
the two pion cut in the rho spectral function.

As a point of comparison, we have also calculated "/ using
the naive cubic chiral extrapolation, Eq. (13), described
above. The results of our investigations a¡e summa¡ized in
Table I. The value of the "/ par¿ìmeter is similar for both fits
as it is evaluaTed af m2r-0.22 GeYz. The effects introduced

. d^,
¡:^o 

¿r*.

( 15)

o.80

Ç o.zs
o
9 o.za
Ø.r O.77

É 0.76
a

E o.75

b o.z+

E o.?3

o72

(5eo)
(z7o)
(620)
(3ro)

Pteseut e¡ror
Present crfor
neduced error
Redùced error

Dlpo¡e
l¡onoÞ01c
Dipole
Monopole
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FIG. 7. The solid curve is a plot of the value of the "/ parameter

as a function of m2" obtained from Eq. (14) and the best fit to the

lattice results given by Eq. (10). The vertical dotted line shows the

point at which the J parameter is evaluated (molmn:l.8). The

horizontal line displays the experimental value (0.48) plotted be-

tween the physical values of m2, and m2¡¡.

into the extrapolations by chiral physics do not begin playing

a large role :.lrrrtil m2n falls below 0.2 GeYz. Had the ./ param-

eter been evaluated at m2r:9.19 or 0.09 GeV2, one would
find perfect agreement with the linear ansatz of Eq. (15).

IV. CONCLUSION

We have explored the quark mass dependence of the p
meson including the constraints imposed by chiral symmetry.
The pionic self-energy diagrams are unique in that they give

rise to the leading (and nexrto-leading) nonanalytic behavior
and yield a rapid variation of the meson mass near the chiral
limit. These are the lowest energy states with given quantum

numbers that have signiflcant couplings to the p meson.

Other meson intermediate states are suppressed by large

mass terms in the denominators of the propagators, and also

by smaller couplings.
We flnd that the predictions of two-flavor, dynamical-

fermion lattice QCD results are succinctly described by Eq.

(10) with terms defined in Eqs. (3) and (4) for m,
< 800 MeV. We have shown that our formula gives model

independent results at the 27o level for the physical mass of
the p meson. However, ûrm conclusions concerning agree-

ment between the extrapolated lattice results and experiment
cannot be made until the systematic errors in the extraction
of the scale of masses can be reduced below the current level

of lOVo and accurate measurements are made at ntt

- 300 MeV or lower.
We have also calculated the J parameter by directly evalu-

ating the derivative of our mass extrapolation formula. We

find that the empirical estimate based on differences of me-

son masses misses important nonanalytic effects in the de-

rivative of rro with respect to mzn, as illustrated in Fig. 7,

Finally we have investigated the effects of an improve-
ment in the statistics of the lattice data. Present lattice data

are not yet sufûciently precise to independently constrain the

PHYSICAL REVIEW D Ø 094502

behavior near the chiral limit. With the best data available

one finds a p-meson mass of 731 MeV with 1ø bounds at

675 and 1062 MeV. One could constrain the bounds by using

phenomenological guidance for the form factors, but we

would prefer to wait for better lattice data. Figure 5 suggests

that the p-meson mass could be known to within 5Vo inthe
very near futwe.

Note added. Since the submission of this manuscript, the

CP-PACS Collaboration has released a preprint 1221, with
work showing ,I as a function of mass. We note that their
analysis does not address the chiral physics studied here. As

a result, their curves will omit the general feature of a cusp in
the ./ parameter as discussed in this manuscript. A simila¡
comment applies to the MILC Collaboration [23]. We look
forward to seeing a simila¡ analysis to that presented here

applied to these new simulation results.
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In this Appen.* -.;:iiTl1""*,,"n or the reading

nonanalytic terms of the Xp* and2p, self-energy contribu-
tions to the p-meson mass. By the deûnition in Eq. (10) all
the nonanalytic behavior is contained in these two terms.

We note that the form of the self-energy contribution from
p+¡ra is the same as that for the process ø¡y¡¡ discussed in

Ref. [l]. Using the results found in that paper we can write
(for the choice of a sharp cutoff [d(^-k)] for the form
factor un.)

sp -_8,p,ppl- 
i 
^\ 

¡3 -rl-îø- pr, l,n+*",*l*J 
+7-lrm".l.

(A1)

The chiral behavior of this expression is obtained by expand-

ing it in m, aboutm,:O (the chiral limit). We find that in
this limit

20,,: - W(+ - L^,,+| ^',- I^l* ot ^it).
(^2)

with the leading non-analytic term being of order nt3n:

!o',1,r^: -,,f,u?" *', (A3)

The p-tn self-energy contribution is slightly more

complicated. If we again choose a d function for the form
factor we can analytically integrate Eq. (3) giving
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TÍ
fr,' I

6nz 2(pol2) Qnz,-(¡t r/2)z){*.,*(
It- (¡t.rl2) + +

2 (uo/2¡

A.+ (p.o/2)+ *m i m+ (pI m-(p../2) \ /
-arctanl l+arctanl

\ ,!^í- (pet2)" I \ )Ìî (rol2¡m

-r3nf,-2(¡t ¡2)21(tlp/2)tn(ryt)- ntu,rzt,rF;æ), (A4)

where ,4. regulates the cutoff of the integral. The region in which we are interested (the chiral limit) has m,<(p.ol2). Thus the
arguments of the a¡ctans are complex. We use the reiationship

i ll-iz.\
arctan(¿)= zh\t*¿) (45)

to rewrite this expression in terms of logarithms with real arguments. Collecting the logarithms together results in the
following expression for the p+n¡r self-energy, for m.<(y,o/2):

f1-- 1 (

20.,: - *, ¡Aøl-l}t olzt2 - m2.1trz

,at( nt2nfmz,- (¡L. rl2)2f + L2lm2,-2(p" rl2)21- 2^( p. o/2) +m (uo/2)

*2,¡lrz + rt2,- (u o/2121

- 13 m2,- 2 ( ¡t o/2)2 l( ¡t 4)'(ryt) -A.(p.o/2)'tPfi (A6)

Looking at just the lowest order, nonanalytic, terms in the expansion about rz.:0, we have

f7., r

6nz 2(p,rl2) l(, < *,, rf - 3 ( ¡t. o 
/ 2) m2, + 

t, 

h) + 13 m2, - z ( tt, r z¡'z 1 ç ¡r ¡ z¡]tn( n t .)sp LNA_ _

t'
- -:J!+nta_ln1m.¡,

41r" p;

which is the result given in Eq. (5).
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Abstract

Rather than regarding the restriction of current lattice QCD simulations to
quark masses that are 5-10 times larger than those observed, we note that
this presents a wonderful opportunity to deepen our understanding of QCD.
Just as it has been possìble to learn a great deal about QCD bV treating l/"
as a variable, so the study of hadron properties as a function of quark mass is

leading us to a much deeper appreciation of hadron structure. As examples we

cite recent progress in using the chiral properties of QCD to connect hadron

masses, magnetic moments, charge radii and structure functions calculated at
large quark masses within lattice QCD with the values observed physically.

I. INTRODUCTION

In striving to understand the properties of QCD the generalization to an arbitrary num-
ber of colours, À., particularly the limit,¡/. -+ oo (or "large l/.") has been extremely
valuable. It has even proven possible to distinguish between models of hadron structure and
to guide the further developments of such models on the basis of their large l/. behaviour

[1] Until recently it has generally been regarded as an unfortunate liability that current
lirnitations on computer power restrict lattice QCD simulations with dynamical fermions to
large quark masses. We would like to present a rather clifferent view concerning the lattice
data at large quark masses. In particular) we argue that like the behaviour as a function of
l/", lattice results as a function of quark mass oflet- extremely valuable new insights into the
nature of QCD and especially into hadron structure.

To be a little more quantitative, the restriction to large quark masses in lattice simu-
lations means typically 50 MeV or higher. Thus, in order to compare hadron properties
calculated on the lattice one has to extrapolate as a function of quark mass (on top of all
the other extrapolations, lattice spacing, lattice size, etc.) all the way to the physical light
quarÌ< masses) around 5 or 6 MeV. Such extrapolations are complicated enormousLy by the
fact that chiral symmetry is spontaneously broken in QCD. The mass of the pion, which is
the Goldstone boson cor-responding to this broken symmetry [2], behaves as:

õl
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ml x m, (with TT1" : rrtu : m¿ l0), (1)

as the quark mass, rn, moves away from zero_ this is the Gell Mann-Oakes-Renner (GOR)

relation. While Eq.(t) is, in principle, only guaranteed for quark masses, near zero) explicit

lattice calculations show that it holds over an enormous range, as high as n1r - 1GeV.

For convenience, rather than measuring the deviation from exact chiral symmetry using rn,

which is scale dependent, we shall :use rn2^.

In terms of mn, current lattice calculations are typicallyrestricted to pion masses larger

than 500 MeV, with some pioneering work reporting preliminary results as low as 310 MeV'

In order to compare these results with experimental data on hadron properties it is necessary

to extrapolate the calculations at large pion masses to the physical value. In doing so it
is crucial to respect the constraints imposed by chiral symmetry in QCD. In particular, as

we discuss below, the existence of Goldstone bosons necessarily leads to behaviour which is

non-analytic in the quark mass.

The structure of this article is that we first explain the origin of the non-analyticity
associated with Goldstone boson loops. We then explain, using the specific case of the

nucleon mass, how this non-analytic structure has been incorporated into a nerff method for

extrapolating hadron masses from the large values characteristic of lattice calculations to

the physical region. The consequences of this for the sigma commutator are then explained.

Next we turn to recent results for baryon electromagnetic properties. Finally we discuss

the most recent ìnvestigations of the proton structure function, especially the importance

of chiral symmetry in connecting existing calculations of lattice moments with data. We

conclude with a summary of the promised insights into the nature of hadron structure within

QCD that follow from all these investigations.

II. GOLDSTONE BOSON LOOPS AND NON-ANALYTICITY

For our purposes the primary significance of spontaneous chiral symmetry breaking in

QCD is that there are contributions to hadron properties from loops involving the resulting

Gold.stone bosons. These loops have the unique property that they give rise to terms in an

expansion of most hadronic properties as a function of quark mass which are not analytic.

As a simple example we consider the nucleon mass. The most important chiral corrections

to M¡¡ come from the processes ly' ) Nn -+ 1/ (ø¡¡¡¡) and lr/ -+ Azr -+ 1r/ (o¡ra). (W"
will come to what it means to say these are the most important shortly.) We write Mtv :
MRî'" t ø¡¿¡¿ * ø¡¿¿. In the heavy baryon limit one has

øNN: -ffi¡,**rffi., e)

where g¿, fn are strictly evaluated in the chiral limit. Here u(k) is a natural high momentum

cut-off which is the Fourier transform of the source of the pion field (e.g. in the cloudy bag

model (CBM) it is 371 (kR)lkR, with -R the bag radius [3]). From the point of view of PCAC

it is natural to identify u(k) with the axial form factor of the nucleon, a dipole with mass

parameter 1.02 + 0.08GeV.
Regardless of the form chosen for the ultra-violet cut-off, one finds that ø¡¿¡¡ is a non-

analytic function of the quark mass. The leading non-analytic (LNA) piece of o¡¿¡¿ is inde-

pendent of the form factor and gives

2



olî/: -ffi^". - mt' (3)

This has a branch point, as a function of m, at, m : 0. Such terms can only arise from
Goldstone boson loops.

A. Case Study: the Nucleon Mass

It is natural to ask how significant this non-analytic behaviour is in practice. If the pion
mass is given in GeV, "kX/ 

: -5.6m3* and at the physical pion mass it is just -17 MeV.
However, at onìy three times the physicaì pion ma,ssi m* :420MeV, it is -460MeV - half
thc mass of thc nucleon. If one's aim is to extract physìcal nuclcon propcrties from lattice
QCD calculations this is extremely important. The most sophisticated lattice calculations
with dynamical fermions are only just becoming feasible at such low masses and to connect
to the physical world one must extrapolate from rrlr - 500MeV to mn: 140MeV. Clearly
one must have control of the chiral behaviour.

Figure 1 shows recent lattice calculations of My as a function of ml from CP-PACS and
UI(QCD [ ]. The dashed line indicates a fit which naively respects the presence of a LNA
term,

Mw:o+þ*'r+l*t*, (4)

with a, p and 7 fitted to the data. While this gives a very good fit to the data, the chiral
coefficient 7 is only -0.761, compared with the value -5.60 required by chiral symmetry. If
one insists that 7 be consistent with QCD the best fit one can obtain with this form is the
dash-dot curve. Thìs is clearly unacceptable.

An alternative suggested recently by Leinweber et al. [5], which also involves just three
parameters, is to evaluate d¡¿¡¿ and ø¡¿a with the same ultra-violet form factor, with mass
parameter Ä, and to fit M¡¿ as

M¡v : o + þ^?,1 o¡,¡w(m*, Â) + oy6(rn*,1\). (5)

Llsing a sharp cut-off (u(k) : á(^-k)) these authors wele able to obtain analytic expressions

for ø¡¡¡¡ and o¡¡6 which reveal the correct LNA behaviour - and next to ieading (NLNA) in
the An case, øfflN¡ - nrllnmn.
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FIG. 1. A comparison between phenomenological fitting functions for the mass of the nucleon

- from Ref. [5]. The two parameter fit corresponds to using Eq.(4) with 7 set equal to the value

known from ¡PT. The three parameter fit corresponds to letting 'y vary as an unconstrained fit
parameter. The solid line is the two parameter fit based on the functional form of Eq.(5).

These expressions also reveal a branch point at Trì,r: M6- M¡¿, which is important if
one is extrapolating from large values of mn to the physical value. The solid curve in Fig. 1

is a two parameter fit to the lattice data using Eq.(5), but fixing A at a value suggested by

CBM simulations to be equivalent to the preferred 1 GeV dipole. A small increase in ,4. is

necessary to fit the lowest mass data point, at m2* - 0.1 GeV2, but clearly one can describe

the data very well while preserving the exact LNA and NLNA behaviour of QCD.

B. Consequences for the Sigma Cornmutator

The analysis of the lattice data for M¡¿, incorporating the correct non-analytic behaviour,

can yield interesting new information concerning the sigma commutator of the nucleon:

1o¡¿:d (NI[8,u, lQ'u, Hqcn]l11ú) : (Nln(au + dd)lN) (6)

This is a direct measure of chiral SU(2) symmetry breaking in QCD, and the widely accepted

experimentalvalue is 45t8MeV [6]. (Although there are recent suggestions that it might
be as much as 20 MeV larget [7].) Using the Feynman-Hellmann theorem one can also write

.N:*W-:*'^W. (z)

Historically,lattice calculations have evaluated < Nl(az + dd)ll/ > at large quark mass and

extrapolated this scale dependent quantity to the "physical" quark mass, which had to be

determined in a separate calculation. The latest result with dynamical fermions, o¡¡ : 18*5
MeV [S], illustrates how difficult this procedure is. On the other hand, if one has a fit to
M¡¡ as a function of mn which is consistent with chiral symmetry, one can evaluate a¡¿
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directly using trq.(7). Using Eq.(5) with a sharp cut-off yields oN - 55 MeV, while a dipoÌe
form gives oN - a5 MeV [9]. The residual modei dependence can only be removed by
m.ore accurate laLtice data aL low rrt2n. Nevertheless, the lesult o¡v € (45,55) MeV is in
very good agreement with the data. In contrast, the simple cubic fit, with 7 inconsistent
with chiral constraints, gives - 30 MeV. Until the experimental situation regarding a¡¿

improves, it is not possible to draw definite conclusions regarding the strangeness content of
the nucleon. However, the fact that two-flavour QCD reproduces the current prefered value
should certainly stimulate some thought and a lot of work.

III. ELECTROMAGNETIC FORM FACTORS

o.12

0.08

Uo

0.04

0.00
0.8 1.00.0 0.2 o.4 0.6

Q'1cev'¡

FIG. 2. Recent data for the neutron electric form factor in comparison with CBM calculations

for a confining radius around 0.95fm - from Ref. [10],

It is a general consequence of quantum mechanics that the long-range charge structure
of the proton comes from its n* cloud (p -+ nr+), while for the neutron it comes from its n'-
cloud (rz -+ pr-).However, it is noi often realized that the LNA contr-ibution to the nucleon
charge radius goes like lnmn and diverges as m -+ 0 111]. This cannot be reproduced by a
constituent quark model. Figure 2 shows the latest data from Mainz and NIKHtrF for the
neutron electric form factor, in comparison with CBM calculations for a confinement radius
between 0.9 and 1.0 fm. The long-range î- tail of the neutron plays a crucial role.

While there are only limited (and indeed quite old) lattice data for hadron charge radii,
recent experimental progress in the determination of hyperon charge radii has led us to
examine the extrapolation procedure for obtaining charge data from the lattice simulations

[12]. Figure 3 shows the extrapolation of the lattice data [13] for the charge radius of the
ploton. Clearly the agreement with experiment is much better once the chiral log required
by chiral symmetry is correctly included, than if, for example, one simply made a linear
extlapolation in the qualk mass (or m]). Full details of the lesults for all the octet baryons
may be found in Ref. [12].
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FIG. 3. Fits to lattice results for the squared"electric charge radius of the proton - from Ref.

[12]. Fits to the contributions from individual quark flavours are also shown: the z-quark sector

results are indicated by open triangles and the d-quark sector results by open squares' Physical

values predicted by the fits are indicated at the physical pion mass, where the full circle denotes

the result predicted from the first extrapolation procedure and the full square denotes the baryon

radius reconstructed from the individual quark flavor extrapolations. (N.8. The latter values are

actually so close as to be indistinguishable on the graph.) The experimental value is denoted by

an asterisk.

The situation for baryon magnetic moments is also very interesting. The LNA contribu-

tion in this case arises from the diagram where the photon couples to the pion loop. As this

involves two pion propagators the expansion of the proton and neutron moments is:

,n(ù _ pß(") + omn I O(*r"). (s)

H"r" ¡rf,(') is the value in the chiral limit and the linear term in mn \s proportion al to mtr ,

a branch point at m -- 0. The coefficient of the LNA term is a : 4.41t'NGeV-1. At the

physical pion mass this LNA contribution is 0.6¡r¡¿, which is almost a third of the neutron

magnetic moment. No consti,tuent quark model can or should get better agreement with' data

than thi,s.

Just as for M¡¡, the chiral behaviour of ¡,Lr@) is vital to a correct extrapolation of lattice

data. One can obtain a very satisfactory fit to some rather old data, which happens to be

the best available, using the simple Padé [14]:
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FIG.4. Absolute value of the ratio of the protonTo neutron magnetic moments as a function
of m2* obtained from the Padé approximants in Eq. (9). We stress that the behaviour as m2n -+ 0
is model independent.

The data can only determine trvo parameters and Eq.(g) has just two free parameters
while guaranteeing the correct LNA behaviour as r'nr -+ 0 and the correct behaviour of
heavy quark effective theory (HQET) at large ml. The extrapolated values of pe and p"n at
the physical pion mass, 2.85+0.22¡1,¡¡ and -1.90 + 0.15p¡¡, respectively, are currently the
best estimates from non-perturbative QCD [14]. For more details of this fit we refer to Ref.

[14], while for the application of similar ideas to other members of the nucleon octet we refer
to Ref. 115], and for the strangeness magnetic moment of the nucleon we refer to Ref. [16].

Incidentally, from the point of view of the naive quark model it is interesting to plot
the ratio of the absolute values of the proton and neutron magnetic moments as a function
of m2.. The agreement of the constituent quark result, namel1, 3f2, wtth the experimental
value to within a few percent is usually taken as a major success. However, we see from Fig.
4 that it is in fact fortunate to obtain such close agreement [17]. We stress that the large
slope of the ratio near m2,: 0 is model independent.

IV. STRUCTURE FUNCTIONS

The parton distribution functions (PDFs) of the nucleon are light-cone correlation func-
tions which, in the infinite momentum frame, are interpreted as probabiliiy distributions
for'finding specific partons (quarks, antiquarks, gluons) in the nucleon. They have been

measured in a variety of high energy processes, ranging from deep-inelastic lepton scattering
to Drell-Yan and massive vector boson production in hadron-hadron collisions. A wealth of
experimental information now exists on spin-averaged PDFs, and an increasing amount of
data is being accumulated on spin-dependent PDFs [18j.

At high momentum transfer (Ç'?) the dominant component of the PDFs are determined
by non-perturbative matrix elements of certain "leading twist" operators. In principle these

matrix elements, which correspond to moments of the measured structure functions, con-
tain vital information about the non-perturbative structure of the target. An extensive phe-

7



nomenology has been developed over the years within model QCD studies, and in some cases

remarkable predictions have been made from the insight gained into the non-perturbative

structure of the nucleon. An example is the d - A u"ymmetry, predicted [19] on the basis of

the nucleon's pion cloud [20], which has been spectacularly confirmed in recent experiments

at CtrRN and Fermilab [21]. Other predictions, such as asymmetries between strange and

antistrange l22l and spin-dependent sea quark distributions, Au - Ld, still await experi-

mental confirmation. Note that none of these could be anticipated without insight into the

non-perturbative structure of QCD.
Despite the phenomenological successes in correlating deep-inelastic and other high en-

ergy data with low energy hadron structure, the ad hoc nattre of some of the assumptions

made in deriving the low eneïgy models from QCD leaves open a number of questions about

the ability to reliably assign systematic errors to the model predictions. One approach in

which structure functions can be calculated systematically from first principles' and which

at the same time allows one to search for and identify the relevant low energy QCD degrees

of freedom, is lattice QCD.

o.4

o.2

0.1

'''03
I

0 00 20 40 60 B1 0

^n" fcevz]
FIG. b. First moment öf the difference u - d from various lattice QCD simulations (QCDSF

124-261and MIT l27l), at a scale Q2 -- q GeV2. Calculations from the CBM are shown as small

squares. The dashed curve is asimple fit which is linear \n m2n, while the solid curve incorporates

the constraints of chiral symmetry, as in Eq.(10)'

Early calculations of structure function moments within lattice QCD were performed

by Martinelli and Sachrajda [23]. However, the most comprehensive analysis has been

performed by the QCDSF Collaboratiot 124-26.l - aibeit within quenched QCD. Recently

the MIT group has performed the first full (unquenched) QCD calculations of non-singlet

moments [27]. The moments from the full QCD simulations are very similar to those from

the quenched calculations. This is consistent with the suggestions of chiral quark models,

like the CBM, that in the mass region currently accessible quark loops are suppressed.

As for the othe¡ nucleon properties discussed above, we propose to extraplate the lattice

data to the physical pion mass using a formula which is compatible with the LNA structure
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of the PDFs. This behaviour was derived recently, with the result that the LNA behaviour
involved a term in m2*lnm" 128). For an initial investigation we concentrate on the non-
singlet combination of PDFs , u-d, in which "disconnected" quark loops cancel. Calculations
based on the CBM (which incorporate the LNA chiral structure just discussed) actually
produce quite a reasonable description of the behaviour of the moments of the PDFs as

a function of quark mass) as shown in Fig. 5 (open squares). More important frotn the
phenomenological point of view, the CBM calculations (for the n'th moment of the PDFs)
can be fit with the simple expansion in mn:

þi, - ri) : a, j b,m2, I anc¡1¡¡m'h(:# -\ , (10)
ytttn -T p /

where c¡¡s4 is model independent.
The scale ¡; in trq.(10) is effectively the scale at which the rapid, chiral variation at

Iow mn turns off. The best fit to the lattice data is obtained with a value p - 0.4 - 0.5

GeV - a very similar scale to that found, for example, for the magnetic moments. Clearly
trq.(10) gives a very good description of the lattice data for the first moment of the non-
singlet distribution d - u. Taking into account the rapid chiral variation as m2* -+ 0 there
is also quite good agreement between the extrapolated value of the first moment and the
experimentally determined moment. A similar result holds for the second and third moments
too [29].

V. CONCLUSION

In the light of the numerous examples presented in this brief review, it should be evident
that the study of hadron properties as a function of quark mass shows a clear pattern:

o In the region of quark masses rn > 60 MeV or so (mn greater than typically 400-

500 MeV) hadron properties are smooth, slowly varying functions of something like a

constituent quark mass, M - Mo I cm (with c - 1).

o Incleed, MN - 3M, Mp,, - 2M and magnetic moments behave like I lM '

o As n¿ decreases below 60 MeV or so) chiral symmetry leads to rapid, non-analytic
variation, with 6MN - m3l2,6pn - mr12 and
6 < 12 ).h- in nz'

. Chiral quark models like the cloudy bag provide a natural explanation of this transi-
tion. The scale is basically set by the inverse size of the pion source - the inverse of
the bag radius in the bag model.

These are remarkable results that wìll have profound consequences for our further explo-
ration of hadron structure within QCD as well as the analysis of the vast amount of data now
being taken concerning unstable resonances. In terms of immediate results for the structure
of the nucleon, we note that the careful incorporation of the correct chiral behavioul of QCD
into the extrapolation of its properties calculated on the lattice has produced:

. The best values of the proton and neutron magnetic moments from QCD.

I



o The best value of the sigma commutator.

o Improved values for the charge radii of the baryon octet.

o Improved values for the magnetic moments of the hyperons.

. Good agreement between the extrapolated moments of the non-singiet distribution
u - d and the experimentally measured moments.

In addition, although we did not have time to discuss it, this approach has led to the best

current value for the strangeness magnetic moment of the proton from lattice QCD [16].

Clearly, while much has been achieved, even more remains to be done. It is vital that
iattice calculations with dynamical fermions are pushed to the lowest possible quark masses'

taking advantage of developments of improved actions and so on. It is also vital to further
develop our understanding of the physics of chiral extrapolation by comparison with these

new calculations, by looking at new applications and by further comparison with chiral

models.
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As a direct source of information on chiral symmetry breaking within QCD, the sigma
commutator is of considerable importance. Since hadron structure is a non-perturbative
problem, numerical calculations on a space-time lattice are currently the only rigorous
approach. With recent advances in the calculation of hadron masses wìthin full QCD,
it is of interest to see whether the sigma commutator can be calculated directly from
the dependence of the nucleon mass on the input quark mass. We show that, provided
the correct chirai behaviour of QCD is respected in the extrapolation to realistic quark
masses, one can indeed obtain a fairly reliable determination of the sigma commutator
using present lattice data. For two-flavour dynamical fermion QCD the sigma commutator
lies between 45 and 55 MeV based on recent data from CP-PACS and UKQCD.

1. \MHAT IS THE SIGMA COMMUTATOR ?

In the quest to understand hadron structure within QCD, small violations of funda-
mental symmetries play a vital role. The sigma commutatorT d¡,r:

1_
oN : i f "l lQ;r,lQ¿r,11lllN): ?n (Nl uu + ddl¡ú) : ^W (1)

(with Q¿5 the two-flavour (i:1 ,2,, 3) axial charge) is an extremely important example of
such a symmetry.

2. PREVIOUS ATTEMPTS

ø¡¡ cannot be accessed directly by experimental measurements. However, one can infer
from world data a value of 45 t 8 MeV [i]. This result has been undel some scrutiny
recently due to the progress in new determinations of the pion-nucleon scattering lengths

[2,3] and new phase shift analyses [4,5]. The full lattice QCD calculations upon which our
work is based ìnvolve only two active flavours, the heavier third flavour is approximated
by a renormalisation of the strong coupling constant. As a guide, recent work suggests

that the best value of o¡¿ may be 8 to 26 MeV larger than the value quoted above [6].
One can notionally use QCD to directiy calculate the value of ø¡¿, but in practice

the calculation iras pïoven to be difficult. Early attempts [7] to extract ø¡¿ from the
quark mass dependence of the nucleonmass (using Eq.(1)) in quenchecl QCD with naive
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extrapolations produced values in the range 15 to 25 MeV. Attention subsequently turned

to determining a¡¿ by calculating the scalar matrix element of the nucleon (Nluu + ddlN)

There it was discovered that the sea-quark loops make a dominant contribution to o¡¿

[S,g]. These works, based on quenched QCD simulations found values in the 40 to 60

MeV range, which are more compatible with the experimental values quoted earlier.

On the other hand, the most recent estimate of o¡¡, and the only one based on a
two-flavour, dynamical-fermion lattice QCD calculation, comes from the SESAM collabo-

ration. They obtain a value of 18 t 5 MeV [10], through a direct calculation of the scalar

matrix element (Nlau + ddlN) and_the quark mass m.

The fact that neither (NlAu + ddlN), nor m is renormalisation group invariant in-

troduces a major difficulty in calculating the sigma commutator in this approach. One

must reconstruct the scale invariant result from the product of the scale dependent ma-

trix element and the scale dependent quark masses. The latter are extremely difficult to
determine precisely and are the chief sources of uncertainty. Furthermote, since lattice

calculations are made at quite large pion masses, typically above 500 or 600 MeV, one

needs to extrapolate, in the pion mass down to the physical value at 140 MeV. An impor-

tant innovation adopted by Dong et al. was to extrapolate (,A/lau + ddl^/) using a form

motivated by chiral symmetry, namely a, + brn+. Regrettably, the value of ó used was not

constrained by chiral symmetry and higher order terms of the chiral expansion were not

considered. Furthermore, since the work was based on a quenched calculation, the chiral

behaviour implicit in the lattice results involves incorrect chiral physics [11].

3. THE CURRENT CALCULATION

Our recent work [12] was motivated by the improvements in computing power, together

with the development of improved actions [13], which have led to accurate calculations

of the mass of the nucleon within full QCD (for two flavours) as a function of rn down

to mn - 500 MeV. (Sìnce m2,is proportional to m over the range studied we choose to

display all results as a function of ml.) We showed that provided that one has control

over the extrapolation of this lattice data to the physical pion mass, one can calculate ø¡¡

from ø¡¡ : n2*AMNIA*7 (which isequivalent to Eq. (1) where rn was used) at m,:140
MeV. This approach has the important advantage that one only needs to work with
renormalization group invariant quantities.

Chir.al perturbation theory (XPT) predicts that the leading non-analytic (LNA) correc-

tion to the self energy contribution to the nucleon mass is proportional to m3* (or mslz¡.

It can be seen in Fig.2 that the preliminarypoint from CP-PACS [14] atm2* - 0.1 Ge\¡2

does indeed suggest some curvature in this low mass region. These observations led the

CP-PACS group to extra,polate their data with the simple, phenomenological form:

(2)

r-ather than a naive linear form (] : 0), as shown in Fig. 1. The corresponding fit to the

combined data set, usìng Eq. (2), is shown as the short-dashed curvein Figs. 1 and 2. lVe

found that this fit gives oN:29.7 MeV. The difficultywith this purelyphenomenological

analysis was discussed in Ref. [16]. The problem is that a derivative is required when

evaluating o¡¡ and the value of ] found in the fit (-0.761 GeV-2) is almost an order of

m""- o+þmi+iM¡¡
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Figure 1. Nucleon mass versus rn?. The solid
data points are CP-PACS results [14], whilst
the open points are UKQCD data [15]. Both
curves are fits using Eq. (Z). The solid curve
has j : 0, whilst the short-dashed curve has

] unconstrained. The vertical line indicates
the physical pion mass.

Figure 2. Data as labelled in Fig. 1. The
solid curve is a fit to Eq. (3) with a dipole
form factor, the dashed curve is the same

fit using a sharp cut-off form factor. The
long-dash curve is a flt to Eq. (3) ercluding
the lowest data point.

magnitude smaller than the model independent LNA coeficient, 7"*o : -5.60 GeV-2,
indicated by XPT.

Recently, an alternative approach was suggested in Ref. [16]. There it was realised
that the pion loop diagrams shown in Fig. 3 yield not only the most important non-
analytic structure, but also give rise to the most signiflcant variation in the nucleon mass
as nlr -+ 0. This leads to the following extrapolation function for M¡¡:

M¡¡: a+ þm?iorl(m*,t\) + o¡¡6(rn,,l\), (3)

where o'¡¿7y and ø¡¡6 âr€ the self-energy contributions of Figs. 3(a) and 3(b), respectively,
using a cut-off in momentum controlled by ,4.. The full analytic expressions for ø¡¿¡¿

and ø¡¡¡ are given in Ref. [16]. For our purposes it suffices that they have precisely the
correct LNA and next-to-leading non-analytic behaviour required by chiral perturbation
theory as n'LÍ -+ 0. In addition,t oNA contains the correct, square root branch point

NNN

t
I

I
I

N N
(a)

A
(b)

Figure 3. One-loop pion induced self energy of the
nucleon.

Sha¡p Cut-orr (Reduced Data)

Shêrp Cut-0lf

3 Paramete¡ fit

Dipole cuL-Oll
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(- l*?-(Mo- M¡v)'lå) at the A-N mass difference, which is essential for extrapolations
from above the A - Nr threshold.

Fitting Eq. (3) to the data, including the point near 0.1 GeV2, gives the dot-dash curve

in Fig. 2. The corresponding value of ø¡¡ is 54.6 MeV and the physical nucleon mass is

870 MeV. Omitting the lowest data point from the fit yields the long-dash curve in Fig. 2

with o¡¡ : 65.8 MeV, demonstrating the need for lattice simulations of QCD at light
quark masses.

4. CONCLUSION

The importance of the inclusion of the correct chiral behaviour is clearly seen by the fact

that it increases the value of the sigma commutator from the 30 MeV of the unconstrained

cubic fit to around 50 MeV. Nevertheless, it is a remarkable result that the present lattice
data for two-flavour dynamical-fermion QCD, yields a stable [12] and accurate answer for

the sigma commutator, an answer which is already within the range of the experimental
values.

This work was supported by the Australian Research Council.
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Abstract
As a direct source of information on chiral symmetry breaking within

QCD, ihe sigma commutator is of considerable importance. With recenb

advances in the calculation of hadron masses within full QCD ii is of
interest to see whether the sigma commutator can be calculated directly
from the dependence of the nucleon mass on the input quark mass. We
show that provided the correct chiral behavior:r of QCD is respected in
the extrapolabion to realisbic quark masses one carì indeed obtain a fairly
reliable determination of the sigma commutator using present lattice data.
Within two-flavour, dynamical-fermion QCD the value obtained lies in ihe
range 45 to 55 MeV.

In the quest to understand hadron structure within QCD, smaìl violations
of fundamental symmetries play a vital role. The sigma commutator, ø¡¡:

1o¡¿=I (Nl [g;r, lQ*,?{))lN) (1)

(with Q¿5 the two-flavour (i:1,2,3) axial charge) is an extremely important
example. Because Ç¿5 commutes with the QCD Hamiltonian in the chiral SU(2)
limit, the effect of the double commutator is to pick out the light quark mass

term from ?7:

o¡¿ = (I/l (muuu + m¿aa) ltr) Q)

Neglecting the very small effect of the u - d mass difference \¡r'e can write Eq. (2)

in the form

oN : (Nln (au + dd) lN) (3)

- 0MNm-
ðm

(4)

* dleinweb@physics.adelaide.edu.au
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with rn -- (*u + n'¿d)12. Equation (4) follows from the Feynman-Hellman the-

orem [3].
White there is no direct experimental measurement of ø¡¡, the value inferred

from wo¡ld data has been 45 * 8 MeV [4] for some time. Recently there has

been considerable interest in this value because of progress in the determination
of the pion-nucleon scattering lengths [5, 6] and new phase shift analyses [7, 8].

For an excellent summary of the sources of the proposed variations and the

disagreements between various investigators we refer to the excellent review of
Kneckt [9]. For our purposes the experimental value is of limited interest as

the full lattice QCD calculations upon which our work is based involve only two

active flavours. Nevertheless, as a guide, the current work suggests that the
best value of ø¡¡ may be between 8 and 26 MeV larger than the value quoted

above [9].
Numerous calculations of aly have been made within QCD motivated models

[10] and there has been considerable work within the framework of chiral pertur-

bation theory [11]. However, direct calculations of ø¡¡ within QCD itself have

proven to be difficuìt. Early attempts [12] to extract øiy from the quark mass

dependence of the nucleon mass in quenched QCD (using Eq.(a) ) produced

values in the range 15 to 25 MeV. Attention subsequently turned to determin-
ing ø,y by calculating the scalar matrix element of the nucleon (Nluu + ddlN)
There it was discovered that the sea quark loops make a dominant contribution
to a¡¡ [14, 15]. These works, based on quenched QCD simulation, found values

in the 40 to 60 MeV range, which are more compatible with the experimental
values quoted earlier.

On the other hand, the most recent estimate of o¡¡, and the only one based

on a two-flavour, dynamical-fermion lattice QCD calculation, comes from the

SESAM collaboration. They obtain a value of 18 * 5 MeV [13], through a
direct calculation of the scalar matrix element (Nlau+ ddlli/) The discrepancy

from the quenched results of Refs. [14, 15] is not so much an unquenching

effect in the scalar matrix element but rather a significant suppression of the
quark mass in going from quenched to full QCD. The difficulty in all approaches

which evaluate (1úlau+ ddlN) is that neither it nor n¿ is renormalization group

invariant. One must reconstruct the scale invariant result from the product of
the scale dependent matrix element and the scale dependent quark masses. The

Iatter are extremely difficult to determine precisely and are the chief source of
uncertainty in ihis approach.

An additional difficulty in extracting tN from lattice studies is the need to
extrapolate from quite large pion masses, typicalìy above 500 or 600 MeV. An
important innovatiol adopted by Dong et al., bu,t not by the SESAM collabo-

ration, was to extrapolate the computed values of (,1úluu + ddlN) using a form

motivated by chiral symmetry, namely a + brnà. On the other hand, the vaÌue

of b used was not constrained by chiral symmetry and higher order terms of the

chiral expansion were not considered. Furthermote, since the work was based

on a quenched calculation, the chiral behaviour implicit in the lattice results

involves incorrect chiral coefficients [16].

2



Our work is motivated by recent, dramatic improvements in computing
power which, together with the development of improvecl actions [17], mean

that we now have accurate calculations of the mass of the nucleon within /ull
QCD (for two flavours) as afunctionof m down to mr - 500 MeV. (Since rn]
is proportional to m over the range studied we choose to display all results as

a function of m2".) In addition, CP-PACS has recently published a result at
m, - 300 MeV , albeit with somewhat large errors. Provided that one has

cont¡ol over the extrapolation of this iattice data to the physical pion mass,

?nr j H= J.40 MeV, one can calculate o¡¿ by evaluating Eq (+) at the physical
pion ma,ss Note tha,t this a,pproa,ch ha,s the ìmporta,nt advantage over the cal-
culation of t,he scalar density that one only needs to work with renormalization
group invariant quantities. We therefore turn to a consideration of the method
of extrapolation.

The lattice data for the nucleon mass calculated by UKQCD [1] and CP-
PACS [2] is shown in Fig. 1. Both groups cíte aI}Vo uncertainty in setting the
lattice scale, so we have scaled the former down and the latter up by 5% so that
the data sets are consistent. Over ahnost the entire range of m2n, th. data shows
a dependence on quark mass that is essentially linear. However, the preÌiminary
point at m2, - O.t GeV2 suggests some curvature in the low mass region. This is
indeed expected on the basis of chiral symmetry with the leading non-analytic
(LNA) correction (in terms of rn) being proportional to m3, (n3/2):

dMril^:7"'ornl , 7""o = .]gT (5)- 32nfl'

These observations led the CP-PACS group to extrapolate their data with the
simpie, phenomenological form :

M¡¡-a+þm?+ims, (6)

The corresponding fit to the combined data set, using Eq. (6) , is shown as the
short-dashed curve in Fig. I and the parameters (ã, B,i) = Q.912,1.69, -0.761)
(the units are appropriate powers of GeV). This yields a value for the sigma com-

mutator, oß) = 29.7 MeY , where the superscript stands for "phenomenological".
The difficulty with this purely phenomenological analysis was discussed in

Ref. [18]. That is, the value of i - -0.761 is almost an order of magnitude
smaller than the modeì independent LNA term, 7"o : -5.60 GeV-2. Clearly
this presents some concern when evaluating ø,y, because of the derivative re-
quired. An alternative approach io this problem was recently suggested by
Leinweber et al. [18]. They realised that the pion loop diagrams, Fig. 2(a) and
2(b) not only yield the most important non-anal),tic structure in the expression
for the nucleon mass, but amongst all the possible meson baryon states which
contribute to the nucleon mass within QCD, they alone give rise to a significant
variation of the nucleon mass as mr -+ 0. In Ref. [18] it was suggested that one

should extrapolate M¡¡ as a function of quark mass using:

IvI¡¡ = " + þ*7 * oNN(m*,r\)+ ar.ra(rn.,,Â), (7)
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Figure 1: Nucleon mass calculated by CP-PACS (solid points) and UKQCD
(open points), as a function of m2n, both are scaled by 6% to improve consistency.

The solid curve is a fit to Eq. (7) with a 1.225 GeY dipole form factor, while the

dashed curve is the same fit using asharp cut-offformfactor (d-function). The

short-dash curve is a fit to Eq. (6), and the long-dash curve is a fit to Eq (7)

ercluding the lowest data point. The vertical line indicates the physical pion

lnASS.

where ø¡¡¡¡ and a1y4 are the self-energy contributions of Figs. 2(a) and 2(b),

respectively, using a sharp cut-ofl in momentum, d(Â - k). The full analytical
expressions for o¡ry and ø,y4 are given in Ref. [18]. For our purposes it suf-

fices that they have precisely the correct LNA and next-to-leading non-analytic
behaviour required by chiral perturbation theory a.s rnr -+ 0. In additi-orl' dNA

contains the correct, square root branch point (- l*? - UWo - tW*)\\ at the
A - ¡/ threshold, which is essential for extrapolations from above the A - 1/

threshold.
Fitting Eq (7) to the data, including the point near 0.1 GeV2, gives the dot-

dash curve in Fig. I ((o,þ,À) : (1.42,0.564,0.661)). The corresponding value

of a¡¿ is 54.6 MeV and the physical nucleon mass is 870 MeV. Omitting the

lowest data point frorn the fit yields the long-dash curve in Fig. 1 ((a,B,.{) =
(1.76,0.386,0.7S9))with ø7y = 65.8 MeV. Clearly the curvature associated with
the chiral corrections at low quark mass is extremely important in the evaluation
of o¡¡.

In order to estimate the error in the extracted value of a¡¿ we would need to

have the full data set on a configuration by configuration basis. As this is not
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Figure 2: One-loop pion induced self energy of the nucleon

Sca,ling (f lt!

cr'-FAc9 UI(QCD Dipole Sharp Cubic

5 -5 47 .2 + r.8 54.6 +2.0 29.7

10 0 48.1+ 1.9 54.9 L2.0 28.6

0 -10 45.4+r.9 54.3 + 1.9 31.0

Table 1: Sigma Commutator Values. The Dipole and Sharp results were

calculated with our preferred form of a + þm? * ø¡¡¡¿(Â, mo) f- o¡¡6(.lt,mn)
with either a dipole form factor for the Nn vertex or a d-function. The values
of dipole parameter (Â¡) were (I.225,1.250, 1.175) GeV. The Cubic results are

for the " + þm? + l*3* extrapolation function, with 7 unconstrained by chiral
symrnetry- as explained in the text this produces an unreliable value for o¡¿.

available, the errors that we quote are naive estimates only. The extracted value
of ø¡¿ is very well determined by the present data, the result being 54.6+2.0
MeV. Since the process of setting the physical mass scale viathe string tension
is thought to have a systematic error of 10%, one might naively expect this to
apply to ø¡¿. However, o/lmasses in the problem including the pion (or quark)
mass, as well as that of the nucleon, scale with the lattice parameter a. It turns
out that when one uses Eq. (4) at the physical pion mass (which means a slightly
different value of maif a changes) , the value of ø¡¡ is extremely stable. If, for
example, one raises the CP-PACS data by ISVo and the UKQCD data by 5%

(instead of 5% and -5%, respectively) the value of ø7y shifts from 54.6 * 2.0 to
55.2+ 2.1 MeV. We present calculations in Table I that show, for a variety of
scalings of the lattice data, how stable our results are.

The remaining issue, for the present data, is the rnodel dependeuce associated
with the cltoice of a sharp cut-off in the pionic self-energies. Our investigations
in Ref. [18] showed that Eq. (7) could reproduce the dependence of M7¡ on m2,

within the cloudy bag model, and that it could also describe the dependence of
pion self-energy terms calculated with dipole form factors. Tlius we believe that
any model satisfying the essential chiral constraints and fitting the lattice data
should give essentially the sarlre answer. We checked this by numerically fitting
the lattice data (solid curve) with the fo¡m of Eq. (7) but with a¡¿¡¡ and ø¡¿4

calculated with dipole fortn factors of mass .4.¡ at all pion-baryon vertices. Since

the prefelred phenomenological form of the 1úzr form factor is a dipole, we regard
the dipole result shown in the first line of Table 1 as our best estimate, namely
oN = 47.2 * 1.8 MeV with fit parameters (o,þ,Lp) : (2.02,0.398,1.225). A

N
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remaining source of error is that, although the lattice results were calculated
with an improved action, there still is an error associated with the extrapolation
to the infinite volume, continuum limii. The importance of the inclusion of the

correct chiral behaviour is clearly seen by the fact that it increases the value

of the sigma commutator from the 30 MeV of the unconstrained cubic fit to

around 50 MeV.
Clearly an enormous amount of work remains to be done before we will fully

understand the structure of the nucleon within QCD. It is vital that the rapid
progress on improved actions and faster computers continue and that we have

three flavour calculations within full QCD at masses as close as possible to the

physical quark masses. Nevertheless, it is a remarkable result that the present

lattice data for dynamical-fermion, two-flavour QCD, yields such a stable and

accurate answer for the sigma commutator, an answer which is already within
the range of the experimental values. The implications of this result for models

of hadron structure need to be explored urgently.
One of us (SVW) would like to acknowledge helpful discussions with Tom

Cohen at an early stage of this work. We would also like acknowledge helpful
comments from Chris Allton, Craig Roberts and Robert Perry. This work was

supported in part by the Australian Research CounciÌ.
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Chiral Corrections to Baryon Masses Calculated within Lattice QCD

Anthony W. Thomas*, Derek B. Leinwebert, Kazuo Tsushima+, and Stewart V. Wrights
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University of Adelaide, Australia 5005

Consideration of the analytic properties of pion-induced baryon self energies leads to
new functional forms for the extrapolation of light baryon masses. These functional forms

reproduce the leading non-analytic behavior of chiral perturbation theory, the correct

non-analytic behavior at the 1/zr threshold and the appropriate heavy-quark limit. They

involve only three unknown parameters, which may be obtained by fitting lattice QCD
data. Recent dynamical fermion results from CP-PACS and UKQCD are extrapolated

using these new functional forms. We also use these functions to probe the limit of
applicabiiity of chiral perturbation theory.

1. Introduction

Chiral symmetry requires that the nucleon mass has the form

mx(rn^) : m¡¡(0) -l am2, + 0*"" + lmlInmr.n+ . . .,

forsmallrn*,where-nr(()), a,B,andTarefunctionsofthestrongcouplingconstant o"(p).
Recent work [1] has shown that using physical insights from chiral perturbation theory

and heavy quark effective theory one can derive new functional forms which describe the

extrapolation of light baryon masses as functions of the pion mass (*"). These forms are

applicable beyond the chiral perturbative regime and have been compared successfuliy

with predictions from the Cloudy Bag Model [2] and recent dynamical fermion lattice

QCD calculations.

2. Analyticity

By now it is well established that chiral symmetry is dynamically broken in QCD and

that the pion is almost a Goldstone boson. It is strongly coupled to baryons and therefore

plays a significant role in the 1ú and A self energies. In the limit where the baryons are

heavy, the pion-induced seif energies of the N and A, to one loop, are given by the

* athomas@physics. adelaide.edu. au
t dleinweb@physics. adelaide.edu. au
I ktsushim@physics. adelaide.edu. au
$ swright@physics. adelaide. edu. au



2

t

NN
(a)

N NN
(̂b)

J

^ ^ ^ ^

Figure 1. One-loop pion induced self energy of the nucleon and the delta.

processes shown in Fig. 1(a-d). We label these by o¡o¡0, oNA, oaN, and 444. Note that
we have restricted the intermediate baryon states to those most strongly coupied, namely
the ,^/ and A states. Other intermediate states are suppressed by the baryon form factor
describing the extended nature of baryons.

The leading non-analytic contribution (LNAC) of these self energy diagrams is associ-

ated with the infrared behavior of the corresponding integrals - i.e., the behavior as the
loop momentum k -+ 0. As a consequence, it should not depend on the details of a high
momentum cut-off, or form factor. In particular, it is sufficient for studying the LNAC
to evaluate the self energy integrals using a simple sharp cut-off, u(k) : 0(L - k) as the
choice of formfactor. The explicitforms of the self energy contributions for a¡¡¡¡, ø¡¡4 and
so on are given in [1]. Moreover, there is little phenomenological difference between this
step function and the more natural dipole, provided one can tune the cut-off parameter
,A.. The seif energies involving transitions of N -+ A or A -+ N are characterizedby a

branch point at mn : L,M.

2.1. Chiral Limit
The leading non-analytic (LNA) terms are those which correspond to the lowest order

non-analytic functions of mn - i."., odd powers or logarithms of nrn. By expanding the
explessions given in [1], r,ve find that the LNA contributions to the nucleon/delta masses

are in agreement with the well known results of XPT [4,5].
Of course, our concern with respect to lattice QCD is not so much the behavior as

TtLn ) 0, but the extrapolation from high pion masses to the physical pion mass. In this
context the branch point at m2, : L.M2 is at least as important as the LNA behaviour
n€â,I 77?, : Q.

2.2. IIeavy Quark Limit
Heavy quark effective theory suggests that as rrì,r -+ oo the quarks become static and

hadron masses become proportional to the quark mass. In this spirit, corrections are
expected to be of order If mo where mo is the heavy quark mass. Thus we would expect
the pion induced self energy to vanish as I f m, as the pion mass increases. The presence of
a fixed cut-off .4. acts to suppress the pion induced self energy for increasing pion masses.

While some m] dependence in ,A is expected, this is a second-order effect and does not

(̂d)
N
(c)
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alter this qualitative feature. Indeed, in the large mn limit of the equations, we find that
they tend to zero at least as fast as llml.

The agreement with both the chiral limit and expected behaviour in the heavy quark

limit suggests the following functional form for the extrapolation of the nucleon mass [1]:

MN : a¡¡ f 0wm7 I o¡,tx(m*, Â) + o¡¡6(m,, t\) . (1)

3. Lattice Data Analysis

We consider two independent lattice simulations of the N and A masses from CP-PACS

[6] and UKQCD [7]. Both of these use improved actions to study baryon masses in full

QCD with two light flavours. We find that the two data sets are consistent, provided one

allows the parameters introducing the physical scale to float within systematic errors of

r0%.
We begin by considering the functional form suggested in Section 2 with the cut-off

,A. fixed to the value determined by fitting CBM calculations. This is shown as the solid

curve in Fig. 2. In order to perform model independent fits (i.e. with Â unconstrained), it
is essential to have lattice simulations at light quark masses approachin g rn? - 0.1 GeV2.

This flt is illustrated by the dash-dot curve.

Common practice in the lattice community to use a polynomial expansion for the mass

dependence of hadron masses. Motivated by XPT the iowest odd power of mn allowed is

m3*:

MN:"+þ*'*+TI3. (2)

The result of such a fit for the ,A/ is shown in the dashed curve of Fig. 2. The coefficient

of the m3n term, which is the leading non-anaiytic term in the quark mass, in the three

parameter fit is -0.761. This disagrees with the coefficient of -5.60 known from ¡PT
(which is correctly incorporated in Eq. (1), the solid and dash-dot curves) by almost an

order of magnitude. This clearly indicates the failings of such a simple fitting procedure.

4, Summary

In the quest to connect lattice measurements with the physical regime, we have explored

the quark mass dependence of the l/ and A baryon masses using arguments based on

analyticity and heavy quark limits. We have determined a method to access quark masses

beyond the regime of chiral perturbation theory. This method reproduces the leading

non-analytic behavior of XPT and accounts for the internal structure for the baryon

under investigation. We find that the leading non-analytic term of the chiral expansion

dominates from the chiral limit up to the branch point at mn : L'M : 300 MeV, beyond

which XPT breaks down. The predictions of the CBM, and two-flavour dynamical-fermion
Iattice QCD results, are succinctly described by the formulae derived in [1]. The curvature

around. ffit, : L,M , neglected in previous extrapolations of the lattice data, leads to shifts

in the extrapolated masses of the same order as the departure of lattice estimates from
experimental measurements.
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Baryon mass extrapolation
Derek B. Leinweber, Anthony W. Thomas, Kazuo Tsushima and Stewart V. Wright" *

"Department of Physics and Mathematical Physics and Special Research Centre for the Subatomic

Structure of Matter, University of Adelaide, Australia 5005

Consideration of ihe analytical properties of pion-induced baryon self-energies leads to new functional forms
for the extrapolation of lighi baryon masses. These functional forms reproduce the leading non-analytic behavior

of chiral perturbaiion theory, the correct heavy-quark limit and have the advantage of containing information on

the extended structure of hadrons. The forms involve only three unknown paramebers which may be optimized by
fitting to present lattice data. Recent dynamical fermion results from CP-PACS and UK-QCD are extrapolated

using these new functional forms. We also use these functions to probe the limii of the chiral perturbative regime
and shed light on the applicability of chiral perburbation theory to bhe extrapolation of present latiice QCD
results.

o\o
o\
q
O(â
s
o\

o\
o\o

I

O

i'7
X

I

ñ

,\,\

NN

æ

a\

1. FORMALISM

In recent years there has been tremendous
progress in the computation of baryon masses

within lattice QCD. Still, it remains necessary to
extrapolate the calculated results to the physi-
cal pion mass (p = I40 MeV) in order to make
a comparison with experimental data. In doing
so one necessarily encounters some non-linearity
in the quark mass (or m2*), including the non-
analytic behavior associated with dynamical chi-
ral symmetry breaking. We recently investigated
this problem for the case of the nucleon magnetic
moments [1]. It is vital to develop a sound un-
derstanding of how to extrapolate to the physical
pron mass.

1.1. Self-Energy Contributions
Chiral symmetry is dynamically broken in

QCD and the pion alone is a near Goldstone bo-
son. It is strongly coupled to baryons and plays
a significant role in ly' and A self-energies. The
one-loop pion induced self-energies of the l/ and
A are given by the processes shown in Fig. 1.

In the standard heavy baryon limit, the ana-
Iytic expression for the pion cloud correction to
the masses of the N and A are of the form [2]

6M¡y- ø¡¡N+tNA; 6Md- aaa*aary, (1)

AN^^A^
(c) (d)

Figure 1. One-loop pion induced self-energy of
the nucleon and the delta.

where

k4u2**(n)

-'(k)
(2)øNN = c^a: å#f lo* 

or

NN
(a)

N A
(b)

k4u2* o(k)dk u(k)(LM + w(k))

k4u2* o(k)

, (3)

dk
u(k)(A,M - r(k))

(4)

Here AM - M6 - M¡y , 9A -- 1.26 is the ax-
ial charge of the nucleon, -(k) -- JF +@ i"
the pion energy and u¡¡¡y(fr), r¡¡¿(k) , ... are the
NNzr, ly'Azr, . . . form factors associated with the
emission of a pion of three-rnomentum fr. The*Supported by the Australian Research Council
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form factors reflect the finite size of the baryonic
source of the pion field and suppress the emission
probability at high virtual pion momenturn. As a
result, the self-energy integrals are not divergent.

The leading non-analytic (tNA) contribution
of these self-energy diagrams is associated with
the infrared behavior of the corresponding inte-
grals; i.e. the behavior as k -+ 0. As a conse-
quence, the leading non-analytic behavior does

not ciepenci on ûhe cietaiis of the form faciors.
Indeed, the well known ¡esults of chiral pertur-
bation theory [3,4] are reproduced even when the
form factors are approximated by u(k) = 0(L-k).

Of course, our concern with respect to lattice
QCD is not so much the behavior as mr -+ 0, but
the extrapolation from high pion masses to the
physical pion mass. In this context the branch
point at m2* = LM2, associated with transitions
of N -+ A or A -l 1ú, is at least as important as

the LNA behavior near rn, - 0.
Heavy quark effective theory suggests that as

ffir ) oo the quarks become static and hadron
masses become proportional to the quark mass.
In ihis spirit, corrections are expected to be ofor-
der I f mn where rnn is the heavy quark mass. The
presence of a cut-off associated with the form fac-
tor acts to suppress the pion induced self energy
for increasing pion massesJ as evidenced by the
m] in the denominators of Eqs. (2), (3) and (4).
While some rnl dependence in the form factor is
expected, this is a second-order effect and does
not alte¡ the qualitative feature of the self-energy
corrections tending to zero as Ilrnl in the heavy
quark limit.

Rather than simplifying our expressions to just
the LNA terms, we retain the complete expres-
sions [2], as they contain important physics that
would be lost by making a simplification. We
note that keeping the entire form is not in con-
tradiction wiih ¡PT. However, as one proceeds to
larger quark masses, differences between the full
forms and the expressions in the chiral limit will
become apparent, highlighting the importa,nce of
the branch point and the form factor reflecting
the finite size of baryons.

As a result of these considerations, we propose
to use the analytic expressions for the self-energy
integrals corresponding to a sharp cut-off in or-

der to incorporate the correct LNA structure ln
a simple three-parameter description of the rn*
dependence of the 1V and À masses. In the heavy
quark limit hadron masses become proportional
to the quark mass. Hence we can simulate a lin-
ear dependence ofthe baryon masses ou the quark
n1â.ss1 ??lq¡ in this region, by adding a term involv-
ing m2*. The functional form for the mass of the
nucleon suggested by this analysis is then:

A1[¡¡ - cvu -l þxm? * ø¡¡¡(À¡¿)* ø¡¡¿(^r), (5)

while thai for the A is:

M6 - ad -l þa,m? * o¿,d(^¡) + øaly(,A.a) . (6)

1.2. Model Dependence
The use of a sharp cut-off, u(k) = 0(L - k),

as a form factor may seem somewhat unfortu-
nate given that phenomenology suggests a dipole
form factor better approximates the axial-vector
form factor. However, the sensitivity to such

model-dependent issues is shown to be negligi-
ble in Fig. 2. There, the self-energy contribu-
tion ø¡¿¡¡(= øa6) for a I GeV dipole form fac-

tor (solid curve) is compared with a sharp cut-off
form factor combined with the standard o+ IJ ^?terms of (5) or (6). Optimizing Â, a and B pro-
vides the fine-dash curve of Fig.2. Differences are

at the few MeV level indicating negligible sensi-

tivity to the actual analytic structure of the form
factor.

Here we have focused on the pion self-energy
contribution to the ly' and A form factors. Only
the pion displays a rapid mass dependence as the
chiral limit is approached. Other mesons partici-
pating in similar diagrams do not give rise to such

rapidly changing behavior and can be accommo-
dated in the o * B rnl terms of (5) or (6). More-
over, the form factor suppresses the contributions
from more massive intermediate states including
multiple pion dressings. Other multi-loop pion
contributions renormalize lhe vertex and hence

we use the renormalized couplin1 g¿, as a mea-

sure of the pion-nucleon coupling.

2. ANALYSIS

We consider two independent dynamical-
fermion lattice simulations of the N and A
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Figure 2. The self-energy contribution ø¡¡¡¡ for
a 1 GeV dipole form factor (solid curve) is com-
pared with a sharp cut-off form factor d(^N - e)
(fine-dash curve) . Self-energy contributions ø,yA
(dot-dash) and ø4¡¡ (long-dash) for a 1 GeV
dipole are also illustrated.

masses. We select results from CP-PACS's [5]
I23 x32 and 163 x 32 simulations at B = 1.9, and

UKQCD's [6] 123 x 24 simulations at þ = 5.2.

Figure 3 displays fits of (5) to the lattice data.
In order to perform fits in which Â is uncon-
strained, it is essential to have lattice simula-
tions at light quark masses approaching ml - O.t

GeV2.
It is common to see the use of the following

¡PT-motivated expression for the mass depen-
dence of hadron masses,

M¡y-a+Ê^?*+l*3,. (7)

The result of such a fit for the N is shown as

the dashed curve in Fig. 3. The coefficient of
fhe m3, term in a three parameter fit is -0.761.
This disagrees with the coefficient of -5.60 known
from ¡PT (which is correctly incorporated in (5)
and illustrated as the solid and dash-dot curves
of Fig. 3) by almost an order of magnitude. This
clearly indicates the failings of (7).

The dotted curve of Fig. 3 indicates the leading
non-analytic term of the chiral expansion domi-
nates from the chiral limit up to the branch point
at mn : LM - 300 MeV, beyond which ¡PT
breaks down. The curvature around rno = LM,
neglected in previous extrapolations of the Iattice

Tn 2

Figure 3. A comparison of phenomenological fit-
ting functions for the mass of the nucleon. The
solid curve corresponds to our preferred fit of the
functional form of (5) with A constrained to re-
produce a 1 GeV dipole form factor. The dash-

dot curve illustrates the unconstrained fii. The
three parameter fit (dashed) corresponds to let-
ting 7 of (7) vary as an unconstrained fit param-
eter, The dotted curve corresponds to (7) with 7
set equal to the value known from ¡PT. The lat-
tice data from are CP-PACS (solid) and UKQCD
(open), each with a 5% scale change to provide

consistency.

data, leads to shifts in the extrapolated masses of
the same order as the departure of lattice esti-
mates from experimental measurements.
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Baryon masses from lattice QCD: Beyond the perturbative chiral regime
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Consideration of the analytic properties of pion-induced baryon self-energies leads to new functional forms

for the extrapolation of light baryon masses. These functional forms reproduce the leading non-analytic be-

havior ofchiral perturbation theory, the correct non-analytic behavior at the Nø th¡eshold and the appropriate

heavy-quark limit. They involve only three unknown parameters, which may be obtained by fltting to lattice

data. Recent dynamical fermion results from CP-PACS and UKQCD are extrapolated using these new func-
tional forms. We also use these functions to probe the limit of applicability of chiral perturbation theory to the

extrapolation of lattice QCD results.

PACS number(s): 12.38.Gc, 1l.l5.Ha

I. TNTRODUCTION

In the last year there has been tremendous progress in the
computation of baryon masses within lattice QCD. Improved
quark [1] and gluon [2] actions, together with increasing
computer speed, means that one already has results for N, A
and vector meson masses for full QCD with two flavors of
dynamical quarks. Although the results are mainly in the

regime where the pion mass (rx,) is above 500 MeV, there
has been some exploration as low as 300-400 MeV on a 3.0
fm lattice by CP-PACS [3].

In spite of these impressive developments it is still neces-

sary to exftapolate the calculated results to the physical pion
mass (/¿: 140 MeV) in order to make a comparison witb
experimental data. In doing so one necessarily encounters

some non-linearity in the quark mass (or ln|), including the

non-analytic behavior associated with dynamical chiral sym-
metry breaking. Indeed, the recent CP-PACS study [4] did
report the first behavior of this kind in baryon systems.

As the computational resources necessary to include th¡ee
light flavors with realistic masses will not be available for
many years, it is vital to develop a sound understærding of
how to extrapolate to the physical pion mass. We recently
investigated this problem for the case of the nucleon mag-
netic moments [5].

The cloudy bag model (CBM) [6] is an extension of the
MIT bag model incorporating chiral symmetry. It therefore
generates the same leading non-analytic (LNA) behavior as

chiral perturbation theory (XPT). This model was tecently
generalized to allow for variable quark and pion masses in
order to explore the likely mass dependence of the magnetic
moment [5]. This work led to several important results:

(i) A series expansion of þro) in powers of rlr, is not a

useful approximation for mr larger than the physical mass.
(ii) On the other hand, the behavior of the model, after

*Email address: dleinweb@physics.adelaide.edu.au
lEmail address: athomas@physics.adelaide.edu.au
I Email address: ktsushim@physics.adelaide.edu.au
lEmail address: swright@physics.adelaide.edu.au

adjustments to fit the lattice data at large m, was well de-

termined by the simple Padé approximant

þo (r)þp@): d1+- mn* Bmzo
lto

(iii) Equation (1) not only builds in the Dirac moment at

moderately large m2n but has the correct LNA behavior of
chiral perturbation theory:

þ: þo- am¡,

with a a model independent constant, as mzr+O.
(iv) Fixing a at the value given by chiral perturbation

theory and adjusting po md P ro fu the lattice data yielded
values of pp aîd þn of (2.85-ç0.22)¡t'' and (-1.96
+0.16)¡r¡, respectively, at the physical pion mass. These

are signiûcantly closer to the experimental values than the

usual linear extrapolations in nq.
Clearly it is vital to extend the lattice calculations of

baryon magnetic moments to lower values of mn rhan the
600 MeV used in the study just outlined. It is also important
to include dynamical quarks. Nevertheless, the apparent suc-

cess of the extrapolation procedure suggested by the CBM
study gives us strong encouragement to investigate the same

approach for baryon masses.
Accordingly, in this paper we study the va¡iation of the N

and À masses with mr (or equivalently *,,).Section II is

devoted to considerations of the low-lying singularities and

pion-induced cuts in the complex plane of the nucleon and A

spectral representation. The analytic properties of the derived
phenomenological form aÌe consistent with both chiral per-

turbation theory and the expected behavior at large no. This
phenomenological form is eventually f,tted to recent two-
flavor, full QCD measurements made by CP-PACS [3] and

UKQCD [7]. However, to gain some insight into the param-

eters and behavior of the functional form we examine the N
and A masses as described in the CBM in Sec. III. In section

IV we apply the analytic form to the lattice data. Section V is
reserved for a summa¡y of our findings.

05 56-282 1 /2000/ 6 t (7 ) / 07 4502(t0y$ l 5.00 6L 074502-1 @2000 The American Physical Society
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o 6L: cNN , (6)

3 8 , f* ,, kauz*o1k¡
otw: lfr¡z.zsli J, 

dk;ft[AM;tk)l' o)

We note that LM:Mt-Mw, 8¡:1.26 is the axial charge

of the nucleon, w(k): \tF;æ is the pion energy and

u¡¡n(k), uNt(k),. . . are the NNø, NL'rr, .. . form factors

associated with the emission of a pion of three-momentum k.

We have used SU(6) synìmetry'to relate the four coupling
constants to the NNø coupling, which, in turn, has been

related to g¡/2f n by chiral symmeüy. The form facto¡s arise

naturally in any chiral quark model because of the finite size

of the baryonic source of the pion ûeld-which suppresses

the emission probability at high virtual pion momentum. As
a result, the self-energy integrals are not divergent.

The leading non-analytic contribution (LNAC) of these

self-energy diagrams is associated with the infrared behavior
of the corresponding integrals-i.e., the behavior as k+0.
As a consequence, the leading non-analytic behavior should

not depend on the details of the high momenfum cutoff or the

form factors. In particular, it should be sufflcient for studying
the LNAC to evaluate the self-energy integrals using a

simple sharp cltoff, u(k):0(L-k)' In Sec' III we shall

compare the results with those calculated using a phenom-

enological, dipole form factor and show that this is in fact an

effective simplitcation.
Using a d function for the form factors, the NNø and

AÂzr integrals [cf. Figs. l(a) and l(d), respectively], which
are equal, are easily evaluated in the heavy baryon approxi-

mation used here:

t

ô)
NN

(a)
N

^
A
ldl^

N
lc)

Á

N N

,

À

FIG. 1. One-loop pion induced self-energy of the nucleon and

the delta.

II. ANALYTICITY

By now it is well established that chi¡al syrnmetry is dy-
namically broken in QCD and that the pion is almost a Gold-
stone boson. As a result it is strongly coupled to baryons and

therefore plays a signif,cant role in the N and Â self-energies.

In the limit where the baryons are heavy, the pion induced

self-energies of the N and A, to one loop, are given by the

processes shown in Fig. 1. Note that we have rest¡icted the

intermediate baryon states to those most strongly coupled,

namely the N and A states.

The analytic expression for the pion cloud correction to
the masses of the N and Â is of the form [8]

6M N: ø,y¡* ø1y6,

where

(2)

(3) t ,,,fn oo!_=c¡tn: c^^: 
16nryrg t o w.\k)

-ffi|^t-"""(å) .*-n*r] (8)

and

where

6M L: ø66* o67y,

(4)

(5)

øNA:_ht|2(m2n-o,,),,,|*".^(ffi)_-",^(p)f*,o,,,*,,

-, o *r^(ff!) - t æ* 
^ 

M 
^ 

+ 6 

^ 
M2 tr - e ^z.t 

+, n' 
Ì,

The integral corresponding to the process shown in Fig. l(b),
with a á function form factor, may be analytically evaluated.

For mn) LM,

(e)

while for nt,1L,M we find

074502-2
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AM +,1fl+Ñ+LM+L lÑT-fi+ aM*mn8i
cN^= - ::--;;251r'J; - 6(LM2 - ntz.) ,rrl*( JfllP- 

^M 
- 

^
L,M-mn)-'(

+3 L,M (3m2.-Zl,tøz) - 3]4+Ñ L u L + 6 L u2 tr - a mz,h + z tt3 (10)

(12)

Similar results are easily obtained for the process shown in Fig. 1(c). For mnlL,M, the analytic form is

while for mn1L,M

2
òAoo*: 

toon f.

2
8¡

+3 L,M(3m2,- 2LMz)kl

M'dî, 23
Affi o,

tro":fi4, -tz@T- LM2)
tt

- 3.[æ L M L - 6 A M2 A. + 6^2ntr - 2 tr3 (1 1)

+ 3 L M ( 3 m2,- 2 L, M z)," ¡,Æ?*F* n 
)\^"1

3: - 3z,rf,8

4,[4+ñ L u L - 6 L ¡,tz L + 6 mIL - 2 L3

The self-energies involving transitions of N+A or A+N
a¡e cha¡acterized by the branch point at mn: [¡4.

A. Chiral limit

Chiral perturbation theory is concerned with the behavior
of quantities such as the baryon self-energies âS tn,,+0. p6¡

the expressions derived above, this corresponds to taking the
limit rt.-O. The leading non-analytic terms a¡e those
which correspond to the lowest order non-analytic functions
of m,,-i.e., odd powers or logarithms of mn. By expanding
the expressions given above, we find that the LNA contribu-
tion to the nucleon/À mass [Eq. (8)] is given by

Of course, our concem with respect to lattice QCD is not
so much the behavior as mr---+O, but the extrapolation from
high pion masses to the physical pion mass. In this context

the branch point at m2n: LMz is at least as important as the

LNA near mn:O.We shall retum to this point later. We
note that Banerjee and Milana [11] found the same non-
analytic behavior as mî+LM that we find. However, they
were not concerned with finding a form that could be used at

large pion masses-i.e. one that is consistent with heavy
quark effective theory.

B. Heavy quark limit

Heavy quark effective theory suggests that as mr-@ the
quarks become static and hadron masses become propor-
tional to the quark mass. This has been rather well explored
in the context of successful nonrelativistic quark models of
charmonium and bottomium [12]. In this spirit, corrections
are expected to be of otder llmo where m,, is the heavy
quark mass. Thus we would expect the pion induced self-
energy to vanish as 7/mo as the pion mass increases. The
presence of a fixed cutoff Â acts to suppress the pion in-
duced self-energy for increasing pion masses, as evidenced

by the m2,in the denominators of Eqs. (3), (4) and (7). While
some 

^2n 
dependence in z\ is expected, this is a second-o¡der

effect and does not alter the qualitative features. By expand-

ing the arctan(Nnt) term in Eq.(8) for small l\lmn, we

find

3p1 ¡s /nt\uuN:-,,+-+ol ^1. 
(1ó)

l6rr'J'- 5m; \ m;l

in agreernent with a well-known result of ¡PT [9]. A careful
expansion of the A contribution to the nucìeon self-energy,
Eq. (9), yields the LNA term

3*l 32 3
o¡y 6(mn,lt)- G?E U 6¡¡ m',ln(m.) (14)

as mr-0 which is again as expected from ¡PT [10]. For the
Nz¡ contribution to the self-energy of the 

^, 
the LNA term in

the chiral limit of Eq. (11) yields

(13)

( 1s)o 6¡¡(nt,.^)- - :+ | ufo ̂ I^r^,tl6n'f',

074502-3
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which vanishes for m.+æ. Indeed, in the large mn (heavy

quark) limit, both Eqs. (9) and (11) tend to zero as llm2,.

C. AnalYtic form

We now have the chiral and heavy quark limits for each

of the four integrals in Fig. L These expressions, which con-

tain a single parameter, A, are correct in the chiral limit-
i.e., they reproduce the first two non-analytic terms of ¡PT.
They also have the correct behavior in the limit of large pion

mass; namely they vanish like Llml. The latter feature

would be destroyed if we were to retain only the LNA pieces

of the self-energies as they would diverge at large mn fasfer

than mo. Rather than simplifying our expressions to just the

LNA terms, we therefore retain the complete expressions, as

they contain important physics that would be lost by making

a simpliûcation.
We note that keeping the entire form is not in contradic-

tion with ¡PT, as we have already shown that the leading

non-analytic structure of ¡PT is contained in this form.

However, as one proceeds to larger quark (pion) masses,

differences between the full forms and the expressions in the

chiral limit will become appa-rent. For example, the branch

point at m2r: LMz, which is an essential non-analytic com-

ponent of the mn dependence of the self-energy and which
should dominate in the region mn- L,M, is also satisfactorily
incorporated in Eqs. (9) and (l l). Yet the LNA chiral terms

given in Sec. II A know nothing of this branch point and are

clearly inappropriate in the region near and beyond m2.

: LMz.
As a result of these considerations, we propose to use the

analytic expressions for the self-energy integrals correspond-
ing to a sharp cutoff in order to incorporate the correct LNA
structure in a simple three-parameter description of the mn

dependence of the N a¡d A masses. In the heavy quark limit
hadron masses become proportional to the quark mass.

Moreover, as we shall see in the next section, the MIT bag

model leads to a linear dependence of the mass of a baryon
on the current quark mass fa¡ below the scale at which one

would expect the heavy quark limit to apply. This is a simple

consequence of relativistic quantum mechanics for a scalar

conf,ning ûeld. On the other hand, lattice calculations indi-
cate that the scale at which the pion mass exhibits a linear

dependence on m,, is much larger than that for baryons.lln
fact, over the range of masses of inte¡est to us, explicit lattice

calculations show that n2, is proportional to m.r. Hence we

can simulate a linear dependence of the baryon masses on the

quark mass, m,, , in this region, by adding a term involving
mi. The functional form for the mass of the nucleon sug-

gested by this analysis is then

M ¡¡: a ¡¡ -f B ¡¡m2n+ o ¡y ¡,¡(nt r, /t) * c ¡¡ ¡(m.,.1\), (1 7)

lOne does not expect such linear behavior to appear for quark

masses lighter than the charm quark mass where the pseudoscalar

mass is 3.0 GeV. Even at this scale the quarks a¡e still somewhat

relativistic.
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while that for the A is

M ¡: a j- B 6m2,+ o66(mn,À) + o6¡y(m,,Â). (18)

The mass in the chiral limit is given by

MIP: or+ ø¡v¡v(O,Â) + o7v6(0,'A')' (19)

where the meson cloud effects are explicitly contained in
ø¡y¡y(0,.4) + ø¡ya(O,Â). The mass of the A in the chiral limit
is calculated in an analogous way. We know that Eqs. (17)

and (18) have the correct behavior in the chiral limit. Indi-
vidually, they also have the correct heavy quark behavior.z
Between the chiral and heavy-quark limits there are no gen-

eral guidelines, so in the next section we shall compare our
functional form to the cloudy bag model, a successful phe-

nomenological approach incorporating chiral symmetry and

the correct heavy quark limit.

III. BARYON MASSES \ryITHIN THE CBM

As a guide to the quark mass dependence of the N and A

masses we consider the cloudy bag model [6,13]. This is a
minimal extension of the MIT bag model such that chiral
symmetry is restored, which has proved quite successful in a
number of phenomenological studies of baryon properties

and meson-baryon scattering [6,15-17]. Within the CBM, a

baryon is viewed as a superposition of a bare quark core and

bag plus meson states. The linea¡ized CBM Lagrangian with
pseudovector pion-quark coupling (to order 1f.) is 118]

¿:lq(iypd r- m,,)q- B)0y

l_ I " I
- lAA6s+ lQur)"- ,m".n'

e,,+¡fiqtqrrø'arn Qo)

where B is the bag constant, /z is the ø' decay constant, dy is

a step function (unity inside the bag volume and vanishing

outside) and á'5 is a surface delta function. In a lowest o¡der
perturbative treatment of the pion field, the quark wave func-

tion is not effected by the pion fleld and is simply given by

the MIT bag solution ll9-21).
In principle the zrNN form factor can be di¡ectly calcu-

lated within the model. It dies off at large momentum trans-

fer because of the finite size of the baryon source. Rather

2With regard to the difference, M ¡- M ¡¡ , heavy quark effective

theory (HQET) suggests that this difference should vanish as m,

-æ. This is only guaranteed by Eqs. (17) and (18) fthrough Eq.

(16)] if the entire mass difference arises from the pion self-energy

While one could enforce this condition through the int¡oduction of
additional parameters and a more complicated analytic structure for
the higher-order terms ofEqs. (17) and (18), we prefer to focus on

the regime of mznfrom I GeV2 to the chiral limit. As we shall see,

Eqs. (17) and (18) are quite adequate for this purpose.
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TABLE I. Parameters for fitting Eqs. (17) and (18) to the CBM
data. Here we have taken Re:1.0 fm and nrff):e.O MeV. The

Enor column denotes the relative difference from the experimental
values which were used as a constraint in generating the CBM data.

Baryon a B 
^ 

MB Error
(GeV) (GeV-r) (Gev) (GeV)

N

^

3.0

- 2.5
oo
ø 2.O
ø
ó

É 1.5
o
¡.t
úid 1.0

0.5

1.09

1.37

0.739

o.725

0.455

0.419

0.948

1.236

0.8Vo

O.37o

FIG. 2. The pion mass dependence of the N and A baryons
generated in the CBM using a dipole form factor with .ô,o
: I GeV. Fits of Eqs. (17) and (18) to the CBM results a¡e illus-
trated by the curves.

than using this calculated form factor, which is model depen-
dent, we have chosen to use a common phenomenological
form, namely a simple dipole

u(k):6i.- 4: , (2t)
(L2D+ k2)2'

where k is the magnitude of the loop (3-)momentum, ¡.r is the
physical pion mass (139.6 MeV), and 

^D 
is a regulation

parameter.
In the standard CBM treatment, where the pion is treated

as an elementary field, the current quark mass, nr,.,, is not
directly linked to zr. Most observables a¡e not sensitive to

this parameter, as long as it is in the range of typical current
quark masses. For our present purpose it is vital to ¡elate the
m,, inside the bag with mn. Current lattice simulations indi-
cate that rri is approximately proportionalto mq over a wide
range of quark masses [3]. Hence, in order to model the
lattice results, we scale the mass of the quark confined in the

bag as nt,,: (m,l p)2mlf), with n j,0) being the current quark
mass corresponding to-the physich pion mass ¡". ,{| is
treated as an input parameter to be tuned to the lattice results,
but in our magnetic moment study it turned out to lie in the
range 6-7 MeV, which is very reasonable.

The parameters of the CBM are obtained as follows. The
bag constant B and the phenomenological parameter zo ue
fixed by the physical nucleon mass and the stability
conditiorì,3 dM ¡¡ I dR:O , for a given choice of Re and n{f) .

For each subsequent value of the pion mass or the quark
mass considered, rr.r9 and R are determined simultaneously
from the linear bounda¡y condition ll9-2ll a¡rd the stability
condition. In this work we have calculated the mass of the N
and À baryons as a function of squared pion mass (as illus-
trated in Fig. 2). The Â calculation is similar to that for the

3Note that while z6,8 and the øNN form factor may all depend

on rnn, this dependence is expected to be a smaller effect and we
ignore such va¡iations in order to avoid an excess of parameters

N; however, the value of B is fixed to be the same as that
used tbr the nucleon, while zs is adjusted to ft the observed
mass difference, taking into account the pionic contribution
to this quantity, at the physical value m,: ¡t. (^r:^f;\.

As expected on quite general grounds (and discussed in
Sec. II), as the pion mass increases the mass of the baryon
does indeed become linea¡ in 

^2, 
. ln addition, from the cur-

vature at low pion mass, we see that the non-analytic struc-
ture is important in the tegior. mr below 400 MeV.

We now ût our functional forms for the baryon masses,

Eqs. (17) and (18), to the CBM data. We note that the CBM
data a¡e generated using a phenomenologically motivated,
dipole form factor, whereas the functional form used in the

fit involves a d cutoff. In order to simulate the ûtting proce-
dure for lattice data, our f,t to the CBM results involves only
pion masses above the physical branch point at M 6: M ¡¡,
followed by an extrapolation to lower pion mass.

It can be seen from Fig. 2 that our extrapolation to the
physical pion mass is in good agreement with the CBM cal-
culations: at the physical pion mass the extrapolated N mass
is within 0.87o of the experimental value to which the CBM
was fitted, while the A is within 0.3Vo of the experimental
value. We present the parameters of our fit in Table I. The
value for the sharp cutoff (À) is 0.,14(2) GeV, compared to
Ao: I GeV for the dipole form facto¡.

It was noted in Sec. II that the constant a in our func-
tional form is not the mass of the baryon in the chiral limit,
but rather this is given by MÍf): or+ ø¡¡¡y(0,.4.)

1.0
m 3 (Gevz\

1.5 2.O

0.00

-0.05

-0.10

f,-o rs
o
f-o.zo

-o.25

-0.30

-0.360,0 0.? o.4 0.6 0.8
tn*z (GeVz)

1.0 7.2

FIG 3. Pion induced self-energy corrections for a I GeV dipole
form factor. The LNA term of ¡PT t¡acks the NNz contibution up

to m.-O.2 GeV, beyond which the internal shucture of the

nucleon becomes important.

¡PT LNA term

-NN--- NÀ

---' aN
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0.00

-0.05

-0.10

ì-0.15
--0.2o
b

-o.25

-0.30

-0.35o'o o'2 o'n 
-"'o¡8"u'¡ 

o'u 1 o r'2

FIG. 4. Comparison between the nucleon and A self-energies,

ø¡¡ and ûaN, calculated using a dipole form factor (solid and

long-dash-dotted curves, respectively) and frts using the form a
+ pmz,+ o¡i(mr,Â), based on a sha¡p cut-off in the momentum of
the virtual pion (dashed and short-dash-dotted curves respectively).

+ø¡6(0,Â)-with an analogous expression for the Â. We

find that the extrapolated N and A masses in the chiral

[SU(2)-flavor] limit a¡e (MÍ| ,MP):(905,1210) Mev,
compared with the CBM values (898,1197) MeV.

The mass dependence of the pion induced self-energies,
o¡¡, for the I GeV dipole form factor, is displayed in Fig. 3.

The choice of a 1 GeV dipole corresponds to the observed
axial form factor of the nucleon [22], which is probably our

best phenomenological guide to the pion-nucleon form factor

[23]. We note that ø¡¡y tends to zero smoothly as n. grows

and it is only below *2.-O.Z GeV2 that there is any rapid

va¡iation. That this behavior ca¡rnot be well described by a

polynomial expansion is illustrated by the dotted curve in
Fig. 3. There we expanded ø¡¡y about mn:0 as a simple

polynomial, a* Bnfn* ym3o, with 7 ûxed at the value re-

quired by chiral symmetry. Clearly the expansion fails badly

for mn beyond 300-400 MeV.
The behavior of the Nz contribution to the self-energy of

the A is especially interesting. In particular, the effect of the

00 02 04 06 08 10 7.2
m.? (Gev2)

FIG. 5. Baryon masses calculated by UKQCD (open points) and

CP-PACS (solid points), as a function of m2.. The solid (dashed)

curve illust¡ates a fit to the combined data sets for N (À). The

leftmost data points are our extrapolated values of the baryon

masses at the physical pion mass.
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FIG. 6. UKQCD and CP-PACS baryon masses with 57o adjust-

ments in the scale parameters to improve the agreement between the

two data sets. (The key is as described in Fig. 5.)

branch point at m,:L.M is seen in the curvature at m2,

--0.1 GeV2. For comparison, we note that while there is
also a branch point in the nucleon self-energy at the same

point-see Eq. (9)-the coefficient of (m2.- L,M2¡3t2 ,^-
ishes at this point. As a consequence there is little or no

curvature visible in the latter quantity at the same point. The

correct description of this curvature is clearly very important
if one wishes to obtain the AN mass difference at the physi-

cal pion mass. The fact that, as shown in Fig. 2, our simple
three parameter phenomenological fltting function can repro-

duce N and Â masses within the CBM, including this curva-
ture, suggests that this should also provide a reliable form for
extrapolating lattice data into the region of small pion mass.

Figure 4 illustrates the degree of residual model depen-

dence in our use of Eqs. (17) and (18). There the variation of
the nucleon self-energy, øry7y, calculated with a I GeV di-
pole form factor (solid curve) is frt using the form a
+ Bm2o+ o¡¡¡¡(m.,1\) (dashed curve, with a: -0.12 GeV,

þ:0.35 GeV-r and z\:0.57 GeV). Note that the devia-
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FIG. 7. UKQCD and CP-PACS nucleon masses with scale pa-

rameters adjusted by 5Vo. T\e data a¡e as described in Fig. 5. The

dashed lines represent fits without the point at 0.1 GeV2. The solid

lines include this point. The top pair of lines are fits with À fixed at

0.455 GeV, a value prefened on the basis of our CBM analysis. The

bottom pair have r\ as a fit parameter.
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TABLE II. Parameters for fits of Eqs. (17) and (18) to lattice data. Here we fix Â (Â¡v:0.455 and

^À:0.419) 
andvary aandB. Themassof thebaryonatthephysicalpionmass isM¡¡ (M) andthemass

in the chiral limit is Mjuo) (¡Zto)). fne scaling columns represent adjustments to the scale pa¡ameters p¡o-

viding physical dimensions to the lattice data.

Scaling N A

CP-PACS UKQCD a p MN Mt| a B M^ Mf)
(GeV) (GeV-r) (GeV) (GeV) (GeV) (GeV-1) (GeV) (GeV)

J

0Vo

*5Vo

0Vo

* 10?o

0Vo

-5Vo
-l0%o

0Vo

1.10

1.15

1.10

1.20

0.778

0.736

0.767

o.707

0.954

r.003

0.957

1.050

0.910

0.961

o.914
1.008

1.29

t.36
I .31

L42

0.680

0.602

0.624

0.581

1 .150

1.227

1.r69
1.285

t.125

r.203

t.t45
1.262

tions a¡e at the level of a few MeV. For the Â the self-
energy, o-ary, is again calculated using a I GeV dipole form
factor and flt with our standa¡d frtting function, a* Bmzn
i o6y(mn,l\). The quality of the fit (with d:
-0.062 GeY, p:9.924 GeV-r and Â:0.53 GeV) is not
as good as for the nucleon case. Nevertheless, the difference
between the two curves at the physical pion mass (vertical
dotted line) is only about 20 MeV. At the present stage of
lattice calculations this seems to be an acceptable level of
form factor dependence for such a subtle extrapolation.

IV. LATTICE DATÄ ÄNALYSIS

We conside¡ two independent lattice simulations of the N
and A masses, both of which use improved actions to study
baryon masses in full QCD with two light flavors. The CP-
PACS [3] lattice data are generated on a plaquette plus rect-
angle gauge action with improvement coefficients based on
an approximate block-spin renormalization group analysis.
The (?(a)-improved Sheikholeslami-Wohlert clover action is
used with a mean-field improved estimate of the clover co-
efficient cs'¡:7.64-1.69. This estimate is likely to lie low
relative to a nonperturbative determination [14] and may
leave residual O(a) errors.

Ideally one would like to work with lattice data in which
the infinite-volume continuum limit is taken prior to the chi-
ral limit. Until such data a¡e available, we select results from
their 123x32 a.nd 163x32 simulations at P:1.9. Lattice
spacings range from 0.25 fm to 0.19 fm and provide physical
volumes of 2.7 fm to 3.5 fm on a side. While the volumes are

large enough to avoid significant finite volume elrors, the

coa¡se lattice spacings necessitate the use of improved ac-

tions. Systematic uncertainties the order of lïVo a¡e not un-

expected.
The UKQCD [7] group uses a standard plaquette action

with the (?(ø)-improved Sheikholeslami-Wohlert action. At
a B of 5.2, UKQCD ùs€s c5qz: 1.76, which is lower than the
current non-perturbative value [14] of 2.017, agun leaving
some residual (?(a) errors. Lattice spacings are necessarily
smaller, ranging from 0.13 to 0.21 fm. We select their 123

X24 dzta set as providing better statistical errors than their
largest volume simulation. Physical volumes ue 7.6-2.6 fm
on a side, suggesting that finite volume errors may be an

issue on the smallest physical volume where the dynamical
quark mass is lightest.

In full QCD, the renormalized lattice spacing is a function
of both the bare coupling and the bare quark mass. In order
to determine the lattice spacing, the UKQCD Collaboration
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FIG. 8. UKQCD and CP-PACS A-baryon masses with scale
parameters adjusted by 5Vo.The data a¡e as described in Fig. 5. The
dashed lines represent fits without the point at 0.1 GeV2. The solid
lines include this point. The top pair of lines are fits with À fixed at
0.419 GeV, a value preferred on the basis of our CBM analysis. The
bottom pair have À as a fit parameter.

FIG. 9. A comparison between phenomenological fitting func-
tions for the mass ofthe nucleon. The two parameter fit corresponds

to using F,q. (22) with y set equal to the value known from ¡PT.
The th¡ee parameter fit corresponds to letting y vary as an uncon-
st¡ained fit parameter. The solid line is the fit for the functional
form of Eq (17), fit (d) of Table III.
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TABLE III. Pa¡ameters for the fits shown in Fig. 7. Parameter

sets (a) and (b) are obtained by excluding the lowest data point from
the fit, while (c) and (d) include it. Parameter sets (a) and (c) are fits
with 3 parameters, and sets (b) and (d) are fits with Â fixed to the

phenomenologically preferred value.

PFTYSICAL REVIEW D 6I 0'14502

TABLE IV. Parameters for the fits shown in Fig. 8. Parameter

sets (a) and (b) are obtained by excluding the lowest data point from
tbe fit, while (c) and (d) include it. Parameter sets (a) and (c) are fits

with 3 parameters, and sets (b) and (d) are frts with r\. fixed to the

phenomenologically preferred value.

Fir a
(ceV)

p
(GeV-1; ^(GeV)

MN
(GeV)

p
(Gev-r; ^(GeV)

M^
(cev)

Fir a
(GeV)

r64
r37
t54
t36

(u)

(b)

(c,
(d)

r.76

l.l5
1.42

l.l5

0.789

0.455

0.661

0.455

o.414
0.587

0.475

o.602

0.683

0.419

0 616

0.419

0.386

o.727

o.564
o.736

0.763

1.010

0.870

1.003

(a)

(b)

(c)

(d)

1.042

t.240
1.095

1.230

calculates the force between two static quarks at a distance
rsl24], while CP-PACS considers the string tension directly.
While the two approaches yield similar results in the

quenched approximation, string breaking in full QCD may
introduce some systematic error in the extraction of the

string tension at large distances. In fact we tnd that the two
data sets are consistent, provided one allows the parameters
introducing the physical scale to float within systematic er-
rors of lÙVo. A thorough investigation of these systematic
errors lies outside the scope of this investigation. Instead we
simply rescale the UKQCD and CP-PACS data sets in com-
bining them into a single, consistent data set.

We begin by considering the functional form suggested in
Sec. II with the cutoff Â ûxed to the value determined by
fltting the CBM calculations. The resulting fits to the baryon
masses are shown in Fig. 5 for the unshifted lattice data and

Fig. 6 where each data set is adjusted by 5Vo to provide
consistency. The extrapolations are indicated by the solid
(dashed) curve for N (A). The resulting flt parameters and

masses4 are listed in Table II.
In examining ûts in which the cutoff is allowed to vary as

a f,t parameter, we found it instructive to also study the de-
pendence of the fit on the number of points included. This
dependence is shown for the N in Fig. 7 and for the A in Fig.
8. In particular, we compare ûts including the lowest lattice
point (at around 0.1 GeV2) and then excluding it. When we
fix the value of Â the f,ts are stable and insensitive to the

lowest point. They tend to lie slightly above the lowest data
point. However, given the caution expressed by the CP-
PACS Collaboration for the lowest point, we view these fits
as reasonably successful. In contrast, when the value of r\ is
treated as a fitting parameter, it is sensitive to the inclusion
of the lowest point. Hence, to perform model independent
fits, it is essential to have lattice simulations at light quark

masses approaching ntzn-o.l GeV2. An analysis of the cur-
rent data suggests t\:0.661 GeV and provides a nucleon
mass 130 MeV lower than the CBM-constrained fit. Tables
III and IV summa¡ize parameters and physical baryon
masses for N and Â respectively.

4The errors bars for the extrapolated baryon masses at the physical
pion mass displayed in the figures are naive estimates only. We are

unable to perform a complete analysis without the lattice results on

a configuration by configuration basis.

It is common practice in the lattice community to use a
polynomial expansion for the mass dependence of hadron
masses. Motivated by ¡PT the lowest odd power of mn aI-

lowed is n3r:

M ¡¡: a* pm'.+ y^I. Q2)

The results ofsuch ûts are shown in Figs. 9 and 10 for Nand
A respectively. The conesponding parameters are reported in
Table V. As can be seen in Table V, the coefficient of the m3n

term, which is the leading non-analytic term in the quark

mass, disagrees with the coefficient known from ¡PT by
almost a¡ order of magnitude. This clearly indicates the fail-
ings of such a simple fitting procedure. We recommend that

future fitting and extrapolation procedures should be based

on Eqs. (17) and (18), which a¡e consistent with ¡PT and the
heavy quark limit.

V. SUMMARY

In the quest to connect lattice measurements with the

physical regime, we have explored the quark mass depen-

dence of the N and A baryon masses using arguments based
on analyticity and heavy quark limits. In the region where

o
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FIG. 10. A comparison between phenomenological fitting func-
tions for the mass of the A. The two parameter fit corresponds to

using Eq. (22) wirh 7 set equal to the value known from ¡PT. The

rhree parameter fit corresponds to letting 7 vary as an unconst¡ained
nt parameter. The solid line is the fit for the functional form of Eq.
(18), fit (d) of Table IV.
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]'ABLE V. Parameter sets for the fits shown in Figs. 9 and 10. Set (a) is for the 2 parameter fu of Eq. (22)

with 7 from xPT, (b) for the 3 parameter fit of Eq. (22), and (c) for the preferred functional form.

Fir ap
(GeV) (GeV-l)

N
yorÀ

(GeV-2; or (GeV)
ap

(GeV) (GeV-r)

A

7or1L
(GeV-2) or (GeV)

MN
(Gev)

M^
(GeV)

(a) -0.128
(b) o.e\2
(c) Lls

7.38

1.69

o.736

- 5.60

-0.761
0.455

- 0.001

0.943

1.003

0.t82
1.18

t.3'l

7.09

1.45

0.602

- 5.60

-o;t03
0.419

0.304

1.202

1.227

,fl 7 is larger than 500 MeV, the lattice data can be reasonably
well described by the simple form a4 Bm2n, which is linea¡
in the quark mass. The additional curvature associated with
chiral corrections only appears below this region. This can

be understood quite naturally within chiral quark models,
like the cloudy bag, which lead to a cutoff on high momen-
tum virtual pions, thus suppressing the self-energy diagrams
quite effectively as ntz, increases. The pionic self-energy dia-
grams which we consider are unique in that only these dia-
gr¿üìs give rise to the leading non-analytic behavior which
yields a rapid variation of baryon masses in the chiral limit.
Loops involving heavier mesons or baryons cannot give rise
to such a rapid va¡iation.

Based on these considerations, we have determined a

method to access quark masses beyond the regime of chiral
perturbation theory. This method reproduces the leading
non-analytic behavior of ¡PT and accounts for the internal
structure of the baryon under investigation. We find that the
predictions of the CBM, a¡rd two flavor, dynamical fermion
lattice QCD results, are succinctly described by the formulas
of Eqs. (17) and (18) with terms defrned in Eqs. (8)-(12).
We believe that Eqs. (8)-(12) are the simplest one ca¡ write
down which involve a single pa¡ameter, yet incorporate the

essential consfaints of chiral symmetry and the heavy quark

limit.
Firm conclusions concerning agreement between the ex-

trapolated lattice results and experiment cannot be made un-

til the systematic errors can be reduced below the current

level of lÙVo and accurate measurements are made at røt
.- 300 MeV or lower. The signiflcance of non-linear behav-

ior in extrapolating nucleon and A masses as a function of
ln| to the chiral regime has been evaluated. V/e find that the

leading non-analytic term of the chiral expansion dominates

from the chi¡al limit up to the branch point at mn: L'M . The
curyature around mn= A,M, neglected in previous extrapola-
tions of the lattice data, leads to shifts in the extrapolated
masses of the same order as the departure of lattice estimates
from experimental measurements.
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