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The extraction of the physical properties of hadrons from lattice Quantum Chro-
modynamics (QCD) calculations is an important and urgent area of research. It
is difficult to make calculations of hadronic properties because QCD is a highly
non-linear field theory. Lattice gauge theory is the only known ab initio way of
making nonperturbative calculations of QCD. The lattice has been highly success-
ful but the computational cost of simulating light quark masses means that hadronic
calculations at physical quark masses are some way off.

We present a method of extrapolating from the heavy quark regime, where
lattice calculations now occur, to physical quark masses, which carefully incor-
porates key, model independent constraints — especially those imposed by chiral
symmetry. This extrapolation method not only allows one to extract physical hadron
masses with high accuracy, but also allows the extraction of other properties, includ-

ing the pion-nucleon sigma term and the .J parameter for the vector mesons.
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Chapter 1

Introduction

We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.

T.S. ELIOT, “LITTLE GIDDING”

n the surface it seems remarkable that still the primary unresolved problem
Oin the Standard Model of particle physics relates to the strong interaction and
its description from first principles. Quantum Chromodynamics (QCD), originally
proposed by Gell-Mann [1] and Zweig [2] in the 1960s and 1970s, came about
as a result of the exploding number of new particles being created by high energy
particle colliders. To get a grasp on this variety of new matter, building blocks called
quarks were introduced as simply a book-keeping trick. When it was found that one
of these new particles, the AT, was predicted to have a totally symmetric wave
function, but was known to obey Fermi-Dirac statistics a hurdle was encountered.
Following the cavalier approach of the initial formulation, a colour quantum number

was assigned to the quarks. The baryons were required to be anti-symmetric under
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the colour indices and the problems vanished. Imposing local gauge invariance on
the colour fields and having the quarks interact by vector gluons crystallised the
theory into the QCD we know today.

QCD is an asymptotically free theory — the effective strong coupling con-
stant decreases at short distances. Perturbative QCD may be applied to processes
involving large momentum transfer, for instance hadronic jets in high energy parti-
cle collisions. In principle all the properties of strongly interacting particles could
be extracted from the QCD Lagrangian. It has been said! that “In theory there is no
difference between theory and practice; In practice there is.” This is especially true
in the case of QCD in the low energy sector. The difficulty lies in the fact that QCD
is formulated in terms of quarks and gluons, yet at low energy the world appears to
be constructed of hadrons. To this date, no analytic studies of QCD have been able
to extract non-perturbative results from first principles.

There are many approaches that have been applied to QCD in attempts to
extract results in the non-perturbative region. The difficulty is that fundamental
issues such as confinement and chiral symmetry are still not well understood. QCD
motivated models attempt to build in some of the known properties whilst allowing
the exploration of, and extrapolation to, other regions. There is of course a method
that allows ab initio calculations in QCD to be performed — Lattice QCD.

On the lattice the entire theory of QCD is discretised. Space-time itself is
discretised into a finite lattice. The quark fields are averaged about the grid-points
and the gluon fields are defined on the links between the grid-points. The act of
discretising the theory introduces, at a first approximation, errors of O(a), where a
is the lattice spacing. The strength of the lattice is that these discretisation errors
scale, that is, as the lattice gets finer, the errors reduce, and in the continuum limit

lattice QCD is identical to QCD. Recent breakthroughs now allow the elimination
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of O(a) errors, and the remaining O(a®) errors are small.

The Standard Model parameters of full QCD, the quark masses and the
strong coupling constant, are also the parameters of freedom in lattice calculations.
Where experimentally these are fixed quantities, the lattice allows investigation of
how the theory of QCD behaves under variation of these parameters. The insights
gained from exploring non-physical parameter sets is not only of interest as an in-
tellectual exercise, but also forced upon us by technical issues. Computational and
algorithmic limitations prevent full QCD lattice calculations at light quark masses,
and force the extraction of hadron properties to occur at very heavy, entirely un-
physical, quark masses. Improvements in actions, algorithms and computing power
are occurring continuously, but it is a widely held view that we are still many years
away from QCD calculations near the physical region. Two approaches to this dif-
ficulty have evolved.

The first is quenching where the theory is modified in a way as to effectively
remove sea—quark loops. This approximation, whilst mutilating the theory, allows
orders of magnitude reduction in computing costs. The other approach, which is the
basis of this thesis, and in a modified form still important for the quenched theory,
is to extrapolate the hadron properties from the heavy quark masses to physical
masses. We investigate, as a first instance, the extrapolation of dynamical fermion
lattice QCD results. Currently there is research under way to extend this approach
to quenched and partially quenched results, but discussion of such is left to a future
work.

The lattice approach is in its prime as a non-perturbative tool to explore
QCD and hadronic properties. It has been observed that massless QCD obeys chi-
ral symmetry, and this motivated the derivation of an effective field theory, Chiral
Perturbation Theory (xPT). xPT is an effective theory containing the important low

energy symmetries of QCD, and a theory in which it was simple enough to make
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calculations. In chapter 3 we investigate the basis behind xPT, and derive the lead-
ing and next-to-leading non-analytic (in quark mass) contributions to the mass of
the nucleon. We show that yPT predicts this non-analytic behaviour, including the
model independent values for the coefficients, and that it is induced by Goldstone
boson (pion) loops that are naturally associated with hadrons. xPT is a systematic
approach to QCD that predicts the presence of non-analytic behaviour, and offers a
systematic way to calculate the coefficients.

Chapter 4 discusses a phenomenologically motivated model of baryons —
the Cloudy Bag Model (CBM). The CBM builds on the successful MIT bag model
to allow investigation of baryons over a wide region of parameter space. The MIT
bag introduced phenomenological constraints to enforce confinement, and the CBM
introduced pions coupling to the quarks confined inside the bags. In the chiral limit,
the CBM gives the correct behaviour that xPT tells us QCD possesses. In addition
to this, form factors appear naturally in the model allowing it to be applied over a
much greater range in quark, or equivalently pion mass. The radius of convergence
of xPT is unknown, but since it is a perturbation about massless quarks, instinc-
tively one feels that it would be surprising if it applied in the region where lattice
QCD calculations occur (somewhere above four times the physical pion mass). The
CBM however, through the introduction of form factors, which are related to the
size of the source of the pion field, is able to probe from the chiral limit, through a
region well into the available lattice calculations. We stress that this model is not
QCD, but it does give an insight into the behaviour of the physics in the intermedi-
ate region. The CBM gives an intuitive feel for why the hadron properties behave
as they do.

The many methods used to study hadronic physics including models, effec-
tive theories, perturbation theory and heavy quark theory are only giving insights

from a few isolated vantage points. The need remains to use non-perturbative meth-
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ods, and as we have stated, the only successful approach at this time is the lattice.
We have alluded to the fact that whilst there are difficulties in making calculations
on the lattice with physical parameters, one may extrapolate results calculated in a
region with heavier quark masses to the physical. The exploration of extrapolation
forms has not been a particularly active area of research and at first sight this is
not surprising. Until quite recently there was no obvious need to extrapolate with
anything other than a linear Ansatz — the lattice results appeared to be linear in m2
to a good approximation. This linear behaviour is entirely expected, it is predicted
as a precursor to Heavy Quark Effective Theory (HQET). The critical point is that
HQET does not have xPT as a limit, but we know that lattice QCD does. In partic-

ular we know the non-analytic behaviour near the chiral limit. In chapter 3 we will

show that the mass of the nucleon behaves like
my ~ mo + am? + mS + ym? +Emilnmi + ...

However fitting a form similar to this to lattice data is not reasonable. We show
in chapters 5 and 6 that by fixing the coefficients 3 and £ to their values known
from xPT, it is impossible to find a fit. The other extreme is equally unpalatable.
Relaxing the constraints on § and &, letting them become fit parameters means
the loss of the benefits gained by using xPT in the first place. Our approach uses
insights from the phenomenological CBM as to the behaviour of the mass in the
region between the chiral limit and lattice results.

In chapters 5, 6 and 7 this work presents the development of an extrapolation
scheme, one easily extended to other hadronic properties, that allows the extrapola-
tion of dynamical fermion lattice QCD calculations of hadron masses to the physical
region. We also discuss how this method allows the extraction of other properties
of the hadrons, including the pion-nucleon sigma term, on, and the J parameter

for the vector mesons. We also present the first Edinburgh plots to display the cor-
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rect behaviour in the extrapolation to the chiral limit. This scheme builds in the
known behaviour in the chiral limit, in particular the leading and next-to-leading
non-analytic behaviour with the correct coefficients as may be found in XxPT. The
extrapolation form smoothly interpolates between this chiral limit and the heavy
quark regime, where hadron properties show smooth mass dependence. Finally the
form automatically includes, and corrects for, the finite size effects introduced by
the discretisation process. The functional form contains only three parameters, and
the fitting involves an analytic sum which may be evaluated on a desktop PC in a
short time frame. An analysis extrapolating to the chiral limit performed with this
functional form would require virtually indistinguishable computing resources to
the current analyses, and yet would contain the correct, known, physics. Having
confidence in extrapolated values will allow a direct juxtaposition with experiment

— testing QCD like never before.



Chapter 2

Lattice QCD

The particle physics community sowed its wild
oats in a torrid affair with a beautiful gauge
theory called Quantum Chromodynamics. It is the
task of nuclear physics to bring up the unruly
non-perturbative offspring.

THOMAS COHEN

quantum field theory is a complex beast. In a weak coupling theory, like
AQCD at high energy, it may be expanded as a perturbative series of its n-point
functions. The success of such an approach is highlighted by Quantum Electrody-
namics where the theoretical prediction for the electron magnetic moment anomaly
is known to 4 parts in 10712, The difficulty lies in the strong coupling region where
a perturbative series often fails even to converge. The naive perturbation, in QCD,
around free particles is not well defined as the quarks are confined. Calculations in
this region are, not surprisingly, known as non-perturbative. The coupling of QCD

in the world we see around us runs with the scale of the process. Where in QED



the coupling was small at long distances, it is exactly the opposite in QCD. There is
asymptotic freedom for hard processes, but for low energy processes there is con-
finement and perturbation theory breaks down. Therefore we realise that QCD is
genuinely non-perturbative, and therefore we need tools in this region.

In the introduction to path integrals in Ref. [3] the following quote was at-
tributed to Feynman:! “every theoretical physicist who is any good knows six or
seven different theoretical representations for exactly the same physics.” It is re-
markably apt in this case. Quantum field theories may be formulated in the method
of a path, or functional, integral. Effectively the n-point Green function of the the-
ory is formulated in terms of an integral over all possible values of the fields at all
space-time points. One of the strengths of lattice gauge theory is that it provides a
method for approximating this functional path integral. The application of finite nu-
merical methods to an infinite problem introduces approximations, but the strength
of the lattice approach is that these approximations are systematically removable. In
the words of one practitioner [4] “It is this possibility of controlling the systematic
errors that makes lattice gauge theory increasingly popular.”

A brief introduction to the construction of lattice gauge theory will be pre-
sented in this chapter. Additional information as well as a more detailed introduc-

tion can be found in [5, 6, 7, 8, 9, 10, 11, 12].

2.1 Lattice Field Theory

2.1.1 General Foundation

One builds a Lagrangian density, £(®, 0*®), of a theory from the appropriate de-
grees of freedom, the set of fields, ®. The fields themselves are functions of the

LThe Character of Physical Law (MIT Press, 1965), p. 168.



space-time they are embedded in, for example in Minkowski space time ® = &(x)
where z* = (2°,Z) = (¢, 7). In the specific case of QCD these degrees of freedom
are associated with the quark and gluon fields. The action of such a Lagrangian is
then found to be

S[®] = f d*z L(®(z), 0" ®(x)) . 2.1)

The generating functional of the theory is constructed as
Zln(x:)] = % / [d@)etSIe1-] ez, 22)
with the source terms in the theory denoted 7, and the normalisation, Z, given by
Z = f [d®]e*S1®] . (2.3)

The n-point, or Green functions?, of the theory, which are the vacuum expectation

values of time ordered products of the fields, then completely determine the theory:
G™(zy,...,2,) = N(O|T[®(z1) - .. B(24)]|0) (2.4)

where N is a normalisation constant. The Green functions are constructed by taking
the derivative of the generating functional, Eq. (2.2), with respect to the sources, and

then setting them to zero:
1 :
G (xy,...,Tn) = . /[d@]@(ml) B (3R (2.5)

It should now be obvious that the normalisation constant, N, isidentically Z~1. The
mass of a particle, and all other physical observables of the system described by S
can be derived from the Green functions. Returning to Feynman’s quote, solving
the field theory and solving Eq. (2.5) — with the explicit functional integration —

are different ways of expressing the same physics.

2There is some discrepancy in the literature as whether these functions are Green functions ot
Green'’s functions. We follow the convention of [13] and use the former.
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2.1.2 Building the Lattice

The difficulties of numerical calculations in a Minkowski space-time theory are
removed by shifting to Euclidean space-time. This is the prevalent practice in the
lattice QCD community and is not an approximation, but a complete transformation
between the geometries. The transformation is a simple shift from regular time to
imaginary time:

t— —it. (2.6)

This approach is justified as the Hamiltonian of QCD is time independent — it is
unchanged by this transformation, and therefore so is the physics it describes. This
change results in the following clean transformation from the original action to the

Euclidean space action:
S =1Sg. 2.7

The highly oscillatory behaviour of the Green functions becomes exponentially
damped, ¢'51%] — ¢~5=(%], making them numerical soluble. This exponential damp-
ing is reminiscent of statistical mechanics, and we shall return to this point shortly.
The lattice quantum field theory can then be represented in terms of well defined
functional integrals taken over the Euclidean lattice hypercube of length L and lat-
tice spacing a. In an ideal world, the continuum limit,  — 0, would be taken.
However this is not possible because of the finite computational resources avail-
able. As was mentioned previously, this source of error is systematically improv-
able. The difficulty of finding a compromise between larger lattices and smaller
lattice spacing is the subject of much work. The difficulty is by reducing a, to
represent the continuous space, the size of the lattice, aL, will also decrease. How-
ever the lattice must be large enough to hold not only the object being explored but
also longer range effects introduced by intermediate states. It is believed that the

physical lattice size should be between 2.5 and 3.0 fm to avoid finite-size effects
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[14, 15,16, 17, 18]. We shall show in subsequent chapters that any finite size lattice
will exclude some important physics.

Placing the theory on the lattice introduces two additional properties that are
important to consider when extracting quantities from a calculation. By discretising
the coordinate space in terms of a finite a and L, we change the available momenta.
Since there is a finite number of lattice sites, it can be shown that the available

momenta, k, in the finite periodic volume are also discrete

_ 2mn,

k, = 2.8
where L, is the number of lattice sites in the direction, and the integer n,, obeys
L L

—-2—” <n, < 7“ (2.9)

We see from Eq. (2.8) that the short distance (ultraviolet) physics, Emax = 2, 1s de-
termined by the lattice spacing a. This UV regularisation is required in any renor-
malisable quantum field theory as it allows the elimination of infinities in calculated
observables. Naturally as the observables will be dependent on a one must ensure
that they scale correctly as a — 0. The lattice size, L, determines the spacing
between the allowed momenta. Thus, on a small lattice there is a large minimum
non-zero momentum. In the particular case of a p-wave decay, where one unit of
momentum is required, the decay is prevented because of the large energies re-
quired.

The realisation of the similarity between the formulation of lattice gauge
theory and statistical mechanics — that is, systems with a large number of degrees
of freedom, but with bulk properties — has allowed some of the experience and ma-
chinery of the field to be utilised. In particular the e~°E is reminiscent of the Boltz-
mann factor. Using this insight allows the generation of fields using the Markoff
chain process. This ensures that the fields created are of the typical weight distribu-

tion of QCD. Such a generation process reduces the number of fields required for a
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calculation by generating a larger percentage of fields that have a higher probability
of being physically important. We leave the precise details of putting QCD on the

lattice to the review texts mentioned in the introduction.

2.1.3 Region of Applicability

Lattice gauge theory is well defined over all lattice sizes, spacing, and quark masses.
It obeys scaling, so for arbitrarily large and fine lattices with light enough quarks
the properties will approach those of continuum QCD. There are some constraints

however on how close to the physical world a calculation may be pushed:

e Simulations are expensive — the cost of a calculation is proportional to the

square of the lattice volume and inversely proportional to the sixth power of

the lattice spacing [4].

e Light quarks are non-local — thus they are extremely sensitive to finite vol-
ume effects. Technical reasons, in particular critical slowing in the fermion

matrix inversion algorithms, also force the use of unphysical heavy quarks.

e Dynamical quarks are expensive — they increase by at least two orders of

magnitude the cost of the simulation.

e Large lattices are needed — to avoid the major finite-size effects the physical

lattice size must be at least 2.5 — 3.0 fm. [14, 15, 16, 17, 18].

These constraints convey the need to extrapolate results of lattice calculations to the
physical region. The subsequent chapters will present a method of extrapolating
masses in a way that reproduces the low energy properties of QCD whilst allowing

contact with the region where lattice calculations occur.
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2.2 Nucleon Mass

The most basic quantity to extract from a lattice calculation is the nucleon mass. It
may be deduced from the asymptotic behaviour of the single particle Green function
in large Euclidean time. We present below the derivation for the positive parity
particle, which easily generalises to the negative parity case.

Consider first the generalised case of the two point Green function in Min-

kowski space, where a three-quark state is created with momentum ¢

6@1) = [Pz O @O0 2.10)
= 2T HOMX@ROMO), @11)

where x is an interpolating field for the nucleon, and we have presented both the
continuum space and lattice form of the Green function. The construction of an ap-
propriate Green function for the nucleon requires an interpolating field representing
a three-quark state, with the quantum numbers of a nucleon, in terms of the quark
fields. There are many possible choices, and in practice only a reasonable overlap

with the physical nucleon wave function is required. The standard choices for such

a field are

x1 = €ac(uTCysd’)u’, (2.12)

Xz = €apc(u®TCdys)u’, (2.13)

with it having been shown in [19] that any spin-3, isospin-; nucleon interpolating
field without derivatives may be simplified as a linear combination of Eqs. (2.12)
and (2.13). We now insert a complete set of nucleon states, N; with spin s and
momentum p, into Eq. (2.11)
= Y O (@)INi(B, )N Ni(F, ) IX(0)[0),  (2:14)
1p7s l
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and only consider positive time. The annihilation of a nucleon to the vacuum is
defined as

(0lx(0)|N;(#, 5)) = Aiu(P, Ei, s) , (2.15)
with ); being the ability of the interpolating field to annihilate the nucleon, E; =
72+M?, and u is a spinor satisfying the Dirac equation. Using translation (Eq. (A.4))

allows the following simplification:

G@t) = Y e TH0]x(0)|N:)(Ni[x(0)[0)e’ 75 (2.16)
,p,sz

= Z elF=DF=Eitl| ), (5, E;, 5)u(P, Ei, s) (2.17)
f,ﬁ,s,i

By using the definition of the Kronecker-delta, ) - eP—-0% = §5- we simplify the

above expression as
= e\ Pulg, s)ulg, 8) (2.18)

The sum over the spins of the spinors is simply [13]:

3 ula, shalars) = L2, (2.19)

8

resulting in the Green function being given by

G(@.t) = e B\ T 3 (2.20)

At the quark level one contracts time ordered pairs of quark wave functions, which
gives the non-perturbative quark propagator. Using the Dirac representation (Sec.

A.3.1) we can see the Dirac matrix of the above expression has the form

d+ M, = ' ' . @2.21)



In the particular case of a particle at rest (¢ = 0), the only non-zero elements
are the (1,1) and (2,2) components. Changing to Euclidean space, ¢ — —it, it
becomes clear that in large Euclidean times the ground state dominates, because
of the mass dependence of the exponential damping. Practically, this ground state
mass, M; = F;(q = 0), is extracted from lattice evaluations of the two-point Green
function, Eq. (2.10), by looking at the local slope of the (natural) logarithm of the

ratio of the Green functions at ¢ and ¢ + 1:

gt+1)\ _ , -
In (-————g(t) ) = In(G(t+1)) —In(G(¢)) (2.22)
= iy, (2.23)

2.3 Setting the Scale

An issue suppressed in the previous discussion is that all quantities determined on
the lattice, including masses, are actually dimensionless quantities. Thus there is
the need, if we wish to represent the mass in physical units, to determine the scale
of the lattice a. In this work, results from two collaborations [20, 21] are utilised.
Since both groups use methods relating to the static quark potential to determine a
we shall only mention that approach. An alternative relies on surrendering one ob-
servable O, for instance a mass, and extracting the lattice spacing from the quantity
calculated on the lattice, a0O. As we shall show in subsequent chapters, the extrap-
olations to physical quark masses that have previously been used are flawed, and
hence these values will be incorrect.

We follow the work of Sommer [22] by utilising the force between static
quarks at intermediate distances to set the hadronic scale. The calculation of the

static quark potential at a separation r is conceptually one of the simplest quantities
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that can be calculated on the lattice [23, for example], can be calculated to a high

precision and may be parameterised as [24, 25, 26]:
V(r) = '; +or+ V. (2.24)

The force between the quarks is then simply given by the change in the potential as

a function of the separation

?X
or

where the parameters are often determined by the static quark potential near ry.

=% 4o (2.25)

7‘2 T=T0

F(?"o) =

r=To

It is known that both the bb and ¢ spectra may both be described by a single
effective non-relativistic Schrodinger equation potential [27]. Model calculations
indicate that the rms radii of bb states is 0.2-0.7 fm, and the cc states have rms radii
of 0.4-1.0 fim. Thus these spectra may be used to determine the effective potential
in the range r ~ 0.2 fm to 7 ~ 1.0 fm, however it is clear that the best information
is at a radius of around r ~ 0.5 fm. This information is then used to set the scale of

the lattice by looking at the quantity
raF(ry) = ¢ (2.26)
- (% + o—) 2. .27)

o
In principle we can set 3 F'(ro) to any value. However it is common practice
to choose ¢ = 1.63 following Sommer’s initial estimate of 1.65 and motivated by the
Cornell [28] and Richardson [29] heavy quark models. This choice of ¢ corresponds
to ro = 0.49 fm. Thus we have a relationship between the string tension, o, that is
used by the CP-PACS collaboration, and ro favoured by UKQCD

, 163—e
r? = ol (2.28)

a

with the constant e equal to 0.43 in agreement with [25]. Equation (2.26) is the pre-

ferred method for determining the scale on the lattice for a number of reasons. One
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compelling argument is this approach only requires the evaluation of the force at
moderate separations of the static quark-antiquark pair. This removes the difficulty
associated with the extraction of the string tension, as beyond a certain separation
it is expected that string breaking —— gq creation — will occur. Virtual gq creation
will act to screen the potential, rendering a precise definition of a string tension
impossible. The above method is well defined in both quenched and dynamical

calculations.

2.4 Results

There is a considerable difficulty and cost associated with calculating dynamical
fermion results on the lattice. Until quite recently there were only two sets [20, 21]
of results that were at sufficiently light quark mass for us to begin our investiga-
tions. In the following work we use dynamical, two-flavour fermion results from
the CP-PACS [20] and UKQCD [21] collaborations. We note that in both data sets
the continuum extrapolation has not been taken, resulting in a residual O(a™) (for
some n) error in the published results. The effects of the continuum extrapola-
tion are beyond the scope of this work and are not considered in this thesis. We
have, however, established a new formalism in this work, based on the excellent
data mentioned, and anticipate the approach established here will become standard

practice in future lattice publications.

CP-PACS

The CP-PACS [20] calculations, presented in Table 2.1, were made on either a
19% % 32 or 163 x 32 lattice. The calculations were performed using an Iwasaki [30]

— plaquette plus rectangle gluon and clover fermion — action, with the Sheik-
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holeslami and Wohlert [31] clover coefficient, csw, determined via mean-field im-
provement. Since the publication of the work the value of cgw has been determined
non-perturbatively and is somewhat different from value used in [20]. Throughout
this work we have used the results found with the perturbative cgw to avoid intro-
ducing any systematic errors part-way through the analysis. As we have previously
discussed, there is a relationship between ¢ and rg, found from the static quark
potential V (). However this approach neglects the quark-antiquark separation, r,
dependence of e and ¢ in Eq. (2.26), meaning the result is not exact. As different
methods for setting the scale were used by the CP-PACS and UKQCD collabora-
tions (as discussed below) there is some uncertainty in setting the physical scale.
However, for a particular choice of o at the physical quark mass, for example CP-
PACS sets /o = 440 MeV, we may extract a value of 7y from Eq. (2.28). We
then use this value of 7y in the UKQCD formalism for setting the scale, avoiding

possible string breaking effects. We shall use this ambiguity later to improve the

2

B K mMpsQ mya mna maa oa

1.9° 0.1420 0.6992(19) 1.0134(60) 1.494 (12) 1.662(17) 0.2375(60)
1.9° 0.1430 0.5414(18) 0.8861(71) 1.283 (13) 1.501(17) 0.2094(51)
1.9° 0.1440 0.2906(41) 0.706 (15) 0.972 (25) 1.171(32) 0.1755(57)
1.9 0.1370 1.1918(12) 1.4091(28) 2.2172(91) 2.358(20) 0.3243(87)
1.9° 0.1400 0.9334(17) 1.2033(39) 1.8573(95) 2.009(12) 0.2750(75)
1.9° 0.1420 0.6983(18) 1.0149(45) 1.5195(78) 1.712(11) 0.2465(46)

Table 2.1: Results from the CP-PACS collaboration [20]. The lattice size for the
rows indicated by the a is 16% x 32, whilst the rows indicated by b are on a 12° x 32

lattice.

agreement between the data sets we are investigating.

We feel some encouragement for our present work because of a statement in

the article regarding the quark mass dependence of the hadron masses:

“The existence of curvature [at small quark masses] is observed,
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necessitating a cubic ansatz for extrapolation to the chiral limit.” [20]

The first section of this statement is related to the motivation of this work. This
curvature is expected to be seen as the chiral limit is approached. It is a model
independent result, that may be implicitly included in extrapolations, as we shall
discuss in subsequent chapters. The second part of this statement is motivated by
chiral perturbation theory. It is known from xPT that the leading non-analytic term

in the mass of, for example, the p-meson is a term in m3, thus a fit of the type
mya = A, + By(ma)® + Cy(mya)’ (2.29)

has some theoretical motivation. Unfortunately such a simplistic approach is only
correct in a small region around the chiral limit, not at the quark masses where
lattice calculations occur, as we investigate in sections 5.4.1 and 6.6.2. The final
issue we wish to raise is with regards to the CP-PACS result at m,/m, ~ 0.4.
Although CP-PACS finds no evidence of residual finite size errors at this mass point,
they caution that it is premature to draw firm conclusions based on the present low

statistics of approximately 1000 trajectories.

UKQCD

The second source of results we have utilised is Ref. [21] from the UKQCD collab-
oration (Table 2.2). These dynamical fermion results were calculated on a 123 x 24
lattice at 8 = 5.2. They used the standard plaquette action for the gauge fields, and
an O(a) improved Wilson fermion action. The lattice size was chosen so that the
volume of the lattice was greater than (1 fm)?® in the spatial dimensions. The phys-
ical scale was set by comparing the force, calculated from the interquark potential,
to quarkonia models as was the justification for Eq. (2.26). Phenomenologically

it is found that ry ~ 0.49 fm, and this value is used to extract the physical lattice
spacing, a.
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K mps7o myTo MNT mAaTo ro/a
0.1370 2.541 2 2973 13) 471075 4907+ 2294 *3F 0
0.1380 2.404 ¥ 2915 T 45208t 5 47631 % 2568 13 i
01300 2.155 *%# 2746 5 4.263 T'% 4.707 T'Y 3.046 13 Y
0.1395 1.916 ¥ 2700 4 4045 F 5 4.565 73 3.435 133 Y
0.1398 1.738 *17 2578 *¥ 3765 1'% 4.349 T3 3.652 T3 F ]

Table 2.2: Results from the UKQCD collaboration [21]. All results were calculated
on a 123 x 24 lattice. The lattice spacing is determined from 7,/a where ¢ has the
value 0.49 fin.

We present plots showing the data sets which we use in Fig. 2.1. The left
hand plot shows the results using the central values for setting the physical scale. It
is clear that the two data sets are not consistent, so we use the uncertainty in setting
the physical scale to rescale both data sets by 5% to improve the agreement. This
improved data is presented in the second plot. We also show linear (my = a+ bm?2)
fits to the data. This Ansatz reproduces the lattice results well between m2 ~ 0.2
GeV? and m2 ~ 0.8 GeV?, but fails at both ends. The divergence at light pion mass
(or equivalently quark mass, Sec. 3.1.3) is expected from chiral perturbation theory,
and is the motivation of this work. The curvature at high pion mass, is an indication
of higher order (in m?2) terms coming from the Gell-Mann—Oakes—Renner relation,
or perhaps an indication that it does not apply. The details of the divergence are not

of interest in this work, and so we restrict our investigation to data that lies below

m2 ~ 0.8 GeV2.

2.5 Conclusion

Lattice gauge theory is the only known way to explore the properties of Quantum
Chromodynamics from first principles. Whilst there are current limitations imposed

by finite computing resources, they are systematically improvable, and the lattice is
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Figure 2.1: We present, in the left-hand plot, the results for the p, N and A masses
from the CP-PACS [20] (filled symbols) and UKQCD [21] (open symbols) data sets
presented in Tables 2.1 and 2.2. The right-hand plot uses the uncertainty in setting
the physical scale to shift both masses by 5% to improve agreement. The vertical
short-dashed line indicates the physical pion mass.

the only ab initio approach available. It is this property that has made the lattice an
attractive field of research.

We discuss other approaches to investigating the predictions of QCD in the
following chapters. In chapter 3 we briefly discuss the approaches of chiral sym-
metry and chiral perturbation theory, an effective theory in the low energy regime.
Chapter 4 presents a model approach to the phenomenology of QCD, whilst pre-
serving the symmetries of QCD. Each of these methods has their own strengths and
weaknesses, and it is through utilising all of them we gain a greater insight. Truly

the whole is greater than the sum of the parts.
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Chapter 3

Chiral Perturbation Theory

Although this may seem a paradox, all exact
science is dominated by the idea of
approximation.

BERTRAND RUSSELL

hiral perturbation theory (xPT) is a complete field in and of itself. A chapter
Cin this thesis would not, and could not, do justice to the richness and diversity
of the field. We do not attempt to present xPT in anything but generality, developing
some of the concepts that will be important in the following chapters. There are
many reviews [32] that allow the interested reader insights into the development of

the field and the basic methodology used.

3.1 Chiral Symmetry

Chiral perturbation theory is built on the basis of chiral symmetry. We give a brief
overview of chiral symmetry as an introduction to xPT. The starting point is the

Dirac equation. For a vector wave functions, U, the Dirac equation satisfies the
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following requirements [13]:

1. The components of ¥ must satisfy the Klein-Gordon equation, so that a plane

wave with E? = p? + m? is a solution.
2. There exists a conserved four-vector current density, with positive density.

3. The components of ¥ are independent functions of z.

A free relativistic fermion is completely characterised by its energy, ', momentum,
7, and helicity A = & - 5/ |p|. Thus for a massless, spin-1/2, free particle the Dirac

equation may be written as
L =103V, 3.1

For the particular case of massless fermions, helicity and chirality are identical con-

cepts, thus we may decompose the spinor into left- and right-handed components,

using the chirality operator s:

1l 1
Y = 5(1—75)‘1"‘"2‘(1"'75)‘1’
= PV + PrV¥

= U+ Vp.

Here Py g are projection operators which obey the expected properties that the pro-
jection of a chirality eigenstate does not change its chirality, and that the group is

closed under chirality projection. Mathematically these may be written as [33]:
P}=P,, Pi=Pp, PL-Pr=0, Pp+Pr=1
We also have the property that

il‘IlL,R =XV R,
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however this is only exact in the case of massless fermions. This can be seen when
one introduces mass into the Dirac equation, as one would find mixing between the

left- and right-handed states:
Im¥ = UymUg + Upm¥y . (3.2)

In this case the Py p are still projectors, but not of exact helicity. The helicity of
massive particles is a frame dependent concept, a right-handed particle moving in
the positive z-direction in one frame is left-handed and moving in the negative x-

direction in a suitably boosted frame.
Returning to the massless state, it is clear we can separate the Lagrangian of

Eq. (3.1) into a sum of the two helicity eigenstates
L =109V +iVpdVUpr, (3.3)

where there is no interaction between the left- and right-handed fermions. Thus the
Lagrangian remains invariant under an arbitrary transformation of either the left- or

right-handed fields by a generator of SU(3), e:
U — U, =¥y, Up— Uy =", (3.4)

In particular the group of these transformations is SU(3), x SU(3)r, where there
are 3 light quarks, and the symmetry is referred to as the chiral symmetry. There
are sixteen conserved currents, found from the application of Noether’s theorem. It
is common practice when describing the system to use the vector and axial currents

(rather than the left- and right-handed currents)

vE = %“%\I’, (3.5)
—r Pl
Ap = U5 T, (3.6)
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with the corresponding conserved charges
Q= [Eviw, 67
QL = f d3z A%(z). (3.8)

3.1.1 Dynamical Symmetry Breaking

If the ground state (vacuum) of QCD was chirally symmetric then, the Wigner-
Weyl representation of chiral symmetry with a “trivial” vacuum would be realised

and both vector and axial charge operators would annihilate the vacuum:
QL10) = Q210) =0. (3.9)

There is however, evidence from both low-energy hadron phenomenology and from
lattice QCD calculations that chiral symmetry is dynamically broken. These results
indicate the ground state of QCD does not share the chiral symmetry of the Lagran-
gian. If Wigner-Weyl was realised, the spectra of positive and negative parity states
would have a close correspondence, as indicated by Eq. (3.9). There are many ex-
amples of where this correspondence breaks down. Two of the most striking include
the lack of agreement in the masses of the vector and axial vector mesons and the
mass gap of pseudoscalar meson parity partners.

Assuming Eq. (3.9) was correct would imply that the correlation functions
of vector and axial vector currents would be identical: (0|V/V}|0) = (0|A4A}|0).
As a direct consequence, one would expect that the spectra of vector (J™ =17) and
axial vector (J™ = 17) mesons would also be identical. This is patently not true,
the p meson has a mass (m, =~ 0.77 GeV) much smaller than that of the axial a,
meson (m,, ~ 1.23 GeV). Another indication that chiral symmetry does not hold
is seen in the light pseudoscalar (J™ = 07) mesons, (7, K, ... ), which have masses

much lower that the lightest scalar (J™ = 0%) mesons.
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An alternate realisation of chiral symmetry is the Nambu-Goldstone repre-
sentation. Here the observed, approximate validity of SU(3) flavour symmetry is

found to be compatible with the assumption that

QYI0y =0. (3.10)
One must therefore conclude

Q;10) # 0. (3.11)

Thus we see that the larger SU(3), x SU(3)g symmetry must be broken down to

the flavour group SU(3)y, which is consistent with observation.

3.1.2 Goldstone’s Theorem

Goldstone’s theorem states that for every broken continuous symmetry, the theory
must contain a massless particle, the Goldstone boson [34, 35, 36]. We saw above
that QCD has such a broken symmetry, and so we may apply Goldstone’s theorem.
Since the axial charge does not leave the vacuum invariant (Eq. (3.11)), there must

be a physical state created from the vacuum
|¢a) = QZ10) (3.12)

As the axial charge commutes with the Hamiltonian, we can apply the Hamiltonian

to the above expression with the result
Hlpa) = QuH|0) . (3.13)

That is, the energy of the state ¢, is that of the vacuum. Thus, since there are

cight generators of the axial charge, we have an equivalent number of massless

pseudoscalar mesons.

This prediction is indeed reflected in nature as the lightest hadrons observed

are eight in number and are pseudoscalar (r*, 7°, K*, K°, K?° 7). The reason
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that these mesons are not massless is that the exact SU(3), x SU(3) r symmetry of
chiral symmetry is explicitly broken by massive quarks. As the quark masses are
so small (a few MeV for the u and d quarks and around 150 MeV for the s quark)
the predictions of SU(3) chiral symmetry are quite reasonable. In the SU(2) case
(just the v and d quarks are assumed to be massless) we find just three Goldstone

bosons, and a much better realisation of the approximate symmetry.

3.1.3 The Gell-Mann—Qakes—-Renner Relation

Goldstone’s theorem implies the existence of pseudoscalar bosons. We may define
their state to be |m,(p)), normalised as (m,(p)|m(p')) = 2Ep0as(27)*(F — P'),
where the four-momentum is defined as p* = (E,, p). Additionally the divergence
in the axial current (this is the Partially Conserved Axial Current (PCAC) of Gell-
Mann, and Lévy and Nambu [37, 36]) is given by

o = W{M %Ly, (.14
9, AT = (mu+md)¢l’Ys?11/), (3.15)

with the matrix M defined to be diagonal with the ith light quark mass at M;;.

Goldstone’s theorem also implies that the transition matrix element of the axial

current is
(0| A% (z) |my(p)) = 1" fobare ™7, (3.16)

and hence the axial current is
(0|QA(t = 0)|my(p)) = ibapfoFp(2)°0° (F) - (3.17)

Evaluating the vacuum expectation of the commutator of the axial current with the

divergence of the axial current:
(0][@1,0,41]] 0) = -% (114 + ma) (Tu + dd) . (3.18)

27



Inserting a complete set of states, normalised such that

d3p
WW(P))(%(P)I =1, (3.19)
P
it is simple to derive the Gell-Mann—Oakes—Renner (GMOR) relation [38]
1 —
m2 = —E?g(mu + mg)(@u + dd) + O(m? ;) . (3.20)

The pion decay constant in the vacuum is given by fo, which is related to the phys-
ical decay constant by f, = fo(1 + O(my)). Thus the difference from the physical
value (92.4 & 0.3 MeV [39]) is of O(mZ ;).

We now have a way of relating the observable world of hadrons, where we
may measure the pion mass and decay constant, to the properties of QCD, expressed

in terms of the fundamental quark degrees of freedom.

3.2 Chiral Perturbation Theory

The theory of elemental particle interactions that is presently accepted for the strong
interaction, Quantum Chromodynamics, has proved to be a successful theory. It is

elegant, and simple to write'
. 1
Lqocp =GP —m)q — §tr G.G*, (3.21)

it is asymptotically free and more importantly for calculation purposes it is renor-
malisable. However, for the most important criteria, that it represents the physical
world, there are some difficulties making comparisons in the low energy region.

Some fundamental difficulties include

1. The theory is highly non-linear because of the gluon self interactions.

V“If you are out to describe the truth, leave elegance to the tailor” — ALBERT EINSTEIN,
“What a strange illusion it is to suppose that beauty is goodness.” — LEO TOLSTOY.
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2. Usual perturbation theory is difficult to apply as the coupling, g?/4, is of

order 1.

A way of dealing with these problems is via an effective theory, in which the pre-
dictions of QCD in the low energy regime are reproduced, with hadronic degrees of
freedom. The low energy effective Lagrangian, £, must also have the same symme-
tries as the QCD Lagrangian, Lqcp. Weinberg suggested a method [40] in which
all terms allowed by the symmetries, to a particular order, of the fundamental the-
ory are explicitly included, ensuring that any calculation to such an order will be
consistent.

If we rewrite the QCD Lagrangian as a sum of a chirally symmetric piece

and one that breaks chiral symmetry
Lqocp = ﬁSQCD + ﬁSQ%D , (3.22)

our effective theory could, in an analogous manner, be separated into two parts, one

where chiral chiral symmetry held, and one where is was broken
Leg = Lo+ Lsp -

In this approach the symmetries of Lo would be those of L%cna and the symmetry
breaking term, Lgp is small and may be treated perturbatively. Finally, by construc-
tion, the Goldstone bosons are the only massless, strongly interacting particles in
the theory. Applying these constraints an effective theory of the strong interaction
may be derived.

Numerous authors, for example [41, 42, 33], have investigated the derivation
of the effective chiral Lagrangian for the meson, baryon and heavy baryon sectors.
We leave the details to these authors, and will limit the further discussion to general

comments on xPT. We derive the leading and next-to-leading non-analytic contri-
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butions for the nucleon as a guide how to proceed. In the following sections we

follow closely the works [43] and [44].

3.2.1 Leading Non-Analytic Contribution to the N mass

The derivation of the leading non-analytic contribution to the NV mass is presented in
Refs. [45, 33, 43]. The nucleon propagator extracted from the lowest order effective

Lagrangian for QCD has the form
)

= =9- 3.2
w—i—in’w v-l, n>0, (3.23)

SN(LU)

where the nucleon four-velocity is given by v, and [, is the momenta of the pions
in the theory. In this effective theory the Feynman insertion for the emission of a

pion with momentum [ from a nucleon is

;—iras 1, (3.24)

where S is the covariant spin operator, with the anti-commutation relation
1
{Su, S} = 5(1)”1),, — Guv) - (3.25)
Consider the case of a nucleon that emits a pion of momentum [, which is

re-absorbed some time later. The mass shift dm is

.3gf4/ d4l i i
= S-(=1)S-1, 3.26
om zF,? (2m)d 2 — M2 +in—v-l+in (=D (3.26)

where we have used the identity 7°7% = 3. We use the property of the spin operator,

Eq. (3.25), to simplify as

S, Sl == (v-lv-1+ M= 1> — M7) . (3.27)

|

Thus we may rewrite Eq. (3.26) as

P .3g3/ a1, vl
mo= Z4F,? (2m)e |v-l—din  M2—12—1n
M2
C(Mz-P—in(v-l—in)]

(3.28)
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Under dimensional regularisation it can be shown that the first term in the integral
vanishes [46], and the second term also does not contribute as it is odd under [ —

—!. Thus the integral may be simplified to

5m = 394 70y M2 (3.29)
4F? ™

where the following definition has been made

1 [ dd 1
103 | GrraE—F e T =

Reference [43] discusses how to simplify this expression. The details do not add to

discussion presented here and we just take the solution as

J(0) = —%. 3.31)

Substituting into Eq. (3.29) we see that the leading non-analytic contribution to the
mass of the nucleon from the pion loop (to one loop order) is given by

3g% M

S (3.32)

om =

3.2.2 Next-To-Leading Non-Analytic Contribution to the N mass

The work of Lebed [44] follows an alternative approach to deriving an effective
chiral Lagrangian. This common method relies on creating an SU(3) matrix, U =
¢M/f from some field I1, and defining the effective Lagrangian as a series of terms

with an increasing number of derivatives of U:
Lag=CL2+L8+..., (3.33)

where Egg) contains terms with n derivatives. Lorentz invariance requires the La-

grangian contain only terms with an even number of derivatives. Each of the terms
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in the series contains both a chirally symmetric part and a symmetry breaking piece.
For example the first term in Eq. (3.33) would have the form

2
L2 = i;-Tr [8,U0*U] + ngTr MU +TUY], (.34

where M is the quark mass matrix.

As discussed above it is the octet that generates the leading non-analytic
contribution to the self-energy of the nucleon. The next-to-leading non-analytic
contribution is introduced by extending the formalism to include the baryon decu-
plet with non-degenerate masses. The correction to the baryon mass [44] is of the

form
4

Smp ~ E??;_,z/\_x Inm = O(M2ln M,) . (3.35)
We note that this term is at the same order as one-loop diagrams in xPT, and thus
must be included in any discussion to one-loop order. The proof that this mass
correction appears in the Lagrangian at the same order as one-loop diagrams is

presented in Lebed [44].
We now have the leading two non-analytic (in quark mass) contributions to

the mass of the baryon: Egs. (3.32) and (3.35). The quark mass, M, expansion of

the baryon masses is thus
my ~ mo +aM + BMY? 4 yM? + EMPIn M + ... (3.36)
In SU(2) flavour, a more accurate representation of reality, Eq. (3.36) becomes
my ~m0+amfr+ﬂm;°’,+fymfr+§mfrlnmf,+... 3.37)

with, as discussed above, the coefficients 5 and £ of the non-analytic contributions

known explicitly.
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3.3 Summary

The theory of the strong interaction, QCD, whilst being elegant in construction is
none-the-less constructed in terms of degrees of freedom that make simple compar-
ison with experiment impossible. An effective field theory, will be representative of
QCD in some region, by constructing it about the symmetries of the larger theory.
If quarks were massless, chiral symmetry would be exact in QCD. As the masses
of the u and d quarks are so small this approximate symmetry is good to a few per-
cent observationally. Whilst for the heavier strange quark the approximation is not
so good. This approximate symmetry allows the construction of xPT, an effective
theory which is equivalent to QCD at low energy, but fashioned from mesons and
baryons.

The effective field theory, xPT, at low energy and small quark mass reveals
the behaviour of the strong interaction in a more accessible way than QCD. Proper-
ties of the baryons, and in particular the quark mass dependence of these properties,
are able to be extracted. Of particular interest for this work is the prediction of the
leading and next-to-leading non-analytic (in quark mass) contributions to the self-
energy of the nucleon, and the model independent results for the coefficients of
these terms. Whilst we do not present the details here, there are analogous results
for the A and p meson. In the subsequent work we shall be using this known non-
analytic behaviour as well as the known coefficients to constrain the extrapolation
of lattice QCD results rear the chiral limit.

The caveat that accompanies the xPT results is simple. Chiral symmetry is
only a viable concept for massive fermions whilst the energy scale of the system is
much larger than the eigenvalues of the quark mass matrix, but much less than the

mass of the resonances, like the p meson.
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Chapter 4

The Cloudy Bag Model

The opposite of a correct statement is a false
statement. But the opposite of a profound truth
may well be another profound truth.

NIELS BOHR

ne of the observed properties of nature is quark confinement. Any model
Oor theory describing hadrons needs to include this property. The MIT bag
model evolved from a model developed by Bogolubov [47] in the late 1960’s. This
model was created in an attempt to phenomenologically describe confined, rela-
tivistic quarks in a finite region of space. Bogolubov considered the simplest case:
a massless Dirac particle, moving freely within a spherical volume of radius R, sur-
rounded by an attractive scalar potential. Bogolubov enforced confinement in the
model by setting the potential equal to the quark mass and taking the limit of in-
finitely massive quarks. The phenomenological restrictions on Bogolubov’s model
resulted in the non-conservation of energy-momentum. This catastrophic failure of

the model resulted in an improved model, which would obey energy-momentum
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conservation.

4.1 The MIT Bag Model

The MIT bag model, developed in the mid 1970’s, had composite hadrons con-
structed from light quarks moving freely inside a restricted volume, the bag. Con-
finement was achieved by constraining the bag to have a positive energy per unit
volume, B. This Lorentz invariant restriction not only confines the quarks, but al-
lows the internal structure to reproduce the general properties of Bjorken scaling.
The simplest case has massless quarks confined in a bag of volume V, with surface

S. The Lagrangian density is then

Luarr = (70, ~ B) by — 5305s, @1)
where 6y is defined to be one inside the volume and zero outside, and dg is a surface
delta function. For practical reasons this model is most commonly simplified to the
case of a static spherical bag of radius R. The wave function of the confined quarks
is [48]:

7o Nn—1 Jo (%Wn,—l)
T VAT | g7y (wa)

where y_ is a Pauli spinor, n is the principal quantum number. The quark eigen

xX-1, T<R, “4.2)

frequency, wy, «, are solutions of
jO (wn,n) S jl (wn,n) 5 (43)

where jo 1 are Bessel functions, and this is a product of confinement in the Bogol-

ubov model. For example the 1s state has w;_; = 2.04. The normalisation of the

wave-function is
w

3
N2 | = s ' -
™=l 9R3(wp,_y — 1) sin®(wn,1) o
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The action of this model
SMIT = /d41‘ ,CMIT(él?) (45)

is demanded to be stationary under variations of the field (¢ — 1 + ) and the
bag surface S (R — R + ¢). This gives three constraints on the fields, the Euler-
Lagrange equations of motion. The first relationship is the free Dirac equation for

massless quarks, inside the bag
Yo = 0. (4.6)
The next gives confinement in the bag
inup(z) =¥(z), =z €S, 4.7)

where n,, is a normal to the surface of the bag and has n? = —1. Equation 4.7 is
known as the linear boundary condition (Lb.c.). We can show that this results in
confinement by looking at the hermitian conjugate of Eq. (4.7) (multiplied by an
appropriate factor of 7°)
P(x) = —ith(x)y 1. (4.8)
At the bag surface the current, j# = 1y*p, normal to the surface is (up to a factor
of —17)
in, gt = in,py*ep
= irn) o= —ov
= P (iv'nuy) =+

= 0 (4.9)

Since there is no component of the quark current normal to the surface, they are

confined in the bag. The final relationship is the non-linear boundary condition
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(n.Lb.c.)
B= -%nﬂaﬂ (¥(z)y(z)) = Pp, =z €S, 4.10)
which equates the Dirac pressure of the quarks, Pp, with the vacaum pressure B
thereby providing stability.
The model of Bogolubov [47], which forms the basis of the MIT bag model,
did not conserve energy-momentum. However the inclusion of the energy density

term, B, solves this problem. The energy-momentum tensor can be written as
Tar = (Tp' +Bg*)by 4.11)

_ <%E P+ Bg‘“’) by, (4.12)

where T} is the energy-momentum tensor for a free Dirac field. The n.lb.c.,

Eq. (4.10), ensures that
0, Tt = 0. (4.13)

The energy of the lowest level, that is the 1s-state, is found to be

E(R) = / Pz T

3wi- 4
w11+_7f

R3B. 4.14
7 3 4.14)

The first term is the same as it would be found in Bogolubov’s model and represents
the kinetic energy of the quarks in the bag. The second term is a remnant of the
introduction of the bag constant, and is a volume (4—3’3R3) dependent term. That is, it
suggests that an energy BV is required to make the bubble, or bag, in the vacuum.
It is assumed that, in the MIT bag model, the value for B is constant for
all hadrons. The implications of this phenomenological addition, mocking up con-
finement, have been investigated by a number of authors. A different approach is
suggested by Jin and Jennings [49], in which a discussion of a density dependent

bag constant is undertaken. An alternative comes from Hasenfratz and Kuti [50]
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who show that a surface tension term, or a linear combination of the surface tension
and the bag constant, can produce results similar to those found for the MIT model.

However by making this assumption we may investigate excited states directly.

4.1.1 Excited States and Radius Determination

The above calculation is only for quarks in the ground state. A theory allowing
only non-excited quarks would be both naive, and not much use in real calculations.

Fortunately generalising Eq. (4.14) to include excited states is straight forward:

E(R) = % + 4?”333. (4.15)

Applying the n.Lb.c., Eq. (4.10) to the above equation leads to the following rela-

tionship

OE(R) _ (4.16)

OR .
= -y R—; + 4rR%B. (4.17)

Initially a fit to some data is needed to determine B, but from that point the internal
energy of the quarks determine the radius R of the bag uniquely. Solving for R we

find it is given by

w.
R*= .
- 4B

Using this definition of R, Eq. (4.15) can be simplified as

3/4
(47 B)'/* (Z w,-) (4.18)

Further refinements were undertaken by the MIT team, including looking at

[SCRTS

E(R)=FE =

the hyperfine structure leading to a spin-dependent one gluon exchange term. They

also investigated how the zero point energy of the fields, and how centre of mass
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corrections effected the mass. The details are beyond this work and we refer the
reader to Ref. [48] for a full review of these refinements. A final improvement the

MIT team included was non-zero quark mass, which we discuss below.

4.1.2 Massive Quarks

The discussion to this point has been purely for massless quarks. However, if the
model is to be compared to the experimental observations, massless quarks are
a problem. Under SU(3) flavour symmetry the members of the octet containing
the nucleon would all have degenerate mass. This is obviously not so. A natural
solution to this discrepancy is to assign a non-zero mass fo the strange quark, as

discussed below.

Introducing a strange quark mass to the Dirac equation for the MIT bag

model as simple as
(=i"Vu +7°E +m) ¢(r) = 0.

Solving this for the wave function in the 1s state results in the solution

N a4 Jo (%)
— . “4.19
TP(T) m it (g) X-1 )

with the quark energy, E, and normalisation constant, N, related to the spatial eigen
frequency, z, by

Q= /72 + (mR)?, (4.20)

E =

=)

and
Q(Q — mR)

N? = :
R3;2(x) [2Q2(Q — 1) + mR)]
Applying the Lb.c. to Eq. (4.10) it can be seen that the eigen frequency, z, satisfies:

T

tan(z) = FRy et
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and the coefficients o are givenby /(E + m)/E.

Introducing all the above elements into a mass formula for the MIT bag

model results in the following equation

. 4 Z
M(R) = % + %BR“ +VEY - % 4.21)

The final two terms in the above expression are respectively the spin-dependent one
gluon exchange interaction, and a consolidation of the zero point energy and centre
of mass energies. There are four parameters in this formula to be determined: the
mass of the strange quark m,, the bag constant B, and the parameters describing
the one gluon exchange and centre of mass corrections, a, and Z respectively. The
last two parameters relate to the last 2 terms in the above formula. For a further

description of the last two terms the reader is directed to Refs. [48, 51].

4.1.3 Charge Current Conservation

Conserved currents are readily calculated from the Lagrangian density given in
Eq. (4.1). This is achieved using Noether’s theorem which states simply that for
each symmetry of the Lagrangian there exists a conserved quantity. It is entirely

analogous to the procedure used in chapter 3. We return to the massless case for

this discussion to simplify the calculations.

Consider the following gauge transformation to give the simplest possible

example of a conserved current:

d() = (@) +iey(a),

P(z) = Pla) —iep(z). (4.22)
It is a trivial exercise to see that Eq. (4.1) is invariant under this transformation.

There are only terms of the form 11 in £ which transform as
DY — P — e + isptp + O(e?) = Pip. (4.23)
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Therefore, from Noether’s theorem, there exists a conserved current

7 = By i@ oy - 5 [-FE)] Fe@ey, (@24

which, up to a relative minus sign, is

7* = %(z) 7"y ()b, (4.25)

the exact result used to show confinement in the MIT bag model. The charge dis-
tribution, j°, and magnetic moment, 7, are simply evaluated from the above expres-

sion.

4.1.4 Isospin Conservation

Another symmetry may be obtained by making an arbitrary, infinitesimal rotation,

with £ constant, in isospin:

v = Y+i(T-E/2)9,

Y o - (7F-E/2) . (4.26)
Once again since £ is invariant there is a conserved current, this time isospin e
(z) = 97" (7/2) ¥ (4.27)

It must also be noted that since isospin is a conserved quantity, Buf # = 0, the total

isospin of the bag, t, given by the integral of the isospin density
= / d*z (), (4.28)

is also a constant of the motion.

41



4.1.5 Axial Current Non-conservation

One can extend the symmetry of Eq. (4.26) by introducing explicit dependence on
the quarks helicity. This is simply achieved by introducing the chirality operator s

as such:

Y = Y—i(TE/2) ey,
Y = Y-y (T E/2), (4.29)

resulting in the Lagrangian density transforming like

1— o,
L — £+§1/)(’)’5’Yu+’)’u’)/5) aﬂ(T-E/Q)’(/)gV

+%E%‘ - €. (4.30)

The application of Eq. (A.11) makes it clear that the second term in this expression
vanishes, but equally as obvious is the fact that the last term does not. A conserved
current as defined by Noether’s theorem requires that the Lagrangian density be
invariant under a transformation. For the transformation given in Eq. (4.29) the
Lagrangian is not invariant, and so Noether’s theorem does not apply. The axial

current associated with the transformations in Eq. (4.29) is
AP (z) = Pytys (7/2) ¢y, (4.31)

and an alternative method of showing that this is not a conserved current is through
the divergence

8, At = —%E%—,ﬁpds £0. (4.32)

The last term in Eq. (4.30) is a surface term, is known as “chirally odd”, and

implies a violation of chiral symmetry. Physically one may visualise confinement
as resulting in a reflection of the quark at the bag boundary. However there is no

resultant spin-flip of the quark, thus there is a effective change in the chirality, as
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Figure 4.1: Violation of chiral symmetry at the bag surface [48].

illustrated in Fig. 4.1. This is in violation of the PCAC (Partially Conserved Axial
Current) hypothesis of Gell-Mann and Lévy and Nambu [37, 36]. Chiral symmetry
may be restored by the introduction of a Goldstone boson, as we shall explore in

the Cloudy Bag Model next.

4.2 Description of the CBM

It is apparent that the MIT bag describes reasonably well the valence structure of the
nucleon. There is however the problem of chiral symmetry violation. Chiral pertur-
bation theory was discussed in chapter 3, and it is clear the objects of xPT — the
pions — are missing from the formulation of the MIT bag model. The introduction
of pions which may move freely through the bag, couple to the quarks at the sur-
face, and only modify the bag perturbatively, are fundamental to an understanding
of nuclear structure. This concept of a “pion cloud” surrounding and permeating
the hadrons crystallised into the Cloudy Bag Model (CBM) of Théberge, Thomas
and Miller [48, 52, 53]. The inclusion of pions to the MIT model to form the CBM

is as simple as

Lcam = Lyt + Lx + Ling (4.33)
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where L, is the Lagrangian density for free pions, and all the interactions between
the bag and pions is contained in the term L;y;. The act of truncating this expression
results in a reduction of chiral symmetry in the model to an approximate symmetry,
however at the order we discuss we retain the leading and next-to-leading non-
analytic terms from xPT, which as we shall show later are the two most important
contributions in an extrapolation form. Retaining only terms to the second order in

pion field, the linearised CBM is

Lopm = (i97,0"¢ — mypy — B) by — %E@bds

1 1 i - 7T
+§ (8”7'[')2 - §mfr7r2 . EZ[)’}’{,E@/} 0 7r55 5 (434)

This linearised version of the CBM is required -as the general, non-linear, case
contains sets of highly non-linear equations [54] which are extremely difficult or
possibly impossible to solve directly. Linearising the model has introduced two
constraints into the system. Firstly there is the constraint that there are not “foo
many” pions in the air at one time. Mathematically this may be stated that the first
order expansion of the (non-linear) Lagrangian density is adequate to describe the
system. Secondly that the quark wave-functions are not perturbed by the pion field.
This at first seems an unusual statement. The pions are themselves hadrons, and so
constructed of quarks. In the CBM the pion is considered elementary, and in the low
energy (long wavelength) region in which this model is applied, the internal struc-
ture of the pion may indeed be neglected. If we apply the treatment of Sec. 4.1.5

now to Eq. 4.34 we find that the axial current becomes
-~ 1 J— - =
AF = §¢7"75T¢9v + fx 0" T, (4.35)
and the divergence is exactly what is predicted by PCAC
B A" = —fm27 + O (7?) . (4.36)
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4.2.1 Coupling Constants

The form of the Hamiltonian for the CBM is simple to write down from Eq. (4.33).
Since there is a clean separation of MIT model, free pion, and pion-bag interaction,
it is not surprising that the Hamiltonian has a similar break-down. If a bag model
state is created by the operator B (an SU(6) spin-isospin bag state B is created,
|B) = B*|0), where B can be written in terms of products of three quark creation

operators) we may write the Hamiltonian of the CBM as [51]:

H = Hwr+ Hy + Hiy (4.37)
_ ZsBBTB—i-Zwkakak—}— 3 [BTBaku +hc] . (438)

B,Bk
where the creation operator aL creates a pion with momentum k and isospin ¢ (we
follow the convention of [51] and define k = {1—5, i} for simplicity), and wy, is the
energy of the pion /k2? + m2. The matrix element for the pions coupling to baryon
states is given by [51, 48]:

%5 =3 ﬁr \/27,— / d*r e~ ®75(r — R)(B[ ()57 (7)|B) - (4.39)

This expression allows the calculation of all the BB vertices within the CBM.

The N N7 Vertex

The simplest vertex we consider calculating in the model is the N N vertex. In this
case all the quarks in the initial and final states are in the 15;/2 orbital excitation and

thus we may use the result of Eq. (4.2):

— NE o N/ vm a
by APyt (A, = i;TIQZJo(W)Jl(w)U'T (4.40)
Q ! =L
= a-1 147TR30‘T’ 4.41)
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where we have assumed, for simplicity, massless quarks. Substituting this result

into Eq. (4.39) we see

ww i1 Q jl(kR)x<N,

YEi T 9f, w0 —1 kR

3
- -
E Tin'q -k

g=1

N> , (4.42)

and we have evaluated the angular integral using the result [54]:

L e Amid kv .
/on-re B ——’%’“[go(kR)Hz(kR)] . (4.43)

We define the form factor for the CBM to be

u(k) = jo(kR)+ j2(kR)
= 3j,(kR)/kR. (4.44)

Note that this form factor appears naturally in the model, as the outcome of includ-

ing the baryon internal structure. Finally, it may be shown that the axial coupling

to the bag is given by [48]:
5

Bag — = = 4 4
Comparison of the result of Eq. (4.42) with the usual NN coupling gives the
relationship

gzNN _ A

= 4.46

2My = 2, (440

This is the Goldberger-Treiman relation and thus means one may evaluate the NN~

coupling consistently within the CBM.

Additional Vertices

In an analogous way to that presented above, the pion coupling between any bag
model states, B and B, may be calculated. The details of specific calculations are

available in [48, 51, 54], and so we just present Table 4.1 from [54] giving the
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B

fBBjfs |l N A A % ¥+ = =
N 5 4/2 0 0 0 0 0
A |2v2 5 0 0 0 0 0
A 0 0 0 2v3 2/6 0 0

B x 0 0 -2 4/6/3 —4/3/3 0 0O
™ | 0 0 2 2v6/3 2v/30/3 0 O
= 0 0 0 0 0 -1 —2v2
= | 0 0 0 0 0 2 V5/3

Table 4.1: The BB bare coupling constants f22/fg. The value of fBB s cal-
culated in an analogous manner to Eq. (4.42). The bare coupling fo has a value
of approximately 0.49, however it is unimportant in the context of this work as we
shall always be taking the ratio of coupling constants. The results are from [54].

BB bare coupling constants for the SU(3) flavour, baryon octet and decuplet. An
extension to SU(3);, x SU(3)g would allow the evaluation of kaon couplings in an

equivalent manner.

4.2.2 The Physical Nucleon

It is clear in Eq. (4.38) that a physical hadron in this definition consists of a valence
quark core “dressed” by a cloud of pions. In particular the CBM Hamiltonian has

an eigenstate, the physical nucleon, with eigenvalue My:
H|N) = My|N). (4.47)

In first order perturbation theory the nucleon is given by the following states

Ny = \/Z{|N>+ZA§B”_’°|H“_“X; |B7rk)} (4.48)
Bk N Wk B

1%

VZ|N) + ¢|N7) + ¢|AT). (4.49)
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4.2.3 Hadron Masses

The shift in the mass of the nucleon, to lowest non-trivial order is given by the two
processes shown in Fig. 4.2(a,b). This corresponds to the second order of Hiys:
3 ©  ktud (k)
My = My - 7 / dk~—2N 22
YT T et )y e

5 32, [ kb2, 5 ()
“T6r2f2 2574 /0 kR AM + w(k)’ (4.50)

where AM = Mg)) - M 1(\?) and we have related the N — Am coupling to g4
through the use of the SU(6) relation. To simplify this, and following calculations

-——

‘I \‘ 'I \‘
1 1 1 1
N N N N A N
(a (b)
Y ’ N \ ] 4 N AY
] \ 1 A
1 1 1 ]
A N A A A A
© (d)

Figure 4.2: The processes that contribute in the lowest, non-trivial, order to the shift
in the mass of the nucleon and A.

in this work, we have made a static approximation for the propagator of the heavy
baryon. The correct chiral behaviour as m, — 0 is nevertheless preserved in this
approximation. The leading non-analytic behaviour in the quark mass (Mg ~ /TMy)

arising from Fig. 4.2(a) is:

SMENA = — gam? | (4.51)

32w f2
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as indicated by xPT. Equivalently the mass of the A, with self-energy corrections

corresponding to Fig. 4.2(c,d), may be calculated:

0o 4,2
MA — Mg])_ 3 92/ dkk U’AA(k)
0

1672274 w?(k)
3 _8_ 2 [ k*uga (k)
T Tory2 25914/0 koM —wm) P

The factors of 32/25 and 8/25 in Eqgs. (4.50) and (4.52) are a result of SU(6) sym-
metry and may be understood from the discussion in Sec. 4.2.1, and particular the

results presented in Table 4.1. The coupling of a N — Am is given by

2
f]%[Aﬂ' = <fNA7r>fI2VN1r

RN
— 3_2 2. (4.53)
and equivalently for the case of A — N:
szW = (;%NW) fIQVer
NN=x
= o fine- (454

Thus we are able to rewrite couplings of the form BB as a constant times the bare
NN coupling, which is known from the Goldberger—Treiman relation.

We have plotted the masses of the nucleon (circles) and A (triangles), Egs. (4.50)
and (4.52) respectively, in Fig. 4.3 as a function of pion mass. Rather than using the

Bessel function form factor, Eq. (4.44), we have chosen a phenomenological dipole

A2_ 2
u(k) = ( = +’]:;j> , (4.55)

where A = 1.0 GeV and p, is the physical pion mass, as the form factor for the

form:

calculation. The justification for such a choice will be explored in subsequent chap-

ters. It is clear that the non-analytic behaviour introduced by the pions coupling to
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Figure 4.3: The pion mass dependence of the N (circles) and A (triangles) baryons
generated in the CBM using a dipole form factor with A = 1.0 GeV. Fits of
Egs. (4.56) and (4.57) using a #-function cut-off to the CBM results are illustrated
by the curves.

other states than the bare bag is quickly suppressed, resulting in, an almost linear
increase in both the NV and A masses. We have attempted a fit to this data with the

forms

My = ¢+ com? +on(A,mg), (4.56)

Ma = &+ &m2 +oa(A,my), (4.57)

where the o; represent the self-energy terms presented in Egs. (4.50) and (4.52),
with the particular choice of a f-function cut-off. The motivation and derivation
of such a form is discussed in the following chapters. It is not surprising that our
simple three parameter phenomenological fitting functions, shown as the solid lines

in Fig. 4.3 (evaluated with a f-function cut-off), can reproduce N and A masses
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calculated within the CBM (evaluated with a dipole form factor). It is not entirely
unexpected that this agreement extends even to the non-analytic curvature at small
pion masses. However, as the correct chiral behaviour of the baryons is being re-
spected by the additional self-energy terms, it suggests that this method should also
provide a reliable form for extrapolating lattice data into the region of small pion

mass.

4.3 Summary

The Cloudy Bag Model is a natural extension of xPT. In the chiral limit it re-
produces the results of xPT, whilst allowing a smooth transition to heavier quark
masses. A form factor appears naturally in the formalism, mocking up the higher
order terms introduced by the internal structure of the hadron. As the CBM may
be applied across a wide range of m, it is used to give insight as to the behaviour
of hadron masses between the limits of xPT (m, ~ 139 MeV) and lattice QCD

calculations (m, > 139 MeV). We use this direction in the subsequent chapters.
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Chapter 5

The Rho Meson

A little learning is a dangerous thing;
Drink deep, or taste not the Pierian Spring:
There shallow draughts intoxicate the brain,

And drinking largely sobers us again.

ALEXANDER POPE, “ESSAY ON CRITICISM”

As the lightest vector meson, the p is of fundamental importance in the task of
deriving hadron properties from QCD. As was mentioned in chapter 2, within
lattice QCD the ratio of 7 to p masses is often used as a measure of the approach
to the chiral limit. Until quite recently lattice calculations have been restricted
to values of m,/m, above 0.8. As was mentioned in chapter 2 because of the
remarkable improvements in actions, algorithms and computing power, there are
now lattice QCD results with dynamical fermions available for hadron masses with
current quark masses such that m. /m,, is entering the chiral regime. Nevertheless,
in order to compare with the properties of physical hadrons it is still necessary to
extrapolate the results to realistic quark masses [55].

We show in this, and following chapters, that a formal expansion of hadron
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properties in terms of m,; fails to converge up to the region where lattice data exists.
The crucial physics insight which renders an accurate chiral extrapolation possible
is that the source of the pion field is a complex system of quarks and gluons, with a
finite size characterised by a scale A. When the pion mass is greater than A, so that
the Compton wavelength of the pion is smaller than the extended source, pion loops
are suppressed as powers of m, /A and hadron properties are smooth, slowly vary-
ing functions of the quark mass. However, for pion Compton wavelengths bigger
than the source (m, < A) one sees rapid, non-linear variations. Phenomenologi-
cally this transition occurs at m, ~ 500 MeV, or m, /m, around 0.5 — the region
now being addressed by lattice simulations with dynamical fermions.

Another difficulty associated with the extrapolation of lattice results that is
investigated, in part, is the discretisation of momenta inherent in all lattice calcula-
tions. In this regard we mention not only the finite lattice spacing but the fact that
there is a minimum possible non-zero momentum available because of the finite
volume of the lattice. This issue is absolutely critical to the interpretation of the re-
cent CP-PACS data for dynamical fermions [20], in which a first result! is reported
at m,/m, ~ 0.4. As we explain in detail, the only reason that it is possible to
measure the p mass there is that the calculation is done in a finite volume. We show
that taking the finite lattice size and finite lattice spacing into account is a necessary
requirement when extrapolating to the physical region. These effects become espe-
cially significant for the case of the p meson which has a p-wave, two-pion decay
mode.

In the next section we summarise the key physical ideas and the necessary
formulas for extrapolating the mass of the p meson to the physical pion mass. This

includes a discussion of the limiting behaviour at small and large quark mass. We

! Although CP-PACS finds no evidence of residual errors for the lowest mass point, they caution
that it is premature to draw firm conclusions based on the present low statistics.
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then show the result of our fitting procedure and analyse the uncertainty in extract-
ing the p mass at the physical point. We show that a factor of 10 increase in the
number of gauge field configurations at the lowest quark mass presently accessible
would be sufficient to determine the physical p mass to within 5%. We also discuss
the consequences of this analysis for the J-parameter and the pr7 phase shift. The
successes of the work presented in this chapter are used as additional motivation for

investigations into the baryon sector presented in the next chapter.

5.1 Extrapolation Formula

The successful extrapolation of the Cloudy Bag Model (CBM) model results dis-
cussed in chapter 4 are used to motivate a functional form. The CBM calculations
indicate that an extrapolation based upon the inclusion of the self-energy contribu-
tions that vary the most rapidly with the quark mass near the chiral limit is required
to accurately model the data.

The formal solution to the Dyson-Schwinger equation for the p propaga-
tor places the self-energy contributions in the denominator of the propagator and

thereby modifies the p mass as [56] :

m, = /mi+¥r

8 mo+ ——, (5.1)
2m0

where my is the bare mass and X is the self-energy of the p-meson.
As has been discussed previously, lattice data at large m, (that is, up to
around 1 GeV) behaves linearly in m2. Figure 5.1 shows this linear fit to the p-

meson lattice results for m? > 0.2 GeV2. Guided by the lattice data, we take my to

be analytic in the quark mass:

mo = co + com? . (5.2)
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Figure 5.1: Vector (p) meson mass from CP-PACS [20] (filled circles) and UKQCD
[21] (open circles) as a function of m2. The linear (in m2) fit is to the CP-PACS
results for data having 0.2 GeV? < mfr < 0.8GeV2.

5.1.1 Self-Energy Contributions

For the case of the p meson thé self-energy contributions that vary the most rapidly
in the quark mass near the chiral limit are given by the p — 7w and p — 77
processes shown in Fig. 5.2. We will show below that these two terms yield the
leading non-analytic (LNA) and next-to-leading non-analytic (N LNA) behaviour in
the mass of the p meson, as predicted by xPT. Thus we define >? in Eq. (5.1) to be

P =20, + 30,

Naturally there are other meson intermediate states that contribute to the self-energy,
however these are suppressed by large mass terms in the denominators of the prop-

agators, and also by smaller couplings. Most importantly, as these processes will
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not vary rapidly near the chiral limit, they are mocked up in the definition of m.

,a’ T ‘\\ e T N
/ \ L4 \
V4 \ I d \
\ /
p \\\-._ f” p M
T ®
(a) (b)

Figure 5.2: The most significant self-energy contributions to the p meson mass.

In order to evaluate the self-energy terms that contribute, we take the usual

interactions [57, 58]:

1 - n= . =
Lopr = Efp” p* (7 x (0,7) — (0,7) X ), (5.3)

and
Lopr = Gupr Ewvas (8*0”) (0%97) - 7. (5.4)

Using Eq. (A.2) we can rewrite Eq. (5.3) as
£p7r7r = fp‘ll'ﬂ' 8abcﬂfﬁrb (auﬂ'c) . (55)

The Feynman diagram for the p — w7 self-energy process is shown in Fig. 5.3. We

TCk]
/" ~~\\
k,pp L, e K,pp
AN
7
p, X s Sy P
J L I J
TCkZ

Figure 5.3: Feynman diagram for the p — 7w self-energy.

follow the conventions of Pichowsky et al. [59], where the self-energy contribution
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to the mass of the p is given by
Z'2
5 = <pj’;p,lo, AT {5 / d'z d*y (forr Eabel (2)To(x) (Bume(T)))
(forr €avre P (¥) T (y) (Oy Wc’(y)))} 105 Pos A) 5 (5.6)

which can be simplified to

1
Mjjr = =5 fpnCabccave f d*z d*y (pji; P, AT {0 (z)ms(2) (Oume())
P4 (Y)my (y) (B (¥))} 105520y Ay - (5.T)

There are four possible Wick contractions for this expression:

| — ' ]
(Pj';pﬁ,,/\|P5($)7f|b(37)(3u7flc($))l)a' )y (v) (B e (y )lpj,p,,,) (-8)

(o o M @)@ (0u(0)) A (0)r () (e () P N (59)

— —
<pjf;p;,,Alpﬁ(z)vﬁb(x)(auwc<z>)pzl(y>w?b,<y)(aﬂr'c«y))lp'j;pp, N (5.10)

f 1 1 |
(pir; pi;, Ao (@)my(z) (Bume(x) ) £ (y) i (4) (Bu7e (y)) 0P ) (5.11)

We note that under the interchange of the space-time variables = and y, and the
dummy indices (a, b, c) and (a, ¥, ¢) the expressions for Eq. (5.8) and Eq. (5.10)
are equal, as are Egs. (5.9) and (5.11). Thus we can replace the sum of these four

expression as twice the sum of Eq. (5.8) and Eq. (5.9):

= —f2 400 14
H]]I - _fp1r1r6abcga’b’c’ fd zd Yy X

— I I 1 !
{ {pi'; s )\Ipﬁ.f(w)w[b () (@ﬂflc (2)) ot () () (B () 1655 Ppr V)

oy Doy NP ()25(2) (e (2)) P () () (Bt () 5321 A>} (5.12)
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We know from field theory, that the notion of the contraction of two fields is defined
to be a Feynman propagator. The contraction of a field with an external leg is de-
fined to give an exponential of the external momenta and position of the interaction,
and a polarisation factor for the external leg (as discussed in Appendix A.2). We

can therefore write

Ijj = = fprnabeEatic / Az dy 47 (N)0aj €% (N) O j€P7 T€ P
X {(Sbbl(scchF(ﬁU = y)aﬁaﬂDF(x - y)
+04e 0y (BYDp(z —y)) (02Dr(z —y))} . (5.13)

Using these insights we can substitute the Feynman propagators and simplify:

Hjj’ ) —fzmeabcsa’bld / d's d4y E;’*()‘)Saj'&?;()\)5afjei”;>'$—ipp‘y
X (—1) 3 ey Ocer [ d'krd*ks k2uk2u6_i(’°1+’°2)'(m—y)
“ ) (@r)® (kI - m2 +ie) (k3 — mZ + ic)
dkd'hy  kykye iR ) (5.14)
@n)F (k2 —m2+ie) (2 —mZ+ie) )~

+ 6bc’ 6cb’

Naturally, since the process is elastic, the sum of the intermediate pion mo-

menta, k; and k,, are equal to the momenta of the incoming rho meson, pp, i.e.
kl + kg =Dp-

We use the degree of freedom in defining the polarisation vector to set€; (A)-p, =0.
This is easily seen for the case of a p at rest, and we apply Lorentz covariance to
generalise the result for a p-meson with arbitrary 4-momentum, p,. We use these

results to express the dot products of the polarisation with momentum k, as dot

products with £;:

g5 ky = —€; ki, (5.15)
€5 k‘z = —€&j- kl . (516)
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A simplification may also be made by collecting the exponentials together in the

following manner:

(P 2)=i(ppy) g—ilka+ha)-(2—y) — eiPp—k1—k2)-z ,—i(pp—k1—k2)y 5.17)

If we now look at the integral over z, it is exactly of the form of the identity for the

Dirac Delta function, Eq. (A.3):
[ d*z e@o=F1=R) e — (Om)4§ (p) — k1 — ka) . (5.18)

Taking the result of Eq. (5.18) means the integrations over ks simplify as:

diky e
/ (23:;43"ez(Pp—kl—’W)'z]:(kz) = /d4k2 8*(p), — k1 — ko) F(k2)
= F(p,— k1), (5.19)

ky = p— ki (5.20)

Finally, the integration over y is, once again, the identity for the Dirac delta func-

tion:
/ diy e iPr—kimk)y  — (97454 (ky + ko — pp) (5.21)
= (2m)*6*(p, — p,) - (5.22)

After making these simplifications we now just have a single integration over the

variable k;. For simplicity, we rename the variable such that k; — k, and apply the

delta functions relating a, a’ and j, j':

Hjj' = _fgwwej'bcgjb'c’(27r)464 (p;; - pp)(_l) (6bb’ 5cc’ - 5bc’5cb')
y / d*k (5 - k) (e - k) &5
@) (&% —m2 + de) (¢, — k)2 — m2 + ic)
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where ¢; = €;()). We now simplify this expression by

Ejtbeljbe! (5bb' Oec = 5bc'5cb') = Ejbc€ibc — €j'bcEjed
= 2&j1pcEjbe

= 2(0;30u — Gj760%;)
= 2(38;; — 9y5)

= 46y;.

Thus we come to the following expression for the p — mm process shown in

Fig. 5.3:

M = (27r)454(p:, — Pp)djrj %
4 f.' : k j k
4 37r7r/ . k4 2 2 (EJ )/ (EJ 2) 2 g
(2m)* (k2 — m2 + ie) ((#), — k)? — m3 + ie)

The normalisation factor in the above expression, (2m)*6*(p, — p,)d;;, is related
to contribution from a bare p propagator. Thus the self-energy contribution to the

p-meson mass from the w7 intermediate state is related to the above expression by
zf, =i(2m)*6(p), — pp)Ly; - (5.25)

Non-Relativistic Reduction

We now make the non-relativistic reduction, assuming the p is at rest

=,

pp . (mm 0) 9
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and sum over the polarisation vectors £;(\):

Z (5;()\) . ]{,‘) (83(/\) : k) = kMEY <_guu + pppppu)

A m%
. k)2
— k,2 (pP
+ T
- m,ko)?
= —(k2-k)+ ( 7’7’120)
p
= k. (5.26)

In the denominator of Eq. (5.24) we have the following term, involving the differ-
ence of the 4-momentum of the p and of the pion in the loop. This can be rewritten
as

(pp — k)Z = mi
= mi - 2mpk0 + k(z) - E2

= k2 —2m,ko+m2 —k°. (5.27)

After making these simple substitutions, the self-energy is of a simpler form
d*k - 1
—i%f, = Afl. / -k’ =
(2m)%" k2 —m2 — k2 +de
|

k§—2mpk0+mg—mﬁ—/_§2+ie'

(5.28)

We can now integrate out another degree of freedom, that is, the ko contribution. We
use the Residue Theorem, Eq. (A.5), to integrate the function in a counter clockwise

direction in the complex &, plane:

/ T2 k) = 3 Res £ (hw), (5.29)

D= koi
where ky; are the poles of the function f. There are two terms in the denominator

of the integrand of o that could contribute poles. The first is
k2 —m2 —k2+ie=0. (5.30)
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This expression may be factorised as:
(ko — wy + i€) (ko + wy —i€) =0, (5.31)

where we define w;, (k) to be the energy of the pion in the loop. We take the usual
contour for the integral, as discussed in [13]. The pole that then contributes to the

k)() = —\;m%+22+ie

-

= —w(|k|) + €. (5.32)

residue is

The other pole in this integral is of the form
k2 — 2m ko +m2 —m2 — K +ie =0, (5.33)
with ky found by completing the squares
(ko — m, — wy + i€) (kg — My + Wy — i€) =0. (5.34)

Once again, if we take the usual contour for we find that the contributing residue is

ke = mp—\/m$r+132+ie

—

= m, — w(|k]) + €. (5.35)

The application of the Residue Theorem means we can replace the numerator of
the integral in Eq. (5.28) by the sum over the residues. We also have made the
definition that the magnitude of the pion momenta, |k|, is to be k. The integrand, I,

of Eq. (5.24) is now simplified as

1 1
L= — 2wy (k)(=m,)(—my — 2w (K)) N my(m, — 2wx (k) (—2wx(k))
1 1
- 2mywy (k) (my, + 2wr (K)) - 2mwr (k) (m, — 2wn(K))
— —2m,
T 2mpwa(k) (m2 — 4w2(k))
_ 1 - (5.36)

4wy (k) (w2(k) — m2/4)
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Averaging over the spins of the incoming p introduces a further factor of 1 /3, and
leads to the final expression:

s = o / &’k K
o 3 (2m)3 wy (k) (w2(k) — m2/4)

- £2

L prem ; k*
62 / hw,,(k) (w2 (k) —m2/4) (537)

where X°_ is the self-energy.

The Self Energies

The evaluation of the p — 7w self-energy is a similar process to that outlined above
and therefore we do not present the intermediate working here. The expressions for

the self energies for the mm and wn processes that we use here are:

_f2 . 0o kqu2 Uﬁ)
p = PT fiks
21r7r 6upﬂ2A dk .ww(k)
1 1
— 5.38
{waW)+“42—a) (wA@—w@ﬂ—%d} £58
. 27r 00 kquz (k)
— pm T
= =4 /0 dkww (w0 — 72/0) (5.39)

and

- b [
hwwwwmwwﬁmmm+w—m
7wwrmewﬂmum—w—m} ()

_ ‘ﬁf;:g“ 4 /0 Sk ’:;“(’]:”)(k) . (5.41)

where we have set the mass of the on-shell p-meson to the physical value, denoted

L, In obtaining Equations (5.39) and (5.41) we have taken the limit where the mass
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of the vector mesons (p and w, taken to be degenerate) is much bigger than the mass
of the pion. Also, in analogy with the heavy baryon limit, we have neglected the
kinetic energy of the heavy vector mesons. The pion (omega) energy is given by
Wriw) (k) = \/m :

We have introduced form factors u,, and u,,, to model the finite size of the
pion source. We have done this because a formal expansion of hadron properties in
terms of m,, fails to converge up to the region where lattice data exists. The crucial
physics insight which renders an accurate chiral extrapolation possible is that the
source of the pion field is a complex system of quarks and gluons, with a finite
size characterised by a scale A. When the pion mass is greater than A, so that the
Compton wavelength of the pion is smaller than the extended source, pion loops are
suppressed as powers of A/m, and hadron properties are smooth, slowly varying
functions of the quark mass. However, for pion Compton wavelengths bigger than
the source (m, < A) one sees rapid, non-linear variations. Phenomenologically
this transition occurs at m, ~ 500 MeV, or m, /m, around 0.5 — the region now
being addressed by lattice simulations with dynamical fermions.

The form factors are chosen to be dipoles defined as

A2+ ,u,ﬁ 2
A2 — uz 2
um,,(k) e (—"“—1) i (5.43)
AZ, +k?

where p, and p, are the physical masses of the p and 7 mesons. The normalisation
of u,, is chosen to be unity at the p pole and the coupling constant, forn = 6.028,1s
chosen to reproduce the width of the p (as discussed in section 5.3). In the p — Tw

case we take g,,» = 16 GeV~* [60].
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5.1.2 Extrapolation formula

Collecting these results together, we define the expression for the mass of the p-

meson as a function of m?2 as:

28 ¢ (Arr, M) + 28, (Ama, )
2(co + cam?)

with ¢ and ¥?  defined by Eqs. (5.39) and (5.41) respectively.

We find in our research that the lattice data alone cannot separately deter-

m, = Cy + Cmer + , (5.44)

mine A, and A,,. In order to constrain them we make the reasonable physical
assumption that the size of the source of the pion field should be the same regard-
less of whether the intermediate state involves an w or a w. This is achieved by
requiring that A, is chosen so as to reproduce the same mean-square radius of the
source as would be generated by the choice of A,

The size of the source is determined by the choice of form factor, and can be
found by comparing the Taylor series expansion of the form factor, Eq. (5.45), with

Eq. (5.46):

k4
u(k) = u(0)+k*/(0) + au"(()) +... (5.45)
R,
= u(0) [1 - E<T2> +] , (5.46)
where u' = du/dk?. For the dipoles chosen here, Eqgs. (5.42) and (5.43) we find
48
2 = — 5.47
<T )7\'7[‘ (A%W+4u3r) I ( )
12
(e = 25 (5.48)

Equating the mean-square radii results in the following relationship:
Ao = 24/A2, — 2. (5.49)

An alternative procedure, which could be imposed in future analyses, would be to
constrain the difference in the meson self-energy terms to reproduce the observed

p — w mass difference [59, 61, 62, 63].
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5.2 Limiting Behaviour

It is important to know both the large and small m,, limit behaviour of Eq. (5.44).
As has been discussed previously, chiral symmetry is a useful tool for exploring the
properties of QCD near the chiral limit. Chiral symmetry has been used in obtaining
results in Chiral Perturbation Theory (xPT). The behaviour of hadron properties for
large quark masses is not quite so well known, but we do have insights from Heavy
Quark Effective Theory (HQET), Dyson Schwinger equation investigations and the

static quark limit.

5.2.1 The Chiral Limit

It was mentioned in section 3.2 that some important, but limited, information is
calculable in YPT. Of particular use here is the behaviour and coefficients of the
non-analytic (in quark mass) term in the self-energy expression for the p meson. In
the particular case of the p-meson, the leading non-analytic term is O(m?), witha
known coefficient.

From the form of Eq. (5.44) it is easy to see that all non-analytic behaviour
must come from the £2_ and ¥ terms. We find that in the chiral limit (m, — 0)
these expressions for the p-meson self-energy can be evaluated analytically. Using
a sharp cutoff (9(A — k)) for the form factor, the p — wm self-energy is easily

evaluated:

. A A3
= —%% (m‘:’r arctan (;;) gy Amf,) : (5.50)

The coefficients of the m,, terms of various powers can be obtained by expanding
in m, about the chiral limit:

A3 1
v, = ~Sommble (2 A + Tmd = g+ owms)) |
™
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with the leading non-analytic term being of order m2:

2
FoGupn
0 lna = — ;47: m3 . (5.51)

The p — mn self-energy contribution is slightly more complicated. If
we again choose a #-function for the form factor we can analytically integrate

Eq. (5.39) giving

p — d J?Tfﬂ' 1 s
B, =l L (2y/m — (o2 = (/)

— (1p)2) + /A2 + m2

arctan
m2 — (1,/2)*
A 2 A2 2
— arctan + (Hp/2) + aklle
2
m2 — (ﬂp/ 2)
— 2
— arctan (“p/ ) 5 + arctan s (M” / 2)
— (1o/2) m2 — (1,/2)?

A2 /A e
—(3m2 — 21/ (p/2) In (VA”+m2+A)) (5.52)

where A once again regulates the cutoff of the integral.

The region in which we are interested has m, < (1p/2). We replace all

the terms of the form {/m2 — (1,/2) % by i/ (Ko / 2)” — m2, making the complex

nature of these terms explicit. We then rewrite the arctans (which have complex

arguments) as logarithms of real arguments by using [64]

: 1—i
arctan(z) = %ln (1 n Z) . (5.53)
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Simplifying the expression by collecting logarithms together we now have

P ﬁ[ 1 _ 2 2332 2,2 2
Emr e 62 2(/1',)/2) [ ((NP/Z) m7r) In {mw(mw - (.U'P/Q) )

NE(m = 201/ 207) ~ 2/ 203 (00 4 ) (20 = ) |
~n (m2(A% 4 2 — (1p/2)) — (3122 — 2(u1,/2)")

x(1p/2) In ( kil “) — Ap/2) /A + i

Looking at just the lowest order, non-analytic terms in the expansion about m2 =0

(5.54)

we have
p7r7r , 3 m:
Xl = 62 2( Mp/2 (( (p/2)" = 31/ 2)iz + Z(Mp/2)>
(3m2 = 20115/2)°) (1p/2)) In(mz)
2
= _87:;;‘2,7713; In(mg) . (5.55)

Whilst these expressions were found for the particular choice of a sharp cutoff for
the form factor, the results are more general than that. In fact, these results are
independent of the form chosen for the ultra-violet regulators, trx and .

To compare these results to xPT we use the result of Eq. (5.1) that

p
— 2—27%. (5.56)

In principal these expressions should be evaluated at the chiral limit. However the
variations of the masses (e.g. the p mass, p,) and coupling constants from the
physical values are typically of the order 10%, and we therefore use the physical
values. We find that both the LNA and NLNA behaviour predicted by xPT are
reproduced. For example, in Ref. [65] the m, dependence of the LNA term to the

p mass is given by

1 2
Up'LNA T f2 ( g2—|—g1> 3 (5.57)
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This results in a value of the m? coefficient of —1.71 GeV?, in excellent agreement

with the value (g2, /487 = —1.70 GeV?) found here.

5.2.2 The Static Quark Limit

It is expected from the naive quark model and from heavy quark effective theory
(HQET) that the mass of the hadrons should become proportional to the masses of
their constituent quarks as the quark mass increases. Whilst the data sets investi-
gated here do not truly enter the HQET region, Dyson Schwinger equation studies
suggest that in the mass range investigated the constituent quark mass in fact does
vary linearly with the (current) quark mass. In addition, other lattice calculations
suggest an approximate proportionality between m2 and the quark mass, and thus
there is the expectation that the mass of the hadron should become proportional to
the square of the pion mass. This behaviour is indeed seen in lattice results.

The expression we use for the bare p-meson is of the required form, it only
remains to investigate the properties of the self energies in this limit. We have found
that for the choice of a dipole for the form factors, the self energies are suppressed as
inverse powers of m,, once m, is comparable with the dipole mass (this behaviour

may be seen in Fig. 5.4). Naturally for other choices of form factor we have a

similar suppression.

5.2.3 The Mass in the Chiral Limit

It must be noted that the bare mass, myg is not the mass of the p in the chiral limit.
The self-energy terms ¥#, and £#,, are non-vanishing at m, = 0, as indicated by

Egs. (5.50) and (5.54). The mass of the p in the chiral limit is in fact given by the
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evaluation of Eq. (5.44) at the point where m, = 0.

P (Apr, Mg = 0) + 28 (Age, M = 0)

o (5.58)

mE,O) =y +

5.3 The Width of The p-Meson

It is well know that the p-meson has a decay channel to two pions. It is possible
to calculate the width for this process with the Feynman rules we are using here. It
is also an experimentally known result [39]. We extract a theoretical estimate for
the width by taking the imaginary part of the p — 7 self-energy. By equating this
result with the experimental value, we have a way of determining the prm coupling,

forms consistently. If we simplify Eq. (5.38)

w0 — dom /°° dk k* uz, (k) —Hp
™ 6,7 Jo wr(k)  (wr(k) —i€)? — pj/4
B 2 [ dkkuZ (k) 1
T 6n? /0 we(k)  w2(k)— p2/4—ie’

We use the definition of the energy of the pion in the loop, wr (k) = \/k? + m2, to
re-write the denominator as

wi(k) — p2 /4 —ie = m2 + k* — p2/4 — ie
k* — (p2/4—m3) — ie, (5.59)

and by using Dirac’s expression

1_ =B+i7r6(x),
T —i€e

we can how write

- /°° dk k* u2, (k)
X
0

P . _Jprm
ier 62 wy (k)

P o T |
{k2—<<u2/4>—m3,)+”‘5 (K = (/%) w)>}- (5.60)
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The é-function can be split into two terms, one of which corresponds to a positive
k and one to a negative loop momentum k (Eq. (A.1)). However a value of k which
is negative is unphysical, therefore we retain only the positive k contribution to the

imaginary part of the p — 77 self-energy:

2w [ dkktu2 (k)
Imy?, = -2 = -
S 67r2/0 wnk)
Z 6(k— (k2/4) = m2) (5.61)
24/ (u2/4) —m3
2 2 4
Y k
== P u1r7r( ) k (562)

o g, f2/4) — m2 wrh)

k=+/(u2/0)—m%

2 2\ 3/2
im
_ _Jpmm 24 _ 7r .
g up( " ) (5.63)
= —u,l,. (5.64)

Thus we find that the width of the p, T, is given by the following simple expression:

2 2\ 3/2
4am
r, =21 — us . .

P = agy e (1 2 ) (5.65)

The experimental value for the width of the p is 149 MeV, and this naturally is
measured at the physical pion mass. We can replace m, in Eq. (5.65) and extract

the value of the prm coupling to be 6.028.

5.4 Fitting to Lattice Results

At first sight the fact that CP-PACS [20] is able to extract a measurement of the p
mass, in full QCD, at m,/m, < 0.5 is extremely surprising. Once the p is able
to decay one would expect to measure not the p mass but the two-pion threshold.
The origin of this result is in the quantisation of the pion momentum on the lattice

and, in particular, the fact that the lowest (non-zero) pion momentum available is
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27 /aL, where is L is the spatial dimension of the lattice. This result was discussed
in some detail in Sec. 2.1.2. For the relatively small lattice used by CP-PACS at
the lowest pion mass this corresponds to more than 400 MeV/c momentum. This is

why the p remains stable.

o ]

.\'- 4 ——z /2m

wn [

_45 | | |
0.0 0.2 0.4 0.6 0.8
m ? (GeV?)

Figure 5.4: Variation with pion mass of the self-energy contributions to the p meson,
Egs. (5.41) and (5.39), for a dipole form factor with Ar, = 630 MeV. The solid
points indicate the value of this self-energy when calculated at the discrete momenta
allowed on the lattices considered in this investigation. The difference between the
curves and points is an indication of the physics missing because of finite lattice

size and spacing.

We use the results discussed in Sec. 2.1.2 to evaluate the self-energy integrals

of Eq. (5.44) by summing the integrands at the allowed values of the lattice 3-

o0 1 /27\?
2dk = | PPk~ =|=— 5.66
47r/0 k2dk /k V(a) 0, (5.66)

ke ky,kz

where the k,, are defined by Eq. (2.8). The results for the self-energy contributions

momenta
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are presented in Fig. 5.4. The self-energy calculated on the lattice (the solid circles
and triangles) differs little from the full self-energy calculation in the high quark
mass (m2) region. Furthermore, the effect in the p — w self-energy contribution
is also small at low pion mass. The biggest change is in the p — 77 self-energy
calculation at lower quark mass. This is the region in which one might expect the
biggest corrections because one is approximating a principal value integral on a
finite mesh. This change in behaviour, particularly at the lowest data point (m2 ~
0.1 GeV?), indicates that the 77 self-energy contribution is significantly understated
in the lattice simulations. Upon calculating the full self-energy contribution via the
continuous integrals, the magnitude of the self-energy is increased by about 10
MeV, which is 30% of the self-energy contribution at this point. These results for
3¢ and ¥  are used in Eq. (5.44) to fit the lattice data.

That the self-energy is understated is a function of the lattice size, spacing
and choice of m,. Figure 5.5 shows the same p — 77 continuous integral, but
also the behaviour of the self-energy evaluated as a discrete sum over a variety of
quark masses. We choose the lattice size and spacing to be that of the lowest CP-
PACS data point (L = 16, a = 0.18 fm). As can be clearly seen, the dashed curve
reproduces the full results well at large quark mass, but severely breaks down at
lower quark mass (m?). If the CP-PACS data point was at m, = 250 MeV the self-

energy contribution would have been overestimated, unlike the underestimation we

find here.

5.4.1 Naive Chiral Fits

The recent dynamical fermion lattice QCD results of the CP-PACS and UKQCD
collaborations (listed in Tables 2.1 and 2.2) are presented in Fig. 5.6. The scale pa-

rameters relating the lattice QCD results to physical quantities have been adjusted
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Figure 5.5: Variation with pion mass of the self-energy contributions to the p meson,
for a dipole form factor with A, = 630 MeV. The solid curves are the respective
self-energy contributions calculated over the discrete momenta permitted on the
lattice.

[66] by 5% for the CP-PACS and UKQCD results. The effect is to increase the p
mass from CP-PACS and decrease the mass from UKQCD, providing better agree-
ment between the two independent simulations. This discrepancy is an interesting
observation which may be related to the different choices of fermion and gluon
actions used by the groups. As the x? of the following fits is dominated by the
CP-PACS data, we focus on this data set.

In Fig. 5.1 we presented a linear fit to the lattice results. Another popular
method within the lattice community is to fit using the following three parameter
form:

m, = Co + cszr + cgmfr . (5.67)
The inclusion of a term of order m? is motivated by chiral perturbation theory.
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Figure 5.6: Vector meson (p) mass from CP-PACS [20] (filled circles) and UKQCD
[21] (open circles) as a function of m2. The dash-dot curve is the naive three pa-
rameter fit, Eq. (5.67). The open squares (which are barely distinguishable from
the data) represent the fit of Eq. (5.44) to the data with the self-energy contributions
calculated as a discrete sum of allowed lattice momenta. We have used a dipole
form factor, with A,,, = 630 MeV. The solid curve is Eq. (5.67) with the parameter
c; fixed to the value given by chiral perturbation theory.

In Fig. 5.6, the dash-dot curve represents a fit of this form to the data, with the
parameters of the fit listed in Table 5.1. Since the value of c3 in Eq. (5.67) is
treated as a fitting parameter, we are not guaranteed that it has the correct value
required by Chiral Perturbation Theory (xPT). The value for the best fit is found to
be —0.21 GeV~2. As outlined above, our expressions for the p self-energies have
the correct LNA and NLNA coefficients by construction. Indeed, if the coefficient

¢s is constrained to the correct value? (—gZ,, /481 = —1.70 GeV~2), the best fit

2In Ref. [65] the m, dependence of the LNA term to the p mass is given by —ﬁ}r—f;(% g2 +
g2) m®. This would result in a value of the m? coefficient of —1.71 GeV~?, in excellent agreement
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possible by varying ¢; and ¢, is shown as the solid line in Fig. 5.6. As was also found
in the case of the nucleon [66], the lack of convergence of the formal expansion is
such that it is not sufficient to fix the coefficient of the LNA term in a cubic fit to

that predicted by xPT, as the resulting form will not fit the data.

5.4.2 Improved Chiral Fits

Our fits to the data use Eq. (5.44) with the integrals evaluated at the discrete values
of the allowed momentum on the lattice. The fits are based on the lowest five lattice
masses given by CP-PACS. We selected the lowest lying masses because to move
further away from the chiral limit would necessitate additional terms beyond the
first two analytic terms of Eq. (5.44). The results of the fit are shown as the open
squares in Figs. 5.6, 5.7, and 5.8. The parameters of the fit ¢, ¢, and A, are then
used in an exact evaluation of Eq. (5.44) using the full integrals in Eqgs. (5.39) and
(5.41). This result is illustrated by the solid lines in Figs. 5.7 and 5.8.

The best fit value of A, = 630 MeV results in the p meson having a radius
of about 0.6 fm from Eq. (5.48). We do not consider the fact that the form factor is
softer than found in some earlier work to be of concern because, as we discuss be-
low, the current lattice results at low m, are not yet sufficiently precise to constrain
the chiral behaviour.

It is interesting to note the similarity of the predictions for the value of the
physical p mass from the cubic and dipole calculations with that of other authors.
An analogous result was found in Ref. [56]. There it was found that fitting quenched
lattice data with a linear extrapolation, and improving the extrapolation by adding
on the p — nm effects, predicted essentially the same physical mass, but that the

chiral behaviour was significantly different. This is exactly the behaviour we see

with the value used here.
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Figure 5.7: Analysis of the lattice data for the vector meson (p) mass calculated by
CP-PACS as a function of m?2. The squares represent the fit of Eq. (5.44) to the data
with the self-energy contributions calculated as a discrete sum of allowed lattice
momenta. The solid curve is for continuous (integral) self-energy contributions to
Eq. (5.44). We have used a dipole form factor, with optimal A, = 630 MeV. The
shaded area is bounded below by a 1o error bar. The upper bound is limited by the
constraint A, > u, as discussed in the text.

here.

The importance of the accuracy of the lowest mass point cannot be over-
stated. We stress that CP-PACS emphasised the preliminary nature of the lowest
data point, because of the relatively low statistics. Nevertheless, in order to pre-
pare for future more accurate data, we have carried out a standard error analysis
including this point and the results are presented in Fig. 5.7. The lower bound on
the shaded area was found by increasing the minimum x? per degree of freedom of
the fit by 1. We were unable to do this with the upper bound. The result is actually

limited by the physics of the process. In the case of a dipole form factor this means
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Aro > pir (from Eq. (5.49)), and that is the upper limit we have shown here.

Improved Statistics
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Figure 5.8: The graph is as described in Fig. 5.7 except that the error bar on the
lowest data point (m2 =~ 0.1 GeV?) has been reduced by a factor of v10. This
equates to an improvement of 10 times in the statistics, which we do not consider an
unreasonable goal for the future. The dipole mass of the best fit is then A, = 660
MeV. The shaded area is bounded above and below by a 1o error bar.

It is not unreasonable to expect an improvement in the accuracy of the cal-
culated lattice mass values, and as a Gedanken experiment we have explored the
possibility of a ten-fold increase in the number of gauge configurations at the low-
est pion mass. For the purposes of the simulation we did not change the value of
the data point, but simply reduced the size of the error bar by v/10. As can be seen
in Fig. 5.8 the improvement in the predictive power is dramatic. The uncertainty in

the physical mass has been reduced to the 2% level. Additional improvement in the
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accuracy of the extrapolation would result from the availability of additional data
in the low pion mass region. However, it must be noted that the provision of data
around 0.2 GeV? and higher would probably not assist greatly in the determina-
tion of the dipole mass (A); it is primarily determined by points nearer the physical

region. We present the parameters of these fits in Table 5.1.

FitForm ¢ co 3 Ay M, J m2
Cubic 0.723 0.668 —-0.207 — 0.735 0.44(8) 0.223(7)
Dipole 0776 0.427 —  0.630 0.731 0.45(7) 0.225(4)
(Imp) 0779 0425 —  0.660 0.725 0.45(3) 0.225(2)

Table 5.1: Table of fit parameters ¢y, ¢s, 3, Az, the p-meson mass at p,, the value
of the J-parameter, and the pion mass at which the J parameter is calculated. All
values are in appropriate powers of GeV. The Cubic fit refers to Eq. (5.67) while
the Dipole refers to Eq. (5.44) with a dipole form factor, Imp is a dipole fit with
the increased statistics. We find that the error in the J-parameter is halved if the
statistics on the lowest point are increased by a factor of 10.

Form Factor Dependence

We have examined the model dependence of our work by repeating the above fits
with a monopole form factor. As can be seen in Fig. 5.9 the model dependence is
at the level of 15 MeV at the physical pion mass with current data, and at the few
MeV level had the error bar been reduced by a factor of 1/10. This reinforces the
claim in Ref. [66] that this extrapolation method is not very sensitive to the form
chosen for the ultra-violet cut-off. In Sec. 6.6 we investigate the extrapolation form

factor dependence in greater detail for the specific cases of the N and A masses.

5.5 The J-Parameter

A commonly perceived failure with quenched lattice QCD calculations of meson

masses is the inability to correctly determine the J-parameter. This dimensionless
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Figure 5.9: A magnification of the physical pion mass region of our extrapolation
results. The solid and long dashed lines represent the best fit dipole and monopole
results for a fit with the present accuracy of the lattice QCD results. The dash-dot
and short dashed lines are the dipole and monopole results for a reduction in the
error bar of the lowest lattice data by a factor of 1/10. The model dependence of
the choice of form factor is O(2%).

parameter was proposed as a quantitative measure, independent of chiral extrapola-

tions, thus making it an ideal lattice observable [67]. The form of the .J-parameter

1s:

d
J = m,—2 (5.68)
dmfr mp/ma.=1.8
My — M
N Mge—y——r. (5.69)
My — M

By using Eq. (5.69) and the experimentally measured masses of the K (495.7 MeV),
K* (892.1 MeV), 7 (138.0 MeV) and p (770.0 MeV) Lacock and Michael [67)
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determined
J =0.48(2).

However previous attempts by the lattice community to reproduce this value have
been around 20% too small. In the case of quenched calculations this has been cited
as evidence of a quenching error (see, for example the review in [68]). It was noted
by Lee and Leinweber [69] that the inclusion of the self-energy of the p-meson
generated by two-pion intermediate states (excluded in the quenched calculations)
acts to increase the J-parameter. This fact has not been addressed in many analyses

by the lattice community.

0.8 I |

0.6

~ 04

0.2

0.0 :
0.0 0.1 0.2 0.3

m_? (GeV?)

Figure 5.10: The solid curve is a plot of the value of the J-parameter as a func-
tion of m2 obtained from Eq. (5.68) and the best fit to the lattice results given by
Eq. (5.44). The vertical dotted line shows the point at which the J-parameter is
evaluated (m,/m, = 1.8). The horizontal line displays the experimental value
(0.48) plotted between the physical values of m2 and ma.

In Fig. 5.10 we present the value of the J parameter obtained from Eq. (5.68)
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and our best fit to the lattice results using Eq. (5.44). The vertical dotted line indi-
cates the value of mfr where the J parameter is to be evaluated, i.e. m,/m, = 1.8.
The horizontal dashed line, plotted between the values of the squares of the physi-
cal pion and kaon masses, shows the experimental estimate of the J parameter from
(5.69). This equation suggests that the evaluation of J may be approximated by the
slope of the vector meson mass extrapolation between these points. The cusp shown
in Fig. 5.10, associated with the cut in ©2,_, suggests otherwise. We stress that while
the detailed slope of the curve is parameter dependent, the presence of the cusp is a
model independent consequence of the two pion cut in the p spectral function.

As a point of comparison we have also calculated J using the naive cubic
chiral extrapolation, Eq. (5.67), described above. The results of our investigations
are summarised in Table 5.1. The value of the J parameter is similar for both fits as
it is evaluated at m2 ~ 0.22 GeV2. The effects introduced into the extrapolations
by chiral physics do not begin playing a large role until mZ falls below 0.2 GeV2.
Had the J parameter been evaluated at m?2 = 0.19 GeV? or 0.09 GeV? one would

find perfect agreement with the linear Ansatz of Eq. (5.69).

5.6 The pr Phase Shift

The pr phase shift is related to the transition matrix for the p. The transition
matrix is proportional to ¢

T(E) x €’ sind, (5.70)
and the value of § may be measured experimentally. The form of the transition

matrix is

(5.71)
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where
k*u?(k)
S(E) ~ /dkw(k)(Ez — i€ — 4w?(k))

~ 2,

We can evaluate the scattering phase shift using

ImT
ReT

We know that £ = p, at the p pole, and that § = 90°. This implies that the real part

=tand.

of T vanishes, and so we have a constraint on m,. The imaginary part of T is just
the inverse of Eq. (5.63) with the p mass, 41, replaced by the energy of the system,
E.

180 | | T T T | ; T |
160
140
120

O |
02 03 04 05 06 0.7 0.8 09 10 11 12
E (GeV)
Figure 5.11: The prr phase shift as a function of energy. The experimental points
are from [70].

Figure 5.11 shows the phase shift for 7m scattering in the p channel, as

calculated with our best fit A, = 630 MeV. We reproduce the experimental results

83



of [70] in the resonance region, however the fit is not perfect in the higher and lower
energy regions. Additional resonances, that have been ignored in our analysis, are
expected to play a role in the high energy region, while there can be other small,

background contributions in the low energy regime.

5.7 Summary

We have found our method for extrapolating lattice QCD results for the lightest
vector meson at large quark masses to lighter masses successful. For the best fit
parameters, not only have we reproduced a realistic physical mass for the p me-
son, whilst implicitly building in the correct chiral behaviour, but in addition the p
of our calculations has the correct decay width to two pions. The extrapolation
method reproduces the experimentally extracted value of the J-parameter (with
some caveats), and it reproduces the pmm phase shift in the 27 resonance region.
These results are tempered by the error analysis, which shows that with data of the
accuracy currently available the true predictive power of an extrapolation is negli-
gible. The redeeming feature is that a ten-fold increase in the statistics of the lowest
data point will result in a tool with predictive power at the 5% level. In the next

section we apply a similar analysis to investigate the lightest two baryons: the V

and A.
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Chapter 6

Baryon Masses

. That man is best who reasons for himself,
Considering the future. Also good

Is he who takes another’s good advice.

But he who neither thinks himself nor learns
From others, is a failure as a man.

HESIOD, “WORKS AND DAYS”

he two most studied particles on both the lattice and in chiral perturbation
Ttheory are the lightest spin-1 () and spin-2 (A) baryons. The lowest mass
full QCD lattice data available is indeed for these baryons. We present a study
of these two baryons as a general example of the issues involved with any baryon
extrapolation. As in the previous chapter we show that an expansion in m, of
hadron properties fails to converge, and in particular has the wrong functional form
in the large quark mass region (Sec. 6.6.4). The sigma commutator, investigated
in Sec. 6.7, is a direct source of information on chiral symmetry breaking within

QCD. We will show that provided the correct chiral behaviour of QCD is respected
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in the extrapolation, one can indeed obtain a fairly reliable determination.

6.1 The Nucleon

The successes of the previous chapter concerning the extrapolation of the p-meson
mass leads us to consider a similar approach to the latest two-flavour, dynamical
QCD data on the nucleon. Once again our guiding principle is to retain those self-
energy contributions which yield the most rapid variation with m, near the chiral
limit — i.e. those terms which yield the leading non-analytic (LNA) behaviour and
the next-to-leading non-analytic (NLNA) behaviour. In the limit where the baryons
are heavy, the pion induced self-energies of the N and A, to one loop, are given
by the processes shown in Fig. 6.1. Note that we have restricted the intermediate
baryon states to those most strongly coupled, namely the N and A states. The

discussion of the A baryon calculations are deferred to section 6.3.

/, \\ ;’ \\
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Figure 6.1: The one-loop pion induced self-energy of the N and A.

As the nucleon propagator is linear in the baryon mass, it is natural to intro-
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duce the self-energy correction as:
my =mg + o™ . (6.1

In the case of the p-meson we motivated the definition of mg by observations of
lattice results. Here we use both the insights gained from the linear behaviour of
the results of lattice QCD, as shown in Fig. 2.1, and the CBM results Fig. 6.3. We

again take the bare mass, my, to be analytic in the quark mass:

my = ¢g + com? . (6.2)

6.1.1 Self-Energy Contributions

Once again we only include in the expression for the baryon masses the self-energy
contributions that vary the most rapidly in quark mass near the chiral limit. In
the case of the nucleon the two processes that contribute the most significantly are
N — N7 and N — An. In chapter 5 we saw that the two contributing self-energy
terms yielded the leading non-analytic and next-to-leading non-analytic behaviour
of the p meson mass. It is not surprising that the self-energy contributions we
investigate for the nucleon (and the Delta discussed below) also contribute the same
LNA and NLNA chiral behaviour to the nucleon.

As was discussed in Ref. [66], the formal analytic expression for the pion

cloud correction to the masses of the IV are of the form [71]:

3 s [T k4u?VN(k)
o = T /O TR (6.3)
3 32, [ k2, A (k)
N I v 2 NA 6.4
T Mo oy

where g4 is the axial charge of the nucleon and has the value 1.26. The mass

difference between the A and N is given by AM, and once again the energy of the
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pion with momentum k is given by w, (k). The coupling constants have been related
to the NN coupling through SU(6) symmetry, which itself has been related, by
chiral symmetry, to g4/2f,. These relationship are discussed in some detail in
Sec. 4.2.1. We again use the insight that the size of the source of the pions is finite in
extent, to motivate the introduction of the form factors uyy, and una. This simple
physical insight will regulate the integrals so that they do not become divergent.
As for the case of the p we choose a dipole for the form factors, which is a
common phenomenological choice. We have investigated the model dependence of
this choice in Sec. 6.6. We take our preferred dipole for the form factors:
Ay -2’
unn(k) = una(k) = (W) , (6.5)
where we follow the convention of this thesis by defining u, to be the physical
pion mass, and k being the magnitude of the loop (3-)momentum. We define the
dipole mass, for the case of the nucleon, to be A . This definition will allow us to

distinguish the result from that of the A, A, discussed later in this chapter.

6.1.2 Extrapolation Formula

If we collect together the definition of the nucleon mass, Eq. (6.1), with the defini-
tion of the bare mass, Eq. (6.2), and the results of Egs. (6.3) and (6.4) we have the

following expression of the nucleon mass, as a function of m,:

my = co + cam2 + oN (Ax,mz) + on (An, M) - (6.6)

6.2 Limiting Conditions For m y

Chiral symmetry for the nucleon is well defined for both the leading and next-to-

leading non-analytic behaviour in the quark mass. The case of the p — 7 had the
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inherent difficulty that both intermediate state particles were light. This is not the
case here, both the N and A are considered heavy in xPT. As was discussed in the
case of the p-meson, by construction, all the non-analytic behaviour of Eq. (6.6) is
restricted to the self-energy terms o and oX,. Thus we need only to investigate

the self-energy terms to see how they behave in the limits.

6.2.1 The Chiral Limit

The LNA and NLNA behaviour of Egs. (6.3) and (6.4) is associated with the in-
frared behaviour of the integrals, i.e. the behaviour as £ — 0. As a consequence,
the leading non-analytic behaviour should not depend on the details of the high mo-
mentum cut-off, or the form factors. In particular, it should be sufficient for study-
ing the LNA contributions to evaluate the self-energy integrals using a simple sharp
cut-off, u(k) = O(A — k). Another perspective on this is to say the leading non-
analytic (LNA) terms are those which correspond to the lowest order non-analytic
functions of m, —i.e. odd powers or logarithms of m.

Using a #-function for the form factors, the NN integral (c.f. Fig. 6.1(a))

is easily evaluated in the heavy baryon approximation used here:

N 3 2 A dk} k’A
iz = _167r2fzg*‘fu w2 (k)
39,24 3 A A 2
= “Ton2 /2 (m,r arctan o + 3~ Am; ) . (6.7)

Looking at the behaviour of Eq. (6.7) in the limit m, — 0, allows the extraction
of the non-analytic behaviour. It should be noted that the integrand is of exactly
the same form as Eq. (5.41), and therefore it should come as no surprise that the
leading non-analytic term is O(mn3 ), in agreement with [72]:

3

— 2,,3
lina = gy fa9AT R (6.8)

N
ONx
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The integral corresponding to the process shown in Fig. 6.1(b), the N —
Ar self-energy, with a -function form factor, may be analytically evaluated. For

my > AM

2 2 2
N  _ ga (12(m72r _ AM2)3/2 {arctan (\/ m7r+A +AM +A)

TAr T T o5m2fe —AM?

AM +m,
— arctan | —————
m2 — AM?

+3AM(3m2 — 2AM?)] ( Vmy + A%+ A)

—3y/m2 + A2AMA + 6AM?A — 6m;°;A +2A%), (6.9)
while for m, < AM we find
N gA
Tp, = 257r2f2 ( —6(AM? — mfr)3/2><
5 VAMZ —m2 + /m2 + A2+ AM + A
VAM? —m2 — \/m2 + A - AM — A
VAM?2 —mi + AM + m,
VAM?2 —m2 — AM —m,
2 2
+F3AM(3m2 — 2AM?)] ( g +A)

—3/m2 + A2AMA + 6AM?A — 6m§A + 2A3) . (6.10)

This result is reminiscent of the result for $#_. Both self-energies involve transi-
tions, p — m and N — A, which are characterised by branch points at m, = p,/2
and m, = AM respectively. The effect of this branch point is reduced by a can-
cellation in the logarithmic terms at m, = AM, unlike the result for the A — N
self-energy which is explored in section 6.4.1.

An expansion of Eq. (6.10) leads to the result for the NLNA term in the
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nucleon self-energy:

395 32 3
N . A 4
OArm|NLNA = 1671'2](‘7% é—gsAM?nw ]n(mﬂ') » (611)

which is again as expected from yPT [44].

Of course, our concern with respect to lattice QCD is not so much the be-
haviour as m, — 0, but the extrapolation from high pion masses to the physical
pion mass. In this context the branch point at m2 = AM? is at least as important
as the LNA near m, = 0. We shall return to this point later. We note that Banerjee
and Milana [73] found the same non-analytic behaviour as m, — AM that we find.
However they were not concerned with finding a form that could be used at large

pion masses — i.e. one that is consistent with heavy quark effective theory.

6.2.2 The Static Quark Limit

Heavy quark effective theory suggests that as m, — oo the quarks become static
and hadron masses become proportional to the quark mass. This has been rather
well explored in the context of successful non-relativistic quark models of char-
monium and bottomium [74]. However, as discussed previously, we are not in the
heavy quark limit (where m, o my), but in the region where the baryon masses
are indeed becoming proportional to the quark mass and yet m2 o< my still. In this
spirit, corrections are expected to be of order 1/m, where m, is the heavy quark
mass. Thus we would expect the pion induced self-energy to vanish at least as fast
as 1/m, as the pion mass increases. The presence of a fixed cut-off A acts to sup-
press the pion induced self-energy for increasing pion masses, as evidenced by the
m?2 in the denominators of Egs. (6.3) and (6.4). While some m2 dependence in A

is expected, this is a second-order effect and does not alter the qualitative features.
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By expanding the arctan (A/m,) term in Eq. (6.7) for small A/m,, we find

392 o0 (_1)1 A 2145

N  _ A 3 = —

ONT T T6n2 fgm”; (2 +5) \ ' ma (6.12)
B 3¢5 AS A7
= “Tom i +0 i) (6.13)

which vanishes for m,, — co. Indeed, in the large m., (heavy quark) limit, Eq. (6.10)

also tends to zero as 1/m?2.

6.2.3 The Mass in the Chiral Limit

It was mentioned in section 5.2.3 that the bare mass my that is discussed here is
not actually the mass of the hadron in the chiral limit. We emphasise the point
again here. The fact that the bare mass is only part of the chiral mass, is a direct
consequence of the concepts argued for here in requiring the self-energy terms in
the extrapolation. The non-analytic structure of the chiral mass is predicted by
chiral perturbation theory. We have shown above that we do in fact reproduce the
leading and next-to-leading non-analytic behaviour of this chiral mass, but that this
non-analytic structure comes only from the self-energy contributions. Without such
terms an extrapolation formula has little grounding in physics, missing well known
behaviour. As can be seen in Fig. 6.4 the contributions from the self-energy terms
o, Eq. (6.3), and oX_, Eq. (6.4) are non-vanishing at the chiral limit, and so our

mass for the nucleon in the chiral limit is

m§3’ = ¢y +on,. (AN, mz =0) + on(An, my =0). (6.14)

6.3 The A Baryon

The functional form for the mass of the A is motivated in exactly the same way as

were the nucleon and p-meson masses discussed previously. We follow our golden
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rule of retaining the self-energy contributions which yield the most rapid variation
with m,, near the chiral limit. The point has been made previously that these terms
in fact yield the leading, and next-to-leading, non-analytic behaviour. We presented
in Fig. 6.1 the pion induced self-energies to A. Once again we have restricted the
intermediate baryon states to those most strongly coupled, namely the N and A

states. As was the case for the nucleon, we have the A mass modified as
ma =mo+ 2. (6.15)

Observation of lattice results motivates the definition of the bare mass, myg, to be

analytic in the quark mass:

mg = o + com?Z . (6.16)

This is the exactly the same form as was used in Eq. (6.2) for the nucleon and
Eq. (5.2) for the p-meson. This behaviour is indicated by the lattice, and not entirely
unexpected. The concept of a bare object that is dressed in some manner is common
in both nuclear and particle physics. The Dyson-Schwinger equation is a perfect
example. Here we see that, to one pion loop, that lattice is indicating that hadrons

are a bare core with corrections that are quark mass dependent.

6.3.1 Self-Energy Contributions

The greatest contributions to the self-energy of the A are from the two processes
shown in Fig. 6.1, thatis A — Am and A — Nr. These are retained as they satisfy
our requirement of providing the most rapid variation with quark mass near the
chiral limit. We show below that as was the case for the nucleon and the p-meson
these two terms contain both the LNA and NLNA chiral behaviour. We define the

self-energy contribution to the mass, o2, by

A A A
a ZUAW+0NW'
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References [66, 71] present the formal analytic expressions for these pion

cloud correction to the mass of the A. We reproduce those results here:

ORa(Aa,ma) = Ny
_ 3 2 [ Kuia(k)
= 167r2f7%g’4/0 dk_——w?r(k) ) (6.17)
3 8 N k*u? v (k)
A A _ — el 2/ AN i
ohelbame) = feamagt f, FumEM - w ¢

where we use the notation and definitions described below Eq. (6.4). We take the

phenomenologically motivated dipole for our form factors

AL -2’
’U,AA(IC) = UNA(k) = (W) B (619)

with the dipole mass given by Aa, and the usual definitions for the magnitude of

the loop (3-)momentum, k, and the physical pion mass fir.

6.3.2 Extrapolation Formula

We showed in Eq. (6.15) how the mass of the A would be modified by pion induced
self-energy contributions. By substituting the appropriate definitions for the bare
mass, Eq. (6.16), and the pion induced self energies, Egs. (6.17) and (6.18), we

come to the following expression for the A mass, as a function of my:

ma = co + cam2 + o5, (Aa, mr) + o8 (An, mz) . (6.20)

6.4 Limiting Conditions For ma

As was discussed in section 6.2 the non-analytic behaviour of the nucleon mass is
well defined in chiral symmetry. The same is true for the A, which is also consid-

ered heavy in the yPT framework. Once again, by construction, all the non-analytic
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(in quark mass) behaviour of Eq. (6.20) is limited to the pion induced self-energy
contributions, o0&, and o2. Thus when we investigate the behaviour near the chiral

limit we need only to look at the behaviour of the self-energy terms.

6.4.1 The Chiral Limit

We have previously motivated the use of a sharp cut-off, u(k) = 6(A — k), for the
form factors when investigating the infrared behaviour of the self-energy contribu-
tions to the baryon masses. The behaviour as the loop momentum £ — 0 allows the
extraction of the lowest order non-analytic behaviour of these expressions as func-
tions of m,. We then compare this behaviour to the model independent predictions
of xPT, showing that we reproduce the LNA and NLNA behaviour that is expected
to be present in the functional form for the mass.

Since the form of o2, is exactly that of the o}, we may use the result of

Eq. (6.7) to write down directly the analytic form for this integral:

Uﬁﬂ' = 0’%7"
3, M, K
= ———= dk——~
e,
_ 39% 3 A A? 2
= “Tonif? (m,r arctan —~ + 3 Am; ). (6.21)

Naturally we have exactly the same result for the chiral limit, that is m, — 0, as

we had in the o, case. The leading non-analytic term is once again O(m3):

A _ 2.3
O-A"rlLNA = —WgAm,r . (622)

The other self-energy contribution to the A mass is from that shown in Fig.
6.1(c), the A — N self-energy. When we evaluate the integral, with a §-function

form factor, the result is similar to that of Eq. (6.9). Again, as there is a branch point
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at m, = AM we present the two limits independently. For m, > AM we have

2 ) P
A _ ga 2 _ 2\3/2 Vmi:+ A - AM+A
ONx ——1007r2f,?( 12(m; — AM?) {arctan ( NN

AM —my,
+ arctan | ——————
m2 — AM?

+3AM(3m2 — 2AM?)1 ( Vme + A+ A)

‘N

—3y/m2 + A2AMA ~ 6AM?A + 6m2A — 2A°%) (6.23)

whilst the form for m, < AM is
2

e = oz (BN~ )
ln(\/AMQ—m$,+\/?11§+A2—AM+A>
VAMZ —m2 — \/m2 + A2+ AM — A
+ln<\/A—M2——m_3r+AM—m,,>
\/A—Mﬁ——n’ﬂ—AM+m,,

+3AM(3m2 — 2AM?)1 ( Vg + A%+ A)

~3/mZ + A2ZAMA — 6AM?A + 6m3,A . 2A3) . (624)

It should be noted that the branch point at m, = AM is important in this situation.
In the case of the nucleon, there was a cancellation between the first two terms at
the opening of the cut, resulting in a zero weighting there. However, in the case of
the A, there is a reinforcement between these terms.

The effect of this branch point at m, = AM is seen as a point of inflection
at m2 ~ 0.1 GeV? in, for example, Fig. 6.4. It occurs exactly at the point where
the decay of the A to N is energetically allowed. The correct description of this
curvature is clearly very important if one wishes to obtain the A—N mass difference
at the physical pion mass. It must be noted that the previous attempts at extrapo-

lation formulae, as discussed in section 5.4.1, and also below, do not include this
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behaviour. We showed that in the case of the p-meson the opening of a decay chan-
nel is important, and we show below that this is even more important in the case of
the extrapolation of the A mass.

Though there is the important distinction between the behaviour of o and
o4 around the cut, the non-analytic behaviour is quite similar. The leading non-
analytic term contributed by o4, is O (m%In(m,)), and so in Eq. (6.20) it will
contribute the NLNA term (the LNA term is O(m2) from o, ):

od | _ 32 8 3
NrINLNA ™ 1672f2 25 BAM

maIn(m,) . (6.25)

As has been the case in the previous cases presented in this thesis we have

evaluated these self-energy contributions in the heavy baryon approximation.

6.4.2 The Static Quark Limit

Observationally it is clear that the functional differences between the expressions
for o and 0%, become less important as the quarks become heavier. Equivalently
since the expressions for o¥, and 04, are identical, we therefore can use the results
presented in section 6.2.2 to explore the behaviour of the extrapolation formula in
this limit.

We explored the large m, behaviour of Eq. (6.21) (which is analogous to
Eq. (6.12)) and found

2 5 7
2 391 A +0(A—>, (6.26)

Tax =7 1672 f2 5m2 mi
which, as expected, vanishes for m, — co. We also state (without further explana-
tion) that in the large m, limit, Eq. (6.24) also tends to zero as 1 /m2.

As has been previously mentioned these expressions are only a first order

approximation, and the corrections to the baryon mass are expected to be of order
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of the inverse of the heavy quark mass. This is exactly the behaviour we already see,
suggesting such effects will not change the general detail of the results presented.
It is also expected that this characteristic feature would not be altered by second-

order effects, including possible m2 dependence in A. We reiterate that A is related

I [ I I

7o .
—— Cloudy Bag

o~ —-— Bare Bag
E .6
;a
\5 5

4 - n

I | | |
0.0 0.2 0.4 0.6 0.8 1.0

m ? (GeV?)

Figure 6.2: The mean charge square radius of the proton calculated in the Cloudy
Bag Model (CBM). The solid line is the value calculated within the CBM including
the pion cloud effects. The dot—dashed line is the contribution from the bare bag.
The change in the size of the bag over the range is at the 10% level.

to size of the baryon core. The size of the core, or bare baryon, is not expected
to vary significantly over the range of pion masses we are investigating. Indeed a
simple CBM calculation of the mean square radius of the proton, Fig. 6.2, suggests
that the change in the size of the core is only at the 10% level over the range we

discuss.
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6.4.3 The A Mass in the Chiral Limit

The inclusion of the self-energy terms in the mass formula for the A provides the
correct leading non-analytic and next-to-leading non-analytic structure that is re-
quired by xPT. Notionally we have dressed the bare A with a pion cloud, in a
similar way to the Cloudy Bag Model dressing a bare bag, with a pion cloud. This
means however that the chiral mass is not simply that of the bare A. We have
seen in the cases of the nucleon and p that the physical mass is only slightly more

complicated though, and that is also the case here:
m = ¢y + 08, (Aa, My = 0) + R (An,mr = 0). (6.27)

The self-energy contributions to the A (and also nucleon) mass foral GeV
dipole are shown in Fig. (6.4). It is clear that they are non-vanishing at the chiral

limit, reinforcing the need to retain these terms when taking the chiral limit.

6.5 Cloudy Bag Model Results

The Cloudy Bag Model (CBM) was discussed in chapter 4, and so there is little need
to go into the reasoning behind why we undertook investigations in the model. The
benefits that were gained by having a model that incorporated both chiral symmetry
and the heavy quark limit, whilst allowing us to access the region between these two
limits was extremely useful. We needed some insight into how the hadron masses
might behave between these limits, and the CBM did this admirably.

In Sec. 4.2.3 Fig. 4.3, reproduced here as Fig. 6.3, was presented showing
how both the CBM results, and our extrapolation formulae depend on m2. At the
time the derivation of, and reasoning behind, the formula was not presented. The

previous sections of this chapter will hopefully have made some of this clearer.
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Figure 6.3: The pion mass dependence of the IV and A baryons generated in the
CBM using a dipole form factor with A = 1.0 GeV. This is a reproduction of
Fig. 4.3.

Figure 6.3 shows the behaviour of the N and A masses in the CBM as a
function of m2 for the particular choice of a 1 GeV dipole. The solid lines show
the fits using Egs. (6.6) and (6.20) — with a sharp (0-function) cut-off. We choose
a sharp cut-off as we wish to explore what model dependence there is in the ex-
trapolation of the CBM data. This different perspective on model dependence from

strictly lattice results removes some inherent bias.

Baryon Co Co A mp  Error
(GeV) (GeV™!) (GeV) (GeV)

N 1.09 0.739 0455 0948 0.8%

A 1.37 0.725 0419 1.236 0.3%

Table 6.1: Parameter sets for the fit to the CBM data. The form factor used in
Egs. (6.6) and (6.20) is a sharp cut-off, the CBM data was calculated with a 1.0
GeV dipole form factor.
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It can be seen that our extrapolation to the physical pion mass is in good
agreement with the CBM calculations. At the physical pion mass the extrapolated
N mass is within 0.8% of the experimental value to which the CBM was fitted,
while the A is within 0.3% of the experimental value. We present the parameters of
our fit in Table 6.1. The value for the sharp cut-off (An, Aa) is (0.455, 0.419) GeV,
compared to A = 1.0 GeV for the dipole form factor used to generate the CBM
results.

It was noted in sections 6.2.3 and 6.4.3 that the constant ¢, in our functional
form is not the mass of the baryon in the chiral limit, but rather this is given by
ml® = ¢ + o, (A,0) + 0¥, (A,0) — with an analogous expression for the A.
We find that the extrapolated N and A masses in the chiral (SU(2)-flavour) limit
are (M, M) = (905, 1210) MeV, compared with the CBM values (898, 1197)
MeV.

The mass dependence of the pion induced self-energies, a;'-,r, for the 1 GeV
dipole form factor, is displayed in Fig. 6.4. The choice of a 1.0 GeV dipole corre-
sponds to the observed axial form factor of the nucleon [75], which is probably our
best phenomenological guide to the pion-nucleon form factor [76]. We note that
o tends to zero smoothly as m, grows and it is only below m2 ~ 0.2 GeV? that
there is any rapid variation. That this behaviour cannot be well described by a poly-
nomial expansion is illustrated by the dotted curve in Fig. 6.4. There we expanded
oX. about m, = 0 as a simple polynomial, ¢, + com? + csm3, with c3 fixed at
the value required by chiral symmetry, in analogy with section 5.4.1. Clearly the
expansion fails badly for m, beyond 300-400 MeV.

The behaviour of the N7 contribution to the self-energy of the A is espe-
cially interesting. In particular, the effect of the branch point at m, = AM is seen
in the curvature at m2 ~ 0.1 GeV>. For comparison, we note that while there is

also a branch point in the nucleon self-energy at the same point — see Eq. (6.9) -
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Figure 6.4: Variation with pion mass of the self-energy contributions to the nucleon
and A, Egs. (6.3), (6.4), and (6.18), for a dipole form factor with A = 1.0 GeV.
We note that 04 = o¥,. in this case. The LNA term of xPT tracks the NN con-
tribution up to m, ~ 0.2 GeV, beyond which the internal structure of the nucleon
becomes important.

the coefficient of (m2 — AM?)*/2 vanishes at this point. As a consequence there is
little or no curvature visible in the latter quantity at the same point.

Figure 6.5 illustrates the degree of residual model dependence in our use
of Egs. (6.6) and (6.20). There the variation of the nucleon self-energy, o,
calculated with a 1.0 GeV dipole form factor (solid curve) is fit using the form
o+ Bm2 + o (A, m,) (dash curve, with @ = —0.12 GeV, § = 0.39 GeV~! and
A = 0.57 GeV). Note that the deviations are at the level of a few MeV. For the A
the self-energy, 0%, is again calculated using a 1.0 GeV dipole form factor and fit
with our standard fitting function, & + fm2 + 0§, (A, my). The quality of the fit
(with @ = —0.062GeV, 8 = 0.024 GeV~—! and A = 0.53 GeV) is not as good as for
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Figure 6.5: Comparison between the nucleon and A self-energies, oN_ and 0%,
calculated using a dipole form factor (solid and long-dash dot curves, respectively)
and fits using the form a + fm2 + 0;;(A, m,), based on a sharp cut-off in the
momentum of the virtual pion (dash and short-dash dotted curves respectively).

the nucleon case. Nevertheless, the difference between the two curves at the phys-
ical pion mass (vertical dotted line) is only about 20 MeV. At the present stage of
lattice calculations this seems to be an acceptable level of form factor dependence
for such a subtle extrapolation. However, in the following sections we will show
that the choice of the sharp cut-off is not a reasonable choice for the form factor,
and the model dependence for a reasonable choice of form factor (the meaning of

reasonable will become obvious shortly) is quite small.
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6.6 Fitting to Lattice Results

In chapter 5 we showed that taking in to account the discretisation of available mo-
menta on the lattice was important. We also discussed that the model dependence of
the results, based on the choice of form factor, was small. Here we will expand the
discussion by presenting more results for three choices of form factor, and also by
looking further at the dependence of the results on the discretisation of momenta.
In particular we will be investigating our preferred form factor, the dipole
2
uP (k) = <%22—;‘]:—ZF) : (6.28)
as discussed below Eq. (6.5), with u, being the physical pion mass. It is a simple
extension from the dipole to the choice of a monopole. However we will show, that

the monopole

A2_ 2
uM (k) = (A—QJF%) , (6.29)

does not give as good a fit to the lattice data as a dipole. The goodness of fit (we
use the x2 per degree of freedom as this measure) for the monopole is sufficient
however for it to be considered a reasonable choice of form factor, reinforcing our
claims that this work is only weakly model dependent. The final form factor that

we investigate is the #-function, or sharp cut-off:
uS(k) = 0(A — k). (6.30)

We know that the behaviour of the self-energies in the chiral, or infrared, limit is
independent of the choice of form factor, and we used the sharp cutoff to derive
the leading, and next-to-leading behaviour in this limit. The appropriateness of
such a form factor at higher masses however was not as well known before the
investigations outlined below. In Fig. 6.6 we present the shapes of these form factors

as a function of loop momentum, k. The solid and dashed lines are for the values
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Figure 6.6: Loop momentum, k, dependence of three choices of form factor. The
solid curve, a dipole given in Eq. (6.28) has Ap = 1.0 GeV. The monopole,
Eq. (6.29), has the same mean-squared radius as the dipole, this results in Ay, =
Ap/v/2 GeV. The dashed curve is a sharp cut-off with A chosen to give the best fit
to the CBM results (A = 0.455 GeV).

of A discussed in section 6.5 for the best fits to the Cloudy Bag Model. It is clear
that whilst the majority of the chiral behaviour of the self-energies comes from the
infrared, or equivalently low-k, region the significant difference between the non-
vanishing dipole and the identically zero sharp cut-off 6-function in the region up to

2.0 GeV undoubtedly makes a difference in the contributions from the self-energies.

6.6.1 Sharp Cut-Off Form Factor

We begin by considering the functional forms suggested in section 6.1.2 and 6.3.2
with the form factor chosen to be a #-function with A fixed to the value determined

by fitting the CBM calculations. As has been mentioned previously the data sets
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from the UKQCD [21], and CP-PACS [20] collaborations are not consistent at their
quoted values (Fig. 2.1). It has been our practice to shift the results within the
quoted errors, as discussed in section 2.4, to improve the consistency.

The resulting fits to the baryon masses were investigated in our previous
work [66]. There we explored the dependence of the parameters on the scaling of
the data. Since there is 10% uncertainty in setting the scale for both the UKQCD
and CP-PACS results we calculated fits for no scaling of the data, a 5% scaling on
both data sets, and also adjusting just one data set to match the other. We found that
even though the scaling adjusts the parameters of the extrapolation, the variance at
the physical pion mass is of the order of 10%.

The evaluation of the self-energy contributions as a sum over discrete mo-
menta was not undertaken in this case. However, we realise that a sharp cut off in
the momenta of the pions emitted from a hadron is not at all realistic. The sharp
cut off is an acceptable choice in the low momentum region. It permits analytic
evaluation of the self-energy integrals which then allow the physical structure to be
observed. Away from this region however the approximation breaks down.

Another reason for not investigating the sharp cut off is related to the dis-
cretisation of momenta itself. In our CBM investigations we found that the cut off
was at a momenta about 450 MeV. The lowest available momenta on the lattices in-
vestigated are greater than this value! To have any contribution from the self-energy
terms the cutoff must be pushed above the minimum non-zero lattice momenta,
which would then decrease the goodness-of-fit. These two opposing pressures play

off against each other resulting in an unacceptable goodness-of-fit.
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6.6.2 Naive Chiral Fits

In section 5.4.1 we commented that a popular approach to fitting lattice data in-
volves a functional form motivated by chiral symmetry. The idea is to add to a
linear (in m?2) formula a term that is of the same order as the leading non-analytic
term predicted by chiral symmetry. In Sec 6.4.1 we saw that the LNA term for
the nucleon is @(m3). This is also the same order as the LNA term for the A and

p-meson. Thus Eq. (5.67) is identically the result that the community uses as a
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Figure 6.7: A comparison between phenomenological fitting functions for the mass
of the nucleon. The solid curve corresponds to using Eq. 6.31 with c3 set equal to
the value known from yPT. The three parameter fit corresponds to letting c; vary as
an unconstrained fit parameter.

chirally motivated extrapolation formula:

mpyg = Co + cszr + Cgm:. . (631)
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The results of such a fit for the nucleon are shown as the dashed-dot curve in Fig.
6.7. There is an analogous result for the A. We present the results of the fits for the

N and A in Table 6.2. In section 5.4.1 we mentioned that the value of ¢ is known in

Fit Co Ca C3 mp
(GeV) (GeV™!) (GeV~?) (GeV)

"N (a) 0.18  6.68 -5.60  0.293
(b) 095 142 -0.48  0.973

A (@ 044 6.50 —5.60  0.556
(b) 119 131 —0.55  1.22

Table 6.2: Parameter sets for the fits to the nucleon (shown in Fig. 6.7) and A. Set
(a) is for the 2 parameter fit of (6.31) with c3 from the known xPT result, and (b)
for the 3 parameter fit of (6.31).

xPT for the p-meson. The same claim applies here. In section 6.4.1 we showed that
our extrapolation formula has the correct coefficient for the leading non-analytic
term in the self-energy for the nucleon. When we fix the value of c3 in Eq. (6.31) to
that of xPT and repeat the fit we find a similar result as that of section 5.4.1. The fit
(shown as the solid line in Fig. 6.7) is reminiscent of the result we found with the
p meson. This expression fails to converge in the region in which the lattice results
exist. Chiral perturbation theory is applied outside the region in which it is expected
to be valid. If we do not force the coefficient of the cubic term to be that of xPT we
expect, and indeed find it to be small. The cubic term will attempt to mock-up the
slight curvature in the masses at heavy quark masses. The act of allowing it to be

a fit parameter has resulted in the loss of the advantages introduced by including a

term motivated by xPT.

6.6.3 Improved Chiral Fits

We again base out fits on lattice results restricted to the region below 0.8 GeV2.

The rational as previously stated is that to move further away from the chiral limit
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would dictate higher order analytic terms beyond the first two in our extrapolation
formulae, Egs. (6.6) and (6.20). We have used a dipole as our preferred fitting
form, and evaluated the self-energy contributions using the discrete sum, Eq. (5.66),
discussed in Secs. 2.1.2 and 5.4. The results of this fit, following the convention set
in chapter 5, are shown as the open squares in the following graphs of the hadron
mass. The parameters of the fit ¢y, ¢z, and Ay are then used in an exact evaluation of
Eq. (6.6) using the integrals Eqs. (6.3), (6.4) for the nucleon. A similar prescription
applies to the A where we evaluate the self-energy integrals (6.17) and (6.18) for
the appropriate parameters. We do not consider that there is enough information
currently provided in the data to independently constrain both Ay and Ax, and so
we constrain out fits to have the same form factor dependence (Ay = Aa). Thus
we have 5 independent parameters for our fits: con, Can, Coa, C2a and A.

Figure 6.8 shows the behaviour of the self-energy contributions to the nu-
cleon and A as a function of pion mass. The effect of the A — N7 decay channel
opening is clearly visible in the o4, plot. As has been previously mentioned, this
behaviour is neglected in other extrapolation methods, but is important in obtaining
the correct behaviour of the A in this region. We also indicate the fall off of the
self-energy terms as m?2 increases as we expected.

The fits to the nucleon and A data is presented in Fig. 6.9 with the parameters
in Table 6.3. We find predictions for the physical masses of the nucleon and the A
to be 940 MeV and 1173 MeV respectively.! As was in the case of the p meson, it
is the lowest data point that influences the curvature of the fit. We shall investigate
the effect of decreasing the errors on this lowest point shortly.

We also investigate the effects of requiring the fit to reproduce the physical

mass of the baryons. The large uncertainty in setting the scale of the CP-PACS and

I'The excellent agreement with the experimantal mass of the nucleon is coincidental, but encour-
aging.
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Figure 6.8: Variation with pion mass of the nucleon and A self-energy contributions
to their respective masses. The form factor is chosen to be a dipole with Ay =
AA and set the best fit values of 921 MeV. The solid points indicated the value
of the self-energy when calculated at the discrete momenta allowed on the lattices
considered in this investigation. The difference between the curves and points is an
indication of the missing physics because of finite lattice size and spacing.

UKQCD results realistically suggests a mass within 10% is acceptable. However,
we introduce pseudo-data points at the physical pion mass with the mass of the nu-
cleon and A. We repeat the fit, with the proviso that the self energies are calculated
as integrals at this physical point. At the other points we evaluate the sum over the
discrete momenta. Effectively we are mocking up an infinite volume lattice with
infinitesimal lattice spacing at the physical point. A surprisingly acceptable value
for the goodness-of-fit is found with this artificial data. We present the value of the
fit in Table 6.3. As can be seen, even with the restriction introduced by the pseudo-

data points the x? per degree of freedom are still of order unity. We shall use these
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Figure 6.9: Analysis of the lattice data for the N and A baryon masses calculated
by the CP-PACS (filled symbols) and UKQCD (open symbols) collaborations as a
function of m2. The squares represent the fit of Egs. (6.6) and (6.20) respectively to
the data with the self-energy contributions calculated as a discrete sum of allowed
lattice momenta. The solid curves are for continuous (integral) self-energy contri-

butions to the same equations. We have used a dipole form factor, with optimal
AN = Aa = 921 MeV. The vertical line is at the physical pion mass.

fits in chapter 7.

6.6.4 Series Expansion

Section 6.6.2 contains a discussion regarding the use of a chirally motivated formula
for fitting lattice hadron masses. We explore the properties of a series expansion
further in this section. The series of Eq. (6.31) is motivated by taking the first
three terms that are known to contribute to the self-energy of the hadron from xPT.

These terms were calculated by taking the series expansion of the chiral Lagrangian
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co Cs A x?/DoF  x?/DoF mP
[GeV] [GeV™'] [GeV] (Ay =Aa) (Forced) [GeV]

N 136 0.710 0.921 3.12 0.940 Dipole
1.36 0.715  0.917 0.282 0.940
1.18 0.830 0.394 5.21 0.958 Monopole
1.22 0.811  0.417 0.578 0.940

A 1.54 0.565  0.921 3.12 1.173 Dipole
1.38 0.647  0.715 1.55 1.232
1.39 0.669 0.394 5.21 1.220 Monopole
1.37 0.681  0.374 2.03 1.232

Table 6.3: Parameters of the fits to the N and A data for dipole (Eq. (6.28)) and
monopole (Eq. (6.29)) form factors with the requirement that Ay = Aa. The
calculation is repeated with the Ay and A unconstrained, however requiring the
physical mass of the N or A is reproduced. This fit is indicated by the “(Forced)”
label.

around massless quarks, or more accurately m, — 0.
For the investigation we wish to undertake, we simplify our extrapolation

formula to

my = Cp + cszr + 011\\7[” y (632)

dropping the N — Ar contribution. To allow a simple analytic investigation we
take a sharp cut-off for the form factor and analytically integrate the self-energy
contribution (Eq. (6.7)). We then fit this analytic expression, rather than the sum
over the discrete momenta. This process is to simplify the mechanics of our model
fit, allowing a clarification of the significant issues. In short, the functional form we
fit with is:

my = co + cam2 — %:ZZE <m$’r arctan (7_;/1\;) + A?s — Amﬁ) . (6.33)
The parameters of the fit are (co, c2, A) = (1.18,0.78,0.62) and it is presented as
the solid curve in Fig. 6.10. This expression is exact for all values of m,, and so we

are able to expand it in both the small- and large-m, limits. The coefficients of all

terms in both expansions are explicitly determined, thus we can calculate a series
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Figure 6.10: Fit of Eq. (6.33), and the analytic series expansion in both the heavy

and light m,, limit, to various powers. The analytic forms of (i) — (vii) are presented
in the text.

expansion in both limits with full knowledge of all the terms. We have done this for
both limits. In the small mass limit we have plotted the following series expansions

truncated at different orders (where we make the substitution x = 16”2 fz)

1. my = (Co+nTA3) + (02 — KA)mz

ii. mN_(c0+—3— + (¢g — kA)YmZ + (&5) md

)
iti. my = (c0+ﬁ§—3)+(c2—m mZ + () md — (%) my
iv. mN—< —g‘—)—l—(cz—m]\ m2 + (55) md — (£) mi + (55) ma

Note the coefficient of the m3 term is, as we have previously stated, exactly as

predicted by xPT. The series expansions in the heavy quark limit are given by:

113



V. my = ¢y + cszr + 52

: _ 2
V. my = ¢p + com; + 5mZ ~ Tm3

e = 2 KAS kAT | kAY
Vil. my —co—t-czm,r—i—m— W‘l‘ 9me

It can be seen in Fig. 6.10 that none of the curves (i) — (vii) reproduce the
solid curve over 6 the region where the lattice data lies. It is clear that the series in

the small mass region, given by

kA
my = (Co+—3—> +(CQ—I"\7A)m +( ;)mf‘r
= z+1 my \ 26+1
et S oy (5) (634
=0
will never converge to the series in the large mass region:
(1) A\ 20
3
= —— — . 6.35
my Co+02m +K/mz 2’L+5)( ) ( )

This result may be extended to show that no series expansion of chiral perturbation
theory, to any order, will reproduce the correct m? behaviour of a mass in the heavy
quark region. The only way to reproduce both regions is by having an interpolating
function, like Eq. (6.33), that reproduces both limits.

This failure of a series expansion to reproduce a known function has been
explored in the case of effective field theory in [77]. Here the exact solution of the
Euler-Heisenberg QED effective action is known, and the series expansion in the
large and small electron mass, m, limits can to be evaluated. In the small mass
(strong external field B) limit logarithmic terms and odd powers of m?/eB appear.
However the large mass (weak external field) expansion has no logarithmic terms
and only even powers of eB/ m?2. Thus it can be seen that the exact integral ex-
pression for the one-loop Euler-Heisenberg effective action has two very different

expansions in the limits, similar to the result we have presented above.
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6.7 Sigma Commutator

In the quest to understand hadron structure within QCD, small violations of funda-

mental symmetries play a vital role. The sigma commutator, on:

o = 3 (N11Qus, [@us, HI) 1N (636)

(with ;5 being the two-flavour (i = 1, 2, 3) axial charge) is an extremely important
example. Because (0;; commutes with the QCD Hamiltonian in the chiral SU(2)
limit, the effect of the double commutator is to pick out the light quark mass term
from H.:

on = (N| (mytiv + mqdd) |N) . (6.37)

Neglecting the very small effect of the u—d mass difference we can write Eq. (6.37)

in the form
oy = (N|m(au+dd)|N) (6.38)
_Omy

with m = (m, + mg)/2. Equation (6.39) follows from the Feynman-Hellman
theorem [78].

While there is no direct experimental measurement of oy, the value inferred
from world data has been 45 + 8 MeV [79] for some time. Recently there has
been considerable interest in this value because of progress in the determination
of the pion-nucleon scattering lengths [80, 81] and new phase shift analyses [82,
83]. For an excellent summary of the sources of the proposed variations and the
disagreements between various investigators we refer to the excellent review of
Kneckt [84]. For our purposes the experimental value is of limited interest as the

full lattice QCD calculations upon which our work is based involve only two active

flavours.
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Numerous calculations of oy have been made within QCD motivated mod-
els [85] and there has been considerable work within the framework of chiral per-
turbation theory [86]. However, direct calculations of oy within QCD itself have
proven to be difficult. Early attempts [87] to extract o from the quark mass depen-
dence of the nucleon mass in quenched QCD (using Egq. (6.39)) produced values
in the range 15 to 25 MeV. Attention subsequently turned to determining on by
calculating the scalar matrix element of the nucleon (N |au + dd|N). There it was
discovered that the sea quark loops make a dominant contribution to oy [88, 89].
These works, based on quenched QCD simulation, found values in the 40 to 60
MeV range, which are more compatible with the experimental values quoted above.

On the other hand, the most recent estimate of o, and the only one based on
a two-flavour, dynamical-fermion lattice QCD calculation, comes from the SESAM
collaboration. They obtain a value of 18 + 5 MeV [90], through a direct calculation
of the scalar matrix element (N|@u + dd|N).

The discrepancy from the quenched results of Refs. [88, 89] is not so much
an unquenching effect in the scalar matrix element but rather a significant suppres-
sion of the quark mass in going from quenched to full QCD. The difficulty in all
approaches which evaluate (N |zu + dd|N) is that neither it nor 7 is renormaliza-
tion group invariant. One must reconstruct the scale invariant result from the prod-
uct of the scale dependent matrix element and the scale dependent quark masses.
The latter are extremely difficult to determine precisely and are the chief source of
uncertainty in this approach.

An additional difficulty in extracting o from lattice studies is the need to
extrapolate from quite large pion masses, typically above 500 or 600 MeV. An im-
portant innovation adopted by Dong et al., but not by the SESAM collaboration,
was to extrapolate the computed values of (N|au + dd|N) using a form motivated

by chiral symmetry, namely a + bm}/2. On the other hand, the value of b used was
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not constrained by chiral symmetry and higher order terms of the chiral expansion
were not considered. Furthermore, since the work was based on a quenched cal-
culation, the chiral behaviour implicit in the lattice results involves incorrect chiral

coefficients [91].
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Figure 6.11: Nucleon mass calculated by CP-PACS (solid points) and UKQCD
(open points), as a function of m2, both are scaled by 5% to improve consistency.
The solid curve is a fit to Eq. (6.6) with a 921 MeV dipole form factor, the dashed
curve is a fit using a sharp (6-function) cut-off, A = 513 MeV, with the self-energy
contributions evaluated as integrals. The dash-dot curve is a fit to Eq. (6.31). The
vertical line indicates the physical pion mass.

In section 6.6.2 we discussed the relative merits of extrapolating the baryon
masses with a chirally motivated, cubic, form (Eq. (6.31)). The corresponding fit
to the combined UKQCD and CP-PACS data set, is shown as the short-dashed
curve in Fig. (6.11) and the parameters (Co, C2, ;) = (0.946,1.42, —0.483) (the

units are appropriate powers of GeV). This yields a value for the sigma commutator,
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a](f) = 95.7 MeV, where the superscript stands for “phenomenological”.

The difficulty with such a purely phenomenological analysis has been dis-
cussed above and also in Ref, [66]. The point we wish to emphasise is that the
value of &3 (—0.483) is almost an order of magnitude smaller than the model in-
dependent LNA term, c§* = —5.60 GeV2. Clearly this discrepancy must present
concern when evaluating o, because of the requirement of taking the derivative
of the mass formula. If one evaluates the LNA contribution to the value of oy
with this phenomenological value of c; the contribution is about —2 MeV. With
the model independent value of c3 this contribution jumps to —23 MeV, about 50%
of the absolute value of the sigma commutator. It should be noted that the con-
tribution from the cubic term in both cases actually acts to decrease the value of
on. Undoubtedly the curvature associated with the chiral corrections at low quark
mass is extremely important in the evaluation of . The extrapolation method we
present not only includes the correct coefficient for the cubic term, but includes
higher order terms which conspire to increase the value of the sigma commutator.
The extracted value of oy is determined by the present data, the result being 37.3
MeV. The result is somewhat reduced from our previously published calculation
[92] because of two factors. In this calculation we have constrained the form factor
parameter A between the fits of the V and A, and secondly we have fit taking into
account the discretisation of the momenta available to the pion on the lattice. These
two improvements in the procedure whilst reducing the value of oy, still reproduce
a value that is consistent, within errors, to the experimental prediction. It is this
relative stability of the predictions that give confidence to our assertions.

Since the process of setting the physical mass scale via the string tension is
thought to have a systematic error of 10%, one might naively expect this to apply to
on. However, all masses in the problem including the pion (or quark) mass, as well

as that of the nucleon, scale with the lattice parameter a. It turns out that when one
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uses Eq. (6.39) at the physical pion mass (which means a slightly different value of
mha if a changes), the value of oy is extremely stable. If, for example, one raises
the CP-PACS data by 15% and the UKQCD data by 5% (instead of 5% and —5%,
respectively) the value of oy shifts from 37.3 to 36.7 MeV. We present calculations

in Table 6.4 that show, for a variety of scalings of the lattice data, how stable our

results are.
Scaling (%) oN
CP-PACS UKQCD Dipole Sharp Cubic
5 -5 37.3 432 29.7
10 0 370 432 286
0 —10 374 432 310

Table 6.4: Sigma Commutator Values. The Dipole and Sharp results were calcu-
lated with our preferred form of ¢o -+ cam?2 + N (A, mx) + 0 X, (A, my) with either
a dipole or monopole form factor for the N vertex. The values of dipole parameter
(A) were (921, 927, 910) MeV, and for the sharp (513, 520, 506) MeV. The Cubic
results are for the ¢y + com? + csm? extrapolation function, with c3 unconstrained
by chiral symmetry — as explained in the text this produces an unreliable value for

oON.

The remaining issue, for the present data, is the model dependence associ-
ated with the choice of a dipole form factor. We believe that any model satisfying
the essential chiral constraints and fitting the lattice data should give essentially the
same answer. We checked this by numerically fitting the lattice data (long-dashed
curve in Fig, 6.11) with the form of Eq. (6.6) but with oy, and o}, calculated over
a continuum of momenta with a sharp cut-off (f-function) form factor at all pion-
baryon vertices. This is the procedure discussed in Ref. [92]. We recognise that the
sharp cut-off is not as physically sensible as the dipole form factor, however, even
this approach gives an acceptable result for oy. Since the preferred phenomeno-
logical form of the N7 form factor is a dipole, we regard the dipole result shown

in the first line of Table 6.4 as our best estimate, namely oy = 37.3 MeV with fit
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parameters (co, ¢z, Ap) = (1.36,0.710, 0.921). A remaining source of error is that,
although the lattice results are calculated with an improved action, there still is an

error associated with the extrapolation to the infinite volume, continuum limit.

6.8 Summary

The importance of the inclusion of the correct chiral behaviour has again been em-
phasised by the fact that it increases the value of the sigma commutator from less
than 30 MeV of the unconstrained cubic fit to around 37 MeV for our functional
form which explicitly includes this correct chiral behaviour. Clearly an enormous
amount of work remains to be done before we will fully understand the structure
of the baryons within QCD. 1t is vital that the rapid progress on improved actions
and faster computers continue and that we have three flavour calculations within
full QCD at masses as close as possible to the physical quark masses. Nevertheless,
it is a remarkable result that the present lattice data for dynamical-fermion, two-
flavour QCD, yields such a stable and accurate answer for the sigma commutator,
an answer which is already within the range of the experimental values. In addi-
tion, we have also shown that functional forms that interpolate between the known
behaviour in the chiral and heavy quark mass limits are able to give insight into the
mass dependence of the lightest spin-1 and 3 baryons. Finally an investigation of
the applicability of a series expansion over such a range has shown that a chiral se-

ries expansion, to any finite order, will never reproduce the heavy quark behaviour

of the baryons.

120



Chapter 7

Edinburgh Plots

What you can’t do on your own, you don't
understand.

RICHARD FEYNMAN

s discussed in Sec. 6.7, there are difficulties in calculating the sigma commu-
Atator, in some approaches, because of the need to set the scale at which the
masses are calculated. The Edinburgh (m,/m, vs. my/m,), and APE ((m,/m,)?
vs. my /m,), plots avoid this difficulty as the scale is removed in taking the ratio of
the masses.

In the case of the Edinburgh plot we know the exact values of the ratios in the
heavy quark and physical limits. The physical masses of the w, p and N are known,
giving us the ratio at the physical point. In the heavy quark limit we expect the
mass of the hadrons to become proportional to the mass of the constituent quarks.
Assuming equal current quark masses, we have the ratio of the 7 to p masses being
1, and the ratio of the nucleon to the p being 3/2.

The data from CP-PACS [20] (filled symbols) and UKQCD [21] (open sym-
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Figure 7.1: Edinburgh plot for CP-PACS and UKQCD results as used previously in
this work. The stars represent the known limiting cases, at the physical and heavy
quark limits respectively. The solid line is the infinite volume, continuum limit
behaviour predicted by our functional forms for the extrapolation of the N and p
masses.

bols), as previously used in this thesis, are presented in the subsequent figures. The
stars at m,/m, ~ 0.2 and 1.0 are the known limits of the ratios. . The first point
to note is that some of the data lies above the heavy quark limit. This behaviour
is not unexpected and is explained by forms that attempt to extrapolate from the
heavy quark limit down to somewhat lighter masses [93]. There is a turn over in the
extrapolation form allowing matching to not only heavy quark lattice data, but also
the theoretical point at m,/m, = 1.0. These extrapolations, however, do not at-
tempt to enter the chiral region in which we are working. The region in which these
heavy quark extrapolation methods overlap our chiral extrapolation is not explored

in this work.
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As the value in the physical limit is known for the Edinburgh plot, we in-
troduced a pseudo-data point, at the physical mass of the appropriate hadron, and
repeated the fits of Eqs. (5.44), (6.6) and (6.20). The changes in the x%/DoF for

x2/DoF
I N A

Unconstrained 1.34 0.332 1.53
Constrained 1.37 0.282 1.55

Table 7.1: The x2/DoF for the extrapolation formulae Egs. (5.44), (6.6) and (6.20).
Constrained refers to the inclusion of a data point at the physical mass of the hadron.
The fits without this extra data point (Unconstrained) are the standard fits presented
in previous chapters.

the various fits are shown in Table 7.1. It can be clearly seen that the extra, phe-
nomenological, requirement does not significantly effect the ability of the extrap-
olation forms to reproduce the lattice data. We take this as an indication that the
general structure of the prediction for the Edinburgh curve is stable.

The alternative method used for calculating the extrapolation for the Edin-

burgh (APE) curve to the physical point have involved using a form
m = ¢y + Cmer + c3mf, , (7.1)

for the extrapolation of the baryon/meson mass. Discussions in chapters 5 and 6
have presented evidence as to why such an extrapolation is flawed.

In Fig. 7.1 we present our prediction (solid curve) for the infinite volume,
continuum limit behaviour of the ratio of the N/p masses. As mentioned above,
we have constrained our fits to reproduce the physical masses, and hence the curve
goes through the point at the physical ratio. The negligible difference between
our continuum prediction and the data is expected. It is because of the fact that
both the UKQCD and CP-PACS collaborations have used non-perturbative clover

improvements in their actions. The expectation of such an improvement is that there
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will be only a small O(a?) dependence in the calculations at large quark masses.
The pion-induced self-energy effects are suppressed at these masses, and we see
effectively the ratio of a bare N and p. There is a point of inflexion in the curve
around m,/m, ~ 0.5. This aspect is a result of the p — 77 decay channel opening
at this point. This behaviour is not reproduced in other extrapolations, as they do
not include the physics of this decay channel. We see similar points of inflexion in

the A Edinburgh plot, as there is an analogous decay channel, A — N.

7.1 Predictions for the Finite Lattice

In previous sections we have discussed how the construction of the lattice restricts
the available momenta of the intermediate particles. The momenta available in the
finite periodic volume are (Eq. (2.8)):

2 L L
k, = ™ where — —£ <, < =X

—— 7.2
alL, 2 2 (7.2)

We have used this information to make predictions for the behaviour of the Edin-
burgh plots for the two data sets we have been analysing.

We have taken the lattice size, L, and spacing, a, of the lowest data point for
the UKQCD and CP-PACS data sets and calculated the self-energy contributions to
the mass extrapolation formulae Eqgs. (5.44), (6.6) and (6.20), for a variety of quark
masses. We present L, a, and the minimum available momentum in Table 7.2.

a(fm) L kyin MeV)

UKQCD 0.13 12 795
CP-PACS 0.18 16 408

Table 7.2: The lattice spacing (a) and size (L) for the lightest mass points in the
CP-PACS and UKQCD data sets used in this work. We also present the minimum
momenta available on that lattice — as found from Eq. (2.8).
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7.1.1 The N Edinburgh Plot
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Figure 7.2: Edinburgh plot with data as described in Fig. 7.1. The solid line is the
infinite volume, continuum limit behaviour predicted by our functional forms for
the extrapolation of the N and p masses. The dashed and dashed-dot curves are the
predicted behaviour of the UKQCD and CP-PACS lattices respectively.

We present the predicted Edinburgh plot for both UKQCD and CP-PACS in
Fig. 7.2. The prediction for the CP-PACS lattice (dashed-dot curve) reproduces our
continuum prediction for m, /m, above 0.5. We expect the larger volume lattices
of CP-PACS to be less effected by volume effects for heavy quarks. This is because
of the use of an O(a) improved fermion action which is known to have small O(a?)
artifacts. Thus the heavy quark masses should be an excellent approximation to
the continuum limit. The discrepancy between the CP-PACS and continuum curves
below m,/m, ~ 0.5 is caused by the inclusion of the opening of the p — 77

decay channel, previously noticed in Fig. 5.7. Since the nucleon is stable on the
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lattice we do not see another inflexion in the continuum limit curve. The predicted
behaviour on the CP-PACS lattice diverges (but remains finite) below m,/m, ~
0.2, a consequence of our approximation for the mass of the p-meson. Equation
(5.1) does not apply here as the self-energies are of the order of the square of the

bare p mass, m{’".

The prediction for the UKQCD lattice (dashed curve) lies high purely be-
cause the fits to the N and p masses are dominated by the smaller errors of the
CP-PACS data. In Figs. (5.7) and (6.9) the squares representing the UKQCD data
do not overlap the data points, as is the case for the CP-PACS results. This dif-
ference, in predictions of both the N and p masses is the cause of the discrepancy
between the data and the predicted line here. As the minimum momentum accessi-
ble on the UKQCD lattice is much larger than the p — 77 threshold in this case,
thus the curve is smooth over the entire region. This is another example of our
claim that whilst the precise details of the fits are not entirely determined at this
time, the structure of the extrapolation is well defined. The conclusion that may be
drawn from these plots is that we do not expect, on a finite lattice, that the Edin-
burgh plot will reproduce the physical N/p mass ratio even ifa calculation could be
performed at the physical pion mass. The exclusion of important, low momentum,

contributions to the pion induced self-energy prevents an accurate mass calculation.

7.1.2 The A Edinburgh Plot

An analogous plot to that presented for the N above may be made for the A /p mass
ratio. This calculation is interesting as it contains two open channels, A — N and
p — 7T, at the physical quark mass. As has been previously stated, prior attempts
at extrapolation formulae have ignored these decay channels, and will therefore

miss the effects that are undoubtedly important near the chiral limit.
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Figure 7.3: Edinburgh plot for the A, p and 7 with data as described in Fig. 7.1.
The solid line is the infinite volume, continuum limit behaviour predicted by our
functional forms for the extrapolation of the A and p masses. The dashed and
dashed-dot curves are the predicted behaviour of the UKQCD and CP-PACS lattices
respectively. The opening of the p — 77 channel is missed by both lattices, but the
inflexion at the opening of the A — N7 channel is visible around my /my ~ 0.35

GeV.

The solid curve in Fig. 7.3 again represents the infinite volume, continuum
limit as predicted by our functional forms for the A and p masses. Again a point
of inflexion may be seen at m,/m, ~ 0.5 which is, as previously explained, the
27 channel opening for the p-meson. There is also another point of inflexion at
my/m, ~ 0.35, the point where the A — N channel opens.

As was the case for the N Edinburgh plot, the dashed-dot curve showing
the predicted behaviour for the CP-PACS lattice, reproduce the continuum curve
above m, /m, ~ 0.5. Once again there is an obvious discrepancy, occurring at the

opening of the p — 77 channel. We note again the behaviour as the self-energy
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grows, making our extrapolation unreliable below m, /m, ~ 0.3 for the CP-PACS
lattice. We stress that the movement predicted is a robust effect, however the details
require a more thorough treatment of the self-energy contributions.

The predicted UKQCD curve (dashed) shows no effect induced by the 27
channel opening, but does show effects because of the A — N decay channel.
Therefore we again state that we do not expect to see lattice data reproducing the

physical mass ratios because of the missing chiral physics.

7.2 Quenched vs. Dynamical Quarks

It is appropriate at this point to make a brief diversion into the quenched approxima-

tion. Quenching can be thought of as removing dynamical quark loops. Figure 7.4

[N /)

(2) ()

Figure 7.4: The quark flow lines corresponding to a pion loop dressing a baryon.
Diagram (a) is included in both dynamical fermion and quenched lattice calcula-
tions, whilst diagram (b) is only present in dynamical fermion calculations because
of the presence of the sea quark loop.

is an example of the two types of diagrams that contribute to the self-energy terms
in full, dynamical fermion, QCD. Diagram (b), with the disconnected quark loop
is not included in quenched calculations. There are other contributing diagrams in
the quenched case, however we will not discuss them further. The effects of such a
quenched chiral extrapolation are explored in [94]. A recent publication of Bernard

et al. [95] investigated how dynamical quarks affected the light hadron spectrum, as
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have several other groups [96, 97]. The comparison between quenched and dynam-
ical fermions is interesting because of the use of an Edinburgh plot. The conclusion
drawn was that there was “no discernible change when dynamical quarks are in-
troduced”. The data set used in the calculation is at masses above m,/m, = 0.5,
save a single quenched point. The effects of the pion induced self energies have
been shown to be suppressed as 1/m? in this region, resulting in a linear form for
the extrapolation. This result is general statement for the quenched and unquenched
cases, meaning that it is expected that the pion induced effects are negligible in both
cases at such masses. The other difficulty in comparing quenched and unquenched
results is the difficulty in setting the scale, but as has been mentioned earlier in this
chapter, by taking the ratios, as in the Edinburgh plot, this scale is removed. Thus
the results of Ref. [95] are entirely consistent with the results found here, as well as
in Ref. [94]. A prediction of our work is that quenched and full QCD should agree
well for m2 2> 0.2 GeV2. Differences between quenched and unquenched results

will only be seen in lighter m, calculations.
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Chapter 8

Summary and Outlook

Nature will bear the closest inspection. She
invites us to lay our eye level with her smallest
leaf, and take an insect view of its plain.

HENRY DAVID THOREAU

he extraction, from theory, of the properties of the lightest octet (V) and decu-
Tplet (A) baryons and the vector (p) meson are of great practical interest. The
comparison of the predictions of QCD to experiment is the most fundamental test
of the theory. As has been discussed in this work, the only non-perturbative tool
available at low energy is a lattice QCD calculation, but technical reasons restrict
these lattice calculations to large quark masses.

This work provides a scheme for extrapolating hadronic properties to lighter
quark masses, and in particular to physical quark masses. It has been shown that
it is possible to obtain very good predictions for the physical masses of these low
lying hadrons.

Chiral Perturbation Theory (xPT), a description of QCD at light quark mass,
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will describe results from lattice calculations at sufficiently light quark mass. How-
ever, the radius of convergence is unknown. We have utilised the Cloudy Bag Model
(CBM), a successful phenomenological chiral quark model to give direction as to
the behaviour of the masses away from the chiral limit. The extrapolation form
derived here, has been shown to reproduce to better than 1% the physical mass pre-
dicted by the CBM, and it also reproduces the general behaviour over an extended
range of pion (or equivalently quark) mass.

The functional forms derived herein may be generalised to
myg = co + com2 + o(A,my),

where o contains the self-energy corrections to the hadron being extrapolated. We
have applied this form to two-flavour, dynamical fermion, lattice QCD calculations
performed by the CP-PACS [20] and UKQCD [21] collaborations. Among the vari-
ous successes of this approach are predicting the physical masses of the N,Aandp
to within 0.1%, 4.7%, and 5.0% respectively. Work remains because the uncertainty
in these results is significant, as we showed in the case of the p meson. Fortunately
this uncertainty is entirely because of the statistical errors associated with the lat-
tice results, and a reasonable v/10 reduction in the statistical errors at the lightest
mass point considered will bring the uncertainty to the 2% level. Additionally we
have been able to calculate the sigma commutator, the J parameter and the p — 77
phase shift. Finally we have presented the first Edinburgh plots showing the correct
chiral behaviour in the extrapolation to the chiral limit.

The main features of our functional forms are as follows

e Includes the correct chiral and heavy quark physics — The extrapolation
forms reproduce the known non-analytic behaviour, with the correct model

independent coefficients, in the chiral limit. The form smoothly interpolates

131



between this chiral limit and the heavy quark regime where hadron properties

show smooth quark mass dependence.

Includes channel opening effects — The effects of decay channels are in-
cluded. This is particularly important in reproducing the hyperfine splitting
between the N and A, the latter having an open 7N channel, and the be-
haviour of the p which has an open 27 channel at the physical quark mass.
Such effects have been ignored in previous extrapolation methods. The branch
points in the self energies because of the channels opening is important phys-

ics that has previously been ignored.

Systematic way of extending corrections — Higher order effects may be in-
corporated by the straightforward inclusion of additional self-energy contri-

butions.

Includes, and corrects for, finite size effects — The discretisation of momenta
on the finite volume lattice means some decay channels are not accessible on
the lattice, but would be in the continuum. The extrapolation form takes these

effects into account.

Weak model dependence — We have investigated the model dependence of

the form factor used to regulate the integrals and we find that it is at most a

few MeV.

Computationally cheap — The extrapolation procedure is not significantly

more computationally expensive than current linear, or polynomial, extrapo-

lations.

Intuitive — The effects influencing the extrapolation are simple to under-

stand, from a basic nuclear physics perspective.
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In summary, this extrapolation method offers a new method of moving towards the
goal of comparing lattice QCD with experimental results. Even with new, more
powerful computers coming online regularly and improvements in actions, calcula-
tions near the physical region are some time off. The extrapolation of the new data
remains an exciting challenge. Currently, the approach presented here is the only
way known for connecting lattice QCD to experiment, incorporating the physics

known to be essential.
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Appendix A

Mathematical Conventions

Arithmetic is where the answer is right and
everything is nice and you can look out of the
window and see the blue sky — or the answer is
wrong and you have to start all over and try
again and see how it comes out this time.

CARL SANDBURG, “COMPLETE POEMS”

A.1 Useful Identities

The Dirac delta function of the difference between the squares of the variable and a

constant may be simplified as
2 _ 2 1
§(z —a):%{d(x—a)+5(x+a)}. (A1)
The vector cross product may be written in terms of the elements of the vectors as

a X g: sijkaibj . (AZ)
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The Dirac delta function is defined as
/ d*zetf® = (2m)*64 (k) . (A3)
Translation in quantum mechanics is given as the property
x(z) = e_i(E.f—Et) x(0) ei(E-:‘c‘—Et) , (A.4)

where the state being described has energy E and associated 3-momentum k.

A.1.1 Residue Theorem

Let f(z) be a function that is analytic inside a simple closed path C and on C,

except for finitely many singular points 21, 22, ... , 2k inside C. Then
k
f{ f(z)dz =2mi Y Res,—;, f(2), (A.5)
c o

the integral being taken counterclockwise around the path C. 98]

A.2 Wick Contractions

The contraction of two scalar fields is defined as

1
¢(z)¢(y) = Dr(z - 9), (A.6)
where the Feynman propagator is defined as

Dp(z—y) = d'p ’ e~ (@-y) (A7)
G =4 (2m) p? — m2 + ie ' '

Whilst the contraction of a field with external states is given by

s@)p) = e, (A8)
Dlp() = P, (A.9)
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A.3 Dirac Matrices
The Dirac matrices satisfy
{7} =+ = 29" (A.10)

{¥5,7} =0 (A.11)

A.3.1 Dirac Representation

. (r 0 )
v = (A.12)
0 —I
At = ‘ (A.13)
—o* 0

(A.14)

|
. ( v -()f) @1s)

(A.16)

= (I 0) (A.17)
0 -1
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Where the o' are the Pauli matrices

01 0 — 1 0
o' = g = _ = ) (A.18)
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Hadron Mass Extraction from Lattice QCD
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The extraction of quantities from lattice QCD calculations at realistic quark masses is of considerable impor-
tance. Whilst physical quark masses are some way off, the recent advances in the calculation of hadron masses
within full QCD now invite improved extrapolation methods. We show that, provided the correct chiral behaviour
of QCD is respected in the extrapolation to realistic quark masses, one can indeed obtain a fairly reliable deter-
mination of masses, the sigma commutator and the J parameter. We summarise these findings by presenting the
nonanalytic behaviour of nucleon and rho masses in the standard Edinburgh plot.

1. INTRODUCTION

There are well-known difficulties associated
with making dynamical fermion lattice QCD cal-
culations at light quark masses. There is the need
however, to relate quantities calculated on the lat-
tice with physical observables, hence results are
required at physical quark masses. These two
mutually exclusive restrictions on the field have
motivated the necessity for extrapolation from
the region in which calculations are able to be
performed -— that is, the region of unphysically
heavy quarks — to lighter masses, including the
physical quark masses. In this paper we discuss
the construction and application of an extrapo-
lation method for masses [1,2] that respects the
correct chiral behaviour of QCD and also allows
the extraction of other quantities [2,3]. This ap-
proach is not limited to the case of masses in dy-
namical fermion lattice QCD calculations. Other
successes of this approach may be found, for ex-
ample, in the extrapolation of baryon charge radii
[4], magnetic moments [5], structure functions

[6,7] and quenched QCD data [8].

*Present address: Division of Theoretical Physics, Depart-
ment of Mathematical Sciences, University of Liverpool,
Liverpool L69 3BX, UK

tPresent address: Department of Physics and Astronomy,
University of Georgia, Athens, GA 30602, USA

1.1. Goldstone Boson Loops

It is accepted that Goldstone Boson loops play
an important role in all hadronic properties —
their role is in one sense the basis of Chiral Pertur-
bation Theory (xPT). Lattice QCD calculations,
as an ab initio approach to calculating quantities
in QCD, implicitly includes these loop contribu-
tions. It has become clear recently, with calcu-
lations appearing at lighter quark masses [9,10],
that the naive linear extrapolation methods are
not reproducing the data. In particular in [10] it
was stated

“The existence of curvature [at
small quark masses| is observed, ne-
cessitating a cubic Ansatz for extrap-
olation to the chiral limit.”

The following section reviews how the inclusion
of chiral physics allows reliable extrapolations of
lattice QCD calculations [1,2]. Section 3 reports
new results for the Edinburgh plot.

2. EXTRAPOLATION METHODS

In QCD chiral symmetry is dynamically bro-
ken, and the pion is almost a Goldstone boson. It
plays a significant role in the self-energy contribu-
tions to the N and A, because of the strong cou-
pling to the baryons. Chiral symmetry requires
that, in the region where perturbations around



light quarks makes sense, the mass of the nucleon
has the form
my(mg) = mg\?) + am? 4+ pm3 +

ymi lnmg + ..., (1)

where mg\?), a,  and v are functions of the strong
coupling constant. In particular the values of the
coefficients of the non-analytic (in quark mass)
terms — recall that m2 o« m, — are known ex-
actly from yPT. However it is only recent results
from the lattice that have indicated any need of
higher order terms beyond that of a linear extrap-
olation in quark mass (or m2).

2.1. Chirally Motivated Form
An attempt at having a chirally motivated form
for extrapolating masses has been

my (mx) = mg + aGm2 + fm?2 | (2)

where g, @ and B are fit parameters. Naively
this i1s a good choice. It reflects the known non-
analyticity from yPT and still reproduces the lat-
tice results. The problem with this method is as-
sociated with the choice of B The value of the
coefficient of the cubic term is known explicitly in
xPT. So a functional form, motivated by chiral
symmetry, should preserve the known value of ,[;
Optimising A via a best fit to existing lattice data
provides —0.55 GeV~2. However, the result from
xPT is —5.6 GeV~2. That the coefficient is so
small is not surprising. The functional form at-
tempts to reproduce the lattice data over a large
range of m2, where the data is predominantly lin-
ear — as can be seen in Fig. 1. However xPT is
an expansion about the massless quark limit and
would not be expected to be applicable (or even
convergent) at such large quark masses.

2.2. Current Calculation

It has been found [1,2] that by retaining the
contributions to the self-energy of the hadron
mass that vary the most rapidly with m, near the
chiral limit, a successful extrapolation method
may be formed. This methodology includes the
most important non-analytic structure in the
hadron mass near the chiral limit with exactly the
correct coeflicients. The pion mass dependence of

the masses of the N, A and p are:

my = ag 4+ azmZ 4+ onye(An,mr)

+onar (AN, mx) (3)
ma = bo+ bam2 +oaar(Aa, mn)

+oan«(Aa, mr) (4)
m, = co+comi + 0pur(Ap, Mn)

+0prr (Ap, Mr) (5)

where o 4pc indicates the contribution from the
A — BC — A self-energy process. The expres-
sions for these self-energy contributions for the N
and A may be found in [1]. The two significant
processes for the p are the p — wm and p — 77
self-energies and they are presented in [2].

An additional level of detail explicitly included
in these extrapolation methods is the inclusion
of the decay channels (in the case of the A the
process A — N). This process 1s not included in
other methods, and yet is a vitally important and
physically based consideration. However, because
of the finite nature of the lattice, decays are not
always possible. The finite periodic volume of the
lattice restricts the available momenta to discrete
values

™ L L
k, = 2aL:’ with — 7” <ny < 7” (6)
where L, and a are the lattice size and spacing
in the p direction, respectively.

Figure 1 indicates the expected behaviour of
the masses of the N, A and p using Egs. (3), (4)
and (), with the physical masses being 0.940,
1.173, 0.713 GeV respectively.®> We also present
an error analysis of the fitting for the particular
case of the p meson in Fig. 2. The shaded region
is bounded below by an increase of 1o in the 2
per degree of freedom of the fit, and above by a
physical constraint in our approach. It is clear
that whilst the central value of the extrapolation
gives an acceptable value for the physical mass,
the uncertainties are large. A Gedanken exper-
iment, performed in [2] suggests that a ten-fold
increase in the number of configurations at the
lowest pion mass data point (mZ ~ 0.1 GeV?)

2The excellent agreement with the experimental mass of
the nucleon is coincidental.
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Figure 1. Two-flavour, dynamical fermion lattice
QCD data for the A, N and vector meson (p)
mass data from UKQCD [9] (open circles) and
CP-PACS [10] (filled circles). The solid lines are
the continuum limit, infinite volume predictions
of Egs. (4), (3) and (5). The squares (barely dis-
cernable from the data) are the predicted masses
on a lattice of the same dimensions as the data
at that pion mass.

would reduce the uncertainty in the extrapolated
value to the 5% level.

3. OTHER QUANTITIES

The advantage of calculating the mass of the
hadrons in the manner described above is that the
form allows the direct extraction of other proper-
ties of the hadron that depend upon the quark
mass dependence of the hadron mass.

3.1. The Sigma Commutator

The sigma commutator is a direct source of in-
formation about chiral symmetry breaking within
QCD [11]. As such it is a quantity of considerable
importance to extract from lattice QCD calcula-
tions. The form of the commutator is

m(N |au + dd|N) (7)
o TN 0
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Figure 2. Analysis of the lattice data for the vec-
tor meson (p) mass calculated by CP-PACS [10]
as a function of m2. The shaded area is bounded
below by a 1o error bar. The upper bound is
limited by a physical constraint discussed in [2].

where m is the average mass of the up and down
quarks.

on is not directly accessible via experiment,
however world data suggests a value of 45 + 8
MeV [12]. Early attempts at evaluating Eq. (8)
found results in the range 15 to 256 MeV, and the
attention soon changed to evaluating the matrix
element, Eq. (7), directly. In quenched calcula-
tions the results were in the 40-60 MeV range,
but a two flavour dynamical fermion calculation
by the SESAM collaboration [13] found a value
of 18 & 5 MeV. The difficulties associated with
these approaches are two-fold. Firstly, the scale
independent quantity of oy must be constructed
from the renormalisation depended quantities m
and (N |@u+dd|N). Additionally there still is the
need to extrapolate the quantities to the physical
plon mass.

Our recent work showed that provided the ex-
trapolation method is under control the evalua-
tion of oy at m,; = 140 MeV, is a straightforward
calculation. The important advantage of this ap-
proach is that one need only work with renormal-
isation group invariant quantities.

We discussed previously how a chirally moti-



vated form, Eq. (2), will not reproduce the lat-
tice data if the coefficient of the m2 term is the
value required by xPT. However we also showed
that allowing this coefficient to be a fit param-
eter results in a value that is wrong by almost
an order of magnitude. This becomes even more
significant in the case of the sigma commutator.
The required derivative promotes this coefficient
to greater significance and the sign of the terms
acts to reduce the value of on. However this is
not an issue with the extrapolation forms dis-
cussed above. The sign and magnitude of the
cubic term is exactly that predicted by yPT, but
the effects are countered by higher order terms
— resulting in a prediction for the value of oy
that included the correct chiral physics. We find
[3] that the value of the sigma commutator is ap-
proximately 45 MeV.

3.2. The J Parameter
This dimensionless parameter was proposed as
a quantitative measure, independent of the need

for extrapolation — an ideal lattice observable
[14]. It has the form
dm
J = m, —£ (9)
* dm? m,/m,=1.8
s Mge — 1My,
™~ MK m ) (10)

which, by substituting the experimental mass val-
ues, yields the value [14]

J =0.48(2),

In Fig. 3 we present the value of the J parameter
as obtained from Eqs. (5) and (9). The detailed
slope of the curve is parameter dependent, how-
ever the presence of the cusp is model indepen-
dent. The cusp is a result of the two pion cut in
the rho spectral function and has been ignored in
previous attempts at evaluating the J parameter.
We find a value for the J parameter of 45(7) in
good agreement with the experimental value. We
note, however, that if the point of evaluation cor-
responded to m2 ~ 0.15 GeV? the J parameter
would have been around 50% larger.

3.3. Edinburgh Plot
The baryon and meson masses on the lattice
are all determined modulo the lattice spacing — a

0.8 - 1 T

Figure 3. The solid curve is a plot of the value
of the J-parameter as a function of m2 obtained
from Eq. (9) and the best fit to the lattice re-
sults. The vertical dotted line shows the point at
which the J-parameter is evaluated (m,/m, =
1.8). The horizontal line displays the experimen-
tal value (0.48) plotted between the physical val-
ues of m% and m¥%.

scale that must be determined from some piece of
data external to the lattice. One method of re-
moving this scale is by plotting a ratio of masses
— the Edinburgh plot. In Fig. 4 we present a pre-
diction for the infinite volume, continuum limit
extrapolation of the lattice data previously pre-
sented. The two points known explicitly are indi-
cated by open stars on the plot. The first known
point is ratio of the physical masses of the m, p
and N. The second point is the heavy quark limit,
when the masses of the hadrons become propor-
tional to the constituent quarks. The effect of the
opening of the decay channel of the rho is visible
at m./m, = 0.5. The effects induced, and the
expected behaviour on the finite sized lattice will
be presented in a future work [15].

4. SUMMARY

The importance of including the correct chi-
ral behaviour in extrapolation methods is becom-
ing more important as dynamical lattice QCD re-
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Figure 4. Edinburgh plot for CP-PACS (filled
symbols) and UKQCD (open symbols) results.
The stars represent the known limiting cases, at
the physical and heavy quark limits respectively.
The solid line is the infinite volume, continuum
limit behaviour predicted by our functional forms
for the extrapolation of the N and p masses.

sults appear at lighter quark masses. The suc-
cesses of the approach outlined above include not
only predictions for the physical masses of the
hadrons investigated, but other quantities suc-
cessfully reproduced. These other successes in-
clude the sigma commutator and the J parame-
ter — both of which have been a thorn in the side
of dynamical fermion calculations. It is through
the inclusion of the dominant chiral physics, the
recognition that decay channels are important,
and the understanding of some of the finite size
lattice artifacts that we have been able to suc-
cessfully extrapolate the Edinburgh plot to the
known physical limit.
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We extend a technique for the chiral extrapolation of lattice QCD data for hadron masses to

quenched simulations.

The method ensures the correct leading and next-to-leading non-analytic

behaviour for either QCD or quenched QCD in the chiral limit, as well as the correct large quark mass
behaviour. The results for the nucleon and delta suggest that within current errors the quenched
and dynamical data are in agreement once one corrects for those pion loops which give rise to the
different leading and next-to-leading non-analytic behaviour. Since the chiral corrections should
be largest for the nucleon and delta, this result opens the possibility of systematically correcting
quenched mass calculations and hence allowing a direct comparison with experimental data.

Modern computing facilities, combined with innova-
tions in improved actions for lattice QCD, mean that
1t 1s now possible to perform accurate quenched QCD
(QQCD) simulations at quite low quark masses [1-3].
For simulations with dynamical fermions (full QCD) the
situation i1s much more difficult, but there are initial re-
sults at quark masses as low as 30 MeV [4]. The latter
development has inspired studies of chiral extrapolation
aimed at using the full QCD data over a range of masses
to reliably extract the physical hadron mass.

In general, effective field theories, such as chiral per-
turbation theory, lead to divergent or asymptotic ex-
pansions [5,6]. While this raises doubts about the di-
rect application of chiral perturbation theory to lattice
data, studies of the mass dependence of hadron proper-
ties in QCD-inspired models [7-9], as well as the exactly
soluble Euler-Heisenberg problem [10], suggest that one
can develop surprisingly accurate extrapolation formu-
las, provided one builds in the correct behaviour in both
the small and large mass limits. For the nucleon (N)
and delta (A) masses (and by trivial extension all other
baryons), Leinweber et al. [11] have suggested an extrap-
olation method which ensures both the exact low mass
limit of chiral perturbation theory (technically its lead-
ing (LNA) and next-to-leading non-analytic (NLNA) be-
haviour) and the heavy quark limit of heavy quark effec-
tive theory (HQET). The transition between the chiral
and heavy quark regimes is characterised by a mass scale
A, related to the inverse of the size of the hadron “core”
(L.e. the size of the pion cloud source). The rapid, non-
analytic variation of hadron properties, characteristic of
chiral perturbation theory, is rapidly suppressed once the
pion Compton wavelength is smaller than this size (i.e.
my > A).

It is straightforward to extend the method of Ref. [11]
to QQCD. One simply includes all the Goldstone loops
(including both 7 and ') which give rise to the LNA and
NLNA behaviour of quenched chiral perturbation theory
(QxPT) [12,13]. Phenomenological investigations [8,14]
of the role of the pion cloud in hadronic charge radii

indicate that results consistent with experiment can be
obtained by adding full-QCD chiral corrections to the re-
sults of quenched simulations [15] at moderate to heavy
quark masses. This suggests that the size of the pion-
cloud source 1s not changed in going from the quenched
approximation to full QCD. By taking the “core” to have
the same size in QQCD and QCD (i.e. parameter A is un-
changed), there are no unconstrained parameters and one
can not only study the mass dependence of the QQCD
data, but by replacing the QQCD chiral loops by those
in full QCD one can make a direct comparison to dy-
namical fermion simulations. The results reported here,
based on this approach, have profound implications for
our understanding of hadron structure.

By replacing the chiral loops which give rise to the
LNA and NLNA behaviour in QQCD by the correspond-
ing chiral loops in full QCD we find that the quenched
and dynamical lattice data sets are in excellent agree-
ment for the entire quark mass dependence of My and
Ma. Since the chiral corrections are expected to be larger
for these two baryons than for others, this suggests that a
similar technique may be applicable to all baryons. This
would be a tremendous step forward for hadron spec-
troscopy within the framework of lattice QCD.

With regard to the properties of the N and A we find
a spectacular difference in QQCD. Whereas the extrap-
olation of the N mass is essentially linear in the quark
mass, the A exhibits some upward curvature in the chiral
limit. As a result, the A mass in QQCD is expected to
be of the order 400-500 MeV above its mass in full QCD.
The success of the extrapolation scheme also lends con-
fidence to the interpretation of the A — N mass splitting
as receiving a contribution of order 100 MeV from pion
loops in full QCD and up to 400 MeV in QQCD. The
residual splitting in full QCD would then be naturally
ascribed to some shorter range mechanism, such as the
traditional one-gluon-exchange [16].

The method for extrapolating baryon masses proposed
by Leinweber et al. [11] is to fit the lattice data with the
form:



Mg = ap + fgm?2 + Zp(mx, A), (1)

where ¥p is the sum of those pion loop induced self-
energies which give rise to the LNA and NLNA behaviour
of the mass, Mpg. In the case of the N this is the sum of
the processes N -+ Nm — N and N - Ar — N , while
for the A it involves A — Am — Aand A - N7 — A,
In the heavy baryon limit, these four contributions (B —
B'r — B) can be summarised as:

3 o ktub g (k)
———Gpgp dk BB
1672 /2 BB/O w(k)(wpp +w(k))

where w(k) = 1/k? + m2 and wpp = (Mp: — Mp), and
the constants Gpp: are standard SU(6) couplings [11].

The factor u(k), which acts as an ultraviolet regulator,
may be interpreted physically as the Fourier transform of
the source of the pion field. Whatever choice is made, the
form of these meson loop contributions guarantees the ex-
act LNA and NLNA structure of chiral perturbation the-
ory (xPT). Furthermore, such a form factor causes the
self-energies to decrease as 1/m2 for m, >> A. One com-
monly uses a dipole, u(k) = (A%2—p?)?/(A?+k%)? (with p
the physical pion mass). Unfortunately full QCD data is
not sufficiently accurate at low mass to constrain A well,
but a best fit to the N and A data, assuming a common
value, yields a value around 0.92 GeV (with [an, An] =
[1.36(4),0.71(8)] and [aa,Ba] = [1.54(5),0.56(10)] and
all masses in GeV). This agrees with quite general ex-
pectations that it should be somewhat smaller than that
for the axial form factor [17-19].

Quenched xPT is a low energy effective theory for
quenched QCD [12,13], analogous to xPT for full QCD
[20]. Sea quark loops are formally removed from QCD
by including a set of degenerate, bosonic quarks. These
bosonic fields have the effect of cancelling the fermion
determinant in the functional integration over the quark
fields. This gives a Lagrangian field theory which is
equivalent to the quenched approximation simulated on
the lattice. The low energy effective theory is then con-
structed using the symmetry groups of this Lagrangian.

A study of the chiral structure of baryon masses within
the quenched approximation has been carried out by
Labrenz and Sharpe [13]. The essential differences from
full QCD are: a) in the quenched theory the chiral co-
efficients differ from their standard values and b) new
non-analytic structure is also introduced. The leading
order form of the baryon mass expansion about my, =0
is

, (2)

OBBi =

Mp = Mjgo)+cfm,, —#clzgmi+c3]5'm‘?r
+cPm? 4 B m? logm, + ... (3)

where the coefficients of terms non-analytic in the quark
mass are model-independent [13] (throughout we use cou-
plings as given in this reference). We note that, whereas
in Ref. [13] the NV and A are treated as degenerate states

D 2S5
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FIG. 1. Quark flow diagrams of chiral n’ loop contributions
appearing in QQCD: (a) single hairpin, (b) double hairpin.

in the chiral limit, we have replaced this with a more ac-
curate expression which takes into account the explicit
octet—decuplet mass splitting [21]. As a consequence the
corresponding m?2 terms become instead mj logm,. We
also stress that the term in my 1s absent in full QCD —
such a term being unique to the quenched case.

In fitting quenched data we wish to replicate the anal-
ysis for full QCD while incorporating the known chiral
structure of the quenched theory. The meson-loop, self-
energy corrections to baryon masses can be modelled in
the same form as for full QCD. The effect of quenching
can be absorbed into a redefinition of the couplings in
the loop diagrams in order that they yield exactly the
same LNA and NLNA structure as given by QxPT. For
example, the analytic expressions for the pion cloud cor-
rections to the masses of the N and A have the same
form as the full QCD integrals (Eq. 2) with redefined
quenched couplings (again using SU(6) symmetry) — we
refer to Ref. [21] for details.

In addition to the usual pion loop contributions,
QQCD contains loop diagrams involving the flavour sin-
glet n' which also give rise to important non-analytic
structure. Within full QCD such loops do not play a role
in the chiral expansion because the 7’ remains massive
in the chiral limit. On the other hand, in the quenched
approximation the 7’ is also a Goldstone boson [12,22]
and the i/ propagator is exactly the same as that of the
pion. As a consequence there are two new chiral loop
contributions unique to the quenched theory. The first
of these, 5_%’(1)) corresponds to a single hairpin diagram
such as that indicated in Fig. 1(a). This diagram is the
source of the term proportional to m2 (involving the cou-
plings v and 4/ [13]) in the chiral expansion Eq. (3). The
structure of this diagram is exactly the same as the pion
loop contribution where the internal baryon is degenerate
with the external state. The second of these new 7’ loop

diagrams, 5’}73’(2), arises from the double hairpin vertex as
pictured in Fig. 1(b). This contribution is particularly in-
teresting because it involves two Goldstone boson prop-
agators and is therefore the source of the non-analytic
term linear in m;.

The total meson loop contribution to the baryon self
energy within the quenched approximation is given by
the sum of these four diagrams:

D :&EB+&EB’+&%(1)+&UB,(2)' (4)



As the pion couplings in QQCD are quite a bit smaller
than the corresponding full QCD couplings, X p is smaller

in magnitude than £p. It is also notable that 67 », &"A(l)

and &2(2) are all repulsive, so that the total quenched chi-
ral loop contribution to the A mass is repulsive, whereas
it is attractive in full QCD. (We leave a presentation of
the details of the calculation to Ref. [21].)

It is now straightforward to fit the quenched lattice
data with the form:

MB:&B+ﬁBm72r+iB(m1r)A), (5)

which is directly analogous to that used for full QCD.
Once again the linear part should be thought of as ac-
counting for the baryon “core” (not dressed by its pion
cloud). It includes the expected behaviour of HQET
where the m and 7’ loop contributions are suppressed.
Since, as discussed earlier, the meson—baryon vertices
are characterised by the source distribution, which is ex-
pected to be similar in quenched and full QCD, we take
all vertices to have the same momentum dependence —
l.e. a common form factor mass, A, equal to the value
found earlier in the full QCD fit. With this parameter
fixed there are just two free parameters, & and g, to fit
the quenched data for each baryon. We demonstrate the
insensitivity of our results to the »’ coupling by show-
ing a comparison of the fit with the couplings half their
preferred values.
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FIG. 2. Fit to quenched lattice data (UKQCD: a [1],
A [24]) with form factor regulated meson-loop self-energies,
for the N (lower curve) and A (upper curve). The dashed
curves show fits with the ' couplings half their preferred
value.

As described in Ref. [23] we replace the continuum in-
tegral over the intermediate pion momentum by a dis-
crete sum over the pion momenta available on the lat-
tice. The quenched lattice data which we use comes
from two papers of the UKQCD Collaboration [1,24], in
which both N and A masses are reported. Both sets

of results are obtained using a non-perturbatively im-
proved clover fermion action, which is known to have
small O(a?) scaling violations [25]. Unlike the standard
Wilson fermion action, masses determined at finite lattice
spacing are excellent estimates of the continuum limit re-
sults. A plot of the fit to quenched N and A masses is
shown in Fig. 2, with [ay, An] = [1.34(7),0.66(12)] and
[@a,Ba] = [1.54(9),0.62(15)]. Note that, the physical
scale has been set via the static quark potential where
chiral corrections are negligible [21].

In fact, the fit parameters, & and 3, obtained in both
the quenched and full fits agree within errors — un-
like the case of a purely linear extrapolation, where the
self-energy terms are omitted. This suggests that the
structure of the core baryon is quite similar in full and
quenched QCD, meaning that the dominant errors asso-
ciated with quenching can be attributed to the first order
meson loop corrections. As a demonstration of the size
of this effect we subtract the self-energy terms from the
fit to quenched data, retain the fit parameters @ and
and restore the self-energy corrections as appropriate to
full QCD. Because we only expect the form factor to be
of similar size in the quenched theory we allow A to vary
by £ 10%. This then gives a band indicative of the size
of the error involved in predicting full QCD masses from
QQCD data. Results of these adjustments are shown in
Figs. 3 and 4 for the N and A, respectively.
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FIG. 3. Correcting the quenched approximation for the nu-
cleon. Full QCD data [4,26] is shown by the circles. The cen-
tral dash-dot line shows the correction for the preferred form
factor mass, A = 0.92 GeV, while the upper and lower dashed

lines are for A = 0.85 GeV and A = 1.00 GeV, respectively.

We have investigated the quark mass dependence of
the N and A masses within the quenched approxima-
tion. The leading chiral behaviour of hadron masses in
quenched QCD is known to differ from the full theory.
This knowledge has been used to guide the construction
of a functional form which both reproduces this correct
chiral structure, and is consistent with current lattice
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FIG. 4. Correcting the quenched approximation for the A
— triangles are from QQCD simulations and circles from full
QCD. The curves are as in Fig. 3.

simulations. The success of this method in the quenched
case further verifies the importance of including meson
loop diagrams when extrapolating lattice results.

We find that, although the quenched approximation
gives rise to more singular behaviour in the chiral limit,
this is not likely to be observed in lattice simulations as
these contributions are quickly suppressed with increas-
ing quark mass. In the nucleon, the effects of quench-
ing reduce the amount of curvature expected as lighter
quark masses are simulated. In contrast, for the A we
find some upward curvature of the mass in QQCD as the
quark mass approaches zero. In addition, the A—N mass
splitting increases to 400-500 MeV at the physical point.
As a consequence of this behaviour, the A mass in the
quenched approximation is expected to differ from the
physical mass by approximately 256%.

Our calculations suggest that the one loop meson
graphs which generate the leading and next-to-leading
non-analytic behaviour are the primary difference be-
tween baryon masses in quenched and full QCD. In
particular, if the chiral loops appearing in the fits to
quenched data are replaced by the corresponding loops
in full QCD, we find a remarkable agreement with exist-
ing full QCD lattice data — as shown in Figs. 3 and 4.
Thus, rather than quenched lattice QCD being regarded
as an uncontrolled approximation, in combination with
appropriate chiral corrections it may actually provide an
efficient and accurate estimate of hadron properties. It is
vital to test this result with data at lower quark masses
and other baryons. Nevertheless, this discovery repre-
sents a remarkable step forward in relating lattice QCD
to observed hadronic properties.
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We draw an analogy between the chiral extrapolation of lattice QCD calculations from large
to small quark masses and the interpolation between the large mass (weak field) and small mass
(strong field) limits of the Euler-Heisenberg QED effective action. In the latter case, where the
exact answer is known, a simple extrapolation of a form analogous to those proposed for the QCD
applications is shown to be surprisingly accurate over the entire parameter range.

I. INTRODUCTION

The challenge to find an accurate and reliable method of chiral extrapolation for hadronic properties calculated in
lattice QCD at large quark mass is a matter of considerable current importance. While computer limitations mean
that lattice simulations at physical quark masses are many years away, recent progress in chiral extrapolation suggests
that it may well be possible to obtain accurate hadronic properties based on the calculations which will be possible
with the next generation of supercomputers, available within just a few years, in the 10 Tera-flops range. Fundamental
to this scheme is the development of extrapolation methods which incorporate the model independent constraints of
chiral symmetry [1,2], notably the leading non-analytic (LNA) behaviour of chiral perturbation theory [3,4], as well
as the heavy quark limit [5].

Although these extrapolations are designed to match the leading behaviour in the extreme limits of small and large
quark mass, there has been little guidance as to their reliability in the intermediate mass region. It is very unclear
what precision to expect from such a simple extrapolation into the intermediate mass region, because the large mass
expansion is presumably asymptotic, and the small mass limit has a log divergence plus finite corrections with a small
radius of convergence. Here we attack this question from a novel direction by considering a remarkably close analogy
between this problem and a well-known, exactly soluble system in effective field theory — the Euler-Heisenberg
effective action [6-8]. The Euler-Heisenberg system exhibits many of the features found in the QCD calculations:
at small electron mass (equivalently, strong external field) there is a logarithmic branch poeint, while at large mass
(equivalently, weak external field) one has an asymptotic series expansion in inverse powers of mass. In this Letter, we
show that a simple two-parameter interpolation formula (of the form used in the context of chiral extrapolation), which
builds in the correct leading behaviour in both the small and large mass limits, yields an excellent approximation to
the exact Euler—Heisenberg answer over the entire range of mass. We discuss possible consequences of this observation
for the chiral extrapolation of lattice data.

Effective field theory (EFT) plays an important role in modern theoretical physics [9-11]. In pioneering work in
the 1930’s, Hetsenberg and Euler [6], and Weisskopf [7], studied the quantum corrections to classical electrodynamics
associated with vacuum polarization effects. Renormalization properties and a more formal “proper-time” version
were later studied by Schwinger [8]. In modern language, they computed the low energy effective action for the
electromagnetic field, to leading order in the derivative expansion, by integrating out the electron degrees of freedom
in the presence of a constant background electromagnetic field. This one-loop effective action can be expressed as [12]

S =—ilndet(ip — m), (1)

where ) = " (0, +ieA,), and A, is the fixed classical gauge potential with field strength tensor Fj,, = 9,4, -0, A,.
As shown in [6-8], this effective action can be computed in a simple closed form when the background field strength
F,. is constant. For simplicity, we consider the case when the background is a constant magnetic field of strength B
(and we choose eB to be positive). Then the exact, renormalized, one-fermion-loop effective action has the following

integral representation:
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The 1 term is a subtraction of the zero field (B = 0) effective action, while the § subtraction corresponds to a

logarithmically divergent charge renormalization [8].

We stress that Eq.(2) is an exact non-perturbative result. However, it can of course be expanded in two obvious
limits. In the large mass limit, m® > eB (which is equivalently the weak field limit), it is straightforward to develop
an (asymptotic) expansion of this integral:

26232 b 2 an+4 eB e
5=- ( ) Z n+4)(2n+3)(2n + 2) (W

n=0
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Here the B, are the Bernoulli numbers [13]. The large mass expansion, Eq.(3), of the effective action has the

standard form, S =m* " C:,i,l) , of a low energy effective action [9,10], where the higher-dimension operators O™ (of

dimension n) are balanced by n powers of the mass scale m, below which the low energy effective action is meaningful.
In this case, “low energy” means that the cyclotron energy scale % is much smaller than the energy scale set by
the electron mass m. That is, 2 « 1. An alternate perspective on the large mass expansion is as a perturbative
expansion in powers of the couphng e, with the n*® power of e being associated with a one-fermion-loop diagram with
n external photon lines (the dlvergent 0(e*B?) self-energy term is not included, as it contributes to the bare action
by charge renormalization [8]). We note that, as a consequence of charge conjugation (Furry’s theorem), only even

powers of anz appear in the perturbative expansion of Eq.(3). It is interesting to note that the series expansion of

Eq. (3) is divergent, because the Bernoulli numbers grow factorially as Ban ~ 2(- ”"'lzg—z%% for large n, consistent
with very general results for perturbation theory [14,15]. It is in fact an asymptotic series, and the proper-time
integral representation in Eq. (2) is just the straightforward Borel sum [16] of this asymptotic series [17].

The large mass limit may equivalently be characterized by the relevant length scales: the electron Compton wave-
length A, = =, and the cyclotron radius (* ‘magnetic length”) Ap = \/— In terms of these length scales, the large
mass limit corresponds to the situation where the electron Compton wavelength is much smaller than the cyclotron
radius: Ae < Ap.

Since the Euler—Heisenberg system is exactly soluble, we can also use the exact integral representation (2) to study
the small mass, or strong field, limit where m? < eB. In terms of the length scales, in this limit the electron
Compton wavelength is much greater than the cyclotron radius: A. > Ag. Then, from Eq. (2), one finds (using
results in Ref. [18]):

S= e?B? 1+m2+1 m?\ 2
T 872 3 eB 2\eB
3 m? = m? \F T
. ——-1 2 —4
+[4+2 g]( ) Zk +1 (263)
ZB2

m2 m2 mZ
== {3log——§+0763969+0(3 Blog6B>} (4)

Note that the coefficient, — 4 8 of the leading term, the log 7= terrn is fixed by the (one-loop) QED beta function
[19]. In (4), 7 is Euler’s constant, and ((s) is the Riemann zeta function [13]. Note that ¢'(—1) ~ —0.165421.

It is instructive to contrast this small mass expansion, Eq. (4), with the large mass expansion, Eq. (3). In the small
mass limit, analogous to the chiral limit in QCD, we see the appearance of logarithmic terms, analogous to the “chiral
logs” of QCD. In addition, note that both even and odd powers of mB appear in the small mass expansion, Eq. (4).
On the other hand, in the large mass expansion, Eq. (3), there are no non-analytic log terms, and only even powers
of EBQ appear. So, we see that the one-loop Euler-Heisenberg effective action, which is given by the exact integral
representation (2), has two very different expansions in the two limits of large and small electron mass. The transition
between these two extreme regions is governed by whether the electron Compton wavelength, Ae, is larger or smaller
than the cyclotron radius, Ag. In Fig. 1 we plot the exact Euler—Heisenberg effective action, Eq. (2), with an overall

62B2
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factor of — ;BQ
and to the leading small mass terms 3 Llog 2 1o+ 0.763969 from Eq. (4). From this figure it is clear that these leading
terms accurately capture the extreme behaviours of the exact result, but do not interpolate in the intermediate region

where the scales are comparable.

removed, as a functlon of &= eB) and compare it to the leading large mass term ——41—5 (mg) from Eq. (3),
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FIG. 1. Comparison between the exact action (solid curve) for the Euler-Heisenberg model and the leading terms in the
expansions about the weak (dashed curve) and strong field (dash-dot curve) limits. Note that m? is measured in units of eB.

Having reviewed these pertinent aspects of the Euler—Teisenberg effective action, we now turn to what appears at
first glance to be a completely different problem: the calculation of hadron properties as a function of quark mass, or
through the Gell-Mann—QOakes—Renner relation (m? o m,), pion mass. Chiral perturbation theory permits a rigorous
expansion of hadron properties about the chiral limit, where m, — 0. For example, for the nucleon charge radius one
finds [20]

2 (Lt 2
(r)E:clzl:XNlogT—kaw—f—... (5)
where =+ refers to the proton or neutron respectively. (Here p just sets the scale against which the pion mass is

measured. It is arbitrary in the sense that a change in p is equivalent to a change in the constant term, ¢;.) Note
that the charge radius diverges logarithmically in the chiral limit, with a model independent coefficient

_(1+54%)
(4mfr)?

On the other hand, in the large m, limit, heavy quark effective theory suggests that the charge radius should decrease
as

(6)

XN =

A )

2
<T‘ >E - m72r
plus higher inverse powers of m?.

As discussed at length in Ref. [3], current lattice data for charge radii are confined to pion masses greater than
600 MeV. The corresponding pion Compton wavelength, A, is then smaller than the calculated charge radius, which
we may take as an indication of the size, R, of the source of the pion field. The lattice data shows only a very slow
variation of (r?)g in the mass range where the lattice calculations have been made, with no indication of a chiral log.
Yet, in order to compare with the physical charge radii one must extrapolate these lattice results to the chiral regime
where Ay > R and the chiral log is important. This is the challenge of chiral extrapolation.

We wish to draw an analogy between the Euler—Heisenberg system discussed above and this system. In this analogy,
the pion Compton wavelength, A, plays the role of the electron Compton wavelength, A., and the source size, R,
plays the role of the magnetic cyclotron radius, Ag, (equivalently, the mass scale p? plays the role of the magnetic field
strength eB). The chiral perturbation theory expansion of Eq.(5), where A, > R, is analogous to the leading terms
in the small mass expansion of Eq. (4), where A, 3> Ag. The heavy quark effective theory result presented in Eq.(7),
where A; « R, is similarly analogous to the leading term in the large mass expansion in Eq. (3) where A, < Ap.



In the QCD context, following earlier studies of magnetic moments [2], where it was found that a simple Padé
approximant was able to describe the mass dependence arising in a particular chiral quark model, Hackett-Jones
et al. [3] extrapolated the lattice data from m% > 0.4 GeV? to mi = 0.02 GeV? (the physical point) using an
interpolating formula which was chosen as the simplest two-parameter form consistent with the constraints imposed
by the extreme behaviours in the large and small pion mass limits, Eq. (7) and Eq. (5) respectively. (Recall that xn
is model independent, and note that the data could constrain no more than two parameters.) In the light of later
experience [1], we choose to use a slightly modified argument in the chiral log:

2
a+ X2£ log .u;-tm;’ (8)
1+ com? '

(r’)e =

Here, rather than being arbitrary, u assumes physical significance as the scale above which the chiral log is suppressed

- of course, Eq. (8) preserves the correct behaviour in the chiral limit. From experience with moments of structure
functions, magnetic moments and hadron masses, this scale is expected to be p ~ 500 MeV. As the lattice data is
not yet able to constrain u, we simply fix it to 500 MeV and adjust only ¢, and ¢;. Figure 2 shows the resulting fit
to the proton charge radius and the corresponding extrapolation to the physical pion mass. As discussed in {3], this
chiral extrapolation fit is closer to the physical value than a naive linear fit through the lattice data. However, in the
absence of lattice data at lower quark masses, it is difficult to be more precise about the quality of the fit.
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FIG. 2. Fit to the lattice QCD data for the square of the proton charge radius as a function of pion mass squared, using
Eq. (8). The extrapolated value at the physical pion mass (indicated by the vertical dotted line) is shown by the solid dot with
the large error bar, while the star indicates the experimentally observed value.

In view of the close parallel between this hadronic problem and the Euler-Heisenberg system in QED, we return to
the Euler-Heisenberg system, where we can be much more quantitative concerning the accuracy of an interpolating
fit. We ask the following question. Suppose that we did not know the exact integral representation answer (2) for the
effective action, but that we did know the leading terms in each of the extreme large and small mass limits. Would it
then be possible to find a simple two-parameter interpolating formula, analogous to (8), that connected the extreme
limits in a smooth manner? And if so, how accurate would such an interpolating formula be in the intermediate
region?

The leading terms are determined as follows. In the large mass limit, this is the first term, ﬁ (%)4, in (3),
corresponding to the first nonlinear correction to classical electrodynamics, whose coefficient comes from the one-
fermion loop with four external photon lines, a straightforward perturbative calculation. In the small mass limit,
the leading term in (4) is the logarithmic term, —% (eB )2 log %, whose coefficient 1s fixed by the one-loop QED

m?2



beta function [19]. Motivated by the interpolation formula, Eq. (8), which was used in the QCD case, we propose the
following interpolating function for the effective action

6232 d1+ %log (m:-feB) _dZ%
5'interpolating = - 872 ] ¥ (9)
g 1+ 45d; (22)

This interpolating formula has the correct leading behaviour in both the large and small m limits. Figure 3 shows a
comparison of the fit obtained with this form by adjusting the two parameters d; and dy (dash-dot curve) with the
exact result (solid curve). Our best fit was obtained with parameter values: d; = 0.7059, and d = 1.55641. Figure
3 also shows the percentage difference between the exact result and approximate expressions (dashed line). (Note
that m? is expressed in units of eB.) Over the entire range of %, the interpolating function is within 10% of the
exact answer. Such precision is very surprising when we recall that the Euler-Heisenberg effective action has the
problems (shared by the analogous QCD calculations) that the large mass expansion is asymptotic and the small
mass expansion has a log divergence and a small radius of convergence.
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FIG. 3. Comparison between the exact expression for the action in the Euler-Heisenberg model (solid line) and the interpo-
lating approximation given in Eq. (9) which builds in the correct chiral and heavy quark limits (dot-dashed line). Note that the
agreement is so good that it is difficult to distinguish between the two curves on this scale. The percentage difference between
the two is indicated by the dashed line.

In summary, the Euler-Heisenberg system presents a problem which exhibits many of the mathematical complica-
tions of the chiral extrapolation problem in QCD), yet it is exactly soluble. By carefully respecting both the high and
low mass limits of the exact solution, we showed how to construct a simple extrapolation formula which reproduced
the exact solution over the entire parameter range with surprisingly good accuracy. Since the mathematical structure
of the problem of chiral extrapolation of the proton charge radius in QCD is essentially identical, this gives one con-
fidence that a similar level of accuracy may be obtainable there. It is therefore extremely encouraging that the chiral
extrapolation of even the present crude lattice data at very large quark masses yields a physical proton charge radius
within one standard deviation of the experimental value. Even more important, this result lends enormous impetus
to the quest for new lattice data at lower quark mass which will better constrain the chiral extrapolation. It suggests
that the next generation of supercomputers (available within 2—3 years) may well provide sufficient information that,
in combination with these chiral extrapolation techniques, one should be able to calculate accurate hadron properties
at the physical quark mass.
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Chiral behavior of the rho meson in lattice QCD
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In order to guide the extrapolation of the mass of the rho meson calculated in lattice QCD with dynamical
fermions, we study the contributions to its self-energy, which vary most rapidly as the quark mass approaches
zero, from the processes p— w and p— . It turns out that in analyzing the most recent data from the
CP-PACS Collaboration, it is crucial to estimate the self-energy from p— 7r7 using the same grid of discrete
momenta as included implicitly in the lattice simulation. The correction associated with the continuum infinite
volume limit can then be found by calculating the corresponding integrals exactly. Our error analysis suggests
that a factor of 10 improvement in statistics at the lowest quark mass for which data currently exists would
allow one to determine the physical rho mass to within 5%. Finally, our analysis throws light on a long-

standing problem with the J parameter.

DOI: 10.1103/PhysRevD.64.094502

L. INTRODUCTION

As the lightest vector meson, the p is of fundamental
importance in the task of deriving hadron properties from
QCD. Within lattice QCD, the ratio of 7 to p masses is often
used as a measure of the approach to the chiral limit. For a
long time lattice calculations were restricted to values of
m/m, above 0.8. However, with the remarkable improve-
ments in actions, algorithms, and computing power, there are
now lattice QCD results with dynamical fermions available
for hadron masses with current quark masses such that
m,/m, is entering the chiral regime. Nevertheless, in order
to compare with the properties of physical hadrons it is still
necessary to extrapolate the results to realistic quark masses
[1].

In the past few years there have been some very promis-
ing developments in our understanding of how to extrapolate
lattice data for hadron properties, such as mass [1], magnetic
moments [2], charge radii [3], and the moments of structure
functions [4], to the physical region. In doing so it is vital to
include the rapid variation at small pion masses associated
with those pion loops, which yield the leading and next-to-
leading nonanalytic behavior. (This was crucial in ammiving at
a reasonable value for the sigma commutator {5], for ex-
ample.) However, a formal expansion of hadron properties in
terms of m, fails to converge up to the region where lattice
data exist. The crucial physics insight, which renders an ac-
curate chiral extrapolation possible, is that the source of the
pion field is a complex system of quarks and gluons, with a
finite size characterized by a scale A. When the pion mass is
greater than A, so that the Compton wavelength of the pion
is smaller than the extended source, pion loops are sup-
pressed as powers of m /A and hadron properties are
smooth slowly varying functions of the quark mass. How-
ever, for pion Compton wavelengths bigger than the source
(m,<A) one sees rapid, nonlinear variations. Phenomeno-
logically this transition occurs at m ,~500 MeV or m/m,
around 0.5—the region now being addressed by lattice simu-
lations with dynamical fermions.

Another difficulty associated with the extrapolation of lat-
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tice results that needs further investigation is the discretiza-
tion of momenta inherent in all lattice calculations. In this
regard we mention not only the finite lattice spacing but the
fact that there is a minimum possible nonzero momentum
available because of the finite volume of the lattice. This
issue is absolutely critical to the interpretation of the recent
CP-PACS data for dynamical fermions [6], in which a first
result! is reported at m . /m,~0.4. As we explain in detail,
the only reason that it is possible to measure the p mass there
is that the calculation is done in a finite volume. We show
that taking the finite lattice size and finite lattice spacing into
account is a necessary requirement when extrapolating to the
physical region. These effects become especially significant
for the case of the p meson, which has a p-wave, two-pion
decay mode.

In Sec. I we summarize the key physical ideas and the
necessary formulas for extrapolating the mass of the p meson
to the physical pion mass. This includes a discussion of the
limiting behavior at small and large quark mass. We then
show the result of our fitting procedure and analyze the un-
certainty in extracting the p mass at the physical point. We
show that a factor of 10 increase in the number of gauge field
configurations at the lowest quark mass presently accessible
would be sufficient to determine the physical p mass to
within 5%. In Sec. ITI, we discuss the consequences of this
analysis for the J parameter and conclude with a brief sum-
mary and outlook for the future.

II. CHIRAL EXTRAPOLATION FORMULA

The success of our earlier work concerning the extrapola-
tion of the N and A masses [1] leads us to consider a similar
approach to the latest two-flavor, dynamical QCD data on the
p meson [6,7]. Once again our guiding principle is to retain
those self-energy contributions which yield the most rapid

'Although CP-PACS finds no evidence of residual errors for the
lowest mass point, they caution that it is premature to draw firm
conclusions based on the present low statistics.

©2001 The American Physical Society
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FIG. 1. The most significant self-energy contributions to the p
meson mass.

variation with m, near the chiral limit — i.e., those terms
which yield the leading nonanalytic (LNA) behavior and the
dominant next-to-leading nonanalytic (NLNA) behavior.
These processes are illustrated in Fig. 1. The p— w7 term,
shown in Fig. 1(b), yields the LNA contribution to the p
mass. The p— a7 term [Fig. 1(a)] not only yields the NLNA
behavior but, of course, the width of the p once m, goes
below m,/2.

In order to evaluate these self-energy terms, we take the
usual interactions 8,9]:

Lopnn=4f pmmp? - [7X(3,m) = (d,m)X 7] (1)

and

Lopr=E wpm® uvap( 9*0”)(3°pF) - . )

These lead to the following expressions in the limit, where
the mass of the vector mesons (p and w, taken to be degen-
erate) is much bigger than the mass of the pion:

2 4.2
) e dkk*u?,, (k)
6 0 w (k) (k) — u2id)
! T T T
; ewem T T
ol | ol e o
;\—10 —E - 1
: & - ’
2-15 -5/,'/ ; -
20 & I" 4
:\Sz—25 B o ! -«=—3x /2 7
E—SO - I ™ b -
' ——a 2
—35 B B, / B, i
—-40 '-éb\u." .
—45 : 1 1 1
0.0 0.2 0.4 0.6 0.8
m *? (GeV?)

FIG. 2. Variation with pion mass of the self-energy contributions
to the p meson, Egs. (3) and (4), for a dipole form factor with
A ,,=630 MeV. The solid points indicale the value of the self-
energy when calculated at the discrete momenta allowed on the
lattices considered in this investigation. The difference between the
curves and points is an indication of the physics missing because of
finite lattice size and spacing.
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2 4 2
2 (edkkul (k)
- feert | : @

p -
2 1272 Jo wi(k)
In analogy with the heavy baryon limit, we have neglected
the kinetic energy of the heavy vector mesons. Here 2°  and
3.? . correspond to the processes shown in Figs. 1(a) and
1(b), respectively. The pion energy is given by w,(k)
= \/ki-i—mrz, and u,, and u,, are dipole form factors gov-
erned by a mass parameter reflecting the finite size of the
pion source. In the chiral limit these have the standard LNA
and NLNA behavior (independent of the forms chosen for
Upn and U )

fz
3 Ina= — 5 myin(m,),
4mp,
Kol
p T
Efr]rw|LNA:_ 242” m::r’ (5)

while they are suppressed as inverse powers of m, once m,
is comparable with the dipole mass parameter.” Finally, the
p—  term contains the unitarity cut for m,<u,/2 (as
well as an imaginary piece determined by the width).

The formal solution to the Dyson-Schwinger equation for
the p propagator places the self-energy contributions in the
denominator of the propagator and thereby modifies the p
mass as [10]

m,.=

v m(2)+2

2
~mo+ Zmg’ (6)
where =37 _+3°  and the bare mass my, is taken to be
analytic in the quark mass. Guided by the lattice data at large
m ., we will take mq to be c0+c2mi.
The dipole form factors are defined as

AL +ul :
(k)= SULLASALS 7
(k) (Aiﬂ+4W3, 0]
2 2\2
‘II'U)_M‘IT
Upolk)=| ———=1, 8
(k) (Afm+k2 ®)

where u, and u, are the physical masses of the 7 and p
mesons. The normalization of u,, is chosen to be unity at
the p pole and the coupling constant f,,,= 6.028, is chosen
to reproduce the width of the p (i.e., the imaginary part of the
self-energy). In the p— w7 case we take g,,,= 16 GeV ™!
[11]. The m? dependence of the self-energies of Egs. (3) and
(4) is shown in Fig. 2 by the dot-dash and dashed curves,

2Note that all masses (e.g., the p mass, #,) and coupling con-
stants should, in principle, be evaluated in the chiral limit. However,
as the variations from the physical values are typically of the order
10%, we use the physical values.
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respectively. The interesting behavior of the p— mr self-
energy has been noted in many earlier works. In the context
of lattice QCD, it was discussed by DeGrand [12] and by
Leinweber and Cohen [10] and most recently by Szczepa-
niak and Swanson [13]. Other studies have looked at the
self-energy as a function of p? (invariant mass of the vector
meson) for mixed m, [14-16].

Finally, the lattice data alone cannot separately determine
A and A_,. In order to constrain them we have therefore
made the reasonable, physical assumption that the size of the
source of the pion field should be the same regardless of
whether the intermediate state involves an w or a 1. Thus we
require that A, is chosen so as to reproduce the same
mean-square radius of the source as would be generated by
the choice of A, . Equating the mean-square radii results in
the following relationship:

A1r1r=2 VAmu_p'-rr' (9)

An alternative procedure, which could be imposed in future
analyses, would be to constrain the difference in the meson
self-energy terms to reproduce the observed p— w mass dif-
ference [14-17].

Fitting procedure

As we hinted in the Introduction, the fact that CP-PACS is
able to extract a measurement of the p mass at m,/m,
<<0.5 is at first sight extremely surprising. Once the p is able
to decay one would expect to measure not the p mass but the
two-pion threshold. The origin of this result is the quantiza-
tion of the pion momentum on the lattice and in particular
the fact that the lowest (nonzero) pion momentum available
is 2ar/aL, where is L is the spatial dimension of the lattice.
For the relatively small lattice used by CP-PACS at the low-
est pion mass this corresponds to more than 400 MeV/c¢ mo-
mentum. This is why the p remains stable.

Motivated by Eq. (6), and wishing to preserve the correct
leading nonanalytic behavior of the self-energies, we have
chosen to fit the p mass with the simple phenomenological
form:

200Dy ma) T 20 (A 1)

2(c0+c2mfr)

m,= co+c2m3r+

(10)

Given the constraint relating A, and A, this involves
three adjustable parameters. At large m , the self-energies are
suppressed by inverse powers of m,, and the p mass becomes
a simple linear function of m? (or the quark mass).

In the finite periodic volume, of the lattice, the available
momenta k are discrete:

P :271';1# (an
#ooalL,”’

where L, is the number of lattice sites in the & direction, and
the integer n,, obeys
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L“< L (12)
- <n,<—+.

2 ko2

Therefore to simulate the calculations that are donc on thc
lattice, we should replace the continuous integrals over k in

Eqgs. (3) and (4) with a discrete sum over IIEI However when

|1€ | is zero, the case of a pion emitted with zero momentum,
the integrands vanish, and hence do not contribute to the
self-energy. In fact there is no contribution to the self-
energies until k,=*2m/aL,, . There is therefore a momen-
tum gap on the lattice for p-wave channels, produced by this
discretization of momenta.

We have investigated this momentum dependence by
evaluating the self-energy integrals, Egs. (3) and (4), by sum-
ming the integrand at the allowed values of the lattice three-
momenta

% 1 277-3
2 — 37
47rj0k dk—fdk~V(a)kX§: y

Ty kg

where the k,, are defined by Egs. (11) and (12) and V is the
spatial volume of the lattice. The results for the self-energy
contributions are presented in Fig. 2. The self-energy calcu-
lated on the lattice (the solid circles and triangles) differs
little from the full self-energy calculation in the high quark
mass (mf,) region. Furthermore, the effect in the p—oww
self-energy contribution is also small at low pion mass. The
biggest change is in the p— 7rr self-energy calculation, at
lower quark mass. This is the region in which one might
expect the biggest corrections because one is approximating
a principal value integral on a finite mesh. This change in
behavior, particularly at the lowest data point (m?
~0.1 GeV?), indicates that the 7 self-energy contribution
is significantly understated in the lattice simulations. Upon
calculating the full self-energy contribution via the continu-
ous integrals, the magnitude of the self-energy is increased
by about 10 MeV, which is 30% of the self-energy contribu-
tion at this point. These results for %? and 3  are used in
Eq. (10) to fit the lattice data.

Recent dynamical fermion lattice QCD results are pre-
sented in Fig. 3. The scale parameters relating the lattice
QCD results to physical quantities have been adjusted [1] by
5% for the CP-PACS and UKQCD results. The effect is to
increase the p mass from CP-PACS and decrease the mass
from UKQCD, providing better agreement between the two
independent simulations. As the x? of the following fits is
dominated by the CP-PACS data, we focus on this data set.

Our fits using Eq. (10) are based on the lowest five lattice
masses given by CP-PACS. We selected the lowest lying
masses because to move further away from the chiral limit
would necessitate additional terms beyond the first two ana-
lytic terms of Eq. (10). The results of the fit are shown as the
open squares in Figs. 3, 4, and 5. The parameters of the fit
¢g, 9, and A, , are then used in an exact evaluation of Eq.
(10) using the full integrals in Egs. (3) and (4). This result is
illustrated by the solid lines in Figs. 4 and 5. We note that the
value A ,,,= 630 MeV for the best fit, results in a softer form
factor than one might expect. We do not consider this to be
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FIG. 3. Vector meson (p) mass from CP-PACS [6] (filled
circles) and UKQCD [7] (open circles) as a function of mf,. The
dash-dot curve is the naive three parameter fit, Eq. (13). The open
squares (which are barely distinguishable from the data) represent
the fit of Eq. (10) to the data with the self-energy contributions
calculated as a discrete sum of allowed lattice momenta. We have
used a dipole form factor, with A, =630 MeV. The solid curve is
Eq. (13) with the parameter c; fixed to the value given by chiral
perturbation theory.

of significant concern in the present paper because, as we
shall discuss below, the current lattice results at low m . are
not precise enough to constrain the chiral behavior.

It is interesting to note the similarity of the results to those
of Ref. [10]. There it was found that fitting quenched lattice
data with a linear extrapolation, and improving the extrapo-
lation by adding on the p— mar effects, predicted essentially
the same physical mass, but that the chiral behavior was
significantly different.

N
Q
2
©n
4]
[l
=
s
(=]
7]
(]
=
B
_8 Discrete Sum Fit
8 0.7 i ——————— Conlinuous Self Energy Result
> .
06 - 1 L I I
0.0 0.2 0.4 0.6 0.8 1.0
m.? (GeV?)

FIG. 4. Analysis of the lattice data for the vector meson (p)
mass calculated by CP-PACS as a function of mf,. The squares
represent the fit of Eq. (10) to the data with the self-energy contri-
butions calculated as a discrete sum of allowed lattice momenta.
The solid curve is for continuous (integral) self-energy contribu-
tions to Eq. (10). We have used a dipole form factor, with optimal
A,,=630 MeV. The shaded area is bounded below by a 1o emor
bar. The upper bound is limited by the constraint A ,,> ., as
discussed in the text.
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FIG. 5. The graph is as described in Fig. 3 except that the error
bar on the lowest data point (m2~0.1 GeV?) has been reduced by
a factor of V10. This equates to an improvement of ten times in the
statistics, which we do not consider an unreasonable goal for the
future. The dipole mass of the best fit is then A, =660 MeV. The
shaded area is bounded above and below by a 1o error bar.

For comparison, we also show a popular three parameter
fit, motivated by chiral perturbation theory:

2 3]
mp=co+czmﬂ+c3m,r. (13)

This naive three parameter fit is illustrated by the dash-dot
curve in Fig. 3. However, since the value of ¢5 in Eq. (13) is
commonly treated as a fitting parameter, we are not guaran-
teed that it has the correct value required by chiral perturba-
tion theory (xPT). The value for the best fit is found to be
—0.21 GeV ™2 As outlined above, our expressions for the p
self-energies have the correct LNA and NLNA coefficients
by construction. Indeed, if the coefficient ¢ is constrained to
the correct value® (— g2,,,/48=—1.70 GeV ™), the best fit
possible by varying ¢; and ¢, is shown as the solid line in
Fig. 3. As was also found in the case of the nucleon [1], the
lack of convergence of the formal expansion is such that it is
not sufficient to fix the coefficient of the LNA term in a cubic
fit to that predicted by xPT, as the resulting form will not fit
the data.

The importance of the accuracy of the lowest mass point
cannot be overstated. We stress that CP-PACS emphasized
the preliminary nature of the lowest data point, because of
the relatively low statistics. Nevertheless, in order to prepare
for future more accurate data, we have carried out a standard
error analysis including this point and the results are pre-
sented in Fig. 4. The lower bound on the shaded area was
found by increasing the minimum x? per degree of freedom
of the fit by 1. We were unable to do this with the upper
bound. The result is actually limited by the physics of the

3In Ref. [18] the m,, dependence of the LNA term to the p mass is
given by —(1/127rf2)(%g%+gf)m3,. This would result in a value
of the m>. coefficient of —1.71 GeV ™2, in excellent agreement with
the value used here.
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TABLE 1. Table of fit parameters cq, ¢;, ¢3, Ay, the p-meson mass at u,, the value of the J
parameter, and the pion mass at which the J parameter is calculated. All values are in appropriate powers of
GeV. The cubic fit refers to Eq. (13) while the dipole refers to Eq. (10) with a dipole form factor. We find that
the error in the J parameter is halved if the statistics on the lowest point are increased by a factor of 10.

Fit form I cy Cq A, M, J m2
Cubic 0.723 0.668 —0.207 0.735 0.44 (8) 0.223(7)
Dipole 0.776 0.427 32 0.630 0.731 0.45 (7) 0.225(4)

process. In the case of a dipole form factor this means A
> ., and that is the upper limit we have shown here.

It is not unreasonable to cxpect an improvement in the
accuracy of the calculated lattice mass values, and as a
Gedanken experiment we have explored the possibility of a
tenfold increase in the number of gauge configurations at the
lowest pion mass. For the purposes of the simulation, we did
not change the value of the data point, but simply reduced
the size of the error bar by \/10. As can be seen in Fig. 5, the
improvement in the predictive power is dramatic. The uncer-
tainty in the physical mass has been reduced to the 2% level.
Additional improvement in the accuracy of the extrapolation
would result from the availability of additional data in the
low pion mass region. However, it must be noted that the
provision of data around 0.2 GeV? and higher would prob-
ably not assist greatly in the determination of the dipole mass
(A); it is primarily determined by points nearer the physical
region. We present the parameters of these fits in Table L.

We have examined the model dependence of our paper by
repeating the above fits with a monopole form factor. As can
be seen in Fig. 6, the model dependence is at the level of 15
MeV at the physical pion mass with current data, and would
have been at the few MeV level had the error bar been re-
duced by a factor of \/10. This reinforces the claim in Ref.
[1] that this exirapolation method is not very sensitive to the
form chosen for the ultraviolet cutoff.
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FIG. 6. A magnification of the physical pion mass region of our
extrapolation results. The solid and long dashed lines represent the
best fit dipole and monopole results for a fit with the present accu-
racy of the lattice QCD results. The dash-dot and short dashed lines
are the dipole and monopole results for a reduction in the error bar
of the lowest lattice data by a factor of y/10. The model dependence
of the choice of the form the factor is O(2%).

III. F PARAMETER

A commonly perceived failure with quenched lattice QCD
calculations of meson masses is the inability to correctly
determine the J parameter. This dimensionless parameter was
proposed as a quantitative measure, independent of chiral
extrapolations, thus making it an ideal lattice observable
[19]. The form of the J parameter is

dm
J=m,—> (14)
d ” /m_ =18
m —m
=me — . (15)
mK—m,’r

By using Eq. (15) and the experimentally measured masses
of the K(495.7 MeV), K*(892.1 MeV), w(138.0 MeV),
and p(770.0 MeV), Lacock and Michael [19] determined

J=0.48(2).

However, previous attempts by the lattice community to re-
produce this value have been around 20% too small. In the
case of quenched calculations, this has been cited as evi-
dence of a quenching error (see, for example, the review in
[20]). It was noted by Lee and Leinweber [21] that the in-
clusion of the self-energy of the p meson generated by two-
pion intermediate states (excluded in the quenched calcula-
tions) acts to increase the J parameter.

In Fig. 7 we present the value of the J parameter obtained
from Eg. (14) and our best fit to the lattice results using Eq.
(10). The vertical dotted line indicates the value of m%,,
where the J parameter is to be evaluated, i.e., m,/m,=1.38.
The horizontal dashed line, plotted between the values of the
squares of the physical pion and kaon masses, shows the
experimental estimate of the J parameter from Eq. (15). This
equation suggests that the evaluation of J may be approxi-
mated by the slope of the vector meson mass extrapolation
between these points. The cusp shown in Fig. 7, associated
with the cutin 2 _ | suggests otherwise. We stress that while
the detailed slope of the curve is parameter dependent, the
presence of the cusp is a model independent consequence of
the two pion cut in the rho spectral function.

As a point of comparison, we have also calculated J using
the naive cubic chiral extrapolation, Eq. (13), described
above. The results of our investigations are summarized in
Table 1. The value of the J parameter is similar for both fits
as it is evaluated at m%~0.22 GeV?. The effects introduced
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FIG. 7. The solid curve is a plot of the value of the J parameter
as a function of m> obtained from Eq. (14) and the best fit to the
lattice results given by Eq. (10). The vertical dotted line shows the
point at which the J parameter is evaluated (m,/m,=1.8). The
horizontal line displays the experimental value (0.48) plotted be-
tween the physical values of m? and mf(.

into the extrapolations by chiral physics do not begin playing
a large role until mf, falls below 0.2 GeV2. Had the J param-
eter been evaluated at mf,=0.19 or 0.09 GeV?, one would
find perfect agreement with the linear ansatz of Eq. (15).

IV. CONCLUSION

We have explored the quark mass dependence of the p
meson including the constraints imposed by chiral symmetry.
The pionic self-energy diagrams are unique in that they give
rise to the leading (and next-to-leading) nonanalytic behavior
and yield a rapid variation of the meson mass near the chiral
limit. These are the lowest energy states with given quantum
numbers that have significant couplings to the p meson.
Other meson intermediate states are suppressed by large
mass terms in the denominators of the propagators, and also
by smaller couplings.

We find that the predictions of two-flavor, dynamical-
fermion lattice QCD results are succinctly described by Eg.
(10) with terms defined in Eqs. (3) and (4) for m,
<800 MeV. We have shown that our formula gives model
independent results at the 2% level for the physical mass of
the p meson. However, firm conclusions concerning agree-
ment between the extrapolated lattice results and experiment
cannot be made until the systematic errors in the extraction
of the scale of masses can be reduced below the current level
of 10% and accurate measurements are made at m,
~300 MeV or lower.

We have also calculated the J parameter by directly evalu-
ating the derivative of our mass extrapolation formula. We
find that the empirical estimate based on differences of me-
son masses misses important nonanalytic effects in the de-
rivative of m, with respect to m? , as illustrated in Fig. 7.

Finally we have investigated the effects of an improve-
ment in the statistics of the lattice data. Present lattice data
are not yet sufficiently precise to independently constrain the
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behavior near the chiral limit. With the best data available
one finds a p-meson mass of 731 MeV with 1o bounds at
675 and 1062 MeV. One could constrain the bounds by using
phenomenological guidance for the form factors, but we
would prefer to wait for better lattice data. Figure 5 suggests
that the p-meson mass could be known to within 5% in the
very near future.

Note added. Since the submission of this manuscript, the
CP-PACS Collaboration has released a preprint [22], with
work showing J as a function of mass. We note that their
analysis does not address the chiral physics studied here. As
a result, their curves will omit the general feature of a cusp in
the J parameter as discussed in this manuscript. A similar
comment applies to the MILC Collaboration [23]. We look
forward to seeing a similar analysis to that presented here
applied to these new simulation results.
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APPENDIX

In this Appendix we present the evaluation of the leading
nonanalytic terms of the %%  and 2/ _ self-energy contribu-
tions to the p-meson mass. By the definition in Eq. (10) all
the nonanalytic behavior is contained in these two terms.

We note that the form of the self-energy contribution from
p— mw is the same as that for the process oyy discussed in
Ref. [1]. Using the results found in that paper we can write
(for the choice of a sharp cutoff [ #(A—k)] for the form
factor u ,,,)

A3
+ ——Ami}.

3
(A1)

gwpvr:u’p 3
Efm= . —-127[mﬂarctan 'm—"

The chiral behavior of this expression is obtained by expand-
ing it in m., about m =0 (the chiral limit). We find that in
this limit

3
Bwprhto [ A L 6
p - — -
30 = 22 ( 3 Am,r+2mﬂ Am,,-#(’)(m,”) 5

(A2)

with the leading non-analytic term being of order m:j,:

o :u’pgip‘rr 3

2'rnulLNA=_ 24 M. (A3)

The p— mm self-energy contribution is slightly more
complicated. If we again choose a 6 function for the form
factor we can analytically integrate Eq. (3) giving
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A=(p,l2)+ \/A3+m§")

Vm2— (e, /2)?

i v B (#/2) + arctan( it i (#p/2) ) J
m2—=(p,2)? Jm2 = (p,/2)?

—A(,LLP/Z)\/A2+m§T),

(Ad)

where A regulates the cutoff of the integral. The region in which we are interested (the chiral limit) has m,<(u,/2). Thus the

arguments of the arctans are complex. We use the relationship

i 1—iz
arctan(z)= Eln( )

(AS)

1+iz

to rewrite this expression in terms of logarithms with real arguments. Collecting the logarithms together results in the
following expression for the p— 7 self-energy, for m ,<(u,/2):

2
fp-rrrr

P —
n= 6m? 2(1,02)

—[(1pf2)*—m3 "

| mi[m?— (/221 + A2 m2%—2(p,12)*1= 2 A (u/2) (A + mE)[( #p/z)z—mf,])
! mZi[ A2+ m2—(p,2)?]

—[3m7=2(1,/2)*)(1,/2)In

s

Looking at just the lowest order, nonanalytic, terms in the expansion about m =0, we have

P I =—f.;‘2)2 ———
TEET 6w 2(m/2)

2
fpﬂ"rr 4
=— —2—-—2m#ln(m,,),
T,

which is the result given in Eq. (5).

3
[(2(%/2)3 3(p,/2)m? ey

Al /2) VA +m? J (A6)
4
o /2) +[3m? 2(Mp/2)2](up/2)}1n(m,)
(A7)
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Abstract

Rather than regarding the restriction of current lattice QCD simulations to
quark masses that are 5-10 times larger than those observed, we note that
this presents a wonderful opportunity to deepen our understanding of QCD.
Just as it has been possible to learn a great deal about QCD by treating N,
as a variable, so the study of hadron properties as a function of quark mass is
leading us to a much deeper appreciation of hadron structure. As examples we
cite recent progress in using the chiral properties of QCD to connect hadron
masses, magnetic moments, charge radii and structure functions calculated at
large quark masses within lattice QCD with the values observed physically.

I. INTRODUCTION

In striving to understand the properties of QCD the generalization to an arbitrary num-
ber of colours, N, particularly the limit N, — oo (or “large N.”) has been extremely
valuable. It has even proven possible to distinguish between models of hadron structure and
to guide the further developments of such models on the basis of their large N, behaviour
[1]. Until recently it has generally been regarded as an unfortunate liability that current
limitations on computer power restrict lattice QCD simulations with dynamical fermions to
large quark masses. We would like to present a rather different view concerning the lattice
data at large quark masses. In particular, we argue that like the behaviour as a function of
N, lattice results as a function of quark mass offer extremely valuable new insights into the
nature of QCD and especially into hadron structure.

To be a little more quantitative, the restriction to large quark masses in lattice simu-
lations means typically 50 MeV or higher. Thus, in order to compare hadron properties
calculated on the lattice one has to extrapolate as a function of quark mass (on top of all
the other extrapolations, lattice spacing, lattice size, etc.) all the way to the physical light
quark masses, around 5 or 6 MeV. Such extrapolations are complicated enormously by the
fact that chiral symmetry is spontaneously broken in QCD. The mass of the pion, which is
the Goldstone boson corresponding to this broken symmetry [2], behaves as:



m2 o m, (with ™ = m, = mq #0), (1)

as the quark mass, m, moves away from zero — this is the Gell Mann-Oakes-Renner (GOR)
relation. While Eq.(1) is, in principle, only guaranteed for quark masses, near zero, explicit
lattice calculations show that it holds over an enormous range, as high as m, ~ 1GeV.
For convenience, rather than measuring the deviation from exact chiral symmetry using m,
which is scale dependent, we shall use m2.

In terms of ., current lattice calculations are typically restricted to pion masses larger
than 500 MeV, with some pioneering work reporting preliminary results as low as 310 MeV.
In order to compare these results with experimental data on hadron properties it is necessary
to extrapolate the calculations at large pion masses to the physical value. In doing so it
is crucial to respect the constraints imposed by chiral symmetry in QCD. In particular, as
we discuss below, the existence of Goldstone bosons necessarily leads to behaviour which is
non-analytic in the quark mass.

The structure of this article is that we first explain the origin of the non-analyticity
associated with Goldstone boson loops. We then explain, using the specific case of the
nucleon mass, how this non-analytic structure has been incorporated into a new method for
extrapolating hadron masses from the large values characteristic of lattice calculations to
the physical region. The consequences of this for the sigma commutator are then explained.
Next we turn to recent results for baryon electromagnetic properties. Finally we discuss
the most recent investigations of the proton structure function, especially the importance
of chiral symmetry in connecting existing calculations of lattice moments with data. We
conclude with a summary of the promised insights into the nature of hadron structure within
QCD that follow from all these investigations.

II. GOLDSTONE BOSON LOOPS AND NON-ANALYTICITY

For our purposes the primary significance of spontaneous chiral symmetry breaking in
QCD is that there are contributions to hadron properties from loops involving the resulting
Goldstone bosons. These loops have the unique property that they give rise to terms in an
expansion of most hadronic properties as a function of quark mass which are not analytic.
As a simple example we consider the nucleon mass. The most important chiral corrections
to My come from the processes N - Nm — N (onny) and N — Arm — N (ona). (We
will come to what it means to say these are the most important shortly.) We write My =
M]'[\’,alre + onnN + ona. In the heavy baryon limit one has

2 © 4,2
16m2f2 Jo k? 4+ m?2
where g4, fx are strictly evaluated in the chiral limit. Here u(k) is a natural high momentum
cut-off which is the Fourier transform of the source of the pion field (e.g. in the cloudy bag
model (CBM) it is 37, (kR)/kR, with R the bag radius [3]). From the point of view of PCAC
it is natural to identify u(k) with the axial form factor of the nucleon, a dipole with mass
parameter 1.02 & 0.08GeV.

Regardless of the form chosen for the ultra-violet cut-off, one finds that oyy is a non-
analytic function of the quark mass. The leading non-analytic (LNA) piece of oy Is inde-
pendent of the form factor and gives

ONN —




LNA__3931 3 . s (3)
ONN — 327rf2m1r mz.

This has a branch point, as a function of m, at . = 0. Such terms can only arise from

Goldstone boson loops.

A. Case Study: the Nucleon Mass

It is natural to ask how significant this non-analytic behaviour is in practice. If the pion
mass is given in GeV, okNA = —5.6m> and at the physical pion mass it is just —-17 MeV.
However, at only three times the physical pion mass, m, = 420MeV, it is —460MeV - half
thc mass of the nucleon. If one’s aim is to extract physical nuclcon properties from lattice
QCD calculations this is extremely important. The most sophisticated lattice calculations
with dynamical fermions are only just becoming feasible at such low masses and to connect
to the physical world one must extrapolate from m, ~ 500MeV to m, = 140MeV. Clearly
one must have control of the chiral behaviour.

Figure 1 shows recent lattice calculations of My as a function of m2 from CP-PACS and
UKQCD [4]. The dashed line indicates a fit which naively respects the presence of a LNA

term,
MN:a+ﬂm3r+7m;3ra (4)

with «, 8 and ~ fitted to the data. While this gives a very good fit to the data, the chiral
coefficient v is only -0.761, compared with the value -5.60 required by chiral symmetry. If
one insists that v be consistent with QCD the best fit one can obtain with this form is the
dash-dot curve. This is clearly unacceptable.

An alternative suggested recently by Leinweber et al. [5], which also involves just three
parameters, is to evaluate oy and oya with the same ultra-violet form factor, with mass
parameter A, and to fit My as

My = a+ Bm? + onn(ma, A) + ona(mag, A). (5)

Using a sharp cut-off (u(k) = §(A—Fk)) these authors were able to obtain analytic expressions

for oy and oy which reveal the correct LNA behaviour — and next to leading (NLNA) in

the Arm case, oJZN4 ~ miInm,.
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FIG. 1. A comparison between phenomenological fitting functions for the mass of the nucleon

— from Ref. [5]. The two parameter fit corresponds to using Eq.(4) with v set equal to the value

known from yPT. The three parameter fit corresponds to letting v vary as an unconstrained fit

parameter. The solid line is the two parameter fit based on the functional form of Eq.(5).

These expressions also reveal a branch point at m, = Ma — My, which is important if
one is extrapolating from large values of m, to the physical value. The solid curve in Fig. 1
is a two parameter fit to the lattice data using Eq.(5), but fixing A at a value suggested by
CBM simulations to be equivalent to the preferred 1 GeV dipole. A small increase in A is
necessary to fit the lowest mass data point, at m2 ~ 0.1 GeV?, but clearly one can describe

the data very well while preserving the exact LNA and NLNA behaviour of QCD.

B. Consequences for the Sigma Commutator

The analysis of the lattice data for My, incorporating the correct non-analytic behaviour,
can yield interesting new information concerning the sigma commutator of the nucleon:

7w = 3(M[Qis [@ss, HacolIN) = (N |(au + dd)V). ©)

This is a direct measure of chiral SU(2) symmetry breaking in QCD, and the widely accepted
experimental value is 45 £ 8MeV [6]. (Although there are recent suggestions that it might
be as much as 20 MeV larger [7].) Using the Feynman-Hellmann theorem one can also write

_ _0My  ,0My
oN =mp— _mwam%. (7)

Historically, lattice calculations have evaluated < N|(@u + dd)|N > at large quark mass and
extrapolated this scale dependent quantity to the “physical” quark mass, which had to be
determined in a separate calculation. The latest result with dynamical fermions, o = 18£5
MeV [8], illustrates how difficult this procedure is. On the other hand, if one has a fit to
My as a function of m, which is consistent with chiral symmetry, one can evaluate oy



directly using Eq.(7). Using Eq.(5) with a sharp cut-off yields o ~ 55 MeV, while a dipole
form gives oy ~ 45 MeV [9]. The residual model dependence can only be removed by
more accurate laltice data al low 2. Nevertheless, the result oy € (45,55) MeV is in
very good agreement with the data. In contrast, the simple cubic fit, with v inconsistent
with chiral constraints, gives ~ 30 MeV. Until the experimental situation regarding on
improves, it is not possible to draw definite conclusions regarding the strangeness content of
the nucleon. However, the fact that two-flavour QCD reproduces the current prefered value

should certainly stimulate some thought and a lot of work.

III. ELECTROMAGNETIC FORM FACTORS
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FIG. 2. Recent data for the neutron electric form factor in comparison with CBM calculations

for a confining radius around 0.95fm — from Ref. [10].
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It is a general consequence of quantum mechanics that the long-range charge structure
of the proton comes from its 7% cloud (p — nz), while for the neutron it comes from its 7~
cloud (n — pm~). However, it is not often realized that the LNA contribution to the nucleon
charge radius goes like Inm, and diverges as m — 0 [11]. This cannot be reproduced by a
constituent quark model. Figure 2 shows the latest data from Mainz and NIKKHEF for the
neutron electric form factor, in comparison with CBM calculations for a confinement radius
between 0.9 and 1.0 fm. The long-range 7~ tail of the neutron plays a crucial role.

While there are only limited (and indeed quite old) lattice data for hadron charge radii,
recent experimental progress in the determination of hyperon charge radii has led us to
examine the extrapolation procedure for obtaining charge data from the lattice simulations
[12]. Figure 3 shows the extrapolation of the lattice data [13] for the charge radius of the
proton. Clearly the agreement with experiment is much better once the chiral log required
by chiral symmetry is correctly included, than if, for example, one simply made a linear
extrapolation in the quark mass (or m2). Full details of the results for all the octet baryons
may be found in Ref. [12].
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FIG. 3. Fits to lattice results for the squa,red"electric charge radius of the proton — from Ref.
[12]. Fits to the contributions from individual quark flavours are also shown: the u-quark sector
results are indicated by open triangles and the d-quark sector results by open squares. Physical
values predicted by the fits are indicated at the physical pion mass, where the full circle denotes
the result predicted from the first extrapolation procedure and the full square denotes the baryon
radius reconstructed from the individual quark flavor extrapolations. (N.B. The latter values are
actually so close as to be indistinguishable on the graph.) The experimental value is denoted by

an asterisk.

The situation for baryon magnetic moments is also very interesting. The LNA contribu-
tion in this case arises from the diagram where the photon couples to the pion loop. As this
involves two pion propagators the expansion of the proton and neutron moments is:

2P = 12 am, + O(m2). (8)

Here ,ug(n) is the value in the chiral limit and the linear term in m, is proportional to m%,
a branch point at m = 0. The coefficient of the LNA term is a = 4.4unGeV™l. At the
physical pion mass this LNA contribution is 0.6py, which is almost a third of the neutron
magnetic moment. No constituent quark model can or should get better agreement with data
than this.

Just as for My, the chiral behaviour of uP(™ is vital to a correct extrapolation of lattice
data. One can obtain a very satisfactory fit to some rather old data, which happens to be
the best available, using the simple Padé [14]:

0 ot )
1+ ,LP;.(I")m" + Bm2
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FIG. 4. Absolute value of the ratio of the proton to neutron magnetic moments as a function
of mZ obtained from the Padé approximants in Eq. (9). We stress that the behaviour as mZ — 0

is model independent.

The data can only determine two parameters and Eq.(9) has just two free parameters
while guaranteeing the correct LNA behaviour as m, — 0 and the correct behaviour of
heavy quark effective theory (HQET) at large m2. The extrapolated values of u? and u" at
the physical pion mass, 2.85 & 0.22uy and —1.90 £ 0.15uy, respectively, are currently the
best estimates from non-perturbative QCD [14]. For more details of this fit we refer to Ref.
[14], while for the application of similar ideas to other members of the nucleon octet we refer
to Ref. [15], and for the strangeness magnetic moment of the nucleon we refer to Ref. [16].

Incidentally, from the point of view of the naive quark model it is interesting to plot
the ratio of the absolute values of the proton and neutron magnetic moments as a function
of m2. The agreement of the constituent quark result, namely 3/2, with the experimental
value to within a few percent is usually taken as a major success. However, we see from Fig.
4 that it is in fact fortunate to obtain such close agreement [17]. We stress that the large
slope of the ratio near m2 = 0 is model independent.

IV. STRUCTURE FUNCTIONS

The parton distribution functions (PDFs) of the nucleon are light-cone correlation func-
tions which, in the infinite momentum frame, are interpreted as probability distributions
for finding specific partons (quarks, antiquarks, gluons) in the nucleon. They have been
measured in a variety of high energy processes, ranging from deep-inelastic lepton scattering
to Drell-Yan and massive vector boson production in hadron-hadron collisions. A wealth of
experimental information now exists on spin-averaged PDFs, and an increasing amount of
data is being accumulated on spin-dependent PDFs [18].

At high momentum transfer (Q?) the dominant component of the PDFs are determined
by non-perturbative matrix elements of certain “leading twist” operators. In principle these
matrix elements, which correspond to moments of the measured structure functions, con-
tain vital information about the non-perturbative structure of the target. An extensive phe-



nomenology has been developed over the years within model QCD studies, and in some cases
remarkable predictions have been made from the insight gained into the non-perturbative
structure of the nucleon. An example is the d — % asymmetry, predicted [19] on the basis of
the nucleon’s pion cloud [20], which has been spectacularly confirmed in recent experiments
at CERN and Fermilab [21]. Other predictions, such as asymmetries between strange and
antistrange [22] and spin-dependent sea quark distributions, Au — Ad, still await experi-
mental confirmation. Note that none of these could be anticipated without insight into the
non-perturbative structure of QCD.

Despite the phenomenological successes in correlating deep-inelastic and other high en-
ergy data with low energy hadron structure, the ad hoc nature of some of the assumptions
made in deriving the low energy models from QCD leaves open a number of questions about
the ability to reliably assign systematic errors to the model predictions. One approach in
which structure functions can be calculated systematically from first principles, and which
at the same time allows one to search for and identify the relevant low energy QCD degrees
of freedom, is lattice QCD.
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FIG. 5. First moment of the difference v — d from various lattice QCD simulations (QCDSF

[24-26] and MIT [27]), at a scale @* = 4 GeVZ. Calculations from the CBM are shown as small

squares. The dashed curve is a simple fit which is linear in m?2, while the solid curve incorporates

the constraints of chiral symmetry, as in Eq.(10).

Early calculations of structure function moments within lattice QCD were performed
by Martinelli and Sachrajda [23]. However, the most comprehensive analysis has been
performed by the QCDSF Collaboration [24-26] — albeit within quenched QCD. Recently
the MIT group has performed the first full (unquenched) QCD calculations of non-singlet
moments [27]. The moments from the full QCD simulations are very similar to those from
the quenched calculations. This is consistent with the suggestions of chiral quark models,
like the CBM, that in the mass region currently accessible quark loops are suppressed.

As for the other nucleon properties discussed above, we propose to extraplate the lattice
data to the physical pion mass using a formula which is compatible with the LNA structure



of the PDFs. This behaviour was derived recently, with the result that the LNA behaviour
involved a term in m2Inm, [28]. For an initial investigation we concentrate on the non-
singlet combination of PDFs, u—d, in which “disconnected” quark loops cancel. Calculations
based on the CBM (which incorporate the LNA chiral structure just discussed) actually
produce quite a reasonable description of the behaviour of the moments of the PDI's as
a function of quark mass, as shown in Fig. 5 (open squares). More important from the
phenomenological point of view, the CBM calculations (for the n’th moment of the PDFs)
can be fit with the simple expansion in m,:

2
(28 — 27) = ap + bym? + ancinam?iIn (an:_—”?) , (10)
where ¢;,na 15 model independent.

The scale p in Eq.(10) is effectively the scale at which the rapid, chiral variation at
low m, turns off. The best fit to the lattice data is obtained with a value yp ~ 0.4 — 0.5
GeV - a very similar scale to that found, for example, for the magnetic moments. Clearly
Eq.(10) gives a very good description of the lattice data for the first moment of the non-
singlet distribution d — u. Taking into account the rapid chiral variation as m2 — 0 there
is also quite good agreement between the extrapolated value of the first moment and the
experimentally determined moment. A similar result holds for the second and third moments

too [29].

V. CONCLUSION

In the light of the numerous examples presented in this brief review, it should be evident
that the study of hadron properties as a function of quark mass shows a clear pattern:

e In the region of quark masses m > 60 MeV or so (m, greater than typically 400-
500 MeV) hadron properties are smooth, slowly varying functions of something like a
constituent quark mass, M ~ My + c¢m (with ¢ ~ 1).

e Indeed, My ~3M, M, ~ 2M and magnetic moments behave like 1/M.

e As m decreases below 60 MeV or so, chiral symmetry leads to rapid, non-analytic
variation, with § My ~ m3/2, 6ug ~ m'/? and
§ < r? >q~ Inm.

e Chiral quark models like the cloudy bag provide a natural explanation of this transi-
tion. The scale is basically set by the inverse size of the pion source — the inverse of
the bag radius in the bag model.

These are remarkable results that will have profound consequences for our further explo-
ration of hadron structure within QCD as well as the analysis of the vast amount of data now
being taken concerning unstable resonances. In terms of immediate results for the structure
of the nucleon, we note that the careful incorporation of the correct chiral behaviour of QCD
into the extrapolation of its properties calculated on the lattice has produced:

e The best values of the proton and neutron magnetic moments from QCD.



The best value of the sigma commutator.

Improved values for the charge radii of the baryon octet.

Improved values for the magnetic moments of the hyperons.

Good agreement between the extrapolated moments of the non-singlet distribution
u — d and the experimentally measured moments.

In addition, although we did not have time to discuss it, this approach has led to the best
current value for the strangeness magnetic moment of the proton from lattice QCD [16].

Clearly, while much has been achieved, even more remains to be done. It is vital that
lattice calculations with dynamical fermions are pushed to the lowest possible quark masses,
taking advantage of developments of improved actions and so on. It is also vital to further
develop our understanding of the physics of chiral extrapolation by comparison with these
new calculations, by looking at new applications and by further comparison with chiral
models.
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As a direct source of information on chiral symmetry breaking within QCD, the sigma
commutator is of considerable importance. Since hadron structure is a non-perturbative
problem, numerical calculations on a space-time lattice are currently the only rigorous
approach. With recent advances in the calculation of hadron masses within full QCD,
it 1s of interest to see whether the sigma commutator can be calculated directly from
the dependence of the nucleon mass on the input quark mass. We show that, provided
the correct chiral behaviour of QCD is respected in the extrapolation to realistic quark
masses, one can indeed obtain a fairly reliable determination of the sigma commutator
using present lattice data. For two-flavour dynamical fermion QCD the sigma commutator

lies between 45 and 55 MeV based on recent data from CP-PACS and UKQCD.

1. WHAT IS THE SIGMA COMMUTATOR ?

In the quest to understand hadron structure within QCD, small violations of funda-
mental symmetries play a vital role. The sigma commutator, on:
1 - oM

on = 2 (N1[Qis, [Qis, HI] IN) = (N| G + dd |N) = m——F 1)

(with @45 the two-flavour (i=1, 2, 3) axial charge) is an extremely important example of

such a symmetry.

2. PREVIOUS ATTEMPTS

oy cannot be accessed directly by experimental measurements. However, one can infer
from world data a value of 45 + 8 MeV [1]. This result has been under some scrutiny
recently due to the progress in new determinations of the pion-nucleon scattering lengths
[2,3] and new phase shift analyses [4,5]. The full lattice QCD calculations upon which our
work is based involve only two active flavours, the heavier third flavour is approximated
by a renormalisation of the strong coupling constant. As a guide, recent work suggests
that the best value of on may be 8 to 26 MeV larger than the value quoted above [6].

One can notionally use QCD to directly calculate the value of op, but in practice
the calculation has proven to be difficult. Early attempts [7] to extract oy from the
quark mass dependence of the nucleon mass (using Eq.(1)) in quenched QCD with naive



extrapolations produced values in the range 15 to 25 MeV. Attention subsequently turned
to determining o by calculating the scalar matrix element of the nucleon (N|tu +dd|N).
There it was discovered that the sea-quark loops make a dominant contribution to oy
[8,9]. These works, based on quenched QCD simulations found values in the 40 to 60
MeV range, which are more compatible with the experimental values quoted earlier.

On the other hand, the most recent estimate of oy, and the only one based on a
two-flavour, dynamical-fermion lattice QCD calculation, comes from the SESAM collabo-
ration. They obtain a value of 18 £5 MeV [10], through a direct calculation of the scalar
matrix element (N|au + dd|N) and the quark mass .

The fact that neither (N|@u + dd|N), nor m is renormalisation group invariant in-
troduces a major difficulty in calculating the sigma commutator in this approach. One
must reconstruct the scale invariant result from the product of the scale dependent ma-
trix element and the scale dependent quark masses. The latter are extremely difficult to
determine precisely and are the chief sources of uncertainty. Furthermore, since lattice
calculations are made at quite large pion masses, typically above 500 or 600 MeV, one
needs to extrapolate, in the pion mass down to the physical value at 140 MeV. An impor-
tant innovation adopted by Dong et al. was to extrapolate (NV|tu + dd|N) using a form
motivated by chiral symmetry, namely a + bin. Regrettably, the value of b used was not
constrained by chiral symmetry and higher order terms of the chiral expansion were not
considered. Furthermore, since the work was based on a quenched calculation, the chiral
behaviour implicit in the lattice results involves incorrect chiral physics [11].

3. THE CURRENT CALCULATION

Our recent work [12] was motivated by the improvements in computing power, together
with the development of improved actions [13], which have led to accurate calculations
of the mass of the nucleon within full QCD (for two flavours) as a function of m down
to mx ~ 500 MeV. (Since m2 is proportional to 7 over the range studied we choose to
display all results as a function of m2.) We showed that provided that one has control
over the extrapolation of this lattice data to the physical pion mass, one can calculate oy
from oy = m20My/0m?2 (which is equivalent to Eq. (1) where /m was used) at m, = 140
MeV. This approach has the important advantage that one only needs to work with
renormalization group invariant quantities.

Chiral perturbation theory (xPT) predicts that the leading non-analytic (LNA) correc-
tion to the self energy contribution to the nucleon mass is proportional to m? (or m3/2)
It can be seen in Fig. 2 that the preliminary point from CP-PACS [14] at m2 ~ 0.1 GeV?
does indeed suggest some curvature in this low mass region. These observations led the
CP-PACS group to extrapolate their data with the simple, phenomenological form:

My = &+ Bm? + 3m3, (2)

rather than a naive linear form (7 = 0), as shown in Fig. 1. The corresponding fit to the
combined data set, using Eq. (2), is shown as the short-dashed curve in Figs. 1 and 2. We
found that this fit gives oy = 29.7 MeV. The difficulty with this purely phenomenological
analysis was discussed in Ref. [16]. The problem is that a derivative is required when
evaluating oy and the value of 4 found in the fit (-0.761 GeV~?) is almost an order of
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Figure 1. Nucleon mass versus m2. The solid Figure 2. Data as labelled in Fig. 1. The
data points are CP-PACS results [14], whilst solid curve is a fit to Eq. (3) with a dipole
the open points are UKQCD data [15]. Both form factor, the dashed curve is the same
curves are fits using Eq. (2). The solid curve fit using a sharp cut-off form factor. The
has 4 = 0, whilst the short-dashed curve has long-dash curve is a fit to Eq. (3) ezcluding
4 unconstrained. The vertical line indicates the lowest data point.

the physical pion mass.

magnitude smaller than the model independent LNA coefficient, y*¥* = —5.60 GeV 2,
indicated by xPT.

Recently, an alternative approach was suggested in Ref. [16]. There it was realised
that the pion loop diagrams shown in Fig. 3 yield not only the most important non-
analytic structure, but also give rise to the most significant variation in the nucleon mass
as my, — 0. This leads to the following extrapolation function for My:

My = a+ Sm2 + oyn(me, A) + ona(ma, A), (3)

where oy and oya are the self-energy contributions of Figs. 3(a) and 3(b), respectively,
using a cut-off in momentum controlled by A. The full analytic expressions for onn
and oya are given in Ref. [16]. For our purposes it suffices that they have precisely the
correct LNA and next-to-leading non-analytic behaviour required by chiral perturbation
theory as m, — 0. In addition, oya contains the correct, square root branch point

Figure 3. One-loop pion induced self energy of the
nucleon.



(~ [m2—(Ma —MN)2]%) at the A— N mass difference, which is essential for extrapolations
from above the A — N7 threshold.

Fitting Eq. (3) to the data, including the point near 0.1 GeV?, gives the dot-dash curve
in Fig. 2. The corresponding value of oy is 54.6 MeV and the physical nucleon mass is
870 MeV. Omitting the lowest data point from the fit yields the long-dash curve in Fig. 2
with oy = 65.8 MeV, demonstrating the need for lattice simulations of QCD at light
quark masses.

4. CONCLUSION

The importance of the inclusion of the correct chiral behaviour is clearly seen by the fact
that it increases the value of the sigma commutator from the 30 MeV of the unconstrained
cubic fit to around 50 MeV. Nevertheless, it is a remarkable result that the present lattice
data for two-flavour dynamical-fermion QCD, yields a stable [12] and accurate answer for
the sigma commutator, an answer which is already within the range of the experimental
values.

This work was supported by the Australian Research Council.

REFERENCES

1. J. Gasser, H. Leutwyler and M. E. Sainio, Phys. Lett. B253, 252 (1991).
2. D. Sigg et al., Nucl. Phys. A609 (1996) 269;
D. Chatellard et al., Nucl. Phys. A625, 855 (1997).
3. T. E. Ericson, B. Loiseau and A. W. Thomas, Nucl. Phys. A663-664, 541 (2000),
hep~ph/9907433.
M. M. Pavan, R. A. Arndt, I. I. Strakovsky and R. L. Workman, nucl-th/9912034.
D. V. Bugg, PiN Newsletter 15 (1999) 319.
M. Knecht, hep-ph/9912443.
See for example, S. Cabasino et al., Nucl. Phys. B (Proc. Suppl.) 20, 399 (1991).
S. J. Dong, J. F. Lagae and K. F. Liu, Phys. Rev. D54, 5496 (1996).
M. Fukugita, Y. Kuramashi, M. Okawa and A. Ukawa, Phys. Rev. D51, 5319 (1995).
SESAM Collaboration, S. Gusken et al., Phys. Rev. D59, 054504 (1999).
S.R. Sharpe, Phys. Rev. D56, 7052 (1997).
J.N. Labrenz and S.R. Sharpe, Phys. Rev. D54, 4595 (1996).
. D. B. Leinweber, A. W. Thomas and S. V. Wright, hep-lat/0001007. To appear in
Phys. Lett. B.
. B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259 (1985) 609;
M. Alford, W. Dimm, P. Lepage, Phys. Lett. B361, 87 (1995);
P. Hasenfratz, Nucl. Phys. (Proc. Suppl.) B63, 53 (1998).
14. CP-PACS Collaboration, S. Aoki et. al., Phys. Rev. D60, 114508 (1999).
15. UKQCD Collaboration, C. R. Allton et. al., Phys. Rev. D60, 034507 (1999).
16. D. B. Leinweber, A. W. Thomas, K. Tsushima, and S. V. Wright, Phys. Rev. D61,
074502 (2000), hep-1at/9906027.

== O 00~ O Ot vk

—
[N}

ot
o



arXiv:hep-1at/0001007 11 Jan 2000

ADP-00-01/T390

Lattice QQCD Calculations of
the Sigma Commutator

D. B. Leinweber*, A. W. Thomas!, and S. V. Wright?
Department of Physics and Mathematical Physics

and Special Research Centre for the Subatomic Structure of Matter,
University of Adelaide, Adelaide 5005, Australia

Abstract

As a direct source of information on chiral symmetry breaking within
QCD, the sigma commutator is of considerable importance. With recent
advances in the calculation of hadron masses within full QCD it is of
interest to see whether the sigma commutator can be calculated directly
from the dependence of the nucleon mass on the input quark mass. We
show that provided the correct chiral behaviour of QCD is respected in
the extrapolation to realistic quark masses one can indeed obtain a fairly
reliable determination of the sigma commutator using present lattice data.
Within two-flavour, dynamical-fermion QCD the value obtained lies in the
range 45 to 55 MeV.

In the quest to understand hadron structure within QCD, small violations
of fundamental symmetries play a vital role. The sigma commutator, on:

o = 3 (N1[Qus, [@us, 1] ) )

(with @5 the two-flavour (=1, 2, 3} axial charge) is an extremely important
example. Because ;5 commutes with the QCD Hamiltonian in the chiral SU(2)
limit, the effect of the double commutator is to pick out the light quark mass
term from H:

on = (N|(my@u + mqedd) |N) (2)
Neglecting the very small effect of the u — d mass difference we can write Eq. (2)
in the form

oy = (N|m(au+dd)|N) (3)
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with m = (my + mq)/2. Equation (4) follows from the Feynman-Hellman the-
orem [3].

While there is no direct experimental measurement of o, the value inferred
from world data has been 45 & 8 MeV [4] for some time. Recently there has
been considerable interest in this value because of progress in the determination
of the pion-nucleon scattering lengths [5, 6] and new phase shift analyses [7, 8].
For an excellent summary of the sources of the proposed variations and the
disagreements between various investigators we refer to the excellent review of
Kneckt [9]. For our purposes the experimental value is of limited interest as
the full lattice QCD calculations upon which our work is based involve only two
active flavours. Nevertheless, as a guide, the current work suggests that the
best value of oy may be between 8 and 26 MeV larger than the value quoted
above [9].

Numerous calculations of o have been made within QCD motivated models
[10] and there has been considerable work within the framework of chiral pertur-
bation theory [11]. However, direct calculations of o within QCD itself have
proven to be difficult. Early attempts [12] to extract on from the quark mass
dependence of the nucleon mass in quenched QCD (using Eq.(4) ) produced
values in the range 15 to 26 MeV. Attention subsequently turned to determin-
ing o by calculating the scalar matrix element of the nucleon (N|@u + dd|N).
There it was discovered that the sea quark loops make a dominant contribution
to oy [14, 15]. These works, based on quenched QCD simulation, found values
in the 40 to 60 MeV range, which are more compatible with the experimental
values quoted earlier.

On the other hand, the most recent estimate of o, and the only one based
on a two-flavour, dynamical-fermion lattice QCD calculation, comes from the
SESAM collaboration. They obtain a value of 18 + 5 MeV [13], through a
direct calculation of the scalar matrix element (N |tu +dd|N). The discrepancy
from the quenched results of Refs. [14, 15] is not so much an unquenching
effect in the scalar matrix element but rather a significant suppression of the
quark mass in going from quenched to full QCD. The difficulty in all approaches
which evaluate (N|au+ dd|N) is that neither it nor 7 is renormalization group
invariant. One must reconstruct the scale invariant result from the product of
the scale dependent matrix element and the scale dependent quark masses. The
latter are extremely difficult to determine precisely and are the chief source of
uncertainty in this approach.

An additional difficulty in extracting o from lattice studies is the need to
extrapolate from quite large pion masses, typically above 500 or 600 MeV. An
important innovation adopted by Dong ef al., but not by the SESAM collabo-
ration, was to extrapolate the computed values of (N |au 4 dd|N) using a form
motivated by chiral symmetry, namely a + bmz. On the other hand, the value
of b used was not constrained by chiral symmetry and higher order terms of the
chiral expansion were not considered. Furthermore, since the work was based
on a quenched calculation, the chiral behaviour implicit in the lattice results
involves incorrect chiral coefficients [16].



Our work is motivated by recent, dramatic improvements in computing
power which, together with the development of improved actions [17], mean
that we now have accurate calculations of the mass of the nucleon within full
QCD (for two flavours) as a function of m down to m, ~ 500 MeV. (Since m2
is proportional to m over the range studied we choose to display all results as
a function of m2.) In addition, CP-PACS has recently published a result at
my ~ 300 MeV , albeit with somewhat large errors. Provided that one has
control over the extrapolation of this lattice data to the physical pion mass,
my = p = 140 MeV, one can calculate o by evaluating Eq. (4) at the physical
pion mass. Note that this approach has the important advantage over the cal-
culation of the scalar density that one only needs to work with renormalization
group invariant quantities. We therefore turn to a consideration of the method
of extrapolation.

The lattice data for the nucleon mass calculated by UKQCD [1] and CP-
PACS [2] is shown in Fig. 1. Both groups cite a 10% uncertainty in setting the
lattice scale, so we have scaled the former down and the latter up by 5% so that
the data sets are consistent. Over almost the entire range of m2, the data shows
a dependence on quark mass that is essentially linear. However, the preliminary
point at m2 ~ 0.1 GeV? suggests some curvature in the low mass region. This is
indeed expected on the basis of chiral symmetry with the leading non-analytic
(LNA) correction (in terms of 7n) being proportional to m3 (m3/2):

—3g2
SMENA — ALNA 3 LNA _ A ) 5
N Y My, Y 3271_1(-7% ( )

These observations led the CP-PACS group to extrapolate their data with the
simple, phenomenological form:

My =&+ fm2 + §m3 . (6)

The corresponding fit to the combined data set, using Eq. (6), is shown as the
short-dashed curve in Fig. 1 and the parameters (&, 8, ¥) = (0.912,1.69, —0.761)
(the units are appropriate powers of GeV). This yields a value for the sigma com-
mutator, 01(\1;) = 29.7 MeV, where the superscript stands for “phenomenological”.

The difficulty with this purely phenomenological analysis was discussed in
Ref. [18]. That is, the value of § = —0.761 is almost an order of magnitude
smaller than the model independent LNA term, y“"* = —5.60 GeV~2. Clearly
this presents some concern when evaluating o, because of the derivative re-
quired. An alternative approach to this problem was recently suggested by
Leinweber et al. [18]. They realised that the pion loop diagrams, Fig. 2(a) and
2(b) not only yield the most important non-analytic structure in the expression
for the nucleon mass, but amongst all the possible meson baryon states which
contribute to the nucleon mass within QCD, they alone give rise to a significant
variation of the nucleon mass as m; — 0. In Ref. [18] it was suggested that one
should extrapolate My as a function of quark mass using:

]\/IN:a+ﬁm,2,+UNN(m7r,A)+0NA(mn,A)y (7)
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Figure 1: Nucleon mass calculated by CP-PACS (solid points) and UKQCD
(open points), as a function of m2, both are scaled by 5% to improve consistency.
The solid curve is a fit to Eq. (7) with a 1.225 GeV dipole form factor, while the
dashed curve is the same fit using a sharp cut-off form factor (¢-function). The
short-dash curve is a fit to Eq. (6), and the long-dash curve is a fit to Eq. (7)
ezcluding the lowest data point. The vertical line indicates the physical pion
mass.

where oyn and oy are the self-energy contributions of Figs. 2(a) and 2(b),
respectively, using a sharp cut-off in momentum, §(A — k). The full analytical
expressions for oyy and onya are given in Ref. [18]. For our purposes it suf-
fices that they have precisely the correct LNA and next-to-leading non-analytic
behaviour required by chiral perturbation theory as m, — 0. In addition, ona
contains the correct, square root branch point (~ [m2 — (Ma — My)?]2) at the
A — N threshold, which is essential for extrapolations from above the A — N
threshold.

Fitting Eq. (7) to the data, including the point near 0.1 GeV?, gives the dot-
dash curve in Fig. 1 ((o, 8,A) = (1.42,0.564,0.661)). The corresponding value
of o is 54.6 MeV and the physical nucleon mass is 870 MeV. Omitting the
lowest data point from the fit yields the long-dash curve in Fig. 1 ((o, 8,A) =
(1.76,0.386, 0.789)) with o = 65.8 MeV. Clearly the curvature associated with
the chiral corrections at low quark mass is extremely important in the evaluation
of ON.

In order to estimate the error in the extracted value of oy we would need to
have the full data set on a configuration by configuration basis. As this is not
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Scaling oN

Cr-racs | UKQCD Dipole | Sharp Cubic

5 -5 472418 | b4.6£2.0 | 29.7

10 0 4814+19 | 54.9+£2.0 | 286

0 -10 454419 | 54.3+1.9 | 31.0

Table 1: Sigma Commutator Values. The Dipole and Sharp results were
calculated with our preferred form of o + Am2 + onn (A, mr) + ona (A, my)
with either a dipole form factor for the N7 vertex or a #-function. The values
of dipole parameter (Ap) were (1.225,1.250, 1.175) GeV. The Cubic results are
for the a + fm2 + ym3 extrapolation function, with v unconstrained by chiral
symmetry — as explained in the text this produces an unreliable value for oy.

available, the errors that we quote are naive estimates only. The extracted value
of oy is very well determined by the present data, the result being 54.6 £+ 2.0
MeV. Since the process of setting the physical mass scale via the string tension
is thought to have a systematic error of 10%, one might naively expect this to
apply to on. However, all masses in the problem including the pion (or quark)
mass, as well as that of the nucleon, scale with the lattice parameter a. It turns
out that when one uses Eq. (4) at the physical pion mass (which means a slightly
different value of ma if a changes), the value of o is extremely stable. If, for
example, one raises the CP-PACS data by 15% and the UKQCD data by 5%
(instead of 5% and —5%, respectively) the value of oy shifts from 54.6 + 2.0 to
55.2 + 2.1 MeV. We present calculations in Table 1 that show, for a variety of
scalings of the lattice data, how stable our results are.

The remaining issue, for the present data, is the model dependence associated
with the choice of a sharp cut-off in the pionic self-energies. Our investigations
in Ref. [18] showed that Eq. (7) could reproduce the dependence of My on m?2
within the cloudy bag model, and that it could also describe the dependence of
pion self-energy terms calculated with dipole form factors. Thus we believe that
any model satisfying the essential chiral constraints and fitting the lattice data
should give essentially the same answer. We checked this by numerically fitting
the lattice data (solid curve) with the form of Eq. (7) but with oxyn and ona
calculated with dipole form factors of mass Ap at all pion-baryon vertices. Since
the preferred phenomenological form of the N7 form factor is a dipole, we regard
the dipole result shown in the first line of Table 1 as our best estimate, namely
on = 47.2 £ 1.8 MeV with fit parameters (o, 8, Ap) = (2.02,0.398,1.225). A



remaining source of error is that, although the lattice results were calculated
with an improved action, there still is an error associated with the extrapolation
to the infinite volume, continuum limit. The importance of the inclusion of the
correct chiral behaviour is clearly seen by the fact that it increases the value
of the sigma commutator from the 30 MeV of the unconstrained cubic fit to
around 50 MeV.

Clearly an enormous amount of work remains to be done before we will fully
understand the structure of the nucleon within QCD. It is vital that the rapid
progress on improved actions and faster computers continue and that we have
three flavour calculations within full QCD at masses as close as possible to the
physical quark masses. Nevertheless, it is a remarkable result that the present
lattice data for dynamical-fermion, two-flavour QCD, yields such a stable and
accurate answer for the sigma commutator, an answer which is already within
the range of the experimental values. The implications of this result for models
of hadron structure need to be explored urgently.

One of us (SVW) would like to acknowledge helpful discussions with Tom
Cohen at an early stage of this work. We would also like acknowledge helpful
comments from Chris Allton, Craig Roberts and Robert Perry. This work was
supported in part by the Australian Research Council.
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Consideration of the analytic properties of pion-induced baryon self energies leads to
new functional forms for the extrapolation of light baryon masses. These functional forms
reproduce the leading non-analytic behavior of chiral perturbation theory, the correct
non-analytic behavior at the N threshold and the appropriate heavy-quark limit. They
involve only three unknown parameters, which may be obtained by fitting lattice QCD
data. Recent dynamical fermion results from CP-PACS and UKQCD are extrapolated
using these new functional forms. We also use these functions to probe the limit of
applicability of chiral perturbation theory.

1. Introduction

Chiral symmetry requires that the nucleon mass has the form
my(my) = my(0) + am? + Bm2 + ymilnm, + ...,

for small m,, where mpy(0), o, 8, and v are functions of the strong coupling constant ag(p).
Recent work [1] has shown that using physical insights from chiral perturbation theory
and heavy quark effective theory one can derive new functional forms which describe the
extrapolation of light baryon masses as functions of the pion mass (m,). These forms are
applicable beyond the chiral perturbative regime and have been compared successfully
with predictions from the Cloudy Bag Model [2] and recent dynamical fermion lattice
QCD calculations.

2. Analyticity

By now it is well established that chiral symmetry is dynamically broken in QCD and
that the pion is almost a Goldstone boson. It is strongly coupled to baryons and therefore
plays a significant role in the N and A self energies. In the limit where the baryons are
heavy, the pion-induced self energies of the N and A, to one loop, are given by the

*athomas@physics.adelaide.edu.au
tdleinweb@physics.adelaide.edu.au
tktsushim@physics.adelaide.edu.au
§swright@physics.adelaide.edu.au



Figure 1. One-loop pion induced self energy of the nucleon and the delta.

processes shown in Fig. 1{a—d). We label these by oyn, ona, oan, and oaa. Note that
we have restricted the intermediate baryon states to those most strongly coupled, namely
the NV and A states. Other intermediate states are suppressed by the baryon form factor
describing the extended nature of baryons.

The leading non-analytic contribution (LNAC) of these self energy diagrams is associ-
ated with the infrared behavior of the corresponding integrals — i.e., the behavior as the
loop momentum k& — 0. As a consequence, it should not depend on the details of a high
momentum cut-off, or form factor. In particular, it is sufficient for studying the LNAC
to evaluate the self energy integrals using a simple sharp cut-off, u(k) = (A — k) as the
choice of form factor. The explicit forms of the self energy contributions for oy, oya and
so on are given in [1]. Moreover, there is little phenomenological difference between this
step function and the more natural dipole, provided one can tune the cut-off parameter
A. The self energies involving transitions of N — A or A — N are characterized by a
branch point at m, = AM.

2.1. Chiral Limit

The leading non-analytic (LNA) terms are those which correspond to the lowest order
non-analytic functions of m, — i.e., odd powers or logarithms of m,. By expanding the
expressions given in [1], we find that the LNA contributions to the nucleon/delta masses
are in agreement with the well known results of yPT [4,5].

Of course, our concern with respect to lattice QCD is not so much the behavior as
m, — 0, but the extrapolation from high pion masses to the physical pion mass. In this
context the branch point at m2 = AM? is at least as important as the LNA behaviour
near m, = 0.

2.2. Heavy Quark Limit

Heavy quark effective theory suggests that as m, — oo the quarks become static and
hadron masses become proportional to the quark mass. In this spirit, corrections are
expected to be of order 1/m, where m, is the heavy quark mass. Thus we would expect
the pion induced self energy to vanish as 1/m, as the pion mass increases. The presence of
a fixed cut-off A acts to suppress the pion induced self energy for increasing pion masses.
While some m? dependence in A is expected, this is a second-order effect and does not



alter this qualitative feature. Indeed, in the large m, limit of the equations, we find that
they tend to zero at least as fast as 1/m2.

The agreement with both the chiral limit and expected behaviour in the heavy quark
limit suggests the following functional form for the extrapolation of the nucleon mass [1]:

My = aN+BNm72r+JNN(m,r,A)+JNA(m,r,A). (1)

3. Lattice Data Analysis

We consider two independent lattice simulations of the N and A masses from CP-PACS
[6] and UKQCD [7]. Both of these use improved actions to study baryon masses in full
QCD with two light flavours. We find that the two data sets are consistent, provided one
allows the parameters introducing the physical scale to float within systematic errors of
10%.

We begin by considering the functional form suggested in Section 2 with the cut-off
A fixed to the value determined by fitting CBM calculations. This is shown as the solid
curve in Fig. 2. In order to perform model independent fits (i.e. with A unconstrained), it
is essential to have lattice simulations at light quark masses approaching m?2 ~ 0.1 GeV?.
This fit is illustrated by the dash-dot curve.

Common practice in the lattice community to use a polynomial expansion for the mass

dependence of hadron masses. Motivated by xPT the lowest odd power of m, allowed is

3.

m:

My = o+ fm2 + ym? (2)

The result of such a fit for the N is shown in the dashed curve of Fig. 2. The coeflicient
of the m2 term, which is the leading non-analytic term in the quark mass, in the three
parameter fit is —0.761. This disagrees with the coefficient of —5.60 known from xPT
(which is correctly incorporated in Eq. (1), the solid and dash-dot curves) by almost an
order of magnitude. This clearly indicates the failings of such a simple fitting procedure.

4. Summary

In the quest to connect lattice measurements with the physical regime, we have explored
the quark mass dependence of the N and A baryon masses using arguments based on
analyticity and heavy quark limits. We have determined a method to access quark masses
beyond the regime of chiral perturbation theory. This method reproduces the leading
non-analytic behavior of YPT and accounts for the internal structure for the baryon
under investigation. We find that the leading non-analytic term of the chiral expansion
dominates from the chiral limit up to the branch point at m, = AM =~ 300 MeV, beyond
which yPT breaks down. The predictions of the CBM, and two-flavour dynamical-fermion
lattice QCD results, are succinctly described by the formulae derived in [1]. The curvature
around m, = AM, neglected in previous extrapolations of the lattice data, leads to shifts
in the extrapolated masses of the same order as the departure of lattice estimates from
experimental measurements.
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Baryon mass extrapolation
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Consideration of the analytical properties of pion-induced baryon self-energies leads to new functional forms
for the extrapolation of light baryon masses. These functional forms reproduce the leading non-analytic behavior
of chiral perturbation theory, the correct heavy-quark limit and have the advantage of containing information on
the extended structure of hadrons. The forms involve only three unknown parameters which may be optimized by
fitting to present lattice data. Recent dynamical fermion results from CP-PACS and UK-QCD are extrapolated
using these new functional forms. We also use these functions to probe the limit of the chiral perturbative regime
and shed light on the applicability of chiral perturbation theory to the extrapolation of present lattice QCD
results.

1. FORMALISM . b 7 \\

In recent years there has been tremendous * : X :

progress in the computation of baryon masses N N N N A N
within lattice QCD. Still, it remains necessary to (@) ®)
extrapolate the calculated results to the physi-

cal pion mass (¢ = 140 MeV) in order to make ST LTl

a comparison with experimental data. In doing ,', % ," %

so one necessarily encounters some non-linearity i ) p X
in the quark mass (or m2), including the non- A N A A A A
analytic behavior associated with dynamical chi- © (d)

ral symmetry breaking. We recently investigated
this problem for the case of the nucleon magnetic
moments [1]. It is vital to develop a sound un-
derstanding of how to extrapolate to the physical
plon mass.

Figure 1. One-loop pion induced self-energy of
the nucleon and the delta.

where

1.1. Self-Energy Contributions 343 = kg (k)
g . . . ONN = OAA = — 555 dk’——-——} (2)
Chiral symmetry is dynamically broken in 1672f2 J, w?(k)
QCD and the pion alone is a near Goldstone bo- Y - .3
son. It is strongly coupled to baryons and plays ONA = —- 694 f dk k*ujya (k) 3)
a significant role in N and A self-energies. The 25m2f2 Jo w(k)(AM +w(k))’
one-loop pion induced self-energies of the N and 5 o 4 9
A - i 39 k*u®; A (k)
are given by the processes shown in Fig. 1. CAN = 2‘“ - dk .
In the standard heavy baryon limit, the ana- S50m2f7 Jo w(k)(AM —w(k))

(4)

lytic expression for the pion cloud correction to
the masses of the N and A are of the form [2]

My =oNnn+0oNna; OMa =oaa+0oan, (1)
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Here AM = Ma — My , ga = 1.26 is the ax-
ial charge of the nucleon, w(k) = /k? +m2 is
the pion energy and uyn (k), una(k), ... are the
NNm, NAnr, ... form factors associated with the
emission of a pion of three-momentum k. The



form factors reflect the finite size of the baryonic
source of the pion field and suppress the emission
probability at high virtual pion momentum. As a
result, the self-energy integrals are not divergent.

The leading non-analytic (LNA) contribution
of these self-energy diagrams is associated with
the infrared behavior of the corresponding inte-
grals; i.e. the behavior as £k — 0. As a conse-
quence, the leading non-analytic behavior does
not depend on the details of the form factors.
Indeed, the well known results of chiral pertur-
bation theory [3,4] are reproduced even when the
form factors are approximated by w(k) = 6(A—k).

Of course, our concern with respect to lattice
QCD is not so much the behavior as m, — 0, but
the extrapolation from high pion masses to the
physical pion mass. In this context the branch
point at mZ = AM?, associated with transitions
of N A or A — N, is at least as important as
the LNA behavior near m, = 0.

Heavy quark effective theory suggests that as
my — oo the quarks become static and hadron
masses become proportional to the quark mass.
In this spirit, corrections are expected to be of or-
der 1/mg where my is the heavy quark mass. The
presence of a cut-off associated with the form fac-
tor acts to suppress the pion induced self energy
for increasing pion masses, as evidenced by the
m?2 in the denominators of Egs. (2), (3) and (4).
While some m2 dependence in the form factor is
expected, this is a second-order effect and does
not alter the qualitative feature of the self-energy
corrections tending to zero as 1/m2 in the heavy
quark limit.

Rather than simplifying our expressions to just
the LNA terms, we retain the complete expres-
sions [2], as they contain important physics that
would be lost by making a simplification. We
note that keeping the entire form is not in con-
tradiction with xPT. However, as one proceeds to
larger quark masses, differences between the full
forms and the expressions in the chiral limit will
become apparent, highlighting the importance of
the branch point and the form factor reflecting
the finite size of baryons.

As a result of these considerations, we propose
to use the analytic expressions for the self-energy
integrals corresponding to a sharp cut-off in or-

der to incorporate the correct LNA structure in
a simple three-parameter description of the m,
dependence of the N and A masses. In the heavy
quark limit hadron masses become proportional
to the quark mass. Hence we can simulate a lin-
ear dependence of the baryon masses on the quark
mass, my, in this region, by adding a term involv-
ing m2. The functional form for the mass of the
nucleon suggested by this analysis is then:

My = ay + Bnvm2 + onn(AN) + ona(An), (5)
while that for the A is:
Ma = ap + Bam? + oan(Aa) + oan(Aa). (6)

1.2. Model Dependence

The use of a sharp cut-off, u(k) = 6(A — k),
as a form factor may seem somewhat unfortu-
nate given that phenomenology suggests a dipole
form factor better approximates the axial-vector
form factor. However, the sensitivity to such
model-dependent issues is shown to be negligi-
ble in Fig. 2. There, the self-energy contribu-
tion onn(= oaa) for a 1 GeV dipole form fac-
tor (solid curve) is compared with a sharp cut-off
form factor combined with the standard e+ 8 m?
terms of (5) or (6). Optimizing A, o and § pro-
vides the fine-dash curve of Fig. 2. Differences are
at the few MeV level indicating negligible sensi-
tivity to the actual analytic structure of the form
factor.

Here we have focused on the pion self-energy
contribution to the N and A form factors. Only
the pion displays a rapid mass dependence as the
chiral limit is approached. Other mesons partici-
pating in similar diagrams do not give rise to such
rapidly changing behavior and can be accommo-
dated in the o + 3 m2 terms of (5) or (6). More-
over, the form factor suppresses the contributions
from more massive intermediate states including
multiple pion dressings. Other multi-loop pion
contributions renormalize the vertex and hence
we use the renormalized coupling g4 as a mea-
sure of the pion-nucleon coupling.

2. ANALYSIS

We consider two independent dynamical-
fermion lattice simulations of the N and A
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Figure 2. The self-energy contribution onxn for
a 1 GeV dipole form factor (solid curve) is com-
pared with a sharp cut-off form factor §(Ay — k)
(fine-dash curve). Self-energy contributions oy a
(dot-dash) and oan (long-dash) for a 1 GeV
dipole are also illustrated.

masses. We select results from CP-PACS’s [5]
123 x 32 and 163 x 32 simulations at § = 1.9, and
UKQCD’s [6] 123 x 24 simulations at 8 = 5.2.

Figure 3 displays fits of (5) to the lattice data.
In order to perform fits in which A is uncon-
strained, it is essemntial to have lattice simula-
tions at light quark masses approaching m2 ~ 0.1
GeVZ2.

It is common to see the use of the following
xPT-motivated expression for the mass depen-
dence of hadron masses,

My = o+ fm2 4+ ym3 . (7)

The tesult of such a fit for the N is shown as
the dashed curve in Fig. 3. The coefficient of
the m2 term in a three parameter fit is —0.761.
This disagrees with the coefficient of —5.60 known
from xPT (which is correctly incorporated in (5)
and illustrated as the solid and dash-dot curves
of Fig. 3) by almost an order of magnitude. This
clearly indicates the failings of (7).

The dotted curve of Fig. 3 indicates the leading
non-analytic term of the chiral expansion domi-
nates from the chiral limit up to the branch point
at my = AM ~ 300 MeV, beyond which yPT
breaks down. The curvature around m, = AM,
neglected in previous extrapolations of the lattice
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Figure 3. A comparison of phenomenological fit-
ting functions for the mass of the nucleon. The
solid curve corresponds to our preferred fit of the
functional form of (5) with A constrained to re-
produce a 1 GeV dipole form factor. The dash-
dot curve illustrates the unconstrained fit. The
three parameter fit (dashed) corresponds to let-
ting v of (7) vary as an unconstrained fit param-
eter. The dotted curve corresponds to (7) with v
set equal to the value known from xPT. The lat-
tice data from are CP-PACS (solid) and UKQCD
(open), each with a 5% scale change to provide
consistency.

data, leads to shifts in the extrapolated masses of
the same order as the departure of lattice esti-
mates from experimental measurements.
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Baryon masses from lattice QCD: Beyond the perturbative chiral regime
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Consideration of the analytic properties of pion-induced baryon self-energies leads to new functional forms
for the extrapolation of light baryon masses. These functional forms reproduce the leading non-analytic be-
havior of chiral perturbation theory, the correct non-analytic behavior at the N 7 threshold and the appropriate
heavy-quark limit. They involve only three unknown parameters, which may be obtained by fitting to lattice
data. Recent dynamical fermion results from CP-PACS and UKQCD are extrapolated using these new func-
tional forms. We also use these functions to probe the limit of applicability of chiral perturbation theory to the

extrapolation of lattice QCD results.

PACS number(s): 12.38.Gc, 11.15.Ha

I. INTRODUCTION

In the last year there has been tremendous progress in the
computation of baryon masses within lattice QCD. Improved
quark [1] and gluon [2] actions, together with increasing
computer speed, means that one already has results for N, A
and vector meson masses for full QCD with two flavors of
dynamical quarks. Although the results are mainly in the
regime where the pion mass (m,,) is above 500 MeV, there
has been some exploration as low as 300—400 MeV on a 3.0
fm lattice by CP-PACS [3].

In spite of these impressive developments it is still neces-
sary to extrapolate the calculated results to the physical pion
mass (=140 MeV) in order to make a comparison with
experimental data. In doing so one necessarily encounters
some non-linearity in the quark mass (or mf,), including the
non-analytic behavior associated with dynamical chiral sym-
metry breaking. Indeed, the recent CP-PACS study [4] did
report the first behavior of this kind in baryon systems.

As the computational resources necessary to include three
light flavors with realistic masses will not be available for
many years, it is vital to develop a sound understanding of
how to extrapolate to the physical pion mass. We recently
investigated this problem for the case of the nucleon mag-
netic moments [5].

The cloudy bag model (CBM) [6] is an extension of the
MIT bag model incorporating chiral symmetry. It therefore
generates the same leading non-analytic (LNA) behavior as
chiral perturbation theory (xPT). This model was recently
generalized to allow for variable quark and pion masses in
order to explore the likely mass dependence of the magnetic
moment [5]. This work led to several important results:

(i) A series expansion of Mp(ny In powers of m, is not a
useful approximation for m ., larger than the physical mass.

(i) On the other hand, the behavior of the model, after
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adjustments to fit the lattice data at large m.., was well de-
termined by the simple Padé approximant

Mo
/»Lp(n)=a4_2“ (1)
1+—m,+Bm,,
o

(iii) Equation (1) not only builds in the Dirac moment at
moderately large m2 but has the correct LNA behavior of
chiral perturbation theory:

W= g — @My,

with « a model independent constant, as mf,—>0.

(iv) Fixing a at the value given by chiral perturbation
theory and adjusting o and B to fit the lattice data yielded
values of wu, and w, of (2.85%0.22)uy and (—1.96
+0.16)uy , respectively, at the physical pion mass. These
are significantly closer to the experimental values than the
usual linear extrapolations in m,, .

Clearly it is vital to extend the lattice calculations of
baryon magnetic moments to lower values of m , than the
600 MeV used in the study just outlined. It is also important
to include dynamical quarks. Nevertheless, the apparent suc-
cess of the extrapolation procedure suggested by the CBM
study gives us strong encouragement to investigate the same
approach for baryon miasses.

Accordingly, in this paper we study the variation of the N
and A masses with m, (or equivalently m,). Section II is
devoted to considerations of the low-lying singularities and
pion-induced cuts in the complex plane of the nucleon and A
spectral representation. The analytic properties of the derived
phenomenological form are consistent with both chiral per-
turbation theory and the expected behavior at large m,, . This
phenomenological form is eventually fitted to recent two-
flavor, full QCD measurements made by CP-PACS [3] and
UKQCD [7]. However, to gain some insight into the param-
eters and behavior of the functional form we examine the N
and A masses as described in the CBM in Sec. III In section
IV we apply the analytic form to the lattice data. Section V is
reserved for a summary of our findings.

©2000 The American Physical Society
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FIG. 1. One-loop pion induced self-energy of the nucleon and
the delta.

II. ANALYTICITY

By now it is well established that chiral symmetry is dy-
namically broken in QCD and that the pion is almost a Gold-
stone boson. As a result it is strongly coupled to baryons and
therefore plays a significant role in the N and A self-energies.
In the limit where the baryons are heavy, the pion induced
self-energies of the N and A, to one loop, are given by the
processes shown in Fig. 1. Note that we have restricted the
intermediate baryon states to those most strongly coupled,
namely the N and A states.

The analytic expression for the pion cloud correction to
the masses of the N and A is of the form [8]

5MN=G-NN+0-NA’ (2)
where
3 ,JC‘ k"uiw(k)
Oyw=———=81 | dk—5—— 3)
W lem 2 54 )0 )
3 3 2J'= ; K uya (k)
TN em 2 2554 )y CwBM Fw ()]’
4)
and
5MA:UAA+UAN’ (5)
where

PHYSICAL REVIEW D 61 074502

TALA=ONN> ©®

K uya(k)

T EIC

3 g, f o

TAN= 1671'2f%, 7584 :
We note that AM=M,— My, g,=126 is the axial charge
of the nucleon, w(k)= \Uci-#mz,r is the pion energy and
uyn(k), uya(k), ... are the NN, NAm, ... form factors
associated with the emission of a pion of three-momentum k.
We have used SU(6) symmetry to relate the four coupling
constants to the NN coupling, which, in turn, has been
related to g4/2f,, by chiral symmetry. The form factors arise
naturally in any chiral quark model because of the finite size
of the baryonic source of the pion field—which suppresses
the emission probability at high virtual pion momentum. As
a result, the self-energy integrals are not divergent.

The leading non-analytic contribution (LNAC) of these
self-energy diagrams is associated with the infrared behavior
of the corresponding integrals—i.c., the behavior as k—0.
As a consequence, the leading non-analytic behavior should
not depend on the details of the high momentum cutoff or the
form factors. In particular, it should be sufficient for studying
the LNAC to evaluate the self-energy integrals using a
simple sharp cutoff, u(k)=6(A—k). In Sec. III we shall
compare the results with those calculated using a phenom-
enological, dipole form factor and show that this is in fact an
effective simplification.

Using a @ function for the form factors, the NN and
AA 7 integrals [cf. Figs. 1(a) and 1(d), respectively], which
are equal, are easily evaluated in the heavy baryon approxi-
mation used here:

3 5 [ K
ONN=OAA 16 9,2 0A 0 2(’()=
3¢5 A?
&4 5 [mf,arctan(— + ——Am%,]. (8)
16m2f% w3

The integral corresponding to the process shown in Fig. 1(b),
with a 6 function form factor, may be analytically evaluated.
For m,>AM,

2 Jmi+ A2+ AM+A AM+m,
O'NA=—L2 12(mf,—AM2)3’2 arctan 5 —arctan 5 +3AM(3mf,
2522 ym*:—AM? m:—AM?
\lmz,”+A2+A
—2AM2)ln(——— —3Jmi+ AZAMA+6AM2A—6miA+2A%}, 9)

while for m ,<<AM we find

074502-2
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INaA=

2 2N\372
. W[ —6(AM"—m7)

| VAM =+ \JmZ+ A2+ AM+ A
n
VAM?=m%— ym:+ A —AM~-A

( VAMZ=mZ+ AM+m,,)
—In

\/AMZ—mET—AM—m,,

ImE A+ A
+3AM(3m3,—2AM2)]n(”—;——) —3\/mz,,+A2AMA+6AM2A—6mf,A+2A3]. (10)
k3
Similar results are easily obtained for the process shown in Fig. 1(c). For m,>AM, the analytic form is
g; 12m? — A2 JmZ+AZ—AM+A . AM—m,
Tan=—"——1 — 12(m,— arctan arctan| ————
A 100w JmI—Am? JmZ—AM?
Jmi+ A2+ A
+3AM(3m§,—2AM2)1n("— —3\/mf,+A2AMA—6AM2A+6m3,A—2A3}, (11)

while for m , <AM

2

VAM*—m% 4+ ym2:+ A2—AM+A

8a
oay=—— ! 6(AME-m2)¥| In
A 100w2f3,t ( )

VmZ+ AT+ A

m

+3AM(3m3,—2AM2)1n(

The self-energies involving transitions of N—A or A—N
are characterized by the branch point at m,=AM.

A. Chiral limit

Chiral perturbation theory is concerned with the behavior
of quantities such as the baryon self-energies as m,—0. For
the expressions derived above, this corresponds to taking the
limit m,—0. The leading non-analytic terms are those
which correspond to the lowest order non-analytic functions
of m—i.e., odd powers or logarithms of .. By expanding
the expressions given above, we find that the LNA contribu-
tion to the nucleon/A mass [Eq. (8)] is given by

LNA 2.3
=——gaum,, (13)
N(4) 327Tf3,.gA T

in agreement with a well-known result of yPT [9]. A careful
expansion of the A 7r contribution to the nucleon self-energy,
Eq. (9), yields the LNA term

3g2 32 3

b4 24 9y
T6m2f 25 8AMm,,ln(m,,) (14

UNA(nlv'r ,A

as m,— 0 which is again as expected from yPT [10]. For the
N contribution to the self-energy of the A, the LNA term in
the chiral limit of Eq. (11) yields

3¢5 8 3
L mtin(m,). (15)

VAM?—m? = \m2+ A*+AM—- A

( \/AMz—m§n+AM—m,T”
+In

VAM?—mi-AM+m,

)—3\/m3,+ AZAMA—sAM2A+6m3,A—2A3]. (12)

Of course, our concern with respect to lattice QCD is not
so much the behavior as m,— 0, but the extrapolation from
high pion masses to the physical pion mass. In this context
the branch point at m%=AM? is at least as important as the
LNA near m,=0. We shall return to this point later. We
note that Banerjee and Milana [11] found the same non-
analytic behavior as m ,— AM that we find. However, they
were not concerned with finding a form that could be used at
large pion masses—i.e. one that is consistent with heavy
quark effective theory.

B. Heavy quark limit

Heavy quark effective theory suggests that as m ,— the
quarks become static and hadron masses become propor-
tional to the quark mass. This has been rather well explored
in the context of successful nonrelativistic quark models of
charmonium and bottomium [12]. In this spirit, comections
are expected to be of order 1/m, where m, is the heavy
quark mass. Thus we would expect the pion induced self-
energy to vanish as 1/m, as the pion mass increases. The
presence of a fixed cutoff A acts to suppress the pion in-
duced self-energy for increasing pion masses, as evidenced
by the m? in the denominators of Egs. (3), (4) and (7). While
some m?> dependence in A is expected, this is a second-order
effect and does not alter the qualitative features. By expand-
ing the arctan(A/m,) term in Eq. (8) for small A/m,, we
find

2 5 7
s O(A—4) , (16)
m‘IT

OW=———"5—>
o 1672 f% Sm?
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which vanishes for m,— <. Indeed, in the large m,, (heavy
quark) limit, both Egs. (9) and (11) tend to zero as 1/m?.

C. Analytic form

We now have the chiral and heavy quark limits for each
of the four integrals in Fig. 1. These expressions, which con-
tain a single parameter, A, are correct in the chiral limit—
i.e., they reproduce the first two non-analytic terms of xPT.
They also have the correct behavior in the limit of large pion
mass; namely they vanish like llmf,. The latter feature
would be destroyed if we were to retain only the LNA pieces
of the self-energies as they would diverge at large m ,, faster
than m, . Rather than simplifying our expressions to just the
LNA terms, we therefore retain the complete expressions, as
they contain important physics that would be lost by making
a simplification.

We note that keeping the entire form is not in contradic-
tion with yPT, as we have already shown that the leading
non-analytic structure of yPT is contained in this form.
However, as one proceeds to larger quark (pion) masses,
differences between the full forms and the expressions in the
chiral limit will become apparent. For example, the branch
point at m3,= AM?, which is an essential non-analytic com-
ponent of the m,. dependence of the self-energy and which
should dominate in the region m,~AM, is also satisfactorily
incorporated in Egs. (9) and (11). Yet the LNA chiral terms
given in Sec. II A know nothing of this branch point and are
clearly inappropriate in the region near and beyond m*
=AM>.

As a result of these considerations, we propose to use the
analytic expressions for the self-energy integrals correspond-
ing to a sharp cutoff in order to incorporate the correct LNA
structure in a simple three-parameter description of the m.,
dependence of the N and A masses. In the heavy quark limit
hadron masses become proportional to the quark mass.
Moreover, as we shall see in the next section, the MIT bag
model leads to a linear dependence of the mass of a baryon
on the current quark mass far below the scale at which one
would expect the heavy quark limit to apply. This is a simple
consequence of relativistic quantum mechanics for a scalar
confining field. On the other hand, lattice calculations indi-
cate that the scale at which the pion mass exhibits a linear
dependence on m,, is much larger than that for baryons.! In
fact, over the range of masses of interest to us, explicit lattice
calculations show that m? is proportional to m, . Hence we
can simulate a linear dependence of the baryon masses on the
quark mass, m,, in this region, by adding a term involving
mf,. The functional form for the mass of the nucleon sug-
gested by this analysis is then

My=ay+ Bymi+ ayy(my M)+ oys(m,,A), (17)

'One does not expect such linear behavior to appear for quark
masses lighter than the charm quark mass where the pseudoscalar
mass is 3.0 GeV. Even at this scale the quarks are still somewhat
relativistic.
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while that for the A is
My=ay+ Bami+osa(my, A)+osn(my,A). (18)
The mass in the chiral limit is given by
MY =ay+ ayy(0,A)+ays(0,A), (19)

where the meson cloud effects are explicitly contained in
oyn(0,A)+ aya(0,A). The mass of the A in the chiral limit
is calculated in an analogous way. We know that Eqs. (17)
and (18) have the correct behavior in the chiral limit. Indi-
vidually, they also have the correct heavy quark behavior.>
Between the chiral and heavy-quark limits there are no gen-
eral guidelines, so in the next section we shall compare our
functional form to the cloudy bag model, a successful phe-
nomenological approach incorporating chiral symmetry and
the correct heavy quark limit.

III. BARYON MASSES WITHIN THE CBM

As a guide to the quark mass dependence of the N and A
masses we consider the cloudy bag model [6,13]. This is a
minimal extension of the MIT bag model such that chiral
symmetry is restored, which has proved quite successful in a
number of phenomenological studies of baryon properties
and meson-baryon scattering [6,15-17]. Within the CBM, a
baryon is viewed as a superposition of a bare quark core and
bag plus meson states. The linearized CBM Lagrangian with
pseudovector pion-quark coupling (to order 1/f.) is [18]

L=[q(iy*d,~m,)q—B]y
1_ 1 1
~ 34905+ 5(8,m)° = smaa

Oy

27,

qy*ysTq-d,m, (20)

where B is the bag constant, f, is the 7 decay constant, )y is
a step function (unity inside the bag volume and vanishing
outside) and & is a surface delta function. In a lowest order
perturbative treatment of the pion field, the quark wave func-
tion is not effected by the pion field and is simply given by
the MIT bag solution [19-21].

In principle the wNN form factor can be directly calcu-
lated within the model. It dies off at large momentum trans-
fer because of the finite size of the baryon source. Rather

2With regard to the difference, My— My, heavy quark effective
theory (HQET) suggests that this difference should vanish as m,
—so0, This is only guaranteed by Eqs. (17) and (18) [through Eq.
(16)] if the entire mass difference arises from the pion self-energy.
While one could enforce this condition through the introduction of
additional parameters and a more complicated analytic structure for
the higher-order terms of Eqs. (17) and (18), we prefer to focus on
the regime of mf, from 1 GeV? to the chiral limit. As we shall see,
Egs. (17) and (18) are quite adequate for this purpose.
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FIG. 2. The pion mass dependence of the N and A baryons
generated in the CBM using a dipole form factor with Ap
=1 GeV. Fits of Egs. (17) and (18) to the CBM results are illus-
trated by the curves.

than using this calculated form factor, which is model depen-
dent, we have chosen to use a common phenomenological
form, namely a simple dipole

_ (Ap—p?)?

A+ e

u(k)

where k is the magnitude of the loop (3-)momentum, x is the
physical pion mass (139.6 MeV), and Ap is a regulation
parameter.

In the standard CBM treatment, where the pion is treated
as an clementary field, the current quark mass, m,, is not
directly linked to m,.. Most observables are not sensitive to
this parameter, as long as it is in the range of typical current
quark masses. For our present purpose it is vital to relate the
m,, inside the bag with m . Current lattice simulations indi-
cate that m? is approximately proportional to m 4 over a wide
range of quark masses [3]. Hence, in order to model the
lattice results, we scale the mass of the quark confined in the
bag as m,= (m,,/,u)szlo) , with mflo) being the current quark
mass corresponding to the physical pion mass u. mflo) is
treated as an input parameter to be tuned to the lattice results,
but in our magnetic moment study it turned out to lie in the
range 6—7 MeV, which is very reasonable.

The parameters of the CBM are obtained as follows. The
bag constant B and the phenomenological parameter z,, are
fixed by the physical nucleon mass and the stability
condition,® dMy/dR =0, for a given choice of R, and mflo) .
For each subsequent value of the pion mass or the quark
mass considered, w, and R are determined simultaneously
from the linear boundary condition [19-21] and the stability
condition. In this work we have calculated the mass of the N
and A baryons as a function of squared pion mass (as illus-
trated in Fig. 2). The A calculation is similar to that for the

3Note that while Zo.B and the wNN form factor may all depend
on m,, this dependence is expected to be a smaller effect and we
ignore such variations in order to avoid an excess of parameters.
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TABLE 1. Parameters for fitting Eqs. (17) and (18) to the CBM
data. Here we have taken Ro=1.0 fm and mflo)=640 MeV. The
Error column denotes the relative difference from the experimental
values which were used as a constraint in generating the CBM data.

Baryon a B A Mg Error
(GeV)  (GeV™hH (GeV)  (GeV)

N 1.09 0.739 0.455 0.948 0.8%

A 1.37 0.725 0.419 1.236 0.3%

N; however, the value of B is fixed to be the same as that
used for the nucleon, while z, is adjusted to fit the observed
mass difference, taking into account the pionic contribution
to this quantity, at the physical value m,=u (mq=m;°)).

As expected on quite general grounds (and discussed in
Sec. II), as the pion mass increases the mass of the baryon
does indeed become linear in mZ . In addition, from the cur-
vature at low pion mass, we see that the non-analytic struc-
ture is important in the region m., below 400 MeV.

We now fit our functional forms for the baryon masses,
Eqgs. (17) and (18), to the CBM data. We note that the CBM
data are generated using a phenomenologically motivated,
dipole form factor, whereas the functional form used in the
fit involves a 6 cutoff. In order to simulate the fitting proce-
dure for lattice data, our fit to the CBM results involves only
pion masses above the physical branch point at My=My,
followed by an extrapolation to lower pion mass.

It can be seen from Fig. 2 that our extrapolation to the
physical pion mass is in good agreement with the CBM cal-
culations: at the physical pion mass the extrapolated N mass
is within 0.8% of the experimental value to which the CBM
was fitted, while the A is within 0.3% of the experimental
value. We present the parameters of our fit in Table 1. The
value for the sharp cutoff (A) is 0.44(2) GeV, compared to
Ap=1 GeV for the dipole form factor.

It was noted in Sec. II that the constant « in our func-
tional form is not the mass of the baryon in the chiral limit,
but rather this is given by Mﬁ))= ay+ oyn(0,A)

0.00 T T T T T
-0.05 e S st = g
-0.10 | sl e
- —_—
- / ===
3—0.15 " 7
0-0.20 = 4
-—- N
—-0.25 —-—- AN b
—0.30 XPT LNA term |
1 L 1

—0.35 — !
0.0 8 1.0 1.2

0.2 0.4 0.6 0.
m 2 (GeV?)

FIG. 3. Pion induced self-energy corrections for a 1 GeV dipole
form factor. The LNA term of yPT tracks the NN contribution up
to m,.~0.2 GeV, beyond which the internal structure of the
nucleon becomes important.
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FIG. 4. Comparison between the nucleon and A self-energies,
oyy and o,y, calculated using a dipole form factor (solid and
long-dash-dotted curves, respectively) and fits using the form «
+ Bm3,+ g;i(m,,\), based on a sharp cut-off in the momentum of
the virtual pion (dashed and short-dash-dotted curves respectively).

+ oy (0,A)—with an analogous expression for the A. We
find that the extrapolated N and A masses in the chiral
[SU(2)-flavor] limit are (MY ,M{’)=(905,1210) MeV,
compared with the CBM values (898,1197) MeV.

The mass dependence of the pion induced self-energies,
a;;, for the 1 GeV dipole form factor, is displayed in Fig. 3.
The choice of a 1 GeV dipole corresponds to the observed
axial form factor of the nucleon [22], which is probably our
best phenomenological guide to the pion-nucleon form factor
[23]. We note that oy tends to zero smoothly as m . grows
and it is only below m%~0.3 GeV? that there is any rapid
variation. That this behavior cannot be well described by a
polynomial expansion is illustrated by the dotted curve in
Fig. 3. There we expanded oy about m,=0 as a simple
polynomial, a+ ,Bmf,+ 'ym?”, with v fixed at the value re-
quired by chiral symmetry. Clearly the expansion fails badly
for m . beyond 300-400 MeV.

The behavior of the Nar contribution to the self-energy of
the A is especially interesting. In particular, the effect of the

22 — ———
2.0 | P
+
18 - + T A
16 | -
+
-
14 b - - -

=
1.2 ://{ -

Hadron Mass (GeV)
AN
\

Lo |3

08 1 | 1 i
00 0.2 0.4 06 0.8 10 1.2
m ? (GeV?)
FIG. 5. Baryon masses calculated by UKQCD (open points) and
CP-PACS (solid points), as a function of m2 . The solid (dashed)
curve illustrates a fit to the combined data sets for N (A). The

leftmost data points are our extrapolated values of the baryon
masses at the physical pion mass.
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FIG. 6. UKQCD and CP-PACS baryon masses with 5% adjust-
ments in the scale parameters to improve the agreement between the
two data sets. (The key is as described in Fig. 5.)

branch point at m_, =AM is seen in the curvature at m?
~0.1 GeV2. For comparison, we note that while there is
also a branch point in the nucleon self-energy at the same
point—see Eq. (9)—the coefficient of (m%—AM?)>? van-
ishes at this point. As a consequence there is little or no
curvature visible in the latter quantity at the same point. The
correct description of this curvature is clearly very important
if one wishes to obtain the AN mass difference at the physi-
cal pion mass. The fact that, as shown in Fig. 2, our simple
three parameter phenomenological fitting function can repro-
duce N and A masses within the CBM, including this curva-
ture, suggests that this should also provide a reliable form for
extrapolating lattice data into the region of small pion mass.

Figure 4 illustrates the degree of residual model depen-
dence in our use of Egs. (17) and (18). There the variation of
the nucleon self-energy, opy, calculated with a 1 GeV di-
pole form factor (solid curve) is fit using the form «
+,Bm3r+ oyn(m,,A) (dashed curve, with &=—0.12 GeV,
B=0.39 GeV~! and A=0.57 GeV). Note that the devia-

2.2 T T T T T
2.0
1.8
1.6
14

1.2

Hadron Mass (GeV)

1.0

08 [° -

0.8 10 1.2

0'6 | 1 !
00 0.2 0.4 06
m 2 (GeV?)

FIG. 7. UKQCD and CP-PACS uucleon masses with scale pa-
rameters adjusted by 5%. The data are as described in Fig. 5. The
dashed lines represent fits without the point at 0.1 GeV2. The solid
lines include this point. The top pair of lines are fits with A fixed at
0.455 GeV, a value preferred on the basis of our CBM analysis. The
bottom pair have A as a fit parameter.
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TABLE II. Parameters for fits of Eqs. (17) and (18) to lattice data. Here we fix A (Ay=0.455 and
A,=0.419) and vary « and . The mass of the baryon at the physical pion mass is My (M ,) and the mass
in the chiral limit is M;?) M (AO)). The scaling columns represent adjustments to the scale parameters pro-

viding physical dimensions to the lattice data.

Scaling N A
CP-PACS  UKQCD @ B My MY @ B M, M
(GeV) (GeV™hH  (GeV) (GeV) (GeV) (GeV™!) (GeV) (GeV)
0% 0% 1.10 0.778 0954 0910  1.29 0.680 1.150  1.125
+5% -5% 1.15 0.736 1.003 0961 1.36 0.602 1227 1.203
0% —10% 1.10 0.767 0.957 0914 131 0.624 1.169  1.145
+10% 0% 1.20 0.707 1.050  1.008  1.42 0.581 1285  1.262

tions are at the level of a few MeV. For the A the self-
energy, oy, is again calculated using a 1 GeV dipole form
factor and fit with our standard fitting function, o+ ,Bmf,
+oan(m,,A). The quality of the fit (with a=
~0.062 GeV, 8=0.024 GeV~'and A=0.53 GeV) is not
as good as for the nucleon case. Nevertheless, the difference
between the two curves at the physical pion mass (vertical
dotted line) is only about 20 MeV. At the present stage of
lattice calculations this seems to be an acceptable level of
form factor dependence for such a subtle extrapolation.

IV. LATTICE DATA ANALYSIS

We consider two independent lattice simulations of the N
and A masses, both of which use improved actions to study
baryon masses in full QCD with two light flavors. The CP-
PACS [3] lattice data are generated on a plaquette plus rect-
angle gauge action with improvement coefficients based on
an approximate block-spin renormalization group analysis.
The O(a)-improved Sheikholeslami-Wohlert clover action is
used with a mean-field improved estimate of the clover co-
efficient cgy=1.64—1.69. This estimate is likely to lie low
relative to a nonperturbative determination [14] and may
leave residual O(a) errors.
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FIG. 8. UKQCD and CP-PACS A-baryon masses with scale
parameters adjusted by 5%. The data are as described in Fig. 5. The
dashed lines represent fits without the point at 0.1 GeV?. The solid
lines include this point. The top pair of lines are fits with A fixed at
0.419 GeV, a value preferred on the basis of our CBM analysis. The
bottom pair have A as a fit parameter.

Ideally one would like to work with lattice data in which
the infinite-volume continuum limit is taken prior to the chi-
ral limit. Until such data are available, we select results from
their 12332 and 16>X32 simulations at 8=1.9. Lattice
spacings range from 0.25 fm to 0.19 fm and provide physical
volumes of 2.7 fm to 3.5 fm on a side. While the volumes are
large enough to avoid significant finite volume errors, the
coarse lattice spacings necessitate the use of improved ac-
tions. Systematic uncertainties the order of 10% are not un-
expected.

The UKQCD [7] group uses a standard plaquette action
with the O(a)-improved Sheikholeslami-Wohlert action. At
a 3 of 5.2, UKQCD uses cgw= 1.76, which is lower than the
current non-perturbative value [14] of 2.017, again leaving
some residual O(a) errors. Lattice spacings are necessarily
smaller, ranging from 0.13 to 0.21 fm. We select their 12°
X 24 data set as providing better statistical errors than their
largest volume simulation. Physical volumes are 1.6-2.6 fm
on a side, suggesting that finite volume errors may be an
issue on the smallest physical volume where the dynamical
quark mass is lightest.

In full QCD, the renormalized lattice spacing is a function
of both the bare coupling and the bare quark mass. In order
to determine the lattice spacing, the UKQCD Collaboration
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FIG. 9. A comparison between phenomenological fitting func-
tions for the mass of the nucleon. The two parameter fit corresponds
to using Eq. (22) with y set equal to the value known from yPT.
The three parameter fit corresponds to letting y vary as an uncon-
strained fit parameter. The solid line is the fit for the functional
form of Eq. (17), fit (d) of Table IIIL.
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TABLE III. Parameters for the fits shown in Fig. 7. Parameter
sets (a) and (b) are obtained by excluding the lowest data point from
the fit, while (c) and (d) include it. Parameter sets (a) and (c) are fits
with 3 parameters, and sets (b) and (d) are fits with A fixed to the
phenomenologically preferred value.
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TABLE IV. Parameters for the fits shown in Fig. 8. Parameter
sets (a) and (b) are obtained by excluding the lowest data point from
the fit, while (c) and (d) include it. Parameter sets (a) and (c) are fits
with 3 parameters, and sets (b) and (d) are fits with A fixed to the
phenomenologically preferred value.

Fit a B A My Fit ! B A My
(GeV) (GeV™hH (GeV) (GeV) (GeV) (GeV™h (GeV) (GeV)
(a) 1.76 0.386 0.789 0.763 (a) 1.64 0414 0.683 1.042
(b) 115 0.727 0.455 1.010 (b) 137 0.587 0.419 1.240
(c) 142 0.564 0.661 0.870 () 1.54 0.475 0.616 1.095
(d) 1.15 0.736 0.455 1.003 (d) 1.36 0.602 0.419 1.230

calculates the force between two static quarks at a distance
ro [24], while CP-PACS considers the string tension directly.
While the two approaches yield similar results in the
quenched approximation, string breaking in full QCD may
introduce some systematic error in the extraction of the
string tension at large distances. In fact we find that the two
data sets are consistent, provided one allows the parameters
introducing the physical scale to float within systematic er-
rors of 10%. A thorough investigation of these systematic
errors lies outside the scope of this investigation. Instead we
simply rescale the UKQCD and CP-PACS data sets in com-
bining them into a single, consistent data set.

We begin by considering the functional form suggested in
Sec. IT with the cutoff A fixed to the value determined by
fitting the CBM calculations. The resulting fits to the baryon
masses are shown in Fig. 5 for the unshifted lattice data and
Fig. 6 where each data set is adjusted by 5% to provide
consistency. The extrapolations are indicated by the solid
(dashed) curve for N (A). The resulting fit parameters and
masses* are listed in Table 1L

In examining fits in which the cutoff is allowed to vary as
a fit parameter, we found it instructive to also study the de-
pendence of the fit on the number of points included. This
dependence is shown for the N in Fig. 7 and for the A in Fig.
8. In particular, we compare fits including the lowest lattice
point (at around 0.1 GeV?) and then excluding it. When we
fix the value of A the fits are stable and insensitive to the
lowest point. They tend to lie slightly above the lowest data
point. However, given the caution expressed by the CP-
PACS Collaboration for the lowest point, we view these fits
as reasonably successful. In contrast, when the value of A is
treated as a fitting parameter, it is sensitive to the inclusion
of the lowest point. Hence, to perform model independent
fits, it is essential to have lattice simulations at light quark
masses approaching m%~0.1 GeV?. An analysis of the cur-
rent data suggests A=0.661 GeV and provides a nucleon
mass 130 MeV lower than the CBM-constrained fit. Tables
I and IV summarize parameters and physical baryon
masses for N and A respectively.

“The errors bars for the extrapolated baryon masses at the physical
pion mass displayed in the figures are naive estimates only. We are
unable to perform a complete analysis without the lattice results on
a configuration by configuration basis.

It is common practice in the lattice community to use a
polynomial expansion for the mass dependence of hadron
masses. Motivated by yPT the lowest odd power of m , al-
lowed is m?>

My=a+ Bmi+ym’. (22)

The results of such fits are shown in Figs. 9 and 10 for N and
A respectively. The corresponding parameters are reported in
Table V. As can be seen in Table V, the coefficient of the m>,
term, which is the leading non-analytic term in the quark
mass, disagrees with the coefficient known from yPT by
almost an order of magnitude. This clearly indicates the fail-
ings of such a simple fitting procedure. We recommend that
future fitting and extrapolation procedures should be based
on Egs. (17) and (18), which are consistent with yPT and the
heavy quark limit.

V. SUMMARY

In the quest to connect lattice measurements with the
physical regime, we have explored the quark mass depen-
dence of the N and A baryon masses using arguments based
on analyticity and heavy quark limits. In the region where
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FIG. 10. A comparison between phenomenological fitting func-
tions for the mass of the A. The two parameter fit corresponds to
using Eq. (22) with vy set equal to the value known from yPT. The
three parameter fit corresponds to letting 7y vary as an unconstrained
fit parameter. The solid line is the fit for the functional form of Eq.
(18), fit (d) of Table IV.
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TABLE V. Parameter sets for the fits shown in Figs. 9 and 10. Set (a) is for the 2 parameter fit of Eq. (22)
with y from yPT, (b) for the 3 parameter fit of Eq. (22), and (c) for the preferred functional form.
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N A
Fit a B yor A My @ B yor A M,
(GeV) (GeV™!) (GeV7™?3) or (GeV) (GeV) (GeV) (GeV™!) (GeV™%) or (GeV) (GeV)
(a) -0.128  7.38 —5.60 —0.001 0.182 7.09 —5.60 0.304
(b) 0912 1.69 —-0.761 0943  1.18 1.45 -0.703 1.202
() 115 0.736 0.455 1003 137 0.602 0.419 1.227

m, is larger than 500 MeV, the lattice data can be reasonably
well described by the simple form a+ ,Bmfr, which is linear
in the quark mass. The additional curvature associated with
chiral corrections only appears below this region. This can
be understood quite naturally within chiral quark models,
like the cloudy bag, which lead to a cutoff on high momen-
tum virtual pions, thus suppressing the self-energy diagrams
quite effectively as mfr increases. The pionic self-energy dia-
grams which we consider are unique in that only these dia-
grams give rise to the leading non-analytic behavior which
yields a rapid variation of baryon masses in the chiral limit.
Loops involving heavier mesons or baryons cannot give rise
to such a rapid variation.

Based on these considerations, we have determined a
method to access quark masses beyond the regime of chiral
perturbation theory. This method reproduces the leading
non-analytic behavior of yPT and accounts for the internal
structure of the baryon under investigation. We find that the
predictions of the CBM, and two flavor, dynamical fermion
lattice QCD results, are succinctly described by the formulas
of Egs. (17) and (18) with terms defined in Egs. (8)-(12).
We believe that Egs. (8)—(12) are the simplest one can write
down which involve a single parameter, yet incorporate the

essential constraints of chiral symmetry and the heavy quark
limit.

Firm conclusions concerning agreement between the ex-
trapolated lattice results and experiment cannot be made un-
til the systematic errors can be reduced below the current
level of 10% and accurate measurements are made at m,,
~300 MeV or lower. The significance of non-linear behav-
ior in extrapolating nucleon and A masses as a function of
m? to the'chiral regime has been evaluated. We find that the
leading non-analytic term of the chiral expansion dominates
from the chiral limit up to the branch point at m,=AM. The
curvature around m =AM, neglected in previous extrapola-
tions of the lattice data, leads to shifts in the extrapolated
masses of the same order as the departure of lattice estimates
from experimental measurements.
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