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Abstract

Zerotree coding algorithms are known to be very efficient in coding wavelet transform images,
in terms of coding complexity. However, zerotree coding algorithms suffer from a large coding
memory requirement. Therefore, in order to solve this problem, this thesis proposes a zerotree
coding algorithm called listless zerotree coding for image and video compression. The pro-
posed coding algorithm significantly reduces the coding memory requirement and has simpler
coding complexity than any other published zerotree coding algorithm. Therefore, the proposed

algorithm is more suitable for hardware implementation than others.

We begin our discussion by looking at rate-distortion optimization, which is the fundamen-
tal consideration behind image and video compression. That is, the goal of image and video
compression is to use a small amount of bit-budget to encode as much information as possible
for a given distortion. To this end, we need to identify what sort of visual information is more
important to our visual system, and what sort of information is not. Therefore, in this thesis
we also investigate the characteristics of the human visual system that are related to image and

video compression, and how we can apply those characteristics to the compression scheme.

In a large portion of this thesis, we focus our discussion on the proposed listless zerotree
coding algorithm. We first discuss the application of the listless zerotree coding algorithm in
still color image compression. The discussion includes the mapping of visual system charac-
teristics to the coding algorithm, details of algorithm implementation, and the implementation
options. After that, we discuss the application of listless zerotree coding algorithm in color
video compression. The discussion includes 3D wavelet transform and 3D zerotree data struc-
ture, as well as implementation details and options. Based on the experimental results, we can
see that the proposed listless zerotree coding algorithm performs just as well as the benchmark

zerotree algorithms and compression standards.

At the end of this thesis, we suggest two possible extensions for improving the coding per-

formance and adding some functionalities to our listless zerotree algorithm.
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Chapter 1

Introduction

1.1 Some Thoughts

Beautiful pictures are worth thousands of words. In recent years the Internet and telecom-
munication boom has brought us from the traditional text and voice communication to a new
dimension of multimedia communication, mostly involving images and videos. However, those
images and videos not only are worth thousands of words, but also cost millions of bytes of
data traffic or computer storage. For example, a raw Common Intermediate Format (CIF) video
frame requires 297KB of storage space, so one second of CIF video with the frame rate of 30
frames per second (fps) will require about 8.7 MB of storage space. Consequently, the dra-
matically large data size or high data traffic is the price we have to pay when shifting from

conventional communication to multimedia communication.

Data communication between two points is achieved either by wired physical cables, or wire-
less electromagnetic waves. However, the data transmission rate is limited by the bandwidth of
the wire or wireless distribution channels. Therefore, trying to transmit the raw digital image
or video data through a limited-bandwidth distribution channel will be very inefficient. For
example, a distribution channel having a bandwidth of 256 kilobits per second (kps) can only
transmit 1.3 fps of uncompressed monochrome Quarter CIF (QCIF) video.

Besides transmitting through distribution channels, data communication can also be carried
out by saving the data to a storage device at one location and retrieving the data from the storage
device at another. Similar to transmission channels, storage devices also have a limited capacity,
so it is not economical to store uncompressed image and video data in a limited-capacity storage
device. For instance, a 650 MB compact disk (CD) can only store about 2240 uncompressed
CIF video frames, or an equivalent of a 74-second video at 30 fps.




1.2. Foundations

Therefore, in order to improve the transmission and storage efficiency, raw image and video
data will have to be compressed to reduce their size. After compression, more image and
video data can then be transmitted or stored, which in turn increases the amount of information
communicated.

1.2 Foundations

A simple image and video data transmission model is shown in Figure 1.1. The transmitter takes
and encodes the input image or video data at the source, and transmits the encoded bit-stream
through the channel. The receiver takes the bit-stream and performs the inverse operation to the
transmitter to produce the output image and video data at the destination. It is convenient to
separate the function of the transmitter into source coding and channel coding. Source coding is
aimed at determining what information is important, and how to effectively represent this infor-
mation, while channel coding is aimed at determining how to transmit the source information,

so that the errors caused by the channel noise can be minimized.

channel
Input ) ) Output
Images/video Transmitter Receiver Images/video
Source Noise Destination

Figure 1.1: A simple image/video data transmission model

An ideal case for this transmission model is that both input and output data are identical. In
the real application, channel noise is always present, regardless of the channel types, so there is
some possibility that the image or video data may be corrupted during transmission. However,

Shannon, in his Fundamental Theorem for a Discrete Channel with Noise [1], stated that

“It is possible to send information at the rate C' through the channel with as

small a frequency of errors or equivocation as desired by proper encoding.”

Shannon also defined the signal Entropy, which is the minimum number of bits required to

encode a given signal. The signal Entropy is given by

N

H=—" P(i)loga(P(3)), (1.1)

i=1
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where N is the number of independent source symbols and P (%) is the probability of occurrence
of symbol 7. Assuming that the Entropy of source symbols is H symbols per second and the
channel capacity is C' symbols per second, if a suitable channel code is used to encode arbitrary
source symbols and satisfies H<C, then those symbols can be transmitted via an arbitrary
channel with the best possible quality. However, we will focus the scope of this thesis on source

coding, and we will assume the transmission channels are lossless in this thesis.

The image source coding can be lossless or lossy: in the former case the operation is in-
vertible, and the image is perfectly reconstructed; while in the later case the operation is not
invertible, and an approximate version of the image is produced. Since the size of video data
is enormous compared to that of images, it is only practical to compress video with loss. In
this thesis we will only consider lossy image and video compression, due to its wider practical
applications.

The theoretical discipline behind lossy compression is the rate-distortion theory [2, 3], which
optimizes the compressed bit-rate (F) and the distortion (D) from the viewpoint of information
theory. A typical rate-distortion function of a source coding scheme is shown in Figure 1.2.

Assuming constant source data, the maximum acceptable distortion is D,,,;, and the rate with-

R

4

R(0) <H

R(D)

'

Dmax

Figure 1.2: A typical rate distortion function

out distortion is R(0), which is equal to or smaller than the source entropy H. The function
R(D) determines the bit-rate at which the source generates information. It suggests that in or-
der to reduce the source bit-rate, the fidelity of source image or video will have to be sacrificed.
That is, source image and video will have to be encoded at a bit-rate that is lower than their en-
tropy. However, the bit-rate should be subject to the constraint that the viewer can tolerate the
average distortion D, so the compression scheme should also attempt to minimize the distortion

of the reconstructed information. Therefore, the major goal of image and video compression is

3



1.3. The Scope of the Thesis

to minimize the source bit-rate, but at the same time also minimize the distortion for a given
rate. The trade-off between rate and distortion is often referred as rate-distortion optimization,
which can be formulated as

mgn R(D) or m}%n D(R). (1.2)

Intuitively, the rate-distortion can be optimized by using less of the coding bit-budget to code
the information that has more contribution in minimizing the distortion on the reconstructed vi-
sual data. In order to achieve a better rate-distortion optimization, we then have to ask ourselves

two essential questions:

Question 1.

What types of information are most important for minimizing distortion?

Question 2.
How can we effectively encode those important types of information using less of the
coding bit-budget?

As the reconstructed image and video are to be viewed by the human viewers, we should
refer to the distortion in Question 1 as the visual imperfection of the perceived image or video
quality. Therefore, the more important types of information for minimizing the distortion will be
those that are perceptually more important to our visual system. After identifying this visually
important information, we can then apply a bit-allocation scheme to encode the information.
The performance of an image and video coding algorithm will then mainly depend on how good
the bit-allocation scheme is. However, finding an effective bit-allocation scheme is still one of
the most active research topics in the image compression societycommunity, and an optimal

scheme is yet to be found.

1.3 The Scope of the Thesis

Although the development of the Internet and mobile communications has opened up a new field
for multimedia data communications, the limited transmission bandwidth is still a critical issue
for such applications. Therefore, from the viewpoint of transmission efficiency, multimedia
data will have to be transmitted at low bit-rate, a transmission rate which is much lower than

the signal entropy.

Among all the compression schemes, only the wavelet compression scheme can achieve a
satisfactory coding quality at low bit-rate, whereas the current image and video compression

standards will simply fail to maintain an acceptable coding quality, if the bit-rate is too low.
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Among the wavelet compression schemes, the zerotree algorithm not only has a comparatively
low coding complexity, but also has the desirable quality scaling feature, which is suitable for
heterogeneous channel capacity. The quality scaling feature is also known as embededness.
In spite of those advantageous features, all zerotree image and video coding algorithms suffer
from a severe high coding memory requirement for maintaining the coding lists. Besides, the
coding complexity of zerotree coding algorithms can be further simplified for both software and
hardware implementation.

Therefore, the major goal of this thesis is to derive a zerotree image and video coding algo-
rithm that has a much lower coding memory requirement and a much simpler coding complex-
ity. In this thesis, we will also focus the discussion on image and video compression related
topics: the characteristics of the human visual system for identifying visually important in-
formation; visual data correlation and redundancy for obtaining a more compact visual data
representation; an image and video coding scheme which exploits human visual characteristics

and data redundancy.

1.4 Contributions of the Thesis

The contributions made in this thesis are as follows:

Firstly, this thesis provides a review of the psychophysical and physiological aspects of the
human visual system. In particular, this thesis critically reviews the human vision characteristics

that can be exploited for image and video compression.

Secondly, this thesis gives a critical discussion of visual data correlations, and suggests cod-

ing processes to reduce the redundancies caused by data correlation.

Thirdly, this thesis provides an overview of general visual data compression schemes, and

the methods used to assess compression quality.

Fourthly, this thesis critically reviews the current zerotree image and video compression
algorithms, and identifies the drawbacks of those algorithms to open a gap for the proposed
algorithm of this thesis.

Finally, the major contribution of this thesis is to propose a zerotree image and video coding
algorithm that has a significant improvement in the coding memory requirement and the coding
complexity, which gives two advantages over other zerotree algorithms. The first advantage is
that the proposed algorithm is more suitable for real-time software implementation, as a real-

time software codec requires a fast and low complexity coding process, as well as a low memory
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overhead. The second advantage is that the proposed algorithm gives a lower cost, lower power
consumption hardware implementation than other zerotree algorithms. The reduction in imple-
mentation cost is the direct result of the reduction in the coding memory requirement and coding
complexity, and the reduction in power consumption is the indirect result of the reduction in the
coding memory requirement and coding complexity. The power consumption is proportional to
the number of hardware operations [4, 5, 6, 7]. Therefore, a smaller number of operations, as
a result of the reduction of coding memory requirement and the coding complexity, will reduce

the power consumption.

This proposed low memory, low complexity zerotree coding algorithm was firstly derived

for color image coding, and later extended to color video coding.

1.5 Thesis Outline

This thesis is organized as follows.

Chapter 2 gives a review of the human visual system, including the visual pathway, the
visual characteristics, and color vision. From the review we will be able to understand how
our visual system processes the visual signals and how the visual signals are represented, so
that we can mimic those processes and signal representation in visual data coding. Also, by
understanding the characteristics of our visual system, we will be able to know what types of
visual signals are more important to our visual system, so that we can derive a better rate-

distortion optimization scheme to improve compression results.

Chapter 3 discusses the color space transform, wavelet transform, and entropy coding. Their
functions are to reduce visual data correlations for obtaining a data representation that has a
possibly small amount of visual redundancy. The color space transform and wavelet transform
are closely related to human visual system characteristics, as they process the visual data in a
way similar to our visual system, so that we can make use of human visual characteristics in
visual data compression. On the other hand, entropy coding is based on information theory and
is applied to the compressed bit-stream for obtaining a more compact data representation by
reducing the probability redundancy. Those processes are essential for improving compression

performance.

Chapter 4 reviews general visual data compression schemes and the compression quality
assessment methods. The discussion of the visual data compression schemes provides a general
classification of the available options and gives an idea of how the algorithm proposed in this

thesis compares with those compression schemes. The quality assessment is important not only
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to let us know the performance of each compression scheme, but also to provide information on

how to improve compression performance.

Chapter 5 discusses zerotree coding theory in detail. Following the discussion of the theory,
the key zerotree image and video coding algorithms that are related to the works of this thesis
are reviewed. The drawbacks of those zerotree coding algorithms are also identified in this

chapter.

Chapter 6 presents a zerotree image coding algorithm that overcomes the drawbacks of the
other zerotree algorithms identified in chapter 5. This algorithm is named the Listless Zerotree
Coding (LZC) algorithm because it does not use any coding lists, which are normally found in
other zerotree algorithms. The theory, coding procedures, and the pseudo-code for the actual
software implementation of LZC are also presented in this chapter. The experimental results
obtained from the LZC test codec are presented in a variety of parameters and are compared to
current benchmark algorithms.

Chapter 7 presents a video compression algorithm which is an extension of the LZC al-
gorithm presented in Chapter 6. Since this video coding algorithm exploits a 3-dimensional
wavelet transform for temporal-spatial data decorrelation, it is called 3-dimensional listless ze-
rotree coding (3DLZC) algorithm. 3DLZC also inherits the features of simple coding complex-
ity and low coding memory requirement from LZC. The experimental results obtained from the
3DLZC test codec are presented and compared to the benchmark algorithms at the end of this
chapter.

Chapter 8 suggests two possible extensions that can be implemented into the LZC and
3DLZC algorithm. These extensions include the use of frequency weighting to scale the wavelet
subbands to match their corresponding contrast sensitivity functions and the use of video con-

tent separation for adding some functionalities to the video coding algorithm.

Chapter 9 summarizes the contributions of this thesis, and makes some concluding remarks,

as well as some recommendations for future work.
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Chapter 2

The Human Visual System

2.1 Introduction

In order to achieve an image compression with minimal visual distortion, we need to understand
what kind of visual information humans cannot perceive, so we can discard it entirely; what kind
of visual information is more important than others, so we can allocate more coding bit budget to
encode it. Therefore, this chapter reviews the human visual system (HVS), including the visual
pathway, color vision and visual system models. This chapter also identifies some fundamental
characteristics of the human visual system that are useful from the image compression point of
view. This chapter will only give a brief review of the human visual system. For more details
on the human visual system, readers are directed to two books written by Hubel [8] and by
Wandell [9].

2.2 The Visual Pathway

This section reviews how visual information reaches the brain and how the visual system pro-

cesses and interprets visual information.

The visual pathway consists of three stages: retina, lateral geniculate nucleus (LGN) and
visual cortex. Figure 2.1 illustrates those three stages of the visual pathway and the types of
information carried by the pathway. In the figure, green ellipses represent receptors in the retina
and yellow circles represent visual neurons. This figure only shows the pathway in one side of

the brain.

The retina, which initiates the vision, is a thin layer of neural tissue in the eye. It contains

three main types of cells, namely, receptors, bipolar cells and ganglion cells. In Figure 2.1,
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Figure 2.1: The visual pathway

receptors are colored green and the other two types of retinal cells are colored yellow. The
function of receptors is to translate light energy into nerve signals. Receptors are connected by
bipolar cells to ganglion cells. Ganglion cells receive signals from a number of receptors and
transport the nerve signals via their axons, long and thing neuron extensions from cell bodies,

to the LGN. The axons of ganglion cells are bundled and leave the eye through the optic nerves.

The receptor to ganglion cell ratio is about 125:1, which implies a signal compression oc-
curring along the visual pathway [9]. This compression is achieved by replacing photographic
image information with its shape, color and motion information, which is then encoded by
midget ganglion cells and parasol ganglion cells. The axons of midget ganglion cells form
the parvocellular pathway, while the axons of parasol ganglion cells form the magnocellular
pathway. The parvocellular pathway carries chromatic, slow, low contrast and high resolution
signals which are important for conscious perception; whereas, the magnocellular pathway car-

ries achromatic, fast, high contrast and low resolution signals which are important for reflex

10



2.3. Fundamental Properties of the HVS

action [10].

The LGN is the second stage of the visual pathway. Signals carried by the parvocellular
pathway arrive at the parvocellular layers of the LGN, whereas signals carried by the magno-
cellular pathway arrive at the magnocellular layers of the LGN. The function of the LGN is not
well understood, but an LGN in each side of the brain receives signals from both retinas and

transports these signals to the visual cortex at the same side of the brain.

The visual pathways remain segregated until they arrive at the visual cortex, the third stage
of the visual pathway. Nerve signals in both magnocellular and parvocellular pathways are then
processed and interpreted by the visual cortex. The visual cortex is divided into area V1 (the
primary visual cortex), area V2, area V4, and area MT. Neurons in these cortical areas are tuned
to specific signal properties such as orientation, form, color, spatio-temporal frequency, stereo
information, or motion. Therefore, these cortical areas process and interpret signals that their

neurons are tuned to.

Area V1 is the most important area of the visual cortex. It processes and interprets signals
from both magnocellular and parvocellular pathways that enable us to see things. Loss of area
V1 will result in a total loss of our vision. The functions of the other cortical areas are as follows.
Area V2 processes and interprets color, form and stereo signals from area V1; area V4 receives
color signals from area V2 for further color interpretation; area MT interprets movement signals

from area V1 and stereo signals from both area V1 and V2.

In short, the visual information decomposition along the visual pathway and the tuning of
cortical neurons have inspired algorithms that decompose images into different channels in a
similar fashion. Multichannel vision models and multichannel image decomposition algorithms
that simulate the visual pathway and cortical areas in processing visual information will be
discussed later in Section 2.4.

2.3 Fundamental Properties of the HVS

2.3.1 Luminance Sensitivity

The brightness of an object is defined as the perceived luminance by the human visual system.
However, the perception of brightness is known to be a nonlinear function of the light incident
on the eye [11](ch. 2). The brightness of an object depends on the luminance of the surrounding
objects. In other words, two objects with the same luminance or intensity but different surround-

ing objects could have different perceived brightness. This phenomenon is called simultaneous
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(@) (b)

Figure 2.2: Simultaneous Contrast: (a) small squares with the same luminance but
different perceived brightness (b) small squares with different luminance but similar

perceived brightness

contrast.

Figure 2.2 illustrates the simultaneous contrast phenomenon with two examples. In Figure
2.2(a), two small squares have the same luminance but different perceived brightness. Due to
different surrounding luminance, the small square on the right appears darker than the one on
the left. On the other hand, in Figure 2.2(b), two small squares have quite different luminance,
but with the surrounding luminance they appear to have similar brightness. The reason is that
although the human vision perception can adapt to an enormous range of light intensity, of
the order of 10'°, it cannot simultaneously operate over such a range. Instead, it can only
discriminate a comparatively small range of light intensity levels simultaneously, due to its
brightness sensitivity adaption. That is, the human visual system is sensitive to luminance

contrast rather than the absolute luminance levels {12](ch. 3).

Weber’s Law characterizes the ability of human visual system to discriminate between changes
in brightness at a given brightness adaption level. Suppose that the surrounding luminance is
L, the current brightness adaption level, and the object luminance is L,. If L, is just noticeably
different from L, then their ratio is

|Ls — L,| AL
L L,
where AL = |L, — L,| and Ac is a constant. The constant Ac varies depending on the bright-

~ A(logL) = Ac 2.1)

ness discrimination of the viewer. If the value of Ac is small, then the viewer is said to have
good brightness discrimination. In contrast, if the value of Ac is large, then the viewer has
poor brightness discrimination. The value of Ac has been found to be about 0.02 for average
viewers [12](ch. 3). This value implies that at least 50 levels of brightness on a scale of 0 to 1
are needed for representing the gray-scale digital image. Moreover, the logarithmic sensitivity
to luminance causes our visual system to be more sensitive to distortion in the dark areas than

in the bright areas.
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2.3.2 Frequency Sensitivity

The perceived brightness not only changes with the surrounding luminance but also changes
with the spatial variation of the luminance levels. For instance, Figure 2.3(a) shows stripes

with increasing luminance level from the left to the right. Although each stripe has a constant

Gray level
11
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Figure 2.3: Mach band effect: (a) stripes with increasing luminance levels from the

left to the right (b) luminance levels of the stripes versus perceived brightness

luminance level, the perceived brightness is not uniform along the width of the stripe. At each
boundary transition, the perceived brightness is darkened on the darker stripe side but brightened
on the brighter stripe side. Figure 2.3(b) shows the relative luminance level of each stripe versus
the perceived brightness. The phenomenon of undershooting or overshooting the perceived
brightness by the human visual system is called the Mach band effect, named after Ernst Mach,
who first described this phenomenon in 1865 [11](p.28).

The Mach band effect implies that the impulse response of the human visual system in the
spatial domain is band pass in nature [12](p.54). The frequency response of the human vision
system is determined by the threshold Modulation transfer function (MTF), which can be mea-
sured directly by viewing sinusoid gratings of varying spatial frequencies and contrasts — that
is, by measuring the contrast needed for a viewer to detect sinusoid gratings of various frequen-
cies. Figure 2.4(a) shows an example of sinusoid gratings at 3 cycles per degree (cpd) of unity

visual angle. The visual angle, , is given by

a= 2tan—1% (degree) (2.2)

where W is the width of the gratings and the D is the viewing distance. The Michelson contrast
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is generally used to define the contrast of sinusoid gratings [13], and is given by

Loz — Lin;
@y —a=ies i (2.3)
Lmaw + Lmin
where L., and L,,;, are the maximum and minimum luminance level of the sine wave as

indicated in Figure 2.4(b).

Luminance
'3

max

min
e~ 1cycle —»

Position

(@ (b)

Figure 2.4: (a) Sinusoid gratings at 3 cpd of an unity visual angle (b) luminance of

sinusoid gratings

The frequency response of the human visual system is more often represented by the contrast
sensitivity function (CSF), which is the inverse of MTF. CSF varies with the viewer and the
viewing conditions, such as the types of stimuli, display luminance and resolution, viewing
distance and angle, and surrounding luminance. Generally the peak of CSF lies between 2 to
10 cpd.

Figure 2.5 shows a typical CSF for display luminance at 100 cd/m? and display width of 4
degrees. In this case, the peak sensitivity occurs at 8 cpd. This CSF was constructed using the

equation presented by Lubin in [14] and is given by

CSF(v) = m = av ezp(—bv)y/1 + cexp(bv), (2.4)

where
540(1 + 0.7/L)%?
T+ 12/[w(l + 0/3)7’ 2.5)
b = 0.3(1 + IOO/L)O'IS, (2.6)
c = 0.6, 2.7
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Figure 2.5: A typical CSF of the human visual system

and L and w are display luminance in cd/m? and display width in degrees, respectively.

The CSF reflects two striking features of the human vision system [9](p.202). First, the
human visual system is not sensitive to high spatial frequency patterns. This is because the
optical blurring of the lens reduces the contrast of high spatial frequency patterns, and the retinal
ganglion cells with center-surround receptive fields are less sensitive to high spatial frequency
patterns. In addition, the human eye can not see patterns with spatial frequency higher than 60
cpd, due to the limited number of photoreceptors in the eye. Second, surprisingly, the contrast
sensitivity of human visual system also decreases in viewing low spatial frequency patterns.
This may be due to neural factors.

The findings of the CSF measurement suggest that high frequency information in images
1s less important to the human visual system. Therefore, high frequency information can be
quantized coarsely to achieve higher compression. However, although the human visual system
is also less sensitive to the low frequency patterns, the low frequency information in images
cannot be quantized coarsely. The reason is that the spatial frequency of patterns is proportional
to the viewing distance. That is, a low frequency pattern at a close viewing distance will be-
come a high frequency pattern at a further distance. According to Equation (2.2), doubling the
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viewing distance will double the spatial frequency, as the visual angle is approximately halved.
Therefore, as a precaution, the CSF that is applied for quantizing low spatial frequency patterns
should have the curve indicated by the red line in Figure 2.5.

2.3.3 Orientation Sensitivity

Following the gravitational direction, most of our surroundings comprise of horizontal and ver-
tical structures that create a global reference frame, where horizontal and vertical orientations
are the axes. Therefore, during the development of the human visual system, the brain is psy-
chologically optimized to perceive horizontal and vertical stimuli. Consequently, the human
visual system shows greater sensitivity to horizontal and vertical orientations than to oblique
orientations (45°/135°). This property is the so called oblique effect, which was observed by
Appelle [15].

Furthermore, the oblique effect can also be explained from the findings of neuro-science
studies. Cortical neurons of the primary visual cortex (or area VI), have an important property
called orientation selectivity, which means the cortical neurons only respond to stimuli of their
preferred orientations [8](p.115), [9](p.167). The studies of single-neuron electrophysiology
[16, 17] and optical imaging [18] find that more cortical neurons are tuned to response stimuli
in horizontal and vertical orientations than in oblique orientations. This finding is confirmed by

behavioral measurements of the human visual system [19].

Because of the oblique effect, the contrast sensitivity for patterns in oblique orientations will
be lower than those with the same spatial frequency but in horizontal and vertical directions.
That is, patterns in the oblique orientations have higher threshold MTFs. Therefore, oblique
information in the image is less important to the human visual system and can be quantized

more coarsely than horizontal and vertical information.

2.3.4 Signal Content Sensitivity

Signal content sensitivity of our vision is affected by two visual phenomena, namely, masking
and facilitation. Masking is an effect whereby the presence of one signal (the masker) reduces
the visibility of another signal (the target), whereas facilitation refers to an increase of the visi-
bility of one signal due to the presence of another [9](p.219). Masking effects can be classified
into two categories: contrast (pattern) masking and texture masking [20, 21, 22]. Contrast
Masking happens when a weak (low contrast) signal is masked by a strong (high contrast) sig-

nal that is at the same spatial location. Texture masking occurs when a signal is hidden by a
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background signal (the masker), if the background signal is so busy and irregular that we have

difficulty in finding the signal.

Legge and Foley [23], and Solomon et al. [24] model contrast masking by superimposing
two sinusoidal signals and estimating the conditions when masking occurs, but they only model
the masking between two signals having energy in the same channel (ie. same spatial frequency
and orientation), so it is called the intra-channel masking model. Later, the masking model
was modified by Foley [25], Teo and Heeger [26], and Watson and Solomon [27] by measuring
masking between sinusoidal signals having energy in different channels (ie. different spatial
frequencies and orientations); therefore, it is called the inter-channel masking model. These
models estimate the threshold level in detecting the contrast of a signal, in the presence of a
masker of a different spatial frequency, orientation, contrast and phase.

Within the framework of image compression, we are more interested in the ability of an
image content to mask distortion or quantization error. That is, the original image is the masker
and the distortion is the target signal. However, the contrast masking model is too simple to be
useful for image compression, since it only models the masking between two sinusoidal signals
and cannot measure the effect of texture masking. Even modeling masking by taking account of
noise patterns, ie. noise masking [28, 29], still cannot represent the actual masking that occurs

in a natural scenery image.

The masking threshold depends on the familiarity of the image to the viewer. Viewers gener-
ally have some a priori knowledge about what simple image contents, such as edges or human
faces, look like. Therefore, the degree of masking is normally small on these simple and easily
learned contents. On the other hand, texture regions in an image have a significant degree of
masking, because the texture regions are less predictable and hard to learn. Nevertheless, if
viewers are given enough time to learn image contents, they will become familiar with those

texture regions, and the degree of masking on texture regions will be reduced [30].

Hence, a more complex masking model is essential to estimate the degree of ability of nat-
ural scenery images to mask real distortion or quantization errors. Blackwell [31], Burgess et
al. [32], and Eckstein et al. [33] present masking measurement with non-deterministic noise
patterns that simulate realistic distortion. Watson et al. [34] and Nadenau et al. [22] perform
some masking experiments with more complex backgrounds from natural scenery images and
more closely measure texture masking in real applications like image compression. Their mask-
ing models are used for a quantitative measurement of the image quality that is similar to the

quality perceived by human observers.

Texture masking influences the error tolerance of the viewer toward the compressed image,

and explains why similar quantization errors are bothersome in smooth regions but are barely

17



2.3. Fundamental Properties of the HVS

visible in texture regions. For maximum masking to occur, both the masker and the target
must be at about the same spatial location, have about the same spatial frequency, and have
about the same orientation. Quantization errors generally are high spatial frequency signals. If
these errors are introduced to low spatial frequency regions where there is no high frequency
component, then these errors will be facilitated by the low frequency regions. This implies that
masking and frequency sensitivity of the human visual system are closely related. Both suggest
that the human vision is less sensitive to noise at high spatial frequencies, as in the busy part
of an image. Hence, the texture regions of an image can be quantized more coarsely than the
smooth regions [35].

Figure 2.6 illustrates the three masking effects that have been discussed: contrast masking,
noise masking, and texture masking. The images in the left column are the targets; the images

in the middle column are the masks; and the images in the right column are the masking results.

2.3.5 Temporal Sensitivity

Temporal sensitivity is related to video processing and compression. It involves three issues:

critical fusion frequency, temporal contrast sensitivity, and temporal masking.

Critical Fusion Frequency

Critical fusion frequency (CFF) is the transition frequency of a flickering light, above which the
flickering light will appears as a steady light of the same average intensity [36]. Our CFF varies
depending on the viewing conditions and stimulus, but generally this frequency is about 50 to
60 Hz [12]. CFF is important to determine the sampling and display rates of interlaced video.
The rates are 50 or 60 Hz depending on the power-line frequency of the application location.
Also, the refresh rate of a computer monitor should be higher than 60 fps to avoid any flicker
perception.

Temporal Contrast Sensitivity

Similar to spatial contrast sensitivity, the temporal contrast sensitivity of our vision is also de-
scribed by the temporal CSE. The temporal CSF has a band-pass or low-pass filter shape like
spatial CSF. The temporal CSF also varies depending on the viewing conditions, stimulus types,
and, of course, viewers. Generally our temporal CSF have peaks at about 15 HZ and cut-offs
at about 60 Hz. The cut-off frequency of 60 Hz explains why CFF is about 60 Hz. Temporal
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2.3. Fundamental Properties of the HVS

Figure 2.6: Masking effects: (a) contrast masking (b) noise masking (c) texture

masking
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CSFs often are combined with spatial CSFs to model our visual spatio-temporal contrast sen-
sitivities [37, 38]. However, to simplify computations and representation the spatio-temporal
CSFs are modeled as combinations of functions separable in space and time [39, 40, 41, 42].

The spatio-temporal CSFs are commonly used in vision models for video.

Temporal Masking

Temporal masking is very important for video coding. High temporal contrast sensitivity at
around 15 Hz indicates that at around this frequency our visual system has less temporal mask-
ing ability and is very sensitive to distortions. However, the masking effect is complicated and
heavily dependent on whether or not the object is being tracked by the eye [43]. If the object is
moving too fast or in irregular and unpredictable fashion, then the viewer loses perceived spatial
resolution and is relatively insensitive to distortion of the object. The degradation of our visual
resolution also happens when there is a sudden scene change in video. At the point when the
video scene changes, the perceived spatial resolution on the new scene decreases significantly
to about one-tenth of the peak contrast sensitivity threshold for a few hundred milliseconds [44].
Interestingly, the temporal masking caused by scene changes can also occurs on the old scene
just before the change. This backward temporal masking is due to the variation in the latency
of the neural signals in the visual system as a function of their intensity [45]. Because of the
modeling complexity, the temporal masking effects have been less applied to video coding than
their spatial counterparts.

2.4 Multichannel Representation of the HVS

Early vision models adopted the single-channel (or single-resolution) theory that regarded the
human visual system as a single spatial filter [29, 46, 47, 48]. The characteristics of single-
channel models are defined by the contrast sensitivity function. Although single-channel mod-
els provide an insight into some simple visual phenomena, they fail to explain more complex
phenomena like pattern adaption and masking. To explain these phenomena, more complex

vision models are required.

Empirical data from the measurement of receptive fields (RF) of the primary visual cortex
neurons, the so-called simple cells, suggest multichannel (or multiresolution) vision models
[49, 50, 51]. Measurements show that receptive fields of the simple cells have a number of
interesting properties. First, the receptive field is local in space and covers only a small region
of the entire spatial visual field [52]. This shows that the receptive fields have a linear spatial

summation property, as the entire visual field is the summation of the receptive fields [53].
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2.4. Multichannel Representation of the HVS

Second, the receptive field responds to a certain range of spatial frequencies and is local in
two-dimension spatial frequencies [50, 54, 55]. This implies that the frequency response of
the receptive fields is band-limited. Also, there must be different types of receptive fields to
cover the entire spectral visual field. Third, the receptive field is only sensitive to a certain
orientation [17, 49]. This means the receptive fields have the orientation selectivity property
and there must be a variety of receptive fields to respond to different orientations. Figure 2.7

illustrates the receptive fields of simple cells which are sensitive to four different orientations.

Figure 2.7: Receptive fields of cortical simple cells

The properties of the simple cell receptive fields allow the human visual system to be mod-
eled by multi-channel models. That is, the visual pathways consist of a combination of different
convolution kernels that are tuned to a number of selective spatial frequencies and orientations.
For the achromatic visual pathways, the spatial frequency bandwidth is approximately 1 to 2
octaves and the orientation bandwidth is about 20 to 60 degrees [17, 54, 56]. Those results
coincidentally match the statistic of natural images [57]. Wilson and Regan [58] suggest that an
image stimulus can be decomposed into 48 components, the so-called neural images, including

six spatial frequency channels and eight orientations.

Watson [59], Daly [60] and Lubin [14] have proposed image transforms that are analogous to
the multichannel decompositions of visual pathways. Those transforms are called cortex trans-
forms. Figure 2.8(a), (b) and (c) show the cortex transforms that are proposed by Watson [59],
Daly [60] and Lubin [14], respectively. The cortex transforms resemble receptive fields which
decompose the spectral visual field into selective frequency resolutions and orientations. The
frequency bandwidths are 1 octave for all three transforms, but the orientation bandwidths are
30° for Daly’s and 45° for both Watson’s and Lubin’s. Figure 2.8(a) illustrates the multichannel
decomposition of the spectral visual field by Watson’s cortex transform. The spectral visual
field is decomposed into six frequency resolutions, as indicated by the frequency band number,

and four orientations, as marked by the fan number.

In short, multichannel vision models provide a better understanding of how the visual system
processes information. The multichannel models also help us to identify useful visual system
characteristics for image processing. In addition, cortex transforms provide a convenient means

to model the multichannel decomposition of the visual system, so that the visual information
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Figure 2.8: Cortex transforms in the frequency domain (a) by Watson [59] (b) by
Daly [60] (c) by Lubin [14]

can be processed in a way that can take advantage of the visual system characteristics.

2.5 Color Vision

The definitions for color vision from psychology and physics are as follows. Color is a sub-

jective sensation of human perception [61] and objects do not have color in nature. Without

light and an observer, color does not exist, because color is a sensation conveyed through the

medium of energy in the form of light radiations within the visible spectrum. As Newton men-

tioned in his Optiks: “The rays are not colored. In them there is nothing else than a power

to stir up a sensation of this or that color’. However, in order to identify color information
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Figure 2.9: An illustration of retinal receptor mosaic

that is redundant to the human visual system, we need to look for color vision definitions from
psychophysics and physiology. Psychophysics examines the capabilities of the visual system in

processing color information, and physiology examines how color vision works.

2.5.1 Trichromatic Vision vs. Opponent Color Vision

As mentioned in Section 2.2, visual receptors in the retina translate light energy into nerve
signals, and optical nerves transport those signals along the visual pathway to the visual cortex
for color interpretation. There are two types of visual receptors (or photoreceptors) in our retina,
rods and cones, which respond to brightness and color, respectively. The distribution of rods and
cones varies across the retina. The center of visual field, the so-called fovea, contains only cones
and has the highest visual acuity. The visible spectrum for these two types of visual receptors
ranges from 380nm to 780nm [62](p.6). Rods are very sensitive visual receptors: they can
respond to low, scoptic light levels like star light or dim light. Under such condition, cones are
not sensitive enough to respond, so the vision completely lacks color. On the other hand, cones
initiate color vision under high, photopic light levels, under which images are usually viewed.
Rods are more or less saturated under photopic light levels. For this reason and also because
rods do not exist in the fovea, their responses are generally neglected for image processing and

compression.

There are three types of cones in the retina, namely, L-cones, M-cones, and S-cones with
peak sensitivity corresponding to the long-, middle-, and short-wavelengths, respectively [9]
(ch.3). The spectrum sensitivity of L-cones, M-cones, and S-cones also reflects the spectral
power distribution (SPD) of red (R), green (G), and blue (B) light, respectively. Therefore,

L-cones, M-cones, and S-cones are sometime called R-, G-, and B-cones. Figure 2.9 illustrates
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2.5. Color Vision

the retinal receptor mosaic with red, green, and blue circles representing L-, M-, and S-cones,
and gray circles representing rods. The exact sensitivity spectrum of cones varies, however,
depending on the measuring methods and the human observers [63, 64, 65]. Nevertheless, the
light wavelength coding of these three types of cones provides weighted summation over the
different sensitivity spectra. This suggests that three values should be sufficient to reproduce
human color distinction capabilities. This matches Young-Helmholtz trichromacy theory, which
states that any color could be obtained by mixtures of light of three colors, red, green and blue.
An observer being able to discriminate three primary lights and perceive correct colors is said
to have trichromatic vision [66] (p.69). Trichromacy theory is important for modern color
applications, like image processing and compression, in obtaining compact representation of
colors in the visible spectrum.

Interestingly, the trichromatic representation of our color vision only happens in the retina.
After the retina, color information is encoded by the so-called opponent color representations
at the subsequent stages of visual pathway [8](ch.8), [9](ch.9), [67]. Opponent color represen-
tation was first described by Hearing (1878). He proposed that color information in the eye,
brain, or both are represented by three opponent processes, one for blue-yellow (B-Y) sensa-
tions, one for red-green (R-G), and the third for black-white (B-W). Hearing’s opponent-color
theory was quantitatively proved by the hue-cancellation experiment conducted by Jameson and
Hurvich in the mid-1950s [68, 69]. They confirmed that color information in the visual pathway
is represented by the differences of cone responses, rather than by the cone responses directly.
Opponent-color theory explains how the visual system transports color information with lim-
ited visual channel capacity, as there are fewer optic nerves than visual receptors and each optic
nerve has a limited dynamic range [70]. That is, the blue-yellow and red-green channels, which
are analogous to the parvocellular pathways, carry visual signals representing the difference
of cone responses; while the black-white channel, which is analogous to the magnocellular

pathway, carries visual signals representing the weighted sum of cone responses.

Figure 2.10(a) shows the opponent color processing of two center-surround receptive fields:
the left one which has a red-ON center and green-OFF surround is responsible for red-green
opponent process; the right one which has a blue-ON center and yellow-OFF surround is re-
sponsible for blue-yellow opponent process. The schematic illustration of opponent color cod-
ing of the visual pathway is shown in Figure 2.10(b). Representing color informations by two
chromatic channels and one luminance channel not only significantly decreases the redundancy
between the cone responses [71], but also statistically follows the principal components of nat-
ural sceneries [72].

In short, trichromacy theory enables colors to be represented by a three-dimensional vector

space, which makes computations with color values possible. This has led to the formation of
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Figure 2.10: (a) Opponent color processes of two center-surround receptive fields:
one with red-ON center and one with blue-ON center (b) schematic illustration of

opponent color coding of the visual pathway

several widely used color standards (or color spaces) like XYZ and RGB [73]. Furthermore,
opponent processes in the visual pathway illustrate an efficient color representation with less
color redundancy. Based on null responses (hue-cancellations) of color-opponent visual neu-
rons, Derrington et al. propose a color space which has two chromatic components and one
luminance component [74]. This coding is later exploited in several color spaces, such as YUV
and YCbCr, in image processing and compression. Because trichromatic color spaces and op-
ponent color spaces are important to image processing and compression, they will be discussed

in more detail in the next chapter.

2.5.2 Color Contrast Sensitivity

As discussed in earlier sections, contrast sensitivity functions (CSFs) are good indicators for
identifying image information that is not important and can be quantized coarsely. Therefore,
this section briefly discusses CSFs for color information and points out what color informa-
tion is not important to our visual perception and can be quantized coarsely. Because image
compression generally is performed in the opponent color space, we are more interested in the
contrast sensitivity functions (CSF) of blue-yellow, red-green and black-white channels, than of

red, green and blue channels.
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2.6. HVS Model and Visual Insensitivities

The black-white channel is a luminance channel, so the black-white CSF has the same spatio-
temporal characteristics that have been discussed in earlier sections. The luminance channel
generally has a higher spatio-temporal CSF than the chromatic channels [35, 75, 76], especially
at high spatio-temporal frequencies. Also, the red-green CSF is higher than the blue-yellow
CSE. Therefore, at low spatio-temporal frequencies, when blue-yellow, red-green and black-
white channels are all sensitive to the visual signals our vision is trichromatic. At moderate
spatio-temporal frequencies, the sensitivity of blue-yellow channel declines and our vision be-
comes dischromatic, as we fail to perceive the blue-yellow variations. At high spatio-temporal
frequencies when our ability to perceive red-green variations also diminishes, our vision be-
comes achromatic, as we perceive all image contrast as black-white modulations of the mean
color [9](ch.7). The spatial and temporal frequency sensitivity ranges for chromatic channels
is below 12 cpd and 20 Hz, respectively, while the luminance channel has spatial and temporal
frequency sensitivity ranges of 0-60 cpd and 0-60 Hz.

For image compression, we need to preserve as much of the luminance information as possi-
ble for two reasons. First, because the luminance CSF is the highest among the three channels,
it has the lowest masking ability. Second, because the luminance signals are the summation of
responses of three cone types, it contains spatial details of the image. Therefore, quantizing
luminance information coarsely will cause the reconstructed image to have noticeable distor-
tions. In contrast, having lower CSFs and containing only differences of the cone responses lets
chromatic channels have higher masking abilities and contain lower spatial details. Therefore,

chromatical signals can be quantized more coarsely to achieve higher compression.

2.6 HYVS Model and Visual Insensitivities

More detailed modeling of the human visual system has been attempted previously [77, 78, 79].
This section only tries to provide a simple human visual system model that summarizes the
visual properties being discussed in the past few sections. Based on this visual model, this
section also gives a brief summary of visual insensitivities that can be exploited for image

compression.

A simple human visual system model which accounts for several psychophysical properties
is presented as a sequence of processes in Figure 2.11. These processes are summarized as
follows:

e Opponent color processes transform retinal signals from trichromatic into opponent color
representation which is a more compact form for coping with the limited visual channel

bandwidth. Also, the opponent color signals are less correlated as they are the differences
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Figure 2.11: Block diagram of a typical HVS-model

of cone responses.

e Multichannel decomposition is a process that decomposes visual signals into several ori-
entations and frequency resolutions. Multichannel decomposition also results in a more
compact visual signal representation. This is not only due to limited bandwidth of the
human visual channels but also because the cortical neurons are tuned to respond to their

preferred orientations and frequencies.

e Local contrast adaptation allows the human visual system to perceive an incredibly wide
range of luminance levels. The human visual system simultaneously adapts the local
ambient light luminance level and perceives the luminance from objects as brightness
(relative luminance).

e CSF compensation determines the visual threshold in perceiving the signal contrast at dif-
ferent spatio-temporal frequencies. The human visual system has high contrast sensitivity
for low spatial frequency signals but low contrast sensitivity for high spatial frequency
signals. Also, the human visual system is sensitive to intermediate temporal frequency
signals but less sensitive to high and low temporal frequency signals. These make CSF
compensation a spatially low-pass and temporally band-pass process.

e Masking effects are related to CSF compensation and enable our visual system to have
higher distortion tolerance toward the high spatio-temporal frequency signals. That is,
the human visual system has a lower ability to recognize distortions in noisy or highly
textured image regions, and sudden changes in video scenes.

Based on the human visual properties, the human visual insensitivities are summarized as
follows:

e Color insensitivity means that the human visual system is less sensitive to the distortion
in the opponent color signals than the luminance signals. This is because opponent color
CSFs of our visual system are lower than the luminance CSF. Also, the blue-yellow chan-
nel has a lower CSF than the red-green channel, so the blue-yellow channel has a higher
distortion tolerance than the red-green channel.
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e Orientation insensitivity means that due to the oblique effect, our visual system is less
sensitive to the signals in the oblique orientations than in the vertical and horizontal ori-
entations. This is because psychologically we pay less attention to objects in the oblique
orientations, and also because the cortical neurons which are tuned to respond to oblique
information have less contrast sensitivity. Therefore, after multichannel decomposition,
visual channels in the oblique orientation will have higher distortion tolerance than those

in the vertical and horizontal orientations.

e Frequency insensitivity is related to the CSFs of our vision. Having low contrast sen-
sitivity for high frequency signals implies that after multichannel decomposition high
frequency visual channels are less sensitive to distortion than low frequency channels.
Therefore, high frequency channels can tolerate more errors, while small errors in low

frequency channels may cause noticeable perceived distortion to viewers.

e Luminance insensitivity is the result of the local contrast adaptation process (ie. simulta-
neous contrast) of the human visual system. The human visual system can only perceive a
small range of luminance and discriminate a limited number of brightness levels. There-
fore, there is no need to have a large number of brightness levels with infinitesimal steps.
The result of contrast discrimination experiments suggest that about 50 brightness levels
for the scale 0 to 1 will be sufficient. More than that may not be perceivable by viewers
and may become redundant.

In short, the properties of the human visual system are very important for image and video
compression. The rest of this thesis will discuss how the visual system model and the visual in-

sensitivities can be applied to the proposed listless zerotree image and video coding algorithms.
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Chapter 3

Key Elements of Image Compression

3.1 Introduction

Besides the visual insensitivities discussed in the previous chapter, there are three types of data
redundancies that can be exploited to achieve better compression results. These redundancies

are color redundancy, spatial redundancy, and statistical redundancy.

Color redundancy and spatial redundancy can be reduced by the color space transform and
the wavelet transform, respectively. The color space transform and the wavelet transform can
also result in a visual data representation that matches the characteristics of the human visual
system. Statistical redundancy occurs on the source coded bit-stream and can be reduced by
entropy coding.
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Figure 3.1: A wavelet image compression scheme

Figure 3.1 shows the sequence of applying color space transform, wavelet transform and
entropy coding into a wavelet image compression scheme. Although the core element of the

compression scheme is source coding, the performance of the entire compression scheme is
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closely related to how well the data redundancies can be reduced. Therefore, color space trans-
form, wavelet transform, and entropy coding are the key elements of a compression scheme,

and will be discussed in more detail in this chapter.

3.2 Color Spaces

This section will discuss how the characteristics of the human color vision are exploited in
forming different color spaces. Color spaces are used to specify the standard color represen-
tation. They can be classified into two categories: trichromatic color spaces and luminance-
chrominance color spaces. Trichromatic color spaces are analogous to our trichromatic vision
and produce efficient color spectrum coding, while luminance-chrominance color spaces are

analogous to our opponent color vision and produce compact visual signal representation.

3.2.1 Trichromatic Color Space

XYZ Color Space

As discussed in the previous chapter, our vision is trichromatic and in the retina there are three
types of cones that respond to long-, middle- and short-wavelengths. Therefore, three values
will be sufficient to specify the perceivable color of our vision. However, the color specification

is subjective and varies depending on the viewer.

In order to have a standard specification of color, Commission Internationale de I’Eclairage
(CIE) introduced the CIE 1931 XYZ color standard in 1931 [80, 73]. The standard was es-
tablished from the data collected from the color-matching experiment, which was based on
trichromatic vision theory and Grassmann’s additivity law [66] (p.40). The superposition of
three primary stimuli from red, green and blue lights was projected on to white wall and was
compared to the test color stimulus by the CIE 1931 standard observer. The numerical results

of these three primary stimuli are called color-matching functions, as shown in Figure 3.2(a).

Color-matching functions were used to calculate the CIE tristimulus values, X, Y, Z, which
represent the the relative amount of the primaries needed to match any pure color by additive
color mixture. Stimulus X, Y, and Z encode the spectra corresponding to long-, middle- and
short-wavelengths, respectively.

The real colors are then specified by the CIE 1931 (x,y) chromaticity diagram, as shown in
Figure 3.2(b). The curved line of the shark-fin-like area is called the spectrum locus, ranging
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Figure 3.2: (a) CIE 1931 color-matching functions (b) CIE 1931 Chromaticity

Diagram

from 380nm to 780nm. The bottom line of the shark-fin-like area is called pure purple line,
specifying colors from the mixture of red and blue primaries. The area outside the shark-fin-like

area represents imaginary colors and has no practical applications.

Although CIE specifies three stimulus values, the chromaticity diagram has only two coor-
dinates, = and y. The is because = and y coordinates are the normalized values of stimulus X

and Y and are given by

X
S 3.1
*TXyv+z @1
= Y (3.2)
Y“X1Y+2z :
Clearly, two coordinates are sufficient to represent the tristimulus values, as
c+y+z=1. 3.3)

The CIE 1931 tristimulus color standard dramatically reduces the amount of numerical data
required to represent the entire visible color spectrum. This is one type of compression that is

very well understood but seldom mentioned in the image and video compression literature.
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Figure 3.3: RGB gamuts (a) 1953 NTSC (b) HDTV

RGB Color Space

Red, green, and blue are chosen as the primary colors for modern display devices, such as color
cathode ray tube (CRT) monitors and TVs. This is not only because we have three types of
retinal cones to sense red-, green- and blue-lights, but also because red, green and blue-lights

can reproduce the greatest range of colors with a maximum level of brightness.

The red, green, and blue-colors recommended by the U.S. National Television System Com-
mittee (NTSC) in 1953 are respectively marked as R, G, and B on the CIE 1931 (x,y) chro-
maticity diagram in Figure 3.3(a). R, G, and B are the primary colors produced by the RGB
phosphors inside CRTs. The triangular area represents colors that can be reproduced by the
mixture of RGB primaries and is called the color gamut. However, RGB phosphors inside
today’s CRTs are different from those in 1953. The RGB primaries recommended by the In-
ternational Telecommunication Union Radiocommunication Sector (ITU-R) [81] for HDTV
(High-Definition TV) standards are shown in the Figure 3.3(b). Dgs inside both NTSC and
HDTYV color gamuts is called CIE standard illuminant, which specifies chromaticity for equal
primary signals, ie. reference white. The coordinates of NTSC and HDTV RGB primaries on
the CIE 1931 (x,y) chromaticity diagram are summarized in Table 3.1.

Figure 3.4 illustrates the additive characteristic of the RGB color space using the color cube.
When all RGB primaries are not excited, ie. (R, G, B) = (0,0,0), the additive color is black,

such as shown in Figure 3.4(a). Whereas, when all RGB primaries are at the maximum excita-
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NTSC HDTV
T Y T Y
Red (R) | 0.6700 | 0.3300 | 0.6400 | 0.3300
Green (G) | 0.2100 | 0.7100 | 0.3000 | 0.6000
Blue (B) | 0.1400 | 0.0800 | 0.1500 | 0.0600
Dgs 0.3127 | 0.3290 | 0.3127 | 0.3290

Table 3.1: CIE 1931 chromaticity coordinates of NTSC and HDTV RGB primaries

tion levels, ie. (R, G, B) = (1,1, 1), the additive color is white, such as shown in Figure 3.4(a).

Because of the simultaneous contrast phenomenon of our visual system, the excitation range
of each primary can be represented as a finite number of discrete levels. For digital image and
video applications, the excitation range of each primary is usually divided into 256 levels, from
0 to 255, and represented by an 8-bit (1-byte) number. Therefore, to represent a RGB excitation
level will require a 24-bit number, which means there are about 16 million colors that can be
produced by the mixture of RGB primaries. A display device that can display 24-bit colors is
often said to have 24-bit color-depth.

3.2.2 Luminance-Chrominance Color Spaces

Although RGB color space matches our trichromatic vision, it is not an efficient color space for
image and video compression. This is because, like our trichromatic vision, RGB color rep-
resentation has too much information correlation among the three color components, ie. color
redundancy. Therefore, in order to have a more compact representation for color information,
we need color spaces that resemble the opponent color processes in our visual system. That is,
we need color spaces that contain RGB color differences, rather than the RGB absolute values.

This type of color space may be called luminance-chrominance color space.

The most commonly used luminance-chrominance color spaces for image and video appli-
cations are YCbCr, YUV, and YIQ. YCbCr is used in both Joint Photographic Experts Group
(JPEG) and Moving Picture Expert Group (MPEG) standards; whereas, YUV and YIQ are the
standard color spaces for phase alternating line (PAL) TV and NTSC TV systems, respectively.
In these three color spaces, CbCr, UV, and IQ are the chromatic components (or chrominances)
that contain RGB color differences; while Y is the luminance component that contains the
weighted summation of RGB values. Often the chromatic components are called chromas and

the luminance component is called luma.

The Y components of these three color spaces are analogous to stimulus Y of CIE 1931 XYZ
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Figure 3.4: RGB Color Cube (a) for black color (R,G,B)=(0,0,0) (b) for white color
R,G,B)=(1,1,1)

color space. Stimulus Y corresponds to middle-wavelength (green) light, which has spectral
power density (SPD) spreading over most of the visible spectrum. Therefore, the Y component
can well represent the brightness information. However, as obtained from the linear addition of
RGB components, the value of the Y component varies depending on the RGB weights specified
in different ITU-R Recommendations. In Recommendation ITU-R BT.601 (Rec. 601) [82], the
Y component is given by

Y601 = 0.2989 x R+ 0.5866 x G + 0.1145 x B. 3.4)

The weights for RGB components in Rec. 601 was chosen in 1953 for NTSC RGB phosphors.
With the development of HDTV in America and Japan, the old RGB weights are not able to
reflect the characteristics of current display devices. Therefore, a new set of RGB weights for
computing the Y component has been recommended in Recommendation ITU-R BT.709 (Rec.
709) [81]. The Y component for the new RGB weights in Rec. 709 is then given by

Yoo = 0.2125 x R+ 0.7154 x G + 0.0722 x B. (3.5)

Despite Y709 being closer to the characteristics of current display devices, Ygo; is still widely
used in image and video compression. Therefore, this thesis adopts Yso; for comparison pur-

poses.
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The transforms between RGB and the luminance-chrominance color spaces are given in the

following equations.

Y [ 0209 0587 0.114] [ R

RGB - YCbCr |[Cb| = |-0.169 —0331 0500 | G (3.6)
Cr| | 0500 —0.418 —0.082| | B
R [ 1.000 0.000 1.402] [Y

YCbCr — RGB G| = 1.000 —0.346 —0.715| | Cb (3.7)
B] | 1.000 1771 0.000] |Cr
[ Y] [ 0299 0587 0.114] [ R

RGB — YUV Ul = |-0147 —0.289 0.437| | G (3.8)
R4 0.615 —0.515 —0.100| | B
[ R] [ 1.000 0.000 1.400] [Y

YUV — RGB G| = 1.000 —0.396 —0.581| | U (3.9)
| B] 1.000  2.029  0.000| | V
[ V] 0.299 0587 0.114] [ R

RGB — YIQ Ill| = 0.596 —0.274 —-0.322| | G (3.10)
| Q] 0.212 —0.525  0.311] | B
[ R [ 1.000 0956 0621] [Y

YIQ — RGB G| = 1.000 —0.272 —0.647| | I (3.11)
| B 1.000 —-1.105 1.702| | Q

From Equation 3.6 and 3.8 we can note that YCbCr and YUV spaces perform similar color
decorrelation as the opponent color process of our visual system: Y is similar to the B-W
channel that encodes luminance information; Cb and U are similar to the B-Y channel that
encodes blue and yellow color differences; and Cr and V are similar to the R-G channel that
encodes the red and green color differences. However, according to Equation 3.10, YIQ does
encode color differences, but it does not resemble the opponent color decorrelation of our visual

system well.

One thing that should be noted here is that chromatic components range from —127 to +127,
but for convenience they are normally level shifted to 0 to 255 by adding a shift factor 128.
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3.2.3 Digital Image and Video

A digital monochrome image is normally represented by an array of pixels, and the value of
each pixel represents the luminance excitation level at that spatial location. Therefore, a digital

color image will require three arrays to represent the excitation levels of RGB primaries.

The Parrots image shown in Figure 3.5 is a typical RGB color image. Its RGB compo-
nents are separately shown in Figure 3.6. It is clear to see that all three color components are
correlated to each other, as they all contain spatial details of the original Parrots image.

Figure 3.5: Parrots - a typical RGB color image

Figure 3.6: RGB components of the Parrot Image

On the other hand, Figure 3.7 shows the result of transforming the Parrots image into YUV
color space. We can see only the Y component has the spatial details of the Parrots image,
while the U and V components contain only the color differences. The histogram comparison
in Figure 3.8 also suggests that transforming a color image from RGB to YUV color space can
achieve a more compact image data representation. The histograms of RGB components show
that RGB pixel values spread over the full range of excitation levels. While, the histograms
of YUV components show that the pixel value range of U and V components are relatively
concentrated, and only Y component has a full pixel value range.
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U

Figure 3.7: YUV Components of the Parrot Image
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Figure 3.8: Histograms of the Parrot image (a) in RGB space (b) in YUV space

3.3 Wavelet Transform

The wavelet transform is a very powerful tool for image compression. This is not only because
it is simple to implement, but also because it decomposes visual data in the way that is similar
to the multichannel decomposition of our visual system. Therefore, this section will briefly
discuss some topics related to the wavelet transform, including the reasons for using the wavelet
transform, the mathematical background, practical implementation, its relation to the HVS, and
implementation issues.

3.3.1 Why Do We Need the Wavelet Transform?

The reason we need to use the wavelet transform is to decorrelate the visual data, because
beside the color correlation discussed in the previous section, an image also has a strong spatial
correlation. That is, the neighboring pixels in an image are likely to have the same or similar
relative intensity values.

For instance, the Lena image in Figure 3.9(a) has some smooth regions, such as the back-
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ground and the skin, in which pixels tend to have similar values. The correlation can be more
clearly visualized from the cross-correlogram shown in Figure 3.9(b). This cross-correlogram
measures the value of a pixel at location (z,y) on the horizontal axis and the value of the
neighboring pixel at (x,y + 1) on the vertical axis. The highly clustered identity line in the
correlogram shows that most of the neighboring pixels are of the same or similar intensity
values. Knowing the pixel value at a location often will enable us to predict the neighboring
pixel values. Therefore, this information redundancy is called spatial redundancy and should
be removed for efficient data representation. One way of removing spatial redundancy is to rep-
resent image data in the form that only stores the differences of pixel values. But this method
will depend heavily on the image’s entropy, and there is no guarantee that it will achieve good
compression results.

250

g 8

MNeighbor pixel value
8

50 100 190 200 250
Pixel value

(@) (b)

Figure 3.9: (a) 256x256 Lena image (b) pixel value correlogram of pixels at loca-
tion (z,y) and (z,y + 1)

A better way for removing spatial redundancy is to transform the image data into a rep-
resentation that is similar to the visual information representation of our visual system. The
wavelet transform is a data transform that is similar to the multichannel models of our visual
system [83, 84, 85]. Both the wavelet transform and our visual system decompose visual data
into a number of channels that respond to a region of spatial location, a limited band of spatial
frequencies, and a limited range of orientations. One of the significant benefits of using wavelet
transform is that the transformed image data will have a similar format to the visual data repre-
sentation in the visual system. Therefore, we not only remove the spatial redundancies of image

data, but also can take advantage of the visual insensitivities discussed in the previous chapter
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to remove more visually unimportant information for better compression results. More of the
similarities of the wavelet transform to the human visual system will be discussed later in this

section, but before that let’s take a brief look at the mathematical background.

3.3.2 Mathematical Background

Although the Fourier transform is a very useful tool for signal analysis, it is only suitable for
analyzing a signal’s frequency-domain behaviors, due to its poor time-localization basis func-
tions, sine and cosine. The time-bandwidth product is bound by the Heisenberg inequality
[86], as indicated by ]

Time-Bandwidth product = AtAf > o (3.12)
T

This inequality means that the tradeoff can only be made between time resolution and frequency

resolution. Therefore, the Fourier transform is only suitable for analyzing stationary signals.

On the other hand, the basis functions of the wavelet transform are chosen to have a compact
support and a variable support width. These properties allow the wavelet transform to be able
to analyze both the frequency- and time-domain behaviors of a signal. Therefore, the wavelet

transform is suitable for analyzing both stationary and non-stationary signals [87, 88].

The principle of the wavelet transform is to represent a signal f(z) by the superposition of a

wavelet set that is obtained from the mother wavelet. The equation for a set of wavelets is given

by
1 t—b
'Qba,b(t):% ( , ) (3.13)

where 1) is the mother wavelet, a is the scaling coefficient, and b is the translation coefficient.

Coefficients a and b are chosen such that ¢ > 0 and b€ R [89]. The factor ﬁ in Equation (3.13)

ensures that the wavelet set has a uniform norm [90]. The mother wavelet ¢ needs to have a

compact support, that is, 1 has to die away in few oscillations, and satisfy [ 1 (¢)dt = 0. This
will ensure that the mother wavelet has good time-localization.

The following will give a brief summary of continuous wavelet transform, wavelet series

expansion, and multiresolution analysis. For more details, readers are referred to [90, 91].

Continuous Wavelet Transform

The continuous wavelet transform is normally applied for analyzing natural continuous signals.

Consider a continuous signal f € L,(R), then the wavelet transform of f is then given by

W(a,8) = (£ (1), bap(t)) = \if / " PO as(t)dt. (3.14)
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3.3. Wavelet Transform

This equation can be viewed as the calculation of linear projections to the basis, 1,,, that
spans the space Ly(R). The linear projections are the transform coefficients, W;(a, b), which
represent the weights of contribution from the basis, 1,3, to the original function, f(z).

For the inverse transform to exist, the choice of v has to satisfy

oo |7 2
Cy = / de < +00. (3.15)

—oo Wl
This is called the admissibility criterion (87, 89, 92]. It means that v (¢) decays faster than |¢|~!

for ¢ — oo. If this condition is satisfied, then the inverse wavelet transform is given by

1 [*®da [
10)= & /0 2 / Wy Das(t)e (3.16)

Wavelet Series Expansion

In practical applications, factors ¢ and b in Equation 3.14 are chosen to be discrete, rather than
continuous. Therefore, if we set a = ay™, b = nbyay™, (m,n€ 2), ay > 1, and by > 0, then the

discretized set of wavelets becomes
Ymn(t) = ™2 (ag™t — nby). (3.17)
The forward wavelet series expansion of f(t) is given by
CrnlF) = G FO) = [ dmal) 01 G.18)
and f(t) can be reconstructed by

F@&) = Y Counlf)Pmalt). (3.19)
m,n
If we choose ag = 2 and by = 1, then the set of 1),,, forms an orthonormal basis in Ly (R).

Multiresolution Analysis

For multiresolution analysis, we need two functions: one is the wavelet function 1, discussed
previously; and the other is the scaling function, ¢. The scaled and translated versions of 1) and

¢, witha =2,b=1,and n € Z, are given by
Uma(t) = 2m¢(2‘ t—n), (3.20)

=
Vo
il -m
Pn(t) = W‘ﬁ(? t—n). (3.21)
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For a fixed m, the family of ¢,,, forms an orthonormal basis, and ¢,, , spans the space V,,.

The space V,,, represents a sequence of successive approximated subspaces,
VocVicWVaCcV,CVige-, (3.22)

and each subspace has a resolution 2™. On the other hand, for a fixed m, ¢, , Will span space
Wy, which is the orthogonal complement of V,,, in V,,_4, ie,

Vin ® Wy, = Vi1 (3.23)
Therefore, the coefficients of (i, », f) represent the information required when going from an

approximation of f at resolution 2™ to a finer approximation of f at resolution 21 [89].

In practice, the function f is sampled discretely, and the sampled coefficients ag ,, are the
approximate coefficients at the highest resolution. The space associated with agp, is V5. The

coefficients of projections onto successive coarser spaces V) and W, are respectively given by

a1n(f) = O honrtok(f), (3.24)
k

cn(f) = Y genraon(f), (3.25)
k

where g, = (—1)" h_n41 and h, = 2172 [ ¢(z — n)@(2x)dzx. The general equations for going

from space V,,,_; to spaces V,,, and W,,, then becomes

amn(f) = Y han-ktm_1x(f), (3.26)
k

Cm,n(f) = Z g2n—kam—l,k (f) (327)
k

On the other hand, the general equation for constructing finer scale coefficients from space V,,

to space V,,,_; is given by
am—l,l(f) . Z[h2n—lam,n(f) + g2n—lcm,n(f)]- (328)

In practice, multiresolution analysis is implemented by a pair of orthogonal FIR (finite impulse
response) filters, ie. h as the low-pass filter and g as the high-pass filter. However, in order to
have a linear phase for easy cascading, the wavelet basis is sometimes chosen to be biorthogonal

instead of orthogonal. The reconstruction equation is then given by

am—l,l(f) e Z[th—lam,n(f) + §2n—lcm,n(f)], (329)
where h and § are chosen to have a perfect reconstruction, and satisfy
gn = (=1)"h—n1, (3.30)
gn = (=1)*h_py1, (3.31)
> Bnhngor = bk, (3.32)
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3.3.3 Practical Implementation

The practical implementation of the wavelet transform as a FIR filter bank is under the assump-

tion that a 2D wavelet transform can be separated into two 1D wavelet transforms.

An example of such a filter bank implementation for the forward wavelet transform (FWT)
is shown in Figure 3.10. Image f(z,y) is first filtered and down-sampled by 2 in the horizontal
direction, ie. along x-axis. The results are two subbands with half of the original size: the
low-pass filtered subband contains low spatial frequency information, and the high-pass filtered
subband contains high spatial frequency details in the vertical direction. After that, these two
horizontally filtered subbands are further vertically filtered along y-axis, and down-sampled.
The results are four subbands of a quarter of the original size: LL subband contains low spatial
frequency information, LH subband contains horizontal high frequency details, HL subband
contains vertical high frequency details, and HH subband contains diagonal high frequency
details. The labeling notation is that the first letter indicates the low-pass (L) or high-pass
(H) filtering in horizontal direction, and the second letter indicates the low-pass or high-pass
filtering in the vertical direction.

If these transform procedures are repeatedly applied to the LL subband, the result is mul-
tiresolution analysis. The down-sampling factor 2 ensures that no data expansion occurs and
the transform is a non-expensive transform. Down-sampling by 2 is often called critical sam-
pling. The filter bank implementation of the inverse wavelet transform (IWT) is shown in Figure

3.11. The inverse wavelet transform is in the reverse order of the forward transform.

H'(y)

H'(x)
LPF

G'(y)

H'(y)

e @—4 '

HPF

G'(y)

Horizontal o Vertical

Figure 3.10: FIR Filter Implementation of the forward wavelet transform (FWT)

42



3.3. Wavelet Transform
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Figure 3.11: FIR Filter Implementation of the inverse wavelet transform (IWT)
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Figure 3.12: Subband spatial orientation after 3-level wavelet transform

Figure 3.12 shows an example of the subband spatial orientation we will see on a 3-level
wavelet transformed image. In addition to the subband labels, the number after each label
indicates the wavelet transform level, like 1 for the first level and 2 for the second level. Figure
3.13 shows the results of transforming the Sydrney image to different transform levels. From the
figure we can see that the high frequency subbands exhibit very strong directional selectivity

behavior.

Figure 3.14(a) shows the Lena image after the application of the 2-level wavelet transform.
It shows that the LL subband contains most of the image information, while the high frequency
subbands only contain the spatial differences of the original image. This information packing
property of the wavelet transform can also be seen more clearly from the histogram comparison
of the LL subband and high frequency subbands. The histogram of the LL subband in Figure
3.14(b) shows that the LL subband coefficients have large magnitudes, as the magnitude distri-
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Figure 3.13: The Sydney image at different wavelet transform levels

bution scatter around all range of histogram. On the other hand, the histogram of high frequency
subbands in Figure 3.14(c) shows that most of the high frequency coefficients are very small,

as the magnitude distribution concentrates around zero.

3.3.4 Wavelet Transform and the HVS

As mentioned in Chapter 2, the receptive fields of the visual cortex neurons are tuned to respond
to different orientations and frequency ranges. The neurons also have varied sensitivities to the
visual data. Therefore, for achieving a better compression, we should decompose the visual
data into a multichannel representation similar to that in the human visual system, and remove

the information that is less important to the visual system.

One way to decompose the visual data is to use the cortex transforms discussed previously.
Although cortex transforms resemble the multichannel decomposition of the human visual sys-
tem exactly, they are very computationally expensive and too complicated for implementation.

Also, cortex transforms adversely increase the amount of transform data [51], so they are not
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Figure 3.14: (a) The Lena image after 2-level WT (b) histogram of the LL subband
(c) histogram of all high frequency subbands

suitable for image and video compression.

A better way to decompose visual data into multichannel representation without increasing
the amount of transformed data is to use the wavelet transform. The wavelet transform not only
decomposes visual data into the format that is closely related to the cortex decomposition of
the human visual system, but also maintains the same data amount as the original image, due
to critical down-sampling. However, the most important feature is that the wavelet transform is

easy to implement and computationally efficient.

Figure 3.15(a) shows the wavelet subband orientation for a 5-level decomposition in the fre-
quency domain. The wavelet decomposition is similar to the typical cortex transform of the
human visual system shown in Figure 3.15(b). Both transforms have 1 octave of frequency
bandwidth for each frequency resolution, so they have frequency channels of similar decompo-
sition resolution. For example, the wavelet subbands in transform level 1 are analogous to the
combination of Bandl and Band?2 in the cortex transform, and the LL5 subband is analogous to

the Baseband of the cortex transform.

Furthermore, the wavelet transform has similar orientation selective channels to the cortex
transform. The wavelet transform has three types of subbands that correspond to the three
different orientation selective channels, ie. the LH-, HL-, and HH-subbands. Like Fan2 in the
cortex transform, the LH-subband has horizontal selectivity. Similarly, the HL-subband has
vertical selectivity like Fan4 in the cortex transform. However, the wavelet transform has only
one diagonal-selective channel, the HH-subband, which effectively combines the responses of
Fanl and Fan3. Nevertheless, the limited number of orientation selective channels for the

wavelet transform is the cost we are willing to pay for using a more efficient transform.
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Figure 3.15: (a) Wavelet transform (b) a typical cortex transform model of the HVS
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3.3.5 Implementation Considerations

When applying the wavelet transform to visual data compression, there are two implementa-
tion considerations which directly affect the compression quality and which must be examined
closely.

Signal Extension Methods

The first consideration is the selection of signal extension methods. Since images and video
frames are finite-length signals, there is a need to extend the coefficients at the boundaries for
the filter bank implementation. There are three possible extension methods which can be used

for the implementation.

The first method is zero-padding which pads zeros at the boundaries as in the diagram shown
in figure 3.16(b). Zero-padding is easy to implement but gives poor coding results. This is
because the abrupt transition at the boundaries adds variance to the high-pass subbands and

reduces the coding gain of the filter bank.

The second method is periodic extension as in the diagram shown in Figure 3.16(c). Periodic
extension is similar to the extension for FFT (Fast Fourier Transform) circular convolution.
Periodic extension was first suggested by Woods and O’Neil [93] and later by Smith and Eddins
[94]. This is a reasonable assumption for finite length signals but discontinuities still occur at

the image boundaries and variance still happens to the high-pass subbands.

The third method is symmetric extension. That is, coefficients at the boundaries are sym-
metrically extended as in the diagram shown in Figure 3.16(d). Symmetric extension was first
introduced by Smith and Eddins [94]. Because of a smoother transition at the image boundaries,

symmetric extension gives better compression results than the other two methods [91](p.341).

However, symmetric extension does not always work. This is due to different combinations
of symmetric extension methods and filters of different symmetries and phases. Only certain
combinations will be able to maintain non-expensive wavelet transform and produce symmetric
subbands. Martucci et al. [95, 96], Kiya et al. [97], and Bamberger et al. [98] presented several
methods to select the right symmetric signal extensions for the filters to generate non-expansive
symmetric subbands. They also extended their work from two filter bank applications to multi-
rate filter bank applications. However, the complete classification for the right combination of

symmetric extension methods and filters was presented by Brislawn [99, 100].

Figure 3.17 shows images which were compressed ! to 96:1 ratio or 0.25 bit per pixel (bpp)

Tmages were compressed by the LZC algorithm which will be discussed in detail in Chapter 6.
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Figure 3.16: Signal extension method (a) Original finite-length signal (b) Zero-

Padding extension (¢) Periodic Extension (d) Symmetric Extension

using different extension methods. The results show that the zero-padding method produces
large errors at the boundaries, as shown in Figure 3.17(b), so it is not appropriate for image or
video compression. The periodic extension method does not yield any errors at the boundaries
when the image is not quantized, due to the perfection reconstruction property of the filter
bank. However, errors do occur at the boundaries of the compressed image because the periodic
extension method still contributes discontinuities at the boundaries, as shown in Figure 3.17(c).
The symmetric extension method gives the best subjective (perceptual) quality because of the
smoother boundaries, as shown in Figure 3.17(c). The mean square error (MSE) and the peak
signal to noise ratio (PSNR) of these three images are tabulated in table 3.2. This table shows
that symmetric extension method also gives the best objective (numerical) results. The methods

of calculating these results will be discuss in more detail in Section 4.3.2.

Zero-Padding | Periodic Extension | Symmetric Extension
MSE 370.77 160.72 141.82
PSNR 22.44 26.07 26.61

Table 3.2: MSE and PSNR (dB) of 96:1 WT compressed images using different

extension methods

Wavelet Filters

The second implementation consideration is the selection of wavelet filters, and the selection is

based on three criteria, namely linear phase, regularity and filter size.

Linear phase filters are desirable for image compression because they can be easily cascaded
in pyramidal filter structures without the need for phase compensation [89] and enable the use of
the preferable symmetric extension at the signal boundaries [101]. Filters have linear phase only

when their coefficients are symmetric or antisymmetric around the center coefficient [91](p.10).
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Figure 3.17: 96:1 WT compressed images using different extension methods (a)
Original (b) Zero-Padding (c) Periodic (d) Symmetric

Therefore, linear phase and orthogonality are mutually exclusive, as the coefficients of orthogo-
nal filters are neither symmetric nor antisymmetric. Only biorthogonal filters have linear phase
by relaxing the orthogonality and use biorthogonal bases having either symmetric or antisym-
metric filter coefficients. As a result, biorthogonal filters are more suitable than orthogonal
filters for image compression.

The regularity of filters is crucial for image compression because images are mostly smooth,
and regular filters are more desirable in analyzing images [89, 102]. A filter is said to be regular
if it has a certain number of zeros at the aliasing frequency 7 (or at —1 in z-domain) and its
iterated function converges to a smooth continuous function [88, 87]. The more zeros the filter
has the smoother the iterated continuous function and, therefore, the more regular the filter. The
number of zeros that a filter has is closely related to its length. A longer filter normally has
more zeros at m [103]. However, the length of filters also must be limited under the constraint
that they must not increase computational complexity and error spreading too much . The
increase of computational complexity is due to the increase numbers of filter coefficients, and

error spreading is due to the filter spreading quantization errors across neighboring coefficients
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in the horizontal and vertical range of —N/2to N/2, where N is the filter length. If images are
quantized coarsely, the error spreading can cause ringing artifacts at high coefficient transitions,

such as object contours or boundaries [91](p.372).

The discussion on the selection of a biorthogonal filter bank system can be found in [103] and
[91](p.372), and the key points are summarized as follows. First, a regular filter produces less
noise, so the synthesis low-pass filter should be regular. An irregular synthesis low-pass filter
will cause blocky artifacts on the reconstructed image. Second, for a two-channel biorthogonal
filter bank, the synthesis filters should have a longer low-pass filter for a smoother result and a
shorter high-pass filter for minimizing the ringing artifacts. Third, the size of analysis filters is
not so critical, but the low-pass analysis filters should have at least one zero at 7 to stop high
frequency leakage, and the analysis high-pass filter should have at least one zero at 0 to stop
low frequency leakage. High frequency leakage will reduce the coding gain, and low frequency

leakage will cause the low frequency information to be coarsely quantized.

Orthogonal filters are simple to implement but they do not have linear phase, so the recon-
structed images and video will have more errors. On the other hand, biorthogonal filters have
a linear phase and are symmetric; therefore, they are more favorable for image and video com-

pression.

3.4 Entropy Coding

After image and video compression, the coded bit-stream can be grouped into an ensemble of
symbols with some random probability redundancies. Those probability redundancies can be

measured by Shannon’s famous equation [1]

H =~ piogp;, (3.33)
=1

where p; is the probability of the ¢th symbol. The quantity H in the equation is called the en-
tropy of a set of probabilities or the measurement of the uncertainty of an ensemble of symbols.
The unit of H is bits, as the base of the logarithm is 2. The entropy determines the lowest
bound of the average bits per symbol without losing any information of the ensemble. Intu-
itively, the coded bit-stream can be further losslessly compressed so that the average number of
bits per symbols is as close to the entropy as possible. There are two widely used entropy cod-
ing methods for removing probability redundancies, namely Huffiman Coding and Arithmetic

Coding.
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3.4.1 Huffman Coding

Based on Shannon’s theory, Huffman [104] developed an efficient entropy coding method which
is now known as Huffman Coding for coding a finite number of symbols to approach their

entropy. However, there are two disadvantages of Huffman coding.

The first disadvantage is that Huffman Coding does not adapt to the change of symbol prob-
abilities. Therefore, the symbol probabilities need to be known a priori by the encoder and the
decoder. One solution is to have a pre-coding scan which will run through the entire symbol
set to obtain to the symbol probabilities for the encoder. The symbol probabilities can then
be transmitted to the decoder by embedding in the coded bit-stream. However, performing
a pre-coding scan is not always feasible, especially in real-time applications, and embedding
symbol probabilities in the coded bit-stream increases coding overheads. A better solution is to
use a pre-trained probability model for both the encoder and the decoder. Nevertheless, using
a pre-trained model is likely to have a sub-optimal entropy coding, due to inexact probability
modeling.

The second disadvantage is that Huffman coding can only assign an integer number of bits to
the coding symbols. In the case when the symbol probabilities are the reciprocal of a power of 2,
the integer number assignment to the symbol is rate-efficient. However, if symbol probabilities

are real numbers, then the integer number assignment becomes inefficient.

3.4.2 Arithmetic Coding

The two defects of Huffman Coding were solved by Arithmetic Coding, first introduced by
Rissanen [105] and Pasco [106], and later by Witten et al. [107]. Arithmetic coding separates
the probability model from the coding procedure so the model can be adaptively updated to
different sources. In addition, Arithmetic Coding also allows the symbols to be coded by a real

number of bits.

The basic idea of Arithmetic coding is that symbols are assigned to the subintervals between
the unit interval [0, 1). Each subinterval is specified by the start-point o and the end-point £, ie.
(o, ), and each subinterval length, [, is proportional to the symbol probability.

Here is a simple encoding example. Table 3.3 lists four source symbols, (z, y, 2, !), and their
corresponding probabilities. Symbol ! is the FOF' (end of file) symbol, which marks the end
of coding. Suppose the symbol stream being coded is yyzz!, and the corresponding coding
procedures are shown in Figure 3.18.
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3.4. Entropy Coding

First, the unit interval [0, 1) in divided into interval [0, 0.1), [0.1,0.3), [0.3,0.6) and [0.6,1)
for symbol !, 2, y and z, respectively. The first symbol received by the encoder is y, so the
new coding interval is narrowed down to [0.3,0.6). This new interval is then sub-divided into
four sub-intervals according to symbol probabilities. The second symbol received is y, so the
new coding interval is narrowed down to [0.39, 0.48). This new interval is again sub-divided.
The coding interval is narrowed and sub-divided repeatedly until the encoder receives symbol
. The calculation of coding intervals for this example is tabulated in Table 3.4. The last coding
interval after receiving symbol ! is [0.4476,0.44832). Therefore, the symbol stream yyxz! can
be represented by a number r which satisfies 0.4476 < r € R < 0.44832.

Symbols X y zZ !
Probability | 04 | 0.3 | 0.2 | 0.1

Table 3.3: Source symbols and their probabilities

1 o= 0.6 — 0.48 — =——p 0.48 — 0.4548 —
X X X X X

0.6 == 0.48 - 0.444 -~ 0.4656 = 0.45192+4-
y y y y y

03 T 0.39 T 0.417 T 0.4548<T 0.44976°7
V4 p4 Z Z Z

0.1 ~= 0.33 = 0.399 = 0.4476 == 0.44832=4=
! [ !\ |

0 o 0.3 L 0.39 - 0.444 L. 0.4476 L
y’ '!y'! ’X’ ,Z, a2 !1

Figure 3.18: Arithmetic Coding procedures for symbol stream yyz 2!

Different Arithmetic Coding methods have different ways of finding the number r. Here
the number r was found by the method shown in [108](p.123). Firstly, find an integer ¢ which
satisfies

1
o < | = lengh of interval, (3.34)

so let t = 11 for the interval of 0.00072 in this case. Secondly, find an integer ¢ which satisfies

04476 < = = &

= 44832 16. < 18.1
ot 2048<0 832 or 916.6848 < ¢ < 918.15936,

(3.35)
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next symbol start-point a end-point 3 length of interval, [
0 1 1
y 0.3 0.6 03
y 0.3+0.3x0.3=0.39 0.3+0.6x0.3=0.48 0.09
X 0.39+0.09%0.6=0.444 0.39+0.09x 1=0.480 0.036
z 0.444+0.036x0.1=0.4476 0.444+0.036x0.3=0.4548 0.0072
! 0.4476+0.0072x0=0.4476 | 0.4476+0.0072x0.1=0.44832 0.00072

Table 3.4: Coding intervals for stream yyxzz!

so let ¢ = 918. Therefore, the real number r is

1
T = % = 0.448242178 = 0.0111001011,. (3.36)

Hence, the Arithmetic coded bit stream for yyxz! is 0111001011.

The Arithmetic decoding procedures are in the exact same order as encoding. Assuming the
decoder knows the source symbol probability a priori, so the decoder can first divide the unit
interval into the corresponding four sub-intervals. The decoder first receives the encoded bit-
stream 0111001011, which represents the real number 0.448242178. Since this number lies in
the range of 'y, the decoder instantly knows the first symbol is /. After that, the coding interval
is narrowed down to [0.3,0.6) and sub-divided into four sub-intervals. The encoder compares
the real number with the four new sub-intervals, and finds out that the real number lies in the
y’s interval, so the decoder outputs the second symbol as y’. The decoder iteratively narrows
and sub-divides the interval, compares the real number with the sub-intervals, and outputs the

corresponded symbols until the EOF' is found.

Although the above example is based on the fixed probability model, in practice the prob-
ability model can be adaptive and vary during the coding depending on the input source. In
addition, due to the limitation of the computing resources, the precision of dividing the word
length of a real number is limited, and there are some chances that underflow and overflow may
occur. The underflow and overflow situations can be resolved by imposing some constraints on
the word length of the coded real number, and by rescaling of the frequency counts of the prob-
ability model. More details of such Arithmetic Coding implementation issues and treatments

are discussed in [107].

Since the probability model of visual data is a random process, it is not possible to find a
probability model to represent all the images and video sequences. An adaptive probability
model of an entropy coder will be more appropriate than a fixed model. Therefore, Arithmetic
Coding is more suitable than Huffman Coding for reducing the entropy of the compressed image

or video bit-stream.
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Chapter 4

Compression Schemes and Quality

Assessment

4.1 Introduction

This chapter will briefly review the compression schemes that are currently used for visual data
compression. Those compression schemes normally exploit either the visual insensitivities or
visual data redundancies, or both, which have been discussed in the preceding chapters. This
chapter will also review some methods used to assess the quality of the compressed visual data.
The quality assessment can be used to predict the subjective quality of the image viewed and to

improve the compression schemes.

4.2 Visual Compression Schemes - Review

Currently all visual compression techniques can be broadly grouped into four categories: sample-

based methods, block-based methods, fractal methods, and multiresolution methods.

4.2.1 Sample-Based Methods

For a sample-based compression method, the image samples are compressed on a sample-by-
sample basis. A sample-based compression method is a scalar predictive coding which predicts
image samples either in the spatial domain or in the frequency domain. It is based on closely

correlated neighboring pixel values — spatial redundancy. The differential pulse code modu-
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lation (DPCM) method shown in Figure 4.1 is a simple example. The predicted pixel value is
given by
Pij = Z Wh 1 Gi—k,j—1» (4.1)
(k1)EN
where NV is a group of causal neighboring pixels, wy; is the prediction weight of the pixel at
position (k, [), and g; ; are the quantized coefficients from which to predict. The values of the
prediction weights, wy,;, can be either fixed or adaptively estimated. The prediction error e; ; is
then given by
€ij = Tij — Dijj 4.2)
where z; ; is the original pixel at coordinates (i, j).. Since neighboring pixels are spatially
correlated, the prediction errors, e; j, generally will be small, and have a lower entropy than the
original signal z. As a result, the quantized values, g; ;, will require fewer coding bits. However,
this sample-based method may not always work. If there are too many high spatial frequency
activities in an image, this sample-based method may fail to predict samples, and would have

an inefficient coding result.

Xij + mei'j Gi.j
Pi

Quantizer

Predictor

Figure 4.1: DPCM encoding model

4.2.2 Block-Based Methods

Block-based coding methods can be further separated into two classes: spatial-domain block
coding and transform-domain block coding. In spatial-domain block coding, the pixels are
grouped and compressed in a block-by-block fashion. An example of spatial-block-based cod-
ing is vector quantization (VQ) [109]. A VQ encoder takes a block of data and assigns code-
words to each block. Since the codewords are also available to the decoder, only the indices of
codewords are sent. The result is a very sparse representation of the original data. However,
a VQ coder normally has a long coding time, due to the exhaustive search for matching code-
words to the coding blocks. In contrast, the VQ decoding speed is comparatively faster than
the encoding. Therefore, the VQ method is only suitable for those applications in which fast
coding is not important.

On the other hand, in transform-domain block coding, three main coding procedures are
performed. Firstly, the pixels are grouped into blocks, and the blocks are transformed to the
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frequency domain. Since the transform decorrelates and compactifies block pixels, many of the
transform coefficients will be close to zero. Secondly, a quantizer identifies and allocates more
coding bit-budget to the coefficients which are visually more important to the viewers. Finally,
the quantized coefficients are entropy encoded according to their occurrence probabilities. The

coding process can be expressed as
X =T7'Q(TX), (4.3)

where T is the transformation matrix, @ is the quantizer, 7! is the inverse matrix of T', and X
is the decoded version of the input image X. The optimal transform in the sense of achieving
greatest decorrelation is the Karhunen-Loeve transform (KLT) [110](p.535), but it is too com-
putationally inefficient for practical applications and also has image dependent basis functions.
A better option is the discrete cosine transform (DCT) [111]. DCT is a close approximation
of KLT and is widely used in block-based coding. The basis functions of DCT are image in-
dependent and the transform of DCT is highly regular. Both the JPEG image compression
standard [112, 113, 114] and the MPEG video compression standard [115, 116] use DCT as
their transform basis. However, the DCT-based methods are only suitable for medium to high
bit-rate applications. At low bit-rate the decoded images and video will have unpleasant blocky
artifacts.

4.2.3 Fractal Methods

Fractal image compression methods, introduced by Barnsley [117, 118] and Jacquin [119,
120], are based on the theory of iterated function systems (IFS) [121]. Later Levy and Wilson
showed the relation of fractal coding to wavelet coding and used wavelet VQ for both 2D image
and 3D video compression [122, 123]. The fundamental idea of fractal image compression is
that the image data naturally contains blocks of similar details at the same or different scales,
and at the same or different orientations. That is, based on this self-transformability the image
can then be represented by a group of source blocks extracted from the image itself, together
with the location and the transformation indices of the source blocks. However, the fractal
compression methods are very computationally expensive and are not suitable for either real-

time applications or hardware implementations.

4.2.4 Multiresolution Methods

Multiresolution methods are based on the exploitation of the visual insensitivities of frequency

decomposed images. The decomposition is done by a unitary transform which preserves the
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input bit-rate. Different to the block transform, such as DCT, the multiresolution decomposition
divides the whole image into multiple frequency subbands using a combination of low-pass
and high-pass filters. Therefore, this type of compression is also known as Subband Coding,
which was first applied to image compression by Woods and O’Neil [93] and later by Gharavi
and Tabatabai [124]. The relationship between subband filtering and wavelet decomposition
was explored by Mallat [125]. Since then the wavelet transform has been extensively applied
to multiresolution image and video compression. At low bit-rates, the wavelet compression
scheme usually can achieve much better coding quality than the standard DCT schemes. Among
all of the proposed wavelet compression schemes, the zerotree scheme is the most efficient in
terms of coding complexity and coding results. Currently, zerotree is the benchmark of image
compression algorithms. Zerotree theory was first introduced by Lewis and Knowles [126}], and
later by Shapiro [127, 128]. Both the image and video compression algorithms proposed in
this thesis are based on zerotree theory, so zerotree theory will be discussed in more detail in
Chapter 5.

4.3 Quality Assessment

The quality assessment of compressed visual data can be classified into two categories: sub-
jective quality assessment and objective quality assessment. Subjective quality assessment is
performed by observers, while objective quality assessment is calculated by numerical meth-

ods.

4.3.1 Subjective Quality Assessment

Since the end results of the compressed visual data are to be viewed by people, it is more
appropriate to measure the quality using a subjective quality assessment. Subjective quality
measurement is performed by showing images or videos to a number of observers and averaging
the results of how good the images or videos appear to them. One example of subjective quality
measurement is to use an absolute scale such as the one conducted by Panel 6 (Levels of Picture
Quality) of the Television Allocations Study Organization [129]. The scale and the associated
definitions are tabulated in Table 4.1.

More recently, subjective quality assessment is formalized in Recommendation ITU-R BT.500-
10 [130], which suggests the general test methods, the grading scales, and the viewing condi-
tions, as well as the selection criteria of the test materials and observers. The most commonly

used methods are the following:
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Number | Name Description

1 Excellent | The image is of extremely high quality, as good as you could
desire.
2 Fine The image is of high quality providing enjoyable viewing. Inter-

ference is perceptible.

3 Passable | The image is of acceptable quality. Interference is not objection-
able.
4 Marginal | The image is in poor quality and you wish you could improve it .

Interference is some what objectionable.

5 Inferior | The image is very poor but you could watch it. Definitely objec-

tionable interference is present.

6 Unusable | The image is so bad that you could not watch it.

Table 4.1: Subjective Quality Scale used by Panel 6 (Levels of Picture Quality) of
the Television Allocations Study Organization [129]

Double Stimulus Impairment Scale (DSIS): The reference signal is shown before the test sig-
nal, and both are shown only once. Observers then rate the impairment in the test signal
on a discrete five-grade scale ranging from “1” for “very annoying” to “5” for “imper-
ceptible. DSIS is the preferred method when assessing visual signals with clearly visible
impairments.

Double Stimulus Continuous Quality Scale (DSCQS): Firstly, the reference and the test signals
are consecutively shown to observers one or more times for them to gain a mental measure
of both signals. Then, both signals are shown to observers again one or more times for
them to rate both signals. Observers are not informed which signal is the reference and
which signal is the test signal in both cases. They rate both signals in a continuous quality
scale ranging from “1” to “100” for “bad” to “excellent”. DSCQS is a reliable assessment

scale even when the reference and the test signal are of similar quality.

Single Stimulus Continuous Quality Evaluation (SSCQE): SSCQE is used to assess the time-
varying quality of a digitally coded video sequence. The test video sequence which can
range from 5 to 60 minutes duration is shown to observers. They continuously rate the
instantaneously perceived video quality using a slider on the DSCQS scale. Due to the
limitation of the human working memory, the continuously recoded quality results for the
entire viewing duration can avoid a biased assessment from observers towards the final
10-20 seconds of a video. In addition, the fact that no reference is used in SSCQE puts
observers in a situation close to a real home viewing condition.

59



4.3. Quality Assessment

Although a subjective assessment can provide a reliable quality rating for compressed visual
data, it is a time consuming and resource costly task. Also, a subjective assessment can not
be incorporated into a compression scheme to provide an instant quality measurement for pre-
dicting the viewing quality or improving the performance. In such cases, an objective quality

assessment which can be performed by a computer using numerical methods is a better option.

4.3.2 Objective Quality Assessment

The most widely used and the simplest objective quality assessment is the pixel-based method.
It can be determined by measuring either the mean square error (MSE), or the peak signal to
noise ratio (PSNR).

The MSE is the mean of the square of the pixel differences between the reference and the
test visual signals. For grayscale images, the MSE is defined as

M N
MSE(f) = 57 ; ;[f(i, J) = )P, (44
where the M and N are respectively the number of rows and columns of the image, and f and
f are respectively the reference and the test image. For color images the MSE is defined as
_ MSE(R)+ MSE(G) + MSE(B)
3 ;
where R, G, and B are the trichromatic components of the image. For both grayscale and color

MSE 4.5)

images, the PSNR is given by

2552
MSE’

The pixel peak amplitude is assumed to be 255, because each pixel in the grayscale image or

RGB color components is normally represented by 1 byte. The PSNR provides a logarithmic
fidelity scale in decibel (dB) that indicates how closely the test image resembles the reference.
Very often the root mean square error (RMSE) is also used to measure the quality. The RMSE
is the average difference per pixel, and is given by RMSE = vV MSE.

When assessing the video quality, the result can represented by single averaged MSE, or
PSNR, value by modifying Equation 4.4 to

T M N

MSE() = e S5 3 1) = Fib i )P, @7

k=1 i=1 j=1

where T' is the number of frames of the entire video duration. Alternatively, the quality assess-
ment can also be performed by measuring the PSNR of each video frame in a frame-by-frame
fashion for the entire duration of the video, just like the SSCQE method discussed previously.

60



4.3. Quality Assessment

Although MSE, RMSE and PSNR provide a very easy and fast quantitative quality assess-
ment of images, they do not reflect the actual quality perceived by viewers. In some cases,
the subjective quality of a image with a lower PSNR can be better than another with a higher
PSNR, or two images with similar PSNRs may have a large visual quality difference. Subjective
quality critically depends on human visual characteristics and the image or video contents, as
well as the viewing conditions, so it cannot be measured by simple pixel-by pixel comparison
methods [131].

Human visual characteristics, like the visual processes and the visual insensitivities discussed
previously, make some image or video contents are more error resilient than the others. For ex-
ample, a image with more high spatial frequency contents can tolerate more errors, due to spa-
tial masking; and fast moving video objects can also tolerate more distortions, due to temporal
masking. The viewing conditions, like viewing distance and display settings, also influence the
perceived quality. For instance, some impairments can not be seen from a large distance but can
be seen at a short distance, due to reduction of the spatial frequency leading to an increase of the
visual sensitivity. Therefore, in order to mimic human observers in image quality assessment,

the human vision characteristics have to be incorporated into the objective quality assessment.

The objective quality measurements that incorporate the human vision characteristics are
called perceptual quality metrics or models [21, 132, 133, 134, 135]. Early quality metrics were
based on Schade’s single-channel model of the human vision system [46]: The first grayscale
image quality metric was developed by Mannos and Sakrison [47, 136]; the first color image
metric was developed by Faugeras [137]; and the first video quality metric was developed by
Lukas and Budrikis [48].

However, the human visual system is more appropriately modeled in multichannel represen-
tation, and so is the quality metric. Some examples are the Visual Differences Predictor (VDP)
proposed by Daly [60], the Visual Discrimination Model (VDM) proposed by the Lubin [14],
and the contrast-gain control model proposed by Teo and Heeger [26]. These metrics all pro-
duce a perceptual quality measurement map, which indicates the spatial distortions likely to
be detected by human viewers. The VDM was later modified to the Sarnoff JNDmetrix™ for
color video [138]. The just-noticeable distortion (JND) model, proposed by Jayant [139, 140],
gives each signal being represented a threshold of error visibility, below which reconstruction
errors are invisible to human observers, ie. visually lossless. In other words, the JND level is
the maximum amount of distortion than can be introduced to the image without resulting in any

perceived distortions.

In addition, some specialized perceptual quality metrics can also be incorporated to the com-
pression schemes to predict the compression errors or to improve the compression performance.
One example for the DCT scheme is DCTune proposed by Watson et al. [141, 142, 27]. The
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other examples for the wavelet scheme are the wavelet visible difference predictor (WVDP)
model proposed by Bradley [143] and the spatial frequency weighted model proposed by Wat-
son et al. [144].

Although perceptual quality metrics can give a better objective quality assessment, they are
too computationally intensive and lack standardization for comparison of results. Also, percep-
tual quality metrics are designed for assessing images and videos with compression quality at
around the JND level. Normally at such quality level, images and video are visually lossless
or near-lossless, and have a low compression ratio, ie. high bit-rate. At high compression ra-
tios, the compressed visual data are far beyond the visual threshold, ie. suprathreshold, and the
perceptual quality metrics simply fail to provide a reliable quality assessment.

Hence, within the scope of this thesis, the quality assessment of the compression results
will be the PSNR or the RMSE method, as a reference scale only. Whenever possible, the
compressed images or video frames will be presented in prints in this thesis, as subjective

quality assessment is still the most reliable method in measuring the actual perceived quality.

4.4 Image and Video Compressibility

We have discussed some visual data compression schemes and the methods used to assess the
compression results. In this section we will briefly discuss image and video compressibility to

gain some ideas about the anticipated results from the compression schemes.

The compressibility of an image or a video is an indicator of how well the image and video
can be represented by as little amount of information as possible, but with an acceptable quality.
The compressibility mainly depends on the contents in an image or video, regardless of which
compression scheme we use. That is, the contents determine the amount of redundant infor-
mation, and, therefore, how much amount of information can be discarded. The compression

schemes then identify and discard the redundant information to achieve compression.

The amount of redundancy depends on the amount of high spatial frequency features in the
image, such as edges, contours, texture regions, or leafy areas. If an image has more high
frequency features, the image will have lower spatial redundancies, due to lower spatial correla-
tion. Therefore, even after being transformed into the frequency domain, there will still be more
high frequency coefficients. In other words, the frequency decomposition cannot decorrelate the
image efficiently, so the image has low compressibility. On the other hand, if an image has more
low spatial frequency features, like a constant background or a slowly changing background,

the image will have more correlation, so that the frequency decomposition will be able to obtain
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a more compact data representation. Therefore, the image will have a high compressibility. For
video, the compressibility depends on the number of scene changes of moving objects. If there
are more scene changes or moving objects there will be less temporal correlation. The video
will then have a low compressibility.

In Figure 4.2, we compare the compressibility of two images, Pot and Bird. The original Pot
and Bird image are shown in Figure 4.2(a) and (b), respectively. From the discussion above,
we expect the Pot image to have a lower compressibility than the Bird image. This is because
the Pot image has many high frequency features like the plant leaves, the bamboo curtain on
the background, and the bamboo veranda with high contrast shadows incident on the curtain.
On the other hand, the Bird image has mainly low frequency features like the slowly changing
clouds and sky on the background, and the low contrast feather texture of the bird. The contour
of the bird is the only significant high frequency feature that changes abruptly from one color
to another. Figure 4.2(c) and (d) show the frequency decomposition of the Y components of
both images by wavelet transform. Because of having more high frequency features, the Pot
image’s wavelet matrix has a significantly higher number of coefficients in the high frequency
subbands than the Bird image’s. Hence, we can anticipate that the Pot image will have a lower
compression quality than the Bird image, if both are compressed at the same ratio. Figure 4.2(¢e)
and (f) show the 100:1 compressed Pot and Bird image. At such high compression ratio, the Pot
image loses many high frequency features, due to low spatial correlation; while the Bird image

looks nearly as good as the original image, due to high spatial correlation.

One thing that must be mentioned here is that in lossless compression, the reduction in the
amount of visual data depends mainly on the redundancies but not the visual insensitivities.
Only in lossy compression do both redundancies and visual insensitivities have an effect in

determining what information will be encoded and what will be discarded.
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Figure 4.2: Image compressibility comparison (a) the original Pot image (b) the
original Bird image (c) Y component wavelet matrix of Pot (d) Y component
wavelet matrix of Bird (e) 100:1 compressed Pot image (f) 100:1 compressed Bird
Image
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Chapter 5

Zerotree Coding Algorithms

5.1 Introduction

As mentioned in the previous chapter, only wavelet compression schemes can achieve accept-
able coding quality at low bit-rate applications. Other image and video compression schemes
fail to maintain an acceptable coding quality at low bit-rate. Since the late 1980s, a variety
of wavelet image compression algorithms have been proposed [145, 146, 147, 148, 101, 149].
These wavelet algorithms have demonstrated a coding performance superior to the JPEG com-
pression standard, especially when the coding bit-rate is low.

However, the major breakthrough for wavelet image compression occurred when Lewis and
Knowles invented and implemented the zerotree data structure, in their HVS image coding
algorithm [126]. The zerotree data structure is significant for two reasons: first, it considers the
intra- and inter-subband correlation for identifying the wavelet coefficients that are important
to the image quality; second, it results in a very efficient data representation that allows the
wavelet coefficients to be represented by a word length lower than their entropy. Later, Shapiro
proposed his well-known embedded zerotree wavelet (EZW) algorithm [127, 128] based on the
zerotree data structure, which strengthened the foundation for zerotree theory to be applied to

wavelet image compression.

The significance of EZW is that it requires absolutely no training, no pre-stored tables or code
books, and requires no prior knowledge of the image source. Moreover, EZW has several desir-
able features for image compression and transmission. First, EZW is in the embedded fashion,
that is, the coarser scale information is embedded in the finer scale information. This embedded
feature is suitable for multi-precision representation for quality scaling. Second, EZW pro-

vides an ordered information sequence for transmission, ie. larger coefficients are coded before
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smaller ones. This is because, based on information theory, wavelet coefficients with larger
magnitude normally contain more information about the original image. Third, EZW offers a
very precise rate-distortion control. Since zerotree coding is in the embedded fashion and the
important wavelet coefficients are transmitted first, the encoding and decoding procedures can

be terminated at any point, if the pre-determined bit-rate or distortion is achieved.

This chapter will discuss zerotree theory in more detail, including the development of ze-
rotree image compression algorithms and the extension of zerotree theory for video compres-
sion. This chapter will also discuss the drawbacks of current zerotree image and video compres-
sion algorithms. These drawbacks are addressed by the proposed image and video compression

algorithms in this thesis.

5.2 Embedded Zerotree Wavelet Coding

Similar to Lewis and Knowles’ algorithm, EZW coding exploits the coefficient relationship
between the LL subband and the high frequency subbands. It is based on the presumption that
if a coefficient in the LL subband is insignificant with respect to a threshold, the coefficients of
the same spatial location in the high frequency subbands also will have a high probability of
being insignificant. Therefore, wavelet coefficients of the same spatial location can be grouped
into a tree structure, and the significance of this tree can be indicated by the root coefficient in
the LL subband.

The parent-child dependency of the wavelet coefficient tree is shown in Figure 5.1(a). The
coefficient in the LL subband is the root (or parent) coefficient, which has three child coefficients
in the higher frequency subbands of the same transform level. Each of these child coefficients
has four children in the same spatial locations of the finer transform level. Coefficients in the
finest (or lowest) transform level are the leaf coefficients, which do not have any child coeffi-
cient. The wavelet matrix in Figure 5.1(a) has three transform levels, so one root coefficient

will have a total of 63 descendants spanning three generations.

EZW coding has two coding passes, namely the dominant pass and the subordinate pass.
The wavelet coefficients are scanned in the raster order shown in Figure 5.1(b). The scanning

order is in a fashion such that no child coefficient is scanned before its parent.

In the dominant pass, the magnitudes of wavelet coefficients are compared with a threshold
T. The initial threshold Tj is chosen such that z;; < 27 for all wavelet coefficients z;;. The
threshold is halved in every subsequent dominant pass. This results in a bit-layer encoding as

illustrated in Figure 5.2. The coefficients of a wavelet transform matrix are separated into a sign
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Figure 5.1: (a) EZW coefficient parent-child dependency (b) EZW tree scanned
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Figure 5.2: Bit-layer coding diagram

layer and several magnitude layers. The weight of a bit-layer is indicated by w. A coefficient
whose most significant bit (MSB) appears in the bit-layer with weight w means its magnitude
falls between 2% and 2¥*! — 1. The layer coding sequence is from the most significant layer
(MSL) to the least significant layer (LSL).

As discussed in the previous chapter, the distortion measurement of the reconstructed image
is given by the MSE,

~ F-F 1
Dop =) = L= EE LSS gy - fair, 6

=1 j=1

where F is the original image and F is the reconstructed image. If the wavelet transform is a

unitary transform, Equation (5.1) can be written as

Dpse(F = F) = Dpae(C = 0) = =1 Z Z[c(z’, §) = &G, )P, 52)
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where C and C are the original and reconstructed wavelet matrix, and c(4, j) and &(i, j) are
their coefficients at coordinate (7, j). If a wavelet coefficient c(¢, j) is sent to the decoder, the
distortion, D,,,., will be reduced by |c(, 5)|?/M N. Intuitively, larger coefficients are more
important for reducing the reconstructed error and should be transmitted first. Therefore, EZW
begins encoding from the MSL to ensure that a reasonable reconstructed image quality can
be obtained earlier (information ordering), and also to ensure that the coding process can be

terminated at any point (embeddedness).

Depending on the magnitude and the sign, a coefficient is coded into four different symbols,

&§

namely positive coefficient “+”, negative coefficient “-”, zerotree root “ZTR”, and isolated
zerotree “IZ”. If the magnitude of a coefficient is greater than the current threshold, that coeffi-
cient is coded as symbol “+” or “-” depending on its sign. On the other hand, if the coefficient
and its descendants are all below the threshold, this coefficient is coded as a “ZTR”. However,
if the coefficient is below the threshold but one or more of its descendants are greater than the
threshold, this coefficients is coded as an “IZ”. For those coefficients that are coded as “+” or

&

, their magnitudes are added to the magnitude list and are set to zero in the wavelet matrix.

The subordinate pass performs two tasks. Firstly, it compares the values of new entries in
the magnitude list with an uncertainty interval which is between 7' and 27, where T is the
current threshold. If the value is in the upper half of the uncertainty interval, it will be coded
as symbol “I”, whereas if the value is in the lower half of the uncertainty interval, it will be
coded as symbol “0”. Those symbols are then added to the subordinate list. Secondly, the
subordinate pass refines the coefficients already in the magnitude list by comparing them with
the new uncertainty interval. The output symbols are the refinement symbols for the coefficients

in the magnitude list.

In the encoding process, the position information is encoded by the zerotree symbols, “+7”,
“.» “ZTR”, and “IZ”, while the magnitude information is encoded by the subordinate sym-
bols, “1” and “0”. Therefore, the EZW decoder can just use these two types of symbols to

reconstruct an approximate version of the original wavelet matrix.

5.3 Set Partitioning In Hierarchical Trees

Because EZW has demonstrated the efficiency of the zerotree data structure for image com-
pression, several other algorithms have been developed based on zerotree theory. Some ex-
amples are Tsai et al.’s Stack-Run image coding [150], Algazi and Esters’ Analysis Cod-
ing [151], RICOH’s CREW [152, 153], Davis’ wavelet-based Fractal Image Compression
[154], Creusere’s REZW [155], and Said and Pearlman’s Set Partitioning in Hierarchical Trees
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(SPIHT) [156]. Although zerotree compression performance has been improved by those algo-
rithms, only SPIHT concentrates on providing a simpler and faster coding method.

Compared to EZW, SPIHT has several advantages. First, a SPIHT coder searches the tree
recursively, ie. one tree branch is dealt with at once, therefore the coder requires less temporary
memory to store the information of the parent-child relations. Second, unlike the four zerotree
symbols in EZW, SPIHT uses only two symbols to represent position information. Conse-
quently, the bit-budget can be used for coding more coefficients, rather than coding position
information. Third, thresholds in SPIHT are always chosen to be power of two. Therefore,
comparing a coefficient with the threshold is just a logical AND operation, and a reconstructed
value is just the summation of several dyadic numbers. That is, SPIHT uses integer operations,
which are more hardware implementation friendly. Finally, unlike EZW, a SPIHT coder can
search, compare, and encode wavelet coefficients with a single coding pass. Therefore, the
coding complexity of SPIHT is less than that of EZW.

A SPIHT coder maintains three coding lists. These three lists are a list of insignificant
pixels (LIP), a list of significant pixels (LSP), and a list of insignificant sets (LIS). These three
lists are used to store the coordinates of significant coefficients, insignificant coefficients, and
insignificant tree sets, respectively. Like an EZW coder, a SPIHT coder also performs two
coding passes. The first coding pass is the sorting pass that sorts tree branches into hierarchical
order, adds the coordinates to coding lists, and outputs the magnitude and sign information of
coefficients. The second pass is the refining pass that outputs refinement bits for the coefficients

whose coordinates are stored in the LSP.

The parent-child relation of SPIHT is shown in figure 5.3(a). This relation is different from
that of EZW. Instead of forming individual tree roots in the LL subband, SPIHT groups coeffi-
cients in the LL subband into 2 x 2 groups. In this 2 x 2 group, one coefficient is an isolated tree
root, indicated by “*”, and each of the other three roots has four children in the high frequency
subbands. With this grouping, a SPIHT coder can deal with more coefficients at once than EZW
for the same number of wavelet transform levels. Said and Pearlman named this tree structure
the spatial orientation tree. Figure 5.3(b) shows an example of the recursive tree searching
performed by SPIHT. The numbers marked in the tree coefficients indicate the visiting order by
the SPIHT coder when that branch is coded.

The decoding process of SPIHT is simply the reverse of the encoding process. In addition,
because SPIHT inherits all of the advantages of EZW, the encoding and decoding processes can

also be terminated at any point, giving a precise rate or distortion control.
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11|16

12]13]17]18
14|15{19]20

(a) (b)

Figure 5.3: (a) SPIHT zerotree (hierarchical tree) parent-child dependency (b)
SPIHT recursive tree searching order

5.4 Three Dimensional Wavelet Zerotree Video Coding

Since zerotree coding has a superior coding performance to DCT coding, researchers have also
applied zerotree theory in video coding. A video sequence is an array of frames, and normally
contains high temporal correlation, which results in significant information redundancy. There-
fore, in order to achieve a better compression efficiency, this temporal correlation will have to
be removed before applying any spatial coding to each video frame. The method used by the
international standards, such as MPEG and H.263, to remove the temporal correlation is called
motion estimation and compensation (ME/C). The combination of ME/C and zerotree theory
for video coding has been demonstrated by Wang and Ghanbari [157], Martucci et al. [158],
and Pearlman et al. [159].

Alternatively, the removal of temporal correlation can also be done by the three dimensional
(3D) wavelet transform, which is an extension of the 2D wavelet transform to the temporal
domain. The exploitation of the 3D wavelet transform for subband video coding was demon-
strated by Karlsson and Vetterli [160], Taubman and Zakhor [161], Ohm [162], and Levy and
Wilson [122, 123]. Figure 5.4 gives an example of the application of the 3D wavelet transform
to a video sequence. Before transformation, the video frames will have to be grouped in a
group of frames (GOF) of dyadic size. In this example, the size of the GOF is four frames. The
3D wavelet transform decomposition of this GOF is first performed along the temporal axis for
temporal decomposition, and then in the spatial domain for spatial decomposition. After several

applications of the temporal wavelet transform, a GOF will have the temporal subband orien-
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Figure 5.4: 3D wavelet transform applied to a group of video frames
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Figure 5.5: Subband orientation of a GOF after being 3-level temporal wavelet

decomposition

tation shown in Figure 5.5. Letters L and H denote low-pass and high-pass temporal wavelet
transforms, respectively. Because of a strong inter-frame correlation, the information in the
GOF will be mostly packed into the temporally lowest frequency subband, L3; while the high
frequency temporal subbands will sparsely contain the high temporal frequency information
corresponding to the changes within the GOF.

The 3D wavelet transform generates coefficients in a 3D hierarchical subband structure,
which is ideal for zerotree coding. Interestingly, despite the excellent performance on still image
compression, only a few algorithms have ever combined zerotree theory and 3D wavelet trans-
form for video coding. Those algorithms are HVS video coding of Lewis and Knowles [163],
Tri-Zerotrees of Tham et al. [164, 165], and 3D SPIHT of Kim et al. [159, 166, 167, 168].
Among these algorithms, 3D SPIHT gives the best compression results and has the lowest cod-
ing complexity. Therefore, 3D SPIHT is the current benchmark for 3D wavelet zerotree video

coding algorithms.

The zerotree structure of 3D SPIHT is called a spatio-temporal orientation tree. One exam-

ple is shown in Figure 5.6. The tree roots in the lowest frequency subband are marked by *,
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.................................

Figure 5.6: 3D SPIHT zerotree (hierarchical tree) parent-child dependency

a b, c d e f, and g, noting that f is hidden below b. Their child sets, except for the isolated
tree root *, are marked by A, B, C, D, E, F, and G, where F is hidden below B. Figure 5.6 also
shows the tree nodes, 4, i, and j, and their associated child sets, H, I, and J in the high frequency
subbands. Each parent node has eight children, which form a 2x2x2 coefficient block in the

same spatio-temporal location in the finer transform level.

Since 3D SPIHT is the extension of SPIHT to the spatio-temporal domain, a 3D SPIHT coder
also maintains three coding lists to store the sorting results along the spatio-temporal orientation
trees. In addition, the 3D SPIHT coder has a sorting pass and a refining pass. The sorting pass
recursively sorts the coefficients in a tree branch according to their magnitudes with respect
to the coding threshold. The sorting results are stored in those three coding lists. After that,
the refining pass refines the magnitude information for those coefficients with their coordinates

already being stored in the LSP (list of significant pixels).

Compared to ME/C video coding, 3D wavelet video coding has several advantages. First,
3D wavelet video coding has a lower computational complexity, because it exploits the fact that
the temporal correlation can be decorrelated after a very simple temporal wavelet transform,
due to the information packing property of the wavelet transform. In contrast, ME/C video
coding will generally require a very intensive pixel-based search among the successive video
frames to identify and remove temporal redundancy. Second, since ME/C is a predicting and
compensating process, its regularity is highly dependent on the video contents. On the other
hand, the 3D wavelet transform is a very regular process, regardless of the video contents.
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Third, the 3D wavelet transform produces the transformed GOFs with a hierarchical coefficient
structure. Therefore, 3D wavelet video coding can easily produce a multiresolution bit-stream
for video quality scaling that enables a wider number of applications. On the other hand, ME/C
video coding can only produce a video bit-stream with a fixed quality, which is limited to
a certain number of applications. Finally, 3D wavelet video coding is not only suitable for
realtime software implementation but also is suitable for hardware implementation, because of

its simplicity and high regularity.

5.5 Drawbacks of Zerotree Coding Algorithms

Since SPIHT has shown a very efficient way to compress still images, many ad hoc image
compression algorithms based on it have been proposed, such as [169, 170, 171, 172, 173].
All of the zerotree coding algorithms have three distinctive features: they require coding lists,
they perform multiple coding passes, and they use multiple zerotree symbols. However, these
distinctive features are also the drawbacks of zerotree coding algorithms. They increase the

coding memory requirement and the coding complexity.

Firstly, zerotree coding algorithms require some coding lists to store coding information; two
coding lists for EZW and three coding lists for SPIHT. These coding lists are essential for the
formation of the embedded coding. However, the use of coding lists will demand a significantly
large amount of coding memory. For example, when using SPIHT to code a grayscale 512x512
image, one single entry of the list requires 18 bits or 2.25 bytes of memory to store the row
and column coordinates. Given that the total number of list entries is approximately twice the
total number of coefficients, the total memory required will be 1.125 MB !. When coding a
color image of the same size, each color component will require its own coding lists, and this
increases the memory requirement to 3.375 MB. The coding memory requirement will increase

even more when increasing the target coding bit-rates or image sizes.

Similarly, 3D SPIHT also requires a large amount of coding memory to maintain its three
coding lists. For example, when coding a color (4:1:1) QCIF video sequence with 16 frames
in a GOF, a single list entry will require 20 bits of memory for the Y component and 18 bits
of memory for the U and V components to store the 3D coordinates. Suppose at a moderate
bit-rate, the total number of list entries is the same as the total number of pixels, the memory
required by 3D SPIHT will be about 1.4MB 2. However, when increasing the video frame sizes

to (4:1:1) CIF format, the memory requirement will increase to about 6.19 MB, not to mention

12.25(bytes)x512x512x2/1024/1024 = 1.125 MB
2[176x144x20(bits) + 88x72x18(bits)x2(colors)] x 16(GOF)/8/1024 = 1.4 MB
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the 4CIF applications.

In spite of having high coding efficiency, the high coding memory requirement makes ze-
rotree coding algorithms, such as SPIHT and 3D SPIHT, not suitable for hardware implemen-
tation. In particular, they are not suitable for portable devices, as the minimization of memory

is one of the important design issues in reducing device size and power consumption.

Secondly, zerotree coding algorithms normally need to perform multiple coding passes, like
the sorting and refining passes performed by SPIHT and 3D SPIHT. Those multiple coding
passes are also the key processes for maintaining the embeddedness of the coded bit-stream.
The multiple coding passes can be easily done by a software implementation but not by a hard-
ware implementation. For the hardware implementation, switching between the multiple coding
passes will require buffering, which consequently increases the implementation complexity and
memory requirement. Therefore, the hardware implementation of multiple coding passes will
be very costly. Furthermore, since 3D wavelet video coding algorithms generally suffer from the
problem of coding latency due to the formation of GOF, the multiple coding passes performed

by 3D SPIHT would cause a real problem in interactive applications such as videophones.

In addition to multiple coding passes, the use of multiple symbols in zerotree coding al-
gorithms will also increase the coding complexity. This is because those symbols need to be
encoded by bit-budget, so that they can be distinguished between coder and decoders. There-
fore, the coding efficiency may be degraded if too many coding symbols are used.

Therefore, in order to reduce the memory requirement and the coding complexity, the coding
lists must be removed, and the number of coding symbols used must be minimized. Some
new zerotree algorithms have been proposed to reduce the memory requirement problem, such
as the low-memory packetized SPIHT [174] and the no list SPIHT [175], both proposed by
Wheeler and Peariman. However, some lists are still used in these two coding algorithms. The
total removal of coding lists has been attempted by Su and Wu in their Embedded Recursive
Zerotree (ERZ) coding scheme [176]. However, because of the failure to use the inter-subband
relations between the LL and other high frequency subbands in the zerotree data structure, and
the redundant assignment of wavelet coefficients to zerotree symbols, ERZ has a limited coding

performance.

Apart from Lewis and Knowles’ algorithm, the current zerotree algorithms are only opti-
mized for the reduction of the MSE or PSNR, but not for the human vision system. In Lewis
and Knowles’ algorithm, the characteristics of the HVS are taken into account for determin-
ing the quantization thresholds [177]. Those characteristics include luminance adaption, spatial
masking, frequency band sensitivity, and texture masking. As discussed previously in Chap-

ter 2, those characteristics of the HVS have a direct influence on the actual perceived quality of
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the compressed image and should be considered in the compression algorithms. Ignoring the
characteristics of the HVS may cause those zerotree algorithms to have a good performance in
terms of MSE and PSNR only, but not in terms of perceived quality.

In this thesis, a new zerotree algorithm for color image compression is proposed. It reduces
the drawbacks of the other zerotree algorithms discussed above. Since there is no list used in
the proposed algorithm, it is named Listless Zerotree Coding (LZC). When compared to other
zerotree coding algorithms, LZC has three advantages. First, because it uses no coding list,
the coding memory requirement is significantly reduced. The memory requirement of LZC is
fixed for all bit-rates, and is only a fraction of that required by SPIHT. It is only proportional to
the image size. Second, the multiple coding passes normally performed by other zerotree algo-
rithms have been reduced to just one pass, which results in a significant reduction in the coding
complexity. Third, LZC uses only two zerotree symbols to code the wavelet coefficients, so
there is also a coding complexity improvement. Beside these improvements, LZC also consid-
ers the characteristics of the HVS in its bit-allocation process, trying to improve the perceived
quality of the reconstructed images.

Since only few 3D zerotree video algorithms have ever been proposed, the LZC algorithm is
also extended to video coding by combining it with the 3D wavelet transform. This novel video
coding algorithm is called 3DLZC. 3DLZC not only provides an alternative 3D zerotree video
coding algorithm, but also dramatically reduces the large coding memory requirement and the
coding complexity of 3D SPIHT. We will discuss LZC and 3DLZC in detail in Chapter 6 and
Chapter 7, respectively.
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Chapter 6

Listless Zerotree Coding for Color Image

Compression

6.1 Introduction

In this chapter we will present a zerotree coding algorithm called Listless Zerotree Coding
(LZC) that requires no coding lists, resulting in a very low memory requirement. The multiple
coding passes performed by other zerotree algorithms have been reduced to just one pass in

LZC, resulting in a lower coding complexity.

We will first discuss how we can take into account the characteristics of the human visual
system in the LZC algorithm. Then, we will discuss in detail the topics related to the LZC
algorithm, including LZC tree symbols and structure, significant maps, tree searching methods,
and coding procedures. After that, we will discuss some implementation issues and show some
preliminary testing results from LZC test codecs. Finally, we will compare the LZC algorithm
with SPIHT and the JPEG 2000 standard.

6.2 Mapping HVS Characteristics in a Bit-Allocation Scheme

In Chapter 2 and 3, we discussed the human visual system characteristics that are closely re-
lated to image compression. Therefore, in this section we will discuss how we can map those

characteristics in the bit-allocation scheme used by the LZC algorithm.

The considerations of the HVS characteristics in the bit-allocation scheme can be separated

into two aspects: within a wavelet matrix and among color components.
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6.2.1 Bit-Allocation Within a Wavelet Matrix

From the discussion in Section 3.3 we have seen that the wavelet decomposition is similar to
the cortex decomposition of our visual system. This similarity enables us to identify which part
of the wavelet matrix contains more important information for the visual system, and which
part does not. To locate which part of the wavelet matrix contains more important information
than the other, we can first look at the relationship between the spatial frequency decomposition

property of the wavelet transform and the contrast sensitivity characteristic of our visual system.

After a wavelet transform, each subband will contain information within a certain horizontal
and vertical range, depending on the transform level. The coarser the transform level, the lower
the spatial frequency. From the discussion in Section 2.3.2 we know that our visual system has
a higher contrast sensitivity toward the low spatial frequency visual signals, but has a lower
contrast sensitivity toward the high spatial frequency visual signals. Therefore, the information

in the lower frequency subbands is more important than that in the high frequency subbands.
The horizontal spatial frequency range of a subband is given by

Fall) = (0,27 frnaer] if low-pass filtered , &5
H - .
27 frnaztr, 27 fnaorr])  if high-pass filtered.

Similarly, the vertical spatial frequency range of a subband is given by

0,2 frna if low-pass filtered ,

Fy(l) = 10,27 fmacv] P 6.2)
127! frnaavs 27 fruaay]  if high-pass filtered.

The parameter [ in both equations denotes the transform level of the subband, and f,,,, and

fmaay are the maximum horizontal and vertical spatial frequencies, respectively. They are given

by

R N4
SmacH = ﬁ and oy = 2tan IE, (6.3)
f =—- and ay= 2tan‘1£ (6.4)
mazV — 2aV vV — 2D, K

where Ry, and Ry are the image horizontal and vertical dimensions in pizels, ag and oy are
the horizontal and vertical visual angles in degrees, W and H are the image width and height
in ¢m, and D is the viewing distance in c¢m.

For instance, the HL2 subband in Figure 6.1 contains information from the horizontal range
of 0.25 fazm 10 0.5 fee g and the vertical range of 0 to 0.25 f,,,.v. After knowing the subband
frequency ranges, we can then map the CSF of a certain viewing condition to the wavelet sub-
band and interpret the importance of the subband information for that viewing condition, such
as the mapping of the HL2 subband shown in Figure 6.1.
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Figure 6.1: Spatial frequency ranges of wavelet subbands

If the frequency ranges of a subband correspond to a higher CSF, that subband will contain
more visually important information and require more bit-budget. On the other hand, if the
frequency ranges correspond to a lower CSF, that subband will contain less important infor-
mation and requires less bit-budget, because it is more visually error resilient. For instance, in
Figure 6.1, HL3, LH3 and HH3 subband are more important than the others, so a bit-allocation
scheme should allocation more bit-budget to those subbands. However, from Equation (6.3)
and (6.4) we can see that if we increase the viewing distance, the spatial frequency ranges of
LL3 subband will be extended to include the high CSF range. Therefore, as discussed in Sec-
tion 2.3.2, the CSF is normally flattened in the low frequency range, as indicated by red lines
in Figure 6.1. The LL3 subband should then be allocated the same amount of coding bit-budget
as HL3, LH3 and HH3 subband. As a result, the bit-allocation sequence should begin at lower
frequency subbands and end at higher frequency subbands, ie. from the coarsest transform level

to the finest transform level.

Besides the frequency decomposition property, the wavelet transform also has the orientation
decomposition property. After a wavelet transform, the image orientation information will be
decomposed into three orientations. As discussed in Section 3.3.3, we know that LH subbands
contain horizontal high frequency details, HL subbands contain vertical high frequency details,
and HH subbands contain diagonal high frequency details. The importance of the information in
LH, HL, and HH subbands can then be interpreted by looking at the orientation sensitivity of our
visual system, as discussed in Section 2.3.3. Due to the oblique effect, our visual system is more

sensitive to the signals in the horizontal and vertical orientations, but less sensitive to the signals
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in the diagonal orientation. That is, LH and HL subbands contain more important information
than HH subbands. Therefore, a bit-allocation scheme should allocate more coding bit-budget
to code wavelet coefficients in LH and HL subbands than those in HH subbands. Consequently,
the bit-allocation sequence for coding orientation information should be LH—HL—HH.

Figure 6.2 gives an example of how a bit-allocation scheme can influence the visual quality of
the reconstructed image. Figure 6.2(a) shows 2-level transformed wavelet matrix of Lena image.
Figure 6.2(b) shows the reconstructed version by using only LL subband coefficients without
considering the characteristics of our visual system. The compression ratio is 16:1. However,
since our vision is also sensitive to the high spatial frequency information contained in the high
frequency subbands, omitting high frequency information will cause the reconstructed image to
look blurry. On the other hand, Figure 6.2(c) shows the reconstructed Lena image which was
compressed to the same compression ratio using the LZC algorithm. Since the bit-allocation
scheme in LZC algorithm follows the characteristics of our visual system, the Lena image looks
sharper and more visually pleasant.

= (b) _

Figure 6.2: Bit-allocation scheme comparison on the Lena image (a) 2-level
wavelet transform matrix (b) using only LL subband coefficients (c) using LZC
algorithm

6.2.2 Bit-Allocation Among Color Components

For color image compression, the image is normally transformed from RGB color space to
one of the luminance-chrominance color spaces, mostly to YCbCr or YUV. After the color
space transform, we can obtain a more compact color data representation, that is similar to the
visual signal representation in the opponent color channels of our visual system. Based on the
discussion in Section 3.2 we know that for YCbCr and YUV color spaces, the Y component
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Sensitivity

Spatial frequency (cpd)

Figure 6.3: Example of color component CSFs - YCbCr color space

is analogous to B-W channel, Cb and U are analogous to the B-Y channel, and the Cr and V
components are analogous to the R-G channel. Therefore, we can determine the importance of
the information contained in those color components by looking at the color contrast sensitivity

of our visual system

From the discussion in Section 2.5.2, we know that the contrast sensitivity of opponent color
channels varies along the perceivable spatial frequency range. Among all three opponent color
channels, the B-W channel has the highest contrast sensitivity, as its CSF is the highest and
spans the entire range of the perceivable spatial frequency. On the other hand, B-Y and R-G
channels have relatively lower contrast sensitivity, and their CSFs decline rapidly at moderate
spatial frequency. The CSF of B-Y channel especially starts to decline at low spatial frequency.
As a result, we expect to see the color components of YCbCr and YUV color spaces have

similar contrast sensitivity behavior to the opponent color channels.

Figure 6.3 shows one example of the CSFs of YCbCr color spaces from [178]. Clearly, the
CSF of the Y component is higher than the CFSs of Cb and Cr components. We also can see
that the CSF of Cb is the lowest and starts to decline at around 8 cpd. The CSFs of the YUV
color space is not shown, but they are very similar to those of YCbCr, as the two color spaces

are closely related.

Therefore, from the discussion above, signals in the Y component are the most important
to our vision, so the bit-allocation scheme should allocate more coding bit-budget for them to

ensure a better reconstructed visual quality. Moreover, signals in chrominance components are
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not as critical as those in the Y component for reconstructed quality, so chrominance compo-
nents will not receive as much bit-budget as the Y component and will be quantized coarsely.
However, the bit-allocation scheme should still ensure that Cr and V components get more
bit-budget than Cb and U components. Hence, the color coding sequence for a source coding
scheme should be Y—Cr—Cb, or Y—V—U, depending on which color space used.

6.3 LZC Zerotree

This section gives an overview of the zerotree symbols, the zerotree structure, and the signifi-
cants maps used in the LZC algorithm.

6.3.1 LZC Zerotree Symbols

One of the distinctive features of zerotree coding algorithms is the assignment of wavelet coef-
ficients to a set of zerotree symbols. The function of those zerotree symbols is to indicate the
positions of wavelet coefficients. The zerotree symbols may represent an individual coefficient
or a group of coefficients.

The zerotree symbols used in the LZC algorithm are as follows:

e R- root coefficient set in LL subband;
e C(i,j)- wavelet coefficient at coordinate (i, j);
e O(i, j)- child coefficient set of C(i, j);

e D(i, j)- descendant coefficient set of C'(4, 7).

If C(i,j) € R, then O(3,7) = [(i + mw, J), (4,5 + nr), (¢ + my, j + n,)], where m, and n,
are respectively the number of rows and columns of the LL subband. On the other hand, If
C(1,j) ¢ R, then O(i,5) = [(24,25),(2i,25 + 1),(2¢ + 1,25),(2¢ + 1,25 + 1)]. Symbols
R, O(i,7), and D(i,7) all represent a group of coefficients. Parameters 4 and j are the row
and column index, respectively. The functions of O(i, j) and D(i, j) are to specify the starting

coordinates for locating child or descendant coefficients.

Although the LZC algorithm assigns wavelet coefficients to four zerotree symbols, the actual
positions of wavelet coefficients are only coded by symbols C(i, j) and D(%, j). Symbols R and
O(4, j) are only used as position references in the encoding and decoding procedures. In a later

section, we will discuss more about the wavelet coefficient coding using these zerotree symbols.
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6.3.2 LZC Zerotree Structure

Another distinctive feature of the zerotree coding algorithm is that wavelet coefficients with
inter-subband correlations are grouped into a wavelet coefficient tree. There are two benefits
for doing so. Firstly, the significance of a group of wavelet coefficients can be effectively coded
using only a small amount of coding bit-budget. This is because wavelet coefficients with
inter-subband correlations represent the information from the same spatial location in an image,
and have similar magnitude significance with respect to a threshold. Secondly, the location
information of wavelet coefficients can also be very efficiently coded with a small amount of

bit-budget, as the location information is already embedded in the tree structure.

The LZC algorithm uses a tree structure similar to the EZW algorithm to group wavelet
coefficients. Each highest level coefficient tree has a root coefficient in the LL subband, and
has three tree branches in HL, LH, and HH orientations. Figure 6.4 shows an example of a
LZC tree structure on a 3-level transformed wavelet matrix, together with the zerotree symbol
assignment to one of the tree branches. A coefficient in the HH3 subband is assigned to symbol
C(1,7), and its four children in the HH2 subband are assigned to symbol O(%, j). The entire
descendant coefficient set of C(3, j) is assigned to D(i, j) and is enclosed by the circle in the
figure. According to the assumption used in zerotree coding, if C(¢, 7) is smaller than the coding
threshold, its descendant set D(%, j) is also likely to be smaller than the coding threshold. If this

is the case, D(i, j) will then be coded as a zerotree.

1 1 1
! Level3 | Level2 | Levelt

Level 3 _F[*i
~1-ci) i
Lovel 2 ( N
o N
Level 1
LH HH

Figure 6.4: LZC wavelet coefficient tree structure
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The reason for using a zerotree structure similar to EZW is that there will be more flexibility
in the choice of image dimension. The zerotree structure of SPIHT requires coefficients in the
LL subband to be grouped into a 2 x 2 block, as shown in Section 5.3. However, this 2 x 2
grouping is applicable when the image has a large size, but not a small size. This is because
grouping coefficients into a 2 x 2 block requires an even dimension for the LL subband, but
when the image size is small it is likely there will be only a few dyadic wavelet transform levels
available, so it is unlikely to maintain an even dimension for the LL subband. In contrast, the
EZW zerotree structure has only one coefficient as a root in the LL subband. Therefore, the
dimension of the LL subband can be either even or odd, leaving a lot more flexibility in the

choice of both image size and number of wavelet decomposition levels.

6.3.3 LZC Significance Maps

In order to have an embedded bit-stream, a zerotree algorithm normally has to sort the wavelet
coefficients by their magnitudes. Therefore, it is essential to maintain a set of coordinate lists for
storing the original locations of wavelet coefficients and coefficient sets. However, the necessity
to maintain a set of coding lists is the significant drawback for other zerotree algorithms, as a

large amount of coding memory will be required.

The LZC algorithm eliminates the need for maintaining coding lists by using a set of sig-
nificance maps instead. Because only two zerotree symbols are used to code the position in-
formation of wavelet coefficients, the LZC algorithm will only need to maintain two types of
significance maps. One is called the coefficient map F, which is used to store the locations of
significant coefficients C. Another is called the descendant map Fp, which is used to store the
locations of significant descendant sets D. During coding, if the LZC codec detects that coeffi-
cient C(3, j) is significant against the threshold, the codec will mark '1’ on F(%, j). Similarly,
if the LZC codec finds one or more coefficients in descendant set D(i, j) are significant, the
codec will mark ‘1’ on Fp(4, 7). On the other hand, if C (i, j) and D(3, j) are insignificant, then
F¢(i,7) and Fp (i, j) will be marked by '0'.

Figure 6.5 shows an example of how the significance maps work. In the wavelet matrix, blue
blocks denote significant coefficients, so the same locations on the F» map are marked by '1’;
white blocks denote insignificant coefficients, so the same locations on the F» map are marked
'0/. Similarly, green blocks in Figure 6.5 denote a branch of a significant coefficient tree, so
on the Fp map the location corresponding to the tree root is marked by '1’; on the other hand,
gray blocks denote a branch of an insignificant coefficient tree, so on the Fp map the location
corresponding to the tree root is marked by ‘0.
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1 1
1
0
[ 0
L 0 Fo Map
Wavelet Matrix Fc Map

Figure 6.5: Significant Maps of LZC

From Figure 6.5 we can see that the Fix map has the same size as the wavelet matrix, while
the Fp map is only a quarter of the wavelet matrix. This is because coefficients on the first
transform level, Level I, do not have any descendants. For coding color images, each color
component will require its own F and Fp map. But even for a 512x512 color image, the
total memory required is only 120KB !, and it is fixed for all bit rates. On the other hand,
as discussed in Section 5.5, SPIHT would require 3.375MB of memory for coding the same
image. Therefore, LZC requires much less coding memory for storing the sorting information

of wavelet coefficients.

6.4 LZC Algorithm Using Recursive Tree Search

The method used to search a wavelet coefficient tree has a direct impact on the bit-allocation
efficiency, which in turn influences the reconstructed image quality. There are two search meth-
ods that can be used in the LZC algorithm. The first method is the recursive tree search, like
the one used in SPIHT; the second method is the raster tree search, like the one used in EZW.
The first version of the LZC algorithm exploits a recursive tree search, and will be discussed
in this section. The second version of the algorithm exploits a raster tree search, and will be
discussed in Section 6.5. The discussion in this section includes the recursive tree search order,

the encoding procedures, and the decoding procedures.

1(512x512(F,)+256x256( F5)x3(colors))/8bits/1K = 120K
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6.4.1 Recursive Tree Search Order

The advantage of using a recursive tree search is that the parent-child relationships of a wavelet
coefficient tree are already embedded in the search order, so there is no need to store any infor-
mation about the locations of tree coefficients. That is, when coding a wavelet matrix, the LZC
codec will only need to know the coordinates of the root coefficients in the LL subband. From
the coordinates of each root coefficient, the codec will be able to derive the coordinates for the
rest of the tree coefficients by using the parent-child relationships mentioned in Section 6.3.1.

When the LZC codec performs the recursive tree search, it will search for the significant tree
coefficients or tree sets in tree-depth fashion. The search always begins from tree roots, because
they contain most visual information and are most likely to be significant. After that, the codec
first searches the tree branches in the HL orientation followed by the branches in the LH and
HH orientations. Also, within each tree branch, the search begins from the coarsest transform
level and ends at the finest transform level. This search order is based on the discussion in
Section 6.2.1. Figure 6.6 shows an example of the recursive tree search performed on a wavelet
coefficient tree. The number marked on each coefficient indicates the order of visitation by the
LZC codec. Therefore, the search order of the entire coefficient tree in this example follows the

order

L13 — HL3 — HL2 - HL] — LH3 — LH2 —» LH] — HH3 — HH2 —HH|1, etc.

To cover all of the wavelet coefficients in the search, the LZC codec performs a semi-raster
search on the root coefficients in the LL subband. That is, the codec first visits a root coefficient,
and from the root coefficient the codec starts to perform a recursive search on its coefficient tree
(or descendant set). After finishing searching a tree, the codec simply moves to the next root
coefficient in the raster position and performs the recursive tree search again, This process

continues until the search has covered all of the wavelet coefficients.

Figure 6.7 gives an example of a search covering all of the wavelet coefficients. In this
example, the wavelet matrix has four coefficient trees, which are indicated by four different
colors. The LZC codec first visits the root of one color, and from that root the codec performs
the recursive search on all the coefficients having the same color as the root. After the roots
have been scanned once, all of the wavelet coefficients will also have been visited once by the
LZC codec.

For coding color images, the same recursive search order is applied to each color component,
but the LZC codec should follow the order of importance of each component as discussed in
Section 6.2.2.
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Figure 6.6: The recursive tree search order used in LZC algorithm
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Figure 6.7: The search order of trees
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6.4.2 Encoding Procedures

The encoding process of the LZC algorithm is separated into two procedures: the main encod-
ing procedure and the tree encoding procedure. The function of the main encoding procedure
is to control the coding flow and initiate the starting position for the recursive search on the
coefficient trees. The function of the tree encoding procedure is to perform the recursive tree
search on the coefficient trees by receiving the position coordinates from the main encoding

procedure or from itself.

The LZC main encoding procedure for color image coding is presented in Algorithm 6.1.
The color space used is YUYV, but other color spaces can also be applied to this algorithm. Also,
it should be noted that in the algorithm the significance test is performed by function S, (),
which is given by

. 1 ifany|C(s,j) € T| > 2",
Sn(T(i,5)) = , (6.5)
0 otherweise,

where T'(4, j) is either C'(4, j) or D(3, j), and 2" is the current coding threshold.

The main encoding procedure consists of four steps. In Step 1, the LZC codec clears all
of the Fy and Fp maps for YUV components, and outputs a number n in bits, which is the
word-length of the largest coefficient among the YUV components. The number n then gives
the initial coding threshold as 2.

In Step 2, the LZC codec encodes the root coefficients in the LL subbands of the YUV
wavelet matrixes. Suppose a root coefficient C(¢, j) is being coded. The LZC codec first
checks the significance of C (i, 7) by looking at location (z, j) in the F map. If F(i, j) is
marked as '1’, then the root coefficient C (%, j) has previously been found significant. Then
the codec simply outputs a refinement bit from the nth bit of C(7,5). On the other hand, if
Fc(i,7) is marked as '0Y, the root coefficient C (i, j) is not yet significant for any of the previous
thresholds, so the LZC codec will test the significance of C(4, j) with respect to the current
threshold by using function S,(). The result from S,() is written to the bit-stream. If the
test result is insignificant, ie. S,(C(%,j)) = 0, the codec will simply finish the encoding on
coefficient C(i, j), and move to the next root coefficient. On the other hand, if the test result
is significant, ie. S, (C(%,7)) = 1, the codec will output the sign of C(i, j) and mark location
(1,7) in the Fc map to '1’, ie. F¢(i,7) = 1, for magnitude refinement. The encoding in Step 2
finishes when all of the root coefficients of the YUV components have been scanned once.

In Step 3, the LZC codec performs encoding on the wavelet coefficient trees, and the descen-
dant sets of the root coefficients. Suppose a root coefficient is C(z, 7), then its descendant set
will be represented as D(i, j). The LZC codec first needs to check the significance of D(i, 5)
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by looking at location (i, j) in the Fp map. If Fp(4, j) is marked as '1’, then one or more co-
efficients in the descendant set D(, j) have been found significant for the previous thresholds.
Therefore, the codec partitions the tree by passing the coordinates of children coefficients in
O(i, j) to the tree encoding procedure. On the other hand, if Fpp(3, ;) is marked as '0’, that
means all of the coefficients in D(%, j) are not yet significant. Therefore, the codec tests the
significance of D(i, j) by using function S, (), and the test result is written to the bit-stream. If
the test is insignificant, ie. S,(D(3, 7)) = 0, the codec will finish the encoding on D(i, j) and
move to the next tree. However, if the test is significant, ie. S,(D(%, j)) = 1, then the codec will
mark 1" in Fp(4, j) and partition the tree by passing the coordinates of children coefficients in
O(i, j) to the tree encoding procedure. Step 3 finishes when all of the wavelet coefficient trees
of the YUV matrixes have been searched once.

In Step 4, the LZC codec decreases the number n by 1, which halves the coding threshold.
After that, the codec repeats all of the encoding process from Step 2, again.

The tree encoding procedure of the LZC algorithm is shown in Algorithm 6.2. It performs
two tasks: encoding an individual coefficient and encoding the tree branches by partition. The
process for encoding an individual coefficient is similar to Step 2 in the main encoding proce-
dure, and the process for encoding the tree branches is similar to Step 3 in the main encoding
process. However, the difference for the tree branch encoding process in the tree encoding pro-
cedure is that the partition on tree branches is performed by recursively calling the procedure
itself. The recursive procedure calls continue until all of the tree branches have been partitioned
into individual coefficients. That is, recursion will stop at level 2, as coefficients in level I do

not have any descendants.

In Figure 6.8 the tree encoding procedure is represented diagrammatically. Suppose a tree
branch is being encoded, the LZC codec performs corresponding encoding processes based on
the significance marked in the Fiz or Fip map. The bits written to the bit-stream are shown as
'0" and '1’, and are colored in red. The codec first performs encoding on the coefficient C'(4, j),
followed by its tree branch D(i, 7). The partition of the tree branch D(4, j) continues until all
of the tree branches have been partitioned into individual coefficients, such as shown in the
diagram.

The progressiveness of the reconstructed image quality in LZC algorithm is achieved by
performing bit-layer coding. As already mentioned, the number n gives the initial threshold as
2", as well as the number of bit-layers for YUV wavelet matrixes. In the first coding run, the
LZC codec will encode those coefficients having their MSB bits in the nth bit-layer, ie. those
having their magnitude in the range of 2"*1 — 1 to 2". After that, the LZC codec decreases
the number n by one, so the threshold becomes 2"=1 Then, the LZC codec will encode those
coefficients having their MSB bits in the (n — 1)th bit-layer, ie. those having their magnitude
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Procedure MainEncoding
Step 1:
for all ¥, U, and V components
clear Fo and Fp;
output n = |logs (maz;;|C(i,5)|)];
Step 2:
for all Y, U, and V components
for all C(i,j) € R do
if Fo(i,j) = 1 then
output the nth significant bit of |C(i,3)]|;
else
output S, (C(i,3));
if S,(C(i,3)) = 1 then
output the sign of C(i, j)
and set Fg(i,j) = 1;
Step 3:
for all Y, U, and V components
for all D(i,j) € R do
if Fp(i,j) = 1 then
for each C(k,1) € 0O(i,3)
— EncodeTree(k,1,n);
else
output S, (D(i,3));
if S,(D(i,J)) = 1 then
set Fp(i,3j) = 1;
for each C(k,1) € 0O(i,3)
— EncodeTree(k,1,n);
Step 4:

decrease n by 1 and go back to Step 2;
End

Algorithm 6.1: LZC Main Encoding Procedure
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Procedure EncodeTree(i,j,n)
if Fg(i,j) = 1 then

output the nth significant bit of |C(i,j)]:

else
output S, (C(i,3));
if S,(C(i,3j)) = 1 then

output the sign of C(i,j) and
set Fe(i,3j) = 1;

if (i,j) NOT IN Level 1
if Fp(i,j) = 1 then
for each C(k,1) € 0O(i,3)
—EncodeTree (k,1,n);
else
output S,(D(i,3));
if S,(D(i,3)) = 1 then
set Fp(i,j) = 1;
for each C(k,1) € 0O(i,3)
—EncodeTree (k,1,n);
End

Algorithm 6.2: LZC Tree Encoding Procedure
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Figure 6.9: LZC bit-layer coding order
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Figure 6.10: Example of LZC encoding order on YUV wavelet matrixes

in the range of 2" — 1 to 2"~!. Besides encoding new significant coefficients, the LZC codec
will also output the (n — 1)th bits for those having been found significant previously. The LZC
codec repeats this bit-layer coding process until it runs out of coding bit-budget or reaches the
Oth bit-layer, ie. the lowest bit-layer. One example of the bit-layer coding order is illustrated in
Figure 6.9.

The LZC encoding order on YUV wavelet matrices begins on Y, followed by V and then U,
and within the wavelet matrix of each color components the encoding begins in the LL subband,
followed by the HL, LH, and HH subbands. As discussed in Section 6.2, this color encoding
order follows the characteristics of our visual system. Figure 6.10 illustrates the LZC color
encoding order in a block form. After all of the matrices have been scanned once, the LZC
codec will move to the next bit-layer and repeat the same encoding order. Therefore, after
encoding several bit-layers, the bit-stream generated by the LZC codec will look like the one
shown in Figure 6.11. Since, the LZC color bit-stream has the information ordering property,

ie. embeddedness, it can be truncated at any point during decoding.

6.4.3 Decoding Procedures

The pseudo code of the LZC main decoding procedure and tree decoding procedure are shown
in Algorithm 6.3 and Algorithm 6.4, respectively. Both decoding procedures look very similar
to the corresponding encoding procedures. The only two differences are that the output process

in encoding is changed to an input process in decoding, and the coefficient significance test
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Figure 6.11: LZC color bit-stream after encoding several bit-layers

in encoding is changed to coefficient value reconstruction in decoding. Other than these two
differences, the coding orders for both encoding and the decoding are identical. Consequently,
the LZC algorithm has the same encoding and decoding complexity.

Since the decoding process is the same as the encoding one, here we only discuss how to
reconstruct and refine a wavelet coefficient. Suppose a coefficient C' (4, j) is not yet significant,
ie. Fo(i, ) is still marked as '0’. If the LZC codec inputs a bit from the bit-stream represent-
ing a significant test result, ie. S,(C(4,7)) = 1, then the codec will input an additional bit

representing the sign bit and reconstruct C (4, j) as
C(i,7) = (sign) 1.5 x 27, (6.6)

where sign is + if the sign bit is equal to ‘0, or — if the sign bit is equal to ‘1’ , as indicated in
Figure 6.8. After that, the codec will mark '1’ on F (3, j).

On the other hand, if coefficient C(%, j) is already significant, ie. Fg(i,7) = 1, the LZC
codec will then input the refinement bit from the bit-stream and refine C(i, j). The magnitude

refinement for C(4, j) is given by

o (sign) (|C(i,7)| —2"1) if refinement bit =' (,
C(i,5) = _ _ 6.7

(sign) (|C(i,5)| +2™') if refinement bit =" 1,
where (sign) is the sign of C(¢, j), and n denotes that the decoding is at the nth bit-layer. We
should note that the maximum quantization error for each coefficient is 2"~! after magnitude

refinement, and will be halved when moving one bit-layer down.
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Procedure MainDecoding
Step 1:
input n;
clear F¢ and Fp;
Step 2:
for all ¥, U, and V components
for all C(i,j) € R do
if Fe(i,3) = 1 then
input the nth significant bit of |C(i,3j)| and
refine C(i,Jj):

else
input S5,(C(i,3));
if Sp(C(i,3)) = 1 then
input the sign of C(i,j) and
reconstruct C(i,j) = (sign) 1.5 x2";
set Fp(i,j) = 1;

Step 3:
for all ¥, U, and V components
for all D(i,j) € R(i,j) do
if Fp(i,j) = 1 then
for each C(k,1) € 0O(i,3)
— DecodeTree(k,1,n);
else
input S, (D(i,3));
if S,(D(i,3j)) = 1 then
set Fp(i,j) = 1;
for each C(k,1) € 0O(i,J)
— DecodeTree(k,1,n);
Step 4:

decrease n by 1 and go back to Step 2;
End

Algorithm 6.3: LZC Main Decoding Procedure
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Procedure DecodeTree (i, j,n)
if Fec(i,j) = 1 then
input the nth significant bit of |C(i,])|
and refine C(i,Jj);
else
input S,(C(i,3));
if Sp(C(i,j)) = 1 then
input the sign of C(i,j) and
reconstruct C(i,j) = (sign) 1.5 x27%;
set Fp(i,j) = 1;

if (i,3j) NOT IN Level 1
if Fp(i,j) = 1 then
for each C(k,1) € 0(i,3)
—DecodeTree(k,1,n);
else
input S, (D(i,3));
if S,(D(i,3)) = 1 then
set Fp(i,j) = 1;
for each C(k,1l) € 0O(i,])
—DecodeTree(k,1,n);
End

Algorithm 6.4: LZC Tree Decoding Procedure
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6.5 LZC Algorithm Using Raster Tree Search

This section will discuss the second version of the LZC algorithm, which exploits a raster tree
search in the coding process. The discussion in this section includes the raster tree search used
in the LZC algorithm, the benefits of using the raster tree search, and how the LZC algorithm

should be modified in order to perform a raster tree search.

6.5.1 Raster Tree Search Order

The raster tree search used in the second version of the LZC algorithm begins from the coarsest
transform level to the finest transform level. Within each transform level, the orientation search
order begins from the HL subband, followed by the LH and HH subbands. One example of
the raster tree search on a 3-level transformed wavelet matrix is shown in Figure 6.12. For this

example, the subband search order is

LL3 — HL3 — LH3 — HH3 — HL2 — LH2 — HH2 — HLI — LHI —HH], etc.

:Level 3 i Level 2 : Level 1
Level 3 Za ;
Level 2 ﬂ /

Level 1 /
A

Figure 6.12: Raster tree search order of LZC

\\

I

I
er

There are two reasons why the raster tree search is more appropriate than the recursive tree
search for the bit-allocation scheme. First, as discussed in Section 6.2.1, our visual system
is more sensitive to low spatial frequency signals, and also to horizontal and vertical signals.
Therefore, the raster search order follows exactly the order of wavelet coefficients that descend
in visual importance. As a result, by using a raster tree search, the LZC codec will be able to

allocate more bit-budget to encode the visually more important wavelet coefficients. In contrast,
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arecursive tree search can only search the wavelet tree in one orientation before another. There-
fore, to use a recursive tree search, the LZC codec may waste the bit-budget encoding visually
unimportant wavelet coefficients in the higher frequency subbands of one orientation, instead
of encoding visually more important wavelet coefficients in the lower frequency subbands of

another orientation.

Second, after the wavelet transform, coefficients in the lower frequency subbands normally
have larger magnitudes than those in the higher frequency subband. Since coefficients with
larger magnitudes are more significant, they should be encoded first for maintaining the infor-
mation ordering property of the bit-stream, ie. maintaining the embeddedness. Therefore, by
using the raster tree search, the LZC codec will be able to generate a better embedded bit-stream,
as the search follows the order that wavelet coefficients descend in magnitude. On the other
hand, the recursive tree search does not follow the order of significance, so the bit-allocation

scheme may not generate a good embedded bit-stream.

For those two reasons, the raster tree search is better than the recursive tree search and should
produce more uniform quality on the reconstructed images. This is because for the raster tree
search, coefficients with the same visual importance and the same magnitude significance are
encoded at the same time, whereas, for the recursive tree search, only coefficients with the same

spatial location, rather than the same importance, are encoded at the same time.

Figure 6.13 illustrates how the reconstructed visual quality can be affected by the recursive
and raster tree search methods. If the LZC codec uses the recursive tree search in its coding
process and stops coding at the point indicated, then the upper spatial locations of all subbands,
as colored in white, will have been coded one bit-layer lower than the lower spatial locations,
as colored in light-blue. Therefore, wavelet coefficients in the white regions will have a finer
magnitude precision than those in the light-blue regions. Consequently, the reconstructed image
will have a better visual quality in the spatial location corresponding to the white regions than
in that corresponding to the light-blue regions. In particular at the low bit-rate when the coding
process is only performed on few bit-layers, the uneven reconstructed visual quality will be very
noticeable. This is because the precision difference between each bit-layer is given by 2”1, and

the larger the value of n the larger the precision difference.

On the other hand, if the LZC codec uses the raster tree search and stops coding at the point
indicated, then all of the lower spatial frequency subbands are one bit-layer lower than the
higher frequency subbands. This means that wavelet coefficients of the same importance are
coded at the same magnitude precision, so the visual quality on the reconstructed image will
look more uniform. Despite there being a precision difference in one high frequency subband,
because our visual system has a low contrast sensitivity towards high spatial frequency signals,

the difference on the reconstructed visual quality will be less noticeable. Hence, the raster tree
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Figure 6.13: Bit-layer coding for the raster and the recursive tree search

search is more suitable than the recursive tree search for producing an image with more uniform
visual quality at low coding bit-rates.

6.5.2 The Tree-Pruning Process

The raster tree search is more appropriate for bit-allocation process for low bit-rate coding, but
the zerotree structure is no longer embedded in the search order. Therefore, there is a need
to have an additional testing process to determine the zerotree relations and some additional
buffer memory to store the test results. In order to minimize the increase of coding complexity
associated with the additional testing process, the LZC algorithm uses a simple tree-pruning
process to construct the zerotree relations. Also, for maintaining minimal memory overheads,
the LZC algorithm uses an additional bit-map to store the zerotree relations. This bit-map is
called the Frr map, where T stands for tree. For clarity, the second version of the LZC algorithm
is called Tree-Pruning Listless Zerotree Coding (TPLZC).

The working mechanisms of the tree-pruning process and the function of the Fr map are
explained as follows. Initially the Fr map does not contain any coefficient tree structures, as
each location in the map is set to ‘0’. Therefore, at the beginning, the TPLZC codec actually
needs to perform a tree-growing process. The tree-growing process is used to construct the
significant trees that are rooted in the LL subband. If a tree (or descendant set) D(i,j) is
significant, ie. S, (D(z, 7)) = 1, the TPLZC codec will grow a significant tree in the Fr map by
marking those locations corresponding to D(i, j) to '1’. However, if D(%, j) is insignificant, ie.
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Sn(D(3,j)) = 0, the codec simply ignores this tree and moves to next one. After growing all of
the significant trees in the Fr map, the TPLZC can then decide to keep or prune away the tree
branches by their significance along the raster search order.

The tree-pruning process is performed when the TPLZC codec searches the branches of
significant trees. Consider when a tree branch D(i, j) is coded. If D(3,j) is significant, the
codec will then keep it, so that the TPLZC codec can keep searching on D(, j) for significant
coefficients or tree branches. On the other hand, if D(7,j) is insignificant, then the codec
will code it as a zerotree and will prune it away. Therefore, in the Fr map those locations that
correspond to D(i, j) will be marked as '0’, so that the TPLZC codec can bypass those locations.
This is because the codec already knows that no significant coefficients or tree branches can be
found in D(3, j).

Figure 6.14 gives an example of the tree-growing and tree-pruning process. Figure 6.14(a)
shows that the first coefficient tree, which is colored in green, is significant. Then, the TPLZC
codec first marks the tree root in the Fp map to '1’, denoted by the light-blue color, and grows
this significant tree in the Fr map by marking ‘1’ on the corresponding tree locations. Fig-
ure 6.14(b) shows the results of the tree-growing process in the LL subband. Except for the last
tree, represented by white blocks, the rest of the trees have been found significant and have been
grown in the F7 map. The root locations corresponding to the significant tree in the Fp map are
also marked by '1’. Figure 6.14(c) shows the results after the TPLZC codec has pruned away
some insignificant tree branches by marking their locations in the Fr map to '0’, as denoted
by the white color. Those insignificant tree branches are indicated on the wavelet matrix. The
figure also demonstrates that the TPLZC codec only performs a raster search on the coefficients
with their locations in the Fir map indicated by '1’. Those with their locations in the Fr map

marked by ‘0’ have been bypassed by the codec, as illustrated by the red arrows.

Since the results from the significant test, Sy, (), are marked in the Fp map, the only com-
plexity overhead for TPLZC algorithm to achieve the raster tree search is marking '1’ or '0’ in
the F map. Furthermore, for both gray-scale and color images, the additional coding memory
for the Frr map is only N/8 Bytes, where N is the total number of image pixels. Moreover, the
procedure to mark zerotree regions in the Fr map is performed soon after the tree significance
test so the number of coding passes is still kept to one. Hence, the TPLZC requires only little

additional coding memory and minimal coding complexity to achieve the raster tree search.
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Figure 6.14: The Tree-growing and tree-pruning process (a) growing the first sig-
nificant tree on the Fr map (b) finishing the tree-growing process in the LL subband
(c) keeping or pruning away the tree branches

6.5.3 Encoding Procedures

The TPLZC main encoding procedure for color image coding is presented in Algorithm 6.5. As
in LZC, the TPLZC main encoding procedure also consists of four steps.

In Step 1 and Step 2, the TPLZC codec performs exactly the same tasks as the LZC codec,
so we just briefly mention those tasks here. In Step 1 the TPLZC codec outputs the number n
for determining the initial threshold and clears the = and F'p maps for each color component.
In Step 2, the TPLZC performs the encoding on the root coefficients, including detecting and

encoding significant root coefficients, and refining the magnitude of significant coefficients.
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In Step 3, since the wavelet coefficient trees are coded in raster order, the tasks performed by
the TPLZC codec are slightly different from those performed by the LZC codec. First, before
coding each color component, the TPLZC codec first clears the F;r map for reconstructing the
tree structures for that color component. Suppose a coefficient tree D(3, j) is encoded, the
TPLZC codec checks its significance in the F), map. If D(7, j) has been found significant in
the previous coding run, ie. Fp(7,j) = 1, then the TPLZC codec will grow the tree by setting
the corresponding locations in the F map to ‘1. On the other hand, if D(i, j) has not yet been
found significant, then the TPLZC codec will test its significance by function S, (). If D(i, j)
is significant for the current threshold, then the TPLZC codec will mark its root in the Fp map
to '1" and grow the significant tree in the Fr map. If D(i, §) is insignificant, the TPLZC codec
simply ignores that tree and moves on to test the next one. After all of the significant trees
have been grown, the TPLZC codec will perform the tree branch encoding by calling the tree
encoding procedure. The tree branch encoding is performed subband by subband, following the
raster order, ie. from HL to LH to HH, and from the highest to the lowest transform level. The

encoding in this step ends when all three color components have been searched and encoded.

In Step 4, the TPLZC codec decreases the number n by 1 and repeats the encoding from Step
2 again for coding the next bit-layer.

The TPLZC tree encoding procedure is presented in Algorithm 6.6. It is mainly respon-
sible for two tasks: encoding individual coefficients in a subband and pruning away insignif-
icant tree branches rooted in that subband. At the beginning, the TPLZC codec uses func-
tion Subband(L, S) to obtain all of the coefficient coordinates in that subband. In function
Subband(L,S), L denotes the wavelet transform level, and S denotes the subband orien-
tation like HL, LH or HH. Figure 6.15 gives an example of the denotation of function
Subband(L, S).

Suppose coefficient C (i, j) is encoded, then the TPLZC codec first checks the coefficient
status in the Fr map. If C (%, j) descends from a zerotree root, ie. Frr(i, ) = 0, then the TPLZC
codec will skip the encoding of C(i,5) and its descendant set D(i,j). On the other hand, if
C(, j) is a member of a significant tree, ie. Fir(i,7) = 1, the TPLZC codec will then proceed
to encode coefficient C(3, j) and its descendant set D(i, j). For the encoding of C(i, j), the
codec either refines its magnitude or detects its significance. For the encoding of D(3, j) the

codec either keeps it or prunes it away, depending on its significance.

The difference between the LZC and TPLZC tree encoding procedures is that the LZC tree
encoding procedure is called by the main encoding procedure and recursively called by itself,
whereas the TPLZC tree encoding procedure is only called by the main encoding procedure.
Another difference is that the LZC tree encoding procedure only deals with one tree branch;
while, the TPLZC tree encoding procedure deals with a group of tree branches which are rooted
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Figure 6.15: Examples of the denotation of function Subband(L, S)

in the same subband.

Similarly to LZC, the TPLZC encoding order on YUV wavelet matrixes also begins from
Y, followed by V and then U. However, the encoding within each wavelet matrix is in raster
order, so the color encoding order performed by the TPLZC codec is like the block diagram
shown in Figure 6.16. Therefore, after encoding several bit-layers, the bit-stream generated by
the TPLZC codec will look like the one shown in Figure 6.17. The TPLZC bit-stream has a
better information ordering property than the LZC bit-stream, because it follows the exact order
in which the information decreases in visual importance and magnitude significance.

6.5.4 Decoding Procedures

Since the TPLZC decoding process follows exactly same order as the encoding process and also
the coefficient reconstruction is the same as the LZC decoding process, we will just present the
TPLZC decoding procedures is this section without further discussion.

The TPLZC main decoding procedure and tree decoding procedure are presented in Algo-
rithm 6.7 and Algorithm 6.8, respectively.
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Procedure MainEncoding
Step 1:
for all ¥, U, and V components
clear Fo and Fp;
output n = |logs (maz(;|C(i,7)|)];
Step 2:
for all Y, U, and V components
for all C(i,j) € R do
if Fe(i,j) = 1 then
output the nth significant bit of |C(i,3)]|;
else
output S,(C(i,3));
if S5,(C(i,3)) = 1 then
output the sign of C(i,J)
and set Fe(i,j) = 1;
Step 3:
for all Y, U, and V components
clear Fr;
for all D(i,j) € R do
if Fp(i,j) = 1 then
for each C(k,1l) € D(i,3)
— set Fr(k,1l) = 1; //tree-growing process
else
output S,(D(i,3));
if S,(D(i,3j)) = 1 then
set Fp(i,j) = 1;
for each C(k,1l) € D(i,J)
— set Fp(k,1l) = 1; //tree-growing process
for transform level L = highest to 1
for subband S = HL, LH and HH
— EncodeTree(L, S,n);
Step 4:

decrease n by 1 and go back to Step 2;
End

Algorithm 6.5: TPLZC Main Encoding Procedure
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Procedure EncodeTree(L,S,n)
for all (i,j) € Subband(L,S)
if Fr(i,j) =1
if Feo(i,j) = 1 then

output the nth significant bit of |C(i,3)|;

else
output S,(C(i,3));

if S,(C(i,j)) = 1 then
output the sign of C(i,j) and
set Fg(i,3) = 1;
if L # 1 and Fp(i,j) =0

output S,(D(1i,3));

if S,(D(i,j)) = 1 then

set Fp(i,j) = 1;

else

for each C(k,1) € D(i,3J)

— set Fr(k,1) = 0;

End

// tree-pruning process

Algorithm 6.6: TPLZC Tree Encoding Procedure
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Procedure MainDecoding
Step 1:
input n;
clear Fy and Fp;
Step 2:
for all ¥, U, and V components
for all C(i,j) € R do
if Fo(i,j) = 1 then
input the nth significant bit of |C(i,3)]
and refine C(i,Jj);
else
input S,(C(i,3));
if S,(C(i,j)) = 1 then
input the sign of C(i,j) and
reconstruct C(i,j) = (sign) 1.5 x2%;
and set Fo(i,3) = 1;
Step 3:
for all Y, U, and V components
clear Ir;
for all D(i,j) € R{(i,j) do
if Fp(i,3j) = 1 then
for each C(k,1) € D(i,3)
— set Fr(k,1) = 1; //tree-growing process
else
input S,(D(i,3));

if S,(D(i,j)) = 1 then
set Fp(i,j) = 1;
for each C(k,1) € D(1i,3)
— set Fr(k,1l) = 1; //tree-growing process

for transform level L = highest to 1
for subband S = HL, LH and HH
— DecodeTree(L,S,n);
Step 4:
decrease n by 1 and go back to Step 2;
End

Algorithm 6.7: TPLZC Main Decoding Procedure
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Procedure DecodeTree(L,S,n)
for all (i,j) € Subband(L, S)
if Fr(i,j) =1
if Fg(i,j) = 1 then
input the nth significant bit of |C(i,J)|
and refine C(i,Jj);
else
input Sp(C(i,3));
if S,(C(i,3j)) = 1 then
input the sign of C(i,j) and
reconstruct C(i,j) = (sign) 1.5 x2%;
set Fe(i,3j) = 1;

if L # 1 and Fp(i,j) =0
input S,(D(i,3));
if S,(D(i,j)) = 1 then

set Fp(i,3j) = 1;
else
for each C(k,1l) € D(i,3)
— set Fr(k,1l) = 0; //tree-pruning process

End

Algorithm 6.8: TPLZC Tree Decoding Procedure
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Figure 6.16: Example of TPLZC encoding order on YUV wavelet matrixes
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Figure 6.17: TPLZC color bit-stream after encoding several bit-layers

6.5.5 An Alternative Tree-Pruning Process

As discussed in Section 6.5.2, initially every location in the F map is set to '0’, so the TPLZC

codec needs to grow significant trees in the F7- map first before commencing the coding.

Alternatively, we can set every location in the Frr map to '1’, by assuming that all of the
coefficient trees rooted on the LL subband are significant, and after knowing their significance,
the TPLZC codec can then prune away the insignificant trees. To implement this alternative
tree-pruning process, we can substitute the code segment shown in Algorithm 6.9 for Step 3 in
the TPLZC main encoding procedure.

For this alternative implementation, the TPLZC codec first sets every location in the Frr map
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to'1l’, by assuming every tree is significant. After that the codec checks the tree’s significance in
the F'p map. If in the F, map the tree has been coded as a significant tree, then our assumption
is correct, so the codec will keep the tree. Otherwise, the codec will test the tree’s significance.
If the tree is significant now, it will be kept and the codec will set its root in the Fp map to '1’.
However, if the tree is still insignificant, then the codec will prune this tree away by marking

the corresponding locations in the Frr map to '0’.

For decoding, we can also replace Step 3 in the TPLZC main decoding procedure with the
one in Algorithm 6.9, and just change ’EncodeTree’ to ’DecodeTree’ in the last line.

Step 3:
for all Y, U, and V components
set Fr;
for all D(i,j) € R do
if Fp(i,j) = 0 then
output S, (D(1i,3));
if S,(D(i,j)) = 1 then
set Fp(i,j) = 1;
else
for each C(k,1) € D(i,3)
— set Fr(k,1) = 0; //tree-pruning process
for transform level L = highest to 1
for subband S = HL, LH and HH
— EncodeTree(L,S,n);

Algorithm 6.9: Alternative implementation of Step 3 in TPLZC Main Encoding Procedure
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6.6 Wavelet Transform for the LZC Algorithm

As discussed in Section 3.3.5, the filter set used for implementing the wavelet transform has a
direct effect on the performance of image decomposition, which in turn affects the compression
result. In addition, the number of transform levels used to decompose an image will affect the
formation of the zerotree structure. Therefore, in this section we will discuss which wavelet
filter set we should choose and how many decomposition levels we should use in the imple-
mentation of a wavelet transform for the LZC algorithm.

6.6.1 The Selection of Wavelet Filter

As mentioned previously in Section 3.3.5, for image compression the biorthogonal filter is more
appropriate than the orthogonal filter. Therefore, the only question left is which biorthogonal
filter set we should use for LZC.

There are two commonly used biorthogonal filter sets: the 9/7 filter set [89] and the 5/3
filter set [179, 180, 181, 182]. Because of their superior performance, these two filter set have
also been chosen for the new JPEG 2000 standard [183, 184, 185]. Therefore, for comparison
purposes, we will use the 9/7 and 5/3 filter sets for the LZC algorithm implementation.

The 9/7 filter set is a floating point filter set, so it is only suitable for lossy image compression.
However, the 5/3 filter set is an integer filter set which is designed for reversible transformation,
so it is suitable for both lossy and lossless image compression. The tap coefficients of the 9/7
and 5/3 filter sets are given in Table 6.1 and Table 6.2, respectively. The tap coefficients of
the analysis filter pair H and G are denoted as h(n) and g(n), and the tab coefficients of the

synthesis filter pair H and G are denoted as (n) and §(n). The number n in the table is the tap
index.

Analysis Filter Coefficients | Synthesis Filter Coefficients

n | factor | LPF H, h(n) | HPF G, g(n) | LPE H, h(n) | HPE G, §(n)
0 V2 0.602949 0.557543 0.557543 0.602949
+1| V2 0.266864 -0.295636 0.295636 -0.266864
+2 | V2 -0.078223 -0.028772 -0.028772 -0.078223
+3 | V2 -0.016864 0.045636 -0.045636 0.016864
+4 | V2 0.026749 0.026749

Table 6.1: 9/7 biorthogonal filter coefficients
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Analysis Filter Coefficients | Synthesis Filter Coefficients

n | factor | LPF H, h(n) | HPF G, g(n) | LPF H, h(n) | HPF @G, §(n)
0| v2 0.75 0.5 0.5 0.75

+1| V2 0.25 -0.25 0.25 -0.25

+2 | V2 -0.125 -0.125

Table 6.2: 5/3 biorthogonal filter coefficients

Although the analysis high-pass filter G is symmetric at index 0, according to Equation
(3.30) in Section 3.3, the high-pass filter G should lag the low-pass filter H by one sample in the
forward wavelet transform. Likewise, according to Equation (3.31) in Section 3.3, the synthesis
high-pass filter G should lead the synthesis low-pass filter H by one sample in the inverse
wavelet transform. Furthermore, for perfect reconstruction (PR), the analysis and synthesis
filter pairs have to satisfy the following conditions [91](ch.4):

Nodistortion  H(z)H(z) + G(2)G(z) = 227, (6.8)
Alias cancellation ~ H(—2)H(2) + G(—2)G(z) = 0, (6.9)
H(z) = G(-2), (6.10)

G(z) = —H(—2). (6.11)

Therefore, based on perfect reconstruction conditions, filter tap coefficients should be multiplied
by a normalization factor, /2. For the 9/7 filter set, multiplying by a factor of 1/2 does not have
any impact on the system’s computational complexity and memory requirement, as the 9/7 filter
set originally requires floating point computation. However, multiplying the tab coefficients of
5/3 filter set by /2 will adversely increase the system computational complexity, by shifting
from integer to floating point operation. The solution for this problem is to multiply either H
and G, or G and H by 2 instead of multiplying H, G, H, and G by /2. However, multiplying
filter coefficients by v/2 or 2 will affect the magnitude dynamic range of the wavelet subbands
and in turn may affect the performance of the LZC algorithm.

Figure 6.18 illustrates three variations of the magnitude dynamic range corresponding to the
multiplication by factor of /2 or 2. In Figure 6.18(a), filter coefficients are multiplied by v/2.
The number marked on each subband is the multiple of the magnitude dynamic range. For
example, if the pixel magnitude of an image pixel ranges from 0 to 255, then after three level
wavelet transforms the magnitude of the LL subband coefficients will range from 0 to 2047, as
the multiple is '8’ (left-shift by 3 digits). We can see that in this case the increase of the dynamic
range matches the importance of the wavelet subbands well and satisfies the working criterion
for progressive bit-layer coding performed by LZC. Also, this is the most widely used wavelet
transform case for zerotree coding algorithms.
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In Figure 6.18(b), H and G are multiplied by 2. Although the dynamic range increases
dramatically, it still reflects the importance of the subbands and forms the working criterion
for progressive bit-layer coding. Therefore, the wavelet matrix can still be coded by the LZC
algorithm.

In Figure 6.18(c), G and H are multiplied by 2. In this case, the increase of subband dynamic
range no longer reflects the importance of the wavelet subbands. That is, the most important LL
subband has the smallest dynamic range, but the least important HH subbands have the largest
dynamic ranges. For bit-layer coding, coefficients with larger magnitudes always get more bit-
budget allocation. Consequently, if this wavelet matrix is coded by LZC, the LZC codec will

fail to correctly allocate bit-budget to encode important wavelet coefficients.

In short, if a wavelet transform is performed using floating point filters then applying the
normalization factor, v/2, to all analysis and synthesis filters will be a better choice, since it
gives a more graceful increase of wavelet subband dynamic range. However, if the wavelet
transform is performed using integer operations as when using 5/3 filters, then in order to ensure
the validity of the LZC algorithm the normalization factor 2 should only be applied to H and
G, not to H and G.

6.6.2 The Selection of Wavelet Decomposition Level

The wavelet transform is used to reduce image spatial redundancy for a more compact image
data representation, so intuitively the higher the number of the wavelet decomposition levels,

the better the decorrelation and the more compact the image data.

Moreover, having more wavelet decomposition levels can enable more coefficients to be
grouped into a coefficient tree. This results in a more effective zerotree structure, because a
single zerotree symbol will be able to encode more insignificant coefficients. For instance,
Figure 6.19 shows that four separate wavelet coefficient trees on a 3-level decomposed wavelet
matrix will need to be coded by four zerotree roots. However, if we decompose the wavelet
matrix by one more level, those four trees can then be grouped into a single tree and can be
coded by one zerotree root. Consequently, the coding bit-budget can be saved to code other
more important information.

However, the number of wavelet decomposition levels is limited by three factors: the image
size, the filter size, and the system bus width. Firstly, a larger image generally can be decom-
posed into more wavelet transform levels than a smaller image, but depending on the image
size the number of decompositions available may vary. This is because an image dimension

must be dyadic in order to apply a wavelet transform to it. Therefore, the number of decom-
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and H by v/2 (b) multiplying H by 2 (c) multiplying G by 2
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position levels available will depend on how many times 2 can be factored out from the image
dimension.

Secondly, every wavelet filter set theoretically can be used to decompose an image to the
coarsest level, ie. only one coefficient in the LL subband, provided the image dimension is
dyadic. However, in practice, as the dimension of the LL subband gets smaller, coefficient
padding will become a dominant issue, especially for the symmetric extension method. An

improper coefficient padding on the LL subband may cause a catastrophic reconstructed result.

Thirdly, as mentioned earlier, the magnitude dynamic range of wavelet coefficients will in-
crease with the number of transform levels. As a result, the magnitude dynamic range may

exceed the system bus width, and the wavelet coefficients may not be processed accurately.

In short, the number of wavelet decomposition levels can be increased by adjusting the im-
age dimension, such as by padding extra coefficients on the edge, by using a shorter filter for
higher level decomposition, or by increasing bus width. Nevertheless, those adjustments can
also increase the coding complexity, as well as the implementation cost. There is no fixed
rule to choose the best number of wavelet decomposition levels. But for the best reconstructed
image quality, we may presume the number of decomposition levels should be five or six to
match the number of frequency channels in the human visual system [58] as discussed in Sec-
tion 2.4. Also, to ensure a proper formation of the LZC tree structure, the minimum number of

decomposition levels has to be at least three, regardless of the image size.
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6.7 The Test Codec for the LZC algorithm

This section briefly discusses the test codec used to verify the performance of the LZC algorithm
for color image compression. The LZC test codec was implemented in the ANSI C Language,
although one of the motivations for deriving the LZC algorithm is for hardware implementation.

The test codec has four modules for both the encoding and the decoding process. Those four
modules are used for color space transform, wavelet transform, LZC or TPLZC, and arithmetic
coding. The block diagram of the LZC test codec is shown in Figure 6.20
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Figure 6.20: Different Modules of the LZC test codec

The performance of the test codec mainly depends on the LZC/TPLZC module, which imple-
ments the coding procedures of the LZC and TPLZC algorithms discussed in Sections 6.4 and
6.5. The color space transform module and wavelet transform module provide some freedom
to select different coding options, including different color spaces, different wavelet filter sets,
different signal extension methods, and different wavelet decomposition levels. Therefore, the
performance of the test codec may fluctuate depending on the options chosen. The bit-stream
generated by the LZC/TPLZC module is further arithmetic coded to reduce the entropy by using
Witten et al.’s method [107]. That is, the output bits from the LZC/TPLZC module are grouped
into bytes to form the coding symbols which are then fed into the arithmetic coding module for
entropy coding. The probability model of the arithmetic coding is adaptively updated according
to the coding symbols received and therefore is more appropriate for coding the visual data than
a fixed model, such as discussed in Section 3.4.2.
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6.8 Preliminary Experiments

As discussed in the previous section, we can choose different options for the LZC codec, includ-
ing different color spaces, different wavelet filter sets, different signal extension methods, and
different wavelet decomposition levels. Therefore, in this section, we will examine those coding
options by performing some experiments to see how those options affect the performance of the
LZC algorithm. Those coding options will have the same effect on both the LZC and TPLZC
algorithm, so for brevity, the results shown in this section are those obtained from the LZC test

codec only.

6.8.1 Color Space Experiment

Although the color coding sequence of the LZC algorithm is optimized for the YUV or YCbCr
color spaces, there is no restriction that the LZC codec cannot perform coding in the RGB color
space. However, as we discussed in Section 3.2, RGB components are highly correlated, so the

LZC codec may not be able to effectively allocate bit-budget to some important information.

Therefore, theoretically the LZC codec will have a better performance in the YUV or YCbCr
color spaces than in the RGB color space. This is because transforming images from RGB to
YUYV or YCbCr color space not only reduces the color information correlation, but also results
in a more compact color data representation that matches the characteristics of the HVS. To
verify this presumption, the LZC codec was tested in RGB, YUV and YCbCr color spaces.
The other coding options used were fixed to: using 9/7 wavelet filter set; symmetric image

extension; and five or six wavelet decomposition levels depending on the image dimensions.

The test LZC codec was used to compress some test images in RGB, YUV and YCbCr color
spaces at a variety of coding bit-rates. The PSNR results from those images are presented in
Figure 6.21. The results show that the coding performance of the LZC codec is substantially
improved by transforming images from RGB to either YUV or YCbCr color space, which
confirms our presumption. However, compressing the Flowerfieldl image in YUV and YCbCr
spaces only gives slightly better PSNRs than in RGB space, and compressing the Mt Fuji3
image in RGB space even appears to have better results than in YUV and YCbCr spaces at some
bit-rates. This may due to the RGB color coding order performed by the codec coincidentally
matching the order of information importance for that particular image.

Nevertheless, the chance that compressing images in the RGB space gives better compression
results is rare. Generally, performing the LZC algorithm in both YUV and YCbCr color spaces
will give a better compression result than in RGB space. Hence, it is worthwhile to spend some
extra complexity to transform images from RGB to either the YUV or the YCbCr color space.
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6.8.2 Wavelet Filter Experiment

The wavelet filter set used to decompose images has a direct effect on the coding performance
of the LZC algorithm, because different filter sets have different performance in decorrelating
images. The LZC codec will mainly use the 9/7 filter set for the wavelet transform. However,
as the tap coefficients of the 5/3 filter set are integers, it is suitable for lossless compression or

hardware implementation.

In order to find out how much the performance difference exists between using 9/7 and 5/3
filter sets for wavelet decomposition, these two filter sets were used in the LZC test codec to
compress several images at a variety of bit-rates. The other coding options were fixed to YUV
color space, symmetric extension, and five or six wavelet transform level depending on the

image size.

The experimental results in Figure 6.22 show that in terms of PSNR values the LZC codec
generally performs better when using the 9/7 filter set. However, the PSNR difference is
marginal, about 0.5 dB in average.

Therefore, the choice of using 9/7 or 5/3 filters depends on the area of application. For
example, if the LZC algorithm is used for software implementation or for lossy compression,
then the 9/7 filter is a better choice. On the other hand, if LZC algorithm is applied to hardware
implementation or for lossless compression, like for medical images, then the 5/3 filter will be

a more appropriate choice.

6.8.3 Signal Extension Experiment

As discussed in Section 3.3.5, we can use either periodic or symmetric extension to pad coeffi-
cients at the image boundary for the wavelet transform. However, under a severe quantization,
the reconstructed image padded by the periodic method will have some unpleasant artifacts
at the boundary due to discontinuity. On the other hand, the image padded by the symmetric
method will give a smooth boundary, even when severely quantized. Therefore, theoretically,
the LZC test codec should use the symmetric method in the wavelet transform for better com-

pression performance.

The performance difference between using symmetric and periodic extensions for the LZC
algorithm is examined here to verify this presumption. The coding option is varied between
using symmetric and periodic extension, but fixed for using YUV color space, 9/7 filter set, and

five or six wavelet transform levels.

Figure 6.23 shows the PSNR values from coding some test images at a variety of bit-rates.

The results show that using symmetric extension gives about 0.25 dB improvement in the recon-
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struction image quality. For some images, symmetric extension only gives a marginal improve-
ment in the PSNR values, in particular for those having a lot of high frequency features, such
as Mandrill and Pot. However, despite the improvement of only about 0.25 dB, the subjective
comparison shows that under severe quantization, the image coded with symmetric extension
will have a better visual quality. For instance, when the Flowerfieldl image is coded at 0.24 bpp,
the symmetric extended version in Figure 6.24(a) shows a very clean sky in the background.
While the periodic extended version in Figure 6.24(b) shows some unpleasant artifacts in the
sky, due to the discontinuity from wrapping the red flower field to the blue sky.

In fact, the quality difference between using symmetric and periodic extensions is due to
quantization errors [91](p.340). If we increase the coding bit-rate and let the codec have more
bit-budget to code more bit-layers, the visual quality difference between using these two exten-
sion methods will decrease. For example, when Flowerfield]l image is coded at 0.96 bpp, the
visual quality difference between using symmetric and periodic extension methods has reduced
dramatically, as shown in Figure 6.24(c) and (d). As we keep increasing the coding bit-rate,
the perceived quantization errors will eventually drop below the JND level and there will be no

visual quality difference between using these two extension methods.

Nevertheless, for all bit-rates, the symmetric extension method generally results in better

objective and subjective reconstructed quality, so it is used for the LZC test codec.

6.8.4 Wavelet Decomposition Level Experiment

The number of wavelet decomposition levels directly affects the formation of LZC coefficient
trees and, therefore, affects the reconstructed image quality. In Section 6.6.2, we presumed
that the number of wavelet decomposition levels should be five or six following the number
of frequency channels in the human visual system. In addition, we also presumed that the
minimum number of wavelet decomposition levels should be three for an effective formation of
LZC coefficient trees.

In this experiment, we verify our presumptions by varying the decomposition level coding
option in the LZC test codec to compress several test images. The number of decomposition
levels ranges from two to seven for the Mandrill, Girls, and Peppers images, two to six for the
Cacti images, and two to five for the Pot and Mt Fujil image. The other coding options were

fixed to YUV color space, 9/7 filter set, and symmetric extension.

The results shown in Figure 6.25 are for the coding bit-rates of 0.48 bpp and 0.96 bpp. The
results show that, for both bit-rates, increasing the number of decomposition levels from two
to three improves the reconstructed quality dramatically. This is because more coefficients are

grouped in a LZC tree in a 3-level decomposed wavelet matrix than in a 2-level decomposed
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)

(d)

Figure 6.24: The Flowerfieldl image (a) at 0.24 bpp by symmetric extension (b) at
0.24 bpp by periodic extension (c) at 0.96 bpp by symmetric extension (d) at 0.96

bpp by periodic extension

matrix. Therefore, more insignificant coefficients can be coded by a single zerotree root. This
verifies the presumption for the minimum number of decomposition levels required for good

formation of LZC coefficient trees.

The quality continues to improve as we increase the number of decomposition levels from
three to four, but the improvement becomes not so significant. The improvement on the re-
constructed quality is stabilized at around five or six decomposition levels, resulting in the best
performance for the test codec. Above six levels, the quality improvement is only marginal.
This is because each tree branch contains too many coefficients and covers a large spatial area
of the image. Therefore, in order to form zerotrees, each tree branch will still need to be fur-
ther partitioned. This verifies our presumption to use the number of frequency channels in the

human visual system as the preferred decomposition level for the LZC test codec.
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6.9 Results

This section firstly overviews how the tree search methods affect the performance of the LZC
algorithm by comparing some experimental results from the LZC and TPLZC test codecs. Sec-
ondly, results from the LZC test codec are compared with those from the SPIHT test codec for
determining the performance of LZC algorithm. Finally, some results from the LZC test codec
are compared with JPEG2000 results.

6.9.1 LZC and TPLZC

We have presumed that at low bit-rate, an image compressed by TPLZC will have a more
uniform visual quality than compressed by LZC. To verify this presumption this section presents
some results obtained from the LZC and TPLZC test codecs. The coding options used for
both codecs were YUV color space, 9/7 wavelet filter set, symmetric extension, and five or six

decomposition levels.

The images shown in Appendix A were used in the test, but only those showing noticeable
visual differences are presented here. Figure 6.26 to 6.30 show the results in compressing
Mandrill, Matsuri, Mt Fuji2, Railway, and Flowers. From those results we can see that images
compressed by the TPLZC codec have more uniform visual quality, while those compressed by
the LZC codec appear to have uneven visual quality, as the lower half looks blurry. The visual
comparison of those results are summarized as follows.

e The compressed Mandrill images in Figure 6.26 show that at 0.24 bpp the TPLZC coded
version has more details in hairs and whiskers; while those details in the lower half of
the LZC coded version are very blurry. At 0.48 bpp, the TPLZC coded version has more

details in face wrinkles and nose texture than the LZC coded version.

e The compressed Matsuri images in Figure 6.27 show that the lower half of the TPLZC
coded version has more details of clothing texture and wrinkles, leg features, and the
white traffic line on the ground; while those details in the LZC coded version are either

missing or very blurry.

e The compressed Mt Fuji2 images in Figure 6.28 show that the TPLZC coded version
already has recognizable paddy field features, but those features in the LZC coded version

is still not quite recognizable.

e The compressed Railway images in Figure 6.29 show that the TPLZC coded version has

more details of the road texture, while those features in the LZC coded version still look
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blurry.

e The compressed Flowers images in Figure 6.30 show that the TPLZC coded version has

more leaf details, while leaf details in the LZC coded version are blurry.

From the visual comparison discussed above, we can see how the recursive and raster tree
search affect the reconstructed image quality. Images obtained from the LZC codec have better
visual quality in the upper half, but worse visual quality in the lower half. This uneven visual
quality on the reconstructed images is caused by the use of recursive tree search in the bit-
allocation scheme, as we have pointed out in Section 6.5.1. This uneven visual quality is not
visually pleasant if it is too noticeable, like that in the Mandrill image in Figure 6.26(a) and the
Matsuri image in Figure 6.27(a).

In contrast, images obtained from the TPLZC codec have a more uniform visual quality and
look more visually pleasant than the LZC coded versions. The uniform visual quality is the
result of using the raster tree search for bit-allocation. That is, the TPLZC codec can allocate
the bit-budget uniformly to code wavelet coefficients with the same importance rather than those

with the same spatial locations.

Nevertheless, the visual quality difference between using LZC and TPLZC codec will de-
crease when the coding bit-rate increases. Eventually there will be no visual quality difference
after increasing to a certain bit-rate, which enables quantization errors to fall below the JND
level.

Figure 6.31 shows the PSNR values obtained for the test images shown in this section. De-
spite the visual quality comparison showing that TPLZC coded images generally have better
visual quality than LZC coded ones, the PSNR comparison does not well reflect the visual
quality perceived by the viewer. Only the Mt Fuji2 PSNR results, shown in Figure 6.31(c), are
consistent with the subjective comparison. The other PSNR results suggest that the LZC codec
gives better compression quality than the TPLZC codec. Nevertheless, as discussed previously
in Section 4.3, the PSNR quality measurement only provides a reference scale and might not
predict the actual visual quality perceived by a human.

In short, based on the subjective comparison, the raster tree search is better than the recursive
tree search at low coding bit-rate. Therefore, for low bit-rate applications, we may want to spend
extra coding complexity and memory for implementing TPLZC, in order to obtain better visual

quality in the reconstructed images.
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Figure 6.26: The Mandrill image compressed by (a) LZC at 0.24bpp (b) TPLZC at
0.24bpp (c) LZC at 0.48bpp (d) TPLZC at 0.48bpp
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(b)

Figure 6.27: The Matsuri image compressed by (a) LZC at 0.24bpp (b) TPLZC at
0.24bpp
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(b)

Figure 6.28: The Mt Fuji2 image compressed by (a) LZC at 0.24bpp (b) TPLZC at
0.24bpp
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(b)

Figure 6.29: The Railway image compressed by (a) LZC at 0.24bpp (b) TPLZC at
0.24bpp
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(b)

Figure 6.30: The Flowers image compressed by (a) LZC at 0.24bpp (b) TPLZC at
0.24bpp
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6.9.2 LZC and SPIHT

One of the motivations for deriving the LZC algorithm is to demonstrate that the SPTHT-like
zerotree coding can be implemented at lower complexity and with a much lower coding memory
requirement. Therefore, in this section, we will compare the results from LZC and TPLZC
with those from SPIHT to see if the image quality is significantly affected by the removal of
coding lists and reduction of coding complexity. The SPIHT test codec was downloaded from
the SPIHT website - http://www.cipr.rpi.edu/research/SPIHT/spiht3.html. The coding options
used for the LZC and TPLZC codecs were YUV color space, 9/7 wavelet filter set, symmetric

extension, and five or six wavelet decomposition levels.

The compressed images shown in this section were those from LZC and SPIHT only. One
exception is the Mandrill image, because the TPLZC compressed version has better subjective

quality than the LZC compressed version.

Figures 6.32 to 6.35 present the visual quality comparison for the Mandrill, Girls, Lena, and
Peppers images, which are the most commonly used test images. The results shown here are
from those coded at 0.24 bpp and 0.48 bpp. From the visual comparison in those figures, we
can hardly see any visual quality difference between using LZC and SPIHT to compress those
images. For this reason the results at higher bit-rates are not shown here, because if we cannot
see any visual difference at 0.24 bpp and 0.48 bpp, we will not be able to see any difference for
images coded by LZC and SPIHT at higher bit-rates, at which the quantization errors will be
close to or below the JND level of the HVS.

Figures 6.36 to 6.38 show some results from coding Mt Fujil, Flowerfield2, and Farm images
at 0.96 bpp. Those images are all natural scenery images with many high frequency features.

The visual comparison for those images is summarized as follows.

e In Figure 6.36, the compressed Mt Fujil images show that the LZC coded version has
more details of Mt Fuji features, straw farm and tree features, and flower features. While

those features on the SPIHT coded version are still very blurry, even at this bit-rate.

e In Figure 6.37, the compressed Farm images show that the LZC coded version has more

details of the plowland features in the background than the SPIHT coded version.

e In Figure 6.38, the compressed Flowerfield2 images show that the L.ZC coded version
has more details of tree features in the background and the flower field feature in the

foreground, while the same features on the SPIHT compressed version still look blurry.

Interestingly, in spite of having lower coding memory and coding complexity, LZC can
sometimes have better coding performance than SPIHT, especially for coding natural scenery
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images with many high frequency features. This may be due to the fact that LZC is optimized to
follow the characteristics of the HVS, while SPIHT is optimized to improve PSNR results [156].

As a reference, Figure 6.39 and 6.40 give PSNR and RMSE comparisons for some test
images compressed by LZC, TPLZC and SPIHT test codecs. Most of those test images have
been shown for subjective comparison in this or the previous section, and some have not but
can be found in Appendix A. From the PSNR and RMSE comparison, we can see that in most
cases there is not much coding performance difference between using LZC, TPLZC and SPTHT
in terms of objective quality. For some images, , such as Farm and Flowerfield2, SPIHT gives
better objective quality performance than LZC. Nevertheless, despite showing better PSNRs,
the SPIHT compressed Farm and Flowerfield2 images actually show lower subjective quality
than those compressed by LZC. This again verifies that PSNR and RMSE can only be used as

a reference, but can not be used to predict relative visual quality.

The significance evaluation of the coefficient C(3, j) and the descendant set D(i, j) in LZC
and TPLZC are exactly the same as in SPIHT. That is, the significance evaluation is done
by recursively scanning down the tree branches. Although the significance evaluation may
sound complicated and may require a lot of execution time, it actually benefits from the highly
regular zerotree relations. Therefore, once the coordinates of the tree root are identified, the
coordinates of the entire tree coefficients can then be derived by the zerotree relations discussed
in Section 6.3. Furthermore, most of the significance evaluations of C'(4, j) and D(i, j) are done
in coding the first couple of bit-layers and the results are recorded on the Fz and Fp maps.
Therefore, for coding the consecutive bit-layers the number of significance evaluations would
be significantly reduced and would require only a fraction of the execution time of SPIHT.
Moreover, the requirement of only one coding pass and only two bit-maps in LZC and TPLZC
significantly lowers the number of memory accesses when compared to SPIHT. Hence, for
hardware implementation, LZC and TPLZC would have a shorter execution time and a lower

number of memory accesses than SPIHT.

In short, from the subjective comparison, the LZC algorithm demonstrates a similar coding
performance to SPIHT for low bit-rate coding. For higher coding bit-rates, there is simply
no performance difference between LZC and SPIHT in terms of visual quality. Therefore,
the LZC algorithm can provide an alternative implementation of zerotree coding and achieves
similar performance to SPIHT, but with lower coding memory requirement and lower coding
complexity. Although some objective comparison shows SPIHT performs better than LZC, the

subjective quality is really what concerns us.
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By :LM,

(c) TPLZC (d) SPIHT

Figure 6.32: The Mandrill image compressed by (a) TPLZC at 0.24bpp (b) SPIHT
at 0.24bpp (c) TPLZC at 0.48bpp (d) SPIHT at 0.48bpp
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(@ LzC (b) SPIHT

(d) SPIHT

Figure 6.33: The Girls image compressed by (a) LZC at 0.24bpp (b) SPIHT at
0.24bpp (c) LZC at 0.48bpp (d) SPIHT at 0.48bpp
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(a) LZC (b) SPIHT

(©) LZC (d) SPIHT

Figure 6.34: The Lena image compressed by (a) LZC at 0.24bpp (b) SPIHT at
0.24bpp (c) LZC at 0.48bpp (d) SPIHT at 0.48bpp
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(c)LZC (d) SPIHT

Figure 6.35: The Peppers image compressed by (a) LZC at 0.24bpp (b) SPIHT at
0.24bpp (c) LZC at 0.48bpp (d) SPIHT at 0.48bpp

137



6.9. Results

(b) SPIHT

Figure 6.36: The Mt Fujil image compressed at 0.96bpp by (a) LZC (b) SPIHT
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(b) SPIHT

Figure 6.37: The Farm image compressed at 0.96bpp by (a) LZC (b) SPIHT
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(b) SPIHT

Figure 6.38: The Flowerfield2 image compressed at 0.96bpp by (a) LZC (b) SPIHT
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6.9.3 LZC and JPEG2000

In this section we will compare the results of the LZC algorithm with the new JPEG2000 stan-
dard to see if the performance of LZC is comparable with JPEG2000. The JPEG2000 test codec
is JJ2000, which is an implementation of JPEG2000 standard in J ava™ and was downloaded
from http://jj2000.epfl.ch/index.html. However, unlike SPIHT, the coding algorithm used in
JPEG2000 is not related to the zerotree algorithm, so we will just use the comparison as a
reference only.

In this comparison we use the most widely used test image, Lena, and the cropped JPEG
2000 test, Bike. The PSNR results in Figure 6.41 show that LZC can achieve similar objective
coding quality to JJ2000 for coding both test images. The results from SPIHT are also plotted
for comparison. The compressed Lena and Bike images are shown in Figure 6.42 and 6.43,
respectively. The coding bit-rates are at 0.24 bpp and 0.48 bpp. Despite the objective quality
performance of LZC being slightly lower than JJ2000, the compressed Lena and Bike images
show no perceptible quality difference between using LZC or JJ2000 at those two bit-rates.
Hence, the LZC algorithm can achieve as good subjective quality performance as the JPEG2000

standard.
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Figure 6.41: PSNR comparison - LZC, JJ2000, and SPIHT (a) Lena (b) Bike
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(a) LZC

(c) LZC (d) JJ2000

Figure 6.42: The Lena images compressed by (a) LZC at 0.24bpp (b) JJ2000 at
0.24bpp (c) LZC at 0.48bpp (d) JJ2000 at 0.48bpp
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(b) 132000
\ - % i ,".":,'.:‘ =

(d) JJ2000

Figure 6.43: The Bike images compressed by (a) LZC at 0.24bpp (b) JJ2000 at
0.24bpp (c) LZC at 0.48bpp (d) JJ2000 at 0.48bpp
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6.10 Summary

In this chapter, we have discussed extensively the proposed LZC algorithm. We also presented
two versions of the LZC algorithm which perform recursive and raster tree searches. Based on
result comparisons, we conclude that the LZC algorithm not only performs as well as SPIHT, but
also provides an alternative low coding memory, low coding complexity implementation of the
zerotree algorithm. Hence, the LZC algorithm is more suitable than other zerotree algorithms
for hardware implementation. Result comparisons with JPEG2000 have also shown that LZC

can achieve the same visual quality as the compression standard.
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Chapter 7

3D Listless Zerotree Coding for Color
Video

7.1 Introduction

Since the LZC algorithm has good performance for low bit-rate still image coding, it can also be
extended for low bit-rate video coding. Therefore, in this chapter we will discuss how we can
extend the LZC algorithm from image coding to video coding. For maintaining minimal coding
complexity, the wavelet transform is applied to remove both temporal and spatial information
correlation. The application of the wavelet transform in both spatial and temporal axes is often
called the 3D wavelet transform. Therefore, for convenience, the LZC algorithm for video
coding is named 3D Listless Zerotree Coding or 3DLZC for short.

We will firstly discuss the 3D wavelet transform. Then, we will discuss the zerotree symbols,
zerotree structure, and significant maps used in 3DLZC. After that, we will discuss the encoding
and decoding procedures of 3DLZC. Finally, we will present some simulation results from the
3DLZC test codec.

7.2 3D Wavelet Transform

In the 3DLZC algorithm, as in other video coding schemes, a number of successive video
frames are grouped into a group of frames (GOF). Since each GOF only spans a short period of
time, normally less than one second, each frame will contain similar or even exactly the same

information. Therefore, there will be a significant correlation between successive frames.
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As discussed in Section 5.4, temporal correlation can be removed by either motion estimation
and compensation (ME/C) or a 3D wavelet transform. Since one of the advantages of the LZC
algorithm is low coding complexity, it would be incongruous to implement the computationally
expensive ME/C for removing temporal correlation. Therefore, the 3D wavelet transform is
a more favorable option for LZC algorithm, due to low computational complexity and high
regularity.

A 3D wavelet transform is first performed temporally to remove temporal correlation be-
tween frames and then spatially to remove spatial correlation in each temporally transformed
frame. For the temporal wavelet transform, the number of frames in a GOF has to be dyadic,
due to the down-sampling factor being two. After 1-level temporal wavelet transform, the high
temporal frequency subbands will contain the changes between successive frames, due to the
motion of objects or camera. The low temporal frequency subbands will contain the unchanged
information found in successive frames, such as static background or steady objects. Because
of this, the low temporal frequency subbands are still temporally correlated and require fur-
ther application of temporal wavelet transform for removing this correlation. Temporal wavelet
decomposition stops when there is only one low temporal frequency subband in a GOF. This
low temporal frequency subband contains the unchanged information of that GOF. On the other
hand, the remaining high temporal frequency subbands contain either the changes between suc-

cessive frames or between temporal subbands.

An ideal situation for temporal wavelet transform is that most of the information in a GOF
should be packed into the lowest temporal frequency subband, due to high temporal correla-
tion; while the high temporal frequency subbands will contain little information related to the
changes in a GOF, ie. only a small number of coefficients in high temporal frequency subbands.
However, such a situation may only occur when coding low motion videos. If there are chang-
ing scenes or fast moving objects in a GOF, there will be more information leakage happening
in the high temporal frequency subbands [84, 143]. This is similar to the situation when high
spatial activities cause a large number of coefficients occurring in high spatial frequency sub-
bands. Hence, this is the reason why we need to further apply the spatial wavelet transform to

the temporal frequency subbands.

The application of the spatial wavelet transform to temporal subbands is the same as to still
images, and the purpose is to reduce the spatial correlation within each temporal subband for
a more compact data representation. Normally low temporal frequency subbands have a large
number of coefficients, so they have more spatial correlation; while high temporal frequency
subbands have a small number of coefficients, so they have less spatial correlation. Therefore,
for achieving better spatial decorrelation, we may need to apply more spatial decomposition

levels to low temporal frequency subbands, whereas, only one or two dyadic decomposition
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levels may be good enough for high temporal frequency subbands [162, 186]. However, in
order to effectively form 3D wavelet coefficient trees, we need to have the same decomposition

levels for every temporal subband [168].

Figure 7.1 shows the application of the 3D wavelet transform to a GOF of Akiyo sequence.
The results of the temporal wavelet transform can be interpreted as follows. Firstly, from the left
to the right, the first H1 subband represents the changes between the first two Akiyo frames, the
second H/ subband represents the changes between the second two Akiyo frames, and so forth.
Secondly, the first H2 subband represents the changes among the first four Akiyo frames, and
the second H2 subband represents the changes among the second four Akiyo frames. Thirdly,
the H3 subband represents the changes among all the eight frames in this GOF, while the L3
subband represents unchanged information in this GOF. From the results we can see that this
GOF contains mostly constant information and just a little motion; therefore, after temporal
wavelet transform, most of the GOF information is packed into the L3 subband, and only some

motion information leakage occurs in high temporal frequency subbands.

GOF =8

{} Temporal Wavelet Transform

i H2 L H1 |

{} Spatial Wavelet Transform

Iy
A
L A

Figure 7.1: The application of 3D wavelet transform to a GOF of Akiyo sequence

After applying the spatial wavelet transform to the temporal subbands, the results show that
there is not only spatial similarity inside each temporal subband, but also temporal similar-
ity across the temporal subbands. Therefore, this spatiotemporal similarity can be efficiently
exploited by the 3DLZC algorithm to form 3D wavelet coefficient trees for insignificant coeffi-
cient prediction. That is, the temporal similarity can be used first to predict the insignificant tree

across the temporal subbands. However, if there is a lot of motion in a GOF, which causes a large
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number of coefficients leaking to high temporal frequency subbands, the spatial similarity can
then be exploited to predict insignificant trees inside each temporal subband. Figure 7.2 shows
the enlargement of the spatially wavelet decomposed L3 and H3 subbands given in Figure 7.1.
The spatial similarity between spatial subbands can be used to predict the spatial insignificant
trees.

() (b)

Figure 7.2: Enlargement of L3 and H3 subbands (a) L3 (b) H3

Since the 3DLZC algorithm also performs bit-layer coding for bit-allocation, when imple-
menting the 3D wavelet transform for 3DLZC, we need to make sure that the magnitude dy-
namic range decreases not only from low spatial frequency subbands to high spatial frequency
subbands, but also decrease from low temporal frequency subbands to high temporal frequency
subbands. This is because low temporal frequency subbands generally contain more important

information and they should be allocated coding bit-budget first.

7.3 3DLZC Zerotree

This section will discuss how the LZC zerotree symbols, zerotree structure, and significant maps
should be modified in the 3DLZC algorithm.

7.3.1 3DLZC Zerotree Symbols

After temporal and spatial wavelet decomposition, the wavelet coefficients are classified into
three sets: root set R, branch set B, and leaf set L. Coefficients in R are those in the lowest
frequency subband and have no parents. Coefficients in L are those in the highest frequency
subbands and have no descendants. Coefficients in B are those in neither R nor L and have
both parents and descendants.
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Suppose the size of a GOF is f frames, and the size of each frame is m rows and n columns,

then the classification of wavelet coefficients in a GOF can be formulated as follows.

R = {C(k,i,j)|for0 <k < f/2" 0<i<m/2%and0 < j<n/2} (7.1
B = {C(k,i,j)|for0<k < f/2", 0<i<m/2and0 < j < n/2

except 0 < i < m/2% and 0 < j < n/2%,

for f/2" <k < f/2,0<i<m/2and0<j <n/2} (72
L = {C(k,i,j)|forO<k< f/2,0<i<mand0<j<n

except 0 <i<m/2and0 < j <n/2,

for f/2<k<f 0<i<m,0<j<n} (7.3)

In the above formulas, C(k, 7, j) represents an individual coefficient, I; and I, are respectively

the number of temporal and spatial wavelet decomposition levels, and k, ¢ and j are respectively

the frame, row and column coordinates.

Figure 7.3 shows an example of the classification of wavelet coefficients into three sets:
coefficients in the green region are classified as root set R; coefficients in blue regions are
classified as branch set B; coefficients in gray regions are classified as leaf set L. In the figure,
the parameter fr, mr, and nr are the frame, row, and column size of the lowest frequency

subband and are given by f/2, m/2%, and n/2', respectively.

T

e L2 : H2 : H1

/
Va4

fafT

root set A - branch set B leaf set L

Figure 7.3: Classification of wavelet coefficient sets

The zerotree symbols used in 3DLZC are the same as LZC and are listed as follows:
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o C(k,1,7)- a wavelet coefficient at coordinate (k, 1, 5);
e O(k,1,5)- the child coefficient set of C(k, i, 7);
e D(k,1,7)- the descendant coefficient set of C(k, 1, 7).

There are two parent-child relationships between C(k, 1, j) and O(k, i, 7). If C(k,%,j) € R,
then its children set is O(k,,j) = {(k,i + mr,j), (k,%,5 + nr), (k,i + mr,j + nr), (k +
fri,3),(k+ fryi+mr,j),(k+ fr,i,j+nr),(k+ fr,i+mr,j + nr)}. On the other hand,
if C(k, i, ) € B, then its children set is O(k, i, j) = {(2k, 2i, 25), (2k, 2 + 1, 2j), (2k, 24, 25 +
1), (2K, 2+ 1,2j + 1), (2k + 1,2, 25), (2k + 1,2 +1,25), (2k +1,24,25 + 1), (2k + 1,2 +
1,25+ 1)}

Like the LZC algorithm, 3DLZC uses symbols C and D to code the positions of wavelet

coefficients; while symbol O is used for position reference during encoding and decoding.

7.3.2 3DLZC Zerotree Structure

Like LZC, 3DLZC groups wavelet coefficients into 3D coefficient trees by exploiting the tempo-
ral and spatial inter-subband relations. The coefficient grouping enables an effective predicfion
of a group of insignificant coefficients at the same temporal-spatial locations, as well as an

efficient position encoding for those coefficients.

The structure of wavelet coefficient trees is specified by the parent-child relationships dis-
cussed in the last section. Figure 7.4 gives an example of the 3DLZC tree structure in a GOF.
This GOF has four frames, and has two temporal and three spatial wavelet decomposition lev-
els. The 3D wavelet coefficient tree in the figure has a root coefficient in the lowest frequency
subband, and the remaining coefficients all descend from this root coefficient. The parent-child
relationships of this 3D coefficient tree are only partially indicated by the red arrows. Since
the root coefficient is in set R, it has seven children, as linked by the arrows, three in the same
temporal subband L2 and four in the temporal subband H2. For convenience, these three in
L2 are named L-HL, L-LH and L-HH, and these four in H2 are named H-LL, H-HL, H-LH and
H-HH, representing the roots of tree branches in seven temporal-spatial orientations. On the
other hand, coefficients ‘a’ and '’ are in set B, so each of them has eight children. Coefficient
'a’ has four children in L2 and four children in H2, as indicated by ' A’; while all eight children
of coefficient '’ are in H1, as indicated by ' B’. In this case, there are 255 coefficients descended
from the root coefficient. Therefore, if this coefficient tree is insignificant and coded as a ze-
rotree, one root symbol is enough to encode the entire 255 insignificant coefficients, including
their positions. This is a very efficient data structure, especially at low coding bit-rates when

coefficients are more likely to be below the coding threshold.
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|

L2 : H2

H1

root set A - branch set B leaf set L

Figure 7.4: 3DLZC wavelet coefficient tree structure

Due to the parent-child relationships of 3DLZC, the dimension of the lowest frequency sub-
band can be either odd or even, while 3D SPIHT requires the lowest frequency subband to have
an even dimension, due to its coefficient grouping. Therefore, when coding video with a small
frame size, such as 4:1:1 (or 4:2:0) QCIF, the size of the chrominance frames must be adjusted
to have the same spatial decomposition levels as the luminance frames. As a result, 3D SPIHT

will have more coding complexity than 3DLZC for image size adjustment.

7.3.3 3DLZC Significant Maps

Like LZC, 3DLZC has two types of significant maps: coefficient map F- used to indicate the
significance of wavelet coefficients and descendant map Fp used to indicate the significance of

descendant sets.

Figure 7.5 shows an example of how the - map and the F, map can be used to indicate
the significance of coefficients and descendant sets in a GOF. Suppose the blue blocks denote
significant coefficients, so the corresponding locations in the - map are marked by '1’; while
white blocks denote insignificant coefficients, so the corresponding locations in the Fz map
are marked by '0’. Similarly, suppose coefficients ‘a’ in L2 and ‘¢’ in H2 denote the roots of
two significant descendant sets ‘A’ and 'C", as colored in green, so the corresponding locations
in the Fp map are marked by '1’. On the other hand, suppose coefficients '’ in L2 and 'd’ in
H?2 denote the roots of two insignificant descendant sets ‘B’ and ' D', as colored in gray, so the

corresponding locations in the Fp map are marked by ‘0.
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Figure 7.5: 3DLZC significant maps

From Figure 7.5 we can see that the - map has the same size as the GOF, while the size

of the Fip map is only one eighth of that of GOF. This is because only coefficients in set R

when coding a

2

and set B have descendants, while those in set L do not have any. Therefore

color 4:1:1 QCIF sequence with 16 frames in a GOF, the maximum coding memory required

by 3DLZC is fixed at 83.53KB

rates. The memory requirement will increase

! for all coding bit-

to 334KB for coding color CIF sequences and to 1336KB for coding color 4CIF sequences. On

when

b

the other hand, the memory required by SPIHT is 1.4MB, as discussed in Section 5.5

coding QCIF sequence with 16 frames in a GOF. Therefore, the lower memory requirement for
maintaining two significant maps makes 3DLZC a much more friendly video coding algorithm

than 3D SPIHT for hardware implementation.

608256 bits = 74.25 KB
76032 bits = 9.28 KB

'Map F¢: [176x144 + 88x72x2(colors)] x 16(GOF)
Map Fp: [176x144 + 88x72x2(colors)] /8 x 16(GOF)
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7.4 The 3DLZC Algorithm

In this section we will discuss how the LZC algorithm is extended to 3DLZC for coding video
sequences. The discussions in this section include the encoding procedures and decoding proce-
dures of the 3DLZC algorithm. Although there are two versions of LZC algorithms that perform
recursive and raster tree search, we shall only preset the recursive tree search 3DLZC algorithm
in this section. The process of extending raster tree search LZC to 3DLZC will be similar to
that discussed in this section.

7.4.1 3D Recursive Tree Search

The 3DLZC codec always begins the recursive tree search from the root coefficients in set R,
and searches all of the descendant coefficients in a temporal and spatial tree-depth fashion. The
coordinates of a root coefficient are used to derive the locations of its descendants in the 3D
wavelet matrix by the 3DLZC parent-child relationships. Figure 7.6 illustrates the order of the
3D recursive tree search in a GOF, which is two level temporal and two level spatial wavelet
decomposed. The number marked on each coefficient indicates the order of visitation by the
3DLZC codec.

B

=

™~

[T

Figure 7.6: The 3D recursive tree search order of 3DLZC

Figure 7.7 shows an example of how the 3D recursive tree search covers all of the coefficients
in a GOF. There are four temporal-spatial wavelet trees, which are colored differently. The
3DLZC codec first searches the tree with green color from its root coefficient. After that, the
3DLZC codec will move to the next tree root in the raster position, as indicated by the red
arrows. Therefore, after a raster search of the tree roots, the 3DLZC codec will have searched
all of the coefficients in a GOF.
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Figure 7.7: The 3D recursive tree search for a GOF

7.4.2 Encoding Procedures

Based on extension of the LZC algorithm, the 3DLZC algorithm also has two encoding pro-
cedures: the main encoding procedure and the tree encoding procedure. The main encoding
procedure mainly controls the coding flow, including the choice of coding threshold, the color
coding order, and the starting and terminating point in the 3D matrix. The tree encoding pro-
cedure mainly encodes individual wavelet coefficients and partitions wavelet coefficient trees
in the 3D matrix. The tree encoding procedure is called by itself and by the main encoding

procedure.

The main encoding procedure of the 3DLZC algorithm is presented in Algorithm 7.1. The
video sequences are assumed to be in YUV color space, but may also be in YCbCr color space.

The procedure consists of four main steps.

In Step 1, the 3DLZC codec clears the Fz and Fp maps for YUV GOFs, and outputs a
number n in bits, which is the the word-length of the largest coefficient among the YUV GOFs.

The number n gives the initial coding threshold as 2™.

In Step 2, the 3DLZC codec encodes the root coefficients in set R and follows the color
coding order Y—V—U. Suppose a root coefficient C(k, 7, j) is coded. The 3DLZC codec will
first check its significance in the F map. If it is significant, ie Fo(k,4,j) = 1, then the codec
will output the nth significant bit of C'(k, 4, j). On the other hand, if C'(k, ¢, 7) is insignificant,
ie Fo(k,14,7) = 0, then the codec will test its significance against the current threshold by using
function S, (). If the test result is significant, then the codec will output the sign and mark the

corresponding location in the Fz map as '1’. Otherwise, the codec will move to the next root
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coefficient at the raster location. The root coefficient encoding process finishes when all of the
roots in the YUV GOFs have been visited by the codec once.

In Step 3, the 3DLZC codec encodes the descendant sets (or 3D wavelet trees) of the root
coefficients. Suppose a descendant set D(k, i, j) is encoded. The codec will first check its
significance in the Fpp map. If D(k, ¢, j) has been found to be significant, ie. Fp(k,i,7) = 1,
then the codec will call the tree encoding procedure to perform 3D tree branch encoding. On
the other hand, if D(k, ¢, j) has previously been encoded as a zerotree, ie. Fp(k,i,j) = 0,
then the codec will test its significance against the current threshold by using function S,,(). If
the test result is significant, then the codec will mark the corresponding root location in the Fip
map as ‘1’ and call the tree encoding procedure for 3D tree branch encoding. Otherwise, the
codec will stop encoding at the current root coefficient and move to the next root coefficient at
the raster location. The 3D wavelet tree encoding finishes when all of the trees rooted in set R
have been searched once. Since each root in set R has seven children, representing the roots of
tree branches in seven temporal-spatial orientations, the codec calls the tree encoding procedure

seven times for each color component.

In Step 4, the 3DLZC codec decreases the number n by one for encoding the next bit-layer
and repeats the same encoding process from Step 2, again.

The tree encoding procedure is presented in Algorithm 7.2. The 3DLZC codec first encodes
an individual coefficient and then the tree branch rooted at that coefficient. The encoding pro-
cesses on the coefficient and the 3D tree branch are similar to Step 2 and Step 3 in the main
encoding procedure, respectively. However, the tree branch encoding is performed by recur-
sively calling the tree encoding procedure itself. Since a coefficient in set B has eight children,
the tree encoding procedure needs to call itself eight times. The recursive procedure call is for
partitioning significant tree branches, but it stops when the coordinates received are in set L,

because coefficients in set L do not have child coefficients.

Figure 7.8 shows the color coding order of 3DLZC. Since wavelet coefficients in set R are the
most significant and contain the most GOF information, the 3DLZC codec allocates bit-budget
to them by following the same color coding order as LZC, ie. Y-V —U. After that, the 3DLZC
codec encodes coefficients in B sets and L sets of YUV trees. Within each tree, the encoding
order for tree branches is L-HL — L-LH — L-HH — H-LL — H-HL — H-LH — H-HH. When
finished allocating bit-budget to the coefficients and trees on the current bit-layer, the 3DLZC
codec decreases n by one and repeats the same bit-allocation order on the next bit-layer.

After encoding several bit-layers, the bit-stream generated by the 3DLZC codec will look
like the one shown in Figure 7.9. Like LZC, the 3DLZC bit-stream also has the information

ordering property, ie. embeddedness. Therefore, the bit-stream can be truncated at any point to
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Procedure MainEncoding
Step 1:
clear Fy and Fp;
for all ¥, U, and V GOF
output n = [logg(max(k,i,j)lC(k,i,j)DJ;
clear F¢ and Fp;
Step 2:
for all ¥, U, and V GOF
for all C(k,1,j) € SET R do
if Fe(k,1i,j) = 1 then
output the nth significant bit of |C(k,i,3)]|;
else
output S, (C(k,1i,3));
if S,(C(k,1,3)) = 1 then
output the sign of C(k,1i,3])
and set Feo(k,1,3) = 1;
Step 3:
for all Y, U, and V GOF
for all D(k,i,j) € SET R do
if Fp(k,i,3) = 1 then
for each C(z,x,y) € 0(k,i,3J)
— EncodeTree(z,x,y,n);
else
output S,(D(k,1i,3));
if S,(D(k,i,3)) = 1 then
set Fp(k,i,3) = 1;
for each C(z,x,y) € O(k,1i,3)
— EncodeTree(z,x,y,n);
Step 4:
decrease n by 1 and go back to Step 2;
End

Algorithm 7.1: 3DLZC Main Encoding Procedure
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Procedure EncodeTree(k,i,j,n)
if Fo(k,i,j) = 1 then
output the nth significant bit
of |C(k,1,3)];
else

output S,(C(k,1i,3));

if S,(C(k,1,3)) = 1 then
output the sign of C(k,i,j) and
set Fo(k,i,3j) = 1;

if C(k,i,j) NOT IN SET L
if Fp(k,i,j) = 1 then
for each C(z,x,y) € 0(k,1i,3)
—EncodeTree(z,x,y,n);
else
output S, (D(k,1i,3));
if S,(D(k,i,j)) = 1 then
set Fp(k,i,3j) = 1;
for each C(z,x,y) € 0(k,1i,73)
—EncodeTree(z,x,y,n);
End.

Algorithm 7.2: 3DLZC Tree Encoding Procedure
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Figure 7.9: Example of 3DLZC video bit-stream after encoding several bit-layers

give a very precise bit-rate or quality control.

7.4.3 Decoding Procedures

Since 3DLZC is a unitary coding algorithm, it also has two decoding procedures: the main
decoding procedure presented in Algorithm 7.3 and the tree decoding procedure presented in
Algorithm 7.4. Both decoding procedures follow exactly the same coding process as their
encoding counterparts, so they are simply presented here without further discussion. The only
differences are that the "output’ process in encoding becomes the *input’ process in decoding,
and the coefficient magnitude test in encoding becomes magnitude reconstruction in decoding.
The process of reconstructing wavelet coefficients for 3DLZC is the same as for LZC, so readers
are referred back to Section 6.4.3 for more details.
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Procedure MainDecoding
Step 1:
input n;
clear F¢y and Fp;
Step 2:
for all Y, U, and V GOF
for all C(k,i,j) € SET R do
if Fo(k,i,j) = 1 then
input the nth significant bit of |C(k,i,3j)| and
refine C(k,i,3);
else
input S,(C(k,1,3));
if Sp(C(k,i,3)) = 1 then
input the sign of C(k,i,j) and
reconstruct C(k,i,j) = (sign) 1.5 x2%;
and set Fo(k,1i,3) = 1;
Step 3:
for all Y, U, and V GOFs
for all D(k,i,3j) € SET R do
if Fp(k,i,j) = 1 then
for each C(z,x,y) € 0O(k,1i,3)
— DecodeTree(z,x,y,n);
else
input S, (D(k,1i,3));
if S,(D(k,1,3)) 1 then
set Fp(k,i,3) = 1;

for each C(z,x,y) € 0O(k,i,3)

— DecodeTree(z,X,y,n);

7

Step 4:

decrease n by 1 and go back to Step 2;
End

Algorithm 7.3: 3DLZC Main Decoding Procedure
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Procedure DecodeTree (k,i,j,n)
if Feo(k,i,j) = 1 then
input the nth significant bit of |C(k,i,7) |
and refine C(k,1i,3);
else
input S, (C(k,1i,3));:
if Sp(C(k,1i,3)) = 1 then
input the sign of C(k,i,j) and
reconstruct C(k,i,3) = (sign) 1.5 x2%;
set Fo(k,1i,3) = 1;

if C(k,i,Jj) NOT IN SET L
if Fp(k,i,j) = 1 then
for each C(z,x,y) € 0O(k,1,3)
—DecodeTree(z,x,y,n) ;
else
input S, (D(k,i,3));
if S,(D(k,i,j)) =1 then
set Fp(k,i,3j) = 1;
for each C(z,x,y) € 0O(k,1i,3)
—DecodeTree(z,x,y,n);
End.

Algorithm 7.4: 3DLZC Tree Decoding Procedure
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7.5 3DLZC Test Codec and Test Video Sequences

This section will briefly discuss the 3DLZC test codec and the test video sequences.

7.5.1 The 3DLZC Test Codec

The test codec used to verify the 3DLZC algorithm was written in ANSI C language and con-
sists of four modules for both encoding and decoding. The functions of those four modules
are color space transform, 3D wavelet transform, 3DLZC and arithmetic coding, as shown in
Figure 7.10. Before coding, a video sequence is always separated into a series of GOF, and each
GOF has a dyadic number of video frames. After color space transform, the chrominance color
components can be further down-sampled to reduce the data size. Therefore, in decoding, the
3DLZC test codec may need to up-sample those down-sampled chrominance color components
before color space transform.

Encoding Process

Compressed
Bit-stream

| a - ap

Decoding Process

Input
GOFs D L

...001101001...

Output
GOFs

Figure 7.10: Modules of the 3DLZC test codec

7.5.2 Test Video Sequences

Figure 7.11 shows the commonly used test video sequences: Akiyo, Hall Monitor, Carphone,
Mother-daughter, Silent, and Container. They are all in QCIF format (176 x 144) and are stored
in YUV color space. Also, the chrominance sequences of those test video sequences are hori-
zontally and vertically down-sampled by a factor of two, so the size of each chrominance frame
is only 88x72. This file format is known as 4:1:1 (or 4:2:0). The frame rate for those test

sequences is 30 fps (frame per second).

163



7.5. 3DLZC Test Codec and Test Video Sequences

(a) (b)

Figure 7.11: QCIF video sequence (a) Akiyo (b) Hall Monitor (b) Carphone (c)
Mother-daughter (e) Silent (f) Container
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7.6 Preliminary Experiment

As mentioned in the previous section, the video sequence is separated into a series of GOFs for
encoding, with a dyadic number of frames in a GOF, 4 frames, 8 frames, 16 frames or 32 frames.
The choice of GOF size has a direct influence on the performance of temporal decorrelation,
which in turn influences the 3DLZC coding performance. In this section, we will examine how
the choice of a GOF size affects the performance of the 3DLZC test codec.

The presumption in using the temporal wavelet transform is that most of the information will
be packed into the lowest temporal frequency subband, while high temporal frequency subbands
only contain changes within the GOF. Therefore, the higher the number of frames in a GOF,
the more efficient will be the information decorrelation and compaction by temporal wavelet
transform. However, the higher the number of frames in a GOF, the longer will be the time
span for that GOF. As a result, the GOF may contain too much motion information, causing
high temporal frequency subbands to contain too many coefficients that represent changes in
the GOF. Hence, the choice of 32 frames is a GOF is not appropriate, as the GOF will span

around 3 seconds for 10 fps and will contain too much motion information.

However, if the the number of frames in a GOF is too small, temporal correlation may not be
removed effectively. In other words, a small GOF may result in good information decorrelation
and compaction within that GOF, but between successive GOFs there may be a significant
amount of information correlation as well. This inter-GOF correlation may actually need to be
encoded with more coding bit-budget. Hence, the choice of 4 frames in a GOF is not efficient,
because the GOF will only span around 0.4 second for 10 fps and the successive GOFs may
contain similar or even the same information. Furthermore, 4 frames in a GOF is too short for
data extension when performing the temporal wavelet transform, while 32 frames in a GOF is

too long and will increase the coding latency.

Consequently, the choice of GOF size is only between 8 or 16 frames. Figure 7.12 shows
the experimental results from coding Akiyo, Hall Monitor, and Carphone sequences at 60000
bps (bits per second) with the frame rate of 10 fps by using 8 or 16 frames for a GOF. The
options for the 3DLZC test codec were set as follows. The filter sets used for temporal and
spatial wavelet transform were respectively the Haar filter set and the 9/7 filter set [89]. This
is because the Haar filter set is commonly used for temporal wavelet transform [161, 168, 186]
and gives the least implementation complexity, and the 9/7 filter gives a good performance for
spatial wavelet decomposition as discussed in Section 6.6.1 and Section 6.8.2. The number of
decomposition levels was three for both temporal and spatial wavelet transforms. The signal

extension method used was symmetric extension.

The results show that when coding slow motion and steady background sequences, such
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as Akiyo and Hall Monitor, using 16 frames for a GOF gives better coding performance for
the 3DLZC test codec. For coding high motion and changing background sequences, such as
Carphone, using 16 frames for a GOF only gives a slight improvement in coding performance
over using 8 frames. Therefore, based on the results, we may want to use 16 frames for a GOF in
3DLZC, as it generally gives a better performance for coding both low motion and high motion
video sequences. This also coincides with the findings of Kim et al. [168]

7.7 Results

In this section we will firstly compare the performance of the 3DLZC algorithm with the H.263+
standard [187] for verifying the use of the temporal wavelet transform for temporal information
decorrelation. After that, we will briefly compare the performance of 3DLZC with the published
3D SPIHT results.

7.7.1 3DLZC and H.263

Since the motivation for deriving the 3DLZC algorithm is for low bit-rate video coding with low
coding complexity, the temporal wavelet transform is exploited instead of the computationally
expensive ME/C scheme. Therefore, in this section we will compare the performance of 3DLZC
with the low bit-rate video compression standard H.263+, based on DCT and ME/C, to verify

the performance difference between using the temporal wavelet transform and ME/C.

The coding options for the 3DLZC test codec were set to 16 frames for a GOF, Haar filter set
for temporal wavelet transform and 9/7 filter set for spatial wavelet transform, 3 level temporal
and spatial wavelet decomposition, and symmetric signal extension method. The test H.263+
codec used was tmn8 which was downloaded from ftp://dspftp.ece.ubc.ca/pub/tmn 2. All of
tmn8’s advanced options (-D, -E, -F) were enabled. The QCIF test video sequences used for the
simulation were Akiyo, Hall Monitor, Carphone, Mother-daughter, Silent, and Container, as
shown in Figure 7.11. They can be classified into four categories: Akiyo and Mother-daughter
are head-and-shoulder sequences with moderate motion and steady background; Hall Monitor
and Container are monitoring sequences with slow moving objects; Carphone is video-phone
sequence with rapid scene changes outside the car window; Silent is a sign language sequence
with rapid hand movements. Those sequences were coded at 60000 bps with 10 fps, ie. coding
every third frame in the test sequence, and each frame was allocated 6000 bits. Therefore, each
16-frame GOF was allocated a total bit-budget of 96000 bits which were distributed to the YUV
GOFs by the 3DLZC coding procedures discussed in Section 7.4.2.

ZHowever, tmn8 is no longer publicly available. Please refer to http://spmg.ece.ubc.ca/h263plus/h263plus.html
for more detail.
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Although we have argued that PSNR does not predict well the perceived visual quality,
it is not feasible to show a whole video sequence in print for subjective quality compari-
son. Therefore, we have chosen to present the results from frame by frame PSNR compari-
son for the whole video sequence, because PSNR is the simplest metric for quality evaluation
as well as the most commonly used result comparison method in the video coding literature
[158, 161, 162, 165, 168, 186]. The PSNR comparisons for all of the test video sequences are
presented in Figure 7.13 and 7.14, and the comparisons are separated into luminance sequence,

Y, and chrominance sequences, U and V. The results shown are from frame 0O to frame 287.

From the comparison of Y sequences we can see that the PSNR values of 3DLZC coded se-
quences have similar envelopes as those of H.263+ coded sequences, despite the 3DLZC coded
sequences having lower mean PSNR values than the H.263+ coded sequences. This result ver-
ifies that the temporal wavelet transform is able to achieve similar performance on temporal
decorrelation as the ME/C scheme, but with much lower coding complexity. The 3DLZC even
has a very similar coding performance with H.263+ when coding fixed-background, slow mov-
ing object sequences, such as Hall Monitor and Container. This suggests that the ME/C can be
replaced by the temporal wavelet transform under such coding conditions. However, similarly
to other 3D wavelet video coding algorithms, we observe the PSNR dip at the boundary of each
GOF from those sequences coded by 3DLZC. This is partly due to object motion and partly due
to extension for the temporal wavelet transform [168].

The PSNR comparisons of U and V sequences show that 3DLZC performs better than
H.263+ in coding chrominance sequences, regardless of high motion or low motion video
sequences. This suggests that chrominance sequences contain more low temporal frequency
information but less high temporal frequency information, ie. higher temporal correlations.
Therefore, chrominance sequences can be more effectively decorrelated by the temporal wavelet

transform, due to its high information compaction property.

Figures 7.15 and 7.16 show the reconstructed video frames of the compressed video se-
quences. The original versions of those video frames are shown in Figure 7.11. These frames
were chosen because they are also presented in the 3D SPIHT literature [168]. From the visual
comparisons of those sample frames we can see that for most cases there is not much visual
quality difference between 3DLZC or H.263+ coded frames. However, for Silent sequence, the
frame reconstructed from 3DLZC has lost some hand detail.

In short, 3DLZC has shown a comparable performance in terms of PSNR values and recon-
structed visual quality. In particular, for coding low motion video sequences, 3DLZC achieves
similar coding performance to H.263+, but with much lower coding complexity which is the
result of performing the regular 3D wavelet transform instead of the irregular ME/C scheme for

data decorrelation. Also, for coding chrominance sequences, 3DLZC outperforms H.263+.
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Figure 7.15: Visual quality comparison of compressed video frames - 3DLZC &
H.263: Akiyo frame 228 (a) 3DLZC (b) H.263; Hall Monitor frame 123 (c) 3DLZC
(d) H.263; Carphone frame 150 (e) 3DLZC (f) H.263
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Figure 7.16: Visual quality comparison of compressed video frames - 3DLZC &
H.263: Mother-daughter frame 102 (a) 3DLZC (b) H.263; Silent frame 243 (c)
3DLZC (d) H.263; Container frame 048 (e) 3DLZC (f) H.263
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7.7.2 3DLZC and 3D SPIHT

In this section we briefly compare 3DLZC results with the 3D SPIHT results published in [168].
The coding options for the 3DLZC test codec were set to be the same as mentioned in the
previous section. Table 7.1 shows the mean PSNR comparison of 3DLZC and 3D SPIHT for
the Hall Monitor sequence, the only average PSNR available in [168]. The coding bit-rates are
60000 bps and 30000 bps, and the frame rate is 10 fps.

At 60000 bps, 3D SPIHT is 0.27 dB better than 3DLZC in coding Y sequence. However,
3DLZC is 0.81 dB and 0.74 better than 3D SPIHT in coding U and V sequence, respectively.
Furthermore, at 30000 bps, 3DLZC is 0.39 dB better than 3D SPIHT in coding Y sequence, but
3DLZC is 0.31 dB worse and only 0.09 dB better than 3D SPIHT in coding U and V sequence,
respectively. Alternatively, readers can also compare the 3DLZC results in Figure 7.13 and
Figure 7.14 with those presented in [168] for the quality comparison of the whole video frames.

Y U \%
bps
i 3DLZC | 3D SPIHT | 3DLZC | 3D SPIHTS8 | 3DLZC | 3D SPIHT
60000 | 37.68 37.95 41.22 40.41 43.12 42.38
30000 | 33.34 32.95 37.84 38.15 40.77 40.68

Table 7.1: Mean PSNR comparison of Hall Monitor sequence - 3DLZC & SPIHT

Although we may not have a through performance comparison by using just one video se-
quence here, the comparison has shown 3DLZC can perform as well as or even better than 3D
SPIHT, but with a lot less coding memory requirement.

7.8 Summary

In this chapter we have presented the 3DLZC algorithm for video coding as an extension of the
LZC algorithm. Inherited from LZC, 3DLZC requires no coding lists, which results in a low
memory zerotree video coding algorithm. 3DLZC also has a very precise bit-rate control, due to
its progressive bit-layer coding. Furthermore, in the attempt to minimize the coding complexity,
3DLZC exploits wavelet transforms for both temporal and spatial information decorrelation.
The result comparisons have shown that 3DLZC has a comparable performance to H.263+ for
low bit-rate video coding, especially for coding low motion video sequences. In addition, the
comparison between 3DLZC and 3D SPIHT has suggested that 3DLZC can perform as well as
or better than 3D SPIHT, but with a much lower coding memory requirement.
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Chapter 8

Possible Extensions to the LZC algorithm

8.1 Introduction

This chapter suggests two possible extensions for the LZC algorithm. One is to implement a
visual frequency weighting adjustment to the LZC codec for better compression results. The
other is to implement a video layer separation function to the 3DLZC codec for adding some

functionality.

At the time of writing this thesis, the frequency weighting adjustment feature was success-
fully added to the LZC codec. However, due to time limitations, the video layer separation
function was not able to be added to the 3DLZC codec. Nevertheless, a simple video layer
separation algorithm is proposed in this chapter, leaving the possibility for implementing this

function to future work.

8.2 Visual Frequency Weighting Adjustment for LZC

This section investigates the effects of implementing frequency weighting adjustment to the

LZC codec for improving bit-allocation efficiency and compression results.

8.2.1 Visual Frequency Weighting

As we have mentioned in Section 6.2, the bit-allocation scheme for the LZC algorithm follows
the order of visual information importance. That is, the LZC codec always allocates coding

bit-budget to the visually more important wavelet subbands before others. In the proposed
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LZC algorithm, the way to ensure that the bit-allocation sequence follows the order of visual
information importance is to have the wavelet subbands decrease in magnitude with respect to
their corresponding CSFs. This is achieved by taking advantage of the wavelet filter coefficient,
v/2, so that the magnitudes of wavelet subbands decrease from the lowest frequency subband
LL to the highest frequency subband HH.

However, this method of mapping wavelet subbands to the CSFs to reflect their visual impor-
tance is efficient, but not yet close to optimal. A better way is to have one frequency weight per
subband, with each frequency weight determined from the CSF measurement of that subband
[144, 178]. That is, if a subband has a higher CSF, it is perceptually more important and will
have a higher frequency weight. On the other hand, if a subband has a smaller CSF, it will have
a smaller frequency weight, as the loss of information in that subband will not incur noticeable
loss of visual quality. Since the frequency weights are real numbers, the magnitude adjustment
of each wavelet subband can more precisely reflect the corresponding CSF and therefore the
visual importance. Hence, after frequency weighting adjustment, the LZC codec can more ac-
curately allocate bit-budget to encode those more perceptually important wavelet coefficients to

give better compression results.

One example of the visual frequency weighting set for YCbCr color space are shown in
Table 8.1. This set of frequency weightings are recommended in JPEG2000 for a viewing
distance of 1700 pixels [178]. For other viewing distances there will be different frequency
weighting sets.

8.2.2 Results

This extra frequency weighting adjustment was added to the LZC test codec as an additional
feature, and the frequency weights used were those shown in Table 8.1. The codec was tested on
those images shown in Appendix A, but we only show the results from compressing the Girls
image, as it shows the potential benefits of frequency weighting adjustment more clearly. Fig-
ure 8.1(a) shows part of the reconstructed Girls images with frequency weighting adjustment,
and Figure 8.1(b) shows part of the reconstructed Girls images without frequency weighting

adjustment. Both images were compressed at 1.5 bpp (or 16:1 compression).

After frequency weighting adjustment, the reconstructed image appears to have a better vi-
sual quality. The girls in Figure 8.1(a) have more facial skin details, such as freckles, while
those details in Figure 8.1(b) are not so clear. Therefore, implementing the frequency weighting
adjustment feature to the LZC algorithm has the potential to improve bit-allocation efficiency,

which in turn improves the visual quality of reconstructed images.
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(b)

Figure 8.1: Subband frequency weighting adjustment - Girls image (a) with sub-
band frequency weighting adjustment (b) without subband frequency weighting ad-

justment
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Y component

Level LH HL HH
5 1 1 1
4 1 1 1
3 0.999994 | 0.999994 | 0.999988
2 0.837755 | 0.837755 | 0.701837
1 0.275783 | 0.275783 | 0.090078

Cb component
Level LH HL HH
5 0.812612 | 0.812612 | 0.737656
0.679829 | 0.679829 | 0.567414
0.488887 | 0.488887 | 0.348719
0.267216 | 0.267216 | 0.141965
0.089950 | 0.089950 | 0.737656

—_ (N W

Cr component
Level LH HL HH
5 0.856065 | 0.856065 | 0.796593
4 0.749805 | 0.749805 | 0.655884
3 0.587213 | 0.587213 | 0.457826
2
1

0.375176 | 0.375176 | 0.236030
0.166647 | 0.166647 | 0.070185

Table 8.1: Frequency weighting for YCbCr color space in JPEG2000

8.2.3 Summary

This section has demonstrated that implementing frequency weighting adjustment can improve
the performance of the LZC algorithm. However, there are still three aspects we may need to

investigate in the future.

First, the example shown in this section is only for fixed frequency weighting. That is, the
frequency weighting adjustment is fixed for a certain viewing condition. However, for different
applications the viewing conditions will vary, so the LZC codec will require a function to adjust
the frequency weighting accordingly. Also, the frequency weighting set shown in Table 8.1
is only designed for visually lossless or near lossless compression. Therefore, different sets of
frequency weights will be required for lossy compression, as well as adjustable sets of frequency

weights for visual progressive coding.
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Second, although we tested the effect of frequency weighting adjustment using different
images, only Girls shows a noticeable visual quality improvement. The visual quality improve-
ment for the other images is marginal or even barely recognizable, especially for the natural
scenery images which have many high frequency features. This could be due to the set of fre-
quency weights used in the experiment matching the characteristic of Girls. Therefore, different

sets of frequency weights may be required for images with different characteristics.

Third, the results shown in this section are in YCbCr color space only. This is because the
frequency weighting sets are only available in the YCbCr color space. Therefore, for allowing
the LZC codec to perform frequency weighting adjustment in the YUV color space, we will
need to determine a frequency weighting set by measuring the CSFs of wavelet subbands in the
YUYV color space.

8.3 Video Layer Separation for 3DLZC

This section suggests a very simple algorithm to separate foreground and background pixels
for content based video coding. This algorithm exploits the characteristics of the 3D wavelet
transform and will only add a small amount of overhead to 3DLZC.

8.3.1 Video Layer Separation Algorithm

For content based video coding, a binary mask plane called the c-plane is required to indicate
the foreground and background regions. Conventionally, an a-plane is constructed by ME/C
schemes [188, 189, 190] but this results in higher complexity and is not suitable for the ME/C-
free 3DLZC. Alternatively, we can apply simple thresholding and morphological operations to
the information available from the existing temporal wavelet transform in the 3DLZC algorithm

to construct an a-plane.

As we have mentioned in Section 7.2, if a temporal wavelet transform is applied to a GOF
to the highest dyadic level, the high frequency temporal frame (or subband) in the coarsest
transform level will contain all of the changes in that GOF, such as the H3 frame shown in
Figure 8.2. We can simply classify the region containing changes as the foreground region and
the region containing no changes as the background region. Therefore, based on the information
provided by this coarsest high frequency frame, we can construct an «-plane for the 3DLZC

codec to locate the foreground and background region in a GOF.

The procedure for constructing an c-plane is shown in Figure 8.3. To construct the a-plane, a
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Figure 8.2: Application of temporal wavelet transform on an eight-frame Akiyo
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Figure 8.3: a-plane construction procedures

median filter is first applied to the coarsest high frequency frame. Since the function of a median
filter is to smooth a group of neighboring pixels according to their median, unwanted noise in
this high frequency frame will be eliminated. After that, the c-plane is constructed based on the
median filtered frame. That is, if the magnitude of a pixel in this median filtered frame is above
a certain threshold, the pixels in the GOF at that spatial location have changed significantly and
they are classified as foreground pixels. The pixel in the a-plane at that location is then set to
'1’. On the other hand, if the magnitude of a pixel is below a certain threshold, then this pixel is
assumed to have an insignificant change, and is classified as a background pixel. The pixel in
the a-plane at that location is then set to '0’.

Figure 8.4(a) shows an example of an c-plane by thresholding the median filtered frame.
The foreground region is denoted by white pixels, and the background region is denoted by
black pixels. However, the application of thresholding to the filtered frame will not generate an
a-plane to reflect the correct shape of the foreground region. For instance, the black regions
in Figure 8.4(a) represent the background, but some of the background areas are inside the
foreground object. Hence, the morphological close operation is applied to the a-plane to obtain
a better result.
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The morphological close operation [191, 192] is
XeS = (X®S)oS (8.1)

where set X is the input image and set S is the structuring element with a smaller size than the
image and a simple geometrical shape. The symbol @ is the dilation operator which performs
Minkowski set addition and is defined by

X@S(T, C) . max(i,j)eS{X(r - 7:’ Cc— .7) + 8(7’7.7)} (82)

Likewise, the symbol © is the erosion operator which performs Minkowski set subtraction and
is defined by
XGS(T7 C) = min(i,j)GS{X(r - i’ c— .7) - S(’L’ .7)} (83)

After applying the morphological close operation to Figure 8.4(a), the black regions inside
the foreground object are removed to produce a cleaner a-plane to represent the foreground

region and the background region, such as shown in Figure 8.4(b).

(a) (b)

Figure 8.4: (a) a-plane obtained from median filtering; (b) a-plane after applying

morphological close operation.

We should note that for each GOF we only need to construct an a-plane for the Y sequence.
The a-plane of the Y sequence can then be used as the reference plane to separate the foreground

and background regions for the chrominance U and V sequences.

8.3.2 Results

The Akiyo, News, and Mother-daughter video sequences were used to test the video layer sep-
aration algorithm. For simplicity, the filter set used for the temporal wavelet transform was the
Haar set. The number of frames per GOF for all three test sequences was eight frames. There-

fore, the highest temporal wavelet transform level was three. The test video sequences were
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re-sampled from 30 frames per second to 10 frames per second by dropping 2 frames from
every 3 frames.

The experimental results are shown in Figures 8.5 to 8.7 and can be interpreted as follows.
Firstly, although the construction of an a-plane only involves median filtering and the morpho-
logical close operation, the results show that this proposed video layer separation algorithm can
accurately distinguish the foreground and background regions. In Figure 8.5, the news reporter
Akiyo was precisely separated from the background, with a very neat outline. In Figure 8.6,
the foreground of the News sequence contains the human objects, as well as the background TV
screen which constantly changes. Similarly, the outlines of those two reporters were accurately
separated from the still background. In Figure 8.7, the human objects have a slightly larger
movement than those in the previous two sequences. Therefore, the extracted foreground con-

tains not only the human objects, but also some background pixels around the human objects.

Secondly, since those three test sequences have a fairly still background, the background
planes extracted from the first frame of each GOFs can be used as a common background for
the other frames in the same GOFs. Figures 8.5(e), 8.6(e), and 8.7(e) illustrate the merge of
the common background frame to the last frame in a GOF. Those results show that there is no
visual difference between the merged frames and the original frames. Therefore, for achieving
better coding results, 3DLZC can maintain and encode one common background frame for each

GOF, so that more bit budget can be allocated to the foreground frames.

8.3.3 Summary

In the following we suggest three aspects for improving the proposed video layer separation

algorithm in the future.

First, although the size of the GOF in our experiment was eight frames, a sixteen-frame
GOF can also be applied to the proposed algorithm. 3DLZC, as well as other 3D wavelet
coding algorithms, work better with sixteen-frame GOFs than eight-frame GOFs. Also, better
coding results can be achieved by the application of one universal background frame to the
entire sixteen frames in the GOF. However, a modification might be necessary to the proposed
algorithm to take into account sudden scene changes or more object movements due to the
wider frame span. Therefore, instead of using the coarsest high frequency frame as a reference
to construct the a-plane, those two high frequency frames in the second coarsest transform level
should be used, such as H2 in Figure 8.2. The first frame and the second frame in H2 represent
the changes in the first-half and the second-half of GOF, respectively. Based on these two

frames, two sub-a-planes can be constructed first and then be merged to produce the a-plane
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(@)

Figure 8.5: Video layer separation - Akiyo sequence (a) the common background
for a GOF (b) the foreground of frame 000 (c) the foreground of frame 021 (d)
merging the foreground of frame 000 to the common background (e) merging the
foreground of frame 021 to the common background (f) original frame 000 (g)

original frame 021
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Figure 8.6: Video layer separation - News sequence (a) the common background for
a GOF (b) the foreground of frame 048 (c) the foreground of frame 069 (d) merging

the foreground of frame 048 to the common background (e) merging the foreground

of frame 069 to the common background (f) original frame 048 (g) original frame

069
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(d) (e

®

Figure 8.7: Video layer separation - Mother-daughter sequence (a) the common
background for a GOF (b) the foreground of frame 048 (c) the foreground of frame
069 (d) merging the foreground of frame 048 to the common background (e) merg-
ing the foreground of frame 069 to the common background (f) original frame 048
(g) original frame 069
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for the whole GOF.

Second, the structuring element .S in Equation 8.1 determines the performance of the mor-
phological close operation. If a small geometry S is used, several iterations of the close op-
eration will be required to ’close’ the black regions inside the foreground object. However, a
smaller S can produce foreground frames with a finer contour. On the other hand, if a large
geometry S is used, only one or two applications of the close operation will be enough to close

the black regions, but a larger S will causes foreground frames to have a rougher contour.

Third, the video sequences in our experiment were produced under ideal conditions, i.e. no
camera noise and no ambient noise. Therefore, the backgrounds of the successive frames are
all the same and can easily be detected by the temporal wavelet transform. However, in real-life
applications, the background in the video frames will not be as clean as those laboratory test
sequences, due to the changes of ambient light intensity and the thermal and quantization noise
of the video camera. As a result, the use of the temporal wavelet transform will not be able
to resolve a proper a-plane for representing the foreground and background regions. Hence,
an additional denoising process, such as the histogram denoising method proposed by Habili et
al. [193], will be needed for removing the unwanted noise before the application of the temporal
wavelet transform.

In summary, we have suggested a very low complexity algorithm to separate the foreground
and background regions in a GOFE. This algorithm exploits the information that has already been
calculated by the temporal wavelet transform and only involves a filtering, a thresholding and
several morphological operations. Because of its simplicity, this algorithm will allow 3DLZC

not only to perform content based coding but also to possibly perform it in real-time.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis, we began our discussion in Chapter 1 with two simple questions about rate-
distortion optimization for image and video compression. The first question is “What types
of information are more important than others for minimizing distortion?” and the second
question is “How can we effectively encode those important types of information using the least
amount of coding bit-budget?” We have tried to answer these two questions in the rest of this
thesis. We also have focused our discussion on image and video compression on the zerotree

scheme only. In the following we will summarize the contributions of this thesis.

We have two ways to answer the first question. A straightforward way to seek the answer
is from the mathematical point of view, as it is more closely related to engineering and would
make engineers feel more comfortable. However, in this thesis we have also tried to look for
the answer from the psychophysical and psychological point of view. Therefore, in Chapter 2
we have investigated some human visual system characteristics that are related to image com-
pression. In Chapter 3 we have discussed how those characteristics can be exploited in some of

the key elements for image compression.

We then tried to answer the second question. Therefore, in Chapter 4 we investigated some
commonly used visual data compression schemes. Because quality assessment and image com-
pressibility are also important in determining compression performance, we have discussed

them in the same chapter.

Among the compression schemes investigated, the multiresolution methods which exploit
zerotree theory not only provide a good answer to the second question, but also have a num-

ber of desirable features, such as low coding complexity, quality embededness, and precise
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rate-distortion control. However, as we have identified in Chapter 5, the current zerotree com-
pression algorithms suffer from high coding memory requirements that make them not suitable

for hardware implementation.

Therefore, in this thesis we have proposed the LZC algorithm to solve the problem of high
coding memory requirement. Since the proposed LZC algorithm is also based on zerotree
theory, it not only lowers the coding memory significantly but also inherits all of the benefits of
zerotree coding schemes. Besides the significant reduction of coding memory requirement, the

LZC algorithm has also further reduced the coding complexity by using just one coding pass.

We have extensively discussed the proposed LZC algorithm for color image compression in
Chapter 6. In this chapter we have also shown how we can make use of the characteristics of the
human visual system in the the LZC algorithm for improving the bit-allocation efficiency, and
in turn improving coding results. From the experimental results we have shown that the LZC
algorithm can perform as well as the benchmark zerotree coding algorithm SPIHT and the new
compression standard JPEG2000.

We have extended the LZC algorithm for color video coding in Chapter 7. The video coding
version of the LZC algorithm is called the 3DLZC algorithm. In order to minimize the coding
complexity, we exploit the 3D wavelet transform for temporal data decorrelation in 3DLZC
and use the 3DLZC data structure to encode the video data. The experimental results have
shown that the performance of the 3DLZC algorithm is comparable to the low bit-rate video
compression standard, H.263+ and 3D-SPIHT.

At the end of this thesis we have suggested two possible extensions for the LZC algorithm
in Chapter 8. One is the implementation of frequency weighting in LZC, and another is the
implementation of video layer separation feature in 3DLZC. We have been able to demonstrate
that by implementing the frequency weighting feature in LZC we can improve the compression
image quality in at least some cases. However, we have only been able to propose video content
separation algorithm but not to implement it in 3DLZC.

In short, the problems associated with image and video compression are still within the
scope of the classic rate-distortion optimization and still must be solved by answering those
two questions we have asked ourselves in this thesis. Many image and video compression
algorithms would have been proposed or developed by researchers during the time of writing
this thesis. However, in this thesis we are trying to answer those two questions from a different
direction. We are not trying to provide optimal solutions to those two questions. Rather, we are
trying to provide alternative answers to them. LZC and 3DLZC algorithm will still require more
refinement to make them perform better. Thus, we should conclude this thesis by suggesting
some future work on the LZC and 3DLZC algorithms.
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9.2 Future Work

We have demonstrated the viability of the LZC and TPLZC algorithms and shown that they
have performance that is better than, or comparable to, other published algorithms, with lower
complexity. There are other aspects of this algorithm that could be investigated further, but

beyond the scope of this thesis. These avenues for further investigation are outlined below.

9.2.1 For the LZC Algorithm

Image size scaling: The LZC algorithm presented in this thesis only provides the functionality
for compression quality scaling. However, it would also be possible to implement the
functionality of image size scaling. That is, at low coding bit-rate the image can either
be reconstructed to a poor quality or to a smaller size, and after the bit-rate increases, the

image can then be reconstructed to a better quality and to a bigger size.

Wavelet packets: In this thesis, we only use the Mallat wavelet decomposition to decorrelate
the image spatial redundancy. However, in future the wavelet packet could also be ex-
ploited for image data decorrelation. At the cost of higher implementation complexity,
the wavelet packet has a better frequency decomposition ability, so the image data can be

more effectively decorrelated, giving better compression results [194].

Region of interest coding: The function that allows users to select the region of interest in
an image could also be possibly implemented in the LZC algorithm. That is, users can
specify one or more regions in an image to be coded at a higher quality, and then the LZC
codec can allocate more bit-budget to those regions to improve the reconstructed visual

quality.

Watermarking: In order to protect the ownership of the images, a watermarking function
could be possibly implemented in the LZC algorithm. Similarly to image compression,
watermarking could be implemented in the frequency domain, as well as based on the
characteristics of our visual system so that the watermark can be embeded in the image
without visual quality degradation. Therefore, these similarities could be exploited to

implement watermarking functionality to LZC algorithm.

Hardware Implementation: Since one of the motivations for deriving the LZC algorithm is
for hardware implementation, the LZC algorithm could be implemented in hardware to
verify our presumption that LZC is a hardware implementation friendly image compres-

sion algorithm.
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9.2.2 For the 3DLZC Algorithm

Raster tree search: This thesis only presents the recursive tree search 3DLZC algorithm.
Therefore, the 3DLZC algorithm could be modified to perform raster tree search, like the
TPLZC algorithm.

Content base coding: In this thesis we only present a simple video layer separation algorithm
without implementing it in the 3DLZC algorithm. Therefore, in the future this layer
separation algorithm could be implemented in the 3DLZC for content base video coding.

Video frame size scaling: Similarly to LZC, the 3DLZC algorithm presented in this thesis
only allows visual quality scaling, but not video frame size scaling. Therefore, the func-
tionality of video frame size scaling could be implemented in the 3DLZC algorithm for

heterogeneous distribution channels, such as the Internet.

Motion estimation and compensation: In the 3DLZC algorithm, the reduction of temporal
data redundancy is only performed by the temporal wavelet transform. However, the
temporal wavelet transform is only suitable for decorrelating low motion video sequences.
Therefore, for coding high motion video sequences, motion estimation and compensation

could also be implemented in the 3DLZC algorithm.

Hardware implementation: Similarly, in the future the 3DLZC algorithm could also be im-

plemented in hardware to verify its performance.
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Appendix A

Test Images

The test images used for the performance evalution of the LZC algorithm are presented here.
The test image information is summarized in Table A.1, and the test images are presented in
Figure A.1 to Figure A.7.

Test Images | Color Depth (bits) | Dimension (rowxcolumn) | Max. Dyadic Level
Mandrill 24 512x512 9
Girls 24 512x512 9
Lena 24 512x512 9
Peppers 24 512x512 9
Bike 24 512x512 9
Cacti 24 448x704 6
Jellybeans 24 256x384 7
Matsuri 24 480x640 5
Railway 24 480x640 5
Flowers 24 480x640 5
Flowerfieldl 24 480x640 5
Flowerfield2 24 480x640 5
Mt Fujil 24 480x640 5
Mt Fuji2 24 480x640 5
Mt Fuji3 24 480x640 5
Farm 24 480x640 5
Jetty 24 480x640 5

Table A.1: The color depth, dimensions and maximum available wavelet dyadic

transform levels of test images
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Figure A.1: Original test images
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Figure A.2: Original test images - continued
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(b) Railway

Figure A.3: Original test images - continued
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(a) Flowers
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(b) Flowerfieldl

Figure A.4: Original test images - continued

195



(b) Mt Fujil

Figure A.5: Original test images - continued
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(b) Mt Fuji3

Figure A.6: Original test images - continued
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Figure A.7: Original test images - continued
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