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Abstract

This thesis develops the theory of bundle gerbes and examines a number of useful
constructions in this theory. These allow us to gain a greater insight into the struc-
ture of bundle gerbes and related objects. Furthermore they naturally lead to some
interesting applications in physics.
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Chapter 1

Introduction

Bundle gerbes were introduced by Murray [36] as geometric realisations of classes in
Hï(M,Z) on a manifold M. By geometric realisation we mean an equivalence class
of geometric objects which is isomorphic to H3(M,V,). An example of this in lower
degree is the relationship between isomorphism classes of principal t/(1)-bundles, or
equivalently line bundles, over M and the Chern class in H'(M,Z). The interest in
Hï(M,Z) was motivated by the appearance of such integral cohomology classes in a
number of situations including central extensions of structure groups of principal bun-
dles and \Mess-Zumino-Witten (WZ\ /) theory. There were already a number of other
realisations of. Hï(M;Z), of particular interest are the gerbes of Giraud as described
in Brylinski's book [5]. These are, from a rather simplistic view, defined as sheaves
of groupoids. The idea of bundle gerbe theory was to define realisations which did
not involve sheaves. Instead it is possible to build a realisation out of principal U(1)-
bundles.

Essentially a bundle gerbe over a manifold M consists of a submersion Y 1 M and
a t/(l)-bundle P ¿ ylz) over the fibre product

yl2) :Y xnY - {(y,y') e Y'\"(y):r(v)}
The fibres of P are required to carry a certain associative product structure which is
called the bundle gerbe product.

In [36] bundle gerbe connections and curving were defined. Together these form a
higher analogue of connections on t/(1)-bundles. They also correspond to connective
structures and curvings on gerbes [5]. A bundle gerbe connection is a connection, A, on
the bundle P which is compatible with the bundle gerbe product. Denote the curvature
of this connection by F. Let ry and 12 be the projections of each component Yfz) + Y.
A curving is a 2-form,\, o\ Y which satisfies 6(rù - F' where ô(Z) : rin-riq. A
bundle gerbe with connection and curving defines a class in the Deligne cohomology
group Ht(M,Z(3)o) which may be thought of as the hypercohomology of a complex
of sheaves, H2(M,UA_* + OL(M) + a2(M)).

The bundle gerbe construction has also been used to consider higher degree Õech
and Deligne classes [13]. In particular Stevenson has developed a theory of bundle 2-
gerbes ([44],[43]) which have an associated class in H4(M,Z'), and when given a higher
analogue of connection and curving give rise to a class in H4(M,Z(+)ù.

There is a cup product in Deligne cohomology which was described by Esnault and
Viehweg [17] and which has been given a geometric interpretation by Brylinski and
Mclaughlin ([s],[8]).
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A generalisation of the concept of holonomy to bundle gerbes was first considered
in [36]. Just as the holonomy of a t/(l)-bundle with connection associates an element
of t/(1) to every loop in the base, the holonomy of a bundle gerbe with connection
and curving associates an element of U(1) to every closed surface in the base. In one
particular case bundle gerbe holonomy has been used to describe the WZW action [12].

These considerations lead to the transgression fbrmulae derived by Gawedski [23]
for dealing with such actions in general settings. These formulae generalise bundle
holonomy and parallel transport to higher degree Deligne classes. Completely general
transgression formulae have been given by Gomi and Terashima ([25],[26]).

The relevance of Cech and Deligne cohomology classes to applications in physics
has been well established. For example Dijkgraaf and Witten [15] have used differential
characters to find a general Chern-Simons Theor¡ Gomi [24] has considered the relation
between gerbes and Chern-Simons theory and Freed and Witten [21] have considered
the role of Deligne classes in anomaly cancellation in D-brane theory. As well as the
WZW case we have already alluded to there are a number of other examples discussed
in [12].

The basic aim of this thesis is to provide further development of the theory of bundle
gerbes. The goal has been to develop this theoiy in a way which keeps in mind the need
for a balance between an abstract approach which readily accommodates generalisation
and an approach which more easily allows application of the theory and which could
be of interest to a wider audience. For the first factor the most important feature is
the bundle gerbe hierarchy principle which is a guiding principle for relating bundle
gerbe type constructions corresponding to Deligne cohomology in various degrees. For
the second factor we show how various constructions may be described in geometric
terms, often allowing manipulation of diagrammatic representations of bundle gerbes
to take the place of complicated calculations.

With these factors as a guide we have described a number of constructions involving
bundle gerbes. Some of these which have already been developed elsewhere are given
in different forms or with a different emphasis to demonstrate the hierarchy principle
or to relate more easily to our applications. We also describe some constructions which
are new to bundle gerbe theory. Finally we show how these constructions are useful in
applications of bundle gerbe theory to physics.

We begin with a review of the basic features of Deligne cohomolory and introduce
the bundle gerbe family of geometric realisations via bundle O-gerbes as an alternative
to t/(1)-bundles. This would appear to be a complicated approach however it simplifies
the transition from brrndles to brrncl-le gertres ancl- allows r-rs to develop some features
of bundle gerbe theory in a setting which is still relatively familiar. \Me then define
bundle gerbes and explain their role as representatives of degree 3 Deligne cohomology.

In Chapter 3 we consider some important examples of bundle gerbes. Tautological
bundle gerbes [36] are introduced by first defining a bundle 0-gerbe, helping to gain
a feel for the bundle gerbe hierarchy. Ttivial bundle gerbes are discussed in some
detail since they play an important role in many constructions. In particular we give
a detailed account of the distinction between trivial bundle gerbes which by definition
have triviat Õech class and D-trivial bundle gerbes which have trivial Deligne class. 'We

then consider torsion bundle gerbes which are defined as bundle gerbes with a torsion
Õech class. We describe bundle gerbe modules which were introduced in [3] and derive
corresponding local data. We briefly describe the example of the lifting bundle gerbe

[36] and then describe bundle gerbes representing cup products of Deligne classes. Each
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of these examples is useful in subsequent constructions and applications.
In Chapter 4 the bundle gerbe hierarchy principle is introduced via comparison with

some other geometric realisations of Deligne cohomology. The correspondence between
bundle gerbes and gerbes which has previously been described in [36] and [38] is put
in the context of the hierarchy. We then define bundle 2-gerbes following [44], however
we consider the product structures as members of the hierarchy and define the Deligne
class using the language of D-obstruction forms which we established in Chapter 3.

We prove the isomorphism between bundle 2-gerbes with connection and curving and
Ho(M,ZØ)o).Next we go in the other direction and define V-'-bwdle gerbes which
lie at the bottom of the hierarchy. These would seem rather trivial however it is of
interest to see how the various aspects of the higher theory appear here, in particular
lhe Z-bundle gerbe connection naturally motivates classifying theory, our next topic for
consideration. This is a generalisation of classifying theory for bundles. We present a
number of results of Gajer [22] relating to Deligne classes and of Murray and Stevenson
relating specifically to bundle gerbes [38]. Chapter 4 concludes with a table which
catalogues the various realisations of Deligne cohomology which we have dealt with.

Chapter 5 begins with an account of the holonomy of U(1)-bundles which differs
somewhat from the standard treatment of the subject. The reason for this is that
we need a theory of holonomy which relates directly to the Deligne class rather than
concepts such as horizontal lifts which are not easily generalised to bundle gerbes and
beyond. We then define the holonomy of bundle gerbes with an explanation of how
it relates to the holonomy of t/(1)-bundles and with details of how local formulae are
obtained. The concept of holonomy is extended to bundle 2-gerbes and to general
Deligne classes.

In Chapter 6 we describe the extension of the notion of parallel transport from
U(l)-bundles to bundle gerbes, bundle 2-gerbes and general Deligne classes and pro-
vide detailed derivations of local formulae. In particular we discuss how to obtain a

U(l)-bundle on the loop space LM ftom a bundle gerbe on M and bundle 2-gerbe
generalisations of this construction.

The ba"sic properties of bundle gerbe holonomy are described in section 7.1. The
motivation for considering these particular properties comes from those of line bundles
obtained via transgression ([5],[20]). \Me consider the example of the tautological bundle
gerbe which motivates holonomy reconstruction, that is, reconstructing a bundle gerbe
with connection and curving from its holonomy on closed surfaces. We show how
the holonomy reconstruction for bundle gerbes relates to that of gerbes as described in
[31]. Tiansgression formulae are then used to give an alternative approach to holonomy
reconstruction which allows us to consider the case of bundle 2-gerbes. We conclude
the chapter with the gauge invariance properties of holonomy.

Finally in Chapter 8 we use bundle gerbe theory to examine applications in physics.
Constructions in \Mess-Zumino-Witten and Chern-Simons (CS) theories are shown to
follow naturally from various constructions in bundle gerbe theory. In the \MZW case
we just interpret the standard results (see the Appendix A of [20]) in terms of brlndle
gerbes. In the case of Chern-Simons theory we define a bundle 2-gerbe whose holonomy
gives a general definition of the Chern-Simons action. We can then interpret Chern-
Simons lines, gauge invariance and the relationship with the central extension of the
loop group in terms of bundle gerbe theory. All of these results are quite straightfor-
ward from this point of view. Bundle gerbes also prove useful in studying anomaly
cancellation in D-branes as described in [11]. Here we emphasise local aspects which
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were not discussed in detail in that paper. We also add some comments on the poten-
tial for the application of bundle gerbes to the problem of anomalies involving C-fields
and higher dimensional generalisations of Chern-Simons theory. 'We conclude with
comments on the relationship between bundle gerbes and the arciomatic approach to
topological quantum field theory.

It is necessary here for a brief comment on terminology. \Me shall refer to line
bundles and their associated principal bundles interchangeably. Also we shall usually
work in the Hermitian setting, so our bundles are U(1)-bundles. Since we deal almost
exclusively with these bundles we shall often simply refer to bundles, in situations
where we require a principal bundle with a more general structure group we refer to it
as a G-bundle.
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Chapter 2

Bundle Gerbes and Deligrre
Cohomology

In this chapter we discuss a number of geometric realisations of low degree Deligne
cohomology, in particular bundle gerbes.

2.L A Review of Sheaf Cohomology
We begin with some background material regarding sheaf cohomology. We mostly
follow Brylinski's book [5], though some material is drawn from Bott and Th [2].

We assume that the reader is familiar with the deûnitions of sheaves and related
concepts such as morphisms of sheaves. Wd provide the minimum amount of detail
necessary to deûne sheaf cohomology, for further details see [5]. Let A be a sheaf of
Abelian groups on a manifold M. Recall that this means that associated with every
open U Ç M there is an Abelian group A(U) which satisfies certain a>rioms with respect
to restrictions. We always assume that manifolds are paracompact, that is, every open
cover has a locally finite subcover. We shall be interested in the following examples:

Zv,R.u,U(L)7¿: sheaf of locally constant functions on a manifold M
Br,9(1).: sheaf of smooth JR or U(1)- valued functions on a manifold M

Qpv, sheaf of real differential pforms ot M

A complex of sheaues K' is a sequence

\' yn $ ¡1n+t q' ..

where n €. Z and d," ; Kn + Kn+L are morphisms of sheaves of Abelian groups
satisfying dnodn-L: 0. The map dP is called the d,i,fferenti,alof.the complex. We always
assume that Kp:0for p<0. Amorphi,smof compleresof sheaaesó, K'+ L'
consists of a family of morphisms of sheave s ó : Kn -> .L' such that þn+t odk : d?pó .

Given two morphisms / and tþ from K' to L' a homotopgl H from þ to tþ consists of
a series of morphisms f/' : Kn +.L"-1 such that di-Hn ¡ ¡¡n+L¿n : ó -'.þ. A
morphism of complexes of sheaves ó : K' + L' is a homotopy equiualence if there
exists a morphism tþ : L' + K' and þtþ and þþ are both homotopic to the identity
map. A complex of sheaves is called acyclic if Ker(d,") : Im(d-l) for all n. The
cohomology sheaues ry(K') are defined by the presheaf Ker(di)llm@i-t¡. For an
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acyclic complex all of the cohomology sheaves are zero. A sheaf ,I is called injectiue rf.

given any morphism / : A + I and an injective morphism i : A + B there exists a
morphism g: B -+.[ such that g oi: "f. Atr injectiueresolution of ,4 is a complex
of injective sheaves 1' such that A + I' is an acyclic complex of sheaves. Injective
resolutions always exist and are unique up to homotopy equivalence. Let l(M,.) be the
functor of global sections which takes the sheaf A to the Abelian group l(M; A) defined
by A(M). The sheaf cohomology groups Ho(M,A) arc defined as the pth cohomology
of the complex

...-> l(M,It) +l(M,/i+l) -) ...
where .I' is an injective resolution of ,,4,. Given a short exact sequence of sheaves

0+A)B+C+0
there is a long exact sequence in sheaf cohomology

.'. -) H"(M,A) + Hn(M,B) + H"(M,C) + H"*'(M,A) +..-
If a morphism of complexes induces an isomorphism of cohomology sheaves ü(K') =ü(L') then it is called a quasi-isornorphism.

A useful example of a resolution is lbe Cech resolution. Lettt be an open cover of M
and let (J¿o,...,ö, denote an intersection [/ro 11. . .l1U¿, of open sets in this cover. The Cech
resolution is a comple* Ö'71,1.,,4,) which is defined by Cn(tl,A) -- fI¿o,...,¿oA((J¿',...,i,).

and ô , CnçU,A) + Öe+,(î,t,Á) is defined by
p+L

6 (a) 6,...,t r¡, : | { - t )i (ono,...,u, - r,i ¡ ,,r,...,ãp+t) FJ¡o,...,¿p+t
j=0

where we have introduced the notation a € Co(t1,,4.) where the underline denotes a
family dåo,...,ip e A(U¿o,...,tr). In general the resolution and the resulting cohomology
groups should depend on the choice of open cover however we shall be interested only
in spaces which are manifolds and these always admit a good cover, that is, a cover
in which all non-empty intersections are contractible. In this case the construction is
independent of the choice of cover and the Õech resolution computes the sheaf coho
mology. It is not an injective resolution, however there exists a morphism with the
Cech resolution which induces an isomorphism in cohomology. If ,4 is the sheaf V' then
we recover the usual Õech cohomology groups n,(Ut,Z),for example a class nLlU,Z¡
consists of a family of. Z valued constants e¡ âssociated with double intersections U¿¡

such that c¡*-er¡ei:0 onU;-¡r- and under the equivalence relation q¡ - Qj*b¡ -b¿
where ö¿ and b¡ are from a family of constants defined on single open sets.

A double complexof sheaves, -trf", consists of sheaves Kp,q and two differential maps
d:Kp,c ¿ l{p+L,e andô. Kp,q ->Kp,s+r suchthat dd:o, ôô:0anddô:6d,. A
double complex may be represented diagrammatically as follows:

1, 1otl
-j_¡ Kp,c + Kp+L,q o ,

1, 1ott
i+ KP'q-L t 

>

1

6
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Each row and column defines a complex of sheaves denoted K''q and Kp'' respectively.
The total compler of a double complex K" is an ordinary complex K' which is defined
by Kn = Øp*q-nKp'q with differential D : õ + (-t¡n¿.

Let K'be a complex of sheaves with differential d,x. Ãn injectiue resolutionof. K'
is a double complex -I" with differentials d and ô such that for each q the complex f''Q
with differential ô is an injective resolution of. Ke, the complex d(l"ø-r) g /''ø is an
injective resolution of dy(Kø-l), the complex of sheaves Ker(d) C I''a is an injective
resolution of Ker(dy : Kq-r + Kq) and complex of cohomology sheaves of the rows,
I/.''q is an injective resolution of ff(K').

For all of our examples an injective resolution of a complex of sheaves exists and
is unique up to homotopy. Given a complex K' and an injective resolution .I" the
hypercohomology group Hv(M,K') is defined to be the pth cohomology of the double
complex l(M,I"). Given a short exact sequence of complexes of sheaves there is a
long exact sequence in hypercohomology. Quasi-isomorphisms Ö , K' -+ L' induce
isomorphisms in sheaf hypercohomology, H"(M, K') = H"(M,Z'). The Õech resolu-
tion may be extended to the case of a complex of sheaves by taking the usual Õech
resolution for each sheaf in the complex.

We shall describe a specific example of this. Lel K' : W-u 'S Oil. The Cech
resolution looks like

--f

0

1
er*

10"'

0

1
o

0

1

c'(u

1

ôcolu,aL¡ )
-+

õ

d.log
1

d,log

U(\)* 
-) 

Co(t/,U(l)) + C'(/,U(l)) g
A class in H0(M,U(1) + f,)l) consists of / e C0(l/,U(1)) such that Ípf;' : 1 and
dlog f .: 0. This is a locally constant U(lf-valued funlffin on M.

À class in HL(M,U(1) + Ql) consists of a pair (9, A) e CL(u,U(1)) @CÙ(l'l,OL)
such that ghgilg,p:Tand d,Iogg¿p - Ap- Ao and is defined modõ-exact cocycles

of the form (ñ,;1/r,p,d,logäo) for some l¿ e C0(t/,U(1)). Classes of higher degree are
defined in a similar way.

2.2 U(1)-Functions
\Me examine U(l)-valued functions as the starting point for our geometric objects
corresponding to Deligne cohomologT classes, focusing in particular on featu¡es which
are of interest when we move on to geometric realisations of higher degree classes.

Let M be a smooth manifold. We shall consider smooth functions f : M + U(1).
Such functions are elements of the sheaf cohomology group H0(M,U(L) *).

Our interest in t/(l)-valued functions is due to their role as representatives of the
smooth Deligne cohomology group H'(M,Z(t)p).
Definition 2.1. [5] Let Z(p) : (2r1Ã)' .2. Define a complex of sheaves Z(p)p, for
P > o bY 

z@)* l eou l gl* I ... 1g*,
7



Where af" it the sheaf of real differential ,k-forms on M and the map i is the inclusion.
We define Z(0)o to be Z¡a. The Deligne cohomology groups of M are defined as the
hypercohomology groups Ho (M, Z(p) o).

Deligne classes are realised explicitly by first using a quasi-isomorphism of sheaves

[5] 
" 0 + z(p) -+ IR.M -> CIp-1

+
3 e'* -+

J
'S g!* ->

J (2.1)

w* -| f)P-l

which induces an isomorphism

Ho(M,Z(p)p) = ¡lø-r(M,UQ_*gt g'* -> . . . -+ ç¿o-t) (2.2)

In general we shall denote the complex

W-*'3t qil -> "'-,CIP-l

by Dn-t so we can write (2.2) as

Hn (M,z(p) o) = ¡7ø-t (M,DP-L)

We shall usually deal directly the groups Hq-L(M,DI-L) so v¡e shall also refer to these
as Deligne cohomology. The original definition is still required for certain purposes
such as cup products. To get concrete expressions for these sheaf cohomology classes
they are represented in terms of the Õech resolution relative to a good open cover as
discussed in the example at the end of the previous section.

There are exact sequences [22]

0 + HP-|(M,U(L)) -+ Hp(M,Z(p)ù + Ofl(M) -+ 0 (2.3)

whichforp-lbecomes

0 -> Ho(M, u(1)) 3 nLlM,z(t)o) ds o¡1ø¡ - o

where AE@) denotes the set of closed pforms on M which have periods in Z(1) (that
is, the integral over a closed ycycle is in Z(L)) . We shall refer to forms satisfying this
integrality requirement as 2r-i,ntegral. Gíven {/"} e HU(M,q{Ð) = H'(M,Z(1)p) we
have dlog f e Ar(U)e. This is the globally defined since d(logo I -loep"f) :0 and
may be thought of as a lower dimensional version of the curvature of a connection.
If {,f,} e ker(dlog) then there are U(l)-valued constants q - fi which are classes in
Ho(M,r/(1)).

lThis quasi-isomorphi m is derived from the exact sequence

0 -+ V,* + Rø + U(1), -+ 0

which may be replaced

0+Q*+C, -rQfn+0
giving an e rivalent theory in terms CX rather than t/(1).
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2.3 U(1)-Bundles
We present basic material on the relationship between principal U(l)-bundles and
Deligne cohomology to further develop the theory of geometric realisations of Deligne
classes.

We follow the detailed treatment of the role of line bundles as geometric realisations
of degree 2 Deligne cohomology in Brylinski's book [5]. Let P denote a principal
U(1) bundle over M. It is well known that the isomorphism classes of U(1) bundles
corresponds to the sheaf cohomology group H'(M,U(L)*). A representative, gaþ, of
Ht(M,,W_ì corresponds to the transition functions of the bundle. T here is an

isomorphism with Õech cohomology H'(M,W_ì = H2(M,V'). The image of gop

under this isomorphism is the Chern class, rtroþ.t : -IogþB) * log(g"") - Iog(g"B).
Note that there is also an isomorphism with Deligne cohomology HI(M,W-ì =
H'(M,Z(L)o), where the Deligne class corresponding to 7ap is (nop,Iogþ"p)).

It is also well known that isomorphism classes of bundles with connection lie in
the hypercohomology group Ht(M,U(7)* + Aï4) : Hr(M,Dr).We use the Õech
resolution of the complex to produce exptiät representatives of these hypercohomology
classes. If (gop,.A,) is a class in HL(M,21), then it represents a U(l)-bundle with
transition functions gaB and local connection l-forms áo.

The space of bundles with connection is related to the space of bundles via the
exact sequence [22]

o + o1(M) la',(u)o + H2(M,z(2)ò -+ H2(M,Z) + 0 (2.4)

The quasi-isomorphism of complexes of sheaves (2.1) induces the usual isomorphism

Ht(M,D') = H'(M,Z(Z)")

Substituting p: 2 into the exact sequence (2.3) gives the exact sequence

o + Hr(tw, u(1)) I nLçM,D\ I Q2(M)o -> o

where d is the map which applies d to the component of HL(M,21) with the highest
d-degree. Geometrically, d maps a bundle with connection to its curvature 2-form.
This implies that HL(M,[/(1)) represents the set of flat bundles on M. This can be
seen explicitly in the following way [28], let (g"p,A") represent a flat bundle. Thus
we have dAo - 0. Each element of a good cover is contractible so Poincare's Lemma
applies and there exist t/(l)-valued functions ao such that d log øo - Ao. Now we have

dloggoP : A"-AP
: dlogao - dlogap

d\og(g,p. a.r -ap) : 0

so we have constants cop : go0 - a;L . øp which represent a cocycle in HL(M,U(l)).
We shall refer to the cocycll cqp ã,s the flat holonomy of the bundle represented by
(9"P, A")'

The space of flat bundles may also be represented by the Deligne cohomology groups
Ht(M,Do) for p > L. To see why this is so, consider what happens when the Deligne
differential, D, is applied to a class (7op,A.) e HL(M,Dr).

D(sop, A.) : (õ(s)"pt,d\og(g"p) + õ(A)"e)

I



This leads to the usual requirementsfor (gop, A") to represent a bundle with connection.
If we truncate the Deligne complex at a higher value of p then the third component of
D(goB,A") will be dA,. This means that a Deligne cycle will represent a flat bundle.

2.4 Bundle O-Gerbes
These were introduced by Murray [35]. The objects described here should actually be
called t/(l)-bundle O-gerbes, however since we only use this type we omit the t/(1)
prefix. Initially it may seem that bundle O-gerbes are just a more complicated way
of looking at line bundles, certainly if one was interested only in line bundles then
there would be little point in studying them. Our motivation is that we are working
towards bundle gerbes and bundle 2-gerbes. In this situation there are two advantages
to considering bundle O-gerbes. Several properties of these higher objects also appear
in the bundle 0-gerbe case so it is useful to become familiar with them in a simpler
setting. Secondly we are interested in viewing all of these objects as part of a hierarchy
and it will become clear that the lower dimensional geometric realisation of Deligne
cohomology should be a bundle 0-gerbe rather than a line bundle. In this way bundle
O-gerbes will be useful in gaining an understanding of this hierarchy.

Definition 2.2. Let Y + M be a submersion. Let Ylzl denote the fibre product

y[z) :y xny : {(A,y,) ey2lr(ù _ 
"@,)}

and let

g:Yl2l + U(1)

be a U(1)-function satisfying the cocycle identity

g (a b az) g (az, us) : s (au vz)

The triple (g,Y,M) defines a U(1) bundle }-gerbe.

Note that the cocycle identity implies that g(y,U) : I and g(y1,Az) : g-L(yz,yì.
Recall that a submersion is an onto map with onto differential. It admits local

sections and all fibrations are submersions, however there exist submersions which are
not fibrations"

Bundle O-gerbes may be represented diagrammatically in the following way:

u(1)

ylzl

A bundle O-gerbe is called triuial if there exists a U(1)-function h on Y satisfying

s(w,az) : h(vr)-th(uù.

10
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In this case ïse write g:6(h).The dual of a bundle 0-gerbe (g,Y,M) is defined as
(g-t,Y,M). Given bundle O-gerbes (g,Y,M) and (g',Y',M) we can take the product

(g,Y, M) Ø (g',Y', M) : (g . g',Y XnY', M)

which is easily verified to be a bundle O-gerbe.
A bundle }-gerbe morphism is a smooth map Ó , Y -+ Yt such that r' o Ó: zr and

g: g' o{[zJ *¡ure þlzJ 'ylz) -¿ y'[2] is induced by the fibre product.
We say that two bundle O-gerbes (g,Y, M) and (9', Y', M) are stably isomorphic if

there exists a trivial bundle O-gerbe (6(å,), X,M) and a bundle 0-gerbe morphism

(g,Y, M) / (g' ,Y' , M) S (ô(h), X, M).

Since (g,Y, M) I (g-t, Y, M) is canonically trivial then this condition is equivalent
to requiring that (g,Y, M) I (9'-t, Y' , M) is trivial.

An example of a stable isomorphism may be defined in the following way. Let
(g,Y, M) and (g', Y', M) be two bundle 0-gerbes and suppose there exists þ : Y' -> Y
such that 'ttyt : ¡ryoÓ and g' : goþ12J. Then (g,Y,M) and (g',Y',M) are stably
isomorphic.

To see this consider the product bundle 0-gerbe

U(L)

(Y' x Y)lzl

g,-, g

,v

The function g'-Lg: (YtxY)l2l + U(1) is defined by

t-l /g g\ul,aL,h,uz) : g'-t (a'r,aL)g@t,az)
: g-' (ó(v'r), ó@LDg(ar,ar): s-r @@), v) g-L (a, þ@Ð) g@r, v) g(s, az)
: g-'@@'r),vìg@@Ð,ar)
: 6(g(ó@),a))

and hence the two bundle 0-gerbes are stably isomorphic.

Lemma 2.1. The set of stable isomorphism cløsses of bundle }-gerbes fonns a group.

The associativity of the product is clear. The identity element is the equivalence
class of trivial bundle O-gerbes and the inverse of (g,Y, M) it (g-t, Y, M).

Proposition 2.1. The group of stable isomorphism classes of bundle }-gerbes ouer M
is isomorphic to H'(M,ti(l)).

Proof. Let (g,Y, M) be a bundle O-gerbe. Define a Õech cycle on M bv

g"P(r):g(so,sP)

Y'xY
J
M

11



where so and sp ârê local sections on M. Independence of the choice of cover follows
from the standard argument in the case of the Chern class of a bundle, for example see
Theorem 2.1.3 of Brylinski [5].

Suppose we choose different sections and define

g"ø(*) : g(s'o(m), s'B(m)).

Using the cocycle identity for g,

o"B(m) _ g(s"(rn), tB(*))
: g (s 

"(rn), 
s'o(m)) g (s'o(m), s'p(m)) g (s'p(m), s a (m))

: s'"p(m)6(h(rn))"p

where h"(m) -- g(s',(*),s"(nz)). Therefore 7ap is a well defined Õech cochain on M.
Furthermore the cocycle identity on g makes geþ ã Cech cocycle.

Consider the cocycle corresponding to the product bundle O-gerbe g Ø g'. Clearly

G ø g'¡ 
"uçm) 

: g"p(m) g'"p(m)

Thus we have a homomorphism from the set of bundle 0-gerbes to Zt(M,t/(1)). Sup-
pose (9, Y, M) is a trivial bundle O-gerbe with trivialisation h : Y + t/(1). In this
case

e.p(m) : !;fttr))h(s 
p(m))

where h,(*) : h(s,(m)). This ensures that stable equivalence classes map to Õech co-
homology classes and hence we have a homomorphism from the set of stable equivalence
classes of bundle 0-gerbes to Hr(M,U(1)).

Suppose that for a bundle 0-gerbe (g,Y,M), gaB is trivial. Then there is a bundle
O-gerbe trivialisation given by

h(a) - s (s "(r (aD, a)h"(tr (aD.

It is easily verified that this is independent of a. This proves injectivity of the ho-
momorphism. To prove surjectivity we construct a bundle 0-gerbe corresponding to a
class in H'(M,Z) bV following the method of theorem 2.1.3 of [5].

r ¡ - rÌ1f ra Trlr\\ rrr I n I tt ^ r / r, tÍ\ I r¡ YY ffLef, !¿p e ã-(lvl ,U\L)), Vve qentre A Dunole U-gerDe \g,Irtut / wflere I : lfaeAUa
andg(y1,Az):g"p(tr@$ where h€Uo C Yand Aze Up C Y. Sinceg(s,(m),sB(m)) -
g"p(m) this construction proves surjectivity. ¡
Corollary 2.1. The group of stable isomorphism classes of bundle }-gerbes on M is
isomorphic tu H2(M,Z).

Corollary 2.2. The group of stable isomorphism classes ol bundle }-gerbes on M is
i,somorphi,c to the group of isomorphism classes of bundles on M.

The I/(1) bundle corresponding to a bundle 0-gerbe is defined by letting the total space
be Y x ,S1 with the equivalence relation

(aus(auaz)) - (ar,L).
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Conversely, given a bundle (P, M) the corresponding bundle O-gerbe is (g, P,M) where
g is definedby ptg(pt,pz) : pz.

We can describe an explicit correspondence between bundle isomorphisms and bun-
dle 0-gerbe stable isomorphisms. Let (g,Y, M) and (h, X, M) be two_ bundle 0-gerbes
andsuppose /: Y + X is astable isomorphism. We claim rhatþ Y xS'/ -n
X x SLI - defined AV ó[A,0]) : ló@),d] is an isomorphism of the corresponding
bundles. First we check that this map is well defined on equivalence classes. Consider

ó[ar, s@1,v2)]) : ló@), s@1,a2)l

- ló(aù, h(ó(aù, ó(aùl: lÔ(a2),rl
: Ó(a2,1])

Clearly the ,S1 action is preserved by this map. Now suppose that Ó(lUr,?rl) :
ó(lyr,á21). Then

'ó(aù'"=iiii,i,'i:ltr,@'))o'l

so á1 : g(Auyz)02 and thus lAr,0rl: lyt, g(yL,A2)021: lUz,02]. We define an inverse of
óbv

ó-' (lr,rl) : [y, h(þ(y)r)o] (2.5)

where gr is any element of Y. It is independent of this choice since given AL,A¡e Y we
have

ta''h(Ó(aù'o^=iii,:i?nl),^|ff;';'ì[]')'')ol
(2.6)

Thus the map / is a bundle isomorphism. It is easy to check that a bundle isomorphism
defines a stable isomorphism on the associated bundle O-gerbe.

Let 11 and 12 be the maps from Y[2] to Y defined by

rt(au
rz(at

This notation may appear counter intuitive. The idea is that the subscript on n"

indicates which element will be omitted. This allows the maps ?ri to be generalised to
p¿ : YIpl ) YIP-L) for i : L...p.

Let ô be the pull back ri - ni.

Deûnition 2.3. A bund,Ie Ì-gerbe connecti,on, A, is a 1-form on Y satisfying

ð(A) : s-rds.

13
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A bundle O-gerbe (g,Y,M) with connection A may be written as (g,Y,M;A) or
(g; A) where there is no ambiguity.

The existence of bundle O-gerbe connections is established by considering the fol-
lowing complex which has no cohomology [36]

ou(M) 5 slulr¡ g .. .$ s¿v1yÞ-'r) 3 s¿r1yÞl¡ $ ¡¿ø1yÞ+u) 4 . .. (2.7)

The general ô map from Oø(YÞJ) to CIq(yþ+l1) is defined bv ó(/) :Ðp¡=rrif . The
cocycle condition on g implies that 6(g):0 e flo(ftal¡. Since d and ô commute this
means that ó(dlog(g)) - 0 e Ollftsl) and so the exactness of the complex 2.7 implies
the existence of A € f¿l(y) such that õ(A) : dlog(g).

It was established in [36] that if we have õ(dA): 0 for A € Os(y) then there exists
a unique .F' e CIq+t(M) satisfying dA: zr-(F). In this case ïve have a two-form .F
which we call the bundle l-gerbe curuature. It is easily shown that changing the choice
of connection does not change the de Rham class of the curvature.

AII of the operations which we have described on bundle O-gerbes are possible for
bundle 0-gerbes with connection as well,

(g, A)* : (g-', -A)
(gr, Ar) Ø (gz, A") : (grgr, h* Az)

Now we show that corresponding to the bundle O-gerbe connection is a connection for
the corresponding bundle. Define a one-form on Y x St by

Ã: A+0-rd0.

Consider this form at two equivalent points (au g(Aug2)) and (ar,I). The difference is
given by

Ao, + d,Ios(g(yy az)) - As,

which is equal to dlog(g) -6(A) on Y[2]. Since this is zero by the definition of the bundle
O-gerbe connection this l-form is well defined on equivalence classes. F\rrthermore it
can be easily shown that it satisfies the conditions for a connection l-form.

Suppose A is a connection l-form on a bundle L -> M. We claim that .4 is also a
connection on the corresponding bundle O-gerbe. This is true because

õ(A)@''ù 

: l;*rf','*,, - An,

Thus we have a correspondence between bundle 0-gerbes with connection and bundles
with connection, however it is not yet clear whether this carries over to an isomorphism
with Deligne cohomology. Recall that in the case without connections the role of
isomorphism classes for bundles was taken by stable isomorphism classes for bundle
O-gerbes. We must deûne a slightly different notion of stable isomorphism for bundle 0-
gerbes with connection. This is because a trivialisation of a bundle O-gerbe corresponds
to a trivialisation in Öech cohomology of the Chern class. Explicitly this is a cochain h.
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satisfying ó(å) : g. When we have a choice of connection there is a further requirement
on h since we consider it as a Deligne cochain and require that D(h): (9,.4). This
means that ä must satisfy

ô(¿) : s and (2.8)

dlog([) : A' (2'e)

The geometric realisation of the cochain /¿ is a function h : Y -+ 51 such that õ(h) : g
and dlogh : A. We shall refer to a cochain satisfying (2.8) as a trivialisation and
to one satisfying both (2.S) and (2.9) as a D-triuialisation and a bundle 0-gerbe with
connection which has a D-trivialisatiod is called D-triuial.

Definition2.4. Let (gr;Ai) and (gr;Ar) be bundle 0-gerbes with connection. We
say that they are D-støbly isomorphic if there exists a D-trivial bundle gerbe with
connection (r;C) and an isomorphism

(gr; At) = (gr;,4r) Ø (r;C).

It is easy to verify that the set of D-stable isomorphism classes of bundle O-gerbes
with connection forms a group.

Proposition 2.2. The group of D-stable isomorphism classes of bundle }-gerbes with
connection is isomorphic to HL(M,DL).

Proof. The proof is a simple extension of that for Proposition 2.1. !

2.5 Bundle Gerbes
Bundle gerbes were introduced in [36] as a geometric realisation of classes i\ H3(M,Z).
They are the key object of interest in this thesis, here we present the basic theory.

Definition2.5.LetY I U beasubmersionandlet p)yÍz) beaU(1) bundle.
A U(L)-bundle gerbe is a triple (P,Y,M) together with a [/(l)-bundle isomorphism
P(yr,y") Ø P@",yr) ) P(sr,y") which is called the bundle gerbe product. Associativity is
required whenever triple products are defined.

The bundle gerbe (P,Y, M) is represented diagrammatically by

P
Jylzl 

=

Since we only deal with U(l)-bundle gerbes we shall refer to them simply as bundle
gerbes. Often we will say that (P,Y) or P is a bundle gerbe over M when there is
no ambiguity. Given a map ó , N -+ M rffe may define the pullback þ-rP which is
a bundle gerbe on M. Given two bundle gerbes (P,Y,M) and (Q,X,M) there is a
product bundle gerbe (PØQ,Y xuX,M).For any bundle gerbe P there exists a dual
bundle gerbe P*. For details of these constructions see [36].

Y
J
M
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In the definition of a bundle gerbe the bundle over Y[2] may be replaced with a
bundle 0-gerbe (p,X,ylzl). In this case the product is no longer a morphism since X
is not acted on by ,S1. Since we are dealing with bundle O-gerbes rather than bundles
it is not surprising that morphisms should be replaced by stable morphisms. A choice
of stable morphism p@r,vù Ø p@r,s") è p(sr,y") is equivalent to a choice of trivialisation

P(yr,s") Ø Pfur,sr) Ø PIyr,ur) = 6 (*rrs)

This trivialisation represents a bundle gerbe product if it satisfies the associativity
condition

lTùtZS' lTùLgA : ITI¡Z¿' 'ITùZS¿.

Definition 2.6. A, bundle gerbe (P,Y,M) is called tri,ui,al if there exists a bundle
J -> Y such that there is a bundle isomorphism

p=rrL(J)ør;L(l).
where ?r'1 and T2 à,te the projections of each component of Yt2l onto Y. The product

"r'(J) a 7rt1(J). is also denoted by d(/).

Definition 2.7. A bundle gerbe morphism between (P,Y, M) and (Q,X,N) is a triple
of maps (o, þ,7) where þ : Y -+ X is a fibre preserving map covering Z : M + N
and o : P + Q is a bundle morphism covering the induced map Blz) ' ylz) ¿ ylzl.
F\rrthermore o must commute with the bundle gerbe product. At isomorphism of
bundle gerbes is a bundle gerbe morphism wilh M : N and where 7 is the identity
map. Two bundle gerbes P and Q are stably isomorphic if P ^r Q ø 0çt¡.

Proposition 2.3. þ61 fhe set of stable í,somorphi,sm classes of bundle gerbes ouer M
is isornorphic to H3(M,Z).

We construct a class getu € H2(M,qfÐ) corresponding to a bundle gerbe (P,Y, M).
The standard isomorphism gives a corresponding class in Hï(M,Z) which is known as
the Dixmier-Douady class. We shall also refer to goh as the Dixmier-Douady class,
or by analogy with the local data associated with a bundle we shall also call these
transition functions. Let so and sp be two local sections of Y + M defined onUo C M
and tJp C M respectively. These define a section (so, sp) : (IoB ) Y[2]. Use this section
to form the pull-back bundle Pog : (so, sB)*P over Uop. Since UoB is contractible Pop
is trivial and so admits a global section which we shall denote by oop l Uog I Poa.
Over the triple intersection Uoh the bundle gerbe product gives a bundle isomorphism
Pop Ø Pp.r l Po7. Thus we can define goþt : Urh ) U(1) by

oagØop1:oatgagt.

To get a class in Deligne cohomology we will also need to define connections and
curvings on bundle gerbes.

Deûnition 2.8. Let (P,Y, M) be a bundle gerbe. A bundle gerbe connection, -4, is a
connection on the bundle p ¿ ylz) which commutes with the bundle gerbe product.

Definition 2.9. Let (P,,Y, M)be a bundle gerbe with connection ,4.. Let Ft e Cl2(ftzl¡
be the curvature of ,4 considered as a bundle connection on P + Yl2l. A cunsing is a
2-form r¡ onY satisfying õ(rù: Ft.
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A bundle gerbe (P,Y,M) with connection A and curving q may also be referred
to as (P,Y,M;A,r) or (P;A,?). We may now define the Deligne class associated to
a bundle gerbe (P,Y, M) wirh connection, A, and curving, 4. Given local sections
so; Uo + Y we may define the local curuings

T.": sLT-

We have already defined the bundles Pog. The pull back by (so, sB) induces connections
on each of these bundles which may be pulled back to Uop using the sections oop to
give a collection of l-forms Aop on double intersections of open sets on M. We call
these local connections.

Proposition 2.4. [36] Let (P,Y, M) be a bunille gerbe with connection and curuing.
Let gop, be the Dirmier-Douady class, Aop be the local connections and r¡.- be the
local curuings. Then (gopt,Aop,rtò defr,nes a class in the sheaf cohomologA group
H2(M,D2).

For (gopr,Aop,rlo) to be a class in H2(M,O2) it must satisfy

9þtõ-9e1d*9aþõ-9aþt
Apr-Aor*Aop

0a - rlþ

0

dlog(g"pr)
dAaþ

(2.10)

(2.11)

(2.t2)

(2.13)
(2.14)
(2.15)

As in the previous cases there is an isomorphism

Hï(M,Z(3)ò = H2(M,D2)

so each bundle gerbe with connection and curving gives rise to an elem ent of H3 (M,Z(3) o)
Explicitly the Deligne class is given by

(n op, o, Log(g opr), Aoo, Q o)

where naþtõ: ô(log(g))apr¡ though we will often refer to the class (goprAop,T.') æ
the Deligne class.

As with the case of bundle 0-gerbes it is necessary to introduce D-trivialisations
for bundle gerbes with connection and curving. A D-trivialisation of a Deligne class
(g,A,4) is a cochain (h,B) which satisfies

ô(¿)
dlog(þ) - ô(B)

dB

Geometrically a D-trivialisation of (P; A,r¡) is a bundle "I with connection B such
that d("I; B) = (P; A) as bundle gerbes with connection, where õ(J; B) is the bundle
ô(J) with connection induced from B by ð. Furthermore, in order to satisfy (2.15)
the curvature of (J; B) must be equal to the curving 4. We may define D-stable
isomorphisms in the obvious way and state a bundle gerbe version of Proposilion 2.2:

Proposition 2.5. The group of D-stable ísomorphism classes of bundle gerbes with
connection and curuing are isomorphic to H2(M,D2).

:g
:A
:rl

L7



Proot. First we show independence of the choice of sections. There are two different
types of section involved in the construction of the Deligne class. Suppose the sections
aqB à,rê replaced by õ"p. We have two choices of section of a principal bundle so they
differ by functioîs faþ and the corresponding change in transition functions is

íoh = goptÍopf nlarL
The local connections are related by the usual change of connection formula

Ãoo:Aopld,logf,,p
and the local curvings are unaffected so the overall contribution is the trivial cocycle
DU"p,0).

Now suppose .rüe change the sections so to s!. In general these are not sections of
a principal bundle so they do not differ by a function. Using the bundle gerbe product
we have an isomorphism

Pç;,r'p): P(rL,ro) I Plro,rp) Ø Pþp,rb) (2'16)

Let oop, oLp,6o and 6p be sections of the trivial bundles Plro,rp), P1r;,r,u),, P(s!,s.¡ â,nd

P1r,u,rp) respectively. We have two sections, o'op and 6,,o.,p6¡L of isomorphic bundles so
they differ by functions hop. When comparing the transition functions defined using
o¿p or o'ry the ô sections all cancel out and we have essentially the previous case.
Equation (2.16) also leads to an equation involving local connections,

A'og : lco * Aop - kp (2.17)

where ko is defined by pulling back the bundle gerbe connection to {s!,s.) and then
pulling this connection back to Uo using the section ôo. Consider what happens to the
local curvings. Since 4 satisfies 6(rù: r' then t'o*rl- so*4 is equal to the curvature of
P(rä,r.) which is d/co, so

q'o: qo + dko (2.1s)

so we have added a trivial cocycle D(I,k"). Hence the Deligne class is independent of
all choices of sections.

The homomorphism property is a straightforward consequence of the definition of
the tensor product of bundle gerbes and the Deligne class so we omit details.

The result that a bundle gerbe is trivial if and only if it has a trivial Õech class
has been discussed in detail elsewhere ([36],[44]). Essentially it comes down to the fact
that for a trivia! bundle gerbe the sections oop ãte of the form di I ôp. The inclusion
of connections and curvings does not add any significant complications.

Finally we need to describe a bundle gerbe which is cla^ssified by a particular Deligne
class (gop",Aog,q").LetY =II.,U., the disjoint product of all of the elements of the
open cover of M. Let P ¿ yÍz) be the trivial bundle. An element of.Yl2l is of the form
(mo,mp) where rn € Uop and mo is rn considered as an element of. (Jo e Y. The define
the bundle gerbe product by

(mo,rnptzù. (mp,mr,zz): (ffio,mt,hzzgaþt) (2.19)

where 21,22 €.U(1). Since P is trivial then lye can define the connection as a l-form
on Y[2]. At (mo,mp) e yt2l the connection l-form is given by Aop at m. Define the
curving on Uo e Y by r¡".

!
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We have only considered bundle gerbes with connection and curving. It is easily seen

that bundle gerbes with a choice of connection but no choice of curving are classified
by H3(M,Z(2)ù = H2(M,DL). h is a standard result (see [5]) that Hp(M,Z(q)o) =
Ho(M,Z(t)o) whenever p ) g, thus the stable isomorphism class of bundle gerbe with
connection is invariant under a change of connection.

As in the previous cases the exact sequence (2.3)

o + H2(M, u(1)) I H2çtrtt,D\ 3 Q3(ø)o + o

gives the curvature and flat holonomy. Explicitly the curvature is u e Q3(M) satisfying

r*u: drl

and is guaranteed to exist since ô(d4) : 0. In terms of local curvings the 3-curvature
is defined in terms of a collection of local 3-forms (rd : d,qo which agree on overlaps
since ô(d4o) :0.
The flat holonomy is calculated in the following way [28]. Suppose u : 0. Then
dno:0 so there exist local L-forms Bo satisfying dB" : To. F\rrthermore

TP - \o - flAaÊ: d'(BP - B")

so there exists functions øoB which are defined on double intersections and satisfy

Aaþ - BB * Bo: dlog(ø"fi.

It follows that

d,Iog(aop' ah' aãi, ' g"àr) :0
and the flat holonomy is

caþ.y : aap' aþt' a:]' (g"àr)

We conclude our discussion of flat bundle gerbes with the observation that the Deligne
cohomology groups H'(M,Z(p)") represent flat bundle gerbes for any p> 2. A class
in this cohomology group is the same as a class

(goyr, Ao¡,rlo) e' H2(M,D2)

with the additional condition that dr¡o: 0, therefore the class represents a flat bundle
gerbe.
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Chapter 3

Examples of Bundle Gerbes

We define and present the basic properties of a number of examples of bundle gerbes
which shall be of use to us.

3.1 Tautological Bundle Gerbes
The tautological bundle gerbe was introduced in [36] as a way to construct a bundle
gerbe with any given closed, 2z-integral 3-form as its 3-curvature. Our approach will
be similar to that in laa] however we use bundle O-gerbes rather than bundles.

Let M be a l-connected manifold with distinguished base point rns. Denote by
PoM the space of paths in M which are based at ms. An element of PoM is a map
þ:l0,Il+ M suchthat ¡¿(0) :rne. ThereisafibrationPsM + M deûned bythe
proþctiôn r: LL t+ p(1). The fibre product PsI[lzJ oveÍ rn € M consists of pairs of
paths between r"¡ and m. By reversing the orientation of one of the paths this pair
may be identified with a loop based atms. Thus we can identify Pol[lzJ with LsM,
the space of smooth loops in M which are based at ms. There is a technical point that
needs to be dealt with here. \Mhen two paths are joined together the resultant loop
may not be smooth at the two points where the paths are joined. To overcome this
problem we follow Caetano and Picken [10] and re-parametrise the paths around these
points such that there is a sitting instant at each of these points, that is, an interval
of length e around a point ts e [0,1] such that the loop is constant in the interval
(to - ,,úo * e). The obvious adjustment is made when úo : 0 (or equivalently Ús : l).
The structure above LoM is defined in terms of an integral which is invariant under
such reparametrisations.

Let F be a closed, 2zr'-integral 2-form. Let p: LsM + U(1) be defined by

p0) :.*p1 / r¡ (3.1)
J>

where I is any surface such that 0E:7. Equivalently we may write

p!tt, pz): exp( [ ,. r) (3.2)
Jtz

where þr, Fz €. PMl2l and Il is a homotopy betweeî pt and ¡.t2. To see that p is
independent of the choice of D note that if we choose a different surface, E', where the
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bar indicates that the opposite orientation is induced on the boundary, and let

p'0):"*p( / r)J,,
then we have

P0)lP0) : exp(
1
.L

F)

Let ¡.r1, pz, ps e r-r(m) C PoM and let 7r¡ denote the loop identified with (p¿, p¡) e
Psvllz). Then

p(tn)p(tze) : "*o(lr,,r* Ir,"r)
: exp( / F).

J En\JEzs

Note that Jp and J2s are connected along p,2 and hence the surface Dn U Eze has
boundary ./13 and the cocycle condition

p1n)p(tze): p(ttt)
is satisfied. Therefore (p,PsM,M) defines a bundle O-gerbe. Furthermore if we let the
connection form on PoM be given by

A: Ieu*F
Jt

where e¿' is the evaluation map eu : PsM x I + M then it may be shown that A
satisfies

õ(A) : dlos p
dA -- ¡r* F

If. M is not connected then we may carry out this construction on each connected
component.

Lemma 3.1. The tautological bundle ?-gerbe is independent (up to stable isomor-
phi,sm) of the choice of base poi,nt i,n M.

Proof. Suppose we have a curvature form F and two choices of base point, rùs a,nd rr:,a.

We shall show that the resulting tautological bundle O-gerbes are stably isomorphic.
Over M we can form two different path fibrations,PsM andPtM using the two choices
of base point. Form the corresponding tautological bundle O-gerbes and take the fibre
product,

sr
-1Po'Qt

^,/
LsM x* L1M :3 (3.3)Ps xnPy

J
M
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An element of. r-L(m) C Ps xnPl is a path from ms to 7721 pâ,ssing through m. An
element of. LsM x¡ L1M is a figure eight with rn at the centre with each loop passing
through either rTLs or rrl1. To define a trivialisation of this bundle O-gerbe \4/e need
to choose a path g from ms to m1. The trivialisation is then given by the function
h(p,rù - exp /" tr' where E is a surface bounded by q-'x lt-l*4. Taking ô of h gives the
integral of F' ôv1r a surface with boundary 4r-1 * lt4*Q*Q-'x t"1' *42. After eliminating
the g*q-1 component this is equal to pl'pr, therefore the two bundle O-gerbes are stably
isomorphic. Calculation of dlogh at (Xs,Xr) € T(P¡M xnPlM) gives f, F(tt\, Xù -
Ï,^ F(p[,X6) which is equal to A1- As, the difference of the connections corresponding
tô-each choice of base point, so h, defines a D-stable morphism. Since the construction
depends on the choice of g this is not a canonical stable isomorphism. !
Enample 3.1. Let G be a compact simply connected semisimple Lie group. Let M be
the loop group LG and let the curvature 2-form be /s, eu* < g-rdg Alg-'dg Ag-Ldg] >
where eu is the evaluation map eu : LG x,Sl -+ G, 1,> is the Killing form and [,]
is the Lie bracket. We may then construct a tautological bundle O-gerbe. Since G is
simply connected, discs in G may be thought of as paths of loops based at a constant
loop and may be recentred as in lemma 3.1. This means that we may consider the
fibre over 7 to consist of discs bounded by Z. The bundle obtained by the standard
construction from this tautological bundle O-gerbe is the central extension of the loop
group ñ - LG as described by Mickelsson [32].

Now suppose that we have a closed, 2r-integral3-form, ø on a 2-co.nnected manifold
M. Let Q[F.] -> (PoM)['] b. the tautological bundle over (PsM)t2l with curvature
F : Irren*r,). Here we have identifred (PsM)t2j with LsM and used the evaluation
map eu ; LoM x SL -+ M. The tautological bundle on LsM may be defined since
M is 2-connected. To avoid the need for a base point in LsM we shall use a slightly
different definition of tautological bundle. In fact the tautological construction is more
natural over a fibre product space, the introduction of a base point when the base is
not a fibre product compensates for this. This construction of the tautological bundle
follows the approach of [13]. Over EoM we have the space Da M of 2-surfaces, such that
the fibre over 7 is a surface with 7 as its boundary. Elements of the fibre product may
be considered as elements of. EM, the space of smooth maps of closed 2-surfaces into
M (with possible reparametrisation to deal with any problems with smoothness along

7) and we may define the tautological function in the usual way to give a tautological
bundle SlFl + ÊoM. We can now construct a bundle gerbe over M,

avl
J

LoM =

To define the product we observe that for any Y the fibration Ps(Ylz)) + Yl2l,
where the base point lies in the diagonal subset of Ylzl, admits a product covering
(ar,Az) x (Az,Az) + (yr,yt) which is defined by composition of paths. Strictly speaking
the composition of paths is not associative, however we do have associativity up to
reparametrisations which do not affect the overall structure of the bundle gerbe. In
general this will be the bundle gerbe product for any bundle gerbes which we define in

PoM
+
M
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terms of a bundle on the loop space. The connection is given by the connection on the
tautological bundle, which in this case may be written as

If the curving is defined by

then the curvature is ø.
As with the tautological bundle O-gerbe, the two tautological bundle gerbes obtained

by a change of base point are stably isomorphic. The trivialisation over Ps xn Py is
defined by J1",,t) : QlFlrp*q-r,r¡ where p, € PsM, T € PtM, g is a path from ms to nL1
and Q[F] is the tautological bundle over L1M. Using the product on 8[F'] it can be
shown that

6(J)fur,rr,rz,,tz) : QlFlirno-r,t'2*q-r) Ø QlFlhr,,t") (3.4)

Consider the fibre in Q[F] over (¡,r1 *Q-L,pz*q-L).This consists of surfaces bounded
by pz* q-l * Q* ttt and may be identified with Q[F]fur,rr) over LsM. Thus we see that
"I is a trivialisation.

We sometimes abbreviate the tautological bundle as Q[.F'] + M and the tautological
bundle gerbe as Qlul + M.

3.2 Trivial Bundle Gerbes
In the previous chapter we defined what it means for a bundle gerbe to be trivial or
D-trivial. In this section we examine the properties of these classes of bundle gerbe.

Lemma 3.2. ([36]) Let (P,Y,M) be a bundle gerbe. Suppose the projectionY I U
øilmits a global section, s. Then (P,Y,M) is a triuial bundle gerbe.

The trivialisation is (sozr, l)-tp. The converse of this proposition is not true. To see
this, consider the following counterexample. Let Y + M be a projection which admits
Iocal sections, but has no global section. Let YI2l x ,S1 + Yt2l be the trivial bundle. We
moLo (W121 - C1 \,'Irf\ inrn n l-,,-Jt^ -^-l-^,,,i+t^ +ì^^ ^-^1,,^+ /., Ã\,, l^, .t\ 

-Àr¡o¡\v \¿ - .\ v ) r, ¿vt ) ¡¡¡uv e vu¡¡u¡ç 6çruE wru¡¡ ulrç prv\rurru \UI¡ 92lv) ^ \U2¡ UBtv) -(Ur,At,d/). There are sections

oqp : (J¿p I (so, sp)-r(Yl2) x St)

which are given by

o"p(m) : (so(?n), s p(m), t)

and which clearly satisfy the cocycle identity

OaþOþl - 0a1.

Thus the Dixmier-Douady class is 1 and the bundle gerbe is trivial
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As a special case of lemma 3.2 we may consider restricting a bundle gerbe over M
to an open set tl.. This admits a section so and so we may construct a trivialisation
as described above.

We now review the geometric realisation of a trivial Dixmier-Douady class which
was originally given in [36], and described in greater detail in laa]. Let (P, Y, M) be a
bundle gerbe with Dixmier-Douady class g and let h be a trivialisation. Let "Io be the
bundle on s"(tl,) c Y defined by

Jo: (7,so o zr)-1P.

Define isomorphisms óaþ : Jo + Jp by

Ó.p(u):m(ooBh;àø")

where u € Jo. The bundle J obtained by gluing together the Jo using the standard
clutching construction with the isomorphisms ó"p is a trivialisation of P.

Conversel¡ if we are given a trivialisation J then we can recover the trivialisation of
the Dixmier-Douady class in the following way. Let J, be defined by s;1"/. Since this
is a bundle over Uo it must be trivial and admits a global section ôo. Since õ(J) = P
then there exist functions hop : (Jop ),S1 such that

o,p(m): (6;1(rn) Ø 6B(m))h"p(m). (3.5)

It may be shown that the hop trivialise the Dixmier-Douady class.
As an example we may calculate the local data for the canonical trivialisation over

an open set U¡. The trivialisation is defined AV J8 : P("0('(s)¡,r¡- where ss : Us ) Y
is a section. Over any [/o restricted to [/o we can pull back J0 by a section so to
get s;lJ$ : P(se(rn),s,(-)). These have sections ôo : ala. The local data for the
trivialisation, hop is then defined by

oaþ: øoo1 I oophop (3'6)

so hop : goep.
Next we consider the relationship between trivial bundle gerbes and D-trivial bundle

gerbes. To do this we first consider the relationship between bundle 0-gerbes and bundle
O-gerbes with connection which is given by the exact sequence 2.4,

0 + o1(1.tr)lat(M) + H|(M,D') + H'(¡ø,2) -> 0.

The space AL@)|OË(M) may be interpreted as equivalence classes of connections on
the trivial bundle O-gerbe. This implies that a trivial bundle gerbe with connection
A e A[@) is D-trivial. \Me can define the D-trivialisation in the following'way. Let
h : r* p, where

p(m): "*v{lre)
where þ € PoM for some base point nzs and p(1) : rn. The 2zr-integrality of A ensures
that p is independent of the choice of path and applying the Deligne differential to the
class representing p gives the bundle O-gerbe (1,,4). This construction is essentially
the same as that used for the tautological bundle 0-gerbe and bundle gerbe, so we may
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refer to p as the tautological function. In fact the function defining the tautological
bundle 0-gerbe is the tautological function. Note that the construction relies on the
assumption that M is connected. If M is not connected then the construction may be
repeated for each connected component.

Suppose the bundle 0-gerbe with connection (g;A) is D-trivial. Furthermore sup-
pose we have a particular choice of trivialisation, h,, which is not necessarily a l)-
trivialisation. We would like to see how this trivialisation differs from a D-trivialisation.
Using the fact that ô(fr,) - g and applying dlog gives

dlog(ô([)) : dtog(s)
ô(dloe([)) : ó(Á)

so there exists a l-form ¡ such that

dlog(/¿") :Ao-X
If we had not assumed that (g; A) is D-trivial then X would represent the obstruction
in AL(M)/CIå(M) to a trivial bundle O-gerbe being D-trivial as well. This is true
since a change in choice of trivialisation changes ¡ by an element of O$(M) which is
the 1-curvature of the function defined by the difference between two trivialisations.
Furthermore

where .F is the bundle O-gerbe curvature. We shall refer to X e Qr(M)lOà(M) as the
D-obstruction form.

Now we return to the case where (g; A) is D-trivial, hence it is flat and .4 is locally
exact. Thus X is closed. If it is also 2n-integral then \Me may construct the tautological
function p on M with curvature X. Finally we define a D-trivialisation by the product
h.r* p. To check that it is indeed a D-trivialisation observe that

D(h" P) 

= 
ii,ii:Lii:Ëll"l'.."!''''

The bundle gerbe case is very similar to that for bundle O-gerbes and was described
in [381. Let (9, A,r¡) be the Deligne class of a bundle gerbe with connection and
curving, (P; A,4). Suppose we have a trivialisation J which is represented by a Deligne
cochain ñ,. Since there is an isomorphism between bundle gerbes and bundle gerbes
with connection we may choose a connection on B such that ("I;B) trivialises (P;.4),
however \4re may not assume that it trivialises (P; A,?). In terms of cochains this means
that we have

dA"
F

dy

s : õ(h)
A: dlog(/¿) -ó(B)

but it is not true that q: dB. We can, however, deduce from (3.8) that

r7o- dBo- X

(3.7)

(3.8)
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If this D-obstruction form is closed and 2zr-integral then we can construct the tauto-
logical bundle (QlX]; L eu*X) with curvature X and define a D-trivialisation by

(P; A,rt) : D((J;B) I r-r(Qlxl; [ "r"x))-JI

An extension of D-obstruction theory which is useful is the situation where we have
two trivialisations ô(I) and ô(J) of the same bundle gerbe. If they have D-obstruction
forms /7 and N"¡ respectively which satisfy dX¡,: dy¡ then D(L) -- D(J ør-LK)
where K is the tautological bundle with curvatve y7 - Xr : dB¡ - dB¿ which is
closed and 2z--integral since it is the difference of two curvatures. We now consider the
situation of a bundle gerbe with two different trivialisations.

Proposition 3.1. [7SJ Let (P,Y, M) be a bundle gerbe and let L and J be two tri,uial-
í,sations. Then there exists a bundle (K,M) such that L: J Ø¡r-rK as bundles ouer
Y.

Proposition 3.2. Let (P,Y,M;A,r¡) be ø bundle gerbe and let L ønil J be two D-
triuialisations. Then there erists a fl,at bundle (K,M) such that L: J Ør-rK as

bundles with connection ouer Y .

This follows from the previous proposition together with the observation that the
curvatures of .L and "/ must both be equal to 4.

Proposition 3.3. Suppose ô(¿) - õ(K) and Fr, : Fx. Furthermore suppose that
Xx - Xz is closed and 2r -integral. Then there erists a bundle J with curuature Xx - Xz
suchthatL:KØr-LJ.

This result shall be useful for studying bundle 2-gerbes in the next chapter.

Proof. Suppose 6(L) - õ(K) : P. Then if ? is the canonically trivial bundle P* Ø P
then ? - õ(L) €l ô(If). Since the D-obstruction of the left hand side is trivial we have
T : D(L* A K €l n-LE) where ^Ð has curvature Xx - y7. Therc exists a flat bundle,
.B such that z"-I.R : L* AKEl n-LE, so.L: K ØT-LJ where r-tJ is the bundle
r-LE 8 zr'-l.R which has curvat:ure, /¡ç - X¡,. ¡

There is also a local theory of trivialisations with connection. First consider a
bundle gerbe that is ô-trivial but not necessarily D-trivial. Given a trivialisation with
connection (J;B) define l-forms koby ôiBo where ôo is a section of. s;LJo and Bo
is the pulled back connection on J,. Using the definition of h"p (3.5) it immediately
follows that

dloghop - kp * ko: Aog (3.e)

In the example of the bundle gerbe over Us we have Iç.-: Aoo. To be D-trivial there
is the additional requirement that dle, - 4o which is satisfied if. F¡o - 4. Note that in
the I/o example we have dko - d,Aso: Ta - rìo so the D-obstruction is 4s.
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3.3 Lifting Bundle Gerbes
The lifting bundle gerbe was introduced in [36] as one of the motivating examples of
the theory of bundle gerbes. Let

o-+U(1) -+G4G-+0
be a central extension of groups and \et, P6 + M be a principal G bundle. The lifting
bundle gerbe is defined by the following diagram:

G
+
G

The map g , PEJ + G is defined such that g(pt,pz) is the element of G which satisfies
pz : hg(pt,pz). Alternativelq PEI may be identified with P x G via (pr,pr) +
(h,9(h,p2)) and (p, g) -> (p,pg) in which case let _Q : Pc x G + G be the projection
of the second factor. It is to be understood that G -> G is pulled back to a bundle
orne. Pf,l by g and the bundle gerbe product is induced from the group product ott õ.
Proposition 3.4. [36] lhe lifting bundle gerbe associøted wi,th a G bundle P6 + M
and, ø central extension G is triaial if ønd, only if Pc tifts to a G bundle.

In general a connection A on G + G does not define a bundle gerbe connection.
This is because the corresponding curvature form, g" F.q, for the bundle g-rc may not
satisfy the condition d(g.F¿) on pteJ. It is shown in [37] that in general there exists a
1-form u oo Pll such that g.(A) - e is a bundle gerbe connection.

3.4 Torsion Bundle Gerbes
If the Dixmier-Douady class of a bundle gerbe is torsion then we refer to it as a torsion
bundle gerbe. These bundle gerbes naturally arise in applications to physics and there
are two particular a"spects which are of interest: the canonical bundle gerbe of a class
in H2(M,Z,r) and bundle gerbe modules.

Associated to the short exact sequence

z4zlzp
is a Bockstein operator B: H2(M,Z,) + H'(M,Z). Tbis indicates that given a class
w € HZ(M,Z,) we may define a bundle gerbe with Dixmier-Douady class þ(w). We
would like to demonstrate that there is a canonical choice of Deligne class arising from
u.

The class B(ur) must satisfy p-þ(w): 0 so we have a torsion bundle gerbe. Consider
the exact sequence

o + H2(M, t/(1)) -> H2(M,D',) + Of;(ø) + O

Recall that this may be interpreted a^s

II
Pl2) = Pç

+
M
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fløt holonomy class -> bundle gerbe with connection ønd curuing + curuature

If the bundle gerbe is torsion then since the curvature is the image of the Dixmier-
Douady class in de Rham cohomology it must be an exact form" The possible D-stable
isomorphism class of bundle gerbes with a particular choice of curvature are given
by flat holonomy classes. The map H'(M,Zò + H2(M,t/(1)) allows us to consider
ür as a flat holonomy class. This in turn defines a bundle gerbe with Deligne class
(w,O,dB). The fact that the transition functions are constant and the curvature is
exact mean that this is a Deligne cocycle. The Dixmier-Douady class of this bundle
gerbe is wop, - -logwB, *logw.", -logwop. The class pwoB" is trivial in H3(M,Z),
with trivialisation plogwop. The mod p reduction then gives wop e HZ(M,Z), so
the transition functions are given bV 0(r) as desired. Trivially the flat holonomy
class of this bundle gerbe is tr.r. A canonical choice of such a bundle gerbe is given
by setting d,B:0. Thus associated with a torsion class u.r e H2(M,Z) we have a
canonical torsion Deligne class (t¿,0,0). This construction extends to Deligne classes
of arbitrary degree.

An interesting class of examples of torsion bundle gerbe is given by the lifting bundle
gerbes associated with a central extension

Zo+G-+G
We may use the map H2(M,Zo) + H'(M,t/(l)) and the discussion above to see that
this is a torsion bundle gerbe. A particular example is given by the obstruction to
lifting a projective unitary bundle to a unitary bundle [11], which is defined in terms
of the central extension

ZnlU(n)+PU(n)
Next we define bundle gerbe modules.

Definition 3.1. [3] Let (P,Y,M) be a bundle gerbe. Let E + Y be a finite rank
hermitian vector bundle such that there exists a hermitian bundle isomorphism

órPØr;LE=r;LE
We require that this isomorphism is compatible with the bundle gerbe product in the
sense that the maps

P(yr,sr) Ø (Pfur,yr) Ø Eo) ) Pfur,yr) Ø En" ) Eo,

and

(P@r,oùO P(vr,r.)) Ø Eu, ) P(sr,yr) Ø Eo, - En,

are the same. Call E abundle gerbe module and say that the bundle gerbe P acts on
E.

A rank one bundle gerbe module is a trivialisation. Given a rank r bundle gerbe
module the product P' acts on the rank one bundle 

^'(E) 
and hence we have

Proposition 3.5. [3] Let (P,Y, M) be ø bundle gerbe with Dirmí.er-Douady c/oss dd(P)
Suppose (P,Y, M) has a bundle gerbe module E of rønle r. Then P is a torsion bundle
gerbe with rdd(P) : 0.
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A connection on a bundle gerbe module is called a bundle gerbe module connection
if the isomorphism / is an isomorphism of bundles with connection.

A bundle gerbe module with connection may also be defined in terms of local
data. Suppose \üe have a bundle gerbe represented locally in Deligne cohomology by
(g, A,/). Let E be a bundle gerbe module, and define a set of local bundles on M by
Eo : t;'ø. These bundles are trivial with sections ôo. We consider the isomorphism
P ø r;r E = r;L E at the local level. In terms of sections \rye may define local matrix
valued functions äop such that

oaþ Ø 6o: 6pho|

Consider the section orþ Ø oh Ø ô,, associated with PoB Ø PB1 Ø E1
simplified in two different ways,

ooþ Ø op.t Ø õt : oopgoø Ø 6t
: õohorgoBrt

where 1 is the identity matrix of the same rank as .8, or

oapØohØ6t:oopØ6php,
:6ohophp,

and hence we have

(3.10)

This can be

(3.11)

(3.12)

holhh: hotgoytl (3'13)

To get a local expression for the connection let Vp and V¿ be the connections on P
and .E respectively. Using the sections oaþ, ôo and õp we have two choices of connection
on bundles PoÞØE" and Ep over Uo. These areollYr +ô;1VE and ô;1V¿. The
isomorphism of bundles is given by the local functions hoB and so, Ietting ô;tV" : Iço,

the two choices of connection are related by the usual formula for connections under a
change of section,

AopI * k.: h;àkþhoB * h;àdh"p (3.14)

3.5 Cup Product Bundle Gerbes
There is a cup product in Deligne cohomology (see [17] or [5]). The correspondence
between Deligne cohomology and geometric objects implies that the cup product may
be used to construct new examples of geometric objects which realise Deligne classes

tS]. We shall demonstrate how to construct bundle gerbes corresponding to various
cup products. First we consider the bundle obtained by taking the cup product of two
functions ([5],[17]) as a bundle O-gerbe. This helps us to find geometric realisations of
various bundle gerbes which may be obtained by taking cup products. Let f ,g and h
be U(l)-valued functions on M and let .L + M be a U(l)-bundle. We consider the
cup products /U L, LUl and Í u gu h.

The cup product is induced by a product in the Deligne complex

u: z(p)pØz(q)o + z(p+ q)o
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which is deûned by

rug: (3.15)

It is a standard result that this product is associative and induces a product of Deligne
cohomology groups. Furthermore it is anticommutative, that is, for a € Hn(M,Z(p)r)
and, B €. Hc'(M,Z(p')o) the cup product satisfies du P: (-I)sc'PUa. We shall
calculate some specific examples and construct corresponding geometric objects.

The cup product of two functions was described in [17] and [5]. We review it in
detail as it provides the basis for all of our subsequent examples. Let f and g be
t/(l)-valued functions on M. As we have seen / and g may be represented by the
Deligne classes (nop,Log,,(/)) € H'(M,Z(!)") and (mop,los"(g)) e HL(M,Z(I)p)
respectivel¡ where logo is a branch of the logarithm function which is defined on
Uo C M, and the integets nop and moB are defined by the differences logpff) -
log"(/) and logB(g) - Iog"(g) respectively. The cup product f u g is the Deligne
class (nopmþt,tuoþloepþ),log"(/)dlog(g)) e H'(M,Z(z)o). Under the isomorphism
H'(M,Z(2)ù = HL(M,21) this becomes (gn"þ,log"(/)dlog(9)) which represents a
bundle O-gerbe with connection which may be described explicitly.

We construct a bundle O-gerbe over ,Sr x ^91 and pull it back to M via the map
(f ,g), M -+,S1 x,S1. Let the bundle 0-gerbe over,Sl x,91 be defined by the following
diagram:

5'1
Pu

,v
(Rxz) x(lR.xZ) 3 lRxIR

J
,S1 x 51

where the projection to the base is given by two copies of the exponential and the map
pu is defined by po(r,n,s,rn) - exp(sn). \Me have used the identification lR[2] :R'xZ
for the Z-btndlelR. + ,91 as discussed for a general G-bundle in $3.3. It is easily shown
that the l-form rds is a connection for this bundle O-gerbe.

Proposition 3.6. The bundle T-gerbe (Í, g)-'(p",lRx IR, 51 x ,S1) wi,th connection rds
høs Deligne class (gn'P,log"(/)d log(g)).

Proof. Define local sections sa of lR, x lR, + M by so(9, ¿¡ : (log"(á),Iog"(/)). Then
(so,sp) - (log,(0),logp(9)-log"(á),IoSp(ô),logp(/)-log"(d)) andp(so,sp) : exp(logB(/)(logp
tog"(d))). To get the pull back to M we simply replace d and / with /(rn) and g(m) re-
spectively to get the required transition functions, gn"p . To complete the proof observe
that si(rds) : logo(0)dlog(Q), so under the pull back we get logo(/)dlog(9). ¡

Clearly the bundle O-gerbe gU Í is obtained by replacin1 pu with pi : (r,n,s,m) ->
exp(rrn). By anticommutativaty the product bundle O-gerbe puØ pJ should be trivial.
We may demonstrate this directly by defrninE rL,rz,s1 ând sz such that (r, n, s,m) :

fr-a
rAdy
0

if deg r :0,
ifdegr)0anddegA:Q,
otherwise.
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("t, tt, T2 - rLt sL, s2 - s1) and considering

þ"pL)(r,n,s,m) : exp(sn *rm)
: exp(s1(r2 - "r) * (r2 - n)m)
: exp(s1r2 - srrr * r2(s2 - s) - nm)
: exp(s1r2 - srrr * r2s2 - rzst)
: exp(r2s2 - rrsr)
: ô(exp(rs))

There are three ways of obtaining a bundle gerbe via cup products. We shall
calculate the Deligne class and provide a geometric construction for each one.

The Bundle Gerbe f U L

Let f be a t/(l)-valued function on M and let L be a bundle O-gerbe over M. Let
/ and.L have Deligne class (noB,log"(/)) e HL(M,Z(I)ò and (moB,log(g"p)) e
H2(M,Z(\)ò respectively. Then rrù.,þ." : -log(gB)+log(g"",) -loeþ"p).The product
/ U.D is

(n opm sd, nop log(g pr), log" (/) d los(g"p ) ) e H3 (M, z(z) 
")

which, under the usual isomorphism, becomet (ú;u,log"(/)dlogk"p)).We define the
corresponding bundle gerbe with the following diagram:

KU
+

,91 x 
^91

R. xZ x.L x,S1 lR x.L
+

StxM

pI

Mry
where Ku is the cup product bundle described in the previous section, m: M + M is
the identity map and the pullback to M by (/, rn) is implied. Local sections are defined
by (log" Í,s.) where so is a local section of .L. The sectiorrs oop are given by sections
of p-L Ku over (logo f , noþ, s.,, gaþ). Essentially the fibres of. p-t Ku look like lR. x lR x ,S1

with an equivalence relation (a * n,b + m, z) - (a,b, ze"b) where a,b € lR, n, m € Z
and z € ,S1. In the fibre there are also copies of. Z and.L but we omit these to simplify
theexpressions. Theprojectiontakes (a,b,z) to (a,n,I,eb) €lRxZxLx,Sl. \Meneed
an expression for the bundle gerbe product. It must satisfy two conditions: it must
cover a particular product on the base and it must respect the equivalence relation in
the definition of p-LKu.To find the map on the base which must be covered by the
bundle gerbe product consider it in the form (]R x L)l2J in which case the product is

(rr,rr,Iyl2) x (rr,rt,l2,þ) + (r¡rs,\,Is) (3.16)

Under the standard identification with lR,x Z x.L x,S1 given by (", n, I, 0) : (r, r *n, I, l0)
this becomes

(rr,rr,h,0) x (rz,Ttr2,tl2t0r) + (rr,rt * rrzt\,0102) (3.17)
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so the bundle gerbe product must be of the form

(or,br., z1) x (a2,bz, zz) : (at,bt i bz, zyz2ll) (3.1s)

where fI is some function fl(ot, bt,zr,a2,b2,22).
To determine an expression for fI we consider what happens to this product under

the equivalence relation. First we replace (or,br, zù by (ot + n,b1i m,4e-"b).

(or + n,b1* m, z1e-nbL) x (az,bz, zz) : (q * n,,b1* bz * m, z7z2e-nbtIl)

(or,b, * b2, z1z2e-nh"n(bÉbz)¡1¡ (3.19)

(or.,b, * b2, \z2e"o'I)

so II(ø1 I n,b1 * rn, z1e-nu' , or,bz, zz) - "-nbzfl(aL,bt, 
zr, &2,b2, zz). Now we consider

the second factor,

(or,br, z) x (a2 * n,b2 * rn, z2e-no') : (or,û * bz * m, z1z2e-nuzf!)

: (at,bt * bz, z.zze-nb2fr) (3'20)

so fI(ø1, bL, zt, a2 * Tù,b2 * m, zze-nbz) : enb'Il(at,br, zL, a2,b2, z2).

Let II(ø1, bt, zt,&2,b2, "r) 
: 

"b2(a2-o1). 
Under the transformation at ) a1* n we

have fI ¿ ¿bz(a2-at-n) : fIe-nbz. Under the transformation (or,br) + (az * n,b2 * m)
we have fI _+ ebr(or-at)"nbz"rn(oz-at) _ flenbz since m(a2 _ a) e Z.

Define sections oaþ : (logo "f,logg.,þ,1). \Me may norv calculate the product oopopl,

oaþoyt - (log" Í,logg.,p,1) x (logp f ,Ioggg,I)
: (logo Í,!og gop * Iog gh, 

"noptocsot¡: (logo Í,Ioggq + m.n,7ilþ) (3.21)

: (logo l,log g..r, giîu)
_ o,rgiîp

This gives the required transition functions.
The local connections log"(/)dlog(g"p) are induced by a bundle gerbe connection

adb at (a,b, z) € lR x R. x ,S1/ -, the total space of. K¿.
We may also consider the cup product bundle gerbe f U L where -L is a bundle

with connection A. The Deligne class of the product is ($lP ,nopAp,log"(f)dA). The
Dixmier-Douady class is the same as in the previous case however the connection is
different and we also have a choice of curving. The connection form is n(h + db) at
a point (r,n,1,0,2) rnthe total space of. p-rK, Rx Z x L xlR x,S1. The curving is
(rd,A) on lR.x.L. It is not difficult to see that these give the appropriate local expressions.

There is an alternate geometric representation of the bundle gerbe Í U L which is
of interest. Define it with the following diagram:

L-n
+

lx_xZx M = IRxM
J

51 xMU'fn+M
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where L-n is the bundle with fibre at (r, n,m) equal to the fibre of the n-th tensor
product bundle of. L* at r¡¿. Sections of Y[2] over (Iop are given by (log" l,noþ,rn), so
we define the sections oop by

ooþ: tpn'u (3.22)

where so is a local section of .L. Using these to calculate the transition function we get

oagoþt - tin"u s-nu'
: tì""u giîÞ r-nßt
: t;"", glîu
: oorúlu

The connection at (r,n,m) is given by -nA at m, the connection on .L-" induced in the
natural way from that of -L, and the curving at (r, zn) is r.F' where .F' is the curvature
of. L.

This representation allows for a much simpler calculation of the Deligne class, how-
ever from the point of view of bundle gerbe theory it is not as general as the previous
case since it depends on .L as a bundle rather than a bundle O-gerbe. The significance
of the first method is that the cup product bundle appears in the definition of the
cup product bundle gerbe. This is related to the bundle gerbe hierarchy which we
shall consider in the next chapter. We shall find both methods useful in considering
cup products and bundle 2-gerbes in $4.3. Also it is not obvious how to approach the
bundle gerbe LU Í using the second method.

The Bundle Gerbe LU f
The Deligne class for this bundle gerbe with connection is (Í^.u, ,log(g"p)dtog /). By
the commutativity of the cup product this bundle gerbe should be stably isomorphic
to I U L. We define it by replacing K with the dual bundle obtained by swapping
the two functions in the cup product. The result is that the equivalence relation on
lR. x IR x ,Sl becomes (ø, b, z) - (a * n,b + m, ze^"). The product is still of the form

(or,bt, z¡) x (a2,bz, zz) : (at,bt * bz, z1z2lI)

Changing representatives of the equivalence class gives

(o, + n,bt * rn, zte-mat¡ x (az,bz, zz): (ør * n,by * bz * Trr, z¡l2ê-naLII)
: (,atrbt i bz, z¡z2Tr)

(or,br, z) x (a2 * n,b2 t rn, z2e-^"') : (or,bt * bz, zrz2en(øL-a2)fl)
: (auby * b2, z¡z2ll)

(3.24)

since rn(ø1 -or) eZ. This means we may define a bundle gerbe product by II:1.
The transition functions may now be calculated,

oaþoh: (logo Í,logg.,p,1) x (logp f ,Ioggp1,I)
: (log. f ,Ioggop*loggpyl)
: (logo Í,logg.", - moh,L) (3.25)

: (logo f ,logg.'t,enohtoE"l)
- oorfno1l

(3.23)
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The connection is given by the l-form bda at (a,b, z) € IR x JR x ^91/ -.
When the line bundle Z has connection A the Deligne class of the cup product is

(Í*'p, ,Iog(g"fid log ,f , Ao A d log(/)) . The connection is still the same and the curving
is defined by A A dr.

The Tbiple Cup Product Bundle Gerbe

The triple cup product bundle gerbe is defined by /U gUh where f , g and ä are all
t/(1) valued functions on M. The Deligne class of this cup product is

(hn"Êntr, noplogp(g)d log h,Iog,(f)dlog g A dlog h) e H3 (M, Z(3) 
")

where nat : losp(/) - log"(/) and mp.r: log.Ì,(g) - loep(g). This bundle gerbe could
be represented geometrically by a combination of the cup product bundle and either of
the cup product bundle gerbes already discussed. There also a simpler representation
which we discuss here. Define a bundle gerbe by the following diagram:

T
J

(R x Z)3

M

=R3 .tufP ,s1 x,sl x,g1

where 7 is the trivial bundle. We define a bundle gerbe product on T by

(rr,nr., SlrTrù1rttrlq, zy) x (r2,T12, s2¡'tTt2tt2¡lcz,, zz)

: (rr, ny i TL2, sLrlrLr ! trùzttlrky * lcz, zrz2etfiLrn2) (3'26)

wherefori:L,2,r¿,s¿,t¿€lR,n¿,rni,lçi€Zandz¿€.SLlori:7,2.Thesectionsøop
may be defined by

oaþ : (log"(/), nop,logo(g),moþ,log"(ä), koB,l) (3.27)

Using nop*np, -- tlal and similar results for m and k we calculate the product oapoplt

(logr(/), nor,Iogo(g),ffiot,logo(/r,), kor,ero&o(h)n'om"o¡ : oalhn'þnop (3.2S)

giving the required transition functions. Observe that this bundle has been con-
structed using a similar method to the canonical bundle associated with a Deligne
class which was described in the proof of proposition 2.5. The connection at the point
(r,n,s,m,t,k,z) eT isnsdt and the curving at (r,s,ú) e IR3 is rdsAdú.
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Chapter 4

Other Geometric Realisations of
Deligne Cohomology

In this chapter we consider the bundle gerbe hierarchy of geometric realisations of
Deligne cohomology. First we review what we have considered so far, then we consider
the relationship of bundle gerbes with gerbes to clarify this picture of the hierarchy.
We then extend the hierarchy by considering bundle 2-gerbes. Following this we use Z-
bundle O-gerbes to complete our catalogue of realisations and to motivate a comparison
with the theory of BP,S1-bundles"

4.L The Bundle Gerbe Hierarchy
We summarise the results on geometric realisations of Deligne cohomology with a table:

Table 4.1: Low Dimensional Realisations of Deligne Cohomology

Deligne Cohomology Group Geometric Realisation
Ho(M,U(1))
Ho(M,fip> o
H,(M,t/(1))

HL(M,DL)

Ht(M,DP),p > L

H,(M,
H,(M,

u(1))ry
H2(M,D2)
Ht(M,Dp),p > 2

t/(1)-functions
constant U(1)-functions
t/(1)-bundles
U(l)-bundle O-gerbes
U(l)-bundles with connection
I/(1)-bundle O-gerbes with connection
flat U(l)-bundles
flat U(l)-bundle O-gerbes
U(l)-bundle gerbes
U(l)-bundle gerbes with connection
t/(l)-bundle gerbes with connection and curving
flat U(l)-bundle gerbes

It is to be understood that the right hand column of the above table refers to equivalence
classes of geometric object, that is, isomorphism classes in the case of bundles and stable
isomorphism classes in the case of bundle O-gerbes and bundle gerbes.
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Recall that bundle O-gerbes are defined as functions on Y[2] and bundle gerbes are
defined as bundles over Y[2]. Since there is an equivalence between bundles and bundle
0-gerbes we could also think of bundle gerbes as bundle 0-gerbes over Y[2]. Thus there
is a hierarchy

functions
J

bundle O-gerbes

+
bundle gerbes

where each object is built out of the preceding object and a submersion Y -> M.
Note also the similarity in the definitions of bundle O-gerbe connections and bundle

gerbe curvings. In both cases we have a differential form on Y satisfying the condition
that applying ô gives the curvature of the object over Y[2].

4.2 Gerbes
Gerbes are the most well known geometric realisation of. H?(M,Z(p)ù. We shall re-
view some relevant results about gerbes, for a detailed account see [5]. It will suffice for
us to think of a gerbe as a sheaf of groupoids. Isomorphism classes of gerbes are repre-
sented by classes in Hï(M,Z(\)ù.To each bundle gerbe there is an associated gerbe
and equivalence classes of gerbes are in bijective correspondence with stable isomor-
phism classes of bundle gerbes [38]. It is possible to define certain differential geometric
structures on gerbes which are called a connective structure and a choice of curving.
Under the bijective correspondence these are equivalent to a connection and curving on
a bundle gerbe. Gerbes with connective structure are classified by Hg(M,Z(2)p) and
gerbes with connective structure and a choice of curving are classified by Ht(M,Z(3)p).

We wish to demonstrate that gerbes are to bundle gerbes what bundles are to
bundle 0-gerbes and thus remove the ambiguity in our bundle gerbe hierarchy. We
briefly review the construction of a gerbe from a bundle gerbe in [3S]. Since a gerbe
is a sheaf of groupoids we need to define a category over each open set. The objects
corresponding to U C M are bundle gerbe trivialisations over U. The morphisms are
morphisms of bundle gerbe trivialisations over Yrr : "-'(U)- A gerbe is a bundle of
groupoids in the sense that over each m we have the fibre of a bundle gerbe which is
a groupoid with objects defined by trivialisations.

Consider a bundle O-gerbe (g,Y,M). Over U C M there exists a trivialisation
h : r-L(U) + ,St. Given ä', a second trivialisation over [/, there exists a function
8u : U -+ ,S1 such that h' -- h - T*qu.We may define a bundle with trivialisations over
[/ given by ou(x): (r,h(s"(r)). The transition functions will be identical to those of
the original bundle 0-gerbes. If we replace h with /¿' it is clearly seen that on overlaps
qvLqv: 1 and so we have a function q i M -) ,S1 which defines an automorphism
of bundles. The fibre of the bundle may be considered as made up of bundle O-gerbe
trivialisations with any two differing bV q(*) € ^91.

This analysis suggests a refinement of the bundle gerbe hierarchy described above.

38



functions
/\

bundle O-gerbes bundles+J
bundle gerbes gerbes

There is no simple diagrammatic representation of gerbes such as we have for bundle
gerbes.

4.3 Bundle 2-Gerbes
We would like to construct a geometric realisation of H3(M,Dv¡. This leads to the
notion of a bundle 2-gerbe which has been developed in la\. We use a slightly different
approach which is more suited to the bundle gerbe hierarchy. We shall require bundle
2-gerbes for some applications in Chapter 8.

First we must deal with a matter of notation. Consider the fibre product spaces )f [zJ

and X[3] associated with a submersion X + M. We may define three projection maps
r¿ : /13) + Xl'l,i e {1, 2, 3} by omission of the ith component of X[3]. For example
.rt(ïrrz,îs): (nz,ø3). If there is a bundle O-gerbe or bundle gerbe P over X[2] then
this may be pulled back by each of these projections. We will use the notation

: 
""LP: n;'P

Using this notation the bundle gerbe product can be written as a stable morphism of
bundle 0-gerbes

PtzØ Pze ? Prc. (4.1)

This notation extends to projections Xþ+Ll + Xtpl for any positive integer p.
We now examine what happens if we replace the bundle O-gerbes in (a.1) by bundle

gerbes. A choice of such a stable isomorphism is equivalent to a choice of bundle gerbe
trivialisation such that there is a bundle gerbe isomorphism

: rLtp

Ptz

Pn
Pzs

Pn Ø Pzt : Prs 8 õ(Jt t) (4.2)

The collection of trivialisations .[23 will be referred to as the bundle Z-gerbe product,
.I. Observe that over X[a]

PnØ PzsØ Pu :Pr¿ a õ(Jrrt)8 ô("Ire¿) - PuØ 6(J124)8 ô(Jæ4). (4.3)

We would like to write 6(Jrrs) I ô(¿s4) : 6(Jw I Jre¿) but this is not true since
the symbol I represents the bundle 0-gerbe product which is a contracted tensor
product of bundle O-gerbes which have the same base space. Instead, given bundle
0-gerbes (L,X) and ("I, Y), with projections X + M andY + M we define a product
(LØo J,X x¡¡ y) as the bundle 0-gerbe with fibre over (ø,g) given by L,Ø Ju. It
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is easy to show that given trivial bundle gerbes (õ(L),X,M) and (ô(/),Y,M) there
is an isomorphism ô(¿) S õ(J) : 6(L Øa J). We shall refer to this product as the
tr i,ui, øli,s ati, o n p ro du ct.

We can now express (4.3) in terms of trivialisation products as

PtzØ PzzØ Pu: PuØ6(Jt t8¿ Jrs¿) - Pt4Ø6(h24Ø¡ Jzs+). (4.4)

Since we have two trivialisations of the same bundle gerbe there exists a bundle O-gerbe
A12s4 on ¡[aJ, called the associator bundle T-gerbe, satisfying

ln-LArzsES ("Irzs g¿ "Irs¿) : (JpaØ¿ Jzza)

There is a technical point to be dealt with here. Up to this point we have not needed to
know anything about the base spaces for the trivialisations when considered as bundle
0-gerbes. For the formula above to make sense \rye need the bundle 0-gerbes on both
sides to have the same base. There is no reason for this to be true in general, however
since we are really only interested in Apsa on¡lal *. can get around this problem easily.
We just take the fibre product over Xlal of the base spaces from each side and assume
that we are actually dealing with the pullbacks to this product by the appropriate
projection maps. The resultant bundle O-gerbes still define trivialisations and Apsa is
well defined. Throughout the rest of our definition of bundle 2-gerbes we shall assume
this construction is used and will not specify base spaces for trivialisations.

Now suppose that there is a trivialisation o,esa of ,4.14a which we call the associator
function. Recall that if Ap3ais a bundle 0-gerbe ouer Xlal,

^91

ylt)

then a16a is a function Anz¿ ì' ,Sl satisfying 6(ørrtn): g. Furthermore we require that
ø16a satisfies a coherency condition over X[5]. Consider the series of bundle O-gerbe
isomorphisms given by each of the embeddingr ¡lal -¡ ¡lsl

¡r-LAns+Ø (Jt t8¿ "Irs¿) : (Jn¿,Øo Jzy) (4.5)

r-LAnzsS ("Irzs 8¿ "Ires) _ (JnsØd Jzss) (4.6)

r-LAn+s Ø (Jn¿g¿ "/r¿s) : (Jns Ø¿ Jz¿s) Ø.7)
¡r-r Arz¿s 6l ("Ire¿ O¿ Jr¿s) : (Jres B¿ "Is¿s) (4.S)

r-L Aztas Ø (JzM Ø¿ Jzas) : (J2s5 Ød Jsas) (4.9)

Consider the trivialisation product of (a.6) and (4.8)

(n-'Arrr, Ø (Jrn 8¡ Jrss)) Ød (tr-rAlsas Ø (Jvr 8o Jr¿s))

This is isomorphic to (Jes 8¿ Jze¡) 8o (/r¡s 8¿ Js¿s)

Jns Ø¿ Jzss Ø¡ Jßs Ø¿ Js¿s
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and using (a.9) this is isomorphic to

Jns Ø¡ "Iras 8¡ (n-'Arrn, Ø (Jrsn g¿ Jz¿s))

If we continue this process using the remaining isomorphisms (4.5) and (4.7) we end
up with

¡r-LAzs¿sØ¿¡r-rAlr,¿sØ¡r-rA:r¿z¿Ød ("Irzs 8¿ Jr¡s) 8¿ ("Irs¿ O¿ Jr¡r).

Using the trivialisations of the associator bundle O-gerbes this implies that there exists
a function, Íns¿s, on X[5] such that

ausa Ø arz+s Ø azà¿s : ørzss I ørs¿s I r-t l:r¿z¿s

We call Í1¿zç the coherency function.
We now return to our definition of a higher bundle gerbe. Consideration of the bundle
gerbe hierarchy leads to the following

Definition 4.L. laalLet X + M be a submersion. Let (P,Y,¡tzJ) be a bundle gerbe.
Then the quadruple (P,Y,X,M) is a bund,Ie 2-gerbe if there is a bundle gerbe stable
isomorphism

P.pØP2stP:^í.

such that the corresponding associator bundle O-gerbe is trivial, and the coherency
function is identically 1. These last two conditions are called the associator trivialisa-
tion and the coherency condition respectively. The stable isomorphism together with
the associator trivialisation and the coherency condition is called the bundle 2-gerbe
product.

This definition corresponds to Stevenson's definition of a stable bundle 2-gerbe 1441.
The bundle 2-gerbe (P,Y, X, M) may be represented diagrammatically in the following
way:

We may define pullbacks, products, duals, morphisms and trivial bundle 2-gerbes by
analory with the definitions for bundle O-gerbes and bundle gerbes.

By following the lower dimensional cases we may define connections and curvings by
choosing a bundle gerbe connection and curving on (P, Y, Xlz)¡ and a 3-form u e Q3(X)
such that õ(u): ø where ø is the 3-curvature of (P,Y,Xl2l). The 3-form is called
the 3-curving, the curving on (P, Y, Xl2)) is called the 2-curving and the connection
on (P, Y, Xl2\ is also referred to as the connection on the bundle 2-gerbe. We shall
sometimes refer to a bundle 2-gerbe with connection, 2-curving and 3-curving simply
as a bundle 2-gerbe with curvings. There is essentially no difference between the

P
J

ylzJ v+t

Jylz) = X
+
M
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connection and the curvings, a connection could be referred to as a l-curving however
we shall continue to use the familiar terminology. The f-curuature of a bundle 2-gerbe
is a 4-form O e O4(M) satisfying r*O: du. A bundle 2-gerbe is fl,at if the curvature
is zero. For bundle 2-gerbes with curvings we also require that the bundle 2-gerbe
product J and the associator trivialisation a arc D-trivialisations.
Proposition 4.1. Associated to euery bundle Z-gerbe with curuings is a class in
H3(M,D3).
Proof. See [44]. ¡

AII constructions and operations involving bundle gerbes can be carried out for
bundle 2-gerbes. We describe some which are relevant here (see [aa] for more detail).

If there exists a bundle gerbe R + X such that there is a bundle gerbe morphism
ó(n) = P over Xt2l which is compatible with the bundle 2-gerbe product and associator
function then the bundle 2-gerbe is called triuial.

The set of D-stable isomorphism classes of bundle 2-gerbes with 2-curving form a
group under the tensor product, which is defined by analogy with the bundle gerbe
case.

A flat bundle 2-gerbe has a flat holonomy which is a class in H3(M,t/(1)).
A D-trivial bundle 2-gerbe with curvings has a trivialisation with connection and

curving such that the curvature 3-form of the trivialisation is equal to the 3-curving of
the bundle 2-gerbe.

A trivial bundle 2-gerbe with curvings, (P, Y, X, M; A,q,r) has a D-obstruction 3-
form X. If y € 08(M) then for any bundle gerbe (Q, X;.B, () which trivialises (P; A,r¡)
there exists a bundle gerbe (R, M; C, ¡^r) such that Q Ø ¡r-L R is a D-trivialisation of
(P; A,r¡,v).
Enample 4.1. l[ lThere exists a tautological bundle 2-gerbe associated with any closed,
2z'-integral4-form O on a 3-connected base M. This is defined by the following diagram

Qlr)
.1,

LoM 3 PoM
+
M

where Qlr] +.Cs is the tautological bundle gerbe with curvature 3-form u : Is, eu*A.
The 3-curving is freu*A and the product is defined by composition of paths inCIeM as
in the turnrllo crarho n¡ca \Ã/o noorl lltf +al¡a ?-¡nnno¡iarl on fhof O^(^/t\ ic r)-annnanfarl

UugUggu\¿'¡)L9a

and hence the tautological bundle gerbe is well defined.
Erample 4.2. l44l The bundle 2-gerbe associated with a principal G-bundle Pç ) M,
where G is a compact, simply connected, simple Lie group, is defined by the following
diagram:

el"l
+
G

sI
PEt = P6

+
M

42



where g is defined as in the bundle gerbe case (see $3.3) and Q + G is the tauto-
logical bundle gerbe with Dixmier-Douady class given by the canonical generator of
Ht(G,Z) : Z. The main result regarding such bundle 2-gerbes is that the Cech 4-class
is equal to the first Pontryagin class of the bundle P.

Classes in H3(M,D3) may also be represented by 2-gerbes. We shall not give a
proper definition of these here since it is quite complicated and is not of direct reievance.
Full definitions may be found in [7] or [44]. Essentially if we think of a gerbe as a sheaf
of groupoids then a 2-gerbe is a sheaf of 2-groupoids. These are defined in terms of
higher categories. A 2-category consists of objects, l-arrows (morphisms) and 2-arrows
(transformations between morphisms) with a number of axioms relating to composition,
associativity and identity. A 2-groupoid is a 2-category with invertible 2-arrows and
l-arrows which are invertible up to 2-arrows. A 2-gerbe is a sheaf of 2-groupoids with
a number of gluing and descent axioms. Given a bundle 2-gerbe the objects of the
2-groupoid associated with an open set are defined by the trivialisations of the bundle
2-gerbe over the set. The l-arrows are morphisms between the trivialisations. Since
trivialisations of bundle 2-gerbes are bundle gerbes over some space their morphisms
may be thought of as bundle gerbe trivialisations. The 2-arrows are morphisms of these.
It is a result of Stevenson laa] that this construction gives a 2-gerbe with the same class
in HA(M,Z) u the original bundle 2-gerbe. There are differential geometric structures
on 2-gerbes which may be used to obtain a full Deligne class in Ht(M,Dt) [6]. We do
not have a direct relationship between these and bundle 2-gerbes with connection and
curvings however we shall see that such a relationship may be established indirectly
via the Deligne class.

Bundle 2-gerbes and Deligne Cohomology

We prove here the main result on bundle 2-gerbes which places them in the bundle
gerbe hierarchy.

Proposition 4.2. The group of D-stable isornorphism classes of bundle 2-gerbes with
2-curuing is i,somorphic to H3(M,D3).

This extends the results of Stevenson [aa] which state that a bundle 2-gerbe with
connection and curving defines a Deligne class and that a trivial bundle 2-gerbe has a
trivial Õech class.

Proof. We shall first describe the element of. Hï(M,23) representing a bundle 2-gerbe.
Suppose we have a bundle 2-gerbe (P,Y,X,M), with connection, 4,2-asving 4 and
3-curving u. On Uo c M define

va: s*au.

Now consider the family of bundle gerbes obtained by pulling back the bundle gerbe
(P,Y,¡tzJ) with

(so,sp) :Uop -+ Yl2).

Denote these pullback bundle gerbes by (Pop,Y"p,U"p).They have induced connection
and curving Aoþ and r¡.,p respectively. Since each base space Uop is contractible, each
bundle gerbe Pop is trivial. Thus associated with each Pop is a D-obstruction 2-form
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X.,g. Recall that if we choose trivialisations with connections, Loþ - YaÞ and let
F¡.u denote the curvature of the connection on Lop, then yo,B is defi¡ed by Fr,p :
rloþ - ¡r*X.,p. Also recall from $3.2 that the D-obstruction form satisfres dyop - ù)aþ

where uop is the 3-curvature of Pop. The 3-curving z is defined such lhal õ(u) : a
and it follows that

dxop:tt)aþ:uP-uo

Consider the isomorphism over Uop,

PoPØPPr:PotØD(J"P)

Using the trivialisations .D¿¡ this becomes

õ(L"p) Ø 6(Lp) : õ(L"ì Ø D(J"p.).

The D obstruction form for the left hand side is X.,p I Xh, and for the right hand
side is X.'1.We have assumed without loss of generality that the D-obstruction form
of. D(Jrpr) is zero rather than a general closed, 2er-integral form. If this were not the
case then we could redeûne it as described in $3.2. Comparing the curvatures of both
sides we have

dxop * dxh: dxot: u't - t/o (4'10)

Also in terms of the definition of x we have

Xclp * Xh - Xr1 : rlaB * Qh - rlot - Ftop - Fnu, * F¡'.,
: FJop, - Fnop - Frpr l Ft,., (4'11)

so this difference is closed and 2n'-integral. Hence rile may apply proposition 3.3 and
there exists a bundle O-gerbe KopT with eurvature -Xoþ - Xh * Xq such that

Lop Ød Lp, : Lo, Ød Joh Ø¿ r-rKoh e.L2)

Since Kop, is a bundle 0-gerbe on (Jop., it is trivial and has a D-obstruction 1-form
noB, which satisfies

dnoh:-Xaþ-XhlXat.
Tr-:-- /,r 1o\ ---^ -^+uùrrrË \+.Lá) wu 6vü

Lop Ød Lp, Ød L1o : Loo Ø¿ JBlo Ød r-L Kprd Ød Jopõ Ø¿ r-t Koad
: Lo¿ Ød Jo$ Ø¿r-LK.,ú Ød Joh Ødr-rK.,¡.".

Furthermore, using the definition of the associator bundle we have 
.

Lo6 Ød Joú Ø¿ Jopl Øt n-t Aopro Ø¡ r-L Kpt¿ Øo r-L Kopd -
Lod Øo Jo$ Øa Jog Øt T -LKoú Øo n-LKoh. (4.13)

Thus over Uahõ

Aoþtõ Ø Kpld Ø Kaþ6: Krtõ g Kah Ø.14)
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Let hop, be the trivialisationof. Kop,,. Using these trivialisations together with Aaþt6 :
D(oopr¿), equation (4.14) becomes

D(ooBr¿) Ø 6(h¡'"õ) ø 6(h"pd) : 6(hoø) Ø 6(h"p) (4.15)

The D-obstruction of the right hand side is Kaú I KoB, aîd for the left hand side is
nglo1-nop6. The curvature of each of these is -Xaþ-Xh-Xtõ*X.,õ, and by aversion
of proposition 3.3 for bundles there is a function gohõ on Uoprs which satisfies

dlog(gopr6) : -oop, * nop¿ - Ka.,r6 * npla (4.16)

and

aøþtõ Øt hptõ Ø¡ hapõ :7t* goþtõ Ø¡ hotd Øo hoh e-17)

on AoBr6 x¡a KBld xu Kagõ xu Ko$ X¡rr Koh as a fibre product of total spaces of the
respective bundle O-gerbes. F\rrthermore it may be shown that the coherency condition
implies that

thõe' 9aþõe' 9aþtõ : 9age' 9aþte- (4.18)

on Uop,r6r.
The Deligne class is given by

(go|r¿, Koþt,Xoþru.,)'

In trivialisations h could be replaced by sections since these notions are equivalent for
bundles. Similarly the D-obstruction lorm nop., could be replaced by the pull back of
the connection on Krh bV this section. We have used the more general terms above
to highlight the role of the hierarchy, and because we believe that the language of
trivialisations and D-obstructions has potential use in dealing with higher objects.

It appears that the connection form A was not used in this derivation, while it does
not appear explicitly it is involved. When we trivialise Pop information about A is
carried in the connections on the trivialisations Lop. The local one forms rc depend on
both the connection of the bundle gerbe and the connections on the bundles Jrzs.

Suppose we have a bundle 2-gerbe (P,Y,X, M; A,q,v) representedby (gon¿t KapltXoþ,u.).
To prove that this gives an isomorphism \rye first show that the Deligne class is inde-
pendent of all choices in the construction. Suppose we \¡/ere to replace hop, by ñ,opr.

These are both trivialisations of the bundle 0-gerbe Koh à Uqg so they differ by a
function pap1. Comparing the two versions of equation @.L7) obtained from the two
choices we have

aogtd Øo a;à1õ Øõ n*pptd Ød r*Pop¿ : T*ãogtõ Ød n* 9iàt¿ Øõ lt*Po-rt Ø¿ r*Popt (4.19)

and so we have

gah6:9a01$(P)..Pro Ø'20)

Recall that the local connections Kqp., wlte defined as D-obstruction forms for the
bundle O-gerbes Koh. Changing the choice of trivialisation changes this D-obstruction
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form by the l-curvature of the function defined by the difference of the two trivialisa-
tions so we have

ñoßt : noh * dpoh Ø.21)

Together equations (4.20) and (4.21) change the Deligne class by a trivial cocycle.
Now suppose that we change LoB to Lop. These differ by a bundle with connection

Toþ ) Uop. Comparing the two versions of equation (4.L2) we have

n-rTog Ø¿ r-LTh - T-rTat Øo Joh Øa r-L Ropt Øa J[p, Øõ T-1Käþ.t (4.22)

so the connection on KoB, changes by B"B* BBr- Bot, where B.,Bis the connection
on Top and hence the D-obstruction form nop, is changed in the same way,

Êoþt : noh * Boþ * Bp, - Bo, Ø.23)

Under the change from Lop to Lop the D-obstruction forms X.,p wiII change by the
curvature ofTop,

*.oþ: X.,p * d'BoB Ø.24)

Together equations (4.23) and @.2\ change the Deligne class by a trivial cocycle.
The final choice that we have made is of the sections so. For each choice of section

there is a trivialisation Ro, ã bundle gerbe over r-L(Uo) which is defined by.Ro -
(1, so)-lP, where P is considered as a bundle gerbe on Yl2). Then n-L Pag : Ri, g Rp
and a different choice of section, 5o defines a bundle gerbe €o on U" satisfying Ro -
Ão B n*{o. Thus a change of section changes PoB by

Þoþ : Pop Ø Ei Ø €a Ø.25)

If {" has curving ¡,lo then the 2-forms /rp and hence the D-obstruction forms X.,p change
by pp - þo. The local 3-curvings may be thought of as a D-obstruction form for the
trivialisation R" so they change by dp" and once again we have a trivial contribution
to the Deligne class.

Next we claim that this assignment of a Deligne class to a bundle 2-gerbe is a
homomorphism. Since the 3-curving of the tensor product of two bundle 2-gerbes is
the sum oftheir respective 3-curvings, and the local 3-curvings are defined by pullback,
then it is clear that the local two curvings will be additive under tensor products. The
lnnql 1-nrrrr¡inrra ¡nrl ennnaefinnc qra hnlh rlaf,noá oc D-nlrafrrr¡finn fn.-o fnr o Ì¡rrnrllo
gerbe and bundle O-gerbe respectively. Since D-obstructions are additive under tensor
products in both of these cases then so will the local 2-curvings and connections. The
transition functions may be thought of in similar terms as a D-obstruction defined in
terms of two trivialisations of a bundle O-gerbe and hence the assignment of a Deligne
class preserves the tensor product of bundle 2-gerbes with curvings. To see that this
gives a homomorphism between equivalence classes we show that a D-trivial bundle
2-gerbe has a trivial Deligne class. Let Q + Y be a D-trivialisation of the bundle 2-
gerbe (Q, X,Y, M). The 3-curvature øg of Q satisfies {dq : ¡/, where z is the 3-curving
of P. Using a section so: Uo + Y we pull back Q to a bundle gerbe Qo. This bundle
gerbe must be trivial so let Ço be the D-obstruction form. This satisfies

dqo: s*oaq: s\v : uo
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If. R" is a trivialisation of Q" then the isomorphism

Poþ: q\Ø Qø (4.27)

induces an isomorphism ô(.0" p) : õ(RL) S ô(.Rp). This means \rye may define bundles
N"B which satisfy

Loþ : Bå s Rp Ø n-r Nag Ø.28)

We may now find an expression for the D-obstruction form for P"p which is defined
by r*X.,p : Íoþ - Fto' Since Q is a D-trivialisation then from equation (4.27) we
have f.,p : Íep - fep where the terms on the right are the curvings induced oî Qo
and Qp from that of Q. Equation (4.28) gives an equation for the curvature of. Lop,
FLop : Fqp - Fe.*n-rFxoo. Since ll"p is trivial it has a D-obstruction form nop
which satisfies dno7: FNop. Putting these together we get

r*Xop : fgp - Íep - Fqp * Fe, - r*d,nop

- r* qp - if* qo - r* dnop
(4.2e)

and so

X.,þ:QP-8o-dna7 (4.30)

Next we need a D-obstruction form for Kopr. First observe that we may express
the bundle 2-gerbe product in terms of Q, using Pop Ø Pp, : Pot Ø D(J"p) to get
q;ØQoØQbØQo : QLØQ,Ø D(J"p). Using the trivialisations .Ro we may express
this as a difference of two trivialisation and define a bundle Moh such that

Ã;sRpØRbØRt:nås hØJonØr-rMop? (4.31)

The combination of .R terms is actually a D-trivialisation since the sum of the D-
obstructions cancels so we may assume that Moh is flat.

Substituting into equation (4.12) gives

Kopt : ALp I Nø Ø ¡fåp I Mah Ø'32)

The D-obstruction form is defined by r*n.,p.r: AKop., - dlog hoh. A formula for the
connection may be obtained from equation (4.32),

AKoe, - ANop ¡ Axø, - A¡rop ¡ Au,ø., (4.33)

where the terms on the right are the connections on the respective bundles. Let e"B be
a trivialisation of ALp and let eop, be a trivialisation of Mopr. Then using (4.32) we
may define two trivialisations and hence define functions papl on Uop, which satisfy

hogt : e"aeøÇ,]eoptr* Popt (4.34)

Thus we have

d,Ioghopr: dl.r,ge..p * dlog Çp, - dlog(o, * dlog eaþt - r*dlogpop? (4.35)
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Observe that A¡¡.u - dlog("p : T*rt.,1 by definition. Also, since Mop, is flat and is
defined on a contractible set then \Me may assume that we have a flat trivialisation so
AMoþr: dlog eopr. Combining all of this we have

Koþ-y : noþ * nBt - nat * dlog pop, (4.36)

The final step follows the same pattern however the arguments will be simpler as \¡/e
are dealing with functions. First use (4.14) to compare ¿ with ( and e. Substituting
this expression for a and the expressions (4.34) for the ñ, terms into (4.17) will Iead to
the cancellation of all ( and e terms leaving

9ap16: 6(ò"pto (4.37)

thus we have a trivial Deligne class

(goprd,KapltXaptuo): (õþ)"pt¿,õ(n)"ø* dIogpoBr,6(q)"8 - d'noB,d'qo) (4.3S)

and the assignment of a Deligne class to a D-stable isomorphism class of bundle 2-
gerbes is a homomorphism.

To show injectivity of this homomorphism we shall show that the Deligne class of
a bundle 2-gerbe is trivial only if the bundle 2-gerbe is D-trivial. The corresponding
result for ô-trivialisations and Õech classes has already been given by Stevenson [a4].
This means that if a bundle 2-gerbe is not ô-trivial then its Deligne class is not trivial,
so we may af¡sume without loss of generality that our bundle 2-gerbe is ô-trivial, but
not D-trivial. F\rrthermore by standard arguments this trivialisation may be given
connection and curving which are compatible with the trivialisation. In this case there
exists a D-obstruction form ( e Cl3(M) which is defined by r*C : v - aq, where u
is the 3-curving of the bundle 2-gerbe and uq is the curvature of the trivialisation Q.
By assumption the D-obstruction form is non-trivial, this implies that ( Ç Ol(M). To
find the Deligne class of this bundle 2-gerbe the arguments above, where the Deligne
class of a D-trivial bundle 2-gerbe was calculated, still apply with the exception of the
local 3-curving, which is now given by ,o - dqo * (. Thus we have

(gopr¿, Kagt¡Xagtuo) : (6(ò"øa,6(n)"ø * dlog poø,õ(q),p - dnop,dq" + e)
: D(p,n,q) * (1,0,0, () (4.3e)

Since ( f fi,i,Quí) the ciass (i, û,0, () is noi; D-exaci, so rrye have shown ihai a bun<iie
2-gerbe which is not D-trivial cannot have a trivial Deligne class.

Finally we need to show that there exists a bundle 2-gerbe with connection and
curvings which is represented by any given Deligne class (gop"6tK.,þ" ¡Xap.u,'). Define
this bundle 2-gerbe by

T* ØT
J

¡Uri = UUei
J

uUei 3

T
.t

IJU¡
J
M
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where the projection IIU¿¡ + IJU¿¡ is the identity and ? is the flat D-trivial bundle.
This basic structure rüas suggested by Danny Stevenson. The 3-curving al m € U¡
is u¿. Clearly s\u - vo- The 2-curving on IJU¿¡ is y¿¡. The local 2-curving is the
D-obstruction form f.or PoB. In this example PoB is simply the restriction of the trivial
bundle gerbe over IJU¿¡ to Uop. A trivialisation is given by T"p. Since Frrj : 0 the
D-obstruction form for Pop is Xop. To define the bundle 2-gerbe product we need to
consider the following trivial bundle gerbe

T* ØT
J

IJU¿¡I =

The bundle 2-gerbe product is defined by a D-trivialisation of this bundle gerbe, J¿¡¡.
We define this to be the trivial bundle onIIU¿¡¡ with connection at m € [/¿¡¡ given by
K¿jn.

Now we would like to find the local connection 1-forms. It might appear that these
would have to be trivial since the bundle 2-gerbe connection is, however the product
also carries information on the local l-connections. We know from equation (4.12) that
there is an isomorphism of bundles with connection

Toþ ØTp, : Tot Ø Joh Ø Käp, (4.40)

where we have used the fact that the projection is just the identity to pull back all of
these toUopr. The D-obstruction form for K.,pris now just rcop". This is because the
?'s have zero connections and flat trivialisations so their D-obstructions are zero.

Finally we define the associator function on lUo¡¡, by g¿¡¡t which satisfies the co-
herency condition and so we have a bundle 2-gerbe which, by construction, has Deligne
cla^ss (g*p., õ t Kaþ1¡ Xop, u,,) .

!
It is sometimes possible, for example when y -s ylz) is a fibration, to calculate the

transition functions of a bundle 2-gerbe by an easier method as described by Stevenson

[a3]. We shall give a brief outline of this method. It applies when the trivial bundle
gerbes (Pop,Yop,U"B) admit a section o¿p : Uop + Y"p. Recall that unlike bundles,
trivial bundle gerbes do not necessarily admit a section (see comments after lemma
3.2). If they do then we have a map o¿p1 : (Joh - YJ'ì, given by (oo", ohooop) where
optooop is the mapYprvY.,g -Yø which is implicitly defined by the bundle 2-gerbe
product. TJse oop, to pull back the bundle P + Yl2l to Pop., + (Joh. These bundles
play the role of Kop, in the general method. We now continue as in the general case

by choosing sections äop" (which are equivalent to trivialisations for bundles) of. Pop,
which then satisfy equation (4.I7) (with notation adjusted for sections),

aog6hpldhaþ6 : gafulhaghapl

With the presence of sections rather than trivialisations the D-obstruction forms used
to define the full Deligne class may be replaced by the pullbacks of the relevant con-
nections and curvings by the sections.

T
+

IfUu¡*
J

IfU¿¡*
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We conclude our discussion of bundle 2-gerbes with two constructions involving the
cup product in Deligne cohomology which provide concrete examples and demonstrate
the usefulness of the geometric picture of Deligne cohomology which bundle gerbes
provide.

The Cup Product of Two Bundles

Let L and J be two bundles over M. Then there is a bundle 2-gerbe defined by the cup
product LUJ.If ^L and "/ both have connections then ^LUJ has a 2-curving. In this case
the Deligne class is (hi,iq' ,ffioþtBt,log(gop)Fe, Ao AF¡), where the Deligne classes of
.L and J are (gop,A.') and (hop,Bo) respectively, rrùaþ1 : log(g"r) -Iog(gB)-lo1þ"p)
is the Chern class of .L and .t'¿ is the curvature of "/. We define the bundle 2-gerbe
LU J by the following diagram:

gU J
J

SLxM
,,ï,

(Ix^91) x*(JxSt) 3 LxnJ
J
M

where the map (g,nt) is defined by (g,nt)(1,0,j,ó): (O,"tU)). The fibre product
bundle L xn J with structure group ,S1 x 51 is often written as .L O "I. We take the
bundle gerbe product to be the trivial and the associator function to be identically 1.
The bundle gerbes Pop ãîe given by g U J over (g"B,m). We may define sections of
these bundle gerbes and so use the simpler method for calculating the Deligne class.
Recall that we may write g U J as

J-n
J

RxZxM 3 lRxM
J

SLxM
Define sections oop by

oaþ : (log(g"p), äz) (4..4f.)

The section oaþt : Uoh + (R x Z x M)"p is then given by

oag.r: (log(g""), -m,h,m) (4.42)

Sections hop, of the bundle Pop, ãre tl"P' where ú,, is a local section of "I. We can now
calculate the transition functions

7afuõhaphaþ1 : hPrdhoPt

9aP1Ñ!'1ô tT"u' : tfe'a ¡^'ot
g rrp16t|''t6 

+m'ot ¡;{' ø'r - ¡mE$ 
+maÊa

naþtõ : hifu'
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If the connection is -nB on J-n then the local connection forms given by the pullback
by h are rnohBt as required. If the 2-curving is / : rFp on IR x M lhen o[uf :
Iog(g"p)fu, and the 3-curving is given by A n B on L Xn J.

The general structure of this bundle 2-gerbe demonstrates a hierarchy principle for
cup product structures. Recall that the cup product / U L may be constructed in a
similar way in terms of the cup product bundle, so contained within this cup product
bundle 2-gerbe is a cup product bundle gerbe and within that a cup product bundle.

A second point to note is that this bundle 2-gerbe to some extent resembles the
associated bundle gerbe for a G-bundle. In this case the G-bundle would be the ,S1 x 

^S1
bundle LA J. The 4-curvature of this bundle 2-gerbe is given in terms of the curvatures
of the two bundles,, FyAF¡. This is the image in real cohomology of the first Pontryagin
class of L @ J, which also be the case with a bundle 2-gerbe associated to a G-bundle.
Since this structure group is not simply connected such an associated bundle is not
actually defined, the obstruction being the fact that the tautological bundle gerbe on
,S1 x,Sr is not well defined. In this particular case we are able to build a similar bundle
2-gerbe by replacing the tautological bundle with the cup product bundle.

The Cup Product of a Function and a Bundle Gerbe

Let f be a U(1)-function and let (P,Y, M) be a bundle gerbe with connection A,
curving 4 and 3-curvature ø. The cup product / U P has Deligne cla"ss

Øiî|, noP A P1, n,,þrl o,log" (/)ø)

The second realisation of / U I in $3.5 suggests that this bundle 2-gerbe should be
realised geometrically with the following diagram:

P-n
+

RxZxM =
Mry

where the ûbre over (r, n,rn) € IR. x Z x M is the r¿-fold tensor product of P with
the trivial bundle 2-gerbe product and associator function. The 3-curving is rø, the
2-curving -nq and connection -nA. Pulling back by the section (log"(/), nop,m) we
have a bundle gerbe P-noP over Uop. In this case the local constructions may once
again be simplified however this time the construction is slightly different.

There exist trivialisations Jo of.Po over (Jo, so over (J¿¡ we have trivialisations Jfi'P
of. P-n.p- On double overlaps Jp a JoØr-LLop, for some bundle Loþ ) Uqp, so on
triple overlaps the local bundles are obtained by comparing Jp""u Ø Jr"pt and Jln"',

Jp""u Ø Jrnl"t Ø Jl't - n-'Lþi"" Ø J;""P Ø Jl"ø Ø Jl"
:n-'L-å" 

--' --'t (4'44)

Each Lop has a section lap over [Jop, this allows us to find a section lfi;e . Moreover the
sections I¿p ãre the sections which determine the Dixmier-Douady class of P, so they
satisfy loplpt: Iotgoþt. Using this it is possible to calculate õ(I'[]þ)"ø7d ov€r (Jahõ.

This gives the correct transition functions and the local connections and curvings may
also be obtained without difficulty and agree with what is expected.

lRxM
J

SLxM
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4.4 V-B^rundle O-Gerbes
Consider once again the bundle gerbe hierarchy as given in table 4.1. A general method
for constructing geometric realisations may be approached in the following way. Begin
with some geometric representation, .R, of a Deligne cohomology group ffe. Build
representations of higher dimensional Deligne cohomology in the following way

Hp R

Hp+L . R
+vlzl -|t-

HP+2

3Y
JylzJ 

=

The examples which we have already dealt with are where .R is either a function or a
bundle. Furthermore \rye have shown that when we start with a function the next object
in the hierarchy is a bundle O-gerbe which is equivalent to a bundle. Continuing this
method gives the basic structure of bundle gerbes and bundle 2-gerbes. Attempts to
generalise to higher degree meet difficulties due to the increasingly complicated nature
of product structures and related associativity conditions. In this section we wish to
address the question of whether there is a starting point in the hierarchy below U(1)
functions. This leads to consideration of Z-bundle 0-gerbes.

Since U(r)-tunctions represent f/l(i/,-'LlI)n) then the only iower object in the
hierarchy would be a representative of H0(M,Z(O)p), that is, the set of. Z valued
functions on M. Using these as a basis for a hierarchy we get a new family of objects,
Z-bundle n-gerbes. AZ-bundle 7-gerbe is defined as a bundle 0-gerbe (À,Y,M) where
the function À takes valles in Z.

Proposition 4.3. The group of stable isomorphism classes of Z-bundle }-gerbes is
isomorphic to HL (M, Z(0) ù.
Proof. The arguments of Proposition 2.1 still apply in this case giving an isomorphism
with Hr(M,Z). Frnthermore HL(M,Z) = HL(M,Z(0)o) since Z(0) o: Z. !
We wish to find an analogy with the equivalence of bundle O-gerbes and bundles and
of bundle gerbes and gerbes. This leads us to consider the Deligne cohomology group

Y
J
M

R
J

ylzJ

X
J
M
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HI(M,Z(I)") and the isomorphisms

H'(M,Z(t)o) = HL(M,Z(I) -> lR) = øo(¡¿, U(1)).

To relate Z-bwdIe O-gerbes to our usual geometric representation of degree 1 Deligne
cohomology, t/(1)-functions, we shall require some extra structure.

Definition 4.2. Let (), Y, M) be a Z-bttndle O-gerbe. A Z-curuing on (À,Y, M) is a
map "f :Y -+ lR which satisfies ô(/) : À.

Proposition 4.4. For each Z-bundle }-gerbe there eri,sts a Z-curuing which is unique
up to the puII back of a globally definedW-ualued functi,on on the base.

Proof. Let (À, Y, M) be a Z-btndle 0-gerbe. Choose an open cover {U"} of. M. Let
f o : r-L(Uo) + Z be the family of functions defined by

f"@): ì(s"(zr(s)),s).

Let {/"} be a partition of unity on M and let f : Y -+ lR. be defined by

f (v):\ó"{"{a))/"(s)

Let (y1, az) e Ytzlwith zr(y1) : r(A2): rn. Then

6(Í)(a',aù : Í@r)-f@r): llo..{" {aù) r"@r) - ó,(" @r)) Í"@r))

: lO"{*)[À(s"(rn), az) - À(s"(rn), s1)]

: DÓ"@)x(Yt'Yz)
: À(yr,yr)

Thus \rye see that / is a Z-curving for (^,Y, M).
Suppose there exists another Z-curving, g. Then 6(Í - g) : 0 so .f - g descends to

a function on M. !
The correspondence between U(l)-bundle O-gerbes and t/(1)-bundles also applies

with t/(1) replaced by Z, so we may replace stable isomorphism classes of bundle
0-gerbes with isomorphism classes of Z-bundles.

4.5 BP SL-Bundles
The correspondence between Bp,Sl-bundles and Deligne cohomology was established by
Gajer [22]. This was proven abstractly using sheaf theoretical arguments and also given
in terms of explicit classifying maps using the bar resolution to obtain a realisation
of the classifying spaces. We shall show that this correspondence is suggested by
consideration of the classifying theory of bundles together with our discussion of. Z-
bundle O-gerbes and the bundle gerbe hierarchy.
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We recall some well known results on the classification of bundles (see, for example,
[29] or [16]). Let Pc ) M be a principal G-bundle. There exists a G-bundle EG + BG
such that Pc : tþ-r øG where T/, called the classifying map, is unique up to homotopy.
The space BG is called the universal classifying space and EG -> BG is called the
universal G-bundle. The classifying bundle is a G bundle with a contractible total
space which is unique up to homotopy equivalence.

The results of the previous section may be interpreted in terms of classifying theory.
Since IR -+ ,S1 defines aZ'bundle and lR. is contractible then BZ :,S1. The equivalence
between Z bundles and homotopy classes of Sl valued functions corresponds to the
classifying theory of Z bundles. Given a Z-bundle O-gerbe with Z-cuwing (), V, M; Í)
we define an,Sl-function by Î(*): exp.f(g), where A €r-L(rn). This is independent
of the choice of gr since lor g,y' e r-L(m)

(."p / (y)) (exp /(y')) -1

since )(y', ù e Z. The existence of a%-curving up to a global lR-function is equivalent
to the existence of a classifying map up to homotopy.

We now have the following equivalences of geometric realisations of Deligne coho-
mology:

f

V,bundle O-gerbes
bundle 0-gerbes

<---+ BZ-functions
<-> B,Sl-functions

where the left hand side consists of stable isomorphism classes and the right hand side
are homotopy classes of maps. The case of higher dimensional objects is dealt with by
the following

Proposition 4.5. [22] The group Hr(M,Z) is isomorphi,c to the group of i,somorphism
cløsses of smooth principal Be-2sL-bundles ouer M.

Smoothness of classifying spaces is defined in terms of a differentiable space struc-
ture. For more details see 122] or [33]. In general the iterated classifying spaces BpG
¡ra nnlr¡ rlaf,na¿l if ,? i" AFoli¡- \ÃIho- fhic ic îLo .oco oo^lt ^f tho onaaoo PPla iovav¡¡ vr u¡¡v gtravvD

also an Abelian group. Consider this result for low values of p. When p :2 we have
the usual correspondence between ,Sl-bundles and H'(M,Z) given by the Chern class.
When p : 3 we have Ht(M,%) and B,S1-bundles. Our usual geometric realisation of
Hï(M,Z) is stable isomorphism classes of bundle gerbes so the following result is not
surprising,

Proposition 4.6. p9l fhe set of all stable isomorphism classes of bundle gerbes on
M i,s in bi,jectiue corcespondence with the set of all i,somorphí,sm cløsses of BSL bundles
on M.

Since B,S1 is an Abelian group we could replace B^9l-bundles with B^9l-bundle 0-
gerbes. The bundle gerbe corresponding to a BSL bundle which is referred to in the
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proposition is the lifting bundle gerbe

ESI
J

BST

Given a principal B,9l-bundle on M it is possible to construct a classifying map M +
BBSL. This implies that BBSL is a classifying space for bundle gerbes [38]. This gives
a series of equivalent realisations

bundle gerbes <-> B,Sl-bundles € BBSL-finctions

Note the similarity with the bundle gerbe hierarchy.
Now consider the case p - 4. Since there is an isomorphism between H4(M,V')

and the stable isomorphism class of bundle 2-gerbes on M then proposition 4.5 implies
that there is an isomorphism between stable isomorphism classes of bundle 2-gerbe and
isomorphism classes of BBSL bundles. The cases which we have already considered
suggest that the bundle 2-gerbe corresponding to a BBSL bundle (Pn"sr,M) should
be the following bundle 2-gerbe associated to a BBSl-bundle:

ESL
J

BSL

Bpgtlzl
I
-) EBSL

J
BBSL

,v
Pf;lr, = Pas,

J
M

ol2lt BBSI

,v
3 PaBs,

+
M

Since the relevant local data may not be easily calculated then to prove this we would
need to consider the theory of iterated classifying spaces and the constructions of Gajer
l22l in much more detail. This leads us away from our principal concerns here and so
we have not done this.

Other realisations are obtained by noting that BBSL bundles are classified by
BBBS| functions, and that B,S1 bundle gerbes are equivalent to BBSL bundles ,

so v¡e have the following series of realisations:

bundle 2-gerbes ê B,Sl-bundle gerbes ê BZSL bundles <+ B3,Sl functions

where it is to be understood that we are dealing the appropriate equivalence classes in
each case, that is, stable isomorphism for bundle gerbes, isomorphism for bundles and
homotopy equivalence for functions.
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4.6 Comparing the Various Realisations
We now present a table comparing the various geometric realisations of Deligne coho-
molory which we have discussed. We include for completeness the differential charac-
ters of Cheeger and Simons ([14], [5]). Since the relationship between these and bundle
gerbes is closely relabed to bhe theory of holonomy we postpone a definition and further
discussion until Chapter 7.
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Ho(M,Z(o)o)
Ho (M,ZG) 

")
Hr(M,Z(r)o)
Hr(M,Z(z)r)

Hr(M,Z(t)")
H2(M,Z(z)r)

i H'(M,z(3)")

Ht(M,Z(t)")
H3(M,Z(3)o)

Ht(M,Z(¿)o)

Hn(M,Z(t)r)
Hn(M,Z(+)o)

Hn(M,Z(5)")

V'-btndle O-gerbes
Flat Z-bwdle O-gerbes

Z-bundle gerbes
V,-brondle gerbes
with curving
flat V,-bundle gerbes

Z-bwdle 2-gerbes
V,-btndle 2-gerbes
with 2-curving
fl,at Z-bwdle 2-gerbes

^91-functions
constant,gl-functions

bundle O-gerbes
bundle O-gerbes
with connection
flat bundle 0-gerbes

bundle gerbes
bundle gerbes
with curving
flat bundle gerbes

bundle 2-gerbes
bundle 2-gerbes
with 2-curving
flat bundle 2-gerbes

B,S1-functions

B,S1-bundles
.B,91-bundles
with connection
flat BSl-bundles

BB,Sl-bundles

bundles
bundles
with connection
flat bundles

gerbes
gerbes
with curving
flat gerbes

2-gerbes
2-gerbes
with 2-curving
flat 2-gerbes

deg 1 differential characters

deg 2 differential characters

deg 3 differential characters

deg 4 differential characters

Table 4.2: Geometric Realisations of Deligne Cohomology
Z-functions
constant Z-functions
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Chapter 5

Holonomy and Transgression

In this chapter we consider the generalisation of the holonomy of a bundle around
a loop to bundle gerbes. We show how this relates to local formulae which define a
transgression map in Deligne cohomology. The key to this generalisation is to consider
holonomy as a property of a Deligne class. \Me have already defined the flat holonomy
of a flat Deligne class. The holonomy of a general class in Ho(M,Dp) associated with
a map tþ , X -> M for some closed pmanifold X is defined to be the flat holonomy
of the pullback of the class to X. We shall see how this approach relates to the usual
construction of holonomy for bundles, and then go on to consider holonomy for bundle
gerbes, bundle 2-gerbes and general Deligne classes.

5.1 Holonomy of t/(1)-Bundles
We review the holonomy of principal U(l)-bundles with an emphasis on Deligne coho-
mology which is useful for generalisation to bundle gerbes.

Recall that flat bundles and bundle 0-gerbes have a flat holonomy which is a class in
H'(M,ti(l)). It is useful to review the equations which define the Deligne cohomology
cla"ss in general and in the particular cases of flat and trivial bundles.

The Deligne class (g,A) satisfies

d,logg',p - Ap - Ao (5.1)

If it is flat then we can find U(l)-valued functions satisfying dlog ao: Aa and we have

coþ: 7iþa.Lap (5.2)

The functions cap are constant and define the flat holonomy class. If the Deligne class
has a trivialisation h then

9rr9 : h;'hP
dlogho - Ao -- d,loghp - AB

Proposition 5.1. [5] The øssignment of a flat holonomy to a flat bundle giues an
i,somorphism HL(M,Dv) : HL(M,U(1)) for p > t.

3

4

5

5
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Proof. Suppose we have a flat bundle represented by a Deligne class (g.p, A.) with
flat holonom¡ coþ. We first show that the class in HL(M,U(l)) is independent of the
choices of ao. Choose ø/o satisfying dloga'o - Ao. Then d'r: do * Ko where Ko are
U(l)-valued constants. Thus c'oa: coþ * 6(K)"p and so C and g define the same class
in HL(M,¿/(1)).

Clearly the map (g,A) ¡+ e is a homomorphism. Let (ó(h.), dlogh) represent a
trivial class in HL(M,pn). The corresponding flat holonomy is given by d(þ)ô(q)-t :
õ(h.g-').Since dlogh: dloga this represents a trivial class in H'(M,U(1)).

Given a class c e Hr (M, t/(1)) define a class in Hr (M,Do) by (-e, 0). Observe that
if g is the flat holonomy of (9, .4) then the two Deligne classes (-e, 0) and (9, A) differ
by a trivial class (ô(q), dloga). Therefore the map (g,A) ¡+ c is onto. Also it is clear
that a trivial class in H'(M,t/(l)) Ieads to a trivial class in H'(M,De). Therefore we
have an isomorphism. !

Mostly we shall be interested in the flat holonomy of a bundle over ,S1. All bundles
with connection over ,S1 are flat so they all have a flat holonomy c € HL(Sr, t/(1)) : ,S1.

We shall demonstrate how to calculate this element of ,S1 for a given bundle with
connection. Let (grp,Ao) represent a flat bundle on ,S1 with flat holonomy cop. Since
H2(SL,Z) :0 there exists a trivialisation ô(/¿) : 9. Using this the flat holonomy
becomes coþ : h. . hB' . aoøþ|. By considering log(cop) as a representative of a
class in the Õech cohomology of ,S1 we can use the following diagram to calculate the
isomorphism with de Rham cohomology:

Ao - dlog(/¿")

1o
I

log(a,) - log(ä") -1-> log(c"p)

Thus the l-form Ao - dlog(/r,") of equation (5.4) is the de Rham representative of the
flat holonomy. It is globally defined on ^91 and is well defined modulo 2n-integral forms
since the original Cech class wa-s defined modulo Z(I). To evaluate it as an element,
H("oø), of ^S1 we integrate,

H(",p): exp I o, - d,log(h,). (5.5)
Jsr

Since the flat holonomy class is isonoorph!¿ to the Deligne class we should be able to
write (5.5) as a function of the Deligne class, H(g"p,A"). To do this we would like
to separate the two terms in the integral into separate integrals however they are not
independently defined globally so this is not possible. We shall have to break up the
integral into a sum of integrals on intervals where dlog(h") and Ao are defined, to do
this we use the method used by Gawedski [23].

At the moment we have a Deligne class in terms of some open cover of ,91, denoted
by subscripts a and B. Let t be a triangulation of ^91 consisting of edges, e, and
vertices, u such that each edge is contained wholly within Uo for at least one o. Such
a triangulation is said to be subordinate to the open cover and is guaranteed to exist
since compactness implies the existence of a Lebesgue number [34, p179], we simply
triangulate the circle such that all edges have length which is less than this number
and therefore are contained within a set in the open cover. \Me can express ,91 as a
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sum De over all e € ú, so this should allow us to break up the integral of the global
l-form Ao - dlog(h") into a sum over these edges, but we need to choose an open set
that covers each edge first. For each e \et Upp¡ be an element of the open cover of .91

such that e C Upp¡. Here p : t + "4 is an inder map from the triangulation to the
index set for the open cover of. M L . We can now split up the terms in the integral,

H (".8) : "oÐl I"Ap(") - f.absØrç"¡))

: ."otÐ I"o^",. Ð 
rog(r¿e(:¡)(u)l

where we use the convention that ! represents a sum over all edges and all vertices

bounding each edge such that tfre sigf is reversed for vertices which inherit the opposite
orientation to the corresponding edge. This means that for each vertex there are two
terms with opposite sign, one each for each of the edges bounded by that vertex.
Observe that the following equality follows from (5.3),

!tog(l¿;bxr):ttog(sp1"¡p1ul)(r) -log(hr1,¡)(u) (5.6)
êru êtú

Furthermore the second term on the right hand side is equal to zero since each ver-
tex bounds exactly two edges which give two equal terms with opposite signs in the
summation. The flat holonomy is now

H(",p) : 
U"*o l"o^"r.|. goþ)o(")(r) (5.7)

: H(g"p,A")

This construction is independent of the choice of triangulation. Suppose we choose
another triangulation, f. Since this triangulation must also be subordinate to the
open cover we may assume without loss of generality that p(ê) : p(e). Denote the
flat holonomy corresponding to f by Ê, and denote the two components exp f/, and
e*p H¡. For this calculation is advantageous to expand the sum over the pair e, u as a
sum over u in the following wa¡

Ilog(grt e¡pp¡)(u) : Dloe(grr¿+(o))p(u))(u) - los(g pþ-(u))p@)) (5.s)
Q¡ê U

: D los(grt ¿+@))p(e-t,lt)(u) (5.9)

where 
"* 

(r) (resp. e- (u))is the udi. Oouoded by u such that it inherits a positive
(negative) orientation. Now the difference between the terms corresponding to the two
triangulations is

Hn - Ên : t \og(gop+1o¡)p(e-t¿ll)(t,) - t log(gr1"+10¡p("-toll)(û)

lGawedski did not use index maps explicitly though they were implicit in his construction. They
were used in this context by Brylinski [5] and the terminology appears to be due to Gomi and
Terashima [25]
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Since both triangulations are subordinate to the open cover we may consider pairs
(u, û) which are the unique vertices from each triangulation that lie within a particular
double intersection of open sets. We can replace both summations in the expression
above by a summation over such pairings. Furthermore given such a pairing we have
p(e+(r)) : p(e+(û)) and p(e- (r)) : p(e-(0)).The difference no\ry becomes

Hn - Ên : I log(grr e+@))p(e-(u)l)(r) - Iog(goç"+ço¡)p("-t,ll)(ô)

dlog g oç"+1o))p(e- (,))

Arp-ço¡¡ - Aop+1r¡¡

l._,

T_,

(u,û')

T
(u,ît)

t
(u,û)

Now consider the difierence

H¡_ Èo:+ I" Apr"¡-Dl,o^,e

As with the vertices \rye can pair the edges (e, ê) such that p(e) : p(ê) and replace both
sums with a sum over these pairings to get

Ht t
(e,ê)

t
(e,ê)

-Ht

t
(e,ê)

T
(u,û)

l"o^o - Iuo^",

Ap(.)

Each difference e - ê consists of two components (in terms of vertices), e+ - ê+ and
e- - ê-. Using this to split up the integral into two terms we get

H¿,_ H¿,
r

J"*
ArP¡ * f

J.
Ap(")

-ê+ -e-

Apç"+1r¡¡ - Aoç-1o¡¡

where we have changed to a summation over vertices and used the fact that u - û is
equal to one component each from el(u) - ê* (r) and ê- (r) - "- (u). This term is the
opposite of Hn - II, therefore H : H.

Since the l-forms Appy-dlog hpl¿¡ arc global then the integral defining the holonomy
must be independent of the choice of index map p. This implies that (5.7) should also
be independent of the choice of p. This may be easily verified. Suppose we have two
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such choic€s, po and p1. Then the difference is given by

arê

fI.*o f"o^n - Apo(")' fIn ̂av,çu¡l poL1.¡p,(") 
: II "*o l"oror e po(e)pt(e)

l, 9 r, (Ò o, (,¡ I o or1"¡ p, ç"¡
utê

: fl 9 po(e) ø (e) I p,ç"¡ p¡1o¡ I p]ç"¡ psqo¡

: If 9po(a)ø(u)
!¡ê

_1
-I

(5.10)

since for each u there are two identical terms with opposite signs corresponding to the
two edges which share ?, as a bounding vertex. Note that the global version is not
explicitly independent of the choice of trivialisation, ft,, however we may deduce this
from the explicit independence of the local version (5.7). It may also be calculated
directly this calculation is quite similar to the one described above.

We have defined an element of 51 associated with every isomorphism class of flat
bundle over ^91. It is given by equation (5.7) and is well defined. We would like now to
show how this relates to the usual concept of the holonomy of a bundle with connection
around a loop. Let (L, M; A) be a bundle with connection (not necessarily flat) over
M. Let 7 be a loop in M, that is, 7 is a smooth map ,91 -+ M. Use 7 to pull -L back
to ,S1. Let H(7-L(1,; A)) be the flat holonomy of the pull back bundle. We define this
to be the holonomy of (L; A) around 7.

We would like to give an explicit formula for the holonomy. To do these we need
to examine the Deligne class of a pull back bundle. Once we have this we can apply
equation (5.7).

Suppose we have a map ¡/ 4 M between compact manifolds. Let {Ur},6¿ be a
good cover on M. The set A is finite since M is compact. There is a cover {Vo@) :
ó-'(U")\"€A on lü called the induced cover. If we have a bundle with connection
(L; A) on M , then we can calculate the Deligne class of (ó-'L, N; ó. A) in terms of the
induced cover.

Lemma 5.1. Let (9op,A.) be the Deligne class of (L,M;A). Then the Deligne class
ol (ó-'L, N; ó. A) with respect to the induced couer is (go@)o@),Ao@)) where

got"lo<ø(n) : g"p(Ô(")) and
AO@) : ó* Ao

Putting this together with (5.7) we get

Proposition 5.2. [5][23] The holonornA oÍ a bundle with Deligne cløss (g,A) around
a loop 1 is giuen by

n(g,A);t): fI "*v l"t.'tpr"r 
.ff sp(")p(,) (z(r)) (b.11)
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Now recall the usual definition of the holonomy of a bundle

Definition 5.1. Let (L,M)be a bundle with connection A. Any path in M has a
unique lift through each element of the fibre over the starting point which is horizontal
with respect to A. In particular each loop 7 has a unique horizontal lift f which defines
an autonrorphism of the fibrc ovcr .y(O). fle h,olortont'g of Llte curtr¿ecliort, A uro'urtd 1
is the element of ^91 defined by i(1) : t(0) ' H(l).

Proposition 5.3. [%] fhe holonomy of Propositi,on 5.2 is the sl,rne as the holonomy
of defi,nition 5.1.

We shall relate these two concepts of holonomy by considering parallel transport.
Given a path p € Map(/,M) the horizontal lift p defines a morphism of fibres P¡"p¡ -+
P,$). This is called parallel transport. Two paths p and ¡r' such that ¡r(1) : u'(0)
may be composed and the horizontal lift of the composition defines a composition of
parallel transports. If we consider a loop as a composition of a number of paths then
the holonomy is defined by the composition of the parallel transports along each path.
By breaking up the loop into components Z([ú¿, ú¿..1]) over which P admits sections s¿

then there is an explicit formula for parallel transport over each component:

s¿ (z(¿¿)) -> s¿(1(t¿¡t)) e*p( siA)

rl.' : dB"
Aag : Bp - B"l d'loga"p

_1 -1 -1cagt : 9"þ1ap1øqa"þ

(5.12)

Composition then gives a product of terms which combine to give the local formula
(5.11). This suggests that we have used a rather long and complicated method for
calculating the holonomy of a bundle, however it turns out that our method is useful
as it generalises to bundle gerbes and to higher degrees. In addition to this it allowed
us to demonstrate certain features of the higher theory in a relatively simple setting.

5.2 Holonomy of Bundle Gerbes
To define the holonomy of a bundle gerbe we follow the procedure used in the previous
section. The standard technique for deriving a formula for holonomy of a bundle (as
described at the end of the previous section) cannot be used here for two main reasons.
One is that it turns out that a bundle gerbe has a holonomy over a surface rather than
a loop, so we cannot just choose a direction to integrate around as is the case with a
lnnn SannnÁlrr i+ ic nnt nlpcr r¡¡hat q hnriznntcl lift nr nerrllpl trqnsnnrt rnan r¡¡nnlrì hp

in this situation. This motivates us to define the holonomy of a bundle gerbe by first
considering the holonomy of a Deligne class corresponding to a bundle gerbe.

The Deligne class (g,A,q) of a bundle gerbe satisfies

d,logg.,p, : -Ap.,4 Aø - Aoþ (5.13)

d,Aaþ : Tp - Io (5.14)

If the bundle gerbe is flat then

(5.15)

(5.16)
(5.17)
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ãnd crB, is the flat holonomy class. If the bundle gerbe has trivialisation ä then

noh : hprh;]h"p (5.1S)

d,Iogh,p : -Aoþ*leP-lco (5'19)

To - dko : qp - dkB (5.20)

Now consider the particular case of a bundle gerbe over E, â 2-manifold without
boundary. In this case the bundle gerbe is not only flat, but also trivial. The Õech-de
Rham isomorphism is given by the following diagram:

To - dko

1

opl l¡r- ort

.*oT (l,r^r+ fo-an,ot)

d

Bo- ko +

-logaop - Iog hrp 4 \ogcop.,

Thus the globally defined 2-form n - dk is the de Rham representative of the flat
holonomy of the bundle gerbe. Since H'(E,ti(l)) - U(L) we may evaluate this class
as an element of the circle by integrating over the surface I and taking the exponential.

Thus in terms of bundle gerbes holonomy is defined in the following way.

Definition 5.2. [12] Let (P,Y, M; A,4) be a bundle gerbe with connection and curving
and let ,þ , D -+ M be a map of a surface into M. The holonomy of (P,Y,M;A,rù
ouerE is the flat holonomy of þ*P.

To see that this is well defined consider that when we pull back the bundle gerbe P to
X using tþ the resulting bundle gerbe has an induced curving which we denote tþ*r¡ and
for dimensional reasons has a trivialisation.L. Denote the curvature of this trivialisation
(given some connection which is compatible with the bundle gerbe connection) by Ft .

The 2-form tþrq- F¿ descends to E and its integral over Ð defines the flat holonomy
which is an element of H2(E,U(1)) - t/(1). This is independent of the choice of
trivialisation since a different choice just changes .t'¿ by.a closed 2-form which descends
to E. We shall also see this when we calculate a formula for the holonomy which is
explicitly independent of this choice.

Proposition 5.4. The holonorny of a bundle gerbe with Deligne class (g,A,rù on M
oaer a surfacetþ,D) M is giuenby the following formula of Gøwedski [23]:

n(g,A,!);t) : 
{] "*o lorþ.rto,r 

.l] 
"*, l"rÞ.epe)p(e).lf saod"'tp@)(,þ(u)) (5.21)

Proot. To evaluate the holonomy in terms of the original Deligne class we shall need
to triangulate E. This triangulation, ú, will consist of vertices, u, edges, e, and faces
ó and is required to be subordinate to the open cover {U"}"e,4 Thus there exists an
index map p:t+ Asuch that bcUpp¡,eCUpp¡ andu CUpp¡ forall b,e,1) € ú. The
integral over E can be broken up into a sum ofintegrals over ó,

0

1-,

H(c"pr)
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Applying Stokes' theorem to the second term gives

H(",8): exp (4 ¡rr,,,,* T Ir,-r^r)\
In the second term we have a sum !, Ïuu. If we break ôô into a sum of edges \üe can
write this as | [ where the convention is that the sum is over all faces and all edges

erb

bounding each face, and the integral is given the corresponding induced orientation.

H(c"pr): exp

: exP

exp

exp

exp

\l,r^r*Ð |"-u^r)

4 lrr^r. ä l"{o^r^"¡ + dlog(å' pþ)p(")) - kpr"¡)

\ l,r^r* ; l"{o^r^o * Iu"Log(n01a,1"¡))

Ð I rr ^r* Ì l "Aaoor"t 
. 

nros(h 
pça¡ p1.r {') ))

:.*p(I Ir^, *D I
b Jb 

",bJ"

A p(b) p(.) + | Iog(g pçu¡ p1"l¡,1 (u) )
orerb

D t, \p(b

- log(hpç¡pt,t (u)) + log(äp1u¡pf,l (o)))

. 
E f "o ^0, 

or", . 
nrog(s 

ppl p1")r(,) (r) ) )b

We have claimed in this calculation that certain terms cancel out. Let ,I(e) denote a
term depending only on e, I(e,ö) a term depending only on e and ä and so on. Then
we have used the following results:

I¡(") : o (5'22),",,

I fftr rl : 0 15.23)
LJ-\-r-t - \ t
arerb

Ir1r,a¡ : o (5.24)L
ore,b

The first two are true because for each edge there are exactly two faces with that edge
as boundary and they have opposite induced orientations. The third is true since given
a face and a vertex of that face there are exactly two edges which bound the face and
have the vertex as a boundary component. Furthermore the vertex inherits opposite
orientations from each of these edges. Note that the first two results would no longer
hold if we triangulate a surface with boundary. We shall deal with this situation in the
next chapter.

We now have a formula for the holonomy of a flat bundle gerbe in terms of its
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Deligne class,

Ioo{u)r{")p<q(u) (5.25)
urerb

As in the previous section this formula may be adapted to define the holonomy of a
general bundle gerbe with curving, (P,Y,M;A,rl), associated with a smooth map of
surface into M, ,þ , D -+ M.

This leads us to the required formula

H(s,A,r) : {| exv fundo'I]."0 l"o^0,^"

n(g,A,2);r) : 
{] "*p [urþ.n., 

'l] "*, f "rl,..tpþ)p(e).f 
oorutdqpøtþþ@))

5.3 Holonomy of Bundle 2-Gerbes

For the case of a bundle 2-gerbe we must first establish the notation associated with
the flat holonomy and with trivialisations.

The Deligne class (g,A,n,v) of a bundle 2-gerbe satisfies the following equations:

d,Ioggopr6 : Aprd - Ao$ I Aop¿ - Aoþt
d,Aoh : -Tø*Tat-Taþ

dqop : Yp-uo

(5.26)
(5.27)
(5.2s)

If we assume that the bundle 2-gerbe is flat then we have the following set of equations

ud

t7"g

Aogt
caþtõ

: dqo

: Qp-Qo+dB"p
: -Bp, ¡ Bw - Boþ * dlogaop,

_1 -1 -1: 9oôtdaþtdaolda"haoþ1

(5.2e)

(5.30)

(5.31)
(5.32)

(5.33)

(5.34)
(5.35)
(5.36)

The constants cop"6 define the flat holonomy class.

If we have a bundle 2-gerbe with trivialisation l¿ then we have the following:

Taþtõ : hPrdho)6h.Brhrà,
dLoghop, : Aoh - Icp, * kot - kop

4oþ : -d'lcag*iP-i"
vo- dio : up - dip

If we have a bundle 2-gerbe over a 3-manifold without boundary, X, then it is both
flat and trivial. In this case rve have a Õech - de Rham isomorphism as described by
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the following diagram:

uo - dio

d
1 .õQo-io + 0

1 -d

-kor - BrU 4

logaoB, - log hop, 4 logcoBr6

This tells us that the flat holonomy may be realised as an element of ,St by the following
formula

l. (5.37)H(c"pt¡): exp uo - djo

This suggests the following

Definition 5.3. Let (P, M; A,n,r) be a bundle 2-gerbe with connection and curvings.
Theholonomy of (P,M;A,q,r) oaer 0, closed ?-manifold X with ,þ: X ) M, is the
flat holonomy of. tþ. P.

Over X the bundle 2-gerbe tþ* P is trivial. We choose a trivialisation with connection
and curving. The 3-form defined by the difference between the 3-curving induced by
the pullback and the 3-curvature of the trivialisation may be integrated over X to
define the holonomy.

Once again to find a corresponding formula in terms of the Deligne class we shall
need a triangulation, ú, of X which is subordinate to the open cover used to define
the Deligne class. This triangulation consists of tetrahedrons, faces, edges and vertices
which are denoted by ø, b, e and u respectively. As usual we choose an index map p
with respect to the triangulation ú and the open cover of M.

Replacing the integral over X with a sum of integrals over ur,

0

1,

exp t

H(coprd) - erpÐ i,rrr-t - dipr.¡)

: exP + I.uo1.¡ 
* lu,-i^., ,

lu,-t^.,: exp p* I,-,^.,
: exp 

Ð lrrrr.)p(¿) 
* d,leoø¡pqu¡ - ioþ)

: eXp 
Ð Irrrr.)p(¿) 

* 
fuoror.roru,

u
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where D Ïu-jdo) : 0 since each face bounds exactly two tetrahedrons with opposite
bru

orientations

exp t )p(a) t l"r^.r^u,

f"o^.r^urp(") - d,Ioghp,-¡p(a)p(e) -l- kp(.)p(") - kplu¡p(e)

| "o 
or-, 

^, 
p(") - f u"ro, 

h p(w) p(u) p(e)

kp(, exp
bru erbrTt)

erbrt!

:expt
:expt

erbrw

where D Ï"kp(.)p(") - kpp¡p1.¡: 0 since each edge of a particular tetrahedron bounds
erbrw

exactly two faces of that tetrahedron and each edge of a particular face is an edge of
exactly two tetrahedrons and in both cases the corresponding orientations are opposite.
Finally,

- Iog hp@)p(b)p(e) - exp t - Ioghpp¡pqo)pr"¡@)
urerb¡t)

: exp I logrr,w)p(b)p(e)p(al(u) - loghpp¡p1a¡poíu)
Tt rerbrTa

* log hp@)p(e)p(a) (u) - Iog hpp¡p1"¡pç,¡(u)

: exp I lotn ,w)p(o)p(e)pþ)(u)
urerbrrD

where once again we get cancellation of terms due to opposite contributions as we sum
over missing indices.

Collecting these results we have

I oorøor\pþ¡pp¡(u)
(5.38)

and the corresponding formula for an embedding of " .fo'r.T3-manifold ,þ , X -+ M is

*pI I
erbrw J oe

H(g, A,!,L) :T.*o 1.,^.,' IJ."o fur^-r^r' "[ 
*o 

1.o0,,,,,u,0,",

n((g,A,n,z);r) :+"*, 
I,rþ*ro@). I]."0 lrrl,.r^,ro,r 

' 
II, "*o l.rl,. 'e,p@)p(b)p(e)

il
urerbru)

9 p (w) p (b) p (e) dq ('þ (o))

(5.3e)

5.4 A General Holonomy Formula
Using the results from the previous sections we can find a formula for the holonomy of
a class in Ht(M,2p) associated with an embedding of a closed pmanifold X. Since
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we do not necessarily have a geometric realisation of this Deligne class in general, here
holonomy is not meant in the traditional sense. It is defined purely in terms of the
Deligne class, specifically it is the flat holonomy class of the pullback Deligne class on
X, evaluated over X as an element of ,S1. This formula gives a particular example of
the even more general transgression formula given by Gomi and Terashima ([26], [25]).
The key feature of our derivation is that it clearly generalises the geometric notion of
holonomy as we have defined it in the low degree cases.

Definition 5.4. Denote a Deligne class on X by (g, A' , . . . , g). Think of this class
as the pull back of a class on M. It is flat and trivial so there exists a cochain
(k, B',..., ry-]) such that

g: õ(h)

4 : õ(Bq) + (_l)p-sdBs-L (5.40)

6(4-dU-'):o
The holonomy of the Deligne class is defined by

L (5.41)exp AP - LBP-L

This expression is not satisfactory since it depends explicitly on B. To deal with this
we triangulate X with ú : l/fl + M, where K is a pdimensional simplicial complex,
and let p be an index map for this triangulation. In terms of the triangulation the
holonomy is

Consider the second term:

-dBir"it

t
g.P

-dBee¿4: t -Bir"i¡

*'lÐ f,.oirn*Ð 1..
(5.42)

(5.43)
6P

In this expression we may express the combination of the sum and the integral in terms
of flags of simplices:

lÉ. À A\
\!.r.'t!t,,

where we have defined a new notation o. In general this denotes a flag of simplices,

qq: {(oq,oQ*I,...,op)loo c...Cop} (5.45)

All subsimplices inherit relative orientations. A similar notation was used in [25] to
generalise transgression formulae.

Returning to the holonomy formula, we now have

D |,,-,-B'rrlt (5.46)
oP-7
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Now use equation (5.40),

õ(ry)-lq-(-t)n-o¿gø-t (5.47)

to get

-\r"i¡ : -B'ra:,-,1+ fl,',lpþp-,) - d'B!çJ,¡a,,-,) (5'4s)

Using the fact that each (p - 1)-face in the simplicial complex bounds exactly two
pfaces we have

t -B!,"f,-,r: o (5.4e)

since the two terms inherit opposite orientations from op. Thus

F,-|",-,-Bit)¡: Ð 1",-,oia;)pþp-L) 
* dffi¡pç'-'¡ (5'50)

The next step would be to extract the Ap-L term for the final answer and proceed as

above to deal with the dBe-2 term. This suggests an inductive approach with respect
tolc:p-q.
Lemma 6.2. For eaery q such that L < q < p

Ð |,,alqp¿,t...d",) - t |",_,r-t 
o-o*'Aîrlt...p(oq-,) - aai("t .p(æ-,) (b.bl)

where we use the conuentions ! :logg, B0 :logh and B-1 : 0.

Proof. We have already proved the particular case p: q. More generally

oP-l

Next we claim that

The right hand side consists of all terms of the form

D
o'I-l I,_,"tr))...p(oq) 

: 
F*, 1",_,r-rr'-o+t 

(6Bø-L) p@e)...p(o:-t) (5.53)

o8-LD p(on)...p(oo)aBoo1"'rl...ot"g :

oq-lD p(oe)...p(ot)

t
gø

t
ge

t
o'l-L

Bq-1
p(oc)...p(oø) (5.52)

t
o9-l

7L

(5.54)



for all q-l < k < p and where the hat symbol denotes that a subscript should be
omitted. The case k: Q - 1 corresponds to the left hand side of (5.53).
Now considerq- l<k <p. Suppose inthesummationwe have a flag(oø-t,...,oP),
with the summand depending on all simplices in the flag except for ok. This leads to a
number of identical terms corresponding to all flags which agree in all degrees except
for k. There can only be two such flags. This is because such flags must satisfy

This means that ak is defined by /c + 1 of the k+2 vertices of ok*l and ok-L is defined by
,k of these. Since øk*l and ok-r arefixed then there are only two choices for ok as there
are two vertices ¡o oe*l which are not in oe-l. F\rrthermore the two possible choice
of flags will lead to opposite induced orientations of øq-1. The induced orientations
are derived from the orientation of op. The orientations of all the simplices from øp to
øk*l must be the same since they are all identical. The two choices for øÈ must give
opposite orientations for øß-1. This condition is equivalent to the basic result 02 :0
for the boundary operator in the theory of simplicial complexes. Flom øk-l down to
øq-1 all of the simplices are equal so there can be no further change in the relative
orientations of the two choices.

Finally we consider the case k : p. In this case we once again have only two choices
of flag corresponding to the two choices of orientation and these contribute terms of
opposite sign. This proves the claim.

The lemma nolv follows from equation (5.40).
n

This lemma leads to the following

Proposition 5.5. For all p > 1 the holonorny of the Deligne class (g,A',... ,Ë) is
giuen by the following forrnulø:

exp L

exp Lg-dry-l -exp

ok c ok+L

ok-L c ok

p

Ap-n
p(oo)...p(on-1)

(5.55)

(5.56)

(5.58)

4-d,g-r:exPtt¿-r Z-¿ AoolÏr¡...01or-*¡ (5.57)
4n=0 oP-n

As before we let 4 :logg.

Proof. It is easily verified that the formulae obtained in the previous sections of this
chapter prove the result lor p - 1, 2 and 3. To prove the more general case we use the
following intermediate result:

kn(tt /
n=Q 6P-n J oP-n

)

. exp D [ _ .f-tlr+LdBpea:").:.0þn-*¡
o|-k J CP-E

For fr : 0 this is simply rewriting the integral over X in terms of the triangulation.
We prove the general case, 0 < lç < p by induction. Suppose (5.58) is true for some
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k < p. Applying Lemma 5.2 to the dB term gives

.*o 
à |",-ret)o*'an;¿!,t.'..0(on-*¡- 

exp 

"Ð*,1",-r-,(-1)n*'(- 
7)k+'Aooa:;.t.010,-r-,¡

- ( - 1) fr +' d air!,¡.?. a*_ r _,t

: exP t ¡p-(k]-L)
^ p(oe)...P(on-(t+1))(k+1)

oP-(k+L,

Substituting (5.59) back into (5.58) gives

k+1

+ ( - t ¡ 
(t+ t, " o 

"'ra"|l)rj-,**,, ¡
(5.5e)

(5.60)
"*, I*E - d,ry-l - exp(I I

1,, -, 
oirr )... ploo - - ¡)

n=0 o?-n

' .*o 
""ä ¡ I on - rr +,t 

( - r ¡ 
(t+ r ¡ *' d B"a,8:\Gl -,* *,, )

thus the statement is true for /c + 1 and therefore by induction is true for all L < k < p.
In particular the case k - p is equivalent to the statement of the proposition since
B-L - 0, thus this is sufficient to prove the proposition.

tr

5.5 Transgression for Closed Manifolds
Consider the constructions of the previous sections of this chapter. In each case we
start with a bundle (n - 1)-gerbe with curving (n: L,2 or 3). Then we construct an
element of ,S1 corresponding to a smooth mapping of a closed manifold of dimension
n. F\rrthermore for n > 3 \rye can carry out this construction purely in terms of the
Deligne class. We would like to consider the holonomy as a smooth function on the
infinite dimensional manifold Map(X, M). We give this mapping space the compact-
open smooth topology 127, fi ]. Since the holonomy is defined in terms of sums,
integrals and pull backs it will define a smooth, continuous function on Map(X,M).
To see that it defines a class in Deligne cohomology consider the following open cover
of the mapping space:

Definition 5.5. LetU = {Uo}.,e"c be an open cover of. M. Let ú be a triangulation of
X consisting of simplices ø and suppose we have an index map p : t +,,4. Then the
set V1r,p) is defined by

V$,0) : {d e N¡tap( X, M)l ó@) c Uoot} (5.61)

Denote open cover defined by these sets by V

These sets are open in the compact-open smooth topology since they are made up
of smooth maps of simplices (which are compact) into open sets in M. Following [23]
we use V as our open cover of Map(X, M). We have already used this cover to calculate
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the holonomy, so ï/e may think of the holonomy as a collection of ^91 functions defined
on open sets in V, that is, a cochain in C0(Map(X,M),U(L)). The fact that our
construction was independent of the choice of the pair (ú, p[impties that this cochain
is actually a cocycle in Ilo(Map(X,M),U(l)). Following [23] and [5] we define the
transgressior¿ homomorphism ry : Hn (M,D") + f/0(Map(X, M),U Q)).

This homomorphism has been interpreted ([5],[25]) as a composition of an evalua-
tion map

eu* : Hn (M,D") ) fl"(Map(X, M) * X,D^)

and a fibre integration map

Il"(Map(X, M) x X,D") + H0(Map(X, M),U(1)).

This homomorphism is compatible with the corresponding map on curvatures, that is,
if the curvature of the Deligne class on M is u then the curvature of the transgressed
class on Map(X, M) is [*ea*u.

To see that this agrees with our constructions of the preceding sections suppose
that (9, At, . . . , {) e H"(M,2"). Pulling back by the evaluation map gives the class
("u*g,et)*A1,...,eu*A"). The pull back of the evaluation map gives a homomor-
phism in cohomology. Restricted to a fixed r/ e Map(X,M) this class is equal to
(rþ*g,rþ*A',...,rþ*An) which represents a flat bundle (n - l)-gerbe on X. The fibre
integrationmapevaluatestheflatholonomyforeachvalue of þ. It \ryasprovenin [25]
that the fibre integration map is also a homomorphism.

In conclusion, we have developed the geometric notion of holonomy from the familiar
case of line bundles to the case of bundle gerbes and bundle 2-gerbes. The generalisa-
tion was guided by the consideration of holonomy as a property of the Deligne class,
specifically as the evaluation of the flat holonomy class of the pullback of the Deligne
class to a closed manifold of appropriate dimension. The relationship between these
cohomological and geometric concepts was demonstrated. As a property of Deligne
cohomology holonomy could be extended to higher degree classes and also considered
as an example of the more general notion of a transgression homomorphism.

L
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Chapter 6

Parallel Transport and
Transgression with Boundary

In this chapter we investigate what happens to the constructions of the previous chap-
ter when we consider manifolds with boundary. This leads to generalised notions of
parallel transport. These results may also be viewed in terms of an extension of the
transgression homomorphism to manifolds with boundary.

\Me shall see that parallel transport may be thought of as a section of a trivial
bundle. Let eu¡ : PM -> M be the evaluation map that takes p' e PM to p'(t) e M.
The the parallel transport map, which is a map between the fibres over ¡r(0) and ¡^r(1)
of a bundle L may be thought of as an element of. Lip.¡ Ø L¡"g¡. This is the same a"s a

section of the bundle (ea[L). Ø (euiL) onPM. We shall see that such a section arises
from the extension of holonomy from loops to paths.

This approach to parallel transport will lead to a similar interpretation in the case

of bundle gerbes. Here we consider a surface with boundary made up of loops. The
parallel transport is now defined by pulling back a bundle on the loop space to the
space Map(E, M) of. maps of the surface into M. The holonomy of a ciosed surface
generalises to give a section of this bundle. For the example of the cylinder this
construction gives a map between fibres over the two end loops, a situation similar
to parallel transport for bundles, however there is no problem considering surfaces
with different topologies. This construction will give a geometric interpretation to
Gawedski's results on holonomy of classes ín H2(M,D2) over surfaces with boundary
[23].

6.1 Parallel Tlansport for Bundles
\Me now attempt to calculate the holonomy of a bundle over a path in the same way
in which we calculated the holonomy over a loop. Once again it may seem that we are
using a long and unnecessarily complicated method, however there are good reasons for
this. Firstly it is not an unreasonable assumption that a method of describing holonomy
which generalises to higher cases shoutd be a good starting point for generalising parallel
transport. It turns out that there are a number of different ways of approaching this,
and since these appear in the literature it is worthwhile seeing how they arise in this
context and how they relate to each other. We give as much detail as possible at the
level of bundles since the key features of the theory are present, but relatively easy to
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deal with compared with the bundle gerbe case.
We consider a path as a smooth map p I I -+ M where I is the unit interval

[0, 1] € lR. The path space P M is the space which consists of all such maps, we give it
the compact-open smooth topology (see $5.5).

As in the previous case the pull back of any bundle to .I is flat and trivial. The flat
holonomy class is an element of HL(L,[/(1)) : 0, thus we cannot evaluate a holonomy
in the same sense as the case without boundary. If we cannot define holonomy then we
would like to define something which is as close as possible to holonomy. This turns
out to be parallel transport. For motivation let us consider the case of a principal
bundle. Parallel transport assigns to each palh ¡t a t/(1)-equivariant map between the
fibres over ¡z(0) and ¡r(1). When we have a loop this gives an equivariant map from a
fibre to itself which is of the form p è pz for some z e U(l) which is the holonomy.
In general the parallel transport map takes p to þ(l) where p is a horizontal lift of p
satisfying þ(0) : p. Another view is that parallel transport satisfies the condition that
given any two paths which may be joined to form a loop then composing the respective
parallel transports gives the holonomy. In our case the holonomy is given by exp [ry
where X is a D-obstruction form given by Ao - d,logh... We have shown that this is
equivalent to a formula H(g,A) in terms of the Deligne class. These two definitions of
the function on the loop space lead to two equivalent ways of defining a function on
the path space which satisfies the required criteria.

Given two paths þr, þz with the same endpoints we may define a loop, by conven-
tion we define this loop associated with a pair (p1, p,z) to be the composition Lqx þil .

We may define a map on the path space bV Hn(p) - exp [rX, ,o Ha(pr)HBtjtù :
H(pr*tt|\. It is important to remember that in this case X is no longer a D-obstruction
form so we cannot be sure that the construction is independent of the choice of the
trivialisation /¿. This is because in the construction of holonomy the value at a par-
ticular loop is given by the flat holonomy which is a property of flat bundle O-gerbes.
The triviality is only used to express it as a differential form, which turns out to be
the D-obstruction, a property of trivial bundles. In fact we find that the map I/s does
depend on the choice of trivialisation:

He(p): exp 
Ð |"r.orr") 

.fI sp(e)p(o)(t @)).,ort"r(¡r(r))
(6.1): exp D l"r.orr") 

.fI epþ)p(u)|r@)) .hor,oíp(0))hirl,¡(p(r))
E-U¡ê

where us and o1 â,r€ the endpoint vertices of the triangulation of .I. The final term
fails to cancel this time because of contributions from p(0) and ¡r(1). This expression
is independent of the choice of p, but the dependence on a choice of trivialisation
causes difficulties. We would prefer to have a p dependence instead, this could be
achieved by restricting to a particular p and then choosing a trivialisation, however
this is rather technical. It is easy enough to choose a trivialisation over each element of
the triangulation using the canonical trivialisation over an element of the open cover
which was described in $3.2. The problem is that these trivialisations then need to be
glued together in some way. This is possible but will become even more complicated iu
higher degrees (see for example the proof of Proposition 6.5.1 in [5]), so is not suitable
for our purposes.
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Instead, let us turn to another expression for the holonomy, the transgression for-
mula of proposition 5.2,

H(to,po)|') :fl u*o f "u. 
Ao.<"t 'lln^mo,r,l (¡'(t')) (6'2)

It is easily shown that on paths *rrn Ooundary this function is not independent of the
choice of ps so it is not globally defined on the path space. This dependence on the
triangulation means that we have to be careful about describing the open covers on
the loop space and path space. Given a decomposition of a loop into two paths with
the same boundary where the loop is considered as an element of some V7o,po) C LM
there is an inherited triangulation and corresponding element of an open cover of.PM
for each path. In general the two paths do not lie in the same open set in terms of this
cover, however it turns out that there is a more appropriate cover on the path space in
this situation. Suppose that when "y e V$o,po) is split into paths 9,1 and p,2 the induced
open sets on PM are Wçr,pr¡ and Wyr,pr) respectively. Since they are both induced
from the same cover on the loop space they must satisfy the condition p1(u) : pz(u)
for u € 7pr(: 0p,ù. In this case we have

H(ttr.* p,;L): Hþ,,pr)(uìHçr),r"¡fu2) (6.9)

where we have just broken up the expression for the holonomy (5.11) into the parts
corresponding to each path.

Since we are using the same formula for both cases we use If for for both loops and
paths. The distinction should be clear in all cases from the argument and the fact that
the function on the path space has a local dependence indicated by a subscript.

Consider now the case where \rye are given two paths which share a boundary.
When is equation (6.3) satisfied? The fact that ff is independent of the open cover
suggests that this equation is satisfied whenever the two covers on the path space
combine to form a cover on the loop space, that is, precisely whenevet pt(u) : pz(a)
on the boundary of the paths. Suppose that p,2 also lies in the open set W6r,pr¡ and
ps(a) : p2(a) on the boundary. Then using (6.3)

H (tr,pr)jtù : H-' (tt, * ¡t;r) H çr,pr)}tù
: Hþl,où0.rt)Hþr,pr)0u)Hþr,pr)Qt) (6.4)

: Hç"'P"¡(Fz)

This result may also be seen by considering what happens when we change ps(e) to
ptoþ) for any e in the triangulation for p in the formula for Hs(/r). The two expressions
for äs(p) agree except on the terms corresponding to e where the difference is

r
I tetø - Ato)'f odoo1,¡o¿r1"¡p,1,¡: II g/þ)p(e)9p("lpt lgdr@l¿(,) : 1 (6'5)
Je ucoe ucôe

Thus we may use a coarser open cover onPM, the cover induced by the projection
to M x M. An open set Wpo,to in this cover consists of all paths ¡l with triangulation
ts such that the endpoints of. ¡.t are vertices us and o1 satisfying p(0) € Upq1o.¡ and
p(1) € Upo@ù. In terms of this cover we shall denote the functions by Ho, Ht and so

on. We now have a set of locally defined functions on P M from which we may recover
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the holonomy in the required manner. It is natural to ask what the obstruction is
to these defining a global function. Another way of viewing this is that given a set
of local functions, on overlaps we may define transition functions for a trivial bundle,
with trivialisations (or equivalently sections) defined by the original functions. Using
a similar calculation to those performed in the previous chapter we find

(Hti,^tiltt,,pù)0ù - If epo(a)ø(a)0'@)) (6.6)
urùe

Since the right hand side depends only on the boundary of p, it may be written as

r*G6o,p6)(t¡,rr¡ where r is the restriction to the boundary 0p, and G$o,po)(tr,pr) âr€ defined
on Map(â/, M). By applying dlog to H$o,p) it is possible to obtain a formula for local
connection l-forms. To distinguish the differential on PM from d on M we shall
denoted it á' (this notation will carry over to other spaces of maps into M as well). Let
{ e rr(PM).

(a tog I/gX€) : I I u. @reA oo (") * t Ed,A po1"¡)+ D LE@) d,log s ro(e) po(u) 0r@))
e Je lrê

:n¡t* tEqr¡Apo1o¡ 
at? (6'7)

Since this depends only on the boundary we may write it as r*Bs where Bo is a local
one form on Map(âI,M).'We denote the trivial bundle with connection onPM by
D(r¡L) (so r¡L is the trivialisation ¡/0) and the bundle with connection represented by
local data (Got, Bo) is denoted by r6¡L.

We would like to consider a more global description of the bundles D(r¡L) and
16¡L. Thís is given by the following diagram:

^91 D(r¡L)
,/

PM
+a

MxM
Here we are claiming that the bundle O-gerbe described locally by the construction of
Gor is the same as that represented by the above diagram. We shall consider this as a
particrrla,r example of a general resrrlt. Let (1, Y, M) be a brrndle O-gerbe and let Hrbe
locally defined functions or-r-L((Io) cY such that H"(a)H;'(aù - À(gr,aù.Then
the transition functions of the bundle O-gerbe are given by g"p(*) : H;'(ùHp(g) for
any U €. r-L(rn). Observe that

)(s" (rn)' s P(m)) 

= *rri¡#t!î::ä\'*,',,
The bundle 0-gerbe defined by this diagram is r6¡L and as we have seen it is D-stably
isomorphic to m;LL* Øm¡LL where rne and rrll ã,re, the projections of the two compo-
nents of M x M onto M. This is related to the the holonomy reconstruction theorem

HI
+LM

(6.8)
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as described in [31], which says that a bundle with connection may be reconstructed,
up to isomorphism, from the function on the loop space defined by holonomy. We shall
consider this theorem and bundle gerbe generalisations of it in the next chapter.

The bundle r¡L is canonically trivial, with local trivialisation functions Il, such
that HoQtL)H;L(p2) : H(l-rt* p;r). It is also the canonically trivial bundle obtained
by pulling back r6¡L to PM with the map â, the restriction to the boundary. The
connection on ftL is given locally on P M Ay d [rX.

There is another approach to this problem. Following Hitchin [28] we may consider
the space of trivialisations of .L over Map(/, M), which we shall denote 5¡. Each
element oÍ 5¡ has a particular path associated with it, giving a projection map onto
Map(.I, M). Using this we may calculate the function ô(ã) : g,|21 -+,S1 in the following
way,

6(H)(H&,e),Ht ,ò)lr) : t ros HLe@¡It@)) - Ios nl¡o¡fu@)) (6.e)
urê

Recall that any two trivialisations of a bundle differ by a function. Equation (6.9)
gives the 'holonomy' of the function defined by trivialisations /r,! and h| over ô¡r. Thus
once again we see that this bundle O-gerbe is pulled back from Map(îl,M). Over
Map(ô/, M) we have a space of trivialisations Sat and (6.9) gives a function on Í6yL')
which defines the bundle O-gerbe. Note that this function is no longer of the form ô(fI)
since f/ is not defined onÍ,6y. By forming the bundle corresponding to this bundle gerbe
we obtain the Iower dimensional version of the moduli space of flat trivialisations ([28])
as the total space. The difficulty with this approach is having to deal with the space

of trivialisations. The space of trivialisations of a bundle is the infinite dimensional set
Map(M, U(1)), however the space of trivialisations of a bundle gerbe is a collection of
all line bundles on M which is not a set and would have to be considered in terms of
category theory.

In [26] it wa^s proved that the local transgression formulae that we have described
above correspond to the usual notion of parallel transport for bundles. We would like to
describe how the local functions I/(¿o,po¡ on the loop space lead to the parallel transport
map.

Recall that given a bundle with connection L + M and a path p' in M, parallel
transport is a U(1)-equivariant map of fibres PT : L¡,p¡ + tr¡,1r¡ which is defined
by the unique lifting of ¡^r to .L which is horizontal with respect to the connection.
Transgression defines a trivialisation of r-LL : Iifol I L,G). This means we have a
global section on Map(I, M) which assigns an element of Lip¡8trp(r) to each path, but
this may also be interpreted as a U(1)- equivariant map L¡,p¡ + Lplt¡ which defines
the parallel transport.

6.2 Loop Tlansgression of Bundle Gerbes
We consider what happens to the holonomy of a bundle gerbe over M when we allow
surfaces with boundary. We obtain a section of a trivial line bundle over Map(Da, M)
which gives a generalisation of parallel transport. F\rrthermore this is the pullback via
restriction to the boundary of a possibly non-trivial line bundle over Map(âE, M). This
may be related to a line bundle over the loop space. We derive a local formula which
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gives a transgression homomorphism rs : H2(M,D') + HL(LM,21). Throughout we
abbreviate Map(X, M) bV XM for various manifolds X.

We already have a formula (5.21) which gives an Sl-function over the space of
smooth mappings of closed surfaces into M. This corresponds to pulling back the
bundle gerbe and evaluating the flat holonomy as an element of. H2(Ð,t/(1)) : ^91. In
the case with boundary we proceed as in the case of parallel transport.

Starting with exp [rq - dk and following the same procedure as for closed surfaces
we find that the terms involving the trivialisation (h, b) do not cancel out on the
boundary components. Given a choice po we could use the canonical trivialisation over
each Upop¡ and Upop¡. The problem here, unlike in the previous case where boundary
components were just points, is that each boundary component is a loop and will
consist of a number of edges and vertices, so to define a trivialisation over the whole
loop it would be necessary to glue together each of these in some way. This is possible
(see [5] for a description of this in the gerbe case), however it is not a method that will
be suitable for generalisation to higher degree as it becomes very complicated. Instead
we turn to the second method that was developed in the previous section.

We define a function onEaM by H(to,pù(lþ),

H(to,po)((e,A,!);t) : 
{I "*o lo

tþ*Tpo(o) 'fl.*o 1þ* Apo(b)po(,)' fI 9 po(b) po(e) porqþþ (u))
u'e'b 

(6.10)
erb l"

the usual holonomy formula which is well-defined but not globally defined on Ea M.
This is the approach taken by Gawedski [23]. Clearly for two surfaces with the same
boundary this 'trivialises' the holonomy function, but it is not a proper trivialisa-
tion since it is not globally defined. These local functions define a D-trivial bundle
D(r2aP) + Da M. As in the previous case \rye can define a bundle 0-gerbe ra>P on the
space of mappings of the boundary,

s1 D(ryoP)
H
,v
++

,1
(6.11)EAM

J
atM

The transition functions of D(ryo) descend to G(to,po)(úr,pr) otr AEM, the transition

EM
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functions of. r6yP. We may calculate these explicitly,

G (to,po)(tr,pr) : H (r],oo¡H {tr,or)

- ."0(Ð l¡r^r, - rtpoþ)) +DØp,(b)pt(e) - Aoolu¡po1.¡))

lf 9 ellÐ o, (") p, (o) giiu) po (e)po (¿)
Tlrerb

- ."0(T 
looo^ruro,(Ð 

+ t(A ptþ)pt(e) - Aooþ)po(")))

fl 9p, (u)p' ( "¡prq'¡9 potlu¡po(e)po(a)
!rerb

: exp D(Aeo(b)er(ö) * Ap,(b)p,(") - Apoþ¡psçe)) fI Søþ)nþ)pt1"¡lp]þ¡ps1"¡poço)
erb arerb

: exp lØ ^AVr 
(") - d,log g polu¡ pr (b)pr (e) * d'log g rolb) po(e) øþ))

êrb

ff gr, (u)n' ( 

"¡ 
p, çr¡ I potlo¡ po(e) po (u)

!rerb

: exp(t Apo(")p,þ)) lI nTtrr, a)p7þ)9oo(b)oo(e)nþ)9ø(b)p1(e)p1(u)9i]þ)po(")po(o)
erb urerb

: exp (t A po(") p, þ)) fl nÃt"lr. r tt) pt (u) I po(e) et (e) p1 (a)
êrb arerb

(6.12)

where the last step involves repeated applications of the cocycle condition on g and
the elimination of terms depending only on ä and o. All interior terms will cancel due
to the summation over b, leaving only edges in the boundary which we denote 0e. In
terms of.0þ, the restriction of the map t/ to the boundary, we have

G(to,po)(t,,p,)@rþ): exp 
Ð I"Uf. Apo(")p,(") '.xnr:r"rro(a)pt(o)9po(e)p1(e)p1(u)@',þ(u))

_ exp 
Ð I "Uf- 

A po(") p, (") . lI gi,7ò 
osø) p1 @) 9 oo(e) p{e) po(u) @rþ (r))

(6.13)

where the second line is an alternate formula obtained using the cocycle condition
which is equivalent to that given by Brylinski [5].

It is possible to relate this directly with the approach of Hitchin [28] where the
holonomy of a gerbe over a loop is defined in terms of the holonomy of a bundle defined
by the difference between two trivialisations. In this case v¡e have trivialisations (&0, ¿o)
and (frl,1¿1) defined over loops in Vlto,no) and V1rr,pr) respectively. In this case transition
functions would be

ê(to,po)(t,,pr) : €xp D, I frìn¡ - klat) 'IInìn 
^,¡ht 

ol"¡01,¡ (6.14)
e Je lrê
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where (t, p) is any index of the open cover of the loop space which is defined on
V(to,po)(tr,pr). The transition functions are independent of this choice since they are
defined as a holonomy. In the following calculation we shall choose this to be (to, po).

We now directly compare Gþo,po)(tr,pr¡ and Gþo,po)(tr,pr):

G(to,pr)(t,,pr)ëel,po)(r,.,pr) : €xp 
Ð I"ro^(")p,(") - k|or")+ k|r1"¡)

'fIgi]("lro(u)pt(u)9po(e)ø(e)pt(a)h}ìl<"¡po(,)h!po(")po(,)
urê

- exp 2 [ fe^k)pt(e) - kloþ) + k],ç¡) (6.15)
e Je

hoio't"loot 
>

: exp 
Ð |.fri,r"¡ - 

kooo1"¡) .l,hlo,av,@)hoi'6(ùoo(,)

This is a trivial Deligne class so G and G defitte isomorphic bundles.

To get the local connection l-form onV(to,po) we calculate ãlogH(to,po).

hLpo(")pr(")hil
ú¡ê

t
ø(e)m(u)

ãIogilpo,p.l(€) : !
b

(tEd,r¡ polo¡ + d,4r¡ oolo¡) + t
erb f.(redA ^o)po 

(") * d,tEA poþ¡ psle¡)

+ f (a6a t og g po(b) po(e)po(,) )

t,

Tt rerb:t t, +L€u t l"rr{, ^r, - \ po(b) * T po("))

D tr(l^rb)po(e) - Apo(b)po(e) * Apop¡p¡(u¡ - Apop¡pop¡)

b êrb

+
urerb

-- ( 
Ireu.u)(() .Ð 

f.ren^øt 
.n-LEApole¡ps(a)

(6.16)

The l-form ã,logilço,po¡ does not descend to the boundary however ã,logH1ro,po¡ -
freu*u is an equivaient connection on the iriviai bun<iìe D(r2o) which cioes <iescenci,
so the local connection forms are given by

B(to,po):Ð f"rrr^n .n-LsApsle¡ps(a) (6.17)

If the map 0tþ consists of a number of components ôþ¡ then

G(to,po)(tr,pr)@rþ): fl Gfto,p)(tr,pù(0Ú¿) (6.13)

and

B(,o,ro)(€) - DB(ro,ro)(€¿) (6.19)
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thus if we consider maps, ô¿, of. the boundary components into the free loop space LM
then the bundle described by G is a product of bundles over each component loop,

Øo0r'L, where,L is the line bundle over the loop space defrned by the transgression
formula (6.13). The bundle was described in this way in [5].

Let us summarise what we know about transgression of bundle gerbes. Given
a bundle gerbe with connection and curvin1, P, over M we obtain a trivial bundle
D(r'u P) over Map(Ea , M). A section of this trivial bundle defines a generalised notion
of parallel transport. AIso we have seen that D(r¡aP) is the pullback of a bundle on
the boundãrf,r62P- This bundle may be defined in terms of the transgression to the
Ioop space which is a bundlc 19P.

It follows that whenever M is l-connected, we have a simple geometric picture of
the bundle over the loop space (as a bundle O-gerbe),

s1

S,(M)

HI
-) D,(M)

J
LM

where S'(M) is the space of smooth maps of the 2-sphere into M and, D2(M) is the
space of smooth maps of the 2-disc lnto M . We know from our previous discussion that
the transition functions of this bundle gerbe are Gltq,pe) (h,pù. Previously we considered
the bundle O-gerbe defined by the holonomy function on EM where E is any surface
on M however in this case spheres are sufficient to obtain all possible loops in M since
every loop bounds a disc. For more general M lherc exist loops which do not bound
a disc, in which case there is no simple geometric picture of the bundle on the loop
space, however, the local transition functions are still well defined. There is an analogy
between this situation and the holonomy of bundles over M. \Mhen M is l-connected
the holonomy may be defined in simple terms as an integral of the curvature over some
surface, however more generally if we want to define the holonomy as a function on M
we use a local formula.

6.3 A General Formula for Parallel TYansport

In this section we take a similar approach to that taken in $5.4. The formulae obtained
are examples of the more general fibre integration formulae of Gomi and Terashima
([25][26]). The difference with our approach is that rather than starting with a formula
and proving that it satisfies the requirements for parallel transport, we are deriving
formulae by first generalising the notion of parallel transport. Suppose we have a class
in He(M,pn) and apmanifold, Xa, with boundary 0X. Then we may deûne a set of

th,tþz which have
ff is the holonomy
ition for paths and

loops and the open cover is induced by the restriction to 0X. We may define transition
functions G$o,po)(tr,prl : Htrl'olHþr,où which define a trivial bundle on XaM and
descend to define a possibly irön-trivial bundle on ïXM. We calculate the formula for
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these transition functions using our general formula for holonomy (5.57)

p

n=0 oP-n

We would like to express this in a form which explicitly relies only on the restriction
to the boundary. Consider the first term in the summation over n,

t
g.P

W,r"q - Ae^ço¡): t t., õ(AP) eoçn¡pr1oo¡

G(to,po)(tr,pr) : exPt t
r

J""_.[Aoo,ë,)...ø(op-n)- 
AT,ëq..ps1o,-^¡) (6'20)

I",oooo;rr)o,1oo¡ (6.21)

¡P-I
^ ps(oo)py(on)

q.P:t
gP:t

oP-l

Combining this with the term corresponding to n : 1 gives

->r-I,,-rAf, 
o1l'¡r'ç"1+Aoo,rl'¡rr(oo-t¡-Aoo"tl')^(an-r¡:

Ð I ",, 
AooorL,-' 

I 

^ 
ror- r ¡ * õ (Ap-L ) poço ) p{ce) pt (oP- t¡ - õ (An -r)

We would now like to iterate this process
simplify some of the terms,

t"T" 6.1. For L 1n 1p

D ( - t ) " ¿ (Ae - ") poçr)... po(op-, ) pr (on- r )... p7 (oo-, ) :

ps (oe ) ps (øn - r 
) O, 1oo -' ¡

(6.22)

First we shall prove a formula which will

(6.23)

r=0

( - 1) "*t [t ?Ð' A'orëc)... ps(on-ì ) pr(oe-t )...p1(on-"*, ¡ J

n-].

r=0
n

+ t ( - 1 )' Alrër-, ¡... ps(oo- I ) p 7 (ot- I )... p L (op- n) + Aeerëo-,)... 
ot (on ¡r=L 

_ Ape;ëo_*),.po,.r)i I

where I consists of a sum of ter"rns in which one subscript p¿(o*) is omitted, for p-n 1
m, < p and i € {0,1}. These are erøctly the tenns which cancel out under the sum

D ["o-^ I '
oP-n

Proof. Most of the terms on the left hand side are absorbed into the term .I on the
right hand side. Consider the remaining terms. There are three distinct types:

1. Those for which the subscript p1(on-n) is omitted. There is one term of this type
for each r in the summation. In each case a factor of (-l)"+1 is introduced by
the definition of ô.
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2. Those for which the subscrípt p¡(oe) is omitted. There is one term of this type
for each r in the summation.

3. Terms for which the subscripts include o* for alI p - n I m < p. This is only
possible if the subscript omitted by ô is either po(or-'¡ or p1(oP-r). Note that
the term obtained by omitting po(op-') is the same as that obtained by omitting
lhe py(on-'-l) subscript in the (r - 1)-st term of the summation over r. In both
of these cases we are eliminating the subscript immediately after ps(on-r-l) so
the signs arising from the d map are equal, however the two terms get opposite
signs from the factor (-1)", and hence they cancel out.
There are two terms which do not cancel out in this way. One is obtained by
omitting the subscrípt ps(oe) from the r : 0 term in the summation. The factor
(-1)' is equal to 1 and the coefficient from ô is also 1 since lve are omitting the
first term.
The other term which does not cancel out is the one obtained by omitting the
subscript p{on-"¡ from the r : n term.

Proposition 6.1. The formula for the transition functions giuen in equation (6.20) is
equiualent to

e"ptt - D r - t l' Alrë" - r1... ps (on - î ) p7 (op - t )... pr (ap - ft )

h-1

n=l oP-n r=L

' op I I ", - reÐr* 
t tÏ ( -' l' Al, t*1.. - 

^ 
(on- I 

) p 1 (on- I )... o{on- n+1J

r
J,,-.W,ë\-.p1(on-n) - Ai,ëq ps@o-'¡)

(6.24)

p

e"pt t
n=k oP-t

for each Ic such that | < le < p

Proof. Equation (6.21) shows that the result is true for k : 1. We now proceed by
induction on k. Assume the result is true for k : l. Define terms A(n), B(n) and C(n)
such that equation (6.24) becomes

k-1 p

."p[D A(n) + B(k) +Ðc@)] (6.25)
n=L n=k

To prove that the equation holds for k : I + 1 we need to show

¿-1 p

n=l n=I n=l
."plD A(n) + B(t) +D c(")l : .*plI A(n) + B(t + 1) + t C(")l (6.26)

p

n=l*L

Clearly if B(I) +C(l): A(I) + B(l + 1) then the result holds since all other terms in
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f I-l
B(t) + c(t) :D l_ , 

(-1)'*t DeÐ',qrool.,,¡...0oç,,-,)pt(op-,)...pt(on-t+t¡
op-t J oP-t r=0

* 
Ð, I ", -,'oi, ¿"o )... p 1 (on - ¿ ) - A'r" Lq ". p o 1o' - t ¡)

:\, I i,-rr"u (Ap-t)oo6o)...0o(o,-,¡r,(on-t)...p1(on-t)
op-l J 6P-' r=O

îl
- 

Ð, J,,-,Ð'-r)' Aeool"'-' 
) "'po(op-' ) pt (on-' ) "' p.(oo-t )

(6.26) are identical. Consider

by Lemma 6.1,

since ô(¿!P-') : (-Ð"AË-'-1 for a Deligne class,

:Ð,1,,-,Ð*nL)'(-L)IdAPe,l*\...^r,,-')n(op-')...pt(op-t)

f¿

- D /, Ir- 7)' Aeo"l"r-r)...oo1oo-,¡or(øn-")...p1(oe-t)
op-I J oP-' r=L

: t [ --,-,(-1)' f,r-t, o',,l*\..^r*-,)pt(op-,¡pt(ot-t,,
oîp-l-lúot ' ' r=0

f, I-t/ It-
op-l J oP-' r=l

: B(I + 1) + A(¿)

1)" ¡P-l
^ po(op - I )... ps(oo - r ) p1 (oo - " )... ø (op - t )

(6.27)

!
This proposition gives a general formula for parallel transport b¡' considering the case
lc : p. In this case the transition functions are given by

p_L r, n
G(to,po)(t,,pr) : €xp 

Ð "Ð 
J",-.-lf-V 1oþ-r¡...er1oe-,)ot(on-,¡...pt(oe-n¡ (6.28)

rt is not difficurt ,Ï"îJti*-t;:¿l + c@) : ,q@).rhis folows from rhe proof rhat
B(l) + C(I) : A(I) + B(l + 1). Recall that the B(I + 1) term appears after applying
Stokes' theorem to a dAp-l-l term which in turn comes from applying the Deligne
cocycle condition to a õ(Ao-¿) term. In this case we have ô(,4,0) : 0 so the B(l + 1)
term is absent, leaving the required result.

Thus we have
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Corollary 6.1. [25, 26J The transi,tion functions for the parallel transport bundle as-
sociated with o, Deli,gne (p + I)-class oaer M and a smooth map of a p-manifold wi'th
boundary into M are gi,uen by

G(to,po)(tr,pr) : €xP >,r, t É,-tr"*'Alrër-,¡...ps(on-î)p1(op-r)...p.(op-n) (6'29)
n=L dp-n J oP-f, r=!

We now derive a formula for the connection. Once again we start with the local
functions

H(to,po): exPt t ÁP-n¿ 'ps(ot).,.Ps(oo-n)

p

n=O or?-n

p

n=0 oP-n

p-L

(6.30)

We apply ãlog and evaluate at { € 
"(Map(ôE, 

M)) to get

ãIos(Hpo,p.))(€) - (1, eu*u)(€) : t t ld r, 
E 

Aeo 

" 
( r... p o þp - n ) + 4 d Al- f n ¡... p s 1o e -, ¡)

:Ër t t .'4I"ë,¡...Po(oo-n,,
n=Q 6p-n-l J oiP-n- L

+t 1,,-,(- 
1)+L tqõ (Ao -n*') 

ooþn)... ps(oe-,)l
oP-1

:D' teAlr("q...0o(oz-n¡
n=Q 6p-n-l

( - 1 ) "+1 r.6 ô (Ao -"*') ro þc )... ps(on - n )

where we have used r,EAo : 0 and 8*L :0,
p-L:DT

-1
teAl"ëÐ...ro(oP-,)

v=Q 6p-n-l

+ (-L) L¡'õ (A!-") poçr)...ooqoo-n-,,
(6.31)

Only two terms from the ô part survive under the sum over oP-n-L. These are the
ones which omit the subscripts po(op) and ps(oo-"-l) respectively. Consider the first
of these. Since it is the first term in the ô expansion it is positive, thus we have
(-t)"qAlrfp-L).-po(øp-n-r¡. The term omitting the subscript po(op) in the ó'expansion
will have the additional coefficient (-1)"+1 which makes equal to the negative of the
first term in (6.31). Thus we have shown that the connection on the bundle over
Map(ôD, M) representing parallel transport is given by

p-L
B(to,po) (€):Ï D |,,-^-,(-l)nreA'oo(,o-,1...0o<,p-n-t) 

(6'32)
n=Q 6P-n-l

p*tt
n=L gp-tu
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Erarnple 6.1. Using these general formulae we can calculate the transition functions
and local connections corresponding to the parallel transport of a bundle 2-gerbe on M
over a smooth map of 3-manifold with boundary, X into M. Let the bundle 2-gerbe be
represented by the Deligne class (g, A,q,r),let X be triangulated by 3-faces w,2-faces
ä, edges e and vertices o. Denote the map X -+ M bV tþ. Then the transition functions
are given by

G (to,po)(tr,pr) (Ú) : e*P t 1þ*rlpo(b)pr(b) + t | "'Þ. 
{O r"f) p, (b) p, (") - A po(b) po(")r, (") ))t,brw erbrlt)

' f 9 o o ft) ø (b) ø (e) ø (o¡ I p olla¡ p o 1"¡ o ¡ þ) p 1 ({ I o o (b) p o (e) p o (a) p t ø¡ þþ (u))
Tl rerbrTo

(6.33)

and the local connections are

B(ro,po)(€) :Ð 
fo,r'^r,-nf",rrr^oroon * 

oD,",orL€,Apo(b)po(")po(,) 
(6'34)

In the case where M is2-connected then we ma¡ by analogy with rerP in the bundle
gerbe case, define a bundle 0-gerbe rszP which may be represented in the following
way:

H ^91

I
s'(M) = D'(M)

J
S,(M)

Gomi and Tera^shima [25, 26] suggest that it would be of interest to find geometric
realisations of transgression in higher degrees. This construction gives such a realisation
in terms of bundle gerbes.

6.4 Loop Transgression of Bundle 2-Gerbes
Recall that so far we have considered a generalised form of parallel transport. This has
i-tr^ltrorl f-qnoæaccin- nf o ltrr-rlla -a.lra f^ o Þrrr-'lla fì-ro.Ìro /^t o^trirrolanflr¡ o Ltrrnrllo\u¡vv¡Yvs u¡q¡¡gõ¡vpg¡v¡¡ v¡ q vu¡¡u¡v õv^vv uv ú vu¡¡u¡v

over the loop space and the transgression of a bundle 2-gerbe to a bundle O-gerbe on
the space AXM of smooth maps of boundaries of 3-manifolds in M. As in the ca.se

of loop transgression of a bundle gerbe the fact that the transgression formula may be
broken up into a product of factors over each boundary component implies that this
bundle 0-gerbe may be realised as a product 8¿ AntL where.L is a bundle O-gerbe on
XM which is defined locally by the transgression formula.

We may now proceed as in the case of loop transgression of bundle gerbes. To do
this we apply the hierarchy principle, replacing functions with bundles. This means
that we want to find a bundle onEa M that locally trivialises r6yP. To do this simply
apply the formula for Glto,po)(úr,pr). If this fails to be consistent on triple intersections
then it will define a trivial bundle gerbe. This is quite a long calculation involving the
repeated application of the various cocycle conditions which define the Deligne class of
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the bundle 2-gerbe. We start with the highest term, r¡ and apply the appropriate cocycle
condition and then use Stokes' Theorem to move down to the next level. This process
is repeated at each level with terms such as ! A and f[ g used as an abbreviation of
all of the terms at the other levels. We also write Gor for G$o,po)(tr,pr¡ and so on.

G1LGLyG';: .*p(I I r]por¡,ptþ) + nptþ)p2(b) - Too(b)oz(a¡) . exp I e ll o
TJb

- A po p¡ a þ) pz (u) * A po (b) ø (b) p t ç"¡ - A p o p¡ po (e) p t (e) * A p, çu¡ p2 (u) p z (e)

- Ap,1u¡p1(e)pz(e) - Apo(b)p,(b)p"ç"7 i Apop¡po(ùp,k)) 'llg

- A p o p¡ p y (e) p, (") * d log g po (u) p 1 (b) p 2 (b) p 1 (e) * d' Io g g r, 1b) p 2 (b) a þ) p2 (e)

- d,loggoolb)pz(b)pt(e)pzle¡ * dlog gpo(b)po(e)ø(")p,þ)) ' lIg

- A, o ç¡ ¡ (e) p, þ))' n g i ]þ1, o (u) p t (a) p z (u) I p o (e) ø (e) p t (o) p z (u)

arerb

g i or(.) p, (") p 

" 
(") p z (ù (u)

(6.35)

All of the interior terms will cancel in the sum over ö so these transition functions
descend to 7DM. We also have a canonical choice of connection on this bundle gerbe
which is given by the D-trivial local connection forms on Da M,

(8,, - Bs - ãIogcor)(€) : 
; f"-renrot )p,(") *Drrro^re)p7(e)p1(u) - Apsçe)po(u)p,(,))

(6.36)

The details here are similar to those of previous calculations and have been omitted.
The canonical choice of curving is defined by

a}o6,r): 
Ð frrrrrhroolo¡-dtrtEvro(ô) 

* 
E I.-4r,qd,r¡polo)po(") 

* d,trL¿rlpoþ¡ps(e)

+ t t rt ¿d,Aprlo¡po(e)po(a)
urerb

- L¡11¿nps(e)ps(u)

(6.37)

The 2-form dBo - [reu*u descends to give local curving 2-forms

I" (6.3s)
urerb

This local bundle gerbe data splits into a product of terms over each component of
AEM and defines a bundle gerbe over the loop space. This situation is more compli-
cated than the usual concept of parallel transport. We shall give a direct comparison

:.*p(t /
e,b Je

:.*p(t /
.,b J"

:.*p(t /
.,b J"

: 
Ð Iu""'.; l"-""""'* à

(o(6, p) : t
erb

- L t'L€u po(e) + t - L ¡¡L6rl ps(e) ps(I))
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for the example of a cylinder. For a bundle gerbe there is a line bundle .L on the loop
space, so associated with each boundary loop of the cylinder is a fibre of this bundle.
Over the cylinder there is a trivial bundle with fibres given by the product of the fibres
of. L at the end loops. A trivial bundle has a section, which in this case defines a
I/(1)-equivariant map between the fibres at the end loops. If, on the other hand, we
start with a bundle 2-gerbe then we have seen that a bundle gerbe on the loop space
is obtained. Thus associated with each boundary loop is the fibre of a bundle gerbe,
which is a t/(1)-groupoid. Associated with a cylinder is a trivial bundle gerbe however
this does not necessarily define a section.

This is similar to what happens when we consider a bundle gerbe over a path.
Starting with the line bundle on the loop space obtained by transgression we obtain
a trivialisation of a bundle gerbe onPM. The trivial bundle gerbe is the pull back
of a bundle gerbe on Map(ôI,M).The fibre over each component of Map(â/,M) is
simply the fibre of the original bundle gerbe over the relevant point in M. This example
leads to holonomy reconstruction which shall be discussed in the next chapter, detailed
calculations shall be given there.
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Chapter 7

Further Results on Holonomy and
Transgression

We briefly discuss the terminology used in this chapter. Strictly speaking holonomy
is the U(l)-valued map corresponding to a bundle n-gerbe over a closed (n * 1) man-
ifold. Corresponding to (n + l)-manifolds there are sections of trivial bundles which
generalise parallel transport. Corresponding to closed n-manifolds there is the trans-
gression bundle, named after a homomorphism in Deligne cohomology. Holonomy and
parallel transport may also both be viewed as arising from such transgression maps
so we sometimes use the term transgression to apply to all of these cases. It is also
possible to view all cases as a generalisation of the notion of holonomy, sometimes the
term holonomy is used in this context.

We present some basic properties of holonomy and transgression. We consider the
holonomy of some of the examples we have encountered and discuss consequences for
the theory of holonomy reconstruction. We also consider gauge invariance properties
which are relevant to applications.

7.L Some General Results
In Chapter 5 we considered generalisations of holonomy to bundle gerbes and higher
objects. Here we present some basic properties of bundle holonomy and show that
they also apply to bundle gerbe holonomy. We then go on to see how these results
apply to the more general notion of transgression which was discussed in Chapter 6.

Throughout the final two chapters hol will denote the holonomy map as defined in
Chapter 5, with the bundle n-gerbe (n : 0,1,2), connections and curvings and the
closed n * L manifold indicated where necessary.

Functoriality
Let P -> M be a bundle with connection A and suppose we have a map Ó, N -+ M.
Then

hol(/-lP; ö.A) : /.hol(P;A) (7.1)

as functions on.LN.
Now suppose we have a bundle gerbe (P,Y, M; A,/) and map d : N + M. Then we

can form the pullback bundle gerbe over .fl and use this to define a holonomy function
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on Map(I, N). For an element r/ of Map(t, ¡ü) the holonomy function is defined by
the evaluation of the flat holonomy class of the bundle gerbe ,þ-t(ó-tp). This is the
same as the bundle gerbe over D obtained by the pullback of P by ó"tþ e Map(D, M).
The flat holonomy class of this bundle gerbe is the holonomy function on Map(E, M)
evaluated at þ o t/, so it follows that

hol(/-lP, ó-'Y, N; ó* A, ó. f) : /.hol(P, Y, M) (7.2)

as functions on Map(D, N). F\rrthermore a similar result clearly holds for bundle 2-
gerbes and maps of 3-manifolds.

Now consider the transgression of the bundle gerbe ó-r p to the loop space .CN.
The map / induces a map L6 : LN -+ LM such that given any p €. LN the map
Lop e LM is defined by

Lop(o) : ó0r(0)) (7.3)

Now consider the transgression of P to the loop space LM. This gives a bundle
0-gerbe which may be pulled back to LN by the map Lq. We claim that this is stably
isomorphic to the bundle 0-gerbe over ^CIú mentioned above. First consider the case
where there are no non-trivial loops and there is a geometric picture of this bundle
0-gerbe. At each level we have a map between surfaces induced bV ó. In particular
given tþ e EN then we can map to the surface given pointwise bV ó " tþ rn M. The
holonomy map on EN gives the flat holonomy class of ,þ-Ló-'p which is clearly equal
to the holonomy map on XM corresponding to the surface {oT/. F\rrthermore since the
connection is derived from the holonomy function then we have a D-stable isomorphism.
This result also extends to the bundle gerbe over the loop space associated with a bundle
2-gerbe since once again we have an induced map between smooth maps of manifolds
at each level which is invariant under the holonomy map. Since the transgression
formulae are obtained by this construction we claim that the functoriality applies to
transgression in the general case, for example, functoriality of the holonomy of a bundle
gerbe extends also to the local functions on surfaces with boundary and the transition
functions are then defined in terms of these.

Orientation

We consider the effect of a change of orientation of the manifold over which the holon-
omy is evaluated. In the case without boundary theq it is clear that the holo''omy
function changes sign under a change of orientation for bundles, bundle gerbes and
bundle 2-gerbes. Recall that the function at a particular point of the relevant map
ping space is the evaluation of the flat holonomy class of the corresponding pullback.
This evaluation involves integrating the D-obstruction form, so a change of orientation
will reverse the sign of this integral and lead to an overall reversal of the sign of the
holonomy function.

This argument easily extends to the case with boundary. Our usual approach here is
to proceed as in the case without boundary to obtain a function which locally trivialises
the holonomy function on the fibre product. As above, a reverse in orientation leads
to a reverse in sign of this function. The transition functions and local connections
of the transgression bundle are derived from the local expressions for this function,
so they too have signs reversed. Thus the bundle 0-gerbes with connection obtained
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by transgression change to their duals under a reverse of orientation of the embedded
manifold. In the case of a bundle 2-gerbe over a surface with boundary then we have
a bundle O-gerbe which locally trivialises the bundle 0-gerbe on EM. Since this has a
change of orientation then so do the trivialisations and thus the bundle gerbe on the
loop space has a change of orientation.

Multiplicativity
Suppose E1 LJ E2 is a disjoint union of closed rz-manifolds, for n : L,2,3. If P is a
bundle (zz - 1)-gerbe then

hol¡,¡¡r(P) : hol¡,(P) 'hol¡,(P) (7.4)

The left hand side is equal to exp.I"rr", X where X is the D-obstruction form for the
flat, trivial bundle (n - l)-gerbe (E1 U t2)-lP. This integral separates into the two
holonomies on the right hand side.
In the case with boundary then we find a similar relation however the functions are
only defined locally. Taking D of this to get the bundle on the boundar¡ .L we have

LÐtu1r- LErØL>,

an isomorphism of bundle with connection. F\rrthermore since the sections of the pull
backs to the mapping space of the manifold with boundary are given by the local
function these also satisfy an additivity property.

Suppose we have a disjoint union of a closed manifold, E1, and one with boundary,
X2. In this case the union is a manifold with boundary so there is a function .H, on
DaM leading to a bundle on the restriction to the boundar¡ however since the Ho
term corresponding to 11 has no boundary then it is globally defined and so does not
contribute to the transition function and thus the bundle does not depend on E1 and
is simply L2". The difference from the case where we just have D2 is the section of the
trivial bundle defined by Ho. The term corresponding to E1 gives a different choice of
trivialisation of the bundle D(H) than if we just have the E2 term.

These results are easily extended to bundle 2-gerbes. The functions, bundles and
bundle gerbes obtained by the various transgressions satisfy the obvious additivity
conditions. In the situation where we have one component with boundary and one
closed then the result of transgression is the transgression corresponding to the com-
ponent with boundar¡ with the closed component contributing to the canonical sec-
tion/trivialisation.

Gluing

Let Er and E2 be two n manifolds where n:1,2 or 3. Suppose that âX1 : XtU X
and ôEz - XzUX. In this case ìMe may glue Ð1 and E2 along X to get a new manifold
l with 0E : XtU -Xz. When evaluating the holonomy of E with respect to a bundle
(n - l)-gerbe we get functions f/(¿o,po) which separate into a boundary component and
an interior component which descends to the mapping space of the boundary. We
claim that this will be equal to the product of H¡,rço,ro¡ and -HÐz(to,po). The change
in sign is due to the need to reverse orientation for gluing. Clearly the claim holds
for the interior components since these are not affected by gluing. Since the boundary
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components are summations over a triangulation then we may break these down to get
H|rþo,po) * H|ço,oo) - H{1ro,oo) - H|rþo,oo, which is equal to the boundary term for X.
Thus we have

r62P : rohP Ø (r6yrP). (7.5)

Now consider the special case where we have two n-manifolds X1 and E2, such that
?Et - -ôEz. Then it is possible to glue them together to obtain a closed manifold
E. This time all of the boundary terms cancel leaving only the interior terms. Putting
these together we get the holonomy function on Map(E, M). This function corresponds
to the product of the two sections over Map(D, M).

In a similar way, given a bundle 2-gerbe P and surfaces X1 and E2 then the same
results apply in terms of bundle gerbes.

7.2 The Holonomy of the Tautological Bundle Gerbe
We begin by considering the holonomy of the tautological bundle O-gerbe. Recall that
given a closed, 2zr-integral 2-form, .t', on a 1-connected manifold, M ,, this is defined by
the diagram

u(1)
pI

LoM = PoM
J
M

where the map p is defined by

P('Y) : exP T,
and X is any surface which is bounded by Z. The connectedness requirement ensures
that we can choose such a E and we have already established that p is independent of
the choice of E.

Now consider the holonomy of this bundle 0-gerbe. Since the curvature is f'then we
know that the holonomy must also satisfy the condition on p in (7.6). This condition
completely characterises the function and thus the holonomy of the tautological bundle
O-gerbe is the function p: Ls(M) + U(1). This is a rather trivial fact however it will
serve as an indication of what to expect as we move up the bundle gerbe hierarchy.

Now consider the tautological bundle gerbe, with the tautological bundle over
Lo(M) considered as a bundle 0-gerbe,

u(1)
p

,v
sr(M) = D,(M)

J
LoM 3

(7.6)

PoM
J
M
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By our connectedness assumption on M all closed 2-surfaces in M are of the form ôX
for some 3-manifold X. The holonomy satisfies H @X) : eXp Ix u : p@X). Since by
the usual arguments this is independent of the choice of X we can conclude that the
holonomy function on S2(M) is equal to p

Recall that we can also transgress a bundle gerbe to get a bundle over LM. We wish
to compare this with the bundle over L¡M in the tautological bundle gerbe described
above. Recall Lemma (3.1) tells us that the tautological construction is independent of
the choice of base point, so without loss of generality \rye may replace LM wilh LoM.
Now the fact that p is equal to the holonomy map shows that the bundle O-gerbe
obtained by transgression of the tautological bundle gerbe is the same as the bundle
0-gerbe on the loop space which is used to define the tautological bundle gerbe in (7.7).
This implies the following

Proposition 7.1. The transgression to the loop space LG of the tautological bundle
gerbe ouer 0, compact, simply connected, semi-si,mple Lie group G with curuature 9-form
q- . g-rdg n lg-tdg n g-Ldg) > is the bundle associated with the central ertension
LG + LG (see example 3.1).

Next consider the tautological bundle 2-gerbe,

i91

S'(M)

p

,v
+ D'(M)

J
S,(M) 3 D,(M)

J
LoM =

(7.8)

PoM
+
M

where M is 3-connected. By the assumptionon M, every element of Oï(tW) is the
boundary of a 4-manifoId,W and thus the holonomy function is uniquely determined
by the property H@W) : exp Ï*O where O is the 4-curvature. This is exactly the
definition of the function p, so it is clear that the transgression bundle rsz is the bundle
over S2(M) in (7.8) and the transgression bundle gerbe r¿¡a is the bundle gerbe over
LM in (7.8).

7.3 Holonomy Reconstruction
In this section we consider the theory of holonomy reconstruction in the bundle gerbe
context.

Let us consider the implications of our connectedness assumptions in the tauto-
Iogical case. This will lead to an understanding of the more general case. Let M be
l-connected so that the tautological bundle O-gerbe is defined. Then we also have
Hr(M) : 0. Recall that there is an exact sequence defined by the map of a Deligne
class to its curvature,

o -+ Hr(M, u(1)) -+ Hr(M,D') + ,+l(u) + o
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First we use the Universal Coefficient Theorem for cohomolory ([2]);

Ho(X, G) = Hom(Hn(X),c) O Ext(f/o -r,G)
Since we have Hr(M): 0 and Ext(Hs(M), U(1)) : 0 then

Ht(M,U(1)) ry Hom(0, U(1)) ry o

Together with (2.3) this gives the result

H'(M,D') = A\(M)

(7.e)

(7.10)

(7.11)

If we think of this Deligne class as a bundle then this tells us that when r{M) : g

all bundle gerbes with connection on M arc completely determined by their curvature.
The tautological construction gives us a bundle with connection over a l-connected
base M which has a particular curvature, so this tells us that the tautological bundle is
in fact the unique (up to isomorphism) bundle with connection satisfying these require-
ments. Rather than constructing a bundle from its curvature we shall construct it from
its holonomy function. In the tautological case the holonomy function is completely
determined by the curvature, so this approach does make sense as a generalisation of
the tautological case.

We now relalc the requirement that M be l-connected. Let us start with a bundle
O-gerbe with connection defined by a class in H|(M,DL). There is now no map p,
however in the previous section we found that for the tautological bundle p is equal
to the holonomy, which does exist in the general case. An explicit construction of
the Deligne class from the holonomy is described in [31]. We shall construct a bundle
O-gerbe using a similar approach.

We use the tautological construction replacing p with the holonomy, giving the
following bundle 0-gerbe:

U(L)
HI

LoM =
(7.12)

We define the connection to b. /, eu* F as in the tautological case. The inverse of the
hnlnnnmr¡ m¡n fnllnrr¡c frnm tha ralqtinnehin hatr¡¡aan lranciìinn frrnntinnc onrl tha flot
holonomy class, see the proof of proposition 5.1 for an example of this.

Now we outline the method for finding local expressions of a bundle with connection
from [31]. The first step is to define a section over each U¿ C M which gives a path in
U¡ for each which ends at rn¿ € U¿. These are composed with paths p¿ which connect
them to the base point and so define local sections of the path fibration. The sections
over U¿ and U¡ are then composed and the holonomy is evaluated over the resulting
loop. Observe that this gives precisely the transition functions of the bundle O-gerbe
(7.L2). In particular note that the inverse is present since the direction of the path
is positive on the lift over U¿ and negative over U¡. F\rrthermore it is shown that the
resulting bundle is independent of the choice of base point.

Next we show that our connection is the same as that obtained in [31]. Since our
connection is defined on the path space we need to pull it back using a local connection

PoM
J
M
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for comparison. Let s¿ be the local section over U¿ and let u be a vector at r €. t/¿ which
may be represented by q'(0) for some curve Q C U¿. The vector s¿*X is a vector in the
path space which is based at the path s¿(r). It is given bV #tn(q(k))[=0, where for
each ,t the path s¿(qr) is from m¡, the centre of.U¡, to q(k). Strictly speaking the paths
actually begin at ms, but since s¿(q(k)) is constant between rns and Tì,¡ we are only
interested in what happens between m¿ and q(k). The local form of our connection
evaluated at u is fr4r,,eu*F: IrF(t*"(t),dt) where s¿.r(ú) is the vector onU¿ given
by the element of the vector field on the path s¿(r) at s¿(ø)(ú).

In [31] the connection is defined by first taking the holonomy of a particular loop
associated with a vector u as above. Omitting the trivial part again, this loop consists
of three components, first the lift s¿(ø), then the curve q and finally the lift ro(q(fr))
in the reverse direction. The local one form evaluated at u is then defined by taking
minus the ,t derivative of log of this holonomy at lc :0. Note that the loop around
which the holonomy is taken corresponds to the boundary of a surfac€, E,r, defined by
the collection of all of the loops so(q(r)) from 0 to k. This means that we can express
this holonomy as an integral of the curvature, exp.[>r F. The integral over Ð¡ may be
parametrised by .I x [0, k] where -I parametrises the curves from m¿ to q(s) and [0, k]
parametrises the curves. \Me can now calculate the connection:

# I, Ioo'r'nrn'('))(¿), 
dt)¡=o - f,"u.rþ¿.,(t),dt) (7'13)

as required.
Now consider a general bundle O-gerbe with connection (g,Y, M; A). If we calculate

the holonomy and then use it to reconstruct the bundle O-gerbe then we have a new
bundle O-gerbe (H,P¡M,M;B) which is D-stably isomorphic to (9,Y,M;A). This
may be shown explicitly by considering the product bundle 0-gerbe

u(1)
g-r HI

Yl2l x* LoM =
(7.t4)Y xoPoM

J
M

The transition functions for the bundle 0-gerbe are given by
f

glà .e*p 
J, _,,_,(An - dlog/¿¿)
t lte*þp

(7.15)

where p,o and p,p ale paths given by the local sections of the path fibration at m € Uap.
Normally we deal with the term in the integral by breaking it down into a sum of
edges in a triangulation of the loop. Using the sections of the path space described
in [31] we can break down þo* trpl into a sum of four components. First there is a
path from ms to mo, the "centre" of. Uo. This is independent of. m and so contributes
a constant factor Ko to the transition function. Next there is a path, ito, from mo
to m. This is contained within [/o so the integral corresponding to this component is

[0. A, - dloglzo. The remaining components are from m to mp and from mp to ms
and contribute similar terms to give

g.à(m) ' K.Kp' '"*p Iou?Ap* dtoghp)'exp Io.Ø,- dlosh,) (7.16)
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Applying Stokes' theorem to the h terms gives

già@) ' KoKBt'exp( -AB * A") . h¡1(mp)hB@)h;L (m)h"(m") (7 .r7)

We nray no\ry cancel ottt g,)(m) with hB(m)h;r(rn) and incorporate the other h terms
into the constants since they don't depend on rn. This leaves

(7.18)6(K;t.exp( _A*))

proving that the two bundle O-gerbes are stably isomorphic. To see that this extends
to a D-trivialisation it remains to observe that applying dlog gives the pull back of the
connection form, -A + [, eu* F by a local section.

Using these results we now have a canonical representative of the D-stable isomor-
phism class of any bundle O-gerbe with connection which we shall call the holonomy
representatiue. Given any bundle O-gerbe with connection this is obtained by taking
the holonomy and then reconstructing a bundle O-gerbe.

We now consider the case of bundle gerbes. We assume for now that M is 1-

connected. \Me shall postpone discussion of this requirement until the next section.
Given a function representing the holonomy of a bundle gerbe we reconstruct the
bundle gerbe in the following way

u(1)
HI

S'(M) = D"(M)
.t

LoM =
(7.1e)

Over U¿¡ we have the sections s¿ ând s¡. Use these to define the pullback bundle 0-gerbe

t/(1)

I
S'(M)o¡ = D'(M)o¡ Q'20)

.i.

U¡j

where elements of. O2(tW)ot which lie in the fibre over rn are surfaces bounded by the
l-cycle s¿(m) x s¡(m)-L. Since U¿¡ is contractible this bundle O-gerbe is trivial. Let the
trivialisation be defined by a functior- e¿¡ : n2(tttt)¿¡ -+ U(t) which is a homomorphism
with respect to the gluing of surfaces and is equal to H¡¡ for surfaces with no boundary.
The function a¿¡ plays the same role as the section o¿¡ in the usual construction of the
transition functions of a bundle gerbe. In a similar \May we may define e¡¡, a\d e,ix

and form the products of these over [/¿¡¡. Consider the product e¿¡e¡xe;x. This is
defined on the fibre produú D2(M)ij x" D2(M);¡ xn Dz(M)¿¡. Consider an a general
element of this space. First you glue together a surface with boundary s¿(m) * s¡(m)-L
and one with boundary s¡(rn) * s¡(rn)-l This forms a new surface with boundary

PoM
+
M
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s¿(m) x s¡,(m)-r. Finally we glue this to another surface with the same boundary,
thus giving a surface with no boundary. Using the gluing properties this means that
the result of the product is the holonomy around this surface. We claim that this is
equivalent to the construction in [31].

The bundle gerbe connection on D2(M) is A : freu"u where Ð e O2(tW). To get
a local expression we consider again the bundle O-gerbe on U¿¡ obtained by pulling back
with (s¿, s¡). To get a local formula we pull back using a section s¿¡ : []¡ -+ D2(M)ij.
This section takes r €. (J¿¡ to a surface E¿¡ with boundary s¿ * t;t. Given a vector
u <7,(M), the vector s¿¡*u is a vector field on s¿¡(r). Suppose IMe parameterise X¿¡

with s and ú. Then the pull back is [r,,r(tni*r(s,t),ds,dt). The construction in [31]

involves taking the holonomy around the surfac"Eü.We write this as fxriu where
X¿¡ is the 3-manifold bounded by E¿¡ which is defined by the family of surfaces given
by lifting the curve, q, defining u with s¿¡. Taking the derivative with respect to ,k, the
parameter giving the endpoint of g, we get

u (s¿¡(q' (u)) (t, t), d,s, d,t) : u(s¿¡*u(s,t), ds, dt) (7.21)

and hence our connection is the same as that in [31].
The curving may be dealt with in a similar way. We start with the 2-form onPsM,

freu*u and pull this back to U¿ with s¿, â,nd then evaluate at a pair of vectors u: q'(0)
and u: r'(0). This gives [ru(s¿.,(t),s¿*-(t),dú). In [31] the approach is to take the
holonomy over a surface Ð¿ which is defined in the following way. Locally the vectors u
and u.r are extended to vector fields defined by commuting flows. These flows consist of
families of curves, q* and r- where q:^(0) and ri(O) give the elements in the respective
vector fields at the point rn. Thus we have qi(O) : u and r',(0) : v;. F\rrthermore
these flows commute, that is, q"(¿)(k) : rq1*¡(l). The vector s¿*u is defined by a path of
paths which forms a surface bounded by s¿(ø), g, and s¿(q"(k)). Similarly associated
with s¿*u.r is a surface bounded by s¿(ø), r, and s¿(r"(l)). To get a closed surface we
make similar constructions at the point q,AtØ): rqlr¡(l). This gives a surface which is
a cone fromm¿ to the surface lor,r, (to use the notation of [31]) bounded by q,rø,gr(t)
and rqlr¡ with appropriate orientations. This cone defines the surface E¿ and we denote
the enclosed volume X¿. The holonomy over E¿ may be expressed as .[x, ø. \Me may
parametrise X¿ by .I x [0, /c] x [0,l] where the last two give a parametrisation of the
discs in the cross section of the cone and .I parametrises the length. Taking the partial
derivatives in k and I then gives

# I,lr' Irr 
a,(s¿(qi(s)) (t),s¿(r',(u))(t),dt): I,r$o*,(t),s¡.,(t),dt) (7.22)

Thus our definition of a bundle gerbe reconstructed from holonomy agrees with the
definition of a gerbe given in [31].

7.4 Reconstruction via Transgression
The techniques of the previous section do not easily extend to the case of bundle
2-gerbes since the construction of the local data from sections becomes quite compli-
cated. Another problem is that we have only been able to deal with base manifolds M
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which are l-connected. Instead we use transgression formulae to approach holonomy
reconstruction.

Recall that in $6.1 we noted that the parallel transport of a bundle O-gerbe gives
a bundle over M which is D-stably isomorphic to the original bundle. This gives
us an alternative way of calculating local data using transgression formulae. Let us
consider the bundle gerbe case first, assuming for now that, M is 1-connected. Given a
bundle gerbe on M with corresponding holonomy map ff : S2(M) + U(1) we wish to
show that the following bundle gerbe, with connection [preu*u and curving [reu*u is
D-stably isomorphic to the original one with curvature ø:

H u(r)

I
s,(M) = D'(M)

J
LoM 3 PoM

J
M

We do this by using transgression to find the local data for this bundle gerbe. First we
consider only the transition functions. The transition functions for the bundle O-gerbe
(H,D2(M),LoM) are those obtained by transgression to the loop space, G¡s,ps)(t.,pù.
We define functions onPsM by the same formula, and denote these by hþr,pr)(t¡,p¡) or
just ä¿¡. These functions satisfy

t u¡(t )hu'1tù - Go{pr* tt;\ (7.23)

whenever p¿ and p¡ agtee with ps and py on the boundary. Thus by similar arguments
to those used in the bundle 0-gerbe case we may use the open cover on PsM which
is induced by the projection to M. Next consider what happens on r-L((Joø) by
calculating h"phprh;]. Let (po,t.) denote any choice of (p,ú) such that po(u) : q
where u is the endpoint of the path. Then we have

h,þhp.yh;i: exp D I Or.r")pp(e) * App(")p,(") - Ap.(")p"(,) .fI go]ç¡p.1o¡ppqo,1
e Je urê

I p,(e)pp(e)pp1r¡9 puL1"¡pp1r)pr@¡9 e ok)or@)pr(a)9 p.(e)p.(u)p",({9 r}1ep.,1"'¡pr6¡(u)
: lI g plp¡pp1"¡p"1"'¡9 o]ç"¡0,1o)pp(ù9p,(")pp(e)pp(')9 puLle)pp(a)pr(e9poþ)p1þ)pr(a)

l, ìe

I p o (e) p. (a) p., 1o¡ I p ] p¡ p, 1e¡ p, p¡ (a)

: fl oljlu¡ p plo¡ p,1,¡ (r)o'ê 
(T'24)

where the last line is obtained by repeated application of the cocycle identity on g. It
is not difficult to see that this descends to M, so we have h;)hplh"r(tt):g"g(tr(¡r)).
We need to show that these are transition functions for the bundle gerbe described
above. So far we have

Gor(ttl'* pz): h;þ(uùh"a@z) Q.25)
nftnuln"rj'ù: g,h(r(pz)) 9.26)
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Since we wish to avoid using local sections we shall prove directly that this gives the
obstruction to this bundle gerbe being trivial. First suppose that there exists a bundle
gerbe trivialisation. This means that there exist functions goB such that

Gor(t r'* ttz) : qià1.')q"p@z)
q.pqhq;+(F) :1

/c"(€): Ð1.t'¿f p.p¡ + t - 4Ap.p)p.(u)
!rê

Le(fpp@) - Íp.þ))

(7.27)

(7.28)

Consider the functions h,þq,p onPsM. Since h;þø"0@)h"pq,à@): GslG;rl : 1

these functions descend to M. On M we have õ(h-'q-')"h: õ(h-r)rh: gaB7, thus
g is a trivial cocycle. Conversely if g is trivial then let goþt : g"pgøgi]. On PoM
the functions h,)(U)g"p("0r)) are globally defined and are transition functions for a
bundle which trivialises the bundle defined by G.

Next we show that the connection may also be reconstructed by this method. We
need to show that the connection [oreu*us corresponds to the original connection A.
Tïansgression gives a formula for B¿o,oo, which are local connection l-forms on Ql(M).
These are defined by

T* Bs : dloghs - EU u (7.2e)

Note that the term ãloghs is trivial when considering this as a connection on the
bundle over LsM, so \rye see that the one forms -Bs are local representatives for the
connection. Over PoM we have 1-forms -/co induced by the extension of Be from loops
to paths. These satisfy õ(k"): Bo whenever ps(u) : o where u is the endpoint of the
path. The bundle_gerbe connection is trivial if these form a connection onPsM, tbat
is, if ko - kþ : dlogh.,p. If these are not equal then they differ by a l-form which
descends to M which is the local representative Aop of. the bundle gerbe connection.

In terms of transgression formulae we have

*

ã,tosh.t(E) : 
Ð I"

(7.30)

(7.31)

+ t Le(Ap.(")p.(u¡ * Ap.p'¡pp(,) - App(")pp@)) (7.32)
U¡ê

(Jtog h,þ - kp + ka)(€) - D LeAp.(o)pp(o) (7.33)
ùrê

: A"p(€) (7.34)

Thus we have reconstructed the local representative of the original connection.

The local curving is given bV / - ãko, lhe extent to which the curving fails to be a
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curvature for the connection ko

urê

ãt',(€, u) : d,(k,(r))(€) -,í(r"(E)) (u) - t ¡E,,1teo

: t I d,rgr,¡r1"¡ * tqd,qf 01", - d,qtElpç"¡ - udlgf ole¡ - r.¡E,vl.f p(e)?1""
+ t -tEd,t,Ap1e)p(o) * r,,d,t4Apç¡pço¡ * t¡E,,1Apþ)p(u)

!rê

t f
J"dtet,Ío{"¡ 

* L¿t,f ,1e¡ - d,tEt,f oçe¡ - bLçf pþ) + LvLrp - L¡E,u1lpþ)

+ I -bLttf oþ) - LEt,Apç)p(o) * t,L¿App,p1o¡ - t,\f p¡o¡

e

* D4f ,1"¡ * L¡¿,v1Ap1e¡p(u)

t
: (l,"u.r)(€,r) - r. Ío(€,v)

e 1",,,,, - Dt,'rror',
!'ê

(7.35)

therefore the local curving is given by "f" as required.
In trying to deal with the case where M is not 1-connected we still have the problem

that D2(M) -+ LsM is not well defined. It has been noted [31] that in this case the
holonomy map may not be used to reconstruct the bundle gerbe, instead reconstruction
is given in terms of a parallel transport structure. We may think of this as equivalent
to a transgression line bundle on the loop space. If we start with a bundle gerbe P
then there is a transgression bundle .L on the loop space regardless of whether M is
l-connected. Using this we define a bundle gerbe

with curving defined once again by [ren*rÐ. The same arguments used in the previous
case apply to prove that this is equivalent to the original bundle gerbe.

7.5 Reconstruction of Bundle 2-Gerbes

Let P be a bundle 2-gerbe on M, a 2-connected manifold, with holonomy function f/ :

St(M) + U(1) and curvature O. 'We may apply the techniques of the previous section
to prove that the original bundle 2-gerbe may be reconstructed from the holonomy

= PoM

L
+

LoM
J
M
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using the following diagram:

s1
HI

s,t(M) = Dt(M)
+

S'(M) = D'(M)
J

LoM =

with connection, 2-curving and 3-curving given by

(7.36)

(7.37)

(7.38)

We know from the previous results on reconstruction that the bundle gerbe over LsM
is that obtained by transgression in $6.4. We recall the local data on LoM:

êrb l" urerb

Gotz: exp(D - A p s þ¡ p 1 (e) p, @))' lI g i ]ab s (u) p ¡ (a) p 2 (u) I p o (e) ø (e) p t (o) p z (o)

g i oL(") p, (") p, (e) p z @ 
(a)

- L€T po(e) m(") + t Le(A po(") pr(e) n þù - A poþ¡ ps(a)p, (r) )
urerb

PoM
+
M

ea*O

oe1)*

u : 1,"'.o

Bot:>, I
.,b J"

(o : I |"-rrrro"t, * 
à 

-LvLçeps(e)ps(a)

We extend these to PsM where they are locally defined. As usual they are independent
of the choice of p up to the choice on the boundary so we may express them in terms
of the open cover induced from the base, (Gop, Bor, Ç). The D-trivial bundle 2-gerbe
obtained from applying -D to this local data descends to M to give the local data
for the bundle 2-gerbe described in the diagram above. We now calculate this data to
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show that it is the same as that for the original bundle 2-gerbe with holonomy H.

Gp:6G.16cildc.ø-."o(Ð 
l"Aouroo,<e)pdþ) - Aro(")r,(qoo(") * Ap.(e)pp(e)po(e)

- Ap,(")pp(")p,@)) lI g

: fl 9 p, (e) p p (e) p, (4 p d þ) õ (9 p. (e) p, (a) p p (u) p1 1o¡ I p ) ç¡ p p q") p p (a) p., (u)
!'ê 

9p.(e)pp(e)p-,(.)pr@))o1t¿

: lI I p,(u)p B þ) p., (,)p¡ (o)

!rê

: 9aB1õ
(7.3e)

(- J log G oh - 6 (B).B)(€) : \ t EdA o.þ) p p (e) p1 @) + d,4A r.ç) p p (e) pt @) + I g
e arê

+ t r
J .4T o ot"l n @) - L€Tl p, (ò pt G) * LcT p' (e) p pf "l + D A

arê

Lgt
!rê

A p, (") p p (") p" (r) * d log g p. 1"¡ p, (a) p p (a) p1 @)

- d log g o. 1e) p p (e) p p (a) p., p7 * d' Iog g p, þ) p p (e) p, (e) pt @)

- õ (A p. p¡ p p (") pp (r) - A o. þ) o. (o) p p @)) ..þt)
: t L€Ao.@)ppþt)pr(a¡

!rê

(7.40)

I
J "- 

t ed t 
"n r. þ) p e þ) - d 4 qr¡ o. 1e) p p (e) * h d, qr¡ r, 1e) p p (e)

* d,trt çr¡.,1e)pp(e) I L¡E,v1Tp,(e)pp(.) *l e
xrê

Ð I"-LvLËvpp(e) - LvLËr,lpe(e, *Ð,

(ãB,p - ó(()"p)((, r) : D
e

S

- L L v L { po (e) p p @) + L v L Ëd A o. þ) p B þ) p p (fl - L y L EriA p. þ) p. (u) p p (u)
trê

* L v L Erl p p (e) p p (u) - L v L €rl p. (e) po (u)

Dt,trro.@)pp(o)
utê

(7.41)

-ã|,G,u, p) :Ð 
|"rrr,r¿duo.1"¡ 

* d,t rt,tEuo,(") * D*r,rrr€d\p.(")p.(u)

r,60 f It rt,t gup,1,¡
ùrê
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If M is only 1-connected then we may reconstruct the bundle 2-gerbe from the
transgression bundle on Sz(M).If. M is not l-connected then the bundle 2-gerbe may
only be reconstructed from the transgression bundle gerbe on the loop space. These
are both proven using the same calculations as above.

We would like to briefly comment on Cheeger-Si,mons Differenti,al Characters and
their relation to holonomy reconstruction. Let Zo(M) denote the group of smooth
singular pcycles on M. A degree p differential character ([14], [5]) is a t/(l)-valued
homomorphism on Zp-t(M), c, together with a pform, a, on M which satisfy the
condition

c(0ù -"*o I o (7.43)
J1

for 7 € Zo(M).These are classified by Deligne cohomology so there must be a one to
one correspondence between degree 3 differential characters and D-stable isomorphism
classes of bundle gerbes with connection and curving. The holonomy map satisfies
equation (7.43) on pmanifolds which are the boundary of a (p * l)-manifold, and the
additivity property is similar to the homomorphism property of differential characters.
We have seen that unlike differential characters a holonomy map is only sufficient
to reconstruct the Deligne class under certain assumptions regarding the topology of
the base. The difference appears to correspond to the distinction between smooth
mapping spaces and simplicial complexes. Differential characters may be useful in
further investigation of holonomy and Deligne cohomology however given that they are
not needed for our applications we have not studied this in any further detail.

7.6 Geometric Transgression
In this section we consider some examples where we are able to give a geometric
interpretation of transgression. These include lifting bundle gerbes and the bundle
2-gerbe a^ssociated to a principal bundle.

We begin with the more general case where rather than a ûbre bundle over M we
only have a fibration,Y + M.

Proposition 7.2. LetY + M be ø fibrøtion with M l-connected. Then the transgres-
síon of a bundle gerbe (P,Y, M) to LM is the bundle }-gerbe described by the followi,ng
diøgram:

Sl

trYlz) = LY
J

LM

The function hol(P) is euøluøted with respect to the bund,Ie gerbe connection A which
is also abundle connection on P. The connection l-form on LY is giaenby [rreu*f
where f is the curuing Z-form on Y .

This is a well-defined bundle O-gerbe since the cocycle condition is satisfied due to
the gluing property of holonomy.

hol(P)I
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Proof. We need to show that the bundle 0-gerbe described above is equivalent to

s1
I

s'(M) = D'(M)
J

LM

We do this by showing that the following bundle O-gerbe is trivial:

S1

,̂v
S'(M) xn LYl2l = D'(M) x LY

J
LM

where the map lt: S2(U) xo LYl2l + ,S1 is defined by

A(Er, Ez, pt, pz) : holi,l_>, (p,y, M) .hol6r,rù(p,ylrl) (7 .44)

where Er,Ez e S2(M) and ¡.t1,ttz € LY. Note that the first factor is a bundle gerbe
holonomy and the second is a bundle O-gerbe holonomy.

Define a trivialisation of Á. by

I(Ð, p): exp I f-¡ + dkr).holr(J) (7.45)
Jr,

where J -> Yz is a trivialisation of the bundle gerbe P over X. The second factor is
well defined since ¡.r is a lift of "y : 0E to Y (this is where the assumption that Y + M
is a fibration is required). This is independent of the choice of trivialisation since the
difference is

I'
exv 

Jr@kt - dkt,). holr(/* Ø J') : holfr (L) .holr(tr-r L)
(7.46)

: holzl(z) .tro\(r)

where 1 : 0Ð - r(p) and r-rL : J* Ø J'.
if we iet i be a triviaiisation over Ðt#Ðz with restrictions .li an<i iz T,o Ðt and Ð2

respectively then we have

l-t(tr, pt)I(Ez, pz) : "*, lr,ur,(-¡ + akt) .holr,(,I1) .ho;r,(J2)
(7.47)

: holjrla¡, (P,Y, M) 'hollrr,rù(P,Yl'l)

We now show that the connection of the theorem is a bundle O-gerbe connection.

rîõ(l eu*1) : I eu.6(f)./sr J sr

: [ "o.FJs,
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dlog(hol(I)) : d,([ ea.A)
Jst

lr,"u. '
We would like to use this result to examine the holonomy of a lifting bundle gerbe (see

$3.3) when M is l-connected,

c
+
G

p

,v

If we assume that this bundle gerbe has a connection and curving then immediately
'we see that the transgression to the loop space is given by the following diagram:

S1
holþ.ê)I

= LPc
+

LM

It is tempting to apply the functorial property of holonomy here however the bundle
gerbe .ono..iion may not be equal to the pullback of the connection on d since, in
general, this does not give a bundle gerbe connection however there is a l-form e such
lhat þ*A - e is a connection. Some explicit calculations of such l-forms are given in
[37]. In terms of holonomy we have

hol(/-lô; ó.A - e) : hol(d-LG;S.A) . I(e)
: /.hol(G ; A) - I(e) 0 '48)

where I : LPl2l -+ ^91 is defined by

Pt'l = Pç
+
M

LePt

Ir(r) : exp 
Is,t.e

(7.4s)

This is well defined since e is the difference between two choices of connection and
thus descends to Pt2l. The connection on this bundle O-gerbe depends on the curving
chosen. Unlike the bundle gerbe connection there is no canonical choice.

Now we turn to the case of bundle 2-gerbes.

Proposition 7.3. The transgression to the mapping space S'(M) of a bundle Z-gerbe
(P,Y,X,M;A,q,r) such thatY -> M is a fibrati,on with si,mply connected fi'bres and
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M i,s Z-connected i,s giuen by the following d,iagram:

s1
hoL(Pir¡,v)

52(xtz)¡ S,(X)
J

S,(M)
The connecti,on is giuen by [reu*L/.
Proo!. This is proven using an argument that is similar to that used for proposition
7.2. The stable isomorphism is given by a function I : Dt(M) x" S2(X) -+ U(1) which
is defined by

,v
-+

(7.50)

where -R is a trivialisation of the bundle 2-gerbe over A e D7(M), which defines a
bundle gerbe over X4 and the second term is the holonomy of this bundle gerbe over a
closed surface. We require the connected condition on the fibres so that lifts of surfaces
to X are well defined. The proof now follows that of Proposition 7.2. ¡
Now we would like to apply this to the bundle 2-gerbe of a principal G-bundblaalwhere
G is simply connected. Recall that this bundle 2-gerbe is defined in the following way:

(R,Y)
{f

o"
,v

pÍ"1 
= 

p6
J
M

where Pc -+ M is a principal G-bundle, p , PEI -+ G is the usual map to the group
element which acts on pz to give p1 and (-R, Y) is a bundle gerbe over G. On the
pullback bundle gerbe p-L R the pull back connection may be used as the bundle 2-
gerbe connection, however the curving may not be a bundle 2-gerbe 2-curving. It is a
result of Stevensonfaa] that given a curving on a bundle gerbe over Y[2] it is possible
to make it into a bundle 2-gerbe 2-curving. This involves subtraction of zr*e where e is

ô ¡ ¡¡lJ1 rrr .rr . r r ¡ .r r r r-r!- ,f - -l - f- - -- - - :.î^some z-Iorm on I r-J. vve wur provtqe a (le[alreq carcurarr()n (Jr suull arr € rur a sPecruc
example in $8.2.

Proposition 7.4. Let (p-rR, p-LY, Pc, M) be a bundle 2-gerbe associated with ø prin-
cipøI G-bund,le Pç -> M ouer o, Z-connected base M and, a bundle gerbe with connection
and curvíng (R,Y,G;q, A) Then the transgression to 52(M) is the bundle Ì-gerbe giuen
by the following diagram:

S1
p'}rol(R;A,q).1(e)

7

-) s'(P")
J

S,(M)

¿(4, t) : exp I^n, + din).hol¡(Ë)

S,(PE])
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where I(e) is the Sr-ualued, function on S2(PP\ de¡nea ba l(e)(tþ): exp Ï rþ.r.

Proof- This follows easily from the previous discussion and the bundle gerbe case. !

7.7 Gauge Transformations
We would like to define gauge transformations for bundle gerbes and consider their
effect on holonomy. Since a gauge transformation of a bundle gerbe is basically a
stable isomorphism of a bundle gerbe with itself it is no surprise that it turns out to be
invariant under holonomy however it is of interest to see how this invariance arises in
the bundle gerbe context. This will be of interest in subsequent applications of bundle
gerbe theory.

Bundles and Bundle 0-Gerbes

We recall some basic facts about gauge transformations of U(l)-bundles

Definition 7.1. A gauge trønsformati,on of a principal G-Bundle is an automorphism
of the total space which covers the identity on the base space.

The automorphism property guarantees that a gauge transformation preserves fi-
bres, hence for any gauge transformation / : P + P we have a map gô : P -> G
defined by

ó(p) : psô(p).

Since ó(pg) - ó(p)g then we have g6(pg): g-'go(ùg.We are interested in the case
where G:U(L), so this becomes gO@g): gó(p), that is, g¿ is constant on fibres, so it
inducesamap 0o,M+G.

Suppose we have a connection A on the t/(l)-bundle P + M. Pulling back by the
gauge transformation / gives

ó*A: A+ g;rdg6. 0.52)

To generalise to the bundle gerbe case we first consider bundle 0-gerbes. Recall that
to each bundle P + M rve can associate the following bundle 0-gerbe which has the
same Deligne class:

u(1)

(7.53)

where the map p: Pl2l -+,S1 is defined by p(pr,pz): g where pz:ptg.Equivalently
rve can identify Pt2l with P x Sr in which case p is simply the identity map on ,S1.

Given a general bundle O-gerbe (^,Y, M) u gauge transformation should obviously
be a map Ó, Y + Y such that T o Ó : zr however the condition Ó(pg) : Ó(p)g
cannot be used here as in general we don't have a group action on Y. Instead we need

pI
plz) 3 p

J
M
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a condition on the map Ó12) : Yl2) + Y[2] and À : YÍ2) -+ ,S1. Consider again the bundle
0-gerbe (p,P,M). Applying /tzJ b PÍ21we have

p(Ó"t(p''p')):lwi,¡rli;iiy¿'':;''ll

This suggests the following

Definition 7.2. Let (À,Y, M)be a bundle 0-gerbe. A. gaugetransformationof. (^,Y, M)
is a smooth map þ : Y + Y which satisfies the following conditions:

¡roö -r (7.64)
Ào6t2J -À (7'55)

Let A be a bundle O-gerbe connection l-form on Y. This means that ,4, satisfies the
equation 6(A) : dlogÀ. The gauge transformation / may be used to construct a map
(7,ó),Y ->Yl2l. Use this map to pull back õ(A),

(1, d).ô(,4) - (I,þ).(tri - "ÐA: (trz o (1, /))-A - (n, o (L,þ)).A (7.56)
: ó*A- A

thus we have

ó*A: A+ (1,ó).6(A): A* (1, /).dlogÀ (7.57)

We would like to compare this result with equation (7.52). By definition p(p,ó(p)):
go(ù, so this immediately shows the equivalence of the two equations.
The function (1, ó) ^ay also be used to define an ^9l-function (1, þ).À onY.

ô((1'd).))(auaz)=1,ülii,*Uø,il1u^,,,ó(a,,,

(7.58)

therefore the function (1, /)-À descends to M. Note that once again this function has
similar properties to gô. We shall denote the function on M by Àø.

Finally we calculate the holonomy of the bundle O-gerbe (À,Y,M) with respect to
the transformed connection $. A. To do this we need the D-obstruction form. In general
for bundle O-gerbes this is given by Ao - dlog/r,o where Ao are the local connection
forms and h,o is a trivialisation. In this case to get the connection we use a local section
of. Y + M to pull back the right hand side of (7.57) giving

s|(A + r*dlogÀo) : Ao* dlogÀ¿ (7.59)
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The holonomy is then given by

I,H((g,ó.A);?) : exp Ao-dlogho*dlog)¿

: H((s,4);r) ' ."p

: H((g, A);t)
I,

(7.60)dlog À6

So the gauge transformation leaves the holonomy unchanged. This result is not so

surprising if we consider that the difference of the Deligne classes (g,A) and (9,Ö.A)
is (1,dlog)ø) : D(^ù.

Now-we consider parallel transport. If ¡.r is an open path in M then recall that the
holonomy function now depends on the choice of trivialisation,

fH((h,Ø);p) : exp I'q" - dlogh"* dlogÀa'Jp ' (7.61)

- H ((h, A); t'). );1 (r(o))tø(¡r(t))

Thus the gauge transformation contributes an extra term to the Deligne cochain on
Map(/;M) obtained by transgression. If we apply D to this cochain to get a bundle
then the extra term will cancel out as it doesn't depends on the choice of trivialisa-
tion. The local connections on this bundle will pick up an extra term r61¡r1r¡¡dlog)¿ -
r,6111o¡¡dlog)¿, however, just as on the original bundle this difference is D-trivial.

Bundle Gerbes and Bundle 2-gerbes

We shall extend the concept of gauge transformation to bundle gerbes and bundle
2-gerbes. We shall refer to these collectively as bundle n-gerbes where it is to be
understood that n:0,7 or 2.

Definition 7.3. Let (P,Y, M) be a bundle gerbe. A' gauge transformationof. (P,Y, M)
is a smooth map ó,Y + Y which satisfies the following conditions:

ó^.e,Ttl): "o,rrr, ii\?l
with the second condition involving a choice of isomorphism of bundles, õ, over Ylzl
which preserves the bundle gerbe product.

Similarly,

Definition7.4. Let (P,Y,X,M) be a bundle 2-gerbe. A gauge transfortnation of.

(P,Y, X, M) is a smooth map ó , X + X which satisfies the following conditions:

(7.64)

6rzr*(p,r,"*ol) : "O,",trr, 
(2.65)

with the second condition being a choice of stable isomorphism of bundle gerbes, fr
ouer X[2], which preserves the bundle 2-gerbe product.
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The next step is too see how the various connections and curvings transform. We
begin with the 2-curving for a bundle gerbe. This situation is similar to that of the
bundle O-gerbe connection. If we denote the curving by q then following (7.56) we have

(t,ó).6(q):ö*rÌ-n (7.66)

SO

ó*rt:q+(7,5).F (7.67)

whereFisthecurvatureofthebundle P -+YIzl. Nextweconsiderthebundle (L,ó)-tP
over Y.

ô((1, d)-lP)@,,s") : Pä,,ó(y,)) Ø P(y,,þ(y"))
_D.- ' \ô(sù,ô(sr)) Ø P(ô(sr),aù Ø P@r,ó(s")) (7'68)
: P(ö(sù,ó(sr)) I P(or,rr)

Thus we see that (I,ó)-tP is a trivialisation of the bundle gerbe P* I 6lz)"p. More
importantly observe that we have an isomorphism of bundles,

6((1.,ó)-LP): 4lz)*P * P*
:PØP* (7.6e)

therefore (1,ó)-'P descends to a bundle on M which we shall call P6.
There is a connection V1r,¿¡-rp orr (L,ô)-'P which satisfies

ô(V11,4¡-'p) : V4rzt.p I VÞ (7.70)

On the right hand sides we have two choices of connection on isomorphic bundles, so
they differ by a l-form a on Yl2l such that d,6¿ : 6tz1* 

p - tr.. Over Y we may compare
the connections on r-L Pô and (1, ó)-L p . These differ by a l-form B onY . F\rrthermore
since ô(Vo-'po) : 0 we have 6(þ) : o. The curvatures of these two bundles are related
by r* F6 + dB : G, ó). F. We may now express (7.67) in terms of F6,

ó*q : r7 * r. F6 * dþ (7.7I)

We also have the relationship between the connections, where /*A refers to the induced
r f9l* -

ó*A: A+rþ6(B) g.zz)

We may interpret these results in terms of D-obstructions. The bundle gerbe óÍ'l.PØP
has a trivialisation (1, ó)-'p which is not necessarily a D-trivialisation. The obstruc-
tion is given by a 2-form X on M such that locally r*X - n - .t'¿ where .F¿ is the
curvature of the connection on the trivialisation. In this case F¿ - dP, so the D-
obstruction form is F¿. This means that the D-obstruction form is trivial and so the
two bundle gerbes SIz)*p and P are D-stably isomorphic. Thus we expect the holonomy
to be invariant, as we shall see from explicit calculations.

We can now work out the holonomy corresponding to the new connection and
curving by considering the local formula. We may assume without loss of generality
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that the transition functions are equal, since introducing an extra factor from the stable
isomorphism will be cancelled by an additional term in the connection.

Substituting ó.n and þ* A into the local formula for the holonomy of a bundle gerbe
over a closed surface E gives

H(ó-'P;ó* A,ó*n) - H(p; A,rt) .*r (Ð lorr * dþpþ)\ 
1"U,,", - P^,))

: H(p;A,rt)'u*pt /ró (7'73)
TJU

- H(p; A,rt) ."*o frr,
where the þ terms cancel due to Stokes' theorem and the usual combinatorial argu-
ments. Since Fa is a curvature we have

H(Ó-'P;Ó.A,Ó.n): H(P;A,rù (7.74)

so the holonomy is an invariant of the gauge transformation of a bundle gerbe.
In the case where X has boundar¡ there are extra terms in the function ff on the

space of trivialisations,

exp F6 þp@ (7.75)

These are independent of the choice of trivialisation so they do not affect the transition
functions on the bundle over ôE. The local connections of this bundle gain an extra
term Ju" r,6F6 which is D-trivial.

For bundle 2-gerbes the situation is very similar. Let (P,Y,X,M;A,r¡,u) be a
bundle 2-gerbe and let { be a gauge transformation. There is an isomorphism of
bundle 2-gerbes

6lzJ*p I P* : ô((1, d)-lP) (2.76)

by the same arguments as in the lower cases. We may give the trivialisation a connec-
tion and curving which are compatible with ô. The 3-curvings satisfy

ó*r:v+(I,þ).u (7.77)

where ø is the three curvature of the bundle gerbe (P,Y,¡tzì) which satisfies u:6(u).
By similar arguments to the bundle gerbe case above, the bundle gerbe (I,ô)-tP
descends to a bundle gerbe Pç on M with 3-curvature ø¿ which satisfies

(L,ó)., : r*uó * dþ (7.78)

where B is the 2-curving of the trivialisation. Thus we see that aq is the D-obstruction.
Since it is a curvature then the D-obstruction is trivial and the holonomy of bundle
2-gerbes is invariant under transgression, though as in the previous terms there will
be a different choice of section of the bundle on the mapping space in the case with
boundary.

l"t
erb

+T
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G- Gauge Tlansformations

We have seen examples of bundle gerbes and bundle 2-gerbes, namely lifting bundle
gerbes and the bundle 2-gerbe associated with a principal G-bundle, which have the
following general form:

p

,v
PçxG =

(7.7e)

where + I J, indicates that Q may be a bundle or bundle gerbe and p is projection onto
the second factor of P x G which may also be thought of as the map plz) ¿ G defined
by pz: ptp(pt,pz).We shall refer to a gauge transformation of the G-bundle P -> M
as a G-gauge transformation.

PropositionT.S. Let Q be a bundle (2-)gerbe as described aboae. A G-gauge trans-
formation of P defines ø gøuge trønstorrnation of Q.

Proof. Lef tþ : P -> P be a G-gauge transformation. By definition we have rotþ : r so
we need only verify that there is an isomorphism of line bundles (or stable isomorphism
of bundle gerbes) EÍz).10-tq): p-'Q.gtt ptzJ we have tþl'l(pr,pz):rþl'l(pt,ptgv):
(rþ(pr),tþ(pún)): (tþ(pù,rþ(pr)srz).So on P x G we have lþl')(p,g): (rþ(p),9) and
p(rþl,l(p,g)) : 9 : p(p,g), therefore tþlzJ*17-tQ) : p-LQ as required. ¡

a
+ltt

G

Pç
+
M

LT4



Chapter 8

Applications

We consider some applications of the various constructions in bundle gerbe theory
which we have discussed to physics.

8.1 The'Wess-Zumino-Witten Action
We shall review the bundle gerbe model of the Wess-Zumino-Witten (WZW) action
as described in [12]. This example serves as motivation for the use of bundle gerbe
holonomy to study topological actions. F\rrthermore the WZW theory plays a role in
the discussion of Chern-Simons theory which follows.

Following [12] the WZW action is defined as a function on the space of maps from a
Riemann surface E to a compact Lie group G, which we denote by EG. This function
is defined by the equation

LW ZW(Iþ) : eXP lpu (8.1)

where X is a 3-manifold with boundary E, ,i it 
"o 

extension of þ e ÐM to XM
and ø is a closed 3-form which generates the integral cohomology of G. This is well
defined as long as such a ty' exists, for example if G is simply connected. In this case
(8.1) is the holonomy of the tautological bundle gerbe with curvature ø. When such
a t/ does not exist we may replace (8.1) with the holonomy of any bundle gerbe with
curvature ø, though, as is observed in [15] where similar constructions are made using
differential characters, this bundle gerbe is not uniquely determined by u. Any two
choices differ by a flat bundle gerbe which is classifiedby Hz(G,t/(1)). To eliminate
this ambiguity the action must be defined in terms of a full Deligne class rather than
just the Dixmier-Douady class. This leads to

Definition 8.1. Let a € H2(G,D2) be a Deligne class. The \MZW action evaluated
on a map ,þ t E + G is the holonomy of the class o, that is, the flat holonomy of. tþ*a.

If we represent o by a bundle gerbe with connection and curving (P,Y,G;4,4) then
the action may be written as [12]

"*p Irþ*rt-Ft
JÐ,
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where F¿ is the curvature of a trivialisation of. tþ* P. In this way each bundle gerbe
with connection and curving over G defines aWZW action. This general form of the
WZW action was given in terms of a transgression formula by Gawedski [23].

From [20] and [23] we see that when we attempt to define this action for surfaces
with boundary we need to consider line bundles over the boundary maps, just as with
holonomy. Recall that we start with the holonomy function on DG, which for each

ó e EG may be thought of as the evaluation of the corresponding flat holonomy
class X. This function is extended to surfaces with boundary in such a way that it is
multiplicative with respect to unions so that given two surfaces with the same boundary
the product is equal to the holonomy of the combined surface. It turns out that such a
function can in general only be defined locally on ÐaG. These local functions are used
to define a trivial bundle with connection which pulls back to ïDG to give a possibly
non-trivial bundle with connection. The local data corresponding to this line bundle
as derived in Chapter 6 agrees with the formulae given by Gawedski [23].

In the case where G is simply connected then the theory of transgression of tauto.
logical bundle gerbes tells us that the bundle on the loop space is just the bundle over
LoG in the definition of the bundle gerbe. This is of the form

ott
,v

S,(G) 3 D'(G)
J

LoG

F\rrthermore if G has an integral bilinear form ( .,. ) then we may write, : -å a
e A l0 A 0] > where d is the Maurer-Cartan form and where we have used the same
normalisation as [20]. When G is simple we have Ht(G,Z):Z and it is generated
by this ø. We know the connection and curvature of .L since these come from the
corresponding objects on the tautological bundle gerbe. The connection on D2(G) is

[oeu*u and the curvature is /s, eu*u. We would like to get more concrete expressions
of a similar nature to those in [20]. To do this recall that for the Maurer-Cartan form,
á, we have Lq| : {. Consider the connection evaluated at E € Tó(D2(G)),

L L= < ö-Ldó ^Íó-'dô ^ó-Ld,ól>
< EA ló-'d,ó^ó-'d,ól>

For the curvature evaluated at vectors €r,€z € T,(L¡G) we have

LETLE, 1j-Ld.y ¡ll-'dl n{'d{\l>

Le, 1€z nll-td{y n{'dll>

:-[<[€r,€z]n{'d't>
Jsr

Proposition 7.L implies that the hermitian lines over the loop space defined by the
transgression of the WZW bundle gerbe give the standard central extension of the loop
group [20].

L
tJD

1

6
1
o
Z)

L=U

rfLETLEU:-AJ*
LfI_ _t 

1,,

(8.2)

(8.3)
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8.2 The Chern-Simons Action
Our description of basic Chern-Simons (CS) theory follows Freed [20] and Dijkgraaf-
Witten [15]. We show that there is a bundle gerbe interpretation of the cases they deal
with and see that it is useful for generalisation to more general theories. We show that
the bundle gerbe CS theory reproduces the expected results when restricted to specific
cases (usually relying on restriction of the group G such that it satisfies particular
properties).

Let G be a compact Lie group and X an oriented 3-manifold. Let Pç + X be
a principal G-bundle with connection l-form .4. Define a 3-form on P5r, called the
Chern-Simons formby

CS(A): rr (A 
^ 

dA)+ lr' (A 
^ 

A 
^ 
A) (s.4)

If the bundle Pc + X is trivial, with section s, then lhe Chern-Simons acti,on associ-
ated a 3-manifold X, is defined by

exp I s.CS(A) (8.5)
Jx

Ideally this should be independent of the choice of section. A change of section is given
by a gauge transformation Ó , Pc + Pc, or alternatively 96 : Ps ) G. Under such a
gauge transformation the CS form transforms as follows,

ó.cs(A) : cs(A)+ drt (o;'ts, 
^ 

gô'dgo)- ]t Ø6Lasr¡t (s.6)

This suggests that for the action to be independent of the choice of section we should
require that the trace be normalised to make IT}þôtag6)3 a2tr-integral form.

If A extends over a 4-manifoldW such that 0W : X then the action is

exp I ri (F 
^ 
r) (8.2)

Jw
Note that if the bundle is non-trivial then this definition of the action still makes sense

as long as the bundle and connection extend over W.
This situation very closely parallels the problem of defining the WZW action for

general G ($8.1) and the problem of generalising the tautological bundle gerbe to get
holonomy reconstruction ($7.3). This suggests that a general deûnition of the CS action
may be obtained by considering it as the holonomy of a bundle 2-gerbe. F\rrthermore
the dependence on a principal G-bundle with connection suggests that we are interested
in particular in a bundle 2-gerbe associated with a G-bundle.

The Chern-Simons Bundle 2-Gerbe

This construction is based on the bundle 2-gerbe associated with the principal bundle
P6. Thus we require that G is connected, simply connected and simple. A 2-gerbe
of a similar nature was described in [7]. Our basic geometric structure is given in the
following diagram

p-,Q[r]
+

=P6
+
X

ol2lrG

LL7



where p, P|l + G satisfies pp(p,q): gandAþ] isatautologicalbundlegerbe
associated with a curvature 3-form u on G. Following [7] we let ø : frTr (g-'dg A
g-Ldg ¡ g-tdg). Here the trace replaces the more general bilinear form we considered
in the case of WZW theory. In this case we can set þ :3kTr (gr'dg, ndgzgll) and we
have ô(ø) : dþ and õ(þ) :0. Consider the following diagram:

PIsl -+ GxG+J
Pl2l + G

We have ø € O3(G) anð. B € O2(G x G). We can pull these back to p*u e Cl3(Pf,l) ana
p.þ e O'(Pff). Now we have õp*B: p*õP - 0 therefore there exists e e O2(Pel2l)
such that 6e : p* 0.On O3(Pf,l) we have the equation

6(p*, - d,e) : p* (6u - dþ) : 0

so we may define o e O3(Pç) such that

6a- p*u-de.
\Mhen we pull back the tautological bundle gerbe by p to e|l,tne curvature pulls

back to p*a, however this is not adequate as the 3-curvature on our bundle 2-gerbe
(meaning the 3-curvature of the bundle gerbe p-LQlul) since this is not ô-exact for
6 : Pç + PP. As we have shown above, subtraction of. d,e will result in d-exactness.
This is a specific example of the general e referred to in proposition 7.4. The 2-curving
of the bundle gerbe is given by

dñ 

= 
îï;;_,r',:

where 4 is the curving of the tautological bundle gerbe. So let ñ - q - T*e.
Now we will find solutions for e and o. To do this we will identify Pç x G and, PPI

via the map (p, ù r+ (p,,pg). Similarly we have a map from Pç x G x G to Pf,Ì given
by (p,9t,92) è (p,p9t,p9úz). This will change the ô maps. We want the following
diagram to commute

PEI -+ PçxGxG
tt

ì8, + pJ* c
For each ûrâp 7r¿ of ô we will have a diagram which shows what the induced map from
P6 x G x G to Pç x G should be. For 7r0 we have

(p,pgr,P9ßz) ì' (p, gt, gz)

JJ
(Pgupggz) + (pgt,gz)

For n1,

(p,pgt,pgúz) + (P, 9t, 9z)JJ
(p,pgrgr) + (p, grgr)
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For 12,

(p,pgr,PTúz) -> (P, 9t, 9z)++
(p,pgr) -> (p, gr)

These diagrams give us the following equations:

ro(p, gt, gz) : (pgr, gr)

rt(p, gt, gz) : (p, gtgr)
rz(p, gt, gz) : (p, gt)

Lemma 8.1. Let e e Q2(PqxG) be defined, by e:3kTr(A¡dgg-') where A is a
connection tor Pç + X. Then õe: B and, thus õ(p*a - de) : 6.

Proof. We will omit 3,t since it appears in all expressions. We need to evaluate ôe :
röe-rie* z'fe. There are three types of pullback map that we will need. Let (2,Ð e
TP6x ?G. Then p*Z : Z and g*€: {. This leaves pg*Z. Applyingthe chain rule
gives the result pg*Z : Rs*Z * g# where .R, is the right action of g and g# is the
fundamental field of g. We can no\¡¡ use the two defining properties of -4, which are
Rs*A : g-L Ag and A(g#) - 9. Now we can write

rôe : T((gr'Agt- gtLdgt) ndgrg;t)
rie _ TÌ(A Ad(stgz)(grgr)-t)

: Tr (A A (dgrgrt + gfigzglrgr-t))
rie _ Tt(A ndgtg'L)

Putting these together we have

ôe : Tr (gr'dg, n dgzglr)

where Ad invariance of the trace has been used to eliminate the other terms. n
Now we can write down an expression for p*u - de. The map p : Pç x G -+ G is

defined by (p, g) r+ g, so p*u: ø. Applying d to e yields

dT'\ (A n dsg-') _ 1\ (dA ¡ dgg-')- 1Ì (A n d(dss-L))
_ Tr (dA n dgg-L) - Tr(A n dgg-L n dgg-L)

Thus we have

p*u - de: kT (g-'dg n g-'dg n g-tdg) - 3kTt (dA Adgg-')
+ 3,tT! (A n dgg-r n dgg-').

Proposition 8.1. Let a € OS(Pç) be defi,ned by the Chern-Simons form

T! (A 
^ 

dA)* åt' (A 
^ 

A^ A).

Then

ô(-3ko) - p*u-d,e.

and a is a 9-curuing for the bundle ?-gerbe desuibed aboue
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Proof. The map ô is given by ni - zri wherê Í1 i (p,g) -> p and rz : (p,g) *> pg.
First we will calculate riTr(A A dA). Recall lhat pg*Z : Rg*Z + g#. Throughout the
following calculations we will make use of the Ad-invariance and the cyclic symmetry
of the trace. We also omit the symbol n.

pg*T (A A dA) : T ((g-t Ag + g-tdg) n d(s-t As + s-l d's))

: T((g-LAg+g-'dg)
n(-g-t dgg-' Ag + g-r dAg - g-r Adg - g-Ldgg-Ldò)

: -Tr (AAdse-l) + T (AdA) - T (AAdss-r)

-T (Ad,ss-'dgs-') - T (Ad,ss-'dgg-t) + Tr (dAdss-L)

-a\ (Ads s-' d,g g-') - T (dg g-' dg g-' dg g-t)
: 1\ (AdA) - 21\ (AAdss-t) +Tr (d,Ad,ss-t)

-3Tt (Adss-Ld,ss-') - T\ (dss-rdsg-'dgg-')

ps*T\ (A A A A A) : Tv ((g-tAs + g-'ds) ¡ (g-tAg + s-Lds)
n(g-'Ag + s-Lds))

_ a\ ØAA) * 3Tr (AAdss-r) + 3Ti (Adss-Ldss-r)
+T (d,gg-tdgg-'dgs-t)

p.T\ (A A dA) : T\ (AdA)

p.T\(AAAAÁ) :Tl(AAA)

Putting all of this together we get

(pg. -p-)Tr (A 
^ 

dA *?o 
^ 

A 
^ 

A) -
"I\ (AdA) - 21} (AAdss-L) +Tr (dAdss-L)

- 3Tl (Ad,s s-L d,s s-t) - T\ (d,s s-L d,s g-' ds g-t) *'rr, leee¡

+2T[ (AAd,ss-L)* 2Tr (Ad,ss-td,se-1) + ?o @nn-tdgg-'dgg-')

-Tr (AdA\ -?n (AAA)
3

Collecting terms gives

'h (d,Ad,ss-l) - T\ (Ad,ss'td,gg-') - ]t (dsg-'dgg-td,gg-')

which is the desired result. !
We call this bundle 2-gerbe with connection and curvings the Chern-Simons bundle

2-gerbe. Its holonomy satisfies the properties of the Chern-Simons action, this shows

Proposition 8.2. The Chern-Simons øction associøted wi,th a principal G-bundle,
where G is connected, simply connected and simple, ffiaU be realised as the holonomy
of the Chem-Simons bundle Z-gerbe ouer 0, closed ?-manifold.
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The real purpose of using bundle gerbe theory to approach this problem is to
understand how it generalises when we relax the requirements on G in the proposition
above. So far we have removed only the requirement that the bundle P be trivial in
the original definition of the action. This is possible because defining the holonomy
only requires that the bundle 2-gerbe be trivial, which is always true over a 3-manifold.
The existence of a section of P implies this triviality however there exist trivial bundle
2-gerbes for which such a section does not exist.

Suppose we wish to allow G to be only semi-simple instead of simple. In this case
rve can still define the CS form using the Killing form on the Lie algebra. The difference
with the simple case is that we may have Ht(G,Z) + V,. We can still define the CS-
bundle 2-gerbe as above, the only difference is that the possible bundle gerbes over G in
the construction do not necessarily account for all bundle gerbes over G. To allow non
semi-simple groups we may replace the trace with an invariant quadratic polynomial
on the Lie algebra, as in [15]. If G is not simply connected then the tautological bundle
gerbe on G must be replaced with a general bundle gerbe with curvature Tr (g-'dg)t.
This may require additional data (such as a full Deligne class) since the bundle gerbe
is no longer determined completely by its curvature.

Using this interpretation we may consider further aspects of CS theory in terms of
the theory of holonomy of bundle 2-gerbes.

Chern-Simons Lines and Gauge fnvariance

For the purposes of this section we shall follow [20] and set c¿ : -åTl (g-Idflï and
e: -Tr(Adgg-') so that the curving is precisely CS(A).

It is a standard fact ([20],[1f]) that given a 3-manifold, X, with non-empty boundary
0X, the CS action cannot be defined as a function, rather it is a section of a line bundle
called a Chern-Sirnons line. This is, of course, exactly what we would expect since we
have interpreted the CS action as the holonomy of a bundle 2-gerbe. We shall give
arguments as to why the line bundle corresponding to the transgression of a bundle
2-gerbe as described in Chapter 6 above is the same as the CS lines described in [20]
and [15].

Recall that Proposition 7.4 tells us that when M is 2-connected and G is simply
connected the transgression of the bundle 2-gerbe associated with a principal bundle
is described by the following diagram:

s1
p'}nor(Qþl.I(e)

s,(P")xs2(G) 3 s"(p")
+

S,(M)

For purposes of comparison it is useful to describe the fibres of the line bundle which
may be obtained from this bundle 0-gerbe. Over E e S2(M) the fibre consists of
elements of an equivalence cl_ass lt,ïl, where i is a lift of E to Pç and 0 € ,91, and
the equivalence is given by [it,hol(É,,É,)(p-'Qlr])l - [ir,1]. The trivial bundle over
X, where 0X : E is obtained by pulling back this bundle using the restriction to
the boundary. A trivialisation is given by the extension of the holonomy function on
s'(M).
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We now recall some earlier results on gauge transformations which are relevant
here. By Proposition 7.5 any G-gauge transformation on Pç - X is also a bundle
2-gerbe gauge transformation, so we may apply the results of $7.7 to examine gauge
invariance of the CS action. In the case of a closed 3-manifold the gauge invariance of
the holonomy implies the same for the CS action. In the case with boundary there are
two additional terms in the section of the trivial line bundle,

þo<ul

Recall that u6 is the 3-curvature of the bundle gerbe (L,ó)-'p-'Ql"l.Since po(t,6) -
g¿ this is just T (gó'dgo)3. Recall also that the 2-form B arises from the failure of the
curvature of (1, ó)-tPc to descend to a curvature on M. In this case the former is
(1,ó).(p., - dr) : gia - d,(7,þ).e. Observe that 6(g$u) : Adgø - u) :0 by the
invariance of the trace, so this part descen ls and þ : (I,/).e. For e : T! (Adgg-L) we
have (1, ó)*r:"h(Adg6gót),.o the section changes by

u*r(l*-|r, @6rasr¡z. Ð lor, {oor¡dgosl\) (s.e)

where we have used the fact that õ(dgogl\:0, so only A need be expressed in local
form. If the G-bundle Pc + M is trivial with section s then we recover proposition
2.10 of [20], where the section changes by

u*r(l*-]t @6tasr¡t * lu*r\(s*Ad,sasa\) (s.10)

We may now compare our construction of the CS lines with that of Fleed [20]. Suppose
the bundle Pc - IZ is trivial where Y is a closed 2-manifold. We think of Y as the
imag_e in M of an element of Map(E, M). Each choice of a section Y + P^9 grves a
lift Y. Let s1 and s2 be two such choices with corresponding tifts ú and tr. Thete
is a G-gauge transformation, /, which gives the difference between these two sections.
The pair (Yl,Yr) € (PPc)t2f is then equivalent to (Ít, so!ù) e EPç I EG. Thus we
have p(Y1,yz): go(Yù, though it should be kept in mind that the Y2 dependence is
contained in the definition of r/. If we let Y : ôX then the equivalence relation in
the definition of the line bundle is given by the function (8.10), which is used in an
anaiogous way in ihe construciion oi the iine in [2û].

Viewing CS theory from a bundle gerbe point of view it is no surprise that the WZW
action arises when we apply gauge transformations. The CS bundle 2-gerbe includes
a bundle gerbe over G with curvatureTr(g-Ldg)3 in its definition, this is the bundle
gerbe which produces the most common form of the WZW action (that is, the one
obtained when G is simple) via its holonomy. That the holonomy of this bundle gerbe
should be relevant here follows from the results on the efiects of gauge transformations
on holonomy.

Relationship with the Central Extension of the Loop Group

In the previous section we considered the transgression of the Chern-Simons bundle
2-gerbe to a line bundle on S2(M). We have also seen ($6.4) that it is possible to

I,t
b,u

(s.8)
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transgress a bundle 2-gerbe to a bundle gerbe on the loop space. We are interested
here in the case where G is simply connected, so the only bundie gerbe (up to D-stable
isomorphism) is the tautological one. In the case of the CS bundle 2-gerbe we get the
following bundle gerbe:

rs,(Qlr])
+

LG
LpI

where rsr(Qla]) is the loop space transgression of the tautological bundle gerbe on
G. Recall (see proposition 7.1) that this transgression is isomorphic to the bundle
corresponding to the central extension LG -+ LG, so we have

LP6 x LG

LM

This is the lifting bundle gerbe which describes the obstruction to lifting the structure
group of the ¡undle LP; + LM from LG toñ. This result is given in terms of
gerbes in [7] and [2a].

In conclusion, we have seen that the standard Chern-Simons action may be inter-
preted as the holonomy of a bundle 2-gerbe. Just as with WZW theory, this allows
us to understand the failure of the action to be well defined in the general case, that
is, when there is no section of the G-bundle or it cannot be defined as an integral of
a 4-curvature. These features are key characteristics of holonomy. A number of other
features of the theory have been explained in bundle gerbe terms. In [15] more general
theories are discussed in terms of general WZW theories. In terms of bundle gerbes
these could be interpreted as a generalisation of the associated bundle gerbe to a case

where the bundle gerbe on G is not tautological (an example that was similar to this,
LU J was described in section 4.3). Even more generally differential characters are
used, since these correspond to classes in Deligne cohomology this suggests that bundle
2-gerbes can play the same role.

8.3 D-Branes and Anomaly Cancellation
In [11] it is shown how to use bundle gerbes to cancel anomalies in D-brane theory.
Here we concentrate on the local aspects of this approach as an application of the
holonomy of bundle gerbes.
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The basic situation described in [11] is that we have actions which are functions
associated with maps of a surface with boundary, Ð, into a manifold M with subman-
ifold Q such'that ôE c Q. The submanifold Q is referred to as the brane. The action
turns out to be a section of a trivial line bundle onÐM. This should come as no
surprise by now since we have seen examples of actions which behave as holonomies
and this is precisely the behaviour we would expect from the holonomy of a bundle
gerbe. This failure of the action to be a well defined function is called the anomaly.
Anomaly cancellation involves the introduction of an extra term (or terms) such that
together they define a function. Our approach is guided by the knowledge that two
trivialisations differ by a global function, so to cancel the anomaly we need to find
another trivialisation of the bundle on EM. The general technique for doing this is
as follows. Recall that if we transgress a bundle gerbe to the loop space then we can
obtain the trivial line bundle over DM by pulling back the line bundle on the loop space
with the map â : EM -> LM, which is induced from the restriction to the boundary.
Suppose we have a term in the action which corresponds to a section of the trivial
bundle over D corresponding to the transgression, L -> LM, of a bundle gerbe, P on
M.If. trye can find another bundle L' on the loop space which is isomorphic to -L then
the product L Ø.L'* will be trivial, and this trivialisation will induce a trivialisation
of ï-LL Ø A-LL'*. Thus the combination of the usual trivialisation of the pull back
of. L' to EM and and the trivialisation of the product bundle on EM will cancel the
anomaly. Furthermore the functoriality of transgression tells us that a suitable bundle
L' may be found via the transgression to EM of a bundle gerbe P' with the same
Dixmier-Douady class as P. This bundle gerbe P'is known as a B-field in the physics
literature and the requirement that dd(P) : dd(P') leads to a natural division of the
anomaly cancellation problem into three distinct cases.

First we consider the situation described by Fleed and Witten [21] as interpreted
in [11]. In this case the first term in the action is derived from the transgression of
a torsion bundle gerbe, that is, a bundle gerbe with a torsion Dixmier-Douady class.
The Deligne class of this bundle gerbe is determined by the second Stiefel-\Mhitney
class, w2 e H2(M,22), of. the normal bundle to Q. This class determines a Deligne
class (toop",0,0) where woþt € H'(M,U(l)) is induced by the inclusion Zz c t/(1).
Let P., be a bundle gerbe which is classified by this Deligne class.

The B-field is defined as a triple (gopr,kop,Bo) which defines a Deligne cohomology
class and hence a D-stable isomorphism class of bundle gerbes (note that B is a 2-form
field). Let Pn be a representative of this class. In this case v/e specify that the Dixmier-
Douady class of the B-field is equal to that of the torsion bundle gerbe described above.
Thus the two transgression bundles on the loop space are isomorphic and there exists
a section which may be pulled back to EM to cancel the anomaly. We wish to get a
local expression for this term.

The product PfiØPe is represented locally by the Deligne cla"ss (gop"wià.,,kop,Bo).
The local formula for the transition functions of the transgression to the loop space is
obtained by applying equation (6.13),

Gor : .*o 
Ð f"koolùor{", IJ 

glo|@)po(')prþ)9oo(e)o{e)pt(u)wpo(e)po@)pr(r)wioL(.)p¡1.¡p¡6¡(a)

(8.11)

Since P, and Pe have the same Dixmier-Douady classes then by functoriality of the
transgression (see $7.1) the line bundles r(Pr) and r(Ps) have the same Chern class,
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so there exists a trivialisation (hop,.4o) satisfying

9,a1wl).,: hPrh.|h,P (s'12)

koþ : -dlog hop * Ao - Ap (8.13)

The pair (h,A) defines an ,A-field [21]. Substituting into (8.11) and using the usual
combinatorial arguments we get

Got:t*o 
Ð l"{o^n - Apo(")) 'Io^n o,r,thi'6r"tpor,t@) (s'14)

and thus we have local functions

ro : exp 
Ð |"o^r4 lI hpol"¡pop¡(u) (s.15)

satisfying fttft : Gor. These local functions may be pulled back to give local functions
(or equivalently sections of a trivial bundle) on EM and cancel the anomaly.

We would like to indicate how this local picture relates to the global version given in
[11]. Denote the transgressions of P., and Pn by L. and.Ls respectively. The original
term in the action from which the anomaly arises is the Pfaffian of the Dirac operator
on the world sheet, denoted Pfaff, which is a section of. L-. We refer to [21] for further
details since this term does not arise from bundle gerbe considerations.

The bundlê Ls corrêsponds to the following bundle O-gerbe,

sl
o"r+'

s,(M) 3 D"(M)
J

EM

so the bundle 7-LLa is given by

EM xn S'(M) EM xn D'(M)
J

EM

The section of 0-LLB may be defined by ón(Ð,ø) : hot(P¿;E#o) where o e D(M)
satisfies 0o : 0I,. The gluing property of holonomy ensures that this is a bundle
O-gerbe trivialisation on DM xnD(M), so it defines a section of the line bundle 0-LLa.

To get a local expression let yp be a D-obstruction form for PB over D corresponding
to a trivialisation ?s, then

gt
hol(PgI

-)

hot(P3; E#o):.*p / Xa
J>#o

: H ¿nt (B ; E) H ;"! (B ; o) H 6 (T p ; 0E) n ; L (T a ; E)
: H¿,I(B;E)H;"!(B;o)
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where we have used the fact that the local expression for exp Ïruox" splits into terms
on the interior of.Dffo, fI¡, which are the extension of the holonomy formula on closed
manifolds, and terms on the boundary, I/¿, which depend on a choice of trivialisations.
See Chapter 5 for further details.

The section corresponding to the trivialisation of L. Ø Lp ma! be defined as a
function À on D(Q) such that À("r): À(ør)hol(o1ffo2), so it is a trivialisation of the
transgression bundle O-gerbe

S1
hol(PB@P1;)Is'(q 3 D'(8)

J
L@)

Note that this bundle is only defined on Q since it is only on the brane that the
Dixmier-Douady classes of. P. and PB agree. The standard section of this bundle is
obtained by extending the holonomy function to discs. Let A be a trivialisation of
PåØ PB (the trivialisation defined by the A-field). Then in terms of the corresponding
D-obstruction form XÁ we have

À¿,(o): exP |,ro
H¿n (B - w; o)H6(A; t)
H ¿*(B ; o) H ;*! (w ; o) H 6 (A; E)

Now we combine þp and À¿ to get

H ¿n (B ; D) H ;"!(w ; o) H 6 (A; E) (8.18)

In this context the anomaly corresponds to ø dependence, so while we have cancelled
some ø terms there is still one left. This is because we have not yet incorporated the
section of.0-1L.. Consider this as a bundle 0-gerbe,

S1
hol(P.)

,v
sr /ì,i\ -. d2//\\ sr /r/\ ., ^2/.^\LQ\rut) ^ Ð w) 1 LQ\rut) ^ru w)

+
De(M)

(8.17)

18.191

Observe that in this case we cannot use the same approach that we used to define
the section /s since P, is only defined on Q and in general elements of E4 may not
lie entirely in Q. Due to the definition of P, is turns out that there is a section of
this bundle called Pfatr [21]. Given any such section we may find a Gvalued function
(since the section may vanish) on De xo D@) via the corresponding local functions,
po. This function is defined by n'.pe(X)H¿"¿(w;o). It is easily verified that this is a
section and is a globally defined function since the local dependence of the two terms
cancels. Thus when we incorporate this term into (8.1S) the anomaly is cancelled and
'we are left with terms derived from the Pfaffian, the B-field and the A-field.
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The second case, which appears in [30], involves a B-field which has a different
Dixmier-Douady class to P.,, but it is still required to be torsion. In this case the line
bundle obtained by transgressing På Ø PB is no longer trivial so v¡e need some further
structure to cancel the anomaly. Before we introduce this we would like to see the
nature of the obstruction from a local point of view. The following arguments follow

[30] closely. We have a torsion bundle gerbe P@,") : P;, Ø Pn with Deligne class
(ga-',k,Ð).Since the image of H7(M,Z) in Hï(M,IR) is zero then the curvature is

exact, so denote itby dÊ. We now have a series of equations

dBo : dB (8'20)

Bo - dmo : Bp - d,mp (S.21)

leoþ : rnp - rno * dlogqc.p @.22)
gop.twoàt : aaú.]a.ae.,ø (8'23)

where rrra are l-forms, Qap ãre U(l)-valued functions and eap, aîe [/(l)-valued con-
stants. These constants correspond to the torsion class which measures the obstruc-
tion to the equality of dd(P,) and dd(PB). Since 9,øwiàt represents a torsion bundle
gerbe it admits a bundle gerbe module, so from a local point of view there exist matrix
valued functions Àop satisfying

9,Ptw.àt: ÀPrÀo)ÀP, (8'24)

and so we have a sort of 'non-Abelian trivialisation' of (,

eoh: ^prqp]^ãiaalprq;] 
(8.25)

where it is assumed that all scalar functions are multiplied by the unit matrix of the
appropriate dimension so that this expression makes sense. We may view this in terms
of a more general problem: if we are given a bundle gerbe with a trivialisation then
we may find a trivialisation of the transgression bundle on the loop space, so if we
have a bundle gerbe module represented locally by (Àop, á.) then we want to know to
what extent we can use this to trivialise the bundle on the loop space. The answer is
that in general we cannot trivialise the bundle, this would violate functoriality since
the original bundle gerbe is non trivial, however we can find a C-valued function which
'trivialises' it. The distinction is analogous to that between a non-vanishing section
of a line bundle and a section in general. It is a result of Kapustin [30] that this is
section is given by the trace of the holonomy of the bundle gerbe module 1. We may
realise this locally in terms of the holonomy of a non-Abelian bundle [11]. Over a disc
the bundle gerbe which acts on the module is trivial, choose a trivialisation "I. Let J
be represented locally by the pair (K", j"p). The bundle E Ø J* then descends to the
disc. The trace of the holonomy of this bundle can be calculated over the boundary of
the disc. To eliminate the ,I dependence rve must introduce another term, exP ÏoX¡,
where X¡ is a D-obstruction form for the bundle gerbe ( and trivialisation J. It is
easily shown [11] that this defines a section, as a C valued function on D(Q).

To examine the anomaly cancellation from a local point of view we must be careful
as we cannot use the usual holonomy formula in the non-Abelian ca^se. When the
boundary loop ôø is triangulated the holonomy breaks down in to an ordered product

lKapustin dealt E'ith Azumaya modules which have the same local data as bundle gerbe modules.
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of parallel transport terms along edges and jumps at vertices. Following Kapustin [30]
we denote the parallel transport for the bundle with connection 0 - K along the edge
e by hol"(î¿*) - Kp.). The jumps are given by terms of the form Àpç"¡pø¡jif!¡pf"l. The
trace of the holonomy is then given by

Tl'[Irol"o(0 - K)pþo) ' ()l-t)r("')p(uo,) ' (l)-1)p(*')p(e1¡hol", (0 - K)oe,)' ..] (8.26)

The Abelian parts may be pulled out of the trace leaving the trace of holonomy term of
Kapustin, which we denote simply by Trhol(d;ôø). The Abelian terms maybe be then
dealt with by the usual combinatorial methods to give the term H;'(l;ø). Combining
all terms corresponding to the bundle gerbe ( and module E we now have

Tt hol(d)H;r çt; Ao¡nu"r(e; òHa(J; ôo) - Tb hol(á;1o)H¿^¿((; o) (8.27)

The contributions from the B-field and the torsion class tr are as in the previous case,

H¿,I(B;E)H;"!(B; o)Pfafr Hu,l@; o) (8.28)

The A-field now trivialises PjSP3APð, so the corresponding terms are the opposites of
all of the H¿n¿ terms in the previous expressions as well as H6(A;âE). Thus combining
all terms and using ôo -- ôD we gain a combination of terms,

H¿nt(B;E) .Pfaff.Thhol(d; ôE) . H6@;A\ (8.29)

which is independent of ø and so the anomaly is cancelled.
The third case is where the B-field is non-torsion, so the class ( is non-torsion and

so does not represent a bundle gerbe which admits a bundle gerbe module. To get
around this it is possible to define bundle gerbe modules with infinite dimensional fi-
bres [3] which are acted on by non-torsion bundle gerbes. These may be used to define
a Tlhol term which cancels the anomaly [11]. The details of this approach are not
particularly relevant here, however rüe make note of it since it shows that the bundle
gerbe theoretical approach of the simpler cases described above leads to a way of deal-
ing with the general case.

C-Fields. It seems likely that bundle gerbes could be useful in other string theory
applications. In particular it has been noted ([42], [41]) that C-fields in five-brane
theory may be represented locally by the following data:

Co - Cp _ d,Baþ (8.30)

Boþ i Bp, * B1o : d,Aah (8.31)

Apru - Aoú * Aopt - Aopt : d'loghoBr6 (8.32)

6h,ptt _ 1 (8.33)

This data defines a class in Hï(M,D3) or an equivalence class of bundle 2-gerbes. The
actions which are defined using C-fields are not the holonomy of this bundle 2-gerbe
since they are usually defined in seven or eleven dimensions rather than three ([46],[18]).
These actions are higher dimensional generalisations of Chern-Simons theory, and while
we do not have a theory of higher bundle gerbes that applies in such dimensions the
actions may still be interpreted in terms of Deligne cohomology. If the curvature of the
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C-field is G then the seven dimensional Chern-Simons term is defined on a 7-manifold
M by its extension to an 8-dimensional manifold X as

f
CSz(C):exP I G^G (8'34)

Jx

We may think of this as the holonomy of a Deligne class in H7 (M,D7) with curvature
G¡G. Such a Deligne class may be constructed via a cup product. Let [C] e H3(M,D3)
be the Deligne class of the C-field. Then [C]U [C] is a class in H7 (M,D')'with curva-
ture G A G. The action may then be defined without the extension X as the holonomy
of this class over M. If the local 3-curving forms Co are actually globally defined (cor-
responding to G being de-Rham trivial and the C-field representing a torsion bundle
2-gerbe) then this may be expressed as

CS?(C)-exp Icnc (8.35)
JX

In the general case it would be necessary to use the formula for the cup product
(definition 3.15) and to substitute the resulting Deligne class into the general formula
for holonomy given by proposition 5.5. Given a 6-manifold W then it is possible to
construct a line bundle by transgression, a local formula for the transition functions
would be given by equation (6.29).

An ll-dimensional Chern-Simons theory may be defined in a similar way. This
time the Deligne cla-ss is given by ihe triple cup product [C] U [C] U [C] so that the
curvature is GA G ¡G. The holonomy is defined as an integral of this curvature over
a l2-manifold, an integral of. C A G ¡ G over an ll-manifold or more generally by a
transgression formula. There is a transgression line bundle obtained by considering the
holonomy over l0-manifolds.

These observations give only a starting point for a bundle gerbe analysis of C-
fietds and 5-brane theories. We have not analysed anomaly cancellation for this theory
however it is possible that our approach to anomaly cancellation in the D-brane case

could also apply here to some extent.

8.4 Axiomatic Topological Quantum Field Theory
\Me would like to relate the properties of bundle gerbe holonomy and transgression to
the arcioms of topological quantum field theory (TQFT) ([1],[39]). This arises from the
relationship between holonomy and topological actions that has been demonstrated
in the previous sections, however it should be noted that we have considered only
classical actions. It is possible to proceed to topological quantum field theories using
the technique of path integration (see [a5] for a discussion of the case of Chern-Simons
theory), however this is not generally well defined and will not be discussed here. The
a:ciomatic definition of TQFT is of interest however since TQFTs may be derived from
classical theories satisfying similar axioms.

As additional motivation we cite some relevant literature. It has been noted that the
Iine bundle obtained via transgression of a gerbe [7] and the Chern-Simons lines [20],

zRecall that the cup product of two classes h Hn(M,2r) gives a class 'n H2p+L(M,D2?+L) since
the cup product is actually defined on ¡[n+L(M,Z(p+ 1)¿l) = He(M,DP).
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which we have derived via transgression satisfy certain arcioms which are ciosely related
to those of TQFT. This approach to quantum Chern-Simons theory has been taken
by Fbeed [19] in the case where the gauge is group is finite since in this case the path
integral reduces to a finite sum which is well deûned. In this instance the properties of
the classical theory carry over to give the alciomatic properties of the quantum theory.
Another approach is to consider homotopy quantum field theories [9] which in certain
cases are closely related to gerbes. Generalisations relating to higher categories have
also been considered [a]. Also Segal [40] considers an axiomatic approach to B-fields
in string theorg following the arciomatic definition of conformal field theory (CFT).
Thus the link between gerbes, topological field theories and axiomatic definition of
such theories has arisen in a number of different ways.

We shall consider first the a>rioms given by Atiyah and then examine the extent to
which they relate to bundle gerbe theory.

Definition 8.2. [1] A, topological quantum f,eld theory (TQFT) in dimension d defined
over a ground ring r\., consists of a finitely generated r\,-module Z(E) associated to each
oriented closed smooth d-manifold D, and an element Z(X) e Z@X) associated to
each oriented smooth (d + l)-manifold X. These are required to satisfy the following
a:cioms:

1. Z is functorial with respect to orientation preserving diffeomorphism of I and
X,

2. Z is involutory, that is, reversing orientation of the manifold gives the dual mod-
ule,

3. Z is multiplicative under disjoint unions and gluing of manifolds.

We also note some further explanation from [1] about each of these arcioms.

o Functoriality. Let þ: E -r E' be an orientation preserving diffeomorphism.
Then there is an isomorphism of modules Z(ó) : Z(E) + Z(D') such that
Z(rþ " ó) : Z(tþ) " Z(ó) where ,þ , E' + D't. When / extends to an orienta-
tion preserving diffeomorphism X + X', with 0X : E, AX' : E' then the
isomorphism Z(ó) maps Z(X) to Z(X').

c In'.olutio''. Iu general a rev.erse in orientation gi".es a'dual'nodule. When Â
is a field then a reverse of orientation gives dual vector spaces. We need not be
concerned here with details of the general case.

o Multiplication. In the case where E and E' are disjoint we have Z(EU E') :
Z(E) Ø Z(E'). If X has boundary Et u E, and we cut X along X3 to get two
components such that âX1 : Er U Ð3 and AXz : Dz U Xs then

z(x) -< z(x),z(xr) > (8.36)

which is defined to be the natural pairing

z(Er) Ø z(\) Ø z(\). Ø z(E2) -+ z(E¡) Ø z(82) (8.37)
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If we set Z(Øa): Â, where Ø¿ denotes the empty d-manifold then we may extend
this to the case where X is closed and may be cut along E to make X : XtU>Xz.
In this case 'we also get (8.36) however this time it represents a pairing

Z(D) Ø Z(D). + lt (8.38)

If A¿+t is considered as the empty (d + l)-manifold then we let Z(Øa¡) : I.

Our model for relating these axioms to bundle gerbe theory will be the case where
the module is a vector space defined as the fibre of a vector bundle. To stay consistent
with the preceding work we shall allow Â : t/(1), so instead of a vector space we have
a principal U(l)-space. This should be thought of in the same terms as the equivalence
between principal bundles and associated vector bundles. Holonomy and transgression
will not define TQFTs in this sense, however we have given the a:cioms in this form since
they are well known in the literature. Instead we consider the "classical" TQFTs which
Quinn [39] uses in a study of Chern-Simons theory in terms of aniomatic TQFT. These
theories differ from the TQFTs defined above in that there is extra data associated with
the manifolds on which the theory is defined. It is required that there is a topology on
this extra data, for example it may consist of a space of mappings. To be specific, if the
holonomy of a U(1) bundle L -> M with connection .4 was considered to be a theory
associated with a closed l-manifold f (a disjoint union of loops) then the problem is
that the theory does not just depend on f itself, it also depends on the map of the f
into M. Recall that to define the holonomy we pull .I, back using this map, so the extra
data could be considered either as an appropriate equivalence class of maps of 7 into
M or alternatively as a space of isomorphism classes of bundles with connection over
f. Since all such bundles are trivial then this is actually a space of gauge equivalent
connections which arises in the path integral. Note that these theories are not to
be confused with classical theories which take values in a field (for example JR) and
which differ significantly from the quantum theory in that the multiplicative property
involves a scalar product rather than a tensor product. See [39] for a discussion of the
importance of this difference.

Allowing for extra data as discussed above, the following examples all satisfy the
anioms by the results discussed in $7.1.

Holonomy and Parallel Transport of Line Bundles. In terms of definition 8.2 we
are dealing with a O-dimensional theory where we think of a 0-dimensional manifold as

a point. Let (L, M) be a line bundle with connection, then associated with any point
m € M we have a group defined by L^, the fibre of. L at rn. Given a path p,in M with
0p: {mo,mt} then there is an element Z(¡t) e Z@p,) : LhoØL*, which is defined by
parallel transport. Given a closed loop 7 then there is an element Z(fi e Z(ø): tr(l)
which is defined by the holonomy around 7.

Holonomy and Parallel Transport of Bundle Gerbes. These define l-dimensional
theories. Let (P,Y, M) be a bundle gerbe with connection and curving. For any 7 €
LM Iet Z(l bethe fibre of the transgression bundle L - rs, P at 7. Given a 2-manifold
X with boundary 0E - U¿?¿ then there is an element Z(D) e Z@E): ØnLiÍo),
where ø(z) is the orientation of the boundary component, defined by the section of
A-LL + EM which is derived from the holonomy. For a closed 2-manifold the element
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of Z(Ø): U(1) is defined by the holonomy

Holonomy and Pa¡allel Thansport of Bundle 2-Gerbes. These define 2-dimensional
theories in precisely the same way as the previous two examples so we omit details.

The bundle gerbe hierarchy and the properties of holonomy and transgression imply
the existence of more general theories where Z(E) is no longer a vector space but which
essentially satisfy the same a><ioms. We have used fibres of bundles in the place of the
modules Z(E), so the next step in the hierarchy is to use the fibre of a bundle gerbe.
Such a fibre is a t/(1)-groupoid in the sense of [36]. We shall review this construction
here, the important point being that all operations on modules which are required in
definition 8.2 have analogous constructions in the groupoid setting.

Definition S.3. A U(L)-groupoid with base X is a principal U(l)-bundle P + X2
which has a product which is a bundle morphism covering the map ((r,g),(y,r)) +
(r,r). This product is required to be associative.

We may denote this groupoid by the pair (P,X).4 U(1)-groupoid has an identity,
given by a section of P over the diagonal (n,n) e X2, and an inverse which is given
by taking the dual bundle P* + X2. The existence of the identity and inverse is
implied by the definition (see [36] for details). A morphism of U(1)-groupoids is a
morphism of U(l)-bundles which respects the product structure. It is clear from the
definition of a bundle gerbe that the fibre over a point in the base has the structure
of a t/(1)-groupoid. Given a point rn in the base then the objects are all g € IZ such
that zr(g) : nz and the morphism between two objects gs and y1 is given by P(so,sr).
Composition of morphisms is given by the groupoid product. The tensor product of
two groupoids is defined by analogy with the tensor product of bundle gerbes. Given
groupoids defined bV (P,X) and (Q,Y) the product is the groupoid defined by the
tensor product bundle P Ø Q - ylz) *ylzl. A trivialisation of a t/(1)-groupoid (P, X)
is a t/(l)-bundle L + X such that there is a bundle isomorphisffi P@r,,") = L|r6 L,r.

We now consider theories for which the modules Z(E) are replaced by groupoids
and elements of modules Z(M) e Z@M) are replaced by trivialisations. The reason
for this is that when Z@M) is the fibre of a bundle then an element of the fibre is deter-
mined by a section which is equivalent to a trivialisation. All operations involved in the
axioms are replaced by those described above. If we are dealing with a d-dimensional
theory then we define Z(Ø¿) to be the groupoid with one object, that ir (P, z) whs¡s Í
is a single point, which may also be viewed as a fibre of a bundle given by the trivial
morphism P6,x). This ensures consistency of the multiplicative property. Similar ideas
have been explored by Fbeed [19] using actions which take values in torsors.

Fibres of a bundle gerbe. Let (P, Y, M) be a bundle gerbe with connection and
curving. We use this to define a 0-dimensional groupoid theory. For any point rn e M
Ief Z(m) be the fibre of the bundle gerbe ovet rn. Given a path ¡r from ms to rn1 there
is a trivialisation of. Pfrog P^, defined by the extension of the loop space transgression
to paths. Recall that when using the transgression approach to holonomy reconstruc-
tion the transition functions of the bundle over the loop space extend to a trivialisation
of a bundle gerbe ot PM which is isomorphic to the pull back of the original bundle
gerbe by the boundary restriction map. Given a closed loop 7 we have a fibre of the
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transgression bundle -L, which we consider as an element of the trivial groupoid

The loop space transgression of a bundle 2-gerbe If we have a bundle 2-gerbe
(P,Y,X,M) then we may define a l-dimensional theory by applying the previous ex-
ample to the bundle gerbe on LM which is obtained by transgression (see $6.4).

In theory this approach could be extended to an even more abstract setting by mov-
ing further up the bundle gerbe hierarchy. By considering fibres of a bundle 2-gerbe
over a point one would obtain a theory where the modules are replaced by 2-groupoids.

Finally we comment on the fact the theories which we have described here all
correspond to theories involving modules (or groupoids) which are one dimensional
vector spaces. This is because there is not currently a satisfactory theory of non-
Abelian bundle gerbes, so we only have generalisations of line bundles and not vector
bundles of higher rank.
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