
¡6-()"-cB

Stochastic Task Scheduling in

Time-Critical Information Delivery

Systems

Matthew Britton

B. Eng

Thesi,s submi,ttd, i,n fulfiIment of the requ'irements for the degree of

Doct.¡r of Phi,Iosophy

Ln

School of Electri,cal and Electron'ic Engi,neeri,ng

at

The Uniaersi,ty of Adelai,de

Faculty of Engi,neering, Computer and Mathemat'ical Sc'iences

January 2003

!

Contents

Abstract

Statement

Acknowledgements

Glossary

Notation and Nomenclature

1 Introduction

1.1 Contributions of the Resea¡ch

L.2 Organisation of the Thesis

2 Literature Revrew

2.L General Scheduling Theory .

2.2 TimeDriven Scheduling

2.3 Queueing Theory

2.4 Partial Task Service.

2.5 Combined TimeDriven and Partial-Service Scheduling

2.6 Summary

3 System Model and Problem Formulation

3.1 Background

v

vl

vrl

vlll

x

1

5

6

8

10

74

77

19

2T

22

23

23

3.2 System Model

3.2.7 Information Author and Recipient Populations

3.2.2 Task Model

3.2.3 Processing Element Model

3.2.4 Management Policy

3.3 Problem Formulation

4 The First-Come First-Served Scheduling Policy

4.7 Dynamic Serial Processing Systems

4.L.7 Negative Exponential Time-Value F\rnction .

4.I.2 Linearly-Decaying Time-Value F\rnction Task Model .

4.1.3 Parabolic Decaying Time-Value F\rnction Task Model

4.2 Summary

4.3 Dynamic Parallel Processing Systems

4.4 Simulation Results and Comparisons with Analytical Results

4.5 Conclusions

5 Last-Come First-Served and Other Scheduling Policies

5.1 The Last-Come First-Served Scheduling Policy

5.2 The Shortest Job First Scheduling Policy

5.2.1 Laplace-Stieltjes Tlansform Inversion of W* ("; ,)"r.
5.2.2 Simulation Results

Simulation of Other Scheduling Policies and Comparisons .

Simulation Using Other Traffic Models

Conclusions

6 Overload Scheduling

6.1 Task Discard Policies

6.2 Partial Task Service Policies

6.3 Conclusions

27

27

28

32

33

4T

5.3

5.4

5.5

43

45

46

50

51

51

51

59

63

65

66

70

73

87

87

89

91

93

95

98

702

7 Discussion and Conclusions

A The Incomplete Gamma F\rnction

B Simulation

C Optimality of Serial Two-Task Scheduling

Bibliography

103

108

110

L15

119

Abstract

In this thesis we present performance analyses of dynamic, stochastic task scheduling

policies for a real-time communications system where tasks lose value as they are

delayed in the system. The tasks in our communication system are file transfers such

¿ìrì messages, images and documents. Tasks are modelled by a Time-Value Function

describing the value a task imparts to the system at a completion time. We propose

a system framework with a task execution model whereby tasks may impart some

value to the system if they are partially serviced.

We derive analytic expressions for the system value based on queueing-theoretic

methods, and use numerical and simulation analysis to gain further insights into sys-

tem performance. We examine simple task scheduling policies such as First-Come

First-Served and Shortest-Job First, and several more complicated priority schedul-

ing policies. We propose scheduling policy-switching criteria to improve the system

performance for particular traffic statistics and system configurations. The tech-

niques are applicable to any scheduling or queueing system where some commodity

loses value or imposes a lateness penalty as it is delayed in the system. \Me also ex-

amine the effect other task management policies such as pr+emption, prioritisation,

service and admission policies have on system performance.

To examine the performance of the system when sustained overloads occur we

examine various methods to discard load and stabilise the system. Using our partial

task completion model, we examine the effect partial task completion policies have

on system performance. \Me also look at how task discard policies affect the system

performance.

v

Acknowledgements

The Defence Science and Technology Organisation is gratefully acknowledged for

allowing me time to study for this degree. I would like to thank my informal super-

visor John Asenstorfer for his ongcring and significant support. I would especially

like to thank my supervisors Cheng Chew Lim and Peter Taylor for the considerable

amount of time spent guiding me. Also, I would like to add a special thanks to

Jason Scholz for input in the early stages of the degree.

vll

Glossary

AI

AT

CBS

CVF

DBS

DoD

DSTO

EDD

EDF

ER

ERS

ET

GNR

GNRS

HPF

IRIS

FCFS

LCFS

Artificial Intelligence

Arrival Thiggered pre.emption policy

Custom Broadcast Satellite

Completion Value trìrnction

Direct Broadcast Satellite

Department of Defence (Aus)/Defense (US)

Defence Science and Technology Organisation

Earliest Due Date scheduling policy

Earliest Deadline First scheduling policy

Eventual Resume preemption policy

Eventual ReStart preemption policy

Environmental Tliggered pr+emption policy

Guaranteed Next Resume pre-emption policy

Guaranteed Next ReStart pre-emption policy

Highest Precedence First scheduling policy, used by RATS

Increased Reward with Increased Service task completion model

First-Come First-Served scheduling policy

Last-Come First-Served scheduling policy

vlll

LJF

LLF

LST

LUF

MLF

MOD

MUF

MUSPF

MUSQF

MV

MVF

pdf

PDF

PIP

RATS

RMP

ROS

SJF

STF

TBS

TIP

TPE

TVF

Longest Job First task discard policy

Least Laxity First scheduling policy

Laplace-Stieltjes Tlansform

Least Urgent First task discard policy

Minimal Laxity First, used by RATS

Mandatory/Optional Decomposition task model

Most Urgent First scheduling policy

Most Urgency/Service time Product First scheduling policy

Most Urgency/Service time Quotient First scheduling policy

Multiple Version task completion model

Most-Valuable First scheduling policy

Probability Density Function

Probability Distribution F\rnction

Primary Injection Point

ReAI-Time Scheduler, developed by DSTO

Rate-Monotonic Policy

Random Order of Service scheduling policy

Shortest Job First sch:duling policy

Shortest Task First scheduling policy used by RATS

Theatre Broadcast System

Tactical Injection Point

Task Processing Element

Time-Value F\rnction

Notation and Nomenclature

a Task urgency constant

B Task urgency random.ariable

d Task soft deadline constant

E lvl Expectation of task value

F (t) Laplace Tfansform (LST) of Fv (ù, F (t) : /A e-"tFy (t) dt

,F. (") Laplace-Stieltjes Transform (LST) of Fv (A), p. (") : /å e-"tdFy (t)t

f" (a) Probability density function of Y

Fv (A) Probability distribution function of Y

f (.) Incomplete Gamma function, I (a, z) : [* ¡a-r"-t¿¡

À Task inter-arrival rate

tt Task service rate

p System utilisation

T System (sojourn) time, sum of waiting time and service time

V (') System value function

W Waiting (queueing) time of a task in the queue

In general, we use upper-case characters to signify random variables, and use

lower-case to signify constants

lFor an introduction to Laplace.stieltjes tansforms, see the text by Widder [85]

X

Chapter 1

Introduction

There are many computational systems that transfer some type of commodity whilst

attempting to satisfy a range of strict time (and/or resource) constraints. These are

called real-time or time-critical syt+,ems. There are a range of consequences for not

satisfying the constraints that depend largely on the application. The commodity

that is transferred may be physical, such as the transfer of goods through a man-

ufacturing system, or it may be the transfer of a computational instruction in a

computer bus or the transmission of a message in a communications system. \Mhen

the commodity must utilise some limited resource (alternately referred to as pro-

cessors or machines in the literature) by competing with other commodities there

is usually some mechanism to ensure that the flow of commodities are handled in

a manner that benefits the system's overall objectives. This mechanism is usually

referred to as the scheduler and creates schedules which are precise sequences or

timings of the transfer of commodities.

The timing or ordering of a schedule is determined by the scheduling poli,cy-

common system objectives are to minimise waiting time or cost. The commodities

are usually referred to as tasks, processes, or jobs in the context of scheduling,

depending on the application. We shall refer to our commodities as tasks through-

out the thesis, unless we cite a reference where jobs or processes are the preferred

terms. Performance measures, based on system objectives, are usually applied to

1

2

arivallime deadline

È
f

Tme

Figure 1.1: TimeValue Fhnction with a Hard Deadline

the schedules that are created to allow performance analysis and comparisons of

policies. Examples of performance measures are the number of missed deadlines

and the computational complexity of the scheduling algorithm.

\Mhen the flow of tasks, or trffic, is deterministic, static scheduling is used.

Static schedules, as the name suggests, are created once and do not require modifi-

cation, and are often optimal in the sense that they optimise a performance metric

such as mean waiting time (in this example a minimisation). When the traffic is

non-deterministic dynamic scheduling may be required, whereby, at a minimum,

tasks are serviced based on properties such as size or arrir,al time. \Me refer to these

properties as task meta-inform,ation, because the tasks themselves will usually carry

the primary information content. Other traffic or system conditions may be taken

into account also. For example, changing traffic load may necessitate a change in

the current scheduling policy.

Depending on the system objectives, meta-information requirements will vary

accordingly. Perhaps the most common example of meta-information is a hard dead-

Iine, as shown in Figure 1.1, where we show the value in completing a task at any

one time. In the hard deadline model, a task is worth maximum value up to an

CHAPTER 1. INTRODUCTIO¡ü 3

à
f

arr¡valtime dead ne

Time

Figure 1.2: Time-Value F\rnction with a Soft Deadline

instant in time, beyond which it has no value. Task deadlines usually map to a real

deadline in the physical world, such as a point in time a manufacturing component

needs to be delivered to satisfy an order, or when information becomes too old to

be used, due to changing circumst¿.nces. A common utility to minimise with this

approach is the number of missed deadlines.

While the hard deadline model provides some information that may be used to

control the timing of the task execution, it does not model the value of the execution

timing accurately enough for some applications. The natural extension of the hard

deadline concept is the soft deadli,ne, where a task has more than two possible values

and the value over time may even be continuous. An example of a task execution

model using soft deadlines is shown in Figure 7.2. The value of the task over time

is called a time-ualue functi,on. This is the model adopted in this thesis. Using the

soft deadline model of task value, a natural utility is to maximise the expected task

value. This is usually called ti,me-driuen or best-effort scheduli,ng when heuristics

are used. The shape of the time-value function is dependent on the application

a smooth transition at the deadline may be an alternative to the discontinuous

deadline model shown in Figure 1.2

4

In this thesis, we work within a time-driven framework to focus on a particular

application-a military broadcast satellite system, and many results are applicable

widely to the time-driven scheduling community. In this satellite telecommunica-

tions system, tasks are discrete units of information such as files, images or messages.

The broadcast channel, a radio-frequency resource, is the medium by which tasks

traverse the system. The information is created for injection into the system by

information authors and targetecl for a particular reci,pient populati,on. The infor-

mation is broadcast over a large area to the recipient population. The recipients have

quality-of-service requirements and hence define the soft deadlines, so by using one

of the utilities given above \Me can attempt to satisfy the recipients' quality-of-service

expectations.

For our system, there are various possible system configurations and assumptions

which we explore in detail, such as resource structure, traffic load statistics, task

composition and time-value function format. F\rrthermore, the resource may be

divided into sub-channels, each of which may process a task in parallel, and we

investigate the effect of this division on task value. As a task is an electronic unit

of information, we may compose it in a progressive service format. This means we

construct the tasks such that vital informatiorr is available separate to the optional

portion of the task, and if the system traffic load is excessive v/e may service only

the vital portions of tasks and discard the optional portions, thereby significantly

reducing load whilst sacrificing only a small amount of task value. In this thesis, we

investigate a number of methods for load mitigation based on partial task service.

The main contribution of this thesis is the maximisation of information value to

end-users. \Me achieve this by attempting to maximise the task value for various sys-

tem configurations and traffic properties. The results given are based on a number

of analy'tic results, numerical results and simulations. This research is novel in the

combined use of partial task service, heuristic scheduling policies and time-critical

delivery. As the scheduling problem is (in general) intractable, we use heuristic

methods of dynamically swapping between simple scheduling policies according to

CHAPTER 1. INTRODUCTIO¡ü

system characteristics such as load, rather than attempting to find optimal schedul-

ing policies. Results on optimal scheduling policies for simpler problems are used as

a basis for the dynamic heuristics in many cases.

1.1 Contributions of the Research

The author has previously presented results contained in this thesis in a number of

fora throughout the candidature. The results have been presented in a number of

workshops, orga,nised by the University of Adelaide, the Defence Science and Tech-

nology Organisation and the Australian Defence Materiel Organisation [9]. At the

time of writing, two journal papers were ready for submission, based on many of the

results obtained in the thesis. The first paper [10], in the subject of stochastic task

scheduling, described much of the numerical and simulation results described in the

thesis, and several initial analytical results. The second paper [8], which primarily

focussed on aspects of queueing theory, presents an analysis of task waiting times

in simple queueing systems when the Shortest Job First (SJF) queueing discipline

(scheduling policy) is used.

The main contributions of this research are:

o Design of a real-time task execution model that gives the system flexibility

in the management of the flow of tasks through the system, enabling grace-

ful degradation in information value during periods of high system load and

overloads.

o Derivation of analytic results for the time-'ualue of tasks for r,arious system

model configurations (for example, serial and parallel scheduling), when the

First-Come First-Served (FCFS) scheduling policy is used.

o Examination of the Last-Come First Served (LCFS) and SJF scheduling pol-

icy in a queueing-theoretic framework. The analysis includes approximation

techniques for finding the Probability Distribution Function (PDF) of task

5

1.2. ORGA¡üISA?IO¡ü OF THE THESIS

waiting times in a SJF queueing system, a step necessary in determining the

time-value of tasks.

o Design of a stochastic discrete-event simulation program.

o Performance analyses of various system task management policies, including

scheduling, task discard and partial-task completion policies.

L.2 Organisation of the Thesis

The thesis is organised as follows. Chapter 2 presents a literature survey of relevant

scheduling, queueing and other related disciplines such as operations research and

artificial intelligence. In particular, we examine the literature relating to time-value

scheduling, as research in this area is closely related to our results.

Chapter 3 describes our problem domain, the assumptions we make and the

model of our system. We show how the problem domain naturally leads to a unique

research problem, with results that will result in significant performance improve-

ments and are relatively simple to implement.

In Chapter 4 we discuss analytical work on system performance measures when

the FCFS scheduling policy is used. As perhaps the most commonly-used scheduling

polic¡ this provides a base-line for comparison with other policies in the thesis, and

also as a common basis for comparison with other authors'work in this area.

Chapter 5 presents numerical work when other scheduling policies are used, and

also presents simulation results, where we extend the performance analysis much

further than is possible for either theoretical or numerical analysis. We introduce

many alternative system configurations, scheduling policies and traffic models, and

apply task value expectations as the performance measure as used in Chapter 5. The

scheduling policies we examine here include LCFS, SJF, Random Order of Service,

various heuristic policies that have been proven optimal for static scheduling results

and policies examined by other authors such as "Best-Effort Scheduling" from the

6

CHAPTER 1. INTRODUCTIO]V

work of Locke et al 156]la1]. Following this, v¿e compare these various scheduling

policies with each other and FCFS.

In Chapter 6 we present work on overload scheduling, including task discard and

partial task service policies. \Me compare the performance of each scheme using

various assumptions such as traffic statistics and task structure.

Chapter 7 presents discussions on further issues and conclusions we have drawn

from the analysis. In this chapter we also discuss the breadth of applicability of

the research and define the necessary constraints and features a particular problem

domain must have in order for our results to be applied. We conclude this chapter

by addressing future research issues.

I

Chapter 2

Literature Review

This research borrows concepts and builds on results from many areas, including

scheduling theory, queueing theory, management science, operations research, com-

puter science and artificial intelligence. Each area of research listed above generally

has a set of assumptions that does not allow us to describe and analyse our problem

fully, as they are based on problem domains that have different implicit assumptions

than ours. For each problem domain, there are often specific system objectives, re-

quirements and performance measiures.

Scheduling theory offers a large number of fundamental results that we build

upon in this thesis, including many optimality results from static scheduling. Given

a brief understanding of the main results in this field it is clear that the scheduling

problem discussed in this thesis is intractable, in the sense that it is not possible

to derive an optimum scheduling policy which maximises the sum of task value

contributions over an infinite planning horizon. The problem is further compounded

for the parallel service problem as discussed below. Scheduling theory differs from

queueing theory in that it usually facilitates performance analyses using arbitrary

traffic sets or static task sets, whereas queueing theory usually allows probabilistic

performance measures to be gathered when simple scheduling policies are used. As

our application falls somewhere between these disciplines, elements of both will be

required to fully describe and analyse our problem.

8

CHAPTER 2. LITERATUHE REVIEW

We borrow concepts freely from management science and operations research

for value-based scheduling, where schedules for the flow of commodities are often

given real cost benefits or penalties. This concept is useful for our purposes in that

we can assign a real benefit from the delivery of tasks in the telecommunications

system, unlike the great majority of general scheduling or queueing theory research.

By doing this we may define a suitable performance measure.

Computer science and artificial intelligence offer the concept of incomplete pro-

cessing of tasks, jobs or instructions in order to reduce load and sacrifice quality for

the overall benefit of system performance. To the best of the author's knowledge

this has not previously been applied to telecommunications. Often in these fields of

research, the result of a computation or task is available for a range of given accu-

racies or qualities, so there is often a logical case for compromising between speed

and accuracy. An important part of this literature is the actual methodology for

construction of such tasks in order that they may later be segmented and partially

serviced. As tasks in our system may be constructed in the same manner, we use

similar concepts in our research.

In general, scheduling theory offers performance analyses for a large range of

policies, but is usually restricted to small, static task sets. Queueing theor¡ on

the other hand, presents results for a restricted range of scheduling policies (usually

First-Come First Served), but is powerful in that it enables probabilistic analy-

ses which provides more insight into each policy than for scheduling theory. To

the best of the author's knowledge, time-driven scheduling has not been discussed

in queueing-theoretic terms before. We aim to use a hybrid scheduling-theoretic,

queueing-theoretic approach in this thesis by examining a large range of policies in

a time-driven framework, using probabilistic descriptions of the performance of each

policy from the analysis.

I

2.1. GENERAL SCHEDULING THEORY 10

2.t General Scheduling Theory

There are many dimensions to the general scheduling theory literature. We will

quickly list each of the distinctions here and expand the main results below. For

a more detailed discussion of general scheduling theor¡ a useful short reference is

[79]. One of the most important distinctions in a real-time system is whether the

system is static or dynamic, as this greatly affects the chances of finding optimal

schedules. For static scheduling, the whole task set is known: no tasks arrive during

the execution of the schedule, and hence scheduling the task set is much more simple.

This is sometimes referred to as determzn'istic scheduling. For dynamic scheduling,

future task arrivals are not known in advance, hence this is sometimes known as

sto chastic scheduling.

Another major distinction in scheduling theory lies in the number of processors

or resources used. Optimality results in the realm of multi-processor scheduling are

relatively few in the literature.

Perhaps the next most important distinction in general scheduling theory is

whether the system includes tasks that arc peri,od'ic, sporadic or aperi,odi,c. In the

literature, periodic tasks are usually described as having deterministic (and con-

stant) inter-arrival times, sporadic tasks repeat but have stochastic arrival times

[15], and aperiodic tasks may be described with stochastic or deterministic arrival

times.. A sporadic task is therefore usually associated with a physical action such

as a radar sweep or a polling computer instruction. Aperiodic tasks, however, arrive

once, and this arrival time may or may not be known in advance. The distinction

between periodic and sporadic tasks is therefore simply future knowledge about task

arrivals. As tasks in our system ^,re discrete units of information which do not need

to be sent more than once, we do not consider periodic or sporadic tasks.

Prioritisation is the next distinction we make within the general scheduling the-

ory literature. In some systems, tasks have a fixed priority, while in others task

priority may change during the schedule execution.

CHAPTER 2. LITERATUHE HEWEW 11

The final distinction v/e can make is the performance metric. This is usually

based on the problem domain and determines the optimality conditions.

Other minor distinctions incluCe whether the tasks have precedence or release

time constraints and whether, in the multiple processor case, the processors are co-

located or distributed. A number of distinctions in the literature are irrelevant to

our work, including work on shared resource constraints.

Some authors define an overload as a schedule where deadlines are missed, while

other authors define an overload in the traditional queueing terminology as processor

utilisation overload. \Me will therefore distinguish between deadli,ne ouerload and

processor ouerload from this point forward.

There are a number of fundamental results from static (deterministic) scheduling

that are relevant to our work, in that we may use these results as heuristics in our

research. A solution to the single-processor problem of minimising the maximum

lateness of a static set of non-pre-emptable tasks is given by Jackson's Rule [40],

also known as the Earliest Due Date (EDD) algorithm. \Mhere an optimal schedule

is one that minimises maximum lateness, for a set of tasks with due dates and pro-

cessing times the optimal schedule is created by ordering the tasks in non-decreasing

due dates. Smith's Rule [78] states that for task weights ar¿, deadlines C¿ and pro-

cessing times p¿, the schedule's maximum lateness "penalty" Dow¿C¿ is minimised

by scheduling the tasks in order of non-decreasing p¿f w¿. Static scheduling research

has been conducted with similar assumptions about system performance metric to

ours-that is, the system is penalised for each increasingly tardy task according to

a time-value function. The major results in best-effort scheduling are examined in

detail in Section 2.2.

There are few dynamic (stochastic) scheduling results in the literature. Note that

when we use the tetm dynamic, we always refer to systems with no knowledge of

future task arrivals. The Earliest-Deadline First (EDF)I policy is sometimes called

rWe note that the concepts of the due-daúe in EDD and the d,eaill'ine in EDF are synonymous,

but are simply used in different contexts.

2.1. GENERAL SCHEDULING THEORY t2

a dynamic policy, but it is dynamic only in the sense that task priority changes

over time; not in the sense that there may be future task arrivals. Baruah et al

[6] conducted important work on a methodology for the comparison of a scheduling

policy with a "clairvoyant" scheduler (one that is aware of future arrivals) during

deadline overloads. They called this measure the com,petitiue factor and found upper

bounds based on system configuration. These results showed that without knowledge

of future arrivals, the value of computed schedules is limited to a theoretical upper

bound. \Me may use this result to quantify each scheduling policy. The EDF policy

is optimal under some dynamic traffic conditions [82].

As some tasks in our system may be periodic, it is necessary to examine the

most important results from the literature on periodic task scheduling. A static

scheduling system may have sporadic or aperiodic tasks arrivals, and the future

arrir,al times of tasks are known in advance. Liu and Layland [54] proved that a

system with a periodic task set, where tasks have a processing time p¿ atd a period

T¿, lhe task set can be scheduled via the EDF algorithm if the following condition

holds:

D,onln <t (2.1)

The optimality of EDF scheduling with respect to minimising maximum lateness

was shown by Dertouzos [26]. The Least-Laxity First (LLF) policy is similar to

the EDF policy, except that tasks with the smallest C¿ - p¿ (the difference between

deadline and execution time) are scheduled first. LLF is also optimal in the sense

of minimising maximum lateness-ari proven by Mok [60]. Liu and Leyland also

proved task schedulability by the Rate-Monotonic Algorithm (RMA), which assigns

a static priority according to task period. When n, tasks have deadlines and constant

processing times, the task set is schedulable 1f li p¿lf¿ < n (2t/'- t) tf] For a

summary of results derived for RMA scheduling, see [74].

Computational complexity is a convenient method in classifying the difficulty

of solving a computational problem. It is worthwhile examining various scheduling

CHAPTER 2. LITERATUHE HEVIEW 13

problems from this perspective. This gives us a better understanding of the kinds

of problems \Ã/e may find solutions to. A problem is called ¡fP if it can be solved in

non-deterministic polynomial time. A problem is called NP-hard if, in solving the

problem in polynomial time, would allow all NP problems to be solved in polynomial

time. An example of an NP-hard problem is the travelling salesman problem. A

problem which is both NP and NP-hard is called NP-compleúe. When the number

of processors is greater than one, many scheduling problems become NP-hard [79].

For example, Ullman [83] proved that static scheduling of n tasks with an arbitrary

ordering even with unit processing times is NP-complete, and Mok [60] proved that

EDF scheduling was not optimal for the multiprocessor case. However, Coffman

and Graham [19] proved that static scheduling on a tweprocessor system, where

tasks have an arbitrary ordering, unit computation times and a deadline, could be

solved in polynomial time. Garey and Johnson [35] proved that for the case where

the tasks have arbitrary processing times, the problem is NP-complete. They also

showed further that for processing times of 1 or 2 units, the problem is NP-complete.

It seems that only a restricted range of problems with very specific constraints have

polynomial-time solutions, and therefore have any significance. Hence, we must

generally use heuristics.

Preemption generally increases .Lhe chance of polynomial-time schedulability for

a system. However, scheduling a set of pre-emptable tasks on a number of processors

whilst minimising the number of late tasks is NP-hard [50].

Tasks may have (i) static (fixed) priorities, as in RMA scheduling; (ä) ti'me-

dependent dynamic priorities, as in EDF and LLF scheduling or (iii) priority classes.

A good summary of fixed-priority scheduling can be found in [3]. Examples of

other time-dependent dynamic priorities include the Shortest-Job First (SJF) polic¡

where service or execution time is used to order the tasks. In general, when tasks

have dynamic priorities or priority classes, optimality conditions are much more

difficult to elicit. For systems with priority classes, each task is scheduled based on

which class it belongs to. The value of scheduling tasks from different classes will

2.2. TIMEDHIVEN SCHEDULING I4

usually vary. In some scheduling systems, each class defines how the tasks belonging

to it changes priority over time, so that each task has a time.dependent dynamic

priority and a class, as in l 9].

Performance measures are varied in the literature, and depend on the applica-

tion domain. Results from job-shop scheduling are usually assumed optimal if the

schedule that is created minimises maximum lateness or some other closely-related

measure. A good summary of job-shop scheduling results is given in [20]. Some

algorithms are deemed optimal if, when the schedule does fail to meet a deadline,

no other scheduling algorithm can meet the deadline either. Processor utilisation is

also used as a performance metric such as in EDF or LLF scheduling. More com-

plex measures such as lateness penalties and time-value are used in scheduling in

the presence of deadline overloads, and will be discussed in section 2.2 below, as this

is particularly relevant to our research.

2.2 Time-Driven Scheduling

In hard real-time systems, tasks are classified as fully valuable if they arrive before

a hard deadline and worthless if they arrive after that time. Soft real time systems

classify the value of the task as somewhat reduced after the soft deadline. This

is usually called time-driuen or best-efforú scheduling. The functions of task value

over time are usually called timevalue or time-penalty functions. The benefits or

penalties can have arbitrary scales, but are most useful when they actually reflect a

physical or tangible benefit or penalty, such as a cost or user-perceived quality. Only

when this is done can performance measures truly reflect high-level system goals.

Because of this, the performance measures that are found in best-effort scheduling

are more relevant to this thesis than measures from other areas in the literature.

To the author's knowledge, the earliest known relevant work in this field was

performed by McNaughton [58] in 1959. McNaughton's static task model assumed

a set of tasks must be scheduled on one or more identical processors, with no task

CHAPTER 2. LITERATUHE HEVIEW 15

arrivals after the schedule has begun. A task (z) with a service time a¿ incurs

a penalty to the system at a constant rate p¿ if delayed past its deadline d¿. In

general the tasks have different penalty rates. The objective was to minimise the

total accumulated penalty until the last task was complete. For the one processor

case, where all tasks complete beyond their deadline McNaughton proved that it

is optimal to schedule the tasks in order of non-increasing hf a¿. We shall refer

to this rule as McNaughton's Rule. The result also holds for parallel processing

where all the service times a¿ ã,te equal and aII d¿ : 0. The rule performs well for

parallel processing when these conditions are not met, however, suggesting it may

be a useful heuristic for our purposes. Lawler [50] also presented some results for

parallel scheduling.

A year after McNaughton published these results, Schild et al 172) generalised

McNaughton's result to include the case where at least one of the tasks completes

before its deadline. The rule described a three-step process where the tasks that

complete before their deadline are swapped with other tasks in a systematic fashion

via the "Criterion D" inequality. This rule is optimal for the case with one processor.

We shall refer to this rule as the Schild's L Rule. A year after this result Schild eú

al produced another paper [73] where the problem was studied with quadratically-

increasing and general penalty functions. An optimal scheduling rule was found

under the condition (as in McNaughton's case) that all tasks complete after the

expiry of their deadlines. To schedule n tasks, n - I matrices are constructed. The

first matrix contains every task pair permutation with its associated loss, that is,

assuming this pair is serviced first. The task pair permutation with the higher

Ioss is eliminated. The second matrix contains every permutation of the pairs not

eliminated in the first matrix together with the next task to be serviced. The

process of eliminating task order-of-service permutations with the higher loss is

continued until the schedule with the minimum loss is determined. The rule has a

computational complexity of n(2n-t - 1), which is significantly less than a simple

exhaustive search of all permutations (complexity n!) but is still computationally

2.2. TIMEDHIVEN SCHEDULING 16

infeasible for large n. We refer to this as Schild's Q Rule. In 1965 Fife [33] published

a paper which proved the optimality of McNaughton's Rule for the case where

tasks arrive via a Poisson arrival process after scheduling has begun, and where the

deadlines for all arriving tasks occur at their time of arrir,al.

More recently, work has been performed on time-value functions, which in gen-

eral are bounded functions that describe decreasing benefit or value to a system,

as opposed to the approach described above which uses a system of unbounded

increasing penalties. In 1985 Jensen et aI l47l published a paper describing schedul-

ing policies designed to maximise collective value over the long-term using time

value functions. In this paper a task (z) has a time-value function defined as

V(t) : Kt I Kzt - Kst2 I Kaexp(-Kut), where K¡, | < j < 5 are positive

constants. A critical part of this work was the study of scheduling policies under

over-load conditions-that is, not all tasks met their deadlines. Two new scheduling

policies and six classical policies were evaluated. The first policy, BEValuel (to

d.enote "best effort"), schedules the task with the highest ualue denstty VlC, where

C is the service time. Any algorithm with this capability is usually called a ualue-

density scheduling algorithrn. The second policy, BEValue2, begins to schedule tasks

using a deadline-ordered sequence, and once the estimated probability of an deadline

overload exceeds some threshold, the task with the lowest value density is removed

from the schedule. Simulation results showed that: (a) for under-loaded systems

the choice of policy was not a critical factor, and (b) that BEValue2 out-performed

all other policies as the system became overloaded. Locke extended some of these

ideas in his Ph.D thesis [56] and showed via simulations that the policy, which he

called the BE policy, out-performed a number of classical policies. In all of this

work, however, arbitrary schedules were created with a small number (36) of tasks,

some of which were periodic. The tasks were created with stochastic properties

(but arbitrarily assigned means) such as service times and inter-arrival times. Even

though extensive simulations were run, the policies v¡ere analysed only for small

data sets and the generality of these results is therefore of concern. Other authors

CHAPTER 2. LITERATURE HEVIEW 77

who have discussed value-density scheduling were Ronen et al l7l], Morton et aI 16ll

(operations research), and Nassehi et al [63] [62] (telecommunications).

Chen and Muhlethaler used a similar task model in their papers published in 1991

[13] and 1996 [14], where a static aperiodic task scheduling problem was studied.

Their approach was to solve the static time value function scheduling problem on one

processor via a d.ecomposition of the task set. The task set is decomposed into several

subsets, and within each subset the order is rearranged into an optimal sequence.

An algorithm wa,s described which optimally decomposes the set of tasks, and an

O ("t) sub-optimal algorithm was described which sequences the tasks once they are

decomposed. The authors use time-value functions with exponential, quadratic ancl

linear shapes.

Moiin's PhD thesis [59] is perhaps the most directly relevant work for this the-

sis. Moiin used a combined approach of time-driven and partial service schedul-

ing, and analysed heuristic scheduling policies in terms of utility of timevalue and

completeness/quality-value. We will defer a discussion of this work to Section 2.5.

Another related area of researci. is scheduling with earliness and lateness penal-

ties. Agoodreviewof theworkinthisfieldisgivenin [a]. Insomeof thisresearch,

time-value functions are called "utility models" when applied to the expected utility

of retrieving electronic information via resources such as the world-wide web [43].

2.3 Queueing Theory

We are interested in queueing theory in order to draw some more generalised con-

clusions from our work, which will not be available via scheduling theory. As stated

above, scheduling theory offers examples of many interesting policies, but only pre

vides contrived task sets for its performance analysis because of the static nature

of most problems. Queueing theory allows us to present the work in a probabilis-

tic framework, but is usually limited to a small number of scheduling policies. A

common policy to examine is the F;.:st-Come First-Served (FCFS) scheduling policy.

2.3. QUEUETNG THEORY 18

The basic queueing system comprises a tra,ffic process, a queue and a service

element. Tasks (or customers) arrive according to the traffic process, are forced to

wait in the queue and are serviced according to the demands placed on the service

element. If we can describe each stage in the queueing system adequately, queueing

theory provides results that will allow us to gain insight into the dynamic nature of

such systems. The disadvantage with a queueing theory approach is that detailed

analysis of queueing problems are intractable for all but relatively simple models.

Our analysis will be based on finding task value for a queueing system for vari-

ous queueing disciplines, so we need to be able to analyse other queueing disciplines

for comparison. In particular, rve are interested in the waiting time of the task,

and even the system time, which is the sum of the waiting time and processing

time. A derir,ation of expressions for the waiting time probability distribution func-

tion (PDF) for the lr/rIMII FCFS queue was first derived by Erlang in 1909 [30],

and derived for the I/-IGII queue by Pollaczek [68] and Khintchine [45]. Lindley

[53] is also cited in the literature when discussing waiting time distributions. The

Last-Come First-Served (LCFS) MIIIdII queue was investigated by Vaulot [84], and

Riordan [70] and Wishart [86] examined the }tlIGIL LCFS case. Burke [11] derived

the waiting time PDF using assumptions of constant service times, a Poisson arrival

processes and a random order of service (ROS), that is, the MIDIL ROS queue.

Takícs extended this work several years later by looking at general service time

distributions and FCFS, LCFS and ROS [80], that is, MlGlT queues. However,

closed-form results were not obtained for the ROS queueing discipline. At around

the same time, Kingman [46] and later Durr [28] examined the waiting time mo-

ments of the }.4IGIL ROS queue. Shanthikumar [75] gave the first analysis of the

Shortest-Job First (SJF) queueing discipline for the }i4'lGll system, and the results

rvere summarised by Takagi in [81]. We will use many of these authors' results in

our research.

Queueing theor¡ as can be seen above, presents enough results on the waiting

times of tasks for different queueing disciplines that we will be able to examine the

CHAPTER 2. LITERATUHE REWEW 19

scheduling problem in a probabilistic framework.

2.4 Partial Task Service

Tasks may be tangible such as manufactured products traversing a conveyor belt

on a factory floor, or they may be intangible such as instructions in a computer

or messages in an electronic telecommunication system. However, all tasks have a

compos,ition-that is, some granularity or detail which is normally hidden to the

medium or transferring bearer (and possibly the user). This granularity allows a

decomposition of the task, possibl"' into several independent sub.tasks if the task

management system allows this to be done. As the system in this case has the option

of scheduling whole tasks or sub-tasks, another degree of freedom (and complexity)

is added to the schedules. The reason a scheduling system may want to decompose

tasks in this manner is to enable a load-reduction scheme whereby less important

sutrtasks can be discarded or delayed. Granularity is manifested in many ways

because there are many domains in task scheduling.

Systems that are capable of such performance are called approri,mate process-

,ing, ,imprec'ise computation or design-to-tr,rne systems. There are three methods for

facilitating this system behaviour, as described below:

o Mandatory-optional decomposition (MOD) method Tasks are decomposed

into mandatory and optional parts, and optional parts can be ignored in order

to reduce load and improve task throughput times. This method is usually

referred to as imprecise computation.

o Increased-reward with increased service (IRIS) method-Tasks gain value in

a continuous fashion as processing resources are applied, and graceful degra-

dation in task quality may be forced to improve task throughput times. AI-

gorithms in Artificial Intelligence (AI) which exhibit these characteristics are

called anyti,me algorithms.

2.4. PAHTIAL TASK SERWCE 20

o Multiple version (MV) method-The system may switch between full and

approximate versions of tasks. This method is usually called approximate

processing or design-to-time scheduling.

Shih eú al176][77] Iooked at the MOD method in the context of static scheduling

using deadlines. Chung et aI 116] looked at the case of periodic task sets. Lim

arrd Zhao [52] implemented a MOD method for dynamic systems that used a task

number threshold to switch between full task and mandatory task execution. The

system model'vras a single-server FCFS queue, and results were collected for under-

loaded and over-loaded systems. Zhao et aI 187) then extended this MOD method

to reduce the effect of transient overloads in a single-server FCFS queueing system.

Task arrival rates were modulated by a normal arrival rate and a higher arrival

rate to model the effect of the transient overload. A review of early work in MOD

methods is given in [55].

Dey et al l27l implemented the IRIS method for a dynamic system, and designed

three scheduling algorithms for use in such a system, where task value was set to be

proportional to task processing time. The first two policies implemented twelevel

policies the first level allocated processing time to tasks, and the second ordered

the tasks. The third algorithm was a simple greedy policy. An upper bound of

performance for any IRIS policy was derived, and the low-level policy using EDF

was shown to give a r,alue close to this limit. The authors presented this work

through simulations of the system with varying processor utilisations of 0.5000,

1.000, 2.000 and 4.000, and various other traffic parameters. As described below in

Section 2.5, Moiin [59] has examined this area with the use of time-value functions

and static schedules. Zilberstein [88] looked at IRIS methods in the field of AI.

The MV method is frequently used in the realm of AI research, where a range of

results can be tolerated from an operation. This is not as relevant to our research

as the IRIS method. For discussions on the MV method, see [51], [25], [38], [37] and

[36].

CHAPTER 2. LITERATUHE HEVIEW 21

2.5 Combined Time-Driven and Partial-Service

Scheduling

Moiin presented perhaps the most relevant work to this thesis in his PhD thesis [59].

He presented work on single processor and multiple (distributed) processor schedul-

ing algorithms for real-time systems, although only the single processor scheduling

analysis is directly relevant. Static scheduling was assumed throughout the anal-

ysis. A task execution model \¡/as proposed whereby taslc aalue is defined by the

instantaneous product of the time-value and the quality-value function, and our

proposed task execution model presented in the following chapter is consistent with

this model. The task quality is a function of the amount of processing utilisation the

task has been assigned up the point of termination, and the time-value is a function

that describes the value of the completion of the task at any point in time. The

objective of this work was to maximise the task value associated with a schedule, as

in the work of Jensen and Locke [41][42][56] and Chen and Muhlethaler [13][14], de-

scribed above in Section 2.2. The types of functions presented for both tim+value

and quality-value functions are linear, quadratic and exponential. Moiin proved

that selecting an optimal ordering of such tasks to maximise value is NP-complete

by transforming the partition proLlem, then proposed a number of scheduling al-

gorithms. The algorithms are decomposed into ordering and value optimisation,

and each algorithm is characterised by the twoword label describing each stage, as

follows:

o Optimal-Optimal-A computationally-intensive (factorial) algorithm that finds

the optimal ordering and value-maximisation, and as such is infeasible for most

applications.

o Heuristic-Optimal-An exponential algorithm which orders the tasks accord-

ing to the EDF algorithm [54] and optimises the total value based on a dynamic

programming technique.

2.6. SUMMARY 22

o Heuristic-Heuristic-A linear algorithm which orders the tasks according to

the EDF algorithm and finds the near-maximal total value by solving a system

of linear equations in order to assign processing time for each task.

Moiin assessed value based un a set of 50 tasks with loads of 0.7000, 1.000

and 1.200 and comparisons to the Best-Effort, Imprecise and EDF algorithms. The

results showed that the Heuristic-Heuristic algorithm has significant advantages over

the traditional algorithms, but also significantly under-performs compared to the

optimal-optimal and heuristic-optimal algorithms.

Moiin's thesis contains valuable task execution model concepts and scheduling

algorithm analyses. The static scheduling algorithms that were presented may serve

as useful dynamic algorithms in the future if they are computationally feasible. The

work could be extended to dynamic scheduling in simulation quite easily by analysing

the steady-state queueing problem. To the author's knowledge, no research exists

which addresses time-value scheduling, partial-service and dynamic scheduling, and

indeed this was the principal motivation for much of the research presented here.

2.6 Summary

The past work in the literature presented in this chapter shows that there are oppor-

tunities for novel research in the area of dynamic, stochastic soft real-time system

task scheduling. Results in this area are usually given with the assumption of static

task sets. There is also an opportunity to extend this work further to overload

mitigation by partial task compl:tion. Research in this area is often presented with

dynamic system assumptions, but without soft-real time system assumptions such

as the usage of time-value functions. Hence with the combined usage of dynamic

traffic, time-value functions, partial task completion and best effort scheduling, a

valuable contribution to the literature is possible.

Chapter 3

System Model and Problem

Formulation

In this chapter we present a bacþround to the current research, and show how the

problem domain motivated the research through identification of current information

management shortfalls. We show how this leads to the problem formulation. The

system assumptions we must have in order to derive value from the research are then

presented. We then design an information management system based on the unique

problem characteristics, and present a suite of policies and algorithms to manage

the expected system traffic.

3.1 Background

Our research was primarily motivated by a satellite communications application that

has been investigated by the Australian Department of Defence (DoD), and more

particularl¡ the Defence Science and Technology Organisation (DSTO).

A broadcast communications system of any type (that is, not only satellite) is

distinct from, and is used to complement user-to-user services, and the users of

each system have vastly different service expectations. In a user-user communica-

tions system, each individual message transmission may be unique, and will usually

23

3.1.. BACKGROUND 24

have a limited applicability to other users in the field. There must therefore be a

high degree of control available to customise each individual message transmission.

This may happen dynamically through access to the service provider or the service

provider may customise the service based on a static (but previously agreed) cus-

tomisation. The users of a broaJcast communications system, on the other hand,

must have a significant common requirement for transmission content for their user

requirements to be satisfied. This kind of access is made via a back-channel, which is

a narrow-band connection in the opposite direction to the main broadcast, and may

include dedicated or ad-hoc commercial systems. Often users do have a significant

common requirement, and in these circumstances a broadcast system may suffice. If

a broadcast system has back-channel access the resultant system conceptually lies

somewhere between the extremes of tailored and common communications, with a

significant number of users satisfied by a common transmission and a small number

with unique requirements. The Direct Broadcast Satellite (DBS) is an example of

a broadcast service with back-channel access. It is a commercial system and was

originally used for broadcast of television into homes, with users able to control

the content via a narrow-band back-channel [17]. DSTO has examined the use of

commercial satellite broadcast services for military use since 1995, when the DBS

service was gaining popularity. As a result, the Australian DoD is currently fielding

a prototype application based on the DBS, known as the Theatre Broadcast System

(TBS) [18]. The US DoD has also fielded a system known as the Global Broadcast

System (GBS) [57]. We shall refer to all such systems as Custom Broadcast Satel-

lite (CBS) systems, as they all provide back-channel access and have the same basic

architecture.

The TBS configuration is shown in Figure 3.1. It consists of a collection of infor-

mation resources from which is derived the desired transmission. This information is

directed to the broadcast centre and transmitted from the Primary Injection Point

(PIP) to the broadcast satellite. The satellite broadcasts the information to the

users in the field. Users in the field may request information to be transmitted over

CHAPTER 3. SYSTEM MODEL AND PROBLEM FONYruLA?IO¡ü 25

Information Theatre
Command

Primary
Injection

Point
Sources

Push Broadcast

Up Link

Request

Deployed
Request Path

Figure 3.1: Australian Concept of the Theatre Broadcast System (TBS)

the broadcast channel by the narror,¡/-bând request links. These requests are received

by the Request Manager (RM). The Tactical Injection Point (TIP) represents the

injection of information into the system from the information authors. The infor-

mation that is directed from the information sources to the PIP is controlled by the

policies of the Commander.

The DSTO has conducted preliminary research into task scheduling for this ap-

plication. The report by Blackmore [7] demonstrated how a dynamic programming

technique could lead to effective time-value function task scheduling in such an en-

vironment. This research assumed that a number of logical channels carried the

traffic, and the scheduling algorithm "ReAl Time Scheduling" (RATS) would al-

locate logical bandwidth to tasks in such a way as to maximise the sum of task

value over the defined scheduling time interval. In this model, discrete-value tasks

such as messages and files and continuous-value tasks such as video were included.

The tasks were attributed with piece-wise linear time-value functions, and the in-

terr,als imposed on these functions define the scheduling intervals. In the algorithm,

there are nr (k) 0) stages in the dynamic program corresponding to the number

of tasks in the queue for each scheduling interval. The scheduling intervals are pe-

Links 4-ePull

Command

Strategic

Civilian

Allied

Tactical
Entcrtainment

Broadcast
Management

Centre

Request
Manaser

3.1. BACI<GROUND 26

riodic and are set by the system administrator. This means that tasks may arrive

during an interval but are not scheduled for service until the end of the interval

and the subsequent re-evaluation of the task set. The decision taken during each

stage of the dynamic program is the amount of bandwidth to allocate to tine kth

task based on the remaining bandwidth. States at each stage correspond to the

remaining bandwidth. Three simulation experiments were conducted for an under-

loaded, fully loaded and overloaded system with system utilisations 0.5780, 1.156

and 2.688, respectively. The tasil arrival process was a,ssumed to be Poisson, the

service times'$¡ere exponentially-distributed and three different task request sources

were simulated. Four precedence levels were also simulated. Nine scheduling poli-

cies are compared-RATs, First-Come First Served (FCFS), Most-Valuable First

(MVF), Shortest Task First (STF), Minimal Laxity First (MLF), Highest Prece-

dence First (HPF), Dynamic HPF, EDF and Preemptive. The Preemptive policy

uses priority information so that higher priority traffic can preempt lower prior-

ity traffic. The MVF policy is a greedy algorithm that finds the most valuable

next-task contribution. For the under-loaded system, performance was similar, with

RATS slightly out-performing the other policies. For the fully-loaded system RATS

greatly out-performed most of the other policies. For the over-loaded system RATS

again out-performed all other policies except STF. Note that RATS does not explic-

itly address the ordering of tasks and hence is not strictly a scheduling algorithm,

rather it addresses the bandwidth-allocation problem.

Our research has been motivated by this previous research, and virtually all

of the previous assumptions will be used in this thesis. This thesis builds on the

previous work by expanding the number of policies, proposing novel policies and

using partial-task scheduling to mitigate overloads. However, we limit our work to

discrete task scheduling for simplicity, as the physical channel may be segmented into

partitions for both discrete and continuous classes of traffic, and each partition may

be examined separately. Our work will also concentrate on probabilistic measures

of simpler scheduling policies, with simulation experiments used to verify analytic

CHAPTER 3. SYSTEM MODEL AND PROBLEM FONMULATION 27

\
Management

Policy

Ls'f l:ol
à'o
o

È

.e
o

Figure 3.2: System Model

results and extend the analysis to other more complex policies

3.2 System Model

To build the system model, we first partition the system conceptually into: (i) the

information author population, (ii) tasks, (iii) task processing element (TPE), (iv)

management policy and (v) the information recipient population. As shown in

Figure 3.2, the information author population produces tasks that are accepted into

the TPE.

The management policy acts upon the TPE, which outputs tasks to be sent to

the information recipient population. In the following sections we address each part

of the system model in detail.

3.2.L Information Author and Recipient Populations

The information author population includes the users in the field who request in-

formation via narrow-band request channels, and the users at the PIP who decide

lnlomation
Recip¡ent

Populat¡on

lnformation
Author

Populat¡on

Queue
Serviæ
Fac¡lityGãte

Task Processing Element

Discarded
Tâsks

3.2. SYSTEM MODEL 28

what information to push to users (see Figure 3.1). \Me assume that there are r

classes of information recipients, each with their own priority c'.

Both groups of users produce tasks with an assumed value to the target recipi-

ents, which we call the user assigned priority, ø. We assume that the value assigned

by these users agrees with recipients' valuation. In practice this assumption will not

strictly be true, however, we assume the resultant approximation is sufficient for our

purposes. As prioritisation is performed by the prioriti,sation poli,cy as part of the

overall Management Policy suite we defer this discussion to Section 3.2.4 below.

For simplicity we initially ascume that the inter-arrival process is Poisson and

service times are exponentially-distributed. This assumption for the inter-arrival

process is adequate, however in practice the service-time distribution is likely to be

long-tailed such as a Pareto distribution [67][65][22] . When we simulate the system

we extend analysis to include long-tailed distributions. This will be discussed further

in Chapters 4 and 5. Many authors also examine long-range dependence in teletraffic

data, which is a property where the current state of the system depends strongly

on remote past events. However, we do not examine long-range dependence in this

thesis.

3.2.2 Tbsk Model

The task model includes the concepts of urgency, completeness and priority. Urgency

is reflected in the time-value function. An example of a time-r,alue is shown in Figure

3.3. The sooner the soft deadline occurs and the faster the function decays past the

soft deadline, the more urgent the task is said to be. We then must define two

types of urgency-deadline and TVF decay urgency. Hence, users who consider

information is valuable initially, but worth little or no r,alue within a short time-

frame would regard a task to be urgent. Users who also consider that the value of

the task decays soon would regard a task as urgent. It is the users' perception of

the urgency of information that defines the time-value functions of the tasks. In the

CHAPTER 3. SYSTEM MODEL AND PROBLEM FONYTULATION 29

g
õ

E
F

D

0
Time t

Figure 3.3: Time.Value F\rnction

example shown in Figure 3.3, a task is admitted into the TPE at the arrival time

A. FYom that time the task is worth the maximum value p, its priority, if serviced

before the soft deadline which occurs at time D. However, the time-value function is

assigned by a user, and a delay is present between the request and the moment the

response (the task) arrives at the TPE. If the delay is large the deadline D may occur

before the arrival time A, in which case the function will have decayed before service

may begin. This example is shown in Figure 3.3. The shape of the decaying part of

the time-value function is determined by the user, however we will use the common

examples of linear, negative exponential and quadratic functions as approximations

[59][56][41]. In Figure 3.3 we have shown use of the negative exponential time-value

function. \Me index time ú from the arrival time A. The time-vahrc T. (t) for such a

task n is then

r^(t) : Pn

,png-u^(A-lt-D^)

i'Í A,+t < Dn

otherwise,

where z' is the decay (urgency) parameter.

The task model also includes the concept of completeness, in order that we may

discard traffic load by partially servicing tasks to increase task throughput. In order

3.2. SYSTEM MODEL 30

f

-g
d
E
o

Complelion c

Figure 3.4: Completion-Value Function

for this to occur, we need to undurstand the relationship between the completeness

and the users' perception of information value of the resulting incomplete task.

This relationship is given by the completion-value function, an example of which

is shown in Figure 3.4. We assume that the value density of each task is skewed

towards the start of each task. That is, partially servicing the first part of each

task will be proportionally more valuable than servicing the latter parts. Note that

we index the function with completeness c (which has a maximum value of unity)

and not time, as other tasks may be serviced in parallel, reducing the instantaneous

proportion of processing time each task receives. When we index the function by

time it is with the assumption that all the available processing time is allocated

to it, and so does not reflect the expected completion time. For the n¿ä task, the

completeness c,, is found by integrating the proportion of processor allocation R- (t)

from its arrival in the system An to the time since arrival A" -l ú, and dividing by

the amount of time required to complete the task given the whole proportion of the

processing power, Brr:

. I rA-+t
c^(t¡ : ;, J^. R^(r) d,r.

We then need to map the completion c, onto the completion-value function C" (")

000

CHAPTER 3. SYSTEM MODEL AND PROBLEM FOHMULATION 31

E

s

F

Tm€

Figure 3.5: Task Value F\rnction \Mhere Service Begins After Soft Deadline

to derive the completion value Cn(cn(ú)). Note that this function is also a function

of the current time t. The shape of the completion-value function will depend on

the type of task being serviced.

Figure 3.5 shows how the time-value function and completion-value function

determine the task value function, shown in bold. In this case, the deadline D

occurs after the task arrival time A. The task begins service at,S, just aft,et D.

As the processing begins, rve see that the task value increases until the optimal

departure time O, after which tine the task value decays. Hence if the service

policy assigns (O - S) processing time to the task we will achieve the maximum

achievable task value, given the late arrival time. Committing any more processing

time will be counter-productive, so any conceivable service policy will have (O - S)

as a maximum processing time bound. Figure 3.5 assumes that the task receives

all the processing utilisation and is not pre-empted or delayed during service. An

example whereby service begins before the deadline D is shown in Figure 3.6. In

this case the optimal departure time O is the same as the deadline D. In general,

Task.Va ug

Complet¡on-Va ue
Fun6t¡on

o cD

3.2. SYSTEM MODEL 32

p

a

F

Tme

Figure 3.6: Task Value F\rnction \Mhere Service Begins Before Soft Deadline

then, the task value is thus expressed as

w(t):
p"C" (c^ (t))

pne-un(An+r- Dn) C n (r, (¿))

i,f An+t < Dn

otherw'ise,
(3.1)

where c.(t) : + tÎ:*' R.(r) d,r.

3.2,3 Processing Element Model

The task processing element (TPE) contains the queue (the buffer) and the service

facility (the processor). It accepts input from (a) the management policy in the form

of a suite of policies as discussed in Section 3.2.4, and (b) the information author

population in the form of arriving tasks. The TPE outputs tasks to be sent to the

intended recipient user population.

Queue

The queue in the TPE is serial and tasks are ordered according to arrival. Aoy

tasks chosen for service are chosen according to a scheduli,ng poli,cy, so task position

in the queue is not directly important. \Me also initially assume that the queue

CHAPTER 3. SYSTEM MODEL AND PROBLEM FONMULATION 33

capacity is infinite, that is, no tasks are ever discarded due to queue limitations. As

discussed below, all task discards are managed by an explicit d,i,scard policy, which

may operate using information on an assumed maximum queue capacity and will

usually operate using other additional information.

Service Facility

When a task is accepted into service it is removed from the queue and arrives at

the service facility. The service facility may contain one server or many, but the

sum processing power remains constant at all times, as the bandwidth in our radio-

frequency satellite communications channel remains constant. The seru'ice poli,cg, as

discussed below, dynamically controls the numbet of servers and the proportion of

processor utilisation (bandwidth) each server may use at any one time.

3.2.4 Management Policy

The management policy is a suite of policies that are used to control the admission

of tasks to the TPE, the ordering and service of those tasks and the subsequent

reception of those tasks at the recipient population. For every policy we specify an

identifier text string which uniquely identifies each policy. The first part of each

identifier is a twoletter string used to identify the type of policy, for example Ad

(admission) or Sc (scheduling). Following this is a hyphen and the string that

uniquely identifies the specific policy, for example the specific scheduling policy

such as First-Come First-Served is denoted Sc-O. A management policy is uniquely

identified by a set of the policy identifiers. Below we examine this suite of policies

in detail.

This notation is conceptually similar to Kendall's notation 144] for queueing sys-

tems Al B lml K lM , which describes the inter-arrival (,4) and service (B) processes,

the number of servers (m), the system's storage capacity (K) and customer popu-

lation M.By default, the system's storage capacity K and the customer population

3.2. SYSTEM MODEL 34

M are infinite, and the corresponding labels are usually omitted in this case. An

example of Kendall's notation is M lM lI, which denotes the queueing system with a

simple Poisson arrival process, exponentially-distributed service times, and a single-

server. Kendall's notation is insufficient to characterise our Management Policy as

it has no labels to describe the scheduling policy (called the queueing discipline)

or other policies. It also does not describe our information author and recipient

population adequately. Some authors use Kendall's notation to describe scheduling

policies, however it is not strictly correct notation to do so.

Admission Policy

Upon departure from the author population, a task must satisfy the ad,mi,ssion

policy that it should be admitted into the queue in the TPE. The admission policy

determines this based on the state of the queue and the system load. Initially we

assume that the (trivial) admission policy of allowing all tasks into the system is in

effect, and that a discard or pre-emption policy discards the tasks if they are deemed

not valuable.

Scheduling Policy

The choice of which task to remove from the queue and place in the service facility

is made by the scheduling poli,cy. Some of the simpler policies such as First-Come

First-Served, Last-Come First-S^rved and Shortest Job First can be analysed the-

oretically, however other policies will have to be simulated for any comparisons to

be made. Many scheduling policies are optimal under certain conditions, such as

McNaughton's Rule for deadline scheduling with loss functions [58]. As our system

model does not include the same assumptions, these policies will not be optimal,

however it will be valuable to compare these policies as we intuitively expect them

to out-perform simpler policies. A list of policies from Sc-O to Sc-9 that we shall

be examining is given below:

CHAPTER 3. SYSTEM MODEL AND PROBLEM FONIITULATION 35

Sc-O F¿rsú-Come, First Serued (FCFS)--+he task that arrived first (the earliest) is

served next.

Sc-I Last-Corne, First Serued (LCFS)--+he task that arrived last (the latest) is

served next

Sc-2 Shortest Job Fi,rst (SJF)-The task with the shortest service time is served

next.

Sc-ï Most Urgent Fi,rst (MUF)-Urgency here is defined by the decaying part of

the tim+value function (TVF) rather than the deadline. For the linear TVF

case, the urgency is assumed to be the gradient. For the negative exponential

and quadratic TVF cases, the exponent parameter is used.

Sc-4 Most urgency/Seru'ice t'ime Quoti,ent Fi,rst (MUSQF)-Urgency is defined

here as for Sc-3 above. MUSQF is similar to McNaughton's RuIe (see Sec-

tion 2.2 and [58]) which has been proven to be optimal for a Poisson arrival

process by Fife [33]. The difference is that we use the TVF to define urgency

rather than the soft deadline. However, we could attempt to schedule using

McNaughton's rules based on the soft deadline (for the linear and quadratic

TVF cases) or a hard deadline (for the negative exponential TVF case).

Sc-í Most Urgency/Seru'ice t'ime Product Fi,rst (MUSPF)-As for Sc-4 above, ex-

cept a product is used.

Sc-6 Most Valuable Fi,rst (MVF)-The task that would provide the most value

to the system if serviced next is chosen using this policy. This assumes the

task will receive the total processing allocation and will not be pre-empted or

delayed in any way.

Sc-7 Randorn Order of Seruice (ROS)-Tasks are chosen from the queue at random.

3.2. SYSTEM MODEL 36

Prioritisation Policy

In our system model, the information author attaches an intended audience ualue

function a, to each task which describes the value of the task to each class of cus-

tomer r. The scheduler must be aware of the number of users in each recipient

class, which is described by the function n,. The recipient value weighting func-

tion w, maps recipient class onto importance. By using the priorities assigned by

the information author together with the scheduler's knowledge about the recipient

population, the scheduler may then assign the task priority p. \Me define the no

priority case below, and propose a prioritisation policy:

Pt-O Tasks shall all have an equal priority of unity.

Pt-1 Compose an expression for the non-normalised priority qn of a task n by

Note that we linearly weight the number of customers when determining the

priority. \Me sum the un-normalised priority for each class of recipient before

arriving at a combined un-normalised figure of priority. The scheduler then

examines all of the tasks in the queue and normalises the priority of each one,

as priority has an upper bound of unity. The normalised priority is then given

by

Çn

The values of p," then determine the maximum value a task may impart to the

system. The scheduling policy may use this priority information in its decision

making.

Note that by using Pt-l each departure or arrival in the queue will change

the normalised priority p of every task in the queue. Computationally this will be

undesirable, however, the previously un-normalised priorities q may be used in the

t
rer

8, U)¿A,TL¿

Pn
Dqu
xer

CHAPTER 3. SYSTEM MODEL AND PROBLEM FORMULA?IO]V 37

calculation, saving computation time. Note that the intended audience population

may be dynamic also. Environmental and operational conditions will lead to changes

in the structure of the audience.

Discard Policy

When the system is overloaded, delays in information increase and discards may be

considered. Tasks may be discarded or parts of tasks may be discarded.
'When parts

of tasks are discarded, the service policy instead of the discard policy facilitates the

discard mechanism. \Me examine E:rvice policies below. When a task is chosen to

be discarded by the discard policy, any one of the scheduling policies listed above

may be used.'We examine disca,rd policies (and partial task service policies) in detail

in Chapter 6.

Ds-O No discards use used.

Ds-l-m If the system utilisation p) I, set a queue capacity threshold of rn tasks.

If the queue capacity threshold is exceeded, allow the task incoming into the

queue, and discard one task using the Longest Job First (LJF) scheduling

policy.

Ds-2-m Least Urgent First (LUF)-As for Ds-l-m above, except that the task

with the lowest urgency is discarded.

Ds-3-m Least Valuable First (LVF)-As for Ds-l-m above, except that the task

with the lowest value (as if it was served next) is discarded.

Pre.emption Policy

Preemption is the act of removing a task from active service and inserting a newly-

arrived task that is deemed more valuable. 'We wish to generalise pre-emption to

include cases where a trigger may not be the arrival of a new task, which we shall

refer to as Arriual Thiggered (AT) pre-emption. Other triggers are possible, such as

3.2. SYSTEM MODEL 38

changes to environmental conditions which may affect the system load. We shall refer

to this case as an Enuironmentally Thi,ggered (ET) preemption. ET pre-emption is

only useful under extreme changes in system load, so in general AT pre-emption is

more applicable to our domain.

Another complication arises when one considers the possible rewards that are

lost once pre-emption takes place. For example, a pre-empted task may have had a

very small amount of processing time left which may have resulted in a large reward.

It may be optimal in this case to let the task complete and then insert the new task,

which is not strictly re-emption.

Pre-emptions are further distinguished by the behaviour of the pre-empted task

once the pre-empting task completes-the resume policy. \Mhen the pre-empting

task completes, the preempted task may be allowed to resume. This is referred

to a Guaranteed Nert Resurne (GNR). Alternately, the pre-empted task may be

discarded. The third option is to place the task back in the queue. The task may

either resume from where its execution v/as interrupted at the time of pre-emption,

as in the case of the Eaentual Resume (ER) policy, or the resource may be forced

to begin servicing the task from the beginning again, as in the case of the Euentual

Re-Start (ERS) policy. For our application, the ER pre-emption will generally be

used, as the deployed user receive suites will be able to cache information and resume

reception later. In our application, the Guaranteed Nert Re-Start (GNRS) policy

is also a possibility. Further complications arise with consideration of pre-empting

pre-empted tasks. \Me shall ignore the case of multiple pre-emptions for the time

being.

In summary, there are eight combinations that uniquely define a pre-emption

policy. Either pre-emption is not used, or a pre-emption policy is uniquely defined by

its trigger and resume sub-policies.
'We

give the two sut>policies separate identifiers

in the pre-emption policy identifier string, as shown below:

Pm-O No pre-emption

CHAPTER 3. SYS'TEM MODEL AND PROBLEM FONVULATION 39

Tligger policy:

Pm-0-r Arri,ual Thiggered (AT)

Pm-l-r Enu'ironmentally Thiggere,l' (ET)

Resume policy:

Pm-t-O Guaranteed Nert Resume (GNR)

Pm-t-l Guaranteed Nent Re-Start (GNRS)

Prn-t-2 Di,scard

Pm-t-3 Euentual Resume (ER)

Pm-t-4 Euentual Re-Start (ERS)

In the list above, r and ú are the Resume and TYigger policies respectively. Using

the identifiers we have provided, examples of unique preemption policies are Pm-O

(no pre-emption), Pm-0-0 (arrival criggered with GNR resume policy) and Pm-L-4

(environmentally triggered with ERS resume policy).

Service Policy

The service policy determines how much service each task receives once it enters a

server. If the system includes multiple servers, it must determine what proportion

of the processor utilisation each server has. The service policy must also determine

how much processor time to give erch task, and hence what quality that task will

have. We therefore need one policy to describe the service policy Sv for a unique

single-server system-a completion policy C. For a multiple server system we require

two policies to determine a unique service policy Sv-the completion policy C plus

a utilisation policy U. \Me use the following convention:

3.2. SYSTEM MODEL 40

Given

-utilisation policy U

-completion policy C

A service policy is uniqely identified by the convention

C for single-server systems

U, C for mutliple-server systems

The first utilisation policy \Ã¡e propose is to provide each server an equal proportion

of the total processing utilisation:

U-0-m Servers have equal utilisation

The m servers' proportion of the utilisation may be recalculated depending on

the task priorities, urgencies and service times, for example. The re-calculation of

server utilisation proportions are triggered by a task arrival or departure form the

service element, the queue or may be triggered by some other event. We provide

details of a utilisation policy using task priorities below:

U-l-m For m servers servicing tasks n- with priority p(r,*), calculate the mth

server processor utilisation u* by:

P(n,-)

D p(n¡)'
j:vm

at task arrival and departure instants. For empty servers, assume the task

priority is zero.

For the policies IJ-O above, when the queue is empty and one server is busy

in a system with more than one server, all the processing power of the idle

servers is lost until another task arrives or a task completes its execution. 'We

now provide a policy that improves on U-0 by reducing the number of servers

when this situation occurs:

um

CHAPTER 3. SYSTEM MODEL AND PROBLEM FORMULATIO¡ü 4l

U-2-rn Servers have equal utilisation. Vtrhen the number of tasks in the system ne is

less than the number of servers, the service element consolidates its processing

structure into m servers. This system was first studied in [31] and was also

examined in [32].

The service policy also determines the amount of processing time each task re-

ceives, and hence the completion of each task. We propose several policies below:

C-0 All tasks complete fully,

C-l If the system utilisation p) L, set all task completion c : tlp.

C-2-m-PS-PV If the system utilisation p) I, set a queue capacity threshold of

rn tasks. If the queue capacity threshold is exceeded, tag incoming tasks for

partial service. The service time of tagged tasks are reduced to P S% of the

original service time, and the value the task imparts to the system is reduced

ro PV% of its original value.

3.3 Problern Formulation

Given a set of input parameters from the two populations, the Problem P is to

find the suite of policies M that maximises the expected task value contributions

L over an infinite planning horizon. Each task value is computed by the product

of the tim+value function and completion-value function at the moment of service

termination. The set of input parameters consists of the probability distribution

function (PDF) of the task inter-arrival times A(t), the PDF of the task service

times B (t), the number of classes in the information recipient population k and the

number of deployed users in each class dr, 0 1r 1lc:

3.3. PROBLEM FONUULATION 42

Problem P

Given the input parameters

A(t), B (t), k and d,, 0 1 r < k

Maximise L (n) : n^ D"-V"
r2+oo n

by finding the best policy set

M:(Ad, Sc, Pt, Ds, Pm, Sv)

where I/, is the value of the n,th task calculated at the point of task termination,

as shown above in Equation 3.1.

Given an analysis of the performance of the various policies, it is possible to

implement a (sub-optimal) strategy for switching policies based on simple traffic

statistics such as average task arrival rate. Each policy would outperform the other

given well-defined bounds on the traffic statistics.

In Chapter 4 we look at the performance of the FCFS scheduling policy, that

is, the management policy M:(Ad, Sc-O, Pt, Ds, Pm, Sv). We alter the policies

other than scheduling, such as increasing the number of servers, and observe the

system performance. In Chapter 5 we analyse the performance of the other schedul-

ing policies Sc-l to Sc-O9 and again look at combinations of the other policies such

as task discard, service and prioritisation. \Me do this initially through numerical

results and later through simulation. The results from these two chapters shows

that the scheduling policy Sc-2 (shortest job first) performs remarkably well under

a wide range of traffic and policy conditions.

As most of the results in the following two chapters are general, they are of

relevance to many scheduling problems of no particular problem domain. However,

the results (such as presented late in Chapter 5) are particularly valuable to the

problem domain of broadcast satellite scheduling, as we examine the influence of the

information author and recipient populations, overload scheduling and the dynamic

assignment of multiple servers.

Chapter 4

The First-Come First-Served

Scheduling Policy

In this chapter, we examine the performance of the system when the First-Come

First-Served (FCFS) scheduling policy is used. As perhaps the most commonly-used

scheduling policy throughout many disciplines, this provides a basis for comparison

with other authors' work in this area, and also as a base-line for comparison with

other policies in the thesis. As our system model includes task information such

as urgency and priority, which the FCFS policy ignores, we do not expect it to
perform to the same level as the priority policies discussed in Chapter 5. However,

if the improvement of priority poliries over FCFS is marginal, then FCFS may be

preferable as it has a low computational overhead. We defer this discussion to the

end of the following chapter, once ï\,e have examined other policies.

In this chapter we derive analytic expressions for the performance of this Manage-

ment Policy with the assumptions of no pre-emption or priority and a single server.

'We then examine the case where more than one server is used. The FCFS system

is then simulated, even though we also derive analytic expressions. The analytical

results are used to validate our simulations. This is important as in proceeding

chapters the simulation tool has an important role. In the final section we present

43

44

conclusions about the performance of the Management Policy when FCFS is used.

In following chapters we will compare the results with other scheduling policies such

as Last-Come First-Served, Shortest Job First and other priority policies.

We are primarily concerned with the system value function as defined in Chapter

3, which we take as the sole measure of system performance. The system value

function is defined as

w(t) :

where c*(t): * ïÎ:*' R.(r)d,r.

The system r,alue function shown above in Equation 4.1 is described in detail in

Section 3.2.2,Chapter 3. Essentially, p, is the priority of the n'h task, that is, the

maximum contribution it can make to the system . An is the arrival time of the task,

z, is the decay (urgency) parameter of the time.value function (TVF), that is, how

quickly the task loses any potential contribution to the system upon departure. c, (ú)

describes how the task will be processed-its share of the server over time and how

complete the task will be before it departs the system. The value of a partial task is

described by the completion value function (CVF). The system value is incremented

each time a task departs the system, and the magnitude of this increment is defined

by the product of the task's TVF at that instant, multiplied by the task's CVF.

For individual tasks, the TVF is a simple function of system (sojourn) time, where

system time is defined as the sum of the queueing (waiting) time and the service-

time. Depending on our motivation, we could define other value functions which

index waiting time only or includes task size in order to reward scheduling policies

that favour large tasks more than small tasks. The objective is to analyse various

queueing models by analysing task value statistics. \Me seek to maximise the sum

of the task value contributions over an infinite planning horizon. To this end, we

may use the expectation of a single task's value as the sole performance measure

as this is identical to the long-term system value. Consequentl¡ we use the terms

"expectation of task value" and "system value" interchangeably in the thesis.

p"C^(c"(t)) if An+t < Dn

pne-un(An+r-o^)Cn("" (¿)) otherw'íse,
(4.1)

CHAPTER 4. THE FIRST-COME FIRST-SERVED SCHEDULING POLICY 45

I Management
ì

Po cy

Task Processing Element
I

Figure 4.1: Simplified System Model Using Serial Server

4.L Dynamic Serial Processing Systems

In the first analysis we look at the case where a single server is used. Figure 4.1

shows a simplified view of the system model when a single server is used. In Chapter

3 we presented the general problem formulation as Problem P. For the analysis in

this section we decompose Problei.r P into Problem P.1. Later in the thesis the

collection of decomposed problems will together give an insight into the general

Problem P:

Problem P.1

Given the input parameters

A(t), B (t), k and d,, 0 1 r < lc

Fintl .L (n) : ti^ D?-W
u+æ n

by using the policy set

M:(Ad-O, Sc-O, Pt-O, Ds-O, Pm-0, C-0)

In Problem P.L, A (ú) is the inter-arrival time pdf, B (ú) is the service-time pdf, k

is the number of recipient classes anddr,0 (r < k is number of users in each class.

lnformation
Recipient

Population

lnformation
Author

Population

Queue Serve¡Gate

4.1. DYNAMIC SEHIAL PROCESS/¡üG SYSTEMS 46

I/, is the value of the nth task and M is a string that uniquely defines a management

policy. We have defined the notatr.on f'or the management policy M in Chapter 3. In

this case, M denotes the admission policy where we simply allow all tasks into the

system, the FCFS scheduling policy, no preemption, no discard scheme and whole

task completion.

4.L.L Negative Exponential Time-Value F\rnction

Initially we assume a negative exponential TVF, full task completion, Poisson arrival

process and exponentially-distributed service times. The Management Policy is

therefore uniquely specified by the string M:(Ad-O, Sc-0, Pt-O, Ds-O, Pm-0,

C-0). If we assume that every task has an equal urgency, task value is given by

vQ) : r!)c("(r))
: r(r)
: e'dr a,T) 0, (4-2)

where a is the task urgency constant and ? is the system time random variablel.

As stated previously, the performance measure we use is the expectation of task

value ,Ð [I/]. The expectation of a function of a random variable is found using the

definition

Elvir:
Ë

v (t) l, (t) dt, (4.3)

where /, (ú) is the probability density function (pdf) of the system time and the

subscript refers to the fact that the task value function in Equation 4.2 indexes the

system time ?. For an introduction to the transformation of random variables, see

the text by Papoulis [6a]. For an }t/.lMll system the pdf /, (ú) is given [47] as

l, (a) : p,(\ - p) e-u1-òa a) 0, (4.4)

lRecalling from our notation that we use uppercase characters to signify a random variable and

lower case to signify a constant.

CHAPTER 4. THE FIRST-COMI FIRST-SERVED SCHEDULING POLICY 47

where À is the mean inter-arrir,al rate, ¡.r, is the mean service rate and p is the system

utilisation À1p,. We may set the lower bound of integration in Equation 4.3 Io zero.

Combining Equations 4.2,4.3 and 4.4 above we have

I,*E lvl" : e-"t t-t (L - O¡ "-ø(t-òtdt

E IV], : pG - p)
(r+tl(t-p) (4.5)

We now wish to change the objective function to use task waiting time lztrl instead

of system time. In the following chapter this derivation will allow us to make a

useful comparison between the FCFS scheduling policy and Last-Come First-Served

policy. The system value for this case is

V (W) " e-ow a,W) 0

We know that the waiting time pdf for an Ml};'4ll queue is given [47] as

fw(a): (t-p)6(ù+À(1 - p)e'uT-òu a>0,

where ó (Tr,,) is a unit impulse (Dirac delta function) located al w: 0. The expecta-

tion for task value for this case is then

Elvl* : l,* e-"- ((I - p) 6 (r) + À (1 - ,¡ e-uÍ-c)-) dw

E[vl* , À(r-p)11 ^\ r ________)_______\^ ''' o,+p\-Ð' (4.6)

where we have used the unit impulse sifting property of /: 6 @) f @) dr : f @).

If we now assume that the task urgency is itself a random variable we can build

a more complex model to capture some of the information author and recipient

structure. Let us assume that task urgency is negative exponentially-distributed,

then

v (T) : e-Br,

4.1, DYNAMIC SEHIAL PROCESSI¡\IG SYSTEMS 48

where B is the urgency, which in this case is a negative'exponential random variable

with the pdf

fB(a): bse-bou g>0.

The expectation of the task value then becomes

E lv)r,u : lr* lr* "-u'1", þ,t) dbdt

:
lr* l,* "_-u'r' þ) rr (t) dbdt

:
Ir* lr*

.-bt6o"-bob , G - p) ¿-uo-c)t¿6 ¿¡

: p(t- p)bo

: t'í - p)bo

ElVlr,u : ce"l (0,c) ,

"-(t+bo)b
¿6 dt

(4.7)

where c : þ (t - p) bs and I (a, z) : I: ¡a-r
"-t¿¡

is the Incomplete Gamma func-

tion. Various properties of the Incomplete Gamma F\rnction are described in [2]

and summarised in Appendix A. The subscript "U" refers to the random urgency

of each task. It is useful at this stage to compare E lVlr,, with E fll]t in order

to see the effect of random urgency on the system performance. \Me can compare

the expectations if we set the mean urgency to ø, that is, the same as the constant

urgency value in the model with objective function as defined in Equation 4.2 above.

We have

E lvlr,u
E IV),

p(r - p)(tlù¿uG-òG/")¡ (0,p(1 - p)(tl"))

1: '"u1-òG/a)¡ (0, ¡, (t - p) (tlù) @ + t'(t - p))o,'
The results of this comparison are shown in Table 4.1 . We can see that the

random urgency model gives a higher mean value only for a high utilisation and a

low urgency, with the constant urgency model having a higher mean value that the

random urgency model for the five other cases we have examined.

CHAPTER 4. THE FIRST-COME FIRST-SERVED SCHEDULING POLICY 49

TL p:0.9000,/¿:1.000 p:0.5000,F:1.000 p: 0.1000,þ : 1.000

1.000 r.t29 0.7951 0.9169

10.00 0.4022 0.3694 0.6080

Table 4.1: The Ratio E lv)r,u I E lVl, for Different Load and Urgency Parameters

The next level of complexity arises when we consider soft deadlines. As the

complexity of our analysis rises, the model becomes a better representation of the

real system. Let us assume that each task has a random urgency and a constant

soft deadline, then

v (r): 1 0<T<d
e-B(T-d) T > d,

where d is the soft deadline and is constant and non-negative. Task urgency and

system time have the pdfs:

fa (a)

l, (t)

bse-boa g > 0

p.(t-p)e-u\-òt ú>0

The expectation then is given by

ElVlr,u,c: ËL V (t) f u" (y,t) dy dt,

where the subscript "C" refers to the constant soft deadline of each task. We split

the integral over ú into the regions prior to and following the soft deadline d so that

l,* I,*ElVlr,u,c: v (t) f" (a) f, (t) dy dt + v (t) fn (a) l" (t) dy dt.

4.1. DYNAMIC SEHIAL PROCESS/¡üG SYSTEMS 50

Making the necessary substitutions we obtain

Elvlr,r,. :
lo' ,tr- p)e-,G-^'Ur* ble_-boadaldt

* lo- p'(r- p)e_.uu_.òt
{lr* "-u(t_-d)6o"_-u'o¿o}a'

r:
J,'Q- o¡"-u\-Ðtds

*uo
Io*

p,(r - p) e_.ul_.Ðt
{lr* "-(t-d+bo)a¿u}

at

:
lo"

,{, - p) e-t"G-ø'at + u
lo

- P (1 - P) e-u1-òt
dtt-d,-lbo

Elvlr,u," : ! - e-bod (r + ce'l (0,
"))

. (4.8)

Note that we have used the ielation [i #A": eobl (0,ø(b+d)) in the last

step and used c : p(L - p)boas before. We note also that Elvlr,u,"lo---o: E[V)r,u

as we would expect

4.L.2 Linearly-Decaying Time-Value F\rnction Task Model

If we have a linearly-decreasing TVF we can express the system value as

V(T): I-aT 0<?<l-a
0 1<?.

(4.e)

If we assume that the urgency is a constant then the equivalent expression for the

expectation of task value is

E [vlr,,n^ : v (t) r,r (t) dt

I,T

t,

:1,

!

(1 - .-ú) p,(L - 01"-u\-òtdt

'r*" tr(l - p) e-u\-òtdÍ - a¡-t(t - p)
Jo"

te-u\-òtdt

. a(e-l{t-P) - 1)1 r ----f-pG-ò)

where the subscript "lin" refers to the linear TVF

(4.10)

CHAPTER 4. THE FIRST-COME FIRST-SERYED SCHEDULING POUCY 57

4.1.3 Parabolic Decaying Time-Value F\rnction Task Model

V(T): l-aT2 0< 1

,/A

0

E lvlr,or, : hr(r)rrQ)dt

l_
u"

(, - at2) u(r - p) ¿-u\-Ðt¿¿

ftu?r+ò /"p(t - p) 2e-hpT-ò (t/-"t p - ")E lvlr,ru, : p'(-r + p)'
p,2 -2p2pl ¡t2p2 -2a' lrr?t+p),)

where the subscript "pbl" refers to the parabolic-decaying TVF

(4.11)

4.2 Summary

A summary of this section's results are shown in Table 4.2. We have examined and

solved the Problem P.l using a number of assumptions such as a Poisson arrival

process, exponentially distributed service times and various model complexities for

the stochastic task properties of urgency, priority and deadlines. The Problem P.l is

decomposed from the general Problem P. Given further analysis of other decomposed

problems we will attempt to build a significant insight into the general Problem P.

4.3 Dynamic Parallel Processing Systems

As the scheduled resource is bandwidth on a communications system, we may

segment the bandwidth any ï/ay we choose, for instance to service parallel tasks.

Mlhen we service parallel tasks, each task's service time increases as each task must

share the limited bandwidth resource. However, it is not clear what effect this

t/"

Again, assuming urgency is a constant we can derive

T
1T>

I,

I,
2e

p'(-r + p)'

4.3. DYNAMIC PARALLEL PROCESSI¡üG SYSTEMS 52

Objective function Expectation of task value Eqn. No.

V (T) : ¿-ar l.L

at u,Í- p)
4.5

V (W) : ¿-aw (t-p)+ ^lL
- p)

a* Lt(L- p)
4.6

V Q) - e-Br
ce"l (0,c)

where c: þ (1 - p) bo

4.7

V (T): 1 0<t<d
e-B(T-d) d < t

I - e-b,.d (! + ce.l (0,"))

where c: þ(I - p)bo
4.8

V (T): l-aT 0<?<1a

0 1<?
a-

1+
a (e-ËG-ò - L

p(t - p)
4.t0

V (T): l-aT2 0<?<+
- Yto

0 T>+\/a

)¿ftø(-r+p),["t"G _ p)

p2 (-r + p)'
2¿-fiu\-fl Gf"pp _

")

+

p2 (-l + p)2
p2 -2p2p+ ¡t2p2 -2a

u2 (-r + p\2

4.77

Table 4.2: Summary of Results for Single.Server System

CHAPTER 4. 'THE FIRST-COME FIRST-SERVED SCHEDULING POUCY 53

ìl Management
Pol¡cy

\/

I

I

a
a

a
a

Task Processing Element

Figure 4.2: Simplified System Model Using Parallel Servers

would have on the system performance, as the tasks will wait (queue) for less time,

counteracting the increased service time. Splitting the bandwidth may increase

or reduce the system value. In Appendix C we prove that static, two-task serial

scheduling out-performs parallel scheduling. In this section we examine the effect

on system performance for the FCFS case. In proceeding chapters we will examine

parallel processing when other scheduling policies are used. Initially, we look at

the case where we have multiple seîvers. A simplified system model when parallel

processing is used is shown in Figure 4.2. We decompose the Problem P into Problem

P.2 for the specific parallel processing problem:

Problem P.2

Given the input parameters

A(t), B (t), k and d,, 0 4 r < k

Find ,L (t) : ,l!g
D"v"

n,

by using the policy set

M:(Ad-0, Sc-O, Pt-O, Ds-0, Pm-O, (U-0-2, C-0))

lnformation
Author

Population

Server

ServerQueueGate

Server

4.3. DYNAMIC PARALLEL PROCESSI¡\rG SYSTEMS

We know that the mean waiting time in anMlMl2 queue is given by

54

The parameters in Problem P.2 have the same definition as for the serial-

processing system in the previous section. Note that we have assumed that all

tasks complete fully and the two servers have an equal and constant magnitude of

half the total bandwidth resource. In this case the Management Policy M denotes

a two-server and whole task service model by the label (U-0-2, C-0).

We now examine the two server }illMlz system. As we need to compare the

MlMl2 model with our single-server }dl}illl model, we need to halve the service

rate on each of the two servers af,i rñ/e must conserve processing power (bandwidth).

We begin with the derivation of the waiting time density. We keep the derivation

in this section to the case of the regative exponential TVF. The waiting (queuing)

time probability distribution function (PDF) is given by Kleinrockl4T, p. 258] as

Fw @)z- 1 - ffie-u\-n¡a a) O,

where the subscript refers to the number of servers. In our case the mean service

rate is p,l2 as tasks take twice as long to process in each half-speed server in the

two-server model. The waiting time pdf can be expressed as:

fw (ùr: rÌff/"lG-òa + a6 (y) a) 0,

where a6 (A) is the integration constant and ó (g) is the unit impulse (Dirac delta

function) located at the A :0. We have

/'oo)^.. 2P' , ^. -
1I f-(w)"aw : .--j- + e.: L

Jo 'z L-lp

a : r- 2P2

r* p

f_ @), : ?Ê uÑ/e-ut-p)u + (, _ ffi) o frl y > 0. (4.r2)

(4.13)

CHAPTER 4. THE FIRST-COME FIRST-SERVED SCHEDULING POUCY 55

\Me now check that Equation 4.72 satisfies this property:

W
fæ

J, wfry (w)rdu

ï ,,, (""(t -
') " uG_.ò- ¡ (Jo \ r-rP \ 6 (*) dw

2o2: ,= -1, ,- , as expected from Equation 4.13.
p,(r - p) (L + p)

If we decide to use task waiting time IzIl instead of system time in the objective

function, then the task value is expressed as

2p'trí - p)

L'l p

2p't" 0 - p)
l,*

2p'p (r - p

L* p

l,*

ry"-u!-òta¿.

1

li p 2p'(r - p)'

V (W) : e-ow a,W) 0,

and the expectation is given by

Elv)*,r,,t, :
2p'

"-(a+2\(r-c))-
dw +l* p

-p(,-p)-* (t - #) o ç.¡) a.

'-#)1,-
p1I,L e-o-6 (w) dw

2p't"G - ò 2p'
(4.14)

(1+p) (o+t"(t-p)) L-rp

We now wish to derive the systen (sojourn) time pdf. As the system time pdf is a

sum of the waiting time density and the service time density (requiring a convolution

of pdfs in the time domain), we choose to multiply the Laplace Transform expressions

in the s-domain of each in order to derive the Laplace Transform of the system time

density. We derive the Laplace tansform of the waiting time density IrZ (s) first:

w (s) : L{Íw (.),} :2p''l.f . ') (\ ,l * lt - +*)2r- r-rp \"+¡r(t-p)) \' r+p)'
The service time density is given by

: 1+

f,@)r:4"-Ëoa)o,

4.3. DYNAMIC PARALLEL PROCESS/I\rG SYSTEMS 56

and the corresponding Laplace Transform is

Using the LT property of .9 (s) : ¡/ (s) W (t), where
^9

(s) is the Laplace Thans-

form of the system time density, we have

/1 (s) : L {f , Ø)r} : ll' ,=
s + p,l2

s(") :,!#?eh)("-;¡ tt 12
s + ¡tl2

(4.15)

Using a partial fraction decomposition the first term in Equation 4.15 reduces to

()(:æ) ()(

+

,F(s): / Br, \ / Bzt \rr,_l

\s+¡tlz) \"+ t'G-ò)
and so

F(s):

and

2p'
,s (r) : p1p 1

2p-l
(4.16)

Í, (t), :'¿## G-l (e-u'-ot, - "-Ë,)*, (t - #) rr' (4.rT)

The inverse Laplace Tlansformation of Equation 4.16 is

We know that the mean system time in an M/M/1 queue is given by

(4.18)

CHAPTE,R 4. THE FIRST-COME FIRST-SERVED SCHEDULING POUCY 57

Using Equation 4.L7 above we check that we may derive the same mean system

time from the pdf. The mean system time is given by

2p'

p

p

(1

1

*('
2p'tt

(l.L

1

1 1

)p

p

1

l,*

e

)

(

Et2"

(e t - l4l
"-ä'lr+p) /*r(p)t-pGT: "-r')

-Ër)

d,t
(+

(e
p)t-pG-

dt

1

tl,*

2p

L
2

)

(

1

t

dt
+ 2p

2p'
e

p

2p-p)1p)(+(1p

+1

p)
1 + (

4(

1
ap'

2(

1

p,2 (

1-
(

¡2
)

I
p

-1
1

2p'

p)

1
1.(

+p)

2

l.L

4p' (t - p)

p,(L + p) (t - p)

p

2p" 1-

r2
p)

).

+

p)1+p) (

(1

p

p,(1

p2(s-zp)+ (1+p) (t-p) -2p' (t-p)
Ë(t+p)(t-p)

2-----;-:-------- as expected from Equation 4.18.p(r+p)(I-p)

If we assume the simplest modet where urgency is a constant the expectation of

the task value is

fc
E lv)r,r,r¡, : J,

[*
lo

v (t) r,r (t) dt

e-ot dt
'¿*4P (+-) (e-ul-o)t - "-,')

+r(r -ffi)-*
: '!#?("=) (1,-u,."G-ò)'Idt- l,*

, (t - #) fo "-("*Ð'at
2p't"G-ò(1 \/: r+p \zp-t7 I

"-(a+ùt¿¡

1 1

a+p(t-p) a+LL

+ I,L

2

2o2\ 1

' 1+ p) a+ ¡1,12'
(4.1e)

where the subscript "l.L" again refer: to the fact the service rate for each server is ¡r,.

4.3. DYNAMIC PARALLEL PROCESS/¡üG SYSTEMS 58

Objective

function
Expectation ¡f task value

Eqtt.

No.

V (.): ¿-aw 1+
2p'p (l - p) 2p'

(1+p) (aiÞ r* p
4.r4

V (t): ¿-"r

2p't" (I - p) (1

r+p \rp-1)(
1

1 1

a+ p,(t - p) "+ (Ë)

.(#) (a+ (#)

4.L9

Table 4.3: Summary of Results for a 2-Server System, whete p : Àltt and the

Service Rate : ¡tl2 for Each Server

a p:0.9000,l.¿:1.000 p:0.5000,p:1.000 p: 0.1000,p : 1.000

1.000 0.8308 0.8333 0.9242

10.00 0.7507 0.6970 0.6970

Table 4.4: The Ratio E lv)r,r,r¡rl E lvl" for Different Loads and Urgency Parame-

We can noly compare the expectation for the random urgency single-server and

two-server caries. We have

ters

E lv)r,r,r¡,
E IVI,

a+ p(t- p)2p'p(L- p)

pG-ò Ll-p
1

"+ (Ë)

+#H(,#)ìø
(r+p)p,+ I *2p o,

(1+p) 0t+2a)

The results of this comparison for various values of urgency and utilisation are shown

in Table 4.4 . We observe that the single-server model always out-performs the two-

server model-an observation we have also made for static, two-task scheduling

with a general processor-sharing policy, as shown in Appendix C. A problem in

the tweserver system is the idle time in one server when there is only one task

in the system, delaying this task unnecessarily. A solution to this problem is the

adoption of a processor-sharing model, the idle-server processing power is added to

CHAPTER 4. THE FIRST-COME FIRST-SERVED SCHEDULING POUCY 59

the collective processor power when few tasks are in the system. This would mean

there is effectively one server when one task is in the system. The ratio of mean

waiting time in a two-server system to the one-server system is (the ratio of the

service times is of course j)

we

w" L-t p pltt
p2 l- p

p -p)
p

l* p

FYom Equation 4.20 ï\¡e can see that, on average, tasks in a serial system wait

less than for the two-server case.

We have solved Problem P.2 using a number of assumptions such as a Poisson

arrival process, exponentially-distributed service times, and various model complex-

ities for the stochastic task properties of urgency, priority and deadlines. We have

assumed full task completion and two servers at all times.

4.4 Simulation Results and Comparisons with An-

alytical Results

We now present simulation analyses of the systems examined in Sections 4.1 and

4.3. Details of the simulation are given in Appendix B. We present this section to

verify that the simulation produces valid results. In the following chapter we will

use the simulation for performance analysis as anal¡ic solutions are not available

in some instances.

Our simulation is a stochastic discrete-time simulation. It is stochastic in the

sense that traffic properties are rar-dom, and it is discreteevent in that the system

experiences 'Jumps" at discrete points in time.

As we wished to analyse the system in equilibrium (that is, under steady-state

condition), we needed to address both the transient start-up problem and deter-

mine the number of samples to collect once the system had reached equilibrium.

(4.20)

4.4. SIMULATIO¡ü RESU¿1.S AND COMPARISO¡\IS WITH ANALYTICAL
HESUUIS 60

Pawlikowski [66] gives an extensive summary of work related to determining when

equilibrium is reached.

\Me determined when the sysiem was in equilibrium by observing the stability

of consecutive values of the mean queue length. \Me used q(n), the mean queue

Iength after the arrival of the nth task, and smoothed this mean over a window of

100 samples to give

I(n):l D'-:'q(t)l(n+r) ir o(n <ee

t ÐT:,_nnq?') lloo if n) ee'

We maintained a vector of 100 consecutive instances of the smoothed mean of the

queue length H : lI (r),1(n- 1),... , I ("- 99)]. rWhen min(fI) * e (max(11),

we assumed that the queue was in equilibrium, where e is the tolerance which we

initially set at 10-5. The next decision we made was the number of samples to use

once the system was in equilibrium. For this we decided to collect enough post-

transient samples such that they were 95% of the total number of samples from

start-up.

The first experiment wâs €trr analysis of the task model including a constant

urgency and immediate soft deadline upon entry to the queue. The mean inter-

arrival time was set to 1.000s and the mean urgency was set to 1.000. Table 4.5

shows how the theoretical task value (calculated from the expression E lVl, given

in Equation 4.5 above) and simulated mean task value compared. Each simulation

was replicated 12 times to give a more accurate estimate of the mean value and

allow confidence interval statistics to be analysed. In the simulation tables, we

have presented the expected value, the simulated value and the upper and lower

95% confidence intervals. \Me began by simulating the model with constant urgency

and comparing the results with the expression EIV)r, calculated from Equation 4.5

above. The results are shown in Table 4.5 . The table shows that the simulated

mean is close to the expected value, and that the g5% confidence interval widths

are narrow. The confidence intervals all contain the expected value. The second

experiment we considered was a simulation of the system with random urgency and

CHAPTER 4. THE FIRST-COME FIRST-SERVED SCHEDULING POLICY 67

Utilisation E lvl"
Sim.

Mean

967o Confr.dence

Interval

0.2000 0.8000 0.8000 0.8000 - 0.8000

0.3000 0.7000 0.7000 0.6999 - 0.7000

0.4000 0.6000 0.6000 0.6000 - 0.6001

0.5000 0.5000 0.4999 0.4998 - 0.5000

0.6000 0.400c 0.4001 0.4000 - 0.4002

0.7000 0.3000 0.2999 0.2998 - 0.3001

0.8000 0.2000 0.1999 0.1998 - 0.2001

0.9000 0.1000 0.09996 0.09972 - 0.1002

0.9500 0.05000 0.04989 0.04954 - 0.05025

Table 4.5: Comparison Between Expected System Value E lvl, and Simulated Task

Value Vy for Serial-Server System

constant soft deadline. A comparison of the results with the expression E lVlr,u,.

calculated from Equation 4.8 is given in Table 4.6. \Me used a soft deadline of 1.000s

and otherwise the same parameters as the previous example . The results show that

the simulation results are again accurate and have narrow confidence intervals.

Vy'e present results for the tweserver, random urgency case in Table 4.7, where

we have used the Expression EIV)r,r,r¡, calculated from Equation 4.19 above . As

we can see, the simulation and analytical results are relatively close. The analytical

mean is within the g5% confidence intervals for all utilisations. As expected, the

confidence intervals are widest at the high utilisations.

The final experiment we present, and one for which we have no analytical results,

is that for the random urgency and random soft deadline model. The results are

shown in Table 4.8 . We use this model to compare the FCFS scheduling policy to

other policies in the proceeding chapters.

4.4. SIMULATIO]V RESU¿"S AND COMPARISO¡üS WITH ANALYTICAL
HESULTS 62

Utilisation E lv)r,u,.
Sim.

Mean

96Vo Confrdence

Interval

0.2000 0.9968 0.9968 0.9968 - 0.9968

0.3000 0.9756 0.9756 0.9755 - 0.9756

0.4000 0.9259 0.9269 0.9269 - 0.9270

0.5000 0.8515 0.8515 0.8514 - 0.8516

0.6000 0.7522 0.752t 0.7520 - 0.7522

0.7000 0.6300 0.6300 0.6298 - 0.6302

0.8000 0.4823 0.4825 0.4822 - 0.4827

0.9000 0.2972 0.2973 0.2966 - 0.2981

0.9500 0.1786 0.1786 0.7777 - 0.1795

Table 4.6: Comparison Between Expected System Value E lVlr,u," and Simulated

Task Value Vr,u,c for Serial-Server System

Utilisation E lv)r,r,r¡,
Sim.

Mean

95Vo Confrdence

Interval

0.3000 0.59e0 0.5991 0.5990 - 0.5991

0.4000 0.5048 0.5048 0.5047 - 0.5048

0.5000 0.4L67 0.4L67 0.4166 - 0.4L67

0.6000 0.3318 0.3318 0.3318 - 0.3319

0.7000 0.2485 0.2486 0.2485 - 0.2487

0.8000 0.1658 0.1659 0.1657 - 0.1660

0.9000 0.08b08 0.08327 0.08310 - 0.08345

0.9500 0.0 4160 0.04158 0.04t24 - 0.04191

Table 4.7: Comparison Between Expected System Value Elv)r,r,r¡, and Simulated

Task Value Vr,z for TweServer System

CHAPTER 4. THE FIRST-COME FIRST-SERVED SCHEDULING POLICY 63

Utilisation
Simulation

Vr,u,o

95Vo Confr.dence

fnterval

0.5000 0.7982 0.7981 - 0.7982

0.6000 0.7t04 0.7L04 - 0.7105

0.7000 0.6023 0.6021 - 0.6025

0.8000 0.4682 0.4680 - 0.4684

0.9000 0.2930 0.2926 - 0.2934

0.9500 0.L775 0.L767 - 0.1782

Table 4.8: Simulated System Value Vr,u,o for SingleServer System, Random Ur-

gency and Random Soft Deadline Niodel

4.5 Conclusions

In this chapter, we have derived analytical results for the value of tasks for various

system model assumptions. We have verified the validity of the simulation of the

system for various models for the c¿se of FCFS, both serial and parallel scheduling,

shown in Tables 4.2 and 4.3. By decomposing the general Problem P into two

Problems P.l and P.2 (which we have solved), we have started to build an insight

into the general Problem P of finding an optimal policy M from a set of policies as

proposed in Chapter 3.

We have also executed simulations of other models described in this chapter such

as Vw and Vr,u; they also have similar accuracies but are not presented here for

the sake of brevity. The 95% confidence intervals from Tables 4.5, 4.6, 4.7 and 4.8

show that the simulation is sufficiently accurate and will be a reliable estimate of the

expected value in Chapters 5 and 6 when analytical results a,re not ar.ailable. The

accuracy of the simulation is dependent on the processor utilisation, and we have

considered utilisations to 0.9500 only. For lower utilisations, the simulation results

have so little variance that the bounds on the confidence intervals are indistinguish-

able using four significant figures. \Me have not considered higher utilisations as

4.5. CO¡\rC¿USIOIVS 64

simulations must be executed for exceptionally long periods of time. \Me leave the

analysis of systems with high utilisations to the consideration of overload processing

in following chapters.

In Chapter 3 we presented a system framework use in the field of value-based

scheduling, and in the present chapter we have derived analybical results of per-

formance analysis by using this framework. The work presented in the thesis to

this point builds upon other work in literature in static value-based scheduling by

analysing the problem from a dynamic and stochastic point of view. Previously,

researchers have used static, contrived data-sets to present results. \Me have gener-

alised the problem by deriving analytical results. In the present chapter we have only

examined the simple FCFS scheduling policy; in the following chapters we extend

this analysis to more complex scheduling policies and we begin to examine system

behaviour during processor overloads when load discard policies are used.

Chapter 5

Last-Come First-Served and Other

Scheduling Policies

In Chapter 3 we presented the system model and stated the problem in formal

Ianguage. In Chapter 4 we gained an insight into the system behaviour when the

First-Come First-Served (FCFS) scheduling policy was used. We examined this for

the serial- and parallel-server cases. As FCFS is the most common scheduling policS',

its analysis gives us a base-line from which to compare other scheduling policies. As

many authors examine FCFS in a similar context, it also allows us to compare the

present work with other authors' work in similar areas.

In this chapter we present numerical and simulation results for scheduling policies

other than FCFS. In particular, vre present numerical results for the Last-Come

First-Served (LCFS) and Shortest Job First (SJF) scheduling policies and simulation

results for a number of other scheduling policies as listed in Section 3.2.4. It is

important to look at policies that s-hedule based on service time, urgency and other

task properties as they are likely to make more valuable decisions than simpler

policies. This is because they discriminate between more and less valuable tasks

than, for example, the FCFS which uses only arrir.al time to make its decision. In

this chapter we compare the value of these more complex policies against each other

65

5.1. THE LAST-COME FIRST-SERIiED SCHEDULING POUCY 66

and the FCFS policy. Given the analysis of this group of scheduling policies, we will

be in a position to solve the Problem P, which is to find the best policy M from a

set of given policies, as shown in Chapter 3.

5.1- The Last-Come First-Served Scheduling

Policy

In this section, we examine the waiting time probability density function (pdf) of the

MlMll queue when the LCFS scheduling policy is used. \Me introduce numerical

techniques, and begin to rely moru heavily on simulation results, ¿trì some expressions

are not suitable for deriving expectations of task value. Riordan [70] shows that the

Laplace Stieltjes Tlansform of the waiting time probability distribution function

(PDF) for an MI}tlIL queue when LCFS scheduling is used is

À*p*s- (À+p+s)2++À¡t
(5.1),F.(s) :

2s

To find the inverse transform of the expression given on the right-hand side of

Equation 5.1, we use Riordan's result from [70]. Riordan uses the inverse pair 556.1,

(n'+*'¡'t'-pëirrf"nl

fromll2, p. 59], where

r1(z):Ð-ri"í\.:,

is the modified Bessel function of the first kind. The inverted expression is now

F.(-)""r, :
fo-

"-(x+ùæ
y, (2a

r'/þ

and the corresponding pdf is

"-(t+òutl
¡, (--\2ptnt/p) t/p

l-(tu) rcps : w
+ a6 (w) (5.2)

CHAPTER 5. LAST-COME FIRST-SERVED AND OTHER SCHEDULING
POLICIES 67

Here we have included an integration constant with a unit impulse (Dirac delta

function) at the origin, which defines the probability of not waiting for service.

That is, it is the probability of finding the queue empty and proceeding directly to

the server (equal to 1 - p, the system utilisation).

As we have discussed in Chapter 4, we may decompose the Problem P into more

specific problems, and aggregate later on to provide an insight into Problem P. The

present problem is to examine the svstem performance by deriving the system value

function when the LCFS scheduling policy is used:

Problern P.3

Given the input parameters

A(t), B (t),,k and d,, 0 1 r < k

Find tr (t) : h^ Ð'-W
n+æ n

by using the policy set

M:(Ad-O, Sc-L, Pt-0, Ds-0, Pm-O, C-0)

In Problem P.3, A(ú) is the inter-arrival time pdf, B (t) is the service-time

pdf, /c is the number of recipient classes and dr, 0 (r < k is number of users in

each class. Ç is the value of the nth task and M is a string that uniquely defines

a management policy. \Me have defined the notation for the management policy M

in Chapter 3. In this case, M denotes the admission policy of simply allowing all

tasks into the system, the LCFS scheduling policy Sc-L, no preemption, no discard

scheme and whole task completion. For brevity we have restricted this analysis to

the serial server case and assumed that all tasks complete fully. As we do not have

an expression for the expectation of task value, we examine the expectation of task

value for the model where the objective function uses task waiting time W instead

of system time. We can then compare the waiting-time objective function model

of LCFS with the FCFS model. As previously discussed, L(n,) is equivalent to the

5.1. THE LAST-COME FIRST-SERVND SCHEDULING POUCY 68

Utilisation
Numerical

ElVl.,""rt
Simulation

Vw,rcps

957o Confrdence

Interval

0.6000 0.7190 0.7191 0.7190 - 0.7191

0.7000 0.6398 0.6398 0.6397 - 0.6399

0.8000 0.5566 0.5566 0.5565 - 0.5567

0.9000 0.4704 0.4703 0.4700 - 0.4705

0.9500 0.4265 0.4263 0.4260 - 0.4267

Table 5.1: Comparison Between System Value Calculated Numerically ElVlw,rcrs

and the Simulated System Value Vw,rcps for the Serial-Server LCFS System

expectation of task value. The value of an individual task is

V (W) : e-ow a,W) 0

The expectation for task value for this case is then

fæ
E lV)*."crs : I "-"* l, (w) dw, Jo

t'æ _e-1*ùu-Ir(Z¡rw6\ ,tÞ .: I "-"
r) v r dlr'. (5.3)

Jtu

The numerical evaluation of the expression given in Equation 5.3 was performed

by writing a collection of routines in the Matlabl programming language. The

Matlab function BESSELI calculates Ir("), and the numerical integration function

QUADS performs the integration necessary in Equation 5.3. The calculation of

Equation 5.3 for rarious utilisations is shown in Table 5.1, together with simulation

values .

As we can see from Table 5.1, the numerical means all fit within the 95%o confr-

dence intervals. The difference between the numerical and simulated mean is small

enough that the numerical result is effectively verified, as we have previously verified

the accuracy of our simulation in Chapter 4.

lVersion 6.1.0.450 Release 12.1

CHAPTER 5. LAST-COME FIRST-SERVED AND OTHER SCHEDULING
POLICIES 69

a À:0.9000,F:1.000 À : 0.5000, Ê¿
: 1.000) : 0.1000, F : 1.000

1.000 2.476 1.057 1.000

5.000 2.040 1.079 1.001

10.00 1.667 1.059 1.001

Table 5.2: The Ratio EIV)w¡crslÐlVl*,rtrs for Different Loads and Urgency

Parameters.

\Me have described our simulation procedure briefly in Chapter 4, Section 4.4 and

in detail in Appendix B. \Me use 12 simulation runs to derive the g5% confidence

intervals on the system value. To determine the number of samples to use, we

observe the mean queue length at each instant a task arrived in the queue, and

when 100 consecutive values are within a tolerance of 10-5 we assume the system is

in equilibrium. \Me then begin to collect system value statistics, and terminate each

simulation when pre-equilibrium task arrivals account for 5To of the total number of

task arrivals.

From Equation 5.3 above we may compare ElVl*,"crs with the expectation of

task value when FCFS is used, E[V].,r.rs, using Equation 4.6. We show in Table

5.2 how the ratio EIV)y,""rtlElVlw,FCFS changes for variations in the urgency

constant ¿ and the utilisation p : À1p,. As can be seen, the LCFS policy greatly out-

performs FCFS at high utilisations, and this difference increases ¿ß mean urgency is

reduced. At low utilisations the difference between the policies is below one percent

in terms of task value.

The final simulation for LCFS we present is for the model with random urgency,

random soft deadline and where the task value function is indexed by the system

time. The results are shown in Table 5.3 . These results are used to compare with

other scheduling policies in Section 5.3 below.

In this section, we have analytically solved Problem P.3 only for the case where

the system value objective functic'ì uses the task waiting time, and not the task

system time. \Me have shown that the LCFS scheduling policy greatly out-performs

5.2. THE SHORTEST JOB FIRST SCHEDULING POUCY 70

Utilisation
Simulation

Vr,u,o,tcps

95To Confidence

Interval

0.5000 0.8153 0.8153 - 0.8154

0.6000 0.7502 0.7502 - 0.7503

0.7000 0.6811 0.6811 - 0.6812

0.8000 0.6096 0.6095 - 0.6096

0.9000 0.5364 0.5362 - 0.5366

0.9500 0.4996 0.4994 - 0.4998

Table 5.3: Simulated System Value Vr,u,n,tcps for the Serial-Server LCFS System

FCFS at high utilisations for this simple task execution model. We have therefore

used simulation to give us insight into the remainder of Problem P.3. That is,

to examine the problem when other objective functions are used, and random soft

deadlines and urgency is used. We leave comparisons of other scheduling policies

with FCFS and LCFS to the remainder of this chapter.

6.2 The Shortest Job First Scheduling Policy

In this section, we begin to use more sophisticated mathematical queueing-theoretic

techniques to examine the Shortest Job First (SJF) scheduling policy. In particular,

we derive analytic expressions for the waiting time pdf of the }l'[lMll queue when

the SJF scheduling policy is used. As in Section 5.1, we also use simulation to

extend the analysis of the performance of the system. The analysis provided below

gives a framework for the derivation of expressions of task value. We expect that the

SJF scheduling policy will perform well, as there are examples in queueing theory

where the SJF policy is optimal when waiting time cost penalties are used. See

Kleinrock [48, Table 3.1] for a srmmary of results relating to scheduling policies

that are dependant on service time.

For the MlGll queue, that is, with a general service time distribution, and with

CHAPTER 5. LAST-COME FIRST-SERVED AND OTHER SCHEDULING
POLICIES 7T

the SJF scheduling policy, the Laplace-Stieltjes Thansform of the waiting time PDF

for a task with service time r is given by Takagi [81, Eqn. 2.64, p. 304]2 as:

w* (r;r)sr¡v:*f+ ì (r - n @)) {r - s- ló;*l) , (5.4)

where:

ó : s *)B (") (t - O+ (s;r))

O+ (s;r) : B+ ló;")

B+ ls; r]

æ

I e-"tdB (t)
0

B (")

(5.5)

(5.6)

(5.7)

oo

IÍ
st (ú)dBe-

L- B(r)) (5.8)

In Equation 5.6 above, O* (";z) is Takac's expression for the Laplace-Stieltjes Tbans-

form of the PDF of the length of a busy period (see [75] for details), and B (r) is

the service time PDF.

\Me use Takagi's expressions to derive our expression for the waiting time PDF

of a task in an }l'4l}l{ll queue using the SJF scheduling policy. In the following

section we provide details on how to derive the pdf by numerica,l inversion of the

LaplaceStieltjes Thansform given in Equation 5.4. In an }t'4lMll queue we have

exponentially-distributed service times, giving a service time PDF B (r) : I - e-t"'.

2Note that there is a typographical error in Takagi's text [81]. He gives the expression

W* (';r)srx: ?0 + à {r - B- ló;*l}.

B- [s;r]

5.2. THE SHORTEST JOB FIRS" SCHEDULING POUCY 72

Under this condition, Equations 5.5, 5.6,6.7 and 5.8 can be written respectively as

ó : s+À(1 -"-r*)(t-o*(';")) (5.9)

o+ (s;r) : B* lr + À (1 - "-") (t - o* (s;r)) ;r] (5.10)

.[e-"t p.e-utdt

B+ fs;r)
0

I - e-1"'

P (r - "-(s+ùæ)
(r + ¡r) (L - e-u'¡

(5.11)

j e- "t p,e-t"tdt

B- ls;r)

B* ló;")

r
e-Pn

þe-st
s+l.r

Substituting Equation 5.10 into Equation 5.11 above yields

(5.12)

(5.13)
, (, - s-("+r(r-"-ø') (r-o+is;zl)+ø)')

(s + À (t - e-uæ) (t - g+ (r;")) + p) (1 - e-p')
: O+ (s;z) ,

so that by rearrangement we get

(5.14)

where Y (s) is a solution to

-22 + (Àr.-r* - Àr - rs - p,r) Z -),¡1,r2 * ez \p,r2 : 0.

Substituting Equation 5.14 into Equation 5.9 we have

ó: s+À(1 -"-r')(r-r(s+p) +v(s) +Àr(t-e-¡"))/\\r " /\' Àr(I_e-u,¡)

(5.15)

-rp, - Y (s)
(5.16)

T

When we substitute Equation 5.16 into B-ló;"1, then from Equation 5.12 we

have
/ -nu-Y (s\ \

-t411LLe\ æ ,t

o* ("; r¡ -
r (s + p') +Y.(s) + ¡r.(t - e-t"*)

\r (l - e-u')

B- ló;"1

(5.17)

CHAPTER 5. LAST-COME FIRST-SERVED AND OTHER SCHEDULING
POLICIES

Substituting Equations 5.17 and 5.16 into Equation 5.4 we have

73

W. (t;r)sn

r* (';r)sn
: '_;::.

:;:,,i1,, _ p) L

eY(")

sr (s)

(=+e) *ì"-"
,(i) -(1 -', (?
(:) .^",(#)

I + *f
, .rr+v1s¡ JY("))

(t-p)
s {

)
(1ll

1Àe-t"*

\Me are particularly interested in finding an expression for the pdf of the waiting

time of a task in the queue, in order that we may derive an expression for the task

value (other methods also exist that do not require finding a pdf). To derive this,

we must first invert the expression given in Equation 5.18. However, this expression

includes Y (r), which is implicitly defined by Equation 5.15. If we assume that s

is a real variable, the inversion will be relatively simple, however the accuracy of

the inversion will not generally be acceptable. If we assume that s is complex, the

result will be accurate, however the inversion will be difficult. Hence, finding the

solution to Equation 5.15 will be difficult when we consider s ¿É a complex variable.

Another difficulty may arise when we must determine which solution is valid. We

define a valid root as one which gives a valid task waiting time pdf. We assume that

an invalid root will be identified bv either creating a negative valued waiting time

pdf or by violating the unity integration property of pdfs.

6.2.L Laplace-stieltjes Transform Inversion of W* (t;r)r*

Given a LST of the waiting time PDF, we need to use numerical inversion techniques

to derive the waiting time pdf. If we take the inverse LT of W* (t; r) s¡r we will get

the pdf of the waiting time given a service time r, fw (r; r) s¡p:

(5.18)

-lÀrp,L-I

-'{#} *^"-"'ç'¡

(5.1e)

5.2. THE SHORTEST JOB F/RST SCHEDULING POUCY 74

where u (a.') is the unit step function at t¿ : 0.

As we need to evaluate Y (s) numerically, so too we will need to evaluate the

two inverse LTs in Equation 5.19 numerically. The final expression for the waiting

time pdfs is given by

I,*fw (r)", : fw (.; r) s¡p B (r) dr

oo

-p,(I - p) - (I - p) L-' L(Ù

(t - e-"¡ { Ís) dr.(5.20)

0
l\e-u' -f \rp,L-L){

eY (")

sY(s)

In order to invert the LST of the waiting time PDF, we must first evaluate the

roots of the polynomial-exponential given in Equation 5.15 which we shall refer to

as A(Z). \Me have

A(z) : -22 + (À*"-" -),r - rs - ¡-tr) z - Àp,r2 I Àp,r2ez,

and so

A'(z): -22 -l (Àre-u' - Àr - rs - pr) I Àp,r2ez, (5.21)

and

A" (Z) : -2 + À¡L,r2ez. (5.22)

Numerical Inversion Using Real s

The waiting time pdf expression given in Equation 5.19 must be inverted in order

to proceed any further towards our goal of deriving the expectation of task value

for the various models. Once Equation 5.19 is numerically inverted we can then

use numerical integration to derive fw(.)sn from Equation 5.20 and take the

convolution with the service time pdf in the time domain to derive f7(t)rr* the

system time pdf.

FYom Equation 5.19 r,r'r'e can see that inversion considering s to be a complex

variable will be difficult, ¿Ìs u/e need to find a root of Y (s) that will be a complex

CHAPTER 5. LAST-COME FIRST-SERVED AND OTHER SCHEDULING
POLICIES 75

w(x)

wo(x)

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

X

Figure 5.1: The Lambert W function

function. As a first step, we examine the utility of inversion using real values of s.

First, however, we must understand the behaviour of the function A(Z). Finding

roots to this function gives us an expression for the LST of the length of the busy

period PDF O+ (t;*), and therefore by Equation 5.20 an expression for the waiting

time PDF itself .

Finding the Stationary Points of A(Z) If we can find the stationary points

of A(Z), we can understand how the solution to A(Z) : 0 behaves, and hence

derive our task waiting time pdf. A(Z) has a quadratic (with a negative squared

coefficient) component and an exponential component, so in general, as Z --+ -æ
the quadratic component will dominate, leading A(Z) --+ -æ. As Z '- oo, the

exponential component will dominate leading A(Z) --+ æ. The behaviour of the

function around zero is complicated, so later we analyse the number of roots and

which of these are valid. We first note that A(Z) always has a zero at Z : 0, we

5,2. THE SHOHTEST JOB FIRST SCHEDULING POLICY 76

also notice that for large (real) negative s, A(Z) x - 22 - rsZ and therefore a zero

existsat,Z=-rs.

In the following discussion we show that A(Z) has two stationary points. Denote

the two stationary points of A(Z) by Zst.3 Zsn (where the subscripts refer to left

and right respectively). FYom Equation 5.21 the stationary points occur at

0:d,ez -bZ+c,,

where

c: Àre-þ' - Àr - rs - p,r j b :2 and d: Àp,r2,

so that we have

dez:bZ-c

¿"z+c/b :b(Z - cfb)e"/u

_d
".tu

: (: _ z\
"<"tu-z¡

. (b.23)b" -\a ")-
\Me may express the solution to Equation 5.23 in terms of the Lambert Vy' function

[21].
rWe can say that

zst,sn: -w (-4!\ *:. Ø.24)\ b)'b'
where

c:).te-þ' - Àr - rs - pr, b:2 and d: Àp,r2 (5.25)

Expressing our analysis in terms of the Lambert \M function is useful ari nu-

meric routines for its calculation are freely ar,ailable. The Lambert function has two

branches, known as the principal or Wo (.) branch (usually referred to simply as the

Ir7 (.) branch), and the Ws (.) or secondary branch, as shown in Figure 5.1. This

explains how the two stationary points in Equation 5.25 can be derived from the

one function. Depending on the value of the argument, there may be one or two real

solutions as observed on the figure. If the argument gr satisfies -ll" < g (0, there

CHAPTER 5. LAST-COME FIRST-SERVED AND OTHER SCHEDULING
POLICIES 77

a,re 2 rcal negative solutions, and if y > 0 there is one real positive solution. The

function has complex solutions for y 1 -ll".As we expect to find two stationary

points, we also expect the argument y to satisfy y > -Lle.When we examine the

argument of.Wo(.) in Equation5.25, we can see that it will always remain negative

(of course, always assuming that s is real). If we can prove it is also limited to

A > -Ile then we know there will always be two real solutions, and A(Z) wlll

always have two stationary points. The condition for 2 real solutions is thereforeg

-! ¡pr'
"(^:te-

t'* _;o_rs_' ¡"') ¡z > -l I ".2',
Solving for s we have

-\r I \ret"' * p,reu* + 2d"'log#A - 2et"'
s)-

le4r

There are no possible values for any of the parameters which contradict the in-

equality. This means that for real s, A(Z) will always have two real stationary

points. As we can see from Equation 5.24, the behaviour of the stationary points is

described by the Lambert \M function. One stationary point must follow the prin-

cipal branch of the Lambert \M function whilst the other must follow the secondary

branch. We can test which stationary point follows the principal branch as solutions

on this branch satisfy Wo(A) t -1, whereas solutions on the secondary branch sat-

isfy Ws(g) < -t. As the condition Zsr I Zspwlll always hold by definition and

we know thatW¡(a) 3Wo(g), then

_wo (a) >
/ de'lb\ c / d,e"/b\ c%[- u)*¡ >

which we compare with Zsn) Zs¡, protnng that the stationary point Zs; is given

by the principal branch of the Lambert \M function, whilst the stationary point Zs¡¡

is given by the secondary branch. Thus

Zsr: -w,(-g!/'l "Í (5.26)
\ b)'b

3Note that this approach is equivalent to ensuring that At(log(21),pr2)) > 0

5.2. THE SHOHIEST JOB FIRS" SCHEDULING POUCY 78

and

Zsn: -Wo +
c

b
(6.27)

As there are numerical routines available to evaluate the solution to the Lambert

W function, this enables us to calculate the stationary points.

Finding the Root Y (s) In this section we analyse how to find the roots of Y (s)

for real values of s, allowing us to derive numerical results for the expression for the

waiting time pdf fw (w;r) stp given in Equation 5.19 above. y (") is an expression

that appears in our derivation of the waiting time busy period expression given

in Equation 5.14. \Me must solve for Y (s) (a solution to a negative exponential

quadratic A (Z)) to derive the pdf of waiting time for that tasks and hence derive

the system value.

Clearly, A" (Z) (from Equation 5.22 above) always has one root, as it is a shifted

exponential that must cross A (Z) : 0 at some point by the intermediate value

theorem. The intermediate value states that if / is a function which is continuous

on the closed interval [a,ö]. Suppose that d is a real number between /(a) and

/(b), then there exists c in [ø,b] such that /(c) : d. Hence A(Z) always has one

inflection point and A'(Z) always has one stationary point. The inflection point is

found at Z:log(21Àp,r2). If Àp,r > 2 the inflection point occurs at some negative

Z, for Àpr :2 it occurs at Z : C, and 1f Àp.r < 2 it occurs at some positive value

for Z. A'(Z) is clearly the sum of a linear component with a negative slope and

an exponential component, with limits of oo as Z --+ -æ and Z ---+ oo. As such,

depending on the parameters, it may has no zeros, a repeated zero 7f it just touches

the line A(Z):0, or it may cross the line A(Z):0 and therefore have2 zeros.
'We

enumerate the cases in a systematic manner in Table 5.4 .

In the previous section, we determined that A(Z) mu.st always have two sta-

tionary points, and so case (i) will never occur. Using these cases v/e may now

develop sub-cases to offer a further insight into the behaviour of A(Z). For case (i),

CHAPTER 5. LAST-COME FIRST-SERVED AND OTHER SCHEDULING
POLICIES 79

Case Condition Observation

(i) A'(tos(21\p,r2)) > 0 A'(Z) never crosses Z-axis

(ii) A'(Ios(21),pr2)) : s A'(Z) touches Z-a¿is

(I11) A'(Z) crosses Z-axisA'(Ios(21Àpr2)) < 0

Table 5.4: The Three Cases of Y (s)

A'(Z) > \VZ, so that A(Z) will only have one root. This root may be located in

three domains depending in the sign of A(Iog(21Àp"z)). For case (ii), there are three

sub-cases depending on the sign of A(Iog(21)pr)). For case (iii), there may be 1

root, 1 repeated root or 3 roots, some of which may be repeated. We enumerate all

the sub-cases in Table 5.5 .

As A(Z) can have three roots, we wish to know when they will occur, and if
possible discriminate between them to find the valid root, of which we assume there

will only be one. As we have previously stated, we hope that an invalid root will be

identified by creating a negative valued waiting time pdf or by violating the unity

integration property of pdfs. An example of case (iii)(c) is shown is Figure 5.2 .

We can see that one stationary point is negative, indicating the secondary branch

condition, whilst the other crosses the vertical axis at some point, indicating the

principal branch condition.

In order to see whether both cases (ii) and (iii) occur (we know case (i) does not

occur) , we examine the expression A' (log(2 I Àp"r2)) , and in particular the stationary

point At(Z) : 0. If the stationary point always occurs at negative values of Z, then

case (ii) (a repeated root) never occurs. We have

A'(log (zl>,¡"r2)) : -2log (zll,pr2) I rÀe-t"* - rÀ - rs - ttr * 2

We can see that for case (ii) to exist (that is, when A'(Iog(21Àpr2)):0) we

requue

, : -1 (r^rffi - Àre-p, * Àr * ,, - r)

5.2. THE SHORTEST JOB FIRST SCHEDULING POLICY 80

Case
Sut>

case
Sut¡case Condition Observation

() (u) A(log (21Àp,r)) < 0 A(Z) has one root at Z) Iog(21),p,r)

(b) A(log (21À¡tr)', : s A(Z) has one root at Z :log(21Àpr)

(") .4(log (21Àpr)) > 0 A(Z) has one root at Z <log(21Àp.r)

(ii) (u) A(log (21Àp,r)) < 0 A(Z) has one root at Z > log(21Àp,r)

(b) ,4(log (21)p,r)) : 0
A(Z) has one repeated root at

Z:Iog(21Àp,r)

(") A(log (21Àp,r)) > 0 A(Z) has one root at Z lIog(21Àp,r)

(iii) (") A(Zo) < o, A(Zù < o A(Z) has one root aL Z > 21

(b) A(Zo) :0, A(Zt) < o
A(Z) has one repeated root at

/: Zo, and another at Z > Zy

(") A(Zo) > o, A(Z) < o
A(Z) has roots at 2 < Zo,

Zo<Z<.21andZ>Zt

(d) A(Zo) > o, A(Zr) : s
A(Z) has one repeated root at

Z: Zt, and another at Z < Zs

(") A(Zo) > o, A(Zr) > o A(Z) has one root at Z < Zs

Table 5.5: The Subcases of f (s)

CHAPTER 5. LAST-COME FIRST-SERVED AND OTHER SCHEDULING
POLICIES

-5

81

-1

-5

Figure 5.2: Example of AQ) case (iii)(c), using s:1.000, r:1.000, p : 1.000 and

À : 0.9000

which involves no contradiction. Therefore case (ii) can occur as a special case,

meaning that a repeated root can also occur.

Approximation of the Root Y (s) We have discovered much about the nature

of Y (s), and we have seen that finding an exact expression for the root Y (s) is

problematic. An alternative is to find an approximation of the root Y (s) so that we

may yield an expression that could be analytically inverted. This would allow us to

derive a time-domain expression for the task waiting time pdf using Equation 5.18.

To do this, we begin by examining how A(Z) behaves as s r,aries. We first note

that A(Z) always has a root at negative Z . We have also derived an expression for

determining the two stationary points using Equations 5.26 and5.27. As s - oo,

the stationary point Zsl occrrrs at large negative values of Z. Giventhis, the À¡L,r2ez

term in A(Z) may be disregarded ,n our approximation. V/e signify the quadratic

approximation of A(Z) Ay ,1.(Z), and the corresponding root Uy Û (s) If we wish

to approximate further, we may consider that the linear coefficient is approximated

z

5.2. THE SHOHIEST JOB FIRS" SCHEDULING POUCY 82

by -rs as the s term dominates all others. Additionally, we may consider that the

-Àl"r'term is negligible also.
'With

the quadratic approximation, we have

ÂØ) : -22 + (Àr"-" - Àr - rs - ¡-tr) z - À¡L'n2,

so that an approximation for the root is

^11Y(s) :i@-rs)-t
where a: Àre-þ' - Àr - p,r and'y:4Àpr2, for the case of the left-hand root. It

seems likely that this expression for Û (s) could be transformed into an expression

suitable for inversion via a Bessel function property similar to Gradshteyn's Bessel

function property 6.623 [39] (also given by Erdélyi as property 4.I4.ó [29]). If we

can do this, we have an analytic expression for the approximation of the root Û (s)

inversion y (t), and,we can use it to derive an approxim ation iyy (-) r* for the task

waiting time pdf given in Equation 5.20. Flom this, we may derive the expectation

of system value when SJF scheduling is used.

Inversion Techniques for Real s 'We
chose to use the Laguerre.series method

of numerical inversion [1] to examine the viability of inversion using real values of

s. Given aI,f F (s) of a function /(ú) the Laguerre-series representation is

f Q) :\ø^t^(¿), ú > o,

t¡2
\d - rs) -'Y,

0

where

t
k:0
oot

n:o

where L, are the Laguerre polynomials, ln are the Laguerre functions, qn are the

Laguerre coefficients and Q (z) is the Laguerre generating function. For our pur-

poses we must truncate the number of Laguerre coefficient to limit the number of

t. (t) :
"-'/2

L^ (t) ,ú)0
(-t\k
É,t>u

"(#)": ("*å) .r", ,

L.(t)

QQ)

(;)

(5.28)

CHAPTER 5. LAST-COME FIRST-SERVED AND OTHER SCHEDULING
POLICIES 83

computations. \Me choose to truncate the number of Laguerre coefficients to rn.

Following this, we choose rn points at which we evaluate F (s) {sn, n 1m} arrd

evaluate the m expressions on the right-hand side of Equation 5.28 above. We then

compose m polynomials from the left-hand side of Equation 5.28 and solve a set

of linear simultaneous equations to evaluate the Laguerre coefficients {q,o, n < rn}.

The critical decisions are to choose: (a) the number of points at which to evaluate

the LJT, and (b) the evaluation points themselves.

We use the example function F(s) : (f +s)-1 ç f (t) : e-t to introduce

the Laguerre-series method of numerical inversion. In this example, we have chosen

m:30 and

s," : {10-6,2.000 x 10-6, b.000 x 10-u,...,2.000 x 103,5.000 x 103, 104}

The results are shown in Table 5.6 . As we can see, the largest inversion errors are

observed in the interval ¿ : {10-1,102}. It would be simple to correct this inversion

error given that we know the time-domain function is monotonic decreasing. In this

case we could transform all the values from ú > 10.00 to zero. Mlhen we experi-

mented with various choices for {s,,, n1.m}, we found that adding extra samples

sometimes worsened and sometimes improved the inversion accuracy, and the mech-

anism by which it did this was not obvious. Clearly some research is needed to

determine how many evaluation points are needed and how the evaluation points

are found. D'Amore et al have studied the real inversion problem extensively by

examining Fourier series methods, Laguerre-series methods and n integral represen-

tations 123][24]. Our findings support the concerns expressed by these authors that

real inversion is an ill-posed problem, requiring extra steps in the analysis. D'Amore

et aI examine various techniques that can be applied to such problems to improve

the quality of the inversion.

5.2. THE SHOHTEST JOB FIRST SCHEDULING POUCY 84

t / (ú) exact

r(Ð - î(t)
by real s inversion,

using 30 coefficients

r(Ð - 1(t)

using Week's Method,

using 10 coefficients

10-6 9.999 x 10-1 3.331 x 10-16 < 2.225 , 1g-soa

10-5 6.738 x 10-3 < 2.225 r 1g-sos < 2.225,, 19-308

10-4 9.990 x 10-1 -2.220 x 10-16 < 2.225 " 19-soa

10-3 9.900 x 10-1 L.776 x L0-r6 < 2.225 * 1g-soa

10-2 9.048 x 10-1 -2.017 x 10-12 < 2.225 t 19-soa

10-1 3.679 x 10-1 1.875 x 10-6 < 2.225, 1g-:oa

100 4.540 x 10-5 -9.149 x 10-2 1.871 x 10-14

102 3.720 x l}-aa -1.082 x 10-3 L.454 x L0-43

103 < 2.225 t 19-roa _b.849
" 1g-ra+ < 2.225 " 1¡-sos

104 < 2.225 t 1g-aoa < 2.225 t 1g-eoa < 2.225 r 1g-soa

Table 5.6: Numeric Inversion of the F\rnction F. (r) : (f + s)-1 by Real Inversion

and by Week's Method.

CHAPTER 5. LAST-COME FIRST-SERVED AND OTHER SCHEDULING
POLICIES 85

Inversion using Complex s

As stated above, the problem with inverting Equation 5.19 is that we need to find

the solution to the complex function y ("). We provide the following examination

of inverting a simple function using complex values of s to show the accuracy we

would gain if we could use complex values of s.

One of the most accurate methods of inverting LTs where s is assumed to be

complex is Week's method [34], which is based on the Laguerre method [1]. We

have chosen a simple example function to invert: .F (s) : (f + s)-1 ç f (t) : e-'.

The results of the inversion are shown in Table 5.6, where .ð/ is the number of

coefficientg used. As we can see, the 'Week's
method gives superior performance

over real inversion in terms of accuracy. For most values of ú, the inverted value

using Week's method was within our computational tolerance (2.225, tO-sos) of

the real value.

Clearly, the numerical inversion of a LST using only real-values of s can be

subject to large errors and is unreliable. For an inversion that is much more accurate,

one must use complex values of s. A popular method of finding the complex roots

of a general function is Muller's method [69]. Given a complex value of s, Iet us first

decompose s into its real and imaginary components by designating s1 : Real {s}
and s2 : Imag {s}, so that A(Z) may be re-written as

A(z) : -22 +(Àt"-" -Àr- r("r+ "zi)- tt")z -Àp*'tÀ¡-rr2ez
: -22 +(À*"-" -Àr-x)st- p*) z - Àpr'l).p"r2ez +ns2zi,.

Given that Week's numerical inversion method chooses evaluation points of s

itself, we must have a reliable, automatic method for evaluating which of the three

roots is valid. We assume only the.valid root will give a valid task waiting time pdf.

Unfortunately, the solution to the above equation is non-trivial, as we shall see below.

We begin by representing the solution to A(Z) : 0 as an intersection of two surface

contours. As the solution to A(Z):0 may be decomposed into Real{A(Z)}: O

and Imag {A(Z)}: 0, the solution to A(Z): 0 lies in the intersection of the two

5.2. THE SHORTEST JOB FIRS" SCHEDULING POLICY 86

-5

to(!
E

-10

-15

-15 -10 0
Real(Z)

Figure 5.3: Contour plot of Real{,4} : 0 (solid line) and Imag{,4} : 0 (dashed line)

using s : 1.000+ 10.00i, r : 1.000, F : 1.000 and À : 0.9000

contour lines of each surface contour ReaI {A(Z)} and Imag {A(Z)} at zero. For

example, lets us choose s : 1.000 + 10.00?, z : 1.000, p : 1.000 and À : 0.9000.

A plot of both surface contours about zero for these example parameters is shown

in Figure 5.3. The solution to A(Z): 0 is the intersection of the solid and dashed

Iines.

As we have seen, the behaviour of the roots for the complex A(Z) case is f.ar

more difficult than for the real s case. For example, from Figure 5.3 it can be seen

that two roots are distinct from the remainder of the roots on the extreme right-

hand side of the figure which form a complex intersection pattern. The intersection

pattern is far more complicated for other example parameter values, and no rule

for determining the valid root is obvious after an initial analysis. However, this is

an area of research that may yield results if studied further, enabling us to find the

complex root, and consequently enabling the inversion of the waiting time LST by

-5

CHAPTER 5. LAST-COME FIRST-SERVED AND OTHER SCHEDULING
POLICIES 87

Utilisation Vr,u,o,s¡p
95To Confr.dence

Interval

0.6000 0.7742 0.774t - 0.7742

0.7000 0.7L32 0.7131 - 0.7133

0.8000 0.6495 0.6494 - 0.6496

0.9000 0.5839 0.5838 - 0.5841

0.9500 0.5504 0.5503 - 0.5506

Table 5.7: Simulated System Value Vr,u,o,s¡p using the Shortest Job First Schedul-

ing Policy and Different System Utilisation Parameters

Week's method. This will allow us to derive numerical results for the expectation

of the task value when the SJF scheduling policy is used.

5.2.2 Simulation Results

As we have produced no analytical or numerical results for the SJF scheduling polic¡

we rely upon simulation to provide insight into the behaviour of the mean task value.

Results for the system model with random urgency and random soft deadline are

shown in Table 5.7 . We use this table for comparison with other policies in the

proceeding section.

5.3 Simulation of Other Scheduling Policies and

As we have see throughout the thesis up this point, it has become increasingly

difficult to derive analytic or even numerical results as the task execution complexity

rises or the scheduling policy is anything other than FCFS or LCFS. Consequently,

we must utilise simulation to gain an insight into the performance of other policies.

Tleble 5.8 shows a comparison of mean task values for the system model with

5.3. SIMULATION OF OTHER SCHEDULING POLICIES A¡üD
COMPAHISONS 88

Utilisation FCFS LCFS SJF MUF MU SQF MVF

0.5000 0.7982 0.8153 0.8317 0.8164 0.8300 0.8216

0.6000 0.7t04 0.7502 0.7742 0.7445 0.7689 0.7626

0.7000 0.6023 0.6811 0.7L32 0.6613 0.7010 0.7015

0.8000 0.4682 0.6b96 0.6495 0.5653 0.6258 0.6395

0.9000 0.2930 0.5364 0.5839 0.4539 0.54t4 0.5774

0.9500 0.L775 0.4996 0.5504 0.3902 0.4943 0.5465

Table 5.8: System Value Vr,g,D,sJ, for Different Scheduling Policies and System

Utilisation Parameters

random urgency and random soft deadline, using the system time to index the task

value function. As can be seen, the FCFS scheduling policy performs poorly as at

the high loads most tasks have waited a long time with their TVF consequently of

little value. LCFS and Most-Urgent Service time Quotient First (MUSQF) perform

well, however the SJF and Most-Valuable First (MVF) policies out-perform them

by around I0% in terms of task value at the highest utilisation. Most-Urgent First

(MUF) performs poorly also, better than FCFS but worse than LCFS and MUSQF.

As the difference between the policies seems to be relatively constant for all

utilisations, for our second comparison we set the utilisation constant at 0.9500 and

vary the mean urgency. The results are shown in Table 5.9 . It can be seen that the

SJF policy in fact is not the best policy to use for all levels of urgency, and that the

MUSQF and MVF policies do out-perform SJF at other r,alues of urgency. MUSQF

out-performs SJF marginally at mean urgency 0.1000, while MVF out-performs SJF

at mean urgency 10.00 and 100.0. The MUF policy was the best policy for mean

urgency 10-2. Given this r,ariation, we require an over-arching policy that switches

the scheduling policy based on the mean task urgency. Another noteworthy point

from Table 5.9 is that the FCFS policy performs even worse at the high urgency

level compared with other policies. The v¿riance in the system value in simulation

runs is extremely small. For example, the 99% confidence interval widths on the SJF

CHAPTER 5. LAST-COME FIRST-SERVED AND OTHER SCHEDULING
POLICIES 89

Mean

IJrgency
FCFS LCFS SJF MUF MU SQF MVF

10-2 0.8646 0.9379 0.9694 0.9713 0.9789 0.9314

10-1 0.4976 0.7854 0.8453 0.7938 0.8466 0.7976

100 0.t775 0.4996 0.5504 0.3902 0.4943 0.5465

101 0.07356 0.2913 0.3207 0.2022 0.2696 0.3409

L02 0.05353 0.2311 0.2538 0.1723 0.2235 0.2750

Table 5.9: System Value Vr,u,o,s¡p for Different Scheduling Policies and Mean Task

Urgency Parameters

results in Table 5.9 are all less than 3.000 x 10-4. Because the confidence intervals

are so tigh- we can makq pgpppliçg4s bety.ep4¡p,qli,qr.çq lyiph +lhig\;ceptpþfyu,.ryhen

simulátion is used.

Fþom the analysis presented in the tables in this it is clear t a sim.
ii

and hence

the results

schech+lurg

i

I.:
Switching Policy Sw:

ii.i
L- - I

how'{h¡ee

ueir i'ii

,¡,' ,ii.," rrì,'ri ,i)li;' llì ' li,r,rr¡¡,'tl¡;',,,;ri.,l,,iL ,tir I

6.4 ' Símulation Using Othen Tbaffic Models' .'

lL,, l, : tl' 1

In bhis section we analvse the behaviour of the svstem when non-Poisson task serviceI r,it , ,,'. ,' ,,, t |¡: r ilrli-;, ll t l,i:a .it-r tr'aa. -l l, : l, ,4, 'l: ii i- rllL

times are evident. It is common in the literature, for task inter-arrival times to, be
. r. I' i r rJ ¡, ,{ r .\ ¡. i;:', J r'r¡l I !',jli \\Ulr',i ,,it;,ll.i i¡,tltl,r('l;,' t,ri: .'i

'.
exponentiallv clistributed, and we follow this conyention also. However. in practice. "i :,'', .1.,' i 1,. rr, ,, i l;t i,:l-ri,;'1.' :' ';l 'i'ff i I.

i ì Li, ,,,,,,rì¡; i l,i, ., !. ' r' ,1,:ji'l',1,r!,,r l,r^,,1r,'] ! ,;,, iL

'' ,; ,,,,i r, t,,,ì,1 '. t,,,1 !:,;,i riil,r!" I',iittr

5.4. SIMULATION USI¡\IG OItIER TRAFFIC MODELS 90

Mean

IJrgency
FCFS LCFS SJF MUF MU SQF MVF

ro-2 0.9446 0.9556 0.9639 0.9612 0.9648 0.9499

10-1 0.7905 0.8501 0.8550 0.8364 0.8552 0.8461

100 0.6010 0.6941 0.6851 0.6544 0.6758 0.6954

101 0.4650 0.5500 0.5357 0.5096 0.5210 0.5561

r02 0.4074 0.4831 0.4691 0.4498 0.4474 0.4929

Table 5.10: System Value Vr,u,o,stp for Different Scheduling Policies and Mean

Task Urgency Parameters, using Pareto-Distributed Service Times

the service-time distribution is likely to be heavy-tailed such as a Pareto distributron

[67][65]1221. The Pareto distribu+ion has the form

F (r) : PIX < rl: I - (olùu ,

where b is the Pareto shape parameter.

Heavy-tailed distributions have been found in ethernets, world-wide web, TEL-

NET and FTP traffic. We may examine the effect of Paretodistributed task sizes by

using our simulation. We assume a Pareto shape parameter of ó : 1.150. The value

of b : 1.150 (or a similar value) is used by many authors, and is for example analysed

in 122]. As the probability distribution function for the b : 1.150 case was extremely

long-tailed, the simulation did not self-terminate because the system value did not

stabilise. \Me therefore terminated the simulation at 30 million task arrivals for each

simulation. Once again, we used a mean critical time of 1.000s, a mean service time

of 0.9500s, a mean inter-arrival time of 1.000s and we used the Vr,u,n,stp system

model. The results are shown in Table 5.10 . The system value was substantially

higher than for the equivalent system when exponentially distributed task sizes are

used. At the highest utilisation (10'), the system value was between 20% and 35%

higher than for the system results shown in Table 5.9. The mean task service time

CHAPTER 5. LAST-COME FIRST-SERVED AND OTHER SCHEDULING
POLICIES 91

was substantially smaller than expected4. \Me may still make confident comparisons

between scheduling policies, however. The maximumgS% confidence interval width

from Table 5.10 was 0.001 (FCFS), and as most differences between the simulated

system values are greater than this interval, we may in general confidently compare

scheduling policies. The FCFS scheduling policy again performs poorly at all mean

task urgency levels. As with exponential service times that we examined in Section

5.3, the MUSQF policy performs best at the lowest mean task urgency level we have

examined 0.01. At mean task urgency 0.1 the MUSQF and SJF policies perform

equally well5. At the higher urgenc)'levels the MVF policy performs best. The most

obvious difference between the Pareto results and the exponential results in Table

5.9 are that for the Pareto case the SJF policy does not perform as well as for the

exponential case.

5.5 Conclustons

In this chapter we have introduced numerical techniques to evaluate task value

expectations for the LCFS and SJF scheduling policies, and compared LCFS with

the FCFS policy. Vy'e have also used simulation to analyse mean task values for a

number of other scheduling policies. We have previously verified the accuracy of

our simulation in Chapter 4 and in Table 5.1, Section 5.1 for the case of LCFS.

We have established that for a constant utilisation, the ordering of the scheduling

aFor example, in one experiment, we looked at the running mean service time sample mean

for the cases of shape parameter b : 1.150, ó : 1.200 and å : 1.500. As the shape parameter

increases, the tail of the distribution becomes less pronounced. We terminated the simulation when

200 million tasks arrivals had occurred. For the b : 1.1500 case, the final sample mean was 0.8902.

For the b : 1.200 case the sample mean lvas 0.9193. For the b : 1.500 case, the final sample mean

was 0.9500. As can be seen, for the extremely healy-tailed system with b : 1.1500, the sample

mean was significantly less than the expected mean of 0.9500.
sThe 95% confidence interval on the system value for MUSQ is 0.8549 - 0.8555, and for SJF is

0.8548 - 0.8552, so we can not confidently distinguish their performance at the mean task urgency

level of 0.1000.

5.5. CO¡üC¿USIO¡üS 92

policy is consistent from lowest to highest task value, but for varying urgency and

a constant utilisation this ordering varies. The best policies with increasing levels

of urgency are Most Urgent First (MUF), Most Urgent-Service Time Quotient First

(MUSQF), Shortest Job First (SJF) and the Most Valuable First (MVF) scheduling

policy. This evaluation was performed for five levels of mean task urgency. A study

using a greater number of levels of urgency would provide tight bounds on urgency

where a particular scheduling policy performed best out of the set of six.

In a deployed system the extension of these results would allow the design of a

simple policy-switching system. The best scheduling policy would be chosen using

an estimate of the task urgency ard other parameters, and a simple scheduling policy

switching mechanism would improve the task value over the long term. This would

be valuable to system designers attempting to increase the r,alue of information

transmitted over networks.

Chapter 6

Overload Scheduling

We have previously discussed highly loaded, but not over-loaded systems. For these

under-loaded systems, we have examined how we may switch scheduling policies

based on task value, and in general we have seen that it is valuable to switch be-

tween the Shortest-Job.First (SJF), Most-Valuable-First (MVF) and Most-Urgent

Service time Quotient First (MUSQF). In a real deployed system, overloads occur,

and as buffers grow and waiting times become larger, information value is greatly

diminished. An overload may be sustained or of short duration. In this chapter

we look at how \/e may manage the system traffic when a sustained overload oc-

curs. In a deployed system, this may occur when a military conflict begins. By

applying various discard policies we seek to stabilise the queue and determine which

discard schemes provide the best task r,alue. \Mithout some form of load discard

in an overloaded system, the queue length and task waiting times grow, and when

tasks are eventually serviced their Time Value F\rnctions are greatly diminished,

and the corresponding Task Value F\nctions are also greatly diminished. We must

accept the loss of some tasks to keep the queue length and task waiting times from

growing unbounded. \Me reserve this chapter to a discussion of the efficacy of such

load discard measures.

We define an overload here as processor ouerload, as distinct from deadl'ine ouer-

Ioad, following the convention described in Section 2.1. That is, the system utili-

93

94

sation is greater than unity, and if we do not discard load the system will become

unstable. This will mean for example that the queue length will grow unbounded,

possibly causing system failure by task buffer overflow, and at the very least task

value will diminish as delays grow. There are several rvays v/e may manage the flow

of information during a sustained overload. Discard policies were discussed above

Chapter 3, Section 3.2.4. In Section 6.1 belowwe examine the effect of discarding

whole tasks when the system is overloaded. In Section 6.2 we then consider the effect

of partially servicing tasks, given that they are composed of a number of discrete

units. F\rrther, for partial service, \¡/e assume that the tasks have been composed

into a number of sub-units, where servicing each subunit results in an increased

value for the task. Not all sub-units must be serviced, and in general the most

valuable sub-units are completed first, giving a greater value than the proportion

of time spent on a partially-serviced task. As described in Chapter 2, Section 2.4,

this is known as the Increased Reward with Increased Service (IRIS) model of task

completion.

In this chapter we do not attempt to use an analytical approach to gain an

insight into the system value. Rather, we utilise simulation to examine the system

value behaviour. We must modify our previous simulations in order to analyse

overload scheduling. \Mhen we analysed underload system scheduling, we used the

stability of the queue length as our criterion for determining when the system reached

equilibrium. As we are novr' limiting the queue length to small values, and sometimes

even eliminating the queue altogether, we need another criterion for determining

when equilibrium occurs. We chose to use the mean task value stability ari our

criterion. To do this, we observe the mean task value at each instant a task arrived

in the queue, and when 100 consecutive values are within a tolerance of 10-5 we

assume the system is in equilibrium. We then begin to collect system value statistics,

and terminate each simulation when pre-equilibrium task arrivals account f.or 5%o of

the total number of task arrivals. The simulation is repeated to give 12 simulation

runs in order that we may derive 95% confidence intervals for system value. All

CHAP'TER 6. OVEHLOAD SCHEDULING 95

Maxirnum

Queue

Length

Longest Task

Discard Policy

Least Urgent

Task

Discard Policy

Least Valuable

Task

Discard Policy

0 0.7789 0.7789 0.7789

1 0.7349 0.6530 0.7626

2 0.7075 0.5946 0.7076

5 0.5142 0.5238 0.5747

10 0.5218 0.5016 0.5202

20 0.5L42 0.4998 0.5137

Table 6.1: System Value Vr,u,n,stp using Task Discard, with Parameters: Ur-

gency:1.000, p:7ll-700, p:1.190 and mean critical time:1.000s

the simulation results presented in this chapter use the mean task value stability

technique. The variance of the results is comparable with results we calculated

previously in Chapters 4 and 5. That is, the variance between our simulation runs

is small enough that we may confidently make comparisons between the simulated

values.

6.1 Task Discard Pt licies

As we show in Table 6.1 , we chose to examine a number of task discard schemes,

given that we limited the queue to a certain number of tasks. We chose to study

policies which discard based on task length, urgency and value. We have used the

SJF scheduling policy as a basis for the study. As we limited the queue capacity to

several tasks and discarded any further arrivals, we found that the mean task value

(even including the discarded tasks which contribute no value) increases substan-

tially. The example used only a slightly overloaded system, and yet the increase

in task value was substantial. The results show that the choice of discard policy

does not affect the system value, as the queue is removed, and the system thereby

6.1. TASK DISCAHD POLICIES 96

Maximum

Queue

Length

Longest Task

Discard Policy

Least Urgent

Task

Discard Policy

Least Valuable

Task

Discard Policy

0 0.8082 0.8082 0.8082

1 0.7728 0.7728 0.7728

2 0.7370 0.7371 0.7370

5 0.6445 0.6445 0.6445

10 0.5777 0.5778 0.5778

20 0.5535 0.5535 0.5534

oo 0.5504 0.5504 0.5504

Table 6.2: System Value Vr,u,o,stp using Task Discard, with Parameters: Ur-

gency:1.000, lt:I10.9500, p:Q.9500 and mean critical time:1.000s

requires no discriminative discard policy. The maximum system value in Table 6.1

(0.7789) is significantly (20%) higher than the best mean task value achieved in the

under-loaded (p: 0.9500) case with no discards, 0.5504, as shown in Table 5.9.

The significant improvement on mean task value by discarding tasks for only a

slightly over-loaded system suggests that we may also impart system value gains

for under-loaded systems. It is obvious why we must discard load in an overloaded

system, but we may also apply the same reasoning about increases in system value

to under-loaded systems. If we are prepared to accept the loss of some low-value

tasks which prevent the timely service other more valuable tasks, then the system

value should increase over the long term. For example, a task with a large service

time but a low time-value may be serviced at the expense of a number of low service

time, high time-value tasks. If we discarded the current task, we would lose a small

amount of value from the current task but gain a much larger amount of value from

the tasks that follow. We have examined the use of task discard for under-loaded

system, and have presented the results in Table 6.2 . The equivalent result for the

under-loaded case where discards are not used are found in Table 5.7. The mean

CHAPTER 6. OWRLOAD SCHEDULING 97

Maximum

Queue

Length

Longest Task

Discard Policy

Least Urgent

Task

Discard Policy

Least Valuable

Task

Discard Policy

0 0.6410 0.6410 0.6410

1 0.5953 0.5953 0.5955

2 0.5559 0.4468 0.6017

I
U 0.4728 0.3713 0.4997

10 0.4629 0.3715 0.47L2

20 0.4620 0.3716 0.4659

Table 6.3: System Value Vr,u,n,s¡p using Task Discard, with Parameters: Ur-

gency:1.000, Ê¿:0.5000, P:2.000 and mean critical time:l.000s

task value for this case is 0.5504. \Me found that a substantially higher system value

was achieved for under-loaded systems by discarding tasks, based on a policy of

Iimiting the queue length, as is shown from Table 6.2. Table 6.2 also shows that for

this under-loaded system, the choice of discard scheme is not important, even when

the queue is limited to several tasks. As expected, the best system value shown in

Table 6.2 is slightly higher than for the over-Ioaded case, as we are discarding fewer

tasks. These results prove that low time-value tasks were indeed preventing high

time-value tasks from receiving timely service, and discarding these low time-value

tasks was the correct decision. \Me r:ote, however, that in under-loaded systems that

do not use decreasing Time-Value F\rnctions, such as simple hard deadline systems,

task discards may not be as effective as when used in our system. This is because

tasks do not lose value as they wait in the queue as in our system.

To examine highly over-loaded systems, we set a utilisation'of 2.000, and have

presented the results in Table 6.3 . We have been careful in comparing the values

from systems with different service time statistics. We held the inter-arrival rate

unaltered, so we observed the same number of task arrivals in all the models we

examined. However, as we raised the mean service time of tasks, we assumed that the

6.2. PARTIAL TASI< SERVICE POLICIES 98

tasks were still worth equal value. In reality, longer tasks may be worth more than

shorter tasks, and this could be factored into the task execution objective function

b¡ for example, multiplying task value functions with service times. Again, we see

that significant gains in task value may be made by task discard schemes even for the

very highly overloaded case. It i: stil possible to achieve a mean task value that is

higher than for the slightly under-loaded case with no discard (p : 0.9¡OO), 0.5504.

Again, the highest value (0.6410) was achieved by removing the queue altogether.

The clear conclusion that can be dráwn from this section is that task discards are

an extremely valuable and simple policy to use, not only for overloaded systems but

also for under-loaded systems. In the following section rve compare the performance

of task discard schemes with partial task service schemes.

6.2 Partial Ta^sk Service Policies

In this section we investigate the use of partial task discard policies to reduce load

under overload conditions. To partially service a task, we choose the Mandatory-

Optional Decomposition (MOD) method as described in Chapter 2, Section 2.4. In

the MOD method, tasks are decomposed into mandatory and optional parts, and

optional parts may be ignored in order to reduce load and improve task throughput

times. Vy'e chose to set a threshold queue length. Whilst the queue length threshold

was exceeded, all arriving tasks were tagged so that only their mandatory part is

serviced. Mlhilst the threshold was not exceeded, all arriving tasks were tagged

for normal service. It was expected that this approach would reduce the size of

the queue enough so that arriving tasks waited only a small time and were hence

worth more value. Obviously we must speculate on how much the mandatory part

is worth to the system as compared with the optional part. We must also speculate

on how large the mandatory part is compared to the optional part. This depends

on the type of information presented. A text document may be decomposed into an

executive summary and remainder of the document, for example.

CHAPTER 6. OVERLOAD SCHEDULING 99

Threshold

Queue

Length

5%/to%

Task Value

Policy

5%/20%

Task Value

Policy

5%/5o%

Task Value

Policy

0 0.09971 0.1994 0.4986

1 0.4436 0.4728 0.5606

2 0.4550 0.4769 0.5423

5 0.4549 0.4664 0.5011

10 0.452L 0.4604 0.4856

20 0.4518 0.4601 0.4845

Table 6.4: System Value Vr,u,o,stp using Partial Task Service, with Parameters:

Urgency:1.000, ¡t:!f 1.100, P:1.100 and mean critical time:1.000s

\Me assumed that the mandatory part was only 5% of the total size, and that this

was worth 70% of the total task value. We refer to this partial task example as the

5%110% MOD model. This models the unequal information value density within a

task that may be separated for our purposes. Table 6.4 shows how the Vr,u,n,stp

model behaves for these assumptiorrs and various queue length thresholds, given a

system utilisation of 1.100. \Me were surprised to find that, for the 1.100 utilisation

level, task discard enables approximately 30% more system value than for partial

task service, based on a comparison between Tables 6.1 and 6.4. We initially guessed

that the partial task service method would be competitive with the task discard

method. üIhen we altered our assumption of the partial task value and instead used

a 5%120% model, we found there was a slight improvement in system value, but

the system still did not deliver significant value. These results are also presented in

Table 6.4. Even when small partial tasks are worth an unrealistically large amount,

the partial task discard method still delivers significantly less value than for the

task discard scheme. The far-right column in Table 6.4 shows this for the case

of the 5%150% model. In practice the 5%150% would rarely exist, as it suggests

an unrealistically high density of r,alue in the mandatory part of each the task.

6.2. PAHTIAL TASK SERWCE POLICIES 100

Threshold

Queue

Length

5o%¡55To

Task Value

Policy

5o%/65%

Task Value

Policy

50%/75%

Task Value

Policy

0 0.44t9 0.5222 0.6026

1 0.4899 0.5256 0.5613

2 0.4852 0.5130 0.5407

5 0.47L2 0.4875 0.5038

10 0.4656 0.4780 0.4908

20 0.4651 0.4775 0.4899

Table 6.5: System Value Vr,u,o,s¡p using Partial Task Service, with Parameters:

Urgency:1.000, p:1f1.1000, P:1.100 and mean critical time:1.000s

The policy is functioning as designed in the sense that it decreases the otherwlse

unbounded queue. This reduces the amount of time tasks wait until service, and

therefore the tasks' Time-Value F\rnction decay was reduced, providing more system

value. In fact, partial service-tagged tasks are worth a maximum of 0.1000 for the

5%110% model and 0.2000 for the 6%120% model. However, we must conclude that

the loss in task value out-weighs the benefits of decreasing task waiting times.

Partial task discard initially seems to give little benefit for the systems we have

examined, and even reduces the mean task value for our set of assumptions based

on the construction of the sut¡tasks. If we had more granularity in partial task

size, we may be able to increase the performa¡rce of the partial task service policy.

We could do this by providing more optional task parts, or v¡e could increase the

size of the one optional part. In the next experiment, we increased the size of the

optional part of the task. Table 6.5 shows the results for 50%155%,50%165To and

50%175% models. All models were still realistic, in that none of the models required

an unrealistic amount of value density in the mandatory part of each the task. Table

6.5 shows that with this model, substantially less value was still delivered than for

the task discard scheme. In our final experiment we examined the 75%190% model.

CHAPTER 6. OVERLOAD SCHEDULING 101

Threshold

Queue

Length

75%/so%

Task Value

Policy, using

Mean Critical

Time of 1.00Os

75%/eo%

Task Value

Policy, using

Mean Critical

Time of 10.00s

76%/so%

Task Value

Policy, using

Mean Critical

Time of 20.00s

0 0.5700 0.8081 0.8463

1 0.5449 0.8128 0.8592

2 0.5321 0.8077 0.8521

5 0.5071 0.8056 0.8470

10 0.4981 0.8078 0.8462

20 0.4975 0.8081 0.8463

Table 6.6: System Value Vr,u,D,sJo using Partial Task Service, with Parameters

Urgency:1.000, p":lf 1.100 and p:1.100

These results are shown in Table 6.6 . Even at this high task value, the system still

failed to deliver a system value approaching that for the task discard scheme.

We have seen that it has been generally more r,aluable to completely remove

the queue or limit it to several tasks only. This is because the task model we have

assumed throughout this chapter has included a mean critical time of 1.000s. We

can see the effect on the best queue length threshold by extending the mean critical

time to 10.00s and 20.00s in Table 6.6. For the case where tasks have extended

critical times, the best queue length threshold is no longer 0, as the tasks may wait

longer in the system before their Time-Value F\rnction decays, reducing the task's

value.

We conclude that for partial task service schemes, the system r,alue reduction

outweighs the benefit of reducing waiting time for each task. Task discard schemes,

in this initial assessment, seem to give a much greater system value than partial

task service schemes.

6.3. CO¡üC¿USIO¡\rS r02

6.3 Conclusions

For under-loaded systems significant mean task value gains may be achieved by task

discard. The choice of discard policy is not important. When the system becomes

over-loaded the choice of discard policy becomes important, with Least Task Value

the best choice for our particular system example. We note, however, that in under-

loaded systems that do not use decreasing Time-Value F\rnctions, such as simple

hard deadline systems, task discards may not be as effective as when used in our

system.

For slightly over-Ioaded syste.ns (p : 1.100) the discard policies using task mod-

els 5%lß%, 5%120% (and even the unrealistic 5%150% model) contribute less than

20% of the value when using whole task discard schemes. When we looked at models

with a larger mandatory component we found a significant improvement, however

this still delivered far less value than for the task discard scheme. For example, the

50%175% model produced approximately 70% more system value than theS%120%

model. The 75%190% model performed similarly to the 50%175% model. Task

value reduction greatly outweighed the benefit of reduced waiting time.

We conclude that either a task discard scheme be used or that it be combined

with some kind of partial task service scheme. Task discards are clearly valuable and

simple to use, not only for overloaded systems but also for under-loaded systems.

Their use can increase the system value above that even for under-loaded systems.

Chapter 7

Discussion and Conclusions

Information flow management is an important step in ensuring that the value of

information to the end user is acceptable, and we have applied r,arious techniques

in order to achieve this. Our work was motivated by an application in satellite

broadcast communications. We have applied stochastic scheduling analyses within

a time-driven scheduling model in order to provide a system framework where the

value of information delivered to the end user may be optimised. We have followed

other authors' work on time-driven scheduling, where hard deadline models of real-

time task execution have been extended to include the concept of soft deadlines. We

adopted this framework as it allows a graceful degradation in the value of information

in the presence of overload conditions.

We firstly presented a system framework for use in the field of value-based

scheduling, which facilitates analysis based on a suite of policies used to maximise

the value of information to be managed in the system. We also presented a task

execution model that gives the system flexibility in the management of the flow of

tasks through the system, which proves more critical in the case of high system load

and overloads.

We derived analytical results for the value of tasks for various system model

configurations for the First-Come First-Served (FCFS) scheduling policy. This was

done for both serial and parallel processing systems. \Me showed that the serial pre

103

704

cessing system out-performed the parallel-processing system in terms of the system

value metric. We then derived numerical results for the Last-Come, First-Served

(LCFS) scheduling policy for the case of the simple model with a waiting time ob-

jective function. This could easily be extended to include a system time objective

function, as is assumed with orl' other models. We described how this would be

done via a numerical convolution in the time domain. We compared the task value

expectations for the FCFS and LCFS case and showed that LCFS is a superior

scheduling policy.

\Me have examined the Shortest Job First (SJF) scheduling policy in a queueing-

theoretic framework. We limited our discussion to the derivation of the waiting time

Probability Distribution Function, a necessary step in deriving the expression for

system value. We found that the analytic complexity limited our discussion, hence

we presented approximation techniques and possible extensions to our work.

Given that the analytic complexity of our queueing-theoretic approaches has

limited our derivation of system value for models other than FCFS and LCFS,

we used simulation analysis to examine the performance of the system when other

scheduling policies and discard policies were used.

Our simulation procedure prnduced results with low'uatiance, as shown by the

95% confidence intervals from Table 4.8. We have also verified the accuracy of our

simulation by using our analytic results. The simulation has been used to analyse

system value for a number of other scheduling policies, such as the Most Urgent-

Service Time Quotient First (MUSQF), Shortest Job First (SJF), Most Urgent-

Service Time Product First (MUSPF), the Most Valuable First (MVF), Most Urgent

First (MUF) and Earliest Critical Time (ECT) policies. We have established that

the ordering of scheduling policies from lowest to highest task value is more sensitive

to changes in mean task urgency than system utilisation. \Mhen we hold the mean

task urgency constant and vary the system utilisation, the ordering ofthe scheduling

policy is consistent from lowest to highest task value, with SJF the most valuable

policy for our example. However, when we vary the mean task urgency and hold the

CHAPTER 7. DISCUSSIO¡ü A¡\ID CO¡\TCLUSIONS 105

system utilisation constant this ordering varies, so v/e must specify the best policy

for each mean task urgency r,alue. The best policies with increasing levels of urgency

are MUSQF, SJF and the MVF scheduling policies. This evaluation was performed

for five levels of mean task urgency. More studies are needed to provide accurate

bounds on the levels of urgency where a particular scheduling policy performs best

out of a given set of policies. We have repeated the simulation for various system

configurations, including using various levels of utilisation. We have found that, in

general, the MUSQF, SJF and MVF policies out-perform FCFS, MUF and LCFS

scheduling policies.

\Me have shown how to extend our results to design a simple policy-switching

system for a deployed system. The best scheduling policy would be chosen using an

estimate of the task urgency and other parameters.

The work presented in the thesis builds upon other work in literature in static

value-based scheduling by analysing the problem from a dynamic and stochastic

point of view. Previously, researchers have used static, contrived data-sets to present

results. \Me have generalised the problem by providing a system framework and

task model. We have derived analyiical results, and have extended this analysis to

more complex scheduling policies and an examination of system behaviour during

processor overloads when load discard policies are used.

\Me initially used the assumption of exponentially-distributed task inter-arrival

times and service times. However, we then extended our analysis to heavy-tailed task

service times, as we are aware that researchers in teletraffic systems have discovered

heavy-tailed distributions for service times in TELNET, FTP and ethernet traffic.

The results show that the SJF scheduling policy is less valuable compared to MUSQF

and MVF, as compa,red to the case where service times are exponentially distributed.

However, SJF still out-performs FCFS, MUF and LCFS in the heavy-tail case.

Mlhen the system becomes over-loaded, the choice of discard policy becomes

important, with Least Task Value discard the best choice for the parameters we

have chosen. Partial task discard initially seems to give some benefit for the systems

106

we have examined, but is out-performed by task discard policies. \Me have also

determined that for under-loaded systems significant system value gains may be

achieved by task discard. For under-loaded systems, the choice of discard policy is

not important. Task discards are an extremely valuable and simple technique, not

only for overloaded systems but also for under-loaded systems.

We need to understand better the mechanisms behind the users' evaluation of the

timing of information. We have attempted to use exponential, linear and quadratic

functions of time-value decay in order to model the user's expectations. We foresee

that a foundation in information theory and information value theory may provide

a framework to more effectively approach this topic in greater detail. A quantitative

study of a deployed system may also be conducted to populate this framework with

real data. If we are to use partial task service in an efiort to mitigate the effects of

overload, we must first decompose each task into sub-tasks, and understand how the

completion of each maps onto th: value of each sub.task. An information-theoretic

approach will also provide a better framework for the qualitative and quantitative

study of the value of incomplete information.

There are many other opportunities to extend the research presented in this

thesis. For example, it may be possible to determine an optimal management policy.

In this case, we would assume that a policy is optimal if no other policy can deliver

any more system value over an infinite planning horizon. Even understanding what

the upper bound may be would prove useful as it would would provide a suitable

baseline from which to measure the performance of all other management policies.

A simple improvement to the M\4\ scheduling policy would be to consider pairs of

the most valuable-next tasks, that is, by making the MVN policy more cognisant

of the future impact of its actions. We foresee that an improved scheduling policy

would take into account task service time, urgency, critical times, the state of the

queue and the state of the service facility.

We may also extend our queueing-theoretic approach to other consider other task

execution models, including the use of alternate objective functions, and possibly

CHAPTER 7. DISCUSSIO¡ü AND CONCLUSIO¡\IS r07

precedence relationships between tasks.

We have ignored pre-emption of tasks throughout the thesis. Our simulation

is capable of pre.empting tasks, however, and it seems reasonable to assume that

pre.emption could lead to improved system performance. For example, a low value,

long service time task may be pre-empted by any number of newly-arriving high

value, short service time tasks to increase system value.

Another extension to the research is to look more carefully at the serial versus

parallel service issue. Vy'e looked at the simple 2-server case and concluded that

serial processing always out-performed 2-server processing. However, we also noted

that in our model, the service facility was under-utilised when there was a single

task in the system. This would have been improved by using a processor-sharing

system. \Me also note that when tasks do not impart system value at the instant of

departure, and instead impart system value during their service, parallel processing

may be more valuable.

The Incomplete

Appendix A

Gamma Rrnction

The incomplete gamma function appears often in the analysis of the task value func-

tion for systems using the First-Come, First-Served scheduling policy, as found in

Chapter 4. To aid in further analysis, various properties of the Incomplete Gamma

Fbnction (IGF) are discussed below in particular relevance to the forms of the ex-

pression that are discussed in this thesis. The reference book by Abramawicz et al

[2] includes a number of useful properties of the IGF. The definition of the IGF is

oo

I (a,z)ø- t"-7 dt (A.1)

which is property 6.5.3 from [2].

Some authors define Equation 4.1 with difierent bounds on the integral such

that f (o,r)"U ß¿a-1'.-t¿¡ so rhat l(a,z)*f (a, z)*:l (o) *wewould expect.

We find the f (0, z) form of the function often in the analysis, which is given by the

integral

-te

oo

f (0,2) : "dt
t

z

A useful identity of the IGF that is also used in Chapter 4 is also found in the

108

APPENDIX A. THE INCOMPLETE GAMMA FU]VCTIO]V 109

t (a, z) : e-z za (+#+++) r > 0, lal < oo
,f

I (a, z) æ 2a-r"-z lt * + ¡ (a-ÐLa-z) * -'. z ---+ æ,largzl < +
t (z + 1,, z) - ,""-" lrfr + 3 + ,t^r^J '1 z ---+ æ)largzl < i

Table 4.1: Series Approximations and Expansions for the Incomplete Gamma F\rnc-

tion

reference book [2, pg. 230]

oo

I íå* : eobr (0, a (ó + d))

d

A short list of useful series approximation and expansions is given in Table 4.1

so that the reader can extend the analysis of Chapter 4 if desired.

Appendix B

Simulation

The simulation code "Bilbo" was written in C** on a Unix environment during

1998. The code was later ported to the Cygwin development environment, version

1.1.0. Cygwin is a Unix environment (an emulation) for the \À/indows operating

system. This port allowed the simulation code to be executed on any Windows

PC with the inclusion of a ".dll" file. The code has since been developed over

approximately three and a half years and contains around 5000 lines of code.

The simulation package includes eight ".c" files with seven corresponding ".h"

files, compiled into a ".exe" exec*table of around 600 kB size. Seven of the ".c" files

define the tangible objects within the scheduling system. They are the:

o Task object.

o Task management object.

o Population object.

o System object.

o Statistics object.

o Server object.

o Queue object.

Once a simulation begins, a system object is created. As multiple simulations

may be performed to examine varying system parameters, queue, server, scheduler,

110

APPENDIX B. SIMULA'IION 111

population and statistics objects are created and destroyed once every simulation.

For each system object, task objects are created and enter the queue, and are de-

stroyed once they leave the (or a) server.

During each simulation, the system maintains an internal simulation clock and

a knowledge of when the next event occurs. The event may be a task arrival or

departure either at the queue or server. The internal simulation time jumps forward

to this event and the event is managed by the task management. \Mhen an arrival

of departure occurs, the population object and scheduler object set another event

to replace it.

The statistics object examines 75 properties of the system including mean queue

Iength, task inter-arrir,al times, task service times, the system utilisation, the sta-

bility of the queue, mean task value and the proportion of tasks that miss their soft

deadline. Detailed summaries of simulation runs may be produced to display these

statistics.

The stochastic properties of the traffic were created by a 32-bit pseudorandom

number generator (PRNG). As the simulations are often quite long, this sequence

may repeat itself several times. As no better PRNG was available, we used the

32-bit PRNG with this problem in mind, as repeating sequences were not seen as a

significant source of error in the simulation results. We used the PRNG to create

uniformly-distributed variates on (0,1), and with this used Monte-Carlo sampling

on inverse Negative-Exponential and Pareto Cumulative Distribution F\rnctions to

create the variates for traffic arrivals, soft deadlines and task service times.

The simulation code is executed by user-set command line switches. There are

26 commands available to tailor the simulation to the user's needs. These are:

o Soft deadline format-format of the probability density function (pdf); either
negative exponential, Rayleigh or constant.

o Priority format-Format of the task priority pdf, either negative exponential
or constant.

7t2

o Discard Initiator-Task discard initiator, either maximum queue length ex-
ceeded or random discards.

o Task discard policy Task discard polic¡ either (a) least valuable first, (b)
least urgent first, (c) smallest task first or (d) partial task discard.

o Equilibrium statistics-Only collect statistics after system is in equilibrium.

o Help page-Displays a help page with all commands.

o Inter-arrival time format-Format of the task inter-arrival time pdf, as for
"Soft deadline format" above.

¡ Limit utilisation-Limit the utilisation if using random discards.

o Soft deadline mean Mean of the task soft deadlines.

o Inter-arri\al time mean-Mean of the task inter-arrival times.

o Maximum queue size-Limit the queue size for discards.

o Service time mean-Mean of the task service time.

o Urgency mean Mean of the task urgencies.

o Number of tasks-Maximum number of tasks to queue.

o Number of scheduling policies-Number of policies to examine.

o Number of simulation runs-Number of simulation runs to use.

o Number of servers-Number of servers (processors or channels) to use.

o Objective function-System value objective function; either using system time
or waiting time.

o Text output Format of text to send to screen.

o Optimal load-Set the optimal load to reach.

o Pre-emption-Enable pre-emption of tasks based on various policies.

o Standard deviation Collect standard deviation statistics between simulation
runs.

o Service time format-Format of the task service time pdf, as for "Sofb deadline
formattt above.

o Simulation number-Scheduling policy start number to examine.

APPENDIX B. SIMULATION 113

o Time.value function-Time.benefit function format, either negative exponen-

tial, linear (non-negative or general) or parabolic (non-negative or general).

o Urgency format-Format of the task urgency pdf, as for "Soft deadline format"
above.

An example (real) simulation :xecution is shown below. The example is an

analysis of the mean system r,alue for various levels of task urgency, given a Shortest-

Job First scheduling policy. The output shows mean system value (underlined) and

its 95% and 99Vo confidence intervals:

bilbo -sp 2 -np 1 -ms 1.1 -eq 3 -ds 2 -di 2 -nt t2
Bil-bo: Stochastic scheduling sinulation v0.08
written by Matthew Britton as part of PhD

Sinulation began execution at Sun Nov 25 15:56:59 2001
Starting at polÍcy # 2
-Analysing 1 schedul-ing policies
Mean interarrivaL time set to 1

Mea¡ service time set to 1.1
Mea¡r critical time set to 1

Collectj-ng statistics after equilibrium reached,
using method #3: Mean queue length stability

Sinufatibn stopping criteri.on nethod set to #1
Set number of iñter-arrival time leve]s to 1

Set number of service tine levels to 1

Uslng the foLlowing parameters:
-sinul-ati-on #0: Analysis of mea¡ task value for

various utilisations and urgencles
-each simulation r,ril-L end when task value is stabl-e after equilibrj-um
-servers: using 1 only
-util-isation leve1s: looping through 1 levels
-sinulati-on runsr: averaging 12 runs to arrive at each resul-t
-urgency l-evel-s: looping through 5 levels
-seivice time levels: looping through 1 levels(1.1)
-interarrival- times: Iooping through 1 levels (1)
-discard inítiator: using #2: Discarding a task once

queue has more tha¡ 1 tasks 1n j-t
-discard scheme: using #2: Longest job next
-preenption policy: using #0: No preemptions
-óbjective fu¡rction: using #0: Pure tine-value
-time-benefit function: using #0: Negati-ve-exponential
-service time pdf: using #0: Negative exponential density
-i-nterarrj-va1 time pdf: using #0: Negative exponential density
-critical- time pdf: using #0: Negative exponential density
-urgency pdf: using #0: Negative exponential density
Sinul-ation execution report :

Utit Optld STime IATine Urg
1.1 1 1.1 1 0.01

nin=O.9931 max=O.9931 95%CI=0.9931

1 1.1 1 1 2 t
min=O.7346 nax=O.7351 95%CI=0 .7348-0

StDev(BE)
6.4LTe-06

99%CI=0 . 9931-0 . 9931
4.43e-05

99%CI=0 .94L6-0.9417

DSch MaxQ
2t

SJN
0.9931

-0.9931
1 1.1 1 0.1 2 L 0.9417

min=O. 9416 max=O .9417 95%CI=0 .9416-0 .9477
0.7349

735 99'/"Cr
0.0001314
=0.7348-0.735

1.1

1.1

7t4

1.1 1 1.1 1 10 2 7 0.50750.0001883
min=o.5072 na:<=o .5079 95%CI=0 .5oT4-0. sozoElcl=o. 5073-0. 5077

1.1 1 1.1 1 100 2 L 0.4259 0.0001773
min=o . 4256 max=O. 4262 95%CI=0 . 4258-0 . +ZAt gÍ],CI=O. 4258-0. 426I

#simulation took 0 days, 13 hours, 12 minutes a¡rd 51.969000 seconds

A copy of the simulation executable "bilbo.exe" may be downloaded from the

world-wide web at geocit'ies.com/brittonml. The file "cygwin.dll" is also required in

order to execute the file, and may be downloaded from sources.redhat.com/cggwi,n.

Appendix C

Scheduling

Optimality of Serial Two-Task

Proposition For the case of statically scheduling two tasks, each described by

service times and time-value functions that are monotonic decreasing with

sojourn time and urgency, and where a task only contributes value to the

system at the instant of completion, a serial schedule will always produce

more time-value than a parallel schedule.

Proof

We denote the tasks bV 7o arrd 71. Both tasks have a positive real urgency z¡

and ul associated with their execution which describes the decay in potential value

that may be imparted to the system upon task completion. In general, parallel

scheduling allows us to segment the processor dynamically so that two real-valued

functions ps (t) arrd pr (ú) describe the proportion of processor power the tasks receive

at any time ú.

Seri,al Erecution Case

The choice of which task 4" to schedule first will depend on its service time p,,.

and urgency un and also the properties of the other task. We denote the time-value

function of a task T. by f (u*, p"n), and the time-value of completion a,s V.. If task

115

116

?¡ is scheduled first its value will be Vo: f (uo, ttò and the value of the other task

will be Vt: f (ut,lto+p). However if the task ?r is scheduled first the system

receives Vo : f (uo,lto * p1) and Vr : f (q, p). The maximum system value is

received by maximising the sums of values for each case. \Me arbitrarily choose to

schedule first the task whose index (subscript) ordinally precedes the other when

the order is not important. Therefore,

v":
I (uo, tto + pr) -l f (q, p) if

% denotes the system value for the serial processing case. Regardless of the

processor share functions p, (t), the same amount of processor effort must be ex-

pended. The functions may be devised such that both tasks complete at the same

time or where one may complete before the other. We now divide this proof into

two sections to analyse each case.

Parallel Erecution Case 1: Tasks Complete at the Same Time

When both tasks complete at the same time, the final execution time will be ú :

tto * ttt and the system value will be

Vpt: f (uo, tto + p) * I (q, po + p) (c.2)

Vpr denotes the system value for the special case where both tasks complete at

the same time. Because the function / is monotonic decreasing on urgency and

sojourn time, we can state that

f (uo, pù i f (q, po* p) if f (uo, trò + f (ut, tto+ p)
2 f (uo, tto+ tr) + f (q, p)
f (ur, trò + f (q, po i þ)
< I (uo, tto + p) + f (ut, ttr)

(c.1)

(c.3)

(c.4)

f (uo, ttò >

f (ur, ttr) >

f (ro, uo + tL)

f (ut, tto + pr)

APPENDIX C. OPTIMALITY OF SEHIAL TWO-TASK SCHEDWING TI7

By making additions to the left- and right-hands of the inqualities we can also

state that

f (uo,po) + Í(ut,tto-t þt)> l(uo,,uo+ tL)-l f (q,po+ pr) (C.b)

and

f (uo,tto+ p1)* f (ur,þt)> f (uo,tlo+ pr)-l Í(q,[Lo+ p1), (C.6)

which are the inequalities we require in order to prove the optimality of serial pro

cessing over this special parallel processing case. That is,

V" > Vpt (c.7)

Parallel Erecut'ion Case 2: One Task Completes Seruice Before the Other

Because the amount of processor workload is fixed, the task that completes

second must still complete at time t : þot p1. The other task will complete before

this time, but will complete some time after its own service time because it shares

the processor during its sojourn with the other task. We use the r,ariables €¡ and

e1 to denote the extra time each task takes to complete its service past the time

it would otherwise complete given .m unshared processor. The bounds imposed on

these variables are then 0 < €.n < pr. The left hand bound in Inequality C.5 is the

serial processing case and the right hand bound is the special parallel processing

case where tasks complete at the same time. The system value is then described by

Vp2: f (uo, tlo + €o) -f I (ur, uo + P) if task 7o completes first

I (uo, po + pr) -l f (ur, ¡\ -l et) if task 7r completes first.
(c.8)

For the case where task 7s completes first in the parallel case we have the two serial

processing cases to compare against: either task ?¡ or fi may be served first. Let

118

us examine to the case when the task ?s is completed first in each case. Hence, the

following inequality holds:

f (uo,t"ò i f (ur,tlo+ p) > Í (uo,p¡ +€0) -f f (u1,tto+ p) (Cg)

Similiarly, for the case where fi completes first in each case we can state that

Í (uo,tto-t pr) + f (q,p) > f (uo,tto+ p) * f (ur, tq+ €r). (C.10)

Inequalities C.9 and C.10 give us a comparison between Inequalities C.1 and C.8,

proving the optimality of serial vs parallel scheduling for the case where either 7¡

or fi is completed first in both cases. This completes half the proof for the present

case. For the case where task ?¡ completes first in the parallel case and ft completes

first in the serial caf,ie we know t\at a necessary condition for Tl completing first in

the serial case is given in the second line of Inequality C.1 as

l(uo,po+ p)-l f (q,,þt)> f (uo,¡¿o)* f (q,po+ pt), (C.11)

because / is monotonic decreasing on p we can also state that:

f (uo,,tto+ þ) i f (ur,¡¿r) > f (uo,tto+€0) + f (ut,p0+ pL), (C.12)

which is the inequality we need to prove the optimality of serial processing in this

case, by giving a direct comparison between the second line in Inequality C.1 and

the first line in Inequality C.8. Similarly for the case where task 7r completes first

on the parallel processor and ?¡ completes first on the serial processor we have the

serial processing condition given in the first line of Inequality C.1 as

f (uo,po) + f (ur,p0+ pr) > Í (uo,po-l p) + f (q,p). (C.13)

APPENDIX C. OPTIMALITY OF SEHTAL TWO-TASK SCHEDWING 119

Again, because / is monotonic decreasing on A¿ we can state that

f (uo,po) + f (ut,tto+pr) 2 f (uo,po* p)-l f (ur,pL+eL), (C.14)

which is what we require in order to prove serial processing optimality in this case,

by giving a direct comparison between the first line in Inequality C.l and the second

line in Inequality C.8. The four cases studied prove the optimality of serial process-

ing over parallel processing when one task completes before the other. That is:

V"> V,pz (c.15)

Combining the Inequalities C.7 and C.15 we can now state that serial processing

will always outperform parallel processing for the two-task case.

Bibliography

[1] J. Abate, G. L. Choudhury, 'r,nd W. \ /hitt. On the Laguerre method for numer-

ically inverting Laplace transforms. INFORMS Jouryt'al on Computing, 3:473-

427, 7996.

12] M. Abramawicz and I. A. Stegun. Handbook of Mathemat'ical Functi,ons wi,th

Formulas, Graphs and Mathematical Tables. Dover Publishing, New York, De-

cember 1972.

[3] N. C. Audsley, A. Burns, R. I. Davis, K.W. Tindell, and A. J. Wellings. Fixed

priority pre-emptive scheduling: An historical perspective. Real-Ti,me Systems,

8:173-198,1995.

[4] K. R. Baker and G. D. Scudder. Sequencing with earliness and tardiness penal-

ties: a review. Operations Research,33(1):22-36, 1990.

[5] K.R. Baker. Introducti,on oJ Sequencing and Scheduling. Wiley, 1974.

[6] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D Shasha,

and F. Wang. On the competitiveness of on-line real-time task scheduling. In

Proc. 12th IEEE Real-Ti,me Systems SA*p., pages 106-115, 1991.

[7] P. A. Blackmore. Information scheduling in a military global broadcast system.

In The IEEE International Conference on Networks (ICON'?9), Session 88,

Brisbane, Australia, September 28 - October 1 1999.

120

BIBLIOGRAPTTY 727

[8] M. Britton. Waiting times in an M/M/1 queue with the shortest-joLr-first queue-

ing discipline. INFORMS Journal of Operat'ions Research, to be submi,tted.

[9] M. Britton. Stochastic task scheduling in telecommunication systems. In MuI-

ti,casti,ng and Scheduling Techniques for a Mi,litary Broadcast Enuironment.De-

fence Materiel Organisation, Australian Theatre Broadcast System Project Of-

fice, 2óth-28th March 2002.

[10] M. Britton. Stochastic task scheduling in telecommunication systems. 1¡'r-

FORMS Journal of Com,puting, to be submitted.

[11] P. J. Burke. Equilibrium delay distribution for one channel with constant hold-

ing time, Poisson input and random service. BelI Systems Techni,cal Journal,

38:1021-1031, JuIy 1959.

[12] G. A. Campbell and R. M. Foster. Fourier Integrals for Practical Appli,cations.

D. Van Nostrand Co., New York, 1948.

[13] K. Chen. A study on the timeliness property in real-time systems. Real-Ti,m,e

Systems, 3:247 -27 3, I99I.

[14] K. Chen and P. Muhlethaler. A scheduling algorithm for tasks described by

time r,alue function. Real-Ti,me Systems, 10:293-312, 1996.

[15] S. Choi and A. K. Agrawala. Scheduling aperiodic and sporadic tasks in hard

real-time systems. Technical Report CS-TR-3794, Institute for Advanced Com-

puter Studies, Department of Computer Science, University of Maryland,1997.

[16] J-Y. Chung, J. W. S. Jiu, and K-J. Lin. Scheduling periodic jobs that allow

imprecise results. IEEE Thans. Comp, 39(9):1156-1173, 1990.

[17] H. D. Clausen, H. Linder, and B. Collini-Nocker. Internet over direct broadcast

satellites. IEEE Cornmunicat'ions Magaz'ine, 37(6):146-151, June 1999.

BIBLIOGRAPTIY r22

[18] C. Cocks, E. Arbon, T. Burford, G. O'Shea, B. Khuu, P. Blackmore, A. Coutts,

and P. Stimson. The theatre broadcast system. Technical Note DSTO-TN-0287,

Defence Science and Technology Organisation, July 2000.

[19] E. G. Coffman and R. Graham. Optimal scheduling for two-processor systems.

AC TA Inforrnat., I:200-2L3, t972.

[20] R. W. Conway, \M. L. Maxwell, and L. \M. Miller. The Theory of Scheduling.

Addison-Wesle¡ 1967.

[21] R. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffre¡ and D. E. Knuth. On

the Lambert W functíon. Aduances in Computati,onal Mathemati,cs, S:329-359,

1996.

122] M. E. Crovella, M. S. Taqqu, and A. Bestavros. Heavy-tailed probability distri-

bution in the world wide web. In A Practical Gui,de to Heauy Tai,ls, chapter 7,

pages 3-26. Chapman and Hall, New York, 1998.

[23] L. D'Amore and A. Murli. l'he real inversion of a Laplace transform function.

In Proceedi,ngs of ICIAM '95,1995.

124] L. D'Amore, A. Murli, and M. Rizzardi. Recent developments related to the nu-

merical inversion of a Laplace transform function: The real inversion problem.

In Proceedi,ngs of the Internati,onal Conf. On Inuerse Problems 'in Engi,neeri,ng:

Theory and Practice, L996.

[25] K. S. Decker, V. R. Lesser, aird R. C. \4/hitehair. Extending a blackboard archi-

tecture for approximate processing. Journal of Real-Time Systems,2(I):47 49,

1990.

[26] M. L. Dertouzos. Control robotics: The procedural control of physical processes

In Proceedi,ngs of IFIP Congress, pages 807 813, Stockholm, Sweden, 1974.

BIBLIOGRAPIIY 723

l27l J. K. Dey, J. Kurose, and D. Towsley. On-line scheduling policies for a class

of IRIS (Increasing Reward with Increasing Service) real-time tasks. IEEE

Thansactions on Computers, 5(7):802-813, July 1996.

[28] L. Durr. Priority queues with random order of service. Operat'ions Research,

19:453-460, 1971.

[29] A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. T]icomi. Tables of Integral

Thansforms, volume I. McGraw-Hill, New York, 1954.

[30] A. K. Erlang. The Life and Works of A. K. Erlang. The Copenhagen Telephone

Co., Copenhagen, 1948.

[31] G. Fayolle and R. Iasnogorodski. Two coupled processors: The reduction to a

Riemann-Hilbert problem. Z. Wahrschei,nli,chlcei,tsth, 47:325 357, 7979.

[32] G. Fayolle, P. J. B. King, and L Mitrani. The solution of certain twodimensional

Markov models. Adu. Appl. Prob.,74:295 308, 1982.

[33] D. \M. Fife. Scheduling with random arrivals and linear loss functions. Man-

ag ement S c'ience, 77Q) :a29-a37, 1965.

[34] B. S. Garbow, G. Giunta, J. N. Lyness, and A. Murli. Software for an imple.

mentation of Week's method for the inverse of the Laplace transform. ACM

TOMS, pages 163-170, 1988.

[35] M. R. Garey and D. S. Johnson. Complexity results for multiprocessor schedul-

ing under resource constraints. SIAM Journal of Computi,ng, 4:397-477,7976.

[36] A. Garvey, K. Decker, and V. Lesser. A negotion-based interface between a

real-time scheduler and a decision-maker. Technical Report 94-08, Department

of Computer Science, University of Massachussets, March 17 1994.

BIBLIOGRAPTTY 724

[37] A. Garvey, M. Humphrey, and V. Lesser. Task interdependencies in design-tæ

time real-time scheduling. In Proceedings of l1th Nati,onal Conference on AI,

pages 580-585, 1993.

[38] A. Garvey and V. Lesser. A survey of research in deliberative real-time artificial

intelligence. Technical Report 93-84, Dep. Computer Science, Uni. Massachus-

sets, Nov 19 1993.

[39] I. S. Gradshteyn and I. M. Ryzhik. Tables of Integrals, Series and Products:

Corrected and Enlarged Editi,on. Academic Press, 1980.

[40] J. R. Jackson. Scheduling a production line to minimise maximum tardiness.

Research Report 43, Univ. of Calif., Los Angeles, 1955.

[41] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven scheduling model

for real-time operating systems. In Proc. 6th IEEE Real-Ti,me Systems SA*p.,

pages L72-722, December 1985.

142] E. D. Jensen, J. D. Northcutt, R. K. Clark, S. E. Shipman, F. D. Reynolds, D. P.

Maynard, and K. P. Loepere. Alpha: An operating system for mission-critical

integration and operation of large, complex, distributed real-time systems. In

Proc. 1989 Worlcshop on M'iss'ion Critical Operati,ng Systerns, September 1989.

[43] C. Johnson. Mlhat's the web worth? The impact of retrieval delays on the value

of distributed information. In Tirne and the Web, Staffordshire University, UK,

June 1997.

144] D. G. Kendall. Stochastic processes occurring in the theory of queues and

their analysis by the method of the imbedded Markov chain. Ann. Math. Stat.,

24:79 153,7963.

[45] A. Y. Khintchine. Mathematical theory of stationary queues (in Russian)

M atem. Sborni,k, 39 (\ :73-8a, 1932.

BIBLIOGRAPTIY 725

[46] J. F. C. Kingman. On queues in which customers are served in random order

of service. Proc. Cambri,dge PhiL Soc.,58:79-81, 1962.

l47l L. Kleinrock. Queueing Systems, volume 1: Theory. John\Miley and Sons, New

York, 1975.

[48] L. Kleinrock. Queueing Systems, volume 2: Computer Applications. John

Wiley and Sons, New York, 1976.

[49] L. Kleinrock and Roy P. Finkelstein. Time dependent priority queues. Opera-

t'ions Re s earch, I5 (7-3) :704-176, 7967 .

[50] E. L. Lawler. Recent results in the theory of machine scheduling. In A. Bachen

et. al., editor, Mathemati¿sl pvngrarnming: The State of the Art, pages 202-233.

Springer-Verlag, New York, 1983.

[51] V. R. Lesser, J. Pavlin, and E. H. Durfee. Approximate processing in real-trme

problem solving. AI Magazi,ne, 9(l):49-61, 1988.

Í52] C. C. Lim and \M. Zhao. Performance analysis of dynamic multitasking im-

precise computation system. IEE Proceedi,ngs-8, 136(5):345-350, September

1991.

[53] D. V. Lindley. The theory of queues with a single server. Proc. Cambridge Phi.l.

Soc.,48:277 289,7952.

[54] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in

a hard real-time environment. JACM,20(1):a6 6I, 1973.

[55] J. \tV. S. Liu, \Ä/-K. Shih, A. C-S. Yu, J-Y. Chung, and W. Zhao. Algorithms

for scheduling imprecise computations. IEEE Computers,24(5):58 65, 1991.

[56] C. D. Locke. Best-Effort Deci,si,on Malcing for Real-Ti,me Systems. PhD thesis,

CMU-CS-8G734, Dept. of Computer Science, Carnegie-Mellon University, May

1986.

BIBLIOGRAPHY 726

[57] T. McCormick, P. McCormick,'W. Hill, and M. Choffel. Information manage-

ment for the global broadcast system: Operational considerations and recom-

mendations. In Mi,li,tary Cornmun'ications Conference, pages 523 627. IEEE,

1996.

[58] R. McNaughton. Scheduling with deadlines and loss functions. Management

Science, 6(1) :1 12, 7959.

[59] H. Moiin. Real-Ti,me Scheduli,ng Algori,thms. PhD thesis, University of Califor-

nia, Dec 12 7992.

[60] A. K. Mok. Fundarnental Design Problems of Di,stri,buted Systems for the Hard

Real-Ti,me Enuironment. PhD thesis, Dept. Electrical Eng. and Comp. Sc.,

MIT, Cambridge, Mass., May 1983.

[61] T. E. Morton and D. W. Pentico. Heuri,sti,c Scheduli,ng Systems. John Wiley,

New York, 1993.

[62] M. M. Nassehi. Channel access schemes and fiber optic configurations for

integrated-services local area networks. Technical Report CSL-TR-87-322,De-

partment of Comp. Sc., Stanford University, March 1987.

[63] M. M. Nassehi and F. A. Tobagi. Tlansmission scheduling policies and their

implementation in integrated-services high-speed local area networks. ln Fifth

Annua| European Fibre Opti,c Commun'icat'ions and Local Area Networks Erpo-

s'it'ion, pages 185-192, Basel, Switzerland, 1987.

[64] A. Papoulis. Probabili,ty, Random Variables and Stochast'ic Processes. McGraw-

Hill, Inc., 1991.

[65] K. Park, G. Kim, and M. Crovella. On the relationship between file sizes,

transport protocols, and self-similar network traffic. In Proc. IEEE Interna-

ti,onal Conference on Networlc Protocols, pages 171-180, 1996.

BIBLIOGRAPTTY 127

[66] K. Pawlikowski. Steady-state simulation of queuing processes: A survey of

problems and solutions. A C M C omputi,ng Suru ey s, 22(2) :723-170, 1990.

[67] V. Paxson and S. Floyd. Wide area traffic: The failure of Poisson modeling.

I E E E / A C M Thans actions on N etw orlcing, 4(2) :226-244, 1996.

[68] F. Pollaczek. Uber eine aufgabe der wahrscheinlichkeitstheorie. Mathemati,sche

Zeitschri,ft, 32:64-700 and 729-7ó0, 1930.

[69] W. H. Press, S. A. Tenkolsky, W. T. Vetterlig, and B. P. Flannery. Numerical

Reci,pes i,n C: The Art of Scienti,fi,c Programm'ing. Cambridge University Press,

2nd edition,I9g2.

[70] J. Riordan. Delays for last-co;.re first-served service and the busy period. Bell

Sgstems Techni,cal Journal, 40:785-793, May 1961.

[71] Y. Ronen, D. Mosse, and Martha E. P. Value-density algorithms for the

deliberation-scheduling problem. S I G A RT Bulleti,n, 7 (2) :41-49, 1996.

172]
^.

Schild and I. Fledman. On scheduling tasks with associated linear loss

functions. Management Sc'ience, 7:280 285, 7967.

[73] A. Schild and I. FÌedman. Scheduling tasks with deadlines and non-linear loss

functions. Management Science, 9:73-87, 7962.

174] L. Sha, R. Rajkumar, and S. Sathaye. Generalized rate-monotonic scheduling

theory: A framework for developing real-time systems. Proceed. IEEE, V-

82(1):68 82, L994.

[75] J. G. Shanthikumar. Analysis of the control of queues with shortest processing

time service discipline. Journal of the Operations Researclt, Society of Japan,

ß(a)ß4r-352, 1980.

BIBLIOGRAPTIY t28

[76] \M. K. Shih, J. \Ä/. S. Liu, and J. Y. Chung. Fast algorithms for scheduling

imprecise computations. In Proceed,'ings of the IEEE Real-Ti,me Systems Sym-

posium, pages 12-21, 1989.

[77] \M. K. Shih, J. W. S. Liu, and J. Y. Chung. Algorthms for scheduling imprecise

computations with timing constraints. SIAM Journal of Computing,20(3):537-

552, r99t.

[78] \M. E. Smith. Various optimizers for single stage production. Naual Research

Logistics Quarterly, 3:59-66, 1956.

[79] J. A. Stankovic, M. Spuri, M. Di Natale, and G. C. Bubtazzo. Implications of

classical scheduling results for real-time systems. IEEE Computer, June 1995.

[80] L. Takacs. Delay distributions for one line with Poisson input, general holding

times, and various orders of service. BeII Sgstems Technzcal Jour"nal, a2Q):a87-

503, March 1962.

[81] H. Takagi. Queuei,ng Analysi,s: A Foundation of Performance Eualuat'ion, vol-

ume 1: Vacation and Priority Systems, Part 1. North-Holland, 1991.

[82] D. Towsley and S. S. Panwar. Optimality of the stochastic earliest deadline

policy for the Gll:|.llc queue serving customers with deadlines. Technical Report

UM-CS-1991-061, Uni. Massachusetts, September 1991.

[83] J. D. Ullman. Polynomial complete scheduling problems. In Proc. Fourth Syrrup.

Operating System Principles, pages 96-101, New York, 1973. ACM.

[84] E. Vaulot. Delais d'attende des appels telephoniques dans l'ordre inverse de

leur arrivee. Comptes Rendus Acad,. Sci. Pari,s,238:1188-1189, 1954.

[85] D. V. \Midder. An Introduction to Transform Theory. Princeton University

Press, Princeton, NJ, 1971.

BIBLIOGRAPHY r29

[86] D. M. G. Wishart. Queueing systems in which the discipline is last-come, first

served. Operations Research, 8:591-599, 1960.

[87] \M. Zhao, C. C. Lim, J. \ /. S. Liu, and P. Alexander. In S. Natarajan, editor,

Imprecise and Approrimate Computation, chapter Overload Management by

Imprecise Computation. Kluwer Academic Publishers, 1995.

[88] S. Zilberstein. Operational Rationality through Compilation of Angtime Algo-

ri,thms. PhD thesis, University of California at Berkeley, 1993.

