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Abstract

Hadron masses are calculated in quenched lattice QCD in order to probe the

scaling behavior of a novel fat-link clover fermion action in which only the irrel-

evant operators of the fermion action are constructed using APE-smeared links.

The scaling analysis indicates FLIC fermions provide a new form of nonpertur-

bative (2(a) improvement where near-continuum results are obtained at finite

lattice spacing. Light quark masses corresponding to an mnf m, ratio of 0.35

are consid.ered to assess the exceptional configuration problem of clover-fermion

actions. Simulations at such light quark masses reveal evidence of chiral nonan-

alytic behaviour in the A mass.

Masses of positive and negative parity excited nucleons and hyperons âre

calculated in quenched lattice QCD, where the nature of the Roper resonance

and Á,(1405) is of particular interest. The results are in agreement with earlier

l[* simulations with improved actions, and exhibit a clear mass splitting between

the nucleon and its parity partner, as well as a small mass splitting between the

two low-lying JP : +- -ðy'* states, Study of different Ä interpolating fields

suggests a similar splitting between the lowest two j- Â'* states, although the

empirical mass suppression of the 
^..(1405) 

is not seen'

Results for masses of spin-$ baryons using the FLIC fermion action are pre-

sented. Spin-3/2 interpolatin-g fields providing overlap with both spin-| and

spin-| states are considered. In the isospin-| sector, we observe, after appropri-

ate spin and parity projection, a strong signal for the JP :3 state together

with a weak but discernible signal for the t+ state with a mass splitting near that

observed experimentally. We also find good ugre"ment between the |+ -*'"'
and earlier nucleon mass simulations with the standard spin-| interpolating field.

For the isospin-rl A states, clear mass splittings are observerl between the vari-

o.r, |+ and tt channels, with the calculated level orderings in good agreement

with those observed emPiricallY.

This thesis also contains a systematic investigation of Symanzik improvement

in the gauge field action for the static quark potential in quenched QCD. We

consider Symanzik improved gauge field configurations on a 163 x 32 lattice with

a relatively coarse lattice spacing of 0.i65(2) fm. A matched set of standard

wilson gauge configurations is prepared at B : 5.74 with the same physical

volume and lattice spacing and is studied for comparison' We find that, despite

the coarse lattice spacing, the unimproved and less-expensive wilson action does

as well as the Symanzik action in allowing us to extract the static quark potential

at large qq separations. we have considered novel methods for stepping off-axis



in the static quark potential which provides new insights into the extent to which

the ground state potential dominates the Wilson loop correlation function.

A continuation of the work done with the static quark potential on improved
gauge fields has lead to a comprehensive a,nalysis of the behaviour of the lattice
spacing as a function of B. The results are extremelly well described by the
standard two-loop scaling function of SIl(3) gauge theory. This study now

provides a useful tool for predicting the value of. B to be usetl in a sirnulation irr

order to achieve the required lattice spacing.
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Introduction

Quantum Chromodynamics (QCD) has long been considered as the fundamental

theory ofthe strong interaction which binds protons and neutrons together. The
theory of QCD is formulated in terms of quarks and gluons and describes their
interactions. Due to the self-interacting nature of gluons, it is impossible to
calculate analytically the nonperturbative (or low-energy) properties of QCD
such as hadron masses from first principles. The only way to perform such an

ab inttio calculation is via a numerical simulation on a discretised lattice with
finite lattice spacing, ø.

Lattice gauge theory is now the universally accepted method for rigorously

testing the nonperturbative properties of QCD. A large amount of computing
resources are being invested world-wide for this task. For example, the QCDOC
supercomputer at Brookhaven National Laboratory is being designed specifi-

cally for lattice QCD calculations and is expected to reach speeds of up to 10

TFLOPS (1012 floating point operations per second). The impressive progress

that has been made in computer hardware over the last few years has been com-

plimented by the development of more efficient QCD algorithms, bringing real-

istic simulations of hadronic observables with sufficiently large volumes, small

(near physical) quark masses and fine enough lattices within reach.

In order to formulate Lattice QCD, one needs to construct a discretised

version of the continuum QCD action in terms of the lattice spacing, ¿. These

discretisations, by their nature, will have errors of the order of the lattice spacing.

The majority of the work contained in this thesis is performed using a novel

improvement scheme which removes (2(ø) errors from the fermion part of the

QCD action. This action simultaneously allows efficient access to the light quark

mass regime where many previous improvement schemes have failed.

An introduction to the Standard Model and QCD is detailed in Chapter 2'

Here we gain an idea about what the Standard Model can tell us about the

nature of the subatomic world. As most of the work presented in this thesis is

aimed towards calculating baryon masses on the lattice, the simple quark model

of hadron structure is also introduced in Chapter 2' Despite its simplicity, the

naive quark model provides a useful tool for understanding the ordering in the

observed baryon mass spectrum.

Chapter 3 is devoted to introducing Lattice Gauge Theory. In particular,



2 1. lntroduction

we look at the construction of a discretised version of the QCD action and the

manner in which a calculation of observable quantities, such as a hadron mass,

proceeds.

A study of Symanzik improvement in the static quark potential is performed

in Chapter 4. By considering novel paths for the calculation of the off-axis

potential, we are able to gain information on the extent to which the ground

state potential dominates the Wilson loop correlaliotr function. An extension of

this work in Chapter 5 provides the first comprehensive analysis of the behaviour

of the lattice spacing as a function of þ for Symanzik improved glue.

In Chapter 6, we discuss a novel improvement to the lattice fermion action

known as the Fat-Link Irrelevant Clover (FLIC) fermion action. We show how

this technique removes (?(ø) errors from previous discretisations of the fermion

action providing a new form of non-perturbative improvement. We assess the
problem of exceptional configurations with FLIC fermions and show that simu-

lations in the quenched approximation can be successfully performed at quark

masses corresponding to mnlrnp: 0.35. Simulations at such light quark masses

reveal non-analytic behavior of quenched chiral perturbation theory in decuplet

baryon masses.

Chapter 7 contains results establishing the excited baryon spectrum using

FLIC fermions. Good agreement is obtained between FLIC and other improved

actions for the nucleon and its chiral partner. We also confrrm earlier observa-

tions of a mass splitting between the two nearby J' : ï states, however we

find no evidence of overlap with the |+ Rop"t resonance. Results for the excited

hyperons are presented here.

The final set of calculations using FLIC fermions explores the spectrum of
spin-$ baryons. These calculations are presented in Chapter 8. After spin and

parity projection, we flnd good agreement for the spin-projected l+ and, |-
states with earlier nucleon mass calculations using the standard spin-] nucleon

interpolating field, Furthermore, we fi.nd a good signal fbr the l/f + states, with
a mâss difference of - 300 MeV between the spin-* parity partners. For the

isospin-! A states, clear mass splittings are observed between the various j+
and !+ channels, with the calculated level orderings in good agreement with
those observed empirically.

Finally, in Chapter 9 we draw our conclusions and discuss some future ex-

tensions of this work.
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QCO And The Standard Model

2.L The Standard Model

The Standard Model of particle interactions encompases the four forces of na-

ture - electromagnetism (EM), weak interactions (WI), strong interactions (SI)

and gravity. The first three interactions are described by gauge field theories.

EM and WI are low-energy manifestations of a single unified "electloweak" in-

teraction. The SI originates in a hidden "colour" charge. The basic constituents

of matter are the six quarks and six leptons which are summarised in Table 2.1.

Each quark comes in one of six flavours and carries one of three colour charges.

The quarks and leptons are ordered into three generations of families and they

interact via vector bosons. The strong force is mediated by gluons; the elec-

tromagnetic force by the photon; and the weak force via the W+, Zo bosons

which aquire a mâ,ss via the Higgs mechanism. The standard model predicts the

existence of a neutral Higgs particle.

In order to formulate a theoretical formulation of particle interactions, it
is useful to note that physical laws are invariant under Poincare transforma-

tions (Lorentz transformations and space-time translations). Particles are then

defined as a state of a quantum field that transforms under elements of the

Poincare group according to a definite irreducible representation. This means

Table 2.L: Proper-ti,es of Quarks and Leptons. Data from Parti'cle Data Group,

2000. The quark Tno,sses are obtai,ned i'n the M S scheme and, are normalised at

a renormali,sation scale of þ:2 GeV.

Quarks JP : l* Leptons ,S : ,

flavour charge I]]ASS flavout charge MASS

up (u)

down (d)
strange (s)

charm (c)

bottom (b)
top (t)

2

1

3
1

3
2

1

3
2
3

1-5 MeV
3-9 MeV

75-170 MeV
1.15-1.35 GeV
4.0-4.4 GeY

174.4*5.1 GeV

electron (e)

e-neutrino (2")

muon (p)

¡-r,-neutrino (zr)
tau (r)

r-neutrino (2")

-1

0

-1

0

-1

0

0.511 MeV
<3eV

105.66 MeV
< 0.19 MeV
1..777 GeY
< 18.2 MeV



4 2. QCD And The Standard Model

that particles will have definite mass and spin and have an associated antipar-

ticle with the same mass and spin [1]. Observed particles can be grouped into

two types - hadrons and leptons. Hadrons are bosons and fermions experiencing

strong interactions whereas leptons are fermions without strong interactions.

Hadrons fall into two catagories - mesons and baryons. Mesons are bosons

with baryon number equal to zero, whereas baryons are fermions with non-zero

baryon number. The structure of hadrons can be understood by the multiplet
structures identifiable with irreducible representations of an internal symmetry
group SU(3). This provides a need for hadronic constituents to form a funda-

mental representation of SU(3). This leads to the idea of quarks'

2.2 Gauge Theories Of lnteraction

The gauge principle formulated by Yang and Mills [2] applies to a multicompo-
nent matter field. The group of transformations mix the different components

of the matter field. This means that there will be more than one gauge field (c.f.

EM which has only one, the photon). These are the Yang-Mills fields and the
number of these gauge fields is equal to the number of generators of the gauge

group. The relevant group for the weak, electromagnetic and strong interactions

is SU(2) x t/(1) x su(3).
It is well known that the weak interactions violate parity conservation. This is

to do with the fact that only left-handed components of the leptons are coupled

in the charge-changing sector. Similarly, hadronic weak interactions can be

accounted for by assuming that quarks have the same kind of weak couplings.

Thus, as far as weak interactions go, the elementary entities are states of definite

chirality 1 which have zero mass.

Glashow [3] combined the gauge theories for electromagnetism and the weak

interaction into a unified gauge theory of electroweak interactions based on a
gauge group SU(2) x U(1) which mixes different massless chiral states. Physical
particles, howevet, have finite mass which violates this symmetry. Weinberg [4]

and Salam [5] accounted for this problem by introducing the concept of "spon-
taneous symmetry breaking". In the Weinberg-Salam model, "Higgs fields" are

introduced to implement this idea.

Quarks and leptons of definite chirality come in at least six "flavours" which
are in turn grouped into three generations of families. In addition, each quark

flavour comes in three colours, while leptons have no colour. Quarks and leptons
have the following internal symmetries

lchirality is defined as the eigenvalue of 75, with 1 corresponding to right-handedness and
-1 to left-handedness



2.3 Quark Model

o Colour SU(3): With respect to the colour index, the three quarks of each

flavour form a triplet representation of a "colout gtoup" Stl(3). Leptons

are colour singlets.

o 'Weak Isospin SU(2): In each family, the left-handed components of the

upper and lower particles ("g., ,, and e¿) form a doublet representation

of a "weak isospin group" SU (2). AII right-handed particles ate SU (2)

singlets.

o Weak Hypercharge t/(1): There is a t/(1) symmetry, called "weak hy-

percharge", associated with simultaneous phase changes of each particle.

The relative phases are fixed by definite "weak hypercharge" assignments.

The gauge gïoup is then su(2) x t/(1) x stl(3), a direct product of the

three mutually commuting groups defined above. There is now a need fot 1'2

vector gauge frelds, one for each group generator. Due to the non-abelian nature

of the SU(3) group, the gluon fields carry colour charge and as a result, are

self-interacting.
As mentioned previously, the problem with this theory is that particles are

massless. Including a mass term explicitly in the Lagrangian violates Stl(2) x
U(1) symmetry a.nd leads to non-renormalisable theories. Howevet, if we allow

for "spontaneous symmetry breaking" of SU(z) x U(1) by a coupling to scalar

"Higgs fields", then particles can no\M have mass.

The structure of colour Stl(3) means that quark-gluon coupling vanishes at

large momenta (or small distances). This is called "asymptotic freedom". This

means that it should be possible to detect quasi-free quarks inside a hadron

using probes that impact at large momentum transfer. A second result of colour

Stl(3) is that the quark-gluon coupling grows as the momenta is reduced to zero

(distance scale goes to infinity). As a result, the potential energy between two

charges (QQ) grows with an increase in separation (see also chapter 4). This

leads to the idea of a "string" joining the two charges. The string between the

QQ breaks when the enérgy in the string is large enough to create an additional

qQ o:glt of the vacuum and create two mesons. This gives rise to the concept of

quark "confinement" and provides for the result that quarks and gluons do not

exist as isolated physical states, only as components of bound (hadron) states,

which are colour singlets.

2.3 Quark Model

Hadrons fall into multiplets or families which reflect underlying internal sym-

metries. In order to explain this, it is necessary for hadrons to be composed of

5



6 2. QCD And The Standard Model

more elementary constituents with certain basic symmetries. Hence the need

for quarks. Each multiplet is looked upon as the realisation of an irreducible

representation of some internal symmetry group. Elements of each multiplet
have nearly degenerate mass. If the masses in a multiplet are not exactly the

same, the associated symmetry is only an approximate one.

In 1961, Murray Gell-Mann and Yuval Ne'eman [6] introduced the Eightfold

Way which arranged the baryons and mesons into geometrical patterns, accord-

ing to their charge and strangeness. Strange (S + 0) and non=strange (S : 0)

hadrons together form families: meson octets and singlets (Fig. 2.1) and baryon

octets (Fig.2.2) and decuplets (Fig.2.3). The structure of these families can be

understood in terms of the ^9U(3)nuuor,. 
symmetry group. The SU(3)flavour sYr-

metry is broken because the s quark is much heavier than the z and d quarks.

As a consequence, there are large mass splittings among hadrons within each

,SU(3)nu.,ou, multiplet'

S=0.----

Q=-l Q=0 Q=l

Figure 2.7: The Meson Octet

In an attempt to classify hadrons in terms of quarks, non-relativistic quark
mcdels assume that baryons ere made of three quarks, Q7e, and mesons of a
quark-antiquark pair, qq. These models have been fairly successful in the anal-
ysis of low-energy quantities such as the baryon spectrum.

A problem with early quark models was the pion-nucleon resonance A++
which has spin 3/2. The quantum numbers of A++ (Q : 12, I, : I and

,S : 0) suggest that it consists of three z quarks. If we combine J, : 312 with
the fact that the lowest energy for a three quark state has zero orbital angular
momentum, we find that all three u quarks must have spin up. This senario is,

of course, forbidden by the Pauli exclusion principle. We are therefore forced

to conclude that the quarks carry an additional degree of freedom, a "colour
charge", and we need the quarks to carry (at least) three different colours.

Ío
a
a

4

R0

xo K+

tf- Í

K



2.3 Quark Model 7

ro
a
a

^

n p

:+

0

s=-1. - - - -

S=-l ----|

s=-2 ----)

S=-3 ----)

Q=-I Q=0 Q=l

Figure 2.2: The Baryon Octet

Â- Ä0 A+ ++

S=0 ----à

Q=2

Q=l

Q=o

Q=-r

Figure 2.3: The Baryon DecuPlet

Since the colour degrees of freedom are not observed experimentall¡ we say

that hadronic observables are singlets of the colour symmetry Stl(3). If we assign

a single quark to the fundamental representation 3, then the direct product of

three quarks decomposes into the irreducible representations

34383:10808010 (2.1)

Similarly for mesons, since antiquarks belong to the conjugate representation

B, quark-antiquark pairs correspond to one of the irreducible representations

3a3:1o8 (2.2)

Since no meson carlying a colour quantum numbel has been observed ex-

perimentally, we must conclude that a quark and an antiquark which have the
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same colour, can form a colour singlet meson state.

2.4 Baryon Spectroscopy

If we consider a quark model with three flavours of quark, \Me can construct the

group product of the fundamental triplet ^9[/(3)¡".,oo' 
with a cloublet of ,5[/(2).r¡

to an ^9U(6) representation. Baryons then fall into multiplets

6A 646:56O 70 O 70@2O. (2.3)

These Stl(6) multiplets can then be decomposed into the following SU(3) flavour

multiplets

56 : a1oo28

To : 210048o28o'1

20 : '8041

(2.4)

where the superscript (2S -F 1) gives the net spin of the quarks within each

baryon. The -IP :712+ octet containing the nucleon and the JP :312+
decuplet containing the L(L232) together make up the "ground-state" 56-plet
in which the orbital angular momenta between the quark pairs are zero. The 70
and 20 multiplets require some excitation of the spatial part of the baryon wave

function. States with orbital angular momenta are classified in SU(6) S O(3)
supermultiplets. The orbital quantum numbers take values -ðy' : 0, 7, 2, .. .

with the ground state having ly' : 0. We call this an independent quarle model, in
which quarks occupy single-particle orbitals, which are described by spatial wave

functions and have definite energies. Masses of hadrons can then be calculated
in terms of the energies of occupied orbitals and quark masses.

The classification of bar;rons is usually done by using the notation (D, L'*),
where D refers to the dimensionality of the Stl(6) representation, the index //
labels the oscillator quanta, P is the total parity, and L is the total quark orbital
angular momentum. The ly' : 0 band contains the nucleon and A(1232) and

consists only of the (56, 0f-) supermultiplet. The I/ : 1 band consists only of
the (70, 1!) multiplet which contains negative parity baryons including octets
and decuplets with total spins j, I and I. The l/ : 2 band contains five

supermultiplets: (56, 0t), (70, 0t), (56, 2T),90,2[), and (20,1l).
Many of the observed baryons can be sorted into one of the above multiplets.

Table 2.2 shows the quark model assignments for many of the established baryons

l7l



2.5 Baryon Mass

2.5 Baryon Mass Splittings

As seen in the previous section, we can form an Stl(6) spin-flavour representation

for three quarks coupling to total spin ,S. If we place the quarks in a potential

(eg. harmonic oscillator), then they will aquire orbital angular momentum L and

the full symmetry group becomes .9tl(6) s o(3) with .Ú @,s : J generating the

total angular momentum of the system. If we enforce the restriction that only

symmetric ^9¿l(6) 6l O(3) representations exist (the socalled "symmetric quark

model" ) then the 56-plet has the lowest energy. This is seen by considering three

quarks in 1s states of a harmonic oscillator potential. The O(3) state is then

represented by
(1s)(1s)(1s; : (1s)3 -- LP : 0r

which is symmetric. It follows that for su(6) s o(3) to be symmetric, then

,St/(6) is symmetric, which is the 56-plet, This means that the lowest mass

states in the spectrum are

9

3+ 1+tO: JP 8: JP
2 2

The first excited state is obtained by exciting one quark to 1p and the O(3)

state becomes
(1s)2(tp) - LP:r-

It can be shown that only mixed symmetric O(3) states exist (see for example

[8]). Now to ensure that s(l(6) s o(3) is symmetric we need a mixed symmetric

Stl(6) which is the 70-plet. Hence the first excited band is predicted to contain

the following negative parity states

(2.5)

In a harmonic oscillator potential, the L : 2, (ls)2(id) or (1s)(1p)2 excita-

tions are expected to be degenerate with the first radial excitation (1s)2(2s) for

a three-quark system. However, in the observed baryon spectrum, the masses

of the radial excitations overall are small. As an example, the (56,21-) "Roper"

¡f(1440) state should be close to the L :2, (is) level around 1700 MeV instead

of the L : !, (1p) state around 1500 MeV'

'ro1s: ]) o (¿ : 1) -- JP :t- ,X-

'a1s : ]) @ Ø : 1) -- JP :;- ,T-

nsls: f) o (¿:1) '- JP :;- ,l-
'tçs :|) o (¿:1) -- JP :T- ,z-

5

t



10 2. QCD And The Standard Model

The spin-spin force between quark (quark-antiquark) pairs in baryons (mesons)

will separate the ": å(0) and s: å(t) baryon (meson) masses. For systems

with .ú > 0, there is a possibility of a spin-orbit force between the quarks

Ir"'s'
øJ

which leads to different masses for states with the same .L and ^9 
but different

.I. Baryons have an additional SU(3)-dependent force

F¿ .F¡

where F¿ ate the SU(3)6avour ger€râtors, which splits the 1, 8 and 10 multiplets.
In the quark model, the l[ - A mass splitting of about 300 MeV is thought

to be a result of a quantum chromodynamic hyperfine splitting. If we replace

one of the quarks in the A by a differnt flavour (eg. an s quark) then we obtain
Di("sq). The nucleon has the quarks pairwise in either I : I or 0 and upon
replacing the third q by s gives E"(sqq) or Â"(sqq) respectively. The masses

of these baryons are given in Table 2.2 and from this we see that the act of
substituting a strange quark f.or a u or d quark increases the mass of the 3-quark
system by around 150-200 MeV. It also decreases the 3* - +* mass splittings
and splits the A(1 : 0) and D(/ : 1) states c.f. the negligible mass splitting
between the 1 : 0 neutron and -I : 1 proton. If we replace a second quark in
A and ,ô/ with another s quark, then the baryon system becomes ¡](ssq) and
¡"(ssq).

In a quark model, it can be shown that the hyperfine splittings between octet
and decuplet baryons is simply equal to the product of the magnetic moments

of the singly and doubly represented quarks [8]. This means in the absence of
strange quarks we have

L-N:p,| (2.6)

In the strange quark sector, we have

E; - E" : PsPq: Dl - X,. (2.7)

This leads us to a formula with which we can compare mass splittings

Di-E" þ"_Ei-1" trRl
A - ¡f þq A - ¡f 

\-'"'/

Quark model calculations [9] with constituent quarks have shown that

þ1" - +(nù, ¡ *o) 
= 0.639. (2.g)

ltq rns
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\Me can compare this to the experimental values displayed in Table 2.2

A-¡\¡ : 293MeV
sl* sl 192 MeV";.--;"" 

: 2r2MeY,

which corresponds to ratios
\l*_\l î*_F"ffi:0.655 , ï_ff :0.724, (2.10)

and we see that the simple quark model provides a reasonable estimate of the

hyperfine splittings between octet and decuplet baryons.

2.6 The QCO Lagrangian

Quarrtum Chromodynamics (QCD) is a non-abelian gauge field theory describing

the strong interactions. It is formulated in terms of coloured quarks and gluons

and forms one of the components of the SU(3) x SU(2) x t/(1) Standard Model.

As described in the previous sections, quarks have one of three colours, gluons

come in eight colours and hadrons are colour-singlet combinations of quarks,

anti-quarks and gluons. The Lagrangian describing the interaction of quarks

and gluons is

Lqcn - -rUrffi r<")" + iL,rtLr'@r),irþio- t mn þ'n þno (2.11)

F["?,) : orA, - a,Ai+ g"í"u"'a!rl', 
o 

ç''"¡
(Dr)o¡ : 6¿¡ot"-¿s"D*of" (2.13)

where g" is the QCD (strong) 
"åpüng 

constant and is the only arbitrary pa-

rameter due to gâuge invariance, fo6" are the structure constants of the Stl(3)"
algebra, ,Þ'n@) arefour-component Dirac spinors associated with each quark field

of colour i and flavour q, and A", are the Yang-Mills (gluon) fields. The Gell-

Mann matrices, Ào (a:1, 8), are the generators of SU(3)" transformations and

are 3 x 3 matrices that obey the following commutation relation

lÀ,, Àu] : ÀoÀ¡ - ÀaÀo :2i'fou"À". (2'14)

The Lagrangian in Eq, (2.11) is invariant under non-abelian local gauge

transformations

'þ'o@) 
: U¿¡(r)tþ¡(r) ' U(*) - exp -i'7"0"(r)

T"A'"(r), : u(r)Q"Afl(") - Iu-t(r)Ôru(r))u-'('), (2'15)
g
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where 0o are parameters which depend on r. In particular,,C is invariant under

space and time reversal and under Lorentz transformations.
In QCD, an isolated colour charge (quark) will surround itself with a virtual

cloud of coloured quark-antiquark pairs in a similar way to how an isolated

electric charge in QED polarises the vacuum and surrounds itself with electron-
positron pairs. This virtual cloud of qq pairs has the effect of increasing a"
at short distances. However, unlike photons in QED which have zero electric

charge, the gluons carry colour charge and hence they can interact with each

other. This means that the isolated quark can also surround itself with gluons

which causes a, to decrease at short distances, tending asymptotically to zero.

Infact, it can be shown (see for example Ref [10]) that asymptotic freedom

occurs if (33 - 2n¡) > 0, where n¡ is the number of quark flavours. Hence QCD
enjoys the property of asymptotic freedom so long as the number of active quark
flavours is less than 16.

As a result of asymptotic freedom, experiments probing a proton at short
distances (large momentum transfer) will see the quarks inside the proton as

quasi-free particles. At moderately short distances, o, will be small and the
quark interactions inside a hadron will be dominated via a single gluon exchange,

similar to the single photon exchange seen in QED, and leads analagously to
hyperfine splittings between singlet and triplet spin states of qq- (as discussed in
Section 2.5).

The Lagrangian in Eq. (2.11) includes self'-interactions among the gauge

flelds, Afl, throu1h the term g f "b" AbrAi in Ffr, and is the main ôource of asymp-

totic freedom. This important feature of QCD where the renormalised QCD
coupling is weak at high energies (short distances) allows quarks to behave as

free particles. This enables high precision tests to be performed at high energies

using perturbation theory.
At large separations, however, a" increases a"s a result of there being eight

gluons which are self'-interacting and gives rise to confÌnement. This is the reason

whv individual quarks have not been seen experimentally.



2.6 The QCD 13

D, srl(3) ¡c ,s:0
cr - _1u-¡

I:0 I:L c-_r q-_?

E(1820)

(56, 8å ¡r(e3e) 
^(1116) 

D(11e3) E(1318)

1232 1385 1530 aG672)410

(70,11) zg

2ro

¡,r(1520)

¡r(1535)
¡r(1650)
¡,r(1675)

¡ú(1700)

a(1620)
a(1700)

^(16e0)
^(1670)
^.(1800)

^(1830)

^(1405)

t(1580)--
t(1620)--
D(1750)

E(1775)

E(1670)

+a

1-
2

1-,
b-,
9-
2
1-tg-
2

1-
t
J

ag

z1

(56,2Í) ¡'r(1440)

a(1600).-

^(1520
^(1600)

D(1660)

E(1690)--?

zg

410
2

+

(56,21) zs

410

2
S*
2
1+
t
B+
2
5*
2
7*

¡\r(1720)

¡r(1680)
a(1e10)
a(1e20)
a(1e05)
a(1e50)

^(18e0)
^(1820)

?

r(1el5)

E(2080)--

r(2030)

(56,21) z3

410

(70, zg

ag

210

z1

2I
2
Þ
2

+

+

+

+

+

N(2220)

a(2300)--
A 2420)

¡\r(1710) 
^(1810) 

t(1880)-.

a(1750)-?
¡ü(2100)-

)
B+
2
1+
t
1*

(70, zg

4g
¡\I(2000)--? 

^(2110) 
D(2070).?

+ ¡,r(1990

(56,3r)? z3 ¡\r(20e0)-

¡r(2080)-- L(2325).?
a(1900)-.
a(1940).

E(2000)-?

410

r(1e40)

^(
1e30)

Table 2.2: Baryons and, their resonances with (u, d, s) ualence quarles. Data

from Particle Data Group, 2000. Data wi,th a * or ** are unconf,rmed

1-,
q-
2
ð
i





3

The Lattice

3.1 Lattice QCO

Lattice gauge theory, proposed by Ken Wilson in L974 [11], is a nonperturbative

method which uses the Feynman path integral approach and is the only way

to perform a calculation of the nonperturbative properties of QCD from first

principles. Lattice QCD is formulated in Euclidean space, which is accomplished

by a, Wick rotation from Minkowski space,

[, ---+ -itB, (3.1)

from now on we wúte tB as ú. In Lattice QCD, space-time is discretised into

a four-dimensional grid or "lattice". In the "perfect field" approach, the quark

fields ,r/(r) reside on the sites r of the lattice. These quark fields carry colour,

fl.avour and Dirac indices as in the continuum theory. Gauge fields are repre-

sented by SU(3) colour matrices Ur(*), where þ : 7,. ..,4 are the space-time

directions, and "link" a particular lattice site, r, with the adjacent siie r * û,,

where p denotes a vector in the p direction with length of the lattice spacing,

a. We refer to þ : 4 as the time direction. The gluon fields, Ar(r), of the QCD
action are introduced by defining our gauge ("link") variables

1a

Ur(*) : P exvis 
Jo 

Ar(r t Àp)dÀ, (3.2)

where the operator ? path-orders the .Ar's along the integration path, ¿ is the

lattice spacing, and g is the coupling constant

Under a gauge transformation, Â.(ø), the fields transform as

,þ(*) - lt(r){(r), Ur(r)--+ Ìt(r)Ur(r)lt(r + î,)-t. (3'3)

It is easy to see that the trace of a product of links along a closed loop will be

gauge invariant. Other gauge invariant quantities of SU(,n/) gauge theory are

.lü gauge transporters whose colour indices are contracted at common start and

end points using a completely antisymmetric tensor. The situation for -ðü : 3 is

shown in Fig. 3.1.
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€

Tr

t ijk

Figure 3.1: Examples of gauge invariant objects.

x+1/

L̂*
tr

x x+l.r

Figure 3.2: The plaquette, Pr,(r), and 1 x 2 rectangles,R¡"r(r)

The simplest non-trivial gauge-invariant object is the plaquette which is con-

structed via the product of of four links enclosing an elementary square)

1

Pr"(r) : 
5
i
3

ReT\U"o

ReT\ (ur(r)u,(* + I,)utr@ + ît)Uj(r)) , (3.4)

which is depicted in Fig. 3.2. We can rewrite Eq. (3.4) as

1Pr,(r) : 
Un"::,--'P"is 

f' A'dx

!""*r I
r i i,e f A d. -;(' f,o

2

) + OØ3) , (3.5)dr

where the path-ordering is essential in a non-abelian theory to ensure the action
has errors which are O(a2g2). As we wish to remove classical O("') errors from
the action, it is sufficient to work with the abelian theory.
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Stoke's Theorem for an abelian theory gives,

dr rdr,lôrA,(*o + r) - 0"Ar(ro I r)l

drrdr, Fr,(ro + r)

: a2Fr,(ro) * firur,+ ðl)rr,@o) + 0(a6, A2). (3.6)

where r¡ is the centre of the loop, F¡", : 0pAr-0,,4,, is the abelian field strength

tensor and the final equation is obtained via a Taylor expansion of Fr,(rs I r)
We can now substitute Eq. (3.6) into Eq. (3.5) and considering only the real

part, we obtain

pt, : t - lo'ootu 
F'zw - f,s'nu't 

Fr,(Ì',+ o?)Fp, + o(a8) + o(gaas). (3.7)

Using this expansion for our plaquette operator, we arrive at the traditional

"Wilson action" for gluons on the lattice,

Sl,,,a: p >,1t-Pr,(r)), (3.8)
tx,þ)v

where þ:61g2. This action differs from the continuum gluon action (first

term in Eq. (2.rr)) by terms which arc o(a2) and o(g2a2). The ø2 errors can

be removed by adding other products of links that form closed loops (known

as Wilson loops). An obvious flrst choice would be 1 x 2 rectangular loops as

illustrated in Fig. 3.2. Such loops have the expansion

t::,

t::,

.f,o.o" 
:

R!r;' : 1

R?;' : 1

4
-6

4
-6

s'o4T\ F'z* - fio'our, (rr,Ø4"+ a2,)Fp,) - . . .

g2aaTr F2t, - fis'ouv (pr,@"r+ 4a?)Fþ,) (3.9)

Since Ër, and. P¡", have different O(a2) errors' they may be added to obtain an

improved lattice action that is accurate tp to O(aa) and O(g2a2) 112,13]

s,-o : p D,{å,t - p*) - }o - R!,;') + }o - R7;\\ (3.10)

: on D lTo r"* + o(a4) + o(a2s\f, (3'11)

r,þ)u

which reproduces the continuum action ro O(aa) and O(a2g2)'
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3.2 Mean-Field lmprovement

Gauge fields are represented by the link operator (Eq. 3.2) which can be Taylor

expanded to give

Ur(*)xr I iasAr(*)-ú|'z ezrlr¡¡... (3.12)

All but the first two terms are lattice artifacts in the QCD action and give rise

to quark-gluon vertices with two or more gluons. Contracting the two gluons in

a2 92 A2r(r) 12 produces tadpole diagrams. These extra vertices are suppressed by
powers of a and hence are irrelevant for classical fields. Lepage and Mackenzie

[14] pointed out that for quantum frelds, however, pairs of ,4.r's contracted with
each other generate ultraviolet divergent fäctors of Ifa2 that precisely cancel

the extra ø's. Consequently, the contributions generated by these tadpole loops

are, infact, only suppressed by po'ffers of. 92 and result in large renormalisations

that spoil naive perturbative lattice expansions. However, tadpole contributions
are process independent so it is possible to measure their contribution in one

quantity and then correct for them in all other quantities. The simplest way of
removing these artifacts is by mean-field improvement (also known as tadpole
improvement).

If we assume that the lattice fields can be split into UV and IR parts, then
mean-field improvement is perf'ormed by simply integrating out the UV part,
1,. e.

"iasA*(n) 
: 

"ias(A!f;(a)+af;v(u)) 
_ uoeioeAï(ù = uoûr(r). (g.13)

Rescaling of the links by an overall constant us 1 7 leaves the theory gauge-

invariant. Under this scaling, in every lattice operator we replace U ---+ U. The
zs's have the effect of cancelling tadpole contributions which enable lattice oper-

ators and perturbation theory to be far more continuum-like in their behaviour.
ñ! I -- --,--:-l--- rl-- ----l ---_L -1 ^^---^^l^r:^- 1---^^L: ^^- ^L^^^^Ðrlrce we oflry evel UOIIslucr Ltre red,l ljitrL ur uulret¿Llulr turluLlulrù, wc u¿1lr urruusu

ze to be real.

There are two common choices for computing the mean-field improvement
parameter (or "mean link"), us: (i) the fourth root of the plaquette (Eq. (3.14)),

and (ii) the expectation value of the link in Landau gauge. These two definitions
give almost identical results, however since gauge fixing is unnecessay in the
first definition, the most common choice is the first approximation and it is this
definition that is used for all calculations presented in this thesis,

,O: ( ]æ"t,<ø"))

r/4
(3.14)
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We return now to our expression for the improved gluon action given in

Eq. (3.10). We can tadpole improve this action by dividing each link operator

Urby the mean link uo

(
s:ß \- {Ir,- P-+t-!n-Wr+lrr-a+l} (3.1b)- 1- L l3\' ut' 12\' uB ' ' 72'- u$ 'J \''-"'/

,,lt>, \

The u¡'s cancel tadpole contributions that would otherwise spoil weak-coupling

perturbation theory in the lattice theory and undermine our procedure for im-

proving the lattice discretization. Without tadpole improvement, only about

half of the a2 erïors are cancelled. Moreover, perturbative corrections to this

action are estimated to be of the order of two to three percent [15]'
The mean link z6 must be determined self-consistently as the relative co-

efficients in the action themselves depend or üs. To do this, u6 is computed

numerically by initialising u0 to 1, measuring the mean link in a simulation, and

then readjusting the value used in the action accordingly. The ze's depend only

on the lattice spacing and become equal to one as the lattice spacing vanishes,

providing an O(a2) improved transistion to the continuum.

3.3 The Lattice Quark Action

3.3.1 The Naive Fermion Action

In Euclidean space-time, the Dirac action obtained from Eq. (2.11) is written as

,þ(þ+ *)rþ (3.16)

wilson [11] discretised the continuum Dirac action (Eq. (3.16)), by replacing

the derivative with a symmetrised finite difference and including appropriate

gauge links to not only encode the gluon freld, A¡,, but to also maintain gauge

invariance

- 1 l- -1 . I
,þprþ : 2"rþ(")Drrlur(")rp(" + p) - u[(r - tùrþ(" - Ê)l (3.17)'7-L-" I

The continuum Dirac action is recovered in the limit ø -- 0 by Taylor expanding

the (1, and, {(a+ p) in powers of the lattice spacing a. Keeping only the leading

term in ¿, Ee. (3.17) becomes

1-
fiøølr,l f 7 * i,asA,(, * l)+.. )(ú(") + a{'(r)+ "') -

( 1 - i,asAr(r - l¡ * . ..)(,þ(*) - a,þ' (r)+ )]

: ,þ@)tr(a, + o(a2))4@) + islþ(r)1rlA, + ct(a2)]tÞ(r), (3'18)
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which is the kinetic part of the standard continuum Dirac action in Euclidean

space-time (Eq. (2.11)) to o(a2). Hence we arrive at the simplest ("naive")

Iattice fermion action,

,g¡,, : 
^oDú@)rþ(r)

\ú{*)t, u,(r)þ(r + þ) u[(n tù,þ@ - t")
lD,lt

: D.þ(")M{r[ul,þ(ù, (3.1e)

where the interaction -utti* MN is

m{¡ful : mq6¿i + }Dfir(J¿,"õ¿,i-" -'yrul-r,rõ0,¡*rl. (3.20)

l.r

The Euclidean ? matrices are hermitiàn,ytt:'y!", and satisfy {'yr,'y,} - 26¡",.

For the fermion action, the Sakurai representation (given in Appendix A) is used

The Taylor expansion in Eq. (3.18) shows that the naive fermion action of
Eq. (3.19) has O(a2) errors. It also preserves chiral symmetry, however in the

continuum limit, it gives rise to 2d :16 flavours of quark rather than one. This
is the famous doubling problem and is easily demonstrated by considering the

inverse of the free field propagator (obtained by taking the fourier transform of

the action with all Up: I)

,9-t(p) :ffiqllDrrsinpra (3.21)
p

which has 16 zeros within the Brillouin cell in the limit mq + 0. eB, Pp :
(0,0,0,0), (nf a,0,0,0), (trf a,rf a,0,0), etc. Consequently, this action is phe-

nomenologically not acceptable.
There are two approaches commonly used to remove these doublers. The

first involves adding operators to the quark action which scale with the lattice
spacing and thus',¡anish in the continuum limit. These operators are chosen to
drive the doublers to high energies and hence are suppressed. This technique
for improving fermion actions proceeds via the improvement scheme proposed

by Symanzik [16] and is discussed in more detail in the following sections. The
second method for removing doublers involves "staggering" the quark degrees of
freedom on the lattice. This procedure exploits the fact that the naive fermion
action has a much larger symmetry group, UvØ)ØUA(4), to reduce the doubling
problem from 2d: 16 --+ 7614 whrle maintaining a remnant chiral symmetry.
This approach is not used in this thesis so the details of the action will not be

discussed here. Details of the derivation of staggered fermions can be found in
most texts (eg. [17,18]).

1
I-
' 2o,
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3.3.2 Wilson Fermions

In order to avoid the doubling problem, Wilson [11] originally introduced an

irrelevant (energy) dimension-five operator (the "Wilson term") to the standard

naive lattice fermion action (Eq. (3.t9)), which explicitly breaks chiral symmetry

at O(a)

,sw: {'@)lr,(r,o,-},"o,) **frøt , (s22)

where 
1

v rrþ(") : filur{")rþ(r + î') - uÌ"(. - tòlþ@ - tòl (3.23)

and

1
Lrrþ(*) : ¿lur{*)rþ(" + þ) + Uj(r - tìrþ(" - þ) - zrþ(")l' (3'24)

The \Milson term removes the doublers by giving the extra fifteen species at

pt": T â ma,ss proportionalto rf a. In terms of link variables, Ur(r), the Wilson

action can be written

/ ar\\-,1,/-\"/,/-\- 1--' '['sw : (*,* , ) ?y\*)v\*) ';>i,þ@)lØ,-r)u,(r)tþ("+t")

-Ør* r)U[(r - tòrþ@ - t') (3.25)

(3.26)

where the interaction matrix for the Wilson action, Mw , is usually written

MU tula - 6 na - ^ t l(" - ^t r)u,,"6 *,a - t" * Q + y)u! - r,rõ,,0+ rf (3.27)

: Drþ:MW,þí
r¡A

l.r

with a field renormalisation

K : tl(2mna-l8r)
,þ" : 'þlJf"'

We take the standard value r: 1 and the quark mass is given by

1 /1 _ 1 \rnqa,: ¡\¿- ¿ )

(3.28)

(3.2e)

In the free theory the critical value of k ppa, Æ", whete the quark mass vanishes,

is 1/8r. In the interacting theory, Kc moves away from tf 8r and the quark mass
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has both multiplicative and additive renormalisations due to the explicit chiral

symmetry breaking by the Wilson term

In the continuum limit, we find

Sw: (3.30)

so we see that by lifting the mass of the unwanted doublers with a second

derivative, we have introduced (?(a) discretisation errors to the f'ermion matrix.
In contrast, the Wilson gauge action (nq. (a.A)) has only 0("') errors so there
has been an enormous amount of interest in applying Symanzik's improvement
program [16] to the fermion action by adding higher dimension terms.

3.3.3 lmproving The Fermion Action

The addition of the Wilson term to the fermion action introduces large O(a)
errors which mean that in order to extrapolate reliably to the continuum limit,
simulations must be performed on fine lattices, which are therefore very com-
putationally expensive. The scaling properties of the Wilson action at finite ø
can be improved by introducing any number of irrelevant operators of increasing

dimension which vanish in the continuum limit.

The first attempt at removing these O(a) errors was by Hamber and Wu [19]
who added a two link term to the Wilson action

snw : sw + ,\l,t"t')el, +!tòur(")u,(, + tò,þL@ + 2tt')

I d,a rtþ(r)(p * m - ffl*øl + o(a2),

r'þ

+ ,þ'(, + 2î,)eI, - !tùul"{" + îL)u'!,(ùúL@)l (3.31)

The removal of the O(ø) terms is easily observed through a Taylor expansion.
While this action also removes O(a2) errors at tree-level, it has only received a

small amount of interest due to computational expense in evaluating the double
hopping term. Calculations that have been done with this action show that it
works well at coarse lattice spacings and has the added bonus that it has an
improved dispersion relation [20].

A more popular alternative is to consider all possible gauge invariant, local
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dimension-five operators that can be added to the fermion action

Ot
iaCsvvr , ._ 

4 ,pzopvÍ pue,

oz : 
"ro {rl,nrnrrþ + úb rb rrþ\ ,

os : ffiug*Fr,j, (3.32)

ot : 
"r* {'(,lrDrrþ - rþb rlrrþ\ ,

Os : -b*am2tþtþ.

At tree-level, it is possible to remove the second and fourth operators by the

following transformation of the fermion fields

: (1 + bnam)(7 - cqaQ)rþ

: (1 + bnam)tþ(I + cnaþ¡

At tree-level, bq: cq:714' The third and fifth operators in Eq. (3'32) are

incorporated by renormalising gz -- 92(L*bnma) andm --+ m(7+b*rna). This is

equivalent to a rescaling of the bare coupling and the quark mass. When working

in the quenched approximation, it is common to set bn : 0. The remaining

dimension-five operator, the magnetic moment, oI "clover" term, when added

to the Wilson action gives us the popular Sheikholeslami-Wohlert fermion [21]

action 
,n õ i,acsw
Ssw : t* - "*-nn*' tþ(n)o*F¡",rþ(") , (3.34)

where Csyat is the clover coefficient which can be tuned to remove (?(ø) artifacts,

,þ ---+ ,þ'

,þ ---+ ,þ' (3.33)

Csw
1 at tree-level ,

lf uf; mean-field improved ,

(3,35)

with z¡ the tadpole improvement factor correcting for the quantum renormali-

sation of the operators. Nonperturbative (NP) (2(ø) improvement [22] uses the

axial Ward identity to tune Csw and remove aII O(a) artifacts provided one si-

multaneously improves the couplin g 92 , the quark mass ?7ì,q, and the currents [22].

The advantage of the clover action is that it is local and is only a - ISTo over-

head on Wilson fermion simulations. Further details of the improvement the

clover action provides at finite lattice spacing is given in chapter 6.

The name "clover" is associated with the SW fermion action due to the

Iattice discretisation of the field strength tensor, Frr' An expression for Fp is

obtained by considering the sum of the four piaquettes surrounding any lattice
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1)

u

Figure 3.3: Loops required to construct tr]r,

site in Lhe ¡1, - u plane as shown in Fig. 3.3. Using the expansion in Eq. (3.5)

and (3.6) for the plaquette, we obtain the lattice expression f.or F¡",

sa2F¡,,: ílof, - oÍ:), -I*foll - ot)\1, (3.36)

where we have made F¡r, traceless by subtracting 1/3 of the trace from each

diagonal element. Substantial progress has been made to improve F* to O("u)
by adding terms constructed using larger Wilson loops [23]. A discussion of
improving F* can be found in Appendix B.

3.3.4 Highly lmproved Actions

In the previous section we have described how it is possible to remove (2(a)

errors from the fermion action by introducing the dimension-five clover term.
This action, however, may still have a2 errors which become large at coarse

lattice spacings. For this reason there has been some interest in developing a

quark action that has errors only of O(o") and higher.

An attempt at such an improved action is the D234 class of actions in-
troduced by Alford, Klassen and Lepage [24] which involves second, third and
fourth order derivatives. For isotropic lattices,

Mozsa. : m(r+o.tram).T 
{rroÍr, -?¿"roÍP\

+ "D { -T.oÍ:, - T"*F* +*uoÍ:,}, (s 3z)
tr\

v
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where lf) is the nth order lattice covariant derivative. The term proportional

to C3 is precisely what is needed to kill the leading discretisation erïor in Afi) as

shown in Eq. (3.1S). The terms proportional to r are generated by a field redefi-

nition and thus represent a redundant operator. They, therefore leave unaltered

the O(a) improvement of the naive action. We recognise the three irrelevant

terms as the Wilson term, the clover term, and an ¿3 collection. At tree-level,

the coefficients are unity. As with the Sheikoleslami-Wohlert action, quantum

corrections can be included by mean-field improving each coefficient. The co-

efficients may also be tuned non-perturbatively and tests show that errors are

small even at coarse lattice spacings [2a]. This action, however, is significantly

more computationally expensive than the Wilson or clover actions and as such

is not a common choice.

3.4 Lattice Calculations

3.4.1 The Path lntegral
The starting point for any Lattice QCD calculation is with the partition function

in Euclidean space (t --+ -it)

z: [DAtDúDû"-t (3.38)
J

where S : I d4r(f,FwFt"' -1þMlþ) is the QCD action, M is the Dirac fermion

matrix, and Fr, : 0rA, - a,Ap I i.gfAþ A,l is the field strength tensor. The

gauge fields are represented by A, and the fermion fields by the Grassmann

variables tþ and T/ which can be integrated out

f
z : 

J 
DArd,etM el d}a(lFp"F,") (3.39)

The fermionic contribution to the action is now contained in detM and Z is
now only an integral over background gauge confrgurations. The QCD action

can now be written

,s : ,sgu,,g" * ,squa,ro : I on* {}r*r" -+!ogdetM¿), (3'40)

where the sum in the last term is over quark flavours. By setting detM :
constant(: L), we remove the contribution of sea quark loops to the path inte-

gral. This is known as the "Quenched Approrimation" and results presented in

this thesis are made using this approximation. Historically, the justification for
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such an approximation is the phenomenological observation that the neglect of

sea quark loops corresponds to the neglect of OZl-suppressed processes' This

is expected to be valid for large quark masses where the momentum transfer in
gluons required to create the qQ pair becomes large. As a result, I becomes small

due to asymptotic freedom. Another aspect is that the quenched approximation
emerges in the large lrl" limit of QCD, where À[. is the number of colours. Also,

sea quark loops have a perturbative effect of simply renormalising the coupling,
g. Since we set the scale by comparing to phenomenological quantities, the re-

normalisation of g is absorbed in setting the scale. However, quenched chiral
perturbation theory tells us that calculations made at small quark masses will
suffer non-analyticities due to differences in the meson cloud. Non-analytic be-

haviour in the A mass is a good example of this and is seen for the first time in
quenched simulations through the use of FLIC fermions in Chapter 6.

3.4.2 Expectation Values Of Observables

Any ensemble of lattice gauge fleld configurations {UW¡ is created through a

Markov process [17]. This involves generating each configuration U[¿] from the
preceding one, U['-11, using a Monte Carlo algorithm satisfying

p(r¡It-tt --. ¡¡tt))plU[¿-l]l : p(Utù ---, ¡¡tt-rt¡p¡¡¡bt1 (8.41)

where P(U -- U') is the probability of generating configuration U' from the
configuration U and depends on B:6f 92,the parameter which fixes the lattice
spacing. The initial configuratiott yloJ is usually chosen to be "cold", 'i.e. when
all the links are set to the identit¡ or "hot", where each link is a random ^9U(3)
matrix 125,26]

Calculation of physical observables are obtained via expectation values

(o( )) : i I DAt,oe-s -#f o(...luvt1¡, e.42)

where N is the number of generatea configuratiis. The operator (? can be

any given combination of operators expressed in terms of time-ordered products

of gauge and quark fields. Using Wick's Theorem for contracting fields, it is

possible to re-express quark fields in terms of quark propagators, removing any

dependence on the quark fields as dynamical variables. The quark propagator is

calculated by simply inverting the Dirac operator on any given background field

Se(A,i,b;r,'i,a): (M-t)I'!;,|. (3.43)

This gives the amplitude for the propagation of a quark from site r with spin-
colouli, a to site-spin-colow y,.j,b.
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In order to gain an idea of how to proceed in calculating physical observables,

consider the momentum-space two-point function where f > 0

G(¡i,t) : ¿3 o "-tn'i 
(olrl0 r @,úX?c (0)l 

I 
r-¿) . (3.44)

If we let Ol : (2¿: At: tþ'lfYstþ, the fourth component of the axial current,

which has a large coupling to the pion, the 2-point function in Eq. (3.44) now

describes the procedure where the "source" opetatot, Oi) creàtes a state with
quantum numbers of the pion from the vacuum; the evolution of this state via

the QCD Hamiltonian to the point (d,ú); and the annihilation of this state by

the "sink" operator, O¡,backto the vacuum. Since O¿ will create a state that is

a linear combination of all eigenstates of the Hamiltonian that have the quantum

numbers of the pion, 'i.e. the pion and its excited states, 'vve can insert a complete

set of intermediate states, n, with momentum, P', ir Eq. (3.aa)'

G(F,t) : dsp e-ií'i ¿tp' D $tlor@,t)ln,p')(n,p'lO¿(Qla), (3.45)I I
N

n:l

We can make use of translational invariance to write

G(F,t):lo,o"-,ørl¿'o'f,rill"nt"=tiJ'egrç07eú;a"-ntln,p')(n,p'lo¿(0)la)

: [ ¿r.- [ arp, e-i(p-i).t f "-uu 
qnll ¡(o)ln, p,) (n, p, lO¿(ela)-J*uJ' n:t

N
: t e-E"t (9lo¡(0)ln,p)(n,plo¿(Qla). (3.46)

n:L

At ¿: 0, En -, Mn and masses are extracted. If o has overlap with more than

one state, then as a result of exponential damping, the ground (lowest mass)

state can be isolated by examining the \arget behaviour of Eq. (3.46)

G(F,t)t! (ttlO¡(0)lrl(nlo¿(0)1CI) e-Mnt. @.47)

Since (QlA¿(p-:0)ln): M,f^, the pion mass and decay constant are extracted

from the exponential fall-off in time and from the amplitude respectively'

If we now consider all the possible Wick contractions of the two fermion fields

in Eq. (3.47), the correlation function can now be written in terms of a product

of two quark propagators, S¡',

(al.+\(r) t n(0 ) I 
CI) : - (olú @)t st srþ @) 

T l (O)'v¿rr, i (0) 
| 
f¿)

: (CIltr S p(0, r)1a1sS p(r,0)f¿tr lCI)

D rr,S¡(0, r, lU))tnuSe(r,0,lU))1a15. (3.48)

{u}

1:-
N
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Then by making use of the f/ discrete symmetry and properties of the 'y matrices

(see Appendix A)

lcilALr¡A.(o)¡CI) : -# | t'{s}1",0,1(rl)1as p(r, 0, [u])7a] (3.4e)

whcrc the trace is only over the colour indices, and on each configuration the

fermion propagator is computed by inverting the fermion matrix (Eq. (a.+3))

numerically.
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Symanzik lmprovement ln The
Static Quark Potential

4.I lntrod uction

One of the signs of a confining theory is the fact that the potential energy

between two charge, (QQ) glows with an increase in separation. This leads to

the idea of a "string" joining the two charges. In Lattice QCD, this is tested

by calculating the expectation value of Wilson loops (W). Of course, in full

QCD the vacuum contains many qq loops so the linear rising of the potential

is screened. The string between the QQ breaks when the enelgy in the string

is large enough to create an additional qq out of the vacuum and create two

mesons. A signal that this has occured would be a flattening of the potential at

some separation .R. In quenched QCD however, sea quarks are given an infinite
mass (detM : constant(: 1) in Eq. 3'40) and are thus suppressed' For this

reason, it is not possible to see string breaking in quenched QCD.

While string breaking in the static quark potential between two infinitely
heavy quarks in full dynamical-fermion QCD has long been predicted, direct

observation of string breaking in lattice QCD is still a point of controversy

127-36). The main reason for this appears to be due to difÊculty in isolating the

ground state of the static quark potential at large qq separations [33]. Overlap

of standard operators for separating a static qQ pair with excited states of the

potential and close spacing in the spectrum of the potential at large separations

demand significant Euclidean time evolution in order to isolate the ground state

[33, 37,38].

Accessing large Euclidean times is extremely difficult. APE smearing [39,40]

is widely recognized as an effective way to approach this region. The smearing of

the spatial links of the lattice mocks up the flux tube joining two static quarks

in the ground state potential. The smeared operator provides better overlap

between the vacuum and the ground state potential and improves the signal to

noise ratio in the correlation function [41].

As one approaches the large Euclidean space-time regime, statistical errors

grov/ exponentially. While it is easy to fit the lattice data for the effective
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potential to a plateau ansatz, it is difÊcult to have confidence that the asymptotic

value has been reached. With exponentially growing error bars, correlated 12

and goodness of flt parameters can provide a lower bound on the Euclidean time

regime, but do not provide information on whether such a bound is sufficient to

isolate the ground state potential.

Techniques for evaluating the extent to which the ground state dominates

the Wilson loop are needed. Fortunately for the standard single-plaquette based

Wilson gluon action, methods exist. However, these methods break down when

improved actions are used.

Recently, novel ideas have been explored in the search for string break-

ing [33, 42-47). While string breaking has been observed for some of these

methods, string breaking using only Vy'ilson loops is proving elusive [28,36].
We are motivated by the encouraging results of Ref. [33-35] studying string
breaking via Wilson loops in 2 * 1 dimensional QCD. There, using improved ac-

tions on coarse lattices in three dimensions, string breaking was observed. These

authors emphasize that Euclidean time evolution of the order of 1 fm is required
to isolate the ground state potential. The efficiency afforded by the use of coarse

lattices is argued to be key to achieving this goal.

Here we explore a systematic comparison of the static quark potential ob-

tained from standard Wilson and Symanzik improved field configurations. Given
the same number of configurations, similar lattice spacing and equivalent analy-

sis techniques, we illustrate how the Standard Wilson action does as well as the

Symanzik improved action in extracting the long-range qq potential. While the

authors of Ref. [33] emphasize the efficiency of the improved action approach,

we find that unimproved actions on reasonably coarse lai;i;ices offer i;he most
efficient and suitably accurate use of limited computer resources.

Section 4.2 briefly explains our technique for calculating the static quark
potential from Wilson loops. Here we present an alternative way of exploring the
off-axis static quark potential. This new method provides additional information
on the extent to which the ground-state potential dominates the Wilson loop and

can provide confidence that sufficient evolution in Euclidean time has occurred.

Section 4.3 outlines the details of the configurations used in the simulations. In
Section 4.4, we present and discuss our results and in Section 4.5 we summarise.
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4.2 The Static Quark Potential

The spectrum of the static quark potential is determined from Wilson loops

W(r,t) of area r x ú,

W(r,t): 
Ð 

C¿(r) exp(-V(r)t). (4.r)

In order to enhance Ct(r), which measures the overlap of the loop with the

ground state potential, the spatial links are APE smeared [39,40]. This smearing

procedure replaces a spatial linkUr(r), with a sum of the link and a times its

spatial staples:

3

ur(*) --+ (t - a)(J, + iDlr,@)rr(* + ua)ui(r * pa)

""=i'

+ U)(, - ua)tJr(r - ua)U,(r - ua t ,ù1. Ø.2)

This is applied to all spatial links on the lattice followed by projection back to

SU(3), and repeated n times.
Thning the smearing parameters is key to the success of the approach. They

goveïn both the Euclidean time extent of the Wilson loop correlation function

and the relative contributions of ground to excited state contributions. It is

vital to have a quantitative technique for tuning these parameters in order to

optimise future studies of string breaking. The measure must be the extent to

which the ground state dominates the correlation function.

Efficient methods exist for the unimproved Wilson action for fine tuning the

smearing parameters to provide optimal overlap with the ground state potential.

For ú : 0, W (r,ú : 0) : 1 providing the constraint DuCo(r) : 1 for a given

r. For unimproved actions, where the transfer matrix is positive definite, each

C¿(r) 2 0. This mean. Ct(") can be monitored at large r but small ú as the

number of smearing sweeps are varied, with the optimal amount of smearing

occurring when C1(r) = 1. The proximity of C{r) to 1 for small Ú may be easily

estimated from the ratio

W'*'(r,t)lWt(r,ú + 1) (4.3)

which equals Cr(r) in the limit C{r) -- 1. This provides a quantitative measure

of ground-state-dominance for unimproved Wilson actions. We note that it is

suffrcient [48] to fix the smearing fraction, a, and explore the parameter space

via the number of smearing sweeps' rt,.
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This procedure can be repeated for a number of alternate paths of links for

a given separation r. By using variational techniques as described in Ref. [49],

the combination of paths that gives the greatest overlap with the ground state

can be found.
Actions improved in the time direction do not satisfy Osterwalder-Schrader

[50] positivity [51]. This spoils the positive definite nature of the transfer matrix
and the constraint C¿(r) > 0 is lost. Hence one needs either a neu/ quantitative

measure for evaluating ground-state-dominance, or to check the merits for using

Symanzik improved gluon actions for the static quark potential at large r'
For exploratory purposes, we fixed a:0.7 and considered the values n:70,

20, 30 and 40. The best results on a 163 x 32 lattice with lattice spacing x 0.I7
fm, are obtained using a : 0.7 and n : 10 for the unimproved Wilson gauge

action. This corresponds to a transverse RMS radius for the smeared links of

0.31 fm, where the transverse RMS radius after n sweeps is defined by

/^2\ _ D, r2V](r)\r")n:ffi Ø.4)

where

v(r') :? 
l,t 

- a)6,,, * if,ø,,,*+t, * o.--òfv-t(r)

and

%(") :{å ."tz
Analogous to the RMS smearing radius of Jacobi Fermion Source Smearing [52],
this provides a reasonable estimate of the transverse smearing of mean field

improved links (t/r(z) - 1).

Wilson loops, W(r,t), or more precisely W(r,A, z,t) wherc 12 : tr2 +92 + 22,

are calculated both on-axis, along the Cartesian directions, and off-axis. On-

axis Wilson loops are those that lie, e.g., in the r - ú plane only; off-axis loops

begin, for example, by first stepping into the A or z (or both) directions before

proceeding through the r - ú plane (Fig. 4.1). This provides an alternative to
the usual method of calculating the off axis potential by building paths in three
different directions using small elemental squares, rectangles or cubes (as in
Fig. a.2) and multiplying them together to form larger paths (see, for example,

Ref. [53]). These standard techniques for calculating the off-axis potential may

be combined with the approach described here using the variational method
described extensively in Ref. [49].

Due to the periodicity of the lattice, the size of our Wilson loops are limited
from L to a little over half the smallest lattice dimension in the on-axis directions
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Figure 4.1: Construction of on-axis (left) and off-axis (right) Wilson loops using

gauge links.

z

v

X

Figure 4.2: The usual method for constructing loops with separation (3,2,0)

(left) and (2,2,2) (right) using the elementary building blocks (1,0,0), (1,1,0),

(2,1,0), and (1,1,1)
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z

r¿ x

Figure 4.3: Six possible paths for a separation F: (3,2,2)

and between 0 and 3 in the transverse directions. For example, for a 163 x 32

lattice, the sizes of the Wilson Loops, t x r x U X z,vary from a 1 x 1 x 0 x 0

loop, to a 10 x 10 x 3 x 3 loop. Statistics are improved by transposing the loops

over all points on the lattice and by rotating through the three spatial directions

In order to efficiently calculate Wilson loops of various sizes, including off-

axis loops, we build products of links in each direction that we are considering for
our Wilson loop. Link products extending from every lattice site are calculated
in parallel. The loops are then formed in parallel by multiplying the appropriate

sides together. Each side is created by reusing the components of the previous

loop and one additional link. The same approach can be extended to loops that
travel off-axis.

In an attempt to isolate the ground state potential for ofl'-axis paths, one

symmetrizes over the path of links connecting the off-axis heavy quark propâga-

tors, exploiting the full cubic symmetry of the lattice. For example, two points

separated by n, sites in the r-direction, no sites in the g-direction and n, sites

in the z-direction, may be connected by n* link products in the r-direction, no

link products in the E-direction and n" link products in the z-direction which
we denote by the triplet ryz. Instead of only calculating off-axis paths in
the specific order ryz, we average over spatial paths calculated in the order
rAzjrzAtylxzjUz:x,zxiAjzyr. Figure 4.3 shows the six possible paths for a sepa-

ration r-: (3,2,2). We calculated loops using this path-symmetrized technique
as well as loops using a non-path-symmetrized operator where the order xyz
alone is considered. The former form of operator is designed to suppress excited
states by incorporating the full hyper-cubic symmetry of the lattice, whereas
the latter operator is susceptible to excited state contamination. By compar-
ing the static quark potential for these two operators, one can gain qualitative
information on the effect of excited states in the static quark potential.
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4.3 Numerical S¡mulations

Gauge configurations are generated with a mean-fleld improved, plaquette plus

rectangle gluon action (Eq. (3.t5)) using the Cabibbo-Marinari [54] pseudoheat-

bath algorithm with three diagonal SU(2) subgroups. Simulations are performed

using a parallel algorithm with appropriate link partitioning [55]. Configurations

are generated on a 163 x 32 lattice at B:5.74 using a standard Wilson action

(nq. (a.S)) which corresponds to a lattice spacing ø : 0'165(2) fm, and on a
163 x 32 lattice at p :4.38 using the Symanzik improved action (Eq. 3.15) which

also corresponds to a lattice spacing a :0.765(2) fm. Thus the two lattices have

the same lattice spacing and physical volume.

Configurations are selected after 5000 thermalization sweeps from a cold

start. The mean link, us, is avetaged every 10 sweeps and updated during ther-

malization. For both the standard \Milson action and the Symanzik improved

action, conflgurations ale selected every 500 sweeps. 'I'he t'ollowing analysis is

based on an ensemble of 100 configurations for each action.

4.4 Sim u lation Resu lts

The effective potential is obtained from

vu):r'* (--w("'f\ . (4.5)
tvV(r,t+l))'

which is expected to be independent of t for Ú ) 0. Figure 4.4 displays the

effective potential as a function of Euclidean time, ú, obtained from 100 config-

urations generated via the Symanzik improved action at B : 4.38. For r ) 7,

we find that the signal is generally dominated by noise for ú > 4, so we set the

upper limit of our fitting range to ú-,* : 4. The good plateau behavior at small

Euclidean time is a reflection of the optimized smearing. Choosing the lower

limit ú-i,,:1 leads to large y2ld.o.f. for large r. We fix the fitting range to be,

in most câses, t:2to 4. The string tension is then extracted from the ansatz,

V(r) : Vo I or - elr (4.6)

where e:r172 [56], and V¡ and o atefrt parameters'

The values for I/(r) * elr : or ]_Vs a,re then fitted to a line and the slope,

o, and.intercept, vs, are extracted. we fit the range 3 < r < 7 such that we are

not sensitive to the coulomb term and its associated dicretisation artifacts [57].

The error analysis is done using the Bootstrap method and all errors quoted are

statistical only. Using t/o:440 MeV to set the scale, the lattice spacings are

determined.
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25

Figure 4.4: Euclidean time evolution of the effective potential. FYom bottom
up, the "horizontal" lines correspond to r : 1 through 10. Here we use the

Symanzik improved action with B : 4.38 and 10 sweeps of smearing at a : 0.7.

Axes are in lattice units. Points are offset to the right for clarity.

Figure 4.5: Euclidean time evolution of the effective potential. Flom bottoffi üp,

the "horizontal" lines correspond to r :1 through 10. Here we use the standard
unimproved \Milson action with B :5.74 and 10 sweeps of smearing at a:0.7.
Axes are in lattice units. Points are offset to the right for clarity.
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4.4.1 Wilson Loop Correlation Function

To have any hope of seeing string breaking in QCD with dynamical fermions, the

gauge links must frrst be smeared to improve the overlap of the ground state. The

effects of smearing the spatial links (Eq. (a.2)) before calculating Wilson Loops

is well known. Smearing provides access to the static quark potential at larger

distances, providing a better chance of eventually being able to detect string

breaking. Also, the lines with smeared links exhibit better plateau behavior in

1/r(r) than the unsmeared ones, indicating that we have better isolation of the

ground state.

Figs. 4.4 and 4.5 illustrate the time dependence of Eq. 4.5 f.or Symanzik

improved and standard Wilson gluon actions respectively. For clarity, we only

plot values for r that are obtained from on-axis loops. For both the improved

arrd unimproved actions, we see a clean signal up to r = 8 for the first three

or four time slices. For r values greater than this, the quality of the statistical

signal does not allow values of ú larger than 2 or 3 to be included in the fits.

4.4.2 Off Axis Perturbations and Symmetry

Our method for stepping off-axis requires the use of a path-symmetrized oper-

ator. Fig. 4.6 displays results for the path-symmetrized operator for separating

the qQ pair, while Fig. 4.7 illustrates the non-path-symmetrized result. Both

plots are obtained with 10 smearing sweeps af' Q :0'7' Banding is clearly evi-

dent in the non-path-symmetrized case but as soon as we path-symmetrize our

operators, the banding largely disappears in off-axis points up to about r:7.
After r : 7, the banding still persists in off-axis points where loops of the form

r x 1 x 3, r x 2 x 3 or r x 3 x 3 (where r : on-axis step size and is greater

than 7) are used. However the banding is negligible in off-axis points up to,

and including, r x 2 x 2. Since our off-axis points are obtained by firstly step-

ping in one direction and then stepping in a different Cartesian direction, we

are forming a right angle, not an approximate straight line. The fact that for

r 17,the r x 3 x 3 points lie on the line-of-best-fit is an interesting result and

provides support for the use of this operator in a variational approach when

searching for ground state dominance and its associated string breaking in full

eCD. However, the persistence of banding at large r is an indicator that further

Euclidean time evolution is required to isolate the ground state potential'
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Figure 4,6: The static quark potential, V(r), as a function of the separation

r. Data is from the Symanzik improved action at þ:4.38 with 10 sweeps of
smearing at e. : 0.7 and a path-symmetrized operator. Time slices ú : 1 to
4 are used in the fit of the correlation function. Error bars are magnified by a
factor of 20 and placed on the r-axis for clarity.
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Figure 4.7: The static quark potential, V(r), as a function of the separation
r. Data is from the Symanzik improved action at B:4.38 with 10 sweeps of
smearing a,t o¿ :0.7 and a non-path-symmetrized operator. Time slices ú : 1

to 4 are used in the fit of the correlation function. Statistical error bars are too
small to be seen.
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4.4.3 Effect Of Using Symanzik lmproved Gauge Field

Configurations

Historically, the main feature of improved gauge field actions is the improved

rotational symmetry [15]. This can be seen in our configurations by comparing

Figs. 4.8 and 4.9. These graphs are enlargements of the small-r area. The off

axis points for the Symanzik improved þ : 4'SS lattices lie closer to the line of

best fit through the Cartesian points, r : 3 to 7, than the unimproved Wilson

13 : 5.74lattices.

However, here we are most interested in the large distance properties of

the Wilson loop. To draw firm conclusions on the merits of using Symanzik

improved actions in the search for string breaking, we create a matched set of

standard Wilson gluon configurations, tuned to reproduce the string tension of

the B: 4.38 improved configurations.

Figs. 4.6 and 4.10 compare symanzik improved and unimproved wilson re-

sults for I/(r) extracted from correlated fits within the range 7 < t < 4. A
similar comparison is made with Figs. 4.11 and 4.12 within the range 2 < t < 4.

Magnified error bars are plotted on the X-axis to allow a comparison of signal

to noise between the two actions. Exponential growth in the error bars for large

r is apparent in the fits with 2 < t < 4.

It is crucial to compare matched lattices with the same lattice spacing and

same physical volume. For example, a comparison of an unimproved Wilson

lattice with B : 5.70 and lattice spacing ¿ : 0'181(2), with a Symanzik im-

proved lattice at B :4.38 and ¿ : 0.165(2) leads one to incorrectly conclude

that Symanzik improved actions lead to an improvement in the signal-to-noise

ratio of the static quark potential at large qq separations. The unimproved con-

figurations with B: 5.70 lose the signal around rf a:7.5 (r:L.37 fm) when

using time slices ú - 2 - 4, whereas the improved configurations hold the signal

up to rf a :9.5 (r : 1.59 fm) when using ú : 2 - 4. This effect is due to

the slightly larger lattice spacing in the 13 : 5.70 simulations, which spoils the

signal-to-noise ratio even after the larger lattice spacing is taken into account.

Close inspection of Figs. 4.10 and 4.12, where the Euclidean time regimes

1 < ú < 4 and,2 <t < 4 are compared, reveals how the off-axis points can also

be used to gain confidence in ground state dominance. In Fig. 4.10, banding

is apparent. However, upon adjusting the Euclidean time regime for the fit to
larger times in Fig. 4.t2, the banding is largely removed'
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Figure 4.8: A close up of the static quark potential, V(r), as a function of the

separation r. Data is from the Symanzik improved action at B:4.38 with 10

sweeps of smearing a,t e. :0.7 and a path-symmetrized operator. Time slices

t : 2 to 4 are used in the fit of the correlation function. The dashed line is a fit
of Eq. 4.6 to on axis points r : 3 to 7.
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Figure 4.9: A close up of the static quark potential, V(r), as a function of the
separation r. Data is from the unimproved Wilson action at B :5.74 with 10

sweeps of smearing at e, :0.7 and a path-symmetrized operator. Time slices

t : 2 to 4 are used in the fit of the correlation function. The dashed line is a frt
of Eq. 4.6 to on axis points r :3 to 7.
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Figure 4.10: The static quark potential, V(r), as a function of the separation

r. Data is from the unimproved \Milson action at p :5'74 with 10 sweeps of

smearing at a :0.7 and a path-symmetrized operator. Time slices t : I to
4 are used in the fit of the correlation function. Error bars are magnified by a

factor of 20 and placed on the r-axis for clarity.

4.5 Summary

We have calculated the static quark potential in quenched QCD using Symanzik

improved and unimproved Wilson gluon actions. We have kept the lattice spac-

ing and the physical volume of these lattices equal so that we can meaningfully

compare the results. The number of gauge field configurations (100 here) is also

held fixed for each action. We have explicitly shown that, despite the relatively

coarse lattice spacing, the unimproved and computationally less expensive Wil-

son action does just as well as the improved action in extractingthe qQ potential

at large separations. Ifone wishes to keep non-perturbative physics such as non-

trivial topological fluctuations on the lattice, then one needs ø < 0.15 fm [58],

and thus rla> 7 is required to reach the string breaking distance of about 1.1

fm [43]. In this case, the unimproved, standard Wilson gauge action is ideal for

todays string breaking searches and computational resources can be redirected

elsewhere. Another advantage for using unimproved Wilson gauge configura-

tions is that we recover the extremely useful method for calculating the overlap

with the ground state, Ct(r), and thus tuning the smearing parameters.

We also explored the use of unconventional paths in accessing off-axis values

of r in the static quark potential. These paths can provide insight into the
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Figure 4.11: The static quark potential, V(r), as a function of the separation
r. Data is from the Symanzik improved action at B:4.38 with 10 sweeps of
smearing àt e. :0.7 and a path-symmetrized operator. Here time slices ú : 2

to 4 are used in the fit of the correlation function. Error bars are magnified by
a factor of 20 and placed on the r-axis for clarity.

extent to which the ground state potential dominates the Wilson loop at large

Euclidean times. Provided the paths are symmetrized, these new paths provide

useful information on the ground state potential and nearby excited potentials.

Combined with standard paths and variational techniques, these paths offer
additional promise for the search for string breaking in lattice QCD.
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Figure 4.L2: The static qua,rk potential, V(r), as a function of the separation

r. Data is from the unimproved \Milson action at B :5'74 with 10 sweeps of

smearing a,t" a :0.7 and a path-symmetrized operator. Time slices t : 2 to

4 are used in the fit of the correlation function. Error bars are magnified by a

factor of 20 and placed on the r-axis for clarity'
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5

Scale Determinations For An
lmproved Gluon Action

As we saw in the previous chapter, it is important to accurately set the physical

scale of the lattice spacing so that quantities calculated on the lattice can be

connected to the physical world. Every physical observable calculated on the

lattice is dimensionless. For example, a lattice calculation of the nucleon mass

is related to physical result and the lattice spacing by

Mþtti"" = MPlvsicat o,

where the lattice spacing is in units of (fm) and the physical mass in (GeV). In

units where h,c:7,0.1973 GeV fm:1.
A comprehensive study of the behaviour of the lattice spacing for the Wilson

gauge action has been performed by Edwards et aI. [57]. This type of study has

yet to be done for the symanzik improved gluon action defined in Eq. (3.15).

This is the subject of this chapter.

5. 1 Setting The Sca le

We saw in the previous chapter that lattice data for the static quark potential

can be fitted with the ansatz in Eq. (4.6). A more accurate ansat'z has been

suggested [57,59] which makes a correction to the Coulomb term to account

for the difference between the lattice one-gluon-exchange expression and the

continuum version,

v(r) : vo * or- " [i] . , ([l] - i) (5 1)

Here []] denotes the tree-level lattice Coulomb term

[i] 
: * l #cos(k 

r)Daa(o'k)' (5 2)

and. Daa(k) is the time-time component of the gluon propagator' In the contin-

uum limit, l*] t *.
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As mentioned in Section 4.4, it is possible to frt the linear part of the static
quark potential at large distances to extract the lattice string tension (o" :
a2oo) and by using the physical value, t/or:440 MeV, the lattice spacing is

determined.
A drawback to using the string tension to set the scale is that it is essential

to have the potential at large qq separations, r, where elrors are becoming large.

Another problem with the string tension is that in f'ull QOD, the string tension

is not well-defined due to string breaking.

An alternative to this method was suggested by Sommer [60] who proposed

an intermediate distance scale r"via the force between a quark and an antiquark

rf;V'çr.¡:r?F(r"):c, (5.3)

for some real number c. A common choice takes c : 1.65 which corresponds to
rc N ro: 0.5 fm. At this distance, potentials can be accurately measured on

the lattice. Another, less common, choice would be c:1 and rr :0.35 fm [61].
For coarser lattices, it is possible to use values of.r"x 1fm [57].

Following the procedure outlined in Ref. [57], we fit Eq. (5.1) to the lattice
data and obtain Vs, o, € and L By using

V(r) =Vo * or - elr

as the continuum limit of Eq. (5.1), rn¡e can insert the derivative of this equation
into Eq. (5.3) to obtain an ansatz for r",

Tc:
c-e

o
(5,4)

5.2 Resu lts

The simulations are performed on a variety of lattices with volumes 83 x 16, 103 x
20, 723 x 24, 763 x 32, 203 x 40, 243 x 36 and couplings in the range 3.75 <
P < 5.A. The full details of the lattices used are given in Table 5.1.

The procedure for calculating the static quark potential follows that given in
Sections 4.2 and 4.4. Dre to the increase in error at large distances and times,
potentials calculated on coarse lattices must be fitted at early times and shorter
distances. As an example, if the signal becomes noisy after t : 4 for a lattice
with spacing 0.2 fm, then it is possible to only access information up to 0.8 fm.

This means that for a lattice with a spacing 0.4fm, only the first two timeslices

are available for fits before the signal is lost. Where possible, the first time slice

has been omitted from the fits so we have more confidence that the ground state
potential is isolated. The calculated lattice spacings for each value of B are given
in Table 5.1.
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p Volume Àto.rfie. a1/o a" (fm) ,ol o Ug

3.75

3.92

4.t0
4.286
4.38

4.53

4.60

4.60

4.80

5.00

83x16
103 x 20

123 x24
83x16
76s x32
203 x 40

723 x 24

163 x 32

763 x 32

243 x 36

200
100

50

50

100

33

50

50

100

10

0.e32(45)
0.787(40)
0.611(20)
0.423(28)
0.368(5)

o.2ee(11)

0.272(1r)
0.272(Lr)
0.207(5)

0.172(15)

0.418(20)
0.353(18)
0.272(e)
0.1e0(13)
0.165(3)

0.134(5)
0.122(5)

0.122(5)
o.oe3(2)

0.077(e)

1.e4(3)
2.63(4)

3.1e(1)

3.eo(12)
4.31(r2)
4.31(12)
5.65(e)

0.8195

0.8329

0.8557

0.8727
0.8761

0.8859

0.8889

0.8889

0.8966

0.9029

Table 5.1: Lattice spacings, B and volumes. The values for ao are set using

\G :440 MeV. The scale for the small p : 4'60 lattice estimates are taken

from the large B:4.60 lattice

5.3 The Scaling Function

The two-loop scaling function of ,Stl(3) gauge theory [62] is given by

f (s")=(bog\-fu.*p-#, bo: #,ur: ffi
The lattice spacing can be fitted using

(5.5)

a(s): ry, (5'6)

where r\, is a fit parameter

Since we are using a gauge action that is mean-field improved, for every value

of B :6f 92 that we input into our simulations, there will be a corresponding

mean-field improved version of beta, Érup, as seen by

s,-o : 0oD,{å,t- p¡,,)-io-fft+fitr -%,\ (52)

þo"t D
r¡þ)v

* terms independent of the gauge fields (5'B)

and we define þ : þwtp : þout in agreement with Eq. (3.15). As a consequence,

the lattice spacing will scale via Eq. (5.5) best when B¡¡ap : 6lg'is used to define

{Zu-Hr-firr -fft+firr -T,\
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g. We therefore calculate the tadpole improvement parameter via the plaquette

measure of Eq. (3.14) and the values for each value of (input) B arc given in

Table 5.1. Fig. S.L shows the behaviour of B1¡ap with B. \Me are then able to
plot the lattice spacing obtained from the string tension as a function of B1¡ap

as shown in Fig. 5.2. We fit the data in Table 5.1 using Eq' (5.6) to obtain
Ä, : 0.59.

Using Figs. 5.2 and 5.1, it is now possible to work backwards and make

an estimate for the value of B one should choose to achieve the desired lattice
spacing.
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Fat-Link lrrelevant Clover l-ermton
Actions

6. 1 lntrod uction

The origin of the masses of light hadrons represents one of the most fundamen-

tal challenges to QCD, Despite the universal acceptance of QCD as the basis

from which to derive hadronic properties, there has been slow progress in un-

derstanding the generation of hadron mass from first principles. Solving the

problem of the hadronic mass spectrum would allow considerable improvement

in our understanding of the nonperturbative nature of QCD. The only available

method at present to derive hadron masses directly from QCD is a numerical

calculation on the lattice.
The high computational cost required to perform accurate lattice calcula-

tions at small lattice spacings has led to increased interest in quark action im-
provement. As mentioned in Section 3.3.3, the Sheikholeslami-\Mohlert (clover)

action [21] introduces an additional irrelevant dimension-five operator to the

standard Wilson [11] quark action,

ssw : ,9w - Wy $(r)o*F¡",',þ(r) , (6.1)

where s1¡¡ is the standard wilson action defined in Eq. (3.22) and csv/ is the

clover coefficient which can be tuned to remove O(a) aúrfacts,

6

1 at tree-level ,

Lf ul mean-field improved ,

(6.2)

with z6 the tadpole improvement factor (Eq. (3.1a)) which corrects for the quan-

tum renotmalization of the operators. Nonperturbative (NP) (2(ø) improve-

ment l22l tunes Csy¿ to all powers in 92 and displays excellent scaling, as shown

by Edwards et al. [63], who studied the scaling properties of the nucleon and

vector meson ma,sses for various lattice spacings (see also Section 6.4 below).

In particular, the linear behavior of the NP-improved clover actions, when plot-

ted against a2, demonstrates that O(a) erïors are lemoved- It was also found

Csw
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in Ref. [63] that a Iinear extrapolation of the mean-field improved data fails,

indicating that O(a) errors are still present'

The established approach to nonperturbative (NP) improvement 122] tunes

the coefficient of the clover operator to all porù/ers in g'. Unfortunately, this

formulation of the clover action is susceptible to the problem of exceptional

configurations as the quark mass becomes small. Chiral symmetry breaking in

the clover fermion action introduces an additive mass renormalization into the

Dirac operator that can give rise to singularities in quark propagators at small

quark masses. In practice, this prevents the simulation of small quark masses

and the use of coalse lattices (þ <S.Z - ct,) 0.18 fm) [64,65]. Furthermore, the

plaquette version of. F¡", in Eq. (3.36), which is commonly used in Eq. (6't), has

large O(a2) errors, which can lead to errors of the order of 70% in the topological

charge even on very smooth configurations [48].

The idea of using fat links in fermion actions was first explored by the MIT
group [66] and more recently has been studied by DeGrand et al' [64,67,68], who

showed that the exceptional configuration problem can be overcome by using a

fat-link (FL) clover action. Moreover, the renormalization of the coefficients

of action improvement terms is small. In principle it is acceptable to smear

the links of the relevant operators. The symmetry of the APE smearing process

ensures that effects arc O(a2). The factors multiplying the link and staple ensure

the leading order term is eioeAr, an element of SU(3). Issues of projecting the

smeared links to SU(3) arc O(a2) effects and therefore correspond to irrelevant

operators [69]. However, the net effect of APE smearing the links of the relevant

operators is to remove gluon interactions at the scale of the cutoff. While this has

some tremendous benefits, the short-distance quark interactions are lost. As a
result decay constants and vector-pseudoscalar mass splittings of heavy mesons,

which are sensitive to the wave function at the origin, are suppressed [70].

A possible solution to this is to work with two sets of links in the fermion

action. In the relevant dimension-four operators, one works with the untouched

links generated via Monte Carlo methods, while the smeared fat links are in-
troduced only in the higher dimension irrelevant operators. The eflect this has

on decay constants and vector-pseudoscalar mass splittings of heavy mesons is

under investigation and will be reported elsewhere.

In this chapter we present results of simulations of the spectrum of light
mesons and baryons using this variation on the clover action. In particular, we

will start with the standard clover action and replace the links in the irrelevant

operators with APE smeared [39,40], or fat links. We shall refer to this action

as the Fat-Link Irrelevant Clover (FLIC) action. Although the idea of using fat
links only in the irrelevant operators of the fermion action was developed here

independentl¡ suggestions have appeared previously [71]. A published version
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of these results can be found in Ref. 172-74).

In Section 6.2 we describe the gauge configurations used in our lattice simu-

lations, while Section 6.3 contains the procedure for creating the FLIC fermion

action. The results of an investigation of the scaling of this action at finite lattice

spacing are presented in Section 6.4. In Section 6.5 we investigate the problem of

exceptional configurations by performing simulations of hadron masses at light
quark masses corresponding to mn lmp: 0.35. section 6.6 discusses the evidence

for enhancement in octet-decuplet mass splittings as one approachs the chiral

limit in the quenched approximation and finally in Section 6.7 we summarise

the results.

6.2 The Gauge Action

The simulations are performed using a tree-level 0(a2)*symanzik-improved [16]

gauge action on !23 x 24 and 163 x 32 lattices with lattice spacings of 0'093,

0.L22 and,0.165 fm determined from the string tension with 1fr:440 MeV.

Initial studies of FLIC, mean-field improved clover and Wilson quark actions

were made using 50 configurations. The scaling analysis of FLIC fermions was

performed with a total of 200 configurations at each lattice spacing and vol-

ume. In addition, for the light quark simulations, 94 configurations are used on

a20s x 40 lattice with ø:0.134 fm. Gauge configurations are generated us-

ing the Cabibbo.Marinari pseudoheat-bath algorithm with three diagonal SU(2)

subgroups looped over twice. Simulations are performed using a parallel algo-

rithm with appropriate link partitioning [55], and the error analysis is performed

by a third-order, single-elimination jackknife, with the X2 per degree of freedom

(I/ne) obtained via covariance matrix fits.

6.3 Fat- Lin k I rreleva nt Ferm ion Action

Fat links 164,671are created by averaging or smearing links on the lattice with

their nearest neighbours in a gauge covariant mannel (APE smearing). The

smearing procedure [39, 40] replaces a link, u r(*), with a sum of the link and o

times its staples

4

ur(*) -- u'r(r) : (1 - a)ur(r) . iÐlu,ç*¡urç, + ua)ui(r + P'o')

v*1"

+ Ui(r - ua)(Jr(r - ua)U,(r - ua * pr¡] , 1o.a;
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followed by projection back to SU(3). We select the unitary matrix Uf,L which

maximizes

nett(U[L U']) ,

by iterating over the three diagonal SU(2) subgroups of SU(3). Performing eight

iterations over these subgroups gives gauge invariance up to seven significant

figurcs. Wc rcpeat the combined procedure of smearing and projection n times.

We create our fat links by setting a:0.7 and comparingn:4 and 12 smearing

sweeps. The mean-field improved FLIC action now becomes

sL!,:sIl- rytþ(r)o*F¡",,,þ(*), (6.4)JSw - "w 2@gt)

where Fru is constructed using fat links, z$L is calculated in an analogous way to
Eq. (3.1a) with fat links, and where the mean-field improved Fat-Link Irrelevant

\Milson action is

s#: D,,ú(,),þ(,) + ^D{,@)lr,(Tr@+ tù 
^nk-ù.,þ(" 

- îù)

,(ffir@+t,)+ @-t') (" - Ê))l , (6 5)

with rc : 1l Qm + 8r). We take the standard value r : I. Our notation uses the
Pauli (Sakurai) representation of the Dirac 7-matrices defined in Appendix A.
In particular, the 1-matrices are hermitian and o¡",: l^lp, 1"llQi.).

As reported in Table 6.1, the mean-field improvement parameter for the fat
links is very close to 1. Hence, the mean-field improved coefficient for Csyy is

expected to be adequatel. In addition, actions with many irrelevant operators'
(e.g. the Dza action) can now be handled with confidence âs tree-level knowledge

of the improvement coefficients should be sufficient. Another advantage is that
one can now use highly improved definitions of Fu, (involving terms up to 2fr2),

which give impressive near-integer results for the topological charge [23]. A
discussion of F¡", improvement can be found in Appendix B.

In particular, we employ the 3-loop O(aa)-improved definition of F* inwhich
the standard clover-sum of fbur 1 x 1 loops lying in the p,,u plane is combined

with 2 x 2 and 3 x 3 loop clovers. Bilson-Thompson et al. [23] frnd

Ft,: ilG*;, - &*rr' * h*ir') - n 
" ]rhace,ess 

(6 6)

lOur experience with topological charge operators suggests that it is advantageous to in-
clude ue factors, even as they approach 1.
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n ,3" ("å.t)n

0

4

t2

0.88894473

0.99658530

0.99927343

0.62445L97

0.98641100

0.99709689

Table 6.1: The value of the mean link for different numbers of APE smearing

sweeps' n, at a : 0.7 on a 163 x 32 lattice at B :4'60 which corresponds to a
lattice spacing of.0.L22 fm set by the string tension.

where Wnxn is the clover-sum of four n x n loops and F* is made traceless

by subtracting 1/3 of the trace from each diagonal element of the 3 x 3 color

matrix. This definition reproduces the continuum limit with O(ou) errors. On

approximately self-dual configurations, this operator produces integer topolog-

ical charge to better than 4 parts in 104. \Ä/e also consider a 5-loop improved

F* for the 203 x 40 lattice at B :4.53. Since the results for the 5-loop operator

agree with the 3-loop version to better than 4 parts in 104 [23], we are effectively

using the same action as far the scaling analysis is concerned.

Work by DeForcr and et al. [75] suggests that 7 cooling sweeps are required to

approach topological charge within I% of integer value. This is approximately

16 APE smearing sv¡eeps àt e:0.7 [58]. However, achieving integer topological

charge is not necessaïy for the pulposes of studying hadron masses' as has

been well established. To reach integer topological charge, even with improved

definitions of the topological charge operator, requires significant smoothing and

associated loss of short-distance information. Instead, we regard this as an upper

Iimit on the number of smearing sweeps.

Using unimproved gauge fields and an unimproved topological charge opera-

tor, Bonnet et aI. [48] found that the topological charge settles down after about

10 sweeps of APE smearing at a:0.7. Consequently, we create fat links with

APE smearing parameters n : 12 and a : 0.7. This corresponds to - 2.5 times

the smearing used in Refs. 164,671. Further investigation reveals that improved

gauge fields with a small lattice spacing (a:0.122 fm) are smooth after only 4

sweeps. Hence, we perform calculations with 4 sweeps of smearing at Û : 0.7

and considet n: L2 as a second reference. Table 6.L lists the values of u['L for

n:0, 4 and L2 smearing sweePs.

We also compâre our results with the standard Mean-Field Improved Clover

(MFIC) action. We mean-field improve as defined in Eqs. 6.4 and 6'5 but with

thin links throughout. For this action, the standard l-loop definition of Fp is

used.
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Figure 6.1: Effective mass plot for the nucleon for the FLIC action on â, 163 x 32

Iattice at B :4.60 which corresponds to a lattice spacing of. 0.122 fm set by the
string tension. The fat links are created with 4 srù/eeps of smearing at a :0.7
from 200 configurations. The five sets ofpoints correspond to the rc values listed
in Table 6.2, with rc increasing from top down.

A fixed boundary condition is used for the fermions by setting

U¿(i,nt):g and Ul"@,nt):g Vi (6.7)

in the hopping terms of the fermion action. The fermion source is centered

at the space-time location (r,A,r,¿) : (1,1,1,3), which allows for two steps

backward in time without loss of signal, for all simulations except those on the
203 x 40 lattice at B : 4.53 which has the fermion source located at (r, U , z, t) :
(1,1,1,8). Gauge-invariant gaussian smearing [76] in the spatial dimensions is
applied at the source to increase the overlap of the interpolating operators with
the ground states.
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6.4 Scaling of FLIC Fermions

Hadron ma,sses are extracted from the Euclidean time dependence of the calcu-

lated two-point correlation functions. Analogous to Eq. (3.44), for baryons the

correlation functions are given by

G(t;F,r) : D e-¿Ft t1"(QlTlx"(r)tB(0)llç¿) , (6 8)

Í
where X are standard baryon interpolating fields, Q represents the QCD vacuum'

f is a 4x4matrix in Dirac space, and a, B are Dirac indices. At large Euclidean

times one has

G(t;F,r) = fr e-E't trlr(-¿'y 'e + M)1, (6.e)

where Z represents the coupling strength of ¡(0) to the baryon' and Eo :
@'+ ¡¡42¡r/z is the energy. Selecting i:0 and l: (1 + lù14, the effective

baryon mass is then given by

M(t):log[G(t)] -log[G(ú+1)] . (6.10)

Meson masses are determined via analogous standard procedures. The critical

value of K, K",, is determined by linearly extrapolatingrTù? as a function of mn

to zero and the quark masses are defined by mn: (1ln - Ilo-) lQ")'
Figure 6.1 shows the nucleon effective mass plot for the FLIC action on a

163 x 32 lattice at B :4.60 which corresponds to a lattice spacing of.0.722 fm set

by the string tension. The fat links are created with 4 APE smearing sweeps at

a:0.7 ("FLIC4"). The effective mass plots for the other hadrons are similar,

and all display acceptable plateau behavior. Good values of y2 f N¡p are obtained

for many different time-frtting intervals as long as one fits after time slice 8. All
fits for this action are therefore performed on time slices 9 through 14. For the

Wilson action and the FLIC action with n: 12 ("FLICl2"), the effective mass

plots look similar to Fig. 6.1 and display good plateau behaviour' The fitting

regimes used for these actions are 9-13 and 9-14, respectively'

The values of rc used in the simulations for all quark actions are given in

Table 6.8. We have also provided the values of n., for these fermion actions

when using our mean-field improved, plaquette plus rectangle, gauge action

at B : 4.69. We have mean-field improved our fermion actions so we expect

the values for rc", to be close to the tree-level value of 0.125. Improved chiral

properties ale seen for the FLIC and MFIC actions, with FLIC4 performing

better than FLIC12.
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K n'Lr a

0.5797

0.5331(24)
0.4744(27)
0.4185(30)
0.342e(37)

ù

0.7278(3e)
0,6e51(45)

0.6565(54)

0.622e(65)
0.5843(e7)

?7íIN a

1.oee5(58)

1.041e(64)

0.e70e(72)
0.e055(82)
0.8220(t02)

rn\A
1.1869 104)

1.1387(121)

1.0816(152)

1.0310(1e4)

o.e703(286)

0.1260

0.1266

0.7273
0.7279
0.1286

Table 6.2: Values of rc and the corresponding r, P, N and A ma,sses for the FLIC
action with 4 sweeps of smearing at a : 0.7 on a 163 x 32 lattice at B : 4.69'
The value for /c", is provided in Table 6.3. A string tension analysis incorporating
the lattice coulomb term provides o:0.122(2) fm for t/o:440 MeV.

Wilson FLIC12 FLIC4 MFIC
K1 0.1346

K2 0.1353

Ks 0.1360

K4 0.1367

K5 0.1374

Kcr 0.1390 0,1328 0.1300 0.1226

Table 6.3: Values of rc and K", for the four different actions on a 163 x 32 lattice
at B:4.60 which corresponds to a lattice spacing of.0.122 fm set by the string
tension.

The behavior of the p, nucleon and A masses as a function of squared pion

mass are shown in Fig. 6.2 for the various actions. The first feature to note is
the excellent agreement between the FLIC4 and FLIC12 actions. On the other
hand, the Wilson action appears to lie somewhat low in comparison. It is also

reassuring that all actions give the correct mass ordering in the spectrum. The
value of the squared pion mass at mnfmo:0.7 is plotted on the abscissa for
the three actions as a reference point. This point is chosen in order to allow
comparison of different results by interpolating them to a common value of
molmp - 0.7, rather than extrapolating them to smaller quark masses, which
is subject to larger systematic and statistical uncertainties.

The scaling behavior of the different actions is illustrated in Fig. 6.3. The
present results for the Wilson action agree with those of Ref. [63]. The first
feature to observe in Fig. 6.3 is that actions with fat-link irrelevant operators

0.1286

0.7292
0.1299

0.1305

0.1312

0.1260

0.1266

0.7273
0.7279
0.1286

0.1196

0.1201

0.1206

0.r27r
0.1216
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Figure 6.2: Masses of the nucleon, A and p meson velsus nx| for the FLIC4,

FLICI2 and \Milson actions on a 163 x 32 lattice at P:4'60 which corresponds

to a lattice spacing of 0.t22 fm set by the string tension.

perform extremely well. For both the vector meson and the nucleon, the FLIC

actions perform significantly better than the mean-field improved clover action.

It is also clear that the FLIC4 action performs systematically better than the

FLIC12. This suggests that 12 smearing sweeps removes too much short-distance

information from the gauge-field configurations. On the othe¡ hand, 4 sweeps

of smearing combined with our O(on) improved .F'* provides excellent results,

without the fine tuning of Gw in the NP improvement program.

Notice that for the p meson, a linear extrapolation of previous mean-field im-

proved clover results in Fig. 6.3 passes through our mean-field improved clover

result at a2o - 0.075 which lies systematically low relative to the FLIC actions'

However, a linear extrapolation does not pass through the continuum limit re-

sult, thus confirming the presence of signiflcant O(a) erlors in the mean-field

improved clover fermion action. While there are no NP-improved clover plus

improved glue simulation results at a2o - 0.075, the simulation results that are
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Figure 6.3: Nucleon and vector meson masses f'or the Wilson, NP-improved,
mean-field clover and FLIC actions. Results from the present simulations, indi-
cated by the solid points, are obtained by interpolating the results of Fig. 6.2

to mnf mo:0.7. The fat links are constructed with n : 4 (solid squares) and

n : 12 (stars) smearing sweeps at e :0.7. The solid triangles are results for
the FLIC4 action when 200 configurations are used in the analysis. The FLIC
results are offset from the central value for clarity. Our MF clover result at
a2o - 0.075 lies systematically low relative to the FLIC actions.
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available indicate that the fat-link results also compete well with those obtained

with a NP-improved clover fermion action.

Having determined FLIC4 is the preferred action, we have increased the

number of confrgurations to 200 for this action. As expected, the error bars are

halved and the central values for the FLIC4 points move to the upper end of

the error bars on the 50 configuration result, further supporting the promise of

excellent scaling.

In order to further test the scaling of the FLIC action at different lattice

spacings, we consider four different lattice spacings and three different volumes.

The lattice spacings and volumes are given in Table 5.1 and the results are dis-

played in Fig. 6.4. The two different volumes used at o,2o - 0,075 indicate a

small finite volume effect, which increases the mass for the smaller volume at

(r2o - 0.075 and - 0.045. Examination of points from the small and large vol-

umes separately indicates continued scaling toward the continuum limit. While

the finite volume effect will produce a different continuum limit value, the slope

of the points from the smaller and larger volumes agree, consistent with errors

or O@2).

Focusing on simulation results from physical volumes with extents - 2 fm

and larger, we perform a simultaneous fit of the FLIC, NP-improved clover

and Wilson fermion action results. The fits are constrained to have a common

continuum limit and assume errors are O(a2) for FLIC and NP-improved clover

actions and, O(a) for the Wilson action. An acceptable y2 per degree of freedom

is obtained for both the nucleon and ¡meson fits. These results indicate that

FLIC fermions provide a ner¡/ form of nonperturb ative O(a) improvement. The

FLIC fermion results display nearly perfect scaling indicating 0(o') errors are

small for this action.

6.5 Search For Exceptional Configurations

Chiral symmetry breaking in the \Milson action allows contintrum zero modes of

the Dirac operator to be shifted into the negative mass region' This problem is

accentuated as the gauge fields become rough (ø -t large). Local lattice artefacts

at the scale of the cutoff (often referred to as dislocations) give rise to spurious

near zero modes. The quark propagator can then encounter singular behaviour

as the quark mass becomes light'
Exceptional configurations are a severe problem in quenched QCD (QQCD)

because instantons are low action field configurations which appear readily in

QQCD. These instanton configurations give rise to approximate zero modes

which should be suppressed at light quark masses by det M in Eq' (3'39) which
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Figure 6.4: Nucleon and vector meson masses for the Wilson, Mean-Field (MF)
improved, NP-improved clover and FLIC actions obtained by interpolating sim-

ulation results to mnf mr:0.7. For the FLIC action ("FLIC4"), fat links are
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action results obtained on physically large lattice volumes.
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is present in the link updates in full QCD. This determinant is not present in

QQCD and as a result, near-zero modes are overestimated in the ensemble.

The addition of the clover term to the fermion action broadens the distribu-

tion of near-zero modes, As a result, the clover action is notorious for revealing

the exceptional configuration problem in QQCD. The FLIC action hopes to re-

duce the number of exceptional configurations by smoothing the gauge fields of

the irrelevant operator via APE smearing [39,40]. The smoothing procedure

has the effect of suppressing the local lattice artifacts and narrowing the distri-

bution of near-zero modes, enabling simulations to be performed at light quark

masses not currently accessible with the standard mean-field or non-perturbative

improved clover fermion actions.

In order to access the light quark regime, we would like our preferred ac-

tion to be efficient when inverting the fermion matrix. Fig. 6.5 compares the

convergence rates of the different actions on a 163 x 32 lattice at B :4.60 by

plotting the number of stabilized biconjugate gradient [77] iterations required to

invert the fermion matrix as a function of mnf m. For any particular value of

mnf mp, the FLIC actions converge faster than both the Wilson and mean-field

improved clover fermion actions. Also, the slopes of the FLIC lines are smaller

in magnitude than those for Wilson and mean-field improved clover actions,

which provides great promise for performing cost effective simulations at quark

masses closer to the physical values. Problems with exceptional configurations

have'prevented such simulations in the past.

The ease with which one can invert the fermion matrix using FLIC fe¡mions

(also see Ref [78]) leads us to attempt simulations down to light quark masses

corresponding to mnlmp: 0.35. Previous attempts with \Milson-style fermion

actions on configurations with lattice spacing > 0.1 fm have only succeeded in

getting down to mn I m p : 0.47 [79] . In order to search for exceptional configura-

tions, we follow the technique used by Della Morte et al.l79l and note that in the

absence of exceptional configurations, the standard deviation of an observable

will be independent of the number of configurations considered in the average.

Exceptional configurations reveal themselves by introducing a significant jump

in the standard deviation as the configuration is introduced into the average.

In severe cases, exceptional configurations can lead to divergences in correlation

functions or prevent the matrix inversion process from converging.

The simulations are on a 203 x 40 lattice with a lattice spacing of 0'134 fm

set by the string tension which corresponds to a physical length - 2.7 fm. We

have used an initial set of 100 conflgurations, using rz : 6 sweeps of APE-

smearing and a five-loop improved lattice freld-strength tensor. Fig' 6'6 shows

the standard deviation of the pion mass for eight quark masses on subsets of 30

(consecutive) conflgurations with a cyclic property enforced from configuration
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corresponds to a lattice spacing of.0.122 fm set by the string tension.

100 to configuration 1. At first glance, it is obvious that the error blows up
for several quark masses at.ðü: 12 and drops again at N :41. As configura-
tions 12 through 41 are included in the â,verage at ly' : 12, this indicates that
configuration number 41 is a candidate for an exceptional configuration. An
inspection of the pion mass in Fig. 6.7 shows that the pion mass for the third
lightest quark mass decreases signifrcantly more than the second or fourth light-
est quark masses. This indicates that K", for this configuration lies somewhere

between K6 and rc2. A solution to this problem would be to use the the modified
quenched approximation (MQM) from Ref. [65] and move rccr on this confrgura-

tion back to the ensemble average for rc".. Howevet, since the movement of n",

is largely a quenched artifact and would be suppressed in a full QCD simulation
we prefer to simply identify and remove such configurations from the ensemble.

Obviously, if we find that a signicant percentage of our configurations are having
trouble at a particular quark mass, then it would make no sense to proceed with
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Figure 6.6: The standard deviation in the error of the zr mass calculated on 30

configurations plotted against the starting configuration number for the FLIC-
fermion action on a 203 x 40 lattice with ¿ : 0.134 fm.

the simulation. We would then have to conclude that we have reached the light
quark mass limit of our action and simply step back to the next lightest mass.

Now let us return to Fig. 6.6. In addition to the highly exceptional configu-
ration number 41, we also notice a large increase in error in the lightest quark

mass for configuration numbers 2, 13, 30, 34 and 53. Upon removal of these

configurations, we see in Fig, 6.8 a near-constant behaviour of the standard de-

viation for the remaining configurations. This means that our elimination rate

for our FLIC6 action on a lattice with a spacing 0.134 fm is about 6%. So for

the 100 configurations used in this analysis, v/e ale able to use 94 of them to
extract hadron masses.

6.6 Octet-Decuplet Mass Splittings

Figure 6.9 shows the lü and A masses as a function of. ml for the FllC-fermion
action on a 203 x 40 lattice with ¿ : 0.732 fm (which corresponds to a string
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starting configuration number for the FllC-fermion action on a 203 x 40 lattice
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0.7278
0.1283

0.12885

0.1294
0.1299

0.13025

0.1306

0.1308

TTL( A

0.5400(30)

0.4ee8(31)

0.452t(34)
o.3eeo(38)
0.3434(43)
0.2e78(47)
0.241e(54)
0.te72(6e)

a

0.7304(55)
0.7053(58)

0.6774(63)
0.64e1(72)

0.6228(87)
0.6040(107)

0.5845(143)
0.5812(213)

TnN a

1.0e71(80)
r.0522(84)
1,o006(91)

0.e465(101)
0.8e44(116)

0.8562(134)
0.8r72(1.7r)
0.7e50(215)

1.2238(e8)
1.18ee(102)

1.1528(108)
1.1162(115)

1.0841(125)
1.0630(135)

1.0443(154)
1.0380(18e)

K ITIL A

Table 6.4: Values of rc and the corresponding r, p, N and A masses for the FLIC
action with 6 sweeps of smearing Ð,t a. :0.7. A string tension analysis provides

a:0.734(2) fm for yG :440 MeV.

tension scale with tF :450 MeV) such that the nucleon extrapolation passes

through the physical value for clarity. An upward curvature in the A mass for

decreasing quark mass is observed in the FLIC fermion results. This behav-

ior, increasing the quenched ¡\I - A mass spitting, wâs predicted by Young eú

ø1. [80] using quenched chiral perturbation theory (QXPT) formulated with a

finite-range regulator. A finite-regulated QXPT fit to the FllC-fermion results

is illustrated by the solid curves. The dashed curves estimate the correction

that will arise in unquenching the lattice QCD simulations [80]. We note that
after we have corrected for the absence of sea quark loops, our results agree

simultaneously with the physical values for both the nucleon and A'
We also calculate the light quark mass behaviour of the octet and decuplet

hyperons. The strange quark mass is chosen in order to reproduce the physical

strange quark mass according to the phenomenological value of an sF pseudo-

scalar meson,

m?":2m2o - m2,. (6.11)

Upon substitution of the physical masses for the zr and K mesons, this corre-

sponds to an s5 pseudoscalar meson mass of - 0.470 GeV2 which occurs at our

third heaviest quark mass. The form of our interpolating fields that we use to

excite these states from the QCD vacuum are discussed in detail in Section 7'3'

The results from this calculation are given in Table 6.5 and are illustrated in

Fig. 6.10. The results show the correct ordering and in particular, we notice a

mass splitting betweenthe strangeness: -1 (1: 1) E and (1:0) 
^ 

baryons

becoming evident in the light quark mass regime'

Just as Ìvr/e sarvr/ the non-analytic behavior of quenched chiral perturbation the-
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|TL¡ A rnD O, WtreA TfLÐ* A TnÉ* A

0.7278
0.1283

0.12885

0.7294
0.t299
0.13025

0.1306

0.1308

1.06e6(84)

1.0376(86)

1.0006(e1)

0,e615(e7)
0.e235(106)

0.8e55(117)
0.8667(137)
0.8544(154)

1.0616(83)

1.0328(86)

1.o006(e1)

0.e680(e7)

0.e383(106)

0.e178(116)

o.8e8o(132)

0.8e1e(152)

1.03s1(87)
1.0206(88)

1,0006(91)

o.e7ee(e4)
o.e603(e8)

0.946',2(.r ].2)

0.e323(1oe)
0.e254(114)

1.2002(101)

1..t776(104)
1.1528(108)

1.12S4(113)

1.1070(118)

1.0e30(124)

1.0806(132)

1.0772(142)

1.1765(104)
1.1652(106)
1.1528(108)
1.1406(110)
1.12ee(113)
r.r22e(t15)
1.1166(118)
1.1145(120)

Table 6.5: Values of the octet .4, E, E and decuplet D*, E* masses for each value

of rc for the FLIC action with 6 sweeps of smearing at t :0.7. A string tension

analysis provides a:0.L34(2) fm for tF :440 MeV.

ory in the A-baryon mass in Fig. 6.9 leading to an enhancement of the quenched

¡/ - A mass spitting, Fig. 6.11 shows a similar enhancement for the decuplet-

octet mass splittings in E and E baryons respectively. In Section 2,5 and in
particular Eq. (2.7), r¡/e saw that the quark model predicts that the hyperfine

splittings should approximately satisfy

E:-E':ET-E".
Fig. 6.12 shows that even though the quenched approximation enhances the

splitting between octet and decuplet baryons, the spiittings for the E and E
baryons still satisfy Eq. (2.7).

If we consider a naive extrapolation of the points in Fig' 6.12, we might

expect the results to produce the following mass splittings in the chiral limit

A-¡/ x 400MeV

t;-D" È E;-8,=290MeV,

which gives a ratio
F*Sr=*=Ls-LS -g--S

A-¡f A-¡\¡ (6.r2)

so r,¡re see that inspite of the enhanced mass splitting between octet and decuplet

baryons in quenched QCD, the ratio of the splittings agree well with the exper-

imental ratios in Eq. (2,10) and with the quark model prediction in Eq. (2'9)'

The value obtained from the QQCD simulations agrees extremelly well with the

experimental result involving the E baryons and reasonably well with the pre-

diction of the quark model. Agreement of the quenched QCD results with the



6.7 Summary 69

quark model prediction is not, perhaps, suprising since both have a suppressed

meson cloud. Similarly, one expects a suppression of the meson cloud when two

(heavy) strange quarks are present in a baryon.

6.7 Summary

In this chapter, we have found that minimal smearing provides better scaling

behavior. Our results suggest that too much smearing removes relevant infor-

mation from the gauge fields, leading to a poorer performance.

\Me have calculated hadron masses to test the scaling of the Fat-Link lrrele-

vant Clover fermion action, in which only the irrelevant, higher-dimension oper-

ators involve smeared links. One of the main conclusions of this work is that the

use of fat links in the irrelevant operators provides a new form of nonperturbative
(?(a) improvement. This technique competes well with (2(a) nonperturbative

improvement on mean field-improved gluon configurations, with the advantage

of a reduced exceptional configuration problem.

Quenched simulations at quark masses down to mnlmp: 0.35 have been

successfully performed on a 203 x 40 lattice with a lattice spacing of 0.134 fm

on 94 out of 100 configurations. Simulations at such light quark masses reveal

non-analytic behaviour of quenched chiral perturbation theory and provides for

an interesting analysis of the hyperfine splitting between octet and decuplet

baryons.
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Figure 6.9: Nucleon and A masses for the FllC-fermion action on a 203 x 40

lattice. Here we select o : 0.132 fm (which corresponds to the string tension

wifh 1/o : 450 MeV) such that the nucleon extrapolation passes through the
physical value for clarity. The solid curves illustrate fits of quenched chiral per-

turbation theory using a finite regulator to the lattice QCD results. The dashed

curves estimate the correction that will arise in unquenching the lattice QCD
simulations. Stars at the physical pion mass denote experimentally measured

values.
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Excited Baryons in Lattice QCO

7 .L lntrod uction

Understanding the dynamics responsible for baryon excitations provides valu-

able insight into the forces which confi.ne quarks inside baryons and into the

nature of QCD in the nonperturbative regime. This is a driving force behind

the experimental effort of the CLAS Collaboration at Jefferson Lab, which is

currently accumulating data of unprecedented quality and quantity on various

I/ -- .lf* transitions. With the increased precision of the data comes a growing

need to understand the observed .ðy'* spectrum within QCD. Although pheno-

menological low-energy models of QCD have been successful in describing many

features of the .l{* spectrum (for a recent review see Ref. [81]), they leave many

questions unanswered, and calculations of ly'* properties from first principles are

indispensable.

Recall from Chapter 2 that one of the long-standing ptzzles in spectroscopy

has been the low mass of the first positive parity excitation of the nucleon (the

Jo : l* ¡/.(1440) Roper resonance) compared with the lowest lying odd parity

excitation. In a valence quark model, in a harmonic oscillator basis, the |-
state naturally occurs below the Iü :2, +* state [82]. Without fine tuning of

parameters, valence quark models tend to leave the mass of the Roper resonance

too high. Similar difficulties in the level orderings appear for the å+ A-(1600)

and |+ D.(1690), which has led to speculations that the Roper resonances may

be mãre appropriately viewed as "breathing modes" of the confining cavity [83],

or described in terms of meson-baryon dynamics alone [84], or as hybrid baryon

states with. explicitly excited glue field configurations [85].

Another challenge for spectroscopy is presented by the Lr/2-(7405), whose

anomalously small mass has been interpreted as an indication of strong coupled

channel effects involving Dr, NK, "' [86], and a weak overlap with a three-

valence constituent-quark state. In fact, the role played by Goldstone bosons in

baryon spectroscopy has received considerable attention recently [80'87].

It has been argued [88] that a spin-flavor interaction associated with the ex-

change of a pseudoscalar nonet of Goldstone bosons between quarks can better

explain the level orderings and hyperfine mass splittings than the traditional
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(color-magnetic) one gluon exchange mechanism. On the other hand, some

elements of this approach, such as the generalization to the meson sector or

consistency with the chiral properties of QCD, remain controversial [81,89,90]'
Furthermore, neither spin-flavor nor color-magnetic interactions are able to ac-

count for the mass splitting between the LU2- (7405) and the À3/2- (1520) (a

splitting between these can arise in constituent quark models with a spin-orbit

interaction, however, tfris is known to lead to spurious mass splittings else-

where [s1,91]), Recent work [92] on negative parity baryon spectroscopy in

the large-ÀI" limit has identified important operators associated with spin-spin,

spin-flavor and other intcractions which go beyond the simple constituent quark

model, as anticipated by earty QCD sum-rule analyses [93]'
The large number of states predicted by the constituent quark model and

its generalizations which have not been observed (the so-called "missing" teso-

nances) presents another problem for spectroscopy, If these states do not exist,

this may suggest that perhaps a quark-diquark picture (with fewer degrees of
freedom) could afford a more efficient description, although lattice simulation
results provide no evidence for diquark clustering [94]. On the other hand, the

missing states could simply have weak couplings to the a..l/ system [81]. Such a

case would present lattice QCD with a unique opportunity to complement ex-

perimental searches for -ðy'*'s, by identifying excited states not easily accessible

to experiment (as in the case of glueballs or hybrids).

In attempting to answer these questions, one fact that will be clear is that
it is not sufficient to look only at the standard low mass hadrons (zr, p,ly' and

A) on the lattice - one must consider the entire l/* (and in fact the entire

excited baryon) spectrum. In this chapter we present results of octet baryon

mass simulations using an 0("') improved gluon action and an improved Fat

Link Irrelevant Clover (FLIC) [72] quark action. All formalism of correlation
functions and interpolating fields presented in this chapter is done in the Dirac
representation of the 7 matrices (see Appendix A). After reviewing in Section 7.2

the main elements of lattice calculations of excited hadron masses and a brief
overview of earlier calculations, we describe in Section 7.3 various features of
interpolating fields used in this analysis. In Section 7.4we present results for
JP : j+ nucleons and hyperons. Finally, in Section 7.5 we make concluding
remarks and discuss some future extensions of this work.

7 .2 Excited Baryons on the Lattice

The history of excited baryons on the lattice is quite brief, although recently
there has been growing interest in finding new techniques to isolate excited
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baryons, motivated partly by the experimental I/* program at Jefferson Lab.

The first comprehensive analysis of the positive parity excitation of the nucleon

was performed by Leinweber [95] using Wilson fermions and an operator prod-

uct expansion spectral ansatz. DeGrand and Hecht [96] used a "wave function

technique" to access P-wave baryons. Subsequently, Lee & Leinweber [97] intro-

duced a parity projection technique to study the negative parity j- states using

an 0(a2) tree-level tadpole-improved Dxsa euark action, and an 0(o') tree-level

tadpole-improved gauge action. Following this, Lee [98] reported results using

aDzsq quark action with an improved gauge action on an anisotropic lattice to

study the j+ and j- excitations of the nucleon. The RIKEN-BNL group [99]

has also performed an analysis of the ¡f-(å-) and l['(]+) excited states us-

ing domain wall fermions. More recently, a nonperturbatively improved clover

quark action has been used by Richards et al. [100,101] to study the ,nú.(]-)

and A-(t-) states.

Following standard notation, we define a two-point correlation function for

a baryon B as

GB(t,ù =Ð "-td'r 
(llTxB(r) is(0)10) , (7.1)

where yB is abaryon irrt"rplhting field with definite parity under parity oper-

ation, and where we have suppressed Dirac indices. The choice of interpolating

field X¿ is discussed in Section 7.3 below. The overlap of a positive parity field

¡" with positive or negative parity states lB+) is parameterizedby a coupling

strength Às+

(o I x"(o) lB*(p, ')) : À¡*

(olx"(o) lB-(p,')) : Às-

Mn*/\-;- us+\P,s) ,Lg+
(7.2)

Ma-l\
E;'l1uB-(P'sl '

(7.3)

where Es+ : MA+ +¿2 is the energy, and up+(trt, s) a Dirac spinor with

normalisationtllffiÇ. For large Euclidean time, the correlation function can

written as a sum of the lowest energy positive and negative parity contributions

Gn(t,Ð È 
^r".9#Ðe-Eu*, 

+ À28-%t)e-E'-' ,(7.4)

when a fixed boundary condition in the time direction is used to remove back-

ward propagating states. The positive and negative parity states are isolated by

taking the trace of. Gn with the operator l¡, where

be

fa :;( t+ffit^) (7.5)
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For 1:0, f2+ : l+ so that f1 are then parity projectors' For 1:0t En+ :
Mp+ aîdusing the operator la \Ã/e can isolate the mass, MB+, ofthe baryon B+.

In this case, positive parity states propagate in the (1, 1) and (2, 2) elements of
the Dirac matrix of Eq. (7.4), while negative parity states propagate in the (3,

3) and (4, 4) elements.

In terms of the correlation function Gp, the baryon effective-mass function
is defined by

MB(t+L12) :log[Gs(t,0')] -tog[c¡(ú+1,0)] . (7'6)

Meson masses are determined via analogous standard procedures.

7 .3 lnterpolating Fields

In this analysis we consider two types of interpolating flelds which have been used

in the literature. The notation adopted follows that of Leinweber et aL [702].
To access the positive parity proton we use as interpolating fields

XT+ @) : e"6" (uf,(r) Cy d6(r)) u.(r) , (7.7)

and

x!r* (r) : e"6.(uf,(r) c d6@))^ls u.(r) , (7'8)

where the frelds u, d are evaluated at Euclidean space-time point ø, C is the
charge conjugation matrix, a,b and c are color labels, and where the superscript
7 denotes the transpose. Here we introduce the convenient shorthand notation

F(s¡,, s¡", sr") : uabcra'u'c' { s}i' @,0) tr lsl!"' 
(r,o)s;;'"(r, o)]

+ sfi'@,0) sli'r(r,o¡s|f'1r, o¡), (7.e)')

where Soo'(r,0) is the quark propagator in the background link-field configura-
tion U and f1, f2, fs are flavor labels. This allows us to express the correlation
functions in a compact form. Hence, \rye can write the associated correlation
function for fr+ as

Gll(t,¡;\: le-tÞ-'etrþr F (su, su, cys¿1sc)l
î

(7.10)

where (. . .) i. the ensemble average over the link fields and f is the f1 projection
operator from Eq. 7.5. For ease of notation, we will now drop the angle brackets
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and all the following correlation functions, G, will be understood to be ensemble

averages. Similarly, f.or yl+

GtTQ,p-;f) : le-tÛitrl-l F (.'tuSu^tu,'ysS,'tt, CxSaxC)1, (7.11)

i

while the interference terms from these two interpolating fields are given by

c![(t,¡;) : D"-nF't [-t {t (su.ys, su15, c15s¿r'Ø}] , (7.r2)

Ge2Ip,F;t) : \e-tlttrl-t {t 6usu,15su, c15s¿?'Ø}] . (7.13)-lL(
The neutron interpolating field is obtained via the exchange u ,- d, and

r,ve can also obtain the strangeness -2, E interpolating field by replacing the

doubly represented u or d quark fields in Eqs. (7.7) and (7.8) by s quark fields.

As pointed out by Leinweber [95], because of the Dirac structure of the "di-
quark,' in the parentheses in Eq.(7.7), the field xf+ involves both products of

upper x upper x upper and lower x lower x upper components of spinors for

positive parity baryons, so that in the nonrelativistic limit XT+ : (2(1). Here

upper and lower refer to the large and small spinor components in the standard

Dirac representation of the 7 matrices. A representation independent language

would use large and small in place of upper and lower. Furthermore, since the

"diquark" couples to a total spin 0, one expects an attractive force between the

two quarks, and hence a lower energy state than for a state in which two quarks

do not couple to spin 0.

The fi+ interpolating field, on the other hand, is known to have little overlap

with the ground state [95, 103]. Inspection of the structure of the Dirac matrices

in Eq.(7.S) reveals that it involves only products of upper x lower x lower

components for positive parity baryons, so that xl* : 0(p'lE') vanishes in the

nonrelativistic limit. As a result of the mixing, the "diquark" term contains a

factor d .f, meaning that the quarks no longer couple to spin 0, but are in a
relative L : I state. One expects therefore that two-point correlation functions

constructed from the interpolating fìeld y!r+ arc dominated by larger mass states

than those arising from X{+ at early Euclidean times'

While the masses of negative parity baryons can be and are obtained directly

from the (positive parity) interpolating fields in Eqs.(7.7) and (7.8) by using

the parity projectors f1, it is instructive nevertheless to examine the general

properties of the negative parity interpolating fields. Interpolating fields with

strong overlap with the negative parity proton can be constructed by multiplying

the previous positive parity interpolating flelds by 7s, XB- = ^ls XB+. In contrast
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to the positive parity case, both the interpolating fields Xf- and yfi- mix upper

and lower components, and consequently both ft- and yl- ate O(pln)'
Physicall¡ two nearby JP : L- states are observed in the nucleon spectrum.

In simple quark models, the splitting of these two orthogonal states is largely

attributed to the extent to which scalar diquark configurations compose the

wave function. It is reasonable to expect fr- to have better overlap with scalar

cìiqlark dominated states, and thus provide a lower effective mass in the large

Euclidean time regime explored in lattice simulations. If the effective mass

associated with the fi- conelator is larger, then this would be evidence of

significant overlap of ú- with the higher lying ¡rIå- states. In this event, a

correlation matrix analysis (see Appendix C) will be used to isolate these two

states.
Interpolating fields for the other members of the flavor SU(3) octet are con-

structed along similar lines. For the positive parity E0 hyperon one has [102]

1

x?@) : i1roo"{("T@) C15 s6(r)) d"(r) + (¿T@ Cy s6(r)) u.(*)} ,vz 
(7 'r4)

and similarly for the y| freld. Interpolating fields used for accessing other charge

states are obtained by d --+'tL or u --+ d. Notice that ¡f transforms as a triplet
under SU(2) isospin, An SU(2) singlet interpolating field can be constructed by

replacing 4+'t 
----+ 

((-" in Eq. (7.14). For the SU(3) octet Â interpolating field

(denoted by (c[8't), one has

^8,. 1

xf" @) : irou"{z (u!(r) C75 d6(r)) s"(ø) + @T@) Cy s6(r)) d,"(r)
vb

(7.15)

)] r"ui

where õ : C.ys.Similarly, the interpolating field (and thus correlation function)
f.or y[" is obtained by simply moving the 75 in each of the terms a,s was done to
obtain Eq. (7.8) from Eq. (7.7).

- (aT@ Cy s6(r)) u"(r)\ ,

which leads to the following correlation function

cfi(t,p-;r) : l+r'"
,,1-r { r, (s", sr, cs,c-) +2F (*, t, csoc-)

t 2F (tr, r", õs,c-') +2r (t,*, csoc-)

- r (to, t,, õs"õ-') - , (t,, sa, õs"õ-)
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The interpolating field for the SU(3) flavor singlet (denoted by "^1") is given

by [102]

x+'@) : -2 eob"{- @T@ Cy d,6(r)) s"(r) + ("T@) cy s6(r)) d"(r)

- @T@) Cy s6(r)) ""(")\ , (7.17)

where the last two terms are common to both Xf' and Xf'. The correlation

function resulting from this field involves quite a few terms,

Gfi(t,p-;r) :
D"-,irt [-t {

.ysSl"' õ 53ar ¿-r S!;r'lu + .y'Sl"' õ Sy'' r ¿: So"r' .yu

+1ust"' suo'' lu *'rss1"' C5ff" rj- 7 qbbt^,-P8 lõõsi" Tõ-I

+.y5s1,"' Cs3"' Tõ_I
''15 +'yls"d"' i gcc'T t Su,¡'''YuC-

-1ss!"'15 tr Sf'õg"tri-t

-155fl"'y tr gua' jgccrj-t

-tsSâo'.ystr fsf' i 5"a r i-tf (7.18)

In order to test the extent to which SU(3) flavor symmetry is valid in the

baryon spectrum, one câ,n construct another combined interpolating field com-

posed of the terms common to .4.1 and .48, which does not make any assumptions

about SU(3) flavor symmetry properties of Â' We define

x+'@) : fir"u.{("T@) 
cr s6(n)) d'.(*) - (aT@ cr s6(r)) u.(*)}, (7'1e)

to be our "common" interpolating field which is the isosinglet analogue of Xf in
Eq. (7.14).

To appreciate the structure of the "common" correlation function, one can

introduce the function

T(s¡,,s/,, s/,) - ,abcra'|b'c' { sii'@,0)tr ls}!'(r, o)s;;'"(r, o)]

sTT'@,0) si':r(r,o¡ s|!'1", o¡), Q.2o)

which is recognised as f in Eq. (7.9) with the relative sign of the two terms

changed. With this notation, the correlation function of 'A'" is

G^',(t,¡;r¡
1

leì'Ftt;"
Ê

{T (So, Su, CySg5C)-f2

+T (5,, S¿, C15S15C)\ (7.21)
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Interpolating fields for y[' and y[', and the corresponding correlation func-

tions, are similarly constructed. Such interpolating fields may be usef'ul in deter-

mining the nature of the 
^-(1405) 

resonance, as they allow for mixing between

singlet and octet states induced by SU(3) flavor symmetry breaking.

7 "4 Resu lts

The calculations of octet excited baryon masses are performed on a t63 x 32

lattice aL P - 4.60, which corresponds to a lattice spacing of a:0.L22(2) fm
set by the string tension [57] as in Chapter 5 with lo :440 MeV. The anal-

ysis in the nucleon sector is based on a sample of 400 configurations, while the
baryons containing one or more strange quark is based upon a sample of 200

conflgurations. For the gauge fìelds, a mean-field improved plaquette plus rect-
angle action (Eq. (3.15)) is used, while for the quark fields, a Fat-Link Irrelevant
Clover (FLIC) [72] action (Eq. (6.+)) is implemented. Since the results with
n : 4 sweeps exhibit slightly better scaling than those with n : 12 (see Sec-

tion 6.4), we focus on the results with 4 smearing sweeps. The 12-sweep results

are consistent with all our conclusions.

A fixed boundary condition in the time direction is used for the fermions
by setting Ut(i,Nù:0 V din the hopping terms of the f'ermion action, with
periodic boundary conditions imposed in the spatial directions. Gauge-invariant
gaussian smearing [76] in the spatial dimensions is applied at the source to
increase the overlap of the interpolating operators with the ground states.

Figure 7.1 shows the positive and negative parity nucleon effective mass

plots for both X1 and y2 interpolating fields for the FLIC action. The effective

mass plots for the other hadrons are similar, and all display acceptable plateau

behavior. Good values of covariance matrix based X2lNoe are obtained for the
ground state nucleon (¡f1) for many different time-fitting intervals as long as

one fits after time slice 8. All fits for the positive parity states obtained with
the ¡1 interpolating fields for this action are therefore perfbrmed on time slices

9 through 14.

The lowest JP : l- excitation for the X1 interpolating field (l/T) uses time
slices 9-12. The states obtained from the ¡2 interpolating field, however, plateau
at earlier times and are also subject to noise earlier in time than the states

obtained with the X1 field. For these reâsons, good values of y2 f N¡p are obtained
on the time interval 6-8 for the positive parity states, and negative parity states

are fitted using the time interval 8-11.

We check the trustworthiness of these masses by comparing the values with
those from the diagonalisation discussed in Appendix C using timeslices 8 and
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Figure 7.1: Effective masses of the lowest lying positive and negative parity

nucleon states using the FLIC action defined with 4 sweeps of smearing aI a:
0.7. The JP : ï+ (]-) states labeled ¡úr (¡fi) and Aþ (,núj) are obtained using

lhe y1 and y2 interpolating fields, respectively'

9. This is done by minimising the measure

*ål'-#l
where mft, and. m?is.n are the masses of the nth state obtained from a naive ex-

ponential fit to theìorrelation function and the eigenvalue analysis respectively'

For perfect agreement (which would coincide to the case where the correlation

functions can be expressed in terms of N masses) it is clear that this quantity

goes to zero. Our calculations do indeed get small values, Recall that the co-

variance matrix tells us that t : 9 is the earliest time at which it is reasonable

to assume that we have a single state in our positive parity correlation function,

so it is thus reasonable to assume that at one time step earlier we have only two

states involved.
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Figure 7.2: Masses of the nucleon (,nü) and the lowest JP : T- excitation ( "N*" ),
obtained from the X1 interpolating field. The FLIC and Wilson results are from
the present analysis, with the DWF [99] and NP improved clover [100,101] results
shown for comparison. The empirical nucleon and low lying ¡/.(|-) masses are

indicated by the asterisks along the ordinate.

In Fig. 7.2 we show the nucleon and,n/-(j-) masses as a function of the
pseudoscalar meson mass squared, m2*. The results of the new simulations,
using the X1 interpolating field, Ðq. (7.7), are indicated by the filled squares for
the FLIC action, and by the stars for the Wilson action (the Wilson points are

obtained from a sample of 50 confrgurations). The values of m2* correspond to
rc values given in Table 7.1.

For comparison, we also show results from earlier simulations with domain
wall fermions (DWF) [99] (open triangles), and a nonperturbatively (NP) im-
proved clover action at B :6.2 [100,101]. The scatter of the different NP im-
proved results is due to different source smearing and volume effects: the open

squares are obtained by using htzzed sources and local sinks, the open circles use

Jacobi smearing at both the source and sink, while the open diamonds, which
extend to smaller quark masses) are obtained from a larger lattice (323 x 64)
using Jacobi smearing. The empirical masses of the nucleon and the three lowest
j- excitations are indicated by the asterisks along the ordinate.
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K

0.1260

0.7266

0.7273

0.7279
0.1286

0.5807(18)
0.5343(1e)

0.4757(21)
0.420t(23)
0.3454(27)

1.0e6e(43)

1..03e7(47)

o.e6ee(54)
o.eo67(63)

0.8283(80)

1.335(15)

1.280(18)

1.234(23)
1.183(34)

r.43e(12)
1.401(15)

1.364(20)

1.343(20)
1.346(36)

lflrd n'I a NL o, rn a n'L o,

1.676(11)
1.64r(12)
1.604(14)
t.57e(17)
1.56e(25)

1.383

Table 7.1: Values of rc used in this analysis and the corresponding zr, ¡tr1, ¡tri' ¡tr;
and I/2 masses for the FLIC action with 4 sweeps of smearing at a : 0.7.

Here Æ". : 0.1300, and a string tension analysis provides a : 0.122(2) fm for

yG:440 MeV.

nucleon mass, in particular between the FLIC, DWF [99] and NP improved

clover [100,101] results. On the other hand, the Wilson results lie systematically

low in comparison to these due to the large O(a) enors in this action (see

chapter 6 and Ref. [72]). A similar pattern is repeated for the ¡r.(å-) masses.

Namely, the FLIC, D\ /F and NP improved clover masses are in good agreement

with each other, while the \Milson results again lie systematically lower. A
mass splitting of around 400 MeV is clearly visible between the IrI and ly'*

for all actions, including the Wilson action, despite its poor chiral properties.

Furthermore, the trend of the Iú.(|-) data with decreasing rn,. is consistent

with the mass of the lowest lying physical negative parity ,ðy'* states.

Figure 7.3 shows the mass of the JP : ]+ state obtained from the Xz in-

terpolating field in Eq. (7.8) (denoted by "Nt(tlz+¡"¡. Data for the nucleon

sector are provided in Table 7.1. As is long known, the positive parity y2 intet-

polating field does not have good overlap with the nucleon ground state [95]. It
has been speculated that it may have overlap with the lowest j+ excited state,

the l/-(1440) Roper resonance [99]. In addition to the FLIC and Wilson results

from the present analysis, we also show in Fig. 7.3 the DWF results [99], and

results from an earlier analysis with Wilson fermions together with the operator

product expansion [95]. The physical values of the lowest three ]+ excitations

of the nucleon are indicated by the asterisks'

The most striking feature of the data is the relatively large excitation energy

of the .ðy',, some 1 GeV above the nucleon. There is little evidence, therefore,

that this state is the l/-(1440) Roper resonance. While it is possible that the

Roper resonance may have a strong nonlinear dependence on the quark mass at

rn? S 0.2 GeV2, arising from, for example, pion loop corrections, it is unlikely

that this behavior would be so dramatically different from that of the ¡ü-(1535)
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Figure 7.3: Masses of the nucleon, and the lowest JP : j+ excitation (".ð/"')
obtained from the X2 interpolating field. The FLIC results are compared with
the earlier DWF [99] and Wilson-OPE [95] analyses, as well as with the Wilson
results from this analysis. The empirical nucleon and low lying ¡f-(]+) -usre.
are indicated by asterisks.

so as to reverse the level ordering obtained from the lattice. A more likely
explanation is that the y2 interpolating field does not have good overlap with
either the nucleon or the ¡tr.(1440), but rather a (combination of) excited j+
state(s).

Recall that in a constituent quark model in a harmonic oscillator basis, the
mass of the lowest mass state with the Roper quantum numbers is higher than
the lowest P-wave excitation. It seems that neither the lattice data (at large
quark masses and with our interpolating fields) nor the constituent quark model
have good overlap with the Roper resonance. Better overlap with the Roper is

likely to require more exotic interpolating fields.

In Fig. 7.4we show the ratio of the masses of the ¡f-(å-) and the nucleon,

using the X1 interpolating field. Once again, there is good agreement between
the FLIC and DWF actions. However, the results for the Wilson action lie above
the others, as do those for the anisotropic Dza action [98]. The D4a action has

been mean-field improved, and uses an anisotropic lattice which is relatively
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Figure 7.4: Ratio of the ground state lrl.(|-) and nucleon masses, from the X1

interpolating field. The FLIC and Wilson results are from the present analysis,

with results from the Dze¿ [98] and DWF [99] actions shown for comparison'

The empirical lü*(1535)/Iú mass ratio is denoted by the asterisk.

coârse in the spatial direction (a x 0.24 fm). This is perhaps an indication of

the need for nonperturbative or fat-link improvement.

The mass splitting between the two lightest ¡r.(å-) states (I/-(1535) and

¡r-(1650)) can be studied by considering the odd parity content ofthe 11 and12

interpolating fields in Eqs. (7.7) and (7.8). Recall that the "diquarks" in /1and
X2 couple differently to spin, so that even though the correlation functions built

up from the y1 and y2 fields will be made up of a mixture of many excited states,

they will have dominant overlap with different states, yielding different masses

[95,97]. By using the variational techniques described in Appendix C, we extract

two seperate mass states from our f,1 and X2 interpolating fields' The results

from the rotation of the correlation matrix are shown by the solid symbols in

Fig. 7.5 and are compared to the standard "naive" fits performed directly on the

correlation functions which are shown by the open symbols. The results, shown

in Fig. 7.5 f.or the FLIC action, indicate that indeed the ¡ü.(å-) corresponding

to the y2 freld. (labeled "N;") lies above the lf.(]-) associated with the X1 field

(,,¡/ï,) and that there is only a need for the variational technique to be used
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Figure 7.5: Masses of the J' : T* and |- nucleon states, for the FLIC action.

Masses are obtained using the correlation matrix analysis (solid symbols) and

naive exponential fits (open symbols). The positive (negative) parity states

labeled ¡fr (¡/ï) and l[2 (lÇ) are constructed from the Xl and /2 interpolating
fields, respectively. Empirical masses of the low lying |+ states are indicated by
the asterisks.

for the lightest mass. The masses of the corresponding positive parity states,

associated with the f1 and ¡2 fields (labeled "ly'1" and "-Aþ", respectiveiy) are

shown for comparison, For reference, we also list the empirical values of the

low lying |+ states. It is interesting to note that tlre mass splitting between

the positive parity lft and negative parity lf,2 states (roughly 400-500 MeV)
is similar to that between the lúiz and the positive parity Àþ state, reminiscent
of a constituent-quark harmonic oscillator picture.

Ttrrning to the strange sector, in Fig. 7.6 we show the masses of the positive

and negative parity D baryons calculated from the FLIC action, and compared

with the physical mâsses of the known positive and negative parity states. The
data for these states are listed in Table 7.2. The pattern of mass splittings is
similar to that found in Fig. 7.5 for the nucleon. Namely, the j+ state asse
ciated with the X1 field appears consistent with the empirical t(1193) ground
state, while the ]+ state associated with the y2 freld lies significantly above the

observed first (Roper-like) j+ excitation, D-(1660). There is also evidence for a
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Figure 7.6: As in Fig. 7.5 but for the E baryons

mass splitting between the negative parity states associated with the ll and \2
operators, similar to that in the nonstrange sector.

The spectrum of the strangeness -2 positive and negative parity E hyperons

is displayed in Fig. 7.7, with data given in Table 7.3. Once again, the pattern of

calculated masses repeats that found for the D and -fú masses in Figs. 7.5 and

7.6. The empirical mâsses of the physical E* baryons are denoted by asterisks,

however, for all but the ground state E(1318), the ,.IP values are not known.

Finally, we consider the Â hyperons. In Fig. 7.8 we show the spectrum of

positive and negative parity states obtained from our correlation matrix analysis
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K rnlrL m=i0 m=XA rn=t0

0.1260 1.060e(68) 1.342(20) 1.400(22) 1.650(18)

0.1266 1.03e5(6e) 1.33e(23) 1.372(24) 1.638(1e)

0.1273 1.013e(72) 1.303(24) 1.380(2e) r.626(20)

0.127e 0.ee11(76) r.302(27) 1.354(36) 1.018(21)

0.1286 0.e636(81) t.272(30) 1.366(51) 1,.6t2(24)

Table 7,3: As for Table 7.1, but for the E states.
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Table 7.4: As for Table 7.1, but for the octet Â8 states.
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Figure 7.7i As in Fig. 7.5 but for the E baryons. The ./P values of the excited

states marked with "?" are undetermined.

for the FLIC action, with the data given in Tables 7.4 and7.5. The positive

(negative) parity states labeled 
^r 

(^î) and.A.2 (Âi) are constructed from the xf
and y[ interpolating fields, respectively. The Â.8 (octet) states are represented

by the open symbols, while the isosinglet r\" states (made up of terms common

to both the octet and singlet fields) are denoted by the filled symbols' The

empirical 
^.(å*) 

mâsses are denoted by asterisks.

A similar pattern of mass splittings is observed to that for the -lú*'s in Fig. 7.5.

In particular, the negative parity Ài state (squares) lies - 400 MeV above

the positive parity Ä1 ground state (diamonds), for both the r\'8 and .4," fields'

There is also clear evidence of a mass splitting between the Ài (squares) and

Äi (triangles), especially for the Â8 field (open symbols), which may indicate

sensitivity to the physics responsible for the mass splitting between the negative

parity 
^.(1670) 

and Â.(L800) states. The fact that the Âl appears at a higher

energy than the Â.i can be attributed to the fact that the latter contains a

"diquark" combination coupled to spin 0 (c.f' the masses of the lff (j-) and

¡r;(å-) in Fig. 7.5).- ti nigs. 7.9 and 7.10 we compare results obtained from the -A'8 and Â" fields

respectively using the two different techniques for extracting masses. using the

naive fitting scheme (open symbols), it is difficult to obtain a mass splitting
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Figure 7.8: Masses of the positive and negative parity Â states, for the octet .4,8

(open symbols) ând "common" A" (filled symbols) interpolating fields with the
FLIC action. The positive (negative) parity states labeled 

^t 
(^i) and ,4,2 (,4,i)

are the two states obtained from the correlation matrix analysis of the Xf and

¡f interpolating fields. Empirical masses of the low lying j+ states are indicated
by the asterisks.

between Âi and Âi for the common interpolating field. Once we perform our
correlation matrix analysis however, it is possible to resolve two seperate mass

states, as seen by the solid symbols in Fig. 7.10. This may be an indication
that the physics responsible for the mass splitting between the negative parity

^-(1670) 
and Â*(1800) states is suppressed in the .4." interpolating field. As for

the other baryons, there is little evidence that the .ô,2 (circles) has any significant
overlap with the first positive parity excited state, .A*(1600) (c,f. the Roper
resonance, ¡/.(1440), in Fig. 7.5).

While it seems plausible that nonanalyticities in a chiral extrapolation [87]
of I/r and Iy'f results could eventually lead to agreement with experiment, the
situation for the 

^.(1405) 
is not as compelling. Whereas a 150 MeV pion-induced

self energy is required for the ¡f1, ¡fï and Â1, 400 MeV is required to approach
the empirical mass of the 

^-(1405). 
This may not be surprising for the octet

fields, as the 
^.(1405), 

being an SU(3) flavor singlet, may not couple strongly to
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Figure 7.9: As in Fig. 7.5 but for the À states obtained using the.t\'8 interpolating

field

an SU(3) octet interpolating field. This large discrepancy suggests that relevant

physics may be absent from simulations in the quenched approximation. The

behavior of the Ä1,, states may be modified at small values of the quark mass

through nonlinear effects associated with Goldstone boson loops including the

strong coupling of the 
^-(1405) 

lo Etr and -ðrly'( channels. While some of this

coupling will survive in the quenched approximation, generally the couplings are

modified and suppressed [80,104]. It is also interesting to note that the octet Ä'i

and Ai masses display a similar behavior to that seen for the Ei and Ei states,

which are dominated by the heavier strange quark. Alternatively, the study of

more exotic interpolating fields may indicate the the 
^-(1405) 

does not couple

strongly to X1 or X2. Investigations at lighter quark masses involving quenched

chiral perturbation theory will assist in resolving these issues.

7.5 Summary

Good agreement is obtained between the FLIC and other improved actions, such

as the nonperturbatively improved clover [100,101] and domain wall fermion

(DWF) [g9] actions, for the nucleon and its chiral partner, with a mass splitting
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Figure 7.10: As in Fig. 7.5 but for the Â states obtained using the Â" interpo-
lating field.

of - 400 MeV. Our results for the ¡f.(z1-) improve on those using the D%4 [98]
and Wilson actions. Despite strong chiral symmetry breaking, the results with
the Wilson action are still able to resolve the splitting between the chiral partners

of the nucleon. Using the two standard nucleon interpolating fields, we also

confirm earlier observations [97] of a mass splitting between the two nearby ]-
states. We find no evidence of overlap with the ]+ Rop"r resonance.

In the strange sector, we have investigated the overlap of various .4. inter-
polating fields with the low lying j+ states. Once again a clear mass splitting
of - 400 MeV between the octet .4, and its parity partner is seen, with some

evidence of a mass splitting between the two states primarily associated with the
octet Âf and ,A,i interpolating fields. The latter splitting is significantly reduced
for the Â" correlator, which does not make any assumptions about the SU(3)
flavor symmetry properties of the .ô,. We find no evidence of strong overlap with
the ]+ "Roper" excitation, 

^-(1600). 
The empirical mass suppression of the

^-(1405) 
is not evident in these quenched QCD simulations, possibly suggesting

an important role for the meson cloud of the Â.(1405) and/or a need for more
exotic interpolating fields.
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I
Spin 3 /2 Baryons

8.1 lntroduction

The level orderings in the baryon spectrum and mass splittings between excited

baryon multiplets provide important clues to the underlying dynamics governing

inter-quark forces and the relevant effective degrees of freedom at low energy [89].

As we saw in Chapter 2, considerable insights into these and other problems of

spectroscopy have been gained from QCD-inspired phenomenological models,

however, many fundamental questions about the origins of the empirical spec-

trum remain controversial [81].

The resolution of some of these issues may only be possible with the help of

first-principle calculations of the spectrum in lattice QCD - the only method

able to provide hadron properties from the fundamental quark and gluon theory.

Recent advances in computational capabilities and more efficient algorithms have

enabled the first dedicated lattice QCD simulations of the excited states of the

nucleon to be undertaken (see Chapter 7 and Refs. [95,97-101,105,106]. Lattice

studies of excited hadrons are possible because at the current unphysically large

quark ma.sses and finite volumes used in the simulations, most excited states are

stable at present. In the future, as lattice simulations extend to smaller quark

masses, the effects of excited hadron decays will need to be included [107]. The

lattice studies are timely as they complement the flrst results from the high

precision measurements of the l\¡* spectrum at Jefferson Lab [108].

In the previous chapter we presented our results for the excited nucleon

and spin-] hyperon spectra using the Fat Link Irrelevant Clover (FLIC) quark

action [Z2l with an O(a2)-improved gluon action. In this chapter we extend the

analysis of Chapter 7 to the spin-t sector, and present flrst results using the

FLIC action, in both the isospin-| and I channels'

Mass splittings between states within SU(3) quark model multiplets provide

another important motivation for studying higher spin baryons. understand-

ing the mass splitting between the l{*}-(1535) and lú.$-(1520), for instance,

or between ttre A-|-(1700) and A.å-(1620), can help identify the important

mechanisms associated with the hyperfine interactions, or shed light on the spin-

orbit force, which has been a central mystery in spectroscopy [93]. In valence



96 8. Spin 3/2 Baryons

quark models, the degeneracy between the N.+- and ll.t- can be broken by

a tensor f'orce associated with mixing between the .l{2 and .ðy'4 representations

of SU(3) [81], although this generally leaves the lú-]- at a higher energy than

the I/.]-. On the other hand, a spin-orbit force is necessary to split the A-f -
and A*|- states. In the Goldstone boson exchange model [88], both of these

pairs of states are degenerate. Model-independent analyses in the large À[" limit
have fcund that these mass splittings receive irnportant contributions from op-

erators that do not have simple quark model interpretation [92], such as those

simultaneously coupling spin, isospin and orbital angular momentum, Of course,

the coefficients of the various operators in such an analysis rnust be determined
phenomenologically. Guidance from lattice QCD is essential.

In the isospin-f sectot, after applying suitable parity and spin projections,

we present the first results for the A.j+ and A*|- states, as well as the P-
wave A*f-. Our results for the Af+ are also in good agreement with earlier
simulations [109]. A significant advance of this work is the observation of a
discernible signal for the A*|+ state, which yielded a weak signal in earlier
simulations [100,105]. The lowest excitation of the ground state, namely the
L.T-, is found to have a mass - 350-400 MeV above the A!+, with the At-
slightly heavier. The A-j+ state is found to lie - 100-200 MeV above these,

although the signal becomes weak at smaller quark masses. This level ordering
is consistent with that observed in the empirical mass spectrum.

In the spin-$ nucleon sector, there is good agreement for the spin-projected
j+ and j- states with ea¡lier nucleon mass calculations from Chapters 6 and

7 using the standard spin-11 nucleon interpolating field. Furthermore, we find a

good signal for the l/f+ states, with a mass difference of - 300 MeV between

the spin-t parity partners. The I/|- and .lút- states are nearly degenerate as

observed experimentally. However, the Nf- hes above the ,nf]- in accord with
most constituent quark models.

In Section 8.2 we outline the basic elements of formulating spin-f baryons on

the lattice, including the choice of interpolating fields and projection operators.
A brief preliminary report of states using the formalism developed and presented

here appeared in Ref. [110]. In Section 8.3, our results using the FLIC action
on a large lattice volume at a fine lattice spacing represent the first quantita-
tive analysis of these states. A summary and remarks about future work are

contained in Section 8.4.
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8.2 Spin 312 Baryons on the Lattice

In this Section the essential elements for a lattice calculation of spin-t baryon

properties are presented

8.2.1 Spin 3/2 Two-Point Functions

The mass of a spin-f baryon on the lattice is obtained from the two-point cor-

relation function Gþ" Í102,109],

Gr,(t,f;f) : Ð "-idd 
¡Þa Qlr (xft@) u9(0)) l0) , (8.1)

where Xi, is aspin-f irrt"tpoiutirrg field, I is a matrix in Dirac space' a, p ate

Dirac indices, and ¡-1, z are Lorentz indices'

In this analysis we consider the following interpolating field for the isospin-j,

spin-$, positive parity (charge *1) state [111] in the Dirac representation of the

7 matrices,

xI : eob'(uro(r) c'ys'y' au(r)) (n. -irr")'ysu"(r), (8.2)

This exact isospin-] interpolating field has overlap with both spin-t and spin-j

states and with states of both parities. The resulting correlation function will
thus require both spin and parity projection. The quark field operators z and d

act at Euclidean space-time point r, C is the charge conjugation matrix, a,b and

c are colour labels, and the superscript ? denotes the transpose. The charge neu-

tral interpolating field is obtained by interchanging u <-+ d' This interpolating

field transforms âs a Rarita-Schwinger operator under parity transformations.

That is, if the quark field operators transform as

Pu(r)Pt : ¡%u(Í),

where ñ: (ro,-d), and similarly for d(r), then

Py[(n)Pt : +nx\@) ,

and similarly for the Rarita-Schwinger operator

Pur(r)Pt:¡1sur(ñ). (8.3)

The computational cost of evaluating each of the Lorentz combinations in

Eq. (8.2) is relatively high - about 100 times that for the ground state nucleon
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[97]. Consequently, in order to maximize statistics in our analysis we consider

only the leading term proportional to gpr,

xI - 
e"b" (ur"(r) c%'yp do(*)) %u'(r) . (8.4)

In order to show that the interpolating field defined in Eq. (8.a) has isospin-|,

we first consider the standard proton interpolating field from Eq' (7.7),

xP : eob"(ur"crydb)u", (8.5)

which we know to have isospin-j. Applying the isospin raising operator, .f+, on

XP one finds,

I+ xo : e"b"(uT"c1sub)u"

: e"b"(uT"cT5u,)'u.
: -€"b"(uTb^y5CTu")u.
: e"b"(uT"15c'u')u"

'"b" (uT" c 15ub)u"
_;' U.

Similarly, for the interpolating field defined in Eq. (8.4), one has

t*xï : e"b" (uT" C 15^l pub).ysu"

e"b" (uT" C 15.y ¡rub)T 75u'

- r"b' (uT b,yT 
1 sCr u" ) 1 5u'

e"b' (ur " c c fi c c ycr ub ).y su"

e"b" (uTo C 1 ,"lsub).ysu"

-eob" (uT" C.,l¡.'l pub).ysu"

0,

where we have used the representation independent identities ClrC-t : -'yl,
C,yuc-t : 7fl and the identities which hold in the Dirac representation Cr :
Cl : C-r - -C with C : i.'lz.'lo and 7u" - 7u.

We note that yf corresponding to XI in Eq. (8.a) is

xI : x|r n : -ax@qoi;on4ct lu.ur)
: ru15(d1¡5ca'), (8.6)

so that

xI XI : rauc ra'b' c (u!"lcxl ploBdþhsu9,a!,,x@nB,Íl,luc) B, o,uT?' )

--+ 7sSu15tr þuS.ru 
(C1rS¿1,C)'f + :l¡s.¿u (C1rS¿n,C)r yS¿s.(8.7)
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where the last line is the result achieved after doing the Grassman integration

over the quark fields with the quark fields being replaced by all possible pairwise

contractions.
In deriving the A interpolating fields, it is simplest to begin with the state

containing only valence z quarks, namely the A++. The commonly used inter-

polating field for the A++ resonance is given by [111],

x1** @) : 6abc (u'"(r) c1, ub(r)) r'(r) , (8.8)

which also transforms as pseudovector under parity. The interpolating field for

a A+ state can be similarly constructed [109],

xf* @) : #'"u"lz @'"ç*¡ c¡rdb(r)) u"(r)

+ (ur"(r) clrub(r)) ¿"@)). (8'e)

The correlation function is

xf*X 
* : !,abcra'b'c' 

{ntto y C S[bb' C .,t,Sf' + 4Si"' y CS[bb' C'y,Sf'

+ 4Sâo' y)S[bb'C.yt,Sif' + 2Sl"' t 
lt,CS[bb'C 

ySf;"'f (8.10)

+ zsio' t lt, ç l'rbbt ç t, sï'f + 2sfr"' t, lr, 6 Srbbt ç ^t, si'f\,

Interpolating fields for other decuplet baryons are obtained by appropriate

substitutions of u(r), d,(r) -- u(r), d(r) or s(ø) fields.

To project a pure spin-$ state from the correlation functionG¡"r, one needs

to use an appïopriate spin-t projection operator [112],

efll@) : sp, - 
t1^,rr, 

- #(t'ptrp, t Pt"''t,'v 'p) ' (s'11)

The corresponding spin-| state can be projected by applying the projection

operator pi!,':gr,- Pl,l'. (8'12)

To use this operator and retain all Lorentz components, one must calculate

the full 4 x 4 matrix in Dirac and Lorentz space. Howevet, to extract a mass'

only one pair of Lorcnlz indicies is needed, reducing the amount of calculations

required by a factor of four. We calculate the third row of the Lorcnlz matrix

and use the projection, 
4

Gås : DctrgP" Pïs, (8.13)

tt:l
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to extract the desired spin states, s : t or f;. Following spin projection, the

projected correlation function, G$3, still contains positive and negative parity
states.

We use an improved unbiased estimator obtained by summing both U and

[/* configurations which occur with equal weight. The net effect is that G* is

purely real if ¡r, and z a,re hoth either spatial indicies or temperal indicies. If
one is a spatiai index an<i the other temporai, ihen Gr, \s purely imaginary (see

Appendix C). After spin projection however, G"1,, is purely real.

8.2.2 Baryon Level

The interpolating field defined in Eq. (8.4) has overlap with both spin-$ and

spin-j states with positive and negative parity. The field X¡, transforms as a
pseudovector under parity, as does the Rarita-Schwinger spinor, ur. Thus the
overlap of X, with baryons is as follows

(0lxrl.nrå+þ, s)) : Àr/r*
Mtlr*

up(P, s) , (8.14a)
Ez/z*

Mslz-
Et/r-

(8.14b)(0lxrlt'rå-þ, s)) : Às/r- lsup(P, s) ,

()lyrlNà+ @,s)) : (ar/z*pt" i lSttz*.yt")
Mtn*
--- ''lsulP,s) ,Lr/2+

(8.1ac)

(llyrlNÈ- @, s)) (aUz-pp r hp 'yp)
Mtn-
^-L u\P,s) ,
Ìt1 tr-

(8,14d)

where the factors À8, aB, Bp denote the coupling strengths of the interpolating
fie\d yrto the baryon B, and EB : JF + M2" is the energy. For the expressions
in Eqs. (8.1ac) and (8.14d), we note that the spatial components of momentum,
p¿, transform as a vector under parity and commute with 70, whereas the 7¿ do
not change sign under parity but anticommute with 7¡. Hence the right-hand-
side of Eq, (8.1ac) also transforms as a pseudovector under parity in accord with
Xp,
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Similar expressions can also be written for y,

(¡rå*þ, s)lxpl0) : Àäp*
Msn* - ,+- up\P,s),
Dg/2+

(8.15a)

Mt/z-
Es/z-

(8.15b)(wÊ-@,s)lxplo) : -Àäp- úr(P,, s)^ls ,

Mt/z*
Et/z*

ú'(p, s)y(c.|.¡z*Pu * 7i¡z*'tø) , (8.15c)

(¡rå-þ, s)lxpl0) : W 
ú,@,s)(ai¡r-pt,r 0i¡z-7u). (8.15d)

r .i M"/"* h 'P + Mt/z*): -^3/2+43/r. Eur. 2Mur_

(0lxrll'rå- 1p, s)) (ruå- þ, ") lt,l0)
Mo''-: -)r/r-À, r ffixur(p, 

s)ø,(p,

Note that \rye are assuming identical sinks and sources in these equations. In our

calculations v/e use a smeared soulce and a point sink in which case )*, a* and

þ* are no longer complex conjugates of À, a and B and are instead replaced by

À, a andþ.
we are now in a position to find the form of Eq. (8.1) after we insert a

complete set of intermediate states {lBu(p,s))}. The contribution to Eq. (8.1)

from each intermediate state considered is given by

(olxrllrå+6, s)) (lrrå+ 6, s) lf, lo)
M: *Às/z*t n. ffi"rQt, 

s)a,(p, s)

: -Àzlz-Às/z-
Ms/r- 'Y'P - Mtp-)
Es/z- 2Mt/r-

1
Çuu - g1u'Yv -

Pp'Y" - Pu'lu
3M^n-

(

(0lxrllrå+ 1p, s)) (lrå+þ, 
") lx,l0)

Mtn, t'P * Mt/z* ,::_'l*(ùt/z+Pp*ûtz*lp)l,ffi.ys(at/z+p,lþl/z*.Y,),

(llyrll à- ç'p, s)) (lrrå- 6, s) lx, l0)

: W r*t t z- p tr * 0, ¡ "-'r r)Tffi (o, /r- p, * þ t pt,).

To reduce computational expense, we consider the specific case when þ: u :3
and in order to extract masses we require F: (0,0,0). In this case we have the
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simple expressions

:l0t/z* 0tþ,

(0 1x3 l 
trrå - p, s)) (lrå - 6, s) lt3 l0) :B t ¡z- 0 t ¡z -ys

:lþtp- þt/z-

(0 
| x3 | 

rrr å + 
1p, s) ) (ruå + 

1p, s) 
I xB I 

0) : À3 
¡ 2*\s ¡ 2 r? (W#-), {r. tuu)

(0 
| x3 | 

lrå - p, s) ) (lrå - 6, s) 
| ¡s | 

0) :À r,r-^r, r-', ( 2M,',-
'YoMs/z- - Mtþ-

'YoMtlz- I
2Mrtn-

) ,(8.16b)

t¡l^,^lxr-+(- o\\/ xr*+(n olrv-ro\:- tl, ,^-ß. ,^, ---.'YoAItPt 
I A[t/zt ,u.,r"

\wl^Jlar - \frù,//\,' \y)-/t/\ól"t Ft/z'rr/21 tÕ to 2My¡21 
to to

,(8.16c)

(8.16d)

Therefore, in an analogous procedure to that used in Ref. [106], when a fixed

boundary condition is used in the time direction, positive and negative parity
states are obtained by taking the trace ofthe spin-projected correlation function,
G$3, in Eq. (8.13) with the operator I : l+, where

r*:1(1+r¿). (8.17)2'
The positive parity states propagate in the (1,1) and (2,2) elements of the Dirac
matrix, while negative parity states propagate in the (3,3) and (4,4) elements

for both spin-| and spin-| projected states.

8.3 Results

The analysis is based on a sample of. 392 configurations. For the gauge fields,

a mean-field improved plaquette plus rectangle action (Eq. (3.t5)) is used. The

simulations are performed on a 163 x 32 lattice at B:4.60, which corresponds

to a lattice spacing of a : 0.122(2) fm set by the string tension [57] with t/o :
440 MeV. For the quark fields, the FLIC [72] action (Oq. (0.+)) is implemented.
The fat links were created with n : 4 smearing sv¡eeps and a smearing fraction,
a : 0.7.

A fixed boundary condition in the time direction is used for the fermions
by setting Ut(i,Nù: 0 V d in the hopping terms of the fermion action, with
periodic boundary conditions imposed in the spatial directions. Gauge-invariant
gaussian smearing [76] in the spatial dimensions is applied at the source to
increase the overlap of the interpolating operators with the ground states.
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Figure 8.1: Efiective mass plot for the Nf- state using the FLIC action, from

392 configurations. The five sets of points correspond to the rc values listed in
Table 8.1, with rc increasing from top down'
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Figure 8.2: As in Fig. 8.1, but for the -ôlt+ state.
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K nlro, MnI*a Mnl-a Mn +a Mn,1-a

0.1260

0.1266

0.1273
0.1279
0.1286

0.5767(11)
0.5305(12)
0.4712(15)
0.4164(15)
0.3421(18)

1.102(8)

1.043(e)

o.e7o(13)
0.e05(18)
0.82e(32)

1.4r2(r3)
1.36e(14)

1.317(17)
t.27r(2t)
r.220(31)

1.628(34)

1.577(38)

1.510(44)

1.440(53)

t.32e(74)

1.410(16)

1.365(1e)

1.312(24)
1.264(32)
1.206(4e)

Table 8.1: Masses of the n, N+* and lúf +, for several values of rc obtained from
the spin-$ interpolating field, for the FLIC action with 4 sweeps of smearing at

a : 0.7. Here the value of Æ". is K"" : 0.1300. A string tension ànalysis provides

a:0.122(2) fm for t/o :440 MeV.

In the analysis \Me use five values of rc, as indicated in Table 8.1. Extrapo-
lation to m2*: 0 gives K". : 0.1300. Figure 8.L shows the effective mass plot
for the ,n/t- state for the five rc values used as a function of Euclidean time
obtained after performing spin and parity projections on the correlation func-
tions calculated using the interpolating field in Eq. (8.a). We find a good signal

for this state up until time slice 13 after which the signal is lost in noise. The
effective mass for this state exhibits good plateau behaviour and a good value

of the covariance-matrix based X2 lNoe is obtained when one fits in the time
fitting window of t:10-13 (recall, the source is at ú:3). Typically, one finds

X2lNoe = l and X2lNoe ( 1.5 throughout. After performing spin and parity
projections to extract the Iút+ state from the interpolating field in Eq. (8.a),

one finds the eflective mass plot to be a little noisier, as shown in Fig. 8.2. There
is, however, sufficient information here to extract a mass, and a good value of

X2lNoe is obtained when one fits in the small time fitting window of ú : 9-11.

The interpolating field defined in Eq. (8.4) also has overlap with spin-] states

of both parities. After performing a spin-j projection on the correlation f'unc-

tions, we isolate the I/|+ and Il|- states via parity projection and plot the

effective masses in Figs. 8.3 and 8.4 respectively. The .ð/]+ state suffers contam-
ination from excited states as seen by the long Euclidean time evolution required
to reach plateau in Fig. 8.3. A good value of y2 f Nep is obtained as long as we fit
after time slice 12. For this reason, \ry'e use time slices i3-16 to obtain a mass for
the //j+ state, However, for the .nfj- state, a plateau is seen at early Euclidean
times and a good value of X2lNne is obtained on time slices 8-11.

The extracted masses of the I/f + 
and I/j+ states are given in Table 8.1 and

are displayed in Fig. 8.5 as a function of m2*.. Earlier results for the l/j+ states
using the standard spin-| interpolating field 172,7061from Eq. (7.7) are also
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Figure 8.3: As in Fig. 8.1, but for the I/j+ state'
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Figure 8.4: As in Fig. 8.1, but for the l/|- state.
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Figure 8.5: Masses of the spin projected lf$- (filled triangles), .nff+ lnlea
inverted triangles), lrlj+ (nUea circles), and ,n/]- (filled squares) states. For

comparison, previous results from the direct calculation of the I{}* (on"tt circles)

and l/|- (open squares) from Ref, [106] are also shown. The empirical values

of the masses of the ,n'rj+ loao¡, ¡/å- (1535) , NÊ- (1520) and l/f+ (1720) are

shown on the left-hand-side at the physical pion mass.

shown with open symbols in Fig. 8.5 for reference. It is encouraging to note the
excellent agreement between the spin-projected j+ states obtained from the spin-

f interpolating field in Eq. (8.4) and the earlier |+ results from the same gauge

field configurations. To study this agreement more accuratel¡ we consider the
ratio of effective masses obtained for each jackknife subensemble. This provides

us with a correlated ratio and we frnd the ratio to be one within statistical
uncertainties. We also observe that the llf- state has approximately the same

ma"ss as the ,n/]- state which is consistent with the experimentally observed

masses. However, our quenched simulations at heavy quark masses puts the
I/t- state to be slightly heavier than the I/]- state which is consistent with

rF

ao

Y
A
tr
¡
o
ao e30

Tï
r

d

fo

fË

b

I
c

¡o

i
f,

þ

E 1888

f t72,0



8.3 Hesults L07

I

II

. FLIC4

1.1

IN
çz

-- 1.0
I

N

2

0.9
0 .4 B

(rn /rn\2\f'p'

Figure 8.6: Spin projected Ni- lNt- mass ratio from the spin-t interpolating

field defined in Eq. (8.4).

valence quark models. At lighter quark masses the situation is not as clear due to

Iarger, overlapping error bars. To study this mass difference more acculately, we

again calculate the cor¡elated ratio of effective masses obtained afber appropriate

spin and parity projections. This ratio is shown in Fig. 8.6 and we see that

M¡vÈ- a Mwg- for the three heaviest ore than a hint

that the ratio'may become greater than The results for

the ,n/$- state in Fig. 8.5 indicate a cle n the llf+ and

//f - states obtained from the spin-t interpolating fleld, with a mass difference

around 300 MeV. This is slightly larger than the experimentally observed mass

difference of 200 MeV.

Turning now to the isospin-! sector, the effective mass plot for the at+
state using the interpolating field given in Eq. (8.8) is shown in Figure 8.7 for

the five rc values used. An excellent signal is clearly visible, and a good value of

the covariance-matrix based X2lNoe is obtained by frtting time slices t:7I-74
following the source at t:3. For the effective mass of the negative parity Af -,

shown in Fig. 8.8, the signal is quite good up to time slice 11-12, but is lost in

noise after time slice 12. Time slices ú :9-72 provide a fitting window with an

6.2



108 8. Spin 3/2 Baryons

KM aM a, M +o' M o,

r.476(34)
1.432(41)
1.387(54)
1.351(76)

1.301(126)

0.1260

0.1266

0.1273
0.1279

0.1286

1.1e8(B)

1.153(e)

1.101(12)

1.057(15)

1.006(22)

1.46e(15)

1.42e(17)
1.385(21)

1.353(27)

1.331(43)

7.643 0e)

1.604(107)

1.561(106)

1.530(1oe)

1.502(11e)

Table 8.2: As in Table 8.1, but for the corresponding Aå+, lå-, nå- and Aå+
InA,SSES.

acceptable value of X2lNoe.
The results for the At+ and At- masses are shown in Fig. 8.9 as a function

of m2*. The trend of the Af+ data points with decreasing rnn is clearly towards
the A(1232), although some nonlinearity with m2^ is expected near the chiral
limit [87]. The mass of the Af- hes some 500 MeV above that of its parity
partner, although with somewhat larger errors, as expected from the effective

mass plots in Figs. 8.7 and 8.8.

After performing a spin projection to extract the A|+ states, a discernible,

but noisy, signal is detected. This indicates that the interpolating field in
Eq. (8.8) has only a small overlap with spin-| states. However, with 392 con-

figurations we are able to extract a mass fbr the spin-j states at early times,

shown in Fig. 8.9. Here r,¡/e see the larger error bars associated with the A|+
states. The lowest excitation of the ground state, namely the Aj-, has a mass

- 350-400 MeV above the Af +, with the At- possibly appearing heavier. The

Aj+ state is found to lie - 100-200 MeV above these, although the signal be-

comes weak at smaller quark masses. This level ordering is consistent with that
observed in the empirical mass spectrum.

The ,nf|- and A|- states will decay to l[n in ^9-wave even in the quenched

approximation [104]. For all quark masses considered here, with the possible

exception of the lightest quark, this decay channel is closed for the nucleon.

While there may be some spectral strength in the decay mode, we are unable to
separate it from the resonant spectral strength.

The I/f+ and A|+ states will decay to l[r' in P wave, while l/t- and At-
states will decay to .l/zr in D-wave. Since the decay products of each of these

states must then have equal and opposite momentum and energ-y given by

E2:M2* /2n\2
\*) '
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these states are stable on our lattice

8.4 Summary

Clear signals are obtained for both the spin-projected ,núf+ and,n[]+ states from

a spin-! interpolating field. In particular, the |+ states are in good agreement

with earlier simulations of the nucleon mass and its parity partner using the

standard spin-| interpolating field. We find the lft- state to lie at a similar

energy level to the llj-, consistent with experiment, but with a slightly heavier

mass, consistent with valence quark models. We also find a mass difference of

- 300 MeV between the spin-t, isospin-| parity partners, slightly larger than

the experimentally observed difference of 200 MeV'
For isospin-f baryons, good agreement is found with earlie¡ calculations for

the A ground state, and clear mass splittings between the ground state and

its parity partner are observed after suitable spin and parity projections. We

obtain a signal for the A|+ states and the level ordering is consistent with that

observed in the empirical mass spectrum.
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Figure 8.7: Effective mass plot for the Af + state using the FLIC action with 4
sweeps of smearing àt e. :0.7 from 392 configurations. The five sets of points

correspond to the rc values listed in Table 8.2, with rc increasing from top down.
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I
Conclusion

This thesis reports work I have done in conducting numerical simulations of

Lattice QCD. The basic concepts of The Standard Model, QCD and Lattice

QCD are introduced in Chapters 2 and 3.

In Chapter 4,thestatic quark potential has been calculated in quenched QCD
using Symanzik-improved and unimproved Wilson gluon actions. We have kept

the lattice spacing and the physical volume of these lattices equal so that we

can meaningfully examine the effects of action improvement in the statice quark

potential. The number of gauge field configurations (100 here) is also held fixed

for each action. \Ä/e have explicitly shown that, despite the relatively coarse lat-

tice spacing, the unimproved and computationally less expensive Wilson action

does just as well as the improved action in extractingthe qQ potential at large

separations. If one wishes to keep non-perturbative physics such as non-trivial

topological fluctuations on the lattice, then one needs ¿ < 0.15 fm [58]' and thus

rla > 7. In this case, the unimproved, standard Wilson gauge action is ideal

for todays string breaking searches as computational resources câ,n be redirected

elsewhere. Another advantage for using single-plaquette based actions is that we

recover the extremely useful method for calculating the overlap with the ground

state, C{r), and thus tuning the smearing parameters.

We also explored the use of unconventional paths in accessing off-axis values

of r in the static quark potential. These paths can provide insight into the

extent to which the ground state potential dominates the Wilson loop at large

Euclidean times. Provided the paths âre symmeftized, these new paths provide

useful information on the ground state potential and nearby excited potentials.

Combined with standard paths and variational techniques, these paths offer

additional promise for the search for string breaking in lattice QCD.

Chapter 5 is also focused on the static quark potential (SQP). Here we have

calculated the SQP on several lattices with different lattice spacings. We use

the SQP to extract lattice spacings using both the string tension, o, and the

Sommer scale, 16. These results are plotted as a function of B to provide a

useful tool for predicting the value of B one should choose in order to acheive

the desired lattice spacing using a mean-field improved, plaquette f rectangle

gluon action.
In Chapter 6 we examine the hadron mass spectrum using a novel Fat-Link
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Irrelevant Clover (FLIC) fermion action, in which only the irrelevant, higher-

dimension operators involve srneared links. Fat links provide improved scaling

behavior over mean-field improvement and is competitive with nonperturbative-
improved 122] clover results [63] on plaquette-action gluon configurations. This

shows that FLIC fermions provide a new form of nonperturbative 0(a) improve-

ment. The technique also allows the use of highly improved operators and elim-

inates the need to tune the coeflicients of action improvement terms. The FLIC
action provides excellent scaling and reduces the exceptional confrguration prob-

lem. Quenched simulations at quark masses down to mnlmp: 0.35 have been

successfully pcrformcd on a 203 x 40 lattice with a lattice spacing of 0.134 fm.

Simulations at such light quark masses have already revealed the non-analytic
behavior of quenched chiral perturbation theory in decuplet baryon masses. This
non-analytic behaviour leads to an enhancement in the mass splittings between

decuplet and octet baryons in the quenched approximation, although the ratios
of these splittings agree well with both the experimental value in Eq. (2.i0) and

the quark model prediction in Eq. (2.9).

An enhancement of the ¡/ - A mass splitting in the quenched approxima-
tion has been predicted previously [80] and this is the first time that a lattice
calculation of these baryons has been performed at quark masses light enough

to confirm this prediction. We expect to see more evidence of chiral nonana-

lytic behavior in forthcoming simulations of the electromagnetic form factors of
hadrons.

In Chapter 7, the first results for the excited baryon spectrum from lattice

QCD using an O(a2) improved gauge action and a FLIC quark action are pre-

sented. The simulations have been performed on a 163 x 32 lattice at B : 4.69,
providing a lattice spacing of a:0.122(2) fm. The analysis is based on a set of
400 configurations in the nucleon sector and 200 configurations for the excited
hyperon analysis.

Good agreement is obtained between the FLIC and other improved actions,

such as the nonperturbatively improved clover [100,105] and domain wall fermion
(DWF) [99] actions, for the nucleon and its chiral partner, with a mass splitting
of - 400 MeV. Our results for the ¡f-(;-) improve on those using the DÆ4 [98]
and Wilson actions. Despite strong chiral symmetry breaking, the results with
the Wilson action are still able to resolve the splitting between the chiral partners
of the nucleon. Using the two standard nucleon interpolating fields, we also

confirm earlier observations [97] of a mass splitting between the two nearby ]-
states. We find no evidence of overlap with the j* Rop"t ïesonance.

In the strange sector, we have investigated the overlap of various Â inter-
polating fields with the low lying j+ states. Once again a clear mass splitting
of - 400 MeV between the octet .4, and its parity partner is seen, with some
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evidence of a mass splitting between the two states primarily associated with
the octet ,A.i and Âi interpolating flelds. The Â" interpolator does not make any

assumptions about the SU(3) flavor symmetry properties of the À. The split-

ting between the common Ài and ,t\.i interpolating fields is significantly reduced.

Upon performing a full correlation matrix analysis, the two mass states reveal

themselves. We find no evidence of strong overlap with the |+ "Roper" excita-

tion, r\.*(1600). The empirical mass suppression of the 
^,-(1405) 

is not evident

in these quenched QCD simulations, suggesting an important role for the meson

cloud of the .4.-(1405) and/or a need for more exotic interpolating fields.

We have not attempted to extrapolate the lattice results to the physical

region of light quarks, since the nonanalytic behavior of -ðy'*'s near the chiral limit
is not as well studied as that of the nucleon [80,87]. It is vital that future lattice

Iü* simulations push closer towards the chiral limit. On a promising note, our

FLIC action is able to perform simulations at light quark masses corresponding

to mnf mo: 0.35. It will be interesting to see if we can successfully obtain a

signal for -ðú*'s at these light quark masses'

Our discussion of quenching effects is limited to a qualitative level until the

formulation of quenched chiral perturbation theory for |- baryon resonances is

established or dynamical fermion simulations are completed. Experience sug-

gests that dynamical fermion results will be shifted down in mass relative to

quenched results, with increased downward curvature near the chiral limit [80]'

It will be fascinating to confront this physics with both numerical simulations

and chiral nonanalytic approaches.

In order to further explore the origin ofthe Roper resonances or the 
^.(1405),more exotic interpolating fields involving higher Fock states, or nonlocal oper-

ators should be investigated. The present .l/* mass analysis will be extended

in future to include lú -r -ly'* transition form factors through the calculation of

three-point correlation functions.

Finally in Chapter B, we have presented the first results for the spectrum of

spin-| baryons in the isospin-| and t channels, using a FLIC quark action and

an Ola\-improved gauge action. Clear signals are obtained for both the spin-

pro¡""t"d lú$+ and .ð[]+ states from a spin-] interpolating field. In particular,

the |+ states are in good agreement with earlier simulations of the nucleon mass

andlts parity partner using the standard spin-j interpolating field' We find the

l¿$- state to lie at a similar energy level to the Iü]-, consistent with experiment,

bui with a slightly heavier mass, consistent with valence quark models' We

also find a mass difference of - 300 MeV between the spin-$, isospin-j parity

partners, slightly larger than the experimentally observed difference of 200 MeV'

For isospin-f baryons, good agreement is found with earlier calculations for

the A ground Ãtrt", and clear mass splittings between the ground state and
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its parity partner are observed after suitable spin ând parity þrojections. We

obtain a signal for the A|+ states and the level ordering is consistent with that
observed in the empirical mass spectrum.

It will also be important in future work to consider the excited states in
each JP channel, in particular the lowest "Roper-like" excitation of the L(I232)
ground state. Although this will be more challenging, it may reveal further
insights about the origin of the inter-quark forces and the nature of the confining
potential.
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Gamma Matrices

In the following, we use the Pauli matrices given by

u: (?o':(?å) l) o':(å-? ) (A.1)

(A.3)

(A.5)

(A.6)

(A.7)

A. 1 Dirac Representation

In the Dirac, Majorana and Chiral representations the 7 matrices satisfy

{l', 'y"} : "lþ'Y" +'l'1P :2gp' , þ, I/ : 0, l, 2, 3 (A'2)

1s : .15 : i.yo^lt.yr.yt : -f,.urrro.yp.y'.yp.lo

{lu, l'} : o

"Ê: I , 'Ys:'YI, (A.4)

with commutators

oþ,

.lp.l"

l'Yu, o"l
'lso4'

'ls''lo^l

llrr, r"l
gþ' - iot"'

0
4

-reP"P" o oo

e¿jnojk
1

t
and hermitian conjugates

'Yo'Y'lo : I't
'yo''ru'Yo : -lI: -x

lo(lsl')lo : (lul\l
.yoo+".yo : (ou\t.

(A.8)
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The charge conjugation matrix has the following properties

C"yrC-t : -ii
C'yul-t : 'lT

CorrC-L : -o[,
C(1gr)C-L : (lulò'

The gamma matrices in the Dirac representation a,re given by

'Y0

o¿j : e¿jlr\k :

C : i.y2.yo :

CT :Ct : -C

-oð
'y¿

1s: J5

(

(

(

(

(

(

?)
I
0-
0

tå)
?,-å )

"g)

"?)
0 øi\
oi o)

(í-"?)

(A.e)

(A.10)

(A.11)

'Yu'Yo

'r5'Yo
-o'

^,5^,0^,i _ 5'iI I I -4

0

oi
0

oM: ,(

edj k

(o-0" -'""')

CCt:CtC:I C2 : -I (4.12)
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A.2 Sa ku ra i Representation

In the Pauli representation given in Appendix B of Sakurai [113], the 7 matricies

satisfy

{lp,'Y"} :

op, :

'Ys :

{ls,lp} :
'y3: I ,

26¡",

1.
*11u, 'Y"J : -L'Yp'Yv

1
'Yt^lz'Yz'Y t : 4e uv\o1 u^l u'Y ¡'l "
0

^, - ^,t'15 
- l6t

(A.13)

(4.14)

(A.15)

(A.16)

and are given by

z'Ys'l¿ : (A.17)

o+¿ :

O¿¡:e¿¡¡¡E¡, : e¿j*
0 Ok

C :.yz.yo :

CT :Ct : -C CCT : CTC : C2 : -I (A.18)

A.3 Lattice Discrete SYmmetries

The transformation of the quark propagator has the following discrete symme-

tries under which lattice QCD is invariant,

'Y+: (; -? )

.Ys: -(l å)
i.ys.,t¿: r(i, å)

)
/ o -ioz
\ -,o, o

't¿ : (?,, -";)

(;.

(i
_j)
i)
otî 0

)
I
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o Parity, 2:
S r(r, y,lUD -, %S p(rP, aP, ll'))lo

o Time Reversal, 7:

S p(*, a,lU]) *'yo1¡sS p(rr, a', lUrl)lulo

o Charge Conjugation, C:

S p(*, a, [U]) - tonSl@, y, l(lcl)trto

o H Symmetry,'11:

S e(r, y, lul) --, x SIr(a, *, lUl)lu

o CPTI:
se(r,a,[u]) -- C%sf,(r',u",lu"lhoc-t (,a,.24)

(A.1e)

(A.20)

(4.21)

(^.22)
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lmproved Field Strength Tensor

The proceedure outlined here is presented in more detail by Bilson-Thompson

et al. in Ref. [23]. We start by using the expansion in Eqs. (3.5) and (3.6) for

the plaquette which leads to the standard lattice expression for F¡,,

sa2F¡r,: ïl*rrt - 1ryoxt)I -lrrf*i;' -w;1"ut¡), (8.1)

where F*is made traceless by subtracting 1/3 of the trace from each diagonal

element.

We now seek to construct a combination of clover terms which will remove

O("') and, O(aa) errors relative to the leading t'etm, a2Fr,. The authors of

Ref [23] find an expression for an improved field-strength tensor involving the

following combination of clover terms

rf,yo:kQrg;\ ikzc[2;2) +trc*9;Ð +kp[t;3) +kscfs;s) (8.2)

where Cff'") corresponds to the nx x n loops used to construct a clover term

which is symmetrised in rn +-+ n, and the k¿ a,re the weightings of each loop.

Bilson-Thompson et al. 123) find the improvement coefficients to be

kt : 7919-55k5,

kz : Il36-76k5,
ks : 641ç5-32145,

k¿ : tlLS - 6k6, (8.3)

where the coefficient of the 3 x 3 loop, k5, can be tuned to create one of the

following

o 3-loop O(aa)-improved field-strength tensor - ks: 7190 + ke : lq:0,

o 4-loop improved field-strength tensor - les:0' 79f 495' ot L1576 è k5:
0, kr : 0rkz:0, resPectivelY

o 5-loop improved field-strength tensor - lcs :1/180'
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By observing the topological charge on a number of different gauge field

configurations, Bilson-Thompson eú ø1. find the most integer-like results are

obtained from the 5-loop improved topological charge operator. They also find
that the 3-loop operator also produces excellent results with the added advantage

that it is much less computationally expensive than the 5-loop operator.



c
Correlation Matrix Analysis

In this section we outline the correlation matrix formalism for calculations of

masses, coupling strengths and optimal interpolating fields. After demonstrating

that the correlation functions are real, we proceed to show how a matrix of such

correlation functions may be used to isolate states corresponding to different

masses, and also to give information about the coupling of the operators to each

of these states.

C.1 The U + [J* method

A lattice QCD correlation function for the operator XrX¡, where f¿ is the i-th
interpolating field for a particular baryon, can be written as

,1 f ouDtþoúe-slu''ú'úl@. lc.l)u,i¡:(QlT(xox)la):ffii' \-'-./

where spinor indices and spatial coordinates are suppressed for ease of notation.

The fermion and gauge actions can be separated such that SlU,rþ,1þ]: SclU)+
,þMlulrþ. Integration over the Grassmann variables tþ and Ty' then gives

n .[ Du"-s"lulaet(M[t/]) HoilUl (Õ n\
vli : r \v'o./

where the term fl¿3 stands for the sum of all full contractions of y¿\t. The pure

gauge action ^Sc and the fermion matrix M satisfy

SclUl:,Sc[U.] , (C'3)

and

õtw¡u.1õ-I : M*lul, (c,4)

respectively, where õ i" Cry'
Using the result of Eq. (C.4), one has

det(Mru.r) : 
lii-i.r'-') (c5)
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and since det(Mfu)) is real,

det (M[t/.]) : det (MlUl) (C.6)

Thus, U and (J* are configurations of equal weight in the measure

I OUaet(U[U])exp (-Sc[U]), in which case Ç¿¡ can be written as

- 1 ( f Due-sclu) ls¡(I[lUD {Htjlul -t Ho¡lu-l}\ /¡1 n\
J21 ^ t t \-"/' z \ J uu e "ut" I ueL\rvl [u l/ /

Let us define
Gù = tr,o{faÇ¡}, (C.8)

where tr.o denotes the spinor trace and fa is the parity-projection operator de-

fined in Eq. (7.5). If tr.o {lHûlu.l} - fïsp {I/i.ijlu)}, th"n Gfi is real. This
can be shown by first noting that H¿¡ will be products of 7-matrices, fermion
propagators, and link-field operators. In a gamma matrix representation which
is Hermitian, such as the Sakurai representation, ClrC-t :'yi. Fermion prop-

agators have the form M-r and recalling that sinceTM[\J*]T-L:M*I[/], then
we have TM-rlU.lT-r:1X4-rlU])-. For link-field operators OIU) contained in
H¿¡, the condition OlU.l: O.lUl is equivalent to the requirement that the co-

efficients of all link-products are real. As long as this requirement is enforced,

we can then simply proceed by insertin1 TT-t inside the trace to show that
the (spinor-traced) correlation functions are real. If one chooses the Dirac rep-

resentation, then C'yrc-t : -'yi and CTyC-\ : 7ö. Therefore, if f/¿¡ contains
an even number of spatial gammâ matricies, Gfi is purely real, otherwise Gfi is
purely imaginary.

In summary, the interpolating fields considered here are constructed using
only real coefficients and have no spatial 7-matricies. Therefore, the correlation
functions Gfi are real. This symmetry is explicitly implemented by including
both [/ and U* in the ensemble averaging used to construct the lattice correlation
functions, providing an improved unbiased estimator which is strictly real. This
is easily implemented at the correlation function level by observing

M-'({u;}) : [c^ys M^({ur}) (c75)-1]-

for quark propagators.

C.2 Recovering masses and coupling coefficients

Let us again consider the momentum-space two-point f'unction (Eq. (3.4a)) for
t)0,

Çe¡(t,6: Ð "-nr''t(alxo(t,i)Xj(0,0-)|CI) (C.9)
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At the hadronic level,

Ç,i¡(t,6: D .-nFrD!{nlx,(t, i)lB,p', s)(B,p',"1&(0, d)lc¿) ,

i P-rs B

where thelB,p',s) are a complete set of states with momentump'and spin s.

These states form a basis with the conserved quantum numbers carried by the

X interpolating field such that in this subspace

Dt\la,n',s)(B,P',sl :1. (c.10)
p-Ba

We can make use of translational invariance to write

Çr¡(t, p1 : l e-t'ø'nt D t (n l"È' "-tÊ''t ru(l¡¿ti''t "-ntl 
a, n', r) *

ílsB
(8,p, ,s lXr(o)l cl)

: t t "-t"' (Qlx'(o)lB,p,sl(B,p,sl7j(O)|CI) . (C.11)

Suppose thut th"r" 
j. t such states , lB,').The parity-projected trace of this

object is then 
N

Gü(t) -- ft"r{t¡Ç¿¡} : t "-^"'Àî\1 , (c.12)
o:1

where Àf and Ii ut" coefficients denoting the couplings of the interpolating fields

l¿ and X¡, ïespectively, to the state lBo). If we use identical source and sink

interpolating fields then it follows from the definition of the coupling strength

that ÀrÎ : (Ài)- and from Eq. (C.12) we see ttrat Gfi(t) : [GjX(ú)]-, i.e., G+

is a Hermitian matrix' If, in addition, t¡/e use only real coefficients in the link
products, then G+ is a real symmetric matrix. For the correlation matrices that

we construct we have real link coefficients but we use smeared sources and point

sinks and so in our calculations G is a real but non-symmetric matrix. Since

G+ is a real matrix for the infinite number of possible choices of interpolating

fields with real coefficients, then we can take Àf and Ii to be real coefficents

here without loss of generality'

Suppose now that we have M cteation and annhilation operators where M <
¡rI. \Me can then form an M x M approximation of the full lú x -ðl matrix

G. At this point we have two options for extracting masses. The first is the

standard method for calculation of effective masses at large ú as described in

Section 6.4. The second option is to extract the masses through a correlation-

matrix procedure [114].
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Let us begin by considering the ideal case where we have l{ interpolating

fields with the same quantum numbers, but which give rise to lrl linearly in-

dependent states when acting on the vacuum. In this case we can constuct .ly'

ideal interpolating source and sink frelds which perfectly isolate the I/ individual

baryon states lBo), i.e.,

t"v uT 7¿ , (C.taa)

ó" : ulo x¿, (c.13b)

such that

(Bpl6"la) : õoþ7 u(a,p,s), (c.t+a)

\aló"lBB) : õop zo u(a,P,s) , (C'14b)

where zo and.Zo are the coupling strengths of /o and þo to the state lB.). The
coefficients uf; and ui" in Eqs. (C.13) may differ when the source and sink have

different smearing prescriptions, again indicated by the differentiation between

zo and Zo. For notational convenience for the remainder of this discussion

repeated indices i,, j,le arc to be understood as being summed over. At F:0,it
follows that,

/_ \
Gü(t) uî : { D t'.0 {r* (r¿l xilila)} I "î)E-_-", /

,\,i p v (c.15)

The only ú-dependence in this expression comes from the exponential term, which
leads to the recurrence relationship

Gù(t) uT : e*"Go*o(t + t) "i . (c'16)

which can be rewritten as

[c+(t + L)]kttcü(t) uT : e^" ul . (c.17)

This is recognized as an eigenvalue equation for the matrix [G+(t + t)]-1c+(t)
with eigenvalues e-o and eigenvectors t¿o. Hence the natural logarithms of the
eigenvalues of [G+(t + 1)]-1G+(ú) are the masses of the ly' baryons in the tower
of excited states corresponding to the selected parity and the quantum numbers

of the X fields. The eigenvectors are the coefficients of the X fields providing the
ideal linear combination for that state. Note that since here we use only real
coefficients in our link products, then [C+(t+ t)]-1C+(t) is a real matrix and so

'uo aud uo will be real eigerrvecl,ors. IL also l,hen lollows that zo alnJ Z" will be

real. These coefficients are examined in detail in the following section.
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One can also construct the equivalent left-eigenvalue equation to recover the

u vectors, providing the optimal linear combination of annihilation interpolators,

uf,"cf,,(t):e*oulo'Gfi(t+t) ' (c.18)

Recalling Eq. (C.15), one finds:

cf;(t) ui : vÀf,e-*'t , (c.19)

u;" Gfi(t) : ,a¡-!"-mot, (C.20)

uf" cf,(t)ci@ "î : z"*Ài\ie-2mot . (C.21)

The definitions of Eqs. (C.14) imply

ui" Gf;(t) uT : zozoe-^ot, (C.22)

indicating the eigenvectors may be used to construct a correlation function in

which a single state is isolated, and can be analysed using the methods of Sec-

tion 6.4. We refer to this as the projected correlation function in the following.

Combining Eqs. (C.21) and (C.22) Ieads us to the result,

ufi" G¡¡(t)G¿ : ÀîIl1"-^"' (c.23)
uf;Gp(t)ui

By extracting all .ðü2 such ratios, we can exactly recover all of the real couplings

Àf and Ii of l¿ and I¡ respectively to the state lB,). Note that throughout

this section no assumptions have been made about the symmetry properties of

cf,. rnis i5 essential due to our use of smeared sources and point sinks.

In practice we will only have a relatively small number, M < .ðy', of interpo-

lating fields in any given analysis. These M interpolators should be chosen to

have good overlap with the lowest M excited states in the tower and we should

attempt to study the ratios in Eq. (C.23) at early to intermediate Euclidean

times, where the contribution of the (l/ - M) higher mass states will be sup-

pressed but where there is still sufficient signal to allow the lowest M states to

be seen. This procedure will lead to an estimate for the masses of each of the

lowest M states in the tower of excited states. Of these M predicted masses, the

highest will in general have the largest systematic error while the lower masses

will be most reliably determined. Repeating the analysis with varying M and

different combinations of interpolating fields will give an objective measure of

the reliability of the extraction of these masses.

In our case of a modest 2 x 2 correlation matrix (M :2) we take a cautious

approach to the selection of the eigenvalue analysis time. As already explained,

we perform the eigenvalue analysis at an early to moderate Euclidean time where

(t) "i
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statistical noise is suppressed and yet contributions from at least the lowest two

mass states is still present. One must exercise caution in performing the analysis

at too early a time, as more than the desired M : 2 states may be contributing

to the 2 x 2 maftix of correlation functions.

We begin by projecting a particular parity, and then investigate the effective

mass plots of the elements of the correlation matrix. Using the covariance-matrix

based X2 lNop, we identify the time slice at which all correlation functions of the
correlation matrix are dominated by a single state. In practice, this time slice

is determined by the correlator providing the lowest-lying effective mass plot.

The eigenvalue analysis is performed at one time slice earlier, thus ensuring the
presence of multiple states in the elements of the correlation function matrix,
minimising statistical uncertainties, and hopefully providing a clear signal for the

analysis. In this approach minimal new information has been added, providing

the best opportunity that the 2 x 2 correlation matrix is indeed dominated by
2 states. The left and right eigenvectors are determined and used to project
correlation functions containing a single state from the correlation matrix as

indicated in Eq. (C.22). These correlation functions are then subjected to the
same covariance-matrix based X2lNoe analysis to identify new acceptable fit
windows for determining the masses of the resonânces.



D

Publications By The Author

o J. B. Zhang, S. O. Bilson-Thompson, F. D. Bonnet, D. B. Leinweber,

A. G. Williams and J. M. Zanotti, "Overlap Fermions, Improved Cooling

And The Lattice Index Theorem," Nucl. Phys. Proc. Suppl. 1094, 146

(2002).

o \Ä/. Melnitchouk, S. O. Bilson-Thompson, F.D.Bonnet, F. X. Lee, D. B. Lein-

wcber, A. G. Williams, J. M. Zanotti and J. B. Zhang, "Excited baryons

in lattice QCD," arXiv:hep-l at I 0202022.

o F. D. Bonnet, D. B. Leinweber, A. G. Williams, J' M. Zanottiand J. B'Zhang,

"Quark propagator in a covariant gauge," Nucl. Phys. Proc' Suppl. 109,

15S (2002) [arXiv:hep-lat I 02020L7].

o W. Melnitchouk, S. O. Bilson-Thompson, F.D.Bonnet, F' X' Lee, D. B' Lein-

weber, A. G. Williams, J. M. Zanotti and J. B. Zhang, "Baryon resonances

from a novel fat-link fermion action," Nucl. Phys' Proc. Suppl. 109, 96

(2002) [arXiv: hep-lat/O2O 1 005] .

o J. M. Zanotli et a1.,, "Novel fat-link fermion actions," Nucl. Phys. Proc.

Suppl. 109, 101 (2002) [arXiv:hep-Lar 1020700a).

o J. B. Zhang, S. O. Bilson-Thompson, F. D. Bonnet, D' B. Leinweber,

A. G. Williams and J. M. Zanotti, "Numerical study of lattice index the-

orem using improved cooling and overlap fermions," Phys. Rev. D 65,

OT 4510 (2002) [arXiv:hep-lat/01 1 1 060] .

o J. M. Zanotti eú ø/. [cssM Lattice Collaboration], "Hadron masses from

novel fat-link fermion actions," Phys. Rev. D 65, 074507 (2002) [arxiv:hep-
latl01 102161.

o F. X. Lee, D. B. Leinweber, L' Zhott, J. M. Zanotti and S. Choe, "N*
masses from an anisotropic lattice QCD action," Nucl. Phys. Proc. Suppl.

LO6, 248 (2002) [arXiv:hep-lat/01 1016a].

o F. D. Bonnet, D. B. Leinweber, A' G. Williams and J. M' Zanotli, "Im-

proved smoothing algorithms for lattice gauge theory," Phys. Rev. D 65,

1 14510 (2002) [arXiv:hep-lat/0106023].



130 D. Publications By The Author

o F. D. Bonnet, P. O, Bowman, D. B. Leinweber, A. G. Williams and

J. M. Zanotti, "Infinite volume and continuum limits of the Landau-

gauge gluon propagator," Phys. Rev. D 64, 034501 (2001) [arXiv:hep-
latl01010131.



B¡bliography

[1] Eugene P. Wigner. On unitary representations of the inhomogeneous lorentz group.

Annals Math., 40:149-204, t939.

[2] Chen-Ning Yang and R. L. Mills. Conservation of isotopic spin and isotopic gauge

invariance. Phys. Reu., 96:191-195, 1954.

[3] S. L. Glashow. Partial symmetries of weak interactions. Nucl. Phys.,22:579-588, 1961.

[4] S. Weinberg. A model of leptons. Phys. Rea. Lett',19:1264-1266,1967.

[5] A. Salam. in elementary particle theory. ed. N. Svartholm (Almquist and Wiksell,

Stockholm, 1968).

[6] M. Gell-Mann and Y. Ne'eman. The eightfold way. (Benjamin, New York, 1964)'

[7] Particle Data Group. Review of particle physics' Eur. Phys. .L, 15:1-878' 2000.

[8] F. E. Close. An introduction to quarks and partons. (Academic Press, London, 1979),

481p.

l9l I. C. cloet, D. B. Leinweber, and A. 
.w. 

Thomas. simple quark model with chiral

phenomenolo gy. Phys. J?eø., C65:06220I, 2002.

[10] T. Muta. Foundations of quantum chromodynamics. second edition. World Sci'. Lect.

Notes Phys., 57:1-409, 1998.

[11] K.G. Wilson. New phenomena in subnuclear physics. edited by A. Zichichi (Plenum,

New York, 1975), Part A, p. 69.

[12] G. Curci, P. Menotti, and G. Paffuti. Symanzik's improved lagrangian for lattice gauge

theory. Phys. Lett., 8130:205' 1983.

[13] M. Luscher and P. Weisz. On-shell improved lattice gauge theories. Commun. Math'

Phys., 97:59, 7985.

[14] G. Peter Lepage and Paul B. Mackenzie. On the viability of lattice perturbation theory.

Phg s. Reu., D48:2250-2264' 1993.

115] Mark G. Alford, w. Dimm, G. P. Lepage, G. Hockney, and P. B. Mackenzie. Lattice

qcd on small computets. Phys. Lett.,B,36l:87-94, t995.

[16] K. Symanzik. Continuum limit and improved action in lattice theories. 1. principles and

phi**4 theory. NucI. Phys., B226:187, 1983.

[12] H. J. Rothe. Lattice gauge theories: An introduction. World Sci. Lect. Notes Phys.,

59:l-512,1997.

[18] Rajan Gupta. Introduction to lattice qcd' 1997.

[1g] Herbert W. Hamber and Chi Min Wu. Some predictions for an improved fermion action

on the-lattice. Phys. Lett.,Bl33:351' 1983.



L32 BIBLIOGRAPHY

120] Flank X. Lee and Derek B. Leinweber. Light hadron spectroscopy on coarse lattices

with l(42) mean field improved actions. Phys' Reu., D59:074504, 1999.

[21] B. Sheikholeslami and R. Wohlert. Improved continuum limit lattice action for qcd with
wilson fermions. Nucl. Phgs.,8259:572, 1985'

122] Martin Luscher, Stefan Sint, Rainer Sommer, and Peter Weisz. Chiral symmetry and

o(a) improvement in lattice qcd. NucI. Phys.,8478:365-400, 1996.

[23] Sundance O. Bilson-Thompson, Derck B. Leinweber, and Anthony G. Williams. Highl¡-
improved lattice field-strength tensor. 2002.

[24] Mark G. Alford, T. R. Klassen, and G. P. Lepage. Improving lattice quark actions.

Nucl. Phys., 8496:377-407, 1997.

[25] Gyan Bhanot. The metropolis algorithm. Rept. Prog. Phgs.,5l:429, 1988.

[26] N. Cabibbo and E. Marinari. A new method for updating su(n) matrices in computer

simulations of gauge theories. Phys. Lett., 8119:387-390, 1982.

127) J. Kuti. Exoticaandtheconfiningfh::l.. Nucl. Phgs. Proc. Suppl.,73:72-85, 1999.

f28] S. Aoki et al. The static quark potential in full qcd. NucL Phys. Proc. Suppl.,73:216-278,
1999.

129] M. Talevi. Light hadron spectroscopy with o(a) improved dynamical fermions. lfucl.
Phys. Proc. Suppl., 73:219-221, 1999.

[30] G. S. Bali et al. Glueballs and string breaking from full qcd. Nucl. Phgs. Proc. Suppl.,

63:209-211,1998.

[31] A. Duncan, E. Eichten, and H. Thacker. String breaking in four dimensional lattice qcd.

Phgs. Reu., D63:111"501, 2001.

[32] P. Pennanen and C. Michael. String breaking in zero-temperature lattice qcd. 2000.

[33] Howard D. Tlottier. String breaking by dynamical fermions in lattice qcd: FTom three

to four dimensions. Phgs. Rea., D60:034506, 1999.

[34] Howard D. Tiottier and Kit Yan Wong. Static potential and local color fields in un-
quenched three-dimensional lattice qcd. 2002.

[35] Slavo Kratochvila and Philippe de Forcrand. String breaking with wilson loops? 2002.

[36] Grigorios I. Poulis and Howard D. Tlottier. 'gluelump' spectrum and adjoint source

potential in lattice qcd in three-dimensions. Phys. Lett., 8400:358-363, 1997.

[37] Stephan Gusken. Dynamical quark effects in qcd. Nucl. Phys. Proc. Suppl.,63:16-21,
1998.

f38] I. T. Drummond. Strong coupling model for string breaking on the lattice. Phys. Lett.,
8434:92-98, 1998.

[39] M. Falcioni, M. L. Paciello, G. Parisi, and B. Taglienti. Again on su(3) glueball mass.

Nucl. Phys., B25t:624-632, 1985.

[40] M. Albanese et al. Glueball masses and string tension in lattice qcd. Phys. Lett.,
8192:163, 1987.



BIBLIOGRAPHY 133

l41l C. Legeland, B. Beinlich, M. Lutgemeier, A. Peikert, and T. Scheideler. The string
tension in su(n) gauge theory from a careful analysis of smearing parameters. Ifzcl.
Phys. Proc. Suppl, 63:260-262, 1998.

[42] Carleton DeTar, Urs Heller, and Pierre Lacock. First signs for string breaking in two-

flavor qcd. Nucl. Phys. Proc. Suppl.,83:310-312' 2000.

[43] Claude W. Bernard et ø"1. Zero temperature string breaking in lattice quantum chromo-

dynamics. Phys, Reu., D64:074509, 2001.

t44j F. Knechtli. String breaking and lines of constant physics in the su(2) higgs model.

NucI. Phys. Proc. Suppl.,83:673-{75' 2000.

[45] Flancesco Knechtli and Rainer Sommer. String breaking in su(2) gauge theory with
scalar matter fields. P/r.ys. Lett.,B440:345-352' 1998.

[46] E. Laermann, C. DeTar, O. Kaczma"rek, and F. Ka¡sch. String breaking in lattice qcd'

Nucl. Phys. Proc. Suppl., 73:447-449, 1999.

l47l P. W. Stephenson. Breaking of the adjoint string in 2*1 dimensions. Nucl. Phys.,

8550:427-448, 1999.

l48l trYederic D. R. Bonnet, Patrick Fitzhenry, Derek B. Leinweber, Mark R' Stanford, and

Anthony G. \Milliams. Calibration of smearing and cooling algorithms in su(3)- color

gauge theory. Phgs. Reu., D62:094509' 2000.

[ g] Colin J. Morningstar and Mike J. Peardon. Efficient glueball simulations on anisotropic

lattices. Phys. Reu., D56:4043-4061' 1997'

[50] Konrad Osterwalder and Robert Schrader. Axioms for euclidean green's functions' Corn-

mun. Math. Phys., 31:83-IL2, 1973'

f51l G. Parisi. Symanzik's improvement program. NucI. Phys,,B264:58-70, 1985.

[52] C. R. Allton et al. Gauge invariant smearing and matrix conelators using wilson fermions

at beta :6.2. Phys. Reu.,D47:5128-5137, 1993.

[b3] Bram Bolder et al. A high precision study of the q anti-q potential from wilson loops

in the regime of string breaking' Phys. Reu., D63:074504' 2001'.

[b4] N. Cabibbo and E. Marinari. A new method for updating su(n) matrices in computer

simulations of gauge theories. Phys. Lett., 8119:387-390' 1982.

[bb] F¡ederic D. R. Bonnet, Derek B. Leinweber, and Anthony G. Williams. General al-

gorithm for improved lattice actions on parallel computing architectures. J. Comput'

Phys., I70:l-17,2001.

[56] M. Luscher. Symmetry breaking aspects of the roughening transition in gauge theories.

Nucl. Phys., B180:317' 1981.

[bZ] R. G. Edwards, U. M. Heller, and T. R. Klassen. Accurate scale determinations for the

wilson gauge action . Nucl. Phys', B517:377-392, 1998.

[5g] trYederic D. R. Bonnet, Derek B. Leinweber, Anthony G. Williams, and James M. Zan-

otti. Improved smoothing algorithms for lattice gauge theory' 2001'

[b9] C. Michael. The running coupling from lattice gauge theory. Phys. Lett.,8283:103-106'

1992.



L34 BIBLIOGRAPHY

160] R. Sommer. A new way to set the energy scale in lattice gauge theories and its applica-

tions to the static force and alpha-s in su(2) yang-mills theory. NucI. Phgs.,8411:839-
854, 1994.

[61] Claude'W. Bernard et al. The static quark potential in three flavor qcd. Phys. Reu.,

D62:034503, 2000.

[62] Hikaru Kawai, Ryuichi Nakayama, and Koichi Seo. Comparison of the lattice lambda
parameter with the continuum lambda parameter in massless qcd. NucL Phys., Bl89:40,
1981.

[63] R. G. Edwards, Urs M. Heller, and T. R. Klassen. The effectiveness of non-perturbative
o(a) improvement in la,ttice qcd. Phys. R,eu. Lett.,80:3448-3451, 1998.

[64] T. DeGrand. Simple observables from fat link fermion actions. Phys. Rea., D60:094501,

1999.

[65] \M. Bardeen, A. Duncan, E. Eichten, G. Hockney, and H. Thacker. Light quarks, zero

modes, and exceptional configurations. P/r.grs. Rea., D57 :1633-1641, 1998.

[66] M. C. Chu, J. M. Grandy, S. Huang, and J. W. Negele. Evidence for the role of instantons
in hadron structure from lattice qcd. Phys. Reu.,D49:6039-6050, 1994.

[67] Thomas DeGrand, Anna Hasenfratz, and Tamas G. Kovacs. Optimizing the chiral
properties of lattice fermion actions. 1998.

[68] Mark Stephenson, Carleton DeTar, Thomas DeGrand, and Anna Hasenfratz. Scaling

and eigenmode tests of the improved fat clover action. Phys. Rea., D63:034501, 2001.

[69] Claude \M. Bernard and T. DeGrand. Perturbation theory for fat-link fermion actions.
Nucl. Phys. Proc. Suppl.,83:845-847, 2000.

[70] C. Bernard et al. Lattice calculation of heavy-light decay constants with two flavors of
dynamical quarks. 2002.

f71l Herbert Neuberger. Bounds on the wilson dirac operator. Phys. r?eo., D61:085015, 2000.

[72] James M. Zanotti et al. Hadron masses from novel fat-link fermion actions. Phys. Reu.,

D65:074507, 2002.

[73] J. M. Zanotti et al. Novel fat-link fermion actions. Nucl. Phys. Proc. Suppl.,109:101-105,
2002.

l74l J. M. Zanotti et al. Light quark simulations and exceptional configurations with flic
fermions. in preparation.

[75] Philippe de Forcrand, Margarita Garcia Perez, and lon-Olimpiu Stamatescu. Topology
of the su(2) vacuum: A lattice study using improved cooling. Nucl. Phys.,B499:409-449,
7997.

[76] S. Gusken. A study of smearing techniques for hadron correlation functions. Nucl. Phgs.

Proc. Suppl., 17:361-364, 1990.

l77l A. FÌommer, V. Hannemann, B. Nockel, T. Lippert, and K. Schilling. Accelerating wil-
son fermion matrix inversions by means of the stabilized biconjugate gradient algorithm.
Int. J. Mod. Phys., C5:1073-1088, 1994.



BIBLIOGRAPHY 13s

[78] 
rü/aseem Kamleh, David H. Adams, Derek B. Leinweber, and Anthony G. Williams.
Accelerated overlap fermions. Phys. Rea., D66:014501, 2002.

f79] Michele Della Morte, Roberto Frezzotti, and Jochen Heitger. A lattice approach to qcd

in the chiral regime. 2001.

[80] R. D. Young, D. B. Leinweber, A.'W. Thomas, and S. V' Wright' Chiral analysis of
quenched baryon masses, 2002.

[81] Simon Capstick and W. Roberts. Quark models of baryon mâsses and decays. 2000.

[82] Nathan Isgur and Gabriel Karl. Hyperfine interactions in negative parity ba,ryons. Phys.

Lett., B72:I09, 1977.

[83] P. A. M. Guichon. A nonstatic bag model for the roper resonances. Phys. Lett.,Bl64:361,
1985.

[84] O. Krehl, C. Hanhart, S. Krewald, and J. Speth. What is the structure of the roper

resonance? Phys. Reu., C62:025207, 2000.

[8b] Zhen-ping Li, Volker Burkert, and Zhu-jun Li. Electroproduction ofthe roper resonance

as a hybrid state. Phys. Reu.,D46:70-74, 1992.

186] R. H. Dalitz and J. McGinley. Theory of low-energy kaon - nucleon scattering. Low

and Intermediate Energy Kaon-Nucleon Physics, ed. E. Ferarri and G. Violini (Reidel,

Boston, 1980), p.381.

[87] Derek B. Leinweber, Anthony W. Thomas, Kazuo Tsushima, and Stewart V. Wright.
Baryon masses from lattice qcd: Beyond the perturbative chiral regime. Phys. Reu.,

D6I:074502, 2000.

[S8l L. Ya. Glozman and D. O. Riska. The spectrum of the nucleons and the strange hyperons

and chiral dynamics. Phys. Rept.,268:263-303' 1996'

[89] Nathan Isgur. Critique of a pion exchange model for interquark forces. Pñ.ys. Reu.,

D62:054026, 2000.

[90] A. W. Thomas and G. Krein. Chiral corrections in hadron spectroscopy. Phgs. Lett.,

8456:5-8, 1999.

[91] Simon Capstick and Nathan Isgur. Baryons in a relativized quark model with chromo-

dynamics. Phys. Reu., D34:2809, 1986.

[92] C. L. Schat, J. L. Goity, and N. N. Scoccola. Masses of the 70- baryons in large n(c)

qcd. Phys. Reu. Lett.,88:102002, 2002.

[g3] Derek B. Leinweber. Qcd sum rule analysis of spin orbit splitting in baryons. Ann.

Phys,,198:203, 1990.

[g4] Derek B. Leinweber, Do quarks really form diquark clusters in the nucleon? Phys. Rea',

D47:5096-5103, 1993.

[g5] Derek B. Leinweber. Nucleon properties from unconventional interpolating fields. Pñ.Us.

.Beu., D51:6383-6393' 1995.

[96] Thomas A. DeGrand and Matthew W. Hecht. More about orbitally excited hadrons

from lattice qcd,. Phys. Reu.,D46;3937-3944, 1992'



136 BIBLIOGNAPHY

[97] I]ank X. Lee and Derek B. Leinweber. Negative-parity baryon spectroscopy. Nucl. Phgs.

Proc. Suppl., 73:258-260' 1999.

[g8] F]ank X. Lee. N* mass spectrum from an anisotropic action. Nucl. Phys. Proc. Suppl.,

94:25I-254, 2001.

[99] Shoichi Sasaki, Tom Blum, and Shigemi Ohta. A lattice study of the nucleon excited

states with domain wall fermions. Phys. Reu., D65:074503, 2002'

[100] Ð. G. Richards et al. Excited nucleon spectrum using a non-perturbatively improved

clover fermion action. Nucl. Phys. Proc. Suppl.,109:89-95' 2002.

[101] M. Gockeler et al. Negative-parity baryon masses using an o(a)-improved fermion action.

Phys. Lett., B,532:63-70, 2002'

[102] Derek B. Leinweber, R. M.Woloshyn, and Terrence Draper. Electromagnetic structure

ofoctet baryons. Phgs. Reu., D43:1659-1678, 1991.

[103] K. C. Bowler et al. Hadron mass calculations with susskind and wilson fermions in the

fundamental adjoint plane. Nucl. Phys.,8240:213, 1984.

1104] James N. Labrenz and Stephen R. Sharpe. Quenched chiral perturbation theory for

baryons. Phys. Reu., D54:4595-4608, 1996.

[105] D. G. Richards. N* spectrum using an o(a)-improved fermion action. Nucl. Phys. Proc.

S uppl., 94:269-27 2, 2001.

f106] W. Melnitchouk et al. Excited baryons in lattice qcd. 2002.

1107] D. B. Leinweber, A. W. Thomas, K. Tsushima, and S. V. Wright. Chiral behaviour of
the rho meson in lattice qcd. Phys. Reu., D64:094502,2007.

[108] V. D. Burkert. Electromagnetic excitation of baryon resonances and the clas n* program.

Few Bod,y Syst. Suppl., 11:1-9, 1999.

[109] Derek B. Leinweber, Terrence Draper, and R. M. \Moloshyn. Decuplet baryon structure
from lattice qcd. Phys. Reu., D46:3067-3085, 1992.

1110] F. X. Lee, D. B. Leinweber, L. Zhou, James M. Zanotti, and S. Choe. N* masses fiom
an anisotropic lattice qcd action. Nucl. Phys. Proc. Suppl., 106:248-250,2002.

[111] Y. Chung, H. G. Dosch, M. Kremer, and D. Schall, Baryon sum rules and chiral sym-

metry breaking. Nucl. Phys.,B797:55, 1982.

[112] M. Benmerrouche, R. M. Davidson, and N. C. Mukhopadhyay. Problems of describing
spin 312 baryon resonances in the effective lagrangian theory. Phys. Reu., C39:2339-

2348, 1989.

[113] J.J. Sakurai. Advanced quantum mechanics. (Addison-Wesley, Redwood City, CA,
1e82).

[114] Craig McNeile and Chris Michael. Mixing of scalar glueballs and flavour-singlet scalar

mesons. Phys. Reu., D63:114503, 2001.




