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Abstract

In the field of computer vision, texture analysis has historically been an important topic
of study. Texture is one of the major primary visual cues to image understanding. The
human visual system relies on texture, among other types of cues, to effectively interpret
the information contained in an image. Therefore, it is imperative that a fully functional
artificial vision system must perform texture analysis. However, effective texture analysis
has proved to be a difficult problem. This is mainly due to fundamental difficulties
with texture - it is more of a concept than a well-defined ohject or property. Without
an unambiguous definition of texture, researchers have to resort to various models and
techniques, all of which have their own advantages and disadvantages. Traditionally,
there have been three main approaches to texture analysis: statistical, structural and
filter-based. While statistical and structural approaches have been favoured by early
researchers, more modern techniques are typically filter-based. Thhis thesis presents a type
of filter-based technique. There are two main areas within texture analysis: classification

and segmentation, but this thesis only covers the segmentation problem.

Wavelet transforms are a relatively new analytical tool in the scientific community.
It is commonly accepted that wavelet theory grew out of classic Fourier analysis. De-
spite its widespread usefulness, Fourier analysis has several deficiencies; wavelet theory is
among many others that attempt to address such problems. Primarily, wavelet transforms
decompose signals into joint time-frequency bases, instead of harmonic ones. The inher-
ent multiresolution property associated with joint time-frequency representations makes

wavelet transforms far more suitable for analysing non-stationary signals. As a result,
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wavelets have been used in many different applications in the relatively short period of

time since its introduction.

In this thesis, wavelet transforms are chosen as the primary analytical tool for texture
analysis. In particular, a recent advancement in wavelet transforms, called the Dual-Tree
Complex Wavelet Transform, is applied to the texture segmentation problem. While the
wavelet transform is believed to be a suitable analytical tool, there are other problems to
be overcome before a texture segmentation system can be built. Specifically, the feature
extraction and feature clustering methods need to be investigated. This thesis exam-
ines several possibilities for feature extraction and clustering steps. In particular, novel
feature extraction and clustering schemes are introduced and compared to other known
techniques. An extensive range of experiments are performed on the texture mosaics, to
verify the effectiveness of the proposed feature extraction and clustering methods. The
set of inputs to the experiments are carefully chosen as to allow direct comparison with
existing methods, so a meaningful indication of the quality of the proposed segmentation
system can be obtained. It has been found that the proposed system is capable of produc-
ing accurate, highly consistent segmentations on the test mosaics. With the success on the
test mosaics, the segmentation system is then applied to several real-world applications,
In the real examples, it is found that the system produces more erratic results, often as a
consequence of the lack of any problem-specific input to assist the segmentation process.
Overall, the proposed system, using wavelet based features, compares well with ei(isting

schemes for basic texture segmentation tasks.

Page x





