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Abstract

In the field of computer vision, texture analysis has historically been an important topic

of study. Texture is one of the major primary visual cues to image understanding. The

human visuai system relies on texture, among other types of cues, to effectively interpret

the information contained in an image. Therefore, it is imperative that a, fully functional

artificial vision system must perform texture analysis. However, effective texture analysis

has proved to be a difficult problem. This is mainly due to fundamental difficulties

with texture - it is more of a concept than a well-defined object or property. Without

an unambiguous definition of texture, researchers have to resort to various models and

techniques, all of which have their own advantages and disadvantages. Thaditionally,

there have been three main approaches to texture analysis: statistical, structural and

filter-based. \Mhile statistical and structural approaches have been favoured by early

researchers, more modern techniques are typically filter-based. This thesis presents a type

of filter-based technique. There are two main areas within texture analysis: classification

and segmentation, but this thesis only covers the segmentation problem.

\Mavelet transforms are a relatively new analytical tool in the scientific community.

It is commonly accepted that wavelet theory grew out of classic Fourier analysis. De-

spite its widespread usefulness, Fourier analysis has several deficiencies; wavelet theory is

among many others that attempt to address such problems. Primarily, wavelet transforms

decompose signals into joint time-frequency bases, instead of harmonic ones. The inher-

ent multiresolution property associated with joint time-frequency representations makes

wavelet transforms far more suitable for analysing non-stationary signals. As a result,
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Abstract

wavelets have been used in many different applications in the relatively short period of

time since its introduction.

In this thesis, wavelet transforms are chosen as the primary analytical tool for texture

analysis. In particular, a recent advancement in wavelet transforms, called the Dual-Tree

Complex Wavelet Transform, is applied to the texture segmentation problem. While the

wavelet transform is believed to be a suitable analytical tool, there are other problems to

be overcome before a texture segmentation system can be built. Specifically, the feature

extraction and feature clustering methods need to be investigated. This thesis exam-

ines several possibilities for feature extraction and clustering steps. In particular, novel

feature extraction and clustering schemes are introduced and compared to other known

techniques. An extensive range of experiments are performed on the texture mosaics, to

verify the effectiveness of the proposed feature extraction and clustering methods. The

set of inputs to the experiments are carefully chosen as to allow direct comparison with
existing methods, so a meaningful indication of the quality of the proposed segmentation

system can be obtained. It has been found that the proposed system is capable ofproduc-

ing accurate, highly consistent segmentations on the test mosaics. With the success on the

test mosaics, the segmentation system is then applied to several real-world applications.

In the real examples, it is found that the system produces more erratic results, often as a

consequence of the lack of any problem-specific input to assist the segmentation process.

Overall, the proposed system, using wavelet based features, compares well with existing

schemes for basic texture segmentation tasks.
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Chapter 1

Introduction

L.1 Texture Analysis and Computer Vision

Texture analysis has been an important field in computer vision over the years. Primarily,

texture is one of the major visual cues to understanding the information content in an

image. Textural processing, along with other techniques such as edge localisation, are

classified as low-level vision processing. Such processing techniques focus on extracting

information from the raw input to the visual system. They serve as a basis for higher

Ievels of vision processing, which focus on interpretation and abstraction on objects and

their attributes. Texture analysis is therefore a fundamental problem in machine vision.

1.1.1 Texture Analysis

Texture in an image generally refers to a region which not only has smoothly varying

intensity in a local sense, but also exhibits some 'pattern', or regularity, on a global scale.

To successfully characterise textures, it is equally important to describe both their local

(loosely referred to as m'icro-tertures) and global (macro-tertures) properties. In many

instances, the distinction between micro- and macro-textures is fuzzy, and often differs

from one texture to another. In the context of this thesis, the term texture will refer

to digitised, gray-tone images containing predominantly visual textural information as

perceived by a human observer.
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1.1 Texture Analysis and Computer Vision

The topic of texture analysis can be loosely divided into two main problems: clas-

sification and segmentation. Texture classification problems deal with the ability of an

artificial system to effectively discriminate between different textures. Texture segmenta-

tion studies algorithms which divide a given image into distinct regions based on textural
information. The primary scope of this thesis is texture segmentation, and classification

will not be discussed further in this thesis. However, it should be pointed out that these

two problems share many attributes in common, and techniques developed for segmenta-

tion may also be suitable for classification, and vice versa.

L.|.2 Texture Segmentation

While texture segmentation has been researched for decades, it is still an important
area for further investigation. There are several reasons behind this. Despite the grand

collective efforts of researchers from multiple disciplines, texture is stil a relatively poorly
understood phenpmenon. The inherent ambiguity of its very concept is the chief reason

for this difficulty. While it may be very easy, even natural, for humans to understand the
concept of texture, it is extremely difficult to unambiguously define texture in a logical
description. Many researchers have attempted to define texture, but none of these efforts
produced a fuliy 'satisfactory result. It may very well be possible that such a universal

definition will forever elude researchers. Despite this fundamental difficulty, researchers

have made significant progress in texture segmentation by focusing on certain attributes of
texture. The progress in texture segmentation is reflected in their wide-ranging application
in real world problems. Examples of texture segmentation in use are common, such as in
surveillance activities [a9] and biomedical image processing for diagnosis [75].

Historically, there have been three main approaches to texture segmentation: struc-
tural, statistical and filter-based. Structural approaches attempt to characterise textures
using texture primitives and arrangement rules of these. This approach is based on the
notion that textures are composed of regular tilings of a set of basic texture elements.

However, the success of such approaches is also hamstrung by the fact that real world tex-
tures often have very complex arrangement rules, as well as texture primitive distortion
over the entirety of a textured region. A powerful grammar that can encompass these

intricacies is, first of all, very difficult to construct, and secondly, very clumsv to apply
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Chapter 1 lntroduction

to practical problems. Statistical approaches attempt to describe textures from the sta-

tistical data obtained from the textured image. These approaches are more fundamental

in the sense that they deal with the raw images directly, but higher-level concepts like

texture primitive arrangement are more difficult to incorporate. Haralick [27] cited eight

statistical approaches to the measurement and characterisation of textures. They often

focus on the spatial frequency properties or edge densities of images. Such measures are

taken directly from the gray levels of the image pixels. Statistical approaches have found

some success in early texture analysis problems, mainly due to their fundamental nature.

Neither the statistical nor the structural approach is satisfactory for a general analysis

of textures, where the relative importance of texture primitives and their arrangements

vary. What is required is a method to effectively isolate the defining qualities for a par-

ticular texture, whether it be a local property or a global arrangement rule. More recent

techniques involve the use of a variable-scale analysis of textured images. The main ad-

vantage of this approach is that it is capable of zooming to arbitrary scales in the analysis,

thus allowing examination of textures at their appropriate scales. Even within a homo-

geneous texture, there may be important, defining characteristics at more than one scale.

Most of the research efforts on multiscaled approaches use spatial filters with different

frequency characteristics as the primary analysis tool. Hence, these approaches are of-

ten called filter-based or multi-channel filtering approaches. Early incarnations of these

methods use Gabor filters at different scales to characterise textures. More recently, these

approaches have evolved to encompass the use of wavelets. Wavelets are, arguably, the

more natural mathematical tool to use for this purpose, due to their inherent multireso-

lution properties. Another potential advantage for wavelets is the non-redundant nature

of some wavelet representations. Redundant representations place great computational

demands on the algorithms, which reduce their usefulness in certain latency-sensitive

applications.

The motivations for investigating wavelet-based texture segmentation in this work

is two-folds. Firstly, there have been many exciting new developments in the field of

wavelets, and it is interesting to apply these to texture analysis. Secondly, the vast

majority of texture segmentation algorithms are very computationally intensive. In many

applications, it is highly desirable to have fast texture segmentation algorithms. This

would enable texture analysis to be incorporated into more powerful computer vision

systems.
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1.2 Historical Perspective of Wavelets: Fourier Analysis

1.2 Historical Perspective of Wavelets: Fourier Analysis

The Fourier transform has been the standard analytical tool for engineers and scientists
over the past two centuries. Fourier discovered that every periodic function can be ex-
pressed as a superposition of simple sinusoids at different harmonic frequencies. This
discovery was later extended to cover aperiodic functions, which gave rise to the Fourier
transform. The definitions for the Fourier transform and its inverse are

F(a): t_: f (t)e-i'tdt (1.1)

r(t): 1

2"
F(u)ei'tdu (1.2)

where the pair of functions {/(ú), p(r)} is known as a Fourier transform pair. The Fourier
transform can be viewed as an expansion in the orthonormal basis {e-irt1 ø e R}. These

basis functions are the eigenfunctions for linear, time-invariant operators. In studying such

systems, the Fourier transform is the perfectly natural tool to use; it essentially performs

an eigenfunction expansion on the signals of interest. As such, these techniques form
the theoretical foundations for frequency domain analysis that is very important in the
mathematical sciences. A disadvantage associated with the Fourier basis is that its basis

functions are pure sinusoids, and therefore have infinite support in time. In other words,

they have zero localisation in space. This fact renders Fourier techniques unsuitable
for describing signals containing discontinuities and sharp spikes. Unfortunately, many

signals of practical interests exhibit such characteristics. An illustration of the poor

time localisation of the Fourier transform is the famous Gibbs' phenomenon. Another
perspective of the localisation problem of the Fourier transform representation can be

obtained by examining the inverse transform expression in equation (1.2). The convolution
kernel in this expression, d't, has unit magnitude, indicating equal contributions to the
inverse transform from every frequency in the transform. The Fourier representation's

Iack of compactness for non-stationary signals is a major disadvantage in applications
such as signal compression.

A significant milestone in the development of Fourier analysis was the discovery of
a fast algorithm for computing Fourier transforms, the Fast Fouri,er Transform (FFT).
Along with rapid advances in digital computers, the FFT provided a practically feasible

t_:
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Chapter 1 lntroduction

means for analysing very large data sets. Therefore, Fourier analysis remains, to this day,

an important technique for scientists and engineers.

1.3 Time-frequency Representat¡ons

The shortcomings of traditional Fourier analysis for non-stationary, aperiodic signals were

becoming evident by the early parts of this century. In particular, scientists and engineers

needed methods of describing, or representations of, signals that are localised in both time

and frequency. These methods are known as joi,nt ti,me-frequencA representatì,ons.

The time and frequency uncertainty (i.e. localisation) of a time-varying function T/(ú),

with Fourier transform itrr(ø), is defined as

Lt(,þ) : [ii rt - t)'l't'tt)Pat 
(1.3)

E

L,(,þ) : /lJ(" - -'lilv(")l'¿" 
(1.4)

E

where

t liï tl,t'(t)l'¿t
E

/Ji ølv(ø)l'zaø
E

E: I_: lilr(ø)l2dø: t_: 11þ(t)l2dt

(1.5)

u

and (1.6)

Qualitatively, the quantity Aú measures the degree of spread of the function T/(ú) about

its central value T. Similarl¡, La measures the spread of its spectrum around the central

value ø. Heisenberg's uncertainty principle places a fundamental lower bound on the

product of time and frequency uncertainties

Ltþþ)A,u(d) 2 Lnn (1.7)

A function is said to be well-localised in time and frequency if the Heisenberg product is

as close to the fundamental limit as possible. The Heisenberg product for the traditional

Fourier basis is undefined, since the complex exponential functions have zero frequency

uncertainty and infinite time uncertainty. More generally, one can visualise the time and

frequency resolution tradeoff as a rectangular "atom" in the time-frequency plane, as
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1.3 Time-frequency Representations

shown in figure 1.1. Such an atom is free to extend or contract in both dimensions as

Iong as its area does not shrink below the lower bound mandated by equation (1.2). All
time-frequency representations divide the time-frequency plane in their own manner.

frequency

I

L- L

L L-
time

Figure 1.1. The timefrequency plane, illustrating the time-frequency uncertainties for two difterent

atoms

In 1946, Gabor introduced the Short-Ti,me Fourier Transform (STFT), or the Go,bor

transform. This was an attempt to solve the time localisation problems associated with
the traditional Fourier Tþansform. The Gabor transform is defined as

f+oo
Fc,¡o,(u, ,) : 

J_* 
u*(t - r)f (t)e-i,tdt (1.g)

where tr,'(ú) is a window function centred or ú : 0. In Gabor's original formulation, the
window function was chosen as a Gaussian, ,u.r(ú) - e-(*)". The Fourier transform is

thus modified to contain two parameters, one for describing the frequency localisation,
the other for time localisation. In general, arbitrary windows with finite time support
can also be used, and such transforms are collectively called windowed Fourier transforms
(WFf ). When viewed as a signal expansion operation, the WFT corresponds to the use of
windowed sinusoids for the basis functions. Real-valued families of WFT are sometimes

called local trigonometric bases. All these bases overcome some of the shortcomings

of the Fourier basis by offering some degree of time-frequency localisation. However,

the main problem with these bases is their use of fixed-sized time windows. In other
words, the time uncertainty is fixed for all frequencies, and this may be inappropriate for
some applications. For example, consider a signal containing a long, sinusoidal steady-

state component along with short, spiky transients. A single-sized window is not capable
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of capturing both types of variations adequately within the same description. A long

window would suit the steady-state response, while short windows are needed for the

transient bursts. This problem can be addressed by using variable window widths, which

corresponds to a multi-scaled approach. This concept of a multiresolution analysis is an

integral part of wavelet theory.

L.4 Wavelet Theory

The theory of wavelets was built on the foundations of joint time-frequency representa-

tions, and has evolved rapidly over the last decade to become a powerful tool for scientists

and engineers today. A continuous wavelet transform (C\MT) is fundamentally an inner-

product expansion of a signal over a basis consisting of translated and dilated versions of

a single function. Mathematically, this is

i[(a, ó) : I Iþ;,b(t)f (t)dt (1.e)

where ,þi,,u(t) is the complex conjugate of the function ,þ",a(t) and tþ",6(t) is defined as

tþ",u(t):|r¡,ç4¡ (r.ro)
t/ lal a"

t/(t) is called the mother wavelet, which must satisfy lhe admi,ssibili,tg criteri,on

c,þ:2trl- rydø < oo (1'11)

where !Ir(ø) is the Fourier transform of tþ(t). This condition ensures that the set of all

translation and dilation of tþ(t) forms a basis for the L2-spa,ce, i.e. the space of all finite

energ-y functions. This is an important mathematical property, because it shows that we

can decompose any arbitrary real-world signal into a series of wavelet functions, thereby

validating the CWT as a general purpose analysis tool. Moreover, one is free to place

additional constraints to produce bases with special properties such as orthogonality. The

C\MT is a linear, invertible, shift-invariant transform which also preserves energ-y, similar

to Parseval's theorem for Fourier transforms. Particular wavelets can be constructed to

give desirable mathematical properties such as orthogonality and arbitrary smoothness.

It is evident that the wavelet transform uses analysing functions that are characterised

by a dilation factor, a, and a translation factor, b. This allows the analysis of functions
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1.5 Aims of this Thesis

at arbitrary time and frequency resolutions. In practice, such freedom is unnecessary,

since most interesting information are contained in a few time-frequency atoms. This
implies that the values of ¿ and ö may be discretised without reducing the power of the
wavelet transform. In addition, with the increasing involvement of computers in scientific
work, it is desirable to work with a discretised form of the wavelet transform. It is

standard practice to employ only dyadic values of ¿ and integer shifts relative to each

scale (a :2-i,b:2-ik, where j,le e z). More general values for ¿ and ö are entirely
possible, but they have not been heavily applied to practical problems. The various
types of discrete wavelet transforms, and their associated properties, will be covered in
more detail in Chapter 2. An attractive property of discrete wavelet transforms is that
they form a multiresolution analysis on the signal space. Effectively, the transforms
automatically zoom to several different scales and produce a multi-scale representation of
the input data. This multi-scale approach is especially useful in the context of texture
analysis, since texture is an inherently multi-scale phenomenon. Another advantage of
discrete wavelets is the existence of fast algorithms for computing the transforms. A
computationally efficient means for calculating wavelet transforms enables its use in many
more applications. These are the strong justifications for employing wavelet transforms
as the mathematical tool for texture analysis.

1.5 Aims of this Thesis

While texture segmentation has been a topic with a long history, it can still be regarded
as a relatively unsolved problem. Various texture segmentation schemes have their own
advantages and disadvantages, and not a single one can claim overall superiority in all
circumstances. The author believes that such a solution may never be found. It is with
this philosophy that this thesis approaches texture segmentation; it aims to achieve an
efficient, robust method for texture segmentation. The framework of this research is
based on a simple system architecture, which is strictly adhered to throughout this work.
The proposed system consists of a feature extractor and a clustering algorithm. This
system takes an image with multiple textured regions as input, and produces a segmented
image as its output. It is desirable to minimise the number of auxiliary inputs, in the
form of external parameters, needed by the system. Conceptually, the system should
ideally be a black box device. This thesis examines the system performance with difierent
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Chapter 1 lntroduction

algorithms for both texture feature extraction and feature clustering, with the aim of

identifying an efficient combination of techniques. The judgement will solely be based on

the segmentation performance achieved for various input test images. Performance will

be measured using directly calculated, quantitative metrics. Human visual interpretation

is only used to augment the quantitative results, whenever it is appropriate to do so.

L.6 Contributions of Thesis

Throughout the undertaking of this research work, contributions have been made to sev-

eral areas in texture segmentation. The key contributions are outlined beiow:

o The Dual-tree Complex Wavelet Transform [36] is used as the primary analysis

tool for texture feature extraction. Previous work in wavelet methods for texture

segmentation have not made use of this technique. This transform has some funda-

mental advantages over traditional techniques such as Gabor and Discrete \Mavelet

Tþansforms. [Chapters 2 and 3]

o A novel texture feature extraction scheme is introduced. The scheme has two main

parts:

- a feature extraction stage which is designed specifically to extract texture fea-

tures directly from Discrete \Mavelet and Dual-tree Complex Wavelet Trans-

form coefficients. The processing in this stage is an innovative adaptation of

previous efforts.

- feature conditioning is an important phase afber feature extraction. The con-

tribution is in the focus on attempting to find an optimal smoothing window

shape for a texture, through the use of Kaiser windows with variable sidelobe

Ievels. [Chapter 3]

o Extracted features are examined for their separability. A number of different tech-

niques are used to gauge the degree of separability for a given feature set, before

clustering. [Chapter 5]

o A novel modified K-means clustering algorithm is introduced. The mixing of the ad-

ditional spatial proximity measure with the feature space distance is proposed. This
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1.7 Thesis Overview

new combined measure is believed to be very beneficial for texture segmentation

[Chapter 5]

o The segmentation performance of the novel feature extraction method, and the
proposed modified K-means algorithm are studied through a large number of seg-

mentation experiments. More than 100 commonly-used artificial texture mosaics

are used in the experiments, making this one of the more comprehensive studies.

Commonly-used images are chosen to facilitate meaningful comparisons with results
already in the literature. [Chapter 5]

o The texture segmentation techniques developed in this thesis are applied to several

real-world applications. The feature extraction and modified K-means algorithms
are useful in producing decent segmentations of real images, ranging from aerial
photographs of terrain to scene object segmentation. [Chapter 6]

L.7 Thesis Overview

Chapter 2 reviews wavelet theory in some detail. While a full treatment of wavelets is far
beyond the scope of a single thesis, a detailed description of the particular wavelets used

for texture segmentation is important in the context of this thesis. This chapter lays the
theoretical groundwork on which the entire system is based.

Chapter 3 describes the feature extraction process in texture segmentation problems.

Historical approaches to texture feature extraction are examined. A novel feature ex-

traction method based on wavelet transforms is presented in this chapter, including a

discussion of the important feature conditioning process. This extraction method com-
putes features directly from wavelet transform coefficients of textured images.

In Chapter 4, methods for clustering features to produce a full segmentation are

examined. The focus is on the K-means clustering algorithm, but several other alternative
algorithms are also presented.

The main results of this thesis appear in Chapter 5, where the texture segmentation

experiments are described in full detail. Visual and quantitative results are presented, as

they are both important measures for the merits of our process. Discussion of the results
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and their significance follows, and a proposed method for improving the quality of the

segmentations is examined.

\Mith the bulk of the experiments being performed on test data sets, it is interesting to

apply the techniques developed in this thesis to some real application examples. Chapter 6

considers three real-world examples, to which the developed segmentation algorithms are

applied.

Finally, Chapter 7 draws the conclusions of this thesis, and discusses possible future

directions for continuation of this research.
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Chapter 2

\Mavelet Tlansforms

2.1 Multiresolution Analysis and Wavelet Transforms

The history of the wavelet transform traces back to Fourier theory. In a Fourier de-

composition, a signal is expanded as an integral of sinusoidal oscillations over a range of

frequencies. This results in a linear, invertible and orthonormal transform which has been

widely applied to many areas in science and engineering. However, a major weakness of

Fourier theory is its poor time-frequency characteristics. The lack of any time information

in a Fourier representation makes this technique unsuitable for many real world signals.

Thus joint time-frequency representations were born. A common element among these

representations is some mechanism that allows a trade-off between time and frequency res-

olutions. The first of such representations is the Wi,ndowed Fourier Transform, which uses

an additional time window in the transform. In particular, the Gabor transform is one

such transform with a Gaussian window. Time-frequency representations later evolved to

other forms which do not use windowed sinusoids as the analytical basis. Wavelet theory

is one such example. This chapter attempts to provide a suitable treatment of wavelets,

which would serve as the background theory for the rest of the work in this thesis.

2.1.1 Continuous Wavelet Transforms

In his work on the analysis of geophysical data, Morlet used a variation of the Gabor

transform, where the window function had a variable width. He called the resulting

Page 13



2.1 Multiresolution Analysis and Wavelet Transforms

analysing functions "wavelets of constant shape". Working with Grossmann, Morlet later
extended his theory, and formulated the Continuous Wauelet Transform (CWe. The
CV/T is a linear transform whose basis functions are simply dilations and translations
of a single function, called the mother wauelet,,,þ(t). A mother wavelet must satisfy the
admissibility criterion [17, 18, 81] given in equation (1.11); For most common function
spaces of practical interests, iú(ø) will always have sufficient decay at high frequencies, so

this condition reduces to ilr(ø) : 0 at the origin. In other words, an admissible mother
wavelet must have a vanishing integral over the real line. It is usual practice to normalise
the mother wavelet so that it has unit energy:

t: 1
ll'þ(t) ll': þþ(t)1'zat 2tr t: ll v(r) ll2 dø : t (2.r)

The CWT of a function Í(t), with respect to mother wavelet þ(t), is defined as

l** f (t)Iþä,(t) dt

where a)0,beR (2.2)

W¡(o,b): (f,úo,u) :

tþ",u(t) : hlþ(+),
Equation (2.2) reveals that the CWT is a highly redundant transform, since it maps a
function of one variable to a function of two variables. The two variables correspond to
the scale (ø) and the position (ö) of the analysis function. Notice that {",6(t) is normalised
so that ll ,þ",u(t) ll: 1 as well. The CWT is a linear transform, since the inner-product
operator is linear. It satisfies shift invariance, an important property that is valuable in
data feature extraction. The CWT is also energy preserving, similar to Parseval's result
for Fourier transforms. This property is expressed as

roo 1 /- f* ,,, dadb

J_*lr@f 
dt: ,r J_*J_*)W{o,b)r az e.s)

where C,¡, is as defined in equation (1.11). The CWT is invertible, and the reconstruction
formula is

r(t):ä1,* I]*,r,u),þ",u@# e4)
This expression is identical to Calderón's identity discovered in 1960 [48]. A proof of the
inversion formula can be found in [81].

In many applications, it is often desirable to partition the time-frequency plane into
disjoint regions. This can be done by discretising the scaling and translation factors
in equation (2.2). This leads to the various discretised wavelet transforms. Another
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Chapter 2 Wavelet Transforms

reason for discretising the C\MT is to reduce its tremendous redundancy. In real-world

problems, redundancy incurs a great computational penalty on the system, thus reducing

its efficiency.

2.1.2 Discrete Wavelet Transforms

The basic discretisation of the CWT can be characterised by a: off,b:nboa\, where

as ) I,ôo > 0 are fixed, and n,m e Z. The discretised wavelet transform is expressed as

w¡(*,n) : oi^/' [* l(t)rt.(ao*t - nbs) dt (2.5)
J _cn

The translation step size, b is dependent on the chosen dilation factor a. This choice allows

the wavelets tþo,u to adapt to different resolutions, with large step sizes at low resolution

and vice versa. In the vast majority of cases, on : 2 and b¡ : 1 are used, resulting

in dyadic wavelets which partitions the time-frequency plane into binary regions. Other

values of ø6, ós are entirely possible, and their theory is very similar to that of dyadic

wavelets. Non-dyadic have been applied to several applications, but these instances are

very rare. The remainder of this thesis will only deal with dyadic wavelets.

The theory for the discretised wavelet transform is based on the mathematical frame-

work for frames. A frame is a set of vectors, not necessarily independent, that spans a

given vector space. That is, frames are not bases, and they decompose signals into a non-

unique, redundant representation. In the current context, the abstract concept of vectors

is taken to refer to real-valued functions (e.g. ,þ(t)). To be precise, a frame is defined as

a set of functions gi,i,e J,ina Hilbert space H, for which there exist 0 < A ( B < oo,

such that, for all "f e H,

Al r ll'< tlþu,f)l'< B ll / ll' Q.6)
i.€J

where ll / ll' is the L2-norm of /, and the constants, -4 and B, are called frame bounds.

lf A : B, then the frame is called a "tight" frame. In this case, the constant .4 gives

the redundancy ratio of the representation. If the frame is linearly independent, then

it is called a Ri,esz basi,s. For the special case of a Riesz basis with A : B : 1, the

result is an orthonormal basis; this case will be discussed in more detail later. In the

current context, the set of discretised wavelet functions ',þ,,,*(t) : 2-'n/21þ(2-^t - n) is
a frame in L2 , the space of all finite-energ-y signals. For simplicity, only Riesz bases are
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2.1 Multiresolution Analysis and Wavetet Transforms

considered in subsequent discussions of wavelet frames. Since frames are complete, the
functions ,þ*,"(t) are capable of representing every signal. Moreover, it should be possible

to construct sets of tþ*,"(t) to form tight frames, or even orthonormal bases.

Unlike the CWT, frame representations are not immediately invertible. To recon-

struct a signal from its frames decomposition, one must first construct a d,ual frame.
Consider a frame of wavelets, {rlt,.,^çt¡¡; its dual frame, {rþ*,"(t)}, is defined as

{/ (r).[

i l**,,{ a , 2trk)12

k:-oo

(2.7)

where V1r; i. the Fourier transform of $(t). The dual frame is orthogonal with respect

to the original frame

(tþ*,n,rl¡,*) : õ¡,^6*,n, j,k,m,n € Z (2.8)

where tlr,*:2-ilz$(Z-it - k) and ô7,r is the Kronecker delta. It is this property which
gives biorthogonal bases their name. Obviousl¡ orthonormal bases correspond to the
special case where the set is self-dual. The reconstruction formula for a wavelet frames

basis is

f þ): | (rþ*,*,1)rþ^,,: \, (dt*,*,1)rþ*,* (2.g)
m,neZ m,neZ

Equation (2.9) illustrates the interchangeable nature of dual bases, even though the prop-

erties of these functions can be quite different. This interchangeability has bejen exploited
in applications such as image compression, to achieve better image quality at fixed com-

pression ratios.

2.1.3 Multiresolution Analysis and orthonormal wavelets

There are several different approaches to the theory of wavelets. The previous section

arrived at wavelets from a real analysis' perspective. Alternatively, there are Mallat's
multiresolution and an engineering-motivated filter banks approaches. All of these ap-

proaches are fundamentally equivalent, but Mallat's approach is the most intuitively ap-

pealing one. Vy'e will now take the multiresolution approach, which will be followed by a
discussion of its relationships with filter banks.

)afnrn
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Chapter 2 Wavelet Transforms

For simplicity, let us consider only the space of finite energy functions, ¿'(R). In no

way does this limit our discussion, for all real-world signals beionging to this space. A

Multiresolution Analysis (MRA) on .L2(R) consists of [17],[18],[47]:

1. A sequence of nested subspaces, V, j e Z,

VzcVtcvocV:CV-z (2.10)

2. Upward completeness of the subspaces

Uv: ¿'(R) (2.1 1)
j€z

3. Downward completeness

(2.t2)

4. Scale Invariance

r(t) ev¡ + f (2t) €v¡_t (2.13)

5. Shift Invariance

f(t)eV¡+ f(t-k)e V¡ VkeZ (2.14)

6. Existence of basis

=ó(t) 
e % such hhat {þs,"ln e Z}

forms a Riesz basis for I/6 where óo,n: þ(t - n) (2.15)

Notice that conditions (2.13) and (2.15) imply that {ó¡,ni j,k eZ} is a Riesz basis for V¡,

where ó¡,*(t) :2-i/2ó(2-in - k). An interpretation of an MRA is that it is a mechanism

for approximating functions at different scales. The hierarchical spaces V¡ are used to

approximate any given function to a certain accuracy. Decreasing j yield a finer and finer

approximations to a function / € ¿'z(R). In a more specific setting, the last condition

given in equation (2.15) can be replaced by specifying the existence of a þ(t) such that

{óo,"(t)} forms an orthonormal basis for I/6. This would lead to orthonormal wavelet

representations of L'(R), as described in the following paragraphs.

l-l I/¡ : o
j€z
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2.1 Multiresolution Analysis and Wavelet Transforms

A consequence of the above structure of an orthonormal MRA is that it is possible

to explicitly construct an orthonormal wavelet basis for ¿'(R). To make the arguments

clear, let us define the orthogonal complement of V¡ in V¡: bV

V-t:V¡ @W¡, W¡ IV (2.16)

Referring back to the approximation interpretation of an MRA, the complement subspaces

W¡ ate the errors spaces at different resolutions. The multiresolution structure of the
subspaces I/¡ means that the spaces W¡, j e Z satisfy the following,

o Completeness

Øwt: ¿2(R) (2.r7)
jez

o Scale Invariance

Í(t)€w¡+f(2t)ew¡_r (2.18)

o Shift Invariance

f(t) eW¡ + f(t - k) eW¡ Yk eZ (2.1e)

The above properties imply that there exists a function r/(ú) such that {tþ(t- k);k eZ}
and (r/(ú), Ó(t)) :0, forms an orthonormal basis for Ws. Hence, by properties (2.12) and

(2.18), {rþ¡,x(t), j,lc e z} is an orthonormal basis for tr2(R). Thus, finding a wavelet

basis for ¿'(R) is equivalent to finding an orthonormal basis for the subspace 1176 in the
multiresolution analysis structure.

The algorithm for finding an orthonormal wavelet basis usually begins with finding

a suitable scaling function /(ú). From the MRA structure, one has

ó(t):\n@)ó-,,(t) (2.20)
n€Z

where p(n): (ó(t),ó-t,"(t)) is a sequence of real numbers, since /(ú) €Vo c Z_1, and

{Ó-l.,n,n €Z} is a basis for I/-1. The sequence p(n) is referred to as a filter. Obviously,

this equation is valid for all pairs of successive scales. This is the dilati,on equat'ion that
is fundamental in wavelet theory. In the Fourier domain, the dilation equation becomes

Õ(ø) : pfilofil e.2r)
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Chapter 2 Wavelet Transforms

where P(ø) is the discrete Fourier transform of p(n)

P(u):Dp@)"-¡'" Q.22)
neZ

This condition merely corresponds to the ladder structure of the MRA. To construct

orthonormal bases, one imposes the extra constraint of orthonormality:

\ó(t),ó(t - k)) : t: ó(t)ó" (t - k) dt : 6k,o, Yk e Z (2.23)

or equivalently, in the Fourier domain,

D lo(" +2rI)12
1

(2.24)
IeZ

2r

where O(ø) is the Fourier transform of $(t). Combining equations (2.2L) and (2.24) yields

a condition for the filter, p(n),

lP(r)1" +lP(u *zr)l2:1 (2.25)

Once having found a filter that satisfies equation (2.25), the scaling function /(ú) can be

computed by iterating equation (2.21),

(Þ(ø) : fioçr-tr¡ (z.za)
J:|

provided that the infinite product converges. In practice, the infinite product is guaran-

teed to converge if P(0) : 1, which, together with equation (2.25), means p(n) must be a

low-pass filter. Finally, the wavelet can be derived from the scaling function. By carrying

out arguments similar to the construction of $, one can arrive at an appropriate choice

for þ,
itrr(ø) : 

"iu/z 
. ,(i * ") .a(i) e.zl)

or in time domain,

,þ(t) :lø(")ó-r,,(t), where q(n) : (-L)p(L - n) (2.28)
fI

Since p(n) is a low-pass filter, the filter q(n) must be high-pass. It is now clear that

constructing an orthonormal wavelet is equivalent to finding a low-pass filter p(n) that

satisfies equation (2.25). There are many solutions to equation (2.25), and additional

conditions are usually applied to yield particular solutions. For example, the famous
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2.1 Multiresolution Analysis and Wavelet Transforms

Daubechies family of wavelets are constructed with filters that are smooth and of fi-
nite length (compact support). These conditions restrict the filters to assume the form
P(a) : [å(i + ei')]NQki'), where Q is a polynomiar, and l/ is an integer that measures
the smoothness, or regularity [17], of the filter. Another example would be the Meyer
orthonormal wavelet, which has infinite smoothness, but lacks compact support. In prac-
tical applications, it is highly desirable to have FIR p(n), which produces wavelets with
compact support. However, it is well known that orthonormal wavelets with compact
support cannot have symmetry properties. In other words, the filters p(n) cannot be
linear phase.

The MRA structure presented in equations (2.10)-(2.15) can be generalised to con-

struct biorthogonal wavelets. Recall that a biorthogonal basis is composed from two
mother wavelets, ,þ(t),rþ(t) which are duals of each other. The biorthogonality refêrs to
the fact that dyadic dilations and translations of one mother wavelet is orthogonal to
the other. This behaviour can be incorporated into the modified MRA by specifying two
hierarchical approxþation subspaces

VzCVtCVoCV¡CV-2...

WcUc%ct-tcV-r... (2.2e)

where each sequence satisfies the usual MRA properties. Let's define the complementary
sequences of subspaces W¡,fr¡, where

(2.30)

Notice how the complement of V, inV¡-t,W¡, is orthogonal to the d,ual approximation
space at the same scale, T¡. Th.tt, the biorthogonal multiresolution analysis boot-straps
itself as it progresses to coarser scales. The dilation equations and the filter conditions
can be derived in a similar fashion as for the orthonormal case.

ó(t) :\n@)ó-,,"(t)

V-, : V¡ ØW¡,

t¡-r:lt¡ eiM¡,

neZ

W¡ IV
W¡ LV

ó(t) : \ø(")ó-',"(t)
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Chapter 2 Wavelet Transforms

where p(n),p(n) are real sequences. Define P(ø) and P(ø) as the discrete Fourier trans-

forms of p(n) and þ(n), respectively; the two scaling functions can be obtained from

oo

a(ø) : feçz-ir¡j:r
oo

.ã1,¡ : flÞçz-i,¡j:r

The wavelet construction equations become

Ü(ø): ¿lu/z ' P*ç

V1'¡ :elu/z'P*ç

or in time domain,

i+")
i +")

u
2

u
2

o(

õ

(2.32)

(2.33)

,þ(t) :løtùO-r,n(t), where q(n) : (-I)þ(7 - n)

,þ(t) :lø(")ó-r,,(t), where q(n) : (-t)p(t - n) (2.34)

n

fT

As in the orthonormal case, rvr/e are free to apply further conditions on the filters p(n), p(n).

Since the wavelets no longer need to be orthonormal, it allows an extra degree of freedom.

In particular, it is usual to require lhat p(n) and p(n) to be symmetric or anti-symmetric,

meaning that these filters will have linear phase. The linear phase property is vital in

applications such as image compression, because phase distortions produce highly undesir-

able visual artifacts. The filter relations for the orthonormal and biorthogonal wavelets as

derived in this section forms the basis for the development of the Fast 
'Wavelet 

T[ansform.

2.2 Fast Wavelet Transform and Perfect Reconstruction

A milestone in the development and popularisation of Fourier analysis was the discovery

of the Fast Fourier Transform (FFT) algorithms. The FFT, along with the rapid advance-

ments in computing technologies, were the major enabling factors behind the application

of Fourier techniques to a wide range of problems. In essence, the FFT algorithms utilised

factorisations of the unitary transform matrix into the product of sparse matrices. Suc-

cessive multiplications by sparse matrices can be implemented extremely efficiently on

computers, and the net gain of the FFT is huge: an O(l/logl/) algorithm versus an
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2.2 Fast Wavelet Transform and Perfect Reconstruction

O(N') by direct computations. In many ways, the Fast Wavelet Tbansform (FWT) plays

a similar role in the application of wavelet theory to practical applications. Historically,
Mallat [45] first developed an efficient, discrete algorithm for computing decompositions

and reconstructions of sampled signals in 1986. In her landmark paper in 1988, Daubechies

[17] pointed out the equivalence of Mallat's work to multiresolution analysis and wavelet

transforms. The nature of Mallat's algorithm is closely related to sampled filter-banks

in engineering, which have been used for decades before their relationship with wavelets

were recognised.

2.2.t The Fast Wavelet Transform algorithm

The multiresolution analysis framework on which orthonormal and biorthogonal wavelet

bases are constructed naturally leads to an efficient, hierarchical algorithm for computing

wavelet coefficients. Let's begin with the more general biorthogonal case. Assume that
we start with an expansion of a function in V¡, i.e.

lQ):lc¡@)ó¡,*(t), where c¡(n) : (f (Ð,ój,,(t)) (2.3b)

It is then straight-forward to compute all the coefficients c¡+{n) and d,¡a(n) from a

knowledge of c¡(n). Using equations (2.20) and (2.28), we have

d¡+t(n) : (f ,úi+t,n) : I q(k - 2n)c¡(k) (2.36)
h

and

c¡+r(n) : (f , ó¡+t,n) :ln(k - 2n)c¡(k) (2.JT)
k

where p(n) and q(n) are the same filters as defined in the dilation equations (2.20) k
(2.28)' Equations (2.36) and (2.37), can be viewed as a filtering operation with the time-
reversed versions of the filters p(n) and q(n), followed by discarding every second sample

(downsampling by 2). The downsampling preserves the total amount of coefficients. At
each level, the data, 

"¡(n), 
is separated into two halves, or subbands: one contains the low

frequency, coarse information ("¡*t(n)), and the other half contains the high-frequency,

detailed differences between successive resolutions (d¡(")) This is commonly known as

the analys'is stage, and is illustrated in figure 2.I. A full k-level F\ /T re-iterates equations

(2.36) and (2.37) k times to yield a successive approximation to the original data co(n).

Page 22



Chapter 2 Wavelet Transforms

The higher level coefficients approximate the data at lower resolutions, and vice versa.

The mathematical analysis of the FWT is usually carried out in the z-domain. The

z-transform of a discrete sequence {o(n),n e Z} is defined as

A(z):la@)z-" (2.38)
n€Z

Letit and, j to be the time-reversed versions of p(n) and q(n), respectively. The analysis

stage equations are

C¡*r(")

D¡*t(,)

: nçz\ct1z¡

: c(t)c¡(") (2.3e)

c¡(n) c¡+t(n)

d¡+r(n)

Figure 2.1. Block diagram for the FWT analysis stage

c¡+{n)

d¡+t(r) c¡(n)

Figure 2.2. Block diagram for the FWT synthesis stage.

The inverse transform, can also be derived from the MRA structure. From equa-

tions (2.29) & (2.30), it is evident that each reconstruction stage needs to add the detail

subbands (d¡*t(n)) back to the coarse approximation subband (c¡a1(n)). Each synthes'is
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2.2 Fast Wavelet Transform and Perfect Reconstruction

stage thus requires upsampling each subband by 2, followed by filtering with the decom-

posed subbands with the synthesis filters, h(rz) and 9(n), and adding the results. This is

illustrated in figure 2.2, and the equation is

C¡(z): H(z)C¡aQ) + G(z)D¡aQ) Q.40)

The synthesis stages are repeated over all levels to recover the original signal q(rz). The
entire analysis and synthesis process in a k-level FWT is illustrated in figure 2.3. The
number of computations is halved with an increase in the level of the transform, as a

direct consequence of the reduced data from downsampling. This reduction in complexity
with levels leads to the high efficiency of the algorithm. It is not difficult to show that the
Fast Wavelet Tlansform has an overall computational complexity of o(,n/log,n{). Since

the analysis and synthesis stages employ two filters (low- and high-pass), the FWT system

is commonly called a 2-channel filter bank in engineering literature.

h

I

h

(u) (b)

Figure 2.3. The (a) fonaard and (b) inverse Fast Wavelet Transforms for a 1-D signal c6(n). The

filters Ã(n ), g(n) are known as the analysis filters, and h(n), g(n) arethe synthesis filters.

ln the orthonormal case, h(n),h@) ana sØ),s@) are time-reversed versions of each

other.

2.2.2 Perfect Reconstruct¡on Filters

Due to the downsampling and upsampling operations in the transform process, the syn-

thesis and analysis filters must satisfy certain conditions if the reconstructed signal is to

: o(n)

dr(¿)

¿¿(n) dr(")

e(") dl") dz("| dí")

¿s(n) dl")

ø(n) dl")

o(")

d¡ (")

Ræonstructæd Do.ta co(n) : ø(n)¿¡(n) dr(") dr(") dr(")
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Chapter 2 Wavelet Transforms

be the same as the original signal. Essentially, these filters must be constructed such that

the information discarded by the downsampling can be recovered in the synthesis process.

The conditions for this perfect reconstruct'ion are

uçr¡n1-z)+G(z¡c1-27 : o (2.41)

Êçz¡n1r¡+G(z)c1z¡ : 2"-t, tez (2.42)

The integer I measures the total latency of the system combined from the analysis and

synthesis processes. The first condition removes aliasing in the reconstructed signal,

while the second condition ensures signal integrity is preserved. For simplicity, it is usual

practice to choose the filters in such a way that the anti-aliasing condition is automatically

satisfied. This can be achieved by:

H(z) : C(-r),G(z) : -u(-t) (2'43)

This implies that h(n) is the reversed, alternate-signed version of þ(n), and similarly for

the pair g(n),h@). In the orthonormal case, h(n) : heù and 9(n) : g(-n). If we

define P(z) : zInQ)U(z), then the perfect reconstruction requirement becomes

P(z) + P(-z) :2 (2.44)

This implies that p(n,) is a half-band filter; all its even coefficients are zerol with the

exception of p(0), which must be 1. The odd coefficients are free design variables. In

practice, the wavelet filters are usually derived by first designing a particular half-band

frlter p(n). The analysis and synthesis low-pass filters are then obtained by applying

spectral factorisation to p(n).

Despite their central roles in the development of wavelet theory, the scaling and

wavelet functions do not appear anywhere in the FWT algorithm. In other words, it
is unnecessary to explicitly construct these functions in order to compute the wavelet

transform coefficients; all that is needed are the analysis filters, n@) ana!(n). The same

applies for the inverse transform; only the synthesis filters h(n) and g(n) are needed.

A key observation of the FWT is that the decomposition is not shift invariant like the

CWT. That is, an odd sample shift in the input signal results in a drastically different set of

transform coefficients. This is purely a consequence of the downsampling operations, since

filtering with the analysis filters is a shift invariant process. In many practical situations,

this shift variance is an undesirable aspect of the F\MT. Researchers have spent significant

efforts in overcoming this problem, leading to a variety of different approaches.
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2.2 Fast Wavelet Transform and Perfect Reconstruction

2.2.3 lmplementation lssues

There is an important practical consideration in implementing the FWT algorithm. To
start off the pyramidal decomposition, it is necessary to first obtain the lowest level
coefficients, co,¡. In almost all instances, these are assumed to be the data on hand. In
effect, this is an approximation to the actual coefficients, which should be obtained from
inner product computations, h,n: U(t),rþ0,"(t)). The explicit computation of these inner
products are expensive, and the errors from the simple approximations are acceptable for
many applications.

Direct implementations of the FWT are inefficient. To discard half of the filtered
samples, as suggested by figure 2.1, is a complete waste of computational time. In the
synthesis process, upsampling prior to filtering implies half of the samples will be zero,
and hence will not contribute to the inverse transform. Instead, polyphase fiIter [6g]
implementations are much better, because they eliminate the need to perform unnecessary

computations. In these algorithms, the filters are separated into two halves, one containing
the odd samples, and the other contains the even ones. In the z-domain, this is represented

by

H(z) : H.(r') + z-L Ho(22¡ (2.+s)

where H"(z) and H"(z) are the polyphase filters which contain the even and odd com-
ponents, respectively. For analysis, the level-j coarse coefficients, C¡(r) are decomposed

into its polyphase components, C¡,.(z) and C¡,.(z), before filtering with the corresponding
polyphase filters. The filtered sequences are then summed to yield the level-j * 1 coarse

and detail coefficients:

For synthesis, the level-j coarse and detail coefficients, C¡(r),D¡(r), are multiplied by
their corresponding polyphase filters before being summed to produce the level-j - 1

coa,rse coefficients:

c¡*t(r)

D¡+t(z)

Ci-r,.(z)

c¡1"Q)

: it.qz¡c^.12) + u,çz¡c,,.12¡

: G.çz¡C,,.çz) + C"1z¡C,,,127

: H.(z)C¡(z) + G"(z)D¡(z)

: H"(z)C¡(z) + G"(z)D¡(z)

(2.46)
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Chapter 2 Wavelet Transforms

If we define the analysis and synthesis polyphase matrices to be

Analysis : Hr(z) : H.(r) H,(z)

Õ"e) c"(')
H"(r) H"(r)

G"(r) G.(r)
Synthesi,s: HoQ) :

(2.48)

(2.4e)

then the analysis and synthesis steps in equations (2.a6) and Q.aT) can be written as

c¡*t(,)
D¡*r(,)

C¡t,"(z)
C¡;,"(z)

C¡,"(z)

C¡,,(z)

c¡(')
D¡(')

(2.50)

(2.51)

He

He

( 1

7(

The block diagrams of a polyphase implementation are shown in figures 2.4 and 2.5

"¡(n)
c¡,"(n) c¡+r(n)

iI¡¡r(n)

Figure 2.4. Analysis polyphase filter bank.

Another issue with the FWT algorithm deals with boundary handling. Ideally, with

signals of infinite length, this issue does not arise. In practice, an application often has a

data set of finite size, r(n), which leads to problems with coefficients at the beginning and

end of the data set. In effect, it runs out of data for computing the convolution sum for

the filters. Historically, there has been several different approaches toward this problem.

Cohen et al. [13] proposed to construct separate wavelet bases for the boundary data,

effectively splitting the wavelet transform into three pieces with different analysis and

synthesis filters. This technique falls in the more general category of time-varying filter

h.(")

h"(")

z-t

þ"(")

.¡,"(n)

þ"(n)
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2.2 Fast Wavelet Transform and Perfect Reconstruction

"¡(n) .¡-r,"(n\

d¡(") c;-r(n)

Figure 2.5. Synthesis polyphase filter bank

banks. The problem with such an approach is that the boundary handling requires great

care and computational expense. Simpler methods are preferred for this reason. The most
straight-forward method would be to extend the input data beyond their finite extent when
computing the filter convolutions. In the literature, there has been three main extension
strategies proposed: zero, periodic and symmetric. Theoretically, symmetric is by far
the most superior, because it does not lead to artificial discontinuities at the boundaries.

The presence of these discontinuities produces large magnitude wavelet coefficients near

the data boundaries. Periodic extension is akin to using circular convolution in the filter
banks; perfect reconstruction can be guaranteed if the original data has an even number

of samples for dyadic wavelet transforms, which use a downsampling rate of 2. However,

symmetric extension must only be used with symmetric filters, which means biorthogonal
wavelets. Asymmetric filters cannot produce perfect reconstruction with the symmetric
extension technique; the same problem does not apply to zero or periodic extensions. In
fact, there are further conditions that the analysis and synthesis filters must satisfy if
the symmetrically-extended wavelet transform can be reconstructed. Several researchers

[1], [38] , [3] , [4] have done a lot of work on symmetric extensions, and most of these are very
general in scope. These include the analysis of the boundary conditions for a vast range

of symmetries and downsampling rates. \Mithin the scope of this thesis, only the dyadic

wavelets case is relevant. The requirements for implementing symmetric extensions for
such a system will be briefly described below.

h"(")

h"(")

-l

c"(")

c¡-t,o(n)

s"(")
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Chapter 2 Wavelet Transforms

2.2.4 Symmetric Extended FWT

Let's first consider the different symmetries that can exist for finite-length sequences.

One distinction is about the position of the point of symmetry. A sequence can either be

symmetric about a sample or about a point midway between successive samples. These are

referred to as whole-sample or half-sample symmetries, respectively. The other division

between symmetries is the sign; basically, a symmetry can be either symmetric or anti-

symmetric. The former refers to the case where samples are repeated on either side

of the centre of symmetry, while the latter has their samples' signs inverted. The two

distinctions naturally lead to the four different symmetries: whole-sample symmetric

(WS), whole-sample anti-symmetric (\MA), half-sample symmetric (HS) and half-sample

anti-symmetric (HA). These are illustrated in figure 2.6. Obviously, these descriptions

apply equally to the data and filters alike in our subsequent discussions.

Figure 2.6. Four difÍerent types of symmetric extensions: (a) WS, (b) HS, (c) WA, (d) HA

Once having classified all the different possible symmetries, we can turn our attention

to the extension strategies for a given data boundary. A symmetric extension is completely

described the by the sign of the extension, and the number of repeated samples at the

boundary. For a finite-length sequence, extensions are required at both ends. Adopting

Brislawn's notation [4], this can be presented by E[*'"), where c can either be symmetric

(s) or anti-symmetric (ø), and m,n are positive integers denoting the number of repeated

(ba

A
I

I

I

I
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I

I
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I
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2.2 Fast Wavelet Transform and Perfect Reconstruction

samples at the left and right boundaries, respectively. In practice, m and n are usually
either I or 2. A few examples of different extensions are illustrated in figure 2.7. Once a

finite-length signal has been extended, it can be subjected to the filtering in a standard
analysis filter bank (figure 2.1).

(u)

(b) (") (d)

(") (r) (e)

Figure 2.7. Examples of symmetrically extended samples. (a) Original data sequence; (b) n[''');
(c) øjl'zl' (d¡ øj2'tl' (e) øil't)' $) n[I'ztt G) nL''')

In determining the appropriate criteria for a perfectly reconstructing filter bank, it
is first necessary to decide the erpans'iueness of the decomposition. A transform is said

to be non-erpa,nsi,ue if the total number of coefficients in all the subbands is equal to
the original number of data samples. The difficulty of a perfectly reconstructing, sym-

metrically extended wavelet transform is really with the desire to have non-expansive

decompositions. With expansive transforms, there is more freedom to choose due to the

redundancy in the subbands. The shift variant nature of a FWT mandates great care in
selecting which symmetrically extended transform coefficients must be retained. This task
is simple for periodic extensions on a l/-sample signal, because the data is periodically
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Chapter 2 Wavelet Transforms

repeated, therefore arry + consecutive samples in each subband must contain sufficient in-

formation for perfect reconstruction. However, with a symmetrically extended transform,

the situation is much more complicated, especially if higher level transforms are needed.

Due to the recursive nature of the FWT algorithm, it is necessary that all the subbands

are individually symmetric about their boundaries. Only certain combinations of input

extension strategies and filter symmetries and phases can produce symmetric subbands.

It is then a matter of systematically working through all the different combinations to de-

termine which combinations are allowable. Since our attention is restricted to 2-channel

filter banks only (dyadic wavelets), there are not too many cases to consider. Further

complications arise among the allowable combinations; filters with non-zero group delays

require a non-zero shift in the filtered signal before downsampling, or else the subband

coefficients will not align properly. Depending on the symmetry of the analysis filters, the

coarse and detail subbands may have different lengths; this can lead to many complica-

tions depending on the particular application, For synthesis, the extension strategy must

be matched to the analysis filter and extension combination in order to achieve perfect

reconstruction. In [4], Brislawn has tabulated all the different possible combinations and

these will not be repeated here. In practice, restrictions are often placed on the filters and

signals, which then limits the allowable extension strategies. In our work, we only consider

dyadic wavelet transforms on even-length signals. It is also much more convenient if the

subbands produced have the same size; that is, a signal of length l/ should decompose

into two subbands of f; coefficients each. The extension strategies then solely depend on

the symmetry of the analysis filters in use. The relevant cases are:

o if filter nç"¡ "t 9(n) is WS, then an E:jl't) extension must be used; reconstruction

extension is Elil'2) or E[2't), for filter group delay (k) being even or odd, respectively.

Subband shift after analysis filtering is either E o, T for even or odd k, respectively.

o if filter ir1"¡ 
"t þ(n) is HS or HA, then a\ E[2'2) extension must be used; reconstruc-

tion extension is E[''Ð ot E ''") , for HS and HA filters, respectively. Filter group

delay, k, must have the form k :2n¿ + |. SuUUand shift after analysis filtering is
k+L12

2

Note that the only possible analysis filter pairs , {h(n), g(")} must either have the form

WS/WS or HS/HA. Equipped with these rules, it is then a matter of applying the ap-

propriate delays and extensions in the filter banks to yield a perfectly reconstructing,
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2.3 Wavelet Transforms by L ifting

symmetric extended wavelet transform. The modified analysis and synthesis filter banks
are illustrated in figures 2.8 and 2.g below.

c¡(") c¡+{n)

d¡+r(n)

Figure 2.8. The modified FWT analysis bank for symmetric extensions.

c¡+t(n)

d¡*t(n) c¡(n)

Figure 2.9. The modified FWT synthesis bank for symmetric extensions.

2.3 Wavelet Transforms bv Lift¡ng

Section 2.2 discussed the Fast Wavelet T[ansform and the common polyphase filter-bank
implementation. An alternative approach to wavelet transforms has surfaced in more
recent literature. It abandons the traditional focus on frequency analysis of filters, and
instead focuses on the filtering as computed in the time domain. This new technique is
called li,fting, and will be discussed brieflv below.

2.3.L The Lifting Theorem

The lifting scheme for constructing biorthogonal wavelets has been well-studied [Z], [1g],

[72],1731, [70], [71]. The idea behind the lifting scheme is based on the ti,fting theorem:

ù(ñ,n)DcO h(") z- ho P¡vo

ã(n,Ã)Dcl -s(")
z-k' PN¡

ç,(m'n\
"cD z- ko h(") zDo PN

ç,(m'n) z-lct sØ) zDt PN

Page 32



Chapter 2 Wavelet Transforms

Theorem 1 (Lifting) Assumethatthesetof fiIters{Ho(z),Ho(r),Go(z),CoQD isbi,orthog-

onal. That'is, they sati,sfy the followi,ng:

Hs(z)H[(z):Go(z)Gå(r):r (2.52)

Co1"¡u6çz) : Ho(")Gö(r) :0 (2.53)

and, H[(z)Hs(z) + C6çz¡Co(r) :7 (2.54)

A new set of biorthogonat fitters {Ht(r),ÊrQ),G,.(z),GtQ)} can be found, as

Ht(z) : Ho(z)

Ht(r) : Ho(r) + s(22)Gs(z)

Gr(r) : Go(z) - S.(22)Go(z)

Gr(r) : Go(,)

where S(z) i,s a trigonometri,c polynorni,al.

(2.55)

In polyphase notation, this is equivalent to the following:

Corollary 1 A bi.orthogonal polgphase matrir pair, Hr(z),Hr("), can be written i,n the

form

Hr(r) : Hoo(r)
L s(z)

01

Éo(,): .'',e) I L\ ol
P'L -'Q-\ 1l

where the matrices Ho0(z), t$(r) are another bi,orthogonal pai,r

(2.56)

Equation (2.56) remains true if the filters are replaced by their duals. Such a step is

known as dual lifti,ng. By combining lifbing with dual lifting - a process known as cake-

walki,ng - one can obtain any set of finite length biorthogonal filters from a set of shorter

ones. In particular, one can begin with a trivial biorthogonal set, and apply cake-walking

to arrive at a more useful set of filters. An example of a commonly used trivial orthogonal

set is the Lazy set:

Ê1r¡:n1z¡: r (2.57)

C1r7 : Cçr¡ : z-L (2.5S)
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2.3 Wavelet Transforms by Lifting

These filters simply separate the input stream into odd and even components, i.e. its
polyphase representation. It is shown in [19] that the Euclidean algorithm can be used

to decompose any biorthogonal filter into a product of a finite number of lifting and
dual lifting factors. The division algorithm is repeatedly applied on the analysis low-
pass polyphase filters until a trivial common divisor is arrived at. The analysis high-pass
polyphase filters are obtained from this factorisation by further lifting steps. Another way
to interpret lifting is from the perspective of matrix factorisation. Fþom equations (2.48)
and (2.50), it is evident that the F\MT can be regarded as a matrix multiplication of
polynomials. The lifting scheme simply factors Ér(r) and Ho(z) into a product of simpler
polyphase matrices. More specifically, these simple matrices have the form:

H¿(z): or H¿(z):

C¡+r,.(n) : C¡,"(n)

C¡¡1,o(rt) : C¡,.(r) * a¡C¡,.(n - k) + b¡C¡,"(n - k - I)

Ci+r,.(n) : C¡,"(n) -t a¡C¡,.(n - k) + b¡C¡,,(n - k - r)
C¡+t,o(n) : C¡,.(n)

10
s(r) 1

L s(z)

01
(2.5e)

where s(z):z-k(o,*bz-I),a,beRand ke z. Inthetimedomain,theseliftingsteps
are eguivalent to the following simple operations

or

{

{

(2.60)

(2.6t)

x"(") XLQ) X,JQ)

X t

Xo(r) XLQ) x!(r)

Figure 2.10. One stage of the fast lifted wavelet transform (FLWT). The two-tap filters are S¿(z) :

"-k 
(on * b¿z-L)

Figure 2.10 illustrates these operations. The fast lifted wavelet transform (FLWT)
involves three steps

soQ) stQ) szQ) ssQ)
I'azy

Transfo¡:n
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Chapter 2 Wavelet Transforms

1. Compute the lazy wavelet

2. Repeat the operations in equation (2.60) or (2.61) for all the lifting steps in the

filter factorisation

3. Re-iterate steps l. 8z 2. on subbands to yield final transform

It should be noted that the lifting scheme does not produce any wavelets that cannot

be somehow obtained from more orthodox constructions (e.g. factorisation of half-band

filter p(n)). What it provides is an alternative insight into the understanding of wavelets.

In addition, it provides a foundation for the construction of what is known as second

generation wavelets. These are generalisations of conventional wavelets, where the basis

functions are no longer translations and dilations of a single function. However, these

second generation wavelets will preserve some of the important properties of first genera-

tion wavelets; (bi-)orthogonality, time-frequency localisation and a multiresolution nature.

Second generation wavelets are an unknown field, and hence they are not discussed in this

thesis.

2.3.2 Computational Advantages

The main advantage of the fast lifted wavelet transform is that it is efficient to implement

in digital hardware. The form of equation (2.60) and (2.61) shows that the calculations

in each step of the transform can be done completely i,n si,tu. This lowers the memory

requirements of the transform. In fact, the only memory overhead in the algorithm

is for the lifting steps and the temporary memory during the polyphase decomposition

(Lazy wavelet transform). For long filters, the FLWT algorithm needs approximately half

the number of operations when compared to the traditional filter bank algorithm [19].

In practice, the simple, lattice-like computations in equations (2.60) and (2.61) in each

lifting step is very easy to implement and requires no programming overheads such as

loops. The resultant code is very fast to execute. It is believed that the simple structure

of the FL\MT makes it highly suitable for high performance implementations.
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2.4 Wavelet Packets and Best Basis

The wavelet packet representation is a generalisation of the basic wavelet transform. In-
stead of performing decomposition on the coarse subband at each scale in the F'WT,
wavelet packet analysis performs decomposition on either or both of the subbands. Math-
ematically, this is the expansion of the signal in terms of the translations of the wavelets

at the lowest resolution. In contrast, conventional wavelet transforms express the signal

as a superposition of the scaling function at the lowest resolution and wavelet functions
at all resolutions. This can be diagrammatically represented by a binary decomposition

tree; the conventional FWT would result in a tree with only one side. Examples of such

trees is shown in figure 2.11.

,(") 4")

Figure 2.11. Examples of the two wavelet packet decompositions.

A particular advantage of wavelet packets is its flexibility. For each subband in the
decomposition (i.e. at each node in the binary tree), it is an entirely arbitrary choice

whether to further decompose the subband or not. In practical applications, this decision

may rest on whatever additional condition imposed by the problem. This idea has led to
the Best Basis selection algorithm, first proposed by Wickerhauser [83]. In an algorithm,

the decomposition decision at each node is determined by the difference in some cost

function, such as entropy, between a parent and its children nodes. Ultimately, the aim

of the algorithm is to find the most compact representation of the data, The adaptive,

best basis procedure has been applied to several problems with good results [83, 58, 21].

Variations of Best Basis are numerous in the literature, and it is beyond the scope of this
thesis to provide a detailed description of these all. The original work contained in thesis

does not use wavelet packets, but it is important as a potential future research direction.
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Chapter 2 Wavelet Transforms

2.5 Multidimens¡onal Wavelets

Thus far, only one-dimensional wavelets have been discussed. In image processing appli-

cations, where the data are inherently two dimensional, the theory of wavelets must be

generalised accordingly. Tfaditionally, Gabor filters have been popular in image analysis

applications; a basic 2-D Gabor filter can be written as

1 Lr2 u2.ho(r,a): ,*"*."p(-;(A+ e))exp(j2rfsr) (2.62)

where ø, and oa are the filter bandwidths along the r and y directions, and /¡ is the

centre frequency. A complete basis oL 2-D Gabor wavelets can be generated by applying

dilation and rotation operations on the basic Gabor function:

h(*,U) : Ahs(r',y')

tr' : A(øcos0+ysin?)

y' : A(-"sing*ycos0) (2.63)

where d is an arbitrary rotation, and A is a scale factor. Researchers have found that

dyadic dilations (A: 2 ) with 4 or 6 evenly-spaced rotations to perform well. Usually,

filter bandwidths are designed such that the set of filters' 3dB contours in their frequency

responses touch each other.

Thaditionally, the approach in 2-D wavelets is to construct them as direct tensor

products of l-D wavelets. Mathematically, this means that the 2-D scaling function is

formed by

ó@,a): ó(")ó(a) (2.64)

where /(z) is a valid l-D scaling function. Flom this formulation, there are three 2-D

wavelet functions, resulting from the different tensor product combinations.

rbm(r,y)

tþnt(r,a)

,þnn(r,a)

: ó(")rþ(a)

: tþ(r)ó(a)

: ,þ(")rþ@)

(2.65)

(2.66)

(2.67)

The subscripts hl, lh, hh correspond to the action of the high- and low-pass filters in

the horizontal and vertical directions. One consequence of the tensor product is that

these particular wavelet functions have three preferential directions. The wavelet (¿n(r,A)
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2.5 Multidimensional Wavelets

responds strongly to vertical edges, while tþ¡r¿(r, gr) and únn(r,gr) respond to horizontal and
diagonal edges, respectively. An example is shown in figure 2.L2. Thewavelet transform of
the "Lenna" image is separated into four distinct regions, or subbands. These subbands
are critically downsampled, by a factor of 4 in this case, so as to preserve the total
number of pixels in the image. Flom now on, the term 'separable 2-D wavelets' will refer
to wavelets obtained from tensor products of 1-D wavelets.

Figure 2-l2.The original Lenna image,256x256,8-bitgray level, and the image aftera 2-level fast

wavelet transform. The filter used was the tensor product from a pair of Daubechies

9-7 biorthogonal pair in both the horizontal and vertical dimensions. The Z.L2 subband

coefficients have been reduced to illustrate the other subbands.

An alternative to the tensor product approach is to start from a true 2-D multires-
olution analysis. This approach gives true, non-sepa,rable 2-D wavelets [12]. All of the
properties of a l-D MRA (equations (2.10)-(2.15)) can be directly generalised to 2-D, with
the dilation factor (2 in the above definition) replaced by a dilation matrix, D. A dilation
matrix is simply a 2x2 matrix with integer entries. The determinant of this matrix gives

the downsampling factor. An additional requirement on this dilation matrix is that its
eigenvalues must have magnitude strictly greater than 1, to ensure a true dilation in all
directions. Most of the efforts on developing non-separable wavelets have concentrated
on using dilation matrices with determinanl2. A good example of such a downsampling
scheme is the qu'incunr grid, which offers some theoretical advantages over a separable
grid, such as isotropy.
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va

x: r
(u) (b)

Figure 2.13. (a) A separable grid (downsampling factor 4); (b) the quincunx grid (downsampling

factor 2)

Almost all image processing applications to date use separable 2-D wavelets. The

main area of application has been in image compression, where outstanding quality with

high compression ratios has already been demonstrated. There are many benefits to

using separable 2-D wavelets. For instance, they inherit properties such as finite support,

orthogonality and smoothness from its root l-D wavelets, therefore eliminating the need to

repeat complicated and difficult analysis on the 2-D wavelets themselves. The use of tensor

products is equivalent to the use of separable 2-D filters in a filter bank implementation.

This implies that the 2-D wavelet transforms can be synthesised as a cascade of 1-D

transforms, which is computationally efficient. On the other hand, fully two-dimensional

filter banks are computationally expensive to implement.

However, there are several disadvantages associated with separable 2-D wavelets.

First ofall, they exhibit strong preferences to horizontal, vertical and diagonal frequencies

in an image. For many image processing problems, a more isotropic analysis is preferred.

In addition, the use of separable filters gives the designer far fewer degrees of freedom

than non-separable ones for filters of the same size. This has important consequences in

the properties of the resulting wavelets. One of the most notable consequence is the fact

that orthogonal, symmetric wavelets with compact support is possible for non-separable

wavelets, but not for the separable case. Therefore, there are good reasons to study true,

non-separable 2-D wavelets for image processing applications. However, the mathematics

Page 39



2.6 Dual-Tree Complex Wavelet Transform

for non-separable 2-D wavelets are very difficult, and there are also unfavourable imple-
mentation issues. These are important obstacles to overcome if non-separable wavelets are

to be in wide-spread use. In this thesis, separable 2-D wavelets are used throughout, due

to the abovementioned difficulties of non-separable 2-D wavelets. The complex wavelet
transform discussed in the next section overcomes some of the limitations of basic sepa-

rable 2-D wavelets, without the analytical and mathematical complexity of non-separable

2-D wavelets.

2.6 Dual-Tree Complex Wavelet Transform

The major disadvantage of a conventional FWT, with its critical sub-sampling, is its lack

of shi'ft inuariance. The FWT is highly sensitive to the precise positioning of the input
signal, in the sense that a slight shift in the input typically results in a drastic change in
the distribution of energy among the subbands. This is a highly undesirable character-

istic for image analysis and image understanding tasks. A robust image analyser must
be able to correctly identify the same features irrespective of their position in the image.

This is particularly true in texture analysis, where the very notion of textures implies an

arrangement of shifted patterns and hence mandates shift invariant techniques in their
analysis. A brute force solution to the shift variance of the FWT would be to eliminate
all down-sampling from the decomposition, resulting in the wavelet frame representation.

This full redundancy greatly increases the computational burden on the system. In many

image analysis applications, the massive increase in the number of coefficients and. com-

putational complexity propagates through all subsequent processing steps, thus raising

the system cost significantly. A similar problem exists for Gabor transforms, which are

also highly redundant representations. However, in pattern recognition problems, a cer-

tain degree of redundancy is often useful. Generally, redundancy can mask noise in the
extracted features which could otherwise interfere with the decision making process. It
is well known that some redundancy usually leads to better classification performance.

Thus, the degree of redundancy in a representation is a tradeoff between the desire to
minimise computational costs and to increase recognition reliability.

The separability of 2-D FWT greatly restricts the directional selectivity of this rep-

resentation. Directional information is very useful in many image analysis applications,
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where important features are present in several spatial orientations. The FWT can only

provide three preferred directions, oriented at 0o, 45o and 90' to the horizontal. This

is even worse when one considers that the diagonal(HH) subbands contain information

along both the *45' and -45' directions. In other words, it is impossible to isolate in-

formation along *45o or -45' directions separately, thus effectively restricting the F\MT

preferred directions to just the horizontal and vertical. This limitation is illustrated in

figure 2.14. In comparison, 2-D Gabor decompositions produce subbands that can be

oriented in any number of arbitrary directions, since 0 is a free parameter in a Gabor

function. Typical applications of Gabor filtering [32], [15] use basis functions aligned to

four different orientations, even though any number of directions are possible, since each

additional direction increases the redundancy in the decomposition.

Figure 2.14. The directional limitations of the FWT. A l.-level, Daubechies 16 orthonormal wavelet

transform is applied to the figure on the left. lts transform is shown on the right; the

-L,L subband is removed to better highlight the high-frequency subbands. The preferred

directions at 0o,90o and t45o are clearly visible in the transform image.

The shift invariance and poor directional selectivity of the F\ /T is due to the use of

real-valued filters. It has been discovered that complex-valued fiIters can provide approxi-

mate shift invariance [a ]. The key to this technique is the presence of real and imaginary

parts in the wavelet coefÊcients. With the extra dimension, it is possible to ensure that

the magnitude of the complex response vary slowly with respect to input shift, therefore

producing approximate shift invariance in the downsampled signals. On the other hand,
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2.6 Dual-Tree Complex Wavelet Transform

it is the phase of these coefficients that varies rapidly with respect to input shift. These

conditions can be achieved if the real and imaginary parts of the scaling and wavelet
functions have opposing symmetries and their centres are shifted with respect to each

other. In essence, the peaks of one part (real or imaginary) compensates for the troughs
of the other, so that rapid variations in the magnitud.e are eliminated. The resulting mag-
nitudes have Gaussian-like shape, which offer good time-frequency characteristics. This
is illustrated in figure 2.16.

Due to the presence of real and imaginary parts, a complex wavelet transform pro-
duces twice the amount of data as a normal FWT. In other words, the complex wavelet
transform is a 2-times redundant representation. This moderate degree of redundancy is
a small price to pay for shift invariance, especially since the alternative, wavelet frames
representation, has much higher redundancy. In addition, it is impossible to obtain perfect
reconstruction for the complex wavelets. The phase and symmetry relationships between

the real and imaginary parts of the filters prohibit them from also satisfying the perfect

reconstruction conditions. The complication really arises from the fact that complex fil-
ters do not have symmetric responses for positive and negative frequencies. For many
image processing applications, the perfect reconstruction property is mandatory; image
compression is a classic example. The complex wavelet transform is therefore ill-suited
to such tasks. Note that the popular Gabor filter decomposition also does not have the
perfect reconstruction property.

Kingsbury [36] discovered that a complex wavelet transform can be computed using

two real DWT trees in parallel, with separate trees being responsible for the real and
imaginary parts of the coefficients. This transform is hence known as a Dual-Tree Complex
Wavelet Tþansform (DT-CxWT). The trick to make this decomposition provide shift
invariance is to ensure that the samples in the two trees, for the l-D case, are always half-
sample offset (at the output subband's sampling rate) from each other. This is achieved

if the first level tree filters are shifbed copies of each other and higher level filters are

designed to have opposing symmetries. In addition, the sidelobes of these filters will
need to be strictly controlled [36] to minimise cross-band interference, which lead to
shift variance. Ideally, the low-pass magnitude response in the two trees should match
to yield good shift-invariance, but this can only be approximately achieved in reality.
Since the individual trees are plain ordinary FWTs, they are invertible, and therefore the
DT-CxWT, as a whole, is perfectly reconstructing. The 1-D DT-CxWT is illustrated in
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Figure 2.15. The l-dimensional DT-CxWT, clearly showing the use of two ordinary DWT trees to

compute the real and imaginary parts of the CWT

figure 2.15. Higher dimensional wavelets are obtained by taking tensor products of the

basic 1-D filters as usual. The 1-D DT-Cx\MT algorithm is applied to each dimension

separately. This structure naturally leads to a 2* : 1 redundant transform for an rn-

dimensional signal. For 2-D, an additional sum and difference operator is necessary to

obtain the proper complex subbands from the four filter trees, aa,ablba,bb. This is a

direct consequence of the rules of complex multiplication. The 2D DT-Cx\MT algorithm

is shown in figure 2.17.

In light of the above discussion, it is apparent that two different filter pairs (low-

and high-pass) are needed to construct a DT-Cx\MT, as opposed to the single filter pair

used in a conventional FWT. It is normal practice to use linear phase filters for image

processing applications, where phase distortion can drastically alter the contents of an

image. Kingsbury has designed a pair of biorthogonal FIR filters that satisfies all of the

above requirements; this pair is used in all subsequent experiments. To our knowledge,

there are no other readily available filter pairs or families (cf. Daubechies family for FWT)

in the literature to date. In designing filters suitable for use in a DT-CxWT, they must

satisfy the conditions mentioned above. Kingsbury has detailed the necessary conditions

in his publications, so they are not repeated here.
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(u) (b)

(") (d)

Figure 2.16. Level 4 impulse response for a complex wavelet. (a) scaling function þ(r) from a

complex wavelet; (b) scaling function from a DT-CxWT; (c) wavelet function r/(ø)
from a complex wavelet; (b) wavelet function from a DT-CxWT. The DT-CxWT gives

a reasonable approximation to the actual complex transform, albeit with longer filter
lengths.

Since the DT-CxWT filters have different delays designed into them, the sum and

difference operations on the DT-Cx\MT components yield strongly-directed transform
subbands. The separable 2-D DT-CxWT filters are capable of selectively passing signals

in pairs of quadrants in the 2-D frequency space due to the phase differences in the
constituent subbands. This property is fundamental to achieving directional responses.

While conventional FWT subbands are aligned with three directions (0", 45" and 90"),

a2-D DT-CxWT has its subbands aligned to six different directions, at 115', *45'and
+75'. Figure 2.19 illustrates the strong directionality of the DT-CxWT. The transform is
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Figure 2.17. The 2-dimensional DT-CxWT. The rectangular boxes indicate the one level 1-D DWTs

applied along rows and columns of the image. The sum-difFerence operator is applied

at the end to yield the final DT-CxWT decompositions.

performed with symmetrical extension techniques (Section 2.2) at the image boundaries to

Iimit artifacts at the edges. While the periodic extension technique has been widely used

for their simplicity, the artificial discontinuities introduced in the transform coefficients

are undesirable for texture segmentation.

A recent advance in DT-CxWT has been a new design in the filters used in the

algorithm. In the original DT-CxWT, pairs of odd-length and even-length filters are used

alternately in the transform trees. 'While this provided the necessary phase and symmetry

conditions for shift invariance, there are a few undesirable consequences. Firstly, the

effective sampling points in the two trees are placed asymmetrically. This implies that

the higher-level coefficients do not interpolate the coefficients in the level immediately

below. Whatsmore, with different filters in the transform tree, there must exist some

mismatch in the frequency responses of the two trees, which affects the degree of the

transform's shift invariance. Great care was taken to minimise the difference between the

responses of the Kingsbury pairs in their design. These difficulties are addressed with the

introduction of the Q-shift dual tree [37]. The new architecture uses the same sample-

shifted odd-length pair for the first level transform, but all subsequent levels use even-

length filters. The higher level transform filters in the Q-shift DT-CxWT are obtained

from a single prototype, designed with a group delay of q: I. The required half-sample

offset between trees can then be obtained by simply using the time-reversed version of

the same filter. With a group delay of ], linear phase filters are no longer possible. This

raises the possibility of using orthonormal filter sets (cf. Daubechies wavelets), further

R2

I2

R7 = aa+bb

17 = ba-ab

R2 = bb-aa

12 = ab+ba

EIL
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Figure 2.18. Comparison betvveen the directionality of the DWT and DT-CxWT. Level t high-pass

subbands are shown here. (a) a circle is used as the input image; (b) the DWT

subbands clearly exhibits 3 preferred directions, while (c) the 12 DT-CxWT subbands

has 6 preferred directions (for both real and imaginary parts).
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+ --..+
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Figure 2.19. The eftect of the sum-difFerence operator on the directionality of the 2-D DT-CxWT.

The impulse responses for the LH and Hl subbands in the aa and bb components

are shown on top; their difFerence, rR1 is on the bottom. The eftect of difFerent filter

delays is clearly shown. The two separable impulse responses are combined to give a

response with strong orientation in the -75o direction.

simplifying the transform by producing the reconstruction filters from the same prototype.

In fact, the orthonormal nature of this filter set means that one only has to swap trees

a and b for the inverse transform, which leads to implementation efficiency. The Q-shift

dual tree architecture is much more elegant, as it leads to matching frequency responses

and symmetric sampling grids across the two trees. It is appealing in its simplicity as

well: one only needs to design a single filter instead of matching biorthogonal pairs. The

restrictions on the possible filters are less complicated, also as a result of having only one

filter.
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2.7 Summary

The wavelet transform is a relatively recent mathematical development that has quickly

found a place in many engineering applications. The mathematical basis of wavelet theory
was presented in this chapter, as well as several implementation issues. Many different
types of wavelets have been applied to texture analysis problems, the most popular being

the Gabor wavelets, due to their superior time-frequency trade-off in theory. This thesis

abandons Gabor wavelets in favour of critically or partially subsampled transforms due to
computational concerns. In particular, the DT-CxWT discussed in2.6 is heavily favoured

for their unique mix of efficient computational characteristics and vastly improved direc-

tional properties over the critically subsampled DWT. The remainder of the thesis will
focus on good texture segmentation performance with features derived from both of these

transforms.

Page 48



Chapter 3

Texture Features

The wavelet transform is the main analysis tool investigated in this thesis. While the

desirable characteristics of the wavelet transform have been discussed in the previous

chapter, the raw wavelet coefficients are not useful by themselves. A good feature ex-

traction process is crucial to the overall segmentation performance of the system. This

chapter discusses the feature extraction methodology used in this work.

Wavelet
Transform

Feature
Extrect¡on

lnput lmage Îânslomed lmage

^

Raw Fealurøs

Output lmage Cond¡lloned Features

Figure 3.1. Wavelet-based texture segmentation system architecture

Figure 3.1 illustrates the architecture of the wavelet-based texture segmentation sys-

tem described in this thesis. An image wavelet transform is the first stage of the process,

which accepts textured images as input and produces the transform coefficients as the

output. The feature ertractor operates on these coefficients and produces a set of feature

uectors. The array of feature vectors can be visualised as a series of feature images, as

K Feature
Clustering

Feature
Conditioning
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shown in figure 3.1. Generally, the raw feature image needs to be processed further in
order for the extracted features to be useful for segmentation; this is handled by the fea-
ture condi,ti,oning stage. Einally, the conditioned feature image is used by the clustering

algorithm to perform the final segmentation, which produces the segmented image as out-
put. The simplicity and modularity of this system means that the individual stages are

swappable, meaning that alternative modules can be slotted into the system without dis-

rupting the functionality of the other stages. For instance, the transform stage can easily

accept a number of different transforms without altering the operation of other stages.

This modularity allows us to concentrate on various aspects of the segmentation algo-

rithm, and to study their effects on the overall performance. While it is conceivable that
greater interaction between stages and possibly feedback (the dotted line in figure 3.1)

may yield better segmentation performance [55], they also complicate the process. The
notion of using feedback also mandates the introduction of some form of intervention into
the algorithm, which may not be possible in real-world applications. This thesis examines

the effect of different feature extraction methods on the overall segmentation performance

without feedback or supervision. In a real-world system, the algorithms investigated here

can be used as a front end, producing preliminary results before further enhancements or
post-processing are perfbrmed with other, potentially more sophisticated, techniques.

3.1 Historical Texture Features

Traditionall¡ there have been two approaches to texture analysis: statistical and struc-
tural. Statistical approaches characterise textures by their statistical properties. They
focus on uncovering the local properties of textures from the spatial statistics of the gray

tone levels. Statistical approaches have found success with textures where m,icrotertures

are dominant. Microtextures refer to textures which are localised and contain rapid varia-

tions in image intensity (gray levels), as opposedto macrotertures which refer to textures

with large patterns or have great regularity in their composition. Statistical approaches

are fundamental in the sense that they operate directly on the raw gray tone or colour com-

ponent values in the digitised images. As an alternative paradigm, structural approaches

attempt to characterise textures by the mathematical rules underlying their appearance.

Their focus is on finding the geometric rules which determine the arrangement of basic
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terture primi,tiues present in textures. The success of these approaches depend on a reli-

able mechanism for identifying the appropriate textural primitives, whose descriptions are

usually in terms of statistical parameters. Therefore, structural approaches should more

correctly be called statistical-structural approaches. These have found success mainly

with textures where macrotextures a,re prevalent. Cases of both approaches are discussed

further in the subsequent sections.

Figure 3.2. Two examples of natural textures, with vastly different eppearances. Sample (a) has a

simple primitive and very regular placements, while (b) resembles output of a stochastic

process with almost no regularity.

3.1.1 Statistical Texture Analysis

In his landmark paper, Haralick [27] isolated eight distinct historical statistical approaches

to the measurement and characterisation of textures. These are: autocorrelation func-

tions, optical transforms, digital transforms, textural edgeness, structural elements, spa-

tial gray tone co-occurrence matrices, gray tone run lengths, and autoregressive models.

A brief discussion of each of these methods serves as a good starting point in the descrip-

tion of statistical texture approaches. Other authors have written several evaluations

[67, 15, 51] comparing statistical texture approaches among each other, as well as other

approaches, for various applications.
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The autocorrelation function method attempts to measure the relative sizes of the
textural primitives by monitoring the decay of the autocorrelation function, defined as

La-m La-n

t DtU,j)r(i+m,jin)
.\t^ ^\ LrLo
a tñ ñ t 

- 
_- \' -) ''l (L, - m)(Lo - n)

i:t j:1.
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Dt'u,i)j:r

where (^, n) is the displacement of interest for the autocorrelation function and I (i,, j) is

the image intensity at pixel (i,,j), and the image has dimensions,L, x Lo. Textures with
large texture primitives, or tertons, have autocorrelation functions that decay slower (with
increasing m,n) than those with smaller textons. In addition, highly regular textures
(".g. a brick wall) with strong periodicity is reflected in a corresponding periodicity in
the autocorrelation function. In practice, the autocorrelation is computed for a limited
number of displacements, and these values are taken to be the features for describing

textures.

Optical transform methods use the diffraction patterns obtained from illuminating
texture photographs as the textural features for identifying textured images. This method
has found success in a surveillance application where classification of land use type based

on textures is required.

Lr

D
i:t

Digital transform techniques use various transforms, such as Fourier and Walsh trans-
forms, on linearised neighbourhoods in the texture. To use these techniques, an image

is divided into smallgr, non-overlapping blocks. These blocks are then unrolled into one

dimensional vectors, and then these are subjected to the various digital transforms. Such

techniques are common in surveillance as well, where the huge images must be divided
into smaller blocks for efficient processing. The blocks may not be linearised. For exam-
ple, the 2-D power spectrum, defined as the squared modulus of the Fourier transform of
the image, operates on square blocks. The power spectrum is expressed in polar coordi-
nates, which measures the energy in the image as functions of radius and angle. Effective
features can be extracted from these functions: directional textures have predominantly

angular dependence, while blob-like textures are predominantly radial dependent. These

measures have been useful in discriminating between these different types of textures.
Conners and Harlow investigated sample po\ri/er spectral signatures derived from similar
considerations in their study of different texture features [15].
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Textural edgeness is an approach that attempts to characterise textures in terms of

edgeness per unit area. Any edge-detection operator is possible for this approach. An

example of textural edgeness description is

g(d) : I(|¡(¿, j) - I(i,+ d,, i)l + lr(2, i) - I(i, - d, i)l
(i,i)

+lI(i, j) - I(i,,i + a¡1+lI(i, j) - I(i,, j - d)) (3.2)

The individual measures for every pixel 1(i, j) is the average approximate gradient in the

horizontal and vertical directions over a distance of 2d arornd the pixel. The function

is then the overall average gradients over the entire image, and it appears similar to the

autocorrelation function (in combined horizontal and vertical directions). Texture features

can be extracted by choosing a number of different distances, d. Textures with a high

density of edges (such as rugged surfaces) would have much larger gradients than those

with a low edge density. The plot of g(d) also illustrates the dominant size of textons

present in the image.

The approach of structural elements applies methods in mathematical morphology

to the assumed basic structures in image textures. In essence, this approach attempts

to pattern match textures with a set of typical geometric constructs. Simple structural

elements are defined, and these are used to "erode" the original image to form a series of

new images. Features are then extracted from these images. This operation attempts to

find the locations in an image which match some basic texture elements. These elements

are typically constructed from lines and squares.

Spatial gray tone co-occurrence, or equivalently, the spatial gray level dependence

method [15], measures the spatial distribution and local dependence among the gray

tones present in the texture. The co-occurrence matrix Pe,L(m,n) of an image I(i, j)
counts the number of times a pair of pixels of 1, separated by a distance / at an angle 9,

have intensities rn and r¿. This matrix is clearly symmetric, and is very easy to compute.

The size of the co-occurrence matrix depends on the granularity of the quantisation of
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the pixel values, i.e. the number of gray levels in the image intensities.

I(r,y) :
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(3.3)

The idea is to construct a number of co-occurrence matrices [8] for different spatial direc-

tions, and extract a set of statistical measures from them for analysis. Haralick has found

a number of statistics generated from co-occurrence matrices that are useful as texture
features; examples of these are:

Energy : Pi,tU, i)

Pe,t(i,r) loe Peili, j)

li - jl^@t,t(i, j)) m,n > 0

1

T +G - JPPe'¿(i'i)

Entropv :

Max probability : maxP6,¿(i,, j) (3 4)

Co-occurrence matrix methods have been investigated by other researchers with moderate

success. Chen and Pavlidis [11] used co-occurrence matrices in a hierarchical scheme

to segment textured images. Conners and Harlow [15] applied co-occurrence features

in discriminating visually distinct textures. The co-occurrence features are similar, in
idea, to the autocorrelation function features. However, they contain significantly more

Contrast

D
i.,i

D
i,i

t
irj

D
i,i

Local Homogeneity :
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information on the spatial dependencies (two more variables) present in the image. A

disadvantage of co-occurrence features is that they contain no information on the structure

or shape of textons. As a consequence, co-occurrence features have mostly found success

with microtextures.

The gray tone run length method characterises textures from the length, gray tone

value and direction of gray tone runs in the images. Secondary statistical measures are

extracted from these quantities for better results. Let R(i, j,0) be the number of occasions

where there is a run of length z of gray level j along the direction 9; some useful statistics

are

Short run emphasis
R(i, i,0)

j'

Long run emphasis

1

K
1:
K

t
i,i

t
i,j

?,J A( o)J

Gray level uniformity : *ftf RU, j,0))2

,

xJ

Run length uniformity :

Run percentage : (3.5)

where K is the total number of runs and L*, Lo arc the dimensions of the image. Any

number of these statistics (for any direction) can be used as texture features [15].

The auto-regression approach attempts to construct appropriate statistical models

to describe textures. This approach relies on the principle that the intensity of a pixel

depends on its surrounding neighbours; texture features are taken to be the parameters

of this dependency. Many popular statistical models for the dependence relationship have

been used in this approach. In the 1980s, researchers developed methods based on Markov

Random Fields (MRF) l5I, 22, L6]. In this approach, the pixel gray level values in a

texture are treated as the observations taken from a Markovian process. The random field

model is characterised by the conditional distribution P(1(2, j)lneighbours of pixel(2, j))
relating the gray level of an image pixel at (2, j) given the values of its neighbouring pixels.

Gaussian and binomial distributions are two examples that have been investigated in the

literature.

#rrr RQ,i,q)2
Jx
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The gray level difference method is described in [15]. It is similar in principle to the

co-occurrence matrix discussed above. This method considers the difference in gray level

values of two pixels separated by a given displacement vector. The probability density

function of these differences is estimated by computing these gray level differences over the

entire image. Texture features are extracted by calculating statistics from the estimated

probability densities. These statistics are very similar to those described in equations (3.a)

and (3.5), with the probability density function in place of the co-occurïence matrix and

run length function, respectively.

A fairly recent class of texture features is based on fractals [51, 10]. These methods

attempt to characterise textures by the fractal geometry in images. In natural textures,

there are many rough and irregular objects, and these are very difficult to model or

describe using geometric methods. Fractals are much better suited to describing these

objects, and they also have the advantage of being insensitive to scale (i.e. multi-scale

representation). The representation is also very compact, and this is appealing for pattern

recognition tasks. The key computation involved in extracting fractal features is the

determination of the fractal d,'imensi,on. A simple method to estimate this parameter is

the Differential Box Counting method. In this method, an M x M image is modelled

as a 3-D mesh, with the z coordinate being the gray level, normalised into M discrete

bins. The image is then divided into s x s equal-sized boxes, where r : Mj- < j. let the

maximum and minimum values in the box at (i,, j)be z^o,('i,j) and z*¿n(i,j), respectively.

Their differences for all boxes are summed together:

l/(r): f ,,*",(¿,j)-z*¿,(i,j)+7 (3.6)
i,j:t

This process is repeated for a number of different r, and the fractal dimension, D, is
determined from the resulting log-log plot of r versus ,lú(r) using the relation

l : _loï ¡ú(") 
(3.2)logr

The fractal dimension can be used as the texture feature, which is an extremely compact

representation (dimension of 1). For segmentation experiments, the fractal dimension of
small sub-windows around each pixel is calculated as the texture feature for that particular

pixel. However, the fractal dimension is not a unique description for textures, so several

different fractal dimensions should be calculated for robust segmentation.
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3.1.2 Structural Texture Analysis

Statistical-structural approaches are based on the view that textures are composed of

regular or semi-regular placements of textural primitives. These primitives are connected

sets of cells with a common set of characteristics. The cells can simply be a region of pixels

in the image, or they can be of a higher-level, containing a set of edges and polygons. The

spatial interaction can be described by formal grammars. However, the placement rules

can become rather complicated for real textures. The lack of flexibility in an inherently

restrictive grammatical description presents a practical difficulty of such schemes. More

commonly, a hybrid structural-statistical approach uses explicitly defined primitives (the

structural part) with probabilistic description of placement rules (the statistical part).

These two different parts of structural texture analysis will be discussed separately in this

section.

Fundamentally, a primitive is defined as a set of connected pixels sharing some com-

mon list of attributes. These attributes may be simple quantities such as gray level value

or edge direction. Higher-level attributes, such as the geometric shape of set, can also

be used. Neighbourhood operators are ofben used on sets of pixels, and homogeneous

regions of their outputs are grouped together to form the primitive. Depending on the

variety of attributes sought by these operators, it is then possible to identify one or more

types of different primitives present in a texture. Afterwards, the description of the image

has been transformed from a simple matrix of gray level values into a more informative

description in terms of primitives spatially scattered throughout the image.

The next step in a structural approach is the description of the spatial interaction

between the identified primitives. The description can include information such as: the

directional likelihood of two different primitives being adjacent to each other, the repeat

probability of a primitive, the adjacency of two primitives, and the closest distance be-

tween any pair of primitives. Obviously, there are endless possible quantities that can aid

the overall description of a texture. Depending on the application, the number and type

of rules necessary for an adequate description change greatly. Historically, it has been

useful to characterise textures either as weak or strong, depending on the level of spatial

interaction between primitives. This distinction assists in attaining a description of the

spatial interaction, as different techniques are needed for strong and weak textures.
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For weak textures, the limited spatial interaction between primitives make precise

grammatical descriptions infeasible. Instead, features are extracted directly from the
primitives to describe the texture. In a sense, this is similar to purely statistical ap-

proach. The feature extraction methods include: histogram signatures, edgeness per unit
area, run-length features and local extremum density. Many of these methods have been

discussed in the statistical approach section. The only difference here being that these

methods operate on attributes of the identified primitives. Indeed, the use of primitives

instead of raw pixels is an additional layer of abstraction. For a single pixel, the most

obvious, and perhaps only, attribute is its gray level value (or colour component values

for colour textures), but for a primitive, there are many possible attributes that one can

use to extract texture features from. As may be expected, primitives for weak textures
are typically very small structures, sometime consisting only of a small number of pix-

els. Obviously, as the sizes of primitives decrease, these methods approach the statistical
approaches outlined in section 3.1.1. As a result, there is considerable overlap between

structural approaches for weak textures and statistical approaches.

For strong textures, the notion of abstraction in primitives is much clearer. High-
Ievel description in terms of placement of primitives is possible for strong textures. A
method to achieve this is through the calculation of co-occurrence matrices from the
primitives. Again, this is a generalisation of the co-occurrence matrix method described

in section 3.1.1, and indeed becomes identical when the primitives are reduced to single

pixels. However, the generalisation to larger primitives yield a rich variety of attributes
that can be used to calculate the co-occurrence matrices. For example, angular orientation

can replace the gray level value in the calculations, which would be far more effective

for highly angular dependent textures. To be precise, consider an image divided into
a set of primitives, P. Each primitive can be considered to be a vector of attributes,

T(p): [úo(1),tr(2),"',tr(k)],pe P. Defineasetof spatialrelationshipdescriptors,.S.

The spatial relationship between a pair of primitives (pt,pz) is described by a vector in
S(pt,pr) € S. As an example, the individual components of such a vector may measure

distance and angular separation between the primitives. The generalised co-occurrence

matrix simply counts the number of times a pair of primitives (h,pz), separated by some

specified spatial description, have attribute vectors equal to fi and ?2, respectively. The
generality of this description is quite powerful, but in practice, neither the attribute vectors

Page 58



Chapter 3 Texture Features

nor the separation descriptions are too intricate. Typically, they resemble co-occurrence

matrices in section 3.1.1, except that the attributes may not be simple gray level values.

3.2 Filter-based Texture Features

The vast majority of early algorithms in texture analysis follow either the statistical or the

multichannel approaches. However, neither approach is satisfactory for a general analysis

of textures, where the relative importance of micro- and macrotextures vary. What is

needed is a method to effectively isolate the defining qualities for a particular texture,

whether it be a local property or a global arrangement. More recent techniques involve

the use of a multi-scale analysis of the textured image. The main advantage of multi-

scale approaches is that they are capable of zooming to the appropriate scales for different

textures. Even within one texture, there may be important, defining characteristics at

more than one scale, a difficulty not solved by the classical statistical and structural ap-

proaches. Fundamentally, multi-scale approaches rely on the use of multiple spatial filters

with different frequency characteristics to perform the analysis. Hence, these approaches

are often called filter-based or multichannel filtering approaches. Early incarnations of

these methods typically used Gabor filters at different scales to characterise textures.

More recently, these approaches have evolved to encompass the use of other decomposi-

tion techniques, such as wavelets. The virtues of wavelets have already been discussed

in chapter 2. Despite the emphasis on the multi-scaled perspective, a significant part of

multichannel approaches is statistical in nature. Therefore, there are many similarities

between algorithms following the classical statistical and modern multiscale approaches.

The most obvious difference is that the former operates on the image intensity values di-

rectly, while the latter operates on the filtered image, or transform coefficients. Referring

to the framework outlined in figure 3.1, the differences between statistical and multichan-

nel approaches only arise in the existence of the first block (Wavelet Tbansform). The

remainder of this section provides a brief summary of the existing filter-based approaches

in the literature.
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3.2.L Paradigm of Filter-based Approaches

All image decompositions produce a series of image components from a single input im-
age. One way to distinguish between different image transforms is by the red,und,ancy

introduced into the decomposition. Non-redundant transforms produce the same amount
of data in the output as the input, while redundant transforms produce more data, even if
the information content is not increased. For image analysis tasks, non-redundant trans-
forms are often desirable from an algorithmic standpoint, due to computational efficiency

achievable with more compact data sets, However, for texture analysis, redundancy is

often required to achieve good characterisation, since textures are complex phenomena

that may not be adequately described by the compact, non-redundant representations.

An example of a redundant decomposition is the Gabor transform that is used in many

cognitive image processing applications. Generally speaking, a transform decomposition

attempts to isolate different types of information about the original image in its com-

ponents. Orthogonal decompositions, for example, decorrelates the original information,

with respect to some defined inner product, into independent channels. It is reasoned

that feature vectors extracted from the decomposition coefficients would yield si,gnatures

which are capable of describing textures present in the image. A joint time-frequency de-

composition yields components which contain image information at different resolutions

and within different frequency bands. For example, a popular Gabor filter configuration

uses filters at 4 scales and 6 orientations to produce 24 filtered images [62]. The design of
the decomposition yields information in 4 separate dyadic scales, and information along

6 evenly-spaced directions with the same angular resolution.

Once an image is decomposed, features are extracted from the component images.

A feature element is simply a statistic computed from the transform coefficients in the

decomposed image. This statistic is ofben a simple rectified ct-¡efficient value, but it can

generalise to any statistic. Examples include the phase of the coefficients and probability

distribution parameters used to model the transform coefficients. The individual feature

elements are collated to form a feature uector. The usual approach is to concatenate

the feature elements together, producing a vector of values. While Gabor transforms, in
various configurations, have been most commonly used in the literature, the recent trend

has been to use more modern time-frequency decompositions like wavelet transforms.

The focus of this thesis aligns with this trend; in particular, discrete and complex wavelet
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transforms (see chapter 2) are the two techniques that will be examined in detail. Before

explaining the details of wavelet-transform based texture features, a survey of existing

filter-based techniques is presented first.

3.2.2 Survey of Existing F¡lter-based Approaches

The first filter-based approach to texture analysis is attributed to Laws [43]. His ap-

proach consists of convolving images with a set of "micro-texture" masks, which have

been empirically designed to match primitive texture patterns. These masks are obtained

by computing tensor products combined from several basic l-D vectors. First, 3 basic

vectors of length 3 are defined:

Ls : [1 2 Ll

E3: [-101]
,Ss : [-1 2 -L] (3 8)

These are designed to measure the average gray level, edge and local peak (spot), respec-

tively. 3 x 3 masks can be computed by forming outer products of any pair of vectors,

giving 9 different masks in total. By convolving the basic vectors with each other, a set

of 5 distinct vectors of length 5 (,L3 x Sz: -Es x E3) are produced:

Ls:Ls*Ls- [1 464 1]

Es:Lz*83: [-1 -2 0 2 1]

Ss:Ls*,S3- [-l 0 2 0 -1]
Ws:E3x,Sr: [1 -2 0 2 -1]
As:,Ssx^93: [1 -4 6 -4 1] (3.e)

By taking the outer products of these vectors, 25 5 x 5 masks can be generated. For

example:
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Macro-statistical features are computed from the coefficients of the filtered images. Var-
ious different statistics, such as mean, energy, variance, kurtosis and skewness, have all
been proposed as possible feature measures. These statistics were used. by Sharma and
Singh [67] in classifying 944 textures from 4 categories. Hsiao and Sawchuk [30, 2g] used
Laws' masks and calculated the mean deviation of the convolved images as features for
texture segmentation.

Rather surprisingly, the "filter-and-compute statistic" paradigm in Laws' method has

more or less stayed intact in almost all filter-based texture analysis algorithms since pro-
posed. Obviously"though, the transforms (filters) and feature extraction processes have

been greatly modified. For example, local linear transform techniques were studied by
Unser and Murray 177,781, who used them on both texture classification and segmenta-

tion problems. They used local orthogonal convolution masks as their filters, and then
calculated the variance of the histogram (of the coefficients) as the texture feature. Multi-
channel filtering algorithms are intimately related to local linear transform methods, and
can be regarded as a generalisation of such.

Among published works, the majority of multichannel filtering methods use 2-D Ga-
bor filters (equations (2.62) and (2.63)) as the choice of transform. Jain and Farrokhnia

[32] used Gabor filtering to extract features for segmenting textures. In their scheme,

texture features are extracted from a subset of a total of 20 Gabor filtered images. The
particular Gabor filter subset is chosen adaptively by sorting the energy values of all
Gabor subbands, then choosing the minimal set that accounts for g5% of total intensity
variations' The feature values are the rectified coefficients of the filtered subset. These

features formed the basis of their unsupervised segmentation of texture mosaics. A similar
feature extraction process is used in Jain and Karu [33], where a comparison was made

between the use of 8 or 16 Gabor filtered images. These features are used by a neural
network classifier to perform a range of classification tasks. Document segmentation and
barcode localisation were used as application examples for the texture features. Randen
and Husgy 162, 67,63, 64] considered a range of different transforms in their study on
texture analysis. In [63], they examined the merits of using optimally designed FIR filters.
In this method, a FIR filter is designed to provide maximally separable filtered images

from two different textures. The separability is defined by the t'isher criterion:
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t'-L
a?

Figure 3.3. (a) lnput texture mosaic; (b) the raw extracted features (coefficient magnitudes) from a

Gabor decomposition, with 4 dyadic scales and 6 orientations, at 0o,30o,60o,90o,120o

and 150o. The24 subbands are collated into images to illustrate the feature variations

in different subbands.
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where þt,l1z are the means of the filtered coefficients for the two different textures, and

ot,o2 are the variances. The resultant FlR-filtered images can then be segmented using a

simple two-class discriminant classifier. In [62, 61], the same authors compared the Gabor

filters method with wavelet transforms, at fixed or multiple sampling rates, for texture
feature extraction. Different decomposition structures were also examined. Throughout
the comparison, they have used local energy function to extract features from coefficients.

The resultant segmentation performance showed comparable results between Gabor and

wavelet transforms. A comprehensive comparison of filter-based texture features for clas-

sification is found in [64]. Among the filters considered are: Laws' masks, ring/wedge

filters, eigenfilters, wavelet transforms and various Gabor filters. There rù/as no noticeable

evidence to favour Gabor filters over wavelet transforms, although Laws masks and ring
filters were inferior.

Teuner, Pichler and Hosticka" 174, 55] applied dyadic Gabor filters in their feature

extraction scheme. Filters are iteratively selected based on the contrast of the filtered
images as follows. At the lowest resolution, a coarse decomposition is first computed

using a Gabor filter bank with different centres and orientations. The transform image is

smoothed using some local window. The contrast information is computed as:

c(u,u) : t\"''), '\"''! (3'12)
w(u,u) i w(u,u)

where w(i', j) is the maximum magnitude of smoothed transform coefficient of Gabor filter
with parameters z, u; w(u,u) is the average magnitude. Then the image is decomposed

at a finer level with the next set of Gabor filters in the dyadic hierarchy, and contrast is

again computed. The maximum contrast at this level (for all filters) is compared to those

from the previous level. If all the contrasts are greater, then the dyadic decomposition will
proceed to the next level, otherwise it will be terminated. Upon the eventual termination
of the decomposition process, all the individual contrast values are sorted to determine

the pecking order of the Gabor filters to be used for extracting features. The actual
features are the coefficient energies, and the exact number of Gabor filters to be used is

determined by a user-defined threshold for the contrast.

Ohanian and Dubes [51] used Gabor transform magnitudes as their texture feature

when comparing with three other classes of texture features: co-occurïence, Markov Ran-

dom Fields and fractals. These different methods rù/ere compared for texture classification.

Hofmann, Puzicha and Buhmann [28] performed unsupervised segmentation on texture
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mosaics using Gabor filter coefficients directly as features. In their scheme, twelve fil-

ters at four orientations and three octave-spaced scales are used in conjunction with

the raw image to produce feature vectors. Reed and Wechsler [65] considered four joint

space-frequency representations, and concluded that psuedo Wigner distribution (PWD)

is suitable for texture segmentation. It can be shown that the Gabor representation is a

special case of the Wigner distribution.

In [46], the means and variances of each Gabor-filtered image are selected as the

features to characterise texture images. These features are used in a texture database

searching application, where classification accuracy and speed of retrieval are both im-

portant objectives. A database is constructed with a bank of 24 Gabor filters at 4 scales

and 6 orientations, and this database rù/as able to achieve 74To search accuracy. In the in-

terest of reducing the computational requirements, the authors also provided an adaptive

filter selection method which dramatically reduces the number of Gabor filters required,

and hence the retrieval times. However, this comes at the cost of a significantly reduced

search accuracy. Their strategy computes the difference in spectral energies between the

input image and the database average. Then, the four Gabor filters that account for most

of the difference are selected to compute the texture features in the query.

In [23], Dunn et al rsed Gabor filters as the analytical tool for a model-based texture

segmentation algorithm. In their approach, they considered textures to be either uniform

or non-uniform. For uniform textures, the texture primitives are identical and separated

regularly. Thus, it is possible to design tuned Gabor filters, with the centre frequency and

orientation designed to match the size and orientation of the texture primitive. When

the texture is filtered with the tuned Gabor filter, a large response will result; conversely,

when the same filter is applied to a texture with a different primitive, a low response will

be produced. This step signature draws the boundary between the different textures. In

addition to textures with different primitives, the tuned Gabor filter can also distinguish

between two identical textures that have been displaced from each other, i.e. a phase

difference exists between them. A valley or ridge signature is produced from this kind of

situation. For non-uniform textures, similar efforts to tune Gabor filters will not produce

ideal results, but if two textures are sufficiently different, the Gabor filtered outputs will

still exhibit significant output responses. The main difficulty with their approach is the

selection of the appropriate parameters, since their entire methodology is based on tuning

Gabor filters to respond to particular primitives. AIso, for a multi-texture mosaic with
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different constituent textures, multiple Gabor filters will be needed to respond to each

individual texture.

The schemes described above utilise Gabor filters as the primary analytical tool for
texture feature extraction. Later examples of filter-based methods exploited the progress

made in the wavelet field, with different types of wavelet transforms used in place of Gabor
filters.

Chang and Jay-Kuo [9] used tree-structured wavelet transforms, a variant of wavelet
packet decomposition (section 2.4), to extract textural features. In their approach, each

subband is repeatedly decomposed subject to a thresholding criterion: if the energy of
a subband is significantly smaller than the highest energ.y subband at the same scale, it
will not be subjected to further decomposition. This transform produces a non-redundant

representation. They then use the sor.ted subband energ-y values as the texture features,

which are then applied to a texture classification problem. It was found that using the
first -I dominant energy channels ("/ less than total number of possible subbands) gave

the algorithm more robustness.

Unser [76] and Xie and Brady [84] developed redundant, shifb-invariant wavelet frames

(section 2.L.2) for feature extraction. Unser applied a discrete wavelet frame decomposi-

tion on textures and extracted channel variances as the features. He applied these features

to both texture classification and segmentation problems. The channel variances are es-

timated with the use of a sliding window on each subband, and excellent classification

results wele obtained from this approach. For segmentation, a smoothed squared coeffi-

cient energy is used as the features instead of channel variance. This algorithm was able

to effectively segment a simple texture mosaic. Xie and Brady applied wavelet frame de-

composition to textures, and calculated local energy and phase as their texture features.

They developed a method based on the Hilbert transform to decouple the energy and

phase components for their segrnentation experirnerrts. This method was used to success-

fully segment a variety of texture images, from aerial photographs to Brodatz mosaics.

Laine and Fan [41] used the zero-crossings from wavelet frame decompositions of textured
images to extract their features. The zero-crossings are used to compute enuelopes of the
wavelet coefficients. This rectification method is an alternative to local extremum feature

extraction. The values along the envelopes are used directly as the texture features; this
has the benefit ofbeing adaptive, and preserves boundaries very well. These features have
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been used to produce accurate segmentations, but they tend to also produce residual re-

gions, which must be cleaned up with post-processing filters. In another work, Laine and

Fan [42] investigated the use of different wavelet transforms, including critically sampled

and unsampled decompositions, in extracting features for texture classification. They

concentrated on using wavelet energy and entropy signatures as the texture features.

Simoncelli and Portilla [68] characterised textures using over 1000 statistics computed

from wavelet transform coefficients. They used what is called a "steerable pyramid" as

the wavelet transform, which utilises filters designed to have arbitrary orientations, unlike

the standard wavelet filter pairs. The feature set extracted was used to synthesise textures

from the compact representation.

Porter and Canagarajah [56] examined the use of wavelet coefficients to determine

the dominant characteristic of an image. A texture is considered as smooth if the low-

resolution subbands (higher levels in the transform) have significantly more energy than

the high-resolution subbands; otherwise, the image is considered textured. This distinc-

tion enabled them to use different features for the smooth or textured parts of an image

with mixed types. Jasper et aI 134] attempted to characterise textures by adaptively de-

signing orthogonal wavelet filters that minimises the energy in the detailed subbands in

the transform, i.e. maximal energy compactness in the low-pass subband. Their technique

have been useful in identifying defects in denim, since the defective parts in the material

would yield unusually strong responses in the high-pass subbands.

Kam and Fitzgerald [35] considered a general multiscale image segmentation algo-

rithm (independent of features). They applied their algorithm to segmentation of textures,

using tree-structured wavelet frame features similar to Chang and Kuo's method [9]. de

Rivaz and Kingsbury [20] considered using Gabor and complex wavelet features for fast

texture image retrieval. The characterisation of textures was done using mean and stan-

dard deviation of the coefficient magnitudes in each subband. Complex wavelet features

was found to give comparable retrieval performance when compared with Gabor features,

but at much reduced computation costs.

Van de \Mouwer et aI 180) used the discrete wavelet transform to extract texture fea-

tures for classification experiments. In particular, they used a combination of wavelet

energy, mean deviation, histogram signatures and co-occurrence statistics to effect char-

acterisation. Only detailed wavelet coeffrcients are used in computing the statistics. The
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wavelet coefficient histograms are modelled as a family of exponential functions; the signa-
tures are parameters of the best-fitting member of that family. They also investigated the
validity of the exponential model, and found it to give satisfactory fit to most naturally
occurring textures in their database. 'When 

computing co-occurrence features, the coef-
ficients are first quantised into discrete bins, and statistics such as those in equation 3.4
are used as features. Van de 'Wouwer et al [79] late considered the problem of colour
texture classification. Colour information are typically stored in three channels, instead
of the single channel in gray level images. Raw colour images are usually represented
as a combination of separate red, green and blue (RGB) components, but a number of
different colour spaces (e.g. YUV, YIQ) are useful for difierent applications. In this work,
the authors compared features extracted from average wavelet energ'y intensity values (i.e.
gray scale wavelet energies) with wavelet energy correlation signatures in four different
colour spaces. The correlation signatuïes are simply the cross-correlation across different
colour planes (in respective colour space). It was found that colour correlation signatures
performed better than gray level wavelet energies in texture classification experiments. In
particular, certain colour spaces yielded much better results than others.

Pan and Wang's paper on texture segmentation [52] compares separable and non-
separable 2-D wavelet frames for extracting texture features. In addition, comparison
is also made between pyramidal and tree-structured decomposition for both types of
wavelets. They also proposed using extremum density measure as the texture feature,
and provided a comparison with the more common energy and entropy features. This
measure has the advantage of being a more direct measure to the coarseness of an image
(a major attribute of textures), and tends to have better numerical properties than wavelet
coefficient statistics.

3.3 A Novel Feature Extraction Method

Two particular types of wavelet transforms discussed in Chapter 2 arc the discrete wavelet
transform (DWT) and Dual-Tlee Complex Wavelet Tlansform (DT-CxWT). Texture fea-
ture extraction from these different transforms are discussed separately in this section.
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3.3.1 Features From Discrete Wavelet Transforms

A Discrete Wavelet Transform (D\ /T) performed on an image yields a non-redundant

representation. The result of a DWT displays the familiar repeated sub-division of low-

frequency subbands, due to the 4-times downsampling (for 2-D data) at each level of the

transform (see figure 2.12). Orthogonal, and more generally, bi-orthogonal transforms

completely decorrelate the image energy present in the subbands, while preserving the

total image energy.

Consider an input image of size M x N pixels subjected to a d-level DWT. This de-

composition produces 3d+I D\MT subbands. The feature vector for each spatial location

(each pixel in the lowest level subbands) is the concatenation of corresponding coefficients

in each of the subbands, analogous to the approach for Gabor filters highlighted in sec-

tion 3.2. In other words, these feature vectors have dimension,L :3d,* 1. It is reasoned

that, since each wavelet subband provides information at different scales and orientations,

such a collection of wavelet coefficients would yield a multiresolution description of the

textured image which can be used as a signature for textures. The multiple scale and

orientation information is of particular interest to texture analysis, given the multireso-

lution nature of textures. The length of the feature vectors can be controlled by varying

the wavelet transform depth, d. Although higher level decompositions produce subbands

at more resolutions, very long feature vectors must be used with caution. In pattern

recognition, it is very well-knorvvn that long feature vectors may reduce the efficiency of

a classifier. This is known as the curse of d'imensionali,ty, which refers to the tendency

that too many dimensions tend to confuse, rather than aid, classifiers. In addition, the

wavelet coefficients at high levels provide very low resolution information about the im-

age. This may hinder the accuracy of the segmentation process, as the coefficient values

are more likely to span an area containing more than one texture. In other words, at

very low resolutions, the wavelet coefficients are greatly downsampled, which would lead

to considerable spatial blurring in the features, and generally reduce the segmentation

accuïacy.

A practical difficulty arises from the use of the DWT due to the contraction of

subband sizes at higher levels. Recall that subbands only have one-quarter the size of its

parent at each level of a DWT. In constructing feature vectors from subbands of different

sizes, an interpolation method is required. This problem does not arise in full-resolution
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Figure 3.4. The pyramidal feature extraction scheme from wavelet transform coefficients, for a 3-

level DWT.

representations like wavelet frames or Gabor transforms. In this approach, the higher level

subbands are simply dilated until they assume the same size as the first level subbands

ë " i pixels). The process is illustrated in figure 3.4 for a 3-level DWT decomposition.
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Mathematically, this is written as

w(z' i' o)

and w(i, j,3(d,- /c) + 1)

w(i, j,3(d - k) + z)

w(i, j,3(d - k) + 3)

: rro(#),|#D
: ru¡t#t,tfuD
: nrr(#l,l".1;)
: uu'Ji=l,l#D, r<k<d (3.13)

where w is the extracted feature vector, and [.] is the integer division operation. LL, LH,

HL and fIËI represents the subbands based on the filter (low- or high-pass) used in each

dimension of the image.

This means that each coefficient in the k-th level subbands will be repeated in

2k-r x 2k-r extracted feature vectors. The method used here is perhaps a little ad-hoc,

but ii does appeal for several reasons. Firstly, it is simple and quick to compute, with

almost no overheads. More sophisticated interpolation schemes are possible, but those,

too, introduce artificiality in the data. Indeed, a conventional wavelet frames representa-

tion will be more mathematically elegant if a full-rate analysis is desired. Secondly, the

undesirable artificial blockiness introduced by this scheme can be smoothed by windowing

techniques, which is performed in the feature conditioning stage (section 3.4). Finally,

by introducing partial redundancy in the feature vectors, it is utilising multiresolution

implicitly, without the need to design specific pyramidal clustering algorithms. The low-

resolution coefficients are more heavily involved in the clustering process, simply because

they are repeated in more feature vectors. True pyramidal schemes also tend to use low

resolution information more heavily, often as a cue to improve clustering at higher reso-

lutions (the lower level wavelet coefficients). This makes it possible to take advantage of

conventional, robust classifiers without compromising the general multiresolution nature

of our approach. However, a drawback of the current algorithm is that it can only produce

segmented images at half the resolution of the original input image. Obviously, this has a

negative impact on the segmentation accuracy, but it does offer lower computational com-

plexity as a tradeoff. Only a quarter of the number of pixels are present when compared

to full-rate approaches. An alternative way to achieving full resolution segmentations is

to concatenate the zero-level wavelet coeffrcients, that is, the original image intensities,

to the feature vectors. This would mean the addition of another layer on top of the stack
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in figure 3.4 by using the original image. This method would also increase the feature

vector length by 1, since the original image is virtually like another subband.

Figure 3.5. Raw extracted features (coefficient magnitudes) from a DWT, using Daubechies 9-7

pair, 3-levels and symmetric extension. The input image is shown in figure 3.3(a). The

10-element feature vectors are collated into images to illustrate the feature variations in

difterent subbands.

The present scheme uses the wavelet coefficient magnitude as the texture feature;

this approach has also been pursued by other researchers [62,63]. Analogous to Gabor
filter-based schemes, many other statistics computed from the coefficients are possible

alternatives as texture feature. Examples include: coefficient energy [9, 84], mean 120,421,
standard deviation [20], histogram [80], entropy la\ andeven co-occurrence features based

on wavelet coefficients [80]. The phase of wavelet coefficients also provides information
that may be used as texture features [84]; this is behind Laine and Fan's idea to use the
zero-crossings of wavelet coefficients to extract texture features [41].

3.3.2 Features From Complex Wavelet Transforms

As discussed in chapter 2, the DWT suffers from a lack of shifb-invariance and limited
directionality. For texture analysis, it is often desirable to have a more isotropic analytical

tool since natural textures can exhibit features at arbitrary orientations. The DT-CxWT
offers better performance than DWT in this regard, but it also exhibits the desirable

properties of DV/T. This superior performance comes at a cost of 4 times redundancy in
the representation for 2-D data.

With a DT-Cx\MT decomposition, the feature extraction scheme described in the

section 3.3.1 must be modified to accommodate the increase in the number of subbands.

This is done by extracting the features from each of the four individual transform images

using the process described in the previous section, then the final feature vector is the

concatenation of these feature vectors, as shown in figure 3.6. The consequence of using

a DT-CxWT is a 4-times increase in the feature vector length, a direct consequence
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of the redundancy of this transform. An alternative would be to compute the compler

magnitudes of the DT-CxTWT coefficients as the features. Recall from section 2.6 that the

four subbands from a 2D DT-Cx\M'T consist of the real and imaginary parts of two wavelet

trees. Hence, by taking the complex magnitude leads to a reduction in the redundancy,

and therefore the feature vector length, by a factor of 2. This means that the DT-Cx\MT

feature vectors length is at a more economical factor of two greater than for the D\MT.

HLs

+

Figure 3.6. The pyramidal feature extraction scheme from DT-CxWT coefficients

Using a magnitude appeals intuitively, since it corresponds to an energy measurement.

The phase of the DT-CxWT coefficients contain information that is most useful for motion

analysis in video sequences [44], since the phase shift is approximately linearly dependent

on the spatial shift of image features. Preserving such information may not be beneficial

to texture analysis, especially in the light of dimensionality considerations.

3.4 Feature Conditioning

The feature conditioning phase is essentially an intermediate processing layer between the

raw features and the clustering algorithm (see figure 3.1). It should produce features that

are friendly to the chosen classifier, but it should not do so at the expense of decreasing

the features' information content. Figure 3.8 details the feature conditioning process used
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HLt HHt
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LHt

H
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Figure 3.7. Raw extracted features (coefficient magnitudes) from a DT-CxWT, using the Kingsbury
filter pairs, 3-levels and symmetric extension. The input image is shown in figure 3.3(a).

in this thesis' It consists of four steps: feature reduction, normalisation, smoothing and
a non-linear transformation. The following subsections will discuss these steps in turn.

3.4.1 Feature Reduction

The role of feature reduction (or feature selection) has long been recognised in pattern
recognition. In many problems, high-dimensional data are necessary to adequately de-

scribe complex objects and to distinguish between them. However, as the dimensionality
rises, the extra information may not assist in discriminating between different classes.

Indeed, too much information may actually cloud the distinction between classes, if a

significant part of those features are non-descriptive. This is commonly referred to as

the curse of d,'imensi'onality [2]. To avoid this problem, it is often desirable to reduce the
dimensionality of the feature data through some selective procedure. The appropriate
selection of features depend greatly on the the intended classifier or clustering algorithm,
and to a certain extent, the feature extraction method as well. In some instances, the
feature reduction step is unnecessary, and features are fed directly as input to the cluster-
ing algorithm. These are typically for cases where the feature extraction step has yielded
a condensed set of features, and the clustering algorithm is sufficiently powerful to deal
with the features directly. However, most sophisticated texture segmentation algorithms
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Figure 3.8. Block diagram of the feature conditioning process

use some form of feature reduction. Many methods have been investigated by pattern

recognition researchers, and a sample of them will be described below.

The most common dimensionality reduction method is the Karhunen-Loéve trans-

form, also known as the Hotelling transform or Principal Component Analysis (PCA).

In this method, the set of features are projected onto a set of orthogonal axes, obtained

through a rotation of the feature space. The particular set of orthogonal axes are chosen

to be the normalised eigenvectors of the covariance matrix of the (feature) vectors. Math-

ematically, a set of vectors S : {*} with mean x, has a covariance matrix C* defined

by

c*:ø{(*-x)(*-*)t}

H(i'i) medLan
fíLter

non-1:LneerLty

where E{.} is the expectation operator
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Since C* must be real and symmetric, it is possible to find a set of orthonormal
eigenvectors of C*,

C*ei : À¿ei,

1,

0,

7 1i, 1n
i,:j
i,+ iei'ej :

where n' is rank of C*. Without loss of generality, assume the eigenvalues are ordered as

)r>Àz>'">

d:[e1e2...er,]"

then the transformation

Y:A(x-*)
is the K-L transform. The principle behind the K-L transform is that the axes are aligned

to the components with maximal energy. Therefore, the K-L transform has the useful

ability to find the least square error approximation to a given feature set using a reduced

number of axes (components in feature vector) - the transformation matrix A in equa-

tion (3.4.1) would simply have fewer rows than the dimensionality of vectors {x}. Much
of the mathematics of the K-L transform are extracted from [25], and more details on the
theory and application of K-L transforms in image processing can be found in that book.

The feature selection step is sometimes built into the feature extraction methods

directly. Chang and Jay-Kuo [9] exploited the natural tree structure of their wavelet

transform to serve as a feature reduction tool. Jain and Fa¡rokhnia [32] and Teuner eú

al l7al used adaptive filter selection schemes, which effectively selects the features that
the extraction step produces. Greater details on these schemes were presented in the
section 3.2.2.

A popular method to selecb feature subsets is by the use of discriminants or sepa-

rability measures. These provide a means to measure whether clusters in a feature set

is capable of being separated. One example of this technique is the spatial separation

measure, defined as the ratio of intra-cluster to inter-cluster distances. With a training
set, it is possible to calculate these distances explicitly. A small value for this ratio would
indicate that the feature set is likely to be sepa,rable. The main advantage of this method

is its simplicity and intuitiveness. These appealing aspects have made spatial separation

a usable method for feature selection. On the other hand, this simple measure can be
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distorted by very large clusters (in the feature space) and provide inaccurate description

of the features. The main problem with this measure is that it does not properly account

for the locations of class centroids [24]. Teuner et al 174,55] used contrast information

(equation (3.12)) to select features. This has the advantage of having very low computa-

tional complexity. Fatemi-Ghomi [24] has considered two different separability measures

for feature selection: the distance histogram and the two-point correlation function. The

distance histogram method constructs the histogram of all pair-wise distances in the fea-

ture space. It is similar to the spatial separation measure in spirit; it relies on a separable

feature set having a histogram with distinct peaks corresponding to the inter-cluster and

intra-cluster distances. Again, a separable set may not always give rise to well-defined

peaks, and there are clear cases of a separable set with a single-peak histogram. How-

ever, the distance histogram does provide an intuitive visual cue to selecting suitable

features. The two-point correlation function method is a generalisation of the distance

histogram. Instead of constructing a histogram of pair-wise distances, it computes the

probability density of distances. It is constructed to give an unbiased statistical measure,

and generally has better reliability than the distance histogram. However, it suffers from

computational difficulties for high input space dimensions. In this situation, an enor-

mous amount of input data is necessary to estimate the densities, and the computational

problems greatly reduce the effectiveness of the measure.

De Backer et al have investigated several non-linear dimensionality reduction tech-

niques [66]. They compared four different techniques: multidimensional scaling (MDS),

Sammon's mapping, Self-Organising Map (SOM) and Auto-Associative Feedforward Neu-

ral Networks (AFN). Multidimensional scaling produces an output space whose distance

between a given pair samples matches that of the corresponding pair in the original,

higher-dimensional space as much as possible. This preserves the degree of (dis-)similarity

between feature samples (metric MDS), or at least the rank order of the distances (non-

metric MDS). Sammon's mapping produces a mapping that minimises the sum of weighted

distance differences between the input and output spaces. The weights are designed to

place greater emphasis on smaller distances, which is important for fine distinction be-

tween different classes. Self-Organising maps are a topology-preserving technique. It pro-

duces its mapping through the training of a set of neurons, spaced regularly in the output

space. These neurons have a set of weights with the same dimensionality as the input
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space. The weights of each neuron are trained to match the features within a local neigh-

bourhood in the input space (minimises a squared error criterion). An auto-associative

feedforward network is a multi-layer neural network, which is trained such that it repro-

duces the original features in the output layer. The idea is to use the middle hidden layer

as the representation in output space. Thus, the number of neurons in the hidden layer

would be the dimension of the output space. In this method, it is possible to use multiple
Iayers to achieve good non-linear representations in the hidden and output layers. These

four dimensionality reduction techniques were tested with classification experiments per-

formed on both artificial and real-world data sets. The real-world datasets were features

extracted from gray scale and colour texture databases. The non-linear techniques were

also compared against the linear PCA. It was found that, for aggressive dimensionality
reduction (very low dimensionality in the output space), the self-organising map was able

to achieve the best classification rates for all experiments. However, at higher output
dimensions, the linear PCA was able to achieve very similar or better classification rates

as the non-linear techniques.

More recently, Pan has attempted to use genetic algorithms (GA) to perform feature

reduction [52]. In this method, he used the spatial separation ratio as the criterion for the
fitness function in the GA. Each gene is constructed as a binary string indicating whether
a feature component is used. The usual genetic operators such as crossover (reproduction)

and mutation are applied. The optimal gene gives the final reduced feature set, which is

then used for segmentation experiments. The use of GA to select features consistently
produced better results than the full feature set, indicating a genuine improvement in the
separability in the reduced set.

The DWT and DT-CxWT features extracted from sections 3.3.1 and 3.3.2 have quite

moderate dimensionality. For example, when employing a transform of depth 3, the DWT
and DT-CxWT schemes would lead to feature vectors of length 10 and 40, respectively

These dimensions are reasonable, and the features are capable of providing good segmen-

tation accuracy (see a discussion ofresults in Chapter 5). Consequently, feature reduction
is only optionally implemented in this algorithm for simplicity.
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3.4.2 Normalisation

The raw features extracted from the transform coefficients are unsuitable for use in clus-

tering algorithms. First of all, the energy-compacting nature of wavelet transforms means

that the low-pass subbands have far higher energies than the high frequency subbands.

Typically, more than 90% of energ.y is compacted into the LL subband at each level of a

wavelet transform. Figure 3.9 illustrates this behaviour for 3-level D\MTs of the ensemble

of texture mosaics shown in Appendix A. \Mhen the raw features are fed into typical

classification algorithms, the low-frequency subband(s) tend to dominate the decision-

making process, essentially ignoring the finer information contained in the mid- and high-

frequency subbands. In other words, the classification will be mainly based on average

brightness levels, and not on texture information. Thus, a mechanism of balancing the

dynamic ranges in the feature values across all the components is required.

100
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Figure 3.9. Energy contained in the -L,L subband for a collection of texture mosaics, expressed as a

percentage of total image energy. Daubechies 9-7 pair is the analysis pair used in the

3-level transform with symmetric extension.
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Figure 3.10. Normalised features from a DWT, with the same setup parameters as in figure 3.5

The first step of the feature conditioning process is to compute the normalised wavelet
features at each pixel. Recall that the raw feature values are simply the absolute magni-
tudes of dilated wavelet coefficients. These magnitude values are shifted and normalised
to have zero meâ,n and unit variance for each subband. This step ensures the higher
energ.y subbands (i'e. the ,L-L subband) do not dominate the clustering process later.

3.4.3 Windowing

In addition to numerical problems, raw wavelet energ-y features tend to have very poor
smoothness. Fundamentally, textured images are generally not smooth, with an abun-
dance of large spatial discontinuities. This behaviour also manifests itself in the wavelet
transforms of textures in the form of large spikes and troughs in the coefficients. However,
in the interest of pattern recognition, it is necessary to encourage greater similarities in
the features inside a homogeneously textured region. In particular, the high frequency
wavelet transform coefficients have rapid spatial variations, as a result of the fine de-
tails present in many example textures. This would cause the high frequency features
extracted from neighbouring pixels to differ significantly, even if these pixels belong to
the same texture. Obviously, this will have a negative impact on the segmentation result.
Thus, a smoothing operation that concentrates on extracting local information, rather
than pixel-precise information, is required.

Therefore, the second feature conditioning step involves spatially smoothing the fea-
tures. An adequate amount of smoothing on the wavelet coefficients greatly assists the
clustering process (refer to figure 3.1), both in terms of segmentation accuracy and con-
vergence speed' Smoothing by low pass filtering (also called wind,owi,ng) is a common
technique for achieving this. An appropriate choice of window is important in control-
ling the amount of smoothing applied to the texture features. The windowing process is
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represented by

x"(i,j,k): D uU',i').*(i-i',i-i',k) (3.14)
it ,i, eH

The smoothing window is applied to each subband by filtering component k in the raw

feature vectors w(i, j,k) with window filters H(i., j) to give smoothed features, x"(i,, ¡,k).
Symmetric extension is used at the subbands' edges to avoid artificial discontinuities.

An important consideration here is the shape and spatial extent of the windows. The

window should be sufficiently large for effective smoothing, yet not so great as to blur out

texture region boundaries. The optimal window is difficult to estimate, and an empirical

approach is taken in this thesis. One can view the smoothing process from the perspective

of textons. Textures with relatively large textons are likely to require larger smoothing

windows for adequate smoothing, and vice versa. The shape of the window also plays a

role in the effectiveness of the smoothing process.

o.6

t5

(u) (b)

Figure 3.11. The Kaiser window functions, in (a) lD and (b) 2D. For the l-D plots, B is varied

while the size of the window is fixed; the 2-D image shows a window of size 121 and

þ : Ll. The size is chosen to be so large to better illustrate the shape of the window;

a smaller window with the same B will have identical shape.

Traditionally, rectangular or Gaussian windows are the most popular. The rectangu-

lar window, while simple, tends to introduce boundary problems, due to its anisotropic

nature. Texture information is generally not restricted over rectangular regions. The

Gaussian window is commonly used to overcome this problem, as it is known to have the

optimal time-frequency trade-offs. However, other windows offer better frequency reso-

lution or side-lobe attenuation than the Gaussian window. Two such examples are the

lo-16 -10
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Figure 3.12. The Chebyshevwindowfunctions, in (a) lD and (b) 2D.For the 1-D plots, ripplevalue

is varied while the size of the window is fixed; the 2-D image shows a window of size

121 and ripple set at 60dB.

Kaiser and Chebyshev families. The Kaiser window is most often used in the design of
FIR filters, where it excels in providing low sidelobe levels in filters. The Kaiser function
is defined as

-5

1o

-¡ñ<n1N1
else

wy(n): (3.15)

where Is(z) is the zeroth-order Bessel function of the first kind, and, p is a parameter

that controls the shape of the window. For example, for 0 : 0, the Kaiser window is
equivalent to the rectangular function, and for 0 :5.44, the Kaiser window is similar to
a Hamming window. From a filter design's perspective, the value of p controls the level of
the sidelobes in the frequency response. In the current context, the value of. p may be used

to control the relative sizes of the textons we wish to describe, since p directly controls

the relative spatial extent of the window (see figure 3. t 1(a)). Like the Kaiser window, the
Chebyshev window is mostly used in filter design applications. Chebyshev filters produce

constant ripple responses in time domain, and exhibits the minimum main-lobe width for
a specified sidelobe level in the frequency domain.

An alternative to filtering by low-pass filter is with median filters. The median

operator is insensitive to extreme values (unlike any mean), and is therefore tolerant of
outliers. It has been utilised in many image processing applications to perform smoothing.

To perform median filtering, an M x M window is centred on a pixel in a feature image.

0

L-(n/Ny)
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Figure 3.13. Smoothed features from a DWT with a Kaiser window. This has the the same setup

parameters as in figures 3.5 and 3.10. The smoothing window used is a Kaiser window,

size 11 and B : 3.

The median va,lue of the M2 pixels masked by the window is used as the smoothed feature

for that pixel.

Figure 3.14. Smoothed features from a DWT with median filtering. This has the the same setup

parameters as in figure 3.13. A 7 x 7 median filter is used to achieve the smoothing.

3.4.4 Non-linear Transformation

After smoothing, the features are further conditioned by a non-linear transform, which

Iimits the dynamic ranges of the different feature components. In addition to the earlier

normalisation step, this processing further avoids the problem of having a small number of

feature vector components dominate the clustering decisions, which deprives the clustering

process of equal consideration for all the available information. For the feature processing

in the experiments, the following sigmoidal non-linearity is used:

x"t(i, i, k) : tanh(ax"(i,, i,,k)) (3.16)

where o is a freely variable parameter. Jain [32] first suggested the use of the sigmoidal

non-linearity for feature conditioning, and likened this operator to a "blob-detector". In

effect, this transformation "recognises" when a feature has significant value or not. This

function was also used by [61],[64] for their texture feature processing. It has been sug-

gested that a value of a : 0.25 is most suitable for Gabor filter-based features. Figure 3.L5

shows the sigmoidal function for a range of different o. Other feature conditioning pro-

cesses, Iike different non-linearities or a soft-thresholding scheme, are possible. However,
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these schemes Ìvere found to give equal or inferior segmentation performance from exper-

imentations

r
E
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Figure 3.15. tanh for different values of o

tanh for different values of a.

Figure 3.16. Extracted wavelet features for a texture mosaic. These features have been processed

through all the feature conditioning steps described here, with Kaiser window smooth-

ing.

Figure 3.17. Extracted complex wavelet features for a texture mosaic. The 4O-element feature

vectors are collated into images to illustrate the feature variations in difFerent subbands.

,{
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In general, the feature conditioning phase can become complicated and overloaded

with a large set of parameters. Good parameter combinations are generally data depen-

dent, and are difficult to determine a priori,. Ideally, the system should be capable of

segmenting textured images with minimal prior knowledge and auxiliary inputs (addi-

tional parameters). A key advantage of the feature extraction algorithm described in this

chapter is that it only requires a small number of free parameters to produce consistent

and effective segmentations.

3.5 Summary

This chapter discusses texture feature extraction. Throughout the history of texture

analysis, a large part of researchers' efforts have been spent on uncovering descriptive,

compact features for textures. This has proved to be rather difficult, due mainly to the

complex nature of textures as a phenomenon. Early efforts have concentrated on pure

statistical or model-based (structural) approaches, but neither has been fully satisfactory.

With greater advances in mathematical signal decomposition, a myriad of multiresolution

approaches were made possible. These have been found to be more suitable for textures in

general. A novel feature extraction method based on DWT and its extension to support

DT-Cx\MT was proposed. These methods grew out of earlier techniques for extracting

texture features from other multiresolution representations. The extracted texture fea-

tures must then be subjected to a series of post-processing steps, collectively known as the

feature conditioning process. These include feature reduction, numerical normalisation,

windowed smoothing and non-linear transformation. The end result of this processing is

a set of texture features which can be clustered to produce segmented regions.
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Chapter 4

Texture Feature Clustering

The final phase of the texture segmentation algorithm is the clustering phase (figure 3.1).

In the context of this thesis, clustering of the image pixels is achieved by classifying

the conditioned feature vectors into appropriate groups. Therefore, for all intents and

purposes, the term "clustering" will be used interchangeably with "classification" in the

remainder of this thesis.

This chapter discusses several generic classification and clustering algorithms. In

pattern recognition literature, numerous classifiers have been studied, and it is beyond

the scope of this work to examine them all for texture segmentation. Instead, a number

of these will be discussed, while the majority of results in this thesis are generated with

the K-means algorithm.

4.1 K-means Clustering

A popular and commonly-used clustering algorithm in pattern recognition is the K -means

Clusteri,ng algorithm [26]. This is an example of classifiers based on the general method

of evolutionary search. The algorithm begins with an arbitrary initial clustering and

subsequently consider each sample (feature vector) as candidates of reallocation. The

cluster updating and reallocation are reiterated until further reallocations are no longer

possible. This general class of algorithms has the advantage of simplicity and guaranteed

convergence to at least some local extremum. However, there is the risk that the algorithm
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may converge on a non-global optimum; such behaviour is also exhibited by all hill-
climbing type of optimisation algorithms. To be more precise, the K-means clustering
algorithm can be described by the following steps:

1. Initialisation - the feature image of n: l/r x ¡/z samples is randomly initialised.

The cluster means, {ttolt < i,< K}, are arbitrarily determined, while the number

of clusters, K, is specified by the user;

2. Update clusters - for every sample, x(i,, j),I < i, < 
^fr.,1 

< j 1 Nz, the distances

to all the cluster means are computed; its membership is reassigned to the cluster

whose mean is closest to the sample, i.e. x € C¡, <+ d(x, pù < d(*,ttù,l < I <
K,l + k. This is repeated for all n samples;

3. Compute cluster means - for each cluster, the mean is recomputed by averaging

the features of all members in that cluster;

4. Reiteration - Steps 2-3 are reiterated until no further reallocation is possible

Figure 4.1 illustrates the K-means clustering process. Generally, If is assigned as

the desired number of clusters. In some pattern recognition applications, it is possible

to specify K a priori to the clustering process. In texture segmentation, it is not always

possible to do so. In our experiments, this parameter is fed to the clustering algorithm

manually, i.e. it is assumed that the number of classes is already known. In practical

applications, this scenario isn't entirely unrealistic, as the number of textures likely to be

present in an image is usually known. For example, in aerial surveillance, one might only
be interested in segmenting a few distinct, known land use regions in a photograph. Since

a value of K is required to be known, the K-means algorithm is usually classified as being

a supervised algorithm. In the traditional sense: this kind of supervision is distinctly
different from, say, neural network classifiers. The supervision is not exercised in such an

explicit form as in the expensive training phase of neural network algorithms. Rather, the

supervision is an inherent limitation within which the K-means classifier must function.

The computational complexity of the algorithm is O(ndKT), where n is the the
number of samples (feature vectors), d is the number of feature components, K is the
number of clusters (classes) and 7 is the number of iterations. In theory, the K-means

algorithm may not always converge. Such can be the case for very ill-conditioned feature
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Oáb
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(u) (b)

(.) (d)
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Figure 4.1. The If-means clustering algorithm in action for a 2-D dataset. (a) lnput data, 150

samples from 3 different distributions; (U)-(A) clustered data after 1 (b), 2 (c) and 3

(d) iterations; (e) Ground truth clustering. While the algorithm takes 3 iterations to

converge to a segmentation, it can be seen that the error rate has not improved since the

2nd iteration. The errors have simply been re.distributed between the difterent clusters.

sets with inappropriate initialisation. In such instances, the numerical difficulties inherent

in the problem prohibits the K-means algorithm to generate meaningful results, resulting

in the failure to converge. In practice, the algorithm is terminated after a set number

of iterations (about 1000) for the experiments, and the results are discarded. For these

cases, a different initial condition may yield better results; Section 4.1.1 has more details

on this.

l@h 13-93%æñd
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4.1 K-means Clustering

For its simplicity, K-means clustering is widely employed in many tasks. However,

it has several shortcomings; poor computational scalability, a habitual convergence to
Iocal extremum and the need for a priori knowledge of 1l. Fast algorithms for computing
K-means clustering do exist, but performance issues are not within the scope of this
dissertation. For the vast majority of cases studied here, algorithm performance has not
been an issue, even with the use of relatively modest equipment. In general, it takes

several seconds to compute the segmentation for most test images on a 450MHz x86 PC.

Much more interesting, in the context of this thesis, are the latter two shortcomings.

These will be examined in the following sections.

4.1.1 lnitialising K-means Clustering

A major issue with the K-means clustering process is with the initialisation step. The
important fact to be realised when using K-means is that the process is entirely deter-

ministic, once given an initial condition. In a problem of even modest complexity, there

may exist many local extrema which the algorithm will converge to, herein lies the funda-

mental problem of K-means. The most common way of starting the process is allocating
arbitrary class labels to the individual samples, or feature vectors in this instance. A par-

ticularly simple way to do this would be to assign class labels cyclically on the individual
samples. That is,

co(i) : i, mod K (4.1)

where cs(u) is the initial class label for the i-th sample. For the two dimensional case,

the individual feature vectors are labelled in a row-by-row fashion. A simple alternative
way to initialise the problem would be to use random labelling to begin with. Then the
K-means algorithm is run many times, using a different random initial starting point
every time. Hopefully, the random nature of these different initialisations would lead

to a variety of output solutions, some of which may bear close resemblance to, or even

be, the actual optimal solution. However, the complexity of the problem is practically
unmanageable, for case of texture segmentation. An .¡ú x,n/ image comprising If textured
regions has Klú2 distinct possible initialisations. Obviously, for any image of useful

size, this is quite a large number of cases to consider. Therefore, an intelligent choice

of initial clustering is useful, not only in securing a near-global optimal clustering, but
it may also speed up the process tremendously, by reducing the necessary number of
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iterations for convergence. This is especially true for large data sets. A computationally

intensive way to initialise the K-means algorithm would be to perform a mini-K-means

clustering on a small subset of samples. In particular, select p samples from the total

set, and perform a K-means clustering on this small problem. The result of this sub-

problem should be less sensitive to its initialisation, provided that the set of p samples is

representative of the overall set. The resulting K class means can be used to initialise the

main problem. Ironically, the K-means algorithm suffered the most from initialisation

problem when used on pathological data sets. For experimentation, a test data set of

perfectly uniformly distributed classes was fed to the algorithm; in this set, each feature

is simply an integer between I and K. This simple, highly separable data set lead to

a lot of numerical problems with the /(-means clustering. The class means converged

prematurely and several individual clusters merged together into a fewer number of giant

clusters. These are due to the arbitrary fashion of initial labelling, and the resultant

similarity of all class means, leading to very fickle and numerically ill-conditioned class

relabelling decisions. These phenomena occurred irrespective of the initialisation scheme

(cyclic or random); very few initialisations actually led to the correct, giobally-optimal

solution. It was found that, by performing many separate K-means runs, the algorithm is

capable of producing a small handful of local extrema. It was clear that a pre-processing

step that is capable of initialising the problem is very desirable, particularly if the main

algorithm seems to be producing unstable results. Fortunately, though, it is found that the

segmentation output is quite insensitive to the initial conditions for the features extracted

by the process described in Chapter 3.

4.1.2 Distance Measures in K-means

A central part of the K-means clustering algorithm is the computation of distances be-

tween each sample and the cluster means. In most cases, metric measures are used, and

by far the most popular is the weighted Euclidean distance,

i.n,r(*n(k) - x¡(k))2
le:l (4.2)

i,o,o
lc--l

d'(*,x¡):

Page 91



4.L K-means Clustering

d(x¿,x¡) is the Euclidean distance between rn-component samples, >q and x2, and w¿¡¡ is

a generalised set of weights that adjusts the relative importance of different components.

The samples are referred to by a single index, instead of the full two-dimensional indices,
for convenience. In practice, the weights u¿¡¡ are uniform for all pairs of samples, and can

therefore be incorporated directly onto the sample components, thus saving the need to
compute during iterations. The unweighted Euclidean distance is more generally known
as the L2-norm. A general If-norm is defined as

d,(x¿,x¡): !(*,(r) - *¡(k))
fn

k:r

m

k:1

t/p

(4.3)

(4.4)

(4.5)

Apart from the Euclidean metric, other important special cases are the -Ll and -L--norms.
The former is also known as the "Manhattan", or taxi-block, metric, while the latter is

the maximum component difference measuïe:

LI : !l*,(r) -*¡(k)l

L* : max lx¿(k) - *¡(k)l

Statistically, the Malahanobis distance takes into account the different variances in the
individual components:

ls tå
du(x¿,x¡): l)(xr(r) -x¡(k))c¡,¿(*¡(¿)-*¡(¿))l (¿o)

L*'t:t I

where c¡¿ ãre- the elements of the covariance matrix for the components of the feature vec-

tors. The advantage of the Mahalanobis distance is that no single component dominates

in the distance metric calculations, which can lead to a deterioration in performance.

Non-metric distance measures can also be used in K-means. The general similarity
mc&surc is a scoring system, where a higher value indicaLes greater sirnilarity between

two samples. This is the exact opposite of distance metrics. An example of a similarity
measure is

s(x¿,x¡) : Ë 1 - lx1(i, j,k) -x2(i, j,k)l (4.7)
k:t

assuming the components of the samples are normalised to have a dynamic range between

0 and 1. This type of measure is especially appropriate for binarv data, where each

component may represent a particular attribute of the sample. In this case, the similarity
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measure in equation (a.7) is simply the total number of attributes shared between two

samples. A similar interpretation does not extend to continuous data, and such measures

are not commonly used for such cases.

4.1.3 Estimating K

Since K is the vital parameter in the K-means algorithm, its estimation is of prime

importance in all applications. In the simplest form, K is simply supplied by the user, and

the algorithm would faithfully produce a K cluster output, with the possibility of empty

clusters. However, in practical applications, the exact number of clusters in a data set is

not necessarily known. It is more reasonable to expect a range of possible numbers, but

the basic K-means algorithm cannot handle multiple K values. Researchers have devised

several methods to overcome this difficulty. Some are based on experimentation with a

number of different K vaiues, i.e. K-means is run repeatedly with different parameter

values. A precise value of K is determined by analysing the outputs, with respect to some

measure of merit for the clusterings. Generally, these measures examine the self-similarity

of individual clusters, as well as the relative disparity between different clusters. Examples

of these include the average cluster radius and inter-cluster distances. The choice of these

measures varies from problem to problem. The final value of K is taken to be that which

yields the best clustering, subject to the measures chosen. Another popular method of

estimating K begins with a l(-means run with a large value, K,nor, supplied by the user.

In the extreme, this may be as large as n, the total number of samples in the data set. The

outputs are then analysed and candidates for pair-wise merging are searched for. Usually,

the criteria for ranking these candidates are similarity or distance measures. For example,

the Gaussian distance between class means can be used as the measure. The merging is

done iteratively until a value of K is reached where further merging does not improve

the clustering. Typically, the total squared error sum is used as the measuring criterion.

This is simply the sum of the squared distances from all the samples to their respective

class means. In Pelleg's X-means algorithm [54], the reverse approach is taken. Lower

and upper bounds for K are specified by the user, and the algorithm then performs

a conventional K-means clustering using Krnin. Afterwards, every cluster is split into

two children, and a localised K-means (K : 2) algorithm is run on all of them, using

randomly determined initial class means. All the split clusters are scored against the
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original parent cluster, using a scoring system based on an estimated Gaussian posterior
probability distributions for the clusters. If the children's combined scoïe exceeds that of
the parent cluster, then the parent is replaced by its offsprings, increasing the overall K
by one. Otherwise, the offsprings are ignored. The X-means algorithm then reiterates

until K exceeds the specified upper bound, at which stage the algorithm terminates and

returns the result with the highest score as the final output. The X-means algorithm
has the advantage of speed and a guided means to estimate K. It has been tested on

Gaussian data sets and found to achieve good results.

4.1.4 Algorithmic Variations of K-means Clustering

Due to it long history and popularity, numerous variations on the basic K-means algorithm
exist. It is beyond the scope of this thesis to provide an exhaustive treatment. Instead, a
few of the most relevant variations are brieflv described in this section.

Dynamic K-means Clustering

Due to its popularity and long history, many variations of the fundamental /(-means

clustering (or "naive", according to [53]) exist. The most basic variation lies with the cal-

culation of the class means after the update pass. In the traditional algorithm, new means

are calculated after every sample has been relabelled. A dynamic update procedure, in
which class means are always updated with every change in class membership, can be

used instead. This method has the advantage of the means always being up-to-date in
representing the true mean of all membership samples. However, the computational bur-
den is greatly increased, because út¿,o class means must be recomputed with every change

in sample class, since both the previous and new class mea,ns need to be updated. How-

ever, a dynamically updated K-means algorithm may require fewer iterations to converge,

depending on the particular feature set.

l-pass K-means Clustering

An interesting, yet crude, variant is the l-pass K-means algorithm. Instead of beginning

with some initial clustering and a fixed K, this algorithm requires only a threshold. The
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algorithm only makes one pass over the feature set, making a single decision on every

sample, hence its name. Initially, the first sample is allocated to its own class. With the

next sample, the distance to the the first class centre is computed. If this distance exceeds

the given threshold, the new sample is allocated to its own class, else it is deemed to belong

to the existing class. This process is iterated over all the samples. Clearly, n samples can

lead to a worst-case scenario of. K : n after the algorithm converges, but this is unlikely

to happen in practice, since the maximum cluster radius threshold is freely adjustable.

This is often an exceptionally efficient algorithm in clustering highly separable clusters in

a data set. Due to the lack of re-iterating, the algorithm is very fast. Quite interestingly,

this simplified variant of K-means may be used as an initialisation mechanism, for it is

very good at locating "obvious" clusters. As can be expected, it works perfectly for the

pathological test feature sets described in Section 4.I.L.

Outlier Detection

The idea of a maximum allowable cluster radius is useful even in conventional K-means

clustering. Outlier contamination of clusters is a practical problem for K-means; a small

handful of outliers is enough to skew cluster means sufficiently to greatly distort the final

result. In extreme cases, the presence of outliers may even mislead the algorithm into

merging two distinct clusters. However, for the texture features under study, this problem

is not too great. An outlier detection scheme can be based on the variance of feature

space distances. This would mean augmenting the basic single K-means iteration with an

extra processing step. After computing the cluster means (step 3), the variations of the

intra-cluster distances (distances between mean and all member samples) are examined.

Another pass of all samples is then performed, where all samples that are further than a

given threshold from its cluster mean are classified as outliers, and are discarded from their

respective cluster. This forces another recomputation of the cluster means, and will leave

a portion of samples unclassified. Usuall¡ the distance threshold is taken as one standard

deviation greater than the cluster radius (average intra-cluster distance). For a quasi-

Gaussian distribution, this would leave approximately L6% of the samples unclassified

afber every iteration. The reassignment of the unclassified samples to any particular

cluster in the next iteration is not treated as a regular reassignment, that is, they are

not considered in the termination condition, or else the algorithm would never converge.

Theoretically, the outliers cannot be conclusively said to belong to any particular cluster,
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Figure 4.2. The lf-means clustering algorithm with outlier detection. (a) lnput data, 150 samples

from 3 different distributions; (b)-(e) ctustered data after 1 (b), 2 (c), S (a) and 4 (e)

iterations; (f) Ground truth clustering.

and hence their reassignments does not warrant the same consideration as a direct cluster

reassignment. Of course, the outliers can, and often do, become a integral part of a cluster

in later iterations. An illustration of the outlier detection process is shown in figure 4.2.

This outlier detection mechanism allows the K-means algorithm to have more sta-

bility and robustness, and is especially useful in recovering from suspect initialisations.
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Experiments revealed that this is indeed more stable; it produces very similar segmen-

tations in the best case, but has much better results in non-best cases. Obviously, it
does not produce miracles if other experimental parameters are inappropriate. The dis-

advantage of the K-means algorithm with outlier detection is the computation load. The

need to compute cluster radii and variances, and the recomputation of cluster means

greatly increases the execution time of these algorithms. The elimination of outliers also

lead to more compact clusters (smaller radii), which is likely to increase the number of

reassignments in every iteration, and in turn increases the number of iterations before

convergence.

4.2 Fuzzy K-means Clustering

In the classic K-means algorithm, each sample is assumed to have a unique class mem-

bership, that is, it belongs to exactly one cluster. However, it is sometimes desirable to

consider each sample to have a certain probabi,lity of belonging to each particular clus-

ter. This is precisely the idea behind the Frzzy K-means algorithm. Traditionally, this

algorithm is more commonly known as finzy c-means in the literature. However, it is felt

that consistency in terminology is more important here, considering its heavy dependence

on the classic lf-means. The extra flexibility of simultaneous multi-class membership of

samples can lead to more robust segmentations. In particular, lhe fuzzy K-means avoids

the problem of wrongful membership assignment. Such problems, especially during early

iterations, can severely hamper segmentations produced by the classic K-means algo-

rithm. In fact, this is one of the motivations behind the studying of various initialisation

schemes for classic K-means.

The fiizzy K-means algorithm begins with the same set of n samples as in section 4.1

The steps are very similar to that of the classic K-means algorithm:

1. Initialisation The initial cluster membership probabilities, fl¡: P(x e C,lx¡) are

randomly initialised, subject to the usual constraints on probabilities:

K

DPn¡: t
i:L (4.8)

10 nl
l<j<n
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3. update clusters the cluster membership probabilities are updated by

di-,
l

Di:'dÌ¡'

rf dij : min{d¿¿ Vk}

otherwise

2. Compute class means the cluster means are estimated by

,,:W# (4e)
/ . j:LLr xJ )

where ö is a free parameter which produces the desired fuzziness in the cluster
membership;

Pi¡ where ú¡: d(¡.t¡,x¡) (4.10)

(4.r2)

4. Reiteration Steps 2-3 are reiterated until the total change in the cluster member-

ship probabilities are below a given threshold, ie.

\leii-Pu¡l<r, e >o (4.11)
i,i

5. Cluster Determination each sample is assigned to the particular cluster that has

the greatest membership probability.

This last step removes the fuzziness to produce the final clustering

In practice, the value of e greatly affects the rate of convergence of the algorithm. Ob-

viously, a smaller value of e would require more iterations before the algorithm terminates.

A trick that may be applied is the hard assignment of clusters during each iteration. For

this method, every sample's probability vector, {n¡¡ < i < K}, is checked after step 3; if
the membership probability for cluster rn exceeds a pre-determined value, say 0.9b, then
the sample is hard assigned to that particular cluster. That is, the probability vector is

set to Po¡ : 1 1f i, : rn, 0 otherwise. This greatly improves the convergence speed of the
algorithm, without sacrificing much performance in the segmentation results.

The finziness parameter ó is a free parameter, subject to the constraint that its value

must exceed unity. It governs the amount of "blending" allowed between the clusters,

or the possibility of varying degrees of simultaneous memberships a sample can have. A
Iarge value of ó allows a greater degree of fuzziness in every sample's membership, and
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Figure 4.3. The Fuzzy K-means clustering algorithm in action for a 2-D dataset. (a) lnput data,

150 samples from 3 different distributions; (U)-(e) clustered data after 2 (b), a (c), 6

(d), 8 (d), 10 (e), 6 (f) and tZ (g) iterations; (h) Ground truth clustering.
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tends to require more iterations before the algorithm converges. As ö --+ 1, the fuzziness is

reduced, and the algorithm approaches the simple K-means algorithm. Mathematically,
as b --- 1, equation (4.10) approaches equation (4.L2), which is the clustering decision
rule for conventional /f-means algorithm. For computational reasons , b : 2 yields the
simplest implementations, and are used for most experimentations. It also produces the
familiar Euclidean metric for measuring the distance between samples.

The complexity of htzzy K-means is greater than conventional K-means, mostly from
the computation of similarity functions during the membership probability updates. In
the texture segmentation experiments, it was found that the fuzzy K-means algorithm is
significantly slower than the K-means algorithm for the same test cases.

4.3 KLM Algorithm

The Koepfler-Lopez-Moret (KLM) algorithm [39] is an example of an agglomerative hi-
erarchical clustering algorithm. The classical and fiizzy K-means algorithms are based

on a flat representation of the feature samples. There is no real structure in this rep-

resentation, where the samples are simply considered in a sequential, linear manner. In
many real world data clustering applications, the data exhibit strong structure, where

clusters may themselves be composed of smaller sub-clusters. These problems naturally
Iend themselves to a hierarchical solution, in which the data clustering is most effectively
done in an embedded structure. Textures inherently exhibit significant internal struc-
ture. Indeed, purely random fields are usually perceived as noise, and not as textures.
The particular feature extraction process described in chapter 3 focuses mainly on local
neighbourhood information, and should therefore exhibit some degree of structure in the
resultant feature vectors. Typically, a hierarchical representation also yields significant
complexity reduction, and therefore has faster implementations.

Hierarchical clustering procedures can be divided into two categories: agglomerative

and divisive. An agglomerative, or bottom-up, algorithm begins with many singleton

clusters and achieves its result by successively merging clusters. This is in contrast with
divisive (top-down) algorithms, which starts with a single, all-encompassing cluster, and

forms the segmentation by successively splitting clusters.
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The KLM algorithm is particularly attractive in that it only needs the user to provide

one free parameter. It works by considering each sample as an individual cluster, then

repeatedly merging these fine segmentations. The merging decision rules are derived from

the minimisation of some specified global energy functional.

Generally speaking, a good segmentation should consist of a collection of homoge-

neous regions devoid of small holes in the interior, and separated by simple, smooth

boundaries. Therefore, it is essential for the particular functional in the KLM algorithm

to include separate terms that measure the self-similarity of regions and the relative com-

plexity of the boundaries. Adjustable weights can then be introduced to control the

relative emphasis between the dual (and often conflicting) aims of having highly homoge-

neous regions and simple, short boundaries. The particular functional used in the KLM

algorithm is a bare minimum that satisfies these requirements. Assume that the image of

feature vectors, x(r,A) is defined on an area Q. Denote by K the whole boundary set, so

the set of regions is written as Q\K. The functional is defined as

l'.E(K): llt - *ll' drdy * À¿(rc) (4.13)

where u(r,A) is the mean feature vector of each cluster and l(K) is the total length of

boundaries. Generally, the ll . ll' ir a weighted distance measure on the difference vector

u - x. The parameter À is freely adjustable, and it directly affects the "fineness" of

the final segmentation. A large À leads to coarse segmentations with large regions, since

boundaries are heavily penalised by the large À. Conversely, small values of À produce

fine segmentations. An advantage of this algorithm is that it eliminates thin regions from

the final segmentation implicitly, without the need of a separate size control parameter

like many other clustering algorithms. Mumford and Shah have performed a complete

mathematical analysis of the properties for this functional [50], that proves the properties

discussed here.

The description of the algorithm is as follows

1. Choose a value for À. Construct the initial segmentation, 1{6 for the image g@,A).

This takes every pixel to be a separate region; the region averages, u, are then

trivially the same as the pixel values g everywhere. The region tree data structure

can norfr/ be built.
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2. Compute the merging costs for each pair of neighbouring regions, lonl,lorl

L,E : l9'l',19-. ll'r - '.¡ll' - ^.t(6(o¿,oi)) (4.14)lol+lojl -

where I ' I ir the region area, and l(õ(oi,or)) i. the common boundary between

clusters i' and j. Merge the pair with the lowest merging cost if it is negative;

this ensures that each merging operation will decrease the overall functional value.

Update the region tree after merging; all processing is confined to this data structure,

and no computations are needed on the actual image.

3. Repeat step 2 until further merging is not possible, i.e. either there are no pairs

with negative merging costs or only one region remains.

This algorithm is a slight departure from the one outlined in [39]. A problem with
this algorithm is the selection of À, the controlling parameter. In experiments performed,

no assumption is made about À; instead, a range of different values are iterated over

sequentially. However, this would remove the nice pyramidal property of the KLM algo-

rithm. In a supervised problem where the ground truth is known, it's a simple matter
of comparing the truth with the final segmentations to evaluate their merit. FYom the
experiments, it was found that the final energy functional (see equation (a.13)) of the seg-

mented image provides a good indication of the quality of the final segmentation. More

precisely, good segmentations are uéually obtained near the minimum value of the func-

tional when plotted as a function of À.: This is not surprising, since the KLM algorithm is

based on the minimisation of the functional. For an unsupervised problem, this becomes

a useful criterion for estimating the optimal value for À. However, the functional can

assume artificially low values when the algorithm fails completely, so it is still necessary

to visually inspect the segmentation results.

Koepfler et al have applied their algorithm to several image segmentation examples.

The results they obtained are rather impressive, particularly on the two-texture composite

images, which are segmented with perfect accuracy. Interestingly, they were able to
achieve this using simple energy features from a Haar wavelet frames decomposition,

which is much simpler than the feature extractor described in this thesis. The great

advantage of the KLM algorithm lies with its simple, optimisation theoretical basis.

FYom experiments, it was discovered that KLM algorithm suffers from a few problems.

In its early stages, very small clusters are merged together. Due to their small sizes, these
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(f)

Figure 4.4. The KLM clustering algorithm in action for a 2-D dataset. (a) the input image; (b)-

(e) intermediate clusterings and (f) the final segmentation. For this simple artificial

example, the KLM is capable of producing a perfect result'

clusters do not contain all the texture information, but rather only a small subset of
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that' This would increase the likelihood of incorrect merging, where two clusters from
dissimilar textures are merged by mistake. Unfortunately, in the KLM algorithm, once

two clusters are merged, they will not be separated again. Thus, any erroneous mergings
would persist in the final result, causing high misclassification rates. Whatsmore, if
a prematurely merged cluster contains more than one texture, it greatly increases the
likelihood of further erroneous mergings. Another problem in applying KLM algorithm
was noticed in experimentations. It was found that the large clusters v,/ere produced one

by one. In the beginning, one large cluster tends to form while the numerous other tiny
clusters remain as they are. It is until one cluster is completely grown before another
major cluster gro'ù/s. Ideally, all the major clusters grow simultaneously. The existence
of a single large cluster makes the development of other major clusters more difficult,
because the single cluster tends to dominate in the merging decisions. If the samples
are well spread in feature space, then this may not be a major concern, but for texture
features described in Chapter 3, the KLM algorithm had significant difficulties dealing
with them.

A flaw of the KLM algorithm is its inability to accurately locate curved edges. This
particular problem is due to the fact that the energ¡r functional given in equation (4.13)
penalises a diagonal boundary more than a horizontal or vertical one. Rather, this problem
lies with the implementation of the functional, which divides an image into a collection
of discrete pixels. For instance, a diagonal edge across a single pixel is allocated an edge

length of 2 units instead of the actual geometric length of l, units. This flaw will need to
be addressed in real world applications where edges along arbitrary directions can exist.
This difficulty can be solved by additional code that correctly compensates for diagonal
edges, but this is likely to come with greatly added computational expense.

The KLM algorithm has difficulty with estimating the number of clusters. Unlike the
K-means and fiizzy K-means algorithms, where the number of clusters must be provirìe¿,
the KLM algorithm terminates when further merging does not yield a lower value of
the functional. For different feature sets extracted from the same input image, it is not
uncommon to have segmentations with different numbers of clusters. Obviousl¡ this can
be altered by specifying the desired final number of clusters, and force the algorithm to
continue or stop merging operations until this value is obtained. However, this is likely
to achieve a non-optimal value for E(K).
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The most computationally expensive step in the KLM algorithm is the cost calcula-

tion. This problem can be alleviated by saving computed costs in memory. In fact, the

only costs that change during a merging operation are those that involve the two merged

regions. A dynamic merge tree data structure enables this to be done very quickly. It

was found that this simple optimisation yielded an order of magnitude improvement in

code speed. However, even with this improvement, the high complexity in each merging

step still makes the KLM algorithm much slower than the K-means algorithm.

4.4 Neural Networks

Neural network classifiers have been popular choices in texture problems. The motivation

for studying neural networks came from the desire to mimic the operation of animal brains,

which follow a different paradigm to digital computers. Animal neural systems are well

adapted to process massive, parallel tasks, and are capable of learning and intuition. In

contrast, digitat computers follow the classic von Neumann paradigm, and are well suited

to performing simple sequential tasks with stunning efficiency. In artificial intelligence

studies, computers are asked to perform similar tasks handled by biological organisms,

such as pattern recognition. Such efforts led to the development of a basic framework

for neural computing. In this framework, biological systems are modelled as a collection

of individually simple processing nodes, called nelffons, with vast interconnects between

them. There are many types of neural networks, but the neurons are nearly identical;

the differences mainly lie in the architecture of the network (arrangement of nodes) and

learning rule. A neuron is a weighted sum of its various inputs, followed by an actiuati,on

functi,on, a non-linearity that helps control the propagation of signals within the network.

Typically, the activation function is either a hard threshold or a sigmoidal non-

linearity. The operation of a neuron is summarised as

N

uo: f (lw¿¡r¡) (4.15)
j:o

Neurons are grouped together to form neuron layers; these layers are stacked on

top of each other to produce a complete neural network, figure 4.6. There is an input

and an output layer, and an arbitrary number of. hi,dden layers sandwiched in between.

Typically, the neurons in one hidden layer are connected to some or all of the neurons in

Page 105



4.4 Neural Networks

u)t

a
Ui

ûl

r2

ri

UN

Figure 4.5. An anificial neuron. The input lines to the neuron model the action of dendrites in
biological brains; weightings place difterent emphasis on the input stimuli, which is then
subjected to the activation function. The output line models the axon.
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Figure 4.6. A multilayer perceptron with 3 layers, illustrating the multilayer neural network archi-

tecture- This particular network is a forward propagation network, using supervised,

back-propagation learning.

the layers immediately above or below, although neurons in a layer may also be arranged
in a matrix for general neural networks. T[aining of the network means determining the
values of the weights, tr.r¿¡. This process can be accomplished in two manners: supervised
or unsupervised. Most common is the supervised variety, which trains the network with
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samples that have known desired outputs. In these cases, the quality of the training

set is vital to the overall performance of the trained network on unseen data. Pattern

association applications are examples where supervised training is useful. In contrast,

unsupervised training on neural networks are used when the desired outputs on known

samples are not available. An example of this type of training is self-organisation in

Kohonen Feature Map neural networks. Unsupervised neural nets are, arguably, closer

to real biological learning systems than supervised networks. They are more suited to

pattern recognition type of applications, where the network needs to group together the

input samples according to their similarity.

Neural networks have been applied, with great success, in a wide range of problems.

However, choosing the appropriate architecture, training algorithm, and training set (for

supervised networks) requires considerable skills and experience. There is a well-known

difficulty with neural networks: a particular network trained with one set of data does

not necessarily perform well in general. Every time a new problem is encountered, the

neural network needs to be re-trained, or even re-designed, with a nevr' test set. For

texture segmentation, this can lead to considerable difficulties, since each input image is

a new problem from the classification perspective. However, the value of neural networks

may lie in the post-processing of segmented images. For example, they may be used to

improve the segmentation, by training with samples from the centres of clusters, then

re-classifying those from the edges.

4.5 Su ort Vector Machines

The device that is Support Vector Machines (SVMs) has received much attention recently

in the machine learning community. SVMs are universal learning machines that are

applicable in a wide range of pattern recognition problems. In particular, they solve these

problems without requiring prior knowledge, thus giving them unparallelled generality.

In fact, it has been shown that SVMs contain large sets of neural networks, radial basis

function and polynomial classifiers as special cases. Despite the impressive resume, SVMs

are quite simple devices, from an analytical perspective. Although SVMs are not used as

the primary clustering tool in this thesis, their remarkable potential makes them a strong

possibility in the future. This section provides a discussion of the theory behind SVMs.

Page 107



4.5 Support Vector Machines

4.5.1 Learning Machines

SVMs are based on structural risk minimisation from statistical learning theory. Ttadi-
tionally, classifiers learn by training over a large number of sample data, known as the
tra'ining seú. Using notation common in the literature, this training set can be expressed
as / sample-label pairs {x¿, ai,,i : 1, . . . ,l}. Each vector >q is a sample drawn from the
system (distribution) to be learned, andy¿ its known label (or class). The machine as-

sumes the form of a "black-box" function, f(*,o), which determines the label y for an
input sample x. The set of free parameters is denoted by the symbol a; these determine
the architecture and details of the particular machine. The machine is then trained (i.e.
determine a) by minimising the empirical mean error, or ,ish:

(4.16)

where V 6n, o) - A¿l is called the loss.

It is reasoned that, by mimicking the mappings found in the training set, the machine
would be able to generalise to any sample drawn from the system. However, there is no
guarantee that the trained machine will perform well on all possible samples. Indeed,
much of the general performance largely depends on the size and quality of the training
set' Another fundarnental consideration in determining the performance of a learning
machine is its capaci'ty. To achieve optimal learning performance, the right balance must
be achieved. A machine with too much capacity for the training data do not generalise

well because the training is inadequate. This leads to performance degradation as the
machine attempts to distinguish more details within the patterns than there really are.
Conversely, a machinc with too little capacity with respecL l,o bhe training data is incapable
of distinguishing all the patterns because it cannot handle the full complexity present in
the problem. A crude real-world analogy would be the competence level of a person at
a specific job. An incompetent person cannot complete the job satisfactorily, but an
over-competent person may attempt to solve more of the problem than is required, which
leads to inefficiency. Thus, a learning machine must have sufficient capacity to handle
the problem that it has been asked to solve, and the correct amount of training must be
applied to yield good general performance.

1l
R. r(o) : ;D,l/(*n, a) - a,l

i:7
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4.5.2 Capacity: the VC Dimens¡on

The capacity can be seen as a measure of how fast a learning machine is able to converge to

the true mean? the mathematical representation of the underlying process, as the number

of training samples increases. In considering this convergence process, Vapnik derived an

upper bound on the performance of any learning machine.

Before discussing the fundamental bound on a learning machine, it is necessary to first

introduce the Vapnik Chervonenkis (VC) dimension. Consider a two-class classification

problem; a learning machine /(a) produces the output *1, corresponding to the two

classes for each input sample x. For any set of I samples, there are 2¿ possible permutations

of labels. If a set of machiner {/(o)} can generate all of these permutations, then the set

of functions is said to shatter the set of samples. The VC dimension of a set of functions

(i.". a class of machiner), {/(")}, is defined as the maximum number of samples that

can be shattered UV {/(")} A simple illustration of this concept can be found in Burges'

excellent tutorial on SVM [6]. One of the most important results for VC dimensions is

the following:

The VC dimension of the set of oriented hyper-planes in R' is n' * 1, where an

oriented hyper-plane is defined by the pair {,F1, n}, where 11 is a set of points lying

on the hyper-plane, and n is the unit normal vector.

This result means that a given set of points can be shattered by oriented hyper-planes,

provided the dimensions of the hyper-planes are high enough. However, if a set of functions

has a VC dimension n, it does not imply that it can shatter any set of n points. Thus,

VC dimension is a measure of capacity, but not a guarantee on a machine's performance.

Assume a general process described by some probability density distribution p(x,U).

That is, for a given sample vector x' , the probability of the output being y' i, P ç*' , y' )dxdy .

In training a learning machine f (*,o) with the set {t, A¿,'i:1,...,1}, the objective is

to minimise the risk as defined in equation (4.16) with respect to the parameter set o.

Upon completion of the training, the machine has an expectation risk of

Tf
rB(c) :2JVf*,a)-ailpe,y)dxds (4.17)

The bound on the expectation risk is given by

(4.18)R(o) < A"-o(a) +
h(Ios(zt I h) + 1) - tos(n I a)

Page 109



4.5 Support Vector Machines

where A"-o(a) is the empirical risk measured. on the training set and ä is the VC di-
mension' The value n,0 < q < 7 is chosen to represent the desired confidence interval
of the machine. The most noticeable aspect of equation (4.18) is,R(a)'s independence of
the probability density underlying the process. Thus, this bound depends solely on the
capacity of the machine, for any given choice of r¡. The nature of the process does not
affect the performance of the learning machine. In other words, for a given machine, we
can be confident that it will be able to perform to a maximum risk. The VC dimension is
a measure of the capacity of a learning machine, and is a property of a class of functions
{/(*' ")}. Interestingly, the VC dimension does not always depend on the number of
parameters, as it may appear so intuitively. Equation (a.18) does not tell anything about
the performance of a given machine for a specific data set; it is merely a guide to the worst
case scenario for the machine. In general, it is desirable to minimise the expected risk
by choosing a machine with a low VC dimension. However, this will not always produce
the optimal solution, as it has been known that some high h machines are capable of
performing very well, even though the bound on the expected risk is very large. Indeed,
there are well-known pathological cases where an infinite VC dimension machine perf'orms
very well.

4.5.3 Linear SVM

Perhaps the simplest case to illustrate the principle of an SVM is a linear machine trained
on separable data. Assume the data in a two-class problem, {&, ailr < ,i 1 l,y¿ e
{-1,1},x € R'}, are separable. That is, a plane of the form

x.w+b:0 (4.1e)

is capable of separating samples from the two classes. This plane is called the d,ecision
plane. The linear, separable SVM is illustrated in figure 4.7. ln other words, for any input
sample >q, the decision function is

Í(*n):sign(x'w+ö) (4.20)

The process of determination of the decision function is called the trai,ning of the linear
SVM. Since the trained SVM will perfectly classify all samples in the current problem,
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the samples of both classes are bounded by a pair of hyper-planes

x'w*b>L, if U¿:I
x'w * b < -I, if U¿: -l

The distance between these planes is called the margin.

(4.2t)

w
oo o

oot
¡ o h:I

o

oo

¡
n ¡. o

a
¡

! \.x.'w * b: 1

Al: -l x.w * b: -1
x.w*ó:0

Figure 4.7. A linear, separable SVM. The decision surface is the solid line; support vectors are

coloured solid, while other samples are hollow. From elementary geometrical consider-

ations, the margin is shown to Ue ffi".

The optimal decision plane is defined to be one that maximises margin between the

two classes. By using a Lagrangian formulation [6], construction of the optimal hyper-

plane red.uces to a convex quadratic optimisation problem with linear constraints. These

problems have been studied in mathematics for many years, and are well-understood.

Many algorithms exist in the optimisation literature, and an exhaustive discussion of

such methods is far beyond the scope of this work. Indeed, one of the great attractions

of SVMs came with the discovery that optimal classification can be transformed into a

quadratic programming (QP) problem, thus instantly allowing access to a great library

of works. In summary, the training of an SVM is the same problem as the following:

n

(4.22)

Minimise
1lI

L : +ll * ll' -Douar(n' w*b) *Doo
o i:r i:l
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with respect to w,b, subject to the constraints ffi :0,a¿ ) 0.

The Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for solutions
of a SVM [6]. These conditions state that all solutions for w,ö,a¿ must satisfy

(4.23)

(4.24)

(4.25)

The set of Lagrange multipliers, o¿, have to be determined numerically in practice. Very
rarely do QP problems lend themselves to analytic solutions. Notice that there is a
Lagrange multiplier for every training vector >r¿. In practical situations, most of these
multipliers àte zero) leaving only a subset of them contributing to the vector w. Those
data points whose multipliers do not vanish are called support uectors; non-support vectors
may be removed from the training set without affecting the optimal solution. Interestingly,
the use of the term "support" leads to a mechanical analogy of the process. In this
interpretation' each support vector is considered to be exerting a force of magnitu de a¿g¿

on the decision boundary; the conditions in equations (4.2g)-(4.25) are then simply the
laws of mechanics governing a system in translational and rotational equilibrium.

The formulation described above requires a straight-forward modification f'or cases
where the samples are not perfectly separable. Mathematicall¡ it means the inclusion of
additional slack variables, Ç, in the Lagrangian's formulation to handle the classification
errors' The purpose of these variables is to penalise the misclassifications by increasing
the overall objective function (the Lagrangian, tr), through the relaxation of the margin
constraints:

x.w+b>I-ti, if U¿:I
x'w+ö<-1+6i, if U¿:-L

€'>o vi (4.26)

The rest of the formulation is the same as for the separable case; the modified Lagrangian
IS

T

L :;ll * ll' *">,ç - D a¿(a¿(x¿.w+ó) - 1 + €o) -lu,to
i:L i:t i:1.

Q¿U¿X"w

:0,Vi

Tt
i:l

0

¿

Do,'o
i:L

a¿(U¿(x¿ 'ur) - 1)

(4.27)
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where C is a user-defined parameter to control the severity of misclassification penalty, ¡4

are the extra Lagrange multipliers for the siack variables {¿. The conditions for solution

are almost identical to the separable case (equations (4.23)-(4.25)),, except for

a¿(A¿(x¿ 'w) - 1+6n): g, Vi (4.28)

Figure 4.8 illustrates the operation of linear SVMs on non-separable data.

o o
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a'\t
¡ At: I

'.x''w*b:1
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At: -l x.w * b: -l
x.w * b:0

Figure 4.8. A linear, non-separable SVM. The decision surface isthe solid line, and margin surfaces

are the dashed lines. Support vectors are coloured solid, error samples are hashed while

all other samples are hollow.

4.5.4 Non-Linear SVM

For most classification problems, the decision surfaces are non-linear. In order to extend

SVMs to handle such surfaces, an old technique is used. The data are transformed to

a higher, possibly infinite, dimension space. The idea is that the decision surfaces will

be simple hyper-planes in the higher dimension, which then allows the use of techniques

discussed above to solve the problem. Let such a transformation be Õ : Rd ,--¿ '11, where

?l is the target Hilbert space. In general, it is very difficult to determine the appropriate

mapping, O, for an arbitrary data set. The really important trick to make all this work

is through a kernel function. In the formulation and solution of the QP problem in
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section 4.5'3, it is discovered that the training data only ever appear in dot product form,
x¿'xi. Explicit knowledge of the sample vectors is not necessary at any stage of SVM
training and testing. Now, if there exists a function K(*r,x¡) such that

K(*o,xr) : O(*,) .O(*¡) (4.2g)

then it is possible to use exactly the same methods from linear SVMs. The solutions will
assume the same form, and whatsmore, the training will have similar complexity as in
the lower dimension. The result of the training will be an SVM that operates on ?1, thus
producing curved decision surfaces in Rd. However, since little explicit knowledge of ll is
acquired, it is impossible to determine w. However, as with the training, this knowledge
is unnecessary in the testing, for the decision function will become

Ns Ng

/(*) : \asrù@) .O(s,) *ó: Don oO(si,x)+ó (4.30)
i:I i:r

where ,À/s is the number of support vectors, s¿. Therefore, the computation of /(r) also
requires knowledge of the kernel function only. Generally, a particular choice of kernel
does not lead to a unique Jí or Q. This is of tremendous advantage, because this allows
one particular kernel function to solve a range of problems with different mappings and
mapped spaces. Some of the common choices for the kernel function are

K(*, y)

K(*,y)

K(*,y)

: (x'v+ 1)o

ll*-vll2: e--r;z-
: tanh(rcx.y - ô)

(4.31)

(4.32)

(4.33)

The existence of a suitable kernel function is crucial to non-linear SVMs. Mercer's
condition provides the mathematical test for allowable kernel functions; a kernel K(*,y)
satisfies equatiol (4.29) ff

K(x,y)s(x)e(y) dxdy > 0 Vg(") e L2(Rd) (4.34)

4.5.5 Multi-class Problems

The basic formulation of SVM is based on the two-class classification problem, and so they
are naturally binary classifiers. There have been several proposals to adapt or extend the
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basic SVM to perform multi-class classification tasks. Collectively, these schemes can

be broadly categorised as either combinational or true multi-class. The combinational

approach basically divides a multiclass problem into many 2-class SVM problems, and

then seek to fuse all the results together. On the other hand, true multiclass SVMs extend

the formulation to consider all the classes at once. This approach often leads to very large

optimisation problems, which make their solution very computationally intensive.

Some of the earliest multi-class SVM are based on the "one-against-all" method

[31, 32]. For a k-class classification problem, k individuat SVM classifiers are constructed,

each testing for membership of one particular class. The final classification result is

obtained from some fashion of voting among all the classifiers. Another popular approach

is based on the construction of 4f;Ð "one-against-one" binary classifiers to separate each

class from every other class. The outputs of these classifiers are again subjected to a
voting mechanism to determine the final classification. Combinational multi-class SVMs

have been widely applied in many applications.

True multiclass SVMs are constructed by generalising equation (4.27) to consider all

the classes at once. Mathematically, this means summing all the contributions from all k

classes in the Lagrangian to be minimised

llcl¿¿L:;D ll *,. ll" +ct t # ->,Do'iwo(*¿.w+b) - 1+tn -D \ u,€T
rn:l i:l rnta¿ i:t mtv¿

The constraints are also modified to handle all the classes

i:l rn*a¿

(4.35)

(4.36)

(4.37)

with all the variables assuming their previous meaning. Unfortunately, the extended for-

mulation for the multiclass SVM imposes a severe computational penalty on its solution.

Compared to a 2-class SVM, a k-class problem increases the number of variables by a

factor of. k - 1. Such hefty computational loads have limited the application of true mul-

ticlass SVMs. For large problems with many data vectors, such as texture segmentation,

combinational methods are more practical [31]. However, more efficient optimisation tech-

niques and faster computers in the future may make true multiclass SVM a practically

feasible solution.
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4.5.6 Concluding Remarks

SVMs are interesting and powerful learning machines, but they are a relatively recent

discovery, which makes this a very active field of research. Plenty of successful applications

of SVMs are already in existence, and they are generally thought to perform no worse than

conventional classifiers such as neural networks. The strong performance of SVMs, from

a conceptually simple formulation, is a pleasant surprise, although the reasons for this

are not certain. A practical problem of deploying SVMs is the immense computational

resources required for their training. As stated above, SVM training is a QP problem,

which does not yield analytical solutions in general. Many algorithms exist for solving the

QP problems, and they all offer various advantages for different data sets. Unfortunately,

these algorithms do not scale efficiently, and the current state of computing technology

means that SVM may not be feasible for some practical applications. For this work, SVMs

have not been used as a classifier mainly due to computational concerns. In the future,

new algorithms and advances in digital technology may become enabling factors that will
allow more widespread use of SVMs in pattern recognition tasks.

Apart from numerical difficulties, another problem prohibits the SVM from use in

the current context. From the outset, SVMs are designed to solve two-class problems.

There are usually more than two textures in the general segmentation problem. Some

extensions to SVMs for handling multiclass problems were briefly discussed, although

these techniques are still in their relative infancy. The tremendous potential and elegance

of SVMs make them a possible future direction for texture segmentation research.

4.6 Summa

The texture features obtained from the extraction process described in Chapter 3 must be

processed by a clustering algorithm to produce a segmentation. Several known techniques

for clustering data are presented in this chapter. Among them, If-means is the most

heavily used algorithm in this thesis. Although simple in theory, it is effective and capable

of producing good clusterings for a good feature set. The fiizzy K-means algorithm is

a generalisation of the classic K-means, allowing simultaneous multi-class membership.

Neural network classifiers have been heavily applied in pattern recognition problems.

However, they require careful consideration in their training to be effective. Finally,
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the relatively new support vector machines a.re discussed. IntrinsicallS they are very

powerful devices which can adapt themselves to suit the problem, and are therefore general

Iearning machines. 'While this thesis mainly relies on the K-means algorithm to produce

segmentations, it must be noted that neural networks and SVMs can be valuable for

post-processing tasks. For example, the output of the K-means clustering can be used

to select training samples for neural networks, and the trained network can reclassify the

K-means segmentations to refine the results.
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Chapter 5

Texture Segmentation Experiments

Following the discussions of wavelet-based texture feature extraction and clustering algo-

rithms, this chapter contains the centrai results of this thesis. In order to examine the

effectiveness of the proposed algorithms, an extensive set of segmentation experiments

were performed. The work combines the different techniques described in previous chap-

ters into a full segmentation system. Section 5.1 outlines the methodologies and scope of

the experiments. In section 5.2, the properties of extracted wavelet texture features are

examined using a variety of techniques. In particular, the separability of the extracted

wavelet feature sets are investigated. Sections 5.3 and 5.4 present the results from seg-

mentation experiments using conventional and fiizzy K-means clustering, respectively. In

section 5.5, a modified K-means clustering algorithm is presented, which is specifrcally

proposed for texture segmentation. This is followed by extensive results from experiments

using the new method, and a discussion of the properties of this technique. Finally, the

chapter concludes with a discussion of the results and a comparison with published results

in the literature for similar experiments.

5.1 Data and Experimental Setup

5.1.1 lnput lmages and Methodology

The experiments described in this chapter are conducted on texture mosaics composed of

textures from the Brodatz album [5], or are Brodatz-like in nature [14]. The vast majority
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of the test cases are downloadable from the World \Mide Web [14, b9]. Details and images
of all input cases can be found in Appendix A. In choosing the input images, a conscious
decision was made to select popular, readily obtainable mosaics which have been used by
other researchers. This allows direct comparison of results in this thesis with algorithms
already in the literature.

The ground truths of all input images are known in the experiments described in
this chapter, and these are shown in Section 4.1. This allows the computation of the
number as incorrectly classified pixels by performing a pixel-by-pixel comparison between
the segmentation result and the ground truth. This number serves as the one and only
measure of performance in our experiments. More commonly, this measure is expressed
as a percentage of ø/l pixels in the image. It must be stressed that the sole purpose of
the ground truths is for performance evaluation, not as a means for deriving training sets.
All the segmentations are computed without prior training of the classifier(s).

The aim of the experiments is to examine the performance of the proposed algorithm
through large numbers of experiments. It is believed that the true measure of the use-
fulness of a teiture segmentation algorithm can only be established through empirical
evidence. There are a total of 115 mosaics listed in Appendix A, which makes this one of
the most exhaustive studies among similar efforts.

5.1.2 Feature Parameters

Chapters 3 and 4 detailed the feature extraction and clustering procedures. The com-
plicated nature of these processes means that a number of parameters must be supplied
to the algorithm to completely define the operations that make up the whole process. A
conscious attempt has been made to minimise the number of parameters required for the
functioning of our texture segmentation system. Ideally, the texture segmentation system
should be able to adapt itself to the input image and automatically estimate appropriate
values for the internal parameters. However, this is a lofby goal, and is rarely achieved in
any pattern recognition problem. In the current algorithm, the user needs to specify the
following parameters for feature extraction and conditioning:

o \Mavelet transform type and depth

o Choice of smoothing window
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o Numerical non-Iinearity

In this thesis, experiments are performed for a range of values for these parameters,

in the interest of comparison. From a feasibility standpoint, it is necessary to limit the

ïange of parameters for the experiments to keep the number of experiments manageable

with limited computational resource. The choices for these ranges will be discussed and

justified in turn.

The wavelet transform is the primary analysis tool for extracting texture features.

Following discussions in Chapter 2,two different wavelet transform types are experimented

with: conventional DWT and the newer DT-CxWT. Gabor transform, while abundant in

the literature, is not part of the focus of this work. However, results from Gabor filter-

based schemes will be used as a yardstick for comparison purposes. Conventional D\MT

is desirable from an algorithmic efficiency standpoint, because it is a non-redundant rep-

resentation. However, the approximate shift-invariance and superior directionality prop-

erties of DT-Cx\MT make it a more appealing choice. The direct comparison between the

two types of transforms is a major focus of this thesis. The most obvious parameter in the

wavelet transform is the analysis filter set. Linear-phase filters are employed in this thesis;

these are important in image processing applications. The Daubechies 9-7 pair and the

Kingsbury pairs are chosen for the DWT and DT-CxWT, respectively. Certainly, many

other DWT filters exist, but they do not offer vastly different properties; for example, all

DWT fiiters do not allow shift-invariance. The differences between the various D\ /T fit-

ters are not entirely relevant in the current context. Arguably, a more important wavelet

transform parameter is the transform depth. In the literature, examples of applications

using more than 5 levels are ïare. For texture segmentation, such a deep transform is

very undesirable for several reasons. Firstly, the lowest resolution (deepest) subbands

are highly downsampted (2d : 1), and features at such scales would cause considerable

blurring of texture boundaries. Secondly, a deep transform produces many subbands in

the decomposition (L : 3d * 1 for a tree-structured transform), and hence feature vec-

tors with high dimensions. This greatly increases the volume of data in the process, and

therefore the computational effort required for each segmentation. Moreover, high fea-

ture dimensionality can lead to problems with the classification (Chapter 4). On the other

hand, it is well-knorryn that most textural information are located in the mid-frequency

subbands [9], which means that depths of at least 2 are necessary to effectively capture
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these mid-frequencies in separate subbands. As a result, transform depths of 2 and 3 are
chosen for the experiments in this thesis.

As discussed in Chapter 3, the role of smoothing is vital in conditioning texture
features for clustering. For the experiments, two types of smoothing are considered: low-
pass and median filtering. Low-pass filtering smooths features by calculating the weighted
average over a small neighbourhood using a normalised mask. Median filtering computes
the median feature value over a spatial neighbourhood. Generally speaking, median filters
have the advantage of being insensitive to outliers, but whether this property assists
texture feature extraction remains to be seen. Median filters of sizes B x 3, 5 x 5 and
7 x 7 are used in our experiments; very large median filters lead to extreme blurring.
Smoothing with low-pass filters is performed using masks constructed from 1-D Kaiser
windows in the experiments. As discussed in Section 3.4.3, the Kaiser family of windows
has better time-frequency characteristics than Gabor. The choice of window size is a
trade-off between texture smoothing and boundary localisation - better smoothing also
blurs boundaries. It has been determined that, for the size of the input images, a window
size of 11x 11 pixels is adequate. The p parameter for the Kaiser windows (equation 3.lb)
is varied for a range of different values, which are indicated in the various result tables.
Changing p has the effect of varying the spatial weighting of the windows - increasing
p narrows the width of the window peak (see figures 3.1i(a) and g.11(b)). For these
experiments, the values of. p are chosen to be 0, r,2, J, b, g, 18, 21, g4 and bb. These
values give a good range of different peak widths (see figure b.1).

As discussed in section 3.4.4, a sigmoidal non-linearity (equation 3.16) is used to
condition the smoothed features. This step is shown to improve the numerical conditioning
of the texture features. This is the least crucial of the feature conditioning steps; it has
been found that the value of o in equation 3.16 does not have a very big effect on the
overall segmentations. In light of this, a fixed value of a:0.25 is used in the experiments.

5.1.3 Clustering Parameters

For clustering, the parameter set depends on the choice of algorithm. For example, all
variants of K-means (includingfuzzy) requires the user to supply the number of clusters,
K and neural network classifiers need a training set derived from the extracted features.
In principle, support vector machines are universal learning algorithms, and should not
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Figure 5.1. Plots of ten ll-tap Kaiser windows used in the experiments. Shown are the normalised

1-D windows; 2-D masks are obtained by taking outer products of the l-D windows.

require any extra input parameters. However, in practice, a number of parameters are

needed for the numerical algorithms used to solve the quadratic programming problem.

The vast majority of the results in this thesis are obtained from K-means clustering,

so the choice of K-means parameters is described in detail. Firstly, the correct values of K
are fed into the algorithm for all experimental cases, since all the ground truths are known.

In practical cases where the ground truths may not be known, it would be necessary to

find estimates for the true number of clusters. A vital element of the K-means algorithm

is the class updating process in each iteration. In this thesis, a static update scheme is

employed in all experiments involving K-means clustering. In our experience, dynamic

updating of class means has exhibited tremendously high sensitivity to the precise state of

the initialisation - two different initialisations can lead to dramatically different results.

\Mhile this phenomenon is also observed for static updating in some instances, the effects

are far less pronounced. The reason for this is due to the rapid change of class means

during the first few iterations of the K-means algorithm, when many pixels switch labels.
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A poor initialisation coupled with dynamic updating will result in a large number of erro-
neous labelings after the first iteration, which will then lead to very poor segmentations.

Obviously, this instability is undesirable, and for this reason, static updating is preferred

in the experiments.

The initialisation method deserves careful consideration, since the K-means algo-

rithm is completely deterministic once the initial state is specified. In the experiments,
the cyclic labeling method, described in Section 4.1.1, is used. Ideally, many iterations
with a random initialisation scheme should be used to avoid the danger of producing
Iocally optimal clusterings, but experiments have shown that cyclic initialisation pro-

vides generally good results without the need to run multiple iterations of the algorithm,
thereby saving computational time by at least an order of magnitude. Table b.l shows

the performance comparison between random and cyclic initialisation schemes over a set

of 5-texture mosaics. The particular parameter values are detailed in the accompanied

caption. While the comparison is performed for one combination of parameters over a
subset of all input images, it does, however, adequately illustrate the overall trend. Due
to the extraordinary computational requirements of running many randomly initialised
iterations, it is infeasible to exhaustively compare the two initialisation schemes. It is

observed that cyclic initialisation does not generally obtain an eïror rate as low as the
minimum found by multiple runs with different random initialisations. However, the re-

sults are very close, often within a fraction of a percent in the error rate. Whatsmore,
cyclic initialisation is able to produce better results than the median of a large number

of repeated random runs. The only exception to this rule is for the input image ',My
5a" (see Appendix A), where the cyclic initialisation actually produces a lower error rate
than the minimum found from the random initialisations. There certainly exist cases

where the cyclic labeling proves inappropriate, leading to unusually poor segmentations
(a local optimum); section 4.1.1 has already discussed this problem in more detail. In
general, though, it has been observed that the cyclic labeling scheme often gives good

segmentation results when compared to random initialisations repeated 10 times oï more.

The reliability of the cyclic initialisation scheme found in our experiments may be due

to the nature of our data set, where the cluster areas do not differ greatly from image to
image. For such data, it is reasonable to expect the K-means algorithm to benefit from
an initialisation scheme that produces a balanced initial population. However, the cyclic
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initialisation scheme also assumes no information about the dataset; the initial cluster cen-

tres are nearly identical to each other, since the cluster memberships are equally scattered

across the entire image. The fact that K-means is able to achieve good segmentations for

such a simple initialisation scheme is an endorsement of the feature sets.

Table 5.1. Comparison between random and cyclic initialisation schemes. The mean segmentation

error rates (%) are shown. Feature extraction parameters: DT-CxWT with Kingsbury

filter pairs, depth 3, Kaiser þ :3. The random results are obtains from 100 runs.

Image Cyclic (%) Random Min (%) Random Max (%) Random Median (%)

My 5a

My 5b

Nat 5b

Nat 5c

Nat 5m

Nat 5v2

Nat 5v3

Nat 5v

14.91

2.87

2.72

2.66

2.98

4.25

5.19

3.53

17.68

2.87

2.09

2.66

2.96

4.24

5.19

3.48

42.t8

4.t4

32.97

23.80

33.92

39.92

37.92

39.95

18.34

3.42

2.r0

2.66

2.96

4.38

5.2r

3.55

Table 5.2. Comparison between Euclidean and Manhattan metrics. Error rates (%) for a set of

S-texture mosaic's segmentation results obtained from both metrics are shown in the

box. Feature extraction parameters: þ :3, Kingsbury DT-CxWT filter pairs, transform

depth 3. The mean error rate of the.L1 metric is 3.40, with a 95% confidence intervalof

(2.42, 4.37); meen error rate of ,L2 metric is 3.76%, with the corresponding confidence

interval of (2.3a, 5.18).

Image L'(%) L, (%) Image L, (%) L, (%)

My 5a

My 5b

Nat 5b

Nat 5c

6.59

1.82

2.3r

2.52

4.66

2.r4

2.t2

2.46

Nat 5m

Nat 5v2

Nat 5v3

Nat 5v

2.97

4.25

5.11

3.44

3.00

5.17

5.19

3.49

The choice between Euclidean and Manhattan distance measures in the K-means

clustering does not have a demonstrable effect on the segmentation performance. Table 5.2

shows the segmentation performance for a set of 5-texture mosaics. The differences in

error rates between the use of Lt- and ,L2-norms are small in most instances, but they

favour -Ll in all cases except one. The mean error rates are 3.407o and 3.7670 for the
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Manhattan and Euclidean distance metrics, respectively. Due to the small sample size

(¡/ : 8 images) in this comparison, the confidence intervals for the two means are quite
large - (2.42,4.37) for the Manhattan metric and (2.34,5.18) for Euclidean. Although the
error rate difference between the two metrics is small, the smaller confidence interval of
the Manhattan distance makes it slightly better than the Euclidean distance. Therefore,
the Manhattan distance is selected for the experiments. In addition, the calculation of
-Ll-norms is usually more efficient than .L2-norms on general purpose digital hardware
for our feature values, which are represented as double-precision floating point numbers.
However, this advantage is offset by the need for slightly more iterations of the algorithm
in the case of the trl-norm, a trend noticed from our experiments. Considering both
algorithmic and segmentation performances, there does not appear to be any compelling
reasons to choose one metric over the other, but the Manhattan distance is slightly better.

In summar¡ a cyclic initialised K-means clustering algorithm with static update is

used for all experiments. This provides the most desirable combination of computational
and performance characteristics among the different variants of K-means discussed.

5.2 Feature Properties

The details of the feature extraction process have been described in Chapter 3 and ex-

þerimental details are disclosed in the previous section. In this section, the properties

of the extracted features in the experiments are examined. Chiefly, the focus is on the
separability of the features; this is very important if the features are to be clustered to
produce the final segmentation. The purpose of examining the separability of feature

sets is to gain a better picture of these sets, which would give a general indication of the
characteristics of the feature extraction process. There are numerous separability mea-

sures for feature sets, and it is obviously infeasible to examine them all. In this section,

three different techniques are employed: spatial separation, feature contrast and distance

histogram. While each of these techniques has its own advantages and disadvantages, it
is hoped that, by using all three techniques, it is possible to gain a better appreciation of
the separability of the extracted features.
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5.2.1 Spatial Separation Criterion

The spatial separation criterion was discussed in section 3.4.1. It was described as a

method to reduce feature dimensionality. However, it can also be used to gauge the

discrimination power of a particular feature set. To recap, the spatial separation criterion

is defined as the ratio of average intra-cluster to inter-cluster distances. A small value

tends to illustrate a separable feature set; a value much lower than 1 would be desirable.

To examine the spatial separability of feature sets, the criterion is calculated for all the

feature sets extracted in our experiments. The calculations are simple, as the ground

truths for all input images are known. The results are summarised in table 5.3. It can be

seen that the spatial separability criterion is significantly less than unity for all cases. In

fact, most cases yield a spatial separability ratio below 0.5, which is a healthy sign, with

regard to clustering. However, this does not prove that the feature sets can be successfully

clustered to give accurate segmentations; it is merely an indication that the classes may

possess good separability. Ultimately, the feature sets must be evaluated by the final

segmentation results produced.

Perhaps a better method to gauge feature separability is to compare the intra-cluster

distance of each class with its inter-cluster distances from the other clusters. That is, to

compare the intra-cluster distance of cluster i (dn) with the average distances dn¡,i I j
from the other clusters. The reasoning for this is, if a class has its intra-cluster distance

smaller than the average inter-cluster distances to all other clusters (duo < do¡V j I i), then

it is reasonable to assume that class can be separated from the others, using a distance-

based clustering algorithm. In the experiments, features were extracted for 115 input

images, using 10 different values for p. It was found lhat 98.4% of the 1150 extracted

feature sets using 3-level DT-CxWTs satisfy this separability criterion. For 3-level DWT

features, a slightly lower 97.27o of feature sets satisfy this criterion. These figures show

that the vast majority of the features extracted from our process have good potential to

produce quality segmentations.

From the results of this section, it can be seen that the spatial separability of both

DWT and DT-CxWT features (3-level transforms) is good. The D\MT features give

slightly lower separation ratios than DT-Cx\MT in most cases. However, the differences

in all cases are very small, often within 0.02. This evidence is not sufficient to establish the

superiority of one transform over the other, since the SSR does not directly correspond to
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Table 5.3. Spatial Separability ratios (SSR) for DWT and DT-CxWT features. Feature extraction
parameters: Kingsbury filters, depth 3, Kaiser smoothing windows. Manhattan distance
is used as the metric.

Image DWT DT-CxWT Image DWT DT-CxWT I Image DWT DT-CxWT
D4-D84
D5-D92
D8-D84
DI2-DT7
My 5a
My 5b
Nat l0
Nat 10v
Nat 16b
Nat 5b
Nat 5c
Nat 5m
Nat 5v2
Nat 5v3
Nat 5v
bonn 00
bonn 01
bonn 02
bonn 03
bonn 04
bonn 05
bonn 06
bonn 07
bonn 08
bonn 09
bonn 10
bonn 11

bonn 12

bonn L3
bonn 14
bonn 15

bonn 16

bonn 17

bonn 18

bonn 19

bonn 20
bonn 21
bonn 22
bonn 23

0.69
0.60
0.30
0.43
0.41
0.40
[t.53
o.62
0.50
0.55
0.50
0.51
0.59
0.65
0.51
0.37
0.57
o.47
0.38
0.33
0.35
0.42
0.30
o.72
0.37
o.42
0.39
0.38
o.44
o.34
0.39
0.35
0.34
o.44
0.35
0.33
0.40
0.49
0.30

0.56
o.64
0.31
0.46
0.43
0.43
0.53
0.54
o.52
o.52
o.47
0.52
0.58
0.66
0.55
0.38
0.57
0.49
0.38
0.33
0.37
0.46
0.31
o.72
0.37
0.46
0.41
0.39
0.45
0,34
O:42

0.37
0.35
o.47
0.35
0.35
0.41
0.50
0.33

bonn 24
bonn 25
bonn 26
bonn 27
bonn 28
bonn 29
bonn 30
bonn 31
bonn 32
bonn 33
bonn 34
bonn 35
bonn 36
bonn 37
bonn 38
bonn 39
bonn 40
bonn 41
bonn 42
bonn 43
bonn 44
bonn 45
bonn 46
bonn 47
bonn 48
bonn 49
bonn 50
bonn 51
bonn 52
bonn 53
bonn 54
bonn 55
bonn 56
bonn 57
bonn 58
bonn 59
bonn 60
bonn 61
bonn 62

0.38
0.40
0.37
0.35
0.38
0.32
o.29
0.38
0.48
0.33
o.42
0.31
o.4r
0.38
0.45
0.38
0.3r
0.50
o.34
0.36
o.44
0.45
o.42
0.43
0.39
0.37
o.42
0.34
0.36
0.30
0.37
o.42
o.45
0.51
0.39
o.37
0.38
0.37
0.49

0.38
o.42
0.38
0.38
0.38
0.34
0.28
o.4t
0.51
0.34
0.45
0.31
o.4t
0.40
o.47
0.37
0.31
0.51
0.35
0.37
o.44
0.45
0.43
o.45
0.39
0.37
o.44
0.35
0.38
o.32
0.39
o.44
o.44
o.52
0.39
0.39
o.4r
0.40
0.50

bonn 63
bonn 64
bonn 65
bonn 66
bonn 67
bonn 68
bonn 69
bonn 70
bonn 7l
bonn 72
bonn 73
bonn 74
bonn 75
bonn 76
bonn 77
bonn 78
bonn 79
bonn 80
bonn 81
bonn 82
bonn 83
bonn 84
bonn 85
bonn 86
bonn 87
bonn 88
bonn 89
bonn 90
bonn 91
bonn 92
bonn 93
bonn 94
bonn 95
bonn 96
bonn 97
bonn 98
bonn 99

0.46
o.47
0.32
0.36
0.39
0.39
0.53
o.44
0.34
0.31
0.50
o.44
0.40
0.40
0.41
0.29
0.48
0.30
0.52
0.36
0.36
0.37
o.47
0.37
o.42
0.34
0.40
0.38
o.40
0.37
0.50
0.45
o.45
0.35
0.35
0.43
0.38

0.46
o.47
o.32
0.38
0.41
0.41
0.53
0.48
0.36
0.35
0.49
0.45
o.42
o.4L
o.42
0.30
0.5r
o.32
0.51
0.38
0.36
0.37
o.49
0.40
0.41
0.35
0.40
0.39
0.43
0.38
0.54
0.48
o.47
0.38
0.36
o.44
0.38

the segmentation results from feature sets. The only conclusion that can be drawn from
the SSR results is that both DWT and DT-CxWT are capable of producing feature sets

that are potentially separable by a distance-based classifier.

5.2.2 Feature Contrast

Feature contrast was discussed in section 3.4.1 as a means to measure the separability

of a feature set. Equation 3.12 gives the definition of contrast. In order to examine the
separability of the features, each extracted set has its contïast measured as follows: for
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every combination of input image (115 in total) and p parameter (10 different values),

the contrasts for all feature components are calculated; the minimum and mean over all

components are recorded. The results are shown in table 5.4. The contrast ratio never

exceeds unity if all the feature values are non-negative, as they are in this context. A large

value of the contrast ratio shows greater contrast. For example, for a perfect 2-class, single

feature problem (i.e. the features are scalars and have value 0 or 1) with equal population,

the contrast would be f . However, the nature of this measure is very sensitive to outliers;

the presence of a small number of large values in the feature components would artificially

inflate this number. The smoothing process in feature extraction alleviates this problem

significantly. Another problem with the contrast measure is that it is difficult to ascertain

its meaning for a multi-class problem. However, the contrast ratio is extremely simple to

compute, and hence demands very little computation resources. It provides a quick way

to gauge the separability of a feature set.

From the tables, it is clear that the contrasts in all feature sets are quite good.

The average contrast for all cases is 0.41, while the mean minimum contrast is 0.25. In

particular, for the two-class problem where the contrast ratio has the most meaning, the

values are nearly å. A. a general trend, DT-CxWT features have higher average contrast

ratios than DWT features. The contrast ratio measure favours the DT-Cx\MT features,

unlike the SSR in section 5.2.1. However, it must be stressed once again that values of

contrast ratio do not have a direct implication on the segmentation results of an image.

5.2.3 Distance Histogram

While the two previous methods in this section produce numerical measures of separability,

the distance histogram method provides a visual cue to the separability of a feature set.

This method has been shown to be a useful tool in determining the separability of a

feature set l2a]. For a separable feature set, the average intra-cluster distance is usually

very different to the average inter-cluster distances. When the distances in feature space

are plotted as a histogram, there should be distinct peaks corresponding to the inter-

and intra-cluster distances. Thus, the existence of distinct peaks in feature space distance

histogram provides visual evidence of feature set separability. This phenomenon should be

most pronounced for a two-class feature set, because of fewer possible class combinations

for any pair of feature vectors. To be more precise, there are only three different pairings
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Table 5.4. Feature contrasts for DWT and DT-CxWT features. Feature extraction parameters:
Daubechies 9-7 pair and Kingsbury DT-CxWT filter pairs, depth 3, Kaiser smoothing
window. Listed are the average and minimum (best) contrast ratios obtained for each
image, from all values of the Kaiser parameter, B.

Image
DW'I' DT-CxWT

Image
DW't' DT-CxWT

]{ve Mrn Ave Min 1{ve Mrn Ave Min
D4-D84
D5-D92
D8-D84
D72-D77
My 5a
My 5b
Nat 10
Nat 10v
Nat 16b
Nat 5b
Nat 5c
Nat 5m
Nat 5v2
Nat 5v3
Nat 5v
bonn 00
bonn 01
bonn 02
bonn 03
bonn 04
bonn 05
bonn 06
bonn 07
bonn 08
bonn 09
bonn 10
bonn 11

bonn 12

bonn 13
bonn 14
bonn 15

bonn 16
bonn 17
bonn 18
bonn 19
bonn 55
bonn 56
bonn 57
bonn 58
bonn 59
bonn 60
bonn 61
bonn 62
bonn 63
bonn 64
bonn 65
bonn 66
bonn 67
bonn 68
bonn 69
bonn 70
bonn 71
bonn 72
bonn 73
bonn 74
bonn 75
bonn 76
DOnn / /

o.26
0.28
0.30
0.34
0.33
o.34
0.35
0.37
o.47
0.30
0.30
0.31
0.34
0.38
0.35
0.34
0.36
0.39
0.43
0.35
0.36
0.37
0.38
o.42
0.39
0.40
0.40
o.42
0.45
0.33
0.33
0.33
0.35"
0.38
0.40
0.40
0.40
o.42
0.46
0.36
0.36
o.37
0.39
o.42
0,36
0.36
0.37
0.39
o.42
0.39
0.39
0.40
o.42
0.46
0,35
0.35
0.37

0.20
0.20
o.2t
o.22
o.25
o.27
0.27
o.27
0.29
0.33
o.22
0.22
o.22
o.24
o.26
0.25
o.26
0.28
0.28
0.31
0.20
0.20
o.2r
o.22
o.26
0.28
0.28
o.29
0.32
0.35
0.17
0.16
o.t7
0.18
o.20
0.31
0.31
0,30
0.29
0.33
0.19
0.19
o.20
o.22
0.24
0.t7
o.L7
o.t7
0.18
0.20
o.24
o.27
0.28
0.29
0.33
o.22
0.21
o.24

0.30
0.30
0.31
0.33
0.37
0.35
0.35
0.37
0.40
o.44
0.30
0.30
o.32
0.34
0.38
0.37
o.37
0.39
0.41
0.46
0.37
0.37
0.38
0.40
o.44
o.4t
0.41
0.42
0.43
o.47
0.34
0.34
0.35
0.37
o.4L
o.4r
0.41
o.42
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Chapter 5 Texture Segmentation Experiments

possible: (1) both vectors from class 1, (2) both from class 2 and (3) they are from different

classes. If the feature set is readily separable, then it is reasonabie to expect the distance

histogram to exhibit three peaks, corresponding to these cases. Since the intra-cluster

distances are typically smaller than inter-cluster distances, the peaks for the same-class

feature pairs are on the left-hand side of the distance histogram. Very often, these two

peaks overlap each other, so only a single peak appears on the plot. The inter-cluster

distances appear as a separate peak to the right of the intra-cluster peak(s). Figure 5.2

illustrates the relevance of the peaks for a feature set extracted from a 2-texture mosaic.

The plots clearly show the desired properties for a separable feature set, with the intra-

cluster histograms possessing peaks at a far lower distance value than the inter-cluster

histogram. The intra- and inter-cluster histograms are constructed with the knowledge of

a known ground truth of the 2-texture mosaic.

For a multi-class problem, the average intra-class distance can be quite different for

the different classes. Also, the average inter-class distances between any pair of classes

can vary significantly. The result is the presence of multiple peaks which may overlap

one another, hence reducing the usefulness of the distance histogram as a visual tool

to estimate separability. Figure 5.3 illustrates this particular problem for a five-texture

mosaic. \Mhile there is only a single peak in the histogram, there are clearly multiple

"knee" points, which is an indication that there are several peaks overlapping each other.

This phenomenon is apparent for the case illustrated in figure 5.4(a).

The problem is even more pronounced for the sixteen texture mosaic, as shown in

figure 5.4. Due to space constraints, distance histograms of separate intra- and inter-

cluster combinations are not individually calculated. Fþom the distance histogram over

the whole image, it is apparent that all the individual intra- and inter-cluster peaks overlap

to form a smooth distribution of distances.

In tight of the previous discussions, the distance histogram method is best suited

to gauge the separability of two texture problems among the techniques described in

this section. In order to examine the merits of DT-CxWT and DWT feature extraction

schemes, the histograms of four different two-texture mosaics are computed.The same

feature conditioning parameters are used for both transforms. In other words, the only

difference in the feature extraction process is with the type of transform used, so a direct

comparison is valid. The images can be found in Appendix A. Figures 5.5 and 5.6
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Figure 5.2. Distance histograms for two-texture mosaic D4-DB4 illustrating the relevance of difFerent
peaks. (a) distance histogram for feature pairs within class L; (b) within class 2; (c)
difterent classes and (d) overall histogram. The peak for inter-class distance is clearly
greater than intra-class distances for both class 1 and 2. Parameters used for feature
extraction: DT-CxWT, depth 3, Kaiser window, þ :0.

show the distance histograms obtained. These histograms are computed from 106 pairs

of feature vectors, selected randomly from extracted feature sets. This is approximately
3% of all possible pairs for these input images. It has been found from experiments that
an exhaustive computation of all combinations does not provide extra information on the
shape of the distance histogram. Therefore, a small subset of these pairs is chosen to
reduce the computation requirements.
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Overall
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Modified distance

Figure 5.3. Distance histogram for a five-texture mosaic (Nat 5c). The inter-cluster distance his-

tograms for all distinct pairs of clusters are shown in blue, while the intra-cluster his-

tograms are shown in black. At the top is the overall distance histogram for all clus-

ters combined. The green line indicates the position of the furthest right intra-cluster
peak, while the red line shows the position of the furthest left inter-cluster peak. Fea-

ture extraction parameters: 3-level DT-CxWT transform, Kingsbury filter pairs, Kaiser

smoothing window with B:3, sigmoidal non-linearity.

From figures 5.5 and 5.6, it can be seen that the DT-Cx\MT features exhibit a classic

two-class distance histogram for three of the four input images. There are clearly two

distinct peaks, well-separated from each other by a valley. For the DWT features, the his-

tograms are not as good. Input images D4-D84 (figure 5.5(a)) and D5-D92 (figure 5.6(a))

did not produce the desired "twin peaks" histograms, but there exist noticeable curva-

ture changes, or "knees", on those plots. A clear knee also exists for DT-CxWT features

extracted from image D5-D92 (figure 5.6(b)). These knees exist when the peaks corre-

sponding to average intra- and inter-distances are close to each other. It was found in

l2a] fhat feature sets with a noticeable curvature change in the distance histogram have

comparable segmentation performance as those with two distinct peaks. Thus, it can be

concluded from the distance histograms that the features extracted in our experiments

- - - Max lntra-cluster peak
Min lnter-cluster
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D¡stance Histogram Distance Histogram

Space dislance dn" Ê"atrrå.p""å dn"

(a) Nat 5b (b) Nat 16b

Figure 5.4. Distance histogram for the five- and sixteen-texture mosaics (Nat 5b and Nat 16b).
Feature extraction paremeters: 3-level transforms, Kaiser smootlting window w¡th B : B,
sigmoidal non-linearity.

show good separability, which in turn suggests that good segmentation performance can
be expected. Comparing between the transforms, the DT-CxWT features exhibit better
distance histogram characteristics than the DWT features in general, simply because their
histograms have more easily distinguishable peaks.

A comparison between different values of B for the Kaiser smoothing windows is
presented in figure 5.7. For simplicity, a single two-texture mosaic (input image D4-
D84) has features extracted using a 3-level DT-CxWT with different values of B for
the smoothing window. For þ : 0, when the Kaiser window is simply a rectangular
window, the distance histogram exhibits excellent peak characteristics (figure 5.7(a)).
The same applies when p : 3, which is found in figure b.b(b). However, it has been
noticed that as p increases, the intra- and inter-distance peaks converge towards each
other until the valley between them disappears entirely (figures 5.7(c) and b.Z(d)). This
behaviour is not surprising, given that greater values of p decrease the spatial width of the
smoothing window. As a result, larger values of. p lor the smoothing window reduce the
uniformity of features within the same cluster, because the windows would have a smaller
effective size (figure 5.1). Indeed, the raw features are highly oscillatory, so an unsmoothed
(corresponding to 0 - *) feature set would have a unimodal distance histogram. Thus,
the benefits of a smoothing process is apparent from the distance histograms. However,
the optimal value of p varies from case to case, and hence a large range of values is used
in the experiments.
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Figure 5.5. Distance histogram for two-texture mosaics D4-DB4 and D8-D84. On the left-hand side

are the histograms for DWT features, while the right-hand side shows the histograms for

DT-CxWT features. There are clear differences in the histograms, with the DT-CxWT
features exhibiting the classic twin peak distribution characteristic of separable feature

sets. Feature extraction parameters: 3-level transforms, Daubechies 9-7 and Kingsbury
filter sets, Kaiser smoothing window with B : 3, sigmoidal non-linearity.

5.2.4 Summary of Feature Separab¡l¡ty

Combining the results of the three separability measures, it can be concluded that the

feature extraction process described in Chapter 3 is capable of producing feature sets

with good separability. However, all of these measures only focus on particular aspects

of a feature set, and their results are not conclusive proof of separability. Ultimately, the
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Figure 5.6. Distance histogram for two-texture mosa¡cs (continued). The images are D5-D92 and
D72-DL7; left-hand side are DWT histograms, and right-hand side are from DT-CxWT.
Again, the DT-CxWT features show better separability characteristics than the corre-
sponding DWT features. Feature extraction parameters are the same as for figure 5.5.

quality of the extracted features is determined by the final segmentation results. These
will be discussed in the following sections.
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5.3 Experiments w¡th K-means

This section presents the results obtained from segmentation experiments obtained with
K-means clustering method. While the previous section presented the separability of
extracted feature set, it is necessary to examine the segmentation results in order to
verify the true quality of the features.

Table 5'5 shows the segmentation results obtained from different wavelet features, for
the entire suite of 115 input images. These tables are condensed as much as possible for
brevity; a full collection of result tables can be found in Appendix B. These results provide

direct comparisons between different transform types, depths and smoothing methods.
The table 5.5 is organised into a number of columns. The left half of the table spanning
the first four columns contains the segmentation error rates for median-filter smoothing.
These are further distinguished by the type ("C" for DT-CxV/T, ,,D" for DWT) and
the depth (2 or 3) of transform used. The right half of the table shows the results from
Kaiser window smoothing. This is also separated into four columns showing the different
transforms and depths used.

Table 5.5. Condensed results of lf-Means experiments. The best error rates (%) are shown for
each input image. This condensed table of results only shows the best case; a full set of
results for all values of B is found in Appendix B.
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J

3
5

2
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2

3

5

2
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2

2

5
5
8
2

3

3
3
2
3

3

2
ð
3
5

2

0
2

0
1

1

0
2

34
0
3
2

23.28 2

8.87 0
6.60 2

15.50 5

16.13 5
20.81 0
18.62 13
28.7t 2
7r.32 1

18.52 2

10.37 13
18.57 3
22.13 0
13.81 2L
to.27 2

77.62 3
6.73 3

24.38 5

4.89 5

13.96 2
5.65 0

21.36 3

5.66 1

t4.92 0
4.64 3

9.4r 1

2.39 5

4.05 1

14.00 0
19.70 3
15.89 3
10.60 3

L4.77 3

35.21. 0
8.07 1

7.2t 3
12.00 1

t4.54 1

2t.t7 0
4.77 3

25.30 2

8.90 2

l-0.41 1

37.70 3
8.40 0

18.76 5

12.38 3
6.13 1

17.76 2

9.55 1

9.47 1

23.32 1

9.92 5

3.34 2

2t.t7 1

28.94 8
8.56 1

25.00 5

8.33 3

5.86 1

28.4t 1

4.89 2
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0
0
0
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0
0
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0
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7.74
3.93
7.64

25.54
5.06

33.87
25.18

6.20
28.03
16.20
16.33
25.39
29.91
19.57
8.89

26.84
19.46
3.08

23.99
4.44

32.37
L4.94
17.60
4.94

13.43
2.77

33.23
2.O7

5.74
35.20
18.17
6.83

28.10
14.67
25.98
6.03
6.35

25.76
t3.62
4.92

29.67
9.11
6.78

22.45
5.58
5.40
9.69

26.18
7.01
7.60

25.60
13.97
r9.37
2.76

t7.46
21..O2

7.42
31.20

5.95
t7.2t
15.89
4.36

28.22

8.33 I
16.38 8
12.38 13
5.58 3

6.62 0
28.09 0
20.76 1

27.87 I
36.87 34
11.37 0
15.70 3

13.43 21
11.78 2
7.7t 1

13.01 2l
28.92 2

24.55 1

5.50 3

24.L5 2

28.t4 1

33.04 0
15.73 2

L4.L4 2

5.49 2
t2.23 2

3.86 3
9.06 2

2.38 3

28.09 1

34.43 2

18.93 3

t7.4r 3

9.55 2

t4.o4 2

28.62 0
11.33 1

25.62 0
28.42 0
1l-.68 1

4.5t 3

21.68 2

28.23 2

9.66 1

7.51 1

25.30 1

6.54 0
7.97 0

10.20 3
2t.57 0
20.22 8
23.13 2

15.85 13
14.94 0
21.18 1

3.t4 3

19.52 0
2r.64 0
7.89 0

15.93 1

8.25 3

4.43 5

20.14 0
5.88 2

2r.28 5
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C2M D2M C3M D3M DT-CxWT 2
(%) p

DWT 2
(%) p

DT-CxWT 3
(%) B

DWT 3
(%) 0

bonn 76
oonn / I
bonn 78
bonn 79
bonn 80
bonn 81
bonn 82
bonn 83
bonn 84
bonn 85
bonn 86
bonn 87
bonn 88
bonn 89
bonn 90
bonn 91

' bonn 92
bonn 93
bonn 94
bonn 95
bonn 96
bonn 97
bonn 98
bonn 99
Nat l-0
Nat 10v
Nat 16b

29.39
49.t7
23.24
32.55
5.69

L2.54
48.65

6.O4
33.15
2L.56
24.34
33.31

7.88
4.50
5.58

42.60
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29.73
7.48

13.96
24.65
31.79
35.52
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30.34
43.63
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36.18
35.71
25.57
33.78
t7.97
37.O2
43.74
24.58
12.22
28.52
29.38
37.16
14.T2
7.82

11.33
22.92
26.52
rt.o4
13.84
19.74
29.22
29.64
29.60
28.38
54.82
55.98
62.O4

29.56
49.53
25.81
46.54
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26.93
49.O7
22.70
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26.60
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37.58
21.80
32.85
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37.68
4.72

27.72
30.58
17.76
24.96
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62.26
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35.02
49.44
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33.25
L2.2t
37.10
49.27
28.03
36.35
34.86
27.89
40.84
23.O2
8.27

26.23
30.18
25.62
t4.o2
3t.49
26.O4
53.05
9.52
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17.33
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0

3
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3

0
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3
5
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3
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2
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3
J

1

7.28
39.94
16.86
12.99
5.87
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40.78
5.85
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11.95
18.78
31.04

t.oð
5.15
4.46

16.95
4.16

23.52
5.69

13.01
77.29

5.O2

7.77
4.08

17.83
36.05
37.94

9.19 1

27.76 1

18.69 3
75.48 0
8.18 2

23.77 1

30.64 1

7.98 1

7.79 3

15.83 0
16.46 5

12.50 3
7.38 5

6.37 2

5.07 3
15.40 3

4.98 1

24.88 3
7.01 2

15.64 0
19.67 0
8.28 2r
9.81 0

16.26 3
29.76 0
38.44 3
41.00 0

6.92
40.22
16.75
11.60
4.83

t2.4t
37.83
4.59
6.15

11.87
78.44
31.10
7.68
4.29
5.06
9.88

27.72
7.6r
6.30

14.76
15.69
4.7r
7.52
3.67

13.07
34.20
30.72
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5

0
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0
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1

1

ò
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I
2

U

2

1
,
8
t
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t

0
0

10.99 0
36.16 2L
19.00 3
24.35 2

6.68 2

25.16 1

37.08 2

6.37 5

6.22 5

16.05 0
t7.41 0
31.60 3

8.03 5

6.51 1

4.93 3
23.75 8
8.59 2t
8.98 0
8.04 0

15.42 0
16.79 0
5.60 5

16.33 1

4.72 2

23.10 0
32.68 0
37.54 0

An executive summary of results is presented in table 5.6. This smaller table provides

a direct comparison between different transform types, depths and smoothing methods.

The quantities calculated are the overall mean, median and the 95% confidence inter-
vals on the means. It is assumed that the error rates of different images form a normal
distribution. The confidence intervals are thus estimated using the ú-distribution [40].
Two observations can be drawn from table 5.6. Firstly, it is clear that the Kaiser win-
dowing method gives superior results when compared with the median filtering method.

On average, the Kaiser filtering method gives error rates approximately 10% lower than
the median filter smoothing method, which is a very significant difference. This can be

explained by the fact that the Kaiser windows are more flexible than median filters, since

they have a freely adjustable window shape parameter in p. This added flexibility allows

the Kaiser windows to better adapt to different textures. Secondly, it is found that a

depth 2 DT-CxWT gave the best results with K-means clustering, followed by a depth
2 DWT, then depth 3 DT-CxWT and lastly, depth 3 DWT. This trend remains true for
both Kaiser and median filter smoothing methods. However, the differences in perfor-

mance between the different transform types and depths are not very large, with the gap

being a mere 2.2%. It is evident that the added complexity of depth 3 transforms gave the
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simple K-means algorithm problems; the extra information in the additional subbands in-

voked the infamous "curse of dimensionality". However, the depth 2 DT-Cx\MT features,

with 28 dimensions, managed to slightly out-perform the lO-dimensional, depth 3 D\MT

features. This is evidence that the DT-Cx\MT is more suited to texture feature extraction

than the D\ /T, which was expected, since the DT-CxWT has superior directionality and

shift-invariance over the conventional DWT.

Table 5.6. K-means results executive summary. The overall mean and median error rates for the
difFerent transform/smoothing combinations are listed in this table. ln addition, the 95%

confidence interval for the means are shown.

Transform type/depth Median Filtering Kaiser !'ilterin
Mean Median 95Yo C.I. Mean Median 9570 Cl.I.

DT-CxWT2
DT-CxWT3

22.10
26.85

24.11
27.44

(t9.74,24.46)
(24.58,29.r1)

13.96

15.01

(12.13,15.80)
(13.12,16.90)

10.58
13.07

DWT2
D\MT3

26.60
29.94

(24.24,28.97)
(27.6t, 32.28)

27.54
29.39

t4.79
16.1 1

13.81
t5.20

(13.12,16.46)
(14.35,17.88)

Overall, the K-means segmentation results for 2-texture mosaics are good, with the

algorithm achieving error rates of less lhan 3To for the Kaiser smoothing cases. These are

simple input images, with a single straight boundary separating the two textured regions.

However, the results show that the texture features are very capable of distinguishing

between two different textures. The results for the 2-texture mosaics compare favourably

to those in the literature. For example, the DL2-DI7 mosaic was segmented by Randen and

HusØy in their experiments [6a]. They reported segmentation error rates between 2.1%

and 30.0% for their various optimised texture feature extractors. In contrast, the results

in table 5.5 shows the error rates to be between I.73% and 2.80% for the same mosaic.

In order to further explore the performance of the algorithm for 2-texture segmentations,

several qualitative experiments are performed using different texture mosaics. The left-

hand column of figure 5.8 shows a set of 2-texture mosaic consisting of Brodatz textures.

These are constructed from the same textures as those used in the K-means experiments,

but with a different set of separating boundaries. These images consist of a uniform

background texture, on which exists a cross-shaped region in the middle with another

texture. The boundary between the two textures is much more complicated than in

the previous 2-texture mosaics. These additional experiments on more demanding cases

are aimed at increasing the confidence in the ability of wavelet features to distinguish

between a given pair of textures. Table 5.7 shows the results of the 2-texture cross mosaics
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segmentations, and the right-hand column of figure 5.8 shows the visual segmentation

results. The results follow a similar pattern to the simpler 2-texture mosaics, namely,

that all cases except D5-D92 have excellent error rates. While the results are not as

good as the simpler mosaics', the error rates are still below 3c7o for most cases. Fbom

figure 5.8(c), it is seen that the two constituent textures of D5-Dg2 are visually very
similar, and the cross boundary is difficult to Iocate even with the human eye, which
accounts for the unusually poor segmentation performance for this case. Compare this
situation with the other three mosaics, where the differences between the textures are

more obvious to human interpretation, it is reassuring to see this set of segmentation

results aligning with human intuition. In summary, there is strong experimental evidence

in the combined results to suggest that the texture features described here are capable of
distinguishing pairs of textures.

Table 5.7. Segmentation results for 2-texture cross mosaics. The best error rates (%) for the four
images are shown here.

Image DT-CxWT2 DWT2 DT-CxWT3 D\MT3
D4-D84 cross
D5-D92 cross
D8-D84 cross
D12-D17 cross

1.65

8.06
2.37
2.30

3.22
9.t7
2.I7
2.68

1.83
7.69
2.36
2.34

4.07
9.85
2.75
2.9r

The K-means results are much more complicated for the input mosaics with more
textures. The increase in complexity from having more constituent textures make the b-,

10- and 16-texture segmentation problems far more difficult than for the 2-texture cases.

The error rates for these mosaics range from 3To to 4I% for the Kaiser filtering cases.

For the median filter smoothing method, the results are even worse, with the highest

error rate being 65%. From these experiments, it can be concluded that Kaiser window
filtering is superior to the median filtering method. However, the performance for the
multi-class cases is relatively poor when compared with the 2-texture cases. This fact has

already been indicated by the distance histograms of those multi-class cases; the peaks

among and between classes overlap to make a pure distance-based clustering algorithm
ineffective. This problem will be addressed in section 5.5.

The important parameter in the Kaiser smoothing cases is B, which controls the
effective width of the window (section 3.4.3). An appropriate choice of p would improve

the segmentation accuracy tremendously, a fact borne out from the experimental results.
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Chapter 5 Texture Segmentation Experiments

Figure 5.8. Visual segmentation results for 2-texture cross mosaics. (a) Da-D8  cross, (b) D4-

DB4 cross segmentation, (c) D5-D92 cross, (d) D5-D92 cross segmentation, (e) DB-

DB4 cross, (f) DB-D84 cross segmentation, (g) D12-D17 cross, (h) D12-D17 cross

segmentation.
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In fact, different values of. B may yield extremely different segmentations; this can be

seen in the detailecl result tables in Appendix B. This wild variations in segmentation

accuracy can be explained by the differences in texture primitive sizes in some cases.

The original motivation to use window smoothing on features ,ù¡as to average wavelet

features over the size of primitives present in the textures. For example, consider the
input image D5-D92 shown in figure 4.9. For 0 : L, the smoothing window's effective

size is sufficiently large to adequately smooth the texture features; the windowed area

captures the information of the constituent textures. The result is a good segmentation

of the regions (see figure 5.9(a)), with the errors mainly occurring at the boundaries.

However, for B : 34, the smoothing window becomes too narrow, and. the windowed

area is too small to capture the characteristics of the textures. This results in a poor
segmentation, with many small residual regions, as shown in figure b.g(b).

-1 :34
Figure 5.9. EfFect of B on segmentation for Kaiser smoothing windows. Segmentation results for

image D5-D92, using: (r) þ : I, (b) P : 34 as the feature smoothing parameter.
Other feature extraction parameters: DT-CxWT, Kingsbury filter pair, transform depth
3.

In light of the importance of the B parameter, it is interesting to examine the segmen-

tation results for different values of B across the suite of input images. Table 5.8 shows

the frequency of optimal p's for all the cases. White there is a fairly uniform distribution
for low values of p, values of optimal B greater than 8 occur far less often. In fact, in
only one case cloes the optimal p equal to 55, the largest value used in thc experiments.

Therefore, a general recommendation is for small values of B when extracting features for
Brodatz-like textures.

This section has presented results from the extensive texture segmentation experi-

ments performed on the suit of input images. The wavelet texture features have been

shown to be effective in distinguishing between two textures. Good segmentation perfor-
mance was achieved for such cases. However, the performance for multi-class cases is less

satisfactory. In some cases, the y'f-means algorithm produces very good results, but fails
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Table 5.8. K-means results executive summary - paft 2. The optimal Kaiser window B param-

eter values for all images, transform types and depths are tallied from the K-means
experiments to produce the distribution of optimal B.

TYansform type/depth p
0 1 2 3 5 8 13 2134 55

DT-CxWT 2

DT-CxWT 3
DWT 2

DWT 3

13 15 28
24 19 2t
20 28 18

30 26 22

24
15

26
17

19

10

13

I

5

11

2

5

4
5

5

3

0
0
0
1

1

4
1

1

6

6

2

4

in some others. It is suspected that the primary problem is due to the added complexity

of having multiple classes, each with its own feature space distance distribution. Over-

all, the experiments showed the Kaiser filtering method to be far superior to the median

filtering method for feature smoothing. It was also discovered that the DT-CxWT fea-

tures produced consistently better segmentation results than the DWT features, while a

transform depth of 3 is less successful than a depth of 2.

5.4 Experiments w¡th Fu K-means

In this section, the results from experiments using fuzzy K-means clustering is presented.

Table 5.9 shows the segmentation results obtained for the entire suite of 115 input im-

ages. Only the Kaiser window smoothing method is considered in these experiments, as

it has been shown in the previous section that this is superior to median filtering for

wavelet texture features. The result tables are organised into four main columns, each

corresponding to the four different wavelet transform type and depth combinations used

in the experiments.

Table 5.9. Condensed results of Fuzzy lf-Means experiments. The best error rates (%) are shown

for each input image. This condensed table of results only shows the best case; e full set

of results for all values of lj is found in Appendix B.

D'I'-CxW'I'2
(%) p

DW'I'2
(%\ p

D'l'-CìxW'l'3
(%) p

ljw r' 3
(%\ ß

D4-D84
D5-D92
D8-D84
DI2.D17
My 5a
My 5b
Nat 5b

2.27
2.38
0.66
2.2t

13.34
6.68

14.67

2

1

8

5

1

0

0.78
2.6t
0.61
1.95

12.05
6.7L
7,25

2

2

I
13

2

1

4.08
2.54
0.81
r.62

t7.71
9.09

to.47

2
0
5

3

1

1

0

l.0t 5
2.43 0
0.37 55
t.46 8

15.58 1

6.68 5
8.07 0
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p
3
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Nat 5m
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tr.74
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13.15
8.11

16.58
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9.01
2.40
3.30
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13.45
11.54
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18.85
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11.84
10.01
4.52
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8.94
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16.34
26.t5
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t0.L4
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5.79
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3

22.64
7.66

L4.62
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Overall, the average segmentation error rate achieved varies from LI. To To t5.6To,

depending on the type and depth of transform used. Thus, the segmentation performance

of fuzzy K-means is comparable to conventional K-means. This fact is clearly illustrated

in the direct comparison with conventional K-means in table 5.10. The average error

rate is only slightly lower for finzy K-means, with the difference being approximately

ITo to 2To. However, the median error rate wlth fizzy K-means is much lower, with the

difference from conventional K-means being approximately 3% to 4%. This suggests that

lhe finzy /l-means is more likely to produce better segmentation result than conventional

K-means, but it can also have greater variations between results. The performance order
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of the various wavelet transforms is exactly the same as for conventional K-means; 2-
level DT-CxWT gave the best average segmentation performance, followed by 2-level
DWT, 3-level DT-CxWT and 3-level DWT. For 2-texture mosaics, the results favour
conventional /(-means over finzy K-means, with the former producing slightly lower
error rates. However, the reverse is true for 5-texture mosaics, with the finzy K-means
algorithm having lower error rates, by as much as 4To on average.

A disadvantage of the fizzy K-means algorithm is the extra computational require-
ments over conventional K-means. In these experiments, a value of 10-5 is used for the
termination constant e (equation (4.11)). This value was found to be sufficient to pro-
duce decent clusterings without requiring too many iterations. However, an average of
120 iterations are necessary for 5-texture mosaics when 3-level DT-CxWT features are
used. In comparison, only 30 iterations are needed by conventional K-means on average.
On top of this, each iteration of the fiizzy K-means algorithm is slightly more expensive
computationally than conventional K-means. Therefore, there is a significant computa-
tional penalty associated with using the fuzzy K-means algorithm to cluster the texture
features.

Table 5.10. Fuzzy K-means results summary and comparison. The overall mean and median error
rates (%) from the fuzzy K-means experiments are shown for different transform types
and depths. The 95% confidence intervals for the meen error retes ere also listed.
Corresponding quantities for conventional lf-means are repeated from table 5.6 to
facilítate direct comparison.

tansform type Conventional-
Mean Median 95% C.I.

DT-CxWT3
13.90

15.01
10.58
13.07

(12.13, 15.80)
(13.12,16.90)

73

14.93 9.83 12. 77.26
1 9.89

10.95
14.09

15.59 (13.36, 17.83

DWT2
DWT3

t4.79
16.1 1

13.81
15.20

(13.12, 16.46)
(14.35, 17.88)

Table 5.11 shows the variation of the optimal Kaiser smoothing parameter value for
the fuzzy K-means experiments. As in section 5.3, the optimal B values are found from
experiments on the test suite with known ground truths. A similar trend to that from the
K-means experiments is observed. There is a heavy concentration of small p values, with
optimal p greatet than 8 occurring infrequently. There is only a sprinkling of genuinely
high values of optimal p. This indicates that the finzy K-means algorithm also relies on
heavy smoothing on the features to be abie to effectively segment the texture mosaics.
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Table 5.11. Fuzzy K-means results summary - part 2. The optimal Kaiser window p parameter

values for all images, transform types and depths are tallied from the fuzzy -If-means

experiments to produce the distribution of optimal B'

TYansform type/depth
t2 132

DT-Cx\MT 2

DT-CxWT 3

DIMT 2
D'WT 3

713100
135 3 4 t 1

28 26

513102
107 6 r 2 2

27
50
43

I4
24
74

26 23

23 24

t4 15

13 17

In summary, the texture segmentation results from the hnzy K-means algorithm

on wavelet-based features supports the findings from the earlier experiments with con-

ventional l(-means clustering. That is, the algorithm can segment between two-texture

mosaics very well, but has difficulty with the complexities of multi-texture mosaics. In

terms of the wavelet-based features, the same conclusions can also be reached as from

the K-means experiments, namely that the DT-CxWT is demonstrably better than the

DWT, while a lower transform depth of 2 gives better segmentation performance than a

depth of 3.
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5.5 A Modified K-means Clusterin

By their nature, textures are spatially extensive phenomena; it is impossible to define
the texture in terms of a single pixel, because that would carry no meaning. When a
pixel is said to belong to one texture, it implicitly means the surrounding area around
the pixel resembles that particular texture. This fundamental property can be exploited
in the clustering algorithm, by considering spatial location information when making the
clustering decisions. The rationale is that, if a pixel belongs to one particular texture,
then it is highly likely that its immediately neighbouring pixels also belong to the same
texture.

The classic /(-means clustering algorithm used in the experiments presented in sec-
tion 5.3, and the closely related fizzy K-means algorithm used in section 5.4, do not
take into account spatial information. The algorithm considers each feature vector exclu-
sively in the feature space, without ever being aware of the spatial location that vector
corresponds to' While this is fine for general pattern recognition problems, this leads
to relatively poor performance for texture segmentation, where spatial localisation is an
inherent part of the problem. From table 5.5, it is evident that some cases have very
high error rates when the K-means algorithm is used. The poor performance principally
occurred in multi-class input images which contain more than 2 different textures. These
are precisely the cases where a pure feature space distance-based algorithm has problems
dealing with the extra complexity resulting from having multiple textures in the same im-
age' In contrast, the K-means algorithm proved to be adequate in segmenting 2-texture
images. Section 5.2.3 has already predicted the likely difficulties with multiple textures
from the feature space distance histogram technique. In light of these difficulties, it is
proposed that a possible "locality rule" be built into the existing texture segmentation
algorithm in order to successfully segment multi-texture images.

5.5.1 Modification to Existing K-means

For the case of K-means clustering algorithm, a locality rule can be achieved by using
the following modified distance in the cluster update step:

d(x¿,x¡):(1 -À)tl*n(k) -x¡(k)l +À(zo -njl+lan-a¡l), 0<À<1 (5.1)
k
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where (r¿,Aù and. (r¡,y¡) are the coordinates of the pixel in the image. These coordinates

are normalised with respect to the image dimensions. The first term of equation (5.1)

is the Manhattan distance in feature space; this measures the degree of dissimilarity

between two feature vectors. The second term is the distance in geometric space, which

measures the spatial separation between the locations of the two feature vectors. The

parameter À is freely adjustable to shift the relative emphasis between the two distances.

It is constrained to lie between 0 and 1, obviously to keep both distance contributions

non-negative.

In generai, a good segmentation should consist of a collection of homogeneous re-

gions devoid of small holes in the interior. In this spirit, the motivation behind the use

of the modified expression in equation (5.1) becomes clear: its purpose is to provide bal-

ance between the twin objectives of high intra-cluster homogeneity and ciuster integrity.

Occasionally, these two objectives conflict each other, and the magnitude of the free pa-

rameter I can be adjusted to emphasise a particular objective, be it feature similarity

or spatial compactness. For this reason) the free parameter À will be called the spati'al

prorim,ity factor. A low value of À would emphasise the feature space similarity within the

clusters, while a high value would discourage the formation of smali, disjointed clusters.

This trade-off built into the modified distance measure provides a flexibility that proves

to be efiective for multi-class segmentation problems. In contrast, the classic K-means

simply seeks to minimise the feature space error objective, which amounts to promoting

high intra-cluster similarity only. This often produces segmentations with many small

residual regions within large homogeneous clusters. These can be due to small irregu-

larities within a texture pattern, but they can also be artifacts from an inappropriate

initialisation scheme. Unfortunately, these residuai regions can have a devastating effect

on the K-means algorithm as it re-iterates the cluster updating process. If there are

many erroneous, disjoint regions in one segmentation, then the cluster statistics (most

notably class mean) witt be skewed for subsequent iterations. In extreme cases, the al-

gorithm is incapable of recovering from incorrect class means, and it converges to a poor

segmentation. The introduction of a spatial distance term adds a levei of robustness to

the algorithm, as it becomes more likely that small disjointed regions wili be eliminated

as the algorithm iterates.
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5.5.2 Expected Behaviour of Modified K_means

Before examining the effects on experimental results with modified K-means clustering,
it is important to first consider the behaviour of the clustering algorithm as À is varied.
In particular, it is interesting to examine the likely effects of different values of À on the
segmentation error rate. In the following discussion, it is perhaps simplest to consider
the error rate as a function of À, and examine its variations as À is increased fron 0 to
1' Firstly, when À:0, the modified K-means algorithm reduces to the classic /(-means
with the Manhattan distance metric. This performs a feature space-only segmentation,
and can often produce poor results due to the presence of many residual regions and,f or
incorrectly merged clusters. Next, consider the effects on error rates for small values of À.
\Mith the increase in I (from 0), the influence of the spatial distance term increases, and
that has the effect of eliminating some of the residual regions, which usually reduces the
segmentation error rate. If À is increased further, it is expected that the size and number
of residual regions will gradually decrease, resulting in a corresponding decrease in the
error rate.

In addition, as À is increased further, a second effect is expected to takes place. It has
been noticed that one of the reasons for the poor performance of conventional ¡{-means
segmentations for multi-class cases is that two or more distinct clusters are incorrectly
grouped together, often in the early iterations of the algorithm. The conventional If-
means algorithm would be unlikely to recover from the mixing of means that results
from such a situation, resulting in highly erroneous clusterings. This phenomenon is
usually caused by poor initialisation, and is a difficult problem to avoid. However, with
the introduction of a spatial distance term, two incorrectly merged clusters can be split
during the modified K-means process if the value of À is sufficiently large to discourage
the inappropriate combining of two or more separate clusters. In a sense, the spatial term
has the ability to f<rrce the algorithm to scrutinise all the clusters and check whether there
are actually incorrectly merged clusters, due to the penalty imposed by a large spatial
distance term. When the value of À is increased to a point where this effect occurs,
the clustering result is dramatically improved, as evidenced by a large d.ecrease in the
segmentation error rate. The value of ) that produces this sudden improvement is called
a lock-on point, in lack of a better name. It is as though, beginning with this value of À,
the modified K-means algorithm is locked onto the correct clustering. As I is increased
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beyond the lock-on value, neither the segmentation results nor the feature space distortion

measures change greatly. However, if À is increased indefinitely, it will eventually reach a

point when the spatial term dominates the feature distance term, and the segmentation

algorithm fails. In the extreme case, the segmentation process becomes entirely dependent

on the spatial coordinates of features, that is, the locations of the pixels. The result of

this is a simple partition of the rectanguiar image with maximal geometric separation

among the regions, thus, ceasing to be a segmentation based on texture information.

Obviously, that wili produce meaningless results in the current context, and it presents

a genuine danger in applying the modified K-means method. The value of À for which

the spatial term begins to dominate the clustering process is called lhe breakdown point.

At this point, the error rate plot would exhibit a sudden, Iarge increase that reflects the

failure of the algorithm. In the general case of an unsupervised segmentation, where

the ground truth is not known, the error rate information would not be available for this

monitoring method to apply. A possible method to handle this difficulty will be presented

in section 5.5.7.

It was observed in experiments that the error rate plots against values of À usually

adhere to the expected trend as described above. Figure 5.10 illustrates this for the 5-

texture mosaic "Nat 5c" from the suite of images used in the experiments. It is noticed the

segmentation error rates are sometimes quite sensitive to changes in À near certain values.

That is, the error rate, as a function of À, is not smooth. In practice, the limit of usefui

values of I (i.e. before breakdown occurs) are usually much less than 0.5. Obviously, the

exact value varies from case to case, and methods to estimate the useful values of À are

very desirable in the application of modified K-means. This topic is further discussed in

section 5.5.7.

5.5.3 Distance Histograms for Modified K-means

The distance histogram technique has been found to be a useful indicator in estimating

the separability of a feature set in section 5.2.3. It was particularly effective for two-

texture images. It would be interesting to examine the effects of the spatial proximity

factor on the separability of the feature set for the modified K-means clustering. To

accomplish this, it only requires applying equation (5.1) while calculating the modified

distance between a pair of feature vectors. Since the modified K-means algorithm was
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Error vs I: modified K-Means clustering
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Figure 5.10. Error rate vs ) for modified I(-means clustering. lnput image used is "Nat 5c,,, feature
extraction parameters: depth 3 DT-CxWT transform using Kingsbury filter pair, Kaiser
smoothing window parameter þ : J, random cluster initialisation.

designed to assist multi-class clustering, there is little purpose in computing the modified
distance histograms for 2-texture mosaics. On the other hand, mosaics with many textures
are very complex, and their distance histograms get quite complicated, making it difficult
to ascertain the value in examining their histograms. Therefore, 5-texture mosaics are
considered. They are multi-class without being overly complicated, and their histograms
still exhibit several clear characteristics.

Figures 5.1t(a)-(f) illustrate the modified distance histograms of the input image Nat
5c for a range of different À parameter values. It is clear that the modified distance does
not significantly alter the general shape of the curve for small values of ). In this case,
there is no noticeable difference in the histograms for À < 0.1. For larger values of l,
the intra- and inter-cluster peaks, or in this case, the knee (intra-cluster) and the main
peak (inter-cluster), are brought closer to each other. Despite the clear existence of a

030.20

l.
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(a) À:0 (b) À :0.05 (c) À : 0.10

(f) À : 0.40(d) À : 0.20 (e) À : 0.30

Figure 5.11. Modified distance histogram for five-texture mosaic, Nat 5c, for different values of À.

The style of these plots are the same as in figure 5.3. Feature extraction parameters: 3-

level DT-CxWT transform, Kingsbury filter pair, Kaiser smoothing window with B : 3,

sigmoida I non-linearitY.

"twin-peaks" characteristics when À : 0.4, the fact that the peaks are closer together

makes distinguishing between intra- and inter-cluster pairs more difficult. The modified

K-means clustering algorithm will have more problems distinguishing between intra- and

inter-cluster pairs, causing the poor performance at large values of À. Figures 5.12(a)-(f)

provides further illustration of this phenomenon. It is evident that, as À increases, the

histograms for inter-cluster pairs (drawn as solid lines) shift leftwards. While the intra-

cluster histograms also shift lefb, the net differences between them, in modified distance

space, are reduced. Even more revealing are the distance histograms involving each pair

of clusters. These are separated into groups by horizontal dotted lines in the plots of

figure 5.12: all five histograms involving cluster 1 (clusters are randomly numbered) are

grouped together, the other four histograms involving cluster 2 are shown above those

involving cluster 1, and the pattern is repeated. The class pair labels on the vertical axes

identify each histogram. Studying these histograms explains the shape of the histograms

in figure 5.11. AII individual cluster-pair histograms are compressed in width, and shifted

left. The compression in the widths of the peaks lead to a seeming improvement in the
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overall histogram, since narrower cluster-pair histograms superimpose to produce a more
clear-cut, "twin-peaks" characteristic. However, the left shifting of the individual peaks
also means that the overall intra- and inter-cluster peaks are much closer together, and
this has an adverse effect on the segmentation performance. It has been noticed that
when the intra- and inter-cluster peaks get significantly close to each other, the overall
segmentation performance is reduced. That is, this takes place despite the clear bi-modal
appearance of the overall histogram. In the case illustrated by figure 5.12, this degradation
in performance takes place for I greater than 0.15.

5.5.4 The Distortion Measure

In studying the behaviour of the modified K-means algorithm for variations in À, it is
useful to monitor the average distance of a pixel from its cluster centre, or d,i,storti,on, in
both the feature and geometric spaces. These quantities are defined as follows:

, 1.d,¡t":;Dl*n(k)-pnØ)l $.2)
i,tr

.t - 
1\*seo ñ Ð(l"o - tt,¿l + la¿ - ttu¿D (5.3)

where >q is a feature vector, r¿,!¿ are,th" ,prtiut coordinates of the vector; p, is the mean
feature vector of the cluster to which >q belongs, l-Luit Þyi are the mean spatial coordinates
of the same cluster. The sums are computed over all 1ú pixels in the feature image. These
quantities are computed after the convergence of the modified K-means algorithm, once
the final cluster centres are known.

It was stated in the previous section that as À is increased from 0, clusters produced
by the algorithm tend to become more compact, due to the greater effects of the spatial
distance term. Hence, it is reasonable to expect the average geometric distortion, ds.o, to
fall monotonically when considered as a function of l. As I is increased from zero, d,s"o

experiences a rapid decrease in all the cases, which is a result of the increased emphasis on
geometric space clustering. The decrease slows and stabilises as the algorithm produces
the best result, until breakdown is reached, at which poirú d,s.o decreases sharply as the
algorithm degenerates to being completely spatial. The feature space distortion, d¡r" rises
with increase in À. Initially, for small values of. \, d,¡t" rises slowly and steadily. When À
reaches breakdownr d¡ts €xp€riences a sudden increase.
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Figure 5.12. Modified distance histograms for five-texture mosaic, Nat 5c, for different values of
À. Histograms for all pairs of clusters are illustrated; the plots are in the same style

as figure 5.3. Feature extraction parameters: 3-level DT-CxWT transform, Kingsbury
filter pair, Kaiser smoothing window with B:3, sigmoidal non-linearity.
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Figure 5.13. Distortion plots. The feature and geometric distortions are plotted against À. d,¡ts ere
plotted as green solid lines, while d,s.o are plotted as blue dotted lines. Feature extracted
with depth 3 DT-CxWT, Kingsbury filters, Kaiser window smoothing. Distortions are
calculated from the best result among 25 difterent runs of modified /{-means with
ra ndom initia lisations.

The general characteristics described above can be observed for multi-texture mosaics.
For the simple 2-texture mosaic images, the phenomena mentioned above are not readily
apparent, since the lock-on and breakdown phenomena do not occur. On the other hand,
modified K-means is not necessary for these simple images, for conventional /{-means has

been shown to be adequate to deal with these cases. For selected 5-texture mosaics, the
feature and geometric space distortions are computed and plotted against À in figures b.13

and 5.14. These figures clearly show the existence of the breakdown points forthe ,,Nat"

series of mosaics; these are points where the feature space distortion greatly increases.

In contrast, the lock-on points are much harder to locate, if unique ones even exist at
all. Instead, there is usually a continuous decrease of spatial distortion with a steady
feature space distortion. The lock-on and breakdown points are not so apparent for the
images "My 54" and "My 5b". For some complicated cases with more than b textures,
there appear several distinct lock-on and breakdown points on the distortion plots. This
can be explained using the same reasoning as described above; the multiple lock-on and
breakdown points are concerned with different pairs of clusters separating or merging
together. With many different pairs of texture clusters, the merging of any particular
cluster pair may well take place at a value of I below the value where separation of
another cluster takes place. This is a result of the greatly increased complexity when
there are many different combinations of texture pairs in an image.
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Distortion plots (continued). d¡t" are plotted es green solid lines, while d's.o are plotted

as blue dotted lines. Feature extraction parameters are the same es for figure 5.13.
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5.5.5 Results from Experiments

This section presents the results obtained from segmentation experiments obtained with
the modified K-means clustering method. Table 5.12 shows the segmentation results
obtained from different wavelet features, for the entire suite of l1b input images. These
tables are condensed as much as possible for brevity; a full collection of result tables
can be found in Appendix B. These results provide direct comparisons between different
transform types, depths and smoothing methods. The format of presentation is identical
to table 5'5, so as to allow easy comparison between the conventional and modified K-
means results.

Table 5'12' Condensed results of Modified /f-Means experiments. The best error rates (%) are
shown for each input image. This condensed table of results only shows the best case;
a full set of resurts for ail varues of B is found in Appendix B.

2 3

% p

D5-D92
D8-D84
Dt2-Dt7
My 5a
My 5b
Nat 5b
Nat 5c
Nat 5m
Nat 5v2
Nat 5v3
Nat 5v
bonn 00
bonn 01
bonn 02
bonn 03
bonn 04
bonn 05
bonn 06
bonn 07
bonn 08
bonn 09
bonn 10
bonn 11

bonn 12
honn 13

bonn 14
bonn 15

bonn 16

bonn 17
bonn 18
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An executive summary of results is presented in table 5.13, in identical layout as
table 5'6. This smaller table provides a direct comparison between different transform
types, depths and smoothing methods. The first observation is that the modified K-means
method produced much better segmentation eïror rates than the conventional K-means
method. As with the conventional K-means case, the Kaiser window smoothing method
again demonstrates its superiority over the median filter smoothing method. Ho,ørever,
the differences between these two methods are greatly reduced, primarily due to the ab-
solute improvements in all error rates with the modified K-means method. In a reversal
to the conventional K-means case) table 5.13 shows that a DT-Cx\MT depth 3 transform
performs better, on average, than the DWT depth 2 transform. The order of different
transform types and depths for modified K-means clustering, in decreasing order of per-
formance, is: DT-cxwr depth 2, DT-cxwr depth 3, DWT depth 2 and.Dwr depth
3' This shows that, when the clustering algorithm is modified especially for multi-texture
segmentation, the DT-CxWT transforms produce features that are better for distinguish-
ing between different textures. The superior directionality and shift-invariance of the
DT-CxWT is favoured by the modified K-means algorithm.

Table 5.13. Modified /(-means results executive summary. The overall mean and median error rates
(%) for the different transform types, depths and smoothing techniques are listed in
this table. ln addition, the 95% confidence interval for the means are shown.

Tlansform type/dépth Median Filtering

DT-CxWT2
DT-CxWT3

3.41
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2.52 20,

2.6t
2.63

2.42
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(2.40,2.87)
(2.42,2.84)
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DWT3

4.86
5.39

3.22
3.63

(3.e6 5

6

.77)

.34)( 443
3.06
2.98

2.84
2.8r

(2.82, 3.30)
(2.75,3.27)
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Figure 5.15. Performance comparison between modified and conventional .Il-means. The height of

each bar reflects the average error rates; the 95% confidence intervals are coloured

in dark. From this chart, the superiority of modified over conventional ,Fl-means in

texture mosaic segmentation performance is clearly apparent.

lffhile the segmentation performance of conventional K-means for 2-texture mosaics

is quite good, the modified K-means method shows even better performance. In partic-

ular, for image D4-D84, perfect segmentation lryas achieved with a DT-CxV/T depth 2

transform and Kaiser window smoothing, while maintaining near-perfect segmentations

for other transform types and depths. The error rates are, without exception, below 1%,

for all 2-texture mosaics, using any combination of transform type, depth and smoothing

method. It should also be mentioned that the error rates for the 2-texture cases do not

fluctuate greatly between difierent B values (in the Kaiser smoothing case). In general,

the performance of the modified K-means is nearly perfect for the 2-texture mosaics -

the overall error rate across the set of 2-texture mosaics is 0.I7% for a level 3 DT-CxWT

transform. However, this result must be treated with care. The individual regions in the

2-texture mosaics are simple rectangles separated by a straight boundary. This is pre-

cisely one of the optimal solutions for a degenerate, spatial-dominated modified K-means.

OWT2 DWTS

Modifed K-means
Conventional K-means
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That is, a high value of I would artificially improve the segmentation error rates. How-
ever, the main concern with modified K-means is not with segmenting 2-texture mosaics;
conventional K-means was found to be capable of that task.

The emphasis of modified K-means is on the segmentation of multi-texture mosaics.
These have been difficult for the conventional K-means algorithm, as shown in section b.B.

Unsurprisingly, the overall segmentation performance of the modified K-means algorithm
shows vast improvements over conventional K-means for multi-texture mosaics. The er-
ror rates are quite stable among the many multi-texture cases, despite the wide range
of constituent textures present in these mosaics. With a handful of exceptions, the seg-
mentation error rate is below 5To for multi-texture mosaics. The maximum error rate
for the 5-texture mosaics never exceeds 7% with Kaiser smoothing windows. Overall,
when averaged over the set of all 5-texture mosaics, the error rate is 2.6g% for 2-level
DT-CxWT features, and 2.72% for 3-level DT-CxWT. These rates are marginally higher
for DWT features. With median filter smoothing, error rates are also improved when
modified K-means is used, but they remain over 20%o for some cases. Overall, the average
error rate with median filtering is 3.54% for 2-level DT-CxWT features and,4.2B% for 3-
Ievel DT-CxWT. Interestingly, the performance of modified K-means is better f'or the two
10-texture mosaics than for most of the 5-texture ones. This is suspected to be due to the
rather regular texture region boundaries present in these mosaics. The fact that only sim-
ple regions exist has made the clustering much easier for the modified K-means. However,
with only two such cases, it is difficult to ascertain the performance of modified /(-means
for mosaics with 10 textures. The single 16-texture mosaic in the experiments yielded
satisfactory segmentation accurac¡ with an error rate of approximately 5%. However,
this is significantly more than the average error rate for 5-texture segmentations.

Tabfe 5.14. Modified K-means results executive summary - pert 2. The optimal Kaiser window p
perameter values for all images, transform types and depths are tallied from the modified
,K-means experiments to produce the distribution of optimal B.

tansform type/depth p
552 13

DT-CxWT2
DT-CxWT3
DWT2
DWT3

15 2l
23 19

25 22

25 19

14 10

189
72
74

67
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Table 5.14 examines the segmentation performance for various values of B with mod-

ifi.ed K-means. It shows a signifi.cant change from the results obtained with conventional

K-means. Recall that small values of p performed best with the conventional K-means ex-

periments. This implied that relatively large smoothing windows are necessary to achieve

sufficient smoothing to work with conventional K-means. However, the situation is dif-

ferent with modified K-means clustering. The introduction of a spatial distance term

discourages the formation of small spatial regions. An effect of this is to reduce the need

for heavy smoothing of the features with large windows. The smoothing windows can be

smaller as a result; this is achieved with choosing larger values of B in the experiments.

There is an important consequence: recall that one of the primary roles of a smoothing

wind.ow is matching the texture primitive size in the textures, to effectively average the

subband energies over the entire primitive. \Mith conventional K-means, this objective is

sometimes overshadowed. by the need to use iarge smoothing windows to achieve sufficient

spatial smoothness for the clustering to be effective. Howevet, with modified K-means,

the inherent ability to form signifi.cant spatial clusters more effectively means that the

smoothing windows can be chosen more freely, to adapt to the description of the textures

by matching texture primitive size. There is a lesser need to use large windows purely to

assist the clustering algorithm. This is a fundamental advantage of the modified K-means.

Table 5.14 justifi.es the aforementioned trend, with quite a wide spread of values for

the optimal B across the suites of input images. Compared to table 5.8, medium values

of p arc more dominant, as well as a good proportion being high values. Examples of this

effect are the input cases "bonn 34" and "bonn 50". These mosaics are typified by the

fine-grained nature of their constituent textures. In other words, the texture primitives

are small, and are more favourably smoothed using a narrower Kaiser window. From the

conventional K-means experiments, the segmentation performance is mediocre at best,

with error rates between 70% and 20%o. With Kaiser window smoothing, the optimal

values of p arclow, typically between 0 and 5 (see table 5.8). The results are much better

with modifled K-means, with the error rates are reduced to between 2% to 5%, achieved

with optimal B values between 8 and 34. This is an exemplary illustration of one of the

advantages of modified K-means over conventional K-means. The best segmentations for

these cases, with both conventional and modified K-means, are illustrated in figure 5.16.

It is clearly evident that the higher p values used for the modified K-means lead directly

to much better segmentations.
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(u) bonn 34, conventional -means.

þ:L

(.) bonn 50, K-means,

(b) bonn 34, modified /l-means, þ :5

(d) bonn 50, modified -means,
þ:5 þ :55

Figure 5.16. Comparison between conventional and modified /f-means for fine-grained texture seg-
mentation. For comparison purposes, a common DT-CxWT depth 2 transform with
Kaiser smoothing is used for all segmentation cases shown here. The relevant error
rates can be found in tables 5.5 and 5.12.

The modified lf-means algorithm introduces an extra term in the distance metric,
which would nominally increase the computational load of the algorithm. However, a
main reason for introduction of the spatial distance term is to speed up the convergence
process. Therefore, two counter-acting factors affect the computational speed of modifred
K-lnearrs compared with conventional K-means: the longer per-iteration load of modified
K-means against (ideally) fewer iterations. It would be meaningful to compaïe the run
times of the two different algorithms to segment the same data. Table b.1b lists the run
times and number of iterations from the experiments. Both K-means algorithms share
the same code base, and built using the same compiler settings. The experiments were ïan
on the same machine. For direct comparison, only data taken from the 5-texture mosaic
experiments are used in calculating the computation costs. By far the most number of
experiments !ù/ere performed on 5-texture mosaics, and so the measurements obtained
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from those are more reliable. For example, the fifth column of table 5.15 contain averages

from all the DT-CxWT2 depth 2, Kaiser windows experiments. This has a total of

108 x 10 : 1080 experiments, each ran over 100 different values of À.

Table 5.15. Run times ('Time' columns) and number of iterations before convergence ('ltns'

columns) of modified and conventional K-means. Data are collected from all the

S-mosaic segmentations. The run times are in seconds. The experiments are run on a

L.2GHz PC with 1GB RAM.

Tlansform type/depth
Conventional Modified

Kaiser Median Kaiser Median

Time Itns Time Itns Time Itns Time Itns

DT-CxWT2
DT-CxWT3
DWT2
DWT3

0.921
7.72

0.410
0.625

30.1
37.2
31.8
34.6

1.15
1,.74

0.507
0.558

35.0
40.0
35.9
36.8

0.625
1.15

0.265
0.379

20.4
20.7
20.6
27.7

0.707
7.02

0.308
0.344

27.2
22.0
27.6
22.8

Table 5.15 clearly shows that the modified K-means algorithm was faster than the

conventional algorithm in the experiments. Although the modified K-means algorithm

incurs an extra cost in computing the spatial distance metric, it requires approximately

] fewer iterations to converge to a solution. This vast difference between the number of

iterations easily overcomes the per iteration penalty so the net result is a faster algorithm.

In addition, the data for the modified K-means inciude run times wilh all values of the

spatial proximity parameter, À. Inappropriate, especially very small, values of À would

Iead to unusually high number of iterations. This is because modified K-means approach

conventional K-means as ) approaches zero. Thus, the modified K-means figures pre-

sented above are likely to be over-estimates of the true computational requirements. On

the other hand, an important aspect of successfully using modified K-means is the esti-

mation of an appropriate value for À. This is likety to require significant computations,

which would reduce the comparative advantage of modified K-means in terms of speed.

A key difficulty has been observed with the modified K-means when performing the

experiments. It has been noticed that, in some instances, the segmentation performance

varies greatly with small differences in I when the cyclic initialisation scheme is used. The

K-means algorithm is sensitive to initial conditions, and this property has been inherited

by the modified version. This is not surprising, since the modified K-means algorithm is

deterministic once the initial conditions are determined. The complication here is that

the modified K-means algorithm is also sensitive to changes in À. This means that, while
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cyclic initialisation produces good segmentation results for a particular range of À, it
may be inappropriate for values of ) outside that range. Worse yet, it only takes a small
change in À for big performance differences to occur. The only real method to overcome the
problem is to run the modified K-means algorithm multiple times with different, random
initialisations. It will be possible to obtain a better estimate of the optimal clustering
fot euerg value of À. This method adds to the computationai burden tremendously, as

the entire algorithm needs to be run multiple times. Figures 5.17 to 5.18 illustrate the
problem with cyclic initialisation. For each example, modified K-means clustering is
repeated 25 times with different random initialisations, and the best result (lowest error
rate) is chosen to be the truly representative segmentation for each value of ). It is plainly
evident that, by repeating modified /f-means with random initialisations, the error rate
curve is greatly smoothed, at least before the breakdown point. It is interesting to see

that, with random initialisation, it is possible to push the breakdown point further to the
right. In other words, it is possible to obtain good segmentations even with high values
of ), provided the appropriate initialisation is used. However, the number of suitable
initialisations decreases as À is increased. With smaller values of À, a large number of
different initialisations converge to produce good segmentations. For large values of À,

however, only a small number of initialisations converge to a good clustering. In some
cases, there may be none at all in the entire set of 25 different random initialisations. This
explains the wild fluctuations observed for values of À much higher than the optimum. If
one can take the "envelope" of minima in these regions of the curves, one can see that a
smooth degradation of segmentation accuracy as À is increased. This points out that the
breakdown phenomenon is more a manifestation of the initial state of the algorithm than
an intrinsic behaviour of the modified K-means clustering. This claim has some direct
support from the random initialisation error plots for the cases of "My bb" and ,,Nat bc',,
which lack obvious breakdown points (figures 5.18(b) and 5.17(b)). Rather, these error
curves have a smooth, bowl-shape characteristic, instead of the familiar valley-between-
ridge characteristics typical of cyclic initialisations. Overall, it is desirable to use different
random initialisations in modified K-means clustering, for it will lower the sensitivity on
the À parameter. However, this benefit comes at a significant cost in computation.
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Figure 5.17. Cyclic and random initialisations in modified 1(-means. Average error rates from ran-

dom initialisations are plotted in green lines, while the cyclic initialisation error rates are

plotted in blue lines. The smoothing effect of random init¡alisation is plainly evident in

this case. All the features are extracted from 3-level DT-CxWT with Kingsbury filters,

and optimal Kaiser smoothing parameters are used for each image.
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Figure 5'18. Cyclic and random initielisetions in modified .If-means. Average error rates from ran-
dom initialisations are plotted in green lines, while the cyclic initialisation error rates
are plotted in blue lines. All conditions are identical as in figure 5.17.
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5.5.6 Segmented lmages

This section shows segmented. images from the modifred K-means experiments. It is

obviously infeasible to present the results from all the cases, so only selected samples of

the results are shown. Appendix A has a full listing of all the input images used in the

experiment, as well as the ground truths. The segmented images have individual regions

shaded with difierent gray levels for simple visual interpretation. These gray levels are

rand.omly assigned when the images are generated, and do not correspond to any textural

properties in particular. Alt the segmented images are direct outputs of the modifred

K-means clustering algorithm, without any form of post-processing.

2-texture Segmentations

Figure 5.1g shows the segmentations for the 2-texture mosaics used in the experiments.

The particularly simple nature of the separating boundaries make all these images simple

for modified K-means. Nearly perfect segmentations are achieved in all these cases, with

all errors restricted to be on or near the boundary'

4-D84 D5-D92

D8-D84 DT2-

Figure 5.19. 2-texture mosaic segmentation results. (a) Da-D8a, (b) D5-D92, (c) D8-DBa and (d)

Dt2-Dt7
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S-texture Segmentations

Figure 5.20 shows the segmentations for a selected subset of 5-texture mosaics used in
the experiments. For the images "My 5a" and "My 5b", the segmentation results are
vastly different, despite the same constituent textures in both. This is due to the more
complicated boundaries present in the former. In particular, the clustering algorithm has

the most problems dealing with the top-left boundary between two very similar textures.
This has resulted in a significant number of misclassified pixels around this boundary.
In contrast, "My 5b" has a very good segmentation, with clear boundaries separating
the texture regions. It should be noted that there are small number of residual regions
present in the segmentation of "My 5a". In practice, these segmentations can be further
enhanced by post-processing operators, which can remove small residual regions, before
the segmented information is used.

a) My 5a My 5b

Figure 5.20. S-texture mosaic segmentation resurts. (r) Mv 5a and (b) My 5b.

Segmentations of the "Nat" series of 5-texture mosaics are presented in figur e 5.2I.
The segmentation performance for "Nat 5b" and "Nat 5c" are particularly pleasing, with
clean, accurate boundaries identified; all the segmentation eïrors are concentrated on or
near the boundaries. There are slight problems with the edges of the actual images,
such as in the top corners of the segmentation of "Nat 5b", where the smoothed features
contain artificial data. Performance for "Nat 5v", "Nat 5v2" and "Nat 5v3" are expected
to be the worst, since the constituent textures are very difficult to distinguish even with
human interpretation. Due to the sheer volume of images in the "bonn', series of images,
figure 5.22 can only showcase a small set of segmentation results. These 6 images are
randomly chosen from the set of all segmentations, and are quite typical of the modified K-
means segmentation performance on the "bonn" set. Apart from some boundary effects,
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the segmentations are of very high quality, with accurate identification of the straight and

curved boundaries.

(a) Nat 5b at 5c

at 5m Nat 5v

Nat 5v2 Nat 5v3

Figure 5.21. S-texture mosaic segmentation results. (a) Nat 5b, (b) Nat 5c, (c) Nat 5m, (d) Nat

5v, (e) Nat 5v2 and (f) Nat 5v3.
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bonn 13 bonn 39

bonn 44

bonn 85 bonn 93

Figure 5.22. S-texture mosaic segmentation results. (a) bonn 01, (b) bonn 44, (c) bonn 61, (d)
bonn 82, (e) bonn 85 and (f) bonn 93. Due to space limitations, only a sample of the
results for the Bonn series is shown here.

Page 174



Chapter 5 Texture Segmentation Experiments

Other Segmentations

Figures 5.23 and 5.24 show the segmentation results from the three 10 and 16-texture

mosaics in the input suite. The segmentation result for the l0-texture mosaics a¡e excel-

lent visually, with boundaries located accurately. For the 16-texture mosaic, the result

is not as good; there are significant residual regions in several places, and the curved

separating boundaries are inaccurate. However, this is already a vast improvement upon

the conventional /(-means segmentation of the same image.

at 10

Nat 10v

Figure 5.23. 10-texture mosaic segmentation results. (a) Nat 10, (b) Nat LOv

Nat 16b

Figure 5.24. 16-texture mosaic segmentation result.
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5.5.7 A Potential lndicator

In the experiments of texture mosaics, the modified /l-means has been shown to be an

effective clustering tool for segmentation. For this algorithm to be generally useful, it
is clearly desirable to have a method to find the optimal values of l. This is a difficult
problem in general, but a method to find indicators of optimality is more achievable. By
narrowing the search range for the optimal À, it is possible to greatly speed up the search

for the optimal segmentation. Knowledge of potential end markers for the search range

would be essential to this search process. Section 5.5.4 has already discussed the char-

acteristic behaviour of feature and geometric distortions when À is varied. It is plausible

that the characteristic traits of the distortions can be exploited to provide informative
indicators for optimisation. For this purpose, the following functional is proposed:

g(l) : (Ad¡*) x (L,ds.") (b.4)

where Ld'¡t": d,¡t,(À¡¡1) - d,¡*(À¡,),k e z. d¡t" is regarded as a function of À, being

the feature space distortion of the clustering produced from À, and k is an index to the
values of l. L,d's"o is defined similarly. From its definition, this functional is expected

to capture the upward and downward fluctuations of the feature and geometric space

distortions. Since the feature and geometric space distortions are expected to experience

large changes of opposite signs near breakdown, a large and negative value of g is likely to
indicate a breakdown. While it will not directly provide an optimal value of À, monitoring
the value of g will at least give an indication of the upper bound of the useful range of ì
values to use in modified K-means.

To illustrate the applicability of g(À) as an indicator, it is useful to plot both the error
rates and g(À) as functions of ) on the same set of axes. These are shown in figures 5.25

and 5.26. In order to provide a true indication of the value of g(À), the plots are obtained
from repeated runs with random initialisation, as described in section 5.5.5. The red

crosses in the figures 5.25 and 5.26 highlight the values of À where the magnitude of the
function g(À) exceeds a given threshold. In these cases, the threshold is taken as the
average magnitude of g over all values of À. For the "Nat" series of input images, the
indicator function performs well, with large negative spikes clearly showing the breakdown

point(s) (see figure 5.26). In these plots, the red crosses clearly coincide with the rapid
increases in the error rates. In particular, the function g accurately located, the first
breakdown points in almost all the cases. The "Nat" series of images do not seem to
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have clear lock-on points; rather, the error rates gradually improve as À increases from

zero. As a result, g(À) does not detect any lock-on points, as evidenced by a lack of red

crosses for low À values in the plots. However, it has been noticed for images "Nat 5m"

and "Nat 5v", there are small fluctuations about zero for g at low values of À, which leads

to some erroneous detections of lock-on/breakdown points. For the images "My 5a" and

"My 5b", g(À) completely fails to provide any meaningful indication for lock-on. In fact,

the function indicates the presence of a breakdown (large negative spike) precisely where

a lock-on occurs. The problems with the image "My 5b" is understandable, because the

boundaries between the texture regions are very regular and convex, making it artificially

suitable to large À values. As a result, there are no breakdown points for this image, and

the function g fails to act as an indicator.

Despite the difficulties with some cases, the function g provides useful indications

on the location of breakdown points in general. For example, assume that the location

of largest negative spike for g is used as a simple indicator for the breakdown point.

This test successfully provides an upper bound on the useful range of À in 75% of alI

the experiments with modified K-means. In these success cases, the indicated breakdown

values are greater than the optimal value of À. In other words, the behaviour of g provided

a valid termination point for these segmentation experiments.

òe

E
u

I

eu
o o

0i 02 03
T

(a) My 5a

05 05
l

(b) My 5b

Figure 5.25. Plot of g(À) and error rates for "My 5a" and "My 5b" images. 9 are plotted as blue

dash-dot lines, while error rates are plotted as green solid line. Values of À that gives

rise to significant peaks in g are marked with a plus sign at the corresponding points

on the error rate plots. Note that the scales for both error rates and g(À) are different

between plots.
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Figure 5.26. Plot of 9(À) and error rates for the "Nat" series of S-texture mosaics. The style of
these plots are the seme as in figure 5.25.
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5.6 Experiments w¡th Modified Fuzzy K-means

In this section, the results from experiments using modlfred fiizzy K-means clustering is

presented. Table 5.16 shows the segmentation results obtained for the entire suite of 115

input images. As in section 5.4, oniy the Kaiser window smoothing method is considered

in these experiments, as it has been shown to produce more effective texture features from

wavelet transforms.

Tabfe 5.16. Condensed results of Modified Fuzzy K-Means experiments. The best error rates (%)

are shown for each input image. This condensed table of results only shows the best

case; a full set of results for all values of B is found in Appendix B.
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DT-CxWT 2
(%) p

DW'I'2
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8
2
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8.28 5
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The average error rates for the modified fizzy K-means algorithm are slightly higher

than those obtained from modified K-means. Across the set of input images, the average

error rate \s 2.84% with level 2 DWT features, which is close to the average error of

2.67% for modified K-means, obtained with level 2 DT-Cx\MT features. However, it is

observed that the error rate fluctuates more than the modified K-means; for the same

feature extraction methods, modified fiizzy K-means can have error rates ranging from

under 2%o to over l5To. For the corresponding set of features, modified K-means show

a greater ability to consistently produce good segmentations. Notably, modified fiizzy

K-means failed to produce good segmentations for some images in the test suite, while

modified K-means did not particularly fail in any of the experiments.

Table 5.17. Modified fuzzy lf-means results summary and comparison. The overall mean and

median error rates (%) from the modified fuzzy K-means experiments are shown for

different transform types and depths. The 95% confidence intervals for the mean error

rats are also listed. Corresponding quantities for fuzzy y'l-means are repeated from

table 5.13 to facilitate direct comparison.

tansform type/depth Modified Modified F\rzzy

Mean Median 95Yo C.I. Mean Median 95Yo C.I

DT-Cx\MT2
DT-CxWT3

(2.40,2.8t)
(2.42,2.84)

2.67
2.63

2.42
2.37

(2.57, 3.11)
(3.07, 3.84)

2.84
3.45

2.46
2.96

D\MT2
D\MT3

(2.82, 3.30)
(2.75,3.27)

2.84
2.81

.06

.98
3

2

(3.06, 4.28)
(3.54,4.52)

3.67
4.03

3.00
3.44

Table 5.18 illustrates the variation of the optimal Kaiser smoothing parameter value

for the modified fuzzy l(-means experiments. There is a particuiar preference for moderate

values of B. This is in accordance with the trend observed from modified K-means; once

again, the effect of introducing the spatial proximity term allows less severe smoothing

of the features to efiect a good segmentation. Overall, the modifred fuzzy K-means
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experiment results agree with the results from modified K-means, giving further support
for the usefulness of the modified technique.

Table 5.18. Modified fuzzy /(-means results summery - part 2. The optimal Kaiser window p
paremeter values for all images, transform types and depths are tallied from the modified
fuzzy K-means experiments to produce the distribution of optimal B.

Tlansform type/depth p
2 8

DT-CxWT 2
DT-CxWT 3
DWT 2

DWT 3

6
5

11

l4

I

I

5

3

11 19 20
6 t72I
21 13 23
8 t720

27

17

20
27

20
2I
12

T2

5

10

3

12

5

I
3

4

1

2

4
4

5.7 Experiment Summa ry

Following the discussion of wavelet-based texture feature extraction and clustering algo-
rithms in chapters 3 and 4, this chapter presents the experimental details and results.
The properties of different extracted texture feature sets are examined. In particular, the
separability, believed to be crucial in this work, of the feature sets are measured using sev-
eral techniques. In the main experiments, it has been shown that wavelet-based texture
features and modified K-means form an effective combination for texture segmentation.
The algorithm yielded good results over many experiments with artificial mosaics. It is
interesting to compare the results of this chapter with similar experiments on artificial
mosaics using different texture features.

Randen and HusØy performed an extensive series of texture segmentation experi-
ments using a variety of different wavelet features and learning vector quantisation (LVe)
classification162,60,61,63,64]. In this chapter, the modified K-means algorithm man-
aged l,o segment the "Nat" series of images very efl'ectively. The same set of images have
been used in other texture segmentation experiments in the literature. The most directly
comparable results are those shown in table g on page 308 in [64], which are obtained
using different wavelet transforms. The first five columns in that table correspond to the
images: Nat 5c, Nat 5v, Nat 5v2, Nat 5v3 and Nat 5m. The eighth and ninth columns
are for the images Nat 10 and Nat 10v, respectively. Unfortunatel¡ the sixteen-texture
mosaics found in columns 6 and 7 are not the same as Nat 16b. However, the boundaries
are exactly the same, and the constituent textures are very similar to the image 11(f)
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(sixth column) in [64], and so it is reasonable to assume similar results if it is used in the

current experiments. It is immediately obvious that the error rates reported in this chap-

ter are far superior to those found in [64], even the cases where full-rate decompositions

are used. While the modified K-means algorithm can routinely produce segmentation

error rates of lower thanSYo, the algorithms presented in [64] produced abest average of

20T0. Even the conventional K-means results in section 5.3 are better; this suggests that

the improvements are not only due to the modified K-means algorithm. The introduc-

tion of a variable smoothing window shape (or effective size) contributes to the improved

segmentation performance. In related work by Randen and HusØy [61, 63] reported seg-

mentation results for the images Nat 5b and Nat 16b using similar methods. These error

rates are much closer to the performance of the modified K-means method described in

this chapter. Their algorithm managed to segment Nat 5b and Nat 16b with 97.57o and

93.4% accuracy, respectively. In comparison, the modified K-means technique produced

best segmentation accuracy of 97.97% and 94.89% for the corresponding images. Various

two-texture mosaic segmentation results are reported in [62,60,61,63,64]. A different

technique is used to segment the two-texture mosaics; it involves optimising the filter

coefficients used in the image decomposition, with respect to a given objective function.

This has the advantage of being adaptive to each input image. The results produced are

good, with the reported error rates as low as 0.6Vo. However, the segmentation perfor-

mance for the D4-D84 and D5-D92 mosaics are poor, with respect to the excellent results

obtained from D12-D17 (table 9 in [6a]). It appears that the optimisation technique has

difficulties dealing with textures with similar coarseness.

Apart from the "Nat" series of mosaics, the other set of input images is the "bonn"

series obtained from the University of Bonn (see Appendix A). In [57, 28], Hofmann,

Puzicha et aI published details of their texture segmentation algorithm. For artificial

mosaic experiments, the Bonn suite of images were created. In [57], results of segmentation

experiments performed on this suite is presented. Median error rates of approximately 5%

to 7Yo are reported, obtained using a range of methods described in [57]. In comparison,

the modified K-means method with depth 3 DT-CxWT wavelet features produced a

median error rate of 2.37% over the 100 input images. This is further evidence that the

results in this thesis compare very favourably with those obtained from other approaches.
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Chapter 6

Application Examples

The problem of texture segmentation has numerous applications. Texture is a fundamen-

tal cue in human visual information processing. It can be used in a variety of problems,

especially in images where texture contains a significant amount of the visual informa-

tion. In chapter 5, wavelet-based texture features are used to segment artificial mosaics

composed from natural textures arranged in regular geometric shapes. In real problems,

texture is one visual cue used to understand the composition of images. In this chap-

ter, several examples of real-world applications of texture segmentation are examined.

The same wavelet-based texture features are used in these segmentation problems. More

precisely, d,iscrete and complex wavelet features are extracted, smoothed using Kaiser

windows and clustered with the modified K-means algorithm. This chapter is organised

as follows. Section 6.1 presents some applications in surveillance. Section 6.2 tackles

the problem of segmentation of objects in a scene using texture information. Section 6.3

shows how texture segmentation can be used for document processing.

6.1 Surveillance

The data used in this example is an aerial photograph of an area of San Francisco, shown

in fi.gure 6.1(a). This photograph can be found from the University of Bonn's Computer

Vision Group website [14]. This is a commonly used example to test the performance

of various segmentation algorithms. The photograph covers the coastal stretch of San

Francisco Bay. Four different textures are identifi.ed by the author in this image: the

sea, beach, residential and parklands. A hand segmentation is shown in fi.gure 6.1(b). It
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should be noted that the author is not a trained terrain expert; the segmentation is done

purely with common human perception. When performing the hand segmentation, the

boundaries separating the regions are chosen to be as smooth as possible, whenever the

true boundary cannot be easily identified.

In compiete contrast with the image mosaics used in chapter 5, the segmentation

has some disconnected clusters which belong to the same class. For example, the park-

lands region is actually separated into three different spatial clusters (see figure 6.1(b)).
Therefore, the interchangeability of the terms class and cluster in the previous chapters

no longer holds true. In this case, the term cluster is used to describe a connected set

in the image, while class refers to all clusters which contain the same texture. Since the

modified K-means algorithm encourages the formation of spatially compact clusters, this
aerial photograph should provide a tough challenge for the algorithm. In practice, this
means small values of the locality factor À should be used in order to maintain spatially

disconnected clusters. With a sufficiently large value of ), the separate clusters belonging

to the same class are forced to combine together, causing many classification errors. As a
consequence, a reduced range of ) is used for the modified K-means experiments, ranging

from 0 to 0.2, with steps of 0.002.

Figure 6.1. Aerial photograph of San Francisco. (a) the original image and (b) a hand segmentation
of aerial photograph of San Francisco.
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Table 6.1 lists the segmentation results for different transform types and depths, as

well as Kaiser window B parameter values. It is evident that the different combinations

of feature parameters do not have a great impact on the segmentation performance. The

error rates lie between l0.S% and, 16.6% among all combinations. This is in complete

contrast to the artifi.cial mosaics in chapter 5. It is believed that the difficult nature of

the example led to the relative insensitivity to the detailed feature extraction parameters.

In comparison, the segmentation of the same image in [1a] has an error rate of 27.4%o,when

compared against the ground. truth in fi.gure 6.1(b). In this segmentation, the brighter

stretch of water (top left quadrant of the image) is classified as being different from the

remainder of the sea, and the beach is assigned to the same class as the parklands' The

images are available online at [14].

Table 6.1. Aerial surveillance segmentation results. The error rates (%) are listed for difFerent

wavelet transforms and smoothing parameters. Also listed are the g5% confidence inter-

vals for the overall mean error rate.

Figure 6.2 shows the segmented image, and each region from the original image. It

is clear, from these images, that the algorithm successfully segmented the beach (fi'g-

ure 6.2(b)) and the sea (figure 6.2(e)). The parklands and residential area (figures 6.2(c)-

(d)) are less clearly separated, but significant portions are segmented out from the original.

It is noticed. that the boundaries between some regions have been erroneously included in

some regions; this effect is most notable for the parkland and residential areas. This is

mostly attributable to the relatively small spatial parameter values. At the boundaries

between textures, there are significant high frequency energies, and these often result in

Iarge coefficients in the wavelet transforms. Finer textures with irregular structures are

also characterised by high energies in many high frequency subbands, and it is likely that

some texture boundaries are mis-classifled as these finer textures. For the artificial mo-

saics in chapter 5, larger values of the spatial locality factor in the modified K-means

algorithm discouraged the formation of long, thin regions, thereby eliminating the prob-

Iems with boundaries. However, as explained earlier, large À values are not useful in this

particular case. In addition to boundary problems, there is a small handful of residual

0 1 5 2t Mean 95 % C.r.

12.41
15.39
13.54

(
(
(
(

t2.39 r4.r5)
tL.69 13.22)
14.61 16.17)
72.56 74.52)

DT-CxWT2
DT-CxWT3
DWT2
DWT3

15.07
1.4.07
16.53
15.75

26 11. 1

13.70
15.70
t6.20

13.05
t4.62
13.85

72.75
13.84
12.67

11.35
13.99
11.68

10.81
74.47
11.99

11.11
1,5.30

72.32

11.66
75.62
13.06

72.40
16.62
L3.79
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I

È
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d)

Figure 6.2. Segmentation of aerial photograph. (a) all segmented regions, (b) segmented beach
terrain in original image, (c) parklands, (d) residential area and (e) the sea.

regions within some segmented regions, which degrades the accuracy of the segmentation.

Fortunately, it is possible to apply simple median filtering in the post-processing to re-

move residual regions. For the texture boundaries, there are common techniques involving

erosion fllters to reduce the misclassification rate. However, the purpose of this section

is to provide an illustration on the results obtainable from wavelet features and modified

K-means clustering, and hence post-processing is not attempted in this thesis.
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6.2 object Segmentat¡on

Figures 6.3(a) and 6.4(a) show the input images used in this section. Both input images

consist of common objects in a real world scene; the first image is a picture of a sitting

room with two sofas with distinctly different patterns for their covers, while the second

image shows a wall with a radiator. The objects in these two scenes have rich textures

to distinguish them from the rest of the image, and are therefore interesting test cases

for the performance of the segmentation algorithm. Figures 6.3(b) and 6.4(b) show the

hand segmentation of the sofa and radiator images, respectively. These segmentations

are performed by the author. The sofa image is separated into four distinct regions,

corresponding to: sofa 1 (with flowers pattern), sofa 2 (lines pattern), bookcase and floor

& wall. The floor and wall region is considered as one because they both have very smooth

textures, and thus should be clustered together by a texture segmentation algorithm.

(b)

Figure 6.3. lndoor scenery 1 - two sofas in a lounge room. (a) original image and (b) a hand

segmentation into 4 separate regions. The difterent regions are: sofa 1 (flower), sofa 2

(lines), bookcase and wall & floor.

For the radiator image, three separate textures are identifi.ed: brick wall, radiator and

tiled floor. In both images, the boundaries between the regions are chosen to properly

segment objects in the image based on textures, as interpreted by a human observer. It

is noted that the sofa image has a texture class separated into two spatially unconnected

clusters, much like the San Francisco image in the previous section, while the radiator
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image consists of three single-cluster textures. Therefore, it is expected that segmentation

accuracy will be better for the radiator image.

Figure 6.4. lndoor scenery 2 - a radiator in a lounge room. (a) original image and (b) a hand
segmentation into 3 separate regions. The difterent regions are: brick wall, radiator and
tiled floor.

Table 6.2 lists the segmentation results for the two scenes, under a range of feature

extraction parameters. As with the case for the aerial photograph, the segmentation

performance do not vary greatly among the different feature parameters for the radiator.
The error rates lie between 9.66.% and 73.57%, which are slightly lower than for the
aerial photograph. However, the error rate varies much greater for the sofa image. In
particular, the segmentation performance varies greatly between different Kaiser window
parameters; the range of error rates is between 9.88% and 27.22%. For some larger B
values, the algorithm performs significantly worse than for lower values; this is indicative
of the fact that the image cloes require adequate smoothing. It is believed that thc flowcr

patterns on the left-hand side sofa are the main reasons for needing heavy smoothing.

For comparison, the segmentation algorithm of [14] has produced an error rate of 73.02%

for the same sofa image. This is slightly higher than the best case performance of 9.88%

obtained with our algorithm.

Figure 6.5 shows the segmented sofa image, and each of the separated regions. The
result clearly bears out the object shape of the two sofas. However, the algorithm suffers

from the same boundary misclassification problem as for the San Francisco Bay image
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Table 6.2. Sofa and radiator scene segmentation results. The error rates (%) are listed for difFer-

ent wavelet transforms and smoothing parameters. Also listed are the g5% confidence

intervals for the overall mean error rate.

described in section 6.1. The bookshelf region suffers the most in particular; the books

on the shelf contains a lot of high-frequency information, which causes this region to be

aliased. to the boundaries of sofa 1 (flower patterns) and its surrounding regions. This

results in a clearly visible outline of this sofa (the flower-patterned portion, which excludes

the sofa,s base) in the books cluster in figure 6.5(c). The same problem also exists for

the sofa 2 (lines) cluster, to a lesser extent. In addition to the boundary misclassification

problem, the side of the bookshelf and the handle of sofa 1 is clustered with sofa 2. Both

of these objects have smooth textures. Among the immediately neighbouring regions -

sofa 1, sofa 2 and bookcase - sofa 2 has the closest matching texture. It should also

be noted. that the base of sofa 1, having a smooth texture, is clustered with the wall &

floor. While this is unsatisfactory for an object recognition system' it is indeed a correct

result from a texture segmentation perspective. Indeed, it is interesting to note that,

if the relatively smooth texture of sofa 2 is also classified as belonging to the wall and

floor texture, then the K-means algorithm's performance increases significantly. That is,

the image is classifi.ed into 3, instead of 4 regions: smooth, sofa with flower pattern, and

bookshelf. From a purely texture segmentation perspective, it is valid to reconsider the

ground. truth in this way. The texture of sofa 2 is quite similar to the smooth wall and

floor, especially when compared to the bookshelf and sofa 1 textures. From an object

segmentation point of view, the change in class assignment will produce an elloneous

output. However, it is impractical and naive to rely solely on texture information to

effect object segmentation. There aïe many other rich visual cues in a full computer vision

system. The revised hand segmentation with three classes is illustrated in figure 6'6(a).

The results of these experiments are shown in table 6.3, and the segmented image is shown
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c

( e

Figure 6.5. Segmentation of sofa scene. (a) segmentation into separate regions, (b) isolated region
1 of original image, (c) region 2, (d) region 3 and (e) region 4.

in figure 6'6(b). It is obvious that the error rates are significantly improved; the upper
limit of the g5% confidence intervals are less than the mean error rates obtainable for the
four-class segmentation in table 6.2.

Figure 6.7 illustrates the segmentated image of the radiator scene, and each indi-
vidually separated region. The visual results are much better than what the error rates
suggest. The three different textured areas - brick wall, tiled floor and radiator - are
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(u)

Figure 6.6. Alternative segmentation of indoor scenery 1. Three classes are used for this seg-

mentation, instead of four. (a) the new ground truth (hand segmentation) and (b)

segmentation result

(u)

c d)

Figure 6.7. Segmentation of radiator scene. (a) segmentation into separate regions, (b) isolated

region 1 of original image, (c) region 2 and (d) region 3.
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Table 6.3. Alternative sofa segmentation results. The error rates (%) are listed for diflerent wavelet
transforms and smoothing parameters. Also listed are the g5% confidence intervals for
the overall mean error rate.

U 7235813 27 34 55 Mean 95% C.r

DT-CxWTS
DWT2
DWTS

9.39
9.45
8.97

9.03
9.72
8.67

8.23
8.42
8.09

7.42
7.48
7.62
7.46

ti. til)
6.83
6.63

o.zó
6.36
6.28

5.77
6,12
5.85

5.49
6.72
5.60

5.43
6.30
6.62

5.38
6.75
5.58

6.83
6.91
7.37
6.87

(5.83 7.83)
(5.82 8.00)
(6.40 8.22)
(5.e1 7.82)

clearly separated. Upon closer examination, the erïors are concentrated in two places -
above and below the radiator cluster. The pixels just below the brick wall are classified
as belonging to the wall region, whereas they are assumed to be part of the radiator clus-

ter when the hand segmentation was performed. However, based on texture information
alone, it can be argued that the metal plate edges of the radiator, which are smooth
in texture, do not belong to the central part of the radiator, which consists of a set of
grills. This merely illustrates the insufficiency of texture as the only visual discrimination
cue. Human intuition recognises the grilled part and the metal edges belong to the same

object, despite their vastly different textures. Without the luxury of interpretation, a

texture segmentation algorithm cannot possibly make the same decision. In this instance,
a gray-level thresholding technique would likely assign the metal edges to the radiator
cluster, simply due to the dark colour of the metal. Interestingl¡ the algorithm classi-

fied the pixels in the right-side of the radiator correctly, despite that region having the
same metal texture. This can be explained by the fact that this region is narrow, and.

these vertical edges resemble the vertical grills on the radiator. Overall, the segmentation
algorithm successfully segmented the main constituent regions in the image.
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6.3 Document Process¡ng

The final example in this chapter is the segmentation of a sheet of newspaper. Fig-

ure 6.8(a) shows a typical example of a piece of newspaper, containing text, pictures and

headlines. In this instance, a segmentation into these three segments is desired, as shown

in the hand segmentation in flgure 6.8(b). While a specialist application will make use

of additional properties of text and pictures (e.g. average brightness, existence of only

horizontal and vertical boundaries) to effectively segment the image, a pure texture-based

aigorithm is likely to perform quite well. As in the case of San Francisco Bay, the hand

segmentation shows many disconnected clusters belonging to the same class for this image.

Thus, it is expected that small values of À are likely to produce better segmentations.

5ff en egen st€rnnmf FITTI

rillig rrg m¡ljÈr'ennlip¡- ved er

(u)

Figure 6.8. Newspaper article. (a) the original image, and (b) a hand segmentation of the article

into three difFerent textures.

Table 6.4. Newspaper article segmentation results. The error rates (%) are listed for difFerent

wavelet transforms and smoothing parameters. Also listed are the 95% confidence inter-

vals for the overall mean error rate.
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a

(u)

c d

Figure 6.9. Segmentation of newspaper article. (a) segmentation into separate regions, (b) region
1 of original image, (c) region 2 and (d) region 3.

The error rates from the various cases are listed in table 6.4. V/ith the different

textures residing in so many disconnected clusters, it is not surprising that the error rates

are not very low. Also, the clusters are mostly not convex, which can cause difficulties for

the modified K-means algorithm. In this example, there is a greater amount of variation

between the different transform and smoothing parameters, with the error rate varying

from 70.ITo to 79.96%. The DT-CxWT features performed better than the the DWT
features, but the difference is only within 2%. In fact, all the mean error rates of the

different transform type and depth combinations lie within the 95% confidence interval

of each other. Thus, it can be concluded that no particular type or depth of transform

is superior to each other. In figure 6.9, the best segmented image is shown, along with
the three separated classes. The visual results are good, with clear separation of the text,
headline and picture areas. The picture (including background) region contains very little
residual main or headline text. In fact, the most significant errors are in the picture area,

where two small regions are misclassified as text and headline. Upon close inspection of

b
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figures 6.9(c) and 6.9(d), it can be seen that the misclassified regions appear remarkably

similar to headline and text, respectively. It must once again be stressed that the result

in figure 6.9 are obtained from texture information alone, with no auxilliary information

used in the process. Therefore, it is entirely unsurprising to see the errors present in

figures 6.9(c) and 6.9(d), given the visual similarity of the error regions in question.

6.4 Applications Summary

This chapter illustrated several typical examples for texture segmentation in real-world

applications. The modified K-means algorithm rù/as used to achieve the segmentation

results showed in this chapter. In these examples, the modified K-means clustering algo-

rithm on wavelet texture features produced visually satisfactory results. In all the cases,

the major constituent textures in the images are correctly identified. It was found that,

on average, the segmentation accuracy is inferior to the artificial mosaics used in the ex-

periments in chapter 5. This finding is unsurprising, given the complexity of information

in real images and difficulty of dealing with complicated boundaries. In particular, the

use of texture information alone to segment real images, such as those in a scene under-

standing application in section 6.2, is generally inadequate. In a fully functional computer

vision system, other information must be incorporated. Knowledge about the expected

shapes of objects would greatly assist the correct location of boundaries, which is one of

problems experienced with the modified K-means algorithm.
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Chapter 7

Conclusions and Rrture Work

Texture segmentation has been a long-standing problem in image processing and computer

vision. The importance of this problem has long been established. Many methods have

been developed to solve this problem within specific spheres of interests, and there is

certainly room for further improvements. This work addresses the problem from the

perspective of an innovative approach, based on wavelet theory and a novel modification

of K-means clustering. This chapter provides an overall summary of the thesis, followed

by some possible future directions for this work.

7.1 Summary

The wavelet transform is a relatively recent mathematical development that has quickly

been widely adopted in many scientific applications. Wavelet transforms provide the an-

alytical backbone of the work in this thesis. Chapter 2 presents a review of the history,

theory and practical techniques of applying wavelets to texture analysis. The histori-

cal perspective of waveiets provides key insights into their attractiveness for analysis of

textures. The focus of our review on wavelets is on their multiresolution analysis and

computational properties. These are the primary reasons for choosing wavelets as the

analytical tool. Several types of wavelets are discussed and compared. In particular, a

relatively new type of wavelets, the Dual-Tree Complex \Mavelet Transform, is discussed

in detail. With approximate shift-invariance and improved directional selectivity, this

type of wavelet transform plays a major role in this thesis.
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7.1 Summary

Without an unambiguous model for describing textures and their attributes, re-
searchers have spent much effort on uncovering descriptive, compact features for describing
textures. Chapter 3 explores the role of texture features in a segmentation system, an¿
presents the central techniques employed for the work in this thesis. Firstly, the overall
texture segmentation system architecture for this work is defined in chapter B. This arch!
tecture identifies the four distinct stages of processing in a texture segmentation system,
and forms the foundation for all subsequent work in the thesis. In discussing texture fea-
ture extraction, an extensive review of the numerous existing feature extraction methods
is provided' In this review, the main statistical, structural and filter-based texture anal-
ysis methods in the literature are described and compared. Collectively, these techniques
provide the background for the introduction of a novel feature extraction method, which
is discussed in detail in section 3.3. This novel feature extraction is based on D'WT coef-
ficients of a digital image, extracting feature vectors directly from the wavelet transform
subbands. The technique is later extended to embrace DT-CxWT coefficients as well.
It has long been established that features extracted from filter-based schemes are much
more effective if suitable post-processing is applied. The collection of post-processing
steps and techniques is termed the feature conditioning stage. A range of techniques have
been surveyed for this stage, but three particular ones - normalising, windowing an¿ non-
linear transformation - are identified and used for this work. In particular, windowing is

expected to yield large benefits for texture segmentation. The smoothing effect of using
spatial windows of various shapes and sizes is desirable for segmentation applications.
The effectiveness of windowing is consistent with the texton theory of textures, which
describes textures in terms of primitives.

The final stage in the segmentation system is clustering. In this stage, the extracted
and conditioned texture features are grouped together into different clusters to produce
the final segmentation. There are many clustering techniques in the pattern recognition
literature. Chapter 4 describes a few common ones, with most attention being focussed
on the K-means algorithm. This particular algorithm is used as the main clustering
mechanism in the thesis; it has long been a staple in pattern recognition problems, and
is simple and well-understood. The modular architecture of the texture segmentation
system means that alternative clustering methods can be directly substituted for the 1(-
means algorithm. Other examples of classifiers or clustering methods described in this
chapter ate: fiizzy K-means, neural networks and Support Vector Machines (SVM).
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Chapter 7 Conclusions and Future Work

With each element in our texture segmentation system having been discussed, the

system is tested through extensive experiments. Chapter 5 contains the detailed results

from the experiments performed. The results are separated into two main sections. Firstly,

a series of experiments designed to measure the separability of extracted (and conditioned)

feature sets are presented. The experiments are performed on a set of artificial image

mosaics, which is illustrated in its entirety in Appendix A. \Mhen selecting the test set,

the images are chosen from publicly available repositories on the \Morld \Mide Web, so

as to maintain generality and comparability with existing published results. The results

from the separability experiments provide rudimentary indications on the likely success

of segmentation, based purely on the separability of feature sets. This serves as a validity

test for the feature extraction and conditioning methods described in Chapter 3. It has

been demonstrated, through three different measures - spatial separability ratio, feature

contrast and distance histograms, that the extracted feature sets have good potential

to be separated. In addition, DT-CxWT based texture features demonstrated greater

separability, particularly in the distance histograms, than D\MT derived features. Once

the separability of the extracted features are established, full segmentation experiments

are performed on the test images, using both conventional and finzy K-means clustering.

In all cases, the ground truths are known, but these are only used for evaluating the error

rates of the segmented images. With both conventional and finzy K-means clustering

algorithm, there is no need for explicit training of the classifiers. As a general trend, it
has been noted that the results of these experiments showed good performance for simple

texture mosaics containing two textures, but failed to extend the good performance for

more complicated mosaics with a greater number of textures.

It is a reasonable requirement for a texture segmentation system capable of process-

ing real-world images to be able to segment multiple textures. The segmentation system

with K-means clustering is clearly unsuitable. The separability measurements of the tex-

ture features indicate that the features are separable, even for multiple clusters, which

implies the failings of the original system are likely due to K-means clustering. In re-

sponse to this problem, a novel modification to the conventional K-means algorithm is

proposed. This involves the addition of a spatial location term, and a variable weighting

system is used to shift the emphasis between feature similarity and spatial proximity.

The resultant modified K-means algorithm is examined in detail through segmentation

experiments, performed with the same set of test images as for the previous experiments.
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7.2 Future Directions

The segmentation performance of the system with modified K-means is greatly improved,

especially for multi-texture mosaics, when compared to conventional or fuzzy K-means.

The average segmentation accuracy also compares well with other experiments on the
same mosaics that are in the literature. As in the previous case, the DT-CxWT derived

features perform better than DWT features, at the corresponding transform depths.

A particular issue with the modified K-means algorithm is the need to estimate

optimal values of the spatial proximity factor which weights the distances in feature and
physical spaces. In the experiments, it has been observed that different values of this
factor lead to wildly contrasting segmentation results. This places great emphasis on

the need to be able to select appropriate values of this particular parameter. A possible

technique to address this problem, which is based on measuring distortions of a segmented

image, discussed. The justification for this technique is by understanding the role of the
proximity factor in the modified K-means clustering algorithm. This method has been

applied to some examples to yield approximations of optimal values of the proximity
factor. While this technique cannot pin-point the optimum with precision, its main utility
is in narrowing the range of suitable values, and thus assisting in the search for a global

optimum.

\Mith the good performance of wavelet texture features and modified /f-means clus-

tering for test mosaics, the segmentation system is tested with some real-world examples

where texture segmentation can be useful. Our segmentation system performed reason-

ably well in all the cases, The results are encouraging, but it also reinforces the notion
that texture is only one of many important visual cues that a successful machine vision
system must be able to process, if it is to emulate the power and flexibility of biological

systems.

7.2 Future Directions

There are several directions in which this work can be advanced further

7.2.1 Smart Feature Selection

The focus of this thesis is on the extraction and conditioning aspects of texture features.

However, it has been known for some time that a properly selected set of features can
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Chapter 7 Conclusions and Future Work

be very valuable to a segmentation system. The main benefit will be dimensionality

reduction; smaller dimensions will simplify the clustering task, as well as lowering the

computational effort throughout the system. The feature extraction method described in

this thesis produces vectors with 7 to 40 dimensions. However, the intrinsic dimensional-

ity of the texture features may be significantly less. Historically, there have been many

ways in which feature selection can be approached. For instance, Principal Component

Analysis has been used in signal processing for many years to reduce dimensionality of

data into the main components which contain most of the energy. It is interesting to

examine the effects of implementing feature selection into the texture segmentation sys-

tem. In particular, genetic algorithm and simulated annealing are interesting techniques

which have been shown to be effective in solving multi-dimensional optimisation prob-

Iems. It will be a challenge to identify a suitable measure or objective for the selection

of features since it is likely that separability, rather than conventional energy or entropy

measures, will be most effective for gauging the relative fitness of features. In addition,

this thesis concentrated on experiments with wavelet subband coefficient energ-y as the

primary feature. There are many other types of statistics that can be extracted from

wavelet transform coefficients, and it remains to be investigated whether multiple statis-

tics methods will lead to improvements in segmentation performance. Future work could

look into finding the optimum combination of different statistical measures to be used as

texture features.

7.2.2 Classifier lmprovements

The use of staple clustering methods such as K-means clustering in this thesis is mainly

for simplicity. It was desirable to have a simple, well-understood method for clustering, so

as to allow the focus to be on evaluating the relative merits of different features. Modified

K-means was borne out from a desire to improve K-means segmentation performance for

multi-texture mosaics. A difficulty with the modified K-means algorithm is the necessity

to choose the spatial proximity factor wisely. This thesis introduces a simple indica-

tor based on distortion measures which can assist in choosing the proximity factor, but

this technique can only provide a reasonable approximation. It is obviously desirable to

have more accurate means to estimate optimal values of the proximity factor. This may

be possible with a more comprehensive analysis of the segmentations, rather than the

distance-based distortion measure.
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7.3 Closing Remarks

More generally, it will be interesting to see whether the application of more sophis-

ticated clustering algorithms will improve the texture segmentation performance of this
system' Indeed, the results from this thesis may be used as valuable training data for
more powerful classifiers. In Chapter 4, neural networks and support vector machines are

mentioned as potential candidates for classifiers. Neural networks have the advantage of
being a more mature topic of study, with many of their properties and oddities are known.
Support Vector Machines, being a ne\ryer technique, has demonstrated a tremendous po-

tential of being able to identify the complexity, and then solve, classification problems.

While the implementation costs for large SVMs may currently be prohibitive, the rapid
progress of digital hardware will surely make SVMs a practically viable tool for texture
segmentation.

7.2.3 lntegration w¡th Other Vision Systems

While being an interesting field of study, texture segmentation by itself has limited value,

with applications in only very confined environments. The real-world application examples

in this thesis reinforces this viewpoint. The logical extension of a successful texture
segmentation scheme would be to embed it into full computer vision systems. There are

many challenges associated with such an integration. For instance, questions on how
to meaningfully fuse information from several visual cue analyses must be answered. A
fully flexible machine vision system must also be dynamic over time, adapting to the
information content in each scene. As a result, the texture analysis engine of the vision
system may also need to adapt over time, and this will pose a significant challenge for
future texture segmentation research.

7.3 Closing Remarks

Texture segmentation has been an important computer vision research topic. Its vital role
in vision systems is long established, as are its fundamental challenges. Many ad.vances

have been made, but the panacea of a correct, powerful and efficient texture segmen-

tation has not yet been realised. This thesis attempts texture segmentation with novel

techniques. It is hoped that this thesis represents continued progress in the field, such
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Chapter 7 Conclusions and Future Work

that one day, the ideal texture segmentation subsystem for complete machine vision can

be achieved.
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Appendix A

In this appendix, all images used in the texture segmentation experiments are presented.

They include the images and their ground truths, whenever they are known.

4.1 Ground Truth lmages

Texture Segmentation Data

Figure 4.1. Two-texture ground truth, for the "D" series of texture pairs, shown
in figures 4.8 to 4.11.
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4.1 Ground Truth lmages

Figure A.2. Five-texture ground truth,
for the "Nat" series of
mosaics, as shown in fig-
ures 4.14 to 4.19.

Figure 4.3. Ground truth for image
"My 5a", shown in fig-
ure 4.12.

Figure A.4. Five.texture ground truth,
for the "bonn" series of
mosaics, as shown in fig-
ures 4.20 to 4.119.

Figure 4.5. Ground truth for image
"My 5b", shown in fig-
ure 4.13.
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Appendix A Texture Segmentation Data

Figure 4.6. Ten-texture ground truth, for images "Nat 10" and "Nat 10v", as

shown in figures 4.120 and A.127.

Figure 4.7. Sixteen-texture ground truth, for image "Nat 16b" in ligure A.L22
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4.2 Two-texture mosaics

A.2 Two-texture mosa¡cs

Images of two-texture mosaics used for experiments. All images have size 256x728 pixels,

and are obtained from Randen via the WWW [59]. All images in this section are used

for experiments in Randen's publications, and are therefore chosen for direct performance

comparisons.

Figure A.8. D4-D84

Figure 4.9. D5-D92

Figure 4.10. D12-D17
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Appendix A Texture Segmentation Data

A.3 Five-texture mosa¡cs

4.3.1 Original mosa¡cs

These two mosaics are constructed by the author; image size is 256 x 256 pixels. The

constituent textures are deliberately chosen to be identical for both mosaics. The only

difference between them is the set of boundaries separating the different texture regions.

Figure 4.12. My 5a

Figure 4.13. My 5b
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4.3 Five-texture mosaics

A.3.2 Randen mosa¡cs

This set of six mosaics are obtained from Randen via the WWW [59]. AII images have

size 256 x 256 pixels. Many of the images in this section are used for experiments in

Randen's publications, and are therefore chosen for direct performance comparisons.

Figure 4.14. Nat 5b

Figure 4.15. Nat 5c
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Appendix A Texture Segmentation Data

Figure 4.16. Nat 5m

Figure 4.17. Nat 5v

Figure 4.18. Nat 5v2

Figure 4.19. Nat 5v3

Page 213



4.3 Five-texture mosaics

4.3.3 University of Bonn database

Textures downloaded from the University of Bonn database [14]. There are 100 images

contained in this database, all generated from the ground truth shown in figure 4.1 with
Brodatz textures. The mosaics are numbered individually from 0 to 99. All the original
images had size 512 x 512 pixels, but in the interest of speed, they are all reduced to
256 x 256 lor the experiments. Reduction is accomplished with 2 : 1 downsampling along

both horizontal and vertical directions.

I

l.'

Figure 4.20. Bonn 00

Figure 4.21. Bonn 01

Figure A.22. Bonn 02

Figure 4.23. Bonn 03
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Appendix A Texture S entation Data

Figure 4.27. Bonn 07

Figure 4.28. Bonn 08

Figure 4.29. Bonn 09

Figure 4.24. Bonn 04

Figure 4.25. Bonn 05
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Figure 4.26. Bonn 06
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4.3 Five-texture mosaics

Figure 4.30. Bonn 10

Figure A.31. Bonn 11

Figure 4.32. Bonn 12

Figure 4.33. Bonn 13

Figure 4.34. Bonn 14
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Figure A.35. Bonn 15
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Appendix A Texture Segmentation Data

$.
\

Figure 4.36. Bonn 16

Figure 4.37. Bonn 17

Figure 4.38. Bonn 18

Figure 4.39. Bonn 19

Figure 4.41. Bonn 21

Figure 4.40. Bonn 20
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4.3 Five-texture mosaics
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Figure A.42. Bonn 22 Figure 4.45. Bonn 25

Figure A:46. Bonn 26

Figure 4.47. Bonn 27

I

Figure A.44. Bonn 24
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Appendix A Texture Segmentation Data

Figure 4.48. Bonn 28

Figure 4.49. Bonn 29

Figure 4.50. Bonn 30

Figure 4.51. Bonn 31

Figure 4.52. Bonn 32

Figure 4.53. Bonn 33

;.
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4.3 Five-texture mosaics

Figure A.54. Bonn 34

Figure 4.55. Bonn 35

Figure 4.56. Bonn 36

Figure 4.57. Bonn 37

Figure 4.59. Bonn 39
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Appendix A Texture Segmentation Data

Figure 4.60. Bonn 40

Figure 4.61. Bonn 41

Figure 4.62. Bonn 42

Figure 4.63. Bonn 43

Figure 4.64. Bonn 44

Figure 4.65. Bonn 45
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4.3 Five-texture mosaics
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Figure 4.66. Bonn 46

Figure 4.67. Bonn 47

Figure A.68. Bonn 48

f

Figure 4.69. Bonn 49

Figure A.70. Bonn 50

Figure 4.71. Bonn 51
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Appendix A Texture Segmentation Data

Figure 4.72. Bonn 52

Figure A.73. Bonn 53

Figure 4.74. Bonn 54

Figure 4.75. Bonn 55

Figure 4.77. Bonn 57

Figure 4.76. Bonn 56
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4.3 Five-texture mosaics

t

Figure 4.78. Bonn 58

Figure 4.79. Bonn 59

Figure 4.80. Bonn 60

Figure 4.81. Bonn 61

Figure A.82. Bonn 62

Figure 4.83. Bonn 63
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Appendix A Texture Segmentation Data
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Figure A.84. Bonn 64

Figure 4.85. Bonn 65

Figure 4.86. Bonn 66

I

Figure 4.87. Bonn 67

Figure 4.88. Bonn 68

Figure 4.89. Bonn 69
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4.3 Five-texture mosaics

Figure 4.93. Bonn 73

Figure 4.94. Bonn 74

Figure 4.95. Bonn 75

Figure 4.90. Bonn 70

Figure 4.91. Bonn 71

Figure 4.92. Bonn 72
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Appendix A Texture Segmentation Data

lr

ri

Figure 4.96. Bonn 76

Figure 4.97. Bonn 77

Figure 4.99. Bonn 79

Figure 4.100. Bonn B0

Figure 4.101. Bonn 81Figure 4.98. Bonn 78
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4.3 Five-texture mosaics

Figure 4.102. Bonn 82

Figure 4.103. Bonn 83

Figure 4.104. Bonn 84

Figure 4.105. Bonn 85

Figure 4.106. Bonn 86

Figure 4.107. Bonn 87
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Appendix A Texture Segmentation Data

Figure 4.108. Bonn 88 Figure 4.111. Bonn 91

Figure 4.112. Bonn 92Figure 4.109. Bonn 89

Figure 4.110. Bonn 90
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Figure 4.113. Bonn 93

Page 229



4.3 Five-texture mosaics
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Figure 4.114. Bonn 94 Figure 4.117. Bonn 97

Figure 4.118. Bonn 98
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Figure 4.119. Bonn 99

Figure 4.115. Bonn 95

Figure 4.1f6. Bonn 96

$
}rr

I
l,r

Page 230



Appendix A Texture Segmentation Data

4.4 Ten-texture mosa¡cs

Figure 4.120. Nat 10

Figure 4.121. Nat LOv

4.5 Sixteen-texture mosa¡cs

Figure 4.L22. Nat 16b
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Appendix B

Detailed Texture Segmentation
Results

This Appendix contains the detailed tables of results for the artificial texture mosaic seg-

mentation experiments. The segmentation error rates for all combinations of wavelet

transforms and Kaiser smoothing parameters are listed. However, the median filter

smoothing results are omitted. For the sake of brevity, these have been omitted from

Chapter 5 of the main text. The four sections of results in this appendix are arranged

according to the type of K-Means clustering used in each section. They are listed in

the follow order: conventional, ftnzy, modified and modified finzy. A general noticeable

trend with these results is how poorly some values of the Kaiser smoothing parameter, p,

performed.
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8.1 Conventional K-Means

8.1 Conventional K-Means

Table 8.1. Summary of segmentation error rates for 1(-Means, DWT depth 3. The transform uses
the Daubechies 9-7 filter pair, at a depth of 3 levels.
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Appendix B Detailed Texture Segmentation Results
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Table 8.2. Summary of segmentation error retes for 1{-Means, DT-CWT depth 3. The transform
uses the Kingsbury filter pair, at a depth of 3 levels.
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8.1 Conventional K-Means
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Appendix B Detailed Texture Results

Table 8.3. Summary of segmentation error rates for lf-Means, DWT depth 2. The transform uses

the Daubechies 9-7 filter pair, at a depth of 2 levels.
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8.1 Conventional K-Means
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Table 8.4. Summary of segmentetion error rates for /f-Means, DT-CWT depth 2. The transform
uses the Kingsbury filter pair, at a depth of 2 levels.
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Appendix B Detailed Texture Segmentation Results

Imase \ It U I 2 J ò ð lö ZI 34 b5 MedrÈn
bonn 2ö
bonn 27
bonn 28
bonn 29
bonn 3O
bonn 31
bonn 32
bono 33
bonn 34
bonn 35
bonn 36
bonn 37
bonn 38
bonn 39
bonn 4O
bonn 41
bonn 42
bonn 43
bonn 44
bonn 45
bonn 46
bonn 47
bonn 48
bonn 49
bonn 50
bonn 51
bonn 52
bonn 53
bonn 54
bonn 55
bonn 56
bonn 57
bonn 58
bonn 59
bonn 60
bonn 61
bonn 62
bonn 63
bonn 64
bonn 65
bonn 66
bonn 67
bonn 68
bonn 69
bonn 70
bonn 71
})onî 72
bonn 73
bonn 74
bonn 75
bonn 76
bonn 77
bonn 78
bonn 79
bonn 80
bonn 81
bonn 82
bonn 83
bonn 84
bonn 85
bonn E6
bonn 87
bonn 88
bonn 89
bonn 90
bonn 91
bonn 92
bonn 93
bonn 94
bonn 95
bonn 96
bontr 97
bonn 98
bonn 99

r ö.9ö
ro.26
23.17
17.06
24.98
35.25
36.03
5,73

24.74
18.02
22,5A
3.85

23.70
2.34

27.66
35.46
19.05
28.51
36.32
16.65
32.O4
5.84

22.25
26.35
29.49
22.96
29.24
29.tr
9.77
6.98

36.15
6.20
8.31
tt.22
2r.26
17.33
24.r1
31.45
11.73
õ.63
2.74

r9.73
t2.43
6.51

13.7L
8.49

3E.25
1õ,õ9
4.91
4.2A

29.37
40.t7
18.73
L2,59
22.34
30.01
47.94
20.03
4.47

11.9ó
19 47
31.78
2L.73
5.81
5.11
18.00
4.69

25.52
6.26

1S,O1
17.4A
24.92
7.42
16.13

t6.72
22,24
22.77
16.83
24.87
2E.59
s6.61
13.31
24,45
5.40

22 66

2.24
25.20
33.42
14.99
9.69

36.32
16.39
3r.92
5.7A

19.87
9.09

29.20
22.84
29.32
28.96
8.94
6.88

35.95
6.20
E 11
11.11
2t.o4
5.80
7.63

3r.68
t7.57
29.O7
2.67

20.03
12,s4
6.Sa

26.66
a.45

38.15
15.66
4.79
4.t2
7.2a

a9.94
18.51
13.45

29.86
48.09
6.4r
a.t2

11.96
19.24
31.51
27.37
32 A2
4.98
17,47
27.32
25.57
6.14

13.14
t7.42
24.90
7.42
15.94

lö.öt
9.O1

22.46
5.O2

24.68
29.22
35.69
13 66
23.96
4.92
9.59
3.55

24 05
2.08
4.47

35.14
r9.59
9.67
8.49
15.28
2A.7a
23.90
19,24
4.86

28.66
22.90
29.r7
2a.60
8.37
6.52
35.?2
6.14
7.78
70.72
20.66
17.66
7.29
32.O4
tL,46
28.15
2.64

L9.74
24.33
6.67

32.95
4.40

37.47
75.92
4.47
3.9S
7.95
40.44
18.03
23.47
6.80
29.76
4A.24
6.01
7.54
t2.70
1A.7a
31.18
8.29

32.43
4.77

16.96
4.34
23.53
5.90

20.84
L7.29
24 55
7.7r
4.79

I tt.73
26.39
22.66
4.79

24.35
29.01
47.74
5.59

24.tA
18.52
24.32
3.34
a.6a
1.93
4,OA

35.24
40.09
9.87
a.17

14.90
29.42
32.91
23.99
28.59
27.84
22.77
28.83
35.37
7,61
6.27

24.86
23.37
7,46

10.54
48.88

7.LO
32 13
11.57
17.80
34.22
20.05
25.41
24.70
26.10
8.45
16.94
25.42
4.46
3.98
9.24
40.25
17.53
23.79
6.32
4,39

4A.54
5.4õ
7,O4

35.7r
19.40
31.04
20.00
32.06
4.57

39 58
4,t6

2A.97
õ.69

30.73
17.67
24 35

444

21,25
2A.41
29.64
4.71

24,13
29.66
37.18

24.53
20.0E
11.01
3.35
9.14
1.43

33.50
35.93
39.75
t7.27
9.18
14.66
35.86
33.64
26.86
31.31
27,42
22,64
J I.OJ

36.75
37.52
6.30

4L 42
8.12
7.AL
11.04
52.95
6.O2
8.28

24.18
72.70
17.61
34.30
2r.56
30.04
26.43
18.98
8.74
16.55
25.49
4.79

25.15
13.89
46.47
16.a6
26.70
6.87

28.86
4A.72
6.07

32.1.4
39.59
20.96
31.20
7.Oa

31.66
4.46

39.70
21.85
31.27
6.45
15.91
22.54
24,t5
34.84
4.Oa

22.2U
3t.t2
33.03
4.82
24.33
35.09
37.59
23.O7
36.23
4,24

33.19
3.56

26 92
33.59
24.67
36.93
45.37
14.84
11.49
15.64
33.11
34.39
24.19
39.98
27.51

6,O7
39.54
39.53
6.99
42.66
12.58
8.53
11.55
55.24
23.46

25.72
35.53
18.44
34.39
24.60
24.45
13.34
35.41
9.48
45.48
27.24
6.51

33.95
L7.33
54 19
77.14
31.04
6.28
27.97
48.98
25.90
31.90
40.40
24.O1
31.97
7.76
37.40
26.92
22.23
33.55
29.62
8.28
16.86
25.36
25.01
34.70
23.55

7.46
33.26
33.45
6.2a

35.49
36.29
39.20
23.67
38.86
4.66
32.39
28.31
27.49
30.51
33.86
37.84
26.34
r9.44
15.26
17.25
54.83

24.29
43.63
28.41
32.79
35.13
43.05
40.83
8.70
45.92
ra.44
9.48
12.73
55.17
24.49
30.71
49 30
37.16
1E.60
23.86
38.03
26.23
16.66
40.52
1 1.88
77.32
31.60
9.56

33.45
21.08
45.61
25.08
43.01
7.89
37.O2
50.60
24 52
34.O4
47,42
22.O2
34.95
24.O7
6,1õ
6.01
25.11

29.a7
77.79
18.78
24.96
32.36
34.81
23.73

32.2tr
35.48
35.42
5.81
32.59
36.99
46.92
24.a2
37 96
632

37 84
29.23
29 83
2.26

39.86
26,65
25.62
2L.65
19.31
55.32
34.10
25.09
44.97
29.97
32.54
35.85
53.74
19.62
72.O2
42.38
29.64
17.25
r4.57
29.03
24.54
35.14
25 45
38.68
23.61
24.35
39.98
34.27
2r.67
43.80
19.76
18.79
36.78
15.25
32.95
37.88
48.91
26.51
57.72
22.30
36.33
40.7A
25.99
35.59
43.30
22.30
36.47
25.35

8.56
26.18
33.06
35 44
16.41
22.60
26,O4
6.02

36.98
24.32

32,2U
37.52
47.44
7.27

34.63
39.91
53.19
25.93
38.1 1

26.09
40 72
't.45
4a.t7
3.52
29.60
40.90
27.3r
45.94
34.67
2t.49
53.92
34.59
26.97
44.5r
39.90
23.19
39.40
49.73
23.89
23.64
44.40
30.83
18.82
16.97
32.35
25.O4
42.62
26.43
41.72
24.26
24.79
29.83
47.rO
27.06
45.80
24.59
10.94
4t.64
36.17
33.18
25,59
54.05
27.87
50.21
22.t6
37.88
49.96
36.56
39.36
31.83
23,91
38.46
26.54
7.98

14.09
50.13
30.69
32.89
24.77
40.27
54.O2
31.98
4t.52
26.69

32-72
61.84
49.24
34.38
34.12
47.57
53.12
27.65
38.60
31.48
56.52
10.41
48.18
6.15
29.68
43.93
29 ?5
4A.54
35. Ì2
4A.46
55 54
36 35
2a.37
45.51
53.54
33.21
40.23
50.01
25.t5
24.4r
4A.O2
38.21
19.83
21.99
58.33
26.26
59.80
29.85
46.19
25.L7
4.22

51.91
39.88
35.48
48.00
25.69
34.42
39.83
39.76
35.93
44 09
49.05
29.A9
52.08
23.91
43.18
51.06
38.75
4A.24
34.69
26,30
55.75
24.61
32.81
23.27
29.64
10.32
36.43
34.77
40.59
55.19
32.39
43 87
28.44

19.1 t
29.77
31 33
5.54

24.92
35.17
38.39
22.65
30.38
72.t7
28.35
3.80

25.49
2.30

28.95
36.43
26.98
t7.14
18.46
16.52
34.4a
33.27
24.24
35 65
2E.93
22 96
30 43
38.15
2t 75
6.99

41.90
15.51
a.42
11.39
40.62
22.69
18.83
30.65
24,LI
2t.LO
24.t7
23.08
25 a2
19.13
34.18
9.11

26.61
26.39
5.7t

29.05
19.20
46.O4
18.62
2A.A7
7.59

29.94
48 63
22.28
32,O2
35.20
27.49
31.88
21 55
31.53
5.56

25.65
24.58
29.42
7.36
19.81

24.9t
34 76
19.84

MedraD 2U U3 ZU,U3 I ð.ð7 21,92 23.óz zõ.92 29,ób 32.2ö tt4,b7 Jð.75 2b.ð2

Page 239



8.2 Fuzzy K-Means

8.2 Fuzzy K-Means

Table 8.5. Summary of segmentation error rates for fuzzy K-Means, DWT depth 3. The transform
used is the DWT with Daubechies 9-7 filter pair, at a depth of 3 levels.
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Appendix B Detailed Texture Segmentation Results
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Table 8.6. Summary of segmentation error retes for fuzzy /f-Means, DT-CWT depth 3
transform uses the Kingsbury filter pair, at a depth of 3 levels.
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8.2 Fuzzy K-Means
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58.06

18.54
24.25
43.40
41.69
51.66
43.55
t2.24
27.55

55.70
45.O2
34.61
34.19
17.05
57.70
17 69
48 95
39.18
23.70
t2.64
59.33
35.09
30.90
23.43
23 03
37.08
19.02
17 16
62.42
56.40
54.80
15.57
22 03
49.42
35.51

40 61
53.74
22.24
27.A6
44.99
35 37
27.45
47.20
34.74
34.92
40.01
48.10
15.77
39.21
t5.72
37 93
36.64
40.35
51.91
24.77
51.43
33.11
54.72
52.40
46.99
37.76
43,63
29.10
46.62
51.12
32 51
36.15
37.56
52.72
55.21
44.94
42.62
38. r7
42.O5
40.a2
L9,T2
45 32
58.11
36 53
L7.46
39 88
43.68
41.22
55.54
55.88
35.97
31 97
56.27
47.O5
41.23
36.22
36.O2
18.05
56.58
16.09
55.86
39.36
24.69
18.98

39 35
34 39
33 95
16 38
47 70

57 70
35 25
31 96
25 02
50 45
38.01
20.42
49.54
63.27
59.63
56.69
34 33
33.45
50.15
37.36

37.93
10.33
23.t2
21 98
23.09
24 00
27.26
435
30.18
1 1.50
29.67
19. r3

6.08
2r.a4
38.52
16.07
2.86
2A 79
25.05
19.83
34 05
16.03
22.26
30.39
74.04
22.5t
31.43
37.77
24.06
29.45
34.45
15.55
28.68
40.73
33.45
7.35
18.61
20.31
18.74

24 t5
25.67
22 04
14.56
22.5A
23.43
31.83
24 65

8.94
37.20
36.07
19.37
16.31
34.36
t7.40
28 35
16.89
25.67
38.98

11.11
43.99
20,7t
31 93
23 90

15.18
18.73
16.89
52.13
29.53
34.75
2r.30
LI.12
21.33
14.73

Med¡an r3.2ö L3.42 tE.2ö 19.65 2t.45 24.A4 27-62 32.04 35.84 40.61 ZJ.9U
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Appendix B Detailed Texture Segmentation Results

Table 8.7. Summary of segmentation error rates for fuzzy K-Means, DWT depth 2. The transform
uses the Daubechies 9-7 filter pair, at a depth of 2 levels.

lmasc \ ú o 1 3 5 I 13 2r 34 55 Median
D4-D84
D5-D92
D8-D84
DI2-DI7
My 5a
My 5b
Nat 10
Nat 1Ov
N&t 16b
Nat 5b
Nât 5c
Net 5m
Nat 5v2
Nôt 5v3
Nat 5v
bonn 00
bonn 01
bonn 02
bonn 03
bonn 04
bonn 05
bonn 06
bonn 07
bonn OB

boDD 09
bonn 10
bonn 11
boDn 12
bonn 13
bonn 14
bonn 15
bonn 16
bonn 17
bonn 18
bonn 19
bonn 20
bonn 21
bonD 22
bonn 23
bonn 24
bonn 25
bonn 26
bonn 27
bonn 28
bonn 29
bonn 30
bonn 31
bonn 32
bonn 33
bonn 34
bonn 35
bonn 36
bonn 37
bonn 38
bonn 39
bonn 40
bonn 41
bonn 42
bonn 43
bonn 44
bonn 45
bonn 46
bonn 47
bonn 48
bonn 49
bonn 50
bonn 51
bonn 52
bonn 53
bonn 54
bonn 55
bonn 56
bonn 57
bonn 58
bonn 59
bonn 60
bonn 61
bonn 62
bonn 63
bo¡n 64
bonn 65

2.54
2.50
7.17
2.39

23.93
6.78

36.A4
41.OA
43.õ5
t4,67
13.35
10.75
32.63
14.99
t4.7t
22.37
18.23
14,41
7.2L

31.33
11.46
4.65
7.54

21.26
16.89
27.44
3.09
8.15
10.16
691
6.24
7.70

2L.92
29.38
29.24
10.04
l3 24
2Ì.AO
17.t3
23 33
6.59
10.82
32,03
5.99

31.E9
5.29

73.24
6.26
12.38
5.87

1.2.74
405
9.O1
3.10
4,27

14.29
2L.44
1S.4õ
11 58
14.43
1A,Aõ
8.87

11.E7
10.13
4.77

23.80
34.38
9.39
10.37
s3.97
779

23 43
12.63
2L.44
5.73

24.79
6.99
to.22
10.19

2.34
2.34
1.11
2.33

23.42
6.64

36.92
4t.4r
43.74
14.89
13.2E
1(),66
32 56
74.47
15.23
22.48
18.07

7.30
3r.23
11.13
4,60

21.60
16.82
2?.a5

?9r
10.oo
676
6.t2

72.t4
22.50
29.25
29,26
9.86

13.1õ
27.56
16.82
23.52
6.52
10.64
32.15
5.84

25.16
5.18

L3.12
6.06

L2,19

12.61
3.92

24.30
2.98
4 t1.
74.3r
22.O5
13.48
11.54
74.2A
19.43
869

27 AO
11.a4
10.13
4.59

23.94
34.38
9.34

10.26
35.03
7.L2

23.36
72.42
6.OO
5.51
9.1()
6,94

10.11
9.49

2.27
2.42
0.92
2.26

23.60
7.03

36.10
42.52
45.77
16.00
13.35
11.07
33.70
16.31
16.38
24.Ot
17.66
34 90
7.49

31.08
10.67
4.60
6.63

23.03
28.51
27 A6
2,9ó
7.77

10.28
6.29
6.91
7.66

LL,74
24.O9

32.59
956

13.48
27.06
16.6A
23.69
6.51

10.36
32.86

34.49
4.97

13.32
5.88
t2.46
5.46

12.77
3.46

24.44

3.75
33.65
23.42
74 t2
72.70
14.00
25.18
a.54

27.37
12.56
10.o1
4.53
24.4A
34.30
9.65

10.1E
37,54
7.24

19.13
L2.29
6,a7
6.24
9.75
7.18
10.23
30.94

2,6ti

0.81
2,2L
t3.62
7.81

38.83
44.62
49.24
18.59

t2 23
36.87
20.06
17.85
24 76
17.60
r.6.11
7.88
3r.27
10.56
4.64
6.18

26.23
29.43
27.72
33.59
7.89
rr.17
6,97
5.99
7.42

1 1.76
26.72
2A.96
35.35
9,45

19.18
26.70
16.77
24.20
6.49

10.50
33.56
6.50

30.80
4.77

13.60
6.79

t4.23
6,12

t3.74
3.88
24.4L
2.50

34.72
24.26
15.55
75.47
13.41
26.99
8.62
24.30
13.90
10.29
4.62
4.20

34,O2
10.17
10.28
39.77
8.40
19.37
1,2.3',1

6.t2
23.20
11.89
7.58
10.58
32.14

4. Uö
4.30
0.76

13.34
9.78

47.36
47 09
57.64
25 36
15.59
16.27
42.24
2a 52
2L.O3
25.32
27 15
17.68
9.46
32.34
12.08
5.37
5.74

41.53
31.40
28.88
3.41
9.30

32.16
6.22
6.56
9.37
t2.46
2A.45
39.81
35.46
9.69

25.tO
a,11

17.61
2L.6L
6.66
r7.74

5.96
31.89
5.42
14.95
5.88

20.1 1

5.21
16 13
4.20

24.70
2.40
3,30

35.15
24.93
18.96
1 9.18
14.29
29.31
9.09
24.37
77.24
12.13
5.16
4.49
34.49
t7.62
11.38
42 39
13.62
20.59
13 40
25.L9
23.Ot
18.36
a.47
11.90
33.86

ti, ö2
6.84
o.66
2.45
14.17
11.79
53.75
56 53
66.19
32.09
20.o4
22 53
45.26
40 88
24.33
25.92
24.73
19.68
11.37
33.75
16.41
6.96
6.60
53.74
26.95
30.80
4.10
12,T7
36.89
7.73
7.53
IL.27
14.o4
30.54
40.03
35.31
10.82
2E ll
4.22

25.08
26.29
7.81
12.99
35.85

37.18

77.72
23.32
24.47
6.03
rs.57
4.96
24.97
2,59
3.55
35.46

24.O4
40.76
15.80
6.61
6.OE
35.O7
13.05
12.56
44.A3
29.00
20.90
16 26
25.73
22.47
31.46
1o.27
36.85
32.94

9,75
9.75
0.73
2.73
20.29
t3,22
64.51
60.01
73.10
39 07
34.01
28.83
49.62
50.06

21.84
29,72
22.21
74 28
34.52
25.17
9.8E

36.E0
58.15
36.35
33.18
5.33
18.93
26.92
11.19
L08
r3.84
16.36
33.94
L8,24
35.59
13.08
32.18
8.76

27.7A
28.90
11.54
15.65
40.12
9.30
39.64
11.49
23.32
23.58
29.27
7.85
34 75
6.86
24.A4
3.36
32.54
36.30
24.O7
32.O4
24.rA
28 06
35.65
13.64
23.97
41.55
19.92
9.06
29.4A
36.01
15.65
15.10
46.37
33.86
27.62
22.L2
15.53
22.49
36.84
13.35
24.46
17.19

L4.L2
13.96
1.06
3.16
28.35
16.78
70.44
66.72
?8.30
47.64
43 07
43.47
52 27
54.76
44.08
27 9a
49.51
24.AA
t8.t2
31.91
32.40
74.20
8.05
60.93
39 15
35.94
7.3L

26.51
42.t7
29.9r
r1.65
t6.7?
19.70
38.49
39.24
36.37
17.96
36.41
10.57
28.81
32.50
21.50
19.26
43 19
12.7r
17.77
74.97
37.38

38 13
11.79
39.56
11 36
24.O2
5.16
5.15
37.42
30.09
51.06
26.08
26.37
34.77
22.67
24.76
43 30
23.66
t2 57
17.34
37.48
18.97
19.38
50.40
38.04

29.52
29.6t
22.46
38 26
r?.79
30.62
27.7r

19 U2
18.02
1.64
4.03
29.44
27.41
73.59
68.55
ao 74

47 7r
51.31
55.45
60.23
48.60
29.79
55.03
37.70
23.33
33.00
34.74
20.06
9.36
64 18
42.22
39 23
10.57
30.67
42.OA
34.97
14.89
29.20
23.86
40 23
41.55
37.75
20.80
41.46
15.70
3t.20
36.23
26.74
37.64
47 27
21.59
40 94
19.34
42.L|
22.44
40.19
22.93
43.40
19.00
23.18
907
6,77
39.43
32.42
52.20
30.50
27.55
34.52
36.83
26.51
44.t2
30.00
16.86
37.01
39.13
21.78
29.89
51.49
4a.43
24.60
32.45
32.42
24.12
37.68
24.AO

24.69

23.23
27.45
2.88
5.46
35.47
27.44
76.19
70.58
81.80
59.91
49.99
52.74
59.91
65.07

32.23
58.71
39.54
35.88

36.93
44.76
12.79
65 98
44.89
43.38
24.4r
34 32
45 2A
39 40
2A 7A
29.93
31.06
52 18
44.43
39.13
23.t6
49.75
23.61
35.99
40 r.5
29. rO
47.L4
50.59
25.32
47.5A
25.05
45 36
23.09
41.69
27 12
45.95
28 31
23.92
22.98
39 54
4t.74
34.98
52.01
34,77
44.A3
38.09
38.82
31.12
49.76
37.64
23.58
44.76
41.06
24 06
37 90
57.92
52.74
26.20
38 31
35.06
25.36
45.18
33.01
35.05
37.94

26.97
26.L6
21.08
16.14
33.70
10.18

5. iJ4
5.57
0.99
242
23.7r
10.78
50.56
51.81
61.91
24.72
17.a2
19.40

34.70
22.64
25.O4
25.94

to.42
32.t3
74.25
6.16
7.38
47 63
30.41
29.A4
4.71
10.73
29.54

704
10 32

29 50
34.3t
35.40
10.43
26.61
19 66
21.35
25.25

t2.o7
35.79
6.60
33.19
6.59
16.34
14.57

595
17.85
4.58
24.35
3.04
4.LS
35.30
25.95
22.56
20.13
15.2E
31.50
9.63
25.64
29.00
13.96
589
23.A7
34 7A
12 33
1 1.97
43.61
2r.37
22.r7
14.83
23.32
22.68
24.t2
9.37

20.18
27.82
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8.2 Fuzzy K-Means

lmaEe \ It U t 2 5 I 2t 55 Med¡an
bon¡ ö6
boDn 67
bonn 68
bonn 69
bonn 70
bonn 71
bonn 72
bonn 73
bonn 74
bonn 75
bonn 76
bontr 77
bonn 78
bonn 79
bonn 80
bonn 81
bonn 82
bonn 83
bonn 84
bonn 85
bonn 86
bonn 87
bonn 88
bonn 89
boun 90
bonn 91
bonn 92
bonn 93
bonn 94
bonn 95
bonn 96
bonn g7
bonn 98
bonn 99

2,94
929

12.10
8.96
8.20
7.86
6.t2

16.75
5.1ó
8.35
9.63

27.24
5.96

16.08
ã.5õ

31.73
40.a4
7.54
7.93

12.98
7.22

31.95
6.77
5.68
4.99
12.r7
4.ts
9.06
6.47

13.82
6.64
4.O4
9.28
4.03

2.94
10.39
28.45
10.58
8.98
7.A2
5.54
20.t4
5.44
8.10

34.88
6.74

17.98
5.7r

30.57
4t.L2
7.40
7.67

14.85
2r.65
L2.42
23.77
5.4ó
4,A9

24.77
4.79
9.48
7.O2
r4.97
6.66
3.96

10 46
4.12

3.17
76.17
29.16
74,25
1 1.39
7.99
5.84

32.58
7.20
8.58

36.01
32.89
5.78
2t 74
6.63
31.30
41.41
816
7.70

22.O5
27.76
14.69
6.46
5.65
5.65
23.99
5.11
10.87
8.56
16.79
16.07
4.09
16.56
4.51

3.78
19.82
29.66
2t 94
t7.75
9.29
6.82

36.30
10.33
9.73

36.58
35.13
24.07
24.17
8.54

33.66
4L.?2
25.t6
10.28
26.7A

18.34
7.32
6.49
7.95
24.2r
6.18
72.47
11.33
18.18
22.85
4.7r

24.O2
19.40

5.40
2L.66
30.36
29.13
22.O4
14.03
8.75

45.53
15 33
12.66
26.64

24.52
26.89
11.54
34.O5
42.39
25.67
25.76
29.32
24.60
23.09
10.00
7.93

73.25
24.75
9.44
lò.5b
15.23
20.20
25.32
6.23
29.56
20.08

8.59
26.32
30.90
4t.t2

2r.o2

48 33
27.OO
l7.49
33.45
36,32
25.14
29 68
25.33
43 96
43.66
13.77
22.83
31.15
26.16
29.74
16.83
9.?8
2t.47
25.73
r4.47
19.56
25.29
23.36
24.t4
8.69

38.62
21 96

12.72
26.97
31.32
57,34
28.19
23.79
24.52
49.93
42.72
2a.2A
40.86
38.56
24.LA
32.54
26.26
43.40
44.A4
16 24

34.94
26.45
3a 25
30.86
13.88
32.20
27.27
20.01
24.44
35.74
28 66
29.20
12.49
4A.75
39.98

17.66
24.70
33.23
59.22
31.37
24.4O
36.88
50.54
46.98
34,37
46.94
40.8?
26.81
35.91
26.rO
52.72
45.65
21.t2
25.1 1

39 70
34.66
45.20
29.75
20.72
39 79
24.91
25.36
29.85
4r,45
32.56
32.44
28.85
59.57
43.O7

3.19 3.09
9.4I 9.20
12.76 12 52
4.29 A,22
8.03 A,O2
8.31 8.14
5.83 5.66
L4.84 15.06
5.47 5.30
8.62 4.44
9.2t 9.12

2fJ.7L 26.86
25.05 25.39
L4,64 14.87
5.98 5.87

30.23 30.67
32.64 32.68
7.88 7.77
8.87 8.59
12.81 L2,47
4.72 8.04
32.66 32.43
7 t6 7.O1
6.24 5.97
5.27 5.10
10.60 to.74
4.49 4.7A
a.70 8.81
7.50 7.29

12.91 13.12
22.36 6.64
4.43 4.34
8.89 8.a4
4,O2 4.03

3.48
18.00
29.4I
18.09
t4.57
8.80
6.33
34.44
4.77
9.18

33.80
35.01
24.35
22.66
7.59

32.69
41.56
10.67
9.58

24.42
22 33
30.54
8.66
6.37
6.80
24.4A
5.64
11.87
9.94
77.49
22.6r

20.29
11.96

Mcdiôn ru. rb tu.26 ru.2a 12.23 14.69 20.04 23.97 26 76 31.32 36.93 r9,oþ

Table B.8. Summary of segmentation error rates for fuzzy I(-Means, DT-CWT depth 2. The
transform uses the Kingsbury filter pair, at a depth of 2 levels.
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D4-DE4
D5-D92
D8-D84
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My 5a
My 5b
Nât 10
Nat 1Ov
Nat L6b
Nat 5b
Nat 5c
Nat 5m
Nat 5v2
Nât 5v3
Nat 5v

t¡onn 00
bonn 01
bonn 02
bonn 03
bonn 04
bonn 05
bonn 06
bonn 07
Louu 08
bonn 09
bonn 10
bonn 11
bonn 12
bonn 13
boDn 14
bonn 15
bonn 16
bonn 17
bonn 18
bonn 19
boDD 20
bonn 21
bon 22
bonn 23
bonn 24
bonn 25

1.10
2.81
0.87
2.60
12.35
7.24

3E.AA
47.74
55.10
7.45
7.69
7.73

32.49
12.O9
72.69
24,20
25.10
12.09
4.5A

3r.29
ro 22
4.53

23.76
27.96
26.L6

8.05
5.48
6.53
479
6,A2
7.13

21.31
26.86
29 38
10.86
16.03
890
2t.92
15.O4

0.94
2.77
0.84
2.53
12.40
7.O9

39.27
40.51
õo.34
7.26
7.56
7.73
32.93
12.66
12.95
24.3A
24.80
12.09
4.59
31.13
986
44t
6.96

23.76
28.00
26.27
32.80
7.76
5.40
6.32
4.72
6.84
6.93

23.O7
26.30
29.25
10.78
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27,a6
22.40
15.13

o.7a
2.61
0.79
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L2.06
6.76

41.05
47.9A
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7.53
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33.94
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13.83
25.03
23.O2
t2.43
4.62

30.73
9.30
4.33
6.28

24.54
LlJ.34
26.59

't.47
õ.sõ
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4.57
6.97
6.37

25.45
24.36
24.08
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27.r9
L5.42
75.7r
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o.72
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16.17
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47.OO
64.24
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7.51
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35.70
20 04
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26.O2
18.09
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30.63
4.94
4.39
5.87

29,24
17.47
27.34
33.17
7.46
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5,34
4.4e
7.26
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26.49
2r.a4
34.25
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16.63
26.6r
t3.52
16.91
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3.47
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18 69
7.O9

59.60
6 1.58
68.53
t9.75
8.04
73.29
37.63
33.45
21.89
24.63
19.89
I4.67
5.96
31.79
10.86
4.94
32.74
50.11
29.24
29.65
32,42
4.74
7.23
5.39
4.58
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27.30
19.04
33.93
11.11
17.a7
7,9S
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o.61
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7.O2
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32.O4
26.10
2t.45
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5r.72
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24.42
27.40
25.49
7.47
33.14
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30.62
33.16
32.2a
t2.44
31.02
23.77
4.A2
L56
9.58

27.aO
10.14
33 40
12.45
20.73
8.00

23.30

8.04
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1,96

34.58
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72.44
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78.79
37.62
45 61
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46.88
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35.91
19.17
40.83
2A.7A
9.49
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Appendix B Detailed Texture Segmentation Results
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8.3 Modified K-Means

8.3 Modified K-Means

Table 8.9. Summary of segmentation error rates for modified K-Means, DWT depth 3. The trans-
form uses the Kingsbury filter pair, at a depth of 3 levels.
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Appendix B Detailed Texture Segmentation Results
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Table 8.10. Summary of segmentation error rates for modified /l-Means, DT-CWT depth 3. The
transform uses the Kingsbury filter pair, at a depth of 3 levels.
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8.3 Modified K-Means
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Appendix B Detailed Texture Results

Table 8.11. Summary of segmentation error rates for modified lf-Means, DWT depth 2. The
transform uses the Daubechies 9-7 filter pair, at a depth of 2 levels.
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8.3 Modified /f-Means
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Table 8.12. Summary of segmentation error rates for modified K-Means, DT-CWT depth 2. The
transform uses the Kingsbury filter pair, at a depth of 2 levels.
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Appendix B Detailed Texture Segmentation Results
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8.4 Modified Fuzzy K-Means

8.4 Modified Fuzzy K-Means

Table 8.13. Summary of segmentation error rates for modified fuzzy K-Means, DWT depth 3. The
transform uses the Kingsbury filter pair, at a depth of 3 levels.
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Appendix B Detailed Texture Segmentation Results
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Table 8.14. Summary of segmentation error rates for modified fuzzy K-Means, DT-CWT depth 3

The transform uses the Kingsbury filter pair, at a depth of 3 levels.

lmôse \ lJ U I 2 3 b ð IJ ZT ô4 bþ Meolan
D4-Da4
D5-D92
D8-D84
Dt2-D).7
My 5¿
My 5b
Nat 10
Nat lov
Nat 16b
Nat 5b
Nat 5c
Nôt 5m
Nat 5v2
Nat 5v3
Nat 5v
bonn 0O
bonn 01
bonn 02
bonn 03
bonn 04
bonn 05
bonn 06
bonn 07
bonn 08
bonn Og
bonn 10
bonn 11
bonn 12
bonn 13
bonn 14
bonn 15
bonn 16
bonn 17
bonn 18
bonn 19
bonn 20

o.oo
o.22
o.t2
0.88
t4.34

2.6r
1.50
5.55
2.74
306
3.11
6.92
6.13

2.95
4.57
3.35
2.96
2.67
3.16
2.85
2.64
5.24
4.26

20.96
3.45
5,29
2.71
2.94
2.37
2.A7
3.83
4.72
3.05
3.05

0.00
o.22
0.13
0.88
t4.2A
3.09
2.60
t.45
6.62
2.72
2.95
323
5.92
6.26

2.93
4.47
3.26
2,88
2.44
3.07
2.75
2.64
5.52
4.68
19.95
3.39
5.21
2.Oa
2.86
2.29
2.5t
3.81
4.7A
2.97
3.05

U.UO

o.22
0.15
0.88
13.81
2.47
2.54
1.42
5.57
2.64
2.75
3.41
6.27
6.70
3.L2
2.44
4,4t
3.06
273

2.47
2.60
2.54
6.40
4.65
10.49
3.31
5.01
2.OA
2.69
2.ta
2.4A
s.72
5.02
2,',t6
3.06

u.u0
0,28
0.23
0.90
13.57
2.66
2.4a
7.4t
5.87
2.50
2,62
3.82
6.51

3.13
2.69
4.74
2.87
2.66
2.74
2.64
2.45
2.46
7.80
4.69
831
3.16
4.92
2.tt
2.55
2.14
2.39
3.77
10.97
2.4a
3.05

u.u4
0.31
o.26
0.90
73 24
2.3r
2.35
1.39
6.65
2.36
2.63
4.58
8t7

12.50
3.78
2.55
6.20

2.61
2.ro
2.45
2.39
2.39
9.73
5.08
4.16
s.L2
5.54
2.74
2,32
2.21
2.34
3.96
13.38
2.3t
3.O4

U.IU
0.37
o.29
0.90
12.83
1.96

r.43
7.99
2.39
2.95
6.2t
13.60
18.34
5.46
2.5t
6.77
2,O4

2,OO
3.47
2.44
2.36

L7.62
5.47
9.89
3.33
6.95
2.30
2.27
2.34
2.SO
4.16
17.72
2.19
3.14

u.t2
0.41
o.27
o.8E
t2.67
r.74
2,21
1.51
9.95
2.97
3.61
9.77
36.52
26.03
8.89
2.47
7.47
2.7r
15.52
2.03
4.36
2.67
2.3r

33.33
5.96

1 1.38
3.64
8.62
2.55
2,26
2.44
2.3t
449
19 38
224
3.31

0. r3
0.43
o.26
0.84
12,4t
1.53
2.35
1.55

12.01
4.57
4.55
L7.71
37.51
31 2l
14.01
2.46

10.56
3.33
14.97
18.67
5.75
2.97
2.24

35.09
10.53
13.09
3.56
10.34
3.14

2.63
2.44
5.31
2r.44
2.25
3.61

U.I5
0.49
o.2l
o.73
72.64
1.38
2.7r
1.68

14.10
8.68
6.04

23.43
47.64
31.63
r4.64
245
15.57
5.01
r5.44
77.54
10.55
3.56
229
24.75
12.27
15.15
3.49
11.95
4.83

2.95
2.57
õ5õ
21.92
262
4.00

U. I5
o.52
o.10
o.67

13.65
L.26
3.50
1.89

31.03
20.75
8.68

27.75
41.33
36.18
25.r6
2.95

20.63
6.78
16.14
16.58
12.96
44a
2.40
29,L1
14.31
16.41
3.4t
13.10
21.51
10.88
4.O2
2.49
869
23.O4
13.49
4.47

u.u7
0.34
o.22
0.88
t3.47
2.13

t.47
732

301
5.40
10.89
1.5.42
4.62
2.62
6.45
3.16
3.04
2.34
3.31
2.64
2.40
L3.62
5.27
t2.24
340
6.24

256
2.36
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8.4 Modified Fuzzy K-Means
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Appendix B Detailed Texture Segmentation Results

Table 8.15. Summary of segmentation error rates for modified fuzzy K-Means, DWT depth 2. The
transform uses the Daubechies 9-7 filter pair, at a depth of 2 levels.
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3.94

24.26
3.16
3.63
8.92
7,4A
4.21
2.49
2,76
3.36

2.5t
3.13
s.74
2.67
7.44
4.7É
3.63
3.30
2.45
2.55
3.19
4.83
5.96
3.62

0.0u
o.oo
0.oo
0.40
L3.34

2.59
1.51

10.23
3.52
4.76
5.E3
10.54
661
3.92
272
3.11
2.Ar
3.09
218
3,91
2.22
245

3.96
4.O5
1.90
4.05
2.4A
2.97
7.A2
1.87
2.46
4.53

2.40
334
10.12
2.70
2.37
3.11

5,94
30.49
2.40

464
4.O7
2.65
8.51
2.50
3.04
2,27
3.15
r.79
2.OO
4.25
24.a4
3.33
3.40
8.39

26.45
4.13
2.36
2.94
3.10
1.99

2.s7
3.47
2.63

5.15
3.64
3.24
2.77
2.53
3.35
4.90

3.52

u.0u
0.02
0.00
0.39
73 77
2.L7
2.56
t.47

12.ol
4.64
4.97
6.99
10.46
826
4.7r
26r
3.18
2.At

2.O2
3.99
2.39
2.7e
6.80
3.96
4.62
1.98
4.13
3.03
2.49
1.79
t.77
294
5.82

2.35
3.35
10.83

2.24
3.45
1.68
3.97
30.19
2.24
2.50
5.44
4.O7
2.58

11.32
2,47
s.o1
2.28
3.O3
1.70
t.87
4.54

23.83
4,96
3.31
8,22

26.50
4,OS
2,55
3.05
2.89
1.49
2.29

3.38
2.57

10.57
5.69
3.64
3.34

24A
4.23
5.16
5.62
a.3a

u,00
0.05
0.02
0.39
14.94
2.t7
2.56
141

16.21

5.19
8.83
15.19
11 81
4.7L
2.42
3.92
2.76
3.51
1.97

10.86
2.7L
2.78
14.53
4.22
4.10
2.11
5.13
15.59
2.49
1..74
7.73
3 1.7

19.71
4.35
2.26
3.39
74.39
2.08
2.LS
3.83
1.68
4.03
29.57
2.23
2.89
6.49
3.9õ
257
14.89
24a
3.11
2.38
3.25
1.76
1.82
5.42
23 54

3.16
8.49
?.27
4.27
10 85
3.27
2.71
1.96
2.38
2.64
3.30
2.t6

15.94
5.79
46r
3.50
3.14
2.4A
7.32
432
5.29
3.69

U,U I
0.11
o.72
046
16.06
2.21
2.56
1.39

779
6.30
11..22
13.99
16 20
7.29
2,36
5.99
2.ao
442

13.02
3.31
2.42

36.89
4.65
4.43
2.70
6.45
4.34
2.93
1.86
t,67
3.57

20.34
2.96
2.34
3.54
15.56
7.94
224
4.95
1.79
4.O4
29.7L
2.40
3.58
8.15
4.12
2.ó3

20.83
2.53
4.33
2.45
4.O4
1.89
r.a2

24.06
10.56
3.50
10.69
26.49
4.5E
10.84
3.70
2.74
2.Ol
2.56
3.29
9.29
2.57

23.38
6.62
6.05
3.76
5.t7
2.50

24.60
6.13
5,19
4.66

0,or
0.16
0.13
0.46
16.24
2.26
2.57
1.46

2t.20
34.34
833
16.59
34.83
26.29
8.95
2.33
9.43

14.62
3.00
15.25
4.33
3.06
34.57
6.37
4.90
3.49
8.87
9.17
3.29
2.08
r.67
3.86

22.OO
3.86
3.26
3.86
29.55
1.a9
246
9.93

4.33
26.19
309
3.95
\o 24
4.25
2.62
14.27
2.77
8.39
2.65
8.53
2.37
L.79
427

22.O3
11.15
4.47
13.60
25 a2

u.0t
o.r7
o.17
o,44
16. r3

2,64
1.39

22.92
42.35
13.38
21.90
35 46
22.77
13.11
2.40
11.53
3.38

21.86
74.29
76.67
5.7t
3.70

27.39

6.33
5.11
1r.44
26.32
4.46
3.04
r.75
4.17
23.38
6.E4
2.76
4.54
34.70
2.14
3 11
18.68
2.42
4.77
27.A6
4.48
4.34
t2.72
4.33
2.80
17.47
3.34
3t.24
3.53
7.26
4.64
1.95

10.90
23.45
16.57
6.38
16.94
24.60
8.04

20.64
17.88
3.36
2.80
3.87
19.05
3.45
2.72

27.95
23.54
t2.47
6.72
15.06
5.18

10 23

6.85

5.79
17.79
5.13
2.92
2.O9
2.95
4.47
3.36
2.61

24.L2
7.71.
9.69
4.56
10.16
2.67

26.86
7.13
5.19
5.90

U.UU
o.o1
o.02
0.39
13.82

2.AA
1.49
11.12
4.32
5.18
6.41.
13.36
7.43
4.57
2.66
3.86

3.31
2.51
4.68
2.66
3.06
6.14
3.96
4.76
2.t2
4.54
3.68
3.22
1.9E
1.82
2.91
5.20
2.80
2.46
3.38
11.67
2.52
2.54
3.47
7.A7
4.O7
30.34
2.64
2.56
5.O7
4.25

992
2.67
3.57
2.42
383
2.O2
7.97
4.98
23.50
4.15
3.73
9.54
16.04
4.36

3.00
323
2.t5
2.65
400
3.46
2.65
9.44
5.42
4.00
3.56
2.87
2.6t
3.80
5.03
5.69
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8.4 Modifled Fuzzy K-Means

Imase \ 0 U I 2 I 13 2L g4 -85 Medran
bonn öö
bonn 67
bonn 68
bonn 69
bonn 70
bonn 71
bonn 72
bonn 73
bonn 74
oonD /b
bonn 76
bonn 7?
bonn 78
bonn 79
bonn 80
bonn 81
bonn 82
bonn 83
bonn 84
bonn 85
bonn 86
bonn 87
bonn 88
bonn 89
bon¡ 90
bonn 91
bonn 92
bonn 93
bonn 94
bonn 95
bonû 96
bonn 97
bonn 98
bonn 99

2.00
3.56
4.7A
4.36
2.r7
3.47
4.L1,
4.67

344
380
3.43

4.t7
2t4

23.42
2.6r
3.80
3.13
4.33
3.74
604
345
3.08

3.27
2.80
4.7r
2.93
6.32

2.05
2.65
2.6r

L97
344
4.6r
4.3õ
2.O9
3.32
4.O7
4.69
246
3.35
3.64
3.46
3.47
4.03
2.08
23.7t
2.54
3.71
299
4.19
3.60
5.97
3.39
2.93
2.67
3.20

4.61
2.90
6.2L
3.24
197
2.50
2.62

1.89
3.30
4.24
4.4r
1.95
3.12
4.05
4.4t
2.37
3.77
3.38

3.45
3.87
r.o7
s,ao
2.37
3.69
287
3.86
3.31
5.84
3.19
2.7A
2.5A
3.O2
2.49
4.36
2.80
6.39
3.08
188
2.4r
2.56

1.82
3.2a
3.92
4.97
1.85
3.01
3.94
4.t7
2.30
3.09
s.27
3.74
3.27
3.74
1.86
3.33

3.38
2.50

3.06
5.77
2.97
261
2.66
2.94
2.40
4.t9
2,76
7.31
3.O4
r.76
2.34
2.52

t.73
3.27
3.64
5.76

2.46
s.ao
3,aa
2.33
3.02
3.39
4.O2
3.L7
400
7.76
3.85
2.19
2.94
2.31
3.24
2.42
õ.6E
2.80
2.38
2.58
300
2.45
4.06
2.79
9.37
3.19
1.68
2.30
2.39

1.70
3.25
3.56
6.98
1.64
2.76
3.91
4.68
2.56
3.31
3.61
4.10
3.16
4.44
L,72
6.42
2.la
2.87
2.25
310
2.79
591
2.61
2.36
2.70
3.12

4.13
283
10.38
3.42
1.63
2.29
2.57

1.64
3,2L
s,56

11.23
L77
2.88
4.16
10.33

3.18
4.05
4.50
3.29
5.05
7.73
3.80
2.Oa

2.24
3.06
3.06
7.ra
2.óO
2.40
321
3.54
2.69

3.08
11.07
20.73
1.61
2.63
2.38

1.80
3.39
3.60
74.23
1.88

4.79
24.57
9.85
3.72
5.04
4.A4
4.91
5.73
194
6.59
2.40
2.45
2.55
3.OO
4.7t
10.28
2.95
2.70
4.46
3.74
3.00
4.50
3.55
L2.t6
5.88
1.68
32A
2.39

3.67
369
18.59
2.OO
4.32
5.81
L9.7I
12.60
5,65
6.32
5.32
18.54
6.82

20.50
3.23

3.49
4.57
3.89

3.99
3.19
6.85
4.73
3.64
4.86
4.33
10 88
769
L77
4.47

496
402

20.94
2.55
6.20

24.27
15.89
8.95
4.47
6.15
17.08
9.13

16 65
4.31
4.L7
5.07
t2.95

t2.57
lÒ.r5
450
10.91
4.88
6.45

8.48
1 1.23
12.05
1.94
5.51
2.98

t.E6
3.34
3.80
6.37
r.92
3.19
4.O9
4.6a
2.54
3.33
3.72
4.06
3.46
42A
1.95
6.50
2.39
3.35
2.68
3.79
3.45
6.00
3.08
2.74
2.7r

2.70
4.43
2.9t
9.87
3.36
t.76
2.57
2.50

Median 3.45 3.42 3.30 3 15 3.04 3.10 3.27 3.74 4.47 6.72 3.36

Table 8.16. Summary of segmentation error rates for modified fuzzy K-Means, DT-CWT depth 2.
The transform uses the Kingsbury f¡lter peir, at a depth of 2 levels.

Imase \ É U I 3 5 8 13 34 55 Medran
D4-DA4
D5-D92
D8-D84
D12-D17
My 5a
My 5b
Nèt 10
Nat 1Ov
Nat 16b
Nat 5b
Nat 5c
Nat 5m
Nab 5v2
Nât 5v3
Nat 5v

bonn 0O
bonn 01
bonn 02
bonn 03
bonn 04
bonn 05
bonn 06
bonn 07
bonn 08
bonn Og
bonn 10
bonn 11
bonn 12
bonn 13
bonn 14
bonn 15
bonn 16
bonn 17
bonn 18
bonn 19
bonn 20
bonn 21
bonn 22
bonn 23
bonn 24
bonn 25

u.o6
o.27
o.o9
0.89
9.84
2.64
3.01
r.40
6.L4
2.94
3.75
3.77
7.09
5.4õ
3.18
2.96
3.97
3.27
2.45
2.58
3.63
2.42
3.07
4.48
3.78
4.24
24a
5.00
2.01
297
1.81

2.A9
4.54
2.8r
3.00
3.69
8.84
3.89

3.34

u-o7
o.21
010
0.89
s,72
2.56
2.94
r37
6.O7
2.84
3.60
3.65
6.95
5.96
3.12
2.A4
3A2
3.17
2.43
2.50
360
233
299
4,47
378
4.30
2.42
442
t.92
2A7
1.75

2.A4
4.47
2.65
2.94
3.63
8.60

2.46
3.34

o09
o.2t
0.10
0.89
12.05
2.44
2.47
1.31
6.11
2.85
3.47
3.55
6.64
5.98
a,o6
2.70
3.53
3.00
2.33
2.36
3.42
2.t2
288
4.54
3.81
3.92

4.50
183
2.62
1.68
2.O7
2.79
4.34
2.50
282
3.47
8.16
3.37
267
3.36

0.07
o.26
0.17
0.90

13.64
2.2A
2.7L
1.33
6.30
2.89
3.36
3.43
6,46
6.16
3.10
2.54
3.05
2.73
2.t9
2.r5
a.s1
2.06
2.75
4.74
3.82
3.64

4.25
L.76
2.44
l 57
1.95
2.76
4.L3
250
2.62
3.23
f ,93
3.02
2.47
3.44

o.o7
o.32
0.29
o.g2
t4.42
2.09

L.34
7.20
3.01
s.25
3.71
6.46
6.95
3.77
233
2.76
256
2.09
2.00
3.34
2,O3
2.59
5.93
3.76
3.52
2.L6
¿.oã
2.20
2.27
1.33
1.89
280
4.34
2.33
2.66
3.12
8.36
2.67

3.83

0.06
0.33
o.27
0.88
15.09
1.93
2.49
t.32
9.29
3.36
3.26
4.49
7.29
918
3.44
2.26
3.48
2.34
2.O8
1.78
3.64
2.O4
2.47
7.24
3.83
3.44
2.15
4.2r
2.17
2.25
1,32
7.44
2.94
5.61
2.25
2.65
3,OO
9.27
2.4L
2.I7
481

009
0.39
031
0.85
15.83
7.74
2.5r
1.28

12.65
4.24
3.39
6.99
941
13.87
4.52
2.2A
490

2.42
1.69
7.01
2.19
2.42
9.50
4.40
3.64
2.23
519
2.53
2.25
145
1,41
3.28
15.33
2.rs
2.58
3.03
10.79
2.21
2.ls
5.62

o12
o.4r
0.28
084
15.13
1.56
2.5t
t.2l

16.47
9.43
3.99
11.54
25.22
15.90
685
2.27
6.27

13.14
1.69

12.47
2.64
242

32.54
5.41
3.91
2.59
6.97
3.47
2.29
1.51
1.84
3.28
18.21
2.38
264
3.O7
13.69
2.O3
2.25
5.72

0.16
0.49
o.27
o.a1

15.00
1.48
251
1.19

19.20
26.69
5.20
17 05
36.14
19 23
10.07
2,2L
8.64
2.46
19.06
L4.49
14,TA
3.56
2.54

27 a6
6.63
466
3.27
9.27
19 48
2.34
1.70
r.a7
341

20.43
3.16
3.17
3.2r

30.10
2.44
3.03

0.16
0.49
o.20
0.84
15 43
1.43
263
t.26

2r.26

77r
22 45
39.62
2A 02
t4.97
2.24
t5.42
3.74
19 83
12.95
t5.o7
5.01
2.36

31.88
9.52

3.47
10.33
23.38
2.70
2.69
1.95
4.28
22.6r
19.57
4.27
3.71

31.59
3.03
4.rt
11 03

U. UA

0.32
0.23
0.89
14 7r
2.01
2.57
t.J1
4.24
3.18
3.54
4.13
7.19
806
3.31
230
3.90
2.65
243
2.26
3.64
2.26

6.59
3.82
3.92
237
4.91
2.L9
2.39
1.63
1.92
291
5.08
2.50
2.73
3.22
9.05
2.44
2.57
432
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Appendix B Detailed Texture Segmentation Results

rmège \ ¡, o t 3 5 a l3 2I 34 5Õ Medrân
bonn zb
bonn 27
bonn 28
bonn 29
bonn 30
bonn 31
bonn 32
bonn 33
bonn 34
t onn 35
bonn 36
bonn 37
bonn 38
bo¡n 39
bonn 40
bonn 41
bonn 42
bonn 43
bonn 44
bonn 45
bonn 46
bonn 47
bonn 48
bonn 49
bonn 50
bonn 51
bonn 52
bonn 53
bonn 54
bonn 55
bonn 56
bonn 57
bonn 58
bonn 59
tronn 60
bonn 61
bonn 62
bonn 63
bonn 64
bonn 65
bonn 66
bon¡ 67
bonn 68
bonn 69
bonn 70
bonn 71
bonn 72
bonn 73
bonn 74
bonn 75
bonn 76
bonn 77
t¡onn 78
bonn 79
bonn 80
bonn 81
bonn 82
bonn 83
bonn 84
bonn 85
bonn 86
bonn 87
bonn 88
bonn 89
bonn 90
boûn 91
bonn 92
bonn 93
boon 94
bonn 95
bonn 96
bonn 97
bonn 98
bonn 99

2.76
474

23.85
2.90

3.44
4.85
2.75
5.21
2.79
2.93
2.77
3.83
2.00
2.36
5.43

2.35
3.55
8.54
5.53
2.67
2.60
3.05
3.34
2.54

3.25
2.49
5.49

3.38
2.94
2.68
2.89
3.55
3.58
6.19
2.71
1.85
3.45
3.99
4,O4
1.84

3.65
4.53

2.36
2.58
9,10
3.73
3.59
2.ro
2.9r
2.70
3.15
3.07
350
3.4t
3.68
3.99
2.97
2.53
3.31
2.70
4.19
2.79
6.O7
3.10
t.79
2.5t
2.38

2.73
4.16
24.99
2.83
2.26
3.32
4.72
2.77
5.08
265
2.89
2.tL
3,74
1.93
2.32
6.33

22.4O
2.24
3.45
8.28
5.40
2.52
2.4A
3.OO
3.33
2.4a
2.47
4.32
3.19
2,44
5.38
351
3.36
2.47
2.64
2.81
3.45
3.59
6.1.2
2.63
1.81
3.42
3.88
393
1.86
3.11
3.60
4.50

2.30
2.54
3.16
3.56
3.50
2.03

2.65
3.07
2.94
3.41
3.30
3.55
3.96
2.92
2.4A
3.19
2.6r
4.t7
2.74
6.OS
3.08
1.75
2.48

2.O9
4.11
25 1.7

2.66
216

4.55
2.54
4.90
2.47
2.83
1.94
3.64
1.80

5.35
23.25
2.22
3.28
7.88
6.32
2.34
2.34
2.91
3.23
2.33
2.61
3.83
3.13
2.47
5.05
3.31
3.34

2.51
2.64
3.24
3.61
5.91
2.54
r75
324
3.66
3.E1
1.A4
2.94
3.42
4.42
2.t4
2.14
2.43
3.12
3.33
3,34
1.89
2.60
2.53
2.88

3.23
3.72
3.50
3.74

2.42
3.11
2.42
4.OO
2.74
6.14
2.94
1.63
2.40
2.75

r.97
3.99
4.AA
2.50
2.05
4,10
4.35
2.49
4.98

2.69
1.93
3.54
r.67
2.I5
5.51
3.00
2.L7
3.01
7.53
7.89
2.20
2.18
2.80
3.14
2.77
2.40
3.43
3.05
2.48
4.79
3.30
3.40
2.6',1
2.42
2.55
3.25
3.53

2.33
1.69
316
3.48
3,77
r.79

3.29
4.74
2.17
2.O3
2.3r
3.25
3.72

1.78
2.46

2.70
2.46
3.06
2.A7
3.4r
3.45
2.59
2.94
3.02
2.27
385
2.70
7.03
2.74
1.57
2.36
2.06

1.E7
3.90

22.52

2.O1
3.22
4.26

5.63

2.65
1.85
3,S4
1.53
2.O5
5.48
2.16
2.37
2.76
7.06

11.01
2.26
2,O3
2.62
3.06
1.98
2.24

2.94
2.47
4.85
3.44
3.73
2.67
2,40
2.36
3.52
3.54
5.26
2.OA
1.61
3.07

4.22
L.70
2.57
3.17
3.77
2,O7
1,96
2.t9
3.38
2.97
3.20
1.63
2.52
219
2.37
2.t9
2.80
2.66
3.24
3.19
2.36
2.44
2.89
2.Ll
3.60
2.65
8.76
2.75
1.46
2,3L
2.O9

r.7E
3.87

22.27
2.01
2.O7
356
3.98
2.20
5.12
2.20
2.65
1.41
3.51
1.51
1.93
6.10
235
3.36
2.58
6.AS
9.27
2.57
2,06
2.62
2.96

2,1S
22.06
2.83
2.44
5,25
3.58
4.30
2.67
2.53
2.24
4.67
3.62
4.90
1.89
7.52
s.o6
3.21
5.85
1.66
2.30
3.O9
5.70
2.27
2.O7
2.24
3.52
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2.13
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3.48
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r.42
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2. r.0

1.76
3.75
2r.75
1.4õ
2.34
4.r4
3.55
2,L6

13.85
2.Ll
2.t6
r.81
3.75
L,4g
1.92
7.05
9.13
9.25
2.47
4.72

23.93
2.86

1 1.35
2.A4
2.96
1.Aa
2.r5
2.SS
2.83
2.38

15.52
342
3.90
2.60
3.78

8.07
3.74
4.63
1.74
1.õO
3.16
3.11
8.12
7.67
2.23
3.23
ooo
4.47
2.t2
2.85
3.63
2,94
3.99
1.40
3.81
2.O2
2.Oa
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2.42
2.69
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2.25
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2.94
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3.38
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10.30
3.41
T,4L
2.77
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1.76
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22.74
7.94
2.42
72.37
s,47
2.17
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2.OO
3.22
1.84
4.59
1.5?
1.90
9.09
75.47
11.88
2.4A

12.81
19.73
3.18
14.16
4,t3
3.09
1.88
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2.78
2.36

20.64
4.2a
5.05
2.67

14.69
2.22

20.t5
4.10
4.39
1.84
1.57

3.11
11.96
1.82
2.28
3.61
14.03
7.98

3.78
3.99
4.63
1.34
6.54
2.t9
2.t4

2.36
2.42
6.97

2.40
4.05
3.72

3.34
4.01
10.98
5.83
1.45
2.86
1.89

L,76
3.80
23.57
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2.50
6.99
3.86
2.20
14.81
2.08
7.06
1.96
6.55
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1.93

L7.44
18.05
t4.t4
3.33
16.32
19.73
4.39
2.18
r4.57
3.45
2.09
2.47
19.40
2.79
2.92

2I,37
549

10.96
3.36
l7.29
2.27
22 t6
4.85
4.24

1.61
3.67
3.41
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4.01
77.51
11.60
2.81
3.84
391
6.70
5.63
L,27

r5.22
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2.39
4.45
17.62
3.91

12.88
18.37
2.A4
7.58
3.47
3.07
9,27
7.26

72.26
t5.72
1.52
336
1.A4
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4.70
20.31
3.41
2.65
17.66
5.98
2.39
15.71
2.43
11.93
2.24
10.93
261
1.95

20.09
18.57
15 41

20.4t
23.39
7.29
10.36
15.47
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2.97
3.09
18.30
3.39
2.a1.
19.80
2t.61
12.69
4.75
19 14
2.34

23 94
6.95
4.TL
2.76
6.89
4.32

21.00
2.56
4.t7
4.29
20.39
15.71
6.63
6.07
4.65
13.76

1.30
21.o2
20.44
3.05
5.16

27.20
6.36
11.39
20.44
3.53
L7.54
3.53
7.53
4.45
8.11
12.58
9.68
7.72
393
7.97

r.a7
3.95
22 65
2.43
2.30
3.50
4.30
2.35
5.42
2.32
2.86
1.94

774
2.00
5.81
16.76
2.A7
3.15
8.41
10.14
2.55
2.4L
2.95
319
2.13
2.44
4.44
2.99
2.45
5.44
3.56
3.81
2.72
2.66
2.35
4.Il
3.60
5.08

1.65
330
3.44
5.04
183
2.66
351
5.t2
2.29
2.ta
2.56
3.45
3.45
3.55
1.57
2.85
2.46
2.55
2.74
3.14
2.99
3.62
3.60
2.66
2.56
3.11
2.35

2.74
933
3.09
r.55
2.50
2.08

Median 3.U7 3.00 2.Aa 2.69 2-tt2 2.4ó 3 2ri J. Aö ö.ö3 2. ðö
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Appendix C

List of Publications

o Lin, Wen-Kuo, Ng, Brian \Mai-him, Burgess, Neil and Bouzerdoum, Abdesselam.

Reduced Memory Zerotree Coding Algorithm for Hardware Implementation, IEEE

International Conference on Multimedia Computing and System, Florence, Italy,

June 1999

. NB, Brian and Bouzerdoum, Abdesselam. Supervised Texture Segmentation Using

DWT and a Modified k-NN Classifier Proceedings of 15th International Confer-

ence on Pattern Recognition, September 3-7 Barcelona 2000, Volume 2, pp 545-548

Editors: A. Sanfeliu, J.J. Villanueva, M. Vanrell, R. Alquezar, A.K. Jain, J. Kittler

o NB, Brian and Bouzerdoum, Abdesselam. Supervised Texture Segmentation Using

DT-C\ /T and a Modified k-NN Classifier Visual Communications and Image Pro-

cessing 2000, 20-23 June 2000, Perth, Australia. Proceedings of SPIE Vol. 4067

(2000). Part three, pp 1176-1184. Editors: King N. Ngan, Thomas Sikora, Ming-

Ting Sun

. Ng, Brian and Bouzerdoum, Abdesselam. K-Means Clustering Applied to Texture

Segmentation with Complex \Mavelet Features. The 5th International Conference on

Optimization: Techniques and Applications. December L5-I7,2001,q Hong Kong
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