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Summary

Water motion strongly influences phytoplankton access to sunlight and nutrients, which
ultimately govern primary production. The motion predominantly takes the form of turbulence.
Understanding primary production and the ecology of phytoplankton including harmful algal
blooms (HAB) and their control requires an understanding of the relevant physical processes and
the scales of their interaction. The interaction between phytoplankton and physical processes are
diverse and occur at a range of spatial and temporal scales. The main objective of this thesis is to
contribute to the understanding of how turbulence affects phytoplankton in freshwater systems.
The major focus is the temporal and spatial scales in phytoplankton dynamics ranging from
photochemistry in the surface mixed layer to small-scale shear and growth to intra-seasonal
changes in community composition in a lake subject to high disturbances.

A major requirement in studying the relationship between environmental variability and
physiological processes is the ability to sample and analyse biological components at appropriate
temporal and spatial scales. The reliability of flow cytometry in combination with fluorescent
stains (FDA, Sytox) and PAM fluorometry were tested to detect the response of phytoplankton to
environmental variability. Staining protocols with FDA and Sytox were optimised for their
ability to quantify cell metabolic activity and viability, respectively. ‘Activity’ and ‘viability’
states were established for 3 phytoplankton species subjected to heat treatment, nutrient
limitation and replenishment and copper toxicity.

PAM fluorometry was used to investigate the influence of light intensity, duration of exposure
and nutrient status on phytoplankton photo-physiology. Measurements of photochemical
quenching, maximum change quantum yield of photosystem 2 (F,/F,,) and effective absorption
cross-section were made on both laboratory cultures and field populations. Each characteristic
was found to be sensitive to light and nutrients for the different species examined. In particular,
the magnitude of F\/F,, was dependent upon light intensity and dose and provided a feature of
phytoplankton that could be traced to assess the impacts of turbulent mixing and thermal
stratification on cell entrainment and distribution. An experiment in the Myponga Reservoir
(South Australia) demonstrated that F\/F, in combination with the other photo-physiology
characteristics enables the calculation of photosynthesis with greater temporal and spatial
resolution compared with traditional methods.

The interplay between wind mixing, thermal stratification and cell motility on phytoplankton
distribution was investigated in the Torrens Lake (South Australia) with measurements carried
out on the dinoflagellate, Peridinium cinctum. In situ profiles of chlorophyll fluorescence and cell
counts, revealed the vertical migration of P. cinctum, dscendmg in the morning and descending in
the afternoon. Swimming velocity reached 2.35 x 10* m s™. Cell distribution was a function of
wind speed and swimming velocity and reflected the entrainment model of Humphries and
Imberger (1982). When y <1, distribution was dominated by wind speed and when y > 1,
distribution was dominated by swimming velocity. Measurements of F\/F,, of P. cinctum cells
through time and depth revealed minimal photo-inhibition although cells actively avoided high
irradiance. A depression in F,/F,, was observed in surface samples however, this recovered to
initial values later in the day A comparison between modeled daily photosynthetlc rates of a
migrating (2,574.1 mg O, m™) and a homogencous population (3,120 mg O, m™) revealed that
migration would not increase photosynthetic rates within the Torrens Lake. In addition to
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phototaxis, it was postulated that dinoflagellates move deeper in the water column to avoid small-
scale shear stress generated by turbulence in the surface mixed layer.

The maximum quantum yield (¥,/F,,) was also used to determine the light history of Microcystis
aeruginosa colonies in the Torrens Lake. As insolation increased the lake stratified and colonies
displayed a depression in F,/F,, which became less severe with depth. In the afternoon, wind
speed increased entraining colonies and disrupting the discrete depth variable F,/F,, response.
The point where the photochemical response became homogenized allowed the determination of
the shear velocity necessary to entrain colonies (u* = 0.003 m s™'). This fits the entrainment
model proposed by Humphries and Lyne (1988). Rates of F,/F,, depression were light intensity
dependent whereas recovery was dependent upon light dose. A model is presented which
examined the influence of five mixing scenarios on the F\/F,, of M. aeruginosa.

Field experiments examined the current flow around several artificial mixing devices including a
surface mechanical mixer/draft tube system in the Myponga Reservoir (South Australia) and
bubble plume aerators and aspirators within the Torrens Lake. An acoustic Doppler velocimeter
was used to measure current velocity, which also enabled the calculation of turbulent intensity,
shear velocity and the turbulent kinetic energy dissipation rate (determined using spectral
analysis). Turbulent intensities, shear velocities, and turbulent kinetic energy dissipation rates
were found to be high around the mixing devices relative to turbulence generated by wind.
Turbulent kinetic energy dissipation rates ranged from 5 x 107 m? s> to 3.4 x 10 m? s™, while
shear velocity in the immediate vicinity of the devices was of a magnitude (>5.9 x 10° m s™) to
entrain most phytoplankton. Measurements of metabolic activity and viability of phytoplankton
above and below the Myponga Reservoir surface mixer/ draft tube revealed that transport and
subsequent exposure to small-scale shear had no impact on the population. Current velocity
measurements enable the zone of influence of artificial mixing devices to be determined which
assists in the assessment of their performance.

A vertically oscillating grid-tank system was used to simulate observed turbulence levels around
the artificial mixing devices. Turbulent intensity increased with an increase in oscillation
frequency (1-5 Hz). Grid-generated turbulence affected Microcystis aeruginosa metabolic
activity, viability and growth. At 4 Hz metabolic activity, viability and growth decreased which
was most evident after 96 hours. Small-scale shear was postulated to be insignificant in M.
aeruginosa ecology but may have a role in regulating colony size and may contribute to bloom
decline under stressed conditions.

A field study examined the spatial and temporal heterogeneity in phytoplankton community
composition within the lower Torrens Lake. Twenty-eight genera were identified during the 5-
month sampling period representing phytoplankton with C-S-R (Grime, 1979) traits. Although,
no single factor could be identified to affect species succession, summer rainfall events acted as a
major disturbance by flushing and diluting the populations and reintroducing nutrients. Often C-
S-R species coexisted in the lake verifying the intermediate disturbance hypothesis of Connell
(1978). It is difficult to predict and manage phytoplankton community composition in small-
shallow urban lakes such as the Torrens Lake due to the unpredictability of summer rainfall and
the short time scale of events such as storm water runoff from the surrounding catchment.





