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ABSTRACT

Leptin is a 16 kDa protein that is synthesised and secreted by adipocytes. It is well

established that in the adult, circulating leptin is altered by fluctuations in energy intake

and that leptin acts on centrally and peripherally located leptin receptors to regulate

energy homeostasis and related neuroendocrine functions. During pregnancy, the

nutritional demands of the conceptus increase and during late gestation, fetal growth rate

slows. Circulating leptin is positively related to newborn weight whilst growth restricted

newborns are not only hypoglycaemic but also hypoleptinemic. Furtherrnore, newborns

from diabetic pregnancies are hyperinsulinemic and hy,perleptinemic. It has therefore

been suggested that leptin may be a signal of the nutritional environment of the fetus.

Little is known about the role of leptin before birth, and the aim of this series of studies

was to investigate whether leptin is expressed in fetal adipose tissue and is nutritional

regulation, and to determine the actions of leptin before birth.

It was found that the relative abundance of leptin in fetal adipose tissue increased with

gestation. There was also an association between leptin expression in fetal adipose tissue

and fetal weight, and this relationship changed as gestation progressed. These findings

suggested that fetal leptin could be a signal of fetal nutrient supply or fetal growth. In

order to determine whether leptin synthesis and secretion in fetal adipose tissue could be

altered by changes in fetal nutrient supply, the effect of a moderate restriction of

maternal food intake on leptin synthesis and secretion in the adipose tissue of the sheep

fetus was investigated. Whilst maternal undernutrition decreased plasma glucose and

insulin levels in fetal sheep, there was no change in circulating leptin concentrations or

the relative abundance of leptin in the adipose tissue of fetuses of undernourished ewes.
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ABSTRACT

There was, however, a positive relationship between leptin expression in fetal adipose

tissue and circulating leptin concentrations in late gestation. There is also recent evidence

that there is a positive relationship between circulating leptin and the relative mass of

unilocular fat, which suggests that leptin, may act as a signal of lipid storage in the late

gestation sheep fetus. Hence, the impact of an experimentally induced increase in

circulating leptin concentrations on the structural and functional characteristics of fetal

adipose tissue was investigated. Leptin administration between 136 and 141 days

gestation increased circulating leptin concentrations -4-5 fold and resulted in a

significant increase in the proportion of smaller lipid locules present within fetal adipose

tissue. This was also associated with a significant increase in the proportion of

multilocular tissue and a significant decrease in the proportion and relative mass of

unilocular tissue in fetal adipose tissue. The relative abundance of leptin mRNA in fetal

adipose tissue was significantly lower in the leptin infused group and there was a

positive correlation between the relative abundance of leptin mRNA and the proportion

of unilocular tissue in fetal perirenal adipose tissue. Finally, the amount of uncoupling

protein-l protein tended to be higher in leptin infused compared with saline infused

fetuses. This is the f,rrst demonstration that leptin could act to regulate the lipid storage

characteristics, leptin synthetic capacity and potential thermogenic functions of fat before

birth.

Recent studies have also suggested that there may be a functional interaction between

circulating leptin and the fetal hypothalamic-pituitary-adrenal (HPA) axis in late

gestation. It is well established in the sheep that the prepartum increase in cortisol is

required for the differentiation and maturation of key fetal organs such as the fetal lung,

liver, kidney and brain, for the normal timing of parturition and the successful transition

vlll



ABSTRACT

to extrauterine life. Given the potential role of leptin as a circulating signal of fetal

adiposity in late gestation it is important to determine whether, as in the adult, an

enrlocrine negative feedback loop exists between adipose tissue and the HPA axis in the

fetus during late gestation. 'We have investigated whether leptin can suppress the

prepartum activation of the fetal HPA axis and delay the timing of parturition. Firstly, we

investigated the effects of a 4 d intrafetal infusion of leptin on fetal plasma ACTH and

cortisol concentrations starting from 136 d gestation, i.e. at the onset of the prepartum

activation of the fetal HPA axis. Whilst circulating leptin concentrations were elevated in

leptin infused fetuses and there was no increase in plasma ACTH and cortisol

conoentrations. Leptin was also infused into fetal sheep from 144 d gestation until

delivery to determine the effects of an increase in circulating leptin on the prepartum

changes in fetal plasma ACTH and cortisol concentrations and on the timing of

parturition. Intrafetal infusion of leptin from 144 days gestation until delivery did not

suppress plasma ACTH concentrations, however, fetal plasma cortisol concentrations

were suppressed for an extended period from between 90-42 h before delivery. Whilst

plasma cortisol concentrations \ryere reduced by -40% in leptin infused fetuses, there was

no difference in the timing of parturition between the leptin and saline infused groups.

In summary the studies in this thesis demonstrate that leptin is expressed in adipose

tissue of fetal sheep in late gestation and that the expression of leptin mRNA in the tissue

is directly related to circulating leptin. An increase in circulating leptin results in changes

in the structural and functional characteristics of fetal fat and changes in the fetal HPA

axis. Thus leptin may act as a signal of adiposity before birth.
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I, DEVELOPMENT OT ADIPOSE TISSUE AND THE
ROLE OF LEPTIN BEFORE BIRTH

1.1 OBESITY: AN EXCESS ACCUMULATION OF ADIPOSE TISSUE

1.1.1 Lipogenesis and lipolysis

Triglycerides (triacylglyercols) are a class of lipids that are synthesised from fatty acids

and glycerol. Fatty acids are essential components of cell membranes and are the

precursors for the synthesis of steroid hormones. Triglycerides are the form in which

fatty acids are stored as an energy reserve. Whilst the conversion of glucose into acetyl-

Coenzyme A (CoA) through the glycolysis pathway is otten associated with the Krebs

cycle and the formation of adenosine triphosphate (ATP), the same end product of

glycolysis (acetyl-CoA) is also an important substrate for the synthesis of fatty acids

(lipogenesis) (l). Citrate lyase attaches a carbon atom to acetyl-CoA to form malonyl-

CoA and from these fatty acid synthase forms fatty acyl-CoA (fatty acid + CoA) (2).

These newly synthesised fatty acids are then incorporated with glycerol to form

triglycerides. Lipogenesis occurs when there is excess dietary caloric intake. Conversely,

during periods of low caloric intake, fatty acids are oxidised to generate energy.

Triglycerides are f,rrst broken down into glycerol and fatty acids and these fatty acids are

then cleaved into multiple acetyl-CoAs in mitochondria, in a process known as B-

oxidation. These processes are the main components of lipolysis. Acetyl-CoA enters the

Krebs cycle to be oxidised into carbon dioxide and water, and in the process

nicotinamide adenine dinucleotide (NAD*) is phosphorylated to nicotinamide adenine

dinucleotide - reduced form (NADH). For the cell to utilise this energy, NADH then

undergoes oxidative phosphorylation using a series of electron carriers that are present in

mitochondria, which results in the generation of ATP. Thus organisms use lipids as a
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Cnaprnn I INTRoDUCTION

form of energy storage (1). Net lipid storage is a balance between lipogenesis and

lipolysis. The mechanisms that cause excess storage and prevent the metabolism of lipids

are of significant interest because of the link in humans between the excess accumulation

of triglycerides i.e. obesity, and a range of morbidities including diabetes and

cardiovascular diseases (3, 4).

1.1.2 Adipose tissue

Traditionally adipose tissue has been regarded as either a lipid storage tissue or a tissue

that produces heat. It now appears that this view is simplistic. In adult mammals, there

are two populations of mature adipocytes with morphologically distinct phenotypes that

can be found in adipose depots (5). The prevalence of each type of adipocyte depends on

the location of the adipose depot, the age and species of mammal. Historically, adipose

tissue has been defined by its anatomical location and by the mitochondrial content of

the tissue. When relatively few mitochondria are present in the adipocytes, the tissue has

a white appearance and has therefore been called "white adipose tissue". Conversely, if

most of the adipocytes are f,rlled with mitochondria the tissue has a brown appearance

and therefore is called "brown adipose tissue". Some studies that have used the terms

"white" or "brown" to describe adipose tissue need to be treated with caution, as these

descriptions may not accurately reflect the cellular heterogeneity of a particular adipose

depot (5-9). Therefore, where necessary, I will confine this review of the literature to

studies where the cellular composition of the tissue has been reasonably well

characterised.
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CHAPTER 1 INTRODUCTION

1.1.3 Cellular composition of adipose tissue

The majority of adipose deposits develop in discrete regions of the body (e.g. perirenal,

abdominal, omental, pericardial and subcutaneous regions). There are three distinctly

different categories of cells present in adipose tissue; adipocytes, capillary endothelial

cells and sympathetic neurons (5, 10, 1l). Adult adipose tissue is principally comprised

of mature white adipocytes, which aÍe characteristically round or hexagonal in

appearance, with peripherally located nuclei, few mitochondria and a major or dominant

lipid locule. These cells have also been called unilocular adipocytes. The role of these

adipocytes is to accumulate lipids in their locule during periods of high caloric intake

arrrj release fatty acids in the circulation during periods of low caloric intake (6, 1, l1).

Recently, white adipocytes have been demonstrated to synthesise and secrete a hormone,

which exerts a regulatory role on central and peripheral systems to control energy

homeostasis (12-15). The importance of this hormone, leptin, will be discussed in later

sections.

A second type of adipocyte found in adipose tissue is the brown adipocfle. Unlike

mature white adipocytes, mature brown adipocytes are primarily present in mammalian

adipose tissue during prenatal and early postnatal life although small pockets of brown

adipocytes are found in fat depots during adult life (5, 6,8, 9). These adipocytes have

numerous lipid locules (multilocular adipocytes) that are small and many mitochondria

with tightly packed cristae (10, 16, I7). These mitochondria contain the mitochondrial

protein, uncoupling protein-1 (UCP-1), which is responsible for the generation of heat by

uncoupling the electron transport chain during the oxidation of fatty acids (18). The

generation of heat through UCP-I is known as thermogenesis, and this mechanism can

be induced in brown adipocytes by lowering the ambient temperature, this mechanism is

4



CHAPTER 1 INTRODUcTION

known as cold-induced thermogenesis. A similar mechanism is also used to produce heat

after eating, i.e. diet-induced thermogenesis. The importance of diet-induced

thermogenesis, uncoupling proteins, and the regulation of adipose tissue mass will be

discussed shortly.

1.1.4 Evolution and epidemiology of obesity

Over millions of years, mammals have developed mechanisms to cope with periods

when food was not readily available. The evolution of the adipose cell, which had the

capacity to accumulate triglycerides, enabled animals to store material that had a high

energy yield. Adipocytes could store energy in the form of triglycerides during periods

when food was abundant and secrete fatty acids into the circulation which could be taken

up by cells to produce energy during periods of low caloric intake.

Like other mammals, humans evolved in an environment where food was periodically

limited. Over the past century, however, the availability of food for most people has

become relatively abundant in developed countries (4, 19, 20). In particular, during the

past 30 years, epidemiological studies have reported an increasing trend in the number of

people developing obesity and associated metabolic and cardiovascular disorders, such

as insulin resistance, type 2 diabetes mellitus, hyperlipidemia and coronary heart disease

and an increase in the proportion of deaths associated with these diseases (4,19,20).

Studies report that the prevalence of obesity worldwide is steadily rising in many

developed countries including the U.S., England and Australia (4,20,21). Body mass

index (BMD is a clinical index used to calculate a person's fatness. This index is

calculated as weight (kg) divided by height' (^') of an individual and assumes that most
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of the variation in the weight of individuals with the same height is due to fat mass.

According to the V/orld Health Organisation def,rnition, a BMI of <18.5 kglm2 is below

an ideal weight range, a BMI of between 18.5 and 24.9 kglm'is in a healthy weight

range, one of between 25.0 and 29.9 kglm' is in the overweight or pre-obese weight

range and aBMI greater than 30.0 kg/m2 is in the obese range (4,22).

In Australia, a recent Child Obesity Summit (2002) reported that one in five Australian

adults were obese (BMI >30 kg/m2) and conf,rrmed an increase in the prevalence of

obesity from 9Yo of males and 8% of females in 1980 to l9o/o of males and 22o/o of

females in 2000 (21). This Australian study also reported the incidence of children and

adolescent individuals who were obese or overweight, and showed that there was an

increase in the prevalence of the disease in all age ranges. Currently, more than 5o/o of

children are obese whilst 14-18% are overweight, and the frequency of overweight and

obese children, over the past 10 years, has more than doubled in most of the age groups

studied (21). Similar trends in the prevalence of obesity in child, adolescent and adult

populations have been reported worldwide (4, 20,23).

The significance of these trends is best reflected in epidemiological studies that have

investigated the association between body shape and mortality to certain diseases. The

concept that people with a high fat mass have a greater risk of mortality than do lean

people has been supported by some studies (24-28).It has also been well documented,

however, that a U-shaped relationship exists between adult weight or BMI, and adults

mortality (25-34). Several of these studies show a linear relationship prevails when

factors such as smoking (30, 35) and weight loss due to illness (25,27) are taken into
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account. Irrespective of whether the relationship between BMI and frequency of

mortality is linear or quadratic, people with high BMI are at greater risk of mortality.

1.1.5 Factors influencing obesity and the early onset of obesity

Obesity is a multifaceted disease and is associated with the development of other

metabolic and cardiovascular diseases, including diabetes, hypertension and

cardiovascular disease. Not surprisingly genetic, behavioural and environmental factors

influence the development of obesity. At approximately 2I years of age, male

monozygotic twins were exposed to a prolonged period of overfeeding (36). In this

study, Bouchard et al (36) showed that the difference between the rate of weight gain,

the proportion of weight gained and the distribution of fat deposition was more similar

within a set of twins than between sets of twins. Bouchard and colleagues (36) concluded

that genetics may therefore play an important role in the development of human obesity.

Furthermore, there is a close association between the BMI of twins who have been reared

apart (37).In humans, mutations in certain genes do cause the development of obesity

(38-40), however, these are only found in isolated individuals and large scale genetic

screening of obese humans has, so far, failed to reveal a high incidence of genetic defects

in obesity related genes (41-43). V/hilst genetics undoubtedly plays a critical role in the

development of human obesity, the marked increase in the prevalence of obesity in

developed countries within a short period of time is most likely best explained by

behavioural and environmental factors.

Studies have examined the relationship between physical activity and BMI and showed

that reduced physical exercise increases the risk of both children and adults becoming

obese (19, 20, 44-48). Studies have also investigated the development of obesity in
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minority groups that have migrated to affluent regions or countries. These studies

provide the clearest indication that environmental factors play a key role in the

development of obesity. In the U.S., studies on ethnic minorities found that Pima

Indians, non-Hispanic blacks and Nigerians were on average heavier or had a greater

BMI than their fellow kinsmen in their country of origin (4, 49-51). A substantial body

of research, however, has centred on the concept that obesity may, in fact, have its

antecedents before birth.

Barker and colleagues (52, 53), put forward the fetal origins of adult disease hypothesis

which proposed that changes in fetal development as a consequence of a suboptimal

uterine environment before or during pregnancy could lead to the onset of cardiovascular

and metabolic diseases, including hypertension, obesity, type 2 diabetes and insulin

resistance in adult offspring.

The Dutch winter famine of 1944-1945 lasted 5-6 months and provided a unique

opportunity in humans to investigate the effects of maternal malnutrition during different

stages of gestation. A study examined over 300,000 males bom to women exposed to

famine at different stages of pregnancy. At 19 years of age, 2.8o/o of men whose mothers

were previously exposed to famine during the f,rrst two trimesters of pregnancy were

obese compared with 1 .5o/o of men whose mothers were not exposed to famine during

anytime in their pregnancy (54). Many studies cite Ravelli's publication as evidence of

the impact of maternal undernutrition during pregnancy on the development of obesity in

offspring and conclude that this finding supports the hypothesis that early intrauterine

nutritional deprivation is associated with adverse health outcomes in postnatal life (52).

A follow up study, however, of a cohort of 50 year old age men found no significant
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difference in the BMI of the men whose mothers were, or were not exposed to famine

during their gestation (55)

An oversupply of nutrients during pregnancy is also thought to lead to the development

of obesity in offspring. Studies have shown that fetal exposure to maternal diabetes

mellitus, gestational diabetes or mild maternal glucose intolerance during pregnancy

results in the offspring having a greater chance of developing postnatal obesity (56-58).

At birth, infants from diabetic pregnancies are found to be larger, fatter and have

elevated glucose and insulin concentrations compared to infants from non-diabetic

pregnancies. Silverman et al (57) reported, that 50Yo of newborns from diabetic

pregnancies had a birthweight above the 90th percentile when corrected for length of

gestation. When these children from diabetic pregnancies were re-examined at 8 years of

age, half were found to still be in the same percentile range as they were when examined

at birth. This suggests that, like the restriction of fetal nutrients during pregnancy,

oversupply of fetal nutrients during pregnancy can lead to the postnatal development of

obesity.

More recently, it has been speculated that it is not only the prenatal but also the postnatal

environment that can predetermine the onset of adult diseases (59, 60). This notion is

consistent with work recently published by Parsons and colleagues (59). They

demonstrated that there is an association between birthweight, catch up growth during

childhood and adult BMI. Men who were small at birth (in the lowest birth weight

quintile) had a low BMI at age 33 and men in the highest birthweight quintile had a high

BMI at age 33. Parson's found that variation in the low and high BMI groups could be

better explained when postnatal growth rate was taken into account. In men that were
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heavy at birth, the relationship between birthweight and adult BMI was independent of

growth rate during the first 7 years of life. Interestingly, men who were small at birth and

who had a faster growth rate during the first 7 years of life were found to have a similar

incidence of obesity in adult life as those men who were bom heavy. It appears,

therefore, that there is an interaction between the pre- and post-natal environment that

determines the risk of developing obesity in adult life.

In summary, the mechanisms that are used to store triglycerides in adipose tissue to

increase the chances of survival during periods of low food intake may now be

implicated in the excess accumulation of adipose tissue and the associated morbidities,

which occur in populations with unlimited access to food and low levels of physical

activity. Furthermore, these mechanisms may be implicated in the association between

intrauterine growth, postnatal growth and adult obesity.

I.2 DEVELOPMENT OF ADIPOSE TISSUE: MESODERMAL CELLS TO

ADIPOSE TISSUE

As the development of adult obesity can be related to prenatal and postnatal growth, it is

only appropriate to review the development of adipose tissue during prenatal and

neonatal life.

Development of mammals begins when a spermatozoan fertllises an oocyte to form a

single cell embryo, the zygote, which subsequently develops into the placenta and fetus.

The fertilised egg can be considered as a totipotent stem cell that has the ability to

replicate and differentiate into any cell of the body and extraembryonic membranes.

Shortly after fertilisation this cell undergoes replication (cleavage) and differentiation to
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form a ball of cells known as a morula. Before the conceptus implants in the

endometrium, a fluid filled cavity develops within it at which time it is known as a

blastocyst. The cells of the blastocyst differentiate to form an outer cell layer

(trophoblasts) and a group of cells within the blastocyst known as the inner cell mass

(ICM). The trophoblasts and some of the ICM cells form the placenta and other

extraembryonic membranes, whilst the remaining ICM cells eventually give rise to three

germ layers, the endoderm, mesoderm and ectoderm. These three cell layers differentiate

to form the fetus (61-63). Adipose tissue is derived from the mesoderm (61,62).

Much of our understanding of adipocyte development (adipogenesis) comes from in vitro

studies, which have specif,rcally examined the development of the white, rather than the

brown, adipocyte. Mesodermal stem cells can terminally differentiate into adipocyte,

myocyte, or chondrocyte cells. The development of fetal adipose tissue begins when

some of the stem cells from the mesodermal layer differentiate into adipoblasts (Figure

1.1). This differentiation process occurs when DNA methylation is inhibited in the

mesodermal cells (64-66). Adipoblast proliferation then occurs until cell-to-cell contact

at confluent density inhibits mitosis (66). As adipoblasts reach confluence, they arrest at

the Go/Gr cell cycle boundary, presumably waiting until all adipoblasts in the depot

reach the same cell cycle stage. The cells at this arrested stage of development are known

as preadipocytes (5).

The cellular events that occur between the adipoblast and the emergence of the

preadipocyte are poorly understood. It has been previously thought that mature white and

brown adipocytes were derived from the same preadipocyte and that differentiation of

the separate adipocyte lineages occurs at this point of adipogenesis. When preadipocytes
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Adipoblast

Figure 1.1 Schematic diagram summarising adipogenesis.

The differentiation pathways of adipocytes: from stem cell to white and brown

adipocytes. Solid lines define known differentiation pathways. Dotted lines represent cell

differentiation pathways that have been speculated and circumstantial evidence exists for

these pathways. Blue coloured lines represent cell differentiation pathways that are

known and have been abbreviated for the purpose of this schematic. Based on Ailhaud er

al (5), Klaus (6), Himms-Hagen et al (8) and Bukowiecki et al (67).
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were isolated from the stroma-vascular region of both white and brown adipose tissue

and grown under the same conditions, it was found that the preadipocytes preferentially

terminally differentiated into either mature white or brown adipocytes, respectively (68,

69). Since then studies have shown that these two types of preadipocytes express a range

of different genes (10,71).It has been concluded from these studies that mature white

and brown adipocytes originate from different preadipocytes.

1.2.1 \ühite adipocyte lineage

The developmental pathway of the white preadipocyte to the mature white adipocyte is

well defined (Figure 1.1). Cells in the stroma-vascular region of adipose tissue can

proliferate and fully differentiate into mature white adipocytes, and mature white

adipocytes are unable to replicate in vivo (5). Extensive studies on 3T3 cell lines show

that these cells display white preadipocyte characteristics and when treated with

glucocorticoids, insulin or insulin-like growth factor-I (IGF-I), they differentiate into

cells that accumulated lipid in a single locule and possess the morphological and

biological characteristics of mature white adipocytes (72-75).

White preadipocytes undergo mitotic division (76). In cell culture, clonal expansion of

the white preadipocytes slows when the preadipocytes reach the growth and arrest phase

of cell replication. At this point, the expression of adipocyte specific proteins increases

(77-79), and subsequently these preadipocytes undergo terminal differentiation forming

immature white adipocytes. Maturation of these adipocytes is completed once these cells

accumulate lipid in their cytoplasm (5).
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1.2.2 Brown adipocyte lineage

Unlike many of the studies performed on white adipocyte development, much of the

work conducted on the brown adipocyte lineage has used in vivo, rather than in vitro,

techniques. Bukowiecki and colleagues (I0, 67) focused on four cell types, namely:

mature brown adipocytes, brown preadipocytes, interstitial cells and capillary endothelial

cells (Figure 1.1).'When examined under a microscope, mature brown adipocytes were

multilocular, packed with mitochondria and had a relatively large nucleus. Brown

preadipocytes were smaller, had very few lipid locules and few mitochondria. Some of

these mitochondria had highly folded cristae whilst others had very few cristae (10).

Interstitial cells were very small, with no lipid locules, an elongated nucleus and were

localised in the interstitial spaces between adipocytes, and between adipocytes and

capillary endothelial cells. Bukowiecki (67) showed that some brown preadipocytes, like

interstitial cells, were localised in the stroma-vascular region of adipose tissue.

Capillary endothelial cells are not the progenitor cells of mature brown adipocytes (67),

as some studies had previously speculated (80-82). Endothelial cells are found, however,

to promote preadipocyte proliferation (83). Bukowiecki and colleagues (67) showed that

interstitial cells differentiated firstly into preadipocytes and then into mature brown

adipocytes (67). Furtherrnore, they suggested that interstitial cells were dormant stem

cells that were always present in adipose tissue with a brown appearance. These cells

were ready to proliferate and differentiate into mature brown adipocytes when subjected

to appropriate stimuli. Geloen et al (10) showed that cytoplasmic lipid locules were

found to form in one but not both daughter cells from the mitotic division of an

interstitial cell. When dormant stem cells divide, some daughter cells differentiate whilst

the other daughter cell remains undifferentiated (10). It is unclear whether interstitial
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cells represent a preadipocyte precursor cell such as the adipoblast that can differentiate

into mature white and brown adipocytes, or whether it represents an intermediate stage in

adipogenesis between the adipoblast and the preadipocyte (5).

1.2,3 Development of fetal adipose tissue

The development of adipose tissue has been well described in prenatal and neonatal

sheep. At approximately 70 days gestation, lipid locules begin appearing in cells in the

perirenal region of the sheep fetus (term -150 days) (84). These locule containing cells

have few mitochondria with few cristae (84), and have a similar morphological

description to the brown preadipocyte reported by Bukowiecki (67).

Between 70 and 90 days gestation, there is a progtessive increase in the number of locule

containing cells and the size of these locules in the perirenal region of fetal sheep (84).

Some cells contained one dominant locule whilst others also contained several smaller

locules (84). From 90 days gestation, the number of mitochondria and the frequency of

cristae parallelled the increase in locule size. By term, some of these adipocytes from the

perirenal adipose depot had a distinct unilocular appearance, others had a dominant

locule and several smaller locules, and others had a distinct multilocular appearance

(Figure L2 8L Figure 1.3). All adipocytes were found to contain mitochondria. Nerve

fibres began to appear in the adipose tissue at approximately 130 days gestation and their

numbers progressively increased with gestation (8a). The perirenal depot represents over

85% of the total adipose tissue mass in the sheep fetus (Muhlhausler, unpublished data),

whilst as a proportion of body weight, the mass of the perirenal adipose depot remains

relatively constant between 90 and 140 days gestation (85) (Yuen, unpublished data).
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Figure 1.2 The ultrastructure of an adipocyte with a dominant lipid locule and

several smaller locules from a sheep fetus.

Horizontal dark bar represents 1 pm. Photograph taken from Gemmell et al (84)
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Fetal sheep (140 d gestation) 21 d Postnatal lamb

Figure 1.3 Photomicrograph images of perirenal adipose tissue in fetal and

neonatal sheep.

Adipocytes with a dominant lipid locules in the perirenal adipose tissue are initially

small and circular in fetal life and then increase in size and become hexagonal in

postnatal life. There is also a loss of multilocular tissue within the perirenal adipose

depot with advancing age. Examples of tissue defined as unilocular (U) or multilocular

(ÞI) adipose tissue are indicated on the section. The horizontal dark bar represents 50

¡rm. (Thanks to J Duffield for providing a sample of perirenal adipose tissue from a 21 d

postnatal lamb).
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A small proportion of adipose tissue is also found in the subcutaneous region of the fetal

sheep. Like the perirenal adipose depot, at 70 days gestation small locule containing cells

were observed in the subcutaneous adipose depot of the fetus (84). As gestation

advances, characteristic differences begin to emerge between adipocytes from the

perirenal and subcutaneous adipose tissues. At term, most of these adipocytes in the

subcutaneous depot possess only one large locule and have few mitochondria. These

subcutaneous cells have similar morphology to terminally differentiated white

adipocytes. Multilocular cells were also found in subcutaneous adipose tissue and their

appearance was similar to adipocytes found in the perirenal region. It has repeatedly

been demonstrated that adipocytes from rodent adipose tissue with a white appearance

express UCP-1 and that some of these adipocytes are multilocular and mitochondrial rich

(8, 86, 87). This suggests that brown adipocytes are present in white adipose depots.

1.2.4 Development of adipose tissue in the neonate

At birth, maintenance of core body temperature is essential for the survival of newborn

mammals, especially at low ambient temperatures (88). Core body temperature is

maintained through the activation of thermogenesis. It has been found that more than 60-

10o/o of non-shivering thermogenesis is generated in adipose tissue with a brown

appearance (89). Mature brown adipocytes are packed with mitochondria that possess the

brown adipocyte specific protein, UCP-I. This protein reduces the efficiency of the

electron transport chain and in the process generates heat. During neonatal life, the

expression of UCP-1 declines and the thermogenic function of adipose tissue is lost (90-

e2).
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This loss of thermogenic activity is accompanied by cellular changes that occur in

adipose tissue during the neonatal period. As previously mentioned, at term, perirenal

adipocytes in newborn lambs are comprised of multilocular adipocytes, and unilocular

adipocytes with several smaller locules. Independent of locule size, many locules are

circular or oval in shape. By 2I days after birth, perirenal adipocytes in lambs are clearly

hexagonal - a shape commonly associated with mature white adipocytes (93) (Figure

1.3). During this same period there is a significant increase in vascularisation and

sympathetic innervation of adipose tissue and a concomitant accumulation of lipid (90).

1.2.5 Appearance of brown adipocytes in white adipose tissue

Whilst it has been demonstrated that white and brown adipocytes are derived from

different preadipocyte cell lineages (70), it is well established that the proportion of

adipose tissue occupied by brown adipocytes during fetal and early neonatal life is

substantially more than in adulthood. There is a rapid increase, however, in UCP-1

abundance in the adipose tissue of adult rodents exposed to a low ambient temperature

(94, 95). It was suggested that this increase was too rapid to be a consequence of

preadipocyte proliferation and differentiation, rather it was speculated that some

unilocular adipocytes could convert to multilocular - mitochondrial rich adipocytes that

expressed UCP-1 (8). Little is understood about the mechanisms that cause the change in

the appearance of adipose tissue from primarily a multilocular tissue to a distinctly

unilocular tissue and vice versa, although several hypotheses have been put forward.

Firstly, it is possible that brown adipocytes undergo apoptosis and subsequently

proliferation of white adipocytes occurs. Secondly, it is postulated that despite separate

lineages, brown adipocytes can give rise to white adipocytes (6, 9,65). Thirdly, it has

been speculated that white adipocytes can revert to brown adipocytes when appropriately
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stimulated and these cells have been referred to by some researchers as "transitional"

adipocytes (5, 8, 86, 96,97).

Using the knowledge that the UCP-I gene is specifically expressed in brown, but not

white adipocytes, Moulin et al (9) manipulated the Cre/loxP DNA-recombinant system

to attain specific tissue expression of UCP-I and investigated the development of

adipose tissue in mice. A transgenic strain of mice was bred to contain in their genome

an insert where the UCP-I promoter region (pUCP) was attached to the Cre gene and

another insert where a constitutively expressed promoter þCMV) was attached to locP

stt-rp sequences and finally to alacZ gene (9).

When the UCP-I promoters were activated in a cell, transcription of UCP-I and Cre

genes occurred, and the expression of the Cre enzyme resulted in the deletion of the locP

stop sequences. Consequently, the lacZ gene was constitutively expressed. Moulin and

colleagues hypothesised that if the brown preadipocyte differentiated into a brown

adipocyte and f,rnally a white adipocyte, then brown adipocytes would ltrst express UCP-

1, Cre andlacZ, but later when differentiated into a white adipocyte, lacZ expression

would remain, however, UCP-I and Cre expression would be lost. The altemative

hypothesis was that adipocytes that expressed neither UCP-I, Cre or lacZ mRNA would

therefore be derived from white preadipocytes. Moulin showed that lacZ mRNA

expression \Ã/as present in adipose depots typically described as brown adipose tissue

(intrascapular) and absent in depots typically described as white adipose tissue

(inguinal). Low levels of IacZ mRNA expression were detected in perirenal and

retroperitoneal adipose tissue. The study clearly demonstrates that white adipocytes are

derived from white rather then brown preadipocytes. In this study, perirenal and
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retroperitoneal adipose depots also expressed relatively low levels of UCP-I mRNA

indicating the presence of brown adipocytes in these tissues suggesting that these depots

can be comprised of both white and brown adipocytes (9).

Himms-Hageî et al (S) recently demonstrated that white adipose tissue contains small

clusters of multilocular-mitochondrial rich adipocytes. When a known stimulator of

brown adipocyte proliferation, a B3-adrenergic receptor agonist, was administered to rats

there was an increase in the numbers of these multilocular cells in white adipose tissue.

This increase was a consequence of a sub-population of unilocular adipocytes that

converted to multilocular-mitochondrial rich adipocytes. Furthermore, the increased

abundance of new mitochondrial proteins in the adipose depot confirmed that the

proliferation of multilocular-mitochondrial rich adipocytes was not derived from pre-

existing multilocular adipocytes, i.e. transitional adipocytes. Together the }i4oulin et al

(9) and Himms-Hageî et al (8) studies demonstrate that a population of unilocular

adipocytes are derived from white, but not brown preadipocytes, and a second population

of adipocytes with a unilocular appearance can convert to multilocular-mitochondrial

rich adipocytes when appropriately stimulated, i.e. transitional adipocytes.

In 1994, a significant breakthrough was made in the understanding of the regulation of

body adiposity. It was discovered that adipocytes could synthesise and secrete a

hormone, which exerts a regulatory role in the central and peripheral systems to control

energy homeostasis (12-15). This finding has resulted in an associated increase in our

knowledge of the functions of adipose tissue, beyond their lipid storage capacity.
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1.3 DISCOVERY OF A SATIETY FACTOR

In 1940, Hetherington and Ranson lesioned the hypothalami of rats and showed that

these rats accumulated fat over time and when allowed to feed qd libítum became

severely obese (98). These studies showed that the brain, and in particular, the

ventromedial region of the hypothalamus was a "satiety centre". Subsequently, Kennedy

(99) observed that substantial variations in food intake were associated with changes in

body temperature. These f,rndings and others led Coleman and colleagues (100-102) to

perform several parabiosis studies, linking the circulation of a normal mouse with one of

two types of genetically obese mice in an attempt to demonstrate the presence of a

"satiety factor" in the peripheral circulation.

In 1950, Ingalls et al (103) used Mendelian selection techniques to breed a massively

obese strain of mouse. This mouse was known as the obese or ob/ob mouse and its

phenotype was caused by a recessively inherited genetic defect that leads to the early

development of obesity. A diabetic (db/db) strain of mice was also bred and these mice

were found to be hyperglycaemic and obese. Whilst these strains were genetically

distinct, they were both hyperphagic and hypothermic (100, 103). One distinct difference

between these strains of mice was the obesity shown by the db/db mouse was less

marked than that in the ob/ob mouse (100).

Coleman (101, 102) performed parabiosis studies on normal, obese (ob/ob) and diabetic

(db/db) mice in which the circulations of two strains of mice were partially surgically

connected. Parabiosis of the db/db and normal mouse caused the death of both mice

within 50 days after surgery and in the majority of cases, the normal mouse in the

partnership died first. When the mice were separated at post mortem, the average body
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weight of the normal mouse had declined Qa%) when compared to before the surgery.

These normal mice had very little food in their stomachs and little or no deposits of

adipose tissue. In contrast, the stomachs of the db/db partners were bulging with food

and body weight had increased on average 46Yo. Coleman concluded that the normal

mouse had starved and the diabetic mouse had increased its food intake excessively

(101).

A similar result was found when ob/ob mice were parabiosed with db/db mice. Whilst

both partners died, the ob/ob partner loss fat mass and appeared to have starved to death

(102). Coleman and colleagues suggested that the db/db paftuer produced, but did not

respond to, a blood derived satiety factor that prevented overfeeding (100).

Parabiosis of the two ob/ob mice lead to gains of more than 50%o in weight by 4 months

after surgery, compared to before surgery in both mice. Interestingly, these mice

appeared to be in good health and minimal deaths were observed (102). When the normal

and ob/ob mice were parabiosed it also lead to viable unions. The ob/ob partner ate less

and gained less weight than ob/ob mice parabiosed with another ob/ob mouse (102). This

observation suggested that a humoral factor provided by the normal mouse inhibited

food consumption in the ob/ob partner and supported the conclusion that ob/ob mice

have a functional "satiety centre" that was capable of responding to the humoral factor

produced by normal as well as db/db mice (100). Sixteen years later, Zhang and

colleagues (12) discovered the satiety factor that was primarily expressed in adult

adipose tissue and named this factor, leptin. Within a year, Campf,reld, Halaas,

Pelleymounter, Weigle, Stephens and colleagues (104-108) had demonstrated the role of

the hormone, leptin, in the control of satiety, and Tartaglia (109) reported the expression
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of the leptin receptor in the brain. Together these findings confirmed the original

hypothesis of Coleman that there was a circulating factor which controlled satiety.

I.4 THE DISCOVERY OF LEPTIN AND ITS PHYSIOLOGICAL ROLE

In 1994, Friedman and colleagues cloned the gene encoding the circulating satiety factor,

which Coleman had deduced must exist, and named it leptin (from the Greek -leptos,

thin) (12). Since then the leptin gene has been isolated in many mammalian species,

including humans, mice, rats, sheep, pigs and cows (12). The leptin gene is highly

conserved between species (110) and when transcribed yields a -4.4 kb transcript (I2,

111, 112).In humans, the gene spans -20 kb of which 4240 nucleotides and a poly (A)

sequence of -200 nucleotides are transcribed into messenger RNA (mRNA).

In adult mammals, adipose tissue has the highest abundance of leptin mRNA (I2, II3).

Mature white adipocytes are the predominant cell in adult adipose depots and when

cultured are found to express leptin mRNA and secrete leptin protein (114). Moreover,

leptin mRNA abundance in adipose tissue is correlated highly with the concentration of

leptin in the circulating which indicates that circulation leptin is derived principally from

adipose tissue (115). Not surprisingly, obese mammals have higher levels of leptin

mRNA expression and circulating leptin concentrations than lean mammals (113, 116-

118). Other tissues also express low levels of leptin mRNA, including liver (119),

stomach (120-122), mammary gland (123-125) and skeletal muscle (126) and placenta

(l2l-132).It is unclear, however, what paracrine or autocrine role, if any, leptin plays in

these tissues.
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The leptin gene of the ob/ob mouse produces mRNA transcripts that contain a

substitution mutation creating a premature stop codon. The translated transcript generates

a truncated protein, which is then degraded intracellularly i.e. the ob/ob mouse is leptin

deficient (12). The obese phenotype in the ob/ob, but not db/db mice, could be reversed

when recombinant leptin was administered daily. Less dramatic effects on body weight

were observed when leptin was infused into normal mice. The decrease in body fat,

which occurred within two days of infusing leptin in leptin deficient and normal mice,

was caused by a decrease in appetite and an increase in core body temperature (104-108).

Stephens and colleagues (108) provided evidence to link thc actions of leptin to the

"satiety centre" in the brain. They showed that large subcutaneous doses (400-4000

pg/kg) of recombinant mouse leptin were required to suppress feeding in leptin deficient

mice, however, similar effects could be achieved with lower doses (0.6-40 pglkg) of

leptin when administered directly into the third ventricle of the hypothalamus (108). This

is consistent with the hypothesis of Coleman and others, of a peripheral factor acting

centrally to regulate energy balance via effects on food intake, adipose tissue mass and

thermogenesis.

1.5 REGULATION OF LEPTIN SYNTHESIS AND SECRETION

In the adult human (I14,I33,134), rodent (133) and ruminant (135, 136), there is a close

association between body weight or fat mass and both the abundance of leptin mRNA in

adipose tissue and circulating leptin concentrations. Energy restriction and fasting each

decrease plasma leptin concentrations to a greater extent than can be predicted by the

loss of body fat mass (137-140). Boden et al (137) showed that whilst fasting for 52 h

decreases circulating leptin levels in humans, the percentage of the subject's body fat
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remained unchanged during this period. This and other observations suggest that leptin

synthesis, secretion and clearance are influenced by other factors besides fat mass.

Depot-specif,rc differences in leptin gene expression have been demonstrated in adipose

tissue in the human (141-143), rodent (144, 145) and sheep (115). The abundance of

leptin mRNA is higher in adipocytes from the parametrial and perirenal regions than in

those from the subcutaneous region of female rats (144). Ehrhardt (146) found, however,

that leptin mRNA abundance in subcutaneous adipose tissue was 2-3 times greater than

in perirenal adipose tissue in pregnant ewes. Furthermore, Hube et al (l4l) has shown

that subcutarìeous adipose tissue contained more leptin mRNA than thc omcntal dcpot in

humans. Interestingly, leptin mRNA expression in subcutaneous, epididymal and

retroperitoneal adipose depots is positively correlated with adipocyte volume which

suggests that the relationship between leptin gene expression and the adipose depot may

be related to volume of the adipocytes within the depots (145). Consistent with these

findings, Lonnqvist et aI (114) showed that leptin expression and secretion by

subcutaneous adipocytes from lean and obese women was positively correlated with

adipocyte numbers and both the size and lipid content of the adipocytes.

1.5.1 Dietary regulation of leptin

Whilst food intake and food deprivation have opposite effects on circulating leptin, it has

been speculated that components within the diet may regulate leptin production and

secretion. Frederich and colleagues (147) showed lhat a high fat diet elevated circulating

leptin levels in mice. In humans, Raben et al (148) found however, that meals that were

fat, carbohydrate or protein rich but had similar caloric energy intake and similar effects

on circulating leptin concentrations in humans. In another study, humans who consumed
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a high fat, but low carbohydrate meal were found to have lower circulating leptin

concentrations,24 h after the meal (149), howeverprolonged consumption (12 days) of a

high fat diet did not alter circulating leptin concentrations (150). Interestingly, rats fed a

high fat diet for 5 months had higher circulating leptin concentrations compared to those

on a control diet (151).

Irrespective of the contribution that dietary components have on the synthesis and

secretion of leptin, Saladin et al (152) demonstrated that leptin expression in adipose

tissue is lower in fasted than in fed rats and refeeding of fasted rats restored leptin

rnRNA aburrdance to that measured in fed rats (152). More specifically, Ahima et al

(153) showed that in fasted mice, the fall in plasma leptin levels was coincident with a

decrease in plasma glucose and insulin concentrations and an increase in plasma

glucocorticoid concentrations and it was speculated that diet sensitive hormones or

metabolites could regulate circulating leptin.

1.5.2 Glucose regulation of leptin synthesis and secretion

Glucose stimulates leptin production in cultured adipocytes (154, 155). Rat adipocytes

perfused with glucose increased leptin production in a dose dependent manner (155).

Several glucose-mediated pathways regulate adipocyte synthesis and secretion of leptin.

Leptin secretion can be suppressed when cultured adipocytes are either unable to

transport glucose intracellularly or are unable to perform glycolysis. These effects,

however, are reversible by the addition of glucose, but not insulin (155). In adipocytes

and muscle cells, glucose is transported into the cytoplasm where it is converted to

glucose-6-phosphate, a rate limiting substrate for glycolysis. The hexosamine

biosynthetic pathway receives a small proportion of glucose that is converted to fructose-

27



Cu¡prnR 1 INTRODUcTIoN

6-phosphate. Both UDP-N-actylglucosamine, the end product of this pathway, and

glucose increase the abundance of leptin mRNA in adipose tissue and circulating leptin

concentrations in rats (126). Indeed, when the rate limiting enzyme of the hexosamine

biosynthetic pathway, fructose-6-phophate amidotransferase, is overexpressed in the

adipose tissue of transgenic mice both the adipose tissue expression of leptin and

circulating leptin concentrations are elevated (156).

1.5.3 Insulin regulation of leptin synthesis and secretion

Infusion of glucose increases circulating leptin, but also results in hyperinsulinemia

(157) and therefore the effects of insulin, independently of glucose, on leptin synthesis

and secretion carurot be discounted. In in vitro experiments, insulin regulates leptin gene

expression and secretion independently of glucose (158). Insulin stimulates leptin

production in mature white and brown adipocytes in a dose dependent marurer (159,

160). In humans, circulating leptin concentrations increased when insulin was

administered and euglycemia was maintained (161). Indeed, leptin expression was

suppressed in the adipose tissue of pigs treated with streptozotocin, which destroys the B-

pancreatic cells of the animals and makes them hypoinsulinemic. Leptin expression

could be restored when these animals were treated with insulin (162).

At a molecular level, one of the activators of leptin gene expression is the hetrodimeric

transcription factor, adipocyte determination differentiation dependent factor (ADD) I

and sterol regulatory element binding protein (SREBP) 1. The expression of ADDI and

SREBP1 is suppressed in adipose tissue of fasted rats and is upregulated by insulin.

Indeed, Kim et al (163) showed that the ADDI/SREBPI complex binds to the insulin

response element (IRE) of the leptin promoter and when the IRE is mutated,
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ADDI/SREBPI, is unable to transactivate the leptin gene. Therefore, nutrition may

regulate leptin expression through fluctuations in insulin concentration that mediate the

levels of the ADDI/SREBPI transcription factor in adipocytes and consequently alters

the abundance of leptin mRNA. Irrespective of the cellular and molecular mechanisms

that control the regulation of the leptin gene, nutrition acts through fluctuations in

glucose and insulin levels to regulate leptin synthesis and secretion in the adipocytes of

mammals.

1.5.4 The role of the SNS in the regulation of leptin synthesis and secretion

It is well established that an increase in sympathetic nervous activity (SNS) results in the

mobilisation of fatty acids from adipose tissue and in the activation of thermogenesis

(164, 165). Evidence has shown that noradrenergic activity also modulates leptin

synthesis and secretion from adipocytes. Individuals with spinal cord injury arc at a

higher risk of developing obesity than able-bodied individuals (166, 167). Jeon et al

(168) showed that in able-bodied people, the resting metabolic rate was related to

circulating leptin concentrations and that this relationship rwas not present in a group of

people with spinal cord injury. In Siberian hamsters, denervation of adipose depots,

which had a white appearance, caused an increase in the mass of adipose tissue and an

increase in the number of fat cells in the depot compared to intact animals. Adrenaline

and the synthetic B-adrenergic receptor agonist, isoprenaline, decrease leptin expression

and circulating leptin concentrations in humans (169-17l) whilst in the rodent, the

administration of either noradrenaline or isoprenaline also decrease leptin synthesis and

secretion (172-175).
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Neuronal catecholamine synthesis is suppressed by inhibition of the rate limiting enzyme

tyrosine hydroxylase and this causes the depletion of noradrenaline in tissues (174).

Infusion of an inhibitor of tyrosine hydroxylase results in an increase in circulating leptin

concentrations in normal but not leptin deficient mice (174). The additional infusion of a

B:-adrenergic receptor agonist attenuated the increase in circulating leptin observed in

these normal mice. Interestingly, these same receptors in adipose tissue are necessary for

the activation of UCP-I for cold-induced and diet-induced thermogenesis (164, 176,

177).

1.5.5 Biological rhythms in leptin synthesis and secretion

Saladin and colleagues (152) demonstrated that leptin expression in rat adipocytes in

vivo were lowest during the light phase and increased whilst feeding and were maximal

later during the dark phase. Frequent blood sampling of lean and obese human subjects

over 24 h period shows that circulating leptin concentrations are lowest between 08:00

and 14:00 and peak between 20:00 and 02:00. Interestingly, the amplitude of the

biological rhythm of obese subjects was significantly greater than in lean subjects. These

changes in circulating leptin were independent of changes in fatness and food intake as

meals were provided at regular 4-5 h intervals (118, 179). Besides the biological rþthm

of circulating leptin, small fluctuations in circulating leptin were observed after every

meal.

Leptin expression and circulating leptin concentrations decrease in adult mammals

exposed to short periods of light, i.e. short photoperiods (180, l8l). These effects may

occur through prolactin and other pituitary hormones, which are regulated by

photoperiod hormones. Interestingly, adipose tissue expresses prolactin receptors (182),

30



CHaprnR I INTRODUcTIoN

and prolactin concentrations are regulated by photoperiod (183, 184) and can increase

circulating leptin concentrations in rats (185).

1.5.6 Sex hormones

Females generally have a higher percentage body fat and also have higher circulating

leptin concentrations than males (133). Serum leptin levels are found to be lower in

ovariectomised female rats whilst the administration of estradiol can restore circulating

leptin concentrations (186). 17-B estradiol also increased adipocyte expression of leptin

and these effects could be inhibited with ICI1s27s6, an estrogen receptor antagonist.

Dihydrotestosterone, an androgen metabolite of testosterone, suppresses leptin

expression in adipocytes but these effects can be restored by the addition ofan androgen

receptor antagonist, cypoterone acetate. This suggests that sex hormones regulate leptin

expression and secretion in males and in females, and that these effects are independent

of fat mass and feeding patterns.

1.5.7 Role of glucocorticoids

Glucocorticoids also regulate the synthesis and secretion of leptin by adipocytes (187,

188). In humans, a potential glucocorticoid response element has been identif,red 1-1.5 kb

before the start codon of the leptin gene (189). It remains to be determined, however,

whether this potential glucocorticoid response element can transactivate the leptin gene.

Irrespective of this, in vivo administration of cortisol or the synthetic glucocorticoid,

dexamethasone, increases leptin expression in mature white adipocytes and circulating

leptin levels in humans (158, 190, 191) and rodents (14). Cortisol also has a synergistic

effect on insulin induced leptin secretion by human white adipocytes (158).
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Buyse et al (160) demonstrated that glucocorticoids also regulate the expression of leptin

in mature brown adipocytes. The T37i cell line is derived from a brown fat malignant

tumour in the mouse and these cells can be induced to differentiate into mature brown

adipocytes that express UCP-I mRNA (I92).In the presence of dexamethasone, insulin

induced leptin secretion is suppressed in these mature adipocytes (192).It appears that

glucocorticoids exert differential effects on white and brown adipocytes and this may

explain some of the inconsistencies in studies relating to leptin expression in which the

cellularity of the adipose tissue has not been defined.

1.5.8 Growth hormone and Insulin like growth factor-I

The contribution of growth hormone (GH) and IGF-I to the regulation of leptin

expression in adipose tissue has been examined in several studies. Over three months,

GH treatment in men decreased serum leptin levels and reduced body fat (193).

However, in hypophysectomised rats, where the pituitary is surgically removed

producing GH deficiency, leptin expression in adipose tissue was unaffected by GH

treatment, but was decreased by IGF-I administration (194). IGF-I infusions in humans

reduced plasma leptin concentrations (195). Houseknecbt et al (196) demonstrated that

GH alone was unable to directly stimulate leptin mRNA expression in bovine adipocytes

but was able to suppress insulin or dexamethasone induced leptin expression. Castrated

male cattle treated with GH had increased adipose tissue expression of leptin and IGF-I

mRNA. Interestingly, leptin and IGF-I mRNA abundance were positively correlated in

treated animals (196) suggesting a mechanistic pathway for the actions of GH and IGF-I

on leptin gene expression in adipose tissue.
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1.6 LEPTIN RE,CEPTOR

Leptin protein binds with high affinity to circulating and membrane bound leptin

receptors (109, 197-200). Multiple forms of the leptin receptor (Ob-Ra, Ob-Rb, Ob-Rc,

Ob-Rd and Ob-Re) have been detected in the human, rat, mouse and sheep and there is a

high amino acid sequence homology between all leptin receptor isoforms (I09,197,799,

201-203). The various forms of leptin receptors are generated from a single gene using

different splice variants (204). With the exception of one form of the leptin receptor (Ob-

Re), the remaining leptin receptor isoforms contain a single membrane-spanning protein,

which is homologous and shares similar structural and functional properties with the

class 1 cytokine receptor farnily (199, 205). One fonn of the leptin receptor, the long

form (Ob-Rb), has a cytoplasmic domain of 303 amino acids and contains sequence

motifs consistent with the capacity to transduce intracellular signal. The remaining

membrane bound leptin receptor isoforms have little or no cytoplasmic motifs capable of

intracellular signalling (Ob-Ra, Ob-Rc, & Ob-Rd) (see section 1.6.3) (199,205).

1.6.1 Long form of the leptin receptor (Ob-Rb)

The long form of the leptin receptor is expressed in a number of mammalian tissues. Ob-

Rb mRNA is found in highest abundance in the hypothalamus, specifically in the arcuate

nucleus (also known as the infundibular nucleus in ruminants), and in the ventromedial

(VMN), paraventricular (PVN) and dorsomedial (DMN) nuclei (15). The

unresponsiveness of the db/db mouse to leptin is the result of a mutation in the gene

encoding the leptin receptor. This mutuation prevents leptin from signalling

intracellularly and hence acting as a satiety factor (105, 106, 201,202).
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Ob-Rb mRNA is also detected at relatively lower levels in a number of other tissues

including the pituitary (206, 207), the adrenal cortex (208, 209) and medulla (210),

adipose tissue (203), kidney (109), skeletal muscle (109), lung (109, 2ll),pancteas(212,

213) and placenta (127,214-216).

1.6.2 Leptin receptor signalling pathwa

Cytokines are ligands for the cytokine receptor family and control a variety of biological

responses including cell growth, differentiation and apoptosis. Members of the class 1

cytokine receptor superfamily are known to signal intracellularly through Janus kinases

(JAK) and signal transducers and activators of transcription (STAT) proteins. Typically,

JAK proteins are constitutively associated with the intracellular membrane proximal

domain of a cytokine receptor. Binding of the ligand to the receptor causes receptor

dimerisation and JAK proteins are autophosphorylated. This induces the phosphorylation

of tyrosines on the cytoplasmic domain of the receptor. The phosphorylated intracellular

domains provide binding sites for STAT proteins which form homo and hetero dimers

that can translocate into the cell nucleus and stimulate gene transcription(217-219). It is

this cell signalling pathway which is typically associated with the leptin receptor,

appetite regulation and the development of obesity.

Leptin signals intracellularly by binding to Ob-Rb resulting in activation of JAK-2 and

recruitment of STAT-3 and STAT-5 (218,220). STAT-3 proteins are highly abundant in

hypothalamic nuclei and other regions within the central nervous system (CNS),

suggesting that, at least in the hypothalamus, the actions of leptin on hypothalamic leptin

receptors are mediated through STAT-3 (221-223). Bates and colleagues (224) produced

a transgenic mouse (s/s) where tyrosine 1138 on the long form of the leptin receptor was
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replaced with a serine residue that specif,rcally disrupted STAT-3 signalling. It was

shown that whilst differences existed between db/db and s/s mice, relating to fertility,

hyperglycaemia and hypothalamic NPY expression, an alternative leptin mediated

appetite pathway in the CNS (i.e. melanocortin system) was suppressed in both strains of

obese mice. This conhrmed that STAT-3 signalling mediated the actions of leptin on the

long form of the leptin receptor to alter other neuroendocrine pathways, besides NPY,

that controlled body energy homeostasis.

1.6.3 Leptin receptor short forms

The functional roles of the membrane-bound short forms of the leptin receptor (Ob-Ra,

c-d) remain to be elucidated. Ob-Ra is the most abundantly expressed form of all leptin

receptors and is expressed in a number of tissues including the hypothalamus (109,211,

225, 226) and placenta (214, 227, 228). Some evidence suggests that this receptor may

be involved in cell signalling or the transport of leptin across cell membranes. It is well

established that leptin signalling occurs through the JAK-STAT pathway (205), however,

unlike Ob-Rb, Ob-Ra lacks the necessary binding sites to recruit STATs and hence this

prevents the activation of the JAK-STAT pathway (205,229).It has emerged that leptin

can also act through another signalling pathway, including the Ras/mitogen-activated

protein kinases (MAPK) pathway (229), a pathway typically associated with cell growth

and differentiation (230). Several studies have shown that Ob-Ra can signal through this

pathway (23I-233), however, the importance this pathway in relation to the regulation of

appetite remains unclear (230).

Studies have suggested that Ob-Ra is involved in the transport leptin across cell

membranes (234-242). In rodents, the choroid plexus has been shown to express Ob-Ra
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and is thought to actively regulate the availability of leptin to the CNS via a

unidirectional transport system (238, 243). Hileman et al (240) used a monolayer of

Madin-Darby Canine Kidney cells to overexpress Ob-Ra. They showed that >I0o/o of

radiolabelled leptin was transported from one side of the monolayer to the other. It can

be concluded from these and other studies that this receptor can function to transport

leptin across cell membranes.

The Ob-Re is the only leptin receptor isoform that lacks a membrane-spanning domain.

Its expression can be detected in placental (214,244) and hypothalamic tissue Qa\. The

receptol can be detected in the blood of pregnant and non-pregnant mammals and acts as

a circulating binding protein (197, 198, 245). h is speculated that the receptor may be

produced from proteolytic cleavage of other membrane-associated leptin receptors, such

as Ob-Rc and Ob-Rd for which a functional role is yet to be determined (198, 245).

I,7 ACTIONS OF LEPTIN

L.7.1 Action of leptin in the hypothalamus

In the rodent, the arcuate nuclei are located adjacent to each lateral wall of the third

ventricle in the mediobasal hypothalamus. Within these nuclei, there are at least two

groups of leptin responsive neurons that have opposing actions on food intake; the

neuropeptide Y (NPY)-synthesising neurons which also express agouti-related protein

(AGRP) (246, 247) and an adjacent population of neurons which co-express

proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript

(CART) (248,249). Axons from the NPY/AGRP and POMC/CART neurons project into

both the paraventricular nuclei and lateral hypothalamic areas where they act to regulate
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energy balance and neuroendocrine functions. Interestingly, both populations of neurons

co-express the long form of the leptin receptor (249-253).

During periods of low caloric intake, circulating leptin concentrations fall and there is a

concurrent increase in NPY and AGRP gene expression and a decrease in POMC and

CART gene expression that occurs in the neurons of the arcuate nuclei (15). It is

speculated that leptin's actions on food intake and energy expenditure can be explained

through changes in NPY. NPY is the most potent, short-term stimulator of appetite

known (15). Central administration of NPY stimulates food intake and suppresses energy

expenditure in mammals whilst continuous or rcpcatcd administration of thc

neuropeptide leads to the development of obesity in rats (254,255).

Leptin acts through leptin receptors to decrease NPY gene expression. As previously

mentioned, Ob-Rb and NPY are co-expressed in the same neurons in the hypothalamus

(250). 'When leptin is administered either centrally or peripherally, hypothalamic NPY

gene expression is suppressed in normal mice. Interestingly, Erickson and colleagues

(256) showed after 10 weeks of age, leptin deficient mice and, leptin and NPY def,rcient

(double mutant) mice were significantly heavier than normal mice. Six weeks later, the

double mutant males weighed l3% less than leptin deficient male mice whilst the double

mutant females weighed 27o/o less than their leptin deficient counterparts. These

increases in body weight in both strains of mice were due to the accumulation of adipose

tissue. In an important study, however, Erickson et al (257) found that obesity did not

develop in NPY knockout mice and furthermore these mice appeared to have a normal

metabolic response to fasting. Erickson's findings brought into question the relevance of
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the NPY signalling pathway and implicated an alternative neuronal pathway which was

responsive to leptin.

1.7.2 Melanocortins and other neuropeptides

Other neuropeptides expressed in the arcuate nuclei, i.e. CART, POMC and AGRP, are

regulated by leptin and mediate energy balance. CART is expressed in a number of

regions of the brain, in particular, the arcuate nucleus of mice (258) and humans (259)

and the infundibular nucleus of sheep (253). Central administration of CART suppresses

food intake (260-262), whilst central administration of antisera raised against CART

increases feeding in normal mice (260). In leptin deficient mice, hypothalamic CART

expression is suppressed and CART mRNA levels can be restored with the

administration of leptin (260). Therefore, it appears that CART is an important

component of the regulatory pathway through which leptin acts to control appetite.

Another central pathway through which leptin acts to modulate food intake is via the

melanocortin signalling system. This system regulates food intake through the agonist,

alpha-melanocortin stimulating hormone (o-MSH) and antagonist, AGRP (263-268).

POMC is not only synthesised in the corticotrophs of the anterior pituitary but also at

relatively low levels in the neurons of the CNS (252). POMC can be cleaved into a

number of products including o¿-MSH and adrenocorticotrophin (ACTH). Central

administration of leptin stimulates hl.pothalamic expression of POMC mRNA in the

arcuate nucleus of adult rats (269). The importance of POMC derived peptides on the

regulation of appetite is demonstrated by several studies. When cr-MSH or the synthetic

peptide ACTH (l-24) is centrally administered food intake is inhibited in adult rats (270,
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27I) andmoreover, when rats are fasted for 24 h then presented with food, their appetite

is inhibited when ACTH (I-24) is centrally administered (272).

Melanocortin receptors mediate a number of the actions of POMC and POMC derived

peptides (Figure 1.4). Melanocortin receptors, MC3-R and MC4-R, are localised in a

number of regions of the brain, including the hypothalamus. Like the leptin receptor

deficient mouse, the MC4-R knockout mouse is obese, hyperphagic, hyperinsulinaemic

and hyperglycaemic (264, 213). Selective agonists and antagonists to the MC4-R are

found to mediate the central actions of melanocortins on feeding behaviour (274-279).In

rats, leptin's cffccts on feeding behaviour and body weight can be attenuated with a

MC4-R antagonist (HS0l4) (280). Furthermore, feeding behaviour is not inhibited when

cr-MSH is administered to MC4-R knockout mice (266,281). The functional role of

MC3-R remains unclear. Some MC3-R knockout mice have been found to be obese

whilst other researchers find no increase in adipose tissue accumulation in these mice

(282,283).It remains to be determined what role, if any, the MC3-R plays in the control

of energy homeostasis. Agouti protein and AGRP mediate the antagonist arm of the

melanocortin systems (284) (Figure 1.4). Agouti can inhibit o-MSH binding to MCl-R

in hair follicle melanocytes (285). In rodents, agouti is normally expressed in skin and

regulates skin pigmentation, but ubiquitous expression of agouti is found to lead to the

development of obesity, hyperphagia and hyperinsulinaemia (286). Whilst in humans,

agouti is expressed in a number of tissues including adipose tissue, gonads and heart, it

does not appear to play a role in skin pigmentation (287 ,288). In humans, its biological

function remains to be elucidated. Interestingly, when leptin is administered, agouti and

AGRP abundance can be inhibited in the hypothalamus (289, 290).
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Figure 1.4 Actions of leptin on the melanocortin system

Schematic diagram representing the effect of leptin on neuropeptides in the

hypothalamus. Leptin acts on the leptin receptors in the arcuate nucleus in the

hypothalamus to alter the melanocortin system to regulate energy homeostasis. 'oX"

represents when the neuropeptide is unable to bind to its receptor. Modified from

Schwartz et al (I5).

{ leptln

I
Arcuate nucleus

/ \

fruev fncne + POMC

I
+ a,-MSH

X
MC4.R

1 appetite I lipolysis

I
+ UCP.l

40



CnlpreR I INTRODUCTION

A structurally related protein, known as AGRP, is expressed both peripherally and

centrally (284,291) and inhibits the centrally expressed melanocortin receptors, MC3-R

and MC4-R. Overexpression of AGRP in transgenic mice results in hyperphagia (286).

Central administration of AGRP and another MC3-R/MC4-R antagonist (SHU9119)

inhibits feeding in rats (292). Interestingly, SHU9119 can also attenuate the leptin

induced increase in UCP-I abundance in the mitochondrial protein suggesting that the

melanocortin system may play a role in the activation of thermogenesis (293). Consistent

with this finding, central administration of a MC3-R/MC4-R agonist (melanotan-Il)

stimulates sympathetic output to adipose tissue with a brown appearance (293).

Hence, leptin's effects on food intake and diet-induced thermogenesis are mediated by

changes in neuropeptides such as NPY, AGRP, POMC and CART which are expressed

in the hypothalamus. These neuronal signals are integrated and transmitted to an

independent second order neuronal signalling pathway in the P\fN and lateral

hypothalamus that secretes corticotrophin releasing hormone (CRH), orexin,

melanocortin releasing hormone (MCH) and thryrotropin releasing hormone (TRH)

which directly regulate energy balance in the adult.

1.7.3 Regulation of hypothalamic-pituitary-adrenal function

In adult mammals, leptin interacts with the hypothalamo-pituitary-adrenal (HPA) axis to

regulate food intake and fat storage in response to nutritional stresses (Figure 1.5). The

pituitary-adrenal axis is controlled by the hypothalamic PVN which synthesises and

secretes CRH, and other ACTH secretagogues, including arginine vasopressin (AVP),

from nerve terminals in the median eminence, into the hypophyseal portal circulation.

The PVN itself is regulated by a diverse set of signals from surrounding nuclei in the

4I



Cn,tprnn I INTRoDUCTION

hippocampus and hypothalamus, including the arcuate nucleus. Central administration of

NPY increases AVP and CRH secretion into the hypophyseal portal veins (294, 295).

These neuropeptides bind to AVP and CRH receptors on corticotrophin cells in the

anterior pituitary stimulating POMC mRNA synthesis. POMC is then cleaved, processed

and secreted into the circulation. ACTH is one cleavage product of this process and it

subsequently induces the synthesis and secretion of glucocorticoids by the adrenal cortex

(2e6-2e8).

The evidence linking the actions of leptin to the suppression of hypothalamic NPY

expression is well dcscribcd. Recently, leptin has been shown to alter the hypothalamic

release of CRH (299). Hypoglycaemia induced release of CRH could be suppressed by

leptin in isolated rat hypothalami in vitro. Moreover, plasma ACTH and glucocorticoid

concentrations were elevated in restrained rats but when leptin was peripherally

administered, circulating concentrations of these hormones decreased (299). This implies

that leptin can act at the hypothalamus to suppress NPY and consequently the CRH and

AVP induced stress response involving ACTH and glucocorticoids, and explains how the

converse occurs during fasting when circulating leptin decreases and plasma cortisol

concentrations increase ( 1 53).

1.7.4 Leptin and the adrenal gland

The long form of the leptin receptor has been detected by RT-PCR in cultured

adrenocortical cells from a number of species including humans, rats, mice, sheep and

cows (208, 209). V/hilst leptin is able to regulate the glucocorticoid stress response

through the hypothalamo-pituitary axis, recent evidence has suggested that leptin also

has a direct action on the adrenal cortex (208, 300) (Figure 1.5).
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Leptin directly inhibits ACTH mediated cortisol release in a dose dependent manner in

isolated rat, bovine and human adrenocortical cells (208, 300). Leptin suppresses cortisol

production by inhibiting several key rate-limiting enzymes that are involved in the

conversion of cholesterol to cortisol (Figure 1.6). These include the steroidogenic

enzymes cytochrome P450, C2l-hydroxylase, the side chain cleavage enzyme, ClTu-

hydroxylase and steroidogenic acute regulatory protein (StAR). The expression of each

of these enzymes in cultured adrenocortical cells can be inhibited by leptin (208, 300,

301), which demonstrates that leptin can directly influence the synthesis and secretion of

cortisol by inhibiting the enzymcs involved in the conversion of cholesterol to cortisol.

Recent evidence suggests that leptin also regulates the secretion of catecholamines. The

stimulation of the nicotinic receptors in adrenal medullary chromaffin cells increases the

synthesis and secretion of catecholamines by these cells. Like the adrenal cortex, the Ob-

Rb has been detected in the adrenal medulla of adult mammals. In humans, leptin

stimulated catecholamine synthesis in cultured bovine and porcine adrenal medullary

cells via activation of phosphorylation of tyrosine hydroxylase (302).

1.7.5 Action of leptin on lipolysis

Leptin increases oxidation of fatty acids, inhibits lipogenesis in adipocytes (126, 303)

and stimulates the release of lipids by adipocytes (304). Leptin also induces the release

of glycerol from adipocytes (305). The administration of leptin elevated circulating fatty

acid concentrations in leptin deficient but not leptin receptor deficient mice (105, 107).

Scarpace et al (306) showed that lipoprotein lipase mRNA is increased in adipose tissue

with a brown appearance and that this effect was independent of sympathetic innervation
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Figure 1.5 Action of leptin on adrenal functioning

Diagram represents the actions of leptin on the adrenal via potential direct and indirect

pathways. Leptin has been shown to suppress the activation of the HPA axis and reduce

cortisol secretion from the adrenal (indirect pathway). Leptin is also able to directly

suppress adrenal steroidogenesis independently of changes in ACTH concentrations

(direct pathway).
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and suggests that leptin is directly acting on adipocytes via leptin receptors. When fully

differentiated brown adipocytes from lean rats were treated with leptin for 24 h, there

was also an increase in lipoprotein lipase mRNA (1.9 fold). However, administration of

leptin to cultured adipocytes from leptin receptor def,rcient rats did not change

lipoprotein lipase gene expression (305).

1.7.6 The regulation of thermogenesis

When leptin deficient and normal mice are repeatedly injected with leptin, their body

weight declines over a period of weeks. This is, in part, a consequence of an increase in

energy expenditure that occurs through the process known as thermogenesis. As

previously discussed, thermogenesis is the process by which heat is generated by

uncoupling proteins in brown and transitional adipocytes. Thermogenesis is induced in

response to feeding and low ambient temperature.

Over the past 40 years, there have been a number of key findings that have significantly

advanced the study of thermogenesis and these have been summarised below. In 1967,

Miller and colleagues (307, 308) discovered that in humans thermogenesis is induced in

response to overfeeding. It was shown that diet-induced thermogenesis is associated with

brown adipose tissue (309) and that impaired thermogenic function in brown adipose

tissue could be linked to the development of obesity (310, 311). The importance of

brown adipose tissue in the production of heat was finally explained with the discovery

of the adipose tissue derived proteins, known as uncoupling proteins, that could uncouple

the electron transport chain and generate heat (312-315). Recently, the advances in

molecular techniques and, in particular, the discovery of leptin and its role in the
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Figure 1.ó The steroidogenic pathway

The conversion in the adrenal of cholesterol to cortisol and the enzymes used to convert

the intermediates of this path'way.
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regulation of energy homeostasis in mammals, have rekindled the interest in the

mechanisms that control thermogenesis.

At least 5 different uncoupling proteins (UCP), including UCP-I, UCP-2, UCP-3, have

been discovered and isolated from various tissues including adipose tissue, skeletal

muscle, lung and liver (18,315-318). According to Mitchell's chemiosmotic model of

oxidative phosphorylation, the capture of useful energy by the cell is via ATP synthesis

along the mitochondrial respiration chain. The driving force for this synthesis is linked to

the transport of protons across the inner mitochondrial membrane using the enzyme ATP

synthase (319). Uncoupling proteins disrupt the proton electrochemical gradient between

the mitochondrial matrix and the inner membrane space preventing the coupling of

proton transport to the synthesis of ATP and as a result energy is generated in the form of

heat. This heat production is known as thermogenesis (320).

The sympathetic neryous system stimulates lipolysis in adipose tissue causing the

breakdown of lipids into fatty acids. It is these fatty acids tl:rat activate uncoupling

protein activation in brown adipocytes (18, 327 , 322) . The importance of the sympathetic

nervous system in the activation of uncoupling proteins in adipose tissue has been

highlighted by a number of studies (323). These authors showed that bilateral

sympathetic denervation of interscapular adipose tissue in lean mice leads to decreased

thermogenesis and an increase in adipose tissue deposition. In the same year, Arch et al

(324) discovered that the p3-adrenergic receptor was expressed by brown adipocytes.

Since this f,rnding, treatment with B3-adrenergic receptor agonists have been shown to

increase oxygen consumption, decrease white adipose tissue mass and increase the
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density of brown adipocytes expressing UCP-I in white adipose tissue of adult mammals

(32s-32e).

1.7.6. 1 Uncoupling protein-L

The most abundant uncoupling protein in mammals is UCP-I, which is predominantly

localised in brown adipocytes (330, 331). When brown adipose tissue was abolished

from rodents it resulted in marked obesity (332). Similar findings are demonstrated when

using molecular technology to investigate the role of UCP-I. 'When a constitutive

adipocyte specific promoter was attached to the UCP-I gene in transgenic mice there

was a reduction in adipose tissue mass (333, 334). Together these studies suggest that, in

mice, UCP-1 is critical in thermogenesis and plays an important role in the resistance to

obesity. Leptin also appears to play a role in the regulation of UCP-I. Peripheral and

central administration of leptin can increase UCP-1 mRNA expression in adipose tissue

and thermogenesis of mammals (335-337). Scarpace and others (164, 306) have

determined that leptin's ability to upregulate UCP-1 mRNA expression is dependent on

sympathetic innervation of the adipose depot through p3-adrenergic receptors.

Although the stimulus is different, the mechanisms involved in diet-induced

thermogenesis are also involved in cold-induced thermogenesis. Low ambient

temperature and overfeeding induce UCP-I expression in adipose tissue and activate

thermogenesis (89, 338-342). It was estimated that adipose tissue comprised

predominantly of brown adipocytes, produces -60-70% of total heat generated from

cold-induced thermogenesis (343, 344). Like diet-induced thermogenesis, UCP-I

expression and mitochondrial biogenesis increase in response to low ambient

temperature Q$. The importance of UCP-I in mediating cold-induced thermogenesis is
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demonstrated in UCP-I def,rcient mice. V/hen these mice were acclimatised at

thermoneutral temperature, then exposed to low ambient temperature, it caused a

significant decrease in core body temperature. Furthermore, when UCP-1 deficient mice

were acclimatised to 18oC then moved to a 4oC chamber for a period of 6 months only

9%o of the UCP-I def,rcient mice survived compared to I00% of the normal mice that

survived (345).

Whilst UCP-I plays an important adaptive role when adults are exposed to low ambient

temperature, the activation of this protein is also critical during early postnatal life.

Ncwborns that have impaired thermogenic function are at a greater risk of morbidity. If

newborns are exposed to low ambient temperature, the rate of decline in UCP-I

expression in adipose tissue is delayed (346). Interestingly, in neonates UCP-I

expression and protein abundance in adipose tissue can be altered by events that occur

during pregnancy, including maternal exposure to low ambient temperature (347),

maternal overfeeding (3a8) and administration of glucose to ewes during pregnancy

(34e).

1.7.6.2 Uncoupling proteíns -2 and -3

Many studies have demonstrated that UCP-I in adipose tissue is central to mammalian

thermogenesis. Cold exposure can induce thermogenesis, however, in the adipose tissue

of UCP-I deficient mice, which suggest the recruitment of other forms of uncoupling

proteins for the production of heat (330). 'Whilst, far less abundant than UCP-I, UCP-2 is

ubiquitously expressed in over 12 different tissues, including white and brown adipose

tissue, lung and spleen, and UCP-3 is only expressed in muscle, and white and brown

adipose tissue (18, 316, 335,336,350, 351). Like UCP-I, UCP-2 and UCP-3 have the
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capacity to uncouple the electron transport chain (352).In UCP-l deflrcient mice, adipose

tissue abundance of UCP-2 mRNA increased 14-fold whilst UCP-3 mRNA levels were

marginally lower than normal mice (353). It can be speculated that in the absence of

functional UCP-1, UCP-2 is recruited for thermogenesis. Interestingly, UCP-I, UCP-2

and UCP-3 mRNA expression in rat adipose tissue is increased with leptin

administration (354), suggesting that unlike UCP-I and UCP-2, UCP-3 is differentially

activated for cold-induced and diet-induced thermogenesis.

1.7.6.3 The contribution of uncoupling proteins to obesity

Whilst leptin clearly acts to regulate uncoupling proteins to control thermogenesis, the

contribution of uncoupling proteins to the regulation of fat mass metabolism and body

weight remains unclear. The single knockout studies on the UCP-I, UCP-2 and UCP-3

genes in mice do not support a role of uncoupling proteins in the control of energy

balance and substrate metabolism. The body weight of each of these strains of mice are

not noticeably altered by the disruption of a UCP gene and these mice do not show major

impairments in whole body resting metabolic rate, diet-induced thermogenesis and total

energy expenditure nor in substrate metabolism (330, 355-357). Furthermore, whilst

some studies demonstrate an association between body weight and sequence variations in

the UCP gene locus in humans (358-361), other studies have not observed such a

relationship (362-364). Therefore, it remains to be determined whether uncoupling

proteins mediate significant changes in body weight and metabolism, and how

significant this contribution is to adult energy balance.
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1.7.7 Autoregulation of leptin synthesis and secretion in adipose tissue

Leptin is also able to regulate its own gene expression. Peripheral and central

administration of leptin suppresses adipose tissue expression of the leptin gene in rodents

(306, 365), and suggests that leptin acts on the sympathetic nervous system to regulate

leptin expression in adipose tissue. Catecholamines suppress leptin secretion in cultured

human adipocytes (366). Moreover, hypersecretion of adrenaline in phenylethanolamine-

N-Methyltransferase (PNMT) - overexpressing transgenic mice suppressed circulating

leptin concentrations (367).

1.7.8 Action of leptin on the pancreas

Many studies have reported that in both leptin and leptin receptor deficient mice,

hyperinsulinemia precedes the development of obesity (368). The long form of the leptin

receptor is expressed in the B-pancreatic cells that secrete insulin (212,213) suggesting

that leptin may act peripherally to regulate pancreatic function. In leptin deficient mice,

administration of leptin causes a rapid and substantial decrease in plasma insulin

secretion (101,369-371). Furtherrnore, leptin administration in isolated B-pancreatic

cells from leptin deficient mice results in the suppression of insulin expression (369) and

insulin secretion (2I3,312). This indicates that in the absence of leptin, insulin levels are

elevated and can be lowered by the administration of leptin. Leptin has no effect,

however, on isolated B-pancreatic cells from leptin receptor deficient mice (201, 202).It

can be, therefore, speculated that leptin acts peripherally through the leptin receptor (Ob-

Rb) in B-pancreatic cells to stimulate insulin secretion.

Kieffer et al (368) reported that there is conflicting evidence on the actions of leptin

mediated insulin secretion by the pancreas of normal mice. A number of studies show a
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lack of effect of leptin on insulin secretion (373-376).In the majority of cases, however,

leptin suppresses insulin secretion from isolated B-pancreatic cells of normal mice

independently of glucose concentrations (369, 317 ,378). Finally, it is interesting to note

that when leptin was administered to a strain of mice that had developed severe insulin

resistance, it abolished the insulin resistance suggesting that leptin may play a role in

preventing insulin resistance.

1.8 RESISTANCE TO THE ACTIONS OF LEPTIN

In rodents, leptin reduces fat mass in leptin deficient and normal mice (104, 106).

Epidemiological studies report that circulating leptin concentrations in humans are

positively correlated with measures of body fatness (42, I34,379,380). The report that

obese humans have higher leptin concentrations than lean people has prompted

speculation that there is a decreased sensitivity to the actions of leptin in the CNS of

obese individuals. As previously mentioned, however, large scale genetic screening of

normal, obese and diabetic humans has failed, to find a high incidence of mutations in

the leptin and leptin receptor genes (41-43).

There are isolated examples of families with a genetic mutation in the leptin gene and

affected individuals have low circulating leptin concentrations. These people are of

normal weight at birth but then became rapidly obese during childhood (38-40). Infusion

of leptin into leptin deficient humans significantly reduces fat mass and body weight

(3S1). Interestingly, humans with a mutation in the leptin receptor do not undergo

puberty (a0). This suggests that leptin, in humans, is critical in the accumulation of

adipose tissue and also in the regulation of reproduction.

52



CH¡,pron I INTRoDUCTION

The administration of leptin into obese humans, who do not have a mutation of the leptin

gene, decreases the fat mass of some but not all subjects (382). Other factors besides fat

mass, therefore, influences the responsiveness of obese humans to leptin. The

observation that most obese humans have the normal form of the leptin and leptin

receptor genes and that leptin protein is high in their circulation, suggests that human

obesity, in part, arises from a defect in a post receptor event, i.e. reduced responsiveness

to the actions of leptin.

One possibility relates to the transport of leptin into the brain. Obese individuals appeaf

to have a rcduccd capacity to transport leptin from the circulation into the brain. The

ratio of leptin in the CSF fluid : circulating leptin is lower in obese compared to lean

subjects (243, 383,384). Another possibility is that leptin resistance is a consequence of

the brain's impaired neuronal network beyond the leptin receptor that controls feeding,

such as a decreased responsiveness in the neurones that express NPY, CART, ü-MSH,

AGRP.

In summary, leptin is principally secreted by adipocytes and acts to regulate energy

homeostasis, and related neuroendocrine and reproductive functions. In adult mammals,

circulating leptin concentrations are positively correlated with body fat content and with

body mass index. Leptin acts at central receptors to alter the secretion of neuropeptides

in the arcuate nucleus causing a decrease in food intake and can also act to increase fat

mobilisation and oxidation via activating thermogenesis in adipose tissue.
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I.9 PREGNANCY AND LEPTIN

Leptin dehcient males and female mice are infertile (385), however, fertility can be

restored with leptin administration. It is found that leptin appears to play an important

role during preimplantation and/or implantation but appears to be not critical during the

remaining part of pregnancy in leptin deficient mice (386).

It is well established that during pregnancy, females increase their food intake and have a

decreased sensitivity to the actions of insulin (387). These adaptive mechanisms

stimulate energy intake so that increased consumption of energy occurs to meet the

energy demands of the growing conceptus. As leptin is a signal of lipid storage, not

surprisingly, circulating leptin concentrations are higher in pregnant compared to non-

pregnant women (1 15, 388-390) and maternal leptin levels are positively associated with

maternal BMI during pregnancy (388, 391). In pregnant mice, plasma leptin

concentrations are reported to be at least 20 fold greater than non-pregnant levels (390).

Leptin concentrations are only l-2 fold higher, however, in pregnant ewes compared to

their non-pregnant counterparts (115). In many studies, circulating leptin in pregnant

mammals peaks during the second or third trimester and then either remains high or

slightly declines up until birth (115, 390, 392-395).

Elevated plasma leptin in pregnant, normal mice does not suppress food intake. Rather,

pregnant females become leptin resistant and this allows food intake to increase and

adipose tissue to accumulate (396, 397). Food intake is suppressed, however, in

transgenic pregnant mice that overexpress the leptin gene, which suggests that during

pregnancy, leptin only functions at relatively high concentrations (387). Whilst the litter

size of these transgenic and normal mice are found to be similar, a l3%o reduction in the
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mean birthweight of litters from transgenic compared to normal mice is observed (387).

Similarly, administration of leptin into pregnant normal mice caused a significant

reduction in placental and newborn weights (397). V/ith the knowledge that maternal

nutritional status before and during pregnancy is one of the major determinants of

birthweight (54,56, 58, 398), it can be concluded, at least in mice, that during pregnancy

changes in maternal nutrition alter maternal leptin levels which impacts on fetal growth

via modulating matemal food intake. It is interesting to note that at birth, maternal leptin

concentrations are negatively associated with placental weight, although no relationship

has been reported between maternal leptin and newborn weight (146,393,399).

1.10 PLACENTAL TISSUE: LEPTIN AND LEPTIN RECEPTOR

Leptin expression has been routinely detected in the syncytiotrophoblast cells of the

placenta of mouse, human and rat (127 , I28, 130). In the sheep, leptin protein has been

detected in the placenta, however several studies have been unable to find detectable

levels of leptin mRNA expression in the sheep placenta between 40 and 140 days

gestation (146)(Yuen, unpublished data). The role of placental leptin, however, remains

to be elucidated. It has been observed that placental leptin expression is altered in

complicated pregnancies, such as diabetic and intrauterine growth restriction (IUGR)

pregnancies. Leptin expression is lower in human placentae from IUGR pregnancies

compared to normal pregnancies (132), and conversely there is a marked increase in the

placental leptin expression in diabetic compared with non-diabetic pregnancies (132).

The leptin promoter has a placenta specific upstream enhancer (400, 401) and studies

have determined that placenta-derived and adipose tissue-derived leptin are differentially

regulated (128, 402). If placenta-derived leptin significantly contributes to the matemal
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or fetal circulation, then changes in placental leptin expression are of particular

physiological relevance

In humans, placenla-derived leptin is primarily secreted into the maternal circulation

whilst a minimal amount is secreted into the fetal circulation (403-405). Lepercq et al

(403) and Linnemann et al (404) showed that less that 5o/o of leptin secreted by the

placenta was released into the fetal circulation whereas Hoggard et al (405) claimed that

in humans, as much as 14"/o of the total leptin derived from the placenta was secreted

into the fetal circulation. The secretion of placenta-derived leptin into the fetal

circulation is consistent with the previous f,rnding that demonstrates that leptin

concentrations are marginally higher in umbilical venous blood compared to the

umbilical arterial blood (406). From these findings, it can be concluded that placenta-

derived leptin appears to contribute less than I5o/o to the circulating pool of leptin in the

fetus.

Recently, Smith et al (214, 407) injected r2sl-leptin into the matemal circulation of

pregnant rats and detected radioactive leptin in the fetal circulation. The transport of

leptin was greater at 22 days compared to 16 days gestation in the rat. Maternal

dexamethasone treatment in these rats decreased the transplacental movement of leptin

from the maternal circulation to the fetal circulation. Furthermore, placental expression

of Ob-Ra, i.e. the leptin receptor associated with the transport of leptin across

membranes, was suppressed by matemal dexamethasone treatment and stimulated by

treatment with metyrapone (214) - an inhibitor of maternal corticosterone biosynthesis

(408).

56



CHAPTER 1 INTRODUCTION

In summary, it appears that leptin is not only secreted from the placenta into the maternal

and fetal circulations, but also that in the rodent, maternally derived leptin can be

transported into the fetal circulation via the placentally expressed leptin receptors, Ob-

Ra. In 1997, it was discovered that leptin was present in the blood of human fetuses and

that circulating leptin was lower in newborns from IUGR pregnancies and it was

suggested that, like in the adult, in the fetus, circulating leptin is a signal reflecting fetal

nutrition (406).

1.11 LEPTIN IN THE NEONATE

At birth, the leptin gene is expressed in adipose tissue (173, 409) and leptin protein is

found in the blood of newborn mammals (113, 393, 409, 410). It also appears that the

leptin induced appetite response is active at birth (173). When newborns are prevented

from suckling they are found to have lower plasma leptin levels than whilst they are

suckling (173). The ontogenic profile of circulating leptin from birth appears to differ

between species. In human infants, plasma leptin concentrations decline within 2-4 days

after birth (410, 411). Bispham et al (409) showed that in lambs, however, plasma leptin

concentrations did not change in the first 4 days of life.

The same disorders of pregnancy that are found to alter maternal leptin are also

associated with altered circulating leptin concentrations in newborns. Human neonates

from diabetic pregnancies are large at birth and, are hyperglycaemic, hyperinsulinemic

and have elevated leptin levels compared to their non-diabetic counterparts (412-415).

Conversely, newborns that suffer from IUGR pregnancy, aÍe small at birth,

hypoglycaemic and have low levels of IGF-I (416-420). Moreover, these IUGR

newborns have lower circulating leptin levels (406,421).

57



CHAPTER 1 InrnonucrroN

Several other interesting relationships have been associated with newborn or cord blood

levels of leptin. Newborn plasma leptin concentrations are positively correlated with

placental weight and, size, fatness and BMI at birth in many species (393,394, 4ll, 413,

422, 423). Furthermore, large for gestational age neonates have higher leptin levels than

those born small for gestational age (423). Together these studies suggest that during

pregnancy nutritional factors affect circulating leptin levels in the fetus and may

consequently affect fetal growth.

I.I2 LEPTIN BEFORE BIRTH

Prior to 1999, very little was known about leptin in the fetus, i.e. where leptin is

synthesised, what regulates leptin expression and what role leptin played in fetal energy

balance. In humans, leptin can be detected in the fetal circulation by week 18 of

pregnancy (term -40 weeks) (406, 421). Furtheffnore, circulating leptin levels increase

with gestation (406). In fetal mice, leptin expression was detected in a number of tissues

including bone/cartilage and hair follicles at 14.5 days post coitus (term -21 days). These

tissues are known to contain resident leptin-expressing adipocytes (127, 128). Unlike

adipose depot derived adipocytes, lipolysis is stimulated in bone maffow adipocytes by

factors such as anaemia (424).

The absence of leptin expression in the subcutaneous and perirenal regions of the fetal

mouse is a consequence of the faú that mice develop very little or no adipose tissue

before birth (397, 425). Conversely, distinct adipose depots can be found in other

mammalian species. At term, approximately I6Yo of body weight is comprised of body

fat in newborn humans. As previously mentioned, in the sheep fetus lipid containing
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cells appear at approximately 70 days gestation (84) and the perirenal depot is clearly

noticeable by 90 days gestation. At term, adipose tissue comprises about I-2o/o of total

body mass (85, 1 82, 426) and most of this adipose tissue is found in the perirenal region

of the sheep fetus (Muhlhausler, unpublished data).

1.13 EXPERIMENTAL HYPOTHESES

Therefore the general aim of this body of scientific work was to investigate the

regulation and actions of leptin before birth. The neuroendocrine and metabolic systems

of the sheep fetus are relatively well understood and in particular the maturation of the

neuroendocrine system in the sheep fetus closely mimics the development of the same

system in humans compared to other non-mammalian primates. As previously

mentioned, like in humans, the sheep fetus develops a significant mass of adipose tissue

before birth. Furthermore, the size of the ewe and fetus make it possible to infuse

solutions into their circulations and to collect repeated blood samples. Hence, for these

reasons, the following questions have been examined using the pregnant sheep model.

Leptin is expressed in the adipose tissue of adult and newbom mammals, and there is an

increase in the accumulation of adipose tissue in the fetus during late gestation.

Furthermore, circulating leptin is found to increase in human fetuses. We therefore

hypothesise that leptin mRNA is expressed in the adipose tissue of the fetus and that

leptin mRNA expression increases with gestation in the sheep fetus (Chapter 2).

As summarised above, low caloric intake suppresses leptin synthesis and secretion in

adult and newborn. We have hypothesised that maternal undernutrition during late

gestation will result in a decrease in maternal and fetal plasma concentrations of
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glucose, insulin and leptin and that leptin mRNA expression in fetal adipose tissue

will also decrease (Chapter 3).

Thirdly, little is known about the actions of leptin before birth. It is hypothesised that,

leptin acts in the fetus, as in the adult, to regulate energy homeostasis. More specifically,

we have hypothesised that leptin administration into fetal sheep reduces adipose

tissue mass, increases UCP-I abundance and decreases leptin mRflA expression in

this tissue (Chapter 4).

Finally, in the sheep it is well established that the normal timing of parturition is

dependent on the prepartum activation of the fetal HPA axis (296,298). The secretion of

cortisol by the fetal adrenal is critical for the timing of delivery. The action of leptin to

suppress cortisol synthesis via actions at the hypothalamus, pituitary and adrenal in the

adult raises the intriguing possibility that in the fetus leptin plays a role in the normal

timing of parturition. Therefore, \rye have hypothesised that the intrafetal

administration of leptin will suppress the normal prepartum activation of the fetal

HPA axis and delay the timing of parturition (Chapter 5).
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2.3 ABSTRACT

Leptin mRNA was measured in adipose tissue of fetal sheep by reverse transcription

polymerase chain reaction (RT-PCR). Abundance of leptin mRNA relative to B-actin

mRNA in fetal perirenal adipose tissue increased (P<0.02) with gestation, being higher at

144 d (0.73 + 0.10, n:5) than at 90-91d (0.40 + 0.08, n:6) or 125 d (0.40 t 0'04, n:5)

gestation (term -150 d). There was a positive relationship between the relative

abundance of leptin mRNA (y) and fetal body weight (x) between 90 and 144 d gestation

(12:0.27, P<0.01). The slope of the linear dependence of leptin mRNA on fetal weight

was l5-fold greater at 90-91 d (y: 2'81x - 1.1, n:6, r2:0.7I, P<0.025) than at between

125-144 d gestation (y:0.195x - 0.15, n:l6, r2:0.39,P<0.01). Thus the leptin synthetic

capacity of fetal adipose tissue appears to increase in late gestation but this is

accompanied by constraint of its sensitivity to fetal body weight. We hypothesise that

leptin synthesis in fetal adipose tissue is related to fetal nutrient supply and growth rate.

2.4 INTRODUCTION

Leptin is a l6 kDa polypeptide hormone synthesised and secreted by adipocytes that acts

to suppress appetite and increase energy expenditure in adults (13, 14). Abundance of

leptin mRNA in adipose tissue and plasma leptin concentrations correlate positively with

body weight and adiposity in human adults (41, 133). In rodents leptin mRNA is

expressed in a number of fetal tissues including placenta (127,128,130) and there is an

association between circulating leptin and birth weight in humans (393,423,427).These

data suggest there may be a relationship between growth and leptin synthesis before

birth, but there have been no reports of leptin mRNA expression in adipose tissue before

birth or of the relationship of the expression of leptin in fetal adipose tissue to fetal
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growth. In this Chapter, I have reported that leptin is expressed in perirenal adipose

tissue, the major adipose depot in the sheep fetus. I have also investigated the

relationship between leptin mRNA and fetal weight before (90-91 days) and after (125-

I44 days gestation) the development of sympathetic innervation of the perirenal fat depot

(84,428).

2.5 MATERIALS AND METHODS

2.5.1 Animals

The study was approved by the Animal Ethic Committee of the Llniversity of Adelaide.

Merino ewes (n:51) were mated and provided unrestricted access to feed and water.

They were killed between 90 and 146 d gestation with an overdose of sodium

pentobarbitone (6.5 g i.v.) and the fetuses were removed and weighed. In one group

(n:29) both left and right fetal perirenal fat depots were collected at 90-99 d (n:9) and at

131-146 d (n:20) and weighed. In another group a sample of fetal perirenal adipose

tissue was obtained at 90-91 d (n:6), 125 d (n:5), I39-l4l d (n:6) and I44 d (n:5),

immediately frozen in liquid Nz and stored at -80oC for measurement of leptin and p-

actin mRNA.

2.5.2 Reverse transcription polymerase chain reaction

RNA was extracted (429) from -100 mg adipose tissue (TriReagent, Prod T9424,

Sigma) as recommended. cDNA was obtained by reverse transcription of 2 pg total RNA

with random sequence hexanucleotides (Cat RP-6, GeneWorks, Adelaide, Australia)

using Super-ScriptrM RNase H- (Cat 18053-017, GtncoBRL). A fragment of ovine leptin

cDNA was amplified through 26 cycles of 60 sec @ 94oC,l5 sec @ 53'C and 60 sec @
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72'C (Hybaid PCR Express, Teddington, UK) from 5 pl of reverse transcription product

using Taq DNA polymerase (Biotech International, Bently, Australia) according to the

manufacturer's instructions with 5'-GAC ATC TCA CAC ACG CAG-3' and 5'-GAG

GTT CTC CAG GTC ATT-3' (GeneV/orks) as primers. This produced 183 bp of ovine

leptin cDNA (nucleotides 67-249 of the 441 nucleotide oDNA of ovine leptin, Genbank

Acc. No. U84247). Sequencing with the ABI PRISM Dye Terminator method (Perkin

Elmer Corp) after QlAquick purification (QncEN Pty. Ltd., Clifton Hill VIC, Australia)

confîrmed its identity. A fragment of ovine B-actin cDNA was similarly amplified by

PCR with 5'-TG TGA TGG TGG GTA TAT GGG TC-3' and 5'-TAG ATG GGC ACA

GTG TGG GT-3'. Products of RT-PCR (8 ttl) were electrophoresed through a l.5o/o

agarose gel. This was stained with ethidium bromide, transilluminated with UV radiation

and photographed. Intensities of RT-PCR products were measured on the film negative

by laser densitometry. Molecular sizes of PCR products were estimated by comparing

their electrophoretic migration with those of fragments of pUCl9 ds DNA digested with

Hpa II (GeneWorks). Each leptin RT-PCR product had a mobility similar to that of the

190 bp fragment of pUC19, consistent with the predicted size of 183 bp.

2.5.3 Statistics

Results are presented as mean * ssv. Total perirenal fat mass is the combined weights of

the two perirenal fat depots for each fetus. Relative fat mass is the ratio of total perirenal

fat mass to body weight of the fetus. Differences between groups were assessed by one-

or two-way analysis of variance with Bonferroni's multiple comparison. Associations

were evaluated by linear regression (SigmaStat V1, Jandel Scientific).
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2.6 RESULTS

2.6.1 Fetal adipose tissue mass

In the first study, which included singletons and twins, the gender of fetuses had no

significant effect on fetal weight, perirenal fat weight or relative fat mass. As expected,

fetal weight was affected by number of fetuses per pregnancy (P<0.01), gestational age

(P<0.0001) and the interaction between these factors (P<0.05). Twin fetuses had lower

body weights than singletons and this difference was greater after 137 d than before 99 d

gestation. Total perirenal fat weight (P<0.0001), but not relative fat mass, increased with

gestation and was unaffected by the number of fetuses per pregnancy.

2.6.2 Leptin mRNA expression in fetal adipose tissue

In the second study, which consisted entirely of twins of which one of each of these pair

was examined, relative abundance of leptin mRNA in fetal perirenal adipose tissue

increased (P<0.02) with gestation (Figure 2.I). Relative abundance of leptin mRNA to

relative B-actin mRNA (y) in fetal adipose tissue was positively correlated with the

weight (x) of the fetus (y:0.08x + 0.31 ,n:22, P<0,01) such that 27o/o of the variance in

leptin mRNA could be explained by dependence on fetal weight (12:0.27). The slope of

this relationship (Figure 2.2) was gteater at 90-91d (52.81x - l.l, n:6, t2:0.7I,

P<0.025) than at 125-144 d gestation (y:0.195x - 0.15, n:l6, /:039,P<0.01).

2.7 DISCUSSION

I have demonstrated that leptin mRNA is expressed in fetal adipose tissue. Lipid

accumulation in the perirenal area of fetal sheep occurs from -70 days gestation and

there is a marked increase in mitochondria within this tissue between 80 and 90 days
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Figure 2.1 Ontogeny of leptin expression in fetal adipose tissue.

The relative abundance of leptin in fetal adipose tissue was significantly greater at 144 d

gestation compared with 90-91 d and 125 d gestation (P<0.02). Values are present as

moans + SEM.
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Figure 2.2 Relationship between leptin mRNA and fetal weight.

Expression of leptin in fetal adipose tissue was positively associated with fetal weight at

90-91 d (open circles) and 125-144 d (closed circles) gestation (R:0.52, P<0.01). The

slope of this relationship was greater at 90-91 d (R:0.84, P<0.025) than at 125-144 d

gestation (R:0.62, P<0.01). Values are present as means + SEM.
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(85). After this age, felal perirenal fat in the sheep consists of brown adipocytes

characterised by many mitochondria with numerous cristae (8a). In the rat, leptin is

expressed in brown adipose tissue during the first 24 h after birth (430). The present

study shows that leptin mRNA is expressed in brown adipose tissue before birth.

I found that there was an increase in the relative abundance of leptin mRNA in fetal

adipose tissue during the last 20 days of gestation in the sheep. This may be due to an

increase in size of adipocytes in fetal perirenal fat depots, since there is strong evidence

that adipocyte cell size is a major determinant of expression and secretion of leptin (114)

and the mean cell volurne of perilenal adipocytes in fetal sheep increases 3-4 fold

between 90 and 144 days gestation (431). Alternatively, increased leptin mRNA

expression in fetal perirenal fat in sheep during late gestation may be related to the rise in

circulating fetal cortisol concentrations in the two weeks before delivery (432).

Glucocorticoids stimulate leptin gene expression in adipocytes in vivo (187) and in vitro

(188). There 'was a positive relationship between abundance of leptin mRNA in fetal

adipose tissue and fetal body weight as early as 90 days gestation. This relationship may

also be a consequence of greater leptin synthesis occurring in larger adipocytes in bigger

fetal sheep. Greater leptin mRNA expression in larger fetuses might also be a response to

stimulation by anabolic hormones such as insulin. Insulin promotes fetal growth in sheep

(433) and stimulates leptin synthesis and secretion in vitro and in vivo postnatally in rats

and humans (142,434).

Despite the greater abundance of leptin mRNA in fetal adipose tissue after 125 days

gestation, the nature of its relationship with body weight changed. The slope of the

regression between the relative abundance of leptin mRNA and body weight in fetuses of
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125 days gestation and older was 15-fold less than at 90-91 days. Thus although the

leptin synthetic capacity of fetal adipose tissue appears to increase in late gestation, it is

less sensitive to variation in fetal body size than at 90-91 days. This implies that an

inhibitory influence appears in late gestation that alters the relationship between leptin

expression and fetal size. The lower slope for the relationship between leptin mRNA and

fetal weight from 125 days gestation may be associated with the onset of sympathetic

innervation of fetal perirenal adipose tissue, which occurs at -I20 days gestation in

sheep (84, 428).In cows, the abundance of p3-adrenergic receptors and UCP-1 in fetal

adipose tissue also increases in late gestation (435, 436). Studies in rats and mice have

shown that B3-adrenergic agonists suppress leptin gene expression whilst stimulating

UCP-I expression (437-439). Regardless of the mechanism(s) underlying the age

associated change leptin expression, the relationship between leptin mRNA abundance

and fetal size is consistent with the hl.pothesis that leptin synthesis in fetal adipose tissue

is related to fetal nutrient supply and fetal growth rate.

In order to determine whether leptin synthesis and secretion in fetal adipose tissue can be

altered by changes in fetal nutrient supply, I have investigated the effect a moderate

restriction of maternal food intake on leptin synthesis and secretion in the adipose tissue

of the sheep fetus.
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3.3 ABSTRACT

I have investigated the effects of maternal undernutrition during late gestation on

maternal and fetal plasma concentrations of leptin and on leptin gene expression in fetal

perirenal adipose tissue. Pregnant e\iles were randomly assigned at 115 days (d) gestation

(term -150 d) to either a control group (n:13) or to an undemourished group (n:16) that

received -50% of the control diet until 144 - 147 d gestation. Maternal plasma glucose

but not leptin concentrations were lower in the undernourished ewes. There was,

however, a significant correlation between mean maternal plasma leptin (y) and glucose

(") concentrations (v :2.9x - 2.4; R: 0.51, P<0.02) when the control and

undernourished groups were combined. Fetal plasma glucose and insulin, but not fetal

leptin concentrations were lower in the undernourished ewes and there was no

correlation between mean fetal leptin concentrations and either mean fetal glucose or

insulin concentrations. There was, however, a positive relationship between mean fetal

(y) and matemal (x) plasma leptin concentrations (y : 0.18 x * 0.45, R:0.66, P<0.003).

There was no significant difference in the relative abundance of leptin mRNA in fetal

perirenal adipose tissue between the undemourished (0.60 + 0.09, n:10) and control

(0.70 + 0.08¡ n:10) groups. Fetal plasma concentrations of leptin (y) and leptin mRNA

levels (x) in perirenal adipose tissue were significantly correlated (y: 1.5 x * 0.3,

R:0.69, P<0.05). In summary, the capacity of leptin to act as a signal of moderate

matemal undernutrition may be limited before birth in the sheep.

3,4 INTRODUCTION

During adult life, plasma concentrations of leptin and the abundance of leptin mRNA in

adipose tissue correlate positively with body weight and adiposity and are altered by long
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term changes in dietary intake in the rodent, human and sheep (118, 133,136,173, 180,

380). There is also a positive relationship between leptin expression in fetal adipose

tissue and fetal weight in the sheep (Chapter 2) and leptin concentrations in umbilical

cord blood correlate positively with birth weight in the human (393, 413). Since fetal

growth rate and body weight at birth are positively affected by nutrition during

pregnancy we hypothesised that the synthesis and secretion of leptin may be regulated by

fetal nutrient supply. In the present study, we have therefore investigated the effects of

maternal undernutrition during late gestation in the sheep on maternal and fetal plasma

leptin concentrations and on leptin gene expression in fetal adipose tissue. 'We have also

investigated the relationship betwccn the abundance of leptin mRNA in this fetal tissue

and circulating fetal glucose, insulin and leptin concentrations.

3.5 METHODS

3.5.1 Animals and SurgerY

All procedures were approved by the Adelaide University Animal Ethics Committee.

Surgery was performed on 29 pregnant Border-Leicester Merino cross bred ewes under

aseptic conditions between 109 and 113 d gestation (term -150 days) with general

anaesthesia induced by sodium thiopentone (I.25 g i.v., Pentothal, Rhone Merieux,

Pinkenba, Qld, Australia) and maintained with 2.5 - 4% halothane (Fluothane, ICI,

Melbourne, Vic, Australia) in oxygen. Vascular catheters were implanted in a maternal

jugular vein, a fetal carotid artery and jugular vein, and the amniotic cavity, as previously

described (440). Catheters were filled with heparinised saline and the fetal catheters

exteriorised through an incision made in the ewes' flank. During surgery, ewes and

fetuses received a 2 ml intramuscular injection of antibiotics (procaine penicillin 250
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mg/ml; dihydrostreptomycin 250 mglml; procaine hydrochloride 20 mglml penstrep

Illium, Troy Laboratories, Smithfield, NSW, Australia). Ewes were housed in individual

pens in rooms with a l2hlight/dark cycle and fed once daily at 1100 h with water

provided ad libitum. Animals were allowed to recover from surgery for at least 4 d

before collection of fetal ancl matemal blood samples commenced.

1.1.1 Feeding regime

Pregnant ewes were randomly assigned at 115 d to either a control group weighing 56.7

t 1.9 kg (n:13) that received 19.8 t0.2 glkgof lucerne and 3.0 t 0.1 g/kg of oats per day

or to an undernourished group weighing 53.5 r 2.3 kg (n:16) that received 10.3 r 0.1

g/kg of lucerne and 1.6 t 0.1 glkg of oats per day. Maternal food allocation was

increased in both the control and undernourished groups (lucerne by l5%; oats by 10%)

every 10 d until post mortem at 144-147 d pregnancy (440).

1.1.2 Blood sampling protocol

Maternal venous (5 ml) and fetal arterial (3.5 ml) blood samples were collected between

0800-1100 h, before the ewes were fed,3 times each week between 116 and 140 d

gestation. Blood samples were centrifuged at 1500 g for 10 min and plasma separated

into aliquots and stored at -20"C for subsequent glucose and hormone assay. There were

instances during rhe 25 day protocol when blood samples could not be collected due to

technical problems primarily related to blocked vascular catheters. The number of

maternal and fetal blood samples which were available for glucose, insulin and leptin

determination are detailed in the subsequent assay sections. Fetal arterial blood (0.5 ml)

samples were also collected for the measurement of arterial blood gas status (ABL 520

blood gas analyser, Radiometer, Copenhagen, Denmark).
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3.5.4 Tissue collection

Ewes were killed between 144 and 147 d of pregnancy with a lethal overdose of sodium

pentobarbitone (Virbac Pty Ltd, Peakhurst, NS'W, Australia). Fetuses were delivered by

hysterotomy, weighed and killed by decapitation (control group, 12 singletons and 2

twins; undernutrition group, 15 singletons and 1 twin). Fetal perirenal adipose tissue was

collected, weighed and a sample was frozen in liquid nitrogen and stored at -80oC.

3.5.5 Glucose assay

Plasma glucose concentrations were determined in234 maternal plasma samples (control

group, 90 samples, n:8 sheep; undernutrition group,I44 samples, n:l3 sheep) and 348

fetal plasma samples (control group, 160 samples, n:l3 sheep; undemutrition group, 188

samples, n:l6 sheep) by enzymatic analysis using hexokinase and glucose-6-phosphate

dehydrogenase and measuring the formation of NADH spectrophotometrically at 340 nm

(COBAS MIRA automated analysis system, Roche Diagnostic, Basle, Switzerland)

(440). The intra- and inter- assay coefficients of variation were both <5%.

3.5.6 Insulinradioimmunoassay

Fetal plasma insulin concentrations were measured in 196 samples (control group, n:88

samples, n:12 sheep; undernutrition, n:l08 samples, n:13 sheep) using a commercial

kit (Phadaseph radioimmunoassay kit, Pharmacia & Upjohn, Uppsala, Sweden). The

detection range of the assay was I .5-240 pU insulin.ml-I. Guinea pig-anti insulin antisera

and r2sl-human insulin (100 pl) were added to plasma samples (100 pl) which were

incubated for 2 h at room temperature before the addition of 2 ml sheep anti-guinea pig

IgG. Samples were allowed to stand at room temperature for a further 30 min before
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being centrifuged at 1500 g for 10 min as described previously (440). The inter- and

intra- assay coefficients of variation were <l}o/u

3.5.7 Leptin assay

Plasma leptin concentrations were determined in 119 maternal plasma samples (control

group, 50 samples, n:10 sheep; undernutrition group, 69 samples, n:15 sheep) and 99

fetal plasma samples (control group, 44 samples, n:9 sheep; undernutrition group, 55

samples, n:12 sheep) using a competitive ELISA previously validated for sheep plasma

(373). The ELISA plate was coated with 6 ng recombinant bovine leptin in 50 pl 0.1 M

bicarbonate buffer, pH 9.0 overnight at 37oC. The plate was blocked with 200 ¡il 5%

skim milk in ELISA buffer for t h at 37 oC. Samples (100 pl) \r/ere assayed in duplicate

and added to wells containing chicken anti-recombinant bovine leptin antisera in 100%

Triton-X 100, 0.5% SDS and 5olo sodium deoxycholate, (50 pl) and the plate was

incubated ovemight at 3loC. Strepavidin conjugated to alkaline phosphatase (Amrad

Biotech, Boronia, Vic, Australia) was added and after incubation for t h, the plate was

developed with p-nitrophenylphosphate disodium salt hexahydrate. The sensitivity of the

assay was 0.25 nglml and the inter assay and intra assay coefficients of variation were

15.7 and Il .0% respectively.

3.5.8 Leptin Reverse Transcription-PCR

Perirenal adipose tissue was collected from 20 (control group, n:10; undernourished

group, n:10) of the 29 fetal sheep and total RNA was extracted as described in Chapter

2. Briefly, approximately 100 mg of fetal adipose tissue was homogenised with 1 ml of

Sigma Trireagent (Sigma Chemical Co., St.Louis MO) and allowed to stand at room

temperature for 5 min. This was then mixed with 1-bromo-3-chloro-propane (100 pl),
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stood atroom temperature for l0 minthen centrifuged at4oC at 3500 g for 10 min. An

aliquot of the aqueous layer (500 pl) was recovered and mixed with isopropanol (500

pl). RNA was precipitated by centrifugation at 3500 g for 5 min at 4oC. The pellet was

washed in 70o/o ethanol and allowed to air dry. The RNA pellet was dissolved in sterile

water (20 pl) and I pl of the solution was diluted in sterile water (500 pl) for the

determination of the spectrophotometric absorbance at260 and 280 nm. The nucleic acid

to protein ratio was >1.6 and the RNA yield was 0.44 x0.02 ¡tglme adipose tissue.

Integrity of RNA preparations was evaluated by agarose gel electrophoresis, followed by

ethidium bromide staining and identification of ribosomal RNA.

Ovine leptin and B-actin oDNA were amplified by RT-PCR as described in Chapter 2.

Both cDNA products from RT-PCR (8 pl) were electrophoresed through a 2.0o/o agarose

gel, stained with ethidium bromide, visualised by ultraviolet transillumination and

photographed using a digital camera and quantified using lD Image Analysis Software

Electrophoresis Documentation and Analysis System 120 (Kodak dS Ditigal Science,

Kodak, Rochester, NY, USA).

3.5.9 StatisticalAnalysis

Data arc presented as the mean + SEM. The effects of maternal nutrition on fetal body

weight, total perirenal fat mass, mean gestational arterial PO2, and the relative abundance

of leptin mRNA (ratio of leptin mRNA to p-actin mRNA) in fetal perirenal adipose

tissue were determined using unpaired Student's t-test. The effects of maternal nutrition

on maternal plasma glucose and leptin concentrations were determined by multifactorial

ANOVA with repeated measures using feeding group (control vs undernutrition),

gestational age (in 5 day blocks) as the specified factors. Similarly the effects of maternal
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nutrition and gestation on fetal plasma glucose, insulin and leptin concentrations were

also determined using multifactorial ANOVA with repeated measures. Data were

transformed where required to reduce heterogeneity of variance. The Duncans new

multiple range test was used post ANOVA to identify significant differences between

mean values. Linear regression analysis was used to assess the relationship between the

mean plasma leptin and the mean plasma glucose concentrations measured in each ewe

and fetus during the period 116-140 d of pregnancy. Similarly, linear regression analysis

was also used to assess relationships between mean plasma leptin and mean plasma

glucose or insulin concentrations measured in each fetus during the period 116-140 d of

pregnancy. Relationships between mean fetal plasma leptin concentrations and fetal body

weight, fetal fat mass and maternal plasma leptin concentrations were similarly

determined. A probability of 5o/o i.e. P < 0.05 was taken as the level of significance in all

analyses.

3.6 RESULTS

3.6.1 Fetal outcome

The mean fetal arterial POz throughout late gestation was not different between the

control (2I.9 + 0.5 mmHg) and undernourished (23.4 + 0.6 mmHg) groups. There was

also no difference in fetal body weights (control, 5.02 + 0.12 kg; undernourished, 4.70 *

0.16 kg) or relative fat mass (control, 3.89 + 0.15 g/kg; undernourished, 4.13 + 0.29

g/kg) between the two groups.
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3.6.2 Maternal plasma glucose and leptin concentrations

Maternal plasma concentrations of glucose were significantly lower (P<0.05) in

undernourished ewes throughout late pregnancy (Figure 3.1). Plasma glucose

concentrations were also lower (P<0.002) in both control and undernourished ewes after

I20 d when compared with earlier in pregnancy (Figure 3.1). There was no significant

effect of undernutrition, however, on maternal plasma concentrations of leptin and there

was also no significant change in maternal leptin concentrations between 116 and 140 d

of pregnancy in either the control or undernourished ewes (Figure 3.1). Mean maternal

plasma leptin (y) and glucose (x) concentrations were not correlated within each separate

feeding group but they were significantly correlated, however, when data from thc

control and undemourished groups were combined (y : 2.9 x - 2.4; R: 0.51, P < 0.02,

n:20) (Figure 3.2). There was no relationship between the mean maternal plasma

concentrations of leptin and either maternal body weight at 110-115 d gestation or fetal

body weight at 144-t47 d gestation.

3.6.3 Fetal plasma glucose, insulin and leptin concentrations

Fetal plasma concentrations of glucose (P<0.005) and insulin (P<0.02) were significantly

lower in the undernourished group (Figure 3.3). Fetal plasma concentrations of insulin

were lowest (P<0.003) between 131-135 d compared to other gestational periods. There

was no significant effect, however, of maternal undemutrition on fetal leptin

concentrations and there was no significant change in fetal plasma leptin concentrations

between 116 and 140 d gestation in either the undernourished or control groups (Figure

3.3). There was also no difference between plasma leptin concentrations in male and

female fetuses
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Fetal plasma glucose, insulin and leptin concentrations in control (open histograms) and

undemourished (dark histograms) groups between 116 and 140 days gestation. The

asterisks denote a significant effect of undernutrition.

There was no significant correlation between mean fetal plasma concentrations of leptin

and either glucose or insulin when data from the undernourished and control groups were

combined. Mean fetal (V) and maternal (") plasma leptin concentrations were

significantly correlated (y:0.18 x * 0.45, R:0.66, P<0.003, t=17) (Figure 3.2)' The

mean fetal plasma leptin concentrations between 116 and 140 d gestation were not

correlated with either fetal body weight or with absolute or relative fetal fat mass at 144-

147 dgestation.

3.6.4 Leptin mRNA expression in fetal perirenal adipose tissue

There was no significant difference in the relative abundance of leptin mRNA in fetal

perirenal adipose tissue between the undernourished (0.60 t 0.09, n:10) and control

(0.70 + 0.08, n:10) groups. The mean fetal plasma concentrations of leptin (y) and the

relative abundance of leptin mRNA (x) in perirenal adipose tissue were significantly

correlated (y : 1.5 x * 0.3, R:0.69, P<0.05, n:9) (Figure 3.4). Leptin mRNA expression

in fetal adipose tissue was not related to either fetal weight (P:0.09), fetal perirenal fat

mass, mean fetal glucose or insulin concentrations.

3.7 DISCUSSION

In the present study, there was a positive relationship between mean plasma

concentrations of leptin and glucose during the last 30 days of pregnancy when data from
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the control and well fed ewes were combined. Thomas and colleagues (441) recently

reported that when the dietary intake of adolescent pregnant ewes was increased from

moderate to high, or reduced from high to moderate, at day 50 of pregnancy, circulating

maternal leptin concentrations changed within 48 hours of the change in maternal diet.

They suggested that this was likely to be a 'direct' nutritional effect. These authors also

found that at some 50-90 days after the change in diet, circulating leptin concentrations

were corelated with indices of body composition in the pregnant ewe. They were

unable, however, to distinguish whether dietary intake or the changed body composition

due to the nutritional treatments was the primary factor influencing circulating leptin

concentrations. In the current study, it is also possible that differences in matemal body

composition, may explain some of the variation in maternal leptin concentrations.

We have also found that maternal plasma leptin concentrations varied between 3 and 10

nglml throughout late pregnancy and that there was no significant change in circulating

leptin concentrations between 115 days of pregnancy and term in either the control or

undernourished adult ewes. These circulating leptin concentrations are similar to those

reported by Thomas and colleagues in moderately fed adolescent pregnant ewes from 50

days pregnancy until term (441). These authors also found that there was no signif,rcant

change in plasma leptin concentrations throughout late pregnancy. The lack of a change

in plasma leptin concentrations towards the end of pregnancy in the sheep is in contrast

to the increase in plasma leptin concentrations which occurs in mid/late pregnancy in the

human (389), rat (392) and mouse (390). Whilst adipose tissue is the main source of

circulating leptin in all species, it is unclear to what extent other tissues, such as the

placenta, are also a source of leptin in the maternal circulation during late pregnancy.

Leptin gene expression is relatively high in the human placenta (128) and is also
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detectable in the rodent placenta (127). Species specific differences in the relative level

of placental leptin expression may account for the differences in the effect of pregnancy

on the maternal plasma concentrations of leptin between sheep and other species. The

sheep placenta also expresses the leptin receptor gene (441) and it is therefore possible

that maternal leptin may interact with leptin receptors within the placenta to impact on

fetal growth and development. Overfeeding the adolescent ewe throughout pregnancy

increases maternal growth at the expense of the placenta, leading to growth restriction of

the fetus (442).In a cohort of over fed and normally fed adolescent pregnant ewes, there

\Ã/as a negative association between maternal plasma leptin concentrations and birth

weight, placental weight and number of placentomes (441). In the present study in the

mature ewe, however, I found no significant relationship between maternal plasma leptin

concentrations and fetal body weight. It is clear that further work is required to define the

relative roles that maternal leptin and nutrients play in placental and fetal growth and

development at different stages of reproductive maturity.

Plasma concentrations of leptin in the fetus (<0.3 - 3 nglml) were substantially lower

than those in the pregnant ewe and there was no effect of either maternal undernutrition

or gestational age on circulating fetal leptin concentrations between 116 and 140 days

gestation. In a previous study we reported that the abundance of leptin mRNA in fetal

adipose tissue increased between 125 and 144 days gestation (443).It may be that leptin

concentrations increase in the fetal circulation after 140 days gestation. We also found a

positive relationship between fetal and maternal plasma concentrations of leptin during

late gestation. One possible explanation is that maternal body composition or fatness at

the beginning or during pregnancy determines the leptin synthetic and secretory capacity

of both maternal and fetal adipose tissue or the amount of fetal adipose tissue deposited
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during late gestation. 'Whilst there was a positive relationship between circulating fetal

leptin and the relative abundance of leptin mRNA in fetal adipose tissue, there was,

however, no relationship with either maternal or fetal leptin concentrations or the

absolute or relative fetal fat mass. Thus any impact of maternal body composition on

circulating fetal leptin concentrations is presumably expressed through the leptin

synthetic and secretory capacity of the fetal adipose tissue. An altemative explanation for

the close correlation between maternal and fetal plasma leptin concentrations is that the

placental leptin receptor may act to mediate the uptake of leptin from the maternal into

the fetal circulation. This would be similar to the postulated mode of action of the short

isoforrn of the leptin receptor in the choroid plexus epithelium to transport leptin from

plasma into the cerebrospinal fluid (444).

In the same year in which I published this study, three published reports also conf,rrm the

expression of leptin in fetal adipose tissue (146, 445) and the presence of leptin in the

circulation of the sheep fetus during late gestation (146, 446, 447). These authors

reported that fetal plasma leptin concentrations were in the range 0.2-3 nglml during late

gestation and that there was no change in fetal plasma leptin between 40-140 d gestation.

Forhead and colleagues reported, however, that there was an increase in fetal plasma

leptin concentrations in a cross sectional study where samples were collected from

fetuses at two different stages during late gestation (446). No significant relationship

between fetal and maternal plasma leptin was reported in these studies.

In the present study, maternal feed availability was reduced by 50% below maintenance

for 29 to 32 days and this was associated with a -16% fall in maternal glucose

concentrations and a 20o/o fall in fetal plasma glucose and insulin concentrations. There
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was no significant effect, however, of this level of maternal undernutrition on the fetal

plasma concentrations of leptin or on the relative abundance of leptin mRNA in the

perirenal adipose tissue. During the conduct of this study, Erhardt and colleagues also

reported that maternal undernufition for a period of 15 d in late gestation also had no

affect on fetal plasma concentrations of leptin (146).It has recently been reported that

continuous infusion of insulin into pregnant ewes for up to 34 days resulted in fetal

hypoglycaemia and hypoinsulinaemia and a reduction in fetal body weight but that there

was no change in the expression of leptin mRNA in fetal perirenal adipose tissue (445).

These authors reported however, that if the period of continuous insulin infusion was

prolonged beyond 36 days (36-76 tlays), fetal glucose and insulin concentrations were

reduced by 30-50% and leptin mRNA expression was suppressed in fetal perirenal fat

(445). Together these studies indicate that the synthesis and secretion of leptin in the

sheep fetus is resistant to the changes in fetal glucose and insulin concentrations

associated with moderate maternal undernutrition. Fetal leptin synthesis is suppressed,

however, in the presence of profound fetal hypoglycaemia and/or hypoinsulinaemia

which may occur as a consequence of either pharmacological induction of maternal

hypoglycaemia or severe maternal undernutrition.

In the human there are strong positive associations between umbilical cord blood leptin

concentrations at delivery and infant body weight at birth, as well as other

anthropometric markers of fetal growth including estimates of fetal fat mass (393,423,

443, 448-450). In Chapter 2,I also reported that the abundance of leptin mRNA in fetal

adipose tissue was positively corelated with fetal body weight in a cohort of fetuses at

an earlier gestational age than those used in the current study. In the present study,

however, whilst the relationship between leptin mRNA expression in fetal adipose tissue
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and fetal weight tended to be positive (p:0.09), there was no relationship between

circulating leptin concentrations and either fetal weight or relative fat mass. These

differences between the sheep and human may be explained in part by the different

pattems of fat deposition that occurs in these species during fetal life. In the sheep fetus,

fat is deposited at around 0.8 g/kg fetal body weight/day, the proportion of body fat at

term is -0.3-2.0% and the major fat depot is the perirenal adipose tissue which is

comprised predominantly of brown fat cells (84). It is not known whether leptin is

expressed uniformly in all perirenal adipocytes in the sheep fetus before birth. In

contrast, in the human fetus, fat is deposited at a higher rate around 3.5 g/kg fetal body

weight/day, the proportion of body fat at term is around 160/o and there are subcutaneous

fat depots comprised predominantly of white fat cells (437). Despite the differences

between sheep and human fetuses in the rate of fat deposition, the leptin synthetic

capacity of fat stores and the effect of undernutrition on leptin concentrations during late

gestation, it is interesting that perturbations of the intrauterine environment may program

the development of postnatal obesity in these and other species. It has been demonstrated

that restricted fetal nutrient supply may program alterations in adiposity and/or leptin

synthesis beyond the postnatal period in the human (451), sheep (452), rat (453) and pig

(454). Further work is required to identify those periods during intrauterine life when

changes in the long term development of the adipocyte and leptin signalling system are

initiated and to clarify the relative importance of matemal body composition and the

level of fetal nutrition in the mechanistic pathway which underlies the association

between poor intrauterine growth and postnatal obesity.

In summary, this chapter reports the effect of matemal undernutrition during late

pregnancy on maternal and fetal plasma concentrations of leptin and on leptin gene
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expression in fetal adipose tissue in the sheep. We have found that matemal plasma

concentrations of leptin and glucose are positively correlated across the range of

circulating glucose concentrations present in well fed and undernourished pregnant ewes.

Interestingly, there was a positive relationship between the fetal and matemal plasma

concentrations of leptin during late gestation suggesting that maternal body composition

during early pregnancy may determine the leptin synthetic and secretory capacity of

maternal and fetal adipose tissue. There was no effect, however, of maternal

undernutrition on circulating leptin concentrations or on the abundance of leptin mRNA

in adipose tissue in the sheep fetus. The capacity of leptin to act as a signal of moderate

maternal undernutrition may therefore be limited in this species before birth.

The McMillen group recently published a report investigating the effects of maternal

ovemutrition on circulating leptin levels in the sheep fetus. Whilst overfeeding had no

effect on fat mass or circulating leptin levels in the fetus, there was however, a positive

relationship between circulating leptin and the unilocular proportion of adipose tissue in

late gestation sheep fetus (455). The cellular structure of the unilocular adipose tissue in

the fetus was similar to that reported in the white adipose tissue of adults. It can,

therefore, be concluded that in the fetus, circulating leptin is being secreted from the

adipocytes containing dominant lipid locules.

The relationship between leptin mRNA expression in adipose tissue and circulating

leptin in the fetal sheep in late gestation in this chapter and the positive relationship

between circulating leptin and unilocular fat suggests that leptin may act as a signal of

lipid storage in the late gestation sheep fetus. In Chapter 4, I have investigated the impact
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of an experimentally induced increase in circulating leptin concentrations on the

structural characteristics of fetal adipose tissue.
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4.3 ABSTRACT

This study aimed to determine for the first time whether leptin can act to alter the

structural and functional characteristics of adipose tissue before birth. Leptin (0.48

mglkg/d) or saline was infused intravenously into fetal sheep for 4 days from either 136

or 137 days gestation (term -150 days). Circulating leptin concentrations were increased

-4-5 fold by leptin infusion. Leptin infusion resulted in a significant increase in the

proportion of smaller lipid locules present within fetal perirenal adipose tissue (PAT) and

this was associated with a signif,rcant increase in the proportion of multilocular tissue and

a significant decrease in the proportion and relative mass of unilocular tissue in fetal

PAT. The relative abundance of leptin mRNA in fetal PAT was significantly lower in the

leptin infused group and there was a positive correlation between the relative abundance

of leptin mRNA and the proportion of unilocular adipose tissue in fetal PAT. The

amount of UCP-I protein tended to be higher (P:0.06) in leptin compared with saline

infused fetuses. This is the first demonstration that leptin can act to regulate the lipid

storage characteristics, leptin synthetic capacity and potential thermogenic functions of

fat before birth.

4.4 INTRODUCTION

In adult mammals, circulating leptin concentrations are positively correlated with body

fat content and with body mass index (135, 136, 44I, 456). Leptin acts at central

receptors to decrease food intake and to increase fat mobilisation and oxidation. Leptin

administration suppresses leptin gene expression in white adipocytes, and increases the

expression of uncoupling proteins (UCPs) and thermogenesis in brown adipocytes in

adult rodents (13, 457).Leptin is also synthesised in a range of uteroplacental and fetal
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tissues, including fetal adipose tissue (I27 , 146, 443, 445) and leptin concentrations in

umbilical cord blood are positively correlated with birth weight and with neonatal

adiposity (393,406,4I3,42I,423,458). There is a significant correlation between fetal

leptin concentrations and fetal adiposity in well nourished pregnant ewes and it has

therefore been concluded that circulating leptin may be a signal of fat mass in the fetus

(455). It is therefore h1'pothesised that leptin may play a role in the control of substrate

utilisation, maintenance of fat mass or regulation of the expression of leptin or UCP-1 in

adipose tissue before birth. The first aim of the study was to investigate the effects of

leptin administration in the sheep fetus on circulating glucose and insulin concentrations

and on the mass and structural characteristics of fetal perirenal adipose tissue (PAT), the

major fat depot in the sheep fetus during late gestation. Fetal PAT is comprised of

adipocytes that have either a dominant lipid locule (unilocular) or many small lipid

locules (multilocular) (84, 85, 455). In adults, unilocular adipocytes are white adipose

cells and these cells represent the major sites of lipid storage and of leptin synthesis

(459). Ultrastructural studies have demonstrated, however, that both unilocular and

multilocular cells in fetal sheep adipose tissue contain an abundance of mitochondria

which is a characteristic feature of thermogenic or brown adipose tissue (8a). The second

aim of the study was to investigate whether leptin infusion alters the proportion of

unilocular and multilocular tissue present in fetal PAT and whether there are

concomitant changes in the abundance of leptin mRNA, UCP-I mRNA and UCP-I

protein in this tissue. In order to determine whether leptin has specific effects on

mitochondrial UCP-I expression, I have also measured the expression of two other

mitochondrial proteins - VDAC (voltage-dependent anion channel), which is located on

the outer mitochondrial membrane and cytochrome c, which is present in the

mitochondrial space in fetal PAT.
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4.5 MATERIALS AND METHODS

4.5.1 Animals and Surgery

The procedures in this study were approved by the University of Adelaide Animal Ethics

Committee. Dated pregnant Merino ewes were housed in individual pens in rooms with a

12hlightldark cycle and fed once daily (-10-12 MJ/kg metabolisable energy) at 1100 h

with water provided ad libitum. Surgery was performed on 13 pregnant ewes between

110 and I24 d gestation under aseptic conditions as previously described (455). General

anaesthesia was induced by an intravenous injection of sodium thiopentone (1.25 g i.v,,

Pentothal, Rhone Merieux, Pinkenba, Qld, Australia) and maintained by ventilation with

2.5-4% halothane (Fluothane, ICI, Melbourne, Vic, Australia). Catheters were inserted in

a maternal jugular vein, a fetal carotid artery and jugular vein, and the amniotic cavity.

Catheters were filled with heparinised saline and the fetal catheters exteriorised through

an incision made in the ewe's flank. Ewes and their fetuses received a2 ml intramuscular

injection of antibiotics (procaine penicillin 250 mglml; dihydrostreptomycin 250 mglmll,

procaine hydrochloride 20 mg/ml Penstrep lllium, Troy Laboratories, Smithfield, NSW,

Australia).

4.5.2 Experimentalprotocol

At 136 or I37 d gestation, fetuses were randomly assigned to either a leptin (n:6) or

saline (n:7) infusion group. On the day of the infusion, fetal artenal blood samples (3

ml) were collected at -3 h, -2h, -l h and -30 min relative to the start of the infusion at 0 h

(1300 h). Either recombinant ovine leptin (250 ìg in 0.5 ml sterile saline) (460) or sterile

saline (0.5 ml), were administered into the fetal jugulaf as a bolus at 0 h (1300 h),
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immediately followed by infusion of either leptin (80 pg/O.16 mllh, i.e. 0.48 mg/kg/d) or

sterile saline (0.16 ml/h) for 96 h. Fetal arterial blood samples were collected at +2min,

-r30 min, +l h, +2 h, +4 h and +8 h on the first day of the infusion and at 0900 h, 1300 h

and 1700 h on the second and third days and at 0900 h and 1300 h on the fourth day of

the infusion. At each sampling time, a fetal arterial blood sample (0.5 ml) was collected

for the measurement of fetal blood gases and pH (ABL 520 blood gas analyser,

Radiometer, Copenhagen, Denmark). Blood samples were centrifuged at 1500 g for l0

min and aliquots of plasma were separated and stored at -20"C.

4.5.3 Tissuecollection

After 96 h of infusion (at 140 or 141 d gestation), ewes were killed with an overdose of

sodium pentobarbitone (Virbac Pty Ltd, Peakhurst, NS'W, Australia). Fetuses were

delivered by hysterotomy, weighed and decapitated (saline infused group: 5 singletons

and 2 twins - 3 male and 4 female; leptin infused group: 3 singletons and 3 twins - 2

male and 3 female). Fetal organs were weighed and samples of PAT were collected and

either frozen in liquid nitrogen for storage at -80oC or fixed in 4o/o paraformaldehyde in

0.2 M phosphate buffer at4'C for 2-3 d.

4.5.4 Leptin ELISA

Plasma concentrations of leptin were measured in 132 fetal samples using a competitive

ELISA previously described in Chapter 3 (373). The sensitivity of the assay was 0.5

nglml and the inter assay and intra assay coefficients of variation were llo/o and 9%o

respectively.

104



Cn¡.prnn 4 AcTIoN on Lopr|n BEFORE BIRTH

4.5.5 Glucose assay

Plasma glucose concentrations rwere determined by enzymatic analysis using hexokinase

and glucose-6-phosphate dehydrogenase as described in Chapter 3. The intra- and inter-

assay coefficients of variation were both <5%.

4.5.6 Insulin radioimmunoassay

Fetal plasma insulin concentrations were measured using a Phadaseph

Radioimmunoassay kit (Pharmacia &. Upjohn, Uppsala, Sweden) as described in Chapter

3. The inter- and intra- assay coefficients of variation were <I0o/o.

4.5.7 Adipose tissue histology

After fixation in paraformaldehyde, adipose tissue samples were washed in 4 changes of

0.01 M phosphate buffered saline over 48 h (Sigma Chemical Co., St.Louis MO, USA)

and then in 70Yo ethanol (24 h) before being processed and embedded in paraffin wax.

Sections were cut (4 pm) and stained with Hematoxylin and Eosin and then examined

using an Olympus BH2 microscope (20x objective and 2.5x NFK) which was connected

to a video image analysis system. Images were captured using Video Pro software

(Leading Edge, Adelaide, SA, Australia) and standard point counting techniques were

used to determine the volume density of unilocular and multilocular tissue in fetal

perirenal fat (455, 461). Lipid locules were classified as dominant when their cross

sectional area was 275 lm2. These locules comprised the unilocular component of the

adipose tissue depot (455, 461) whereas regions of the adipose depot which contained

2, comprised the multilocular component. One section was randomly

selected for each fetus and 8-10 fields (288-360 points), each 1 mm apart, were analysed.

The volume density (V¿) of the unilocular tissue in each perirenal adipose depot was

105



Cn¡.prnn 4 AcrroN on LnptlN BEFoRE BrRru

calculated as described previously (455,461) using the formula: V¿:N /7, where N is the

number of points falling on unilocular tissue, and T is the total number of points counted.

4.5.8 Measurement of the cross sectional area of the dominant lipid locules within

unilocular adipose cells and the number of unilocular cells

The cross sectional areas of the dominant lipid locules (300-700 per fetus) were

determined by measuring the area of all locules falling completely within each of the

fîelds of view in a section of PAT from each animal. Areas were calculated using the

Area-Pro software program (Video Pro Image Analysis, Leading Edge, Adelaide, SA,

Australia). The program was validated by the measurement of a known area using a

haemocytometer. The median size of these lipid locules was calculated and the

distribution of the size ranges (<200 \m2, 201-400 ìm ' , 401-600 ìm 2, 601-800 ìm' o, >

801 ìm2) of the dominant lipid locules was determined for each experimental animal.

The cell number I lr^' (i.e. the density of the unilocular adipocytes) in the PAT was

calculated for each fetus.

4.5.9 RNA extraction

Total RNA was extracted from PAT samples as previously described in Chapter 2 (443)

4.5.10 Leptin and p-actin mRNA

Ovine leptin and B-actin cDNA were amplified by reverse transcription (RT)-PCR as

previously described in Chapter 2 (443). An RT-PCR on the total RNA from the adipose

tissue of the leptin and saline infused animals was repeated to confirm the leptin and p-

106



Cn¡pren 4 ACTION OT'LNPNN BEFORE BIRTH

actin results. The relative abundance of leptin mRNA was calculated by referencing the

intensity of the leptin amplicon to the intensity of the p-actin amplicon.

4.5.11 UCP-I mRNA and 18S rRllA

An oligonucleotide radiolabelling kit (Amersham Pharmacia Biotech Inc, Piscataway,

NJ, USA) was used to endlabel 1 ng of UCP-I oligonucleotide (Geneworks, Adelaide,

SA Australia) with ¡32e1-aeff (4000 Cilmmol; GRA-32U, Geneworks, Adelaide,

Australia) according to the manufacturer's instructions. The UCP-I oligonucleotide, 5'-

CGG ACT TTG GCG GTG TCC AGC GGG AAG GTG AT- 3', was complementary to

nucleotides 267-298 of the 1194 nucleotide cDNA of rat UCP-1 (Genbank Acc. No. NM

012682) (462,463). An oligonucleotide complementary to nucleotides 151-180 of rat

18S ribosomal RNA (464)was also end labelled with ¡y-32f1-etP (465).

Samples of total RNA (20 pg) from PAT were electrophoresed through a 1.5%;o agarose

gel containing 2.2 M formaldehyde and lx northem buffer (containing 0.1 M MOPS (3-

(N-Morpholino) propanesulphonic acid) at pH 7.0, 40 mM sodium acetate,5 mM EDTA

(ethylenediaminetetracetate.2Ez} disodium salt pH 8.0). Total RNA was transferred

ovemight at room temperature onto a Zeta-Probe nylon membrane (Bio-Rad

Laboratories, Richmond, CA, USA) by capillary transfer in 10x SSC (saline sodium

citrate). Membranes \¡/ere then washed twice in fresh 10x SSC, dried at 80oC and

prehybridised with 100 pglml of heat denatured salmon sperm DNA at 52oC for 2 h in 5x

SSC, 20 mM NaHzPOq, 7o/o SDS and 5x Denhardt's solution at pH 7.2 (465). This

hybridisation solution was then removed. Fresh hybridisation solution, that was

preheated to 52oC and that contained the [y-32f]-ATP labelled UCP-I oligonucleotide

probe, was added to the membrane and allowed to hybridise for 14-16 h at 52oC.
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Membranes were then washed in lx SSC, 0.1% SDS at 52oC for 30 min, and then again

being washed in fresh 1x SSC, 0.1% SDS for a further 10 min at 52oC. Membranes were

exposed to a phosphorimaging screen for 2.5 d (Fuji-BAS MP2040, Fuji Photo Film Co.

Ltd., Tokyo, Japan), and visualised using a Fuji-BAS 1000 phosphorimager (Fuji Photo

Film Co. Ltd., Tokyo, Japan). The hybridisation signal was quantifred with Fuji-

MacBAS software (ver. 2.21). Membranes were then washed in stripping solution

containing 0.lx SSC and 0.5Yo SDS at 85oC for 30 min before being rehybridised with a

probe for 18S rRNA. Samples of total RNA were electrophoresed through a second

agarose gel and the process repeated to give a duplicate measure of the results. The

relative abundance of UCP-l mRNA was calculated by referencing the intensity of the

ucP-l mRNA band to the intensity of the 18S rRNA band for each fetus.

4.5.12 Mitochondria preparation

Mitochondria were extracted from adipose tissue samples using a previously defined

method (337, 347). Briefly, 2 g of PAT from each fetus were thawed and homogenised

in 40 ml of 10 mM Tris buffer solution, containing 250 mM sucrose and 1 mM EDTA at

pH7.4. Homogenates were then centrifuged at 800 g for 10 min and lipids were removed

by passing the supernatant through two layers of surgical gaûze. The supernatant was

then centrifuged at 10,000 g for 30 min, the supernatant discarded and the pellet,

containing mitochondria, was resuspended in a Tris buffer solution (0.5-1.0 ml) and

frozen at -20oC.

4.5.13 Mitochondrial protein measurements

UCP-I, cytochrome c and VDAC (voltage-dependent anion channel) proteins were

detected in mitochondrial preparations after separation by sodium dodecyl sulphate
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polyacrylamide gel electrophoresis by using immunoblotting and enhanced

chemiluminescence (ECL, Amersham International, Buckinghamshire, UK) (337, 463).

Densitometric analysis was performed on each membrane following image detection

using a Fujifilm LAS-1000 cooled CCD camera (Fuji Photo Film Co. Ltd., Tokyo,

Japan). All values \¡/ere expressed as a percentage of a reference sample run in duplicate

on all gels.

4.5.14 Statistical analysis

Data are presented as the mean + SEM. The mean fetal plasma concentration of leptin

prior to the start of the infusion was calculated as the mean of the five values during the

preinfusion period (i.e. at -3 h, -2 h, -1 h, -0.5 h and 0 h). The effect of leptin infusion on

fetal plasma leptin, glucose and insulin concentrations was determined using a

multifactorial ANOVA with repeated measures using the Statistical Package for Social

Sciences (SPSSX, Chicago, IL, USA) on a VAX mainframe computer. Fetal hormone

and metabolite data were logarithmically transformed where required to reduce

heterogeneity of variance. Where there was a significant interaction between the effects

of treatment and the time of infusion on plasma hormone or metabolite data, the data

were split on the basis of the interaction and reanalysed. The Duncan's new multiple

range test was used post ANOVA to identify significant differences between mean

values.

The mass of unilocular and multilocular fat was calculated by multiplying the mass of

the perirenal adipose depot by the volume density of either the unilocular or multilocular

tissue and the relative mass of these tissues (g/kg) was then calculated by dividing total

fat mass by fetal weight. The effects of leptin and saline infusion on the proportion of
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dominant lipid locules present within the different size ranges were compared using 2-

way ANOVA. The Student's t-test was used to compare the effects of treatment on fetal

body and organ weights, locule density, the volume density and relative mass of

unilocular or multilocular fat (g per kg of fetal weight), the relative abundance of leptin

mRNA and UCP-I mRNA, and the abundance of UCP-I, cytochrome c and VDAC

proteins in PAT. The relationship between the relative abundance of leptin mRNA and

the proportion of the perirenal adipose depot composed of unilocular tissue was

determined using simple linear regression. The probability of 5% (i.e. P<0.05) was taken

as the level of significance.

4.6 RESULTS

4.6.1 Plasma leptin concentrations

During the pre-infusion period, there was no difference in the plasma concentrations of

leptin between those fetuses assigned to the saline (2.97 + 0.88 nglml) or leptin (4.38 +

0.99 nglml) infusion groups (Figure 4.1). Duringthe 4 d infusion period, there was no

change in fetal plasma leptin concentrations in the saline group whereas leptin infusion

increased (P<0.001) plasma leptin concentrations by -4-5 fold (+68-96 h: saline infused,

3.74!I.22nglml,leptin infused, 18.44 + 4.05 nglml) (Figure 4.1).

4.6.2 Arterial blood gas status

There was no difference in fetal arterial blood gases or pH between the leptin and saline

infused groups, either before or during the 4 d infusion period (Table 4.1).
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Figure 4.L Plasma leptin levels in saline infused and leptin infused groups.

Plasma leptin concentrations in fetal sheep infused either with recombinant ovine leptin

at 0.48 mg/kg per day (closed circles) or saline (open circles) for 96 h. Asterisks denote a

significant difference (P<0.05) between leptin concentrations during the infusion period

compared to the preinfusion period in the leptin infused group.

10

-6

lnfusion

111



Table 4.1 Effect of saline or leptin infusion on fetal arterial blood gas and pH stafus during the 4 d infusion period.

21.6 !0.4

49.1!1.4

I .4t0 r 0.007

10.4 + 0.2

66.4 !3.0

21.2 ! 0.5

49.6 r1.0

7.398 + 0.004

10.910.3

69.3 + 2.0

2t.4 ! 0.8

50.9 r 1.0

7 .403 r 0.007

l0.t + 0.2

65.1 + 2.7

22.6 + 0.8

49.5 !l.t
7 .405 r 0.006

10.8 r 0.2

65.4 + 2.7

22.2!0:7

51.9 !1.2

7.401 ! 0.006

10.5 r 0.3

67.2 + 2.1

22.4 + 1.2

49.0 ! 1.3

7.3961 0.005

10.8 r 0.3

63.9 !3.7

21.5 r 0.5

49.0 r 1.5

7.404 + 0.005

10.5 r 0.2

65.4 + 1.8

23.1!0.5

48.5 r 1.1

1.406 t 0.006

ll.I !0.2

67 .5 ! 1.2
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51.3 + 0.8

7 .395 + 0.005
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4.6.3 Plasma glucose and insulin concentrations

Fetal plasma glucose concentrations during the 4 d infusion period were not different

between the saline (Basal: 1.85 + 0.12 mmol lI, +96 h: 1.76 + 0.I2 mmol/l) and leptin

infused groups (Basal: 1.52+ 0.13 mmolll,+96h:1.72 + 0.14 mmol/l). Similarlyplasma

insulin concentrations were not different between the saline (Basal: 8.5 + 0.8 lLUlml, +96

h: 9.8 + 1.1 pU/ml) and leptin infused groups (Basal: 9.7 + 2.0 pU/ml, +96 h: 9.2 + 1.0

pU/ml) throughout the 4 d infusion period. On the first day of the infusion period, fetal

glucose and insulin concentrations increased (P<0.05) during the 4-8 h period

immediately after maternal feeding in both the saline infused (+8 h: glucose, 2.2I + 0.21

mmol/I, insulin, 1 1.8 + 0.9 pU/ml) and leptin infused (+8 h: glucose, 2.03 + 0.1 I mmol/I,

insulin, 12.8 + 1.8 pU/ml) groups and there was no difference between the groups in

these responses to feeding.

4.6.4 Perirenal adipose tissue

There was no effect of leptin infusion on either the total mass (leptin infused, 20.2 + 2.1

g; saline infused, 20.8 + 1.7 Ð or the relative mass (leptin infused, 4.16 + 0.30 g/kg;

saline infused, 4.43 + 0.35 g/kg) of fetal PAT. The proportion of PAT comprised of

unilocular tissue was lower (P<0.01) and the proportion comprised of multilocular tissue

was higher (P<0.01), in the leptin infused group compared with the saline infused

animals (Figure 4.2 and Figure 4.3). The relative mass of unilocular adipose tissue (g/kg)

was also significantly lower (P<0.05) in the leptin infused group compared with the

saline group (Figure 4.3).
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A.

U

I

B.

Figure 4.2 Photomicrographs of sections of perirenal adipose tissue from a saline

infused (A) and a leptin infused (B) fetus.

Examples of tissue defined as unilocular (U) or multilocular (M) adipose tissue are

indicated on the section. The horizontal dark bar represents 50 pm.
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Figure 4.3 The proportion and relative mass of unilocular and multilocular tissue in

fetal sheep infused either with saline or leptin.

The asterisks denote significant differences (P<0.05) between the saline and leptin

treatment groups.
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There was no difference in the density of the dominant lipid locules in the PAT from

saline (637 t 47 locules I mm2) or leptin infused fetuses (703 + 60 locules / mm2;. The

median size of the dominant lipid locules present within fetal PAT tended to be smaller

(P :0.06) in the leptin infused (323 + 20lm2) than in the saline infused group (376 + 15

2) and the size distribution of the lipid locules in the fetal perirenal adipose depot was

significantly different (P <0.05) in the 2 treatment groups (Figure 4.4). There were

proportionately more lipid locules in the <200 pm2 size range and proportionately fewer

in the 200-600 pm2 size range in the leptin infused group when compared with the saline

infused fetuses (Figure 4.4).

4.6.5 Leptin mRNA expression in perirenal adipose tissue

Messenger RNA encoding leptin and B-actin were detected in total RNA extracted from

fetal adipose tissue (Figure 4.5). The relative abundance of leptin mRNA in PAT was

lower (P<0.001) in leptin infused (22.5 + 3.7) compared with saline infused fetuses (54.1

+ 4.6) (Figure 4.5). There was also a direct correlation between the relative abundance of

leptin mRNA and the proportion of unilocular tissue within the perirenal adipose depot

(leptin mRNA : B-actin mRNA : 1.94 (proportion unilocular tissue) - 38.7; R:0.88, P

<0.0001) when both treatment groups were combined (Figure 4.5).

4.6.6 Abundance of UCP-I mRNA and UCP-I, Cytochrome c and VDAC protein

in PAT

The relative abundance of UCP-1 mRNA was similar in the leptin infused (0.70 + 0.13)

and saline infused fetuses (0.88 + 0.09) whereas UCP-I protein content tended to be

higher (P:0.06) in the leptin infused group (leptin infused, 74.8 + 9.2% reference: saline
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Figure 4.4 Proportion of dominant lipid locules in the perirenal adipose tissue of

saline infused and leptin infused groups.

The proportion of the dominant lipid locules in the perirenal adipose tissue depots in

each of the deflrned size ranges in the saline (open histograms) and leptin (closed

histograms) infused fetuses. The asterisks denote signif,rcant differences (P<0.05)

between the saline and leptin infused goups.
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Figure 4.5 Leptin and p-actin expression in saline infused and leptin infused fetuses

(A&B).

(A) Leptin (183 bp, upper panel) and B-actin (349 bp,lower panel) RT-PCR products

were amplified from total RNA extracted from PAT of saline and leptin infused fetal

sheep. Products were electrophoresed through an ethidium bromide stained agarose gel.

Molecular markers were also electrophoresed in the same gel.
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infused, 52.8 t 7.1% reference). The abundance of cytochrome c (saline infused, 86.6 +

6.4 % reference; leptin infused, 81.3 t 8.8 % reference) or VDAC protein (saline

infused, 131.1 + Lg % reference; leptin infused, 134.8 + 12.8 % reference) in the PAT

was not significantly different between the saline and leptin infused groups.

4.6.7 Fetal Growth

There was no effect of leptin infusion on fetal body weight (saline infused, 4.70 + 0.23

kg; leptin infused, 4.83 + 0.22 kg), the relative weight of any fetal organs or on any

measures of fetal growth at 140 or 141 d gestation (Table 4.2).

4.7 DISCUSSION

In this Chapter, the infusion of leptin resulted in a signif,rcant shift in the size distribution

of the lipid locules present within the fetal perirenal adipose tissue (PAT) with an

increase in the proportion of smaller lipid locules. This was associated with an increase

in the proportion of multilocular tissue and a decrease in the proportion and relative mass

of unilocular tissue in the fetal PAT in the leptin infused fetuses. The relative abundance

of leptin mRNA in PAT was also lower in leptin infused fetuses and there was a direct

correlation between leptin mRNA expression and the proportion of unilocular tissue in

the saline and leptin infused groups. These changes occurred in the absence of any

effects of leptin on fetal plasma glucose or insulin concentrations or on fetal arterial

blood gas status.

In the present study, intrafetal infusion of leptin at a dose rate of 0.48 mg/kg/d resulted in

a 4-5 fold increase in circulating leptin levels. Fetuses were exposed to concentrations of
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Table 4.2 Effect of a 4 d infusion of saline or leptin on fetal body weight, growth

measurers and relative organ weights atl40 or 141 d gestation.

All values are expressed as mean + SEM. Superscripts indicate significant differences

between the mean values in the saline infused and leptin infused groups, (P<0.05).

4.70!0.23 P:0.714.83 + 0.22

P:0.2658.3 + 1.755.8 + 0.6

P=0.9536.9 + 1.0 36.'.7 + 1.5

2.74 + 0.09 P:0.272.42+ 0.22

6.33 + 0.28 P:0.117.45 + 0.53

P:0.0723.4 + I .l27.3 + 1.6

P:0.5333.0 r 1.9 31.0+ 1.5

5.84 + 0.37 P:0.905.91+ 0.32

1.94 + 0.34 P:0.567.73 + 0.16

P:0.860.72 + 0.060.70 + 0.04

P:0.090.27 + 0.02 0.24+ 0.03

P:0.1812.8 + 0.5 I 1.4 + 0.9

P:0.240.030 + 0.003 0.025 + 0.002

0.08 + 0.01 P:0.410.10 + 0.01

4.16 + 0.30 P:0.574.43 + 0.35
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circulating leptin similar to those measured in well-fed pregnant ewes where rapid

maternal weight gain occurred @41). Whilst leptin infusion did not result in a significant

change in the total or relative fetal fat mass, it did result in a decrease in the proportion of

unilocular adipose tissue. This decrease appeared to be a consequence of the shift

towards smaller lipid locules in the unilocular tissue and the associated increase in the

proportion of the multilocular adipose tissue. The functional significance of this shift

depends on the relative roles of the unilocular and multilocular components of fetal

adipose tissue. In the adult, unilocular adipocytes are classified as white adipocytes and

are the major sites of lipid storage and of leptin synthesis and secretion (466). In contrast,

multilocular or brown adipocytes express the mitochondrial uncoupling protein, UCP-1

and participate in cold and dietary induced thermogenesis (467). Ultrastructural studies

have demonstrated that in fetal sheep, both unilocular and multilocular adipocytes

contain an abundance of mitochondria which is a characteristic feature of the

thermogenic brown adipocyte (84) and whilst it is clear that leptin mRNA is expressed in

fetal PAT (146, 443, 445), it is unknown whether leptin is expressed in either the

unilocular or multilocular adipocytes. Circulating leptin concentrations are strongly

correlated, however, with the relative mass of the unilocular, but not multilocular tissue,

in the sheep fetus during late gestation and circulating leptin concentrations are also

correlated with the relative abundance of leptin mRNA in fetal PAT (Chapter 3) (455)'

This suggests that adipose tissue may be a major site of leptin synthesis and secretion in

the fetus (455). In the present study, leptin infusion decreased the relative proportion of

unilocular fat and the relative abundance of leptin mRNA and there was also a strong

correlation between the proportion of unilocular fat and leptin mRNA expression in fetal

PAT. One possibility is that in fetal life, the unilocular adipocyte is a 'transitional' cell

type that has the lipid storage and leptin synthetic characteristics typical of the white
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adipocyte, in addition to the thermogenic characteristics of the brown adipocyte. Recent

studies, however, suggest that during normal development, most white adipocytes are not

derived from brown adipocytes and that there are distinct lineages of white and brown

adipocytes (9). An alternative explanation is that the unilocular and multilocular cells are

brown adipocytes, but that leptin gene expression in these cells is stimulated when the

size of the dominant lipid locule exceeds and subsequently increases beyond a threshold

value. This would explain the direct relationship between the relative abundance of leptin

mRNA and the proportion of the PAT comprised of unilocular tissue in the current study

as leptin infusion resulted in a shift in the size distribution of the lipid locules present in

unilocular tissue. There is evidence from studies in a range of species including the

human, rat and cow that circulating leptin concentrations are related to the size of the

unilocular adipocytes i.e. large fat cells are associated with higher circulating leptin

concentrations and a greater abundance of leptin mRNA (114, 125, 145). Independently

of the cellular characteristics of the unilocular and multilocular adipose tissue, an

increase in circulating leptin concentrations clearly results in a decrease in the lipid

storage capacity of the unilocular adipose tissue and in the leptin synthetic capacity of

PAT before birth.

Whilst leptin stimulated an increase in the multilocular component of PAT, this increase

was not associated with an increase in UCP-I mRNA expression in fetal PAT although

UCP-I protein levels tended to be higher (P:0.06) in the leptin infused group than

controls. In contrast leptin infusion did not change the expression of VDAC, which is

located on the outer mitochondrial membrane and cytochrome c, which is present in the

mitochondrial space. V/hilst these data suggest that leptin may act to increase the

thermogenic potential of adipose tissue before birth, further studies are clearly required
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to identify the localisation and expression of UCP-1 in fetal adipose tissue under a range

of different physiological conditions. Interestingly, a recent study found that

administration of leptin during the first 48 h after birth improved thermoregulation in

newborn lambs and it was postulated that this may have been a result of enhanced

lipolysis induced by leptin administration in PAT (337). After the first 48 h, however,

chronic leptin administration promoted the loss of UCP-I from PAT (337). The lack of a

thermogenic effect of leptin at this age in the lamb may be related to the decrease in

plasma catecholamines and in B-adrenoceptors in the perirenal adipose tissue which

occurs in postnatal life (a36).

In the adult rodent, central leptin administration decreases the mass of white adipose

tissue and the gene expression of leptin within white adipocytes whilst increasing

expression of the UCP-1 gene in brown adipocytes (468). Thus an increase in circulating

leptin concentrations causes a shift from fat storage to fat mobilisation and oxidation'

These effects occur independently of the leptin induced changes in food intake and are

primarily a consequence of the actions of leptin at its functional receptors in the

hypothalamus (13, 15, 109,457). Recent studies using surgical (306), chemical (371) and

transgenic (469) approaches have shown that in the adult, activation of the sympathetic

nervous system is required for the effects of leptin on the gene expression of leptin and

UCP-I in white and brown adipose tissue respectively. In the sheep, sympathetic

innervation in perirenal adipose tissue occurs at around 130 days gestation and there is

an increase in the proliferation of sympathetic nerves within this tissue from 140 days

gestation up to term (84). Furthermore prolonged infusion of the â2-adrenergic agonist,

ritodrine into fetal sheep resulted in a decrease in the mass and lipid content of PAT and

an increase in GDP binding to UCP-I (322). One possibility is that leptin acts centrally
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via leptin receptors located within the fetal hypothalamus to stimulate the sympathetic

nervous system resulting in a decrease in the proportion of the unilocular adipose tissue

and in the abundance of leptin mRNA and a concomitant increase in the proportion of

the multilocular or thermogenic component of the PAT'

Whilst leptin may act centrally, it is also possible that leptin acts directly via leptin

receptors on the unilocular and multilocular adipocytes to stimulate lipolysis and the

shift in the distribution of the lipid locule sizes. Whilst it has been demonstrated that

leptin can directly stimulate lipolysis in isolated adipocytes (304, 305, 470), a number of

studies have failed to demonstrate local effects of leptin in adipocytes from a range of

species including the human and sheep (471,472).

In the present study, a 4-5 fold increase in fetal leptin concentrations had no effect on the

basal plasma glucose and insulin concentrations or on the rise in fetal glucose and insulin

concentrations after maternal feeding. Chronic leptin infusion in adult rats decreases

plasma glucose, insulin and triglyceride concentrations and increases skeletal muscle

glucose utilisation (446). Clearly further studies would be required to determine whether

leptin acts to regulate glucose utilisation and energy consumption within specihc fetal

tissues

In the present study I have found no evidence for an effect of increased circulating leptin

concentrations on fetal body or organ growth after the 4 day infusion period' In the

sheep, increases in leptin mRNA expression in fetal PAT and in circulating leptin

concentrations occur during periods of rapid fetal growth late gestation (443,446) andin

the human, there are relationships between circulating leptin and measures of fetal size
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or neonatal weight (393, 406, 413, 421, 423, 458). These relationships may be

determined by the impact of the prenatal nutrient supply on fetal growth, adiposity and

leptin synthesis and secretion, rather than reflect the actions of circulating leptin on

prenatal growth.

In summary, this is the first demonstration that leptin can act to regulate the lipid storage

characteristics, leptin synthetic capacity and potential thermogenic functions of fat before

birth. These findings suggestthatleptin may act as a signal of energy supply andhave a

'lipostatic' role before birth. This role may be of particular importance when the fetus is

exposed to an increase in a transplacental substrate supply such as occurs when maternal

nutrient intake is increased (455) or in pregnancies complicated by matemal glucose

intolerance and fetal hyperglycaemia (421). Future studies are required to determine the

central and peripheral sites and mechanisms of action of leptin and the postnatal

consequences of prenatal hyperleptinaemia.

V/hilst exogenous leptin has been shown to stimulate changes within fetal adipose tissue,

it remains to be determined whether leptin plays a role in other fetal regulatory systems.

In the adult mammals, leptin can attenuate the hypothalamo-pituitary-adrenal (HPA)

stress response through the suppression of ACTH and cortisol secretion. During late

gestation the fetal HPA is activated during the prepartum period. It is therefore

hl,pothesised, that administration of leptin may attenuate the activation of the fetal HPA

axis through the suppression of ACTH and cortisol secretion leading to a prolonged

gestation period in the sheep fetus.
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CHAPTER 5 LEPTIN AND THE TIMING OFPARTURITION

5.3 ABSTRACT

'We have investigated whether leptin can suppress the prepartum activation of the fetal

HpA axis and delay the timing of parturition in the sheep. Firstly, we investigated the

effects of a4 day intravascular infusion of recombinant ovine leptin (r-7) or saline (n:6)

for on fetal plasma ACTH and cortisol concentrations starting from 136 days (d)

gestation, i.e. at the onset of the prepartum activation of the fetal HPA axis. The effects

of a continuous intrafetal infusion of leptin (n:7) or saline (n:5) from 144 d gestation on

fetal plasma ACTH and cortisol concentrations and the timing of delivery were also

determined in a separate study. There was an increase in fetal plasma ACTH (P<0.01)

and cortisol (P<0.001) concentrations when saline was infused between 13617 and l40ll

d gestation. There was no increase, however, in either plasma ACTH or cortisol

concentrations when leptin was infused during this period of gestation. In saline infused

fetuses, there was also a significant negative relationship between the plasma cortisol (y)

and leptin (x) concentrations between 138 and 146 d gestation (y: 81.4 - 7.7x, r:0'38,

p<0.005). When leptin was infused continuously from 144 d gestation until delivery,

there was no effect of a 4-5 fold increase in circulating leptin on fetal ACTH

concentrations during the week before delivery. In contrast, leptin infusion from 144 d

gestation suppressed both fetal plasma cortisol concentrations between 90 and 42 h

before delivery e<0.05) and the ratio of fetal plasma cortisol : ACTH concentrations

between 90 and 30 h before delivery (P<0.05). There was no difference, however, in the

length of gestation between the saline and leptin infused groups (saline infused, 150.2 +

0.5 d; leptin infused, 149.8 t 1.0 d). This study provides evidence for an endocrine

negative feedback loop between leptin and the HPA axis in fetal life which may play an

important role in determining the fetal adrenal responsiveness to ACTH and other

131



CHnprBn 5 LEPTIN AND THE TIMING OF PARTURITION

trophic factors during intrauterine stress, parturition and the transition from intrauterine

to extrauterine life.

5.4 INTRODUCTION

Leptin is a 16 kDa polypeptide hormone, which is principally synthesised and secreted

by adipose tissue and which acts to regulate energy homeostasis and a range of

neuroendocrine and reproductive functions (13, 15, 457).In the human infant, there is a

positive relationship between cord blood concentrations of leptin at delivery and birth

weight or neonatal adiposity (393,406,413). In animal species such as the sheep and

pig, in which fat is deposited before birth, leptin is synthesised in fetal adipose tissue and

is present in the fetal circulation throughout late gestation (146, 443,445,446,455,473,

474). ln the sheep fetus, the expression of leptin mRNA in fetal adipose tissue is

positively correlated with circulating leptin concentrations and there is also a positive

relationship between fetal plasma leptin concentrations and the relative mass of lipid

locules present within fetal adipose tissue (455, 474). 'We have recently shown that

intravascular infusion of leptin in the sheep fetus during late gestation altered the lipid

storage characteristics and suppressed leptin mRNA expression within fetal adipose

tissue (475). Thus leptin may act as a circulating signal of fetal adiposity and have a

'lipostatic' role before birth.

Recent studies have indicated that there may be a functional interaction between

circulating leptin and the fetal hypothalamic-pituitary-adrenal (HPA) axis in late

gestation. It is well established in the sheep that the prepartum increase in circulating

cortisol is required for the differentiation and maturation of key fetal organs such as the

fetal lung, liver, kidney and brain and for the normal timing of parturition and the
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successful transition to extrauterine life (298). Forhead and colleagues reported that in

the sheep fetus, plasma cortisol and leptin concentrations increased in parallel and were

positively related between 130 and 140 days gestation and that fetal adrenalectomy

resulted in lower plasma leptin concentrations after 136 d (446). These findings are

consistent with studies which have demonstrated that glucocorticoids stimulate both

leptin gene expression and secretion from adult adipocytes in vivo and in vitro (187,I88,

191) and suggest that there is a positive relationship between the level of activation of

the fetal HPA axis and leptin synthesis and/or secretion in late gestation. A separate

study however, investigated the effects of intracerebroventricular (i.c.v.) infusion of

leptin between 135 and 140 days gestation on the characteristics of plasma ACTH and

cortisol pulses occurring during a 4 h sampling period on the first and last day of the

infusion period (441). These authors found that i.c.v. leptin administration blunted the

size of the increase which occurred in the amplitude and mean value of plasma ACTH

and cortisol pulses between 135 and 140 days gestation (447). These data suggest that

fetal leptin may inhibit ACTH and cortisol secretion during late gestation and are

consistent with studies in the adult rat which have shown that administration of leptin

can attenuate fasting or restraint induced stimulation of the HPA axis (153,299). Given

the potential role of leptin as a circulating signal of fetal adiposity in late gestation it is

important to determine whether, as in the adult, a leptin mediated, endocrine negative

feedback loop exists between adipose tissue and the HPA axis in the fetus during late

gestation. In the present study we have determined whether intravascular administration

of leptin can suppress the normal prepartum activation of the fetal HPA axis and thus

delay the timing of parturition. Firstly, we measured the effects of a 4 day intrafetal

infusion of leptin on fetal plasma ACTH and cortisol concentrations starting from 136

days gestation, i.e. at the onset of the prepartum activation of the fetal HPA axis.
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Secondly, we infused leptin into fetal sheep from 144 days gestation until delivery and

measured the effects of an increase in circulating leptin on the prepartum changes in fetal

plasma ACTH and cortisol concentrations and on the timing of parturition.

5.5 MATERIALS AND METHODS

5.5.1 Animals and Surgery

These studies were approved by the University of Adelaide Animal Ethics Committee.

Surgery was performed on dated pregnant Merino ewes (n:25) between 110 and 126 d

gestation, as previously described (474, 476). Briefly, general anaesthesia was induced in

ewes by an intravenous injection of sodium thiopentone (I.25 g i.v., Pentothal, Rhone

Merieux, Pinkenba, Qld, Australia) and maintained by 2.5 - 4o/o halothane (Fluothane,

ICI, Melbourne, Vic, Australia). Under aseptic conditions catheters were inserted into a

matemal jugular vein, a fetal carotid artery and jugular vein, and the amniotic cavity.

Catheters were filled with heparinised saline and the fetal vascular and amniotic

catheters exteriorised through an incision made in the ewe's flank. Ewes and their fetuses

received a 2 m7 intramuscular injection of antibiotics þrocaine penicillin 250 mg/ml;

dihydrostreptomycin 250 mglml; procaine hydrochloride 20 mg/ml Penstrep lllium, Troy

Laboratories, Smithfield, NSW, Australia). Animals were allowed to recover for at least

4 d after surgery before routine fetal arterial blood samples (3 ml) were collected every 2

- 3 d before the infusion studies commenced. Animals were housed in individual pens in

rooms with a 12lnlightldark cycle, fed once daily at 1100 h and water was provided ad

libitum.
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5.5.2 Experimental Protocols

5.5.2.1 Leptin infusionfrom 136 or 137 d gestation

In thirteen pregnant ewes at 1361137 d gestation, fetal arterial blood samples (3 ml) were

collected at -3 h, -2h, -l h and -30 min relative to the starl of the infusion period at 1300

h. A bolus of either sterile saline (0.5 ml, n:7) or recombinant ovine leptin (0.25 mg in

0.5 ml sterile saline, n:6) (460) was infused into the fetal jugular vein, immediately

followed by a continuous infusion (0.16 ml/h) of either sterile saline or leptin (0.48

mgkgld), respectively (15). Fetal arterial blood samples were collected at *2 min, +30

min, +f h, +2h, +4 h and +8 h on the first day of the infusion and at 0900 h, 1300 h and

1700 h on the second and third days and at 0900 h and 1300 h on the fourth day of the

infusion. Blood samples were centrifuged at 1500 g for 10 min and plasma aliquots were

separated and stored at -20"C. Fetal arterial blood samples (0.5 ml) were also collected

daily to monitor fetal blood gases and pH (ABL 520 blood gas analyser, Radiometer,

Copenhagen, Denmarþ.

After 96 h (at 140 or I4l d gestation), ewes were killed with an overdose of sodium

pentobarbitone (Virbac Pty Ltd, Peakhurst, NSW, Australia) and fetuses delivered by

hysterotomy, weighed and decapitated. It should be noted that these were the same

fetueses described in Chapter 4 (475).

5.5.2.2 Leptin ínfusíonfrom 144 d gestation

ln 12 pregnant ewes at 144 d gestation, a bolus of saline (n:5) or recombinant ovine

leptin (n:7, 0.5 mg/0.5 ml sterile saline) was infused into the fetal jugular vein

immediately followed by a continuous infusion of saline or recombinant ovine leptin (1.0

mglkgld). On the first day of infusion, fetal arterial blood samples (3.5 ml), were
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collected at -3 h, -2h, -l h and -30 min and at +2 min, *30 min, +l h, +2h, +4h and +8

h relative to the start of the infusion at 1300 h. On the second, third and fourth days of

the infusion, fetal blood samples were collected at 0900 h, 1300 h and 1700 h and on

subsequent days, fetal blood samples were collected at 0900 h and 1700 h until either the

ewe was in late labour (n:2) or the fetus delivered (n:10). Ewes were defined as being in

late labour when the pressure of repeated intrauterine contractions were greater than 20

mmHg in amplitude. Intrauterine pressure was measured using a Maclab 1050

displacement transducer (ADlnstruments, NSW, Australia) connected to the saline filled

amniotic catheter (477). A Maclab data acquisition system was attached to the

transducer and Maclab Chart software was used to analysis the intrauterine pressure

recordings.

5.5.3 Leptin ELISA

A competitive ELISA specific for ovine leptin was used to measure plasma leptin

concentrations in fetal sheep, as previously described (313, 474). Briefly, 6 ng

recombinant bovine leptin was coated onto an ELISA plate by overnight incubation at

37oC. The plate was blocked with 200 pl of 5%o skim milk in ELISA buffer for t h at 37

oC. Fetal plasma samples (100 pl) were added to wells containing a biotinylated chicken

anti-recombinant bovine leptin in 100% Triton X 100, 0.5% SDS and 5o/o sodium

deoxycholate (50 ¡rl) and the plate was incubated ovemight at 37oC. A biotinylated

second antibody was added to the plate and incubated overnight at 31oC. The plate was

then washed and incubated for I h with streptavidin conjugated to alkaline phosphatase

(Amrad Biotech, Boronia, Vic, Australia) then developed with p-nitrophenylphosphate

disodium salt hexahydrate. The sensitivity of the assay was 0.5 ng/ml and the inter assay

and intra assay coefficients of variation were TIYI and 9o/o respectively.
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5.5.4 ACTH radioimmunoassay

ACTH concentrations in fetal sheep plasma were measured by radioimmunoassay

(DiaSorin, Stillwater, Minnesota, USA), previously validated for fetal sheep plasma

(478). The cross-reactivity of the rabbit anti-ACTH antisera was <0.01olo with o(-MSH,

B-Endorphin, B-Lipotropin, paratþroid hormone, Vasopressin and growth hormone.

Briefly, rabbit anti-ACTH serum (50 pl) was added to each sample (50 pl) and incubated

overnight at 4oC. Radiolabelled r25I-ACTH (50 pl) was added to each tube and incubated

overnight at 4oC. Rabbit serum (200 pl), pre-precipitated with goat anti-rabbit serum and

polyethylene glycol, was added to samples that were then centrifuged. The inter assay

coefficient of variation was 11.5o/o andthe intra assay coefficient of variation was 5.2o/o.

5.5.5 Cortisol radioimmunoassay

Cortisol was extracted from fetal plasma using dichloromethane as previously described

(47g). The efficiency of recovery of radiolabelled r2sl-cortisol from fetal plasma using

this extraction procedure was >90o/o. The cross-reactivity of the rabbit anti-cortisol

antisera was <1olo with pregnenolone, aldosterone, progesterone and oestradiol. Fetal

cortisol concentrations were then measured using a Amersham Radioimmunoassay kit

(Amersham Pharmacia Biotech Inc, Piscataway, NJ, USA). Briefly, 100 nM of

hydrocortisone (Sigma Chemical Co., St.Louis MO, USA) was serially diluted in buffer

(0.1 mol/l Tris-HCl, pH 7.4,0.5% BSA,O.lyo sodium azide) to generate a standard

curve. Plasma extracts (100 pl) were incubated with rabbit anti-cortisol antisera (100 pl)

overnight at 4oC. Radiolabelled r2sl-cortisol (100 pl) was then added to the samples that
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were then incubated overnight at 4oC. The inter- and intra-assay coefficients of variation

were 10olo and5o/o resPectivelY.

5.6 STATISTICALANALYSES

Data are presented as the mean + SEM. Fetal hormone data were logarithmically

transformed where required to reduce heterogeneity of variance. Analyses of Variance

(ANOVA) with repeated measures were performed using the Statistical Package for

Social Sciences (SPSSX, Chicago, IL, USA) on a VAX mainframe computer. The

Duncan's new multiple range test was used post hoc to identify significant differences

between mean values.

5.6.1 Leptin infusion from L36/137 d gestation

Mean values for fetal arterial pO2, pCO2 and pH were calculated using fetal blood gases

and pH values obtained between +0.5 and +96 h in the saline infused and leptin infused

groups. A Student's unpaired t-test was performed to determine whether fetal blood

gases and pH values were different between the treatment groups.

A mean value for the basal plasma concentration of leptin, ACTH or cortisol was

calculated for each fetus as the average of the 5 values during the pre-infusion period

(i.e. for those samples collected at -3 h, -2h, -1 h, -0.5 h and 0 h). The change in fetal

hormones during the infusion period was calculated by subtraction of the mean basal

value obtained during the pre-infusion period, from hormone values at each time point

during the infusion period. The effects of leptin infusion on fetal hormone concentrations

were analysed using a two way ANOVA with treatment (saline infused vs leptin infused)
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and the length of time relative to the start of the infusion as the specified factors. Where

there was a significant interaction between the effects of treatment and the length of time

of infusion on plasma hormone concentrations, the data were split based on the

interaction and reanalysed.

5.6.2 Leptin infusion from 144 d gestation

Linear regression analysis was used to assess potential relationships between the plasma

leptin and either ACTH or cortisol concentrations in samples collected between 125 to

137 d i.e. prior to the onset of the prepartum increase in circulating cortisol and between

138 to 146 d gestation i.e. after the onset of the prepartum increase in cortisol in fetuses

which were infused with saline from 144 d gestation.

The effects of leptin on fetal hormone concentrations during the first 20 h of the infusion

period were determined by a two way ANOVA with treatment (saline infused vs leptin

infused) and time relative to the start of the infusion as the specified factors.

As the length of gestation varied between animals (147-153 d), the hormonal data from

each animal were expressed relative to the known or estimated time of delivery.

Intrauterine pressure traces from animals that delivered were analysed to establish the

relationship between frequency of contractions with an amplitude of >20 mmHg and

time before birth. For the 2 fetuses that were killed during late labour, the intrauterine

pressure traces were analysed to determine the frequency of contractions (>20 mmHg)

during labour and the time of delivery was then estimated. Hormone data were then

grouped into 12 h time blocks in relation to the actual or estimated time of delivery: 6- I 8

h, 18-30 h, 30-42 h, 42-54 h, 54-66 h, 66-78 h, 78-90 h, 90-102 h and 102-114 h before
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delivery. The effects of leptin infusion on fetal leptin, ACTH and cortisol concentrations

were determined by a two way ANOVA using treatment (saline infused vs leptin

infused) and time before birth as the specified factors. A Student's unpaired t-test was

performed to determine whether the length of gestation was different between saline and

leptin infused fetuses.

5.7 RESULTS

5.7.I Leptin infusion from 136/137 d gestation

5.7.1 .I Plasma leptin concentrations and fetal blood gas status

During the pre-infusion period, there was no difference in the plasma leptin

concentrations between fetuses assigned to the saline (3.0 + 0.9 ng/ml) or leptin (4.4 !

1.0 nglml) infusion groups. Plasma leptin concentrations increased (P<0.001) during the

leptin infusion period (+24 h: 22.9 + 3.9 nglml, +92-96 h,20.1 + 1.5 nglml) but not

during the saline infusion period. There \ilas no signif,rcant difference in mean fetal

arterial blood gas and pH values between the saline and leptin infused groups during the

infusion period (pOz - saline infused, 21.1 + 0.6 mmHg; leptin infused, 22.3 + 0.5

mmHg, pCOz - saline infused, 50.4 t 1.2 mmHg; leptin infused, 49.1+ 0.8 mmHg, pH -

saline infused, 7.404 + 0.006; leptin infused, 7 .40I + 0.005).

5.7.1 .2 Fetal plasma ACTH and cortisol concentrations

Plasma ACTH concentrations during the pre-infusion period were not different between

fetuses assigned to the saline (28.5 + 3.5 pglml) or leptin (26.9 + 1.6 pglml) infusion

groups. During the infusion period, there was a significant interaction between the

effects of treatment and time on ACTH concentrations expressed relative to those in the
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preinfusion period (P<0.05; Figure 5.1). In the saline infused grouP, the change in

plasma ACTH concentrations relative to baseline values was greater at 96 h (13.7 + 7.8

pglml, P<0.01) than at between 2 h and 44 h after the start of the infusion (-6.8 + 3.4

pglml). In contrast, in fetuses infused with leptin, there was no change in plasma ACTH

concentrations during the 96 h infusion period (+96 h: -4.7 + 2.0 pglml).

There was no difference during the preinfusion period in the plasma cortisol

concentrations between the fetuses assigned to the saline (14.4 + 2.5 nmol/l) and leptin

(13.S + 6.2 r'rrrrolll) infusion groups. During the infusion period, there was a significant

interaction between the effects of treatment and time on cortisol concentrations relative

to basal levels (P<0.02; Figure 5.1). In the saline infused group, the change in plasma

cortisol concentrations was greater at 96 h (54.1 + 7 .5 nrnoll|' P<0.001) when compared

with between 3 h before and 24 h after the start of the infusion (I4.9 + 2.9 nmoVl).In

fetuses infused with leptin, there was no change, however, in plasma cortisol

concentrations throughout the infusion period (+96 h: 7.0 + 3.9 nmol/l; Figure 5.1).

The ratios of plasma cortisol : plasma ACTH concentrations during the pre-infusion

(saline infused:0.61 + 0.15, leptin infused: 0.56 + 0.21) and infusionperiods were not

different between the two treatment groups (Figure 5.1). The ratio of plasma cortisol :

ACTH concentrations were significantly higher (P<0.001) in both treatment groups,

however, at +96 h (saline infused: 1.66 + 0.23, leptin infused: I.I2 + 0.25), when

compared to the period from 3 h before until 52 h after the start of the saline (0.82 +

0.26) or leptin (0.63 + 0.22) infusion (Figure 5.1).
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5.7.2 Fetal plasma leptin, cortisol and ACTH concentrations in saline infused

fetuses between 125 and 150 d gestation

There was a significant increase in plasma cortisol concentrations between 125 and 150 d

gestation in saline infused fetuses (Figure 5.2). There was no change, however, in plasma

leptin concentrations in these fetuses during this period (Figure 5.2). V/hilst there was no

relationship between fetal plasma cortisol (y) and leptin (x) concentrations at I25 - 137 d

gestation, there was a significant negative relationship between the plasma

concentrations of these two hotmones at 138-146 d gestation (y : 81.4 - 7.7x, R:0'38,

P<0.005) (Figure 5.3). In contrast, there was no significant relationship between fetal

plasma ACTH and cortisol concentrations during this period.

5.7.3 Leptin infusion from 144 d gestation

5.7.3.1 Plasma leptin, ACTH and cortisol concentrations during the first 20 h of the

saline and leptin infusion

During the pre-infusion period, there was no difference in the plasma leptin

concentrations between fetuses assigned to the saline (2.8 ! 0.9 nglml) or leptin (3.S +

0.8 nglml) infusion groups. During the first 20 h of infusion, plasma leptin

concentrations increased signif,rcantly in the leptin infused (+20 h: 18.3 + 2.1 ng/ml) and

not in the saline infused fetuses (+20 h: 2.0 + 0.7 nglml) (Figure 5.4)'

During the preinfusion period, there was no difference in either fetal plasma cortisol or

ACTH concentrations between fetuses assigned to the saline (62.8 + 18.6 nmol/l and

41.5 + 5.1 pglml respectively) and leptin infusion groups (81.4 + 22.2 nmolÄ and 42.0 +

6.4 pglml respectively). At 20 h after the start of the infusion there was no difference in
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Figure 5.2 Plasma cortisol and leptin concentrations between 125 and 150 d

gestation in fetal sheep assigned to the saline infused group'

Different alphabetic superscripts denote mean hormone values which are significantly

different (P<0.05) from each other during late gestation.
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144 d gestation.
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either plasma cortisol (saline infused, 61.4 + 5.1 nmol/l; leptin infused, 81.4 + 22.2

nmol/l) or ACTH (saline infused,41.0 + 4.9 pglml; leptin infused, 34.1 + 5.0 pglml)

concentrations between the saline and leptin infused groups.

5.7.3.2 Effects of leptin on the timing of delivery and on plasma ACTH and cortisol

c onc entr ati ons pre c edin g d eliv ery

There was no difference in the length of gestation between the saline and leptin infused

groups (saline infused, 150.2 + 0.5 d; leptin infused, 149.8 + 1.0 d).

Circulating leptin concentrations were higher in leptin infused than saline infused fetuses

from 114 h before and up to delivery (leptin infused: 16.3 + 2.9 nglml; saline infused, 2.5

+ 0.1 nglml; P<0.001). There was no significant change with time in plasma leptin

concentrations in either the leptin or saline infused fetuses during this period (Figure

s.s).

There was no difference in plasma ACTH concentrations between the saline infused

(70.8 + 46.8 pglml) and leptin infused (69.7 !22.6 pglml) fetuses during the period 114-

6 h before delivery. In both the saline and leptin infused groups, plasma ACTH

concentrations were significantly higher (P<0.001) during the period from 18 to 6 h

before delivery when compared with either 90-78 h or I 14-102 h before delivery (Figure

5.6).

There was a signif,rcant interaction (P<0.05) between the effects of leptin infusion and

time before delivery on fetal plasma cortisol concentrations (Figure 5.6). Between 90 and

42 h before delivery, circulating cortisol concentrations were significantly higher in the
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saline infused fetuses (90-42 h: saline infused, 142.5 + 27.6 nrnolll; leptin infused, 84.3 +

22.7 nmolll; P<0.05) (Figure 5.6). During the period 42 to 6 h before delivery, however,

there was no difference in plasma cortisol concentrations between the saline infused

(18S.0 + 42.4 nmol/l) and leptin infused groups (244.5 ! 69.3 nmol/l). Plasma cortisol

concentrations (P<0.001) were highest in both leptin and saline infused groups from

between 30 and 6 h before delivery (Figure 5.6).

There was a significant interaction between the effects of treatment and the time relative

to delivery on the ratio of plasma cortisol : ACTH concentrations (P<0.005) (Figure 6C).

There was no significant difference between the saline and leptin infused fetuses in the

ratio of plasma cortisol : ACTH concentrations between 114 and 90 h before delivery

(saline infused: 1.89 + 0.45, leptin infused: 2.04 + 0.42). The plasma cortisol : ACTH

ratios were lower, however, in the leptin infused fetuses between 90 and 30 h before

delivery (saline infused, 2.18 + 0.53; leptin infused, 1.62 + 0.34) (Figure 6C).

5.8 DISCUSSION

We have demonstrated that infusion of leptin into fetal sheep, resulting in a 4-5 fold

increase in circulating leptin concentrations suppressed the normal increase in fetal

cortisol concentrations at the onset of the prepartum activation of the fetal HPA between

136 and 140 days gestation. Furthermore, intrafetal infusion of leptin from 144 days

gestation until delivery also suppressed fetal plasma cortisol concentrations for an

extended period from 90 to 42h before delivery. Whilst plasma cortisol concentrations

were reduced by around 40o/o dwing this period in the leptin infused group, there was no

difference in the timing of parturition between leptin and saline infused fetuses.
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In a previous study, Howe and colleagues (447) infused leptin via the lateral cerebral

ventricle in fetal sheep between 135 and 140 days gestation and measured plasma ACTH

and cortisol concentrations during a 4 h sampling period at 135 days and at 140 days

gestation. They found that the increases in the mean value and amplitude of the pulses in

plasma ACTH and cortisol concentrations between 135 and 140 days gestation were less

in the leptin infused compared to the vehicle infused fetuses (447).

In the present study, there was an increase in fetal plasma ACTH and cortisol

concentrations when saline was infused for a 96 h period between 136 and 141 days

gestation as expected. There was no increase, however, in either plasma ACTH or

cortisol concentrations when leptin was infused during this gestational age range. During

this period, the inhibitory effect of leptin on the prepartum increase in fetal cortisol

concentrations appeared to be relatively greater than its impact on fetal plasma ACTH

concentrations. Furthennore when leptin was infused continuously from 144 days

gestation, there was no effect on fetal ACTH concentrations during the week before

delivery. In marked contrast, leptin infusion from 144 days gestation suppressed fetal

plasma cortisol concentrations and the ratio of fetal plasma cortisol : ACTH

concentrations for an extended period from 90 h until around 42 to 30 h before delivery.

The suppression of fetal plasma cortisol concentrations and the decrease in the ratio of

plasma cortisol : ACTH concentrations was not maintained, however, during the last 30

h before delivery despite continued infusion of leptin. Plasma cortisol concentrations

were similar in both the leptin and saline infused fetuses on the day before delivery and

there was no difference between these two groups in the timing of delivery which

occurred between 148 and 153 d gestation. In summary, evidence from the current study
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suggests that an increase in circulating leptin concentrations in the sheep fetus during late

gestation can blunt, but not block, the prepartum activation of the HPA axis and delivery.

Whilst there may be a transient impact of leptin on fetal plasma ACTH concentrations

during the early phase of activation of the fetal pituitary-adrenal axis in late gestation, the

predominant action of leptin appears to be to suppress the normal prepartum increase in

circulating cortisol and adrenal responsiveness to ACTH.

In adult sheep it has been demonstrated that i.c.v. infusion of leptin suppressed food

intake and resulted in a decrease in the expression of the mRNA for the orexigenic

peptide, Neuropeptide Y (NPY) in the hypothalamic arcuate nucleus (480). This is

consistent with the localisation of the long form of the leptin receptor in around 60Yo of

NPY containing cells in the sheep hypothalamus (481). There is also evidence in the

sheep that hypothalamic NPY can regulate the synthesis and secretion of the ACTH

secretagogues, corticotropin releasing hormone (CRH) and arginine vasopressin (AVP)

(294). NPY is present within the arcuate nucleus of the fetal sheep hypothalamus during

late gestation (482) and it is possible that leptin acts centrally via leptin receptors located

within the fetal hypothalamus to suppress NPY, CRH and/or AVP secretion and hence

result in a decrease in fetal plasma ACTH concentrations in late gestation. It appears

from the present study, however, that any inhibitory effect of an increase in circulating

leptin concentrations on fetal ACTH secretion is not maintained during the week before

delivery. The sustained increase in circulating leptin concentrations may induce

resistance to the central actions of leptin as this has been proposed to underlie reduced

sensitivity to peripherally administered leptin in genetically wild type mice, primates and

lambs (483-485). There is evidence that high circulating leptin concentrations may

induce a decrease in the transport or access of leptin to the brain (486-488). Whilst this is
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possible, it should be noted that we found no evidence that leptin infusion at 144 days

resulted in an initial decrease in fetal ACTH concentrations during the first day of the

infusion period. An altemative explanation is that the hypothalamic mechanisms that

stimulate fetal pituitary ACTH synthesis and secretion during the prepartum period are

not suppressed by an increase in peripheral leptin concentrations. In the present study,

we have demonstrated, however, that leptin infusion blunted the increase in fetal cortisol

at the onset of the prepartum stimulation of the fetal HPA axis between 136 and 141 days

gestation and resulted in a suppression of fetal cortisol during the week before delivery.

A range of studies have repofted that that the long form of the leptin receptor is

expressed in human, rat and mouse adrenal and that leptin acts directly to inhibit ACTH

stimulated glucocorticoid secretion by the bovine (300), human and rat adrenal gland

(20S). Leptin acts to decrease the expression of the steroidogenic enzymes, cytochrome

P450 C2l-hydroxylase, side chain cleavage and C17 cn hydroxylase in the bovine adrenal

and it has recently been reported that leptin reduces the ACTH stimulation of

steroidogenic acute regulatory protein (StAR) expression in the rat adrenal (301, 489). It

has been proposed that in the adult, a leptin mediated endocrine feedback loop exists

between adipose tissue and the HPA axis as glucocorticoids can stimulate leptin

expression and secretion from the adipocyte (187, 188), whereas rising circulating leptin

concentrations can directly down regulate adrenal cortisol synthesis and secretion. The

current study provides evidence that leptin can act directly at the fetal adrenal and raises

the novel possibility that a leptin mediated endocrine feedback loop between fetal

adipose tissue and the HPA axis is present in late gestation.

In the present study, intrafetal leptin infusion resulted in circulating leptin concentrations

of around 15-20 nglml Whilst these concentrations are similar to those measured in
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well-fed pregnant ewes where rapid maternal weight gain has occurred (441), they are

significantly higher than those measured by us or others in the fetal sheep of well

nourished ewes in late gestation (146, 446,455,474). Significant fetal hyperleptinaemia

has been reported in human pregnancies complicated by maternal glucose intolerance

and fetal hyperglycaemia (56-58) and in these pregnancies it is possible that the increase

in fetal leptin concentrations may regulate adrenal responsiveness to ACTH and other

stimulatory hormones. What is currently unclear is the extent of the endocrine interaction

between fetal adipose tissue and the HPA axis in normal pregnancy. In the sheep fetus,

circulating leptin concentrations are positively correlated with the relative mass of lipid

stored in dominant cellular lipid locules within the fetal perirenal adipose tissue (455)

and leptin is therefore an endocrine signal of the lipid storage capacity of this tissue.

Forhead and colleagues (446) have reported that plasma cortisol and leptin

concentrations increase in parallel during late gestation and are positively related

between 130 and 140 days in the sheep fetus. Furthernore they reported that fetal

adrenalectomy resulted in lower plasma leptin concentrations in fetal sheep after 136

days (446). In contrast, two recent studies found that plasma leptin concentrations did not

increase between 1 16 and 140-145 days gestation in fetal sheep of either well nourished

or undernourished ewes (455, 474). FurtheÍnore cortisol infusion or adrenalectomy did

not alter leptin mRNA levels in perirenal adipose tissue in the late gestation sheep fetus

(490). It is unclear therefore to what extent cortisol exerts a stimulatory effect on fetal

leptin synthesis and secretion during late gestation. In the present study we found that in

saline infused fetuses, there was no change in fetal plasma leptin concentrations during

the last 3 weeks of gestation and that there was no relationship between plasma cortisol

and leptin concentrations between 125 and 137 days gestation. There was, however, a

negative relationship between circulating cortisol and leptin during the week before
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delivery such that around 14o/o of the variation in plasma cortisol in the saline infused

group was explained by the variation in fetal leptin concentrations. Thus whilst the

initiation of the prepartum increase in fetal plasma cortisol does not appear to be related

to any concomitant fall in circulating leptin, leptin may act to inhibit the output of

cortisol from the fetal adrenal during the week before delivery.

In summary we have demonstrated that an increase in circulating leptin concentrations in

fetal sheep suppressed the normal increase in fetal cortisol concentrations at the onset of

the prepartum activation of the fetal HPA between 136 and 140 days gestation.

Furthermore intrafetal infusion of leptin from 144 days gestation until delivery also

suppressed fetal plasma cortisol concentrations for an extended period from between 90 -

42 h before delivery. Whilst plasma cortisol concentrations were reduced by around 40%

in leptin infused fetuses, there was no difference in the timing of parturition between the

leptin and saline infused groups. V/hilst fetal plasma leptin concentrations do not fall

before the prepartum increase in fetal cortisol, there is a negative relationship between

circulating cortisol and leptin concentrations in the week before delivery. This study

therefore provides evidence that a leptin mediated, endocrine negative feedback loop

between fetal adipose tissue and the HPA axis may be present before birth and play an

important role in determining the fetal adrenal responsiveness to ACTH and other

trophic factors during intrauterine stress, parturition and the transition from intrauterine

to extrauterine life.
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6. GENERAL DTSCUSSION

The work described in this thesis investigates the regulation and actions of leptin before

birth in sheep and includes some of the first reported studies of this hormone in a

mammalian fetus. At the time these studies commenced, it was known that leptin protein

was present in umbilical cord blood samples in newbom human infants which suggested

that leptin might be an important regulatory hormone before birth in mammals.

Adipocytes that contain visible lipid locules were reported to be present in perirenal

adipose tissue from as early as the middle of gestation in the sheep fetus and it is possible

to work with the chronically catheterised sheep fetus during late gestation (84).

Therefore the sheep appeared to be a valid model in which to investigate the

developmental physiology of leptin in mammals. To undertake this work, a method was

developed and validated to measure ovine leptin mRNA by RT-PCR. The concurrent

establishment of an immunoassay for ovine leptin protein in sheep plasma by external

Australian collaborators and the generous donation of biologically active recombinant

ovine leptin by aî American collaborator permitted expansion of the research

investigation.

In Chapter 2,leptin mRNA expression in adipose tissue was discovered well before the

time of birth, from at least 90 days gestation in the sheep fetus. This is less than two-

thirds of normal gestation in the sheep. This study also revealed that the abundance of

leptin mRNA in adipose tissue progressively increases during the last third of fetal

development in this species. The original observation that the abundance of leptin

mRNA in adipose tissue of the sheep fetus is positively correlated with the body weight

of the fetus (Chapter 2), provided indirect evidence that fetal production of leptin may be

ts7



CHAPTER 6 GBNBn¡r, DrscussroN

controlled by factors that regulate growth and development of the fetus (443).

Subsequently, other researchers showed that the expression of leptin mRNA could be

detected in this tissue from as early as 75 days gestation in the sheep fetus (445).

More recently, leptin protein has been detected in the circulation of fetal sheep from as

early as the first quarter (40 days) of gestation (146). As this is before the appearance of

fetal adipose tissue it indicates that leptin protein may be derived from other feto-

placental tissues (146).Indeed, leptin mRNA has been detected in other organs of the

sheep fetus, including the brain and liver, from as early as 40 days gestation (146).

Unlike the placenta of other mammals (humans (130), rats (131), mice (127)), which

produces as much as l5o/o of the leptin protein detected in the fetal circulating (403-405),

the ovine placenta does not express leptin mRNA (445)(Yuen, unpublished data),

although, leptin protein has been detected in the sheep placenta (127).

It is thought that leptin is able to cross cell membranes, e.g. blood brain barrier (234-

242),however, the exact mechanisms by which leptin is able to cross the cell membranes

remains to be determined. Some have proposed that Ob-Ra - the short form of the leptin

receptor, which is expressed in the mammalian placenta (274, 221, 228), may be

involved in the transport of leptin (238, 242). Studies by Smith and Waddell (214, 407),

demonstrated when iodinated leptin was infused into the maternal circulation of rats, the

radiolabelled leptin could later be detected in the fetal circulation. It suggests that, at

least in the rat, leptin is able to cross the placenta. This may explain how leptin protein is

detected in the circulation of fetal sheep as early as 40 days gestation. I have reported

thaI" a positive relationship exists between matemal leptin and fetal leptin concentrations

(Chapter 3), and this is certainly consistent with matero-fetal leptin transport and could
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explain how detectable concentrations of leptin are present in the fetal circulation of

sheep as early as 40 days gestation (84).

By 130 days gestation, leptin mRNA expression in the brain and liver of the sheep fetus

is almost undetectable. In late gestation it appears that fetal adipose tissue is the major

contributor to circulating leptin levels in the fetal sheep. Gemmell et al (84) examined

the ultrastructure of perirenal and subcutaneous adipose tissue in sheep fetus, and

observed that both depots contained adipose tissue, which contained lipid locules. I

demonstrated that leptin mRNA expression in adipose tissue increases between 90 and

144 days gestation in the sheep fetus (Chapter 2) and reported that the abundance of

leptin mRNA in the perirenal adipose tissue of fetal sheep between 144 and 147 days

gestation was positively correlated with circulating leptin concentrations in the fetus

(Chapter 3). Furthermore, it has been demonstrated that the abundance of leptin mRNA

in fetal adipose tissue was positively correlated with the proportion of adipose tissue

comprised of lipid locules which were greater than 75 ¡tm2 (Chapter 4) and the mass of

this unilocular proportion of fetal adipose tissue was positively correlated with

circulating leptin concentrations in the sheep fetus (455). Together these f,rndings suggest

that in the fetus, like in the adult, leptin expression and secretion occurs from cells that

are predominantly unilocular, i.e. contain a dominant lipid locule. Moreover, it may be

that in the fetus, as in the adult, factors that alter adipocyte or lipid locule size, such as

glucose, insulin, cortisol and IGF-I, may also regulate circulating leptin concentrations

(6,1,491,492).

The positive relationship between maternal and fetal leptin concentrations and the

possibility that maternally derived leptin protein is transported into the fetal circulation is
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intriguing, however, this conclusion is inconsistent with the positive relationship found

between leptin synthesis and circulating leptin concentrations in the sheep fetus during

late gestation. One possible explanation is that fetal cortisol concentrations regulate the

transplacental passage of leptin and during late gestation, as circulating cortisol

concentrations increase in the sheep fetus, the transplacental passage of leptin decreases.

Smith and Waddell (407) showed that in pregnant rats, maternal dexamethasone

treatment, which is known to increase fetal dexamethasone concentrations, caused a

decrease (77%) in the placental transfer of leptin. Conversely, maternal metyrapone

treatment, which is known to decrease maternal and fetal corticosterone concentrations,

increased (55%) the placental transfer of leptin (407). Thus it can be concluded that

cortisol is an important determinant of matero-fetal leptin transport. It is well known that

the fetal HPA axis becomes increasingly active during late gestation and fetal cortisol

concentrations increase from -135 days gestation. Hence one possibility is that fetal

cortisol concentrations decreases the transplacental passage of leptin resulting in a

greater contribution of the fetal adipose tissue to circulating leptin concentrations in the

sheep fetus.

Although studies by Yuen (Chapter 3), Muhlhausler (455) and colleagues showed that

moderate changes in maternal food intake do not significantly affect leptin expression

and/or circulating leptin levels in fetal sheep, it is unclear whether changes in matemal

nutrition during pregnancy will effect postnatal leptin concentrations. There is evidence

to suggest that, in some species, a suboptimal intrauterine environment causes the

development of obesity and alters circulating leptin concentrations in progeny, however,

in these studies no measurements of circulating leptin were taken at or before birth.

Vickers and colleagues (453, 493) showed that decreased matemal food intake during
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pregnancy resulted in rats that were lighter and shorter in length at birth, however no

measurements of plasma leptin concentrations were made at this time. These offspring

exhibited catch-up growth during early life and by young adulthood, the rat offspring

were obese, hyperphagic and had elevated circulating leptin concentrations, suggesting

that these animals had become leptin resistant. Vickers (494) showed that these effects

could be attenuated with the administration of IGF-I during young adulthood. Certain

findings from the Vicker's rodent model mimics observations in adult humans who were

small at birth. Low birthweight newborns that experience catch up growth during

childhood are found to develop adult obesity (59). Whilst circulating leptin

concentrations were not measured in these subjects (59), it is well established that obese

humans have high circulating leptin concentrations compared to lean individuals and is

thought to be a consequence of these individuals being leptin resistant (15, 1I7,I33,

379). Therefore, a suboptimal environment during pregnancy followed by certain

postnatal events can lead to the development of adult obesity, elevated circulating leptin

concentrations and leptin resistance in offspring. Ekert (454) showed that in pigs,

however, fhat a moderate feed restriction during pregnancy decreased the abundance of

leptin mRNA in adipose tissue and concentrations of leptin protein in blood in adolescent

offspring. These differences maybe related to differences in the development of adipose

tissue and the leptin axis in these species (492,495).

In Chapters 4 and 5, I examined the effects of intravascular infusion of leptin into fetal

sheep on adipose tissue and on the HPA axis in the sheep fetus. Leptin treatment altered

the structural and functional characteristic of fetal adipose tissue (Chapter 4) by

increasing the proportion of adipose tissue with a multilocular appearance and reducing

the proportion of the tissue that was unilocular. Leptin expression was decreased, UCP-1
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protein abundance tended to increase and the abundance of other mitochondrial proteins

were not altered in the adipose tissue of fetuses infused with leptin. These experiments

show that leptin can down regulate its own expression and can potentially stimulate

thermogenesis in fetal adipose tissue.

In Chapter 5, the effects of leptin on the fetal pituitary-adrenal axis were described. I

demonstrated that during the early phase of prepartum activation of the fetal HPA axis,

continuous administration of leptin appeared to suppress both ACTH secretion by the

pituitary gland and cortisol secretion by the fetal adrenal gland. When leptin was

continuously administered later in gestation, cortisol concentrations in fetal blood were

reduced for an extended period although leptin was unable to prevent the prepartum

surge in cortisol that occurred during the 2 days before delivery. Interestingly around

l4o/o of the variation in fetal cortisol concentrations was explained by variation in leptin

concentrations in the late gestation sheep fetus. These data suggest that in the fetus, as in

the adult (299, 496, 497), a leptin-mediated feedback loop may exist between adipose

tissue and the pituitary andlor adrenal glands in the sheep fetus.

In conclusion, the studies presented in this thesis demonstrate that leptin is expressed in

fetal adipose tissue, and that leptin expression and circulating leptin concentrations are

not altered in response to moderate changes in maternal food intake during pregnancy.

Furthermore, intravenous administration of leptin to fetal sheep causes structural and

functional changes in fetal adipose tissue resulting in a greater proportion of the adipose

tissue having a multilocular appearance, which may have increased thermogenic activity.

In the fetal sheep, leptin treatment also suppresses the typical prepartum surge in cortisol

concentrations, although the effectiveness of leptin to attenuate rising cortisol
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concentrations was dependent on time relative to birth. These effects are not mediated by

changes in ACTH concentrations and therefore implicate a direct action of leptin on the

fetal adrenal gland.
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ABSTRACT

We have investigated the effecls of maternal undernufrition
during late gestalion on malernal and felal plasma concentra-
lions of leptin and on leptin gene expression in fetal perirenal
adipose tissue. Pregnant ewes were randomly assigned at 115
days ofgestation (term = 147 = 3 days [mean = SEM]) lo either
a control group (n = l3) or an undernourished group (n = 16)
that received -5O% oi lhe cont¡ol diet until 144-147 days oÍ
gestation. Maternal plasma glucose, bul not leptin, concenlra-
tions were lower in the undernourished ewes. A significant cor-
relation was found, however, between mean maternal plasma
leptin (y) and glucose (x) concentralions (y = 2.9t - 2.4¡ r =
0.51, P < 0.02) when the control and undernourished groups
were combined. Felal plasma glucose and insulin, but not fetal
leptin, concenlralions were lower in the undernourished ewes,
and no correlation was found between mean felal leptin con-
central¡ons and either mean fetal glucose or insulin concentra-
tions. A positive relationship, however, was found between mean
fetal (y) and malernal (x) plasma leptin concentrations (y -
0.18x f 0,45¡ r = 0.66, P < 0.003). No significant difference
was found in the relative abundance of leptin mRNA in fetal
perirenal fat between the undernourished (0.60 

= 0.09, n = l0)
and control (0.70 = 0.08f n = 10) groups. tetal plasma con-
cenlrat¡ons of leptin (y) and leptin mRNA levels (x) in perirenal
adipose tissue were significantly correlated (y = 1,5x Ê 0.3; r
= 0.69, P< 0.05). ln summary, the capacity of leptin to act as

a signal of moderate malernal undernutrition may be limited
before birth in lhe sheep.

insulin, leptin, pregnancy

INTRODUCTION

læptin is a l6-kDa protein hormone that is principally
synthesized ald secreted by adipocytes and tt¡at suppresses
appetite and increases energy expenditure in the adult [].
During adult life, plasma concentrations of leptin and the
abundance of leptin mRNA in adipose tissue correlate pos-
itively with body weight and adiposity, and these concen-
t¡ations a¡e altered by long-term changes in dietary intake
in the rodent, human, ard sheep [2-7]. A positive relation-
ship also exists between leptin expression in fetal adipose
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tissue and fetal weight in the sheep [8], and leptin concen-
trations in umbilical cord blood cofielate positively wittr
birth weight in the human t9, l0l. Because fetal growth
rate and body weight at birth are positively affected by
nutrition during pregnancy, we hypothesized that the syn-
thesis and secretion of leptin may be regulated by the fetal
nutrient supply. In the present study, we therefore investi-
gated the effects of matemal undernutrition during late ges-
tation in the sheep on matemal and fetal plasma concentra-
tions of leptin and on leptin gene expression in fetal adipose
tissue. We also investigated the relationship between ttre
abundance of leptin mRNA in t}ris fetal tissue and circu-
lating fetal glucose, insulin, and leptin concentrations.

MATERIALS AND METHODS

Animals and Surgery

All præedures werc apprcved by the Adelaide University Animal Eth-
ics Comittee. Surgery was perfomed on 29 pregnant Border-Leicester
Merino cross-bred ewes uirder æeptic conditions betweetr 109 and ll3
days of gestation (tem = 147 t 3 days [mean + SEM]) witl general
anesthesia induced by sodium thiopentone (1.25 g i v.; Pentothal; Rhone
Merieux, Pinkenba, Qld, Australia) and mintained wilh 25-4Vo (v/v) hal-
othme (Fluothme; ICI, Melboume, Vic, Australia) in oxygen. Vasculu
catheters were implanted in a matemal jugular vein, a fetal carotid afery
and jugulu vein, md the amiotic cavity æ prcviously described [1].
Catheteß were filled with hepariniæd saline, and the fetal catleters were
exteriorized through m incision made in the ewes' flank. During surgery,
ewes ud fetuses received a 2-ml i.m. injection of mtibiotics (procaine
penicillin t250 me/mll, dihydrostreptomycin [250 mg/ml], and præaine
hydrætrloride [20 mg/ml]; Penst¡ep lllium; Troy Laboratodes, Smithfreld,
NSW Australia). Ewes werc housed in individual ¡rcns in ræms with a
l2L:l2D photoperiod and fed once daily ât 1100 h with water provided
ad libitum. Animals were allowed to recover fiom surgery for at leæt 4
days beforc collection of fetal md mtemal blood smples comenced.

Feeding Regime

Prcgnmt ewes were randomly æsigned at 115 days either to a control
group weighing 56.7 + 1,9 kg (n = 13) that received 19.8 + 0.2 g/kg of
luceme and 3.0 I 0.1 g/kg of oâts per day or to an undemourished group
weighing 53.5 ! 2,3 kg (n = f6) that received 10.3 + 0.1 g/kg of luceme
and 1.6 t 0.1 g/kg of oats per day. Matemal fmd allocation wæ increased
in both the control and undemourished groups (luceme by 157o, oas by
l0lo) every l0 days until postmortem al 144-147 days of pregnancy [1 l].

Blood Sampling Protocol

Matemal venous (5 ml) and fetâl arterial (3.5 nil) blood samples wee
collected between 0800 and 1 100 h, before the ewes were fed, three úmes
each week betwæn 116 md 140 days of gestation. Blood samples were
centrifuged at 1500 X g for 10 min, and plæma wæ separat€dinto aliquots
and storcd at -20oC for subsequent glucose ud homone æsay. At times
during the 25-day protocol, blood sampla could not be collected due to
technical prcblem (primrily related to blæked væculu catheteß). The

9lt
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number of matemâl and fetal blæd samples that were available for glu-
cose, insuLin, and leptin detemination are detailed in the subsequent assay
sections Fetal arterial blood (0.5 ml) samples were also collected for the
meæurement of alerial blood gæ ståtus (ABL 520 blood gas analyzer;
Radiometer, Copenhagen, Denmark)

Tissue Collection

Ewes were killed between I44 and 147 days of pregnancy with a lethal
overdose of sodium pentobartitone (Virbac Pty Ltd.; Peakhurst, NSW
Australia). Fetuses were delivered by hysterotomy, weighed, md killed by
decçitation (control group, 12 singletons md 2 twins; undemutrition
group, 15 singletons and 1 twin). Fetal perirenal adipose tissue was col-
lected and weighed, and a sample was frozen in liquid n¡trogen and stored
ar -80"c.

Glucose Assay

Plasma glucose concentrations were detemined in 234 matemal plas-
ma samples (control grcup, 90 samples, n = 8 shæp; undemutrition grcup,
144 smples, n = 13 shæp) and 348 feta-l plmm samples (controì group,
160 samples, n : 13 sheep: undemutriúon grcup, 188 smples, n = 16
sheep) by euymatic analysis using hexokinase and glucose-6-phosphate
dehydrogenme and measuring the fomtion of NADH spætrcphotomet-
rically at 340 m (COBAS MIRA automated analysis system; Roche D!
agnostic, Bæel, Swiøerland) [11]. The intra- md interassây coeffrcients
of variation were both (5%.

I nsuli n Rad ioim munoassay

Fetal plasm insulin concetrtratons were meæured in 196 samples
(contrcl group, 88 smples, n = 12 shæp; undemutrition, 108 smples, n
= 13 shæp) using a comercial kit (Phadaseph radioimunoassay kit;
Phamcia & Upjohn, Uppsala, Sweden). The detection rmge of the æsay
was 1.5-240 pU ml-r. Guinea pig anti-insulin mtisera md [tz5l]humm
insulin (100 pl) were added lo plasma samples (100 pl), which werc then
incubated for 2 h at ræm temperature befoÉ the addition of 2 ml of shæp
mti-guinea pig imunoglobulin G. Samples werc allowed to stand at rcom
temperature for a furthe¡ 30 min before being centrifr¡ged at 1500 X I for
10 min as described previously [11]. The inter- ând intraæsay coefficients
of vuiation were 110?o.

Leptin Assay

Plasma leptin concentrat¡ons were detemined ¡n I l9 matemal plæma
samples (control grcup, 50 samples, n = l0 sheep; undernutrition group,
69 samples, n = 15 sheep) and 99 fetal plæma samples (contrcl group,
44 smples, n = 9 sheep; undemutrition group, 55 sampla, n = 12 sheep)
using a æmçrctitive ELISA previously validated for shæp plasma [12].
The ELISA plate was coated with 6 ng of rccombinant bovine lepún in
50 ¡rl of0.1 M bicarbonate buffer (pH 9.0) ovemight at 37"C. The plate
was blæked with 200 ¡rl of 5?o skim milk in ELISA buffer for I h at
37"C. Samples (100 pl) were æsayed in duplicate md added to wells
containing 50 pl chicken antirecombinant bovine leptin antisem in 1007o
Triton-X 100, 0.5% SDS, and 5% sodium deoxycholate, and the plate wff
incubated ovemight at 37"C. Strepavidin conjugated to alþline phospha-
tase (Armd Biotech; Boronia, Vic, Australia) wæ added, and after in-
cubation for t h, the plate wæ developed with p-nitrcphenylphosphale
disodium salt hexahydrate. The seNitivity of the assay was 0.25 ng/ml,
md t¡e inter- a¡d intraassay cæffrcients of variationwerc L5.7Vo ndll%o,
respætively.

Leptin Reverse Transcription-Polymerase Chain Reaction

Perirenal adipose tissue was collected from 20 (control group, n = l0;
undemourished group, n = l0) of the 29 fetal sheep, and total RNA was
exÍacted tr previously described [8ì. Briefly, approdmately 100 mgfuf
fetal adipose tissue were homogenized with 1 ml of Sigma Trireågent
(Sigma Chem.ical Co., St. Louis, MO) and allowed to stand ât rcom tem-
perature for 5 min. This was then mixed with 1-bmmo-3-chloro-propane
(100 pl), left standing at rmm temperaû¡re for 10 min, and then centri-
fuged at 4"C at 3500 X I for l0 min. An aliquot of the aquæus layer
(500 pl) was recove¡ed and mixed with isopropmol (500 pl) The RNA
wæ præipitated by centrifugation at 3500 X g for 5 min at 4"C. The pellet
wæ washed hTola e¡hanol and a.llowed to air dry. The RNA pellet was
then dissolved in sterile water (20 pl), and 1 pl of the solution wæ diluted
in sterile water (500 pl) for deteminat¡on of the sptrtrophotometric ab-

sorbânce at 260 and 280 m The ratio of nucleic acid to protein was
>1.6, and the RNA yield was 0.44 a 0.02 ¡rg/mg adipose tissue- Integrity
of RNA preparations wæ evaluated by aguose gel electrophoresis, fol-
lowed by ethidium bromide staining md identiñcation of ribosomal RNA.

Ovine leptin and p-actin cDNA were amplifred by reverse transcrip-
tion-polymeræe chain reaction (RT-PCR) æ previously described [8].
Briefly, cDNA was obtained by RT of 2 pg of total RNA with random
hexamer oligonucleotides (GeneWork, Adelaide, SA, Australia) and Su-
per-Script RNase H- (Gibco BRL, Gaithersburg, MD). A fragment of
ovine lepún cDNA was amplifted tlrough 26 cycles of 60 sec at 94oC, 15

sec at 53oC, md 60 sec at 72'C (Hybaid PCR Express, Teddington, U.K.)
from 5 pl of RT prcduct using Taq DNA polymerase (Biotech Intema-
tional, Bently, rü4, Australia) according to the manufacturcr's instructions
with 5'-GACATCTCACACACGCAG-3' md 5'-GAGGTTCTCCAGGT-
CATT-3' (Generlr'orks) m primers. This produced a double-strmded frag-
ment of ovine leptn of 183 base pain (bp) whose sequence wæ con-
fimed A fragment of ovine p-actin cDNA was similarly ampü6ed sep-
rately by PCR of the sme RT prcduct used for amplifrcation of lepún
cDNA w.ith 5'-TGGATGGTGGGTATAIGGCTC-3' and 5'-TAGATGG-
GCACAGTGTGGGT-3', and the identity of the 349-bp product was con-
firmed by sequencing. Both cDNA products from RT-PCR (8 ¡rl) were
electrophoresed through a 2.0Va (wlv) agarose gel, stained with ethidium
bromide, visualized by ultraviolet transillumination, photographed using a

digital camer4 and quantifred using lD Image Analysis Software Electro-
phoresis Docurentation and Analysis System 120 (Kodak dS Digital Sci-
ence, Rochester, NY).

Statistical Analysís

Data are pEsented æ tJle mean t SEM. The effæts of rutemal nu-
trition on fetal body weight, total perirenal fat mss, rean gestaúonal
arterial POz, and the relative abundance of lepún mRNA (ratio of leptin
trtRNA to F-actin mRNA) in fetal perirenal adipose tissue were detemined
using unpaired Student Êtest. The effects of mat€mal nutdt¡on on matemal
plæma glucose and leptin concentrations were detemined by multifacto-
rial ANOVA with repeated meæurcs using feeding group (@ntrol vs. un-
demutrition) and gestational age (in 5-day blæks) as the specified facton.
Similarly, the effæts of matemal nutrition ild gestation on fetal plasma
glucose, insulin, and leptin concentrations were also detemined using
multifactorial ANOVA with repeated meNurcs. Data werc t¡ansfomed
when required to reduce heterogeneity of vuiance and overcome nonnor-
mal distributiom. The Duncan new multiple-rmge test wæ used after AN-
OVA to .identiry signiflcant differences betwæn mem values. Linar ¡e-
grasion ualysis wæ used to assess the relationship between tìe mem
plasm leptin and the mem plæma glucose concentratiom meæured in
each ewe md fetus f¡om 116 to 140 days of pregnancy. Similuly, lineu
regression malysis wæ also used to assess relationships between mem
plæru leptin and mean plæm glucose or insulin concentrations meNured
in each fetus from 116 to 140 days of pregnmcy. Relationships between
mean fetal plasma leptin concentntions md fetal body weight, fetal fat
mass, md matemal plasro leptin concentrations were sinilarly deter-
mined. A probability of 5Vo (P < 0.05) was taken ð lhe level of signiñ-
cance in all analyses.

RESULTS

Fetal Outcome

The mean fetal arterial PO2 throughout late gestation
was not different between the control (21.9 + 0.5 mm Hg)
and undernourished (23.4 + 0.6 mm Hg) groups. No dif-
ference was found in fetal body weights (control, 5.02 a
0.12 kg; undernourished, 4.70 t 0.16 kg) or relative fat
mass (control, 3.89 + 0-15 g/kg; undernourished, 4.13 +
0.29 glkg) between the two groups.

Maternal Plasma Glucose and Leptin Concentrations

Maternal plasma concentrations of glucose were signif-
icantly lower (F : 5.13, P < 0.05) in undemourished ewes
throughout late pregnancy (Fig. 1A). Plasma glucose con-
centrations were also lower (F : 4.88, P < 0.002) in both
control and undernourished ewes after 120 days when com-
pared with earlier in pregnancy (Fig. lA). No signiflcant
effect of undernutrition, however, was found on maternal
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FlC. 2. Relationship between maternal plæma leptin and glucose con-
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tions (B) in undernourished (closed symbols) and control (open symbols)

Sroups.

lower in the undernourished group (Fig. 3, A and B). Fetal
plasma concentrations of insulin were lowest (P < 0.003)
between l3l and 135 days compared with other gestational
periods. No significant effect of maternal undemutrition on
fetal leptin concentrations was found, however, and no sig-
nifrcant change in fetal plasma leptin concentrations was
observed between 116 and 140 days of gestation in either
the undernourished or the control group (Fig. 3C). Also, no
difference was observed between plasma leptin concentra-
tions in male and female fetuses.

No significant correlation was found between mean fetal
plasma concentrations of leptin and eittrer glucose or in-
sulin when data from the undemourished and control
groups were combined. Mean fetal (y) and maternal (x)
plasma leptin concêntrations were signifrcantly correlated
(y = 0.18x + 0.45; r:0.66, P < 0.003, n : 17) (Fig.
2B). The mean fetal plasma leptin concentrations between
116 and 140 days of gestation were not correlated with
either fetal body weight or with absolute or relative fetal
fat mass at lM-147 days of gestation.
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plasma concentrations of leptin, and no signiñcant change
in maternal leptin concentrations was found between 116
and 140 days of pregnancy in either the control or the un-
dernourisbed ewes (Fig. 1B). Mean maternal plasma leptin
(y) and glucose (x) concentrations were not correlated with-
in each separate feeding group; however, they were signif-
icantly correlated when data from the control and under-
nourished groups were combined (y : Z.gx - 2.4; r :
0.51, P < 0.02, n = 20) (Fig. 2A). No relationship was
observed between the mean maternal plasma concentrations
of leptin and either maternal body weight at 110-115 days
of gestation or fetal body weight zt 144-147 days of ges-
tation.

Fetal Plasma Glucose, Insulin, and Leptin Concentrations

Fetal plasma concent¡ations of glucose (F = 10.13, P <
0,005) and insulin (F -- 6.64, P < 0.02) were significantly
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DrscusstoN

In the present study, a positive relationship was found
between mean plasma concent¡ations of leptin and glucose
during the last 30 days of pregnancy when data from the
control and well-fed ewes were combined. Thomas et al.
[3] recently reported that when the dietary intake of ad-
olescent pregnant ewes was increased from moderate to
high or reduced from high to moderate at Day 50 of preg-
nancy, cìrculating maternal leptin concentrations changed
within 48 h of the alteration in mate¡nal diet. They sug-
gested that this was likely to be a "direct" nut¡itional ef-
fect. These authors also found that at some 50-90 days after
the change in diet, circulating leptin concent¡ations were
correlated with indices of body composition in the pregnant
ewe. They were unable, howeven, to distinguish whether
dietary intake or changed body composition due to the nu-
tritional treatments was the primary factor influencing cir-
culating leptin concentrations. In the present study, differ-
ences in maternal body composition may also explain some
of the va¡iation in maternal leptin concentrations.

We have also found that maternal plasma leptin concen-
trations varied between 3 and 10 ng/ml throughout late
pregnancy and that no signiflcant change occuÍed in cir-
culating þtin concentrations between 115 days of preg-
nancy and term in either control or undernourished adult
ewes. These circulating leptin concentrations are similar to
those reported by Thomas et al. [13] in moderately fed,
adolescent pregnant ewes from 50 days of pregnancy until
term. Those authors also found no significant change in
plasma lepún concentrations tfuoughout late pregnancy.
The lack of a change in plasma leptin concentrations towa¡d
the end of pregnancy in the sheep is in conhast to the in-
crease in plasma leptin concentrations that occurs during
late pregnancy in the human [14], rat [15], and mouse [16].
Adipose tissue is the main source of circulating leptin in
all species, but to whât extent other tissues, such as the
placenta, are also a source of leptin in the matemal circu-
lation during late pregnancy is unclear. Iæptin gene ex-
pression is relatively high in the human placenta [17] and
is also detectable in the rodent placenta [8]. Species-spe-
cific differences in the relative level of placental leptin ex-
pression may account for differences in the effect of preg-

o
o

a

a

z5

o0

FlC.3. Fetal plæma glucose (A), insulin (B), and leptin concentrat¡ons
(B) ¡n control (open histograms) and undernourished (dark h¡stograms)
groups between 116 and l40 days ofgestation. Aster¡sk denote a s¡g-
nificant effect of undernutrition on fetal glucose and insulin concentra-
t¡ons throu8hout late gestatìon.

Leptin nRNA Expression in Fetal Perirenal Adiposelissue

No signiñcant difference was found in the relative abun-
dance of leptin mRNA in fetal perirenal fat between the
undernourished (0.60 t 0.09, n : 10) and control (0.70 I
0.08, n = l0) groups. The mean fetal plasma concentrations
of leptin (y) and the relative abundance of leptin mRNA
(x) in perirenal adipose tissue were significantly correlated
(y : 1.5x * 0.3; r -- 0.69, P < 0.05, n : 9) (Fig. 4).
Leptin mRNA expression in fetal adipose tissue was not
related to either fetal weight (P = 0.09), fetal perirenal fat
mass, mean fetal glucose, or insulin concentrations.
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nancy on the maternal plasma concentrations of leptin be-
tween sheep and other species. The sheep placenta also
expresses the leptin receptor gene [3], and it is therefore
possible that maternal leptin may interact with leptin re-
ceptors within the placenta to impact on fetal growth and
development. Overfeeding the adolescent ewe tfuoughout
pregnancy increases maternal growth at the expense of the
placenta, leading to growth restriction of the fetus [19]. In
a cohort of overfed and normally fed adolescent pregnant
ewes, a negative association was found between maternal
plasma leptin concentrations and birth weight, placental
weight, and number of placentomes [13]. In the present
study in the manrre ewe, however, we found no significant
relationship between maternal plasma leptin concentations
and fetal body weight. Clearly, further work is required to
define the relative roles that maternal leptin and nutrients
play in placental and fetal growth and development at dif-
ferent stages of reproductive maturity.

Plasma concentrations of leptin in the fetus (<0.3-3 ng/
ml) were substantially lower than those in the pregnant
ewe, and no effect of either maternal undernutrition or ges-
tational age was found on circulating fetal leptin concen-
trations between 116 and 140 days of gestation. In a pre-
vious shrdy [8], we reported that the abundance of leptin
mRNA in fetal adipose tissue increased between 125 and
144 days of gestation. It may be that leptin concentrations
increase in the fetal circulation after 140 days of gestation.
Vy'e also found a positive relationship between fetal and
maternal plasma concent¡ations of leptin during late ges-
tation. One possible explanation is that maternal body com-
position or fatness either at the beginning or during preg-
nancy determines the leptin synthetic and secretory capac-
ity of both maternal and fetal adipose tissue or the amount
of fetal adipose tissue deposited during late gestation. A
positive relationship was found between circulating fetal
leptin and the relative abundance of leptin mRNA in fetal
adipose tissue; however, no relationship was found with
either maternal or fetal leptin concentrations or with the
absolute or relative fetal fat mass. Thus, any impact of ma-
ternal body composition on circulating fetal leptin concen-
trations is presumably expressed tlrough the leptin syn-
thetic and secretory capacity of the fetal adipose tissue. A¡
alternative explanation for the close correlation between
mateilal and fetal plasma leptin concentrations is that the
placental leptin receptor may mediate the uptake of leptin
from the maternal into the fetal circulation. This would be
similar to the postulated mode of action for the short iso-
form of the leptin receptor in the choroid plexus epithelium
to transport leptin from plasma into the cerebrospinal fluid
1201,

In the present study, maternal feed availability was re-
duced by 507o below maintena¡ce for 29-32 days, and this
was associated with an -167o fall in matemal glucose con-
cent¡ations and a 2O7o fall in fetal plasma glucose and in-
sulin concentrations. No signifrcant effect, however, of this
level of maternal undemutrition was found on the fetal plas-
ma concentrations of leptin or on the relative abundance of
leptin mRNA in the perirenal adipose tissue. It has recently
been reported that continuous infusion of insulin into preg-
nant ewes for up to 34 days resulted in fetal hypoglycemia
and hypoinsulinemia and reduced fetal body weight, but
that no change occurred in the expression of leptin mRNA
in fetal perirenal fat [21]. Those authors also reported, how-
ever, that if the period of continuous insulin infusion was
prolonged beyond 36 days (36-76 days), then fetal glucose
and insulin concent¡ations were reduced by 30-5OVo and

leptin mRNA expression was suppressed in fetal perirenal
f.^t l2l). Together, these snrdies indicate that the synthesis
and secretion of leptin in the sheep fetus is resistant to the
changes in fetal glucose and insulin concentrations associ-
ated with moderate maternal undernutrition. Fetal leptin
synthesis is suppressed, howeve¡ in the presence of pro-
found fetal hypoglycemia or hypoinsulinemia, which may
occur as a consequence of either pharmacological induction
of maternal hypoglycemia or severe maternal undernut¡i-
tion.

In the human, strong positive associations exist between
umbilical cord blood leptin concentrat¡ons at delivery and
infant body weight at birth as well as with other antfuo-
pometric markers of fetal growth, including estimates of
fetal fat mass [9, LO, 22-25). We have also previously re-
ported [8] that the abundance of leptin mRNA in fetal ad-
ipose tissue was positively correlated with fetal body
weight in a cohort of fetuses at an earlier gestational age
than those used in the present study. In the present study,
howeveç whereas the relationship between leptin mRNA
expression in fetal adipose tissue and fetal weight tended
to be positive (P : 0.09), no relationship was found be-
tween circulating leptin concentrations and either fetal
weight or relative fat mass. These differences between the
sheep and the human may be explained, in part, by the
different patterns of fat deposition that occur in these spe-
cies during fetal life. In the sheep fenrs, fat is deposited at
-0.8 g/kg fetal body weight per day, the proportion of body
fat at term is -0.3-2.OVo, and the major fat depot is the
perirenal adipose tissue, which is comprised predominantly
of brown fat cells [26]. Whether leptin is expressed uni-
formly in all perirenal adipocytes in the sheep fetus before
birth is unknown. In contrast, in the human fetus, fat is
deposited at a higher rate (-3.5 g/kg fetal body weight per
day), the proportion of body fat at term is -167o, and sub-
cutaneous fat depots are comprised predominantly of white
fat cells [27]. Despite these differences between sheep and
human fehrses in the rate of fat deposition, the leptin syn-
ttretic capacity of fat stores, and the effect of undernutrition
on leptin concentrations during late gestation, it is interest-
ing that perturbations of the intrauterine environment may
program the development of postnatal obesity in these and
other species. Restricted fetal nutrient supply programs al-
terations in adiposity or leptin synthesis beyond the post-
natal period in the human [28], sheep 1291, rat [30], and
pig [31]. Further work is required to identify those periods
during intrauterine life when changes in the long-term de-
velopment ofthe adipocyte and the leptin signaling system
a¡e initiated and to clarify the relative importance of ma-
ternal body composition and the level of fetal nutrition in
the mechanistic pathway that undedies the association be-
tween poor intrauterine growth and postnatal obesity.

In summary, we have reported, to our knowledge for the
first time, the effect of maternal undernutrition during late
pregnancy on maternal and fetal plasma concentrations of
leptin and on leptin gene expression in fetal adipose tissue
in the sheep. We have found that maternal plasma concen-
trations of leptin and glucose are positively correlated
across the range of circulating glucose concentrations pre-
sent in well-fed a¡d undernourished pregnant ewes. lnter-
estingly, we have found a positive relationship between the
fetal and maternal plasma concentrations of leptin during
late gestation, suggesting that maternal body composition
during early pregnancy may determine the leptin synthetic
ard secretory capacity of maternal and fetal adipose tissue.
We have found no effect, however, of maternal undernutri-
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tion on circulating leptin concentrations or on the abun-
dance of leptin mRNA in adipose tissue in the sheep fetus.
The capacity of leptin to act as a signal of moderate ma-
ternal undernutrition may, therefore, be limited in this spe-
cies before birth.
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I Effects of leptin on fetal plasma ACTH and cortisol concentrations and the

2 timing of parturition in the sheep
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Abstract

We have investigated whether leptin can suppress the prepartum activation of the fetal

HPA axis and delay the timing of parturition in the sheep. Firstly, we investigated the

effects of a 4 day intravascular infusion of recombinant ovine leptin (n:7) or saline

(n:6) on fetal plasma ACTH and cortisol concentrations, starting from 136 days (d)

gestation, ie at ihe onset of the prepartum activation of the fetal HPA axis. The effects

of a continuous intrafetal infusion of leptin (n:7) or saline (n:5) from 144 d gestation

on fetal plasma ACTH and cortisol concentrations and the timing of delivery were

also determined in a separate study. There was an increase in fêtal plasma ACTH

(P<0.01) and cortisol (P<0.001) concentrations when salirie was infused between

13617 and 140/1 d gestation. Plasma ACTH and cortisol concentrations did not rise,

however, when leptin was infused during this period of gestation. When leptin was

infused after 144 d gestation, there was no effect of a 4-5 fold increase in circulating

leptin on fetal ACTH concentrations. In contrast, leptin infusion from 144 d gestation

suppressed (P<0.05). fetal plasma cortisol concentrations by around 40% between 90

and 42 h before delivery. There was no difference, however, in the length of gestation

between the saline and leptin infi¡sed $oups (saline infused, 150.2 + 0.5 d; leptin

infused, 149.8 + 1.0 d). In saline infused fetuses, there was a significant negative

relationship between the plasma concentrations of cortisol (y) and leptin (x) between

138 and 146 d gestatior (y: 81.4 - 7.7x, 10.38, P<0.005). This study provides

evidence for an endocrine negative feedback loop between leptin and the HPA axis in

fetal life.
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Introduction

Leptin is a 16 kDa polypeptide hormone, which is principally synthesised and

secreted by adipose tissue and which acts to regulate energy homeostasis and a range

of neuroendocrine and reproductive functions [-3]. In the human infant, there is a

positive relationship between cord blood concentrations of leptin at delivery and

either birth weight or neonatal adiposity [a-6]. In animal species such as the sheep and

pig, in which fat is deposited before birth, leptin is synthesised in fetal adipose tissue

and is present in the fetal circulation throughout late gestation [7-13]. In the sheep

fetus, the expression of leptin mRNA in fetal adipose tissue is positively correlated

with circulating leptin concentrations and there is also a positive relationship between

fetal plasma leptin concentrations and the relative mass of lipid locules present within

fetal adipose tissue [1,13]. V/e have recently shown that intravascular infusion of

leptin in the sheep fetus during late gestation altered the lipid storage characteristics

and suppressed leptin mRNA expression within fetal adipose tissue [14]. Thus leptin

may act as a circulating signal of fetal adiposity and have a 'lipostatic' role before

birth.

It is well established in the sheep that the prepartum increase in circulating cortisol is

required for the differentiation and maturation of key fetal organs such as the fetal

lung, liver, kidney and brain and for the normal timing of parturition and the

successful transition to extrauterine life [6]. Forhead and colleagues reported that in

the sheep fetus, plasma cortisol and leptin concentrations increased in parallel and

were positively related between 130 and 140 d gestation and that fetal adrenalectomy

resulted in lower plasma leptin concentrations after 136 d [0]. These findings are

consistent with studies which have demonstrated that glucocorticoids stimulate both

3
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leptin gene expression and secretion from adult adipocytes invivo andinvitroÍ17-201

and suggest that there is a positive relationship between the level of activation of the

fetal HPA axis and leptin synthesis and/or secretion in late gestation. A separate study

however, investigated the effects of intracerebroventricular (icv) infusion of leptin

between 135 and 140 d gestation on the characteristics of plasma ACTH and cortisol

pulses occurring during a 4 h sampling period on the first and last day of the infusiqn

period [5]. These authors found that icv leptin administration blunted the size of the

increase which occurred in the amplitude and mean value of plasma ACTH and

coftisol pulses between 135 and 140 d gestation [5]. These data are consistent with

studies in the adult rat which have shown that administration of leptin can attenuate

fasting or restraint induced stimulation of the HPA axis l2l-221.

Given the conflicting nature of the previous studies, we h4ve directly determined

whether leptin can act to suppress the normal prepartum activation of the fetal HPA

axis and delay the timing of parturition. Firstly, we measured the effects of a 4 d

intrafetal infusion of leptin on fetal plasma ACTH and cortisol concentrations starting

from 136 d gestation, ie at the onset ofthe prepartum activation ofthe fetal HPA axis.

Secondly, we infused leptin into fetal sheep from 144 d gestation until delivery and

measured the effects of an increase in circulating leptin on the prepartum changes in

fetal plasma ACTH and cortisol concentrations and on the timing of parturition.

Materials And Methods

Animals and Surgery

These studies were approved by thç University of Adelaide Animal Ethics

Committee. Dated pregnant Merino ewes (n=25) were housed in individual pens in

4
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tt7

118

119

120

121

122

rooms with a 12h lighVdark cycle and fed once daily (-10-12 MJ/kg metabolisable

energy) with a diet consisting of lucerne chaff (85%o dry matter) and concentrated

pellets containing: straw, cereal, hay, clover, barley, oats, lupins, almond shells, oat

husks and limestone (90% dry matter; Johnsons and Sons, Kapunda, SA, Australia) at

I100 h with water provided ad libitum. Surgery was performed between 110 and 126

d gestation, as previously described 113,231. Briefly, general anaesthesia was induced

in ewes by an intravenous injection of sodium thiopentone (1.25 g iv, Pentothal,

Rhone Merieux, Pinkenba, Qld, Australia) and maintained by 2.5 - 4% halothane

(Fluothane, ICI, Melbourne, vic, Australia). under aseptic conditions catheters were

inserted into a maternal jugular vein, a fetal carotid artery and jugular vein, and the

amniotic cavity. Catheters were filled with heparinised saline and the fetal vascular

and amniotic catheters exteriorised through an incision made in the ewe's flank. Ewes

and their fetuses received a 2 ml intramuscular injection of antibiotics þrocaine

penicillin 250 mglml; dihydrostreptomycin 250 mg/ml; procaine hydrochloride 20

mg/ml Penstrep Illium, Troy Laboratories, Smithfield, NSlùy', Australia). Animals

were allowed to recover for at least 4 d after surgery before routine fetal arterial blood

samples (3 ml) were collected every 2 - 3 d before the infusion studies commenced.

- Exp erimenlal Protoco ls

Leptininfusionfrom 136 or 137 d ge;tation

In thirteen pregnant ewes at 1361137 d gestation, fetal arterial blood samples (3 ml)

were collected at -3 h, -2h, -l h and -30 min relative to the start of the infusion period

at 1300 h. A bolus of either sterile saline (0.5 ml, n:7) orrecombinant ovine leptin

(0.25 mg in 0.5 ml sterile saline, n:6; provided by Professor Duane Keisler,

Department of Animal Sciences, University of Missouri, Columbia, MO, USA) was

5
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130

131

132

133

134

135

136

137

138

139

140

141

142

t43

144

145

146

147

infused into the fetal jugular vein, immediately followed by a continuous infusion

(0.16 ml/h) of either sterile saline or leptin (0.48 mgikgld) 1241, respectively. Fetal

arterial blood samples were collected at *2 min, +30 min, +7 h, +2 h, +4 h and +8 h

on the first day ofthe infusion and at 0900 h; 1300 h and 1700 h on the second and

third days and at 0900 h and 1300 h on the fourth day of the infusjon. Blood samples

were centrifuged at 1500 g for 10 min and plasma aliquots were separated and stored

at -20"C. Fetal arterial blood samples (0.5 ml) were also collected daily to monitor

fetal blood gases and pH (ABL 520 blood gas analyser, Radiometer, Copenhagen,

Denmark). After 96 h (at 140 or l4l d gestation), e\ryes were killed with an overdose

of sodium pentobarbitone (Virbac Pty Ltd, Peakhurst, NSW, Australia) and fetuses

(saline infused group: 5 singletons and 2 twins; leptin infused group: 3 singletons and

3 twins) delivered by hysterotomy, weighed and decapitated.

Leptin infusionfrom 144 d gestation

In 12 pregnant ewes at 144 d gestation, a bolus of saline (n:5) or recombinant ovine

leptin (n:7, 0.5 mg/0.5 ml sterile saline) was infused into the fetal jugular vein

immediately followed by a continuous infusion of saline or recombinant ovine leptin

(1.0 mg/kg/d). On the first day of infusion, fetal arterial blood samples (3.5 ml), were

collected at -3 h, -2 h, -l h and -30 min and at *2 min, *30 min, +l h, +2 h, +4 h and

+8 h relative to the start of the infusion at 1300 h. On the second, third and fourth

days of the infirsion, fetal blood samples were collected at 0900 h, 1300 h and 1700 h

and on subsequent days, fetal blood samples were collected at 0900 h and 1700 h until

either the ewe was in late labour (n:2) or the fetus delivered (n=10). There were 4

singletons and 1 twin lamb (3 male, 2 female) in the saline infused group and 7

singletons (4 male, 2 female, I unknown) in the leptin infused group. Ewes were

6
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157

158

159
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161

162
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164

165

166

t67

168

169

170

l7t

172

defined as being in late labour when the pressure ofrepeated intrauterine contractions

'were greater than 20 mmHg in amplitude. Intrauterine pressure was measured using a

Maclab 1050 displacement transducer (ADlnstruments, NSVy', Australia) connected

to the saline filled amniotic catheter 1241. A Maclab data acquisition system was

attached to the transducer and Maclab Chart software was used to analysis the

intrauterine pressure recordings.

Leptin ELISA

A competitive ELISA specific for ovine leptin was used to measure plasma leptin

concentrations in fetal sheep, as previously described Í13,251. Briefly, 6 ng

recombinant bovine leptin was coated onto an ELISA plate by ovemight incubation at

37"C. The plate was blocked with 200 pl of 5% skim milk in ELISA buffer for I h at

37 oC. Fetal plasma samples (100 pl) were added to wells containing a biotinylated

chicken anti-recombinant bovine leptin in 100% Triton X 100, 0.5% SDS and 5o/o

sodium deoxycholate (50 trl) and the plate was incubated ovemight at 37oC. A

biotinylated second antibody was added to the plate and incubated overnight at 3'7oC.

The plate was then washed and incubated for t h with streptavidin conjugated to

alkaline phosphatase (Amrad Biotech, Boronia, Vic, Australia) then developed with p-

nitrophenylphosphate disodium salt hexahydrate. The sensitivity of the assay was 0.5

nglml and the inter assay and intra assay coefficients of variation were I lo/o and 9%o

respectively.

A CTH rødio intmunoassay

ACTH concentrations in fetal sheep plasma were measured by radioimmunoassay

(DiaSorin, Stillwater, Miruresota, USA), previously validated for fetal sheep plasma

7
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t9t
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193

194

195

[26]. The cross-reactivity of the rabbit anti-ACTH antisera was <0.01% with cr-MSH,

B-endorphin, p-lipotropin, parathyroid hormone, vasopressin and growth hormone.

Briefly, rabbit anti-ACTH serum (50 pl) was added to each sample (50 pl) and

incubated overnight at 4oC. Radiolabelled Ut2sl-ACTH (50 pl) was added to each tube

and incubated overnight at 4oC. Rabbit serum (200 pl), pre-precipitated with goat

anti-rabbit serum and polyethylene glycol, was added to samples that were then

centrifuged. The inter assay coefficient of variation was 11.5% and the intra assay

coefficient of variation was 5.2Yo.

Cortisol radioim m unoassøy

Cortisol was extracted from fetal plasma using dichloromethane as previously

described [271. The efficiency of recovery of radiolabelled [Ir25]-cortisol from fetal

plasma using this extraction procedure was >90olo. The cross-reactivity of the rabbit

anti-cortisol antisera was <1olo with pregnenolone, aldirsterone, progesterone and

oestradiol. Fetal cortisol concentrations were then measured using a Amersham

Radioimmunoassay kit (Amersham Pharmacia Biotech Inc, Piscataway, NJ, USA).

Briefly, 100 nM of hydrocortisone (Sigma Chemical Co., St.Louis MO, USA) was

serially diluted in buffer (0.1 mol/l Tris-HCl, pH 7 .4, 0.5% BSA, 0.1% sodium azide)

to generate a standard curve. Plasma extracts (100 pl) were incubated with rabbit anti-

cortisol antisera (100 pl) ovemight at 4oC. Radiolabelled [Ir25]-cortisol (100 pl) was

then added to the samples that were then incubated ovemight at 4"C. The inter- and

intra-assay coefficients of variation were l0olo and 5% respectively.

8
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Stutistical analyses

Data are presented as the mean * standard enor of the mean (SEM). Fetal hormone

data were logarithmically transformed where required to reduce heterogeneity of

variance. Analyses of Variance (ANOVA) with repeated measures were performed

using the Statistical Package for Social Sciences (SPSSX, Chicago, IL, USA) on a

VAX mainframe computer. The Duncan's new multiple range test was used post hoc

to identify significant differences between mean values.

Leptin infusíon from I 3 6/ I 3 7 d gestation

Mean values for fetal arterial pO2, pCO2 and pH between 0 and +96 h were calculated

and a Student's unpaired t-test was performed to determine whether fetal blood gases

and pH values were different between the saline and leptin infused groups.

A mean value for the basal plasma concentration of leptin, ACTH or cortisol was

calculated for each fetus as the average of the 5 values during the pre-infusion period.

The change in fetal hormones during the infusion period was then calculated by

subtraction of the mean preinfusion hormonal value at each time point and the effects

of leptin infusion on fetal hormone concentrations were analysed using a two way

ANOVA with treatment and the length of time relative to the start of the infusion as

the specified factors.

Leptin infusionfrom 144 d gestation

The effects of leptin on fetal hormone concentrations during the first 20 h of the

infusion period were determined by a t\'/o way ANOVA with treatment and time

relative to the start of the infusion as the specified factors.As the length of gestation

9
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236

237

238

239

240
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242

varied between animals (147-153 d), the hormonal data from each animal were

expressed relative to the known or estimated time of delivery. Intrauterine pressure

traces from animals that delivered were analysed to establish the relationship between

frequency of contractions with an amplitude of >20 mmHg and time before birth. For

the 2 fetuses that were killed during late labour, the intrauterine pressure traces were

analysed to determine the frequency of contractions (>20 mmHg) during labour and

the time of delivery was then estimated. Hormone data were then grouped into l2h

time blocks in relation to the actual or estimated time of delivery. In the leptin infused

group, 94 plasma samples were assayed for ACTH, 93 samples were assayed for

cortisol and 92 samples were assayed for leptin. ln the saline infused group, 67

plasma samples were assayed for ACTH, 68 samples were assayed for cortisol and 38

samples were assayed for leptin. The effects of leptin infusion on fetal leptin, ACTH

and cortisol concentrations were determined by a two way ANOVA using treatment

and time before birth as the specified factors.

Linear regression analysis was used to assess relationships between the plasma leptin

and either ACTH or cortisol concentrations in samples collected between 125 to 137 d

ie pnor to the onset of the prepartum increase in circulating cortisol and between 138

to 146 d gestation ie after the onset of the prepartum increase in cortisol in fetuses

which were infused with saline from 144 d gestation.

Results

l0
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Leptin itrfusionfrom 136/137 d gestation

Plasma leptin concentrations andfetal blood gas status

Plasma leptin concentrations increased (P<0.001) during the leptin infusion period

(+24 h: 22.9 + 3.9 ng/ml, +92-96 h, 20.1 + 1.5 ng/ml) but not during the saline

infusion period (+24h:1.9 + 0.7 nglml, +92-96h,4.1 + 1.6 nglml). There was no

signifrcant difference in mean fetal arterial blood gas and pH values between the

saline and leptin infused groups during the infusion period (pO2 - saline infused, 21.7

+ 0.6 mmHg; leptin infused, 22.3 + 0.5 mmHg, pCOz - saline infused, 50.4 + 1.2

mmHg; leptin infused, 49.1 + 0.8 mmHg, pH - saline infused, 7.404 + 0.006; leptin

infused, 7.401 + 0.005).

Fetal plasma ACTH and cortisol concentrations

During the infusion period, there was a significant interaction between the effects of

treatment and time on ACTH concentratioirs expressed relative to those in the

preinfusion period (P<0.05; Figure lA and B). In the saline infused group, the change

in plasma ACTH concentrations relative to baseline values was greater at 96 h (13.7 !

7.8 pglml, P<0.01) than at between 2 h and 44h after the start of the infusion (-6.8 +

3.a p/ml).In contrast, in fetuses infused with leptin, there was no change in plasma

ACTH concèntrations during the 96 h infusion period (+96 h: -4.1+ 2.0 pglml). There

was a significant interaction between the effects of treatment and time on cortisol

concentrations relative to basal levels (P<0.02; Figure lC and D). In the saline

infused group, the change in plasma cortisol concentrations was greater at 96 h (54,1

+ 7.5 nmol/l; P<0.001) when compared with between 3 h before and 24 h after the

start of the infusion (14.9 ! 2.9 nmol/l). In fetuses infused with leptin, there was no

change, however, in plasma cortisol concentrations throughout the infusion period

ll
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268 (+96 h: 7.0 + 3.9 nmol/l). The ratios of plasma cortisol : ACTH concentrations were

269 significantly higher (P<0.001) in both treatment groups at +96 h (saline infused: 1.66

270 + 0.23 nmol/ng, leptin infused: 1.12 + 0.25 nmol/ng), when compared to the period

271 from 3 h before until 52 h after the start of the saline (0.82 t 0.26 nmol/ng) or leptin

272 (0.63 t 0.22nmoVng) infusion (Figure 1E and F).
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Felsl plasma leptin, cortisol snd ACTH concentrstions in salìne infused fetuses

between 125 and 150 d gestatìon

There was a significant increase in plasma cortisol concentrations between 125 and

150 d gestation in saline infused fetuses. There was no change, however, in plasma

leptin concentrations in these fetuses during this period (Figure 2). V/hilst there was

no relationship between fetal plasma cortisol (y) and leptin (x) concentrations at 125 -

137 d gestation, there was a significant negative relationship between the plasma

concentrations of these two hormones at 138 - 146 d gestation (y = 8l.a - 7.7x,n=84,

r:0.38, P<0.005) (Figure 3).

Leptin Infusionfront 144 d gestation

Plasma leptin, ACTH qnd cortisol concentrations during thefirst 20 h of the infusion

period

During the first 20 h of infusion, plasma leptin concentrations increased significantly

(P<0.001) in the leptin infused (+20 h: 18.3 + 2.1 nglml and not in the saline infused

fetuses (+20 h: 2.0 + 0.'l nglml). At 20 h after the start of the infusion there was no

difference in either plasma cortisol (saline infused, 61.4 + 5.1 nmol/l; leptin infused,

81.4 + 22.2 nrnolll) or ACTH (saline infused, 41.0 + 4.9 p{ml; leptin infused, 34.1 t

5.0 pglml) concentrations between the saline and leptin infused groups.

t2
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294 Effects of leprin on the timing of delivery and on plasma ACTH and cortisol

295 concentrationsprecedingdelivery

296 There was no difference in the length of gestation (saline infused, 150.2 + 0.5 d; leptin

297 infused, 149.8 + 1.0 d) or birth weight (saline infused 4.9 + 0.3 kg; leptin infused 5.2

298 + 0.1 kg) between the saline and leptin infused groups.

299

300

301

302

303

304

305

306

307

308

309

310

3ll

312

313

314

315

316

Circulating leptin concentrations were higher in leptin infused than saline infused

fetuses from 114 h before and up to delivery (leptin infused: 16.3 + 2.9 nglml; saline

infused, 2.5 + 0.7 ng/ml; P<0.001) (Figure 4).

There was no significant difference in mean fetal arterial blood gas and pH values

between the saline and leptin infused groups during the infusion period (pOz - saline

infused,20.4+ 1.3 mmHg; leptin infused,2ß.1 t 1.2 mmHg, Oz saturation- saline

infused, 52.8 + 2.8 mmHg; leptin infused, 52.3 + 5.4 mmHg, pH - saline infused,

7 .396 + 0.008; leptin infused, 7 .312 + 0.032).

There was no difference in plasma ACTH concentrations between the saline infused

(70.8 f 46.8 pglml) and leptin infused (69.7 !22.6 pglml) fetuses during the period

114 - 6 h before delivery. In both the saline and leptin infused groups, plasma ACTH

concentrations were significantly higher (P<0.001) during the period from l8 to 6 h

before delivery when compared with either 90 - 78 h or ll4 - 102 h before delivery

(Figure 5A).
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There was a significant interaction (P<0.05) between the effects of leptin infusion and

time before delivery on fetal plasma cortisol concentrations. Between 90 and 42 h

before delivery, circulating cortisol concentrations were significantly higher in the

saline infused fetuses compared to the leptin infused fetuses (90 - 42 h: saline

infused, 142.5 + 27 .6 rmtoVl; leptin infused, 84.3 + 22.7 nmol/l; P<0.05; Figure 5B).

During the period 42 to 6h before delivery, however, there was no difference in

plasma cortisol concentrations between the saline infused (188.0 + 42.4 nl;;,oVl) and

leptin infused groups (244.5 !69.3 nmol/l). Plasma cortisol concentrations (P<0.001)

were highest in both leptin and saline infused groups fiom between 30 and 6 h before

delivery @igure 58).

There was a signif,rcant interaction between the effects of treatment and the time

relative to delivery on the ratio of plasma cortisol : ACTH concentrations (P<0.005)

(Figure 5C). There was no significant difference between the saline and leptin infused

fetuses in the ratio of plasma cortisol : ACTH concentrations between ll4 and 90 h

before delivery (saline infused: 1.89 + 0.45, leptin infused: 2.04 ! 0.42). The plasma

cortisol : ACTH ratios were lower, however, in the leptin infused fetuses between 90

and 30 h before delivery (saline infused, 2.78 + 0.53; leptin infused, 1.62 ! 0.34)

(Figure 5C).

Discussion

We have demonstrated that infusion of leptin into fetal sheep, resulting in a 4-5 fold

increase in circulating leptin concentrations suppressed the normal increase in fetal

cortisol concentrations at the onset of the prepartum activation of the fetal HPA

between 136 and 140 days gestation. Furthermore, intrafetal infusion of leptin from
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362
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144 days gestation until delivery also suppressed fetal plasma cortisol concentrations

for an extended period from 90 to 42 h before delivery. whilst plasma cortisol

concentrations were reduced by around 40% during this period in the leptin infused

group, there was no difference in the timing of parturition between leptin and saline

infused fetuses.

ln the present study, there was an increase in fetal plasma ACTH and cortisol

concentrations when saline was infused for a 96 h period between 136 and 141 days

gestation as expected. There was no increase, however, in either plasma ACTH or

corlisol concentrations when leptin was infused during this gestational age range. In a

previous study, Howe and colleagues [15] infused leptin via the lateral cerebral

ventricle in fetal sheep between 135 and 140 days gestation and measured plasma

ACTH and cofisol concentrations during a 4 h sampling period at 135 days and at

140 days gestation. They found that the increases in the mean value and amplitude of

the pulses in plasma ACTH and cortisol concentrations between 135 and 140 days

gestation were less in the leptin infused compared to the vehicle infused fetuses.

ln the present study when leptin was infused continuously from 144 days gestation,

there was no effect on fetal ACTH concentrations during the week before delivery. ln

marked contrast, leptin infusion from 144 days gestation suppressed fetal plasma

cortisol concentrations and the ratio of fetal plasma cortisol : ACTH concentrations

for an extended period from 90 h until around 42 to 30 h before delivery. The

suppression of fetal plasma cortisol concentrations and the decrease in the ratio of

plasma cortisol : ACTH concentrations was not maintained, however, during the last

30 h before delivery despite continued infusion of leptin. Plasma cortisol
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concentrations were similar in both the leptin and saline infused fetuses on the day

before delivery and there was no difference between these two groups in the timing of

delivery. In summary, evidence from the current study suggests that an increase in

circulating leptin concentrations in the fetus during late gestation can blunt the

prepartum activation of the HPA axis but not block o¡ delay the timing of delivery.

Whilst there may be a transient impact of leptin on fetal plasma ACTH concentrations

during the early phase of activation of the fetal pituitary-adrenal axis in late gestation,

the predominant action of leptin appears to be to suppress the normal prepartum

increase in circulating cortisol and adrenal responsiveness to ACTH.

In adult sheep it has been demonstrated that icv infusion of leptin suppressed food

intake and resulted in a decrease in the expression of the mRNA for the orexigenic

peptide, Neuropeptide Y (NPY) in the hypothalamic arcuate nucleus [28]. This is

consistent with the localisation of the long form of the leptin receptor in around 600lo

of NPY containing cells in the sheep hypothalamus [29]. There is also evidence in the

sheep that hlpothalamic NPY can regulate the synthesis and secretion of the ACTH

secretagogues, corticotropin releasing honnone (CRH) and arginine vasopressin

(AVP) [30]. NPY is present within the arcuate nubleus of the fetal sheep

hypothalamus during late gestation [3 I ] and it is possible that leptin acts centrally via

leptin receptors located within the fetal hlpothalamus to suppress NPY, CRH and/or

AVP secretion and hence result in a decrease in fetal plasma ACTH concentrations in

late gestation. It appears from the present study, however, that any inhibitory effect of

an increase in circulating leptin concentrations on fetal ACTH secretion is not

maintained during the week before delivery. The sustained increase in circulating

leptin concentrations may induce resistance to the central actions of leptin as this has
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been proposed to underly reduced sensitivity to peripherally administered leptin in

genetically wild type mice, primates and lambs [32-34]. There is evidence that high

circulating leptin concentrations may induce a decrease in the transport or access of

leptin to the brain [35-37]. Whilst this is possible, it should be noted that we found no

evidence that leptin infusion at 144 days resulted in an initial decrease in fetal ACTH

concentrations during fhe first day of the infusion period. An alternative explanation is

that the hypothalamic mechanisms which stimulate fetal pituitary ACTH synthesis

and secretion during the prepartum period are not suppressed by an increase in

peripheral leptin concentrations.

A range of studies have reported that that the long form of the leptin receptor is

expressed in human, rat and mouse adrenal and that leptin acts directly to inhibit

ACTH stimulated glucocorticoid secretion by the bovine [l7], human and rat adrenal

gland [38]. Leptin acts to decrease the expression of the steroidogenic enzymes,

cytochrome P450 C2l-hydroxylase, side chain cleavage and Cl7 a hydroxylase in the

bovine adrenal and it has recently been reported that leptin reduces the ACTH

stimulation of steroidogenic acute regulatory protein (SIAR) expression in the rat

adrenal [39-40]. It has been proposed that in the adult, a leptin mediated feedback

loop exists between adipose tissue and the HPA axis, as glucocorticoids can stimulate

leptin expression and secretion from the adipocyte [8,20] whereas rising circulating

leptin concentrations can directly down regulate adrenal cortisol synthesis and

secretion. Thus it is possible that leptin acts directly at the fetal adrenal and that there

is a similar endocrine feedback loop between fetal adipose tissue and the HPA axis in

late gestation.

t7

279



CH,nprnR 8 APPENDIx

4t'7

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

43s

436

437

438

439

440

441

In the present study, intrafetal leptin infusion resulted in circulating leptin

concentrations of around l5-20 ng/ml. V/hilst these concentrations are similar to those

measured in well-fed pregnant ewes where rapid matemal weight gain has occuned

[41], they are significantly higher than those measured by us or others in the fetal

sheep of well nourished ewes in late gestation 19,11,13,421. It has been shown,

however, that fetal plasma leptin concentrations are increased up to 9 fold higher in

human pregnancies which are complicated by matemal glucose intolerance and fetal

hyperglycaemia when compared with fetuses in normal pregrancies 143-451 and in

thcse pregnancies it is possible that such an increase in fetal leptin concentrations may

regulate adrenal responsiveness to ACTH and other stimulatory hormones. V/hat is

currently unclear is the extent ofthe endocrine interaction between fetal adipose tissue

and the HPA axis in normal pregtancy. In the sheep fetus, circulating leptin

concentrations are positively correlated with the relative mass of lipid stored in

dominant cellular lipid locules within the fetal perirenal adipose tissue [l 1] and leptin

is therefore an endocrine signal of the lipid storage capacity of this tissue. Forhead

and colleagues [l0] have reported that plasma cortisol and leptin concentrations

increase in parallel during late gestation and are positively related between 130 and

140 days in the sheep fetus. Furthermore they reported that fetal adrenalectomy

resulted in lower plasma leptin concentrations in fetal sheep after 136 days [10].

Cortisol infusion or fetal adrenalectomy, however, did not alter leptin mRNA levels in

perirenal adipose tissue in the late gestation sheep fetus [46]. In the present study we

found that in saline infused fetuses, there was no change in fetal plasma leptin

concentrations during the last 3 weeks of gestation and there was also no relationship

between plasma cortisol and leptin concentrations between 125 and 137 days

gestation. The difference between studies in the extent to which plasma cortisol and

l8
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442 leptin are related between 130 and 140 days gestation may be related to the

443 differences in circulating fetal leptin concentrations between the sheep breeds used in

444 the studies. The fetus of the Welsh mountain ewe appears relatively hypoleptinaemic

445 [0] when compared with the fetus of the Merino ewe used in the current and previous

446 studies [11,13].
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One further potential source of circulating leptin in the fetus is the placenta. V/hilst

the placenta has been proposed as a possible source of fetal leptin in the hman,

baboon and rat 147-501, the levels of leptin mRNA present in the sheep placenta are

negligible 19,411. It should be noted, however, that the leptin receptor is expressed in

the sheep placenta [41], that there is evidence for transplacental transfer of leptin in

the rat [51] and that maternal and fetal plasma leptin concentrations are correlated

during late gestation in the sheep [3]. Whether there is a major contribution of

rnatemal leptin to circulating leptin in the fetus and the extent to which this may vary

across different breeds ofsheep has yet to be determined.

In the present study, there was a negative relationship between circulating cortisol and

leptin in the fetus in the week before delivery such that around l4%o of the variation in

plasma cortisol in the saline infused group was explained by the variation in fetal

leptin concentrations. Thus whilst the initiation of the prepartum increase in fetal

plasma cortisol does not appear to be related to any concomitant fall in circulating

leptin, leptin may act to inhibit the output of cortisol from the fetal adrenal during the

week before delivery.
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ln summary we have demonstrated that an increase in circulating leptin concentrations

in fetal sheep suppressed the normal increase in fetal cortisol concentrations at the

onset of the prepartum activation of the fetal HPA between 136 and 140 days

gestation. Furthermore intrafetal infusion of leptin from 144 days gestation until

delivery also suppressed fetal plasma cofisol concentrations for an extended period

from between 90 - 42 h before delivery, although there was no difference in the

timing of parturition between the leptin and saline infused groups. This study provides

evidence therefore that fetal hyperleptinaemia, which is present in pregnancies

complicated by gestational diabetes, may act to limit the fetal adrenal responsiveness

to ACTH and other trophic factors during the transition from intrauterine to

extrauterine life.
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FIGURE LEGENDS

Figure 1. Plasma ACTH, cortisol and the ratio of plasma cortisol:ACTH

concentrations in fetuses infused with saline (open circles; A,C,E) or leptin (closed

circles; B,D,F) for 96 h from 136ll37 d gestation. Different alphabetic superscripts

denote mean values which are significantly different (P<0.05) from each other within

a treatment group.

Figure 2. Plasma cortisol and leptin concentrations between 125 and 150 d gestation

in fetal sheep which were infused with saline from 144 d gestation. Different

alphabetic superscripts denote mean hormone values which are significantly different

(P<0.05) from each other during late gestation.

Figure 3. The relationship between plasma cortisol and leptin concentrations between

138 and l46d gestation in those fetal sheep which were infused with saline from l44d

gestation. The relationship is described by the equation, 1-81.4 - 7.7x (r:0.38,

P<0.05).

Figure 4. Plasma leptin concentrations in saline infused (open bars) and leptin infused

(closed bars) fetuses during the period from I 14 h until 6 hbefore birth.

Figure 5. Plasma ACTH (A), cortisol (B) and the ratio of plasma cortisol : ACTH (C)

concentrations in saline infused (open bars) and leptin infused (closed bars) fetuses

from I l4h before delivery. Asterisks denote signihcant differences (P<0.05) between

mean values in the saline and leptin infused groups.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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