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Abstract

It is widely acknowledged that mathematically-based formal specification and verifica-

tion methods can provide substantial help in revealing ambiguity and inconsistency of

informal system descriptions, and increase confldence in the correctness of system de-

signs. However, as their complexity rapidly grows, modern computer-based systems often

consist of parts (or subsystems) with very different characteristics, e.g. data-centred vs.

control-oriented. Traditional formal methods relying on a single specification language

are no longer appropriate for coping with all aspects of such a system. A combination of

languages to be used for system specification is required.

To meet this need, it is essential to devise sound principles and techniques for inte-

grating various languages and for reasoning about the resultant component-based het-

erogeneous system. It is also essential to provide mechanical support for their formal

verification. This thesis focuses on discrete-event systems and a class of specification

languages,viz. graph-like visual languages. It takes a two-step approach to study these

fundamental issues and seek practical, tool-supported solutions.

Firstly, an underlying methodological framework is proposed, which enables both

the use of different languages (or formalisms) to describe different subsystems and the

automatic verification of heterogeneous systems. This framework is built on a solid

semantic base of interconnected discrete-event components. It uses a semantic inter-

pretation approach to heterogeneous systems, specifying language-specific interpreters

which enable heterogeneous components to be defined in terms of this semantic base.

More specifically, the interpreters are parameterized with component models and execute

on behalf of the components according to the semantics of the specification languages.

They are also enhanced with facilities that allow analysis tools to access the state and

transition information of the components and control their concurrent execution. As a
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consequence, not only is the exhaustive analysis of heterogeneous systems supported,

but also an open and extensible platform is provided, which allows various graph-like

languages and formal verification techniques to be used for specifying and reasoning

about heterogeneous systems.

Secondly, this thesis focuses on model checking, a robust and largely automatic ap-

proach to system formal verification. It proposes a compositional approach to combat the

state space explosion problem, a well-known obstacle to model checking. This approach

divides a verification problem of a system into sub-problems of its components and then

addresses each sub-problem independently. The key is to specify abstract communication

protocols for components using a lightweight formal language - interface automata 1541,

and then utilise these protocols as behavioural contracts for independent analysis of the

components and their composition patterns. It is demonstrated that, adopting this divide-

and-conquer approach, not only the basic properties of component-based systems, such

as consistency and deadlock freedom, but also their safety properties can be proved.

Furthermore, this compositional approach is implemented as automated tools in the

context of the Moses tool suite [65], utilising the semantic interpretation approach pro-

posed earlier. These tools are then applied to the verification of a non-trivial distributed

embedded system - the Production Cell [138]. It is shown that a significant reduction in

complexity of system verification is achieved.
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1
lntroduction

1 .1 Motivation

The rapid progress of computer technolory has made an inevitable and dramatic increase

in the scale and complexity of computer-based systems. As a result, there is an increased

likelihood of subtle errors or defects creeping into system designs and remaining unde-

tected. With computers becoming more pervasive, failures in computer-based systems

have been more severe, sometimes resulting in catastrophic consequences such as the

loss of money, time or even human lives.

This situation becomes more serious when it comes to concurrent systems. These

systems are inherently more complex than their sequential counterparts, as they are

composed of a number of components which communicate with each other and operate

concurrently. In fact, the majority of today's large systems are concurrent. This makes it
even more difflcult to prevent computer failures.

It is therefore crucial to employ methodologies that can increase confidence in the

correctness of system designs before they are actually implemented and used. It also

makes economic sense to detect design defects as early as possible in the development

process, since the later a defect is discovered, the harder and more expensive it is to fix

[7471.
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CHAPTER 1, INTRODUCTION

Formal verification is a promising means for ensuring system correctness in early

stages of the development process. It employs mathematically-based languages, tech-

niques and tools for the specification, design and construction of computer-based systems.

By means of logical and unambiguous specifications of system behaviour, it provides

substantial help in revealing the ambiguity and inconsistency of informal system de-

scriptions, and offers systematic approaches to system veriflcation.

Model checking is one of the important approaches to the formal verification of concur-

rent systems. Given a system, this approach builds a flnite representation of the design,

called tlne state space, which enumerates all possible states of the system. It then formu-

lates desired properties of the system and checks every state for the violation of these

properties. Compared with other approaches such as theorem proving, model checking

is largely automatic and easy to use. Furthermore, its ability to give counterexamples

when a property is violated provides a very useful aid in locating and eliminating design

defects. This approach is therefore very appealing to practitioners.

However, despite these advantages, model checking is, to a large extent, only popular

in the research community and less frequently used in industry, especially for software

development. Three major factors have limited its use by software engineers.

Firstly, model checking cannot be directly applied to infinite state systems. Even

for finite state systems, it often suffers from the so-calledstate spd,ce explosíon problem.

That is, the size of state space of a system tends to grow exponentially with the number of

its components and as a consequence quickly exceed the memory capacity of computers.

This greatly limits the size of systems that can be handled by model checking. To attack

this problem, a body of techniques have been proposed in the literature. These include

symbolic methods, e.g. 1148, 1991, on-the-fly model checking, e.g. 170,841, state space

reduction, e.g. 132,33,75,79, I05,1951, abstraction, e.g. 1I8,35,771, and compositional

verificatioî, €.g. U, 41,8L,92,1491. Among them, compositional verification is a promis-

ing approach dividing a verification task on a system into sub-tasks on its components

and then addressing each sub-task independently.

Secondly, it is often required in model checking approaches that a whole system is

modelled using a single specification language. However, as modern complex systems

often have aspects or parts with different characteristics, it may not be possible to find a
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CHAPTER 1. INTRODUCTION

single language suitable for specifying all parts. This motivates the employment of ap-

propriate formalisms for describing different parts or aspects of systems. This approach,

nevertheless, results in heterogeneous models and consequently the need to devise new

formal techniques for their verification.

Thirdly, formal speciflcation languages developed in the research community usually

require a steep learning curve of software engineers, and the model checking methods

recommended by researchers often require great effort to apply [901. Engineers are

often reluctant and sometimes unable to invest a large amount of time on learning such

languages or methods. In order to be more accessible to engineers, methods based on

languages that are easy to learn and use are in demand. For example, visual languages

provide an intuitive means for studying design problems. Model checking methods using

these languages for system specification seem to be more acceptable to engineers.

In Chapter2,we shall present a more extensive investigation on these issues which

further justifies these concerns.

1.2 Research Goal

The research reported in this thesis is aimed at addressing these concerns while pro-

viding formal veriflcation methods or tools to practitioners. In particular, it builds on

the previous work [65, 110] of the Moses project [2] on the modelling and simulation of

component-based heterogeneous systems. It focuses on the formal verification of discrete-

event systems and proposes lightweight and tool-supported approaches which can be

easily integrated into the current practice of software development.

The major directions of this research are twofold. First of all, we need to develop an

extensible formal verifi cation framework, which

o allows complex systems to be specified using a combination of modelling languages.

In particular, graph-like visual languages are investigated. These languages consist

of vertices (represented as closed geometrical shapes) and edges (represented as

lines) connecting vertices. Examples include Petri nets, statecharts and process

networks;

3



CHAPTER I. INTBODUCTION

. provides automatic tools for the verification of safety properties of heterogeneous

systems;

o supports the easy accommodation of new languages and model checking techniques

without requiring any changes to currently supported languages or techniques. The

openness and extensibility of this framework is desirable because it is very likely

that new notations and techniques are created with the continuous emergence of

new application domains.

In addition, we need to develop new or employ currently available compositional

verifrcation techniques for the formal verification of heterogeneous systems, which

o make use of the component-based nature of these systems to alleviate the state

space explosion problem;

. are lightweight, requiring of the user little knowledge of formal verification.

1 .3 Contributions

This thesis makes a number of contributions towards the research goal. First of all,

to support heterogeneous systems, we decouple the specification and verification pro-

cesses, and relate them within a common semantic framework based on discrete-euent

components (DECs). As a reactive variant of labelled transition systems [13], DECs are

sufficiently general to give semantics to many pragmatic discrete-event models. This

approach brings three immediate benefits:

o The verification task of a heterogeneous system can be transformed to that of a

homogeneous system of DECs, to which current model checking techniques can be

applied;

o New model checking techniques can be easily added without requiring any changes

to existing modelling languages;

o The designer will have the freedom to choose an appropriate language to specify

each part of a heterogeneous system.
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CHAPTER 1. INTRODUCTION

As pointed out by Day 1521, decoupling is a key characteristic of a second generation

approach to formal verifrcation. Its usefulness will be demonstrated in this thesis by the

independent development of modelling languages and model checking techniques.

We then adopt a component-based design approach based on DECs, and propose a

novel compositional verification technique for the resultant systems. Here, we make

a clear distinction between computational and compositional aspects of a system, letting

DECs represent computationally intensive components and the interconnections between

DECs represent component composition patterns. Correspondingly, the composition of

DECs is called DEC networks. To enable the compositional verification of DEC networks,

we make explicit the behavioural contracts between components and their composition,

and employ interface automata (IAs), a lightweight formalism proposed by de Alfaro

and Henzinger [54], to formally describe them. Such a contract covers the services a

component provides, the way it reacts to its inputs and what it expects from its environ-

ment. This, however, does not disclose implementation detail of the component. Hence

a contract is often referred to as the abstract cornmunication protocol that a component

must conform to in the system (or network). \ iith the contracts described at a sufficient

level of abstraction, we can then utilise them for independent analysis of both components

and their composition patterns. As a result, the state space explosion problem in the

verification of DEC networks can be alleviated.

Furthermore, we rely on the semantic framework of DECs and adopt a practical

approach to supporting the use of multiple formalisms for system specification. More

specifically we extend the previous work of the Moses tool suite [65] on the semantic

interpretation of graph-like languages, and propose a semantic interpretation approach

to heterogeneous systems, which enables their exhaustive state space analysis. In this

approach, language-specific interpreters are defined and, when parameterized by compo-

nent models, execute on behalf of the components according to the semantics of the mod-

elling languages. The interpreters are also enhanced with facilities that allow analysis

tools to access the state and transition information of the components and control their

execution. As a consequence, a formal semantics of heterogeneous systems can be given

in terms of DECs, provided analysis tools are able to coordinate the concurrent execution

of components according to their interconnections. In this way, we make it possible

5



CHAPTER 1. INTRODUCTION

to apply sophisticated model checking techniques developed for DECs or more general

transition systems, including the above-mentioned compositional approach, to the verifi-

cation of heterogeneous systems. In addition, it is worth noting that this interpretation

approach is generic to the languages under consideration of this thesis, i.e. graph-like

languages. Accordingly, an extensible verification framework for heterogeneous systems

can be obtained.

Based on the proposed interpretation approach, we discuss the implementation of

the above-mentioned compositional verification approach in the context of the Moses tool

suite. This includes the incorporation of the formalism of interface automata and the tool

development for IA composition, IA compatibility checking and the independent analysis

of heterogeneous components (i.e. components coded in various modelling languages).

Finally, we apply the proposed compositional approach and the developed tools to the

verification of a non-trivial distributed embedded system - the Production Cell [138]. In

this case study, we show a significant reduction on the size of the state space that needs

to be built for verification.

1 .4 Thesis Outline

The remainder of this thesis is organised as follows. In Chapter 2, tt'e background of

this work is outlined. This includes an extensive investigation of formal verification

techniques, multi-formalism modelling approaches, component-based design practice as

well as modelling languages.

In Chapter 3, the foundation for the above-mentioned compositional verification ap-

proach is laid. This includes

o definitions of discrete-event components, interface automata and their composition;

o formulations of conformance relations between DECs and IAs, together with prac-

tical conformance checking methods;

o formulations of the consistency, deadlock freedom and safety properties for DEC

networks;

6



CHAPTER 1, INTRODUCTION

o presentations of compositional verification methods for both closed and open DEC

networks as well as the theoretical justifications.

In addition, comparisons of this approach with other existing compositional verification

approaches are made.

In Chapter 4, a semantic interpretation approach to heterogeneous systems is pre-

sented. This imposes a behavioural contract between analysis tools and language-specific

component interpreters so as to enable the exhaustive state space exploration of het-

erogeneous systems. Languages such as Petri nets and UML statecharts are used for

demonstration of interpreter specification. As such, the relation with the previous work

is also described.

In Chapter 5, two verification approaches to component-based heterogeneous systems

are implemented, utilising the interpreter facilities developed in Chapter 4. These in-

clude a monolithic approach and the compositional approach proposed in Chapter 3. The

implementation of the monolithic approach involves a simple algorithm for construct-

ing the system state space and solutions to the specification and verification of safety

properties. The implementation of the compositional approach builds on the above and

includes algorithms for checking the conformance of heterogeneous components with IAs,

for checking the compatibility of IAs, and for compositionally verifying safety properties.

In Chapter 6, a case study on the Production Cell is presented. This includes its design

and verification methodologies as well as the experimental results with our compositional

verification approach. It is shown that not only basic properties such as consistency and

deadlock freedom but also important safety properties can be verified compositionally. It
is also shown that approximately three orders of magnitude improvement in the size of

the required system state space was achieved.

Finally in Chapter 7, a summary of our contributions is presented together with
proposals for future work.

1.5 Relation to Previous Publications

Some parts of this thesis have been published or accepted for publication. Chapter 3

constitutes a more detailed presentation of [120, tzL, 123]. It reformulates that work

È1
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CHAPTER I. INTRODUCTION

in the regular framework of Arnold and Nivat t13l; it uses the notion of communication

ports for passing information between processes (or components); it takes a more realistic

approach of constraining the type of messages that are transferred via each port; and it
extends that work with solutions to the compositional verification of safety properties.

Chapter 4 integrates the work of [117, 118, 119] in the context of formal verification.

It incorporates an explicitly and more clearly defined contract between analysis tools and

component interpreters; It takes a more realistic approach to interpreter specification;

It extends the work of [117] on the semantic deflnition of UML statecharts, with a re-

fined strategy of solving transition conflicts and a more complete solution to handling

completion events.

Finally, Chapter 6 and Appendix A contain a more detailed presentation of [122].
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2
Background

In this chapter, we shall outline the background of this research from four perspectives:

formal verification, multi-formalism modelling, component-based design, and modelling

languages.

2.1 Formal Verification

Today, the rapidly growing complexity of computer-based systems brings the potential for

a higher number of errors in their designs. Detecting and eliminating errors as early as

possible is an economic imperative, since it is harder and more expensive to fix them in

later development stages ll47l. Furthermore, safety-critical systems, such as air traffic

control, railway signalling, medical instruments and electronic commerce, require the

absence of errors in their designs, as failures in these systems can result in disastrous

consequences [39]. All the above indicate a pressing need for ensuring the correctness of

systems at early stages of the design cycle.

Traditionally, two validation methods are exploited to reduce errors: simulation and

testing. Both of them validate a system by feeding it with well-chosen input samples

and evaluating the outputs. Simulation is based on a design model, while testing is

on an actual product. When an error is uncovered, debugging is performed in order to

find the cause and eliminate the error. These methods are effective in detecting errors.

However, their effectiveness drops quickly, as the design or product becomes cleaner with

less defects [39]. As a consequence, one can never be sure that all errors have been

9



CHAPTER 2. BACKGROUND 10

removed from the design or even how many defects may still be at large. In other words,

simulation or testing fails to guarantee the freedom of a system from errors.

Formøl uerification is a promising alternative to simulation and testing. In contrast

to the latter, formal verification builds on mathematically-deflned system models and

requirements (or desired properties), and conducts an exhaustive exploration of all pos-

sible behaviours of a system model against its requirements. It is thus able to thor-

oughly evaluate the system behaviours and ultimately ensure the correctness of the

system against the requirements. It also provides practising engineers with a solid

methodological framework allowingthem to combine their experience with mathematical

rigour. Experience has shown that even partial application of formal verification in the

system development can lead to a significant quality increase and a reduction of the total

development cost [175, 184].

In formal verification, two classes of system requirements are usually distinguished:

safety properties, which require that bad things never happen, and liueness properties,

which demand that good things will eventually happen.

Furthermore, there are two well-established approaches to formal verification: the-

orem proving and model checking [43]. They differ in the way of describing system

models and proving system requirements. In the subsequent sections, details about these

approaches are given.

2.1.1 Theorem Proving

Theorem proving methods describe both a system and its desired properties by assertions

or formulae in some mathematical logic, and use axioms and inference rules to prove the

satisfaction of the properties. These methods have been successfully applied to solve

various combinatorial problems [43]. The main strength of these methods lies on the fact

that they are generally applicable and can directly handle systems with infinite state

spaces. They can also verify stronger properties than model checking methods 11781.

Popular theorem proving tools include ACL2 lL25l, HOL [76], and PVS t1611.

Though acknowledged as a powerful technique, theorem proving methods have some

weaknesses that prevent them from being widely used among sofbware engineers. First

of all, the proving process is usually outside the scope of fully automated procedures
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and requires manual guidance t1991. It is prone to human errors and notoriously time-

consuming t1361. Further, theorem proving methods seldom provide a counterexample

that might help the user analyse the reason and locate the error when they fail to prove

the correctness of a system t1781. Additionally, the employment of these methods requires

of the user an expertise in advanced mathematics and clever proof strategies [90]. That

is to say, this requires a strong understanding of operations of a proving tool in order

to successfully guide it and diagnose when it fails t1781. All the above hinder the full

automation of theorem proving methods and largely limit their application in industry.

2.1.2 Model Checking

Model checking methods [37] are aimed at automatic analysis and verification of concur-

rent systems with a finite number of states. For a given system, they rely on constructing

a finite representation of the system, known as the state space, which consists of all

states that the system can reach and all transitions that it can make between those

states. Typically, the state space is represented in a mathematical structure such as a

state transition system and an automaton. The construction of the state space is usually

automatic.

Meanwhile, these methods formally express system properties in a mathematical logic

(e.g. Temporal Logic [36]) or an automaton. They then perform the verification task of the

system as an exhaustive exploration in its state space to make sure that the properties

hold at every exploration step. The exploration is guaranteed to terminate since the

model is finite. In some approaches such as [177], system properties are described as

a finite model at a higher level of abstraction than the system model using the same

description language. The verification (or model checking) task is then converted into

checking the refinement between these two models.

In contrast to theorem proving, model checking is largely automatic and fast in most

cases, and can be used by less trained personnel. Also, its ability to provide counterex-

amples is a useful aid in debugging and uncovering subtle errors. There are a large

number of automatic model checking tools available both in the research community and

in industry, e.E.SMV t1481, SPIN [96], Murd [58], STeP [21], HyTech [11], MOCHA [12],

Concurrency 'Workbench 
1441, FDR t1771, Design/CPN [1], Maria 17451, CADP [66], and
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UPPAAL t4l. Alt these make model checking attractive for designers working in a wide

range of application domains.

Certainly, model checking methods also have disadvantages. Above all, they cannot

be directly applied to infinite state systems since the state exploration is thus unable to

terminate. In addition, with systems being more complicated, these methods easily run

into the state space explosion problem. This severely limits the size of systems that can

be handled.

2.1.3 Methods for Attacking the State Space Explosion

The benefits promised by model checking have motivated researchers to address its lim-

itations. A large number of proposals have been suggested in the literature to alleviate

the state space explosion problem. The proposed methods are able to reduce the number

of states that need to be stored for verifying certain kinds of properties, and thus con-

siderably increase the size of systems that can be verifled. Roughly, these methods can

be classified into the following categories: optimised data structures, on-the-fly model

checking, state space reduction, abstraction, and compositional verification.

Symbolic methods such as [100, 148, 163, 199] use concise data structures to rep-

resent state transition systems implicitly. These structures include Binary Decision

Diagrams (BDDs) l27l and Multi-ualued Decision Diagrams (MDDs) ll24l. Symbolic

methods succinctly encode sets of states and transitions as well as the state space as

directed acyclic graphs which are compact and canonical for a given ordering of the

input variables. Basic set operations including intersection, union and equivalence are

performed efficiently with the BDD or MDD representations [128]. As a result, explo-

ration and checking algorithms that utilise these operations can be executed efflciently.

Experience has shown that symbolic model checking methods are particularly effective

for systems with regular structure such as hardware circuits [28]. At the same time,

these methods also face a real challenge. The size of BDDs or MDDs greatly depends on

the ordering of the input variables, whereas finding the best ordering which results in

a minimal BDD or MDD representation is NP-complete 1271. Hence manual efforts for

investigating system structures and choosing an appropriate ordering are often needed.
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On-the-fly methods verify a system without storing the whole state space. They are

based on the observation that for verifying a certain class of properties, it is adequate

to visit (rather than store) atl the states and transitions. A typical on-the-fly method

performs a depth-first exploration on the state space, and at each step of the exploration

it stores only the current path from the initial state(s). As a result, the memory re-

quirements for verifying these properties are substantially reduced [74]. However, the

time needed to perform the exploration may grow dramatically due to the regeneration of

already-visited states. Accordingly, other on-the-fly methods such as [16, 70, 84] attempt

to offer reasonable compromises between time and memory requirements. On the whole,

an important advantage of on-the-fly methods is that they can immediately generate a

counterexample and stop the state space exploration once an error is uncovered. They

are thus of substantial value in detecting errors at early stages of design when many

errors tend to exist.

State space reduction relies on transforming a given verification problem into an

equivalent problem on a smaller state space. This category further includes partial order

reduction, symmetry reduction, garbage reduction and compositional minimisation.

Partial order reduction is based on the observation that in concurrent systems, the

correctness of some properties is independent of the order of interleaved events. A

selective search on the system state space is adequate to determine whether a property

holds or not. As a result, the generation of all possible interleaving paths can be avoided.

Notable approaches to partial order reduction are stubborn sets [195], persistent sets

[73,75], andample seús [165].

Furthermore, the basic idea of symntetry reduction is to make use of symmetry bi-

jections existing in many systems and to store only one representative state for a set of

reachable states t1961. Consequently, the number of states that need to be stored is re-

duced but full information on the reachable state space is preserved. Notable approaches

to symmetry reduction are 138,62,105, 1151.

Additionally, gørbage reduction methods attempt to delete or throw away information

about encountered states, while constructing the state space. Typically, the states that

are not reachable from the unexplored states are removed from the state space. As a

result, a reduction on memory usage for storing the state space can be achieved. Methods
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falling into this category include sweep-line 133,7271, bitstate hashing [95, 97], state spøce

caching lIL l, pseudo-root states detecting [164, 163], etc.

Finally, compositional minimisation (or compositional reachability analysis) is based

on intermediate minimisation of subsystems (or components) using some semantic equiv-

alence that preserves the property to be checked. It makes use of the hierarchical struc-

ture of a system and performs minimisation in steps, from the lowest to the highest

level of the hierarchy. At each step, it minimises the state space of a subsystem by

collapsing semantically equivalent states to a single state such that the properties to

be checked are preserved. Ultimately, a minimised global state space is obtained which

still contains enough information to verify the property under concern. However, as

often the contextual constraints are not considered when subsystems are minimised,

their state spaces may explode faster than the system [71]. This problem is called the

intermediate state spdce explosion. To address it, many proposals have been suggested.

Notable examples include I32, 71, 78, 79, 793, L94,2001. Typically, additional interface

processes capturing the contextual constraints are composed with subsystems, in order to

suppress the execution sequences that never happen in the system and ultimately control

the size of intermediate state spaces.

Abstraction methods focus on data values in concurrent systems that involve data

paths [39]. These methods attempt to reduce the size of the state space to be han-

dled by abstracting away the variables or data values irrelevant to a property to be

checked. The abstraction is based on the observation that simple relationships usually

exist between data values in the system specifications. Typically, a mapping function

is built which maps the actual data values into a small set of abstract data values and

consequently transforms a concrete system model into a (simpler) abstract model such

that the satisfaction of a property on the abstract model implies that on the concrete

model. The key factor of this approach is to select a good mapping function, because the

abstract model has to be small and simple to facilitate a full state space exploration but

still contain enough information for verifying the property under concern tL42l. Many

proposals to the construction of such a function have been presented in the literature,

e.g. 117,18, 38, 45, 49,50, 51, 77,99,129, I33,179, 1801.
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Compositional verification (or compositional reasoning) such as [130, 131, 197] at-

tempts to combat the state space explosion using the principle of "divide and conquer",

based on the fact that many systems are composed of multiple processes (or components)

running in parallel. It divides the verification problem of a complex system into sub-

problems of its components and addresses each sub-problem independently. The mo-

tivation behind this is that, to verify some properties, it is sufflcient to consider only

a subset of the components. Basically, in this approach, a property to be checked is

first decomposed into local properties on some components. Then each local property is

checked independently on the corresponding component, and the results are utilised to

deduce the system property. Clearly, this approach does not require the construction of

the global state space. Accordingly, the state space explosion problem can be alleviated.

At the same time, this approach also faces a challenge that often local properties of

components are satisfied only when certain assumptions are met on their environment.

That is to say, model-checking components in isolation sometimes yields a negative an-

sIMer.

These are two solutions to this problem. The first solution was proposed by Clarke

et al. t411. It models the contextual constraints for each component as an abstract

interface process and then uses a rule of inference, called ttre interface rule, to ensure

the preservation of local properties of components at the system. Normally, an interface

process can be derived from the other components in the system. The work adopting this

solution includes l4L, 421.

The second solution was proposed by Pnueli t1711. It specifies each component in

terms of the properties that it assumes about its environment, and the properties that it
would then guarantee, provided the assumptions hold. Thus, composing a component c

with another component which (unconditionally) guarantees the assumptions of c will
produce a system where the guarantees of c are enforced. Accordingly, this style of

verification is often called o,ssunxe-guørantee reasoning. The work along this line includes

lgL, L43, 146, 171, 1881.

A limitation of this assume-guarantee reasoning paradigm is that it cannot directly

handle systems involvinginterdependent assumptions between components. More specif-

ically, suppose a system consisting of two components c and d such that it is necessary
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assume the correctness of d to verify c and vice versa. Then a circle would be encountered

for verifying either c or d, and there is no place to begin the assume-guarantee chain. To

break the circularíty, a number of approaches to circular reasoning have been presented,

such as f6, 7, 1.O, 92, 93, I28, 149, 150, 1511. They impose certain restrictions on the

components and the properties to be checked such that the assume-guarantee inference

rule remains valid by induction.

In general, it is a complicated task for compositional verification to decompose global

properties of a system into local properties of the components. Also, it must be ensured

that the satisfaction of local properties by the components implies the satisfaction of

some global properties by the system. Furthermore, lightweight techniques and auto-

mated supporting tools are needed to make compositional verification widely acceptable

by software engineers.

Admittedly, no single formal verification technique is able to solve all classes of prob-

lems. The combination of various techniques with tool support is therefore a worthwhile

endeavor since it provides more powerful means to handle real problems. This has been

demonstrated by some earlier work such as 12t,66,96, 1601.

2.2 Multi-Formalism Modelling

As mentioned above, formal verification is a mathematically-based methodology for de-

scribing and reasoning about the behaviour of a system. Traditionally, the designer uses

a single formal language to describe a whole system for verification. However, with their

complexity rapidly growing, modern computer-based systems often incorporate very dif-

ferent aspects or characteristics. In many cases, no single conceptual model or formalism

is adequate for coping with all aspects of a system [108, 155, 141]. For example, a software

system may be composed of data-centred and control-oriented components. Data-centred

components can be naturally depicted using data-flow diagrams, whereas state-based

diagrams are best suited for describing control-oriented components. Modelling such a

system using a single language seems to be cumbersome and sometimes even infeasible

with the resulting specification becoming too complicated. This obliges the designer to
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use appropriate formalisms, techniques and tools to deal with different parts or aspects

of a system.

Furthermore, the specification of a complex system often involves a collaboration of

groups of people from different disciplines. Each group tends to use their preferred

methods or techniques to deal with the system. For example, domain experts prefer

domain-specific languages, not only because they are familiar with these languages but

also because these languages are usually lightweight and contains necessary domain-

specific constraints which simplify the modelling task. Practical formal methods need to

accommodate such heterogeneity.

Therefore, what is needed are various formalisms with ability to cope with specific

problem domains, as well as the combination and integration of these formalisms in

specifying the same system. The combination and integration can take advantage of

individual formalisms in helping to generate more concise and understandable system

specifications. Many modern software engineering methods, such as the Speciflcation

and Description Language (SDL) [106], the Unified Modelling Language (UML) [159],

the Requirements State Machine Language (RSML) [137], the Software Cost Reduction

language (SCR) [91], Rhapsody[85] and ROOM [182], recommend that the different as-

pects of a system be specified by different languages.

A significant amount of research has been carried out in the area of multi-formalism

modelling (or heterogeneous specification). Depending on their focuses, existing ap-

proaches can be roughly classified into three categories: heterogeneous specification on

components, on aspects, and on viewpoints.

Approaches to heterogeneous component specification use suitable languages

to specify each part (or subsystem) of a system so as to more accurately and naturally

capture the diverse characteristics present in these parts. Notable approaches include

CodeSign [64], MOOSE [48], DOME [98], GME [102], Ptolemy II [19, 61], Moses [65], etc'

The ultimate systems, often called component-based heterogeneous systerns, or heteroge-

neous systems for short, are the main subject studied in this thesis.

Approaches to heterogeneous aspect specification use different languages to de-

scribe each aspect of a system. These include [53,91, 737,159,181]. For example, the
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UML [159] distinguishes between static and dynamic aspects of a system. It uses class

diagrams to capture the static relation such as inheritance and aggregation between

objects in a system, and statechart diagrams to describe the dynamic behaviour of the

objects. The work of [181] takes a similar approach but is more flexible, allowing the

static/dynamic aspects to be described by a variety of languages. Furthermore, the

work of [53] distinguishes aspects on model, action, event and expression. It considers

models to govern the state-transition aspect of systems, while using actions, events and

expressions to label transitions between states. As above, this approach supports the

specification of each aspect using various formalisms.

Approaches to heterogeneous viewpoint specification use different languages to

describe the dynamic behaviour of a system from different perspectives. A perspective

represents a view of the system in a particular domain. For example, in the UML, system

behaviour can be described by use cases from the observer's point of view, by statecharts

from objects' perspectives, and by sequence diagrams or collaboration diagrams with
a view to the interactions between objects. Accordingly, approaches in this category

are often called rnulti-uiewpoint approaches. Other notable multi-viewpoint approaches

include Catalysis [60], Rosetta [8], Viewpoint Oriented Software Development [67], the

work of 1221, etc. A distinct characteristic of these approaches is that behavioural models

of different viewpoints often have some form of overlap t1851. Consequently, ensuring

the consistency between these models is very important. Along this line, many proposals

have been made, for example, [68, 69, tõ7,191] to name a few.

Note that the above classification is not strict, since many systems or approaches

exhibit heterogeneity in artifacts of multiple categories. For example, the UML consists of

notations which can be used to describe a system on different aspects and from different

viewpoints. As we were interested in systems composed of components with different

characteristics, in this thesis we focus on component-based heterogeneous systems, as

described in the first category.
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2.2.1 Semantic Approaches to Heterogeneous Systems

In order to employ multiple formalisms for system specification, it is important to develop

a solid semantic base, on which the composition of instances of the formalisms can be

given an unambiguous and consistent semantics. Furthermore, in order to avoid the

development of different techniques or the use of separate tools for each formalism, it is
also important to construct an underlying framework, preferably with tool support, which

builds on the semantic base and seamlessly unifies these formalisms. Only when these

foundations are laid does the formal verification of the resultant heterogeneous system

designs become possible.

To develop these foundations, it is essential to focus on a class of formalisms that is

sufficiently narrow so that the common features can be exploited for developing sound

principles for reasoning about heterogeneous systems and providing mechanical support

for formal verification t1671. For example, [110] focuses on visual languages that can

represent discrete-event systems and studies issues about their syntax and semantics

definition for the modelling and simulation of heterogeneous systems. Similarly, [167] fo-

cuses on state-transition models and present an approach to the construction of analysis

tools for heterogeneous systems made up of these models.

In the literature, a number of semantics approaches to heterogeneous system spec-

iflcations have been presented. According to their employed methodologies, these ap-

proaches can be classified into three categories: syntactical translation between for-

malisms, syntactical translation into one common formalism, and semantic interpreta-

tion into a common semantic base.

Approaches to syntactical translation between formalisms such as [55, 162] first

select a destination formalism for a given heterogeneous system and then translate all

the component models written in other languages into it. Thus the semantics of the het-

erogeneous system is given in terms of the resultant model in the destination formalism.

The verification of the system can then be supported bytools developed for the destination

formalism.
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Undoubtedly, these approaches are conceptually simple and able to utilise the tools

developed for different languages. However, they require bidirectional translation be-

tween any pair of formalisms. This means that they need to restrict features of the

supported languages to those that are translatable between all the languages. In other

words, only an intersection of these languages can be accommodated. As admitted by

Paige 1162l, even though using multiple languages for speciflcation, one can express

nothing more than just using one of them. Also, it is clear that the number of trans-

lations grows quadratically with the number of the supported languages. This implies

that the addition of a new language requires a considerable effort to build bidirectional

translations with all existing languages.

Approaches to syntactical translation into one common formalism select one

common formalism as the destination language for translation, and specify the semantics

of a given heterogeneous system in terms of the common formalism. For example, the

work reported in 1202,2031employs one-sorted first-order predicate logic as the common

formalism and supports the use of a combination of Z langaage [186], first-order logic,

and finite automata for system speciflcation. The composition of components (or partial

specifications) of a system is equivalent to the conjunction of the assertions translated

from them. In this way, this approach provides a very useful means for reasoning about

heterogeneous systems.

In some approaches such as [30, 14], the input language of an existing analysis tool

is chosen as the destination language in order to utilise the tool for formal verification.

In this way, these approaches bridge the gap between notations developed for readability

and understandability and notations developed for verification. They thus avoid the need

to build formal analysis tools for each supported language and can take advantage of the

advanced techniques already implemented in the analysis tool.

However, these approaches may have to leave out special features of all involved

modelling languages, or extend the common formalism to represent these features. For

instance, it is often the case that some data types of a modelling language are not

supported by or are incompatible with the data types of the common formalism. Then

an alternative solution has to be sought. Accordingl¡r, the addition of a new language
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may require a slimming-down of the language or an extension of the common formalism

to accommodate special features of the language.

Furthermore, in modelling heterogeneous systems, different formalisms are used be-

cause of their appropriateness for representing special characteristics of individual com-

ponents (or subsystems). In other words, the use of a lot more constructs in the common

formalism may be required to express some constructs in a modelling language which are

specialised and optimized to a particular domain. This implies that a single common for-

malism may be cumbersome or unsatisfactory to represent some components [167], and

syntactical translation may result in loss of information or produce a very complicated

model in the common formalism.

Approaches to semantic interpretation into a common semantic base such as

[110, 166, 167, 59, 189, 156] differ from the second category in that they usually build

on a general semantic base (e.9. state transition systems) and focus on the aspects of

individual modelling languages that are essential for deflning the operational semantics

of heterogeneous systems in terms of the semantic base (e.g. in terms of states and

transitions). These approaches usually do not directly deal with the syntactic issues,

such as constructs, data types, expressions and special syntactical features, or construct

substitutability between languages. Consequently, simpler solutions to the semantic

definition of heterogeneous systems are obtained.

For instance, [110] focuses on the language aspects that attribute to states and tran-

sitions between states, and defines language-specific interpreters using Abstract State

Machines (ASMs) lltzl, which characterise the semantics of heterogeneous components

in terms of dataflow actors. As a result, the semantics of heterogeneous systems is given

in terms of networks of dataflow actors. Furthermore, [167] identifies a simple common

structure, called labelled directed hypergraphs, to capture the essential information for

the semantics definition of heterogeneous components. It then specifies a set of rules

for each language, which operate on hypergraphs and render the state and transition

information of heterogeneous components. As a result, heterogeneous components are

interpreted as state transition systems and heterogeneous systems as the composition of

transition systems.
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In summary, to define the semantics of heterogeneous systems, semantic interpreta-

tion approaches do not require the syntactical translation between individual formalisms

and thus avoid the problems faced by the translation approaches. Also, the use of a com-

mon semantic base largely simplifies the interpretation of heterogeneous components and

their composition. Therefore, in this thesis, to support the veriflcation of heterogeneous

systems, a semantics interpretation approach, in particular, the approach proposed by

[110], is taken. This will be detailed in Chapter 4.

2.3 Component-BasedDesign

In recent years, component-based design has become an important approach to building

complex systems. It is concerned with designing components as reusable units, designing

systems by reusing components, and maintaining/upgrading system designs by means of

component replacement or customization [47]. In contrast to classical top-down design,

the main idea of component-based design is to reuse existing solutions to well-studied

problems in terms of components. In this way, a promising means of achieving software

reuse, rapid development and complexity management is provided. Throughout this

thesis, we shall call the systems adopting such a design methodolory as conxponent-based

systems (CBS).

Although component-based design has been a widely used term, there exists no stan-

dard definition for the term "components". A number of proposals exist in the literature,

e.g. 126, I52, 759, 192, 1981, with emphasis on different aspects of components. In this

thesis, we adopt Xiong's proposal [198], looking at components at an abstract level. That

is, a component encapsulates state and behaviour, and interacts with its environment

through its interfaces. The interfaces are the entrance points to access the services

provided by the component t1921. In particular, we consider a component as a reusable

and independent unit of speciflcation, subject to composition.

Together with remarkable benefits gained by advocating independent development

of components, component-based design also brings us ne\¡/ problems. These problems

include "how can we be sure that these independently developed components work to-

gether?", and further "how can we know that a component-based system does what we
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want it to do?". Solving these problems is essential to ensure the functionality and quality

of the resultant systems. Basically, this involves issues at four levels.

1.. Data type compatibility: meaning that communicating components agree on the

types of data being exchanged. For example, the sender should not send strings

ifonly integers are expected by the receiver.

2. Behaviour type compatibility: meaning that interacting components described in

different models of computation agree on common communication schemas t1981.

According to Lee [134], a model of computation describes the "laws of physics" that
govern component interactions. Components written in different formalisms may

have different models of computation. For example, components in the CSP do-

main rely on rendezvous synchronisation, while Kahn process networks are stream-

based. The compatibility at this level ensures the compatibility between the interac-

tion laws of components. In contrast to behaviour compatibility (below), this level of

compatibility usually can be statically determined, since the models of computation

of components are usually predefined.

3. Behaviour compatibility: meaning that there exists no unexpected interaction be-

tween components. This ensures that the context dependency of every component

is fulfilled. More specifically, since a component and its client are usually developed

in isolation, there often exists a contract to ensure safe interactions between them.

The contract depicts the communication protocol that a component assumes about

its context. In order for the component to function properly, the environment has to

abide by this protocol.

4. Proving desired properties: meaning that the system does what we wanted it to
do. This involves checking safety and liveness requirements of the system. For

instance, a typical requirement may be deadlock freedom. Deadlock refers to a
situation where every component is waiting for an event that will never happen.

In the existing industrial standards, such as OMG CORBA [158], Microsoft COM

[153] and Sun JavaBeans [190], which are basically distributed object-oriented mod-

els, component interfaces only capture syntactic information but leave out important
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semantic information. For example, the specification of dynamic properties and semantic

constraints of components at their interfaces are not directly supported t1981. Thus these

standards themselves do not provide facilities to answer questions at the last three levels.

A body of research on these issues has been explored in the literature. Xiong in his

PhD thesis [198] has recognized and intensively studied issues at the first two levels,

i.e. data type and behaviour type compatibility. Issues at the third level, l.e. behaviour

compatibility, have been studied in [46, 72,732, L68, L74,201]. Further, research based

on the existing industrial standards attempts to support the higher level analysis of

component-based systems by enhancing the component interfaces with semantic infor-

mation. Examples include [187, 15, L26,29, L72,34].

In this thesis, we concentrate on the last two levels of issues, Le. behaviour compatibil-

ity and desired properties. To do so, we make some simplifications at the first two levels.

We enhance the formalisms, used for describing components, with typed input/output

ports (or channels). In particular, ports are embedded into formalisms to represent the

service access points, capturing necessary syntactic information of components. We then

restrict the communication between components to asynchronous communications via

ports, as distributed systems are the focus of attention. In this way, we simplify the be-

haviour type compatibility problem to the adaptability of formalisms for supporting this

common communication schema, and thus circumvent the need for explicitly checking the

behaviour type compatibility between components. Although this makes a compromise

on the flexibility of the composition mechanism, \rye pave the way towards answering

questions at higher levels.

Furthermore, like [198], we have chosen interface automata 164l for describing com-

patibility requirements of components, due to the lightweight and formal nature of the

language. Different from [198] where interface automata are used to ensure the be-

haviour type compatibility between components, rù¡e use the language to capture a higher

level of compatibility, namely, behavioural compatibitity.

2.4 ModellingLanguages

In the development of a concurrent system, it is especially important for the designer

to have a precise description of the system behaviour. Traditional description methods
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based on informal or semi-formal languages often are not good enough to achieve this.

To cope with this difficulty, a large number of formal notations and techniques have been

proposed, e.g.Z [186], LOTOS [23] and process algebras such as CSP t94l and CCS t1541.

They provide systematic approaches to the construction of unambiguous speciflcation

models and the automated verification of their desired properties. The use of formal

languages greatly enhances clarity ofthe design process and confidence in the correctness

of the resulting systems.

However, these benefits are usually counterbalanced by the fact that application and

software engineers commonly lack experience in interpreting and manipulating the com-

plex underlnng mathematical formalisms. Furthermore, there is a clear need in practice

for development techniques being intuitive and suggestive, so that the designer can focus

on the specified problem rather than coping with the specification formalism. This is

also important for successful communication between the designer and the customer,

especially in the requirements elicitation stage.

Visual languages appear to be a promising approach to overcome these drawbacks.

Outstanding examples include dataflow diagrams [183, 135], Petri nets lL76l, Statecharts

[87], SDL [106], MSC t1071, and UML t1591. In these languages, the intricate mathemat-

ical fundamentals are hidden and transformed into bubbles, arcs, and their graphical

(or physical) relations. Consequently, they not only allow the formal specification and

verification of systems, but support intuitive understanding of systems owing to multiple

dimensions of the graphs. In recent years, visual languages have gained a wide accep-

tance in industry for designing, documenting, and even programming software. There

also exist notable examples where visual languages are used in the structured analysis

and graphical representation of textual formalisms [20].

Therefore, towards the goal of being lightweight and practical, in this thesis we focus

on a class of visual languages , viz. graph-Iihe notations, for the specification of discrete-

event systems. These notations consist of vertices (represented as closed geometrical

shapes) and edges (represented as lines) connecting vertices. Examples include Petri

nets, finite state diagrams, statecharts (both Harel and UML variants), etc. Among them,

Petri nets and UML statecharts will be further investigated in Chapter 4.



Compositional Verification of
Component- Based Systems

In recent years, component-based development has become more popular for the produc-

tion of large-scale computer applications. By building systems from independently de-

veloped components, a promising means of achieving software reuse, rapid development

and complexity management is provided. However, due to the state space explosion,

the applicability of exhaustive analysis is largely limited. Among various techniques

attacking this problem, compositional veriflcation [10, 79, 92,93, 150] is a powerful

divide-and-conquer technique best matching the modular nature of component-based

systems. It decomposes the verification task of a system into sub-tasks of individual

components and addresses these sub-tasks independently. The key to this is to consider

each component in conjunction with the assumptions about its context, and to consider

the composition of components in conjunction with their interface behaviour.

In component-based systems, however, this key information is often missing or only

informally described. Currently, the interface speciflcations of components tend to be

rather restricted, capturing only the signatures, i.e. the names, data types and direction

of information flow, but excluding information about t}i,.e communication protocols of

components. This is because software engineers lack a formal means for precisely spec-

ifying the interfaces behind which components encapsulate their services. As a result,

components cannot be verifled independently due to the lack of information about the

26
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environments in which they are embedded, and the composition of components cannot be

verifled due to the lack of rigorous specifications of the interface behaviour of components.

In this chapter, we present a formal technique of compositional verification which

focuses on communication protocols while abstracting away from the data values being

communicated. The protocol of a component describes the services it provides, the way

it reacts to its inputs and what it expects from its environment. It does not, however,

disclose the implementation detail of the component. We use interface automata (IAs), a

formal lightweight language proposed by de Alfaro and Henzinger [54], as the notation

for describing protocols.

With the contextual assumptions captured by an interface automaton (IA), each com-

ponent can be checked for conformance with the IA in isolation from the system. This

ensures that a component is able to abide by the interaction protocol given by the IA,

provided its environment behaves as expected. Furthermore, the composition of compo-

nents can be verified utilising the interface behaviour of components specified by the IAs

while disregarding the internal activities of components. Using this divide-and-conquer

approach, the state space explosion problem can be alleviated.

The remainder of this chapter is structured as follows. In Section 3.1, the underlying

concepts such as general reactive systems and networks are introduced. In Section 3.2,

discrete-event components and interface automata are defined followed by the confor-

mance relations between them. In Section 3.3, networks of discrete-event components

are clarified and compositional verification methods for determining their consistency,

deadlock freedom and safety properties are presented. Finally, Section 3.4 presents a

summary and Section 3.5 compares our approach with the related work.

3.1 Preliminaries

This section introduces general definitions for reactive transition systems and networks

composed of reactive transition systems. These definitions are set in the framework of

Arnold and Nivat. Subsequent sections will specialise these definitions for discrete event

components and interface automata.
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3.1.1 Reactive Transition Systems

Definition l. A reactiue transition system (RTS) is defined as L : ("0, S, D, A), where

o 
^9 

is a set of states and s0 e ^9 
is the initial state;

o E is a set of events, consisting of three mutually disjoint sets of input events Dr,

output events Xo, and internal events EH;

o A C ^9xDx,Sisasetofsteps

RTSs are similar to labelled transition systems (LTSs) [13] which have been used to

give the operational semantics of many modelling languages, e.g. CSP [177] and CCS

11541. RTSs differ from I-,lTSs in having an explicit distinction between input, output

and internal events (called labels in LTSs). The distinction reflects the fact that, in an

asynchronous distributed application, a system has control over its internal and output

events, but no control over its input events. Instead, when an input event occurs is under

the control of the environment. That is, a system decides when to produce an output,

while the environment decides when to provide an input. Hence we let 2ctrL - to u DH

be a set of controllable events of ,L and ¡obs - Er u to be a set of observable events.

A RTS L ís fi.nite if both ,5 and D are flnite. L ís deterrninistic if Ve € D,s,s/, st' e S,

(s,e,s/), (s,e,s") e A implies s/: s//. Otherwise -L is nondeterministic. Further, a state

s € ^9 
is said to be a terminal state íf l(t,",s/) e A.

Definition 2. A.trace o of a RTS ¿ from s1 e ,S is an event sequence e1.e2... e- such that

1s1,...¡sm*r €,S,Vjt7< j<m,(s¡,"¡,t¡+r)e L.oissaidtobeinternalif Vj:l1j1m,
e¡ e. EH, or to be empty if m :0. An empty trace is denoted as À. Given a set of events

E, tlne event restriction o f¿ is an event sequence obtained by removing from o all events

not in.E.

Definition 3.Let o, rn, €rt...,e* arrd s1,...¡srn*r be as in Definition 2. Then s-a1 is

called reachable from s1 @ia o). Further, s-a1 is called reachable in L if sl : s0, or

reachablefrom sTby asetof events Eif e¡ e Efor aIl j:71j 1m.
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In the following, we write s3-, s'as a shorthand for (s, e,s') e A, and s =4slfor

" ç 2obs if ls// e S, stt å s' and s// is reachable via a (possibly empty) internal trace of ,L

from s.

Definition 4. Given a state s e ,9, the sets of enabled input and output euents at s are

definedbyenl(s) : {eetr | =s'€ ^9,s å "'} and eno(s) : {e € Eo I ls'€ S,s$s],
respectively. An input event e e EI is called refused at s if e ( enl (s). A RTS -L is called

input-uniuersal íf Vs e ,S, enr(s) : Er.

In our approach, it is important to develop two derivatives for RTSs: mirrors and

input-universal versions. Mirrors will provide the ideal environments for RTSs, while

input-universal versions will make RTSs able to accept all input events with the addition

oftrap and idle steps.

Definition 5. Given a RTS L, ttre mirror of .L is a RTS 114 : (s07, }¡,,DM,A¿), where

E'* : E! and Eo, : EL.

The mirror of ,L is identical to -L but has the input and output events of .L interchanged.

Definition 6. Consider a RTS L. Let

. L #,S¿ be a single error state,

o A¡.ap: {(s, e, I) I s € S7,e e DL \ enf (s)} be a set of trap steps, and

o L¿¿t.: {(I, ", 
I) I e € EL} be a set of idle steps.

Then tlne input-uniuersal uersion of .L is a RTS [/ such that

U-

The input-universal version is a RTS that includes not only the existing steps but also

new trap steps. A trap step, taken when an unspecifled input event is received, will cause

the error state I to be entered. Clearly, for every state-event pair (s, e) with s € ,9 and e

a refused input event at s, a step is added to A.¡roo which emanates from s, receives e and

(s07, Sr, U {r}, Er, Lrl) LtrapJ L¿arc)

L

íf L,¿ro,p f Ø,

otherwise.
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enters I. In addition, we have ensured that the input-universal version of an (already)

input-universal RTS is the same RTS.

3.1.2 RTS Networks

We define the composition of RTSs in terms of synchronisation vectors introduced by

Arnold and Nivat [13]. Their approach to synchronisation was quite general in that any

non-empty set of processes may synchronise on the events named in so-called synchroni-

sation uectors.In this way, not only peer-to-peer but also multicast and broadcast commu-

nication among processes can be described. Our approach differs from Arnold and Nivat

in differentiating input and output events, since this is an important issue for distributed

component-based systems. Components should be able to accept inputs at any time, but

may be selective in when they produce outputs. Also, we insist that each synchronisation

vector should have exactly one output event and an arbitrary number of synchronised

input events. To define RTS networks, we introduce a preliminary definition to help

clarify the nature of synchronisation vectors.

DefinitionT. Considersets Eo,Et,... En, arelation À C flo<¿<rrE¿,aîdaset.Ð ÇUo.¿..n8¿

suchthatEl'E¿^:tE¡:Øforalli,,j:0<i,j<nAilj.LetprojectionsTT¿:R-----+E¿
for 0 ( i I nand sets ofkeys n, : {tr¿(r) € -Ð I 0 < i <n} for r € .R. Then Ris saidto be

indexed by E if there exists:

. exactly one key per tuple: lo"l : 1 for all r e R;

o atmostone occurrence perkey: Ve € E,-r e R,e e rc. impliesVr/ € A\ {"}, e (. nr,.

We will use such a relation to capture the synchronisation patterns between RTSs.

These patterns may have multiple input events but exactly one output event, which will

then individually provide a key and cumulatively provide the index for the relation. Also,

an output event is involved in at most one synchronisation pattern. In defining RTS

networks, we assume a special symbol e which is not an event of any RTS.

Definition 8. A R"S networh is a tuple -ð/ : (E, W, R), where
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. x is a set of externa.l events of the network, consisting of two disjoint sets of input

events Dr and output events Do. We let D[ : I u {e};

o I,7 is a finite set of RTSs. We let El - tíb" u {e} for alll eW;

o Ã ç Ef x fI¿E¡zD| is a relation indexed by E/ Ul)t.wD?.

A RTS network is called closed if D : Ø, or open otherwise. We often write N : (W,R)

for a closed RTS network l'r. The relation l? is called a set of synchronisation uectors

(in the terminology of the Arnold and Nivat model). A synchronisation vector in the

set describes a particular synchronisation pattern between the component RTSs. More

specifically, the RTSs with events present in the vector are synchronised, while the other

RTSs marked by e remain unchanged. The symbol € represents the irrelevancy of a RTS

to a particular synchronisation. Further, the RTS corresponding to the network events is

referred to as the environment, denoted by "env". Its output events denote the network

input events and its input events denote the network output events, i.e. E"9"": Er and

Xjnu : Eo. Note that env is an unknown RTS and thus we only use it as a syntactic term

to facilitate further explanation.

In order to give RTS networks a sound interleaving semantics, we require exactly

one output event in each synchronisation vector, because output is nonblocking in asyn-

chronous applications. Also, we require that at most one synchronisation vector can

be matched for a particular output event. Hence the synchronisation vectors R are

indexed by the output events (of the environment or the component RTSs). In each

synchronisation vector, the unique output event is called t}:re produced euent and the

input events in the vector are the consumed euents of the synchronisation. Also, the

RTS that produces the produced event is called t},:'e producer, t}:,.e RTSs that receive the

consumed events are the consulners, and the rest are ttre idlers of the synchronisation. A

formal specification is given as follows.

Definition 9. Consider a RTS network l/ and a synchronisation vector r € -R. Let

Wt : {env} u W,I e Wt, and projections r¿: R 
- 

X¿ for all L Then t}ne producer of

r,denotedby p,,istheuniqueRTslsuchthatr¿(r) e D?.nr,(r) iscalledtheproduced

euent of r. Also, the set of consumers of r, denotedby nr, consists of allRTSs I suchthat
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?T'¿(r) € Ef . For any consumer l, the event r¿(r) is called aconsurÍLed euent of r. In addition,

anidler of r is a RTS I such that zr¿(r) : e. The set of idlers is denoted by i".

Before giving the semantics of general RTS networks, we first consider networks of

input-universal RTSs.

Definition 10. Consider a RTS network l/ : (E¡¿, W, R) such that all I e W are input-

universal. Tlne synchronised product of ll is a RTS tr : ("0, S,Er,A), where

. s0 : fltews? and ,S Ç fI¿ewSt is the smallest set such that s0 e S and Vs e

,S, (s, e, s') e A implies s/ € ,9. We assume projections 7r¿: ^9 
------+ ,9¿ and let s¿ : n,(3¡

and si : ¡i¿(s/) for / e W,s,st Ç S;

o EI" : D'*,E? - Eß and Ef Çl)¡ryarEft'I

o A consists ofinput steps

{(",","') l" e DL,lr €.R,pr: €nvAe: zr"nu(r) nô(s,r,s')},

U {(",e,s) | e r-EL,tr e R,pr : êrìvA e : runu(r)},

output steps

{(",","') l" e E?,1t e W,r € A, I: p, Ae:zr"nu(r)

A (s¿, n.¿(r), sj) e A¿ A ô(s, r, s')),

and internal steps

{(",",s/) | ll €W,e e Dfl n (s¿,e,sj) € A¿ A (Ys e W \ {l},"i: ss)}

U {(",e,s') I -I eW,e e E? Alr e R,e : zr¿(r) nzr"nu(r) : e

A (s¿, e, sj) e A¿ A ô(s, r, s')Ì

U {(", e, s') I =t 
Ç W,e e Ð? n (/r e R,€ : 

"¿(t))
A (s¿, e, sj) e A¿ n (V9 e W \ {¿}, "! 

: 
"n)},

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

where ô(s,r,s/) : (V9 € 4", (ss, ns(r),s/r) e Ar) A (Vå € r",s'¿: s¿)

(3.6)
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According to the deflnition, such a RTS network defines a RTS (later called t}ne com-

posite fr"S). A state of the RTS is a vector of states of all its component RTSs (later called

t}ne components), and its initial state is a vector of initial states of the components. An

input step of the composite RTS is a step receiving a network input event. If there exists

a synchronisation vector where env is the producer and the event is the one produced,

the input step also synchronises the corresponding input steps of the consumers (for-

mula 3.1). Otherwise, the composite RTS remains in the same state after consuming the

input event (formula 3.2). Further, the composite RTS will perform an output step when

the producer ofa synchronous vector generates the produced event, provided that env is a

consumer of the vector (formula 3.3). The step involves the corresponding output step of

the producer synchronised with the corresponding input steps of the consumers including

the environment. Finally, an internal step taken by any component is an internal step of

the composite RTS (formula 3.4). This step clearly has no impact on other components

or the environment. Also, an output step taken by a component becomes internal to

the composite RTS, when the corresponding synchronisation vector involves no network

events (formula 3.5) or no corresponding vector exists (formula 3.6). Similarly, the step

described in formula 3.5 will synchronise the corresponding input steps of the consumers.

One can see that the composite RTS involves not only synchronised communications

among the components but also interleavings of their internal activities. The latter are

the main contributors to the state space explosion when a network is directly analysed

and thus our approach seeks to minimise their effect.

We now generalise the synchronised product to an arbitrary RTS network.

Definition 11. Consider a RTS network -A/ : (E, W, R). Let l/' : (D, W' , R) be a derived

RTS network such ttrat Wt : {Ut I I e W}, where t/¿ is the input-universal version

of l. Then tlne synchronísed product of l/ is defined by the synchronised product of l//
(Definition 10).

The above definition acknowledges the fact that in asynchronous systems the recep-

tion of an unspecified input event often indicates a design error.

Immediately from Definition 10 and 11, we can get the following proposition.



CHAPTER 3. COMPOSITIONAL VERIFICATION 34

Proposition 1. The synchronised product of any RTS network is input-uniuersal.

To relate the behaviour of a RTS network to that of its components, we define trace

projections on components.

Definition 12. Consider a RTS network ,ô/ : (E, W, R) and a RTS ¿ e W. Let -L¡¿ be the

synchronised product of ly', ø a trace of L¡¡ from sflr, and

,þ: {(o,i) l lr e R,( e {env} t)W,oe E3,n¿,(r):oAi,ÇDI¿,r¿(r):l¡

a function mapping an output event of any other RTS, which can cause the RTS I to take

an input step, into the corresponding input event of L Then t}:,e trace projection r¿(o) of o

on I is defined by

r¿(o) :

The trace projection n¡(o) on J is an event sequence consisting of the events that I takes

while the network l/ follows trace o from its initial state sfl,. It is computed recursively

by considering each event e in o in turn. If e is an internal or output event of l, then e is

appended to the trace projection; if e is an output event of other RTSs which corresponds

to a synchronisation vector r with z-¿(r) an input event of l, then r¿(r) is appended to the

trace projection; otherwise e is ignored. Note we have ensured t}:'at r¡(o) is a trace of I

from s!.

3.2 lndependent Analysis of Components

In this section, general RTSs are specialised as discrete-event components and as inter-

face automata. Also, the conformance relations between these are studied and then a

practical conformance checking method is presented.

À

e.q(o')

i,'r¿(ot)

r¿(o')

if ø: À,

if o:e.o'AeeEft't,
íf o : e. o' Ai ÇEl n (e,i) e tþ,

if o : e. o' A " 4 Ei"t n /(e, i) e rþ
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3.2.1 Discrete-EventComponents

As RTSs are often too elementary for practical use, we extend these systems in two ways.

First of all, we redefine an event to consist of two parts including a kind and a value,

and associate each part with different importance depending on the context. Kinds are

used to classify events while values represent data being communicated (also called euent

parameters). This allows us to introduce a level of abstraction to component behaviour

and vary the level of abstraction by changing the way events are partitioned. In addition,

we extend RTSs with input/output ports, each port identifying a particular kind of events.

Then it can be assumed that a component (or a reactive system) communicates with

others only through its ports. That is, a component always receives data (or messages)

fed to its input ports and produces data (or messages) via its output ports. In this way,

event kinds (or ports) play a critical role in defining component composition but have

little impact on the computation of individual components, while event values are of great

importance to component computation but less relevant to component composition. This

facilitates the system modelling in that the ports can form a component's view of the rest

of the system and decouple the outside world from the component. It thus largely reduces

the interdependency between components. This approach also allows the designers to

compose components by simply connecting ports, and thus relieves them from the labor

of relating individual events. In defining components, we assume a countable universe of

transmitted values 7.

Definition 13.4 discrete-euent component (DF,C) is defined as C : (a,d,sO,,S,D,A),

where

o a is a finite set of ports, consisting of two disjoint sets of input ports ar and output

ports oo;

o 0: a -------, 2r is a total function, mapping each port to a subset of values from the

universe;

o D : Er u Do u tr{ is a set of events, where DI : {U,rl I / e al,u e 0(Ð},

ro q {(/, ") I I e ao,u Çd(/)} andEH n (a xV) : Q;

o The tuple (r0, S, x, A) forms an input-universal RTS.
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r>

b.y'?

36

A DEC is called closed if a : Ø, or open otherwise. d is called t}:.e typing function,

associating each port with a type (or kind) of values that can be transmitted via the

port. An input/output event of a DEC is regarded as an occurrence of message transfer

at an input/output port of the DEC, while internal events of each DEC are considered

to be unique to that DEC. Also, like 1L44, Chapter 81, we require DECs to be input-

universal RTSs. This acknowledges the fact that components are often developed to work

properly in unknown environments in bottom-up design. This is also a requirement for

independent deployment of components. In the following, we abbreviate (/, u) to f .u for

U,") etruEo.
Figure 3.1 models a DEC in a compact form, where black bullets, arcs and triangles

represent states, steps and ports, respectively. In particular, the initial state is pointed to

by an arrow with no source. Input ports are listed at the left, e.g. "a," aîd"b", arrd output

ports at the right, e.g."c". Following the port names, types of transmitted values are

specified. In this case, all values must be integers. In addition, the text attached to an

arc denotes a parameterized event. For instance, a.r? denotes an event receiving from ø

an integer represented by z, while c.(r -l g)! indicates an event producing via c an integer,

which is the sum of r and g. Note that the actual size of the DEC's state space depends

ontheranges ofrandg.
This example DEC describes an adder which accepts two parameters respectively

from the two input ports and then reports their sum via the output port. The adder

expects the environment to behave in a certain way in order to function properly. For

instance, it expects to be fed with only one parameter of each kind before producing the

a.x'?

a: int a.x b.y?
r> a.x'? c: int

b: int >t
b.

c.(x+y)!

Figure 3.1-: An adder DEC model
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sum. Horüever, it is often required for a component to be robust and able to work in all

kinds of environments. Hence this example component also performs some tasks such as

error reporting or recovery (denoted by grey arcs) ifthe environment does not behave as

it expects, e.g. providing two values of kind a or b in a row. Since the way these tasks are

specified is not the focus of this thesis, we have omitted the detail.

It should be noted that even though robustness is required of DECs, the system

designer often does not want the "grey" tasks to be executed, since it prevents the DECs

from providing their normal functionality to the system. Also, in practice the portion of a

DEC providing the normal functionality is usually intensively tested or verified, whereas

the other portion is not and thus could contain potential bugs. Once encountered, these

bugs may cause problems, sometimes even disastrous consequences. These concerns

highlight one of the main goals of this thesis, which is to ensure that the branches

irrelevant to the functionality needed in a component-based design, e.g. the grey tasks,

will never be executed.

3.2.2 lnterface Automata

Assembling events by kinds rnakes it possible to specify the interaction protocols expected

by the designer of components in terms of temporal relations between different kinds of

events, while abstracting away from the specific values. The protocols are very useful for

guiding the development or selection of individual components and for further study of

a system design, and thus should be formally specified. We employ a restricted version

of interface automata Í541to serve this purpose. We constrain interface automata to be

deterministic and to have no internal events. We believe that this version is sufficiently

expressive for our purpose and, as shown later, this restriction leads to an efficient

conformance checking method.

Definition 14. An interface automøton (IA) is defined as a finite deterministic RTS A :
("0, S, D, A), where L ê S and DH : Ø. We letl,li" be a universal set of IAs.

Let the events of IAs correspond to the ports of DECs. Then the information conveyed

by an IA is twofold. On the one hand, it restricts the kinds of output events that a

component under consideration can produce. On the other hand, it states the component's
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a? b?

c!

Figure 3.2: An adder IA

assumption that the environment never provides input events of an unspecified kind. As

an example, suppose we get an IA shown in Figure 3.2 when decomposing a system.

Then an assumption is captured that the environment always provides an event of kind

ø followed by an event of kind b and then waits for an event of kind c before providing any

further events. Also, it is guaranteed that the component under development or selection

must not produce any output before getting both a and b.

Compared with Figure 3.1, r'¡/e can learn that the DEC can be an implementation of

this IA in that the DEC does not break the guarantee expressed by the IA and can be

used in an application where the environment does not break the assumption captured

by the IA. We shall formally study this relationship in a general context in the next

section. Moreover, we emphasize that IAs are intermediate products of top-down design

capturing the interface and the protocol but not the implementation, while DECs are

building blocks for bottom-up design.

White abstracting away implementation details such as the data being communicated,

IAs can describe the interaction protocols expected of components at a high level of

abstraction. We shall show that the use of IAs enables the compositional verification

of component-based systems. It is worth noting that the abstraction is a relative issue in

that the level of abstraction heavily depends on the way events are partitioned. The level

of abstraction becomes greater as we classify more events into each kind.

To facilitate further study, we deflne for IAs t};re most abstract implementations, which

include the IA events as ports and are able to produce all possible data values accompa-

nyrng an enabled IA output event.
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Definition 15. Consider an IA A and a total typing function 0: Da ---- 2r . Let U be

the input-universal version of ,4,, then t]rle most abstract implementøtion (MAI) of ,4 (with

respect to á) is a DEC J : (t¡,0,s!¡,Su,X-r, A-r), where

. aIr: Dl and al :Eoa

o DI, : {U,u) I f eDL,u € 0(l)},Ð? :{(/,r) I f eÐ2,u e 0(f)} andD! :$;

o A.¡ - {G,f .r,r') I (", f ,t') e Lry,u € á(/)}.

A MAI of an IA is an input-universal DEC. Similar to the input-universal version of

the IA, after getting an unspecified input event with an arbitrary value, the MAI goes to

the error state, where it can accept all input events but never produce outputs or move

out ofthe error state.

3.2.3 Conformance of Discrete-Event Components

The employment of IAs for guiding component development or selection leads to an

important aspect of this approach, viz. the conformance of DECs with IAs. The intention

is that an IA can safely be implemented by a conforming DEC without compromising the

system safety properties that hold for the IA, particularly in a network of IAs.

The conformance cannot be defined by traditional refinement relations, e.Ei. trace con-

tainment and simulation, because they only allow the implementation to have less input

and output behaviour than the specification, whereas DECs are able to handle more

inputs than IAs. Instead we adopt alternating simulation [54], a relation based on an

optimistic view of the environment. More specifically, the implementation is always

assumed to run in an environment where the assumption of the specification is respected.

In this way, the implementation can offer less outputs (since it will be less likely to violate

the system safety) and accept more inputs (since the environment will not offer them).

In the following, we extend the relation to accommodate the implementation with data

values, as required by our definition of DECs.

Definition 16. Consider an IA A and a DEC C such that Xl c "L and X! ) o8. C
conforms to A, written C < A, if there exists an alternating simulation relation < C

Sç x S¡ such that "å < 
"% 

and for e I s, the following conditions hold:
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1. Ve e D8,=@,.,q') € A6'implies q' < t;

2. Y f .u € D8,1(q, f .r,q') e Lc implies that l(s, T, t') c A¿ such tlr'at qt < st ;

3.V/ ÇEr,l(","f,s/) e AaimpliesthatVu e 1c(l),(q,f.r,q')e Lc suchthatq'<s'

For a DEC state q to simulate an IA state s, first of all, the resultant DEC state

must simulate the previous IA state s after the DEC takes an internal step from q
(Condition 1). Also, the DEC must not produce an output event that the IA cannot

produce (Condition 2). Note that Condition 1 and 2 implies that V/,u e en$(q) such

that f e en!("). Further, the resultant DEC state must simulate the resultant IA state

after the DEC takes an event f .u (for any value u) from g and the IA takes the event

/ (Condition 2 and 3). Note also that the input-universal nature of DECs implies that

Vf een!oþ),re 7cU) suchthat f.ue enI"(q). Therefore,thisrelationencodesaninput

and output duality that the DEC at state q allows more input events but produces less

output events than the IA at state s. Clearly, the most abstract implementation of an IA
(with respect to arbitrary d) conforms to the IA.

To support the veriflcation of system properties beyond safety such as deadlock free-

dom, we develop a stronger conformance relation with an additional restriction.

Definition 17. Consider an IA,4, and a DEC C such t}rat C < A. C liue-conforms to A,

written C < A,iffor all q e Sc,s € ^9¿, q < s A en!(s) I Ø implies en]@) * Ø;

The imposed restriction requires that at state q or after some internal steps from q,

C must be able to generate at least one of the output events that the IA can produce at

state s. This requires a component to fulfil the output obligation specified by the IA in

order to be somewhat helpful to others.

It should be noted that Definition 16 and 17 only allow a DEC with equal or less

output ports to be an implementation of an IA. In practice, however, DECs often have

not only more input ports but also more output ports, especially when third-party com-

ponents are deployed. They usually provide more services than needed in an application

domain. To solve this, we define instantiated components for these DECs and redefine

the conformance relations with relaxed conditions.
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Definition 18. An instantiated cornponent of a DEC C with respect to a set of ports (? is

defined Av CQ): (oc,7ç,s[,5ç,,D¿,Ac), where

. o!,:aI"andof :aflnO;

. EI^ :DL,EZ : {l.u€ tB I f e o}andDfr : t3"¿ \E3.

Note that C(Cl) : C if ao" ç O

Definition 19. Consider an IA A and a DEC C such that Ef, ç ab. C conforrns to A,

written C < A, if C (Dg) conforms to A as in Definition 16. C liue-conforms to,A, written

C < A,if C(Dg) live-conforms to A as in Definition 17.

3.2.4 Practical Conformance Checking

To check the conformance of a DEC to a given IA, instead of building the Cartesian

product of their states as proposed in [54], we employ a two-step method which has

significant benefits for tractability. To begin with, we calculate the local state space of the

DEC utilising the context assumptions of the IA. We then determine the conformance by

checking the state space for the absence oferror states.

The local state space of the DEC is defined as the synchronised product of a closed

RTS network of two components - one component is the DEC to be checked, while the

other component is the most abstract implementation of the mirror of the IA. The second

component thus represents the minimally helpful environment of the first which still
provides all expected inputs to the first. Formally, the local state space is defined as

follows.

Definition 20. Consider a DEC C and an IAA such that El ç ab.Let0:0c¿ {U,D I

/ e X¿\ac), J be the MAI of the mirror of A with respect to d (Definition 15), t+¡ : {C, J},

R : {(f .u, f .ù I f ." e (Ð8n Dr) u E9}, and l/ : {W,rB} be a derived closed RTS network.

Then the synchronised product of l/ is called t}:te local state space of C with respect to -4.

41
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In the following, Theorem 1 and 2 present a conformance checking method for DECs

with equal or less output ports than IAs, giving both the sufficient and necessary condi-

tions for the two conformance relations.

Theorem l. Consider a DEC C and an IA A such that >,1¿ c aI" and E2 2 d8. Let 0 and

J be defined as in Definition 20 and LØ : {s$,,Sø, Dø, Aø} be the local state space of C

with respect to A. Then C conforms to A if and only if Ys e 56, r y(s) I I.

ProofofSufficiency.Letarelationþ:{(s,t) eSølq€Sc,se,5¿},thenweprove@isan
alternatingsimulationrelationbetweenCand-4byinduction. First, ("å,"X) € /becauser%: s9.

Next, suppose (q, s) € þ, then

o For e e Ð[, i|1q 3.,s q', then (q', ") e 56. Hence (q' , t) e ó;

¡ For f .u e Dfl,weknow f e EX,u e 0(f) andthus f.u eEIr. lf -q l'",ç q', then 1/ e S¡,

(s,r) 4r (q',s') (because J is input-universal). Since (q',s') € 56, from the condition of

the theorem, we have s' + L.Hence s' e St and (q', t') e ó;

o For I e ÐL,we know I e *b.If ls 4a s', we have Vr., e ïc(l),f .u eEl ns J!.¡ s'. Since

f .ue ÐI"and.C isinput-universal, 1q'eS6;,(q,r) 4* (q',r'). Hence \q',s'l eó;

Therefore, þ is an alternating simulation relation and thus C conforms to A due to Def. 16.

Proof of Necessity. Let I be an alternating simulation relation between C and A, o be a trace of

-L6 froms$, and (q,") e ^96 be astatereachableviao. Thenweproves I Iandq < sbyinduction

onthelengthofø.First,wheno:À,weknow(q,s) :(sþ,r%) :r&.HenceslLnqls.Next,
suppose s I L Aq < sholdsfor anyø. Since S¡ : StU UÌ, we know s €,9¡.

o For e eD\,if 3(q,r) åø (q',t'), then s' : s (thus s' + L) andq 3.c q/. Since q < s, we can

get q' <s (Def. 16, Cond. 1).

o For f .u e E$, if l(q,r) 4ø \q',r'), then q Í'"rt q'. Since q < s and ,4 is deterministic,

s' e S¡,, L¡ ,' and. q' < s' (Def. 16, Cond. 2). Thus s' + L.

r For f .u eÐl,if 3(q,") 4* (q',s'),then s !'"-r, ,'. Since / eEo¡, s Lo r' and s'I r. From

Def. 16 (Cond. 3), we know g' < s'.

Therefore, lhat C conforms to ,4 implies V(q, s) € 56, s f I
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Theorem 2. Consid,er a DEC C and. an IA A such that EIo c *b and Dfl ) 08. Let 0

and J be defi.ned as in Definition 20 ønd L6 be the local state spdce of C with respect to

A. Then C liue-conforrns to A if and only if Ys € S*, n¡(s) * L and any of the following
holds:

o Ne e EI, such that (tr ¡ (s) , e, s') e L t ;

o 1e1,...s€m-7 e D\,em € EI¡,s' e 56 such that st is rea'chable from s uia trace

eLe2...e-inL6,

Proof of Sufficiency. Because Vs e ,56, "t(t) I I, we know C conforms to,4 from Thm. l and

r.c(") < zr7(s). Suppose en!(zry(Ð) + Ø, then we have 3/ e E!, (zr"¡(s), -f, t') € A¿. Thus Vu € 0(l),
(rrr("), Í.r,t') € A-,. Due to conditions of this theorem, we know 1et,...t€m-L€EI,e*eÐIr,
s' € ,56 such that s' is reachable from s via trace ere2 . . . e^ in.L6. Suppose s" € 56 such that s"

is reachable from s via trace eLe2 . . . e--1 ànd s" "^ , Ø s'. Then we have n"(t") is reachable from

sviatrace €te2...e--r(sincê€rt...¡em-reÐ[)andzrc(s") 3t-6Ts(s') (sinceinputstepsare

blocking for DECs and thus e^ e Efl). Therefore, en$(øc'(s)) I Ø and thus C live-conforms to ,4.

Proof of Necessity. Because C conforms to A, we have Vs € Sø, rt(s) * I from Thm. 1 and

ttc(") < t r(").

o lf le e Dj, (r"¡(s) ,e,s') € 47, then enfl(tr¡(s)) :Ø.

o If lf .u e 85,(rr("), 1.u,"') € A.r, then (ø'y(s),f ,t') e L¡, i.e. en!(r7(s)) I Ø. Hence we

getenfl(trs(s))+Ø because C < A. Wethenhave3e1,...t€m-re Ð8,e*e- EI¡,q',q" €Sc
suchthatq'/isreachablefromzr6:(s)viatracee1e2...em-tinCand q" "^rc g'. Weknow

(q" ,nt(")) € ^98 A 1st e S¡, (q' , t') e ^96 must hold (Def. 10). Therefore, \rye have (q" ,zr7(s)) is

reachable from s via trace €tez . . . e*-1irt.L6 and (q" ,n¡(r)) %ø (q' , t').

In both cases, we can prove the conditions ofthis theorem hold.

On the basis of the above theorems, we can now be sure that Figure 3.1 conforms

to (and live-conforms to) Figure 3.2. It can thus be placed into a system design as an

implementation of the latter. If we restrict ourselves to a finite set of transmitted values,

the conformance can be checked by automated tools, e.g. olrt Moses analysis tools that

will be implemented in Chapter 5.

The following corollary generalises these two theorems to accommodate DECs with

more output ports than IAs.
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Corollary l. Let C, A, 0 and J be as in Definition 20 and L6 be the locøl state space of C

with respect to A. Then C conforms to A if and only if Vs € Sø, rtþ) t L. In øddition, C

liue-conforrns to A if and only if Ys € ,56, r7(s) I L and any of the following holds:

o le € DI, such that (n¡(s),e,s') e L¡;

o -e1,...t€m-r e Ð3*\E5, "rre EI¡, st€ ^96, s/ isreøchablefromsuiatrøce ere2...ern

in L6.

Proof. Let C represent C(E?) and i6 be the local state space of C with respect to A. Then we

have Xt : ¡5 n 88,Ðä - Ej't \ 15, Sø : ^9ø and Aø : Âr. Hence we can easily prove this

corollary as for Theorem 1 and 2. n

Immediately from Corollary 1 and the proof of Theorem 1, we can prove the equiva-

lence between alternating simulation and the local state space. The following corollary

gives the detail.

Corollary 2. Consider an IA A and a DEC C such that C conforms to A. Let L6 be the

local statespaceof C withrespectto A. Thenfor q e Sc, s e S¡, q <.s if andonlyif
(q, s) e ^96.

3.3 Compositional Verification of DEC Networks

A typical component-based design process combines top-down and bottom-up design. IAs

are obtained during system decomposition, together with the synchronisation patterns

between them. These IAs are then used for developing or selecting suitable DECs (or

for further decomposition). These obtained DECs are next composed to form a concrete

component-based design, viz. a closed DEC network, where the synchronisation patterns

of IAs are reused as the interconnections between DECs. Hence the IAs capture the

abstract communication (or interaction) protocols expected by the designer of the DECs.

In this section, the foundation for this approach is laid. In Section 3.3.1 and 3.3.2,

networks of both DECs and IAs are defined. Basic properties such as consistency and
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deadlock freedom for both closed and open DEC networks are then formulated in Sec-

tion 3.3.3 and 3.3.4. Compositional approaches to verifying these properties are pre-

sented next, which utilise the more abstract IA networks to alleviate the state space

explosion. Furthermore, a modular method for checking the conformance of open DEC

networks with IAs is presented in Section 3.3.4, which maximises the benefrt of the

above approaches for hierarchical component-based designs. Finally in Section 3.3.5,

a compositional approach to the verification of safety properties for DEC networks is

proposed, which combines IA networks with component local state information to detect

safety violations. As a consequence, the costly construction of global state spaces is

avoided.

3.3.1 DEC Networks

Similar to RTS networks, DEC networks are composed of components interacting by

means of synchronisation vectors. Differently, designing these networks can be much

simpler as these vectors can be specified by the interconnection between input/output

ports of the component DECs without worrying about the communicated data values.

In defining the networks, we still assume a special symbol e which is not a port of any

component DEC.

Definition 21. ADEC networh ís defined by D : (a,0,P,1), where

o a is a finite set of external ports of the network, consisting of two disjoint sets of

input ports ar and output ports oo. 'We let aü : a U {e}i

o 0: a ------ 2Y is a total typing function, mapping each port to a set of values;

o P is a finite set of DECs. We \et alo : apt) {e } for aII p e P;

. .y ç al xflpeeo[ ir. relation indexed by oI Ul)orpo?.

Similar to RTS networks, we call a DEC network closed if a : Ø, or open otherwise.

We write D : (P,7) for a closed network D. Also, we call 7 a set of interconnections. In

addition, assuming the same symbol "erìv", we redefine p, T and ¿ for an interconnection

f e 7 in order to formulate the well-formedness rule for DEC networks.
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Definition 22. Consider a DEC network D : (a,0,P,.y) and an interconnection f e 7.

Leta"nu:a,aI.nu:*o,a?nu:aI ,P':{env}¿P,I e P/,andprojectionslr¿i'f ------+{t¿

for all l. Then tine prod.ucer of f , denoted by Æ, is the unique DEC ¿ such that r¿(f) e al.
TTpr(f) is called tlne producer port of f . Also, the set of consunl.ers of f, denoted by 4¡,

consists of all DECs I such that r¿ (f ) e cf . For any consum er t, r¿(f) is called a consun'Ler

port of f. In addition, anidler of f is a DEC I such that r¿(f) : e. The set of idlers is

denoted by q.

Definition 23. A DEC network D is called well-formed if 0rr(tro,(f)) g 1¡(tr¿(f)) holds for

allfe.y,l€ry.

The well-formedness rule requires that the values that can be possibly transmitted

are valid (or meaningful) to all the receiving DECs. In other words, only ports of matching

kinds can be connected in a DEC network. This thus ensures data type compatibility

between ports. In the following, we shall only consider well-formed DEC networks.

An example DEC network is visualized as a block diagram in Figure 3.3, where

a

e

e.m

d: int
Þ'l

Figure 3.3: A DEC network

d: int

I

nt

rÞ'
c a: int

Þl
b: int

Þr
e: int

Þl

d

e

adderuser doubler

Figure 3.4: A user DEC model Figure 3.5: A doubler DEC model
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rectangles denote DECs and triangles denote DEC ports. This network is closed with

no external ports declared. The set P of the network contains the DECs in Figure 3.1,

3.4 and 3.5, where "x" matches any unspecified input events. The interconnections 7 of

the network are depicted by arcs, where e is interpreted as the non-involvement of a DEC

in an arc. We know that the adder calculates the sum of two given parameters. The

doubler calculates the double of a given number, utilising the function provided by the

adder. When receiving a number from port "d", it feeds the adder with the same number

at ports "a" arLd"b", gets the sum at port "c", aîd then reports back the result via port

"e". T}le user simply uses the service provided by the doubler to calculate the doubles of

randomly chosen integers. As such, we have omitted the minutiae for error reporting or

recovery.

It is worth noting that disconnected input and output ports of components in a net-

work are allowed. A disconnected input port will receive no data, while a disconnected

output port will discard all data sent to it. To facilitate further description, we give the

definition below.

Definition 24. Given a DEC network D and a component p € P, the set of connected

ports ofp is defined by

dp : {f € *rl3f e 7, ro(f) : Í n ry # Ø}

We let dl : a, n af denote the set of connected input ports and afl : ap ì o!, t]ne set of

connected output ports.

Next, we give the semantics of DEC networks in terms of RTS networks.

Definition 25. Consider a DEC network D : (o,0,P,"y). Let P' : {env} U P and I/ :
(E, P, A) be a derived RTS network such that

o D:EIuEo, Ðt:{U,")l f e aI,uÇ á(/)}andfo ç {(/,ulll e ao,u€ej)h

o ûenv : a,dI.nu: Qor o9nu: or, E"nu: D, Xånu -Do, D9nu: Xr and O.nu:0i

. D[: D u {e}, E[nu: ¡1, andfor all p Ç P,DL:Eib" u {.};
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o polymorphic projections n'¿ with n¿ i 'y ------+ o¿ and zr¿ : (Eü x no6rX[) ------ Df for I e Pt;

o R: {r e lü xfloçpE[ | =f € .y,u e 0or(tror(f)),

VI e. P',("¿(f) : e A zr¿(r) : €) V ("¿(f) I e Ar¿(t) : r¿(f).u)Ì.

Then ttre synchronised product of D is defined by the synchronised product of l/

Note in the definition of R that the data being communicated, viz. u, ranges over

the value set defined for the producer port. Further, the data is left unchanged during

the transmission from the producer DEC to the consumer DECs. In other words, a DEC

network only relays or broadcasts the data but never modifies it. Note also that if all

component DECs do not contain the error state I, then the synchronised product of the

network does not contain I in its state space either, since DECs are input-universal. In

addition, immediately from Definition LI,25, and Proposition 1, we can get the following

proposition.

Proposition 2. Giuen ø DEC networh D : (a,0, P,'ù. Let L : ("0, S, D, A) be the syn-

chronised product of D. Then (a,0, s0,,5, t, A) defines a DEC (called úlze composite DEC

of D).

Usually, there are two possible ways to build a DEC network. The first is to include

all DECs in a flat network and define the interconnections between them. The second is

to assemble some of the DECs and the interconnections between them into an open DEC

network. The latter can then be used as a component for building the larger network.

The interpretation of DEC networks in terms of DECs in Proposition 2 enables such a

hierarchical design. In other words, a DEC network can be composed of components

which are in turn DEC networks. Semantically, a hierarchical network is identical

to a flattened network which combines all the components and interconnections of the

constituent networks, as defined below.

Definition 26. Consider a DEC network Dt: (at,?t,Pt,71) and an open DEC network

Dz: (az,7z,Pz,72) such that Dz e Pr, the flattened networh D of Dl by Dz is defined by

D : (or,ït, P,1),where P! : Pt \ {Dz}, P : Pll,) P2, F: aT x fIpçcalp, and.

48
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j: {f € F l=f1 Ç'ft,f2€'lz,lrDz(fi): n"nu(fz) ¡t1TDz$r) l,
A Vp € Pl,to$) : rp(ft) A Vp € P2,ry(f) : rp(fz)j

U {f e ¡'l=f1 e ^ft,iTDz(fr) : e AVp e P!,rr(f):rp(ft) AVp € P2,ro(f): e}

U {f e F l=f2€12,r"n (f2):.AVpe P!,rr(f): e AVp e P2,nr(f):Tp(fz)}
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(3.7)

(3.8)

(3.e)

In the definition, the components of both D1 and D2 become components of D and

the interconnections of both Dr and D2 are unified into the interconnections of D. The

unification is based on shared ports of D2. For example, suppose f1 is an interconnection

in D1 and f2 is in D2 such that f1 and f2 involve the same port of D2, i.e. np"(fr) : zr"nu(fz).

We unify f1 and f2 into one interconnection in D such that both ror(ft) and n."nu(f2) are

removed (formula 3.7). On the other hand, interconnections in both D1 and Dz which do

not involve ports of D2 are expanded and retained in D (formulae 3.8-3.9). Flattening a

hierarchical design recursively, we can ultimately get a DEC network with no networks

as subcomponents.

3.3.2 lA Networks

In the section, we introduce the concepts of interface automaton networks and define

consistency properties for them, which, roughly speaking, refers to the compatibility of

constituent IAs in the networks.

Definition 27. An IA network is a closed RTS network ly' : (W,R), where W is a finite

set of IAs.

Definition 2S.Consider an IA network l/ : (W,R). Let L¡¡ : (s0,,S,t,4) be the

synchronised product of l/. Then .ly' is co¿sistent if ""(s) I I for all s € ,9, a € W.

An IA network is a restricted RTS network. Its consistency ensures that the network

is free from unspecified reception. More specifically, when a synchronisation occurs

as a result of an output produced by a constituent IA, for every consumer IA of the

corresponding synchronisation vector, the consumed event must be specified at its current

state. That is, for every consumer, there always exists a state to enter after consuming
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the event. In other words, the error state of the input-universal version of any constituent

IA is not reachable in the synchronised product of the IA network.

In order to support the compositional verification of deadlock freedom for component-

based systems, we define the live consistency for IA networks for use in combination with

the live conformance of components.

Definition 29. Consider a consistent IA network N : (W,R). Let LN : ("0, S, E, A) be

the synchronised product of l/. Then N isliue-consistent if for all s € ,9, -(s,e,s') e A v

YaeW,enI.(tr"(s)):fi.

The live consistency of an IA network ensures that it is free from deadlock. A deadlock

refers to a situation where the network cannot make progress whereas some constituent

IA is still expecting input events.

3.3.3 Verification of Basic Properties for Closed DEC Networks

In this section, we concentrate on basic properties of closed DEC networks, such as

consistency and deadlock freedom, and their verification.

3.3.3.1 Consistency

As noted previously, the IAs and IA networks of Section 3.3.2 capture the abstract inter-

action protocols expected by the designer of the DECs. The consistency of a closed DEC

network is defined in terms of the freedom from unexpected reception. In other words,

every possible trace (or event sequence) of a DEC in the network corresponds to a trace

of its associated IA, disregarding the internal events and data values accompanying the

input/output events of the DEC.

To present a formal definition of the consistency property, we need to formally specify

the association between the specification IAs and the implementation DECs as well as the

trace projection from the behaviour of the DEC network to that of the IAs. The association

is specified in Definition 30 as a sketching function p, which maps each component DEC

to an IA which has been used to guide the development or selection of the DEC. The trace

projection is defined by Definition 31.
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Definition 30. A closed DEC network D : (P, t) is said tobe slaetched by a total function

þtP-?.,{i"ifforall(p,a)€P,alçEI",03çD?,andpconformstoa,whereoodenotes
the connected ports of p in D (Definition24).

Deriving from the trace projection of DECs (cf. Definition 12), we obtain a mapping

from the behaviour of the network to that of the IAs associated with the DECs, as defined

below.

Definition 31. Consider a closed DEC network D sketched by B. Let ø be a trace of D

from s$, (p, o) e B, þ represent p(Ef;), no(o) ly;u" be the observable event sequence of the

trace projection of o orl p (Definition 2,12). Then t};.e trace projection no(o) l>" of o on a is

the sequence of ports of p involved in ro(ø) f¡"a".

We can now define the freedom of unexpected reception for traces and thereafter the

consistency of closed DEC networks.

Definition 32.Let D, þ, o be as in Definition 31. Then trace o is free from unexpected

reception (with respect to fl if rr(o) þ" is a trace of ø from s! for all (p, a) e P.D is called

consistent (with respect to É) if all traces of D from s!, are free from unexpected reception.

In other words, a closed DEC network is consistent if the environment of every DEC

is always helpful and never provides input events of an unexpected kind to the DEC. The

environment of a DEC (in the network) refers to the open DEC network composed of all

the other DECs. Also, given an IA associated with the DEC, we let an IA event refused at

a state ofthe IA represent an unexpected kind (or type) ofinput event at a corresponding

state of the DEC. Often receiving such an event will force the DEC to execute some error

report or recovery tasks and thus prevent it from providing the normal functionality to

the system.

From the definition, we can prove an important property for traces free of unexpected

reception, given by the following proposition and corollary.
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Proposition 3. Consider a closed DEC network D shetched by B ønd a trace o of D from

soo such that o is free from unexpected reception with respect to B. Let g € S¡ be a state

reachable uie, o, (p, o) e B, and so e So be a state reachable uia nr(o) l¡," from s1o' Then so

is a unique state reachable in a uia ro(o) 12" and trp(q) < s".

Proof, Let p represent þ(Ef;), €p : ¡rp(o) f ¡ea" and to : tp(o) f ¡" for (p, o) e B. Then so is the only

state reachable via (o in a because EY : Ø and ø is deterministic. In addition, we know l{o | : 16" ¡

and that every event "f in €" corresponds an event f .u ín {o from Def. 31. Therefore, it follows by

induction that ro(q) < s". n

Corollary 3. Let D, þ, o, (L p, a, so be as in Proposition 3. Then ro(q) I 
"o 

if p liue-

conforms to a.

Proof, Immediately from Prop. 3 and Def. 17.

3.3.3.2 Deadlock Freedom

A closed DEC network is called deadloched if it reaches a state where no component can

make progress, generally because each is blocked waiting for an input from others, while

the event cannot occur. Deadlock freedom usually refers to the ability of the network

to make progress or perform computations. In this context, thanks to the interaction

protocols captured by IAs, we are able to distinguish deadlocks from normal termination.

Normal termination refers to the fact that no component expects any input in a blocked

network. Deadlock indicates the existence of such a component. The input expectation

of a component is described by the existence of enabled input events in its corresponding

IA. In one word, we consider the deadlock freedom of a DEC network to be the absence of

deadlocks in its synchronised product. A formal definition is given by the following.

Definition 33. Consider a closed DEC network D which is consistent with respect to p.

Let o be a trace of Lp from s$, e € ,Sp be a reachable state via o, and so e ,S" be the

reachable state via np(o) l>" for all (p,o) e É. q is a deadloch state lf qis a terminal state
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in Ln and l¿ e image(B) ,enl"(s") + Ø. D is free from deadlock (with respect to É) if no

deadlock state is reachable in Lp via anytrace.

3.3.3.3 Verifying Basic Properties

In order to alleviate the state space explosion problem, a DEC network is not verifled

directly in this approach. Instead, we utilise the interface automata, the interaction

protocol specifications of the DECs, to build an IA network. In the IA network, the IA

events are related in the same way as the component ports are interconnected in the DEC

network. Based on the IA network, we then determine the basic properties of the DEC

network. A formal definition of such IA networks is given below

Definition 34. Consider a closed DEC network D : (P,7) sketched bV þ. Let ly' :
(image(p),'y). Then l/ is called t}l,e deriued IAnetwork of D (with respect to B).

Because -ôl reuses the interconnections of D, we can prove an important property for

l/ using the following proposition, assuming that D is consistent.

Proposition 4. Consíder a closed DEC networl¿ D : (P,1) which is consistent with

respect to B. Let N : (W,R) be the deriued IA network of D. Then for all q e Sç,,

there exists a unique state s € S¡v such thatY(p,a) Ç 13, zr"(s) is the state reachable in a uia

np(o) l>".

Proof. We prove this proposition by induction. Firstly, when q : sB, Iet s : s$r, then we know

this proposition holds. Next, suppose this proposition holds on a state 9 € ,9p reachable in D
via a trace o. Let s e ,Slv be the state satisfying this proposition for q, p represent þ(D?), and (o

represent no@)l>" for (p, a) e P. Since D is consistent, we can get V(p, a) € P, tro(q) < zro(s) from

Prop. 3. For any step q 3o g.' , we shall prove this proposition holds on q/. Let o' : o' e, then

o if lp e P,e Ç 1fl, then no(o') l>. : €o for all a € W. Clearly, s is the state for which this

proposition holds on q'.

o iflp e P,e Q.Efl,weknowzro(q) 3onr(q').Lele: f .uando: p(p),thensinceno(q) < r'(s),
we know l(r"(s), f ,u) e Ao. Thus f (", "f, s') e A7y. It is easy to prove that zr"(s') is the state

reachable viaro(o') þ, for all (p, a) € P, since ¿ is deterministic.
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In addition, the uniqueness ofs is ensured by the uniqueness ofthe states reachable in ø via (o

for all a €W. Therefore, this propositionholds. n

The following theorem shows that, to verify the consistency of a closed DEC network,

it is sufficient to prove both the conformance of every DEC with its corresponding IA and

the consistency of the derived IA network.

Theorem 3. Consider a closed DEC networh D : (P,l) shetched by B. Let N : (W,R) be

the deriued IA networh of D. Then D is consistent with respect to B if N is consistent.

Proof. We prove this theorem by induction on the length of a trace o of D from s$. Let q e ,5¿r be

a state reachable via o,þ represent þ(E?), and {o : rp(o) b" be the trace projection of a on a for

(p,o) e,6 (cf. Def. 31). Then at each step of the induction, we prove that

(i). o is free from unexpectedreception;

(ii). ls € Siv such that Vø e W, ro(s) is the reachable state in c, via (,;

Firstly,whenø: À,weknowq: sg. Ctearly, (i) holds. Also,s: s?v satisfies (ii) . Next,

suppose (i)-(ii) hold on an arbitrary trace o of D from s$. For any step q 3.o q',let a trace

o' : o' e, then we shall prove (i)-(ii) hold on o'. Let s € ,Sru be the state satisfying (ii) for ø and

(j be defined over o'. Then from Prop. 3 we can get V(p, a) € P, ro(q) < zr"(s).

oif3pePsuchthatee_El,then{!-{oforallø€Wandthus(i) holds.Clearly,sisthe
state for which (ii) holds on o'.

oif 3p € Psuch lhate e Ð3, weknow no(q)3ono(q').Lete: f.u,ttrenl,sto e So,

r.þ) L" slnro(q') < s'" (because zro(q) < r"(s)). Thus (j : Ë".f is atrace of ¿.

- For any DEC g € P\ {p} such that lf e 1,nn(f) e aln,let f' : rg(f),then we have

lr.n(q) 4nnn(q'). Letb: þ(ù,thensince Í' e ci'nAczls ç Xf,weknow//e Df.

Because .|y' is consistent, no error state exists in .Lry and thus f' e en!o(tr6(s)). Since

rn(q) < zr6(s), we know ls! € ^9a 
such that zr6(s) !., 

"LA 
?re(q') < s'0. Hence €L:4a. f '

is a trace of b.

- For any other DEC 9 I p,letU : þ(s) and s! : zr¿,(s), then {l : {6 is a trace of b.

To sum !þ, ot is free from unexpected reception and s! is reachable via (j in ø for all a e W .

Let s' be the state such that zro(s/) : s!, then s' e ,9tv and s' satisfies (ii) .

Therefore, this theorem holds. tr
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The following theorem further shows that, to verify the deadlock freedom of a closed

DEC network, it is sufficient to prove both the live conformance of every DEC with its

corresponding IA and the live consistency of the derived IA network.

Theorem 4. Let D, þ, N, W and Rbe as in Theorem 3. Then D is free frorn deadloch with

respect to þ if N is liue-consistent and for all (p, a) € P, p liue-conforms to a.

Proof, From Thm. 3, we know D is consistent. Let ø be a trace of D from tB, q e S¿ be a

state reachable via o, f represent p(ff ) for (p, a) e P, and s e ^9¡¡ such that V(p, a) e B, r"(s)

is the reachable state via roþ)l>. in ø (due to Prop. 4). Then from Cor. 3 we have Y(p,a) e B,

ro(q) I r"(s).
Suppose q is a terminal state, i.e. Yp e P,!e e E]'t,(rro(q), e,q) eAo. Hence e"f ("rkt} : Ø

forallp€P.Because"o(q) lzro(s),wehaveenf;(n"(")) :ØforallaeWandthussisa
terminal state. Because ly' is live-consistent and s € ,S¡¿, we know s is not a deadlock state. Hence

enj(zr"(s)) : Ø for all ¿ € I,7'. Therefore, this theorem holds. tl

Suppose IAs in Figure 3.2 (page 38), 3.6 and 3.7 have guided us to select DECs in

Figure 3.1 (page 36), 3.4 (page 46) and 3.5 (page 46), respectively, in order to compose the

DEC network in Figure 3.3 (page 46). To prove the consistency (and deadlock freedom)

of this network, we can independently prove the conformance (and live conformance) of

the DECs to their corresponding IAs and the consistency (and live consistency) of an IA

network consisting of the three IAs. It is not hard to construct the synchronised product

and prove the consistency (or live consistency) of the IA network. The product is a RTS

shown in Figure 3.8, where all events are internal and no error state exists.

Since IAs capture the interface behaviour of DECs, the IA network describes a su-

perset of the interaction patterns between DECs, which involves neither data values

e

d!

õ

Figure 3.6: A user IA Figure 3.7: A doubler IA
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Figure 3.8: Synchronised product of the IA network

nor internal computations of DECs. As a consequence, IA networks generally have

smaller state spaces than DEC networks. Hence it is much cheaper to determine the

(live) consistency of IA networks. Further, because conformance checking involves only

a single DEC at a time, the state space that needs to be handled is also much smaller.

Therefore, using this divide-and-conquer approach, the potential state space explosion in

the verification of the basic properties of DEC networks can be alleviated.

3.3.4 Verification of Basic Properties for Open DEC Networks

In order to enable verification at each level of the hierarchy, we present compositional

methods for verifying open DEC networks in this section. The properties under consider-

ation include consistency, deadlock freedom and conformance.

3.3.4.1 Consistency

To define the consistency for open DEC networks, we let "env" be a syntactical term

referring to the environment of a network and associate env with an IA in defining the

sketching function. The IA captures the interaction protocol expected of any DEC (or

DEC network) later acting as the environment of the network.

Definition 35. An open DEC network D : (o,0, P,1) is said to be sketched by a total

function þt (P U env) ----+ U'" if

o for (env, M) e þ,EoM ç aL;

o for all (p,o) e þ, p * env implies alo Ç >I, a3 ç E? and p conforms to a, where a,

denotes the connected ports of p ín D (Definition24).

d

e
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The following deflnition declares the concept of completed networks of open DEC

networks.

Definition 36. Consider an open DEC network D : (a,0,P,1) sketched by þ. Let

¡14 : Bþnv) andanyDEC C # P suchthat aI"nafl çEIM,ao"aoI, CE?w andC

conforms to M. Also, let P" : P U {C} and

1" : ?y nlo.r.a[)
u {f' e rrpec"a$l =f e l,n(D) € "ß \ e,e,r(¡o(C) : e A (Vp € P,r¡o(p) : "r(p))}

Then the closed DEC network Do : {Po,"y'} is called t}:'e completed networh of D by C

(with respect to P), and C is called t}r.e supplementary DEC to D in D".

Basically, a completed network of an open DEC network D contains an additional

DEC C that can be arbitrary but still conforms to the IA associated with env. The

requirements on ports of C, viz. aI" a a$ ç EIM and afl a alo c Ef;a, ensure ttrat M
is able to capture the interface behaviour of C on all its connected ports in Do. In other

words, we require d.b ç x{, and aB çDo¡a,where a6r denotes the connected ports of C

in D". Furthermore, the interconnections of D are retained in the completed network

except those involving a port ín ap \ acr. The interconnections in 7 involving an input
port in *L\tc are removed and those involving an output port in *oo\*c are modified,

each corresponding to an interconnection fo in 7o such that zr¡. (C) : e. In other words,

the extra ports of D will be disconnected in the completed network. Semantically, this

means that the corresponding input steps of D will be disabled, while the corresponding

output steps of D will be executed independently of C.

The following proposition demonstrates that any completed network of D is sketched

by a function derived fuorr' B.

Proposition 5. Let D, þ, C, D" be as in Definition 36 and þ" : {C r* B(env)}u {(p,") c þ I

p I env\. Then D" is shetched by þ".

Proof, Immediately from Def. 30 and 36.
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The consistency of an open DEC network is then defined in terms of the consistency

of any of its completed networks as follows.

Definition 37. Consider an open DEC network D : (o,0, P,^r) sketched by B. Let Do be

a completed network of D and þ" as in Proposition 5. Then D is called consistent (with

respect to þ) if D" is consistent with respect to þ".

The following proposition shows that the consistency of hierarchical DEC networks,

where open networks are composed, can be determined by checking the consistency at

each level of the hierarchy. Therefore, this proposition, together with Proposition 7

(described later), provides a foundation for component-based design in that an IA and

its mirror can be used as a pair to guide the independent development of components and

their composition patterns.

Proposition 6. Consider a, DEC networh Dt : (at,ît,Pt,y) and an open DEC network

Dz : (az,0z, Pz,y) such that D2 € P1, Dl and D2 are consistent with respect to B1 and, 82,

respectiuely, and B2(env) is the mirror of /t(Dz). The flattened networh D of D1 by D2 is

consistent with respect to B, where

þ : {(p,a) € h I p I Dz}u {(p, a) e þz I p I env}

Proof. Let D" be a completed network of D, C be the supplementary DEC in Do, and Bo be as

in Prop. 5. Then we need to prove that D" is consistent with respect to Bo. From Prop. 5, Do is

sketched by þ" . We then prove by induction that given a trace o of D" from s$", for aII (p, o) e þ" ,

t' : rp(o) f ¡" is always a trace of ¿. We denote this condition as (i) .

First, when o : \, (i) clearly holds. Next, suppose (i) holds on an arbitrary trace o of D"

from s$". Let A: þ{Dz), ¡14 : B2(env), and so € So be the state reachable via (o for aII

aeimage(p) u{¿}.Foranystepq 3oq',Ietatrace o':o.e,thenweshallprove(i) holds

ort o'.

o If3p e P u {C} such that e e Ef; ,then (i) holds on o' for all (p,o) e þ";

o If3pe Pru{C}\{lr}suchthat ee Ðf;,then(i)holdsonø/forall (p,o)eþ"\þr,sinceDl
is consistent. Let e: f .u, f e 7r (such that no(f) : /) and f' : rn,(f),t};.en

- If f' : e, then (i) hotds on ø' for all (p,a) e Éz such that p f env:'
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- If l' € aL2,we have f' e Ðto,since // is a connected port of D2 inD1. Because D1 is

consistent, we know f ' e enloþ¡) and thus f ' e enf;oþ¡). AIso, because Dz is consistent

with respect to f t .u, (i) holds on ø' for all (p, a) e þz such that p f env;

o If3pe PzsuchlhateeD?,then(i) holdsono'forall(p,o)eÉzsuchthatp f env,since

D2 is consistent. Also, we know 1f .u e Xfri¿ such that (flper, To(q), f .u,fI,pçp"rp(q')) e Ârlr.

Because D2€ Pl andDl isconsistent, (i) holds ono'for all (p,ø) e 13"\13r.

Therefore, this proposition holds. ¡

3.3.4.2 Deadlock Freedom

Similar to the consistency, the deadlock freedom of an open DEC network is defined in

terms of its completed network as follows.

Definition 38. Let D, þ, C and Do be as in Definition 36 such that C live-conforms to

B(env) and B" be as in Proposition 5. Then D is free from deadloch (wllh respect to P) ¡t
D" is free from deadlock with respect to þ".

Similar to Proposition 6, the following proposition shows that the deadlock freedom

of hierarchical DEC networks, where open networks are composed, can be determined by

checking the deadlock freedom at each level ofthe hierarchy.

PropositionT.Let D1, þt Dz, 02, D ønd B be as in Proposition 6. Then D is free from

deadlock with respect to B if Dt and. D2 are free from deadlock with respect to Bl and 82,

respectiuely.

Proof. Let D" be a completed network of D and Bo be as in Prop. 5. Then we need to prove that D'
is free from deadlock with respect to B'. Clearly, D" is consistent with respectto B" from Prop. 6.

Letøbeatraceof DofromsB.,q e Sp" beastatereachableviao, andsoisthereachable
state via no@) lz" in ø for all (p, a) e B'. Then from Prop. 3 we have V(p, o) e B" , rr(q) < so.

Suppose q is a terminal state. Then because D1 and Dz are free from deadlock, we have

Vø e image(B1) U image( 0z), en[(s") : Ø. Since image(B') c image(B1)U image(B2), q is not a deadlock

state in Do. Therefore, Do is free from deadlock with respect to Bo and thus this proposition

holds. n
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3.3.4.3 Verifying Consistency

Similar to the consistency checking of closed networks, the consistency of open DEC

networks can also be determined by the consistency of their derived IA networks. In the

following, we first define derived IA networks for open DEC networks by Definition 39

and then present a compositional method for verifying the consistency of these DEC

networks by Theorem 5.

Definition 39. Consider an open DEC network D : (a,0,P,7) sketched by É. Let

1¡4 : p(env),W : image(B) and

R: (l .lII"€wEL)

u {r € fI"rwEL) | lf €'y,rr(D) € "B \ E¡¿,r,(M) : e A (Va € W \ {M),r,(a) : rr(a))}

Then N : (W,rB) is called t]r'e deriued IA networh of D (with respect to P).

The derived IA network consists of the IAs associated with both env and the DECs, and

shares the same interconnections with the open DEC network except that those involving

a port ín ap \ D¡2. As in a completed network of the open network, the interconnections

involving a port in aIo \ E¡a are removed, and those involving a port I e too \ D¡a are

modifred such that the previous value / is replaced by e.

Theorem 6. Consider an open DEC networh, D sl¿etched by B. Let N be the deriued IA

network of D. Then D is consistent with respect to B if N is consistent.

Proof, Let D" be a completed network of D and B' be as in Prop. 5. Clearly, Do is a closed DEC

network sketched by B' from Prop. 5. Because .fy' is consistent, we know D" is consistent due to

Thm. 3. Therefore, D is consistent with respect to B. n

Suppose we have an open DEC network consisting of the adder in Figure 3.1 and the

doubler in Figure 3.5, and a function B mapping env to Figure 3.6 and the two DECs to

the IAs in Figure 3.2 and 3.7. Then this theorem allows us to prove the consistency of the

open network, even though the user DEC is unknown.
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3.3.4.4 Verifying Deadlock Freedom

Similar to the checking method of deadlock freedom for closed networks, the deadlock

freedom of open DEC networks can also be determined by checking the live consistency

of the derived IA networks as well as the live conformance of the components, as demon-

strated by the following theorem.

Theorem 6. Let D, p, and N be as in Theorem 5. Then D is free from, deadloch with

respect to þ if N is liue-consistent and for all p e P, p liue-conforms to þ(p).

Proof, Let C and D" be as in Def. 36 such that C live-conforms to B(env), and B' be as in Prop. 5.

Clearly, Do is a closed DEC network sketched by þ". Because l/ is live-consistent and for all

(p,o) e 8", plive-conforms to a, we know Do is free from deadlock due to Thm. 4. Therefore, D is

free from deadlock with respectto B. n

3.3.4.5 Verifying Conformance

As stated previously, an open DEC network forms a DEC. To check the conformance of

such a network to an IA, we can certainly use the checking method proposed in Sec-

tion 3.2.4. However, this may lead to the state space explosion. Instead, we demonstrate

using the following two theorems that the conformance and live conformance of the DEC

network can be deduced from its derived IA network as well.

Theorem 7. Let D, B, and N be as in Theorem 5 and A be the mircor of p(env). Then D

conforms to A if N is consistent.

Proof. \{e know from Thm. 5 that D is consistent with respect to B. Lel M : B@nv), D represent

ÙQZ),P represent þQop@) for p e P, and

d : {(q,"¡¿(")) I q e,9¿,s €,Sr,Yp e P,r'p(q) < trBqo¡(")}

Then we prove by induction that / is an alternating simulation relation between D and A (Note

Snr :,9¿). Firstly, (rl,t%) e @ because r¡a(sfu) - soM : s|. Next, suppose (q,tt¡¿(")) e $ for

9tù.a,SeùN,
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. For e €EE,if 3q 5p 9/, w€ prove (q/,n ¡a(s)) e /.

- If lp € P such that e €Dl, then (q', r¡a(s)) e þ;

- Otherwise, we have 1p e P such that e e Ð?.If Éf e 7 such thatp: p¡ Anr f Ø,sar¡e

as above, we know (q',r,.r(")) e {. Otherwise, we have lf € 7, zr"nu(f) : e ¡¡rp(f) : f
such that ": f .u.Let a: Bþ), then since p < a., we know / e enf;(zr"(s)). Because 1ú

andDareconsistent,3s/€,S7y,s4¡¡s'An¡a(s) :ru(s')AV9€ P,nn(q')<tB(r) (.').
Hence (q',r¡a(s)) e {;

o For f.ueEou,íf=ql'".Dq',thenJp€P,f e ^l,r'o(f) e af;nr"""(f) :f.Leta:B@)and'
f':nr(f),thensincep:.a,wecangetfteenf;(zr,(s)) andls'€,S¡¡,s/',r"'Arza(s')lL
A V9 € P,Ts(q') < npk)G').Hence, (q',r¡ry(s')) e þ;

¡ For Í e ÐL, if 3n¡a(s) l.or'then / e ef*(s) and zr'¡¿(s) Lm ,'. Since -Ò/ is consistent,

3s/ € ,97y, nm(r'): s'A s 4,y s'. Also, since D is input-universal and / e af, {Def. 35),

Yu e 0(f), q An q'. It is easy to prove Vp e P,rr(qt) < ,rB6¡(s'), since D is consistent.

Hence (q',rp1(s')) e þ;

Therefore, @ is an alternating simulation between D and A. From Def. 19, D conforms to A. ¡

Compared with the live consistency, it is much more complicated to deduce the live

conformance for open DEC networks, because it involves proving starvation freedom for

the environment. Apart from the necessary conditions required for proving the deadlock

freedom of these networks, an additional condition is imposed on the formed IA networks

to ensure the absence of internal cycles and the possibility of external output events from

each state.

Theorem 8. Let D, B, and N : (W, R) be as in Theorem 5, ¡4 : p(env), Abe the mircor of

M, and

E, : {e eE? I a €W \ {jl,4},lr e Ã, ro(r) : e ArM(r) çEm),

E¿:{eÇE?IaeW\{M}}\E,

be the sets of output euents of other IAs uisible and inuisible to M, respectiuely. Then D

liue-conforms to A if

o ly' ¿s liue-consistent and for all p e P, p liue-conforms to B(p);
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o Misnotstarued.inN,i.e.foranystates € S¡,¡, eitheren!r(nxa(s)):Øorthefollowing

conditions hold:

7. For all st ç S¡¿ \ {"} such that st is reachable frorn s by E¿, s is not reachable

from s' by E¿;

2. Thereexistsastatesl€,S¡¿reachablefromsbyE¿suchthatlee Eu,(st,e,u) e A¡¿

andfe' Ç E¿, (st,e', u') € A¡,¡.

Proof. We know from Thm. 7 ttrat D conforms to A. Let D represettf bQ|),p represent þQop@))

forp e P,qe ^gpands €,S¡¿suchthatVpe P,to(q) < z.B1o¡(s) andthusq< *¡r(").Suppose

enfl(tr¡a(s)) I Ø. Then en!r(tr¡¡(s)) I Ø. Frorr' Cond. 1 & 2, we know the set of states in ltr reachable

by -Ð¿ from s form a tree with each edge labelled by an event in -E¿. Because l/ is finite and these

states are not mutually reachable by E¿ (due to Cond. 1), every trace by Ei frorr' s to a leaf of this

tree is also finite.

(i). If f(s,e,s') e A¡¿ for all e e E¡ (i.e. this tree has only one node), then lø € W \ {M},
enf;(zr"(s)) lØandVa'e- W\{M},enl,(tr",(")) C¿.Letp€Psuchthat(p,ø) eB.Then
sinceplive-conformsto ø,wehaveenf (trn(q)) I Ø andfor all f .u e enf;("r(l)), / e enf;(ø"(s))

and thus T e 8,. Hence enoS@) I Ø.

(ii). If lee E¡ suchthat (s,e,s') € Arv,thenl¿ € W\ {M},enl(n"(")) I Ø.Letp e P suchthat

(p,o) e B. Then since p live-conforms to ø, we have enf ("o@Ð t Ø.

- lf =l € Eu,u € ïoU), f .u e enfl(trn(q)), then enou(t) *Ø.

- Otherwise, we have Vf.u e enf;("o(a)) such that f e E¡. Let q/ e D such that

"r@)1ø7ro(q').Thenweknowls/€ S¡¿suchthatr¡a(s) :rtw(s')andVp e P,ro(qt) <

nB@)G).Hence q' < zr¡z(s') and enlr(tr7r¡("')) I Ø. Because the tree from s is finite and

s' is closer than s to some leaves, iteratively applying step (ii), we can ultimately reach

a leaf of the tree. For the leaf, step (i) can be applied. In this way, we can prove

enos(t) * Ø.

Therefore, enoa(n¡¿(s)) lØimpliesenf(t) *Ø.Wethenhaveq<rr(")andhenceDlive-conforms
toA. n

In the theorem, Condition 1 is used to exclude internal cycles in -fy', where internal

events are included in Ei. It basically requires the absence of the internal transitions

originating from states which are internally reachable from their target states. Further,
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Condition 2 states that, if the environment expects an input event (i.e. en!*(nxa(s)) I D,

l/ is able to produce an expected event after a (possibly empty) internal trace. As will be

demonstrated later in Chapter 5, it is easy to check these two conditions using a backward

search on S¡¿.

Applying these theorems into an open DEC network consisting of the adder in Fig-

ure 3.1 and the doubler in Figure 3.5, we know this network both conforms and live-

conforms to the mirror of the IA in Figure 3.6.

3.3.5 Verifying Safety Properties for DEC networks

Due to the abstraction from DECs to IAs, safety properties of a DEC network cannot

be determined merely based on the information contained within the IA network. The

information encoded in the local state spaces of the components is also required. In
this section, we first define safety properties for DEC networks and then present a

compositional approach to their verification.

Definition 40. Given a DEC network D : (a,0,P,.y), a safety property g of D is a

predicate constraining the possible combinations of values of state variables used by its

components.

In the above definition, state variables of a component are referred to as variables

that constitute a "system state" of the component and whose value change constitutes

a state change of the component. For example, the variable recording the current state

of a flnite state machine is a state variable. Any change to its value represents a state

transition of the machine. Further, a place in a Petri net component is a state variable.

A token deposit to it indicates a change in the current state (or marking) of the net. A

formal treatment to state variables will be presented later in Chapter 4.

It should be noted that there are generally two kinds of safety properties: state-based

and path-based. In contrast to state-based properties that consider each system state

individually as in Definition 40, path-based properties constrain temporal relationships

between system states, typically using temporal operators such as "X" (next time), "F"

(future time) and "U" (until). Within the context of this thesis, we focus on state-based

properties but leave path-based properties for future work. In other words, we say that a
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closed DEC network satisfles a safety property if the property is evaluated true at every

state of the network and the evaluation involves one state at a time.

In the following, we classify safety properties of closed DEC networks into three

categories and propose different strategies to check them. The three categories are

component local properties, system boundedness and system-wide properties. These

properties vary from simple to quite complex ones, and thus the checking methods have

different computational efficiency.

3.3.5.1 Local Properties of Components

Local properties of a component are the invariants that the component must maintain

during the execution of the composite system.

Definition4l.GivenaDECnetwork D: (o,0,P,.'l), asafetyproperty gof D iscalled

local to a DEC p € P if g involves only local state variables of p.

To prove such a property in a closed DEC network, we clarify using the following

theorem that only the local state space of a component needs to be further considered.

Theorem 9. Giuen a closed DEC networh D : (P, f) which is consistent with respect to B,

alocalsafetypropertyçofpePholdsonDifghold,sonthelocalstatespa,ceofpwith
respect to 0(ù.

Proof, Let a: þ(p) and LØ : (s$,,Sø,8ø,4ø) be the local state space of p with respect to ø.

Supposee€,SpisastatereachableinDviaatraceøsuchthatqviolatesg,i.e.ro(p)violatesp.
Let ( : rp(o)lz. be the trace projection of o o'n o, (cf. Def. 31) and s € ^9" be the state reachable

in a via {. Since o is free from unexpected reception, we know ro(q) i s from Prop. 3. Hence

("r(p), s) e ^96 
(due to Cor. 2). Therefore, the violation of p in D can be detected in the local state

space ofp, and thus this theoremholds. tr

This theorem shows that a safety property local to a DEC is preserved in a consistent

network comprising the DEC. Therefore, to prove such a property in the network, it is
sufficient to prove it in the local state space of the DEC.

We next generalise this theorem to open DEC networks using the following theorem.
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Theorem LO. Giuen an open DEC networh D : (a,0, P,1) which is consistent with respect

to 0, a local safety property ç of p e P holds on the local state spo,ce of D with respect to

the mirror of Bþnv) if 9 holds on the local state spdce of p with respect to l3(p).

Proof, It is trivial to prove the local state space of D is a closed DEC network. Then, due to

Theorem 9, this theorem clearly holds. n

This theorem justifies that any component invariant involved in a hierarchical DEC

network can be proved at the local state space of the component, no matter how deep the

component is at the hierarchy of composition.

3.3.5.2 System Boundedness

System boundedness is a special system-wide property, which does not require com-

prehensive analysis proposed later and is therefore worthwhile mentioning before we

continue. For a given closed DEC network, system boundedness refers to the fact that

all the internal buffers (or data containers) deflned in every component are bounded. In

other words, the number of elements stored in any buffer is at all times below a certain

bound. This property can be regarded as the conjunction of the boundedness of all its

components. The boundedness of a particular DEC indicates the boundedness of all its

buffers, which is clearly a local safety property of the DEC. Exceeding any bound of its

buffers during the execution of the DEC network is a violation of this local property,

and can be detected in the local state space as well, according to Theorem 9. Therefore,

system boundedness is deducible from the independent analysis oflocal state spaces of

the components.

3.3.5.3 System-Wide Properties

System-wide properties are the safety properties that are not covered by the above two

categories. Generally, they involve local state variables of multiple components. In

essence, they can be expressed in conjunctive normal form, with clauses being disjunc-

tions of component local properties. A formal definition of property clauses is given below

in Definition 42.



CHAPTER 3. COMPOSITIONAL VERIFICATION 67

Definition 42. Given a DEC network D : (a,0,, P,.y), aproperty clause g of D is a formula

gtV gzY ...Y 9r

such that 7 < l< < lPl, ç¡ is a local safety property of a component pj e P for all

j t 7 < j < k, and at most one property for each component appears in the formula

(i.e. Vi,, j: I { i,, j < k, i,I j ímpIíes pi + pj).

Any formula of predicate calculus can be expressed in conjunctive normal form. If
a safety property (as in Definition 40) has a logically equivalent formula which is the

conjunction of a number of property clauses, then one can independently prove each

property clause and accumulatively deduce the property.

Typically, to prove a property clause of a DEC network D, one has to ensure that for

every state q € Sp, 93 holds at ro,(q) for some j i 7 < j S k. As noted previously, this

requires the construction of the global state space of D and thus would easily lead to the

state space explosion. In the following, we instead present a compositional approach

which makes use of the derived IA network to help detect a potential violation of a

property clause. To do so, we first define the concept of satisfaction of a local property

by an IA state in Definition 43 and then propose the compositional approach based on

Theorem 11 and 12 (below).

Definition 43. Consider a DEC C and an IA A such that C conforms to -4.. Let g be a

local property of C ar,d tr6 be the local state space of C with respect to .4. A state s e ,S¿

is said to satisfy g lf Y(q,s) e ^96, p holds on q. The set of states in ,S¿ satisfying g is

denoted as sat,p.

The following theorem studies closed DEC networks and demonstrates that the vio-

lation of a property clause at any state q of a closed consistent DEC network D can be

detected by the corresponding state s of the derived IA network l/ (as in Proposition 4).

As a consequence, ^9¡¡ can be used to prove safety properties on ,5¿r.
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Theorem lt. Consider a closed DEC networh D : (P,l) which is consistent with respect

to p and a property clause g as in Defi,nition 42. Let N : (W, R) be the deriued IA network

of D, p¡ be the DEC to which g¡ is local and a¡ : þ(p¡) for j: I < i < lc. Then 9 holds on

D if for all s e SN, either 1a e W, no(s) : L or 1j I I < j 1 k, ro,(s) satisfi'es 9¡.

Proof, Suppose a state e € S¿ reachable in D via a trace ø such that q violates ç, ví2. no,(q)

violates g¡for all j:1 < j Sk.LeLLpØ: (s!6,,Sp6,Xpø,Apø) bethelocalstatespaceofpwith
respect to ø for (p,o) e B, and s € ^9¡¿ such that V(p,o) e B, r"(s) is the state reachable via

no@)l>^.FromProp.3, weknow r"(s) * IAøo(q) < r"(s). Hence (r.o(q),2r"(s)) € Soø forall
(p,o)eÉ(duetoCor.2)andlj t<j<ksuchthatzr"r(s) satisfiesp¡.Accordingly,sfalsifies
the condition of this theorem. Therefore, the violation of g can be detected and thus this theorem

holds. !

Note that the consistency of a closed consistent DEC network does not imply the

consistency of its derived IA network. Therefore, in the above theorem, the requirement

"1a e W,ro(s) : I" is imposed to exclude the combinations of IA states to which no state

of the DEC network corresponds. In addition, for any other IA state combination, this

theorem requires that at least one local property is satisfled.

As noted above, to prove a safety property local to an open DEC network D, it is

sufficient to prove it at every state in the local state space of the formed DEC of D.

However, this may lead to the state space explosion. Therefore, we demonstrate using

the following theorem that to prove a local property clause of D, ít is sufficient to prove it
at every state of the derived IA network using a method similar to the one in Theorem 11.

Theorem 12.Consider an open DEC networh, D : (a,0,P,1) which is consistent with

respect to B and a property clause I of D as in Definition 42. Let N : (W, R) be the

deriued IA networh of D, pj e P be the DEC to which g¡ is local and a¡ : þ(p¡) for
j t I < j < k. Then ç holds on the local state spo,ce of D if for all s e Sw, either 1a € W,

¡o(s) : L or -j | | < j 1 k, ro,(s) satisfies 9¡.

Proof, It is trivial to prove the local state space of D is a closed DEC network. Then, due to

Theorem 11, this theorem clearly holds. tl
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This theorem, together with Theorem 11, allows us to separate concerns in proving

safety properties of DEC networks and disregard components irrelevant to the verifica-

tion task. As a consequence, the potential state space explosion problem can be alleviated.

On the basis of Theorem 11 and L2, we propose a compositional method for proving

system-wide safety properties. For a given property, we first transform it into conjunc-

tive normal form, i.e. tlne conjunction of property clauses, and then follow a three-step

procedure to evaluate each clause cp:

1. calculate the set sat* ofIA states satisfying g¡ for all j: 1 < i < k;

2. check every state s € ,S¡¡ for the existence of an IA ay such t}r,atro,(s) e {f } U sate, i

3. if succeed, conclude the satisfaction of g ín D.

Finally, if all constitute clauses of the safety property prove to be true, we conclude

that the property holds on D. The implementation of this method will be discussed later

in Chapter 5.

3.4 Summary and Discussion

In this chapter, we have presented a practical method for verifying the consistency and

deadlock freedom of DEC networks. This employs a divide-and-conquer approach where

each component is individually tested for conformance with its interaction protocol cap-

tured by an interface automaton, and the network of interface automata (which matches

the network of components) is checked for consistency. This divide-and-conquer ap-

proach, together with abstraction from the data values transmitted between components,

can lead to a significant reduction in the state space to be explored. Furthermore, it was

shown that the verification can be carried out at each level of the hierarchy. This further

minimises the state space that needs to be built in each verification task.

We have provided only a sufficient condition for determining the consistency and

deadlock freedom of DEC networks. This will be appropriate for many practical situa-

tions since the consistency of IA networks will be ensured when synchronisation patterns

between components are designed during system decomposition, and thus before the
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development or selection of DECs is carried out. In some cases, however, the use of pre-

existing DECs and their abstraction into IAs may mean that the proposed verification

process will produce false negatives, i.e. the above technique may incorrectly report

inconsistency. In this case, a process of progressive refinement will need to be adopted,

as advocated in [35].

Furthermore, we have presented practical and compositional methods for verifying

safety properties of consistent DEC networks. Such a verification often requires more

information than can be derived merely from the IA network. Therefore, we make use of

the component local state spaces to deduce a superset of the state combinations of rele-

vant DECs with the help of the derived IA network, and check this set for the violation

of safety properties. In this way, the preservation of such properties can be ensured. In

addition, we have proposed methods with different computational efficiency to reason

about different kinds of properties, e.g. component invariants and system-wide safety

properties.

In this chapter, independent analysis (or verification) of components and their com-

position is strongly advocated, due to the explicit specification ofinteraction protocols of

components. This makes it possible to apply different verification techniques to prove

different properties such as the conformance of components, the consistency of IA net-

works, local and system-wide safety properties. For example, consider a component

having infinite data values, then model checking is not directly applicable for ensuring

the conformance, whereas theorem proving or the combination of model checking with

data abstraction techniques (such as data independence) may be more appropriate. On

the other hand, by abstracting away from data values being communicated, IA networks

can be verified using model checking tools. In the meantime, other existing techniques

attacking the state space explosion may be applied in order to further reduce the size of

state space for this verification task.

3.5 Related Work

As noted earlier, interface automata are a key element in this approach. This language

was first introduced by de Alfaro and Henzinger in [54]. There, the authors established

a simple and well-defined semantics for them and defined the composition of IAs in
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terms of two-party synchronisation. Also, they proposed alternating simulation as a

refinement relationship between IAs. This relationship takes an optimistic view of the

environment by assuming that it is always helpful, only supplying inputs expected by

the specification automaton. This optimistic view allows more possible implementations

than a pessimistic approach where the environment can behave as it pleases.

In this chapter, we have taken this optimistic view and adapted alternating simula-

tion to define the conformance of components with IAs, taking into account data values

used in components. Also, we have presented a computationally efficient method of

checking this relation, which does not require the construction of the Cartesian product

of their state spaces as in [54]. In fact, only the reachable states in the product need to be

constructed. Additionally, in contrast to the simple composition scheme in [54], we allow

IAs to be composed by means of synchronisation vectors, a more general composition

mechanism introduced by Arnold and Nivat [13].

Our adaptation and checking method of alternating simulation was inspired by [173J,

where a similar relation was proposed to check the conformance (or refinement) rela-

tionship between CCS models. However, this relation is more restricted than ours, as it
requires both specification and implementation models to have no mixed states (where

both input and output transitions can occur), while in our approach this is not required.

Furthermore, because of the presence of blocking outputs, models in their approach are

different in nature from ours where a component is in full control of its outputs.

As noted in Chapter 2, there exist many other approaches to compositional veri-

fication, including the classical assume-guarantee paradigm [81, 171], interface pro-

cesses l4\,421, and circular reasoning [6, 7,10,92,93, L28, L49, 150, 151]. These

approaches attempt to combat the state space explosion using the principle of "divide

and conquer". They usually describe the assumptions and guarantees of a component

in separate models, and rely on the guarantee models of the other components to val-

idate the assumptions of the component. As the assumptions of components are often

interdependent, methods to break the accompanying reasoning circularity have to be

developed. Usually the soundness of such methods is ensured by induction on length of

traces, e.g. 110,92, L49l .
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Our approach has its roots in these approaches. Its underlying methodology was

derived from them. However, two key factors make our approach distinct from other

compositional verification approaches. Firstly, the temporal relation between the as-

sumed and guaranteed behaviours of a component can be explicitly captured here by a

single interface automaton. Accordingly, our approach is able to validate the assumptions

of all the components in a step by checking the consistency of the derived IA network.

It thus circumvents the common problem of reasoning circularity in assume-guarantee

approaches. Secondly, the classical assume-guarantee approaches, e.g. [81, 171], take a

pessimistic view of the environment. More specifically, to initialize the assume-guarantee

chain, one has to ensure the guaranteed properties of at least one component under an

unconstrained environment. As noted, this would fail when interdependent assumptions

are present. Further, in other approaches, e.E.[7, 10, 4L,92, 128, 749, 150], in order

to prove the guaranteed properties of a component, a constrained environment model is

usually derived from the composition of (abstract) specifrcations of all the other compo-

nents. The size of the derived model, nevertheless, may grow very fast with the number

of components in the system. In contract, our approach adopts an optimistic view of

the environment, which allows one to consider only a component and its associated IA

in order to determine its guaranteed properties. It also enables the verification of a

hierarchical system at each level of the hierarchy. As a consequence, a more scalable

solution is obtained.

The work related to ours also includes compositional minimisation approaches, e.g. [32,

7t,78,79,193,2001. These approaches rely on a semantic equivalence to minimise the

state spaces of intermediate subsystems, and then use them to generate a reduced but

semantically equivalent global state space for verification. However, in these approaches,

the verification is only possible when a reduced global state space has been obtained. In

contrast, our approach is able to support hierarchical verification and render progres-

sive results. Accordingly, it provides a more effective way to control the complexity of

subsystems and avoids the intermediate state space explosion faced by compositional

minimisation approaches.

Similar to our approach, the work of [103, 104] also utilises the environmental as-

sumptions of components for verification. In particular, this derives the assumptions and
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actual behaviours of components from their specifications, and determines the deadlock

freedom of a system by pairwise matching between the assumptions of a component and

the actual behaviour of another component. In contrast to our approach, the proposed

method is incomplete and limited to one-to-one communication or synchronisation.



Semantic lnterpretation Approach
to Heterogeneous Systems

As noted in Chapter 2, tll'e complexity and heterogeneity of modern computer-based

systems means that a single speciflcation language is no longer adequate for coping with

all aspects of a system. Instead, multiple languages are often used to specify different

parts of a system. This results in component-based heterogeneous systems.

For these systems, it is crucial to establish a formal semantics so as to eliminate

potential inconsistencies and enable formal verification. To do so, it is essential to de-

velop a common semantic base which is sufficiently general to define the semantics of

various modelling languages. It is also important to construct an underlying framework

unifying heterogeneous components (1.e. components written in different languages) into

this semantic base and consequently providing a formal semantics for heterogeneous

systems.

In Chapter 3, we have developed a formal semantic base for these systems in terms

of interconnected discrete-event components (or reactive transition systems). In this

chapter, we focus on a class of modelling languages and study the fundamentals for con-

structing an underlying framework that provides heterogeneous systems (or components)

modelled by these languages with a formal operational semantics based on DECs and

their networks.

More specifically, we consider modelling languages that consist of vertices (repre-

sented as closed geometrical shapes) and edges (represented as lines) connecting vertices.

74
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This kind of language is often called a graph-Iike notation. Also, we require that the

described systems (or components) using such languages have some notion of state, and

transit between states due to occurrences of discrete events. Example languages include

Petri nets, statecharts and process networks. Our preference for graph-like visual lan-

guages results from a previously noted fact that they (or visual languages in general)

provide intuitive means for system specification and analysis and are very attractive to

software engineers.

In addition, to develop an underlying framework for heterogeneous systems, one may

think of building a direct mapping from heterogeneous components into DECs. Although

this is theoretically sound, it is generally infeasible to develop automated supporting

tools for this approach, because components may have infinite state spaces due to the

presence of environment-controlled input events. Also, it is often pointless in practice to

construct the whole state space of a component without considering its ultimate context.

Therefore, we do not simply interpret heterogeneous components as DECs. Instead,

we define the semantics of a heterogeneous component in terms of its reachable states

and transitions within a given context. Also, we observe that the process of computing

the reachable states and transitions of a component is often independent of the used

modelling language and is a standard element for many analysis tools. Hence, we employ

a two-stage process to specify an operational semantics for a component. The first stage

deals with the language dependent semantic issues, e.g. what constitutes a state or tran-

sition of the component, what are the possible transitions (or steps) that the component

can make at a particular state, and how the component executes a step according to the

semantics of its modelling language. The second stage relies on the facilities developed

in the first stage and handles the language independent issues, e.g. t}r,.e computation of

the reachable states and the construction or exploration of the state space in the given

context.

In this chapter, we concentrate on the first stage, presenting a general approach for

graph-like languages to deal with language dependent issues. In Chapter 5, we shall

elaborate the second stage, implementing two analysis tools which give an operational

semantics to heterogeneous components in terms of DECs, more specifically, in terms of
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their reachable states and steps within a given context. To enable independent devel-

opment of these two stages, we impose a contract which explicitly defines the expected

behaviours of both the interpreters (see below) defined for the first stage and the analysis

tools developed for the second stage.

To deal with the language dependent issues, we adopt the semantic interpretation

approach taken by the Moses tool suite [65]. As noted in Chapter 2, such an inter-

pretation approach has advantages over syntactical translation approaches in terms of

flexibility and extensibility. More specifically, rle use attributed, graphs [111] to represent

the abstract syntax of various component models, and specify an interpreter for each

modelling language. 'When parameterized by the attributed graph of a well-formed com-

ponent model, the interpreter is able to provide sufficient information about states and

transitions of the component, according to the semantics of the language. As a result,

an analysis tool can utilise this information to construct the state space of a system

comprising the component.

To define language-specific interpreters, as in [65], we employ a variant of Abstract

State Machines (ASMs) [82], called Object Mapping Automo,ta (OMAs) lll2l, as the de-

scription language. ASMs are an expressive and elegant model of computation, combin-

ing algebras (first-order structures) and transition systems. They are able to represent

static aspects of a component in algebras, such as its data structures and consequently

its states, and formalize dynamic aspects of a component (1.e. its behaviour) by means

of transition systems [56]. Therefore, they are well suited to our needs to characterise

states and transitions of heterogeneous components. In this chapter, we employ OMAs

in preference to other ASM languages, e.g. 182,251, simply because OMAs are already

supported by our implementation framework, i.e. t}re Moses tool suite. However, we

believe that the interpretation approach presented here is independent of OMAs and

can work with other ASM languages.

As noted above, the work presented in this chapter builds on the previous work of

Janneck and Esser [65, 110] on the Moses tool suite. There, the authors have used a

similar OMA-based method to define the semantics of graph-like languages. The aim

was to support the modelling and simulation of component-based heterogeneous systems.

Here, we extend their work to support the formal verification (or exhaustive analysis) of
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these systems and to accommodate languages with complex semantics, e.g. UML state-

charts t1591. In particular, we require interpreters to contain certain analysis uariables

to expose the information about states and transitions of components, which is sufficient

to support their exhaustive state space exploration.

The remainder of this chapter is structured as follows. In Section 4.1, the prelim-

inary information is introduced, including attributed graphs, OMAs and interfaces to

the implementation platform. In Section 4.2, t}r,e contract between interpreters and

analysis tools is made explicit so that an open framework for both various languages

and various analysis techniques can be obtained. After that, the semantic interpretation

approach advocated above is illustrated in Section 4.3 and 4.4 with two example lan-

guages: compositional Petri nets presented in [113] and statecharts defined in the Unified

Modelling Language (UML) t1591. Petri nets are used to illustrate both the analysis

variables that interpreters must expose for components and the behavioural obligations

that interpreters must fulfill to support the exhaustive state space exploration of com-

ponents. UML statecharts are used to demonstrate the applicability of this approach to

languages with complex semantics. Finally, a summary of this chapter and comparisons

with related work are presented in Section 4.5.

It should be noted that although the semantic interpretation approach reported here

has its roots in visual languages, we believe, it is also applicable to textual languages

that can represent discrete-event systems.

4.1 Preliminaries

As noted above, our semantic interpretation approach works on the abstract syntax of

component models, viz. attributed graphs, and defines language-specific interpreters

using a formalism called Object Mapping Automata. In this section, we introduce the

concept of attributed graphs and give a brief description of OMAs. Furthermore, we

clearly define the interfaces to our underlying implementation platform, namely the

Moses tool suite, in order to abstract away the implementation issues irrelevant to the

topic of this chapter.
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4.1.1 Attributed Graphs

An attributed graph [111] is a mathematical structure where vertices, edges, and the

Sraph itself carry named attributes. Assuming a universal set of attribute names "4 and

a universal set of attribute values 7, it is formally defined as follows.

Definition 44.l1-1-ll An attributed graph is defined by G : (V, E, src, dst, attr), where

o V and E are disjoint sets ofvertices and edges, respectively.

¡ srcl dst: E -----+ V are total functions mapping an edge to its source and target (or

destination) vertices, respectively.

o attr: (EUVu {*}) x A' V is a partial attribute function,where we assume *is a

special symbol representing the graph itself such that * I V u E.

Attributed graphs are sufficiently general to represent the abstract syntax ofgraph-

like component modets [111]1. They thus provide us with a uniform means to access

the syntactic information encoded in component models. Therefore, rather than directly

dealing with a variety of models, we shall base our semantic interpretation on attributed

graphs.

A detailed discussion of the issues concerning the representation of graph-like models

by means of attributed graphs is beyond the scope of this thesis but can be found in [111].

Instead, in Section 4.3.1 and 4.4.1 we shall illustrate with example Petri nets and UML

statecharts.

For descriptive convenience, we make "attr" a total function by introducing a keyword

undef ( V andletting attr(o, ø) : undef for all o e E U V u {*} and ¿ e "4 such that there

is no value corresponding to (o, a) in attr.

4.1.2 Object Mapping Automata

Object MappingAutomata (OMAs) [112] are a variant of Abstract State Machines (ASMs)

[82], with additional syntactic sugar and a simplified notion of states.
lCf. [111] for a detailed discussion of the syntactic representation and well-formedness issues of graph-

like models.
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Basically, ASMs (and OMAs) are transition systems, used to provide succinct and

executable formal specifications for algorithms [82]. That is, they describe how the

specified system of an algorithm transits from one state to another in a number of discrete

steps. In ASMs (and OMAs), a state is a multi-sorted first-order structure [25], in par-

ticular, a set of named relations and functions of arbitrary arity (note that for technical

convenience relations are also viewed as functions taking values in {true, false}). A state

transition is a modification of the original valuations of these functions (or relations) at

any number of points. Such a modiflcation may be a set of updates to the functions,

provided these updates are consistent with each other. Here, the consistency means that

any two updates do not apply to the same function at the same point.

As an example, consider the OMA in Program 4.1, describing the computation of the

factorial function (taken from [119]): A state of this OMA comprises two functions: a

nullary function (i.e. avariable or attribute) called n and a unary function /. In its initial
state (specified by initialize), r¿ is bound to the value 1 and / is bound to a function that

is undefined everywhere except at point 0, where it has the value 1.

Program 4.1: An OMA computing the factorial function

I function n arilyO, / arity 1

z initialize z

s n:: 1, /(0) :: 1

a ru,le step i
s n::n*t,l(n) t: f (n-I)xn

A step of this OMA is specifled by the rule "step". In each execution of this rule,

the OMA will modifii its state by assigniîg n a new value and modifying / at the point

designated by n. In particular, / is changed at point n from being undefined to the value

"n!", while remaining unchanged at other points. As the OMA iteratively executes rule

"step", / will become the factorial function for naturals.
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An important feature of ASMs (and OMAs) is that the modifications described by

a rule are simultaneous. More specifically, the right-hand side of all assignments are

evaluated at the old state, and then the assignments are applied simultaneously.

OMAs extend ASMs in a number of ways. The one most pertinent to this work is

that OMA rules may be internally iterative, that is, they may describe a state transition

that consists of a number of smaller state transitions, separated by a semicolon rather

than a comma. For example, the automaton in Program 4.1 could also be written as in

Program 4.2l]-]^gl.

Program 4.2: Alternative representation of Program 4.1

r function n arity 0, / arity 1

z initialize :

3 n:: 1,,f (0) :: 1

4 ru,le step i
s f(n),:f(n-1)xn¡
6 n::ni7

Apart from the assignment ("::"¡ and statement composition operators (sequential ";"

and parallel ","), OMAs also support the constructs described below, where B, Bt or 82

denotes a statement or a statement block, C a boolean predicate, and parts in square

brackets are optional.

. ú C then Br I else Bz ] end will execute Br when condition C holds or execute 82

otherwise;

o let r: u : B end will execute B while substituting every occurrence of r in B with

value r,'. Note that if u is an expression, it is evaluated before B is executed;

o doforall r e X Iwith CliB endwillsimultaneouslyexecute Bfor everyelement

r in a set X such that r satisfies C;

o choose r e X Iwith Clih Ielse Bz ] endwillchoose arlyr inX such t}ratr
satisfies C and execute Br with the chosen ø. It will execute F,2if no such r exists;
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. loop B end will iteratively execute B until a fixpoint is reached, i.e. no further

update can be made;

o import u : frrnction erpr z B end will create a fresh function u specified by

expression erpr andenable the use of u in executing B.

In order to achieve compositionality and hierarchy, both ASMs and OMAs support

inter-component communications. To do so, they classify functions into five kinds: static,

controlled, monitored, shared andderiued. The first are those whose values never change

during any run of OMAs. In contrast, the other four kinds of functions are dynamic with

variable values. These kinds differ at which party has permission to update the functions.

For a given OMA, controlled functions are only updatable by the OMA, and monitored

functions are only updatable by the environment. Shared functions are updatable by

both the OMA and the environment, while derived functions are not updatable by either

party but are nevertheless dynamic because they are defined in terms of other functions.

The OMA given in Program 4.3 illustrates these five kinds of functions with Ini.ti.al,

gcd, inl, mode and double being examples of each kind and mod the modulus operator.

The main job of this OMA is to compute the greatest common divisor gcd of two integer

operands i,nl and i,n2 provided by the environment. The behaviour of the OMA and the

environment is coordinated using a shared function mode. Initially, mode : Wai.t and

the OMA waits for the environment to intervene, namely, to provide two operands and

to change mode to Ini,tial. After that, the OMA initializes two auxiliary functions ¿ and

b and sets rnode to Compute. Then the OMA computes gcdby iteratively executing the

part of the "step" rule between lines !2-20 until the greatest common divisor is obtained.

Finally, it resets mode to Wai,t to wait for the next request. Note it is assumed that

only when mode : Wai,t can the environment intervene by changing mode to Initial and

modifying i,nl and i.n2.

For descriptive convenience, we shall use "attribute n" as a syntactic shortcut for

"function r arity 0". Similarly, we shall use "set X" as a shortcut for "function X arity
1" with a boolean codomain, and use "X i: X + {r}" to denote the addition of an element

z into set X instead of the OMA formula "X("):: tme" and"X :: X - {r}" the removal

of r from X instead of "X(r):: false". We shall also interchangeably use "+" and "U" for
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Program 4.3: An interactive OMA for the Euclidean algorithm repeatedly computing

the greatest common divisor (adapted from [83])

r static ftrnction Initial :0,Compute: 7,Wait :2 i
z monitored function inI,in2 arity 0 ¡
g controlled function a,b, gcd arity 0 i
¿ shared function mode arity 0 i
s derived firnction doubLe : gcd, * 2 i
a initialize :

7 ?'rùode :: Wait
a rwle step',

9 if mode : Ini,tial t}nen

10 ø:: in7,b::'in2rmode;: Compute

11 end,

12 if mode : Compute th.en
13 if ö:Othen
14 gcd:: a,rnode:: Wait
15 elseif b:1then
16 gcd::I,model :: Wai,t

17 else

18 a :: b,b :: a, mod ö

19 end
20 end

set union as well as "-" and "\" for set subtraction. Likewise, we shall use "relation Y"

as a shortcut for "function Y arity 2" with a boolean codomain.

4.1.3 Platform Assumptions

In order to specify language-specific interpreters in a general \May, we choose to delegate

platform-specific features of a diagram, such as the management of diagram-specific

variables and operations reading and updating these variables (e.9. guard evaluation

and action or function execution), to a runtime environment. In doing so, \ry'e clearly

define the interfaces for requesting the task executions. More specifically, rñ/e assume
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an external function "eval(g,rn)" and an external procedure "exec(a,, m)" ate provided by

the underlying platform. Using eval(g, m), a component (or an interpreter) is able to

evaluate a transition guard or expression g, depending on a map rn which associates a

value with each identifier in scope. The eval function must return a boolean value for a

guard. Using procedure exec(ø, m), a component can execute an action or a sequence of

actions a, depending on a map m. An action may be the function specified by a Petri net

transition or the effect of a UML statechart transition. The execution of such an action

may involve reading and updating variables in n¿.

The introduction of these interfaces, we believe, simplifies the definition of inter-

preters and makes it possible to reuse them in any other platform that supports equiva-

lent interfaces.

4.2 Behavioural Contract with Analysis Tools

As stated previously, to define the semantics of a heterogeneous system, language-specific

interpreters are parameterized by the constituent visual models and utilised by analysis

tools to generate the state space of the system. To enable the independent development of

interpreters and analysis tools, a workable behavioural contract between them is needed.

In this section, \¡¡e present such a contract which not only makes explicit the facilities

needed for formal verification but also describes how these facilities should be used.

First of all, we require that interpreters contain externally visible analysis uariables,

characterising states and steps of components and providing sufficient information for

exploring their reachable states in a given context. These variables include:

o "-state"i a shared variable representing the current state of a component. This

variable needs to be externally writable so that by modifying it an analysis tool can

revisit a state of the component in order to execute the steps that are enabled at the

state but have not yet been taken;

o "-nertStepE"; a set of enabled steps of a component atthe current state. Note that

there is a slight difference between these steps and DEC steps, since the former are

actually used by interpreters to identify a particular (DEC) step to execute. The set

-:nertSteps should not be modifiable by analysis tools;
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o "-eutType" aîd"-eutPara": shared variables representing the event that just oc-

curred to the component, where -eutType records its type and -eutParaíts param-

eter.

o "-rnode": a shared variable indicating the mode of an interpreter. This is used to co-

ordinate an analysis tool and the interpreter for modifying other analysis variables.

This variable should be one of three predefined constants: -WAIT, -INPUT and

-FIRE, representing that the interpreter is waiting for an analysis tool to operate,

is receiving an input, or is flring an enabled step, respectively;

o "-step2talçe"i a monitored variable representing a step to fire. This step is specifled

by an analysis tool and must be a currently enabled step in set -nertSteps.

Apart from":nertsteps" being a set, we do not make any further assumptions about the

data types of these variables but simply treat them as basic data units, when implement-

ing analysis tools later in Chapter 5.

In addition to analysis variables, we also need to specify the behavioural contract

between interpreters and analysis tools so that they can collaborate to support exhaustive

state space exploration. The expected behaviour of an analysis tool is described as a state-

transition graph in Figure 4.1, where ,S and A are sets of the reachable states and steps

to be constructed for a given component, respectively. We have abstracted away from

the implementation details of the analysis tool, e.g. speciflc exploration strategies such

as breadth-first and depth-first.

As shown in the figure, initially, an analysis tool is expected to wait until the mode

of an interpreter becomes -WAIT . Then it records the initial state of the component

and enters the "scheduling" state, where three nondeterministic choices are available.

Firstly, the tool may provide an input and change the interpreter to the " J N PUT" mode.

It then waits until the input is received and records the last step made by the interpreter.

Secondly, the tool may choose a step out of -nertsteps to request the interpreter to fire.

Likewise, it then waits until the firing is finished and records the last step. Finally, the

tool may backtrack to an already visited state for executing an enabled next step that is

not yet taken.



CHAPTER 4. SEMANTIC INTERPRETATION APPROACH

YES

85

mode =
WAIT?

s := state, s0 := -state,
S := {_state}, À = Ø

2
Scheduling

firing
Choose t € _nextsteps:

-steP2take := t

Inputing
Assign _evtType

& evtPara

backtracking
Choose s' e S:

_state := s',
s: = s'

mode:= INPUT mode:= FIRE

3
InputPending

4
FirePending

mode =
WAIT?

mode =
WAIT?

YESYES

s' := s, s := _state
S:=S+{_state}

event := <-evtType, -evtPara>,A=À+{(s',event,s)}

Figure 4.1: Expected behaviour of an analysis tool
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With this contract explicitly specified, we are clear about the environment of in-

terpreters. As will be seen, this largely facilitates the interpreter specification in the

subsequent sections.

4.3 Petri Nets

In this section, we consider compositional Petri nets introduced by Janneck and Naedele

[113], and specify a semantic interpreter for this language. As mentioned previously, our

interpreter speciflcation builds on the previous work of [110, 65] and extends the latter

with additional facilities to support the exhaustive analysis of Petri net components in

heterogeneous systems. More specificall¡1 it contains the analysis variables and abides

by the behavioural contract described in Section 4.2.

In the following, we first outline the notation of this language in Section 4.3.1 and

illustrate its attributed graphs in Section 4.3.2. We then present our interpreter specifi-

cation for the language in Section 4.3.3.

4.3.1 Notation

Compositional Petri nets [113] are a variant of high-level Petri nets, which enhances

the usual Petri net notation with input/output ports. Through these ports, tokens (or

messages) may enter or leave a Petri net component. One may think that, from a net's

perspective, an input port represents an external transition and an output port an exter-

nal place. Due to the incorporation of input/output ports, these Petri nets are also called

I/O Petri nets in this thesis.

An example net is shown in Figure 4.2, where triangles represent the inputioutput

ports and where the body of the component is given in the usual Petri Net notation

with circles, boxes and arcs representing places, transitions and the flow relationships,

respectively. 'When data (or a token) comes in via an input port, it is added to the place(s)

connected to that port. A transition (e.g. "add" in Figure 4.2) becomes enabled once all its

input places have enough tokens and its guard evaluates to true2. As is the case for other

high-level Petri nets (e.g. [116]), this binds the tokens to the variable names (e.g. "ua"
2Note that an unspecified guard is always considered to be satisfied.
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a: int initTokens:{}

pa

c: int

b: int

add
function: vc := vâ + vb

initTokens:{ }

Figure 4.2: An adder Petri net component

and"ub") on its incoming arcs, and finally the transition fires. While firing, the transition

binds the variable names (e.g. "uc") on the outgoing arcs depending on the values of the

variables on the incoming arcs. When a firing transition is connected to an output port

(e.g. "c"), data is sent out via the port to all connected components.

It is not hard to see that this example net provides the functionality of the adder

component in Figure 3.1. Making the same assumptions on the environment, it produces

via port c a token with the sum value of two integer tokens coming in from ports ø and

b. Note that in order to give a concise model, we have again omitted the implementation

detail of the "grey" tasks in Figure 3.1.

To obtain a sound semantics, it is important to understand the well-formedness re-

quirements of I/O Petri nets. On the one hand, these nets must meet the requirements

of the usual Petri net notation. For instance, Petri nets are bipartite graph, i,e. ín a Petri

net, arcs always connects a place to a transition and vice versa, but are never between

places or transitions. On the other hand, due to the introduction of ports, VO Petri nets

have additional constraints on arcs starting from or ending at ports. More specifically,

arcs starting from input ports must end at places, and arcs ending at output ports must

originate from transitions. Further, we require that at most one output port can be

connected to a particular transition in any Petri net, in order to ensure that a Petri net

component can exhibit only one output event at a time. Meanwhile, arcs emanating from

the same input port and ending at multiple places are allowed, denoting that incoming

ta

VC
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data are duplicated into connected places. An extensive exposition of the well-formedness

requirements will be given later in Section 5.1.

4.3.2 Attributed Graphs

To specify a semantic interpreter for I/O Petri nets, it is important to understand their

attributed graphs which, as noted earlier, are the starting point of our approach. In this

section, we illustrate using the example net in Figure 4.2. An abridged version of its

attributed graph is shown in Program 4.4, where the attributes and values for places,

transitions, input and output ports, and edges are illustrated using pa, add, a,, c, arrd ua,

respectively.

As shown in the program, V and E consist of all vertices and edges in the example net,

respectively. Also, src and dst encode the relations between vertices and edges. Compared

with them, attr is more complex and requires a more detailed explanation. For a vertex or

edge, there is an inherent attribute"typd'indicating its type. For an I/O Petri net, vertex

types include place, transition, input and output ports, while edge types include arcs and

inhibitor arcs. This example net has all types of vertices and edges except inhibitor arcs.

For different types, the valid attributes are also different. For instance, vertex pa is a

Program 4.4: Attributed graph of Figure 4.2

r V : {a,b,pa,pb, addrc},

2 E: {ta,tb,ua,ub,uc},
3 src : {ta r-- a,tb t+ brua r-- parub ++ pbruc r-- add,},

4 dst : {ta,-- pa,tb t-+ pb,ua r-- ødd,ub v-+ add,,uc r-- c},

5 att r : {(pø, " typ e") r--+ " P lace", (pa, " initToke.nd') r-+ "{ } ",

o (add,"type") ¡'--> "Tlansition", (add,"function") ,- "vc :: va + vÜ',

z (add,"guard') r* undef,
8 (a,"typd') r-+ "InputPort", (ar"name") ,- "a|', (ar"domain") -, t'int',

g (","typd') ¡--' " outputPott" , (c,"name") '--' "C' , (cr"rangd') '-s " int' ,

10 (ua,"typd') r---r "Atc"r(ua,"label') ,--¿ "vã",

11 l* pb,b,ub,uc,ta,tb omitted. */

12Ì
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place. It has an attribut e " initTokens" valued at an empty set, indicating that it is initially

empty. Vertex addís a transition with attributes "guard" and"function". The guard states

the enabled condition of the transition, and the function specifies the valuation of the

variables on the outgoing arcs of the transition. In this case, with an undefined guard

representing the truth of its enabled condition, add is enabled whenever all its input

places have enough tokens. The function of ødd assigns variable uc to be the sum of

variables ua and ub declared on the incoming arcs of add. Further, input/output ports,

e.g. a and c, are associated with attributes "domain" and"rangd', respectively, to restrict

the data flowing through the ports within a valid range. Finally, an arc is associated with

an attribute"label" to name the token removed from its source place.

It should be noted that in Petri net attributed graphs, attribute values for place

initial tokens, transition guards and functions are in fact typed. As we have assumed

that handling these values is delegated to the platform, we treat them as uninterpreted

strings here for simplicity. Also, since in the attribute function of the example net other

vertices and edges are attributed in a similar way, we have omitted them for the sake of

brevity.

4.3.3 Semantic lnterpretation

As the semantic interpretation issues of general I/O Petri nets have been intensively

investigated by Janneck in his PhD thesis [110] in the context of simulation, we do not

duplicate his work here. Instead, to emphasize the analysis facilities introduced in our

approach, we restrict ourselves to a special class of I/O Petri nets. In particular, we

assume in the following that all places in an I/O Petri net are bounded to I, i.e. a place

holds at most one token. Thus the marking of a place can be simplified to either the value

of the token residing in the place or a special symbol undef denoting an empty place. The

semantic interpretation approach presented here, nevertheless, can be generalised to all

IiO Petri nets (cf. [110] for further details).

Consider a well-formed Petri net model. Let G : (V, E, src, dst, attr) be its attributed

graph. Then the interpreter of this model is specified in three parts: static function dec-

laration (Program 4.5), analysis variable specification (Program 4.6) and rule definition

(Program 4.7).
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Program 4.5: Petri net interpreters: static functions

r static set l: {u e V lattr(u,"typd'):"InputPort}'},
2 O: {u € V lattr(u,"typd'):"OutputPort'},
J P:{u e V lattr(t,,"typ"")-"Placd'},
4 I : {o € V I attr(o,"type") -"Transition"},
5 PT : {e e E I attr(src", "typd') - "Placd',attr(dst""'typd') :"lYansition"},

6 TP : {e € E I attr(src', "typd') : "Tlansitio.n", attr(dst", "type") - "Place"},

7 lP : {e € E I attr(src", "typ"") : "InputPort", attr(dst', "typ"") - "Placd'},

8 TO : {e e E I attr(src", "typd') : "Tlansitio.n", attr(dst', "type") : "OutputPort"} i

Program 4.5 declares eight static functions as shortcuts for the structural elements of

G to facilitate further definition. Among these, l, O, P and T are the sets of input ports,

output ports, places and transitions, respectively. Also, PT, TP, lP and TO represent arcs

from places to transitions, arcs from transitions to places, arcs from input ports to places,

and arcs from transitions to output ports, respectively.

After declaring the static functions, we specify in Program 4.6 the analysis variables

required of the interpreter to expose the state and step information of the Petri net. First

of all, as a state of a Petri net is a marking of the net, i.e. a tuple of markings of places in

the net, -state is declared as a shared unary function, mapping each place to the value

of the token residing in it. In order to be more intuitive, we shall use symbol M as

Program 4.6: Petri net interpreters: analysis variables

I shared function -state aritv 1 ¡ l* Also writtert q,s "M" *l
z shared attribute -eutType, -eutPara,
3 -mode i
¿ derived frrnction buildEnu arity 2

5 : {(t,attr(e,")abe|')),- M(src.) lt e T,e € PT,dst': ¿1 '

e derived set -nentsteps: {t e T | (fe € PT,dst' :t AM(src") : undef)
7 Aeval(attr(ú, "guard"),bui'IdÐna(t))\ i
s monitored attribute -step2talce i
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an alternative to -state later on. LTke -state, variables -eutTgpe, -eutParaand -mode

are also shared between the interpreter and an analysis tool. After that, -nertSteps ís

declared as a derived set consisting of enabled transitions under the current marking

M (or -state). A transition ú is called enabled if all its input places have one token

and its guard evaluates to true. Here, the absence of a token in an input place p of

ú is tested by "M(p) : undef', and the guard evaluation of ú relies on an external

function "eval". As noted previously, eval is assumed to be provided by the platform,

which evaluates an expression depending on given environmental variables. In this case,

the guard of ú actualises the expression and an ancillary function bui,ldÐnu(t) provides

necessary environmental variables. Here, buildÐnu(t) is an unary function derived from

M, mapping the label of every edge e ending at ú into the marking of the source place of

e. For instance, consider the net in Figure 4.2. When place pa holds a token with value

1 and pb holds 2, buildEnu(ú) witl be {"ua" ,-+ L,"ub" ,- 2}.Note that as derived functions,

buildÐnu and -nertsteps wíIlbe re-computed each tíme M (or -state) is updated. Finally,

-step2take is declared a monitored attribute since it can only be modified by analysis

tools.

In order for the interpreter to work properly, we need to initialize the above-mentioned

functions. This process is defined by the initialization rule in Program 4.7. This rule is

invoked and executed once when an interpreter is created. As shown in the program, the

current marking M is initialízed, depending on the values of attributes "initTokens" of

places. In the meantime , -rnode is set to -W AIT, which allows an analysis tool to either

provide an input or specify an enabled transition to fire.

After the initialization, the interpreter is ready to execute. Its dynamic behaviour

is then specified by an iteratively executing "step" rule shown in Program 4.7. In each

execution of this rule, two different modes -I N PUT and -F I RE are distinguished. As

noted earlier, -INPUT means that an input token is ready to be taken, while -FIRE
states that an enabled transition out of -:nertsteps is specified for the Petri net to fire.

In the former case, we know t]nat -eutPara refers to the input token (or message) coming

in via an input port of the net and that -eutType refers to this input port. As specified

in the program, the interpreter handles the input by basically assigning -eutPara to the

markings of all the places connected with port -eutType. In the latter case (i.e. when
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Program 4.7:Pefui net interpreters: rules

r initialize :

z doforallpePi
3 M(p) :: eval(attr(p,"initTokens"), Ø)

4 et:.d,

5 -:mod,e :: -W AIT
6

z ru,le step i
s if -mode: -INPUT t}nen

I
10

11

12

13

14

15

16

17

18

19

20

21

0.)

23

24

25

26

27

28

29

30

31

32

33
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do forall e € lP with attr(src","name") : -eutTape'2
M(dst") :: -eutPara

end,

-modn:: -WAIT
end,

if -mode: -FIRE tlnen
let t : -st ep2tak e, outV al s : eva I (attr (¿, " function"), buil dE nu (t)),

Ptn- {src. le e PT,dst": t},Pout: {dst" le e TP,srce: ¿}

do forall p € P¡n \ P,"¿ i
M(p) t: undef

end,
do forall e € TP w¡th src" : ¿ :

M (dst.) :: outV al s (attr(e, " label'))

end,

choose e € TO n4!!þsrc, - ú ¡

-eutType :: attr(dst", " name"),

-eut P ar a :: outV al s (attr(e, " )abe|'))

else

-eutType:: r,

-eutPara:: undef
end

end,
:n,ode:: -WAIT

end
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-FIRE is flagged), we know tlnat -step2take refers to the enabled transition to be fired.

Let ú be an alias to -step2take, t}:ren the interpreter flres transition f in three tasks in

parallel. Firstly, the markings of the input places of ú are cleared (lines 18-20). This,

however, excludes the input places that are also the output places of ú in order to avoid

update clashes with the second task (described below). Here, we let Pin and Pou¿ be

the sets of the input and output places of ú, respectively. Secondly, the markings of the

output places of ¿ are set (lines 2I-23). This involves the use of an auxiliary map outVals,

associating some outgoing arcs of ¿ with the values determined by the function expression

of ¿. For instance, consider the net in Figure 4.2. When add is firing with u¿ : 1 and

ub : 2, outVals will be {"uc" ,-- 3} since bui,ldÐnu(t) : {"ua" - 7,"ub" ,- 2}. Thirdly, a

Petri net component may send a message (or data) out via an output port, assuming one

is connected to ú3 (lines 24-26). In this case, the name of the connected output port will
become the event type -eutType, and the corresponding value ín outV als will become the

event data -eutPara. For instance, when add frres with uo, : 1 and ub : 2 in Figure 4.2,

-eutType will be "c" atLd -eutPara will be 3. However, if no output port is connected with
the firing transition ú (lines 27-29), then we let the event be internal by setting -eutType
to be a special symbol r, which is not the name of any port, and -eutPara to be undef.

We have now given the interpreter specification for a special class of I/O Petri nets.

One can see that the interpreter provides sufflcient information about the states and

steps of a Petri net, from which an analysis tool can read/modify its current marking,

read its currently enabled steps, specify an enabled step to flre, handle its output events,

and feed it with input events. As a result, the analysis tool is able to execute the net in a

system and explore the state space of the system.

4.4 UML Statecharts

In this section, we shall apply the semantic interpretation approach presented above to

a non-trivial language: UML statecharts [159].

The Unified Modelling Language (UML) [159] is a standardised notation for visualis-

ing, specifying and documenting object-oriented software systems. UML statecharts (or

3Note that using the Petri net well-formedness rules, we have ensured that at most one output port can
be connected to a transition.



CHAPTER 4. SEMANTIC INTERPRETATION APPROACH 94

state diagrams) constitute a principal diagram type in UML for describing the dynamic

behaviour of system components. Whereas the syntax and static semantics (or well-

formedness) of UML statecharts are relatively precisely defined in UML, their dynamic

semantics is only given informally in a natural language and lacks preciseness and com-

pleteness. This leaves room for ambiguities and causes problems for formally reasoning

about system behaviour and for the development of supporting tools.

In this thesis, we attempt to give them an unambiguous operational semantics, using

our semantic interpretation approach. To concentrate the essential ideas conveyed by

this chapter, we only consider a subset of this language. This subset, however, does cover

core features of UML statecharts such as sequential and concurrent composite states,

completion and interlevel transitions as well as variables. A more extensive study on

this language can be found in [119].

In the following, we first outline the notation of UML statecharts in Section 4.4.7,

illustrate their attributed graphs in Section 4.4.2, and then specify an interpreter for

them in Section 4.4.3.

4.4.1 Notation

UML statecharts are an (object-oriented) variant of classical Harel statecharts [86, 87].

The language itself extends traditional state transition diagrams with notions of hier-

archy and concurrency. Figure 4.3 shows an example UML statechart diagram, where

rectangles represent states, edges represent transitions, and the external events are

declared at the top-left corner.

In UML, a statechart diagram is used to model the dynamic behaviour of a class of

UML objects. Above all, it specifies states that an object can assume. A state depicts

a situation where the object satisfies some condition or waits for some event. States

are classified into sirnple states, sequential composite states and concunent composite

states. Rectangles A, RL and C,9 in Figure 4.3 are examples of these state classifications,

respectively. The hierarchy of a statechart results from the decomposition of a composite

state (called the container) at a higher level of abstraction into a set of states (called the

substates), e.g. from CS to Rl and R2, and from.Rl to,4. and B. The concurrency of a

statechart results from the concurrent threads ofcontrol on these substates, e.g. R7 and
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lnputEvent a, b;
OutputEvent c, d;

Figure 4.3: An example statechart diagram

R2. In this case, the composite state is called aconcurrent state and the substates are

regions. A non-concurrent composite state is also called a sequential state. Note that

regions must be sequential states.

Due to hierarchy and concurrency, an object can assume a set of states at the same

time. Such a set specifies a state configuration of the object. For instance, {top, C S, RI, A,

R2,Cj and {top,f.} are state configurations of the example statechart. Here, top repre-

sents the top state ofthe statechart. It is the container of all states at the top level and

thus exists in every state configuration. States in a state configuration form a tree with

the top state at the root and simple states at the leaves, related by the containment (or

composition) relation. A state in the current state configuration of the object is said to be

actiue.

Furthermore, a statechart also describes the event triggered flow of control of an

object due to transition firings which bridge state configurations. Transitions are directed

edges between states, e.g. tL,... ,t5 in Figure 4.3, representing complete responses of the

object to discrete events. Usually, a transition connects a source state and a target state,

and specifies an event that the object waits for (called t}lre trigger), an enabling condition

(called t}ne guard), and actions to execute (called t}r'e effect\. The last three constitute

the transition label, denoted in the form of "trigger[guard]/effect" in Figure 4.3, where

c F

D

t4: b[ frl

t5: /d
E

t2: a

tl: a/c

R1 R2

t3 b/c



CHAPTER 4. SEMANTIC INTERPRETATION APPROACH 96

unspecifled parts are simply omitted. For example, ú1 has trigger ø, no guard, and the

effect of generating an event c, and t4 lr,as trigger b, guard " A I B" meaning that A or B

is active, and the effect of event d. A transition is called ena,bled and may be fired when

the object is in the source state, the trigger event occurs, and the guard is satisfied. Note

that an unspecifled guard is always considered to be satisfled.

A typical firing of a transition consists of three sequential steps: exiting the source

state, executing the transition effect and then entering the target state. Exiting/entering

a state will deactivate/activate the state. Additionally, exiting a composite state also

involves flrst exiting all its active substates. Likewise, entering a composite state also

involves the subsequent entering of its substate(s). For example in Figure 4.3, when ú4

fires while A and C are active, the statechart will first exit A, C, R7, R2 and C,S, and

then enter F. When exiting, a certain order between these states has to be followed, i.e. a

substate is always exited frrst, e.g. ,4 prior to R1, C pñor to R2, and both ,R1 and .R2 prior

to CS.

It should be noted that interleuel transitions, e.g. t5, where the source and target

states are at different levels of the state hierarchy, are an exception to this firing pro-

cedure. Instead, t};.e møin source is exited in the first step and the main target is entered

in the last. For instance, the main source and target states of ¿5 in Figure 4.3 are C^9 and

F, respectively. 'When 
ú5 fires, C^9 will be exited after all active states covered by it. We

defer the definitions of the main source and target until Section 4.4.3.4.

In UML, there is a special kind of transition called completion transitions, ví2. tran-

sitions with undeflned triggers, e.9,. ú5. Such a transition can be enabled by a completion

euent generated for the source state, representing that the source has completed its

internal activities. For instance, t5 is enabled for firing when E is active. As we do

not consider activities within states, we simply regard a state to be completed after it
is entered. Also, since we do not consider final states, we only deal with completion

transitions emanating from simple states.

In addition, the language of UML statecharts is enriched by the introduction of initial
pseudostates. An initial pseudostate, denoted by "." in Figure 4.3, is used to identify

tlne default substate of a sequential composite state, viz. the substate to enter when the
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composite state is initialized. For example, C,9 is marked as the default substate of top

and will be entered when the statechart is initialized.

The semantics of UML statecharts is based on the run-to-completion (RTC) assump-

tion [159]. That is, incoming events are processed one at a time and are dispatched for

processing only if the statechart is in a stable state conflguration, viz. the processing

of the previous event is fully completed t1591. In particular, the events generated in an

event processing step are not available in the same step.

When processed, an event may enable multiple transitions. For example, event ø

enables ú1 and ú2 when A and C are active, and event b enables ú3 and ú4 when B and

D are active. These enabled transitions can be fired simultaneously if the firings do not

require a common state to be exited, e.g. tL andt2. Otherwise, they are called in conflict,

e.g. t3 and t4. In this thesis, for simplicity, we assume that such conflicts can always be

resolved using the lower-first priority [159] which, roughly speaking, gives priority to the

transition whose source state is at a lower level of the state hierarchy. For instance, t3

will be fired rather than ¿4 if both are enabled. In some cases, an event being processed

does not enable any transition. Then the event will be discarded in this context since we

do not consider deferrable events.

Let us look at the statechart in Figure 4.3. Initially it is in {top,C^9, Rl,R2,A,C},

as these states are either identified by initial states (e.9. C S, A and C) or are regions

(e.g. RI and R2). If sequentially processing events ø and b, the statechart will move to

{. . . ,8, D} by firing both ú1 and t2, and then {. . . , B,E} bV flring ú3. After that, as .Ð is

completed, ú5 will fire and lead the statechart to enter .F'. The statechart will then stay in

F forever since -F has no outgoing transitions and hence all events are ignored. On the

other hand, if processing b at the initial state configuration, the statechart will directly

go to and stay in {top, -F }.
Next, Iet us use another example in Figure 4.4 to illustrate the use of variables and

internal events (or messages). This flgure could be a simple statechart for a refrigerator.

The refrigerator consists of a controller, a cooler and a temperature sensor and uses

a variable "terny)" and internal events "sto,rt" aîd "stop" to coordinate between them.

Initially, it is at {lop, standbg} with temperature temp: 15. When switched on, it moves

to "working", where "watctr", "idle" and "high" are activated. Then ú1 becomes enabled
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lnputEvent ON, OFF, FIX;
OutputEvent ERROR;
VAR temp = 15;

work

t9: ON

Figure 4.4: A,refrigerator statechart

and, when firing, sends a "start" command (or event) which triggers ú3 at the next step.

After ú3 fires, the refrigerator starts cooling. When the temperature drops below the

specified low threshold 5 as a result of repeatedly firing ú5, the sensor will change to

the "norm" state by firing ú7. This in turn enables ú2, whose firing will stop the cooler.

Then the refrigerator just tries to maintain the temperature. When the temperature

slowly rises above the specified high threshold 10 as a result of repeatedly firing ú6, the

statechart will go back to "watch", "idle" and "high" by firing ú8. Then a second cycle

starts. Here, whenever an event "OFF" is received while the refrigerator is in "working",

t10 will fire and lead to the "standby" state. Similarly, f11 will fire when receiving "ON"

and lead to the "ertor" state. Analysing this model, it is not hard to see that the trap

transition tI2 for capturing control errors will never be enabled.

Note that this example startchart involves both external (e.9. "ON" and "OFF") and

internal events (e.g. "start" and "stop"). External events are message exchanges with

other components, while internal events are produced and consumed by this component.

In this context, events are by default internal unless they are declared by "InputEvent"

or "OutputEvent".

tl0: OFF

t|3: FIX

11

cool

tempSensor

t7: [temp <=
t3: start

t8: [temp > 10]
t4: stop

controller cooler

12

15: [run]
/temp -= 3

t6: [idle]
/temp ++

tl2:
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lnputEvent c(m), d(n);
outputEvent a(n), b(n), e(m);
VAR v=0;

99

t1
1

t4 V:= 0

SS

t5:

Figure 4.5: A doubler statechart

In order to model real object-oriented systems where inter-object communications of-

ten involve parameterized messages, UML statecharts also support parameterized events.

Figure 4.5 shows such an example. It depicts a model for the doubler component in

Figure 3.5.

At the top-left corner of the figure parameterized input/output events are declared.

As described previously, this component can initially take an event d(n) with d the type

and n the parameter and set variable u to be n. After that, it will sequentially generate

events ø and b with u as parameter. If receiving event c(m),ít will generate event e with

rn as parameter and reset u to 0. Note that at states Sl, 52 and ^93, d is an unexpected

event and its occurrence will cause the "ERR" state to be entered.

Even from these simple examples, one can see that UML statecharts are fairly com-

plicated, involving many features that break the local thread of control. Hence formally

defining the language is a nontrivial task. In the following, rñ¡e concentrate on the above-

mentioned features of UML statecharts, although we believe the proposed approach can

be generalised to cover the complete language. A more extensive coverage has been

reported in [119]. Further, as this research is based the notion of untimed asynchronous

communicating components, we only consider signal events in UML, while excluding

call events and time events. For descriptive convenience, we shall call an object, whose

behaviour is specified by a statechart, an instance ofthe statechart.

SO

tl: d(n) / v:= n

ERB
S1 S2 S3

2
t3:t2



4.4.2 Attributed Graphs

As is the case for Petri nets, it is important in our approach to understand the attributed

graphs of UML statecharts in order to specify an interpreter for them. In this section, we

illustrate with the attribute graph of the doubler statechart in Figure 4.5.

Program 4.8: Attributed graph of Figure 4.5

-r V : {^90, 51, 52,53, SS, ERR,II,12},
z E : {tl, t2,t3,t4, t5, aI, a2},

3 src: {ú1 r- ^90, t2++ $!,[Jr-+ 52,t4++ $J,ú5 r-+,9^9, al++ Il,a2v--+ 12],

4 dst : {¿1 *',S,5, t2 ++ $),t3 ¡+ 53,ú4 r-+ $Q, t5 ¡--+ ERR¡a1 r-+,S0, a2 =+ $1},

5 attr : {(^90, "type") r- "Simple", (S0, "name") -r "Sd',(S0,"container") r-t undef,
6 (sS,"typd'),-- "Compositd',(SS,"namd') ¡---¡ "s,9', (SS,"containef') r-+undef,

7 (S 5," isConcurrent") r-+ false,

8 (sr,"typd') r--+ "simple", (s7,"namd') t- "S1", (sr,"container") rt s,9'

g (Il,"typd') r--+ "Initia|', (Il,"container") r-+ undef,
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l* 52, 53, ERR, 12 omitted. */

(t|, " type") =+ " Tr ansition",

(tl,"trigger") *"d", (tL,"trgpara") *"n", (t7r"guard") r- undef,
(tl,"effect") =+ "y ;: n", (t|,"sndevt') r--+ undef, (t7,"sndpara") r--+ undef,

(t4, " typd' ) ¿+ " TIansition",

(t4,"trigger") * "c", (t4,"trgpard') * "^", (t4,"guard') r- undef,
(t4,"effect") -+ "v ;: 0', (t4,"sndevt") ,- "e", (t4,"sndpard') - "m",

/* t2, t3, t5, a7, a2 omitted. xl

(x, " InputÐventl') r- { C', " d"},

(*, " OutputÐvent") ;-+ {" a}', " b", " e"},

(x,"VAR") -+ {"y'' r-+ 0},

Ì

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
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As shown in Program 4.8, V and E contain all vertices and edges of the doubler

statechart, respectively, while src and dst map an edge to its source and target vertices,

respectively. The main element in attributed graphs that makes statecharts differ from

Petri nets is the attribute function attr. Given a vertex or edge r, allr(r ,"typd') gives the

type of r. Given a state s, attr(s, "namd') and attr(s, "container") return its name and the

state directly containing s. For a composite state, an additional attribute"isConcurrenú" is

used to distinguish between sequential and concurrent states. For instance, since ,S,S is a

sequential state, we have attr(,S,S, "isConcurrent") - false. Further, given a transition,

attributes "trigger" and "trgpard' tecord the type and parameter name of the trigger

event, respectively. Attribute "guard" refers to the guard of the transition. The effect

of the transition is denoted by three attributes wit}:' "effecú" denoting statements for

modifying declared variables, and "sndevú" and "sndpara|' describing the parameterized

event to be generated. The type of the generated event is represented by "sndevt", while

the parameter is the value of the expression "sndpara|'. Finally, the graph attributes are

given in lines 23-25. Attributes "InputÐvenú" and "OutputÐvent" ate mapped to sets of

external input and output events of the statechart, respectively. Also, attribute "VAH' is

linked to a function mapping the name of each variable into its initial value.

Note that in UML statechart attributed graphs, attribute values for transition guards,

effects and event parameters are in fact typed. As is the case for Petri nets, we treat them

as uninterpreted strings here and delegate their interpretation to our implementation

platform using functions eval and exec.

4.4.3 Semantic lnterpretation

In the UML standard [159], the semantics of a statechart diagram is described in terms

of the operations of a hypothetical machine. The machine is composed of three key

components:

o aneuent queue for holding incoming events, as the environment may provide events

faster than a statechart can consume them;

c aneuent dispatching processor that selects and dequeues events for processing, one

at a time. It implements the run-to-completion assurnption;
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. aîeuent processor that processes each dispatched event. The procedure ofdispatch-

ing, dequeuing and processing an event is often called a run-to-completion step.

The nature of the first two components is left undefined in the standard. In this thesis,

we implement the event queue as a FIFO queue and let events dispatched according to

the order they arrive. This, however, does not exclude other alternatives, e.g. a priority

queue or a multiset, which can be accommodated with only minor changes.

Consider a well-formed UML statechart diagram. Let G : (V, E, src, dst, attr) be its

attributed graph. Then, as usual, we specify the interpreter of a UML statechart in three

parts: static function declaration, analysis variable speciflcation and rule definition. The

rule definition further includes the initialization rule and a "step" rule for event receiving,

dequeuing and processing.

4.4.3.1 Static Function Declaration

We first use Program 4.9 to declare a number of static functions as shortcuts for the

structural elements of G. This consists of two parts: vertex and edge classification and

state hierarchy decoding.

First of all, vertices and edges are classifled in lines 1-10. The input and output ports

of the diagram are first obtained from the attributes of G. From the vertices, three kinds

ofstates and one kind ofpseudostates are identified according to vertex attribute "typd'.

These include simple states S", concurrent composite states S"", sequential composite

states S"", and initial pseudostate P¿. S"" and S"" are all typed "compositd' but distin-

guished depending on attribute "isConcurrent". Next, composite states are unified into a

set S" and states into a set S. It is worth noting that since the top state top is implicit in

every statechart, it is added to S"" and thus S" and S. Further, the set of transitions T

includes all the edges except those originating from initial pseudostates.

Next in lines 12-17, the state hierarchy, graphically represented by the diagram,

is decoded. This includes the definitions of five functions or relations over vertices:

cntr, subs, default, cover and cover'. "cntr" is a containment function mapping a vertex

into the composite state directly enclosing it. A vertex u with "attr(s, "containef') :
undef is at the top level and thus mapped to top. Also, for a given composite state

c, "subs(c)" refers to the set of (direct) substates of c. We let subs(s) return an empty
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Program 4.9: UML statechart interpreters: static functions

r static set l: attr(*,"InputEvent"),

2 O: attr(*, "OutputÙvent"),

3 S":{u € Vlattr(o,"typd'):"Simpld'},
4 5".: {u e V I attr(u,"typ"") :"Compositd' Aattr(a,"isConcurrent")),

5 S"": {u € V l attr(r.r,"typd') :"Composite" A-attr('u,"isConcuyent"))

6 u {top},
7 S" : S." U S".,

s S:S"US",
9 P¡:{u € Vlattr(u,"typ""):"lnitial'),

10 T:{" € E I src" € SAdst, e S}i
11

12 staticf¡rnctioncntr arity 7: {u + clu € SU P¿,c € S",attr(u,"containef'): c}

13 U {u rt top I r., e S U P¿, attr(T,r, "container"): undef} ¡

14 stãticrelationsubsarity2: {(cntr(s),r) I r e S,s Itop};
rs static function default arity I : {cntr(src") r' dst" I e e E,src, € P¿} ;
te static relation cover arity 2: {(c,s) | c, s e S, c € cntr+(s)} ;
17 statie relation cover/ arity 2 : cover U {(s, s) | s e S} ;

set for a simple state s. For example in Figure 4.3, we have subs(C^9) : {Rl,R2},
subs(R1) : {A,B} and subs(,4) : fl. Further, "default(c)" indicates the default state of

a given state c € S"". The function first finds the initial pseudostate directly contained

by c and then returns the target state of the edge emanating from the pseudostate. For

instance in Figure 4.3, we have default(top) : CS and default(,Bl) : ,4. Note that the

well-formed rules of UML statecharts ensure that the container of an initial pseudostate

is a sequential composite state and also that the default state is unique. Additionally,

given two states s and c, the boolean function "cover" determines whether c transitiuely

contains s, in other words, whether there exists a sequence of composite states u1, . . . ,'u¡x €

S"fork ( lS"l suchthatcntr(s):,r, cntr(u1) : L)2,..., cntr(u¿): ". Here, cntr+

denotes the transitive closure of cntr. Clearly, top covers all states in the diagram. For

example in Figure 4.3, (CS,Rl),(C,S,A),(top,A) e cover. We further let cover'include

an additional identity relation over states. One may think that cover/ corresponds to the
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reflexive and transitive closure cntr* of cntr in the same way as cover corresponds to cntr*.

For descriptive convenience, in the following, we shall use cover(c, s) as a shorthand for

"(", r) € cover" and cover(c) for "{s I (", ") € cover}", viz. the set ofstates covered by c e S.

Similar abbreviations also apply to cover/.

4.4.3.2 Analysis Variable Specification

To understand the behaviour of a UML statechart, it is essential to understand its cur-

rent "system state". This state is a tuple consisting of not only the current state configu-

ration and the current content ofthe event queue, but also the valuation ofthe declared

variables in the statechart. However, for descriptive convenience, we declare it as three

functions in Program 4.10, with A denoting the current state configuration, Q.r¡ t}ne

event queue and uars a function from the declared variable names to their values. Also,

we assume simultaneous reading and writing on these three functions by an analysis

tool. That is, reading the current "system state" will read them simultaneously. Likewise,

resetting the "system state" for backtracking will reset them simultaneously.

Program 4.10: UML statechart interpreters: analysis variables

r shared set A;
z shared queue Qe?¿ i
s shared function trørs arity 1 ¡

4 shared attribute -eutType, -eutP ara,

5 -mode i
o derivedftrnction acti,uearity 1 : {attr(s, "namd') r--+ (s € A) | s e S} ;
z derived set enabledCmpLTrans: {t € T I attr(ú, "trigger"): undef
s A (src¿ € A n S") A eval(attr(ú ,"guard'), actiue U r.,ørs)] ;
s derived set -nentsteps : {\/ | enabLedCmplTrans * Øv Q."t I Ø} i

to monitored function -step2take arity 1 ¡

In addition to these "state" functions, other analysis variables are also declared in

Program 4.10. Among them, the definition of -nertsteps is somewhat complex as it relies

on two auxiliary functions act'iue and enabledCmplTrans. "a,ctiue" is a unary function
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derived from A and mapping each state name to a boolean value indicating if this state

is active. "enabled,CmplTrans" is a derived set from A and uars, consisting of currently

enabled completion transitions. A completion transition is enabled if its source is an

active simple state and its guard evaluates to truea. The guard evaluation is done by

parameterizing eval witln actiue antd uars. According to [159], the existence of enabled

completion transitions represents pending completion events. We then define -:nertSteps

to be a singleton set containing a special symbol /, if there exists an enabled completion

transition or a pending event íî Q",t. Otherwise, we let -nertSteps be an empty set.

4.4.3.3 lnitialization

To execute a statechart instance, we need to initialize its state configuration and analysis

variables. This process is elaborated by the initialization rule in Program 4.11. This rule

is executed once a statechart instance is created.

Program 4.11: UML statechart interpreters: initialization

r initialize :

2 set t: {top} i
s loop
4 ùo forall s € gi
s L,::A*{s},p::p-{s},
o if s € S"" then rp :: p l subs(s) end,

z if s € S"" then cp :: p i {default(s)} end
a end
g end,

10 'ua,rs i: attr(*, "VAR"),

11 -mode:: -WAIT

Firstly, a local auxiliary set"g" is declared for recording the states to be entered next.

Initially, it contains only the top state. Then the interpreter runs in a loop until a fixpoint
aNote we only consider completion transitions emanating from simple states in this thesis. Strategies to

handle complicated cases may be found in [119].
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is reached, Le. when no further updates can be made. More specifically in this case, the

loop ends when cp is empty. In each run of the loop, all states currently in tp are handled

in parallel. Each state is removed from p and added to A (line 5), while one or all of

its direct substates are added to rp (lines 6-7). For a sequential composite state, only

its unique default state is added, while for a concurrent composite state, all its direct

substates are added. In addition, in parallel to the loop executíon, uars is assigned to

contain the initial values of the declared variables arrd -mode is updated to the waiting

mode (lines 10-11).

4.4.3.4 Rule "step"

After the initialization, a statechart instance is ready to execute, namely, receive, dis-

patch and process events. These tasks are specified by an iteratively executed rule "step".

Preliminary definitions Before elaborating the "step" rule, we need to define some

additional static functions in Program 4.12. Firstly, given a transition ú € T, "lca(ú)" maps

it to the least common ancestor (LCA) state of ú, the lowest composite state that contains

all the source and target states of ¿. The function is defined using an auxiliary macro "ca",

which determines the set of common ancestors (by containment) for a given set of states.

The states returned by ca({src¿, dst¿}) form a chain in the state hierarchy. At the bottom

of the chain is lca(ú). In other words, lca(t) is the state covered by any other state in the

chain. Tlne main source "ms(ú)" of a transition ú is either lca(ú) if lca(t) is a concurrent

state, or a direct substate of lca(t) if lca(ú) is a sequential state. The substate is either

the source state of t or a composite state that covers the source state. T}:,.e rnain target

"mt(ú)" of ¿ has the same definition except that it ought to cover the target state of ú in

the last case. It is worth noting that the main source (or target) is the source (or target)

state of ú, if the state is a substate of lca(ú). In addition, the states that, if active, must be

exited when ú fires are defined by "exited(ú)". This set includes the main source of ¿ and

all the states covered by it. As an example, consider Figure 4.3. We have lca(ú3) : R2,

ms(tS) :D,mt(t3):E andexited(¿3) :{D}.Also, lca(ú5) :top,ms(t5) -CS,mt(ú5):tr'
and exited(tí) : {C S, R7, R2, A, B, C, D, E}.
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Program 4.I2: UML statechart interpreters: preliminary definitions

I static function ca arity t: {X * ln.r cntr+(g) I X Ç S} ;
z static function lca arity 1

s : {t+ I I t e T,l e ca({src¿,dst¿}),Vl'e ca({src¿,dst¿}),cover'(l',1)};

¿ staticfunctionmsarity t : {t r-+ lca(ú) li e T,lca(t) e S""}

5 U {t+m lte T,nz€subs(lca(ú)),cover'(m,src¿)Alca(t) e S""};
6 static function mt arity 1 : {ú r* lca(ú) | t e T,lca(t) e S""}

z U {tr-+m lt e T,rn e subs(lca(l)),cover'(rn,dst¿)Alca(t) e S""}¡
8 staticrelationexited arity 2: {(t,s) lú e T,s € S,cover'(ms(t),s)};

9 static relation conflict arity 2 : {(t,tt) | t,t' e T ,t + tl
10 A attr(ú, "trigger") : attr(tt ,"trigger") A exited(ú) n exited(¿/) t Ø\ i
tl static relation priority arity 2: {(t,ú/) e conflict I cover(src¿,src¿,)} ¡

Two transitions ú and tt are in conflict if they can be enabled by the same event and

also if firing them results in some common states to be exited t1591. Otherwise, they are

called consistent. "conflict" consists of pairs of transitions that are in conflict with each

other. Clearly, conflict is irreflexive and symmetric. For instance in Figure 4.3, we have

(t3, t4), (t4, t3) e conf lict.

Relation "priority" specifies the firing priority between two conflicting transitions, where

priority is given to the inner-most one [159]. More specifically, a transition originating

from a state s e S has a higher priority than another transition originating from a state

s/ € S" such that cover(s', s). Given two transitions ú, tt, (t,tt) e priority indicates that,

if both enabled, l/ has a higher priority to be executed than t. For example, we have

(t4,t3) e priority in Figure 4.3.

In the following, we shall use conflict(ú) and priority(t) for a given transition ú e T to

denote the set of transitions in conflict with ú and the set of transitions with priority over

ú, respectively. We let conflict(t): Ø (or priority(t): Ø) for ú e T such that /(t,ú/) e conflict

(or /(t,ú/) e priority).
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Specifying input and run-to-completion steps With the above definitions, rüe are

now able to specify the event receiving, dispatching and processing procedure using

Program 4.13.

Program 4.13: UML statechart interpreters: rule "step"

1 ru,le step i
2 if -mode: -INPUT t}nen

s import e: function {"typd'++ -eutType,"datd'e -eutPara} i
¿ Q.rt :: Q"ut I {e}

end,

-mod,e:: -WAIT
end,

iÎ -mode: -FIRE A -step2talc¿: t/ t}nen

if enabledC mplTrans I Ø t}nen

f i.ring (enabl edC mplT r arzs, undef)
else

tc¡!ce: head(Q",¿),

candid: {ú € T I attr(ú, "trigger") : ce("type") A src¿ € A},
en'u : {(t, attr(¿, "trgpara}')) t+ ce("data") | t e candid},

enabl ed : {t e. cand'i d I eva I (attr (t, " guar d"), act'iu e \) u ar s t-l enu (t))}

5
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I
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It end

Q eut i: tail(Q 
"r¿) ,

iÎ enabled I Ø t]nen f iri,ng(enabled,ce) end
end

end,

-rnode :: -W AIT

'When an input is available for receptíon, -mode should have been set to JNPUT and

-eutType and -eutPara to the type and parameter of the input event, respectively. In

receiving this input, the interpreter constructs a ne\M function e, mapping "typd' and

"datal' to the event type and parameter, respectively, and adds it to the event queue
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(lines 3-5). After that, the interpreter transfers the control back to the analysis tool

by setting -mode to -W AIT.
On the other hand, when -:mode is set to -FIRE and, -step2takeís set to 1/by an

analysis tool, it is the time for the interpreter to execute a run-to-completion step (line 8-
20). Here, / is a special symbol that we have previously used to represent a pending

event or completion event in defining -nertsteps in Program 4.10. At this time, because

completion events have priority over normal events to be dispatched [159], this rule first

checks for pending completion events. If such events exist, it calls a macro "firing" param-

eterized by the set of enabled completion transitions and an undefined event representing

a completion event. (This macro will be described later.) If no pending completion events

exist, this rule dispatches the flrst event in the queue Q"u (denoted by "head (Q",¿)") as the

current event ce, antd computes the set of enabled transitions by ce. Here, two auxiliary

functions are used to assist in the computation. The flrst is a set of possibly enabled

transitions candi,d,, in which every transition should satisfy two conditions: the trigger

matches the event type and the source state is active. The second is a function enu

mapping each candidate transition and the name of the virtual parameter defined in the

trigger into the actual parameter provided by ce. For example in Figure 4.5, suppose

ce - {"typd' - "d","datd' ,- 1}, t}len candid and enu will be {11} and {(tf,"n") r- 1},

respectively. Next in line 15, the enabled transitions enabled are deflned as transitions

in candi,d with satisfied guards. Here, the guard evaluation is conducted by providing

eval with the environmental variables deflned by unary functions actiue, uars and enu(t).

After that, ce is removed from the queue Q¿1¡ aîd a macro "firing" parameterized by

enabled and ce is used to fire the enabled transitions, if any.

The main job of "frrirrg" is to compute and fire a maximal subset of the enabled

transitions which are not in conflict with each other. This subset is called a maximøI

consistent seú, namely, the following conditions hold:

o All transitions in the set are enabled and consistent with each other;

o No transition that is enabled and consistent with all transitions in the set is ex-

cluded;

o No enabled transition with a higher priority over a transition in the set is excluded.
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Program 4.14: UML statechart interpreters: macro "firing"

t f i,ri.ng(enabled,ce):bt f i,rable: {t €. enabled I priority(t) lenabled: Ø} I
2 do forall t e f i.rable i
r eriú(ms(ú)) ¡

4 enecute(t,ce) i
5 enúer(mt(ú), dst¿)

6 end
r end

As we have assumed that all conflicts can be solved using the lower-first priority, the com-

putation of this subset is simplified. It is safe to choose, from the enabled, transitions over

which no other enabled have priority. This subset is defined by " f i,rable" in Program 4.I4
(line 1), where, as stated previously, priority(ú) is a set containing all transitions with
priority over a transition ú.

With the maximal consistent set computed, we can execute the transitions in the set

in parallel due to their mutual consistency. The execution of a single transition consists

of a sequence of steps (lines 3-5): exiting the main source, executing the transition effect,

and entering the main target.

Exiting the main source also involves exiting all the active substates covered by

the main source t1591. The exiting tasks must be conducted in an inside-out order, i.e. the

deeper states in the state hierarchy are exited earlier. Program 4.15 shows the exiting

procedure for a given main source ?r¿s.

First of all, a local set variable p is declared for recording states to be exited next

and initially includes the active leaf states covered by the main source. Next, a fixpoint

loop is entered. At each pass of the loop, all states ín g are exited independently. The

exiting of a state will result in its removal from A. Also, at each pass p is refreshed

with the containers of the exited states (lines 5-6), provided that the states are not the

main source. Finally, the loop terminates after the main source has been exited. Special

attention should be given to concurrent composite states in that a concurrent state should

not be exited before any of its regions. The "with" condition in line 4 is designed to
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Program 4.15: UML statechart interpreters: macro "exit"

t eri,t(ms) = besin
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set g - A n S" n cover'(rns) i
loop

do forall s € çwith subs(s) n A : Ø i
A::A-{"}, gi:g-{r},
if s I rnsthençi:p+{cntr(s)}end

end
end

end

constrain the exiting order between a concurrent state and its regions, i.e. a state can be

exited only if none of its substates is active.

Executing the transition effect involves executing the effect expression as well

as event sending. This process is shown in Program 4.16.

To start with, we use an auxiliary environment function enu' to link the actual param-

eter of the current event ce to t}rre virtual parameter's name defined by ú. Also, welet eut

represent the output event type specified by ú and parabe the value defined by attribute

"sndparal' of ¿. The value is computed using eval and the environmental variables defined

by acti,ue, uars antd enu'.

Then the transition execution consists of two parallel tasks. On the one hand, the

effect expression of ¿ is executed by providing exec with the same environmental variables

as above. This may involve updates to the variables irtuars. On the other hand, -eutType
alnd -eutPara need to be modified so as to notify the analysis tool about the event nature

of this transition firing. Firstly, if an output event is specified ín t (viz. euú e O), then

-eutType will record this specified type and -eutPara willbe para. Otherwise, -eutType
will be r and -eutPara will be undefined, indicating this firing is an event internal to the

component. As we allow self-addressed internal messages for UML statecharts, eut may

be defined. In this case, an internal event is generated and added to the queue Q",t. As

usual, the event is an imported function taking eut andpara as values.
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Program 4.16: UML statechart interpreters: macro "execute"

1 erecute(t,ce):
z let enu' : {attr(t, "trgpard') r--+ ce("data}') l r" I undef},
3 eut: attr(ú, "sndevt"),

4 para. : eval(attr(t,"sndpard'),actiuel) uars U enut)

52
6 exec(attr(ú, "effect"),actiuel) uars\) enu'),

z if e?,ú € O then
8 -eutType i: eut, -eutPara 1: para

g else

-eutTgpe :: r, -eutParø :: undef,
if eut I undef then

import e : frrnction {"typ"" ¡--+ eutt"data" ,'- para} i
Qeú i: Q."t * {e}

end
end

end
end

tl2
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Entering the main target results in states, including the main target and some

states covered by it, to be entered in an outside-in order. The entering procedure is

similar to the entering of the top state in the initialization rule. The main difference is

that this procedure is arranged so that the target state of the executed transition will
eventually be entered. Detail about this is given in Program 4.17.

Given a main target mt and a target state ús, the entering starts wit}:' mt. As usual, p

is an auxiliary set for pending states to be entered next. It initially contains mt.In each

pass of the fix-point loop given next, states in g are entered in parallel. From lines 8-12,

one can see that this differs from the initialization rule in selecting which substate to be

entered for a sequential composite state. While the initialization rule selects the default

substate, this entering procedure selects the direct substate that either is or covers ús.

The default substate is chosen only when no such candidate exists.
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Program 4.17: UML statechart interpreters: macro "enter"
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1 enter(mt,ús) : beein
2

4

5

6

7

I
I

10

11

12

13

14

15

t6 end

set g :: {*t} i
loop

doforall s e çi
A::A+{s}, gi:g-{r},
if s € S." then I i: g*subs(s) end,

if s € S""then
choose q e subs(s) with cover'(q,ts) i

9:: p -t {ø}
else

pi:p+{default(s)}
end

end
end

end

4.5 Summary and Related work

In this chapter, we have presented a semantic interpretation approach to heterogeneous

systems. This approach specifies a semantic interpreter for each modelling language.

The main functions of such an interpreter specification include

o providing the structural characterisation of the current state and transition of a

component,

o specifying the computation of the possible transitions (or steps) that a component

can make at its current state,

o defining both the process of handling an input event and the process of firing a
specified enabled step.

The interpreter for a given language, when parameterized by a component model written

in the language, will render sufficient semantic information about the component to
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support its exhaustive analysis. In other words, given a heterogeneous system, an anal-

ysis tool is able to construct the state space of the system, by collaborating with all the

component interpreters instantiated for the system. This collaboration will be clarified in

the next chapter. As a consequence, on the basis of the semantic framework of discrete-

event components developed in Chapter 3, not only can an unambiguous semantics of

heterogeneous systems be obtained, but also formal verification is made possible. In

this chapter, we have illustrated this semantic interpretation approach with two visual

languages: Petri nets and UML statecharts.

As noted in Chapter 2, there are a number of semantics interpretation approaches

in the literature, such as [110, 166, L67, 59,189, 156]. Among them, the work [110] is

closest to ours. As stated earlier, our work builds on it and extends it to support formal

verification.

In [166, 1671, Pezzé and Young focussed on a class of state-transition models and

presented an interpretation approach to heterogeneous systems, which facilitates con-

structing multi-formalism state space analysis tools for these systems. This approach

employs a simple common structure (similar to labelled Petri nets) to represent syntactic

and static semantic information of heterogeneous models and uses rules to specify their

dynamic semantics in terms of transition enabledness (enabling rules), (inter)dependence

(matching rules) and execution (firing rules). Our approach is conceptually similar to this

approach. However, our approach differs from this approach in that our approach uses

ASMs as the interpreter specification language and is able to deal with languages with

complex semantics, as demonstrated by UML statecharts.

In [59, 189], Dillon and Stirewalt proposed an approach to the automatic generation of

lightweight-analysis engines, called step analysers. These generated analysers are able

to operate directly on the internal representations of heterogeneous components, and

compute all possible next steps for them, using language-specific axioms and inference

rules. The set of axioms and inference rules associated with a modelling language con-

stitute tlne structural operational semantics 1169l of the language. As a result, analysis

tools can utilise these engines to create labelled transitions systems for heterogeneous

components and consequently support the formal verification of heterogeneous systems.

Step analysers in their approach play a similar role to language interpreters in our
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approach. However, our approach differs from theirs in the way that the semantics of

modelling languages are specified.

In [156], Niu et ø1. introduced an operational semantics template for state-transition

specification languages, characterising their common behaviour. Also, they specified 13

kinds of parameter functions for distinct behaviours of languages and allow this template

to be parameterized by them so as to specify the step semantics of non-concurrent state

machines described in the languages. Further, based on this semantic template, the au-

thors have defined the semantics of 7 composition operators. As a result, an operational

semantics of heterogeneous systems is obtained.



5
lmplementing Analysis Tools

Based on the semantic interpretation approach presented in Chapter 4, we describe our

implementation of analysis tools for component-based heterogeneous systems in this

chapter. This implementation is built on the Moses tool suite [65]. We illustrate with

two analysis tools, including a simple state space analysis tool and a tool implementing

the compositional verification approach proposed in Chapter 3.

In the following, we first give an overview of the Moses tool suite in Section 5.1. We

then describe the implementation of a simple and monolithic approach to the verification

of heterogeneous systems in Section 5.2. Based on that, we elaborate the implementation

issues of our compositional verification approach in Section 5.3. These include both the

incorporation of the interface automata formalism in Moses and the tool development

for checking the conformance of heterogeneous components, the consistency of interface

automata networks, the conformance and safety properties of heterogeneous systems.

5.1 Overview of the Moses Tool Suite

The Moses tool suite, or "Moses" for short, is a set of Java-based software tools developed

in the Moses project [2] for supporting the modelling and simulation of heterogeneous

systems. It provides the underlying implementation framework for our work. More

specifically, this tool suite:

116
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o supports the syntactic and semantic deflnition of graph-like visual notations. This

includes the descriptions of their concrete syntax, well-formedness and formal se-

mantics;

o provides an editing environment customizable by syntactic definitions and conse-

quently supporting the modelling of component-based heterogeneous systems.

o provides a simulation platform customizable by semantic definitions and conse-

quently supporting stepwise execution, animation and state inspection of hetero-

geneous systems.

The facilities for defining visual notations are typically used by the meta-user to

incorporate new visual languages into Moses, while the editor and the simulator are often

used to help the user to build system designs using available languages and to validate

the resultant designs. The underlying structure of the Moses tool suite is shown as a flow

diagram in Figure 5.1, where ovals represent the key components of Moses, rectangles

with folded left-bottom corner represent user-supplied documents, quadrangles represent

intermediate products, and edges represent the information flow.

Basically, the meta-user has to define the syntax and semantics of a visual notation

before any user can actually use it for modelling. The semantics of a notation is deflned in

User Meta-User

Moses
Editor

Moses ',
Analvser

I

Syntax
Definition

Semantics
Definition

Visual
Diagrams

Moses
Simulator

Attributed
Graphs

Component
Constructor

Figure 5.1: Structure of the Moses tool suite
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Moses using Object Mapping Automata, as shown previously, while the syntax is defined

using a built-in language in Moses, which we shall introduce in Section 5.1.1.

Using a defined notation, the user can build a model (or diagram) of this notation in

the Moses editor. This model, if syntactically correct, will be represented as an attributed

graph. Based on the attributed graph, the Moses component constructor can build an ex-

ecutable component, which is basically an interpreter of the model instantiated from the

predefined OMA semantic specification. This component can then be used for simulation

and analysis by the Moses simulator and analyser.

In Section 5.1.2 and 5.1.3, we shall describe the Moses editor and simulator in more

detail, respectively. In addition, note that the analyser is shown as a dotted oval in

Figure 5.1 to hightight the fact that it is a new addition to Moses. This analyser is the

subject of Section 5.2 and 5.3.

5.1.1 Syntactic Definition

For the syntactic definition of various graph-like notations, the Moses tool suite provides

a language called tlne Graph þpe Definition Language (GTDL) t1091. Basically, given

a particular graph-like notation, the GTDL specification defines the kind of attributed

graphs used in Moses (cf. Chapter 4). This includes:

o a list of diagram (or graph) attributes, includingtheir names and data types, e.g. tl":,e

attributes " InputÐvent", " O utputÙvent" and " VAR" of a UML statechart;

o a list of valid kinds of vertices and edges, together with their attributes. The

attributes of a vertex or edge include not only its graphical appearance such as

shape and size but also íts sernantlc attributes, e.g. the initial tokens for a Petri net

place and the trigger for a UML statechart transition;

o a list of predicates declaring the syntactic constraints (or well-formedness) on in-

stances of this notation.

As a detailed exposition of GTDL is beyond the scope of this thesis, we instead present

the Petri net variant described in Section 4.3 as an example to give a flavour of this

language (cf. [109] for a complete description of GTDL). The GTDL specification for this

Petri net variant is shown in Program 5.1.
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Program 5.1: Syntactic specification of Petri nets

r graph type Petri,Net {
vertex tyoe P I ace (multiset I ni,ti,alT olc en s)

ûaphics (string Shape : "Oval',

color C olor : "b1ack', color Fi,lIC olor : "whitd',

integer EntentX :24, integ:er ErtentY :24).

vertex type Trønsition (boolexpr guard,exDression f uncti,on)

Êraphics (strine Shape : "Rectangle",

color Color : "blacJl', color FillColor : "white" ,

integer ErtentX :24, inteeer ErtentY :24).

vertex type InputPorú (datatype domai.n)

Araphics (string S hape : " InputTriangJe",

color Color : "blacll', color FillColor - "gr"f',
integer ErtentX :24, integ.er ErtentY :24).

vertex type OutputPort (datatype range)

Araphics (string Shape : "OutputTliangJe",

color Color : "black', color FillColor : " gret'',

integer ErtentX :24, integ,er EntentY :24).

edse type Arc (strine label)

gralrhics (string H ead, : " Closedll iangld').

predicate "Arcs do not emanate from output ports or end at input ports."

forall a € Arc : src(a) Ç OutputPort A dst(a) f InputPort end

rrredicate "Arcs from input ports must end at places."

forall a e Arc: src(a) € InputPort + dst(a) € Place end,
predicate "Arcs from p)aces must end at fuansitions."

forall a € Arc: src(a) e Place + dst(a) e Transi.ti.on end
predicate "Arcs from transitions must end at places or output ports."

forall a e Arc: src(a) e Trans'ition +
d,st(a) €. PIaceUOutputPorú end
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In lines 2-23, four kinds of vertices and one kind of edges are declared: places,

transitions, input ports, output ports and arcs. First of all, their graphical appearance

is described in the "graphics" section. For example, it is claimed that all places are

displayed as white ovals with black border, initially 24 wíde and24 high. Furthermore,

immediately following the name of each kind, the semantic attributes are declared. For

instance, a place has an attribute "initialTokens" specifying the multiset of tokens initially
residing in it. A transition has a boolean expression as the guard and an expression as

the function.

After these declarations, four well-formedness predicates are given in lines 25-33,

constraining the arcs between vertices. These include a requirement on the absence of

arcs emanating from output ports or ending at input ports, and also the constraints on

the targets of arcs emanating from input ports, places and transitions.

5.1.2 Diagram Editing

The Moses tool suite provides a generic diagram editor for building models. Above all,

this editor does not depend on any particular notation (or graph type) but manipulates

diagrams at an abstract level, in particular, as attributed graphs (as in Definition 44).

It provides the basic functions for diagram manipulation such as the insertion, deletion

and layout ofvertices and edges.

Furthermore, the editor can be parameterized by a GTDL speciflcation and then

behave in a way specific to the notation. For example in Program 5.1, each vertex type

has a "Shape" attribute. This identifles a piece of code predefined in Moses for drawing

the picture representing a vertex of this type. Also, the colors and initial size of the

picture can be specified by other attributes such as "Color", "FillColor", "ExtentX' and

"ExtentY'.

In addition, the editor provides facilities for the user to modify the attributes associ-

ated with vertices, edges and even a diagram itself, especially the semantic attributes.

Examples include the modification of the guard expression or color for a Petri net transi-

tion and the modification of variable declarations for a UML statechart.
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Apart from the editing facilities, the editor is also able to check the well-formedness

of the diagram being edited, using the given GTDL predicates. A violation of the well-

formedness will be recorded and shown to the user for correction.

5.1.3 Diagram Simulation

After building a well-formed model, the user often wants to validate its dynamic be-

haviour in order to uncover potential design defects and gain confidence in the design.

For this purpose, Moses provides a simulator for the stepwise execution, animation and

state inspection of the model.

Basically, the simulator uses the Moses component constructor to construct an inter-

preter for this model, from the predefined semantic specification of its notation. Then the

simulator executes the interpreter step by step, firing one of the enabled steps reported

by the interpreter at atime. It also provides an animator visualizing the states and state

changes of this model and thus the whole execution process.

The simulation of a component-based system is more complex than a single com-

ponent. This involves not only generating interpreters for all components models but

also coordinating the concurrent execution of components and relaying the exchanged

messages between components. For technical reasons, Moses has adopted an interleaving

semantics. That is, only one enabled step can be scheduled for firing at a time and any

transition firing is atomic. Basically, all the enabled steps of components are considered

equally. One of them is chosen for flring randomly. Also, messages exchanged between

communicating components are only transferred immediately after transition firings.

5.2 Approach to Verification

The existing implementation of the Moses tool suite does not include a verification (or

model checking) tool. Although a simulator is included, it can only provide partial valida-

tion of system models, due to the lack of support for system state storage and exhaustive

state space exploration. Also, it provides no facilities for property specification and

automatic verifi cation.
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In order to support formal verification, Chapter 4 has extended the way that inter-

preters are specified. Furthermore, a state space exploration tool is designed, which

takes full advantage of the additional facilities of interpreters to support exhaustive

enumeration of system states. In addition, a side-effect free language is defined to specify

system properties against which systems can be verifled. More specifically, an existing

language in Moses, called t};'e Expression LANguøge (ELAN) [110], is reused for property

specification. In the following sections, these issues will be addressed in more detail.

5.2.1 State Space Exploration

In Section 4.2,we have designed a contract between component interpreters and analysis

tools. This means that the state space exploration tool has to abide by the contract. For

the sake of simplicity, we have chosen to implement a simple exploration algorithm which

employs no state space reduction techniques.

Consider a complete component-based system (or semantically, a closed DEC network)

n : (P,l). Let p,o be the instantiated component interpreter of p Ç P. Then a DFS

exploration algorithm for D is described by pseudo-code in Program 5.2. Its ultimate aim

is to construct the synchronised product of D, consisting of an initial state s0, a set ,S of

states reachable from s0 and a set A ofsteps between these states.

As noted previously, a (globat) state of the system (including s0) is a vector made up

of (local) states of the components, we build a global state as the product of all the local

states in this algorithm. Further, we use a stack pendi,ng to record the unexplored steps,

and a set compSteps to record each pair of component and enabled step. In particular,

every pair (p, e) in compSteps satisfies the condition that step e is enabled in component

p at its current local state.

At the beginning, this algorithm waits until the initialization of all component in-

terpreters have terminated, as required in Figure 4.L. Then it initializes s0, ^9 and A.

In particular, it assigns to s0 the current global state of the system, namely, a vector

of the current local states of components. The algorithm then uses a macro definition

"checkProperty" to check some user-specified properties at the initial state. We defer

a description of this macro until the property specification language ELAN has been

introduced in Section 5.2.2.
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Program 5.2: A simple state space exploration algorithm for a closed system D

r wait until Vp e P, p"o. mod,e: -WAIT
2 so <- lI.pçp 11,,p.-state, S - {t0}, A = Ø

3 checlcPropertg

4

5 compSteps - {(p, e) lp e P,e € ¡to.-nentSteps}
o pendi,ng - {("0, compSteps)}

z while pending I Ø do
8 (", untaken) *- pendi,ng.pop)

9 if untalçen * Ø t}nen
10 (dec, stp) <- untalçen.remoueAny)
tt pending.push((s,untøken));
12 foreach p e P do p,o.-state * rp(s) end
13 ¡1"¿"".-step2take <- stp

14 p¿"¿.rnod, <- -FIRE
15 wait unti! þLdec.rnod"e : -W AIT
16

17 iÎ p,¿...-eutTqpe: r then eaent <- r
18 else
ts foreachpePdo
20 if lf e 'y,ra..(f) - p,¿ ..-eutType Ap € ?r then
21 ¡,lo.-eutType = ro(f)
22 ¡1"o.-eutPara 1- p,dec,-eutParo,

23 ¡1"o.-mode <- -INPUT
end

end
wait until Vp € P, ¡.tr.-mode: -WAIT
euent <- (p,¿... -eutType, ¡,t¿".. -eutP aral

end

s/ <- flpep ¡t"o.-state
A *- A 1- {(s,euent,st)}
ifs'fSthen

,S ,- ,S + {"'}
compSteps * {(p, ") lp e P,e € ¡1,r.-nertSteps}
p endin g .pu sh((st, comp S t ep s)) ;

checkPropertg
end
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36

38

39 end
end
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After property checking, the set cornpSteps is computed (line 5). This basically adds a

pair (p, e) into compSteps for every component p e P and step e €. þLp.:nertSteps. As stated

previously, variable ¡1.r.-nertsteps is a set consisting of all the steps enabled at the current

state of p. For a Petri net comporterrt, -nertsteps consists of all the currently enabled

transitions, while for a UML statechart component, -:nertSteps is either an empty set or

a singleton set consisting of the special symbol /.
Next in line 6, tlne pend,i,ng stack is initialized to contain a pair composed of s0 and

compSteps. Now this algorithm is ready to conduct a full state space exploration in a
while loop (lines 7-39). The exploration terminates only when pendi,ng is empty. At each

pass of this loop, a single enabled step súp of a component dec is taken (if any). More

specifically, suppose the top element of pendi,ng is (s,untaken), tl;.en (dec, stp) must be an

element of untaken Executing a step súp involves three steps. Firstly, this algorithm sets

each component back to its local state corresponding to s, viz. the original state where

stp was enabled (line 12). Secondly, it asks dec to frre stp and waits for the completion

(lines 13-15). Finally, it transfers the output data frorn dec to all the connected compo-

nents (lines L9-27), assuming an output is produced (i.e. p,¿...-eutType * r). The data

transfer to the interpreter p", of a component p involves updating its variables -eutType,

-eutPara and -mode (to -INPUT) as well as waiting for the completion of the input

reception by pp.

After súp is taken, this algorithm needs to update A, ,S and pending accordingly. It first

uses an auxiliary vector s/ to store the current global state and then adds into A a step

leavinþ s and targeting s/ (lines 30-31). This step is labelled by euent, the event of decthat

just occurred (cf. lines 17, 27). Iî addition, if s/ has not yet been visited, this algorithm

adds it to ^9 and pushes a pair (st,compSteps) into pendi,ng for the next iteration (lines 33-

35), where compSteps is the set of currently enabled steps at s/. Likewise, properties can

be checked here using macro checkProperty.

Note that although designed for non-hierarchical systems, Program 5.2 is also applica-

ble to hierarchical systems since they all have equivalent non-hierarchical counterparts

(cf. Section 3.3.1). Note also that this algorithm makes no assumption about the nature

of individual modelling languages. This opens the possibility of other model checking
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techniques developed for homogeneous systems to be applied to heterogeneous systems.

However, this is beyond the scope of this thesis and thus left for future work.

5.2.2 Specifying Safety Properties

As already mentioned, we use an embedded language in Moses, ELAN, for property spec-

ification. ELAN [110] is a functional language with a simple, side-effect free semantics.

It supports a number of basic and structured data types such as booleans, integers, real

numbers, strings, sets, lists and maps. It also supports the common numerical, logical

and set operators.

To give an impression on how to specify a system property, we consider the component-

based system in Figure 3.3 (page 46). Suppose the adder and the doubler are modelled

by Figure 4.2 (page 87) and 4.5 (page 99), respectively. To require the doubler to respect

the input assumption of the adder, we can write the following constraint on the markings

of the adder's places:

#pa <: I A ftpb (: 1,

where pa denotes the multiset of tokens currently residing in place pa and ffpa is the size

of this multiset. This restricts the number of tokens in each of places pa andpb to at most

one at all times. Furthermore, to require the user to respect the input assumption of the

doubler, we can write for the doubler:

- ERR,

where ERR is a boolean variable indicating whether the UML state "ERR" is active.

This requires that the user never send a request again before getting the result from the

doubler. Additionally, to relate the adder and the doubler, we can write

doubler.S2 a (ffadd€r.pa : 7 A ffadder.pb : 0), (5.1)
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where the name of a variable in a component is prefixed by the component name. This

means that whenever the doubler is at ,S2 there must be a token in place pabtú no token

in place pb of the adder.

As claimed in Chapter 3, in this thesis we only consider state-based properties which

involve only the present behaviour but no past or future behaviour. Hence we do not

introduce temporal operators such as '(X", '(F" and "U" as in CTL t36l and L,ITL t1701.

In other words, the safety properties we consider can be evaluated merely on the basis

of a single state of a system. These properties, in the terminology of temporal logics,

are either atomic propositions or their negation, conjunction or disjunction. Therefore, a

property cp written in ELAN can be considered equivalent to a L,ITL expression "G g" ot a

CTL expression "AG cp".

5.2.3 Verifying Safety Properties

To enable the verification of safety properties, we extend interpreter specifications with
a derived enuironmenú function called "-en'u", which maps the name of each (local) state

variable in a component into its current value. The basic idea is to use a component's

own interpreter to interpret its local variables for property evaluation. In particular, we

define -enu for Petri net interpreters as follows:

derived function -en'u : {attr(p, "namd') * M(p) I p e P}

U {attr(ú, "namd') r--+ (ú € -nertSteps) | t e f },

where each place is mapped to its marking and each transition is mapped to a boolean

indicating if it is enabled. Similarly, for UML statechart interpreters, we add:

derived function -er¿u 
: act'iuel) uars,

where each state is mapped to a boolean indicating whether it is active, and each diagram

variable is mapped to its value.
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Next, we build an array referencing the rr,ap -enu for every component. As a conse-

quence, when checking properties, we can interpret state variables for different compo-

nents using their respective environment functions. For instance, when checking prop-

erty 5.1, we shall use the local variable environment of the doubler to evaluate doubler.S2

and that of the adder to evaluate adder.pa and adder.pb.

Program 5.3: Macro "checkPropeúy(9)"

Tenu<-Ø
z fotea.c}n cn.un € VarNames do
s erùu .- enu * {cn.un r--+ eval(un,CompMap(cn).-enu)}

4 if -eval(p, enu) t}nen

5 lx report the property uioløtion. *l

Program 5.3 shows the process of checking a property g. It assumes CompMapís a

map from each component name to the component interpreter (assuming each component

is uniquely named), VarNames is a list of variable names appearing in p and each

variable name is in the form of "CompName.Vari,ableNalne" as shown in formula 5.1.

To begin with, this algorithm builds a neìM environmertt enu, mapping every variable

name present in p into its value (lines 1-3). This involves the evaluation of each variable

name using eval and the local environment of its corresponding component interpreter.

As we have assumed in Chapter 4, eval is a platform function for expression evaluation.

Next in line 4, this algorithm evaluates propefty g using this newly built environment

enu.If rp does not hold, it will report the violation.

5.3 Approach to Compos¡tional Verification

In the previous sections, we have described the process of defining graph-like modelling

languages in Moses and our implementation strategies for a simple state space explo-

ration and checking tool. Based on the developed facilities, in this section, we shall
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discuss the implementation issues of the compositional veriflcation method proposed in

Chapter 3.

As noted, the key in this compositional method is the introduction of interface au-

tomata for specifying the interface protocol of components. Thus the first thing in our

implementation is to incorporate the visual notation of IAs into Moses. This uses the

same syntactic and semantic definition methods presented in Section 5.1 and Chapter 4,

respectively, and will be detailed in Section 5.3.1.

In addition, as stated in Chapter 3, to determine the basic properties of a component-

based system, the conformance of heterogeneous components with their respective IAs

as well as the consistency of the derived IA network has to be ensured. Therefore, after

the incorporation of IAs, algorithms for conformance and consistency checking will be

presented in Section 5.3.2-5.3.4.

Furthermore, algorithms implementing the relevant theoretical work from Chap-

ter 3 for proving safety properties of component-based systems will be described in Sec-

tion 5.3.5.

5.3.1 lncorporating the lA Formalism

As described in Section 3.2.2, IAs are a graph-like formalism with a very simple se-

mantics. Using the method presented in Section 5.1.1, we can easily define the syntax

and well-formedness of the IA formalism in Moses. The resultant GTDL specification is

shown in Program 5.4.

As shown, two graph attributes are associated with an IA model for declaring its

observable events (line 2). After that, initial states, states and transitions in addition to

well-formed rules are declared. In particular, three predicates are enforced to ensure the

disjointness of input and output events, the uniqueness of initial state, and the validity

of transition labels in an IA model, respectively (lines 13-18).

Next, applying the methods described in Section 4.3.3 and 4.4.3, we can easily specify

a semantic interpreter for IAs. As we actually use the input-universal RTSs and most

abstract implementations of IAs in our compositional verification approach, we define

semantic interpreters in terms of these two derivatives rather than the IAs themselves.

Given the attributed graph G : (V, E, src, dst, attr) for a well-formed IA, the interpreter for
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Program 5.4: Syntactic specification of IAs

r eraph type Interf aceAutomata {
z attribute set InputÛaent,OutputÛuent

D

vertex type Ini,tialState 0
graphics (string Shape : "ArowDoú", color Color : "b)ack',

integer ErtentX:8, integer ErtentY :8).
vertex type State 0

graphics (string Shape : "Dot", color Color : "b)ack(',

integer EntentX: 8, integer EntentY :8).
edge type Transition (strine løbel)

aphics (strine H ead : " ClosedTriangld').

predicate "Input and output events are disjoint."

I nput Eu ent I Output Eu ent : Ø

predicate "A unique initial state must exist."

ffIniti'alState: I
predicate "A transition label must be either an input or output event."

forall t e. Transi,ti,on : attr(t,"1abe|') e InputEuentU OutputÐuent end
lel-

its input-universal RTS semantics is specified by Program 5.5, where I represents the

error state.

This specification consists of three parts. The first part (lines 1-7) defines all the

analysis variables required in Section 4.2. In particula4 -:nertSteps includes all the

output transitions (or edges) enabled at the current state -state. The first part also

defines a local variable environment -enu imposed in Section 5.2.3 to enable the property

checking for IAs. From lines 6-7, one can see that -enu coîditionally contains two string

elements: "effof if the current state is I and "waitingl' if a currently enabled input

transition exists.

The second part (lines 9-13) specifies the initialization rule, which sets -súøúe to be

the unique initial state defined in the IA and -mode to be the waiting mode.

4

5

6

7

I
I

10

11

12

13

14

15

16

17

18
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Program 5.5: Specification of the input-universal RTS semantics of IAs

r shared attribute -state i
z shared attribute -eutTgpe, -eutP ara,

3 -mode i
¿ derived set -:nertsteps: {t e E I src¿ : -state A attr(ú,"Labe|') e OutputEuent) i
5 monitored attribute -step2talte i
o derived set -enu - {"error" | -state: I}
z U {"waitingl' I lú € E, src¿ - -state A attr(¿, "labeÍ') e InputÐuent} i
I
s initialize :

10 choose s e V with attr(s, "typd') :"InitialState" !
11 -state:: s

t2 end,

13 -mode'.: -WAIT
14

ts ru,le stepi
16 if -úa,te I I then
17 if -mode: -INPUT tlnen
18 choose ú e E with attr(src¿, "label') : -eutTApe i
19 -state:: dst¿

20 else

21 -state:: L
22 end
2s end,

24 if -mode: -FIRE t}nen

25 let ú : -step2tøke i
26 -state:: dst¿,

27 -eutType:: attr(ú, "label'), -eutPara:: undef
2a end
29 end
so end,

31 -mode:: -WAIT

130
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The last part (lines 15-31) specifies the "step" rule, elaborating the process of input

reception and output generation for the IA. More speciflcally, when receiving an input

event specifled at the current state, the IA will move to the target state of a transition

whose label matches the event (line 19). Such a transition is unique due to the determin-

ism of IAs. On the other hand, if receiving an unspecified input event, the error state will

be entered as in Definition 6. In addition, if scheduled to fire a transition ú, the IA will
enter the target state of ú and set the last event \-eutTgpe, -eutPara) with the label of t

and an undeflned parameter. Note that if the IA is already in the error state, nothing will
happen except for executing a common task, i.e. updating -mod,e to the waiting mode.

Furthermore, if given a typing function 0 mapping each input/output event to a set

of valid values, we can define an interpreter implementing the MAI semantics for the

IA, viz. its most abstract implementation with respect to d. This requires a modifica-

tion of Program 5.5 on the definition of -nertSteps (line 4) and the output generation

(lines 25-28). The details are given in Program 5.6 and 5.7, respectively. In Program 5.6,

-nertsteps is redefined to contain transition-value pairs, each of which includes an output

transition ú enabled at the current state -state and a valid output value u from set d(e)

where e is the labelling event of ú. Correspondingly, if scheduled to fire a step (t, u), the

MAI will execute Program 5.7, outputing data value u together with event e. This differs

from the output generation described in Program 5.5 where no data value is involved.

Program 5.6: Specification of the MAI semantics of IAs: -nertSteps definition

¿ derived set -nertSteps: {(t,u) lt e E,'u e p(attr(t,"laber')),

5 stc¡ : -s¿o¡" A attr(ú, "LabeÍ') e OutputÐuentj i

5.3.2 Conformance Checking for Components

With the syntax and semantics of IAs defined in Moses, we are now able to employ IAs

for specifying the interface protocols of components. To employ our compositional method

for the verification of component-based systems, we first need to ensure the conformance

and live conformance of individual components with their associated IAs.
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Program 5.7: Specification of the MAI semantics of IAs: Output generation

let (ú, ul : -steq2take i
-state:: dst¿,

-eutType:: attr(ú, ")abe|'), -eutPara :: u

end,

As noted in Section 3.2.4, these two kinds of conformance can be determined merely

with the local state space of each component. Also, the local state space of a component

C with respect to an IA A is the synchronised product of a closed network of two compo-

nents: C and the MAI of the mirror of A. As the construction of the mirror from ,4 is a

syntactical transformation, we assume M is the constructed mirror. We then instantiate

an interpreter of M using the MAI semantics (with respect to a typing function á as in

Definition 20) to construct the local state space of C.

To ensure the conformance of C with A, we know from Theorem 1 that it is sufficient

to check the absence of the error state in the local state space of C. This task is equivalent

to checking a property:

- l1¡y4.€.TTOT

in the network composed of C and the MAI of M, assuming þu ís the instantiated

interpreter of M. Clearly, this check can be executed using the state space exploration

and checking algorithms presented in Program 5.2 and 5.3.

To ensure the live conformance of C with ,4,, we need to check an additional require-

ment that C is able to produce at least one of the enabled input events of M. Suppose

we have ensured the conformance of C with A using the above-mentioned method. Let

^56 and A6 be the sets of states and steps in the constructed local state space of C,

respectively. Then we determine the live conformance of C with A using a backward

search, detailed by Program 5.8. Note that for simplicity we assume E, ç aIç and

Dg) aB in this program.

Firstly, the states violatingthe first condition of Theorem 2 are listed as suspect states.

That is to say, at such states, M is waiting for some input event. This is determined by

evaluating t};re "waiting" variable at every state s € ^96 using the corresponding local

25

26

27

28
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Program 5.8: Checking the live conformance of a component C

1 suspect <- {s € ,96 | eval("waitingl',getÐnu(p,y¿,"¡a(")))}

2 eri,ts +- {s € suspect l1e eÐfl, (s, e, s') e Aø}
3

4 pending <- eri,ts

Ssafe<-fi
o while pending I Ø do

7 saf e <- saf elpendi,ng
B pendi,ng <- {s € Sø I = 

st e pending,e €Ð[, (s, e, s') e Aø]
g end

10

11 if saf e: suspectthen
12 l* liue conformance holds. */
rg end

variable environment of p,xa. This local environment is obtained by calling a function

"getEnu" deflned in Program 5.9. As shown, this function call will first reset the current

state of þm to TM(s) and then return the local variable environment of ¡t"¡1 at iTM(s).

Program 5.9: Function "getEnv"

r function getÐnu(p", s)

2 ti,.-state <- s

3 return p.-enu

4 errd.

Next in Program 5.8, some suspect states, at which C is able to produce an output,

are distinguished, since they clearly satisfy the precondition of Theorem 2 and thus are

safe for proving the live conformance. A set eri,ts is used to hold these states.
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In addition to suspecú and erits, there are two auxiliary sets pendinq and saf e ín

Program 5.8. They are used to record all the calculated "safe" states so far. More specif-

ically, pendi.ng records the newly calculated, while sale holds the previously calculated.

Initially, pending is equal to eri.ts and saf e is empty.

After the initialization, a while loop will be executed by Program 5.8. At each pass

of this loop, all the states ínpendi,ng are moved into saf e andpending is reloaded with

their immediate predecessors reachable via an internal event of C for the next iteration.

Clearly, these predecessors are also safe for proving the live conformance, satisfying the

precondition of Theorem 2. Finally, this while loop terminates when pending is empty,

i.e. no more "safe" states were found.

At that time, if all the suspect states have been proved to be "safe", we can conclude

that C live-conforms to ,4.. Otherwise, the live conformance does not hold.

5.3.3 Consistency Checking for lA Networks

As noted in Section 3.3.3 and 3.3.4, to verify the basic properties of a component-based

system, we need to ensure not only the conformance of the components with their respec-

tive IAs but also the consistency of the derived IA network. This section is dedicated to

the implementation issues for constructing the state spaces (or synchronised products) of

IA networks and checking their consistency.

To construct the state space of an IA network N : (W,-R), we instantiate interpreters

for the constituent IAs using their input-universal RTS semantics and employ the state

space exploration algorithm in Program 5.2.

Furthermore, to determine the consistency of an IA network, we invoke Program 5.2

with the following property to check:

Van e IANames,- aTl.€rrort

where we assume I AN ames is a set consisting of the names of all the constituent IAs.

In addition, to enable the live consistency checking of ly', we also need to test the

condition stated in Definition 29, i.e. t}ne absence of deadlock states, states where the

network is blocked but some IA is still waiting for an input. Suppose the consistency
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of lrl has been proved as above. Let þobe the instantiated interpreter of ¿ € V7. Then

Program 5.10 shows the algorithm to determine its live consistency.

Program 5.10: Checking the live consistency of an IA network .ðl

I termi,nals <- {s € ,S¡,' I Í(",e,s') e A;y}

z deadlocks <- {s € terminals lla e W,eval("waitingi',getÛnu(¡t",tr"(")))}

s if deadlocks : Ø

4 l* liue consistency hold. *l
s end

This algorithm uses terminals to store all terminal states in the network anddeadlocks

to store the terminal states that violate the condition of Definition 29. The violation by

a terminal state s is interpreted as the existence of an IA ¿ whose "waitingl' variable is

true. As usual, t}r'e "waiting" variable of an IA ø is evaluated using the local environment

of ¡-r,o at its local state ro(s). This algorithm claims the live consistency of the IA network

if deadlocks contains no elements in the end.

5.3.4 Conformance Checking for Open Systems

As demonstrated by Theorem 7, the algorithms presented previously are sufficient to

determine the conformance of open component-based systems (or semantically open DEC

networks). However, these algorithms are not enough to determine their live confor-

mance. In the following, we present a solution to this problem.

Consider an open component-based system D and an IA,4 such that the conformance

of D with,4 have been ensured compositionally as shown previously. Let l/ be the derived

IA network of D, M be the mirror of A, E, and E¿ be as in Theorem 8. Then Program 5.11

shows the process of compositionally verifying the live conformance of D with ,4.

Similar to Program 5.8, this algorithm consists of three parts and uses a backward

search starting from "exit" states. The first part (lines 1-2) marks "suspect" and "exit"

states in,S¡¡, while the second part (lines 4-9) identifles "safe" states by executing a while
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Program 5.11: Checking the live conformance of an open system D

7 suspect <- {s € ^9¡¿ | eval("waitingj',getEnu(¡t*r,"-(")))}
2 erits <- {s € suspect | (le e E,,(t,e,s') € Aru)A (fle' e E,i,(s,e',s') e Ary)}

3

4 pending <- erits
Ssafe<-Q
o while pending * Ø A pend¿ng ît saf e: Ø do

7 sa,f e <- saf e I pendi,ng

8 pend;ing <- {s e ,9.7y l3s/ e pend'ing,e€E¿,(s,e,s') ç AN}
g end

10

il if saf e: suspectthen

12 l* liue conformance holds. */
fJ end

loop. The last part reports the satisfaction of the live conformance if all suspect states

prove to be safe.

Unlike Program 5.8, this algorithm needs to check more conditions. More specifically,

to be safe, a suspect state of l/ must satisfy both Condition 1 and 2 of Theorem 8. That

is, it must not be part of an internal loop, and it must be able to reach an exit state via

an internal trace. This is reflected by both the computation of exit states (line 2) and the

adaptation of the while condition (line 6). In particular, exit states are the suspect states

with only observable outgoing steps. They are thus safe for proving the live conformance,

according to the above requirements. Also, apart from the empty test on pending, t}l.e

while condition also includes an empty test on "pending À saf e" to detect internal loops.

This means that there must be an internal loop if and only if a safe state is visited again

during the backward search.

Finally, this algorithm is able to conclude the live conformance of D if all suspect

states prove to be safe. Otherwise, no conclusive answer is given, due to the abstraction

of IAs from components.
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5.3.5 Verifying System-Wide Safety Properties

To prove a safety property local to a component, we can simply call macro "checlcProperty"

as defined in Program 5.3 while constructing the local state space of the component.

However, to prove a system-wide safety property, we often cannot do so due to the po-

tential state space explosion. Fortunately, we can employ the compositional verification

approach proposed in Section 3.3.5 for DEC networks, the semantic model for component-

based heterogeneous systems.

In this section, we present our implementation strategy for this approach, assuming

that the consistency of these systems (or networks) has been ensured using the algo-

rithms proposed earlier. That is to say, the local state spaces of the components and the

state space of the derived IA networks have been constructed.

Consider a consistent network D : (o,0, P,.y) with respect to þ and a safety property

clause ç on D as in Definition 42,that is, g : gLY gzv' .. V pn(k < lPl) such that all 9¡
(l < j ( k) are local properties of distinct components. Let ll be the derived IA network

of D (with respect to l3), ^9¡¡ be the state space of ly', 1 < j < k, ¡1"¡be the interpreter of the

DEC p¡ e P to which p¡ is local, ,5¡6 be the local state space of p¡, a¡ : þ(p¡) and So, be

the state space of ay. Then the algorithm for the compositional verification of cp is shown

in Program 5.12.

Program 5.12: Verifying a safety property clause p

I foreachj:l<j3kdo
2 -sati 

: {s¡ e 5", l1(q¡,s¡) e ^9i6, - eval(pj, getÐnu(¡t¡,q¡)}

3 satr' <- S", \ søt¡

4 erJid.

5

6 safe <- {s € ^9¡¡ | (lø eW,r"(s): I) V (=j : I < j < k,r¡(s) e sati)}
z if saf e: ^9¡¡ then
a l* p holds. */
g end
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This algorithm consists of three steps. The first step (lines 1-4) computes, for every

j: I < j < k, a set sat, of the IA states it1 ^9,i that satisfy g¡ ín 5¡6. This computation

uses an exclusive method to exclude from ,So, the IA states that do not satisfy p¡, since

these states are computationally cheaper to compute than those satisfying g¡. Horc, t}re

non-satisfaction of ç¡ by a state \ø¡, s¡¡ € S¡* is evaluated using the local environment of

p¡ at q¡ returned by function getÐnu.

Next, the second step (line 6) calculates a set of "safe" states in ,S¡¿, where the pre-

condition of Theorem 11 and 12 is satisfied. Clearly, this requires only a single scan on

,S¡¡.

Finally, if all states in ^9¡¿ 
prove to be "safe", this algorithm reports the satisfaction of

g. Otherwise, no conclusive answer is given due to the abstraction introduced by IAs, as

stated earlier.

5.4 Summary and Discussion

In this chapter, based on the interpreters developed in Chapter 4 for heterogeneous com-

ponents, we have described the implementation of a simple and monolithic verification

approach to component-based heterogeneous systems. This includes an algorithm for

constructing the system state space (Program ã.2) and solutions to the speciflcation and

verification of safety properties.

In addition, we have presented algorithms implementing the compositional verifica-

tion approach proposed in Chapter 3. As noted previously, given a component-based

heterogeneous system, the basic properties can be proved by independently employing

Program 5.2 and 5.8 to ensure the (live) conformance of each component, and Programí.2

and 5.10 to ensure the (live) consistency of its derived IA network. Further, the con-

formance of an open system with an IA can be ensured using Program 5.11. As a

result, independent analysis at different hierarchical levels of the system is supported.

In addition, while the local properties of primitive components can be proved relatively

easily within their local state spaces using Program 5.2, system-wide properties of both

closed and open systems can be proved compositionally using their derived IA networks

by Program 5.12.

138
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At the time of writing, we have implemented the algorithms presented above using

Java in the context of the Moses tool suite. The Moses tool suite is available at [3]. Our

analysis tools are available in a side branch of the repository and will soon be merged

into the main branch.

It should be noted that the implementation of our compositional approach builds on

a simple state space explorer described in Program 5.2. This explorer currently does

not employ any advanced state space reduction technique. However, we believe, the

employment of such techniques in its future version would allow us to further reduce

the size of state spaces that need to be handled by our compositional approach.



Case Study: the Production Cell

In the previous chapters, we have presented a foundation for the specification and ver-

ification of heterogeneous systems and a compositional approach to verifying such sys-

tems, and studied the implementation issues in the context of the Moses tool suite.

The ultimate aim is to alleviate the state space explosion problem while model-checking

complex systems. In this chapter, we demonstrate the power of the proposed techniques

by applying them to the verification of a non-trivial system: the Production Cell t1381.

The remainder of this chapter is structured as follows. We first give a brief description

of the Production Cell in Section 6.1. We next elaborate our design methodology in

Section 6.2, and then apply the compositional verification methods developed earlier to

the resultant design in Section 6.3. Finall)¿, we present discussions and the related work

in Section 6.4.

6.1 Task Description

The production cell case study, posed in [138], was derived from a metal processing plant.

The main task of the cell is to forge metal blanks in a press. The blanks are transported

to and removed from the press through the collaboration of five other machines in the

cell: a feed belt, an elevating rotary table, a robot with two extendable arms, a deposit

belt and a travelling crane. Figure 6.1 shows the top view of the cell (taken from [88]).

The production cycle of a metal blank is as follows. When the feed belt conveys the

blank to the table, the table rotates and lifts the blank to a position where the robot can

L40
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Figure 6.1-: Top view of the Production Cell

pick it up using its first arm. After picking up the blank, the robot rotates anticlockwise

and places the blank into the open press. After that, the press closes to forge the blank

and then opens to its lower position, the same height as the second arm of the robot.

Next, the robot picks up the forged blank using the second arm and places it onto the

deposit belt. The deposit belt then transports it to the end. The system is made closed

and self-contained (with a finite state space) by the addition of a crane which fetches the

blank from the end of the deposit belt and returns it to the beginning of the feed belt.

6.1.1 Constituent Machines

To perform the intended task of the cell, each of the six machines is fitted with a number

of actuators and sensors. The machine learns the current position of its own and a loaded

blank by reading from its sensors, and transports or forges the blank by controlling its

actuators. In total, this cell involves l-3 actuators and 14 sensors. In the following, we

give the detail about each machine as well as its actuators and sensors.
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Feed belt is powered by an electric motor. By starting or stopping the motor, the belt

can transport and deliver blanks to the table. A photoelectric cell is installed at the

end ofthe belt to detect the arrival and departure of a blank at the final part ofthe

belt;

Elevating rotary table is fitted with two electric motors since both its vertical move-

ment and rotation are necessary. By controlling these two motors, the table is able

to rotate and lift up blanks in order to enable the first robot arm to pick them up. In

addition, two (boolean valued) switches are used to detect if the table has reached

its top and bottom positions. Also, an analog potentiometer is installed to detect the

rotation angle ofthe table;

Robot comprises two extendable arms mounted orthogonally at different levels. Each

arm is fitted with an electric motor which allows it to extend and retract horizon-

tally. It is also fitted with an electromagnet at the end for picking up blanks. Fur-

thermore, to transport blanks between neighboring machines, a swivelling motor is

installed in the robot, allowing the robot to rotate between four angles: where the

first arm points to the table, where the second arm points to the press, where the

second arm points to the deposit belt, and where the first arm points to the press. In
addition, three analog potentiometers are installed to detect the current extensions

of the arms and the current angle of the robot;

Press consists of two horizontal plates, with the lower plate being movable along the

vertical axis. It forges blanks by pressing its lower plate against the upper plate.

Apart from the upper position, the lower plate has two other positions: a middle

position for loading by the first robot arm and a lower position for unloading by the

second robot arm. Therefore, in the press, an electric motor is fitted to take charge

of the vertical movement of the lower plate. Three switches are used to indicate the

current position of the lower plate;

Deposit belt is similar to the feed belt. It is powered by an electric motor which allows

the belt to transport blanks to the end in order for the crane to pick them up. Also,

a photoelectric cell is installed near the end of the belt to detect the entry of a blank

into the final part of the belt; the cell is one blank away from the end of the belt so
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that a blank will still be on the belt after having passed the cell. This makes the

deposit belt different from the feed belt.

Tþavelling crane is used to transport blanks from the deposit belt back to the feed belt.

It has an electromagnet gripper powered by two electric motors and movable in both

the horizontal and vertical directions. The horizontal movement is to make up the

distance between the two belts, while the vertical movement is to make up their

difference in height. Further, the crane is fitted with two switches, indicating if the

gripper is above any of the belts, and a potentiometer, measuring the current height

of the gripper.

6.1.2 Requirements

According to [138], the Production Cell case study involves a variety of requirements.

Among them, those concerning the safety of the cell are the most important since their

violation may result in damage to machines or injury to people. In this thesis, we

concentrate on the safety requirements.

Basically, the safety requirements of the cell are consequences of restrictions on ma-

chine movement, avoidance of machine collisions, prevention of blanks being dropped

outside safe areas, and insurance of sufficient distance between blanks t1381. Examples

include:

o The robot must not be rotated clockwise if its flrst arm points towards the table, nor

be rotated anticlockwise if its first arm points towards the press;

o The press may only close when no robot arm is positioned inside it;

o The feed belt may only convey a blank through its light barrier if the table is stopped

and in the loading position.

o A new blank may only be put on the deposit belt, if the former blank has arrived at

the end of the deposit belt.

In the remainder of this chapter, we shall use these requirements as an example to

demonstrate the key issues in the case study. Meanwhile, for the sake of brevity, we dele-

gate an extensive exposition and discussion of other safety requirements to Appendix A.
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Figure 6.2: Architecture of the Production Cell

6.2 Component-Based Design

Our design of the Production Cell is based on the Petri net model proposed by Heiner and

Deussen [88, 89]. Figure 6.2 depicts the architecture of the design as a block diagram.

In this design, each machine in the cell corresponds to a component except the robot

machine. In [88], the robot machine was designed as two arm components, each of

which involves a control logic for swivelling the robot machine to its loading or unloading

angle. This is counter-intuitive to a component-based system view. Instead, we build an

additional component "robot" which is in charge of robot swivelling at the request of the

two arms. This makes the arm components identical and thus helps produce reusable

implementations. Hence the robot machine now corresponds to three components in our

design: " arrn I" r " arrn2" aîd "r obot",

To simplify matters, in this thesis, we only consider a closed system with five blanks.

Initially, three blanks reside on the feed belt, the table, and the press, respectively, while

the other two reside on the deposit belt, one at each end. However, we believe, other

variants of the Production Cell can be verified in the same way.

presscfane

table arml
feed
bet

iFree
arm2deposit

bet

;:,^:[,.::,Ï:;:, Ï:,^::

robot
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6.2.1 Protocol Design

To coordinate the concurrent execution of components, we follow Heiner and Deussen's

approach [88]. That is, components communicate according to the producer-consumer

protocol.

Firstly, consider the feed belt and the deposit belt. Figure 6.3(a) shows the protocol

specification IA for both of them. In this figure, "'iFull" and "iFree" are the exchanged

events between the belt and its upstream component (e.9. the crane in the case of the feed

belt). These events are used to unlock and lock the input region of the belt, respectively.

In particular, i,Full is an input event used to signal the completion of blank delivery by

the upstream component, while i,Free is an output event used to notify the upstream

about the readiness of the belt to accept blanks. Also, the events "oFree" and"oFull" are

exchanged between the belt and its downstream component (e.g. the table in the case of

the feed belt). These events are used to unlock and lock the output region of the belt.

Put differently, oFree is an input event used to signal the readiness of the downstream

component to accept blanks, while oFull is an output event used to notify the downstream

component of the completion of blank delivery by the belt.

oFree?
oFree?

oFull! iFull? oFull!

s2 <oFree> iFree! <oFree>

(a) Full version (b) Compact version

Figure 6.3: IAs for the feed/deposit belt

The IA in Figure 6.3(a) specifies the need of the feed/deposit belt for simultaneous con-

trol of its input and output regions [88]. In other words, the belts cannot deliver/convey

blanks unless the two regions are locked. More specifically, at states s1 and s4, the belt
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holds both input and output locks. On the contrary, it holds no locks at s3. In addition, it
holds only the input lock at s0 and s2, and only the output lock at s5.

Because of the reactive nature of IAs, the interleaving of input and output events

sometimes makes IA diagrams messy, even for simple protocols. Take the IA in Fig-

ure 6.3(a) as an example. Input event oFree is acceptable at states s0, s2 and s3, but

its occurrence is independent of the occurrence of event sequence i,Free . iFull from s2.

Therefore, oFree is interleaved with these two events in the diagram, and two states s4

and s5 are used to buffer oFree so as to model the acceptance of oFree at states s2 and

s3. However, due to the addition of s4 and s5, the understanding of the key issues of

this protocol is hindered. To improve upon this, we introduce a special attribute for both

states s2 and s3 to specify an input event that requires buffering, i.e. oFree, and remove

s4 and s5 from the diagram. The ultimate diagram is shown in Figure 6.3(b), where the

special attribute is denoted as "(oFree)". As a result, the graph is neater and easier to

understand. Note that we only regard the special attribute as a syntactic shortcut to

facilitate further description. All the checking tasks described later are conducted using

the full versions of IAs.

Apart from the variant in Figure 6.3, there are two variants of the producer-consumer

protocol in the design. They are shown in Figure 6.4(a) and 6.4(c). Figure 6.4(a) states

that the table/press must exclusively handle inputs and outputs, in other words, blank

reception and delivery. That is, they need to lock their input and output regions in
order to change positions. More specifically, the table/press holds both input and output

locks at states s0 and s2, while it holds one input lock and one output lock at states s1

and s3, respectively. Furthermore, Figure 6.4(c) indicates that the crane needs only an

independent control of its input and output regions. That is, it requires only one lock at

a time to do its work. In particular, the crane holds no locks at states s1 and s3, while it
holds one input lock and one output lock at states s0 and s2, respectively,

To communicate with the neighbouring components, arms also follow the protocol

shown in Figure 6.4(c). In addition, they coordinate with the robot component under a re-

source sharing protocol as depicted in Figure 6.4(b) and 6.4(d). The protocol ensures that

the sensitive operations, such as blank pickup, blank release and robot swivelling, can be

exclusively executed without interruption. Basically, a semaphore is exchanged between
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(c) crane (d) robot

Figure 6.4: IAs for the other components

them so that only one component, the one having the semaphore, can conduct sensitive

operations. Initially, robo¿ owns the semaphore. An arm can ask for the semaphore by

sending a request via"ldfueq" or "uld&eq". The request also indicates the angle at which

the arm wants the robot to be, e.g. Id&eq (or uld&eq) for the loading (or unloading) angle

of the arm. Once robot}r'as swivelled to the requested angle, it hands over the semaphore

to the arm by sending "IdAclc" or "uldAck". When the arm finishes sensitive operations, it
returns the semaphore via "IdF'in" ot "uld,F'in". Furthermore, upon receiving a request,

robot may process it immediately or buffer it for later processing. When both arms request

the semaphore at the same time, robot will choose which one to serve. The action to take

depends on the current angle of the robot and the availability of the semaphore.

ldFin2?

<oFree> <oFree><oFfee>

<iFull>

<iFull> <iFull> <iFuil> <iFull>

<ldFìeq2> <ldReq2>

<ldReq2> <uldReql

<uld¿dReq2>
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6.2.2 Component Design

With the interface automata formally describing the interaction protocols of components,

we can now independently design each component with respect to an IA. Black-token

Petri nets are used here as the modelling language.

As noted previously, the Production Cell system involves many physical devices such

as actuators and sensors. Although different in functionality, size and shape, these de-

vices have similar control procedures, which Heiner and Deussen named the elementary

motion control [88, 89].

In the following, we first iterate the essential strategy proposed by Heiner and Deussen

for modelling the control procedure of an elementary motion. We then present the models

for five key components including the belts, the arms and the robot, revealing their

control logic on the actuators and sensors as well as their collaboration with other com-

ponents. The models for other components, such as the table, the press and the crane,

can be found in Appendix A.

6.2.2.1 Elementary Motion Control

In the Production CelI, every machine motion consists of a sequence of elementary mo-

tions, each of which involves only one actuator and one sensor [88]. To model each

machine, it is essential to understand the control procedure of an elementary motion.

This procedure is described by the Petri net in Figure 6.5.

tn start run

cmdStop startcond stopOond

css

L

\._

Figure 6.5: Control model for elementary motions
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In Figure 6.5, commands for controlling an actuator are modelled by complementary

places "cmdstart" antd"cmdStop". The presence of a token in such a place means that

the actuator has received the command and is in an associated state. Likewise, the

start and stop conditions of an elementary motion are modelled as complementary places

"startCond" antd"stopCond", and a token in such a place represents that the reading of the

sensor meets the start/stop condition. The start and stop conditions are only modifled by

a sensor state controller "css" when "cmdStart" is flagged. Here, "css" stands for "change

sensor state". Next, the control procedure of an elementary motion is modelled by the

linkfrom"stu,Tt"r"rLLTr,"r"u)a'it"r"rs"to"stoç)"rwherettrs"standsforttreadytostopt'. Lastly,

places "'in" artd"ou,t" are used to indicate the initialization and completion of the motion.

Basically, when initialized, the control procedure begins only if the actuator has pre-

viously stopped. It empties cmdStop and deposits a token into cmdStart to start the

actuator, and then waits for the stop condition. We assume here that in the physical world

the stop condition will eventually become true as a result of the running of the actuator.

This is represented by transitions css, which will make the stop condition to be true, once

the actuator is started and the start condition is satisfied. After that, transitíons wai,t

and stop will be sequentially fired. This will remove the token from cmdStart and add a

token to cmdStop and out. Finally, the actuator is stopped and the motion is completed.

6.2.2.2 Feed Belt

As mentioned previouslSl the job of the feed belt is to transport and deliver blanks

onto the table. It is fitted with an electric motor for driving the belt and a sensor

for detecting blanks at the final part of the belt. The component model for the belt is

shown in Figure 6.6. This model is borrowed from [88] but flattened and enhanced with
input/output ports. Further, in order to improve the efficiency of the belt and the table,

in contrast to [88], we allow the feed belt to transport a loaded blank without locking its

output region. Note that the belt still needs to lock the output region for blank delivery.

In Lhis model, starting and stopping the electric motor is described by depositing a

token into complementary places "cmdStart" and"cmdStop", respectively. The reading of

the sensor is modelled by complementary places "lightBarrierFalse" and"Ii,ghtBarrier-

TrLLe", where a token inli.ghtBarrierTrue indicates that a blank is at the final part of
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Figure 6.6: Component model for the feed belt

the belt. In addition, transitions "transportstart","tranWait" and "tranStop" model the

control procedure for transporting a blank from the beginning to the end. Likewise,

transitions "dlurStart","d,IurWa'iú" and "dlurStop" model the delivery process.

Initialty, the belt is idle and stopped with one blank at the beginning. As shown

in Figure 6.6, it has a token ínpIFull, meaningthat its upstream (i.e. the crane) has

unlocked its input region. In other words, the crane has completed the delivery of the last

blank. After locking its input region by firing iLock, the belt proceeds to transport the

loaded blank. The transportation finishes when the light barrier becomes true, meaning

that the loaded blank has arrived at the final part of the belt. The belt then waits for an

oFree event to deliver the loaded blank. As stated, oFree indicates that the downstream

(1.e. the table) has unlocked the output region of the belt and is ready to accept a blank.

After receiving oFree, the belt will lock its output region and then proceed to deliver

the blank. The delivery finishes when the light barrier becomes false, meaning that the

loaded blank has left the final part of the belt. After that, the belt will sequentially

produce two output events oFull and i,Free to transfer the input and output locks to its

cmdStart
erTrue

dlvrCss

cmdStop

tranCss

iUnlock

oUnlock

iLock

oLock
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neighbouring components by firing o(Jnlock and. i,(Jnlock, and wait for lock release by its

neighbours.

It is worth noting that some invariants are present in this model, e.g. t}n.e comple-

mentary places noted above. These can be ensured with purely local information, while

other invariants , e.g. t};re boundedness of places, would require information on how the

environment behaves. The principle proposed in Section 3.3.5 assumes the component

has an environment that is as helpful as is defined by the relevant IA. This allows

us to prove invariants of the latter kind in the local state space of the belt, as will be

demonstrated later in Section 6.3.

6.2.2.3 Deposit Belt

With similar functionality and fittings of actuators and sensors, the deposit belt has a

component implementation similar to the feed belt's. Figure 6.7 shows the model of the

deposit belt.

oFree oLock tranRun tranwait tranRs

pOFree

iFull

plFull

wait4Ld

iFree

oUnlock delivered dlvrstop dlvrRs dlvrWait dlvrRun deliverStart

Figure 6.7: Component model for the deposit belt

This model differs from the feed belt's in the location of the transition "oLoclç". More

speciflcally, while the feed belt locks its output region after blank transportation, the

oFu

\---

cmdStart

dlvrCss

lranCss

ready2

ìUnlock

ready2Tran

wail2Tran

iLock

ready4Ld
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deposit bett will lock its output region before that. Here, the blank transportation for both

the belts is modelled by the group of transitions: transportStart,tranWait andtranStop.

The different location of oLock in the deposit belt is due to the fact that, before being

picked up by the crane, a delivered blank is still on the belt, i.e. at the final part of the

belt behind the light barrier. Therefore, the deposit belt has to wait for the crane to

pick up the delivered blank, before it can transport a newly loaded blank to the end. In

contrast, for the feed belt, a delivered blank is no longer on the belt, but on the table.

Hence, the feed belt is free to transport a new blank after the delivery.

6.2.2.4 Arms

In designing the robot machine, we distribute its actuators and sensors into three com-

ponents: "{trrn7"r "o,Trn2" antd"robot". The arm components manage the actuators and

sensors participating in arm extension, blank grasp, and arm retraction, while the robot

component manages those engaged in robot swivelling. In this section, we present the

model for the arm components, while in the next section, we describe the implementation

of robot.

As noted previously, each arm of the robot machine is frtted with a motor for arm ex-

tension and retraction, an analog potentiometer for detecting the current arm extension,

and an electromagnet for blank grasp. Although this makes the arms more complicated

than the belts, a similar design approach can still be applied. The resultant model of the

arms is shown in Figure 6.8.

In this model, the arm extension is simplified into three positions: the retracted,

pickup, and release extensions. These are modelled by three complementary places

"atfuetractÛrt", "atPickupÛnt" and "atfueleaseÛrt", respectively. Furthermore' the con-

trol commands of the motor for stopping, moving forward and backward are modelled by

three complementary places "cmd,Stop","cmdGoForuard" and"cmdGoBaclcward", respec-

tively. Also, the control commands of the electromagnet are modelled by two complemen-

tary places "cmdMagOn" (for blank grasp) and"cmdMa'goff" (for blank release)'

The control procedure ofarm extension for picking up a blank consists ofthree steps.

The first controls the motor for extending the arm from the normal retracted position

to the pickup position. This is modelled by the link from "IdÛrtendStart" and"hWait"
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Figure 6.8: Component model for the arms
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to "lrstop" at the top line of Figure 6.8. The second step controls the electromagnet for

blank grasp, modelled by transitiorr"gra,sp". The last step retracts the arm back to the

normal extension. This is modelled by a group of transitions including"ldRetractStart",

"IrWa,it" and"lrStop". In addition, the control procedure of arm extension for releasing

the loaded blank is similar, as shown at the bottom of Figure 6.8.

Initialty, an arm waits for its upstream component to be ready for blank delivery. More

specifically, it waits for an incoming message from port "iFull". As stated earlier, this

message is sent after the upstream has reached its own unloading position. In particular,

for arml,this means that the table has lifted up a blank to the top position and is stopped

at the unloading angle, while, for arm2, this means that the lower plate of the press has

reached the lower position.

If receiving a message (or a black token) from i,Full, transition "'iLoclc" will be enabled.

Firing iLock results in a loading request to be sent to the robot component via "ldReq".

As will be shown in the next section, upon receiving this request, robot will rotate to

the angle needed for the arm to load and then respond with a "IdAclc" message. After

receiving this message, the arm will have the rotation semaphore for executing sensitive

operations. More specifically, it is ready to load the blank from its upstream. To load a

blank, the arm will conduct a sequence of operations for arm extension, blank grasp and

arm retraction, by firing the transitions at the top line of Figure 6.8. It will then release

the semaphore back to robotby aldFi,n message and release its input lock to its upstream

by an iFree message.

After that, a similar procedure will be followed by the arm to unload a blank. This

involves waiting for the readiness of its downstream component to accept a blank, re-

questing robot to swivel to its unloading angle, executing sensitive operations for arm

extension, blank release and arm retraction, and finally releasing the rotation semaphore

and its output lock.

6.2.2.5 Robot

As noted previously, the main job of the robot component is to swivel the robot machine

under the request of the arms. For the swivelling, four angles are particularly important,

including the loading and unloading angles of both arms. The analog potentiometer fitted
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allows robot to detect the current angle of the robot. In designing the component, we

abstract the reading of the potentiometer into discrete values representing the above

four angles. Furthermore, we model the arrival of the robot at these angles using four

complementary places: "atLdAngle7", "atLdAngle2", "atUldAngle2" and"atUldAngleT",

where 1 stands for arml and 2 for arm2. These places are coloured dark grey in the

model of the robot component shown in Figure 6.9.

In addition, the robot component has to follow a resource sharing protocol in order to

collaborate with the arms. More specifically, robotlr,.as to own the rotation semaphore in

order to swivel the robot machine. The semaphore is modelled as a token initiallyresiding

in place "rotsaf e" in Figure 6.9 (at the bottom-left corner). It is exchanged between robot

and the arm components so that the one having the semaphore can execute sensitive

operations, e.g. "swivelling" in the case of robot. The transfer of the semaphore to the

armsismodelledbyfourtransitions"grantLdT","grantLd2","grantUld2" and"grantUldT".

AIso, the semaphore is returned via ports "ldFin7", "ldF'in2", "uldF'in2" and "uldFinI",
respectively, after the arms have completed their tasks.

Also in Figure 6.9, the control commands for robot swivelling are modelled by three

complementary places "cmdStop", "crndRotClocluuise" and "cmdRotAnt'iclockwise". The

control procedures of swivelling between the four angles are modelled by four groups of

transitions {ldRotStateI,lrWai,tL,lrStopT}, {ldRotState2,lrWai,t2,lrStop2}, {uldRotState2,
urWai,t2, urStop2j and {uldRotStatel,urWai,tl,urStopl}. Take the ldRotStartl group as

an example. To start such a procedure, four conditions have to be satisfied:

o arml has requested for its loading angle but permission has not yet been given,

i.e. pLdÀeql is not empty;

o robot currently owns the rotation semaphore, i.e. rotSale is not empty;

o armL has completed the unloading task, i.e. uldFi,ni,shedl is not empty;

o the rotation motor is stopped, i.e. c,mdfuotStop is not empty.

Initially, the robot component is stopped at the loading angle of arml and waits for

a request from the arm components. When receiving a loading request from arrn\, ít
will transfer the rotation semaphore to arml by firing grantLdl When the semaphore

is returned, robot will swivel to the loading angle of arm2, if requested, by firing the
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Figure 6.9: Component model for the robot
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transitions in the ldRotstart2 group. Similarly, it will swivel to the unloading angle of

arm2 and then swivel to the unloading angle of arml, if requested.

6.3 Compositional Verification

In the last section, we have presented a component-based design approach to the Pro-

duction Cell. In this section, we present our approach to the verification of the resultant

design. The properties under consideration include the basic properties as well as the

safety requirements.

To check these properties, one could adopt a monolithic approach and build the whole

state space which, as will be shown in Table 6.2, has over 2 million states and g million

transitions. This would no doubt result in a high computational complexity in veri-

fication. To avoid this, we adopt the compositional verification approach proposed in

Chapter 3.

6.3.1 Verifying Basic Properties

As defined in Section 3.3.3, the basic properties of a component-based system refer to

its consistency and deadlock freedom. To check these properties, we first check each

component for conformance and live conformance with its corresponding IA. This ensures

that, in a system where the input assumptions of the IA are respected, the component

does not break the output guarantees specified by the IA and also that it is free from

deadlock. From Section 3.2.4, we know that the (live) conformance of a component

can be determined in the local state space of the component. Using our analysis tools

implemented in the Moses tool suite, we have constructed the local state space of every

component in the Production Cell design, and have successfully proved its conformance

and live conformance with its corresponding IA. Table 6.1 shows the size of the resultant

component local state spaces. Clearly, it is not computationally expensive to prove the

(live) conformance of each component.

Next, we build an abstract system (or network) composed of all the IAs under the same

interconnections as shown in Figure 6.2. The IAs include the one in Figure 6.3(a) and the

full versions of those in Figure 6.4. We then construct the synchronised product (or state
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feed belt

table

robot

arml/arm2
press

deposit belt
crane

Table 6.1: Local state spaces of the components

Transitions

158

Component network

IA network

Transitions

28

22

119

90

18

20

136

9,548,785

1,191

Table 6.2: Global state spaces of the networks

space) of the formed IA network in order to check its consistency and live consistency. The

generated state space turns out to be much smaller than that of the component network

because we have abstracted away from the internal activity of components. Table 6.2

shows the size of state spaces of the two networks, generated by our Moses tool.

We have ensured the consistency and live consistency of the formed IA network using

our implemented analysis tools. From Section 3.3.3.3, we know our component-based

design of the Production Cell is consistent and free from deadlock. In addition, from

Table 6.2, it is clear that this compositional verification approach results in significant

reduction on memory usage and time consumption in proving the basic properties.

6.3.2 Verifying Safety Properties

In addition to the basic properties, there are also many safety requirements in the Pro-

duction Cell case study [88].

States

2\
22

74

60

18

L7

80

States

2,o6g,gg4

692
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To specify the safety requirements, it is essential to make an assumption on the

physical world. That is, the control software of an actuator described by our models

always runs faster than the actuator itself, so that the control software is able to stop the

actuator once the stop condition is satisfied and before the actuator overshoots.

In the following, we classify these requirements into three categories: component

invariants, system boundedness and system-wide safety. We then demonstrate how to

specify and prove each ofthem from the previously built state spaces.

6.3.2.1 Componentlnvariants

Component invariants are predicates involving only places and transitions in a single

component. These include requirements related to design consistency, such as the com-

plementarity and boundedness of places, and the restrictions on machine movement.

For instance, the feed/deposit belt design requires the complementarity of places, e.g.

"cmd,Start" vs. "cmdStop" and"li,ghtBarrierTrue" vs. "IightBarrierFalse". 'We can express

this requirement using ELAN as follows:

(ffcmdStart l- #crndStop : 1¡

A (#li, g ht B ar r ierT r ue + #Ii g ht B ar rier F al s e : 7) .

Also, it is required that all places in a component can have at most one token. It can

be formulated as the following, assumíng PlaceNames contains the names of all places

in a component:

Vpn e PlaceNames,ffpn 1L.

Furthermore, a movement restriction states that the robot must not be rotated clock-

wise if its first arm points towards the table, or rotated anticlockwise if its first arm points

towards the press. As we have assumed that the control software is always fast enough

to stop the actuator on time, this requirement can only be violated when transition

ld,RotStartl becomes enabled while robot is still at the loading (or pickup) angle of the

first arm, or when any of transitions ldfuotStart2, uld&otStart2 anduld&otStarúl becomes

enabled while the robot is at the unloading (or release) angle of the first arm. Therefore,

the ELAN expression for the above requirement is as follows:
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- (at L d An gl eI A I d, Rot S tartT)

¡ - (atUIdAngIeI A, (ldfuotStart2Y uldRotStart2Y uldRotStartL)),

where we use a transition name to denote the enabledness of the transition, and for

brevity we use a place name to represent the existence of a token in the place, because

all places are bounded to 1, as stated below.

As demonstrated in Section 3.3.5, the invariants that hold in the local state space of

a component also hold in the system, provided the system is consistent. To prove these

invariants in the system, we only need to check the local state space of the component. We

have formulated and checked all component invariants in the Production Cell design (cf.

Appendix A for other component invariants). They were found to be true in the respective

component local state spaces. Therefore, they also hold in the component network (or

system).

6.3.2.2 System Boundedness

System boundedness refers to the boundedness of all places in the system. Since the

boundedness of a single place is a component invariant, we can simply prove it in the

component local state space. Hence we can prove the boundedness of all places in our

design. Following this approach, we have proved that the flattened net of the whole

system is a l-safe Petri net.

6.3.2.3 System-Wide Properties

System-wide safety properties are conjunctions of property clauses involving places and

transitions in two or more components. In particular, these include requirements for

avoiding machine collisions, preventing blanks from being dropped outside the safe area,

and ensuring sufficient distance between blanks [88]. Example requirements and their

specifications in ELAN are given below, where as above we simply use a place name to

represent the existence of a token in the place.

1. The press may only close when no robot arm is positioned inside it.



CHAPTEB 6. CASE STUDY:THE PRODUCTION CELL 161

press.((cmdstop A atUpper) Y (cmdGoUp A (f sRun v /grRs)))

=4 (- (r ob ot. attJ I d An gl eI A ar mI. at ReI ea s e E rt)

A - (r ob ot. at L d An gI e2 A ar m2. at P i' clcup E rt))

In the above, press.cmdsúop represents that the stop command is the last received

control command by the motor of the press. In other word, the lower plate of the

press is stopped. Further, press.at(Jpper indicates that the lower plate is at the

upper position. Hence press.(cmd,Stop A atUpper) states that the press is closed. In

addition, press.c.mdGo[/p means that the motor has received a "going-up" command

and is moving the lower plate upwards. Furtheg press.f g&un and press.f gRs in-

dicate that the forging procedure is in process, where /g stands for "forge"' Thus

press.(crndGoUp A (f gfuun V /grRs)) states that the press is closing. Finally, the

second/third line requires that arml/2 is not positioned inside the press.

2. The feed belt may only convey a blank through its light barrier, if the table is

stopped and in the loading position.

f eedBelt.(cmdStart A (dlurRunv dlurRs) )

+ ( table.atLdAngle A table.at B ottom

A table.cmdstop H A table.cmdStopV )

The first line indicates that a blank is being delivered. The second line states that

the table is in the loading position, where "table.atLdAngle" and "table.atBottom"

represents that the table is at its loading angle and its bottom position, respec-

tively. Finalty, the last line suggests that both the motors in charge of horizontal

rotation and vertical movement of the table are stopped, where "table.cmdStopH"

and"table.cmdstopV" are the stop commands for the motors, respectively.

3. A new blank may only be put on the deposit belt, if the former blank has arrived at

the end of the deposit belt.

In the following, we formulate a stronger requirement stating thlat arm2 may only

put a blank on the deposit belt, if the deposit belt is ready to accept blanks.
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(r ob ot . atU I d, An g I e2 t\ ar m2. at Rel e a s e E rt A ar m2l el ea s e)

¿ fl,¿p s sit B elt.u ai,tA L d,

4. The robot may only rotate if both arms are retracted.

(r obot.cmd,RotC lockui s e V r obot.cmdfuot Anticl ockwi s e)

¿ ((r7'm,1. at Retr a ct E rt A ar m2. at Retr act E rt)

To verify such system-wide properties, we apply the compositional verification method

developed in Section 3.3.5. Clearly, all the above properties can be expressed in terms of

property clauses or their conjunctions. Therefore, using our analysis tools described in

Chapter 5, we have successfully proved these properties for our Production Cell design.

As noted in Section 5.3.5, the states to be examined include both those of the IA network

and those of all involved components. Table 6.3 shows the number of states examined for

these verification tasks.

Req. No Number of states examined

1

2

3

4

7 çrouot), 601or*¡, 36(pr""";,

2lffeeaaeu), 44çtoarc¡,

74çrouot), 60prm), 44(d,eposi.tBett),

74çrouot), 60çor-¡,

692geN)

692geN)

692gaN¡

692gaw)

Table 6.3: Results for verifying system-wide properties

Using the same method, we have also proved the other safety requirements listed in

[88] on our design. An extensive coverage of those properties can be found in Appendix A.

Our experiments show that the maximum state space handled for checking each require-

ment turns out to be that of the derived IA network, which consists of 692 states. Clearly,

compared with a monolithic checking on the component network which needs to store
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2,068,884 states, our compositional method has achieved a significant reduction on the

size of the state space required for verifying each system-wide property.

6.4 Summary and Related Work

In this chapter, we have applied the component-based design and verification method-

ology developed earlier to the Production Cell case study. This uses interface automata

(IAs) to capture the communication protocol for each component, and employs a divide-

and-conquer approach to the verification ofthe consistency, deadlock freedom and safety

requirements. It was shown that this compositional verification approach resulted in

approximately three orders of magnitude improvement in the size of the required state

space.

In the literature, there are many studies of the Production CeII, e.g. 124,3L,88, 89,

138, 1401. Among them, the closest to our approach is the work of [88, 89], where a

detailed model of the Production Cell is found. Our design builds on this model but

segments it into T loosely-coupled reusable components. Also, that work differs from ours

in the employed verification method. There, the verification was directly conducted on the

global state space of the system with the help of reduction techniques such as stubborn

set methods. In our work, the costly construction of the global state space is avoided.

Instead, with the help of interface automata, system properties are proved by checking a

number of small state spaces.

In [140], Lilius and Paltor presented a design and verification approach to the Pro-

duction Cell on the basis of UML. There, components are modelled as UML Statecharts

and the veriflcation was conducted using the vUML tool [139] which invokes the SPIN

tool [96] for executing the model checking task. As in [88, 89], this approach employs

reduction techniques in order to explore all possible states of the system. This, however,

trades time for memory. In contrast, our approach requires much less time and memory

due to the smaller state spaces that need to be handled. Furthermore, our approach is

not dedicated to a particular modelling language, but accommodates various notations

for modelling components, including UML Statecharts.

In 1241, Börger and Mearelli presented a design and veriflcation approach to the

Production Cell on the basis of ASMs [82]. This approach uses stepwise refinement of
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ASMs for modular development of the Production Cell system, and uses explicit con-

textual assumptions of components to assist the modular proving of system properties.

In contrast to our approach, all properties including the refinement relationships of

components are proved by hand in this approach.

In [31], Cheung and Kramer applied a compositional minimisation approach to the

verification of the Production Cell. The size of the state spaces that need to be constructed

is approximately the same as our approach. However, due to the lack of knowledge

about the size of state space of their original component-based system, we cannot make

a quantitative comparison with their approach.

In addition, [138] contains a collection of other contributions and a detailed compara-

tive survey on this case study. However, no approach to the verification of the Production

Cell contained in [138] is both compositional and automatic.



7
Conclusions

No single specification or verification method is able to solve all classes of problems.

To cope with industrial-sized applications, we need not only a diversity of modelling

languages and analysis techniques specialised and optimised for various domains, but

also the ability to use them in combination.

The work presented in this thesis has considered these fundamental issues. More

specifically, in order to cope with the growing heterogeneity of computer-based systems,

it has concentrated on developing techniques to support the use of a combination of

modelling languages, especially visual languages, for system specification. Also, in order

to tackle the main obstacles of model checking and make it more accessible to and usable

by practising engineers, this work has focussed on providing lightweight but effective

methods and tools to alleviate the state space explosion problem in model checking.

7.1 Contributions

In this thesis, we have accomplished several tasks. We have constructed a formal seman-

tic base for heterogeneous systems in terms of interconnected discrete-event components.

This allows us to conduct research on heterogeneous systems along two lines: semantic

definition approaches and verification techniques.

To define an operational semantics for heterogeneous systems, we have presented an

interpretation approach, which extends the work of [65, 110] and constructs component

interpreters with built-in facilities to enable exhaustive state space analysis. In essence,

165
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a component interpreter is a modelling-language-specific interpreter parameterized by a

component model. It is responsible for defining states and transitions of the component,

defining the enabled steps of components at each state, and firing a specified enabled

step or receiving an input when required, according to the semantics of the modelling

language. By fulfilling these obligations, the component interpreter allows an analysis

tool to conduct an exhaustive exploration of state space of the component and a system

comprising it. Based on such interpreters, we have implemented a simple state space

analysis tool which gives heterogeneous systems an operational semantics in terms of

DECs. As such, we have developed an extensible underlying framework for the formal

verification of heterogeneous systems. It imposes an explicit behavioural contract be-

tween interpreters and analysis tools, and enables a combination of languages to be used

to model complex systems and a variety of model checking techniques to be used for their

verification.

In addition, we have developed a compositional approach to the verification of hetero-

geneous systems, which combats the state space explosion problem using the principle of

"divide and conquer". This approach describes the assumed and guaranteed behaviour of

each component in a single IA, and follows three steps to prove the basic properties of a

heterogeneous system such as consistency and deadlock freedom. Firstly, this approach

adopts an optimistic view of the environment and checks the fulfillment of behavioural

guarantees by each component, assuming its behavioural assumptions are all satisfied by

the environment. Next, it checks the satisfaction of the behavioural assumptions of all

components in the derived IA network, by verifying the assumptions of each component

against the behavioural guarantees of the other components. Finally, this approach

claims the system is consistent and free from deadlock, if no violation is detected.

Furthermore, in this compositional approach, verifying safety properties is also possi-

ble, despite the abstraction from components to IAs. Three kinds of safety properties, in-

cluding local properties of components, system boundedness and system-wide properties,

are distinguished and handled using methods with different computational complexities.

Local properties of a component are determined solely in its local state space, and system

boudedness are determined by checking the boundedness of every component in its local

state space. In contrast, verifying a system-wide property is more complex. It involves
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deducing from the derived IA network a superset of actual state combinations of the

relevant components, and claiming the satisfaction of the property if it is not violated by

elements in this superset.

Moreover, we have implemented this compositional approach in Java-based verifica-

tion tools in the context of the Moses tool suite [65], and have applied the tools to the

verification of a non-trivial system: the Production Cell [138].

In summary, specific contributions of the thesis include

o the formulation of a semantic base for heterogeneous components (Chapter 3). This

is built on discrete-event components which are suffrciently general to accommo-

date a class of pragmatic specification languages, in particular, graph-like visual

notations;

o the formulation of conformance relationships between heterogeneous components

and IAs, together with the definitions of basic and safety properties of heteroge-

neous systems, adopting a semantics based on interconnected DECs (Chapter 3);

o the development and theoretical justifications of practical methods for checking the

conformance of heterogeneous components and compositional methods for verifying

the basic and safety properties of heterogeneous systems (Chapter 3);

o the presentation of a semantic interpretation approach to heterogeneous systems

(Chapter 4). This approach avoids a naive direct mapping from components into

DECs. Instead, it takes a practical two-stage process based on language-specific

interpreters and analysis tools to give an operational semantics to components in

terms of their reachable states and transitions in a given context;

o the formulation of an explicit behavioural contract between language-specific inter-

preters and analysis tools (Chapter 4). This includes the definition of analysis vari-

ables of interpreters exposing the state and transition information of components

as well as the expected behaviour of analysis tools by interpreters. This formulation

enables the independent development of interpreters and analysis tools;
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o the presentation of a formal operational semantics for UML statecharts, a semi-

formal but very important language in UML, adopting the proposed semantic inter-

pretation approach (Chapter 4);

o the development of a simple state space analysis tool for heterogeneous systems,

together with the introduction of a property specification language (Chapter 5).

This tool is implemented using Java in the context of the Moses tool suite, abiding

by the above-mentioned behavioural contract. It provides an operational semantics

to heterogeneous systems in terms of DECs and supports a monolithic approach to

their model checking;

o the implementation of the above-mentioned compositional verification methods in

the context of the Moses tool suite (Chapter 5). This implementation uses the

previously mentioned simple analysis tool as a base to check the conformance of

components, the consistency of IA networks, and local safety properties of compo-

nents. Furthermore, it employs a backward search for verifying the live consistency

of IA networks and the live conformance of components and open systems. In

addition, it utilises a special algorithm to determine system-wide safety properties;

o the compositional verification of a non-trivial system: the Production Cell (Chap-

ter 6). Using our developed tools, the 21 safety properties of the system listed in

[88] have been successfully proved. It was shown that approximately three orders

of magnitude improvement in the size of the required state space was achieved.

7.2 Future Work

The work presented in this thesis establishes a framework for the formal specification

and verification of component-based heterogeneous systems. It also contributes to the

state-of-the-art of model checking in the area of compositional verification. Along these

lines, a number of directions can be further explored to extend and improve this work.

Firstly, the proposed verification framework for heterogeneous systems may be ex-

tended to incorporate more speciflcation languages and model checking techniques.
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o In this thesis, two languages, Petri nets and UML statecharts, have been incorpo-

rated for the specification of heterogeneous systems. More graph-like languages

may be added in the future to provide more flexibility for the specification of com-

plex systems. Furthermore, it is believed that textual languages able to represent

discrete-event systems can be integrated into this framework. Future work may

focus on a class of textual languages, identify a suitable abstract syntactic model

for them, and then apply the proposed semantic interpretation approach to their

interpreter specification. Ultimately, these languages may be used to specify hetero-

geneous components. In addition, research may be conducted on the possibility and

means to extend this framework to support other kinds of specification languages,

e.g. t}re Specification and Description Language (SDL) [106], Message Sequence

Charts (MSCs) [107], and UML Collaboration diagrams [159]. Depending on their
particular characteristics, this may require certain extensions to the semantic base

underlying this framework.

o In this thesis, two kinds of analysis tools have been integrated for the verification

of heterogeneous systems. These include a simple state space analysis tool and a

compositional veriflcation tool. It was shown that developing these analysis tools is

independent of particular modelling languages, thanks to the explicit behavioural

contract imposed in Chapter 4. In the future, other compositional veriflcation and

model checking techniques, e.g. on-the-fly model checking and state space reduc-

tion, may be included to create a more flexible verification approach. Also, future

research may be focused on issues about their use in combination with our compo-

sitional verifi cation approach.

The research on extending the speciflcation and verification capabilities of our proposed

verification framework would help maximise the potential of this framework and allow

its use by practising engineers to cope with realistic systems.

Secondly our compositional veriflcation approach provides an over-approximation for

verifying system properties, due to the introduced abstraction between components and

interface automata. That is to say, it may incorrectly report violations for some prop-

erties. Methods and techniques (preferably with automated tool support) are needed to

be able to identify those false negatives and (maybe heuristically) refine IAs to capture
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more detailed behaviours of components. In particular, the approach presented by Clarke

et ø1. Í351may be adopted. Moverover, to further demonstrate the power or identify the

weaknesses of our approach, more extensive case studies and comparisons with other

model checking approaches are needed. In addition, path-based safety properties and

liveness are not considered in this thesis. They may also be considered in the future

work.



The Production Cell: Further Detail

In Chapter 6, we have presented some component models for the Prodcution Cell [138],

including the feed belt, the deposit belt, the arms and the robot component. We have also

illustrated a compositional approach to the verification of the cell using some example

safety properties. In this section, we provide the remaining component models including

the table, the press and the crane. In addition, we specify all the other safety properties

listed by Heiner and Deussen [88], and present the verification results of these properties.

4.1 Remaining Component Models

4.1.1 Elevating Rotary Table

The main job of the table is to bridge both the horizontal and vertical gaps between the

feed belt and the frrst robot arm. It is therefore fitted with two motors in charge of the

horizontal rotation and the vertical movement, respectively. In the model of the table

shown in Figure 4.1, their control commands are modelled by two groups of comple-

mentary places: {cmdStopH, cmdfuotClockta'ise, cmdRotAnti,Clocktui,se} and {cmdStopV,

cmdGo(Jp, cmdGoDown), respectively. In addition, the table has sensors to detect its

current position. These include two (boolean valued) switches used to indicate if the

table is at the top and bottom positions, and an analog potentiometer used to detect the

rotation angle. In Figure 4.1, these are modelled as two groups of complementary places:

L7I
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{atTop,atBottom} and {atLdAngle,attJldAngle}. Here, as usual, we have simplified the

reading of the potentiometer into two discrete values.

Initially, the table is at its loading position (i.e. at both the loading angle and the

bottom position) with a loaded blank, and both motors have stopped. Next, the table will
go to its unloading angle and the top position in order for the first robot arm to pick up

the loaded blank. This involves firing all the transitions at the top line of Figure 4.1. The

table will then send an oFuII message to notify the first arm to pick up. When the arm

flnishes, l.e. when ant oFree message is received, the table will move back to its loading

position, flring the transitions at the bottom line of Figure A.1. Next, it will release the

input lock by sending a token via i,Free to the feed belt, and wait for a new blank to be

loaded.

4.1.2 Press

The press forges blanks by pressing its lower plate against its upper one. It is powered by

a motor. In its component model shown in Figure 4.2, the control commands of this motor

are modelled by three complementary places; cmdStop, cmdGoUp and cmdGoDown. In

addition, the sensors, l.e. three switches, are modelled by three complementary places:

atUpper, atMiddle and atLower.

Initially, the press is at the middle position with a loaded blank. Next, it will go to

forge the blank by lifting up its lower plate, i.e. frring the transitíons f orgeStart, f gWait,

and f gstop at the top line of Figure 4.2. After that, the press will go to the lower position

and notify the second robot arm to pick up the forged blank, firing lowerStart,IwWait,

IuStop, and oUnlock. When the arm finishes, i.e. when an:' oFree message is received, the

press will move back to the middle position by firing the transitions at the bottom line of

Figure A.2. It will then release the input lock by sending a token vía iFree to the first

robot arm, and wait for a new blank to be loaded.

A.1.3 Crane

The main job of the crane is to move blanks at the end of the deposit belt back to

the feed belt. It is powered by two motors in charge of the horizontal and vertical

movement of its electromagnet gripper. In its component model shown in Figure 4.3, the
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control commands of these motors are modelled by two groups of complementary places:

{cmd,StopH , cmd,GoDepos'it, cmdGoFeed} and {cmdStopV, cmdLif t, cmd,Lotaer}. Further,

the blank grasp and release by the electromagnet gripper is described by two comple-

mentary places: cmdMagOn and cmdMagOff. In addition, the position of the grip-

per is described by two groups of complementary places: {aboueDeposit,aboueFeed} and

{at P i, ckup H ei, g ht, at Rel e a s e H ei' g ht, atT r an s p or t H ei g ht} .

Initially, the gripper is above the deposit belt and stopped at the transportation height.

As a blank is initially at the end of the deposit belt, the crane will lower its gripper to pick

up the blank after locking its input region. This involves firing transitions ldLowerStart,

llu:W ait, and llw Stop. After that, the crane will grasp the blank by firing gr o.sp and lift up

the gripper back to the transportation height by firing ldLif tStart,llfWai,t, andllf Stop.

All these transitions are shown at the top row of Figure 4.3. Next, the crane unlocks its

input region and then goes to the feed belt by ûring transitions at the right column of

Figure 4.3. At that time, if its output region is available, viz. oFree has been received

(meaning that the feed belt is ready for loading), the crane will follow a similar procedure

to release the blank by firing transitions at the bottom row Finally, it will release its

output region by oFull and go back to the deposit belt for a new blank.

A.2 CompositionalVerification

In this section, we give the fult detail about the important safety properties of the Pro-

duction Cell listed in [88], including their specification and verification.

A.2.1 Design Consistency

This includes complementarity and boundedness of places. As noted, such a property is a

component invariant and can be proved merely in the local state space of the component.

Since the boundedness of places has been considered in Section 6.3.2.1, in the following,

we only discuss properties involving the complementarity of places. Table 4.1 lists these

properties for each component. Using our Moses tool, we have successfully proved all

these in their respective component local state spaces.
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Component Invariants

177

feed/deposit belt

table

robot

armL/arm2

press

crane

Cf. Section 6.3.2.L

ff cmd S t op H * # cmd Rot C I o ckw i s e * # cmd Rot Anti, cl o clcwi s e : 7

ffcmdStopV t ffcrndGoUp -f ffcmdGoDown : I

ffatLd,Angle'l ftatUldAngle : 7

ffatTop I #atBottom :1-

# cm d Rot S t op i # cmd RotC I o ckui s e * # cmd Rot Anti, cI o ckw i's e : 7

fføtLd,Anglel -f ftatLdAngle2 * fføtLd,An7le2 -f ffatUldAnglel : 1

ffcmdStop -f #cmdGoForward -f ffcmdGoBaclcward,: I

ffcmdMagOn * ffcmdMasOl I : I

ffatRetractÛrt I fføtPicltupÐnt I #atReleaseUrt: L

ffcmdStop i #cmdGoUp | ftcmdGoDown :7
ftatLower -f #atMiddle + #atUpper : I

ffcmdStopH -f ffcmdGoDepos'it -l ffcmdGoFeed:7

ffcmdStopV 1- ffcmdLif t t ffcmdLower :7
ffcmdM agOn i #cmdMagO f f : 1

ff at P i. ckup H ei. g ht * ff atT r øn sp ort H ei. g ht I ff at ReL e a s ehei g ht : I

ffaboueDeposi,t * ffaboueFeed: I

Table 4.1: Proven component invariants

A.2.2 Restrictions of Machine Movement

As stated previously, all the 7 restrictions on machine movement are component invari-

ants and can also be proved by checking only the component local state spaces. Note that
in specifying such properties, we have assumed that the control soft\¡iare is fast enough to

stop the actuator on time. Thus a restriction of machine movement can only be violated

due to the reception of an illegal command, e.g'. command cmd&otCloclcwise while place

atLd,Anglel of the robot is true.
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Requirement 1. The robot must not be rotated clockwise if its first arm points towards

the table, or rotated anticlockwise if its first arm points towards the press.

Cf. Section 6.3.2.L.

Requirem ent 2. Both arms of the robot must not be retracted less than necessary for

passing the press, or extended more than necessary for picking up a blank from the press.

- (atfuetractErt A (ldfuetractStart Y uld,RetractStart))

rt, - (at P i, ckup E rt A (l d E rt en d S t ar t Y ul d E nt end S t ar t))

¡ - (atfueleaseErt A (Id,ErtendStartV uld"ErtendStart))

Requirement 3. The lower plate of the press must not be moved downward if it is in

the bottom position, or moved upward if it is in the top position.

- (at B ottom A lower Start)

¡ - (atTop A (forseStartY liftStart))

Requirement 4. The table must not be moved downward if it is in the bottom position,

or moved upward if it is in the top position.

- (at B ottom A low er Start)

¡ - (atTop Alif tStart)

Requirement 5. The table must not be rotated clockwise if it is at the unloading angle,

or rotated anticlockwise if it is at the loading angle.

- (atUld,Angle A uld&otateStart)

¡- (at L d" An gl e A I d&otate S tar t)

Requirement 6. The crane may only move towards the deposit belt if positioned above

the feed belt and only move towards the feed belt if positioned above the deposit belt.
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- (aboueFeedBelt A goFeed,Start)

¡- (abou e D ep o s it B elt A g o D ep o si,t S tart)

Requirement 7. The gripper of the crane must not be moved downward if it is in the

positions required for picking up a blank from the deposit belt and for releasing a blank

to the feed belt. Also, it must not be moved above the position required for transportation.

- (at P i, ckup H ei, g ht A (l d L ou er S t ar t V ul d, L ow er S t ar t))

¡- (at&eleaseHeight A (ldLouerStart Y uldLotuerStart))

A- (atTransportHei,ght A (ldLif tSturtV uldLi'f tStart))

A.2.3 Avoidance of Machine Collisions

These include both component invariants such as Requirement 10-11, and system-wide

properties such as Requirement 8-9.

Requirement 8. The press may only close when no robot arm is positioned inside it.

Cf. Section 6.3.2.3.

Requirement 9. The robot may only rotate if both arms are retracted.

Cf. Section 6.3.2.3.

Requirement 10. The travelling crane is not allowed to knock against a belt laterally.

We check a stronger condition, that is, when performing a horizontal translation, the

crane gripper must have been lifted to the transportation height.

cr ane. (cmdG o F eed Y c,mdG o D epo si't) j ¿v svu¿. atT r an s H ei' g ht

Requirement 11. The crane must not knock against a belt from above.

Due to the assumptions we made on the physical world, the specification of this

requirement is the same as Requirement 7.
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A.2.4 No Blanks Dropped Outside Safe Areas

All these requirements except Requirement 14 involves places and transitions in two

or more (usually neighboring) components. They are thus system-wide properties and

should be verified using the method proposed in Section 3.3.5.

Requirement 12. The magnet of the first robot arm may only be deactivated, if the

arm points towards the press and is extended such that the gripper is within the press.

o,r ml.r el ease + ( ar mL at ReI ea s e E nt A r obot. atU I d An gl eI)

Requirement 13. The magnet of the second robot arm may only be deactivated, if the

magnet is above the deposit belt.

ar m2.r eI ease + (ar m2. at, Rel ea s e E rt A r obot. atU I d An gI e2)

Requirement 14. The magnet of the crane may only be deactivated, if the crane's

gripper is above the feed belt and sufficiently close to it.

cr o,ne.r el ea s e + cr ane. (ab ou e F eed A at ReI ea s e H ei g ht)

Requirement 15. The feed belt may only convey a blank through its light barrier, if
the table is stopped in the loading position.

Cf. Section 6.3.2.3.

Requirement 16. The deposit belt must be stopped after a blank has passed the light

barrier at its end, and may only be started again after the crane has picked up the blank.

For the flrst half, we specify a weaker requirement in the following, stating that the

belt is stopped at all possible states after blank delivery and before the blank is picked

up by the crane.

d ep o s i.t B elt . (del i,u er e d Y r e ady 4 L d Y w ai't 4 L d Y u ai't2T r an)

+ d,ep o s it B elt. cmd S t op
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In addition, \Me express a weaker requirement for the other half as follows, stating that

the belt cannot be started when the crane is picking up the blank:

- (cr ane. g r a sp A depo sit B elt. cmd S t art)

A.2.5 lnsurance of a Sufficient Distance between Blanks

All these requirements are system-wide properties to be verified using the method pro-

posed in Section 3.3.5.

Requirement 17. A new blank may only be put on the feed belt, if the former blank

has arrived at the end of the feed belt.

We formulate a stronger requirement ensuring that the feed belt is always ready when

the crane releases a loaded blank onto the belt.

cr ane. (abou e F eedB elt A r el ease) a f s¿d,P elt.w aitLLd

Requirement 18. A new blank may only be put on the deposit belt, if the former blank

has arrived at the end of the deposit belt.

Cf. Section 6.3.2.3.

Requirement 19. Blanks may not be put on the table, if the table is already loaded.
'We rephrase this requirement as "Blanks may only be put on the table, if the table is

not loaded."

f eedB elt. (cmd Start A (dlur Run V dlur Rs)) + table.r eady 4Ld

Requirement 20. Blanks may not be put on the press, if the press is already loaded.

We rephrase this requirement as "Blanks may only be put on the press, if the press is

not loaded."

arml.release + press.readyLLd
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Next, we formulate Requirement 2t ín [88] as the conjunction of the following two

requirements (1.e. 2La and 2Lb).

Requirement 21a. The robot must only be rotated clockwise if both arms are unloaded.

r obot. cmd RotC I o cktu i,s e

a (o"Trnl.cmdMagOf f A arm2.cmdMagOf f)

Requirement 21b. The table, if loaded, must not enter its unloading position, if arm 1

is already loaded and still in its loading position (otherwise the two blanks may collide).

(r ob ot. at L d An g I et A ar mL cm d M a g O n A ar mt. at P i' ckup E rt)
---ì r table.(cmdG oU p A atU ldAngle)

4.2.6 Summary of the Verification Results

For Requirement I-7, L0,11 and L4, we have checked and successfully proved them in

the local state space of each involved component. According to Theorem 9, they also

hold in the the component-based system of Production Cell. Our experiments show that

checking Requirement6,7,10, 11 and 14 requires handlingthe largest set of states, more

specifically, all the B0 states in the local state space of the crane component.

For the other requirements, we employed the compositional approach proposed in

Chapter 3 and have also successfully proved them in the component-based system, using

our analysis tools developed in Chapter 5. As already noted in Chapter 6, verifying each

requirement involves checking the states of the derived IA network and those of all the

components relevant to the property. As a result, the maximum state space handled

turns out to be that of the derived IA network. As shown in Table 6.3, this consists of

692 states. Clearly, this is much smaller than the original state space of the component-

based system, which consists of 2,068,884 states. Therefore, approximately three orders

of magnitude reduction on memory requirement is achieved.
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