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Abstract

Design is an iterative process of specifiiing problems, finding plausible solutions, judging the va-

tidity of solutions relative to problems and reformulating problems and solutions. Computational

exploration requires formal mechanisms and human computer interaction models for supporting

designing. The theory of design space exploration posits a formal substrate for representing and

generating designs. To integrate the user in design space exploration, an interaction model that

combines the role of the the designer and the formalism is necessary.

This thesis addresses the problem of interaction between an exploration formalism and the

designer through the paradigm of mi,red-initiatiue. The thesis develops a mixed-initiative interaction

model for design space exploration in three layers, doma'in, task and dialogue. The domain layer

supports the coordination of the designer's view of exploration in terms of problems, solutions,

choices and exploration history with the concepts of state, move and structure available in the formal

substrate. The dialogue layer supports communication between the designer and the formalism in

terms of a shared visual notation for representing and integrating input and output from both

modes of exploration. Through the dialogue layer the designer and the formalism can communicate

the intermediate results of exploration. The task layer supports interaction with the operators for

moving in a design space. Through the task layer the designer and the formalism can acquire,

transfer and relinquish control of the exploration process to generate, navigate and synchronise

exploration states. The interaction model is implemented as FOLDE, or the Foldabi,Ii,ty Of Large

Design Spaces. An example from the domain of architectural design, three-dimensional massing

configurations, demonstrates the components of FCltOE.

The mixed-initiative interaction model developed in the thesis presents a new approach for in-

tegrating the role of the designer and a description formalism in computational exploration. The

model enables the designer to maintain exploration freedom in terms of formulating and reformu-

lating problems, generating solutions, making choices and navigating the history of exploration.

It permits a fine granularity of interaction through incremental turn-taking, allowing the designer

and the formalism to communicate, coordinate and control each step in the process of computing

exploration.
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Part I

DESIGN SPACE EXPLORATION
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Part I: Design Space Exploration

"The natural sciences are concerned with how things are. Design on the other hand

is concerned with how things ought to be ..."

Herbert Simon [Simon 1969, p 58].

Part I identifies the research problem, the assumptions underlying the study and the require-

ments for addressing the research hypothesis. It is broken into three Chapters as follows:

- Chapter 1 reviews the cognitive and computational accounts of exploration. In particular,

it examines design space description formalisms and interaction environments developed for

supporting computational exploration.

- Chapter 2 describes a design space description formalism. In this formalism, exploration

is cast as a formal, computable process of movement in an ordered structure comprising

collections of partial solutions. Algorithms for generating, ordering and reasoning over partial

solutions are supported. It describes the formal concepts and features of the design space

description formalism and identifles the potential for extending this paradigm of exploration

with a model of interaction.

- Chapter 3 addresses the requirements for a mixed-initiative interaction model for design space

exploration. Mixed-initiative supports a creative integration of user manipulation and auto-

mated services, characterised by an effort to implement deeper, more natural collaborations

between users and computers.



Chapter 1

Introduction

Chapter 1 reviews the exploration model of designing and establishes the scope and meaning of the

terms, erploration, ,interaction and d,escri,ption forvnali,sm. It identifies the requirements necessary

for addressing the role of interaction in computational exploration. Based on these requirements, it
proposes a research hypothesis for combining interactive and generative approaches into a mixed-

initiative model of exploration.

1.1 Design as exploration

1.1.1 Accounts of exploration

The scope and meaning of the term "exploration" used in the design research literature is varied.

It depends upon the theories, models and techniques proposed for its support. For example, in cog-

nitive accounts of designing [Schön 1983, Schön 1988, Schön & Wiggins 1992] exploration is seen as

a form of human cognitive activity. They are primarily concerned with explaining and interpreting

the cognitive pïocesses at play during real world designing. They contend that the relationships

between seeing and moving lie at the heart of designing and that exploration emerges out of the

interaction between designing (acting) and discovering (reflecting). In the context of computational

exploration, it is necessary to establish a more technical meaning of the term, exploration, through

a review of computational accounts of designing.

State space models

Exploration as a computational process has its provenance in the state-space search model of hu-

man problem solving. Simon [1969] proposes designing as a process of search within a state space

representation of a problem. The state space represents all possible solution states of a design

description. The state-space search [Newell & Simon 1972] model for human problem solving

q
d



1.1. DESIGN AS EXPLoRÁTION

underpins the view of designing as a problem solving activity. The set of all possible problem defi-

nitions is referred to as the problem space. The set of all possible solutions to a particular problem

space is referred to as the solut'ion spo"ce. Design is a problem-solving activity, comprising the act

of searching through the state space of possible solutions to a well-defined problem. It assumes

that a design problem is well-defined and amenable to search. However, a major characteristic of

design problems is their ill-definedness. To include ill-defined problems in state-space search, Simon

[1973] characterises ill-definedness as a label for movement in a hierarchy of problems. Adapting

this perspective, the design exploration process [Simon 1975] is envisioned as a series of problem

deflnition, solution generation and testing cycles.

Rittel & \Mebber [1984] argue that problem-solving in planning and design are "wicked". Such

problems have no definite formulation and their formulation is synonymous with the weltanschaung

or world-view of the designer. In this class of problems, different formulations of the problem will

imply different solutions. The formulation can be continuously redefined, in formal terms, they have

no stoppi,ng rule. Instead, external factors like time or resources and the designers preconceptions

frame a solution. They have no criterion for correctness: a design solution may be interpreted

differently and under varying criteria. Their performance cannot be ascertained immediately by

evaluation. Finally, multiple solutions can be proposed to any formulation of a design problem.

Hybs & Gero [1992] propose a process model of design comprising two distinct search spaces,

behaviour space and structure space. The functional requirements of an artifact under design

define the expected behaviour space. The solution is found by searching the structure space for a

combination of structural elements that satisfy the expected behaviour. F\rrther, a reformulation

process enables the designer to modify the behaviour space, depending on the behavioural properties

of the proposed solution.

Gero [1994ö] presents work on several inter-related models built on the functi,on, behauiour,

structure or FBS framework. In this formulation, the state space representation of designs has three

subspaces or abstractions, namely, the structure space, the behaviour space and the function space.

State space change is accomplished through two operators, addition and substitution. Exploration

is defined as an extension of state-space search through the incorporation of a modiflcation or

reformulation process in the nsS framework. Exploration is conceived here as meta-search over

ill-structured problem formulations. The role of meta-search processes, or exploration, is to reduce

such problems to problems that can be addressed by search. This model of exploration is conceived

as follows,

"Exploration may be conceived of as meta-search in that in computational terms all

the state spaces which could possibly be produced by a set of exploration processes is

determined a priori by the initial state space and those processes." [Gero 1994ø, p 318]

4



1.1. DESIGN AS EXPLoRATToN

Gero & Kazakov [1996] propose the concepts of emergence and evolution to compute the exploration

processes in an evolutionary model of designing. Poon & Maher [1996] extend the process model

of co-evolution described above [Hybs & Gero 1992]. In their model, two distinct movements are

introduced in the design space. A horizontal movement in behaviour and structure space and a

diagonal movement from behaviour to structure and vice versa. The former is classified as evolution

while the latter is termed search. They define these two distinct types of movement in design spaces

as a co-evolutionary model of design exploration.

Generative design

Generative design systems provide support for designing based on computational processes for

specifuing, generating and evaluating collections of designs. They combine process models of de-

signing, information processing paradigms and grammars with the goal of supporting automated or

semi-automated generation. Designing is conceived as a staged, iterative process of understanding

problems, producing a statement of goals, finding plausible solutions and judging the validity of

solutions relative to the goals.

Shape Grammars [Stiny 1980, Stiny & March 1981] propose the recognition, substitution and

transformation of "indefinite sub shapes" composed of line segments and their spatial arrange-

ments as the basis for generating designs. The crucial advance made by grammarians in design

exploration research lies in two areas. First, their conception of shape composition as defined

by rules of a grammar. Second, the proposition that a grammar can be used to explore a, space

of designs. Using the shape grammar formalism and its flavours, corpora of designs, fStiny &

Mitchell 1,978b, Stiny & Mitchell Lg78a, Krishnamurti 1980, Flemming, Coyne, Glavin, Hsi &

Rychener 1989, Heisserman 1991] have been represented and generated. Krishnamurti et al pro-

pose an "arithmetic of shapes" for implementing shape rewriting systems [Krishnamurti 1980,

Krishnamurti 7992, Krishnamurti & Earl 1992, Krishnamurthy & Stouffs 1993, Stouffs 1994]. Gen-

erative design [Mitchell 1977, Mitchell 1990, Flemming, Coyne, Glavin & Rychener 1988, Shih

& Schmitt 1994] proposes computational formalisms for encoding design problems and mecha-

nisms for generating solution alternatives. Flemming's work on the generation of floor layouts

using rectangular dissections [Flemming 1978, Flemming 1986, Flemming, Rychener, Coyne &

Glavin 1-986, Flemming 1987ö, Flemming I}BT a, Flemming et al. 1988] is based on a grammatical

view of design generation.

Embedded in the thinking on generative design systems (see for example, fHeisserman 1991]) is

the use of formal mechanisms for describing and generating states in a d,esi,gn space.

Computational formalisms (such as grammars) for describing design spaces are classified as

design space description formalisms in Carlson [1994]. In the generative design literature, the notion

of a description formalism is the fundamental construct for supporting computational exploration.

5



1.1. DÐsIcN AS EXPLoRATIoN

Carlson's [1994] overview identifies several key requirements of a description formalism. First, a

description formalism is a formal, executable and constructive mechanism. The ability to describe

it formally implies that its assertions are testable in logical terms. The ability to execute such a

formalism implies that it can be tested in terms of computational tractability and demonstrative

power. The constructive nature of formalism enables users to employ the formalism to construct

and compose larger systems from smaller fragments. Second, a description formalism is intended for

the description of design spaces rather than a single design. Its follows that a description formalism

is useful to describe collections of states of a design rather than a single state under transformation

(as in the case of CAD systems). Third, a description formalism deals primarily with the formal

attributes of collections of designs rather than their meaning or function. It follows from this,

that in a description formalism, syntactical change will tend to dominate discussion over semantics.

Fourth, a description formalism is differentiated from a design space in that a description formalism

bears a class-instance relationship to the space it is used to describe. Fifth, the authoring and use

of a description formalism as implemented in a computer program is an experimental process

comprising "propos,i,ng sets of statements, obseru'ing their effects and, modi,fyi,ng the statements"

fCarlson 1994, p 123].

Exploration as a knowledge process

Exploration is distinguished from classical search theories of designing through the acceptance of

the ill-structured nature of design problems. Using the term "design-as-exploration", Smithers

[1992] proposes that the view of designing as a knowledge processl provides a better understanding

of design exploration. Knowledge engineering theories of design process [Smithers 1992, Smithers,

Corne & Ross 1994, Smithers 1994, Smithers 1996, Smithers 1998] provide algorithms for computing

exploration. They allow for a better understanding of how technologies, particularly computational

technologies) can be effectively introduced into human design practice.

In more recent work, Smithers [2000] and Smithers [2002] characterise exploration through the

acceptance of imprecision, ambiguity, incompleteness and inconsistency in requirements descriptions

and emphasise the role of reformulation. Exploration is the construction of a complete, consistent,

precise and unambiguous requirements description from an incomplete, inconsistent, imprecise and

ambiguous requirements description. This final description is seen to be satisfied by a design

description. The design-as-exploration literature, while silent on the symbol level implications,

promote a new understanding of the role of knowledge processes in design exploration,

"... exploration involves the construction and incremental extension of (well struc-

tured) problem statements and associated solutions. Sometimes this takes the form of

lThe field of knowledge engineering has developed techniques for modelling of expertise based on Newell [1982]
Knowledge Level.

6



1.1. DEsrcN As EXPLORATToN 7

simply constructing problems and solutions which satisfy a subset of the requirements,

but often it involves devising intermediate problems, at "tangents" to the main design

problem, in an attempt to discover more about possible ways in which the design prob-

Iem might be well-formed, and the kinds of solutions which would then be available."

[Smithers et al. 1994, p 303-304]

The SEED project [Flemming, Coyne & Woodbury 1993, Akin, Aygen, Chang, Chien, Choi,

Donia, Fenves, Flemming, Garrett, Gomez, Kiliccote, Rivard, Sen, Snyder, Tsai, \Moodbury &

Zinang 1997] addresses the design and implementation of computational tools to support the early

phases of engineering design. The SEED knowledge level fWoodbury, Flemming, Coyne, Fenves &

generates

uses/creates

const¡tuent

Figure 1.1: The Knowledge level concepts of SEED showing a simple representation of their rela-

tionships.

Garrett 1995] posits distinct functional units (FU) and design units (DU) as devices supporting

a conceptual separation of brief and design2. Here, a problem is specified within a context and

composed as a hierarchy of constituent function units. The Knowledge level concepts of SEED and

their relationships are shown in Figure 1.1 . A function unit is associated with a desi,gn uni,t. In the

SEED Knowledge Level, the designer's view of a solution is modelled as a DESIcN-uNrr [Flemming

& \Moodbury 1995]. A technologA caî refine or elaborate a problem or a design and generate

configurations. These configurations compose a design space. The terminology and relationships of

the Knowledge Level are shared, by all sub-modules of the SEED Project3, while differing in their

symbol level interpretation. The ability to refine and revise problems, to explore problem-solution

pairs and generate solutions through technologies are some of the outcomes of this project relevant

to supporting exploration.

2Details of the concepts introduced in this project are given in [Woodbury & Chang 1995Ö].

3See the special issue of the ASCtr Journal of Architectural Engineering [Akin, Sen, Donia k Zhang 1995, Flemming
& Chien 1995, Snyder, Aygen, Flemming & Tsai 1995, \Moodbury & Chang 1995b, Flemming & \Moodbury 1995]

for a description of the SEED modules.

Conf¡gurat¡onDesign Space

Technology

Problem

composes

assoc
Funct¡on Unit (FU) Design Un¡t (DU)Context



1.1. DESTGN As EXPLoRATToN

The account of design exploration as a logical process of constraint resolution [Burrow &

Woodbury 1999] is of central interest to the thesis that is developed in this study. The theory

of design space exploration [Woodbury, Burrow, Datta & Chang 1999], posits a formal substrate

for computing exploration. They contend that design space exploration with a description formal-

ism can be modelled as a form of mouement in a structured space of designs. They argue that a

collection of designs in design space require a structuring mechanism underpinning the exploration

process fBurrow & Woodbury 2001]. In the case of grammars, this is the derivation process. In the

case of generative design systems the structure is provided by the particular generative process em-

bedded in the system (for example, the constraint engine embedded in SEED-Layout [Flemming,

Coyne, Woodbury, Bhavnani, Chien, Chiou, Choi, Kiliccote, Stouffs, Chang, Han, Jo, Shaw &

Suwa 1994]). Through this theory, they address the questions, Can a formal notion of information

ordering provide a structural relationship in design space? F\-rrther, can this notion be a useful

paradigm for supporting design exploration?

Burrow & Woodbury [1999] and Woodbury et al. [1999] develop a formal notion of exploration

based on the specification and representation of information ordering principles in design. Using

knowledge representation and constraint resolution theory, Burrow [2003] develops a formal design

space structuring mechanism based on the relation of subsumption. In it, two design states (and

recursively their subparts) are related if one subsumes the other, that is, if one contains strictly less

information than the other. This scheme replaces rule-based derivation with a set of composable

operators fWoodbury, Datta & Burrow 2000] for moving in design space. The distinction, between

functional units and design units, as in the sEtrD knowledge level, is not implied in this representa-

tion scheme. The work on design space exploration is ongoing. The major concepts are reported in

Woodbury et at. [1999]. This work introduces the notion of subsumption as an information ordering

relation over exploration states. This particular view of exploration with a description formalism

based on the subsumption relation among designs is described in greater detail in Chapter 2.

L.1.2 Characteristics of Exploration

Design as exploration is an attempt to devise schemes that are both cognitively plausible and

computationally feasible. These schemes lie on a point of continuum between classical search-based

techniques and open-ended metaphors of the design process. While they vary in their respective

emphasis on what designing is, several common themes can be identified. Flom the review of the

design exploration literature, the requirements for supporting exploration are captured through the

following entities, problems, solutions, choices and history. These entities and the relationships

between them characterise computational models of exploration. The entities of exploration, as

reviewed in the literature, are as follows:

8
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Problem formulation and reformulation.
The exploration model supports problem formulation and reformulation. Hybs & Gero [1992]

argue that problems and solutions co-evolve and thus support for reformulation is an inte-

gral part of the problem definition process. Smithers [2000] emphasises the reformulation

of requirements descriptions during exploration. Woodbury et al. [1999] show that problem

restructuring is intrinsic in design space exploration through the property of partialness in

the representation of an exploration state. In their formalism, every problem is partially

specified and every solution is a partial design. Partiality is captured in the machinery of the

design space formalism, hence reformulation is movement from one point in the design space

to another, more specific or less specific formulation or a new formulation.

Solution generation and reuse.

A generative process for developing solutions to problems is necessary to support computa-

tional exploration fHeisserman 1991]. The generation of partial solutions and navigation of

exploration paths must take into account the reuse of previous paths of exploration. Chien &

Flemming [1997] show that generated solutions provide a large space of alternatives. These

alternatives are part of a solution hierarchy, that is recorded in the design space and can be

rerrsed.

Choice making.

Choices made by designers during exploration avoid endless revision and resolve conflicts.

Smithers [2000] identifies choice points at the intra and inter algorithm level as crucial for

making choices. Chien & Flemming [1997] show that interaction models reduce cognitive

overload and facilitate choice making. Schön & Wiggins [1992] consider designing as a reflec-

tive conversation that involves the recursive processes of see'i,ng, mou'ing and seeing. They

contend that choices emerge out of the interaction between designing (acting) and discovering

(reflecting).

Exploration history.

The rationale of designing, processes of coordination, communication and control are cru-

cial to computing exploration. The rationale of exploration is captured through record-

ing of the intermediate states of designing. These intermediate states comprising alterna-

tives [Woodbury & Chang 1995ó], revisions fChien & Flemming 1997] and partial solutions

fWoodbury et al. 1999] support computational exploration.

Based on the entities: problems, solutions, choice, history; three abstract invariants in the field

of exploration are identified, namely state, moue and str"ucture. First, the representation of state

takes two forms, problem formulation states and the possible solutions to problems, design states.

I
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Second, initial, intermediate and final states frnd rei,fi,cat'iona in the exploration process through

the representation of moves. Moves enable problem formulation and reformulation, navigation of

solution states and the generation of new states. Together, state and move impose stmcture on the

exploration process. This structure is reified in the the grammar literature in the process of deriva-

tion. In the AI literature, history or rationale of exploration encodes the notion of structure in the

process of exploration. Thus, it follows from the requirements for supporting exploration that the

description of design spaces using formal mechanisms rests on the formulation of these abstract in-

variant concepts. These abstract invariants, state, move and structure reify the concept of a design

space, a structured space of exploration states. The design space is a multi-dimensional conceptual

space that models state transitions (state) through design change (moves) and records both design

moves and the resultant states (structure) fFlemming & Woodbury 1995]. In the context of this

study, the term design space is a structured space 'in whi,ch the problems, solution alternat'i,ues, the

euolut'ion of partial desi,gns and theirintermed'iar'i,es are captured, d,uring the process of desi,gning.

Given such a notion of a design space (stated in terms of state, move and structure) the scope of

the term erplorat'ion as understood in this thesis is defined as follows:

Erploration is synonymous w'ith mouement 'in a structured space of parti,al alternatiues, the de-

sign space, comprising state and structure.

Given the above, it is necessary to consider how designers interact with problems, solutions,

choices and history during exploration. To establish the nature and role of the designer, accounts

of interaction reported in the literature are reviewed in the next section.

L.2 Accounts of interaction

During designing, interaction in the form of communication, coordination and control between

the designer and the generative mechanism is necessary. Several paradigms for human-computer

interaction during designing have been proposed in the literature [Kochhar 1994]. An overview of

these paradigms and their applications are summarised as follows:

Manual Paradigms.

The user is responsible for all design decisions and the system is passive with respect to the

modelling process. Most CAD modelling systems fall in this category. Quadrel [1991] terms

the control policy of such systems a"s àL open policy, where no explicit model of control is

used. These systems also support constraint-based design wherein most of the modelling is
aTh" t".- reification signifies the process of mapping terminology used in the design exploration literature, such

as state and move into their formal analogues as developed in the thesis. Thus general concepts in the literature
can be connected to specific constructs within the formalism.
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done manuall¡ except that the system attempts to satisfi' a set of constraints [Borning 1977,

Borning 1981, Gross, Ervin, Anderson & Fleisher 1988] as a design evolves.

Automatic Paradigms.

The computer creates a design without human assistance [Mitchell, Steadman & Liggett 1976,

Galle 1-981, Flemming 1986]. These generative design systems have a programmatic flavour

and make limited use of direct methods for exploration. The system identifies shortcomings

of an emerging design, and can automatically modifu a completed design produced by the

human in order to improve it flMeitzman & \Mittenburg 1993]. The system makes critical

design decisions and takes active participation in modifying the design. Design support takes

the form of graphic inferences on partial input during design interaction with the user. Given

the absence of tools for building interfaces, interaction with spatial grammar interpreters is

through a command line or shell interface modelled on rule-based expert systems. Hence

textual or command interfaces between the user and the system are developed with facilities

for displaying, modifuing and transforming shapes.

Cooperative Paradigms.

The human designer makes design decisions while the system supports detailed design re-

finement, generates several design alternatives, and presents these to the human designer for

browsing [Friedell & Kochhar 1991, Kochhar 1994]. The system identifies shortcomings of

an emerging design and performs the role of a crit'ic by ensuring that the designer receives

feedback on the requirements of the design. Argumentation based systems [G. Fischer &

Morch 1988], such as JANUS [McCall, Fischer & Morch 1990] that utilise design rationale are

examples of this paradigm of interaction.

Mixed-initiative Paradigms.

Mixed-initiative provides a sound basis for interleaving tlire complementarities of human and

machine capabilities. Mixed-initiative interaction permits an integration of these comple-

mentary roles in exploration. Theories of mixed-initiative have been applied in the areas of

tutoring [Carbonell 1970, FYeedman L999], AI planning [Ferguson, Allen & Miller 1996, Fer-

guson & Allen 1998], scheduling [Horvitz 1999] and spoken language domains [Novick &

Sutton 1994, Smith & Hipp L994,Ishizaki, Crocker & Mellish 1999], the management and

coordination of software agents [Rich & Sidner 1998, Burstein, Mulvehill & Deutsch 1999],

building knowledge bases [Tecuci, Boicu, Wright & Lee 1999], collaborative problem-solving

[Eggleston 1999] and learning environments [Lester, Stone & Stelling 1999].
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L.2.L Interaction paradigms

Design support systems employ one or more of the paradigms to facilitate communication, coor-

dination and control between the user and the system. The exception being the mixed-initiative

paradigm. A detailed exposition of this paradigm and its potential for design support await dis-

cussion in Section l-.3 and development in Chapter 3. Before a discussion of mixed-initiative, it is

necessary to examine and identify interaction requirements for formal exploration. The paradigms

underlying user interaction with formal systems as published in the literature are reviewed in the

next sections.

Interaction with shape grammars

User interaction models [Woodbury, Carlson & Heisserman 1988, Heisserman & Woodbury 1993]

for grammatical design are a combination of the automated and cooperative paradigms. User inter-

action with grammar interpreters fCarlson, McKelvey & \Moodbury 199L, Chase 1989] offer varying

degrees of automation in the design process through mechanisms for augmenting state transfor-

mations. Heisserman develops a generative design system, GENESIS [Heisserman 1991, Heisserman

7994], that demonstrates interaction with a generative system based on boundary solid grammars.

Interaction with cpNpsIS involves the manipulation of data structures that represent a well formed

boundary solid representation augmented by labels and states. The exploration of the space of

designs is performed by a boundary grammar interpreter based on rule matching and shape re-

placement. Matches occur on labels and sub-graphs, while replacement is a sequence of operations

on the underlying boundary representation. cENESrs provides two layers of control over the deriva-

tion process through the application ofrules. In the first case, the interaction with the design space

is automated, the interpreter applies the set of rules without user intervention using a depth-first

each strategy. In the second case, the user can choose to apply each rule and make decisions at

branching points.

The manipulation of infinite subparts in conceptual design has been proposed as an interaction

technique by Tapia [1996] and interaction with shape grammars is demonstrated in the GEdit fTapia

1999] system. The ability of such systems to distinguish and recognise emergent shapes through

user interaction and interactive interfaces is addressed. Chase [1999] presents a comprehensive

analysis of interaction with grammatical systems. Chase describes a categorisation of interaction

techniques focusing on existing grammar system implementations. Furthering this analysis, Chase

12002) develops a formal model of user interaction for developing grammars and for exploring spaces

of designs. This model is essentially modelled on the cooperative paradigm described above. Chase

120021studies the degrees of interactivity or generativity underlying grammar systems and proposes

a formal model of user interaction to bring together the knowledge of how specific grammar systems

organise human computer dialogue. The formal model addresses the problems of how designers



1.2. AccouNTs oF TNTERAcTIoN 13

interact with shape rewriting systems. The model is presented in terms of stages, entities and

control. The stages of interaction correspond to the classical grammar development process. He

proposes a distinction between three sets of actors, the grammar developer, the grammar user and

the system. The model describes the modes of user interaction and the degrees of control possible

with such systems. He identifles the interaction features of grammar implementations as modal,

selection of control mode, rule deflnition, rule selection, object selection, presentation of results and

backtracking.

The process of developing a grammar comprises two stages) grammar development and grammar

application. Each of these stages involves the manipulation of the grammar by three entities, the

developer, the user and the computer system. An appropriate control scenario for a given grammar

application is constructed by mapping entities to stages. Three interaction scenarios are described.

As in the case of Tapia [1999], this model is specific to ruled-based shape grammars systems.

However, the interleaving of control between the system and the user as proposed in this work

provides a basis for developing formal models of interaction with grammar-based design systems in

the cooperative paradigm.

Interaction in Generative design

Models of user interaction have been used to support generation in the SEED [Woodbury et al. 1995]

research project. SEED-Config, a sub-module of SEED fWoodbury et al. 1995] supports three

dimensional schematic design of building forms and technical systems. Such derivation systems are

extensions of command interpreters and provide added functionality incorporating interactive user

interfaces.

These systems support intermediate states, the derivation paths, visualisation of states and path

branching. They employ direct mani,pulation for supporting generation and lay an emphasis on the

collection of states that define the solution space, usability and the mental model of the designer.

Direct manipulation interfaces [Shneiderman 1982, Shneiderman 1983] emphasise continuous object

representations, physical actions and the use of rapid, incremental and reversible operations. Direct

manipulation techniques [Hudson & Yeatts 1991, Shneiderman 1997] from user interface design are

a natural interface for design exploration tasks. Users control and manipulate the objects of interest

by interactively grabbing and pulling them.

Direct manipulation is used for interacting with grammar systems such as Tartan Worlds

[Woodbur¡ Radford, Taplin & Coppins 1992], a generative symbol gïammar systems and dis-

coverForm fCarlson & Woodbury 1994]. Harada, Witkin & Baraff [1995] and Harada [1997] employ

a direct manipulation technique for exploring "discrete/continuous models" based on the paradigm

of physically-based modelling fWitkin, Fleischer & Barr 1987, Witkin, Gleicher & Welch 1990].

sTartan Worlds gave the ability to directly manipulate designs and rules, but also provided the usual grammar

control. Its worlds tended to get out of control as they proliferated. Woodbur¡ 2003. Personal Communication.
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This technique is applied to the task of exploring design constraints interactively by direct manip-

ulation. The discrete changes within a continuous event loop are modelled as shape transformation

rules while continuity is handled directly by the users pull, push and trigger actions.

Once an exploration space has been mapped out by the underlying generative system, human-

computer interaction is an integral part of navigation. Chien & Flemming [1996] addresses the

problem of exploring layouts in interactive contexts. The cognitive overload imposed on the users

of generative systems during exploration is analysed and navigational cues introduced in Chien &

Flemming [1997]. This work employs the navigation or way finding metaphor arising in physical

and information spaces to address the problem of exploring design spaces. A navigation framework

for generative design systems and a software prototype for design space navigation are proposed

in Chien [1993]. The design space navigation framework facilitates the growth and traversal of the

design apace along five dimensions and maintains objects as well as relationships between them in

the space. A key feature of the framework is the use of physical cognitive cues to develop nodes

and landmarks in the space, derived from Lynch's [1960] study on imageability and way finding in

cities. The lessons from the work suggest that complex multi-dimensional spaces require effective

presentation and interaction through information navigation techniques. The emphasis on visuali-

sation of design space models and information navigation extend the research from purely formal

interaction to direct manipulation systems. These outcomes mirror the parallel developments in

user interface tools, the emphasis on usability and the advent of software engineering methodologies

for the design of human-computer interaction.

I.2.2 Characteristics of interaction

Human-computer interaction models form an essential component in developing computational

tools to support designing. Current models, theories and methods for exploration support manual,

automated and cooperative paradigms for integrating the user with the system. These models

adopt a "black-box" approach to user interaction, where communication, coordination and control

is based on the apriori division of labour between user and system. This division of labour separates

the tasks to be performed between the user and the system. Exploration is achieved either through

a formal generator or open-ended exploration driven by the user through some direct manipulation

interface. In these approaches, the integration of user actions is mediated by the appearance of

choice points in the generation, whose reference needs to be resolved. In the case of generative

design systems, exploration is primarily generator driven. When direct manipulation or designer

input is used, it is treated as a useful, but secondary support role. tr\rrther, interaction is stipulated

by a global control policy. For example, the user can choose one of a number of possible rules for

transforming the current state. The rules that apply in a current state remain under global control

of the formal mechanism.
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Strategies for the effective sharing of control and conflict resolution between the user and ma-

chine are necessary to support effective interaction. The mixed-initiative interaction paradigm can

model a more fine grained division of labour. For example, allocating and sharing responsibility

over the same task can be modelled by mixed-initiative. Further, mixed-initiative offers a more

flexible mechanism for control (acquire and relinquish initiative) between the designer and the for-

malism. To identifii how the mixed-initiative paradigm addresses these issues of joint responsibility

over the same task, fine-grained control through initiative and strategies for conflict resolution,

research on mixed-initiative interaction is reviewed.

1.3 Mixed-initiative interaction

The field of mixed-initiative interaction research continues to develop rapidly as new tools and

techniques are established. In the next sections, the current state of the art in mixed-initiative

interaction is reviewed.

The work on the mixed-initiative interaction paradigm can loosely be grouped into four classes

[Cohen, Allaby, Cumbaa, Fitzgerald, Ho, Hui, Latulipe, Lu, Moussa, Pooley, Qian & Siddiqi 1998].

First, initiative is seen as the process of shifting control of conversational dialogue between the

user and system. Second, initiative is seen as the coordination of joint responsibility for completing

shared tasks. Third, initiative is seen as the process of directing problem-solving goals in a domain,

combining aspects of both dialogue control and task coordination. Finall¡ initiative is defined as a

collaborative process, involving turn-taking through dialogue, tasks and goals. The differences and

similarities in these definitions are analysed by comparing a range of mixed-initiative application

areas from task-oriented planners to tutorial dialogue systems. These theories of mixed-initiative

[Cohen et al. 1998] have a natural progression of thought, from the perception of initiative as

a control of the conversation, through task coordination to more complex arrangements, where

initiative combines both dialogue control and task coordination. Initiative can be distinguished

further, allowing for collaboration, different strengths of initiative and for multiple threads within

a dialogue to be tracked simultaneously.

Allen, Ferguson & Schubert [1996] characterises mixed-initiative as the erchange of initiative in

a flexible, opportunistic manner, shi,fts in focus of attention to meet user needs and the provision

of mechanisms for maintaining shared implicit knowledge. Burstein & McDermott [1996] expand

these characteristics to include flexible u'isual'isatiory contert registration and task management

support for managing shared tasks.

Haller, McRoy & Kobsa [1999] examine several mixed-initiative systems and individual efforts

in designing mixed-initiative systems. These studies establish how the differing characteristics of

the application areas make one or more of these definitions of initiative more useful than others in

a specific context. To establish a definition of what constitutes mired-i,ni,tiat'iue, researchers have



1.3. MIXED-INITIATIVE INTERACTION 16

identified i,ni,ti,atiue with the control of rational dialogue, the coordinat'ion of shared tasks and the

collaboration between multiple autonomous agents, both human and computational.

Mixed-initiative has been used extensively in the planning domain, where users interact with

software agents to produce plans. The objective is to capture and creatively reuse the derivation

rationale underlying joint human and machine-based decision-making processes. Mixed-initiative

is shown to [Chu-Carroll & Brown 1998] achieve better plans than either the human or machine

can create alone.

Veloso [1996] and Veloso, Mulvehill & Cox [1997] employ mixed-initiative in planning to engage

the user in automated planning processes. Veloso uses mixed-initiative planning as a framework in

which automated and human planners interact to jointly construct plans. FoTMAT is a case-based

system that supports human planning through the accumulation of user-built plans, query-driven

browsing of past plans, and several primitives for analysing plan functionality. Prodigy/Analogy

is an automated AI planner that combines generative and case-based planning. Stored plans are

annotated with plan rationale and reuse involves adaptation driven by this rationale. They integrate

FoTMAT and Prodigy/Analogy into a real time, message passing mixed-initiative planning system.

The mixed-initiative approach consists of allowing the user to specify and link objectives that enable

the system to capture and reuse plan rationale. They discuss the integration of two large systems

through mixed-initiative planning.

The application of mixed-initiative is reported in the domain of scheduling [Ferguson et al. 1996].

The scheduling process requires flexible human involvement but complexity and time stress also

demand substantial automated support. Scheduling tools fCesta & D'AIoisi 1999, Kitano & Ess-

Dykema 1991] consider the implications of mixed-initiative in the design of scheduling algorithms.

Horvitz [1999] develops mixed-initiative user interfaces that enable users and intelligent agents to

collaborate efficiently. He demonstrates the role of mixed-initiative in the domain of scheduling

and meeting management.

Amant 17997 a) present the overlapping areas of research between mixed-initiative and interac-

tion. They combine the dialogue view of mixed-initiative with direct manipulation techniques in

the domain of abstract force simulation and exploratory data analysis. They focus on the ability

of an interactive environment to constrain and guide both automated agent behaviour as well as

human effort. This di,alogue-based framework unifies the different types of control and coordination

initiative supported by a multi-modal system. Building on this framework, they describe a naviga-

tional metaphor fAmant 1997b] for integrating direct manipulation with mixed-initiative planning.

In describing the domain of camera planning they state,

"... we want to support dynamic communication of task and domain information be-

tween the system and the user, with shared control of camera placement and orientation

and direction." fAmant & Cohen 1997]
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Models of mixed-initiative dialogue in human-machine interaction are based on formal models

of human conversation [Grice 1975]. Mixed-initiative dialogue enhances the richness of interaction

by allowing more complex forms of exchange between the user and the formalism. Mixed-initiative

specifies how a participant in the dialogue, either user or system, can seize or relinquish initiative.

Mixed-initiative models the movement along a conversational thread through a series of topics as a

fl,ow. T}ris theory identifies five types of movement operations along a conversational thread. They

are going forward, changing direction, stopping or pausing, closing or repeating and interrupting

[Cohen et al. 1998]. Mixed-initiative models enable flow management, namely using the current

type of movement operation to acquire or relinquish control of a conversational thread. This model

of mixed-initiative is used in the developed of dialogue systems [Walker & Whittaker 1990, Tsai,

Reiher & Popek 1999].

Carbonell [1970] describes a mixed-initiative tutoring system, which can shift between the stu-

dent asking questions and the user asking questions. Novick fNovick 1988] considers a dialogue

participant to have the initiative if the participant controls the flow and structure of the interac-

iion. \Mhittaker & Stenton [1988] and Walker & Whittaker [1990] equate initiative with control.

They argue that as initiative passes back and forth between the discourse participants, initiative

is transferred from one participant to the other. They devise rules for allocating dialogue control

based on utterance types, which include assertions, commands, questions, and prompts. They anal-

yse patterns of control shifts by applying their rules to a set of expert-client dialogues on resolving

sofbware problems. They note that the majority of control shifts are signalled by prompts, repet'i-

tions, or sum,maries, while in the remainder of the cases, control shifts as a result of. i,nterrupt'i,ons.

Two kinds of shifts are associated with the view of initiative as control over the flow of a conver-

sation. First, change of control among participants through shifts in dialogue in the case of flow in

the same direction. Second, shifts in dialogue signify a control shift when one of the participants

changes the topic of a conversation. Guinn's [1993] computational model of dialogue and Smith's

[1991] expectation driven model are two examples of formal mixed-initiative interaction models

used in dialogue-based expert systems.

FYeedman [1999] develops a plan-based dialogue manager, ATLAS and applies it in the domain

of tutoring systems. ATLAS is based on a hierarchical task network (urN) style reactive planner

to build tutoring systems. Mixed-initiative in ATLAS allows multi modal dialogue through the

integrating of natural language, text and graphics.

Ferguson & Allen [1994] investigate the coordination of tasks in the design of mixed-initiative

systems. The task-oriented coordination perspective of mixed-initiative has been robust, resulting

in a number of successful applications and systems, including TRAINS [Ferguson et al. 1996] and

TRIPS fFerguson & Allen 1998] in the domain of planning. Burstein & McDermott [1996] and

Burstein, Ferguson & Allen [2000] address the role of participants, user and system, in the planning

domain. The goal of mixed-initiative is
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"...to explore productive syntheses of the complementary strengths of both hu-

mans and machines to build effective plans more quickly and with greater reliability."

fBurstein & McDermott 1996]

Mixed-initiative also allows the possibility of ertended [Allen 1999] interaction, as a series of com-

mands, defining and discussing tasks and exploring ways to perform the task.

Ishizaki et al. [1999] examines the efficiency of mixed-initiative task coordination in a route

finding application. Tecuci et al. [1999] address the domain of knowledge engineering and reports the

application of mixed-initiative methods to the problem of knowledge acquisition. Their motivation

for mixed-initiative lies in the fact that manual solutions to the problem of building knowledge bases

is highly inefficient and automated systems for the same problem are impractical. They develop

mixed-initiative methods for knowledge base development in the DISCIPLE project and provides

experimental results on the feasibility of the approach. In uscpl,E, mixed initiative is used to

coordinate the tasks of rule learning, rule refinement and exception handling during knowledge-

based development. Tecuci et al. [1999] establish an expert-apprentice relationship between the user

and the agent, with mixed-initiative driving the learning process to support the task of knowledge

acquisition. Through mixed-initiative, the agent is able to acquire multiple learning strategies,

during the development of the knowledge base. In rising mixed-initiative for task coordination,

they observe that,

"There is the synergism between the different learning methods employed by the agent.

By integrating complementary learning methods (such as inductive learning from exam-

ples, explanation-based learning, learning by analogy, learning by experimentation) in

a dynamic way, the Disciple agent is able to learn from the human expert in situations

in which no single strategy learning method would be sufficient." [Tecuci et al. 1999]

Mixed-initiative in DISCIeLE presents two interesting conclusions. The first is the support

for knowledge acquisition, particularly the handling of incomplete knowledge bases that may be

evolving dynamically through shared task coordination between human and agent. The second is

the ability of the agent to use multiple strategies, particularly the ability to select a learning strategy

dynamically. Lester et al. [1999] rpply task-oriented mixed-initiative to develop constructionist

learning environments. They develop pedagogical agents that enter into conversational dialogue

with learners such that learners are able to actively participate in problem-solving exercises.

Mixed-initiative is a promising and productive model for interaction with formal systems. Its

promise for design exploration lies in the understanding that human and machine can be leveraged

more effectively through an integration of their complementarity. F\rrther, that dialogue is a more

effective technique for interaction than global policies for control (conflict resolution, error recovery).

Finally, that joint responsibility over shared tasks can lead to better outcomes (reliable, productive)

than pure division of labour.
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At this stage, it is not clear how mixed-initiative can be a useful model for supporting interaction

with an exploration system. The use of mixed-initiative interaction in supporting computational

exploration has not been researched and thus its usefulness or otherwise has not been established. In

order to investigate the possibilities of mixed-initiative in supporting exploration, the next section

posits the research hypothesis. The remainder of this thesis deals with the investigation of this

hypothesis for the integration of human and machine capabilities in design space exploration.

L.4 Research hypothesis

The research hypothesis of this study is based on two assumptions, both arising out of the review

of the research literature on design exploration. The first assumption represents a statement of the

current state of research in developing design space description formalisms for supporting explo-

ration. The second assumption is a statement of the current state of research in understanding the

role of interaction in design exploration. Given the validity of these assumptions, the research hy-

pothesis is a statement of the new ground that is covered in this thesis, The assumption underlying

the research hypothesis are as follows:

7. The process of erplorati,on can be fortnally encoded with a desi,gn space descripti'on formali,sm.

The description formalism specifies a set of initial states, a set of state transforming operators

or moves and a structure underlying the collection of states. Chapter 2 describes such a design

space description formalism. This formalism encapsulates an explicit theory of computational

agency vested in the system. Hereafter, this theory is termed desi,gn space erploration.

2. Integrati,ng the role of the designer in computational erplorat'ion with, a description formali,sm

requires an'interaction mod,el.

As shown in this Chapter, interaction models provide a mechanism for introducing human

design intent into the process of exploration. An interaction model provides a systematic

exposition of how communication, coordination and control strategies enable a designer to

interact with a formal system.

Given the above, the thesis that is investigated in this study is as follows:

That a mired-ini,ti,ati,ue mod,el of interacti,on presents a promising new a,pproach for integrati,ng

the roles of the user and the descri,pti,on forrnal'ism'in computat'ional erplorat'ion.

Mixed-initiative is a promising nev/ paradigm for integrating the designer with a description

formalism. It is the intention of this study to demonstrate that mixed-initiative is an effective way

to integrate the role of the designer in computational exploration.
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Chapter 3 describes the requirements necessary for introducing mixed-initiative in the formal

process of exploration. Design space exploration requires sophisticated bi-directional modes of

communication, coordination and control between the designer and the description formalism.

Mixed-initiative can address these requirements.

Part II develops a new model of interaction based on mixed-initiative to support design space

exploration. This model addresses coordination, communication and control between the user and

the formalism. Chapter 7 develops an implementation of this model. The role of the designer,

the role of the formalism and the use of mixed-initiative in exploration are discussed through an

example from the domain of architectural design.

Summarising, exploration is understood as movement in a space of problems and solutions,

combining both formal search and human guidance. Following from the above, a model of human

computer interaction for design space exploration based on mixed-initiative is formulated to address

the role of. both user and formalism for supporting exploration. This model is implemented in a
prototype system and demonstrated through an example taken from the domain of architectural

design.

1.5 Summary

The process of exploration can be formally encoded with design space description formalisms.

Design space exploration requires a model of interaction that integrates formal generation and the

actions of a human designer.

Formal systems require interaction models to enable human designers to work with exploration

algorithms. Mixed-initiative is a possible candidate for addressing the interaction of the user with

description formalisms during exploration. Three abstract invariants, namely state, moue and struc-

ture are identified to characterise design space exploration. Flom the perspective of the designer,

representation of state takes two forms, problem formulation and the possible solution states. Ex-

ploration moves uncover initial, intermediate and final states, supporting problem formulation and

reformulation, navigation and the generation of states. State and move impose structure on the

exploration process, captured in the concept of a design space. Chapter 2 describes an exploration

formalism through a detailed formulation of these concepts for computational exploration.



Chapter 2

An exploration formalism

This chapter explains how the entities of exploration, namely, state, move, structure are reified in

a formalism for design space exploration based on typed feature structures.

2.1 Entities of exploration

Design space exploration with description formalisms can be modelled as a form of mouement in a

structured space of designs. The theory of design space exploration [Woodbury et al. 1999], posits

a formal substrate for computing exploration. The formalism fiMoodbury et al. 1999, Burrow &

\Moodbury 1999, Woodbury et al. 2000] employs and develops extensions to, Carpenter's [1992]

typed feature structures to account for intermediate states, exploration moves and an ordering over

explored states.

The representational device of feature structures [Knight 1989, Kasper & Rounds 1990] and

attribute ualue logic fPollard & Moshier 1990, Franz k Jrg 1994] known from linguistic theories

of generation and from the constraint programming literature underpin the logic of typed feature

structures. The logic of typed feature structures brings together unification based approaches to for-

mal grammar in computational linguistics research. For readability, formal definitions, terminology

and syntax arising out of its application to design space exploration are given in Appendix A.

As a representation, typed feature structures are similar to frame-based fMinsky 1975] and ter-

minological knowledge [Borgida, Brachman, McGuinness & Resnick 1989] representation systems.

The analogy between feature structures and knowledge representation schemes comes from asso-

ciating a collection of features or attributes with each node or frame. Each feature represents a

slot label and the arcs themselves point to the flllers, creating a network of associations. Feature

structures comprise a set of nodes, each of which is labelled by type information.

The key concepts of the description formalism relevant to the aims of the thesis are explained

by mapping the entities of state, move and structure onto their symbol level representation in the

description formalism. This mapping enables a clear exposition of the symbol substrate in terms

2t
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of the entities of exploration. The exposition of the description formalism is organised as follows:

Representation of exploration states.

The formalism supports the representation of an exploration state through the concepts of

types, features, descrþtions and feature structures. In Section 2.2, the representation of

exploration states in the design space exploration formalism are described.

Ordering of exploration structure.
The structure of exploration is represented through the ordering relation of subsumption. The

concept of an ordered design space underpins the description formalism. In it, the collection

of exploration states are ordered by the relation of subsumption. In Section 2.3, the ordering

of exploration structure through subsumption is described.

Algorithms for computing exploration moves.

Exploration moves are cast in terms of moves in a design space upwards or downwards in

an information ordering. The formalism provides a set of operators for the generation of

new exploration states, modifi.cation of existing states and movement between states. In

Section 2.4, the representation of exploration moves in the design space exploration formalism

are rlescribed.

The exploration entities and their mapping onto the description formalism machinery is shown

in Figure 2.1.

Figure 2.1: The exploration entities, state, structure, moue are mapped onto the description for-
malism.

2.2 Representation of exploration states

The formalism represents exploration states through three elements from the feature structures

machinery. These elements are a type hierarchy, a set or sets of feature structures and a descrip-

tion language for specifying constraints on types and structures. Types comprising ? stand for

domain knowledge of the allowable universe of discourse expressed in terse form. Structures from

State Feature Structures

Move lnference

Subsumpt¡onStructure



2.2. REPRESENTATToN oF EXPLoRATIoN srATEs 23

.F'represent exploration states, in this case, physical and conceptual attributes associated with the

design of buildings. Descriptions from D are constraint expressions in a formal attribute-value

description language. Descriptions are used for problem formulation, constraints on types and

generated structures. The relationships described here are shown in Figure 2.2. Descriptions are

constraint expressions that correspond to problem descriptions [Woodbury et al. 1999, p 293]. The

generation of structures from descriptions is handled by zr-resolution, which awaits discussion in

Section 2.4.1. The following sections develop each of these concepts supporting the representation

of exploration states.

types

structurês

-resolution

Figure 2.2: Types features, descriptions and the relationships of subsumption and unification show-

ing the computation paths in the scheme. Types stand for domain knowledge. Structures represent

models of particular designs.

2.2.L Types and features

Types order design information in natural classes, similar to the role of concepts in terminological

knowledge representation systems [Borgida et al. 1989, Patel-Schneider, McGuinness, Brachman,

Resnick & Borgida 1991]. The inheritance hierarchy is an ord,ered, collection of types, organised by

an inheritance relation based on type inclusion. Types are organised into a multiple inheritance

hierarch¡ in which information associated with a type is extended in inheriting types, i.e., an

informational ordering. Types are arranged hierarchically such that a subtype inherits all the

information from its super types. A type hierarchy is a bounded complete partial order, or BCPO.

Since type declarations are flnite, this amounts to the restriction that every pair of types that

have a common subtype have a unique most general common subtype. The existence of consistent

joins and a most general type, ensure that the inheritance hierarchy of types is a BCPO. The

incorporation of types in a feature-based formalism enriches feature logic with the polymorphism

and multiple inheritance known from object oriented data models [Cardelli & Wegner 1985]. The

BCpo type hierarchy, (TAp", f ), provides a scheme of individuation for classifying knowledge based

Oescriptions -\

\,
sùbsumptioo
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Figure 2.3: A representation of the entities in type hierarchy. The types stand for domain knowledge

on atomic properties encoded in types. Types in the'BCPo can range from the degenerate type

model, with one type [Carpenter 1992, p 52], to infinite order types [Chang 1999].

As an illustration, Figure 2.3 shows the knowledge level concepts of SEED (discussed in Sec-

tion 1.1.1 and shown in Figure 1.1), are mapped onto a type hierarchy. The example type hierarchy

comprises twelve types. The universal type is declared as the unique most general type and repre-

sented as l. The universal type is shown at the base of the type hierarchy and is called bottom.

The type bui,ldi,ng has subtypes functi,on-uni,t and design-uni,t The type technology is a subtype

of both these types. The relation of sub typing is transitive and the derived transitive sub typing

relationship is anti-symmetric. This means that there should not be two distinct types each of

which is a subtype of the other. Types are used to represent the concepts of opslcN-uNl'r and

FUNCTIoN-uNIT. The type funct'ion-uniú is subtyped into three types, namely function, house

and sfc-house1. The design-unit is subtyped into geometry and massing, while the technology is

subtyped into wall and wall-mass'ing.

Further, maximal types and primitive data types can easily be incorporated in a type hierarchy.

This is shown in Figure 2.4. Since the ordering of types in this type hierarchy is a BCPo, the lattice

operations, .lorN and MtrtrT are available over (TAp", f). For every set of types with a common

subtype, there is most general common subtype or join. JoIN, (Li) provides the most general

common specialisation of two types. MEET, (n) infers the most specific common generalisation of

lThe term ttsfctt stands for "single-fronted cottage", a common traditional building type in Australia. The single-
fronted cottage is used as an example to illustrate the mechanics of typed feature structures and design space

exploration [\Moodbury et al. 1999].



2.2. REPRESENTATIoN oF EXpLoRÂTroN STATES 25

efc houêe

eEc

massrng cenEre position

heighE poínt

acalar

btype Iayout inLeger s 1zebríef

versa l

Figure 2.4: Another example of an inheritance hierarchy of types (TAp",l)

any two types.

Types contain attributes called features drawn from a set of named attributes, Feat. The value

of a feature is functi,onal rather than relat'ion¿l. This imposes a single-value restriction on features

fCarpenter 7992, p 34]. A partial feature value function, ô, enforces this unique value restriction

on features. Types and features are related through appropriateness specifi,cat'ions. An appropri-

ateness specification over the inheritance hierarchy (TAp", f) and features Feat must meet the two

conditions of feature i,ntroduct'ion and upward, closure. The formal definition of these conditions is

given in Appendix A, Definition 1. Appropriateness conditions disallow inconsistent features by

declaring which attributes are appropriate for a given type and which types are appropriate for

a given attribute2. Intro(f) is the most general type for which the feature is defined. Upward

closure ensures that any type that is appropriate for a feature in a type ,4 is at least as specific as

the types that are appropriate for the features of subtypes of .4. An example of the introduction

of features to types and the resulting type hierarchy satisfiiing the appropriateness conditions is

shown in Figure 2.5.

Summarising, in the design domain, types denote knowledge about empirical objects under

refinement and elaboration operations. The hierarchy of types provides the fundamental ordering

relation in the encoding of types. Features represent the atomic or complex attributes of the objects

2A detailed discussion of appropriateness and typing, is provided in [Carpenter 1992, p 86]
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Figure 2.5: An example of types showing how features are introduced, marked with * and their
inheritance by subsumption.
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that constitute a partial design. The inheritance hierarchy over types models conceptual design

information about empirical design entities and the constraints between them.

2.2.2 Descriptions

Descriptions are constraint expressions specifled in an attribute value equational language. The

description language [Carpenter 7992, p 52] is given over the collection Type of types and Feat of

features is the least set Desc such that:

- every type is a description,

- a path followed by a description is a description,

- two paths equated form a description,

- two paths disequated form a description,

- descriptions can be combined with the logical operators and and or, forming conjunctive and

disjunctive descriptions respectively.

Descriptions provide a lower bound of speciflcity on the represented object. In the design

space description formalism [Woodbury et al. 1999], descriptions represent problem statements

and constraints on types. Like features, constraint expressions may be associated with types.

Expressions associated with types impose recursive and logical constraints on types in the type

hierarchy3. In addition to feature and type inheritance, constraints on more general types are

inherited by their more specific subtypes. Constraints on types are expressed in the description

language, in the form of an implication, ø ¿ S. Structures that carry the type ø must satisfy the

constraint /, which is a description.

Description may be satisfled by no structure, a flnite number of structures or an arbitrarily large

collection of feature structures. In designing, this is analogous to the statement that a requirement

may have no solutions, a finite number of solutions or an arbitrarily large collection of solutions.

Each structure that totally satisfies the description is called a sat'i,sfi,er of the description.

In the domain representation, it is sufficient to note that a constraint system is available for

providing additional restrictions and relations to types. The arrangement of types by subsumption

allows subtypes to inherit constraints from super types. A system of type constraints, stated

in the form of descriptions and a constraint system is a total function Cons : Tgpe ------+ Desc

fCarpenter 1,992, p 228).

3See the use of recursive type constraints described in lCarpenter 1992, p 2281
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2.2.3 Feature structures

The ability to model partial information and intentional propositions is crucial in supporting de-

signing. Feature structures bring the key properties ofintentionality, partialness, structure sharing,

and cyclicity to the representation of exploration states. A feature structure represents all that can

be known about a domain object at some particular stage of computation, an exploration state.

Thus a feature structure representation of an exploration state must be and is partial and inten-

tional. An exploration state, represented as a feature structure, can be made more or less specific

through inference operations. Through intentionality the existence of two states with the same

information does not imply that they are the same state. Fbrther, two distinct feature structures

can represent exactly the same information.

A feature structure consists of two pieces of information and a relation between them. Firstly,

every feature structure has a type drawn from the inheritance hierarchy, (TAp",f). Secondly, a

feature structure is a finite, possibly empty, collection of feature:ualue pairs. A feature value pair

consists of a feature and a value, where the value is either a type or a feature structure. AII nodes

are connected by directed arcs denoting features. One node is designated as a root node. Figure 2.6

shows a feature structure graph for a feature structure of type entity with features, MASS-trt and

cEoM. These features have as their values two sub structures of type massing and type geometry.

-@J"-nn ,.@'u'u"

propqty.:o-{øtitv
\ l.eo

,, ÂÍReE

'\12).,
v gðmqry þ-ro,,

Figure 2.6: An example of a feature structure

A path-based notion of feature structures [Carpenter 1992, p37] enables the traversal of more

than one feature at a time. A path is a sequence of features. Let Path : Featx be the collections of

paths, zr be an element of Path, then ô(n,q) is the node that is reached by following the features in

the path zr from q. Figure 2.6 shows a feature structure in graph form. Nodes represent types and

arrows represent features. The node colour: õ(tr,q) where q is the node entitg and zr is a path

comprising a sequence of features such that, 7r : MASS-EL: PROPER'IIES: COLOUR.

In addition to partialness and intentionality, feature structures support the sharing of struc-

ture. In Figure 2.6, tt-:e node labelled property, is shared by two paths, r¿ : TTjt where zr¿ :
MASS--EL: pROpEIìjTIgS and nj : GEOM: ATTRIBU'IES. Structure sharing in the representation of
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exploration states permits the elimination of redundant states. A formal description of the prop-

erties of feature structures is given in Appendix A.

Satisfaction

Feature structure collections and their descriptions are equivalent and are related through a satis-

faction relation. The satisfaction relation, þ: .F ---+ Desc is defined with reference to descriptions

[Carpenter 7992, p 53]. Every feature structure is the rr¿osú general satisfi,er or MGSat of a disjunc-

tion free description [Carpenter 1992,p 56]. A description is said tobe sati,sfi,ableif it is satisfled

by at least one structure. A description þ entails a description tþ if every structure satisfying /
also satisfies ry'. Two descriptions are logicallg equi,ualenú if they entail each other, or equivalently,

if they are satisfied by exactly the same set of structures. A description is a reference to its most

general satisfiers and thus implies a possibly empty set of pairwise incomparable feature structures.

The satisfaction relationship between descriptions and feature structures can be stated formally

in terms of the functions MGSat and MGSats. Given the set of all feature structures .F, for

disjunction free descriptions, NonDisjDesc there is a surjection MGSat : NonDisjDesc ---+ F. If a

description is disjunction free, the named set will either be empty or contain only mutual alphabetic

variants. The inclusion of disjunction into descriptions implies that there may be multiple distinct

satisfiers. Formally, for the set Desc, of all descriptions MGSats : Desc -- 2f identifles sets of

feature structures that are either pairwise incomparable or alphabetic variants. In other words, if a

feature structure satisfies a description, then every feature structure that it subsumes also satisfies

the same description [Carpenter 1992, p 55].

Unification

Underlying design space exploration is the sole generative mechanism of uniflcation. During

exploration, unification extends a query description with respect to a type constraint system

[Woodbury et al. 1999, Woodbury et al. 2000]. Unification [Shieber, Uszkoreit, Pereira, Robin-

son & Tyson 1983, Shieber 1984, Shieber 1986] is an inference operation that computes the result

of combining two pieces of information. Feature structure unification produces the most general

feature structure that contains all of the information in its two arguments4. The unificati,on of

feature structures f' and f'l, written F I Ft, is a conjunction that incorporates the collections of

feature paths in -F and .F-l as well as their types. Informally, unification seeks the most general

feature structure that is more specific than either operand.

The result of design unification can be taken as a new, more complete object that is consistent

with the objects represented by the argument features. As an inference operation, unification

aln constraint logic programming fsmolka & Aït-Kaci ].989, Ait-Kaci, Podelski & Smolka 1992, Ait-Kaci & Cosmo

1993], unifi.cation is the central algorithm for the resolution offeature logics.
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constructs the most general specialisation of two design states or fails if the structures represent

inconsistent information. The unification of two design states is represented by a feature structure

containing neither more nor less information than the information represented in the states being

unified. Given two states, A and B, unification, written Al B, produces a third state C subsumed

by both A and B if such a state exists, otherwise unification fails.
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Figure 2.7: Ãn illustration of feature structure unification: the bottom feature structure is the

unification of the lefï and right feature structures [Burrow & Woodbury 1999].

In the example shown in Figure 2.7, the feature structures represent the decomposition of a

building design: the nodes denote building entities and the edges denote functional roles in the

design. By characterising feature structures as representations of partial design information, it is

possible to consider both examples as partial representations of some flnal design. The unification

of two design states simultaneously decides whether some object may exist which is consistent with

the two functional decompositions. If so, unification provides an informationally minimal design

state combining the information in each state. Figure 2.7 depicts two simple states which are the

operands and resultant state of a uniflcation operation. The resultant shows the new root node

and the inclusion of new feature path values from both operands.

2.3 Ordering of exploration structure

The informational ordering over types is extended to exploration states by the subsumption relation.

Subsumption as a formal inference operation is widely used for reasonings. The subsumption

ordering relation can answer what superclass a given class has according to its set of attributes.

In the context of the exploration formalism, subsumption is a relation of implication which relates

more specific to more general states of exploration. Thus, like inheritance over types, subsumption

sFor example, description logics llambrix 1996] provide a reasoning operation called subsumption. Subsumption

also provides a powerful tool for case-retrieval and standards processing lHakim & Garrett 1993].
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deflnes a partial ordering over exploration states (feature structures). This ordering of feature

structures is represented as a directed graph6. The hierarchical graph defined by subsumption

over feature structures is such that a child node may have more than one parent node. The

exploration formalism provides a structuring relation based on subsumption to order collections of

exploration states. This ordering relation provides an invariant structure to the design space. Here,

the subsumption relation may be seen as a generalisation relation. Thus, in a given design space

structured by subsumption, a subsumer state expresses a generalisation over the subsumed state.

In it, two design states (and recursively their subparts) are related if one subsumes the other, that

is, if one contains strictly less information than the other. This subsumption-based design space

structuring mechanism is reported in Burrow's [2003] thesis. The key feature of this structuring

mechanism is that the subsumption relation captures a more generic relation than the derivation

relation that structures the spaces of designs generated by a grammar. A detailed view of this fact

is set out in [Woodbury et al. 1999].

Formall¡ an exploration state represented by a feature structure F subsumes another F/, written

F a Ft , if and only if: for every path n defined in F, n is defined in f'l and the type at n in F

subsumes the type at zr in f'l; and for every pair of paths zr and zr' defined in F, if r and rl
identify a single substructure in -F then zr and rt identify a single substructure in Ft. Thus, the

subsumption relation f is a pre-ordering on the collection -F of design states. The subsumption

relation is transitive and reflexive, but not anti-symmetric, since two states can mutually subsume

each other.

sb

úh

Figure 2.8: A pair of simple feature structures in a subsumption relation lWoodbury et al. 1999]

Figure 2.8 depicts a pair of simple feature structures in a subsumption relation. In the example,

the bottom state of a design subsumes the top two because every functional role in the first is present

in the second. Every object fulfilling multiple functional roles in the first fulflls a superset of these

roles in the second. Finally, for every functional role identified in the first the object fulfilling

this role in the second is of a matching or more specific type lWoodbury et al. 1999, p 296]. One

__tc
sh

6See Appendix A.
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advantage of representing the structure of such an ordered collection of design states is decidable

subsumption. Deciding subsumption, that is, whether F ç F' can be accomplished in time linear

to the size of -F. [Carpenter 1992, p42]. The formal machinery underpinning the design space

description formalism is summarised in Figure 2.9. zr-resolution captures the satisfiability relation

from descriptions to the satisfiers and is discussed in Section 2.4.1.

inherit¿nce

types

Desc

unification describability

structures descriptions

subsumption -resolution

satisfiability

Figure 2.9: Types features, descriptions and the relationships of subsumption and unification show-
ing the computation paths in the scheme.

2.4 Algorithms for exploration moves

Over the three elements, types ?, structures -F and descriptions D, are posed inference algorithms

fo generating, modifying and traversing exploration states. Based on these algorithms, a set of com-

posable operators, namely, incremental zr-resolution, indexing and path reuse, design unifi.cation,

design anti-unification and hysterical undo are proposed for computing exploration. Rule-based

derivation as known from grammar-based theories of generation are replaced with these compos-

able operators [Woodbury et al. 2000].

2.4.I Incremental z--resolution

The process of generating partial structures from a description is formalised in the resolution

procedure, P, called zr-resolution. This is illustrated in Figure 2.2. The generating procedure

(q)

Cons
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P captures a relation from descriptions to structures P : D ---+ F. Incremental zr-resolution is

developed by Burrow [2003] as a special case of the general approach to zr-resolution described in

Carpenter [1992, p 227-242]. See Appendix A for a formal definition of incremental zr-resolutionT.

In design space exploration, incremental zr-resolution is the computation of exploration states

compatible with a given set of types and a given description. The procedure formalises the notion

of generation where (partial or complete) structures are resolved into more specific structures.

Woodbury et al. [1999] and Woodbury et al. [2000] develop this view of incremental zr-resolution

for the generation of intermediate exploration states.

The mechanics of incremental zr-resolution represents each step of resolution fBurrow & \Moodbury

1999]. The resolution procedure P acts incrementally by generating partially resolved structures,

called partial satisfiers, with respect to the initial input description, D. Given the query de-

scription D, incremental zr-resolution is the search across a sequence, ^9 of feature structures

Ps Z P1 a P2 a . .. f P¡, that, at least partially, satisfy the description. The resultant fea-

ture structure P¿ in each sequence is the most general satisfier of the query description. The

process of generating partial satisfi.ers is expressed as a sequence of resolution steps. Each sequence

records the resolution of a type constraint explicitly.

F F,

T,L

Figure 2.10: The generating procedure, zr-resolution captures a relation from descriptions to the
satisfiers and is the main generative mechanism in the system. The resultant feature structure in
each sequence is the most general satisfier of the query description [Burrow & Woodbury 1999].

Each element of ,S extends its predecessor by unification with a type constraint. Since most

general satisfiers may occur as collections and unification may fail, the search for resolved feature

structures involves a collection of sequences. The zr-resolution algorithm maps descriptions into

sets of feature structures that satisfy them, taking into account a type hierarchy, including the

recursive type constraints defined within it.

The mechanism of incremental ¡--resolution in the context of design space exploration is shown

in figure 2.10. The primary generating procedure, P begins with an initial query description D.

The argument zr selects the substructure, and the argument ú selects the constraint to resolve.

JFt

7l

TSee Carpenter's [1992, p 231] definition of zr-resolution.
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The deflnition of a step includes restrictions that ensure resolution steps are goal directed and well

ordered against the type hierarchy. Namely, that ú be a super type of the type at zr and that all

types more general than ú are already resolved at r'. The execution of a step involves unification

at the substructure.

The satisfaction of the description generates a collection of sequences of partial satisflers, S.

Each step of resolution now explores the consequences of extending members of the sequence ,S. To

support exploration, the incrementality of the generating procedure now requires user guidance at

two levels. First, support for the selection of a partial satisfier from the sequence, ,S and second,

the selection of the type constraint to resolve against. Interaction with the zr-resolution operator

is described in Section 6.2.2.

2.4.2 Indexing and reuse

Indexing and reuse, incorporating the retrieval of previous paths of exploration, are supported in

the description formalism. The movement operations based on incremental zr-resolution described

in Section 2.4.1 maintain information integrity and consistency in design space. Retrieval and

adaptation mechanisms suggested by the exploration formalism are structured by efficient compu-

tations in the mechanism based on the properties of describability, satisfiability, unification and

subsumption. Hence, it is possible to recover the results of previous paths of exploration in a

systematic manner. Indexing operates on two levels. First, the recall of paths corresponding to

the type of the current node. In this case, the type of the node acts as an index to retrieve past

exploration paths. Second, this operation deals with tracing the exploration hi,story associated

with the current exploration state in the design space. Indexing and reuse are by-products of the

underlying subsumption ordering. In the second case, reuse corresponds to exploring the evolution

and history of the current state stated in terms of the paths of exploration. This operation allows

the reuse of previous exploration paths through the function path(n). Through this operation,

feature structures denoted by any path in the exploration can be retrieved for reuse. For example,

as shown in Figure 2.1"L, the darker nodes represent earlier commitments into the design space.

When the feature nodes indicated by the lighter segments are explored, the previous commitments

are available for reuse based on the subsumption ordering.

In the description formalism, both cases and their indices are indistinguishable from a structure.

Thus, case retrieval is achieved through navigation and query over the subsumption ordering of

exploration states. Case adaptation is achieved through reuse of a path from one thread of explo-

ration in another. A detailed discussion of indexing and reuse of cases through the mechanics of

typed feature structures is set out in f.Woodbury et al. 1999, Woodbury et al. 2000].



2.4. ALGoRITHMS FoR EXPLoRATIoN MovEs 35

Figure 2.11: Indexing and reuse are by-products of the underlying subsumption ordering. For

example, the darker nodes represent earlier commitments into the design space. When the feature

nodes indicated by the lighter segments are explored, the previous commitments are available for
reuse based on the subsumption ordering [Woodbury et al. 2000].

2.4.3 Hysterical undo

Conventional design support systems provide undo, delete mechanisms as means of information

removal. Undo is the reversal of the last operation performed. Delete applies to a selection and

removes objects from persistent memory. History is used as a rudimentary form of version control

over the recorded list of operations. In generative systems, erasure is provided by substitution or

transformation rules that replace or transform a more detailed symbol set with a more abstract one.

The notion of hysteri,cal undo in subsumption based exploration addresses the need for dealing with

information removal in a monotonically structured design space [Woodbury et al. 1999, Woodbury

et al. 2000].

The ltysteri,cal undo operation is a novel backward navigation technique. In a subsumption-

based representation, removal corresponds to the uncovering of more general states in the implicit

design space. Thus, the state from which information is removed remains unchanged in the design

space while the designer's perspective shifts to an altered, less speciflc state. A discussion of

the motivations for such a concept of erasure in a subsumption ordered design space is reported in

fWoodbury et al. 2000]. Briefly, the notion of information deletion during exploration corresponds to

a composite operation involving path retraction and type reduction. If a commitment is referenced

by a single path, it may be deleted by retracting that path. This has the effect of purging the object

and reversing the forward refinement operation performed by incremental zr-resolution. Since, the

reversal is performed on a currently selected context, this form of erasure can be performed across

the width of the design space. The interest in using erasure as a form of movement in design space

becomes apparent when removal results in multiple possible states (there may one or more than
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one state) to move to. Figure 2.12 shows the resulting space that might be uncovered by such an

erasure operation. If a current object is referenced by a multiple paths, only one of the paths may

be retracted, and the user presented with a set of features that may be retracted to a previous

state.

o
O

(") (b)

Figure 2.12: Exploration through information removal. The sequence of nodes indicate a path of
exploration in (a). The application of the erasure operation on the current node yields a number
of possibilities, shown in (b) [Woodbury et al. 2000].

2.4.4 Design unification

(u) (b)

Figure 2.13: Exploration by combining partial designs. Unification extends the two derivation
paths, shown in (a). An explicit join of those paths, results in a new node that combines the
information of both these paths, shown in (b) [Woodbury et al. 2000].

The combination of two partial satisfiers representing designs is another form of movement

operation available in design space. This combination is performed through the operation of des'ign

unifi,cation. Unification plays an internal role in zr-resolution as the sole information combination

mechanism. At that scale of operation, over closely related feature structures, it is a highly efficient

operation. Since unifica,tion is rlefined with respect to the orclered collection of feature structures
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as a, least uppe'r' bound, it is also possible to conceive uniflcation as a formal means of combining

two partial satisfiers [Woodbury et aI.2000]. Figure 2.13 illustrates what is meant by design

uniflcation. Given two derivation paths, the desi,gn unification of the two partial satisfiers is the

result of combining the derivation steps of each path into a single partial satisfier containing the

union of design commitments in the two operands. When a combination of paths is consistent with

the information expressed in the type system, then design unification extends the two derivation

paths to create an explicit join of those paths.

2.4.5 Design anti-unification

The recovery of the common features in two partial designs is another form of movement operation

available in design space. This operation is the inverse of design unification. Anti-unification is

defined with respect to design space as the most specific feature structure generalising the operands.

Thus, the result of an anti-unification operation over two partial satisflers in design space is a

movement to a partial satisfrer representin g tlne greatest lower bound of the first two satisfiers. Since

there is a single greatest lower bound no backtracking or reordering is required. By definition,

exploration states in design space are guaranteed to deflne a greatest lower bound. The search

simply tests each derivation step for satisfaction by both operands. The result of this operator is

the conjunction of the shared derivation steps, which in the extreme case is simply the minimal

exploration state subsuming the operands. Figure 2.14 illustrates the workings of the design anti-

unification movement operation.

(") (b)

Figure 2.14: Exploration by design anti-unification. The two distinct paths of exploration are

shown in (a). The most general specialisation of the two paths, computed through anti-unification
is shown in (b) [Woodbury et al. 2000].



2.5. SUMMARY 38

2.5 Summary

This chapter describes how the entities of state, move, structure identified in chapter 1 are formally

represented in a description formalism. Typed feature structures provide the formal substrate for a

design space exploration formalism. First, the formalism supports the representation of exploration

states. An exploration state retains the feature structure properties of intentionality and partial-

ness. Second, the collection of exploration states, the design space, retains an invariant structure

based on subsumption. Significantly, this ordering is decidable in linear time and supports several

movement operations over design space. Third, the description formalisn supports a set of com-

posable operators, namel¡ incremental zr-resolution, indexing and reuse, design unification, design

anti-unification and hysterical undo for generating, navigating and modifying exploration states.

Given this representation of state move and structure in a description formalism, the requirements

for user interaction with the design space exploration are addressed in the next chapter.



Chapter 3

Mixed-initiative Interaction

In this Chapter, the requirements for a model of interaction for computational exploration are

developed. These requirements are addressed through a mixed-initiative formulation, interleaving

human guidance with the design space description formalism. The mixed-initiative paradigm of

interaction, identified in Section 1.3, presents a promising approach for addressing user interaction

with the description formalism. The mixed-initiative interaction model is addressed through the

following layers, a representation of the domain! a communication layer for dialogue between the

user and the formalism and operations for performing the úøsks associated with exploration.

3.1 Interaction with a description formalism

An interaction model addresses communication, coordination and control issues arising out of

interaction between a designer and the formal substrate of the description formalism.

Figure 3.1: An interaction model integrates the user and the description formalism.

The description formalism clescribecl in Chapter 2, provides a rigorous formal substrate for

39
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Typed Feature Structures
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supporting the entities of exploration, state, moue and structure. To define how designers may

employ the entities of the substrate at the user level, a model of interaction, as shown in Figure 3. 1

is necessary. In addition to these, the requirements for communication, coordination and control

of the exploration process are addressed through an interaction model.

3.1.1 Unfolding design spaces

Before identifying the requirements for an interaction model for exploration, an explanation of

the conceptual nature of interaction envisioned in this thesis is necessary. Recall that exploration

comprises interaction with the formal substrate: states, structure and moue. The integration of

the human designer with a formalism requires a uniform treatment of the role of the user and the

formalism in exploration. To characterise this conceptual integration of user and formalism, the

term unfoldi,ng is introduced in the thesis. Unfolding is defined here as the interactive process

of exploring design spaces such that user actions and formal moves are seamlessly integrated.

Unfolding as a metaphor thus refers to the exploration of design spaces, without distinguishing

between users, human or formalism. Throughout the thesis, the term is used in a metaphorical

sense and thus not defined formally.

For example, exploration can proceed by formal moves as well as user moves. In the context of

exploration moves, unfolding can be further subdivided into generation, nauigat'ion and synchro-

nisation. A detailed description of the characterisation of unfolding in the context of exploration

moves is given in Section 6.1. A concrete discussion of the scope of the term, unfolding as used in

the thesis is covered in Section 8.2.3.

To foreshadow its use in the study, the term unfolding simply refers to the conceptual metaphor

of interaction that integrates (or does not distinguish between) a human designer with the machinery

of formal exploration. Henceforth, the use of the term unfolding refers to the conceptual binding

of machine and human capabilities for design space exploration. A specific realisation of unfolding,

a mixed-initative interaction model for design space exploration, is developed in this study. The

requirements of this model of interaction are described in the next section.

3.L.2 Requirements

An interaction model for design space exploration must address the following requirements:

- Connect the designer's view of the exploration domain with the formal substrate.

The formalism supports the representation of an exploration state through the concepts of

types, features, descript'ions and feature structures as explained in Section 2.2. The interaction

model must enable the designer to access these constructs in the substrate.

Currently, the major role of the user in the domain is in two areas. First, type hierarchy

specifications which encode doma,in knowleclge into the description formalism. Second, in
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the authoring of descriptions that define problems to explore in the context of the former.

F\rrther, a clear distinction emerges between the creation of the type system by the user,

the authoring of descriptions and the exploration of the implicature of descriptions by the

formalism. To address the above, the interaction model proposes to extend the role of the

user into the process of seeking goals during exploration.

The designer's view of exploration sits above the formal machinery. The interaction model

must address how these are connected. At the substrate, both problems and solutions are

reduced to exploration in terms of state, move and structure. Therefore the interaction model

must provide support for the designer in problem formulation, solution generation, choices of

alternatives and interaction with exploration history.

- Support the designer in the tasks of computing exploration.

The inference algorithms of unification and constraint resolution provide entry points for

developing interactive exploration operations. In particular, the incremental nature of the in-

ference algorithms enables the designer to generate, navigate and modify intermediate states.

The interaction model must enable the user to access the formal operations for computing

exploration described in Chapter 2. A set of interaction level concepts that define and frame

the exploration moves through mixed-initiative combining the designer's view with the formal

movement operators is necessary.

- Facilitate communication and coordination between the designer and the descrip-

tion formalism.

The user and the formalism must be able to communicate during exploration. Commu-

nication is enabled through information sharing and exchange. These must be supported

through input and output mechanisms in the interaction model. During exploration, input

and output may take multiple modalities. For example, spoken input, typed commands or

the direct manipulation of graphical symbols. All modalities of input can be interpreted in

a common symbolic representation. The same applies to different modes of output, whether

generated speech, natural language explanations or graphical visualisations. Mixed-initiative

must support the requirements of compensation during dialogue, for example, allowing the

formal generator to compensate for errors in user input or vice versa.

The interaction model must address how coordination between the user and the formalism is

handled during exploration. Both user and formalism must have the flexibility to acquire or

relinquish control ofexploration tasks during exploration. A control strategy for coordinating

the tasks of exploration must be supported in the interaction model.
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3.1.3 The role of mixed-initiative

The role of mired i,ni,tiatiue for addressing the requirements for interaction are addressed. In the

context of the discussion in Section 3.1, mixed-initiative presents a paradigm,

for combi,n'ing a hurnan designer and a descripti,on formali,sm through the speci,fica-

ti,on of commun'icat'ion, coord,ination and control of the erplorati,on process.

Through mixed-initiative, designers can acquire initiative to provide context-dependent or

situation-specific domain information that may be difficult to encode apriori in real-time problems

for exploration. The description formalism is able to take or relinquish initiative during interaction

to perform automated processes and repetitive tasks. The formalism can structure, provide access

to and elicit formal knowledge from human designers. The formalism can archive the results of

exploration, access records of past explorations, generate design rationale and documentation. To-

gether, the designer and the formalism can share responsibility over tasks, recover gracefully from

errors, reformulate problems and prune unproductive paths of exploration.

Mixed-initiative inleract¡on model

Figure 3.2: The components of a mixed-initiative formulation for interaction between the user and

a description formalism.

To address the above, a three-layered model is developed for interactive exploration. The layers

of the interaction model are shown in Figure 3.2. Each layer plays a distinct role for addressing

the requirements for mixed-initiative exploration.

Domain Layer.

The designer's view of exploration and its connection to the formal substrate in the interaction

model require the development of a doma'in layer. The role of mixed-initiative in the domain

Iayer, the extensions necessary to implement mixed-initiative and the role of the domain layer

in the interaction model are described in Section 3.2.

Task Layer.

Ttre taslc layer aims to implement a specification for the tasks of exploration by integrating

user interaction with the design space exploration t'ormalism. 'lhe role of mixed-initiative in

Domain

Dialogue Exploration FormalismUsef

Task
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the task layer, the extensions necessary to implement mixed-initiative and the role of the task

layer in the interaction model are described in Section 3.3.

Dialogue Layer.

The di,alogue Iayer aims to implement a common basis for extended interaction between the

designer and the formalism. The role of mixed-initiative in the dialogue layer, the extensions

necessary to implement mixed-initiative and the role of the dialogue layer in the interaction

model are described in Section 3.4.

3.2 The Domain Layer

The d,omazn layer implements the glue that connects designer level constructs (collectively identified

as the entities of exploration) with parts of the description formalism that realise these constructs

in the formal substrate. The domain layer contains the primitive entities about the application

domain such as concepts, attributes, roles and relationships as seen from the designer's view of

exploration. This view is less concerned with the formal speciflcation of internals and more with

the existence of objects and the external hooks necessary to support interactive exploration. In the

following sections, the attributes of domain initiative, the extensions necessary for implementing

domain initiative in design space exploration and the role of the domain layer are described.

3.2.L Attributes of domain

The literature on mixed-initiative reviewed in Section 1.3. Mixed-initiative is an effective paradigm

for addressing the process of directing problem-solving goals [Cohen et al. 1998] in a domain of

discourse. Through mixed-initiative, the user and the formalism can share responsibility over

domain goals. For example, Rich & Sidner [1997] and Rich & Sidner [1998] demonstrate a domain

level collaboration through an interface agent that works on a plan with its user. Veloso [1996]

and Veloso et al. 11997] employ a shared representation in the planning domain. Both automated

and human planners are able to interact and construct plans jointly. Smith & Hipp [1994] propose

a common meaning representation to achieve goals in natural language dialogue through mixed-

initiative. Guinn [1996] considers initiative over mutually shared goals and how goals are solved by

the participants (agent and human) in spoken dialogue systems.

Mixed-initiative over a domain goal requires both humans and automated software to share a

representation of the domain of discourse. Such a common meaning representation over the domain

enables users and computational agents to share domain knowledge and therefore collaborate on

achieving goals jointly through interaction. In the description formalism, this implies an interaction

layer that can connect the designer's view of the domain with the symbol level constructs available

for computing exploration. In the next section, the extensions necessary for achieving a common
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meaning representation of the domain of discourse are discussed.

3.2.2 Extensions

Thus, the domain layer puts in place a set of interaction level concepts that define the designer's

view of the domain of discourse. Recall the designer's view of exploration, identified in Section 1.1.2.

This view comprises an account of problem formulation and solution generation. The description

formalism does not distinguish problem from solution. Formal exploration abandons the prob-

Iem/solution division, replacing it simply with states of exploration that may be either problems or

their solutions. At the knowledge level, the distinction remains very meaningful. The interaction

model must be able to bridge the gap between the knowledge level formulation of the designer's

view of the exploration domain and the symbol level substrate of the description formalism. User

exploration requires an explicit representation of the design requirements to be satisfied. The solu-

tions that satisfy some or all of the requirements are then generated from the initial deflnitions of

the problem. Therefore the designer must be able to decompose the problem into subproblems, re-

vise the initial problem, formulate a new problem or reformulate the existing problem. In addition

to working with problems, the designer must be able to revise and reformulate problems interac-

tively and dynamically during exploration. The system must be able to assist the designer in the

generation of solutions that satisfy the requirements and present these solutions to the designer in

a structured manner. Thus user exploration encompasses the formulation of requirements and the

generation of solutions based on these requirements. The structure of exploration is represented

through the ordering relation of subsumpti,on. The concept of an ordered design space underpins

the description formalism. In it, the collection of exploration states are ordered by the relation

of subsumption. In Section 2.3, the ordering of exploration structure through subsumption is de-

scribed. The subsumption ordering over the collection of partial satisfiers provides an entry point

for navigating the design space of partial satisfi.ers. Choices, their connections and the developing

history of explicitly discovered design alternatives must be accessible to the designer through inter-

action with the structure of exploration. The interaction model must provide the designer with a

view of design space structure. FYom the designer's perspective such a model must capture at least

the elements of the history of design exploration. As Burrow & Woodbury [2001] argue) history

is necessarily the primary device for supporting exploration. In their account, a trajectory records

the co-option of design features and their assignment to roles. The designer must be able to exploit

this history through navigation and recombination of the paths of exploration. In the description

formalism, subsumption preserves information specificity relations in design space. The interaction

model must provide an account of the intentional choices made by the designer during problem

formulation and solution generation. Thus support for navigating the history of exploration is

necessary.
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The domain layer provides a sound representation of problem states, partial designs, choice-

making and exploration space. These constructs encapsulate the entities of exploration from the

designer's perspective and connect the designer to the formal substrate. Following the discussion

of interaction requirements and the extensions necessary to address these requirements above, the

role of the mixed-initiative domain layer in the interaction model for design space exploration is

discussed.

3.2.3 Role of the domain layer

The role of the domain layer in the mixed-initiative model of exploration is as follows

Designer's view of the domain.
Explicit support for the user by supporting the designer view of exploration in the form

of problems, solutions, choices and history. The domain layer provides concepts for the

representation of problems, their reformulation and the generation of alternative solutions

from the user's perspective. This shared representation acts as a layer of mediation between

the user and the formalism. The common representation of the domain layer mediates between

the designer's view of exploration comprising problems, solutions, choices and history; and a

design space representation aimed at efficient generation, indexing and recall.

Joint responsibility over goals.

Joint responsibility over domain goals is a major requirement of the mixed-initiative paradigm.

The domain layer enables both the designer and the formalism to maintain context and share

responsibility over goals in the domain of exploration. The description formalism supports a

generic view of exploration. The domain layer allows the designer to tailor this machinery to

specific goals in a domain of discourse.

The detailed development of the domain layer of the mixed-initiative interaction model address-

ing the above is developed in Chapter 4.

3.3 The Task Layer

The taslc layer addresses user access to the formal operations for computing exploration as described

in Chapter 2. The task layer puts in place a set of interaction level concepts that define and

frame the exploration tasks through mixed-initiative combining the designer's view with the formal

movement operators. In the following sections, the attributes of mixed-initiative in the task layer,

the extensions necessary for implementing task initiative in design space exploration and the role

of the task layer in interactive exploration are described.
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3.3.1 Attributes of task initiative

The coordination of tasks based on mixed-initiative interaction reviewed in Section 1.3 is reported

in a number of applications. In the domain of planning, the TRAINs [Ferguson et al. 1996] and

TRIPS [Ferguson & Allen 1998] implementations demonstrate how mixed-initiative coordinates tasks

between the user and system using joint responsibility over a shared task. Mixed-initiative task

formulation enables domain goals to be achieved more quickly and with greater reliability [Burstein
& McDermott 1996]. Tecuci et al. [1999] report the application of mixed-initiative to the task of

knowledge acquisition in knowledge engineering. They note that manual solutions to the problem of

building knowledge bases remain highly inefficient while purely automated systems for the task are

impractical. Mixed-initiative provides a feasible alternative combining the advantages of manual

and automated methods. Novick & Sutton [1997] develop a multi-factor model of initiative where

choice of task determines what the conversation is about and choice of outcome allocates the

decision or action necessary to achieve the task. Task initiative provides a number of benefits in

realising interaction with formal systems.

First, it enables a productive syntheses of the complementary strengths of both humans and

machines. The mixed-initiative formulation enables a combination of human and machine compe-

tencies over a shared task. Joint responsibility over a shared task is more productive than a pure

division of labour between user and machine. Through mixed-initiative, brute force portions of a

single task can be allocated to the machine, and soft tasks such as conflict resolution, error recovery

and compensation are allocated to the human. Second, mixed-initiative enables a more robust and

efficient framework for achieving goals than that possible through a purely automated or purely

manual approach. Third, the goals to be achieved in a domain may have incomplete specifications,

change dynamically, and evolve simultaneously with the execution of the task. In such situations,

mixed-initiative in the task layer permits the human or the system to allocate or cede control of a

task or initiate a new task based on changing goals.

In the description formalism, this implies an interaction layer that can distribute an exploration

task over two components, the designer's level and the symbol level operators. In the next section,

the extensions necessary for achieving a common meaning representation of the domain of discourse

are discussed.

3.3.2 Extensions

As outlined above, a set of formal operators for computing exploration tasks is supported in the

formalism. To employ them in exploration, the movement algorithms need to be stated in terms

of the designer's domain of discourse. The extensions necessary to implement mixed-initiative

in the task layer are divided into three principal constructs, namely, generation, nau'igation and
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synchron'isation. The generation task corresponds to the process of constructing problems, reformu-

Iating problems and generating partial solutions from these problem statements. The description

formalism provides the machinery necessary for representing the generative process through the

incremental zr-resolution algorithm. Incrementality of this process provides an entry point for

incorporating the designer into the process of zr-resolution. The construction of problems, their

reformulation and the generation of partial solutions are addressed in the task layer.

The navigation task corresponds to retracting attributes of a partial design and making choices

on possible alternatives. The description formalism provides the machinery for representing al-

ternatives through disjunctive descriptions. These alternatives introduce non-determinism into a

purely formal exploration process. The formulation of navigation in the task layer permits the use

of mixed-initiative in resolving exploration non-determinism. Through mixed-initiative, the user is

able to select one of a number of possible alternatives that arise from formal resolution.

The ability to exploit the structure and history of designing is an important task in supporting

exploration. The synchronisation task covers the process of indexing and reuse of exploration

results. Through mixed-initiative the designer is able to access the formal movement operations of

recall, hysterical undo and the unification or anti-unification of two partial solutions.

Mixed-initiative in the task layer must permit the user to access the formal exploration opera-

tors, integrate system-driven and user-driven moves and enable the user and the formalism to share

joint responsibility. During exploration, system-driven moves represent the formal operations for

moving in design space. Designer-driven moves represent operations that access and compose the

moves available in the symbol substrate.

The task layer provides a sound representation for sharing the tasks of generation, navigation

and synchronisation over problem states, partial designs, choice-making and exploration space.

Each of these constructs encapsulate a task of exploration from the designer's perspective and

connect the designer to the formal moves available in the formalism. Following the discussion of

interaction requirements and the extensions necessary to address these requirements above, the role

of the mixed-initiative task layer in the interaction model for design space exploration is discussed.

3.3.3 Role of the task layer

Mixed-initiative provides a formulation of the the role of the user, the role of the formalism in

generating, navigating and synchronising the results of exploration. The conjunction of the tasks

of exploration at the level of design intention with formal moves of exploration is developed in the

task layer of the mixed-initiative model. This layer allows the designer to exchange, compose and

coordinate a range of exploration tasks in association with the formal movement algorithms. The

role of the task layer in the mixed-initiative model of exploration is as follows:
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Support construction and reformulation of problems.

The task layer incorporates the user in the construction of problems, and the generation of

partial solutions. The domain layer provides concepts for the representation of problems, their

reformulation and the generation of alternative solutions from the user's perspective. In the

task of generation, interaction comprises the speciflcation of problems and the incremental

generation of partial solutions.

Support navigation of problems and solutions.
The user must be able to navigate both problem states and partial satisfiers. Navigation

corresponds to interaction with the operations for movement along paths of exploration. The

task layer supports the ability of the designer to make choices at branch points in exploration.

Support synchronisation of exploration results.

The designer and the formalism must be able to synchronise previous exploration paths. The

task layer supports the synchronisation of exploration results between the designer's actions

comprising problems, solutions, choices and history; and the description formalism tasks of

indexing and reuse, undo, unification and anti-unification based on the history ofexploration.

The mixed-initiative task layer for supporting exploration is developed in Chapter 6.

3.4 The Dialogue Layer

The dialogue layer provides support for communication, coordination and control of an exploration

process between the formalism and the designer.

In the following sections, the attributes of mixed-initiative in the dialogue layer, the extensions

necessary for implementing dialogue initiative in design space exploration and the role of mixed-

initiative dialogue in interactive exploration are described.

3.4.L Attributes

The key notion underpinning dialogue representation in mixed-initiative interaction is conversa-

tional structure. Communication and coordination between the user and the system is established

through a shared representation of discourse. A common representation of dialogue enables the

participants in the dialogue to negotiate reference and confirm mutual understanding. A conver-

sational model of dialogue enables the possibility of ertended interaction [Allen 1999] between the

user and the system. Grice's [1975] maxims of rational conversation is one such formulation. The

Iiterature on conversational structure is large and its review is beyond the present scope. It suffices

here to have a model suitable for organising mixed-initiative interaction with a computer. For this,

rational conversation is a good model and Grice an exemplar.
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Grice [1989] observes that human dialogue is characterised by rationality, cooperation, common

purpose and direction. He states,

"Our talk exchanges do not normally consist of a succession of disconnected remarks,

and would not be rational if they did. They are characteristically, to some degree at

Ieast, cooperative efforts; and each participant recognises in them to some extent, a

corrrrnorr purpose or set of purposes, or at least a mutually accepted direction." fGrice

1e8el

Based on this observation of human conversation, he formulates a set of conversational maxims.

The first is quali,ty, implying truthful and accurate information. The second is quant'ity, neither

more nor less information than is required for the dialogue. The third is relat'ion, only information

appropriate to the task is considered. Finally, rnanner, clear and unambiguous information is

necessary for conversation. Grice's model of rational conversation forms the basis for addressing

communication, coordination and control issues in the interaction model.

The concept of turn-taking is based on shifiing, tracking and allocating a thread of control

among dialogue participants, machine and human. Novick & Sutton [1994] propose a computational

model of dialogue that utilises meta-locutionary acts, such as give-turn, clarify, and confirm-mutual.

Rich & Sidner [1998] use mixed-initiative to acquire and transfer control during dialogue between

a collaborative interface agent and its user. Chu-Carroll & Brown [1997ö] and Chu-Carroll &

Brown 1L997 al present a model for tracking initiative in dialogue between participants. Hartrum

& Deloach [1999] propose two types of turn-taking in mixed-initiative dialogue, transactional and

incremental. The transaction-based model corresponds to a single query request and the response

to the query. The incremental model corresponds to several agents, sharing and writing data to a

common resource. The computational agent displays the information on the screen and dynamically

updates it as other agents (human and computational) submit incremental changes.

3.4.2 Extensions

This section sketches how the attributes of mixed-initiative dialogue are addressed in the dialogue

layer of the interaction model. The dialogue layer must support communication and coordination

between the designer and the formalism. Representing the input and output modalities of dialogue

between the user and the formalism is a key requirement of mixed-initiative in the dialogue layer.

The user or the formalism must be able to communicate and coordinate the input and output

modalities during dialogue. The input and output modalities of the description formalism are

clearly defined in the terms of the formal substrate. Descriptions and partial satisfiers, the base

representation of input and output from the formalism are, ipso facto, given in terms of feature

structures. The dialogue layer must provide an account of the input and output modalities of the

designer. A common representation that can unify both modalities of exploration is necessary.
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A transparent exposition of the modalities of the formalism in a visual manner is one way

of expressing and integrating the input and output modalities of both user and formalism. This

approach is similar to the work of Piela [1989] in the ASCEND modelling system [Piela, McKelvey

& Westerberg 1993]. Ascplto provides a visual and direct manipulation interface for developing

and testing incremental constraint programs in the domain of process engineering. In the rcp

project lZeller & Snelting 1995, ZelIer 1997] an interactive front end enables the user to construct

configuration threads through the addition and modification of configuration constraints. The Oz

Explorer [Schulte 1997] is another visual constraint programming tool for supporting the user driven

development of constraint programs. A tree visualisation of the constraint problem is the central

metaphor for exploration of any constraint node in the tree. The user can tailor and program user

guided search engines over this tree for the development of constraint programs. FpcRalvtpo fKiefer

& Fettig 1995] employs a fully interactive front end that presents the user with a customised view

of feature structures. This feature structure editor can be used for developing and maintaining

feature structures in constraint based systems. The dialogue layer realises mixed-initiative through

a shared visual representation of input and output modalities that is accessible to both user and

formalism. This mutually shared context enables the negotiation of reference and provides the glue

that binds user actions with the formal substrate.

Given a sound representation of communication and coordination, it is necessary to address the

sharing of control over the thread of exploration. An incremental model of turn-taking between the

user and the formalism enables both participants in dialogue to acquire, shift and allocate control

of the exploration process. The dialogue layer must support a robust structure of turn-taking

between the user and the formalism. Admitting Grice's conversational maxims, a tight coupling of

user actions with the formal substrate is one way of implementing a control model based on turn-

taking. Incrementality and turn-taking enable the best joint interpretation of input and output

modalities between the designer and the formalism during exploration.

3.4.3 Role of the dialogue layer

Mixed-initiative in the dialogue layer provides support for communication, coordination and con-

trol of exploration between the user and the formalism. Communication and coordination during

exploration are addressed through the representation of dialogue. Control of the exploration pro-

cess is addressed through a model of turn-taking based on rational conversation. The role of the

dialogue layer in the mixed-initiative model of exploration is as follows:

Support the representation of dialogue.

A representation of the communication and coordination of input and output between the

designer and the formalism. A transparent exposition of the input and output modalities of

the formalism is one way of representing dialogue.
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Support the integration of dialogue.

A model of turn-taking integrates dialogue between the designer and the description formal-

ism. Through turn-taking, control of a thread of exploration can shift between the user and

the formalism. The role of the incremental model of turn-taking is to enable both the user

and the formalism to acquire, relinquish, shift and allocate control of the exploration process.

The mixed-initiative dialogue layer for supporting exploration is developed in Chapter 5.

3.5 Summary

This chapter identifies the requirements necessary for developing a model of interaction for compu-

tational exploration. To address these requirements, the mixed-initiative paradigm of interaction

is proposed for supporting design space exploration. A three-layered mixed-initiative interaction

model for integrating user interaction with the design space exploration formalism is developed. In

this model, the role of the user is explicitly realised and connected to the formal substrate through

the three layers, d,oma'i,n, taslc and dialogue. Each layer occupies a distinct role in implementing

mixed-initiative and addresses the requirements for the mixed-initiative interaction model. The

domai,n layer provides the glue that connects designer level constructs (collectively identified as

the entities of exploration) with parts of the description formalism that realise these constructs in

the formal substrate. The task layer weaves the user with the exploration operations of the de-

scription formalism. The d,i,alogue layer provides a common basis for extended interaction between

the designer and the formalism. In Part II of this thesis, each of the layers of the mixed-initiative

interaction model for design space exploration is developed.
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Part II: Mixed-initiative design space exploration

"Our larger interest in mixed-initiative planning systems grov¡s out of some observa-

tions of the strengths and weaknesses of both human and automated planning systems

as they have been used.... Humans are ... better at formulating the planning tasks....

Machines are better at systematic searches of the spaces of possible plans..."

Ferguson and Allen [Ferguson & Allen 1994, p 441.

Part II develops a mixed initiative model of interaction based on the requirements of mixed-

initiative for supporting design space exploration. It posits the developments of interface level

constructs in each layer of the model. The notation of the unified modelling language, uMl, is used

to describe each construct, its connection to the concepts in the formal substrate and its role in

mixed-initiative exploration. The exposition is broken into three Chapters as follows:

- Chapter 4 describes the domain layer of the mixed-initiative interaction model. Four do-

main constructs corresponding to problems, solutions, choices and exploration history are

developed. The connection of these constructs to the description formalism are described.

- Chapter 5 develops the dialogue layer of the mixed-initiative interaction model. A single

construct, the visual feature node is described. This construct encapsulates communication,

coordination and control between the designer and the description formalism. The interaction

logic necessary for the dialogue layer of mixed-initiative interaction is addressed through a

visual notation for representing feature nodes graphically. Interactions with design states

through the direct manipulation of visual feature nodes is described.

- Chapter 6 presents the task layer of the mixed-initiative interaction model. The task layer

comprises a collection of interface level constructs for facilitating exploration in terms of the

tasks of construction, navigation and synchronisation of exploration states. The integration

of exploration tasks with the movement operators in the description formalism is described.



Chapter 4

A mixed-initiative domain layer

This chapter describes the domain layer of the mixed-initiative interaction model. As proposed in

Section 3.2, the domain layer captures the designer's view of exploration and ties this view to the

formal substrate of the description formalism.

4.L Representation of the domain

FYom the designer's perspective, the representation of the domain must account for and connect

onto the concepts with which the design space formalism are conceived. A difficulty of explanation

arise in this task. The elements of the domain layer collapse into and find explanation in the sparse

symbol-level machinery below. One formal device in the substrate serves several concepts in the

domain layer. To address these difficulty, it is necessary to maintain three levels in the exposition

of the domain layer: the designer's view of the components of exploration, the formal substrate

underpinning these views and finally, domain layer concepts that map the user level concepts onto

the formal components of the design space formalism.

4.L.L The designer's view of exploration

The designer's view of exploration, identified in Section 1-.L.2, comprises an account of problems,

solutions, choices, their connections and the developing space of explicitly discovered design alter-

natives. The designer's model of exploration comprises problems, solutions, choices and history

(their connections and the resulting explicit design space). The problem formulation and reformu-

lation cycle, the solution generation and reuse cycle, the intentional choices of the designer and the

rationale of exploration in the form of a history are captured in this view. The representation of

the designer's view is shown in Figure 4.1.

Looking up to the designer's model, the domain layer accounts for the major entities of explo-

ration as understood in designing, namel¡ problems, solutions, choices and history. Looking down
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Solut¡ons

Figure 4.1: The designer's view of exploration can be captured through a representation of the
following entities, problems, solutions, choices and history. The problem formulation and reformu-
lation cycle, the solution generation and reuse cycle, the intentional choices ofthe designer and the
rationale of exploration in the form of a history are captured in this view.

to the formal substrate, the domain layer calls on the formal machinery to compute the tasks of

exploration asked of it by the designer's model. In this fashion, the domain layer captures both the

intentionality of the designer and is fundamentally tied to the rigours of the description formalism.

The constructs in the domain layer corresponding to the designer's view of exploration and their

relations are explained in the next section.

4.L.2 Domain layer constructs

Figure 4.2: Mapping the designer's view of exploration to constructs in the domain layer

The first task is to map each of the exploration entities into a corresponding construct in the

domain layer. As shown in Figure 4.2, this mapping, which corresponds to the domain layer,

captures the designer's view of exploration in a knowledge-level representation. The representation

acts as an intermediary between the exploration entities and the underlying formal machinery

of typed feature structures. This mapping into an intermediary representation comprises four

components, namely, problern state, solution state, feature node and satisfier space.

The domain constructs in the mapping are defined as follows:

Solutiong

F*luÞ NodsCho¡æ8

Saliôli€r SpacsHlBtory
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Problem state.

A problem state corresponds to the designer's view of problem formulation. The problem state

connects to the formal substrate and supports reformulation. This construct is explained in

Section 4.2.

Solution state.

A solution state corresponds to the initial, intermediate and final designs satisfying a problem.

The solution state connects the designer's view of a solution to its representation in the

formal substrate. The solution state supports generation and reuse and these are explained

in Section 4.3.

Feature Node.

The connections between a problem and its possible solutions (partial or complete) are en-

capsulated in a feature node. A feature node composes a problem state and the uncovered

(possible) solutions to the problem state. Through this composition, the feature node repre-

sents the intentional choices made by the designer. The feature node connects to the formal

substrate and supports choice-making, reformulation, generation and navigation during the

exploration process. These are explained in Sectiot 4.4.

Satisfier space.

The intentionality or rationale of exploration expressed by the designer's movement during

exploration are captured by the satisfier space. The satisfler space is composed as the collec-

tion offeature nodes. The satisfler space connects to the formal substrate concept of a design

space. Since, satisfier spaces contain ancestor and progeny feature nodes, a feature node is

referred to as a Satspace Element, in the context of satisfier space. The satisfler space records

exploration history and the choices made by the designer. These are explained in Section 4.5.

These constructs capture a designer model of exploration without imposing the algorithmic

and symbol level implications of the formal substrate. Problems become problem states. Solutions

become a relation between problem states and partial sat'isfi,ers. Choices become feature nodes.

Exploration history is captured in a sati,sfieï- space. However, it is necessary to explain these at

a second level, that answers to both the designer's model and to the formal substrate below. In

the next section, the mapping from the domain layer constructs to the symbol structures of the

underlying machinery is made explicit.

4.1.3 Mapping to description formalism

To enable mixed-initiative, it is necessary to build intermediary relations between the components of

exploration and the symbol structures that represent them. The formal concepts of types, features,

constra'ints and descriptions, explained in Chapter 2, provide the basis for realising the domain layer
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constructs of the interaction model. Mapping the designer's view onto the typed feature structure

machinery is the basis for the manipulation of types, features, structures and descriptions.

This mapping between the designer's view of the entities of exploration and the formal concepts

that enable its computation is crucial to supporting mixed-initiative in the domain layer as described

in Section 3.2.3. This layer enables the shifiing, allocation and tracking of domain initiative in the

interaction model through the intermediary concepts outlined above.

The designer's view of exploration are linked into substrate concepts using domain layer concepts

described above. To clarify these linkages between domain layer concepts and the underlying

feature structure machinery, a path notation is used. This notation provides a concise handle to

illustrate how domain concepts reach onto the typed feature structure machinery. The intention of

the notation is two-fold. First, to achieve a uniform description of all aspects of the domain layer.

Second, to use domain layer constructs as a filter through which only the relevant parts of the typed

feature structure machinery can be seen. The path notation comprises the following elements,

Dornain layer construct.

This element captures the four domain layer constructs. A Problem State is signified by the

element, PState. A, Parti,al Sati,sfi,er is represented as PSat. A Satspace Element is a Fnode.

A Satisfier Space is a SatSpace.

Path connector.

A connection between domain layer constructs is indicated by the path connector, represented

by ".", The connections to the substrate are indicated by the path symbol, ":". Through

the path connectors, access to the relevant parts of the typed feature structure machinery,

through the domain layer constructs is clearly shown.

Substrate concept.

This element captures the constructs in the underlying description formalism onto which the

domain layer constructs are mapped. They are represented by TFSConstruct, the prefix (úTFS"

indicating that they belong to the description formalism.

Through the above notation, the mapping between the domain layer constructs and the under-

Iying formal machinery of typed feature structures is clearly established. Given the preponderance

of technical terms in the formalism, the path notation is used to clarify the distinctions between

layers whenever necessary. At all other times, symbol level concepts are taken to imply an expo-

sition at the formal substrate level, while domain layer terms are taken to imply an exposition at

the level of the designer.

The mapping from the domain layer to the description formalism is visually stated through the

ultl- notationl in Figure 4.3. The domain layer mediates between a designer model of exploration

lThe uul,, (Unified Modelling Language) notation is used throughout the thesis to express concepts and their
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Figure 4.3: Mapping domain layer constructs to the underlying formal substrate of the design space

exploration formalism.

comprising problems, solutions, choices and history; and a design space representation aimed at

efficient generation, indexing and recall. In the domain layer, Problem State represents a design

problem. More specifically, the notion of a problem is cast in terms of the machinery of design

space exploration, namely, constraint collections written in the form of descriptions. Soluti,on State

corresponds to partial design solutions. More specifically, the notion of partial, intermediate and

final solutions to a problem is cast as the collections of partial satisfiers of a description. Further,

Feature Nod,e rnodels the connection between problems and the solutions uncovered by designer

choices during exploration. This construct introduces the intentionality of the designer into the

domain and is crucial for mixed-initiative in the domain layer. Finally, Sati,sfier Space models the

history of design exploration as recorded in the collections of feature nodes.

These constructs are developed in greater detail, following a three level exposition, the designer's

view, the symbol substrate, and the mapping of the two based on the domain layer. The intention

of the exposition is to make transparent the granularity of mixed-initiative in the interaction model

at the domain layer.

4.2 Problem State

4.2.L The designer's view

To a designer, problems comprise both design requirements and desired properties of an artifact.

Problems may be hierarchical, that is in addition to requirements and properties they may comprise

sub-problems, which themselves may be similarly recursive. Designers revise problems as aspects

relationships in a visual format. To facilitate the reader, a consise summary of the uul notation is given in
Appendix B.
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of a design situation reveal themselves through exploration, the conception of the actual problem

being solved may change. In a designer's problem space, work is done by a combination of problem

formulation (specifying (adding) requirements, attributes and sub-problems) and problem revision

(removing or modifying the same).

4.2.2 The symbol substrate

At the substrate, no distinction is made between a problem and a solution. This bears explanation.

Unlike knowledge level designs such as that of SEED [Flemming & 
.Woodbury 

1995] described in

Section 1.1.1 such distinctions neither exist, nor are meaningful in the formal substrate once the

particular mapping to typed feature structures is made. For example, from the perspective of

problem specification, a requirement for daylighting might be stated in different revisions of the

problem as the requirement itself, the specification of a certain area of transparency in a part of the

building envelope, or as a window design itself. In terms of future exploration for a solution, each

of these would act in exactly the same way, that is, as a constraint on the explorations that the

system can enact. At the model level (the designer's level) this blurring of the underlying formal

bounds is addressed through constructs that distinguish between problem and solution.

At the symbol substrate, problems are specified through two main constructs of the typed

feature structure mechanism: a type hierarchy and a description. First, the design requirements,

specifications and properties of an artifact to be designed can be specified by the elements of the

lnheritanceHierarchy2. The speciflcation of a problem amounts to the construction of an inheritance

hierarchy of types, a collection of feature declarations introducing and appropriate for those types

and constraints on types. Thus, the speciflcation of the type hierarchy implicitly constitutes a set

of problem formulations that a designer can visit during the course of a given exploration.

Second, a problem to be solved can also be expressed using descriptions drawn from Desc

with respect to a type hierarchy, (Type, f). An idiom of problem spaces is immediately apparent:

problem specification can be distributed between the description and the type hierarchy. This

happens because, in the substrate, a type can be a member of a description (or a description in

and of itself)3. A type being used in the description of a problem amounts to a declaration that

the designer will be satisfied with solutions that arise from this type. In the designer's terms,

this is declaring that past experience will suffice here, for example, a standard bathroom layout

might be all that is sought. Present here is the representation of problems through type hierarchy

construction and the authoring of descriptions. A description of how the typed feature structure

algorithms apply to these structures awaits the description of solution states and feature nodes.

2The elements of the type hierarchy are described in Section 2.2.1. A formal definition of these elements is given
in Definition 4.

sSee Section 2.2.2 for a discussion of the relationship between types and descriptions.
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4.2.3 The domain layer construct

In the domain layer, problems find reification as problem state objects, written as PState. A

PState represents problems and relations among subproblems. Thus, the problem state construct

specifically adds intentionality concerning problems. As shown in Figure 4.4, the domain layer

construct A PState maps to the type hierarchy and to descriptions. FYom the perspective of an

Figure 4.4: The problem state composes a collection of descriptions, Desc over a type system.

exploration process, a design problem can be expressed as a type inheritance hierarchy. Typically

these would be such forms that have been ossified by past experience in design space. In this case,

the problem would be available as a problem state, specified by its trivial description as a type in

the type hierarchy. Following the path notation, the mapping of a problem state to the type system

can be explained as follows:

PState : oPState : lnheritanceHierarchy : Type (4.1)

A problem can also be specified as a description specifying certain forms of spatial relations or

constraints on types based on the description language (descriptions are described in Section 2.2.2).

The connection between a PState and the formal substrate of descriptions drawn from Desc is given

as follows:

PState : oPState : Desc : Description (4.2)

In this case, the exploration of the initial description would amount to designer interaction with

the the domain layer construct, a PState. Through interaction with a PState, the designer can

define design requirements either within the type system or through a collection of descriptions.

Acting through a PState, a designer iterates through problem formulation/reformulation cycles by

reformulating descriptions, adding new descriptions or monotonic changes to the type system itself.

Figure 4.5 extends Figure 4.4 by expanding a problem state to reveal its connections with typed

feature structures. It follows that underlying the problem state is the full machinery of typed

feature structures. It is within this machinery that problem exploration occurs. Summarising, the

problem state is defined as a type or a description over a type hierarchy of types. Thus problems

Problem State

Type System Description
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Figure 4.5: Types, Features, constraints and descriptions comprise the representation layer for
defining, decomposing and revising problems in the domain layer.

and requirements are constructed over the lnheritanceHierarchy. The interaction level construct

that encapsulates this problem formulation and reformulation process is the PState. This process

is further elaborated in the explanation of feature nodes in Section 4.4.

4.3 Solution state

4.3.L The designer's view

In the domain of design, problems and requirements have multiple solutions. This is analogous to

the statement that a requirement may have no solutions, a flnite number of solutions or an arbitrar-

ily large collection of solutions. In the exploration model, the solution generation and reuse cycle

comprises an iterative process of interaction between the designer and the formalism. As Chien &

Flemming [1997] demonstrate, in a designer's solution space, work is done by a combination of gen-

eration from problem specifications, navigation of partial solutions and solution revision (removing

or modifiring the same). Design units, as described in Section 1.1.1, represent a physical model as

it is elaborated and records the relation amongst functional requirements and characteristics of a

physical structure that satisfy these requirements. To a designer, a solution is a component in the

spatial or physical structure of a building and has an identifiable spatial boundary. Thus solutions

describe physical and geometric characteristics of structures satisfiring the problem description.

F\rrther, generated solutions engender a large space of alternatives. These alternatives form a solu-

tion hierarchy and as designers revise solutions, a revision history of solutions is recorded. Support

for the actions of the designer in making choices about solution alternatives and solution revision

is necessary.
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4.3.2 The symbol substrate

In the description formalism, the view a "solution" to a problem is the given by the notion of

satisfaction. Satisfaction, described in Section 2.2.3, implies the existence of one or more possible

resolutions of a problem as typed feature structures. In the formal substrate, a design solution

is realised as a typed feature structure, FeatureStructure. Descriptions may be satisfied by no

structure, a finite number of structures or an arbitrarily large collection of feature structures.

The steps in the problem/design satisfaction relation are realised as incremental zr-resolution

states, is termed a partial satisfi,era represented as TFsPartialsatisfier. These component of the

substrate represent initial, intermediate (partial) and fully resolved solutions of a given descrip-

tion. Notably, the designer's concept of an alternative partial design is represented in the symbol

substrate by a partial satisfier. A TFSPartialSatisfiers composes descriptions and feature structures

through the satisfaction relation, Satisfaction, l: Desc ---+ FeatureStructure as follows:

TFSPartialSatisfier : Desc : FeatureStructure (4.3)

The label PSat is used as a shorthand term for representing the relationship between satisfiers and

descriptions in the substrate. A PSat composes a collection of TFSPartialSatisfiers

(4.4)PSat : TFSPartialSatisfier

F\rrther, descriptions may themselves be statements of a solution. A feature structure that

totally satisfies the given description is termed a satisfier of the description and implies a fully

resolved feature structure, TFSSatisfier with respect to the lnheritanceHierarchy.

TFSSatisfier : Desc : lnheritanceHierarchy (4.5)

The notion of solutions in the formal machinery of design space exploration is given either as a

collection of intermediate partial satisfi.ers with respect to a problem description or a fully resolved

feature structure with respect to an inheritance hierarchy of types, lnheritanceHierarchy.

4.3.3 The domain layer construct

In the domain layer, the view of a solution is encapsulated in solut'i,on state objects, written as

SState. As an object, a solution state composes both resolved designs and partial or intermediate

satisfi.ers. The constituents of a solution state are shown in Figure 4.6.

To a designer, a solution state provides a view on a developing design. The realisation of the

design as a typed feature structure and the satisfaction relation between problems and solutions

as an incremental zr-resolution state is shown in Figure 4.7. Within it, one can see first, a single

aSee Section 2.4.I for a discussion of partial satisfiers.
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Solution State

lnherita Partial Satisfier

Solution State

satisfaction > TFSPartialSatisf ier

lncremental Pi-Resolution State

Figure 4.6: Solution states compose partial designs with respect to an inheritance hierarchy of
types and a partial satisfler.

Typed feature strucCuret----

Figure 4.7: Realisation of the design as a typed feature structure and the satisfaction relation
between descriptions and solutions as an incremental zr-resolution state.

possible response to a problem; and second, a trace of how the problem is satisfied in the form

of partial designs through incremental stepwise refinement. In the first instance, the realisation of

a fully resolved design as a SState is its conversion from a description to a fully resolved feature

structure with respect to an inheritance hierarchy, lnheritanceHierarchy, of types. In the second

instance, a SState represents a partial solution. The solution state construct specifically adds

intentionality concerning solutions to a problem specification.

The connection of the solution state, SState to the formal substrate is given as follows:

SState = .SState o PState : Desc : TFSPartialSatisfier : FeatureStructure (4.6)

As shown in the path notation above, a solution state models typed feature structures. Ingrained

in the notion of a solution state are problem states, the space of their solutions defined by the

satisfaction relation and the incremental zr-resolution states defined by the formal resolution process.

Typed Feature Structure
+type =
+fê¡tìrrês =
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Summarising, the domain layer construct SState represents the notion of a design solution. In it,

are embedded the symbol substrate concepts of description, the satisfaction of a description as

satisfi.ers and the trace of intermediate solutions as partial satisfiers.

4.4 Feature Node

4.4.1 The designer's view

In the domain layer, a problem is represented as a PState. A partial or complete solution to a

problem is represented as a SState. These constructs capture the distinction between problems and

solutions. However, there exist strong dependencies between the problem formulation process (type

specifications, description authoring) and solution generation process of exploration (satisfaction,

resolution). The designer's view of exploration encompasses both these processes.

For example, in SEED [Flemming & Woodbury 1995], the relationship between problems and

solutions is captured as a design state. The design state comprises a set of function units and

the collection of design units that allocate them. The design state captures both the process of

generating designs from problem specifi.cations as well as the creation of new problems. Thus, in

a design state, designs and problems, are elaborated dynamically. A design state also records the

relation amongst functional requirements and characteristics of a physical structure that satisfy

these requirements. A domain layer construct to address the relationships arising out of problem

formulation/reformulation process and solution generation/reuse process is necessary.

Supporting choice-making is of particular importance in exploration. Through the feature node

construct, the actions of the designer in making choices on which threads of exploration to work

on can be addressed.

4.4.2 The symbol substrate

In the symbol substrate, the actions ofthe designer are supported through the notions ofexploration

non-determinism, incrementality in the resolution process, the explicit recording of resolution steps

and access to the design space movement operators. Exploration non-determinism arises when

descriptions contain disjunctions in them. Disjuncts in a problem description are handled in the

formal substrate through the concept of a conjunct of di,sjuncts fBurrow 1999]. The generation

process presents the user with all possible alternative combinations of satisfiers arising out of

disjunctive descriptions. The symbol level construct that implements this concept is the DescNode.

In it, all descriptions are collected in a node representation. The formal substrate provides a

conversion from alternate problem formulations in the form of disjuncts to a conjunct of di,sjuncts,

represented as a DescNode.

The resolution of descriptions comprises an incremental process of zr-resolution as described
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in Section 2.4.1. The resolution procedure acts incrementally by generating partially resolved

structures. The process ofgenerating partial satisfiers is expressed as a sequence ofresolution steps,

where each step records the resolution of a type constraint explicitly. The symbol level concept

that implements the elements of a sequence of zr-resolution states is the SatNode. In it are captured

the partial satisfier that represents a partial solution (the SState in the domain layer) as well as

the type constraints that remain to be resolved. In addition to the construction of descriptions and

the generation of partial satisfiers by zr-resolution, several operators are available in the substrate

for supporting movement in design space. Section 2.4 covers these design space operations, namely,

indexing and reuse, hysterical undo, design unification and design anti-unification. They operate

on partial satisfiers in a SatNode to generate new SatNodes. At the user level, it is necessary to

enable the designer to access these substrate operators.

4.4,3 The domain layer construct

Problems and solutions are explicitly captured in PState and SState. A feature node, FNode) en-

capsulates the designer's interaction with the formalism by coupling user actions with the elements

of the underlying symbol level. The FNode records what choices a designer might make and how a

designer would make such choices, that is, design intention. User choices with respect to problem

alternatives, incremental generation and the design space navigation are addressed in the feature

node. The feature node, FNode captures the relationship between a problem state, PState and

an alternative design that is a partial solution to the problem, SState. The composition of the

relationship between a problem state and its partial satisfi.ers are shown in Figure 4.8. Through

Figure 4.8: The feature node composes the relationship between the problem state and the partial
satisfier.

a FNode, the user accesses the typed feature structure machinery and its contained structures:

problem states and their partial satisflers.

User choices and actions on problem formulations are defined through a DescNode. A DescNode

composes typed feature structure descriptions. The connection between a FNode and a DescNode

in path form is as follows:

Problem State

FNode: oFNode o PState : DescNode : Desc (4.7)
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Figure 4.9: Feature nodes compose operators) their arguments and the current resolution state.
The design space operators, Operations, are accessible to the user through the intrinsic attributes
of a feature node. The state of the current resolution state is represented by a partial satisfier.

Through the FNode, the user and the formalism participate in a mixed-initiative problem formula-

tion and reformulation process. Problem speciflcations are specified by the user through interaction

with a PState. These in turn compose disjunctive and non-disjunctive statements in the descrip-

tion language of typed feature feature structures. Through the FNode, the user and the formalism

participate in a process of incremental generation of partial solutions of a problem statement. User

choices and actions on partial solutions are defined through a SatNode. A SatNode composes typed

feature structures in the underlying formalism. User guidance in the generative process is sup-

ported at two levels. First, in the selection of a SatNode from the a collection of possible solutions.

Second, in the specification of the next step of resolution. The connection between a FNode and a

SatNode is given in the path form as follows:

FNode : oFNode. SState : SatNode : PSat : FeatureStructure (4.8)

TheFNode captures a mixed-initiative formulation of choice-making between the designer and

the formalism. The FNode enables the user to make choices at a particular point in the problem

formulation and solution generation process. Further, the choices made by the designer and the

results of choice making are recorded as feature nodes.

This mode of interaction is consolidated further by conjoining designer actions and formal moves

together as the Operations of exploration. These operations enable the designer and the formalism

to share joint responsibility for design space navigation. The movement algorithms of the formalism

support feature node navigation. In the FNode, formal moves are cast as intrinsic attributes of a

feature node. They are intrinsic because they mirror the moves described in Section 2.4. Therefore,

lntrinsics are Operations providing direct access to the underlying the arguments and operators of

the design space exploration machinery.

An example of this interaction is shown in Figure 4.9. The designer can access a partial satisfier

and apply an operator from Operations to extend the partial satisfier, PSat.

Feature Node

Part¡al SatisfierOperations
+DescripLion =
+T)æe =

+Pi - resolution
+Unif ication
+Ànti -unification
+HvÊt-ericel Undo
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With reference to a Fnode and the formal operators in the substrate, Operations can be written

as equivalent to the following path,

Operations: oFNode o lntrinsics : PSat : FeatureStructure (4.e)

Through this formulation, FNode o lntrinsics capture design moves that mirror the operators, ar-

guments and states already available in the formal substrate. This connection to the underlying

exploration machinery makes no claims about supporting the contingent intentionality of designer

actions. To be truly mixed-initiative, feature nodes need to support operations that enable the

designer to manipulate the entities of a feature node.

Supporting contingent user interaction, actions with no analogue in the substrate of the design

space exploration, are crucial for mixed-initiative exploration. The interactive manipulation of a

feature node by the designer require an additional set of operations. These operations are cast

as ertrinsic attributes of a FNode. Extrinsics capture the class of Operations that permit the user

flexible and extensible interaction with the elements of a FNode. An example of an extrinsic

operation is the ability to navigate the contents of a feature node by direct manipulation. A
detailed elaboration of extrinsics awaits discussion in Chapter 5. With reference to a FNode and

the interaction operators external to the formal substrate, Extrinsics can be written as equivalent

to the following path,

Operations : oFNode o Extrinsics : FNode (4.10)

In this manner, FNode o Extrinsics are deflned recursively over feature nodes. The mapping of

extrinsic attributes of a feature node is explained in Figure 4.4.3.

state >

Figure 4.10: The extrinsic attributes of the feature node, FNode, represent the behavioural aspects
of the feature node contingent upon user interaction but with no analogue in the formal substrate.

Summarising, FNode o lntrinsics enable the user to access formal moves available in the symbol

substrate. FNodeo Extrinsics provide a hook to account for the contingent aspects of user interaction.

The representation of a FNode makes it possible to access initial requirements, PState, inter-

mediate and final solutions, SState and the operators of exploration, Operations. Operators are

further classed into lntrinsics and Extrinsics, both being attributes of a FNode. Given a feature

Feature Node
+Extrinsic Àttributes

attributes >

Partial Satisfier
+Description =
+T)æe =
+Feâtrrres =
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node, lntrinsics allow the designer to access the formal (intrinsic) operators in the formal substrate.

Extrinsics permit the manipulation of feature nodes with no analogue in the formal substrate. These

are cast as behavioural (extrinsic) attributes of a FNode. The node-attribute formulation enables

the interleaving of system-driven and user-driven moves for mixed-initiative interaction.

Summarising, the FNode construct proposes a principled formulation for supporting the process

of exploring problems, solutions in conjunction. Throughout this domain layer construct, the

operations and states of exploration are brought under a common conceptual frame.

4.6 Satisfier Space

4.6.1 The designer's view

A model of the designer's view of design space completes the domain layer for supporting mixed-

initiative exploration. The clearest exposition of the designer's actions in design space is described

in Chien & Flemming's [1996] model of navigation. This model is discussed in Section 1.2.1. They

construct a notion ofnavigation based on nodes and edges where nodes represent design states and

edges map their relationships in a design space. User navigation of design spaces is through the

traversal of paths and landmarks defined over the navigation structure. This structure enables the

designer to orient and maintain context during exploration, make choices and visually browse the

history of exploration (alternatives, revisions) recorded in design space [Chien & Flemming 1997].

Burrow & Woodbury [2001] treat the history of exploration as the primary device for teleological

explanations of designs. The symbol substrate provides the relation of subsumption amongst designs

and this relation is available to a designer through the concept of a sati,sfi,er space. This construct

provides a unified model for representing the set of problems, subproblems, problem revisions and

associated designs that a designer actually considers. Problems need not be fixed. Designs can be

partial or complete with respect to the initial problem formulation. A designer may make varied

choices that imply different kinds of design space operations. All are captured in the satisfier space.

The satisfier space floats above design space structure to tell the story of what a designer actually

did in design space. FYom the designer's perspective such a model must capture at least the history

of design exploration. The history of choices made and intentions expressed by the designer during

exploration are captured by the satisfier space.

A, Satisfier Space composes a set of ancestor and progeny nodes, Fnode, recording the history

of exploration, as uncovered by the designer's actions. Symbolically, the satisfler space is simply a

tree of visited design possibilities. Each node in the satisfier space is a feature node which connects

to the underlying design space machine.



4.5. S¡.usprnn Sprco 69

4.5.2 The symbol substrate

The exploration formalism provides a structuring relation based on subsumption to order collec-

tions of exploration states. Looking down to the typed feature structure machinery, the satisfier

space connects, via feature nodes, to points in the underlying subsumption-ordered design space.

The ordering of exploration structure in the symbol substrate is described in Section 2.3. In the

substrate, subsumption defines a partial ordering over exploration states (feature structures) and

this ordering of feature structures is represented as a hierarchical graph.

The design space representation records change in formal terms aimed at efficient design cre-

ation, indexing and retrieval. In it, the subsumption relation provides a global, principled way for

keeping track of additions, deletions and other forms of change as the exploration progresses.

4.5.3 The domain layer construct

In the domain layer, the subsumption-ordered design space is explored through interaction with

feature nodes. Choice and history are recorded as a collection of feature nodes. The recording of

this interaction process is captured in the domain layer construct, SatSpace. Thus, in contrast to

the design space below, the satisfier space is not ordered by subsumption, but by user choice and

intentional history. While subsumption accounts for information specificity, the satisfier space, as

a collection of feature nodes developed through exploration movesT accounts for choices and the

history of exploration.

The relationship between a satisfier space and its constituent feature nodes is shown in Fig-

ure 4.11. A FNode is an element of the SatSpace. The label SatSpaceEl can be used interchangeably

atisfier space

Figure 4.11: The collection of feature nodes, developed through exploration moves, represent the
satisfier space. User choices and exploration history are recorded in the satisfier space.

to represent feature nodes in SatSpace. Each SatSpaceEl captures the mapping between problem

state, PState, their solutions as SState objects and the record of their connection to the underlying

design space as uncovered by user choice. The formulation of a satisfier space) SatSpace as a domain

Satisfier

Feature Node

attributes >

State Solution State
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layer construct provides tr,¡¡o key beneflts. First, the designer can defer formal movement opera-

tions to the design space below. This deferral preserves the key invariant structure in design spaceT

subsumption. For example, the incremental zr-resolution preserves information monotonicity.

Figure 4.12: Independence of satisfier space and design space. The design space represents the
space of all possible exploration states, structured by subsumption. The satisfler space represents

the set of exploration states traced by exploration.

Second, the satisfier space, SatSpace is independent of the design space. Design moves have

multiple implications in the underlying design space. For example, the application of a zr-resolution

operation may affect more than one state in the design space. In the satisfier space, the user only

sees the branching (through choice and history) course of intentional exploration. The application

of a zr-resolution operation results in the creation of a new feature node extending the current

thread of exploration. The independence of satisfler space and design space structure is informally

shown in Figure 4.72. The satisfi.er space captures intentional moves at the user level floating above

the subsumption-ordered design space.

Summarising, the domain layer construct SatSpace, provides a principled representation of user

actions in exploration. It allows access to the structure of the subsumption relation in design space

for exploration operations. At the same time, it allows the intentional moves by the user, in the

form of choices and history, to be recorded in a principled manner.
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4.6 Summary

This chapter develops the domain layer of the mixed-initiative interaction model for design ex-

ploration. This layer constructs a designer's view of exploration comprising problems, solutions,

choices and history over the symbol level representation of design space exploration. The domain

Iayer constructs are Problem state, Solution state, Feature node and Sati,sfier spo,ce. In each ofthese

constructs, the case for mixed-initiative is made through a three level exposition, the designer's

view, the symbol system view and the mapping of the two through the domain layer constructs,

PState, SState, FNode and SatSpace. Problem states represent design problems. Solution states

represent partial design solutions. Feature Nodes compose problem formulation and solution gen-

eration processes and support the exploration operations. Satisfi,er spo,ce records designer choices

and encapsulate the history of exploration. Chapter 5 goes on to describe the components of the

dialogue layer of the mixed-initiative interaction model for design space exploration.



Chapter 5

Mixed-initiative Dialogue

This chapter develops the dialogue layer of the mixed-initiative interaction model for design space

exploration. Following the requirements identified in Section 3.4, the dialogue layer provides a com-

munication and control interface for conversational dialogue between the user and the formalism.

5.1 The dialogue layer

The requirements of a dialogue layer based on Grice's [1989] axioms of rational conversation are

proposed in Section 3.4. Control and communication between the user and the generative formalism

are addressed from the standpoint of dialogue representation and dialogue integration as follows,

- Dialogue representation.

A common symbolic representation is proposed for supporting the modalities of input and

output during mixed-initiative exploration. Exploration dialogue between the user and the

formalism is represented through a visual notation based on the domain layer entity, FNode

identified in Section 4.4. Tlne visual notation expresses the input and output modalities from

both the user and the formalism. The visual representation of feature nodes is developed in

Section 5.2.

- Dialogue integration.
A model of turn-taking is proposed for integrating the different modalities of action available

to both the user and the formalism during exploration. Dialogue integration is expressed

through the specification of interaction behaviour for turn-taking. Through interaction with

the intrinsic and extrinsic attributes of a FNode, the user and the formalism are able to

acquire, relinquish, shift and allocate control of the exploration process. The integration of

dialogue through mixed-initiative is developed in Section 5.3.

The domain layer concepts (see Section 4.1), provide access to the machinery of typed feature

structures and, 'ipso facto, represent the results of exploration and generated partial designs. The

72
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Figure 5.1: Mapping domain layer constructs to the dialogue layer through the visual feature node.

dialogue layer extends the representation of domain layer concepts built upon typed feature struc-

tures to represent dialogue. Typed feature structures provide clearly defined common semantics for

representing dialogue for both the designer's model of exploration and the formal substrate. The

domain layer builds a set of useful concepts on top of the formal substrate. Thus, the representa-

tion of dialogue can be formulated in terms of the domain layer concepts. The components of the

domain layer, problems, solutions, choices and history are recorded in the FNode construct. The

FNode construct (see Section 4.4) encapsulates a principled formulation of the designer's view onto

the description formalism.

The domain layer constructs are made transparently visible to the user by introducing the

concept of a visual feature node, VNode, in the dialogue layer. A visual feature node represents

dialogue between the user and the formalism. Through the construct of the visual feature node,

a principled formulation of mixed-initiative conversational structure is established between user

and formalism. This formulation supports a number of key properties, identified abstractly in

Section 3.4 and are based on Grice's model of rational conversation. The relationship between the

domain layer constructs and the visual feature node is shown in Figure 5.1.

The concept of a visual feature node enables a principled formulation of dialogue representation.

As shown in Figure 5.1, the visual feature node, VNode provides a common frame for representing

mixed-initiative dialogue in the interaction model. Two distinct views are mapped onto the same

representation. First, the results of exploration initiated by the description formalism are available

as partial satisflers (incorporating types, features, descriptions) of a VNode. Second, the represen-

tation of the results of user manipulation are available as feature nodes (incorporating problem

states, choices and functions, interaction history) through the extrinsic attributes of the VNode.
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Visual Feature Node
+Intrinsic attributes =+ExrriñÊi. âtstsrihriês =

Feature Node
+pstate
+disj uncts

hi

Figure 5.2: The elements of the visual feature node map onto the domain layer constructs. The
intrinsic attributes represent the formal features along which the exploration may proceed. The
extrinsic attributes represent designer moves.

The representation of dialogue based on rationality, cooperation, common purpose and direc-

tion through the visual feature node is described in Section 5.2. The conjunction of the visual

representation and the model of turn-taking are described in Section 5.3.

6.2 Representation of dialogue

Formally, all the elements of a typed feature structure are simply features. Operationally, these

feature collections are interpreted as part-whole and property hierarchies both common means

of representation. The domain layer concepts represent intentional actions (choice and history),

problems and their partial solutions (partial satisfi.ers, alternatives) during exploration. In this

section, a visual representation of feature structures is used in representing exploration dialogue.

The representation of feature structures is in three forms, text (in the form of descriptions),

graph notation fCarpenter 1992, p 37] and the attribute-value matrix notation [PoIIard & Sag 1987],

hereafter AVM. Each of these forms map feature structures into different parts of the description

formalism.

For example, the type system is directly expressed in structured textual form, as are constraints

and problem formulations. Textual descriptions in a description language, through the satisfaction

and describability theorems, make feature structures interchangeable with descriptions. Given this

equivalence, descriptions and feature structures can both be written in textual notation, following

the logical description language, Desc,, described in Appendix A. Textual descriptions are useful

for persistence, storage and coding of problem statements.

Feature structures, are rooted, labelled graphs. Their automata-like and graph-like character

can be cast into a graph representation comprising nodes and edges. In this view, nodes and edges

of a graph are taken to represent the type and attri,butes of a feature node. In a typed feature

structure, Q, the set of nodes represent domain objects and edges represent functional connections.
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Similarly, a feature node can be conceptualised as a form of directed graph as depicted in Figure 5.3.

For example, node 4 represents a general property class. Two examples of features are shown, where

the attributes col,ouR, RVALUE ofnode property point to nodes 5 and 6. The nodes are enclosed in

-@ ,.@'u""massng

r ROffiry

¿' w¡Lue

propertyentity

\: 
GEOM

/ ATTRIBUTE

@
\ 0ouR

þ corour
'\ø

gÊorndrY

Figure 5.3: Feature node in directed acyclic graph oec notation. The numbered nodes represent
structures annotated by their type labels. The edges represent features annotated by their feature
attributes. The values of attributes are other nodes.

circles, with the arrow pointing at the root, types appear in boldface next to their nodes. Features,

in small caps, label the connective arcs between nodes. The graph representation is useful for

depicting small dialogue fragments and their relations. When the typed feature structures become

very large, it is difficult to understand the nodes and track relationships in this notation. F\rrther,

this approach does not capture the semantics of a feature node and the behaviour of individual

elements of the notation.

The analogy between feature nodes and frames provides a notation for visualising large collec-

tions of feature structures. Each node is a frame, the features on arcs represent slot labels, and

the arcs themselves point to the slot fillers. This frame-based notation is the standard notation

for visualising feature structures used in the description of linguistic fragments and discourse rep-

resentation [Pollard & Sag 1987, Carpenter 1992]. The notation is called attribute-ualue matrin or

evv notation. The avu notation provides a direct method for representing feature nodes and their

formal and behavioural attributes. Figure 5.4 illustrates the components of the avu notation. It
depicts the same feature node shown in Figure 5.3. Each node is represented with the frame delim-

iters "[" and "]". The frame is annotated with the type of the node. Thus far, feature structures

have described the results of generation. This visual representation of feature structures paves the

way for introducing them as the mode of user manipulation. The potential of representing the

visual feature node using avu notation is described in the next section.
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MASS-EL :

rnas81,n9

GtrOM :

geornetry

PROPERTItrS :

properta

RVALUE :

COLOUR :
*ll
*llATTRIBUTES :

propeTta

RVALUE

COLOUR

entitA

Figure 5.4: Feature structure in AVM notation. The feature stucture of type, enti,ty with features,
MASS-EL and cpovt. These features have two substructures of type massing and type geometry.

5.2.1 A visual notation

The AVM notation visually describes feature structures. A ui,sual feature node maps the intrinsic

and extrinsic attributes of a feature node, FNode onto elements of the avu notation. This mapping

annotates the visual feature node with the type, feature names, feature values and coreferences

taken from the underlying partial satisfier. The connection between a visual feature node, VNode

and a FNode is given as follows:

VNode:VNodeoFNode (5. 1)

The VNode composes and aggregates elements of the underlying representation, shown in 5.1.

In a VNode, the values of a feature may be atomic, complex or another feature node. The value of a

visual feature node VNode, is given either by a feature ualue pair or feature-ualue map. The smallest

element of the visual feature node is the feature ualue pa'ir or feature-ualue pa'ir. The feature-ualue

pa'ir represents the relation between a feature and its value. This is shown in Figure 5.5.

The feature-ualue map speclfres the relation between a feature node and its sub nodes. For

example, in Figure 5.5, the feature-ualue nxap represents the functional relationship between the

ctroM and its value. A, feature-ualue map is enclosed by the delimiters "[" and "]" and annotated

by the type label drawn from its partial satisfi.er. In the example, the partial satisfier is of type,

geometry. Feature nodes support recursive containment. Thus, the value of a feature node may be

another feature node. The attribute-value notation is easily adapted for a visual representation of a

feature-ualue rn&p as follows: the feature-ualue rnap cal be conceptualised as a recursive container

of entities of type feature-ualue pai,r.

In Figure 5.5, the feature-ualue pair, represents the functional relation between the feature,

MASS-EL and its a value, which is minimally the type massing. The value of Iuass-pl, may also be

complex, such as a query description, resolution step or function application or external complex

datatype. The value of u,tss-pl- may also be another feature structure.

In a visual feature node, VNode, two or more paths can share the same information. This is

called structure sharing. Paths engaging in structure sharing are called reentrant. Shared structure

nin a visual feature node is represented by co-references, also called tags. The co-reference
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MASS_EL : maSSTng
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Figure 5.5: A feature value pair (a) and a feature value map is shown in (b). The pair ATTRIBUTES

: property, is indicated by a co-reference tag, indexed by the number 1 to a node outside of the
diagram fragment shown.

denotes an index value where n is the identity of the node that is shared between one or more

feature structures. Co-references and their denotation by indices is straightforward in the evvt

notation. As shown in Figure 5.6, reentrancy, or structure sharing is indicated by reference tags

such as The slots are the features and the values are written next to them

MASS-EL :

nxoßsxng

PROPERTIES: E
property

RVALUE :

COLOUR :

rvalue

colour

enti,ty

GEOM :

geometry

Figure 5.6: A visual feature node incorporating coreference notation. The shared feature structure
of type property, is indicated by the coreference tag, indexed by the number 1.

5.2.2 Choices

The notation supports user choices in the VNode through the representation of alternatives, reso-

Iution steps and function applications.

The notation incorporates the operators of the description language, conjunctions and disjunc-

ti,ons. Conjuncts and disjuncts in feature structures are denoted using the same notation as feature

value pairs. In place of the feature labels, the labels conjunct and disjunct are used, with the

values as feature structures. This common representation can be scaled to represent the conjunc-

tion of disjuncts and the disjunction of conjuncts. In linguistic attribute-value formalisms [Pollard

& Sag 1987, Pollard & Moshier 1990], conjuncts and disjuncts are denoted by special delimiters,

such as "{" and "}" and their edge names are either omitted, suppressed or obscured. This is not

necessary in this interactive representation.

An example of a conjunct of disjunctive visual feature nodes is shown in Figure 5.7. User

fott*'" 
u"i.:r;",, lt1]

4
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Figure 5.7: An example of a conjunct of disjunctive visual feature nodes. The disjunctive nodes are
accessed by a node of type conjunct and represented as a feature-ualue map and each disjunct is

represented as a feature-ao,Iue po,ir, whose features are defined by nrs;uxc'r-n where n is an index
over disjuncts.

interaction is necessary to resolve the structures associated with the features MASS-trL and cpot¡

of the feature structure of type, entity. The disjunctive nodes of type disjunct are represented as

a feature-ualue map. E,ach feature-ualue map is accessed by a feature coNJUNcr, of type conjunct.

E,ach feature-ualue map has four possible disjuncts, which are represented as a feature-ualue pa'i,r,

whose features are defined by nrs;uNct-r¿ where r¿ is an index over disjuncts.

entity

Figure 5.8: The resultant visual feature node arising out of the resolution of disjunctive nodes by
user interaction.

The user can choose a single conjunct for each of features of the node enti,ty shown in Figure 5.7.

For example, if the designer selects the disjunctsT DISJUNCT-2 and DISJUNCT-7 shown in Figure 5.8,

as the appropriate values of tvIess-pl, and cpolt respectively, the node that results will carry the

structure shown in Figure 5.8. Through the dialogue layer construct, VNode, it is possible to

expose the internal representation ofdescriptions (problem states), partial satisfiers (solutions) and

alternatives (choices) for user interaction. Since the VNode is recursively defined, a collection of

choices and user interaction history is expressed as a collection ofvisual feature nodes. Thus far, the
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notation has shown how the intrinsic attributes of a feature node FNode can be visually represented

for direct manipulation by the designer. It is also possible to represent the attributes of a FNode

that are extrinsic to the formalism, using the same notation.

Functions

This representation of functionsT commands and their arguments extends the visual feature struc-

ture notation for user interaction. The behaviour of functions and commands during interaction,

namely function application, function unification and function unfoldingl can be added to the

interaction.

append(X,Y ) +

append

Figure 5.9: Encoding a function as a feature-ualue map. The function append(X, Y) which con-

catenates values can be represented as the feature-ualue nxap of type, append and the two features
ARG1 and ARG2. The features, ARG1 and Rnc2 encode the values X and )' as two feature value
pairs.

For example, a function can be represented in the visual feature node. F\rnctions can be encoded

within the feature-ualue tno,p representation such that the functor annotates the feature-ualue map

and the arguments are features. An example of the duality of a function and its arguments with a

feature node representation is shown ip Figure 5.9. This representation allows the feature structure

to encode traditional command languages found in geometry-based design systems. The speciflca-

tion of a command or function then returns a value, which can be atomic, complex or a feature

structure. The use of feature structures to encode functions can also be used to pass commands2,

The expressiveness of feature structure command representations needs to address the possibility

of cyclic feature structures and structure sharing. A cycle arises when following a non-empty

sequence of features out of a node leads back to that node, which is a useful property in the

finite modelling of knowledge [Carpenter 7992, p 51-p 52]. A recognition mechanism is necessary

to interrupt infinite loops in a visual feature node representation for commands. The restriction

on commands is that structure sharing is not considered a valid part of the command syntax. If
co-references do occur, the structures they represent are copied uniquely within each command.

Another way of visualising functions within feature structures is to encode the functional defi-

nition as the value of a feature-ualue pair . In this scheme, for a function append(X, IZ) with two

l the term unfolding is defined in Section 3. 1 . 1 . Here, it is used in a restrictive sense of exploring the arguments of
a fulction as described above.

2Programming languages like ltrp [Ait-Kaci & Cosmo 1993] use types for commands
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arguments,there exists a type function, such that its value is a function definition with the syntax,

append(X,Y).

fcuot' geoml -l

t"l
,,__ -._,.1 

TRANSFoRM : (translate(a,b, c)) ldesxgn-unxtL

Figure 5.10: The function translate(a,b,c) is represented as a feature-ualue pa'ir and contained
within a visual feature node, with feature TRANSFoRM and value, translate(a,b,c).

An example of a procedural function in visual form is shown in Figure 5.1-0. User interaction on

this node involves three possible behaviours. First, the application of the function to an appropriate

node results in a new node, consistent with the application. Second, the unification of a functional

node with an appropriate feature, results in a new feature structure, following the laws of unification

for typed feature structures described in Section 2.2.3. Finally, the function can be unfolded into its

constituent subparts following the interaction defined above and its values subject to exploration.

An example of the latter is shown in Figure 5.11. The unfolding of a functional representation

shows that the feature node representation of the function, translate(a,b,c) is of type translate and

the arguments are the three feature value pairs) TX, TY and tz.

GEOM: geoml

TRANSFORM:

TX : l"l
o'gL )

t"','rlo]

"t*nl")
d,esign-unit translate

Figure 5.11: An unfolding of a functional representation shows the feature structure notation of
the function, translate(a,b,c). The type of the function is translate. The arguments are unfolded
into the three feature value pairs, TX, Ttr and TZ.

5.2.3 Interaction with visual feature nodes

The visual feature node representation is extended to incorporate behaviours that admit user

level actions extrinsic to the formalism. Interaction with a large collection of visual feature nodes

requires functionality for panning, zooming in and out of context, search and the expansion of

tags. Visual feature nodes are nested entities. User navigation of a large collection of feature nodes

is enhanced by functionality for zooming in and out of nodes, imploding nested nodes and the

expansion of coreference tags, If the nesting is very deep or broad, panning functionality provides

the ability to scroll through the whole feature node. Zoom and implode interaction behaviour

provide functionality for controlling depth nesting. By using this functionality the user can fold



5.2. REPRESENTÁTroN oF DrALocuE 81

(implode) and unfold (zoom) feature nodes. The user obtains information about substructures of a

node by zooming into them. F\rrther, zooming into the selected substructure enables a reorientation

of context such that the selected node becomes the new root node of exploration. An example of

unfolding substructures by user interaction is given in Figure 5.12.

Zoorning and imploding nodes

entity

GEOM1 :

geometry

GtrOM2 :

geometry

GEOM3 :

geornetry

GEOM4 :

geometry

Figure 5.12: An example of an imploded feature node hiding the contained substructures. The
symbol "*" indicates that the substructures of the feature-ualue nxap of type entity are closed.
User interaction on this node is necessary to open these hidden structures.

Feature nodes can be nested recursively to arbitrary levels containing many substructures.

The interactive mechanism accounts for folding the nested substructures of a feature-ualue rnap

to hide their underlying notation and for unfolding the imploded structure to see the details of a

feature value map. In the visual representation, this is realised by allowing users to open or close

substructures visually through the the symbol | + l.

MASS-EL' ["*o"u*trur' tr lEll
*orringL ProPertYL lJ

t_t
cEoM : ll+ll

geometryL-)
enti,ty

Figure 5.13: Another example of an imploded feature node. The symbol "a" indicates that the

feature-ualue mop of type property and geometry contains nested subnodes that can be unfolded
by user interaction.

The unfolding symbol, shows up in two different situations. A restriction may be placed on

the depth of display of a feature-ualue map. Any substructure in a feature-ualue rnap that exceeds

that depth, is represented by the symbol, This is automatically managed by the dialogue layer

and the nesting levels set through preferences. The user can also manipulate the feature-ualue map

interactively. The feature-ualue rnap will be shown as folded, until it is explicitly unfolded. Thus,

the symbols on the feature-ualue rnap coming from depth restriction are generated and removed

dynamically while the user navigates a feature structure. In contrast, the maps that are unfolded

manually need explicit interaction to change their display. This enables the user to control the level

of detail shown, while zooming and imploding very large feature node collections.

Pan functionality is provided by enclosing the feature structures in scroll bars. This is a standard

means for providing canvas real estate. User interaction with the scroll bars allows context to be

+

+

+
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shifted horizontally and vertically

Interaction with co-reference tags

Path equality in structures is one of the oldest information structuring concepts in computational

design3. This notion is captured through structure sharing between feature structures at the formal

substrate.

MASS_EL PROPERJTIES : E
property

RVALUE :

COLOIJR,

rvalue

colorrr
fnassl,n9

GEOM
geometry

:fuFUNCTION-UNIT :

DESIGN-UNIT : du
enti,ty

Figure 5.1"4: An example of substitution of a feature-ualue map with a co-reference tag, The
co-reference tag is an index to the nested partial satisfier of type property that is shared by the
features, PROPERTIES and ATTRIBUTES.

Fþom the perspective of the designer, path equality in the underlying formalism is visually

displayed through co-reference tags. Thus, the appearance of co-reference tags in the visual rep-

resentation indicate nodes that are strictly structure shared partial satisfiers. In the context of

exploration, these correspond to entities that are feature values that by definition, are feature

structures.

Co-reference tags are used in two ways, both shown in Figure 5.14. Firstly, a co-reference is

used to annotate a feature-ualue pa'ir that structure-shares a feature-ualue map. Secondly, it is

used to simplifv the visual representation of partial satisfiers, by simple substitution of the shared

feature-ualue nxo,p by the co-reference tag, denoted by n The co-reference tag can be substituted

by the partial satisfier it denotes by user interaction. If the partial satisfier is represented, the

co-reference appears outside the feature-ualue ffiap , as shown in the value of PROPERTIEs. If the

co-reference is used to refer to the partial satisfier, it appears inside the feature-ualue map as shown

in the value of ATTRIBUTtrs.

The user can move within a collection of nodes using the flnd operation. Search for a nested

node using the flnd operation is supported by the use of tags. A successful search results in

the matching feature-ualue pa'ir being panned into focus. The user can specify find finction to

search only for features, types, co-references or atomic values. In the case of co-reference search,

the tag number is used to locate the partial satisfier corresponding to the specified tag. This is

useful in dialogue situations when structure shared partial satisfiers are widely separated. Tags

fott*'uutffr;',rltl]

1

3The first instance was Sutherla,nd 119631
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mark structure shared nodes and these can be expanded i,n-situ following the general convention

of appearing in the first location in which they are introduced. When tag expansion occurs during

dialogue, the co-references are updated and the partial satisfi.ers that they represent are redisplayed.

These extensions are discussed in the next sections.

Having defined the visual feature node, its representation and its support for interaction, it is

now possible to address how this construct supports mixed-initiative in the dialogue layer. In the

next section, the integration of exploration dialogue between the user and formalism through the

visual feature node construct is described.

5.3 Integration of Dialogue

The second requirement, dialogue integration, combining two modalities into a common frame, is

described in this section. Modes of input and output, for example, typed commands, generated

structures or the direct manipulation of graphical symbols need integration during dialogue. This

section describes how the visual notation for representing dialogue can support the integration of

these modalities.

5.3.1 Supporting partiality

As shown in Section 5.2.7, a visual feature node, VNode inherits key behavioural properties of typed

feature structures. Thus, given the well-defined semantics of types, features and descriptions,

the visual feature node supports partiality of input and output. The representation framework

of visual feature nodes, type annotated frame delimiters, feature-ualue pai,r f feature-ualue rnap

and co-reference tags carry the specification of partial information. Partial information during

dialogue provides the opportunity for both user and formalism to underspecify, relying on the

extension of dialogue through turn-taking. A partially specified exploration move is represented

as an underspecified visual feature node. In this situation, a subset of feature-value pairs is not

instantiated, following the intensional nature of feature structure representation. Instead, they

are assigned a certain type, corresponding to the semantics of the move. This bears explanation

through an example of turn-taking on a partial specification.

An example of supporting partiality in mixed-initiative dialogue is explained in Figure 5.15. In

this example, a given description can be integrated with a massing of type geometry, the resultant

is assigned an underspecifled location feature, whose value is required to be of type geom. The

description, rno"ss,i,ng is assigned to the visual feature node shown. In this scheme, it is possible

to state during exploration that there exists an entity of mass'ing with three features PRoPERTIES,

oBJtrCT and I,OCAUON.

In the visual feature node representation, it is possible to specify the features, PRoPERTIoS of

type property and oBJECT of type geometry but not the feature LocArIoN, which is assigned a
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PROPERTIES

OBJECT

geornetry

n1o,ssl,ng

LOCATION . IIpoLntJ

Figure 5.15: Visual feature node for underspecified entity of type massing.

generic type, point Thus, the visual node captures the idea that there exists a geometric object of

type massing andthat its feature LocATIoN is constrained to be of type poi,nt. Given the equivalence

of structures and descriptions, the underspecified visual feature node shown in Figure 5.15 can be

interpreted as a formal command for the generation of massing elements. More importantl¡ the

possibilities for locating the massing element are open to mixed-initiative specification by the user's

action on a visual feature node or through the resolution of formal constraints.

propertA

COORD-X
real

COORD-Y
ranl

COORD-Z
ren"I

VALUtr 625.6

LOCATION VALUE

VALUE

I25.6

ru]
comrnand,

point

Figure 5.1-6: Visual feature node for underspecified entity of type command.

This is explained in Figure 5.16 with another underspecified feature node of type com,mand,

whose feature LocATIoN is constrained to be of type poi,nt with specified coordinates. Note, that

this is only true under the assumption that feature nodes can carry maximal values such as the

coordinates of a locatiotra. It follows from the above, that if massing from Figure 5.15 is compati,ble

with cornmand frorn Figure 5.16, the uniflcation of the two will provide a feature structure whose

location feature LocATIoN will result in the more specific of the two values. To be compatible in

type, the result must be the meet or a subtype of the meet of the two argument types. Hence,

the result of a typed unification is a more specific feature structure or atom drawn from the

type hierarchy. Thus, in a mixed-initiative scenario, the user might provide a location value for

an underspecified geometry generated by the formalism. Alternatively, the user might specifi' a

geometry for which the description formalism provides one or a number of possible locations in a

current problem state. Through turn-taking, both the location and geometry of an element in a
aln the design of cENESIS, Heisserman [1991, p 133] notes that the inability to specify an intensional model of
geometric information remains a major drawback for interactive systems for generative design.



5,3. INTEGRATToN oF DrALocuE 85

solution state can be resolved

5.3.2 Supporting structure sharing

PROPERTIES E

propertv

STYLE

COLOUR

LABEL

continuous

yellow

InASS

OBJECT
INSTANCE geom

ATTRIBUTES E
geornetry

masslng
LOCATION . .tIpoLntJ

Figure 5.17: Substructures can be shared in a visual feature node. For example, the pRoppRups

of massi,ng are the same as the ATTRIBUTos of geometry. F\rrther, the specification of property can
be changed either through the pRoppRups of mass'i,ng or through the anrRreurps of geometrg.

Structure sharing is another fundamental property of typed features that plays a significant

role during mixed-initiative dialogue. Visual feature nodes enable the user to develop specific

exploration paths in great detail and then provide the resultant feature structure to the generator.

The generator can reuse the resultant feature structure multiple times in other feature node contexts

through structure sharing. Recall that feature nodes compose feature structures (Section 4.4).

Thus, at the visual feature node level, dialogue constructs can take advantage of structure sharing

in their underlying feature structures.

Feature structures can be shared across a design space. By reusing of shared feature structures,

the user can conuerge information from other exploration paths into the current path of exploration.

This bears explanation. For example, there may be two bathrooms in two distinct house designs

that are identical. The feature node collections that represent the exploration steps of the first

and second designs are distinct paths in the satisfier space. The problem states and choices made

by the designer in both paths are also distinct states. However, a portion of the solution state,

subsequent to exploration, is identical, in this case, the bathroom design.

In design space, this fact would result in the existence oftwo distinct feature structures contain-

ing the same information (feature structures are intentional). The feature node allows the designer

to structure share the bathroom solution of the second design with the first. Once this equivalence

is declared, the exploration structure of the flrst is converged into the exploration structure of the

second design. It is important to note that two distinct visual feature nodes can represent two dis-

tinct exploration threads in satisfier space. Through structure-sharing dialogue, feature structures

can be shared, reused and converged in design space.

Another result of structure-shared feature nodes is the fact that no single value has a unique
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status. For example, the creation of symbolic links in a unix file system, creates the illusion of

sharing structure, but merely points to a different node in the file system. In feature structures, all

structure-shared nodes have equal presence.

In Figure 5.17, the pRopERTItrs of massinq are the same ¿LFithe atrRleurns of geometry. Fur-

ther, the specification of type property can be reformulated either through the feature PRoPERTIES

of type massing or through the feature ATTRIBUTTs of type geometry. During exploration, the gen-

erative component can instantiate a massing element, with an unspecified feature oRItrNTATIoN.

Subsequentl¡ the user might specify an orientation by direct manipulation, by drawing an arrow

that has a value, d,'irection for its feature, ANGLtr. The process of typed feature structure unification

enables the explorer to structure share the value of feature ANGLE of the feature structure of type

direction with the value of oRIENTATIoN. Thus, when the two features are unified successfully, the

resultant feature node of mass'ing has a new value for the feature, ORIENTATION. This value is now

given by the more specific value of the feature, ANGLE. Note that the property of structure sharing

can be nested. Feature nodes are recursively contained through the feature-ualue map and feature-

ualue pair relations of the notation. Structure sharing and its representation using co-reference

tags presents the notation with the ability to avoid redundant substructuress.

5.3.3 Supporting dialogue integration

The visual feature node addresses problems associated with the integration of input from the

differing modalities of exploration. While the input of each individual mode of exploration can be

assigned meanings, the problem of combining each input into an integrated meaning remains.

trYom the perspective of the formal substrate, integration is realised by conducting the dialogue

in terms of the formal mechanisms available for information combination. For example, consider

the unification algorithm, described in Section 2.2.3. Feat:ure structure unification6 is an operation

that determines the consistency of two pieces of partial information, and if they are consistent,

combines them into a single result. Within the formalism, this operation is used to address dialogue

integration. Unification is an appropriate basis for mixed-initiative integration as it can combine

complementary input or redundant input from both modalities of exploration. F\rrther, in the

case of contradictory inputs, unification can rule out the possibility of integration. A feature node

consists of a collection of feature value pairs. The value of a feature may be an atom, a variable

or another feature value map. When two maps are unifled, a composite map containing all of the

feature specifications from each component structure is formed. This is subject to the restriction

that any feature common to both feature structures must not clash in value. If the values of a

common feature are atoms, they must be identical. If one is a variable, it becomes bound to the
5In the design of cRAMMATIcA, Ca.rlson [1993] notes that the ability to detect and represent duplicates remains a

major challenge for interactive exploration of design spaces.
6See Carpenter [Carpenter 1992, p 45] for a formal discussion of r-rnification.
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value ofthe corresponding feature in the other feature structure. Ifboth are variables, they become

bound together, constraining them to always receive the same value. If the values themselves are

feature structures, then the unification operation is applied recursively.

Similarly, the formal mechanism for extending partial satisfiers incrementally, zr-resolution, is

used to extend dialogue. During exploration, this enables a given step of formal exploration to

be compatible with a given step of user manipulation. If two dialogue fragments are compatible,

then the two inputs can be combined together into a single result. The compatibility of dialogue

fragments is captured through the unification operation. Note that the order in which feature value

pairs are displayed in a visual feature node is flexible. If conflicts arise during dialogue, the position

of a feature-ualue pa'ir can be reordered to reveal inconsistent features. Flom the perspective of

the user, the results of the application of exploration moves are seen in the dialogue layer as visual

feature nodes. User interaction with feature nodes forms the basis for dialogue integration. In this

manner, the user and the formalism are able to integrate their actions to act jointly on exploration

problems.

5.3.4 Supporting dialogue disambiguation

Mutual disambiguation is another property supported in the visual feature node. An exploration

move that is partially specified is open to multiple interpretations. In such a situation, a collection

of many feature-value pairs may be available for unification. For example, if a given description

can be integrated with a massing of type geonx, it can be assigned an underspecified LocATIoN

feature, whose value is required of be of type geom as shown in the previous discussion of partiality

in Figure 5.15. In the description node, massing can also be assigned a feature node of type

locati,on from a number of sources. For instance, the location might be constrained to be adjacent

to a previously created entity of massing. Thus, it is possible that there exists not one, but a
number of feature nodes of compatible type with type massing with the feature, LocATIoN. The

dialogue layer provides a mechanism for mutual disambiguation, such that it is possible to specify

the feature, LocATIoN of any compatible type at the current state of exploration to disambiguate

the choice. Given multiple options for interpreting the value of the feature node of type locati,on

shown in Figure 5.15, a disambiguation process is a necessary attribute of dialogue to resolve non-

determinism. The same process of dialogue disambiguation applies to disjunctive nodes. Given a

number of possible alternative choices, the designer can disambiguate a disjunction by interaction

with the visual feature node representing the disjuncts.

For example, in a user driven query, the formalism might compute a range of possible feature

nodes that are extensions of type locat'ion. The dialogue layer makes them available to the user

as a collection of visual feature nodes. Alternatively, for an explorer-driven step, for instance, a

command to create an entity of type mass'i,ng, the type location can be disambiguated by the user
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through interactive browsing of the current state, selection of a current point, command input,

structure-sharing or a constraint specification.

It follows from the above that when conflicts or multiple choices arise during exploration, mixed-

initiative in the dialogue layer can provide for mutual disambiguation through the visual notation.

In the visual feature node, this process of disambiguation is mutual. This is, it can be interpreted

either as a formal command for the generation of massing elements by the explorer or a user-driven

process wherein the possibilities for locating the massing element are open to exploration through

the specification by the user's action on the visual feature nodes.

Figure 5.18 shows a feature node of type massi,ng, whose feature LocATIoN is constrained to be

of type poi,nt. The feature value can be resolved either by the user or by the formal generator. It
follows that if the location feature of massing is compatible with one or more locations of compatible

location, the unification of the two can be resolved through a process of mutual disambiguation.

In the example of disambiguation shown here, there are several partial interpretations) one

for massing and two for location. Since, either of the two locations might be equally valid for

the unification to succeed, only a process of mutual disambiguation can isolate the valid choice

of locat'ion. The dialogue layer allows ei,ther of the above and does not distinguish between the

modality of exploration, direct specification by the user or constrained search by the generator.

In each case, the unification-based integration strategy ensures that mixed-initiative exploration

compensates for exploration non-determinism through type constraints on the values of features.

Further, the restrictions imposed on these values ensure that the exploration maintains integrity

and consistency during the process of disambiguation.

5.3.5 Supporting multiple modes

Visual feature nodes provide support for multiple modes of exploration. An exploration process

can enter into an explicit "mode" of operation in which a specific type of operation is repeated

until either the mode is changed or incorrect input is entered. This enables an exploration process

to block out input that is inconsistent with the flrst specification. The modality consists of an

initial input specification by either the generator or the user and all subsequent moves are filtered

through unification with this mode. The mode is set by an initial input specifying a feature

structure. Subsequent moves result in the creation of more specific feature structures that unify

with the specified mode. This constrains and restricts the dialogue to entities that are refi.nements or

extensions of the feature structure specification setting the mode. When there is no interpretation

that unifies with the one initially specified, the "mode" is ended. The setting of multiple modalities

introduces a stronger form of mixed-initiative, where the output of the processes are directed by

the initial mode. For example, the generator can enter into a mode for creating entities of type,

mass'ing, whose OBJECT value is constrained to be of type column. This results in a more specific
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Figure 5.18: Feature node of type massing (top) with two options location ard command, for
disambiguation of feature LocATIoN.
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feature structure, which serves as the initial specification for the mode, which will be subsequently

unified with future input, either from the generator, user or both. For example, the user could move

the mouse to a desired location in the state and lock in the location. This will result in the creation

of a massing entity with oe;pcr of type column and locauoN of type poi,nt. The modality enables

the initial input to be unified with the subsequent input resulting in a structure that represents a

more specifrc type of entity. Further, subsequent exploration moves directed from the user's mouse

actions on the feature nodes, creating feature structures of type po'int, will result in the creation of

massing units with oBJtrcr val';ue columr¿ and each locArloN value of point. When the user enters

an input that results in the failure of unification, the mode ends, and initiative is returned to its

default mode.

5.4 Summary

This Chapter develops the dialogue layer of the interaction model for design space exploration. Two

requirements posed in developing human-computer dialogue, d,i,alogue representation and dialogue

'integration are addressed using the attribute-value matrix notation for typed feature structures.

Mixed-initiative dialogue in design space exploration is addressed through the development of a

visual notation for representing problems, solutions, choices and history.

The notation is extended into interaction objects by specifying interaction logic for unfolding

the components of the visual notation. The feature structure representation, and interaction logic

are brought together in the dialogue layer construct, the u'isual feature node. The process of mixed-

initiative dialogue during exploration is implemented using visual feature nodes. Through this

construct, the user is able to participate in a dialogue with the description formalism to construct

problems, navigate solutions, make choices and record the history of exploration. Visual feature

nodes implement the display, feedback and propagation of dialogue during exploration. They are

implemented as user interface objects in FOüDE, a detailed discussion of which awaits description

in Chapter 7, Section 7.1 on Page 108. The next chapter addresses the task layer of the mixed-

initiative interaction model for supporting design space exploration.



Chapter 6

A mixed-initiative task layer

The third and final layer of the mixed-initiative model is the task layer. The specification of

the task layer completes the development of the mixed-initiative interaction model for design space

exploration. The task layer permits the user to access the formal design space exploration movement

algorithms in terms of the designer's domain concepts specified in the domain layer and through a

model of mixed-initiative dialogue specified in the dialogue layer.

6.1 The Task layer

The domain layer constructs, problem states, solution states, feature nodes and satisfier spaces

encapsulate the entities of exploration from the designer's perspective. The dialogue layer con-

struct, the ui,sual feature nod,e, provides a model of turn taking between the formalism and the

designer. Based on these constructs, the taslc layer addresses user access to the formal operations

for computing exploration described in Section 2.4 and enables the designer to generate, navigate

and synchronise a range of design n1,oues.

As noted in the requirements of the interaction model in Section 3.1.2, mixed-initiative must

permit the user to access the formal exploration operators, integrate system-driven and user-driven

moves and enable the user and the formalism to share joint responsibility.

During exploration, system-driven moves represent the operations that modify the i,ntrinsic

attributes of a feature node. The unfoldingl of the intrinsic properties of a visual feature node

is based on the movement operators of the exploration formalism described in Section 2.4. The

formal moves operate on a partial satisfier PSat through the visual feature node, VNode.

Designer-driven moves represent operations that modify the intrinsic and extrinsic attributes of

a visual feature node. The unfolding of the intrinsic attributes of a visual feature node is based on

interaction with formal design moves. The unfolding of extrinsic properties of the feature node is

lthe term unfolding is defined in Section 3.1.1
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Figure 6.1: The exploration tasks are specified over a ui,sual feature node. The elements of the
visual feature node map onto the domain layer constructs.

based on interaction with the interface components of a visual feature node, VNode. The designer

operates on the visual interface components ofthe feature node to affect change during exploration

and these changes are cast as extrinsic to the representation. To incorporate mixed-initiative, it is
necessary to integrate both types of moves in the task layer.

This is addressed by treating both types of operations under a common conceptual metaphor,

termed unfold,i,ng. Visual feature nodes can be unfolded by formal moves as well as their behavioural

properties during exploration. The task layer permits the designer and the formalism to unfold a

visual feature node during exploration. The task layer for mixed-initiative unfolding is subdivided

into node generat'ion, node nauigation and node synchron'isation. This mapping is diagrammed in

Figure 6.1.

The generation task corresponds to the process of creating visual feature nodes from initial
problem statements. The navigation task corresponds to movement along the attributes of a vi-

sual feature node. Navigation comprises movement along both intrinsic (formal) and extrinsic

(behavioural) attributes of a feature node. The synchronisation task covers the process of uni$'ing

two feature nodes, suppression of features and erasure of nodes.

Each task layer construct comprises specific types of operations for node unfolding. Under each

operation, the role of the user, the role of the formalism and the resultant changes to the exploration

space are examined.
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o Generate a visual feature node, VNode

The task of generation comprises interaction with the CoNSTRUCT and trxrEND operations.

The construct operation involves the specification of a query description. The query is parsed

and converted into a visual feature node for further exploration.

o Navigate a visual feature node VNode

Navigation corresponds to movement along the paths of the feature node, VNode. Path

navigation comprises finding and moving between paths in the current node through search,

query and sequential moves. The path navigation process comprises interaction with the

operations, CHooSE, RETRACT.

o Synchronise pathsl P¿ and, P¡.

Given two extant paths, P¿ and P¡ in the exploration, synchronisation comprises interaction

with four operations, RtrCALL, ERASE, JOIN, MEET. The RECALL operation permits the reuse

of previously explored paths. The eRnsp operation allows the designer to perform deletion

and hysterical undo of paths. The JoIN operation computes the specialisation of two distinct

exploration paths. The nrppr operation computes the generalisation of two exploration paths.

6.2 The task of generation

Figure 6.2: The task of generation comprises the construction of problem states through corv-
sTRUCT and the extension of partial design states through EXTEND. The ui,sual feature node maps
the generation task between the user and the design space formalism.

The ui,sual feature node maps the generation task between the user and the description formalism
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as shown in Figure 6.2. The operators involved in the task of generation are described in the next

sections.

6.2.L The construct operation

The generation of a visual feature node comprises the conversion of an initial problem statement

as a query /, into a problem state d and its subsequent extension. A problem state is initially

defined in the attribute-value description language, as described in Section 4.2. A visual feature

node composes the problem state, d, as the flrst element of a satisfler space, SatSpace. The task of

generation comprises the construction of problem states through CONSTRUCT operation.

The initial feature node is constructed using the coNSTRUCT operation. The cousrRucr

operation comprises taking the initial query / converting it into a problem state d and computing

its visual feature node representation, VNode. The attributes of VNode are displayed as a feature-

aalue pa'ir. The sequence of interactions involving the designer and the formalism in the feature

node construction process is shown in Figure 6.3.

The designer represents the problem state through a query description, / in the attribute-value

description language described in Chapter 2. The explorer then converts / using the satisfiability

algorithm into a problem state, d. The result of this step of exploration is the creation of a satisfier

space and its corresponding visual feature node as defined in Chapter 4. The mixed-initiative

dialogue layer displays d as the visual feature node, VNode. This node serves as the basis for

sharing context and problem focus for the next steps of exploration.

Ps taEe

exÞÌorer
I a tate]

Figure 6.3: Interaction sequence of the coNsrRUC'r operation. The designer specifies an initial
problem statement to the description formalism. The formalism returns a collection of partial
satisfi.ers. The vertical bars indicate shifts in control.

The designer controls the visual feature node and its surrounding context through the dia-

logue layer. Dialogue with this node allows designers to display and explore the visual attributes

associated with a feature node and their values.

For example, as shown in Figure 6.3, mixed-initiative interaction with the coNSTRUCT operation
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begins with the specification of a description in the form of an initial query (problem) by the

designer. The explorer then constructs a a satisfier node, PSat. The satisfier node represents the

specification of the problem through the feature-ualue map. Through the feature-ualue map , the

most general satisfier is mapped to a visual feature node, VNode and control handed back to the

designer. The user can unfold this node along a valid path, generate a new description quer¡ / or

reformulate the problem description. In this way, the visual feature node becomes the context for

subsequent tasks of exploration.

6.2.2 The extend operation

Once a feature node has been constructed as described in Section 6.2.7, the explorer retrieves the

last element in the path sequence and returns its root node as a partial satisfi.er. This node is

converted to a visual feature node and the designer can interact with any one of the attributes of

the visual feature node, defined in chapter 5.

The exploration of an initial problem state, d, to partial design states is performed through the

EXTEND operation. The generative algorithm underlying stepwise extension of a feature-ualue pa'ir

of the visual feature node is incremental zr-resolution. The incrementality of zr-resolution, described

in Section 2.4.7, provides natural entry points for user interaction. The designer interacts with the

resolution process, by selecting a feature-ualue pai,r and seeking to extend it to the next state.

Exploration advances by stepwise operations on the feature-ualue rno,p displayed as a visual feature

node. At each step, the explorer (description formalism) constructs a sequence of partial satisfiers,

PSat through incremental zr-resolution. This permits the explorer to introduce new nodes in design

space corresponding to the steps of extension specified by the designer. These steps of extension

are performed over a feature-ualue map. Path extension by the designer comprises a sequence of

extension steps corresponding to the selection of a feature-aalue pa'ir, and the selection of a type

constraint as a direction for extension. The mixed-initiative interaction with the pxrpNn operations

is shown in Figure 6.4.

The designer selects a feature-ualue pai,r and requests an EXTEND operation on this structure.

Given this feature-ualue pair,, the explorer traces a path through the subspace of possible states that

are consistent with it. Since the pxrpNt operation is synonymous with an incremental n-resolution

step, the set of legal types and associated recursive type constraints to which the selected node

can be refined along this attribute are presented to the designer as a list of types and constraints.

Thus, given the existence of a set of legal types, the designer can choose one of the subsuming

types and present the explorer with a legal operation that extends the current node. Ifthe pxrpNt

operation is successful, the new feature-ualue nxap is displayed. The dialogue between the designer

and the explorer continues through this type of turn-taking until the partial satisfier is fully resolved.

Decisions are not subject to a global inference strategy, but are goal-directed in that each resolution
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Figure 6.4: Interaction with the pxrprun operation. The designer selects a feature-ualue pa'ir and
requests a move to the next state. The explorer returns the list of available types to which the

feature-ualue palr can be extended as a collection of types from (Typ", f). The designer then selects
a type from the selection set and returns the type to the explorer. The explorer computes the partial
satisfier and returns the value to the mixed-initiative dialogue layer for further exploration until
the node is fully resolved. The solid arrows indicate flow of the designer's interaction, while the
dotted arrows indicate the flow of the explorer's actions.

step introduces new constraints and opens up possible spaces. Once the next legal operation has

been decided by the two-stage dialogue described above, the explorer extends the computation to

the next state and the interaction loop described above is repeated.

6.3 The task of Navigation

Navigation corresponds to movement along the attributes (paths) of a visual feature node. Nav-

igation comprises the incremental rnouerr¿ent fuorn the rooted purtial satisfi,er to another along a

defined path. Navigation operations enable the designer to locate, identify and move through the

collection of constructed nodes and their paths. Navigation operations support forward and back-

ward traversal from a node in satisfier space along any one attribute of the node. For example, a

step forward along a feature path in the current node will bring the exploration to the next feature

node. A step backward on a feature at the current node will return the focus to the previous node.

The operations for navigating a rooted partial satisfier node PSat are cHoostr and RplRAcr. They

are shown in Figure 6.3.

6.3.1 The choose operation

The cHoosn operation supports the resolution of branching conditions that arise during ex-

ploration. Support for choice at branch points is a key element for dealing with exploration non-

determinism.
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Visual Feature Node
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Figure 6.5: The task of navigation compdses movement through through the operations of cHoICE
and RETRACT. The u,isual feature nod,e màps the navigation task between the user and the design

space formalism.
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Figure 6.6: The cHooSE operation. The designer specifi.es a disjunctive query description, ÓV rþ.

The explorer returns the most general satisfiers as a conjunct of disjuncts. The conjunct is displayed
as a collection of feature nodes, each representing the disjunctive portion of the query. The vertical
bars indicate explicit focus of control. The shaded box indicates areas of mixed-initiative. The
horizontal lines indicate the direction and flow of control.
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Problems can be specified in the form of d,i,sjuncti,ue descriptions such as, d VTl. Such a dis-

junction creates alternatives in the path sequence, requiring user intervention. In such a disjunctive

problem specification, the possible solutions to the problem description are represented as a con-

junct of di,sjuncts in the visual feature node (see Section 5.2.2). The explorer presents all the

choice points of branching to the designer. The designer resolves the non-determinism by choos-

ing one of the disjuncts. Figure 6.6 shows the sequence of interaction involving the resolution of

non-determinism through mixed-initiative dialogue.

Further, choices made by the designer are recorded as visual feature nodes in SatSpace. Hence

the intentionality of the history of exploration is made transparent for future exploration. In the

example figure, this amounts to returning to the visual feature node and choosing an alternate

disjunct. Choice enables the designer to engage the power of the formalism but maintain control

over the generation of alternatives and their exploration.

6.3.2 The retract operation

_ Èo[lp_utg lo.de_s _ _ _

explorer
I etate]

galig¡ 1açtie1 ____i

Figure 6.7: A RtrTRACT operation over the design space. The designer specifies a visual feature
node to retract. The explorer computes the list of nodes that satisfy the retract operation on the
map. The designer selects a valid node from the returned list. The explorer computes the partial
satisfier and returns the feature value map corresponding to a retract operation on the node.

The nprn,tct operation enables a designer to reverse the effects of an EXTnND operation on

the current node. The RprRacr operation is also the exploration equivalent of backing up the

current active path to the previous state. The path sequence in satisfier space enables the explorer

to perform a RtrTRAcT operation on a substructure node in the partial satisfier and retract the

current state to any of the previous subsuming states of the current node. All paths from a

state to its immediate subsuming states and recursively to all subsuming states are accessible in

design space. Retraction permits the designer to access this ordering at the satisfier space. Thus

retraction corresponds to a form of information abstraction, providing the means to move from a
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more detailed feature value to a less detailed one. Through nnrnect, the designer can move to

any previous feature-ualue map available in the path sequence. The designer can move back along

the current path sequence at the finest level of granularit¡ that is, an incremental zr-resolution

step. Alternatively, the retraction can be to any node in SatSpace that is conceptually a more

general subsumer of the current node. Thus backwards movement in satisfler space is a useful

operation for moving either to any previous zr-resolution state along a path sequence or to an

arbitrary state representing a more abstract state of the current node. As a concrete example of

backward movement in the design space consider the exploration of an abstract massing model of

a house of type house that contains a substructure node of type, ki,tchen. The designer begins with

an overall massing model of the house and creates an exploration fragment to detail the kitchen.

The designer can move backward along the resolution path of the kitchen exploration or change

the massing model of the house, which subsumes the kitchen exploration.

The generation and navigation operations operate at the level of a single path of exploration. It
is possible2 to operate at the level of the design space structuring mechanism, subsumption. Large

grained interaction over design space is covered in the next section.

6.4 The task of synchronisation

The satisfier space is the collection of feature nodes traced by interaction. The design space is the

collection of all possible subsumption ordered states of exploration. Synchronisation addresses the

problem of unfolding the results of two distinct exploration paths in the satisfier space with respect

to their underlying ordering in the design space. In the formalism, exploration is organised by

logical components related through the property of subsumption. Subsumption ordering in design

space maintains information integrity. Through subsumption, it is possible to recover the results

of previous explorations. This may happen either along different attributes of the node or along

the same attribute of different nodes. The task of synchronisation is shown in Figure 6.4. These

operations address the problem of synchronising two paths into a single one. The i,nterleau'ing of

path unfolding through synchronisation enables the designer to make large moves, shift between

parts of a design and retrieve or re-use previous paths of exploration. The operations for supporting

synchronisation are RECALL, ERAStr, ¡oIN and MEET.

6.4.L The recall operation

The npcall operation enables the designer to retrieve exploration fragments from related path

sequences to assist in the current exploration. For example, the npcall operation allows the

designer to access problems and solutions of past explorations. The type of a node in an exploration

2See the formal operations in Section 2.4 and the domain layer construct, SatSpace in Chapter 4
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Figure 6.8: The task of synchronisation comprises movement through through the operations of
RECALL, ERASE, JoIN AND MEET. The uisual feature node maps the synchronisation task between
the user and the design space formalism.
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Figure 6.9: The RECALL operation uses the underlying subsumption ordering over feature nodes.
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path acts as an index for recall. The use of a feature structure type as an index to a collection

of design cases is covered in Section 2.4.2. A detailed view of indexing and recall is set out in

[Woodbury et al. 1999].

An example of recall is set out in Figure 6.9. The designer can query the satisfier space, SatSpace

for possible exploration paths corresponding to the type of the current node. The formalism returns

the indices (types) of possible nodes in design space matching the query as a feature-ualue map.

The designer can browse this collection and select a feature-ualue pa'ir that satisfies the needs of

the current path. The formalism then commits this selection as a PSat in design space, updates

the satisfier space and presents the recalled PSat as a new feature-ualue pa'ir.

This operation supports the recall of an entire path of exploration for a given partial satisfier

in design space. This corresponds to a notion exploring object evolution and design history. For

example, in the example of recall illustrated in Figure 6.9, the designer can select a node and

request its exploration history. In this case, the formalism can reconstruct the path sequence of an

index and return the history as a feature-ualue map. The designer can then unfold the resultant

visual feature node through interaction to trace its progeny and ancestor nodes in SatSpace.

6.4.2 The erase operation

Support for erasure is central to designing. Conventional design support systems provide undo,

delete and history mechanisms for dealing with erasure. Undo is the reversal of the last operation

performed. Delete applies to a selection and removes objects from persistent memory. History

records a list of operations and is used as a rudimentary form of version control. These systems

support only linear forms of erasure fNorman 1988] and do not support arbitrary levels of undo

[Cooper 1999]. In generative systems, this process is cast as the substitution of a more detailed

symbol by a more abstract one. For example, the grid definition process in Stiny & Mitchell's

[1978b] Palladian grammar is an example of such substitution.

In design space exploration erasure corresponds to movement in the backward direction [Woodbury

et al. 2000]. Here, the separate treatment of undo, delete and history are replaced by a notion of

information abstraction. Section 2.4.3 provides an account of the movement operation hysterical

undo. In subsumption ordered design spaces, erasure fulfils the conventional model of undo as well

as the computation of less specific instances of the current feature node, which may not have been

retrieved previously.

The pnesp operation is a novel backward navigation technique that conceptually extends simple

retraction. In a subsumption-based representation, ERASE pertains to the uncovering of more

general states in the implicit design space, not so much to the removal of parts of a state. The

ERASE operation corresponds to the movement from the current feature-ualue pai,r to a less speciflc

one. The user interaction with the pR¡sp operation involves a mixed-initiative dialogue, similar
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Figure 6.10: The selected node is removed from the satisfier space. This removal yields a change in
underlying design space, which is reflected as a set of possible, less specific partial satisfiers. The
designer selects one of the satisfiers and the ubsumption ordering is updated to relfect the erasure.

to the previous operators. The user selects the pRAsp operation and applies it to a feature-ualue

pai,r in the current feature node. The explorer then determines the erasure possibilities outlined

above. An example of this operation in the task layer is illustrated in Figure 6.10. The designer

selects a node in SatSpace for removal. The visual feature node marked for removal is deleted

from SatSpace. The control then reverts the description formalism. The design space is queried for

all satisfiers that subsume the erased node and a feature-ualue map corresponding to the partial

satisfiers that subsume the node are returned to the designer. The designer then selects a less

specific node that corresponds to the notion of information abstraction and commits this to design

space. The state from which information would be "erased" remains unchanged in the design space

while the designer's perspective shifts to the the state that corresponds to the notion of information

abstraction. This concept provides a clean view of information deletion within the formal properties

of the explored space.The effect of an trRASE operation is to shift the focus of the exploration to

another node in design space.

6.4.3 The join and meet operations

The.lorN operation corresponds to computing the un'ifi,cati,on of two distinct exploration paths. The

MEET operation operation corresponds to computing the subsumption of two exploration paths.

The "roIN operation provides access to the formal movement operator for design-unification. This

operator is discussed in Section 2.4.4. Design-unification is defined with respect to the subsumption

ordered collection of feature structures as a least upper bound. Given two exploration paths, the

joi,n of the two partial satisfi.ers is the result of combining the derivation steps of each path into a

single partial satisfier containing the union of design commitments in the two operands. Figure 6.11

shows an example of exploration using the ¡oIN operator.

A user interacts with the JoIN operation by selecting two paths from different states. If uni-

fication succeeds, the result is a single structure containing all information accessible along either
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Figure6.11: Representationof aJolNexplorationoperator. PathA: E: F: GandPath
A: B : C : D have a valid join. The feature node fI represents the specialisation of the values of
paths, Pathl and Path2.

path in the two argument structures. If the paths are simply the root nodes of two feature struc-

tures, unification, if successful, results in a single structure combining them both and the resulting

structure would take its place in the design space above each of the argument structures. The

interactive JoIN procedure is useful in achieving the reuse of design fragments, particularly where

the two operand design states embody work on distinct aspects of a common problem.

Figure 6.11 depicts an illustration of the .loIIrl operation over nodes in a subsumption relation.

The example represents the decomposition of a single node A into two distinct explorations, signified

bythe paths A: E: F:G and A: B:C: D. The paths leadingtothesenodes denote building

entities and the edges denote functional roles in the design. Both paths are partial alternate

explorations of some final design. The designer can decide to merge these two alternatives into a

final design using the JoIN operation. The final outcome represents the specialisation of Path 1

and Path 2 into a single design, denoted by the node fI.
The properties of the MEET operation over two paths in the present a mechanism for synchronisa-

tion in the downward direction. This operator is discussed in Section 2.4.5. Design anti-unification

is defined over two partial designs as the most specific feature structure generalising the operands

- the greatest lower bound. The subsumption ordering over design space guarantees a greatest

Iower bound. The result of a n¿ppr operation over two paths is the conjunction of the shared
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Figure 6.12: Representation of a Ivlpptoperation. Paths A: E: F:G and,4: B:C: D have a

valid meet. The feature node 11 represents the generalisation of Patht and Path2.

derivation steps, which in the extreme case is simply the minimal design state. Contrary to JOIN,

MEET is guaranteed to succeed.

Figure 6.12 shows an example of synchronisation through the vlppr operation. The example

represents the decomposition of a single node into two distinct explorations, signified by the paths

A : E : F : G and A : B : C : D. The paths leading to the nodes represent two distinct and

partial alternate explorations. The designer can decide to compute the generalisation of these

two alternatives into a single design using the MtrET operation. The final outcome represents the

collapsing of the two paths, denoted t:y Pathl and PathT into a single design, denoted by the node

H.

As illustrated above, MtrtrT presents a sophisticated means for large scale information synchro-

nisation. The explorer traverses the subsumption ordering and moves the computation through

mixed initiative interaction with the exploration formalism. The designer can choose to continue

the exploration process from the resultant state in the subsumption ordering.

6.5 Summary

This Chapter develops the task layer of the mixed-initiative interaction model for design space

exploration. The constructs of the task layer provide access to the formal design space move-

ment algorithms (Section 2.4on page 32). Exploration moves are cast in terms of the interaction

metaphor, unfold,ing. Three user level constructs for unfolding, construction, navigation and syn-

chronisation of visual feature nodes are described. Through the unfolding of visual feature nodes,
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the designer constructs problems, navigates possible solutions to these problems and synchronises

nodes in the satisfier space. The specification of the task layer completes the development of the

mixed-initiative interaction model for design space exploration.
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Part III: On the Foldabiltiy of Large Design Spaces

"In the act of design we bring forth the objects and regularities in the world of our

concern. We are engaged in an activity of interpretation that creates both possibilities

and blindness. As we work within the domain we have defined, we are blind to the

context from which it was carved and open to the new possibilities it generates. These

new possibilities create a new openness for design, and the process repeats in an endless

circle."

Winograd and Flores [Winograd & Flores 1987, p 1-78].

Part III presents an implementation of the mixed-initiative interaction model, a demonstration

of mixed-initiative unfolding of design spaces and the results of the study. It is divided into the

following chapters below:

- Chapter 7 discusses the design and implementation of FOLDE, a prototype implementation

of the mixed-initiative interaction model for design space exploration. FOLOS is used to

demonstrate mixed-initiative exploration through an example of massing configurations in

the context of architectural design.

- Chapter 8 presents the results of the stud¡ the scope and limitations of the mixed-initiative

model and a discussion of future work for addressing the limitations of the current work in

design space exploration.

- The appendices, Appendix A, Appendix B, Appendix C and Appendix D, contain background

material on the typed feature structure implementation underlying the FOLDS system, a

collection of formal terms and definitions used in the thesis, a brief summary of the uul,

notation, the description of the massing case and notes on the design and implementation of

FOLOS.



Chapter 7

Enabling mixed-initiative exploration

To examine how the model of mixed-initiative interaction developed in the thesis can support

exploration, an illustrative example of a concrete application in the domain of massing design is

presented in this Chapter. The application comprises the implementation of the prototype, FOLDE

and its connection to KRYos, a collection of class libraries implementing the formal substrate

of design space exploration. Through the example implementation, mixed-initiative interaction

between the designer and the formalism in massing exploration are discussed.

7.L FOTDE

FOTOE or the f oldabi,lity Of Large Design Epaces, is an implementation of the mixed-initiative

interaction model proposed in this thesis. FOLDS provides the interaction infrastructure for mixed-

initiative exploration through a suite of user interface modules that harness the domain, dialogue

and task layers of the mixed-initiative interaction model. Through these layers, the designer can

interact with the formal machinery of design space exploration. Notes on the design and imple-

mentation of fOtDS are given in Appendix D.

KRrros is an implementation of the formal machinery of design space exploration [Burrow 2003].

It provides the formal substrate of the description formalism presented in Chapter 2. Knvos main-

tains the relationships between constructs in the description formalism, provides object manage-

ment and maintains the integrity of design space structure. Notes on the technical architecture of

Knvos are described in Appendix D.

Several kinds of conflguration problems arising in design have been identified in the literature on

configuration design. They include the following: layout dealing with composition of spatial layouts

in two dimensions [Flemming et al. 1988, Flemming & Chien 1995, Akin & Sen 1996]; mass'ing

dealing with abstract composition of solids fFlemming 1990, Woodbury & Griffith 1993, Datta &

Woodbury 1998]; enclosure dealing with external-internal building envelopes fWoodbury & Chang

1995a] and structure dealing with structural support systems [Fenves, Rivard &. Gomez 1995].
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Each kind of confi.guration problem requires different representation and algorithms. Massing,

the configuration of abstract three dimensional entities during the early phases of design is the

focus of this study. Although all configuration problems share the requirement for a design space

representation, each would require different type hierarchies and descriptions to be represented in

FCltOE. For example, exploration of structural configurations would require the mapping of the

domain layer constructs onto type hierarchies, descriptions and other domain specific tools suitable

for supporting structural configuration.

To illustrate how mixed-initiative supports exploration, the scope of the example problem is

restricted to the domain of massing configuration. In conceptual architectural design, massing

enables a designer to rapidly develop design schemes and explore possible alternatives in the form

of abstract compositional forms in three dimensions. The notion of massing configuration addressed

in the example is based on the detailed overview of massing given is the SEED-Config Knowledge

level [Woodbury & Chang 1995ö].

Mixed-initiative exploration of massing configurations of single-fronted cottages is explained in

FOLDE. The example builds upon the kinds of conflguration design addressed in SEED-Config

f\Moodbury & Chang 1995ó] and the layout configurations of single-fronted cottages reported in

Woodbury et al. [1999]. A detailed specification of the massing configuration example is given in

Appendix C.

Mixed-initiative interaction between the designer and xRvos (formal substrate) through FO0OS

(interaction model) is described through the illustrative example from the domain. The demon-

stration addresses the states, structure and moves of exploration, the interaction process between

user and formalism and the role of mixed-initiative in supporting interaction.

The example of mixed-initiative exploration is described through the following :

- Domain interactron.

The domain layer implements four constructs, problem states, solution states, feature nodes

and satisfier space for tying the designer's view of exploration (the domain) to the formal sub-

strate of KRyos. Mixed-initiative in the domain layer of FOLOE is described in Section 7.2.

- Dialogue in Exploration.
FCCTOE implements the dialogue layer construct, visual feature node. Through interaction

with intrinsic and extrinsic attributes of a visual feature node, FOLDS enables mixed-initiative

coordination and communication between the designer and KRvos. Mixed-initiative in ex-

ploration dialogue through FCCTOS is described in Section 7.3.

- Exploration tasks.

FCltnS supports supports mixed-initiative in the task layer through the construction, navi-

gation and synchronisation of visual feature nodes. Examples of mixed-initiative in the task

layer of FOLDE are described in Section 7.4.
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7.2 Domain interaction

The domain layer comprises the constructs, PState, SState, FNode, and SatSpace. Together, they

reify problems, partial solutions, choices and history. Through this layer, FOTOE accesses the

KRvos substrate constructs, type hierarchy, appropriateness specifications, constraint system, gen-

erators and design space.

7.2.1 PState and SState

The process of defining and initialising a PState involves interaction with elements of a KRvos

TypeSystem. The designer writes the xnvos TypeSystem components comprising the type defini-

tions, types, the appropriateness specifications, FEATS and constraints, cons respectively. Each of

these components are recorded in text flles. A detailed description of these files with respect to the

example discussed here is given in Appendix C.

Type Hierarchy

Figure 7.1: The inheritance hierarchy of types. This hierarchy extends the example presented in
Figure 2.3 for interactive exploration. The extended hierarchy provides new additional types for
supporting massing design exploration including the types: command,, georn, fu, du.

A PState is mapped onto the type hierarchy as shown in Section 4.2, Eqration 4.7. An inher-

itance hierarchy comprising a list of 43 types representing the domain is shown in Figure 7.2.1.
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In the type hierarchy, above the type un'i,uersal, two new types are introduced. The flrst type fu,

corresponds to function-units and the second type du corresponds to design-units in the SEED

Knowledge Level. The models corresponding to the type du carr be thought of as designs for build-

ings; those corresponding to the type /z as architectural briefs. Immediately above du, the type

confi,guration is introduced. The confi,guration of a design comprises the subtypes layout, massing,

structure, enclosure. All of these types are abstract, serving to refine the type bottom and do not

introduce any features, but such abstract types can be used in constraint expressions. A massing

element is a refinement of the type configurat'i,or¿ which is a subtype of type du or design-unit. This

example concentrates on the exploration of massing designs. Thus the type massi,r¿g, corresponding

to abstract volumes that configure an overall building mass, are discussed in greater detail here.

A detailed representation of massing elements is shown in Figure 7 .2. The type massing, inherits

two features from d% DtJ-LABEL, cEoM. It introduces three types of features, namely MASS-LABEL,

MASS-PoS, r'u. The feature MASS-LABtrL serves to identify the geometric design-unit with a name.

The feature MASS-pos provides the massing with a positional co-ordinate of type poi,nt. The feature

FU is a hook to the functional roles that the massing element may play during exploration. Massing

configurations can recursively contain other massings. The type massi,ng has a sequence of sub-

types rnass'ing-a, massi,ng-b... in which massing-a I mass'ing-ó. Each massing of type mass'ing-n

introduces a feature MASSEL-N which denotes a sub-massing of mass'ing. Thus a feature structure

representing a massing of type massi,ng-f is a design configuration of a+b+ c+ d* e sub-massings.

The type fu has a single sub-type house at which features corresponding to functions are introduced.

These features carry only functional information, in contrast to the the features introduced in the

type, sfc, representing a si,ngle fronted cottage. These features, corresponding to a porch, hall, row

of rooms and skillion, denote the particular spatial organisation of single-fronted cottages without

making commitment to actual addition or dimensions. Type house inherits from both buildi,ng

and massing. The role of this type is to specialise the generic types, buildi,ng and mass'i,ng by

introducing features that correspond to explorations of residential buildings. The type sfc-house

inherits features from both sfc and house. Finally, the type s/c extends the type, sfc-house.

Description queries

The definition of a designer's view of a problem is enunciated in Section 4.2,F,qration 4.2. A PState

is specified through s a textual description with respect to the lnheritanceHierarchy as explained in

the previous section. For example, consider the problem statement shown in Figure 7.3.

Problem statements in the description language are loaded and stored in the construct PState.

The example problem formulation shown in Figure 7.3 comprises a collection of path equations

stated in the form of a conjunctive description. For each valid disjunction-free description of this

form, there exists a corresponding PState. With reference to the massing example, the designer
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Figure 7.2: Representation of massing elements. A type hierarchy fragment showing their inheri-
tance from the type du arrd the introduced features. The asterisk symbol marks features that are

introduced on that type.

(ENTITY'A FU : massing'a) &
(ENTITY.A FU :: ENTITY.B FU)

Figure 7.3: A problem statement in the description language of KRvos
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wishes to explore massings with the following constraints on the problem domain, the feature path

ENTITv-A FU must be of type massing-a and that the former path must be structure-shared with

the path ENTITY-B nu. This statement of the problem is analogous to the query,

What are the possible mass'ing configurat'ions in design space that sati,sfy the constra'i,nts on the'ir

features ?

The designer can compose such queries and pass it to xnvos through the FOLDS interface. If
the description is well-formed, it is parsed by xnvos into a feature node with the label, DescNode.

The successful parse of a description is loaded into FOLDS as a PState. This parsed description is

then avaialable for exploration by designer.

Consider the more detailed example shown in Table 7.1. Here, the problem to be explored is

encoded as a collection of path descriptions. Each path is connected by a conjunction, denoted by

the symbol &. Such a PState represents the initial element of an exploration path. The conversion

of this statement to a SState is enabled by user interaction. The domain layer construct SState

represents the notion of a partial design solution in FOLDS. In it, are embedded the symbol

substrate concepts of description, the satisfaction of a description as satisfi.ers and the trace of

intermediate solutions as partial satisfiers. Since problems and solutions are composed as feature

nodes in the designer's view, this process is explained in the next section.

(SFC'HOUSE GtrOM POS : point &
SFC'HOUSE GtrOM COMMAND : command) &
( FU :fu
k DU :du
K DU DU.LABEL :: FU FU.LABEL
k DU GEOM COMMAND:: SFC'HOUSE GtroM COMMAND
8¿ PORCH SFC'PORCH : du
k, ROOMROW trNTITY'A DU GEOM:: SFC'HOUSE GEOM
k ROOMROW trNTITY'B DU GEOM :: DU GtrOM)

1

2

4

5

6

7

I
I

Table 7.1: A collection of path equations in the form of a conjunctive description.

7.2.2 FNode and SatSpace

The PState is a compiled representation corresponding to the above description and is displayed in

the interface through a feature node FNode with the IabeI, Satspace Elemenú as shown in Figure 7.4.

Thus, a problem state, PState is the initial representation of a problem. It appears to the user in the

FOLDEiTúerface as the first element with the label, Satspace Element. It is on this structure that the

process of modification and reformulation of problems occurs. Once a TypeSystem and a DescNode

are successfully parsed, the designer regains control of the dialogue and can either construct a

SatSpace and continue with the next state of exploration or formulate additional problems.

A. Satspace Element labels a single exploration state, the FNode. An FNode composes a PState

and SState. The first element of a FNode is a PState as shown in Figure 7.4. By interaction with
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Figure 7.4: Ttre label SatSpaceElement represents the feature node corresponding to the PState.
The figure shows a SState labelled by the lype sfc-roomrow-two uncovered in the exploration of the
problem.

Figure 7.5: The FNode with the Iabel Satspace Elemenú can be loaded into the interface after
parsing the query description. Each element represents the most general satisfier of a query, and
can be subject to interactive unfolding from this point upwards.
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this element, the designer can either modify (reformulate) the PState or generate a new problem

state. The rest of the elements of a FNode are entities representing SState nodes. These are the

partial satisfiers (solution states) of the FNode. By interaction with these elements, the designer

can unfold the possible solution states of the problem. The elements composed by label Satspace

Element become the subject of mixed-initiative dialogue with xRvos via zr-resolution and other

movement operations.

The SatSpace is the largest and most complex object in the domain layer. The technical details

and its relation to the formal substrate of subsumption ordered design space are given in Section 4.5

and in Appendix A. The design space descriptions are written as ASCII text files1 and accessible

through project names. The interface module of FOLDS is described in Section D. This interface

provides the interface hooks to initialise the Kryos system, load in project definitions, construct

the design space and begin the process of exploration. This module provides the interface for

Ioading a TypeSystem. Construction of feature nodes is mediated by an iterator-like object, i.e., a

SatSpacePath. Such an object is a path of computations from the statement of the problem, PState

to a partial satisfier. However, like all generative processes, a starting condition is necessary. In

FCILOE , exploration begins with an empty path, ttre path from the problem state PState to its

trivial conversion to a partial satisfier, PSat. Given the empty path, the user can explore the partial

satisfiers on this path by iterating through the possible elements of this path using the exploration

operations. The label SatSpace Element provides a hook to its SatSpace. So given an exploration

path, the user can explore element on this path by interaction.

In order to advance the exploration, the designer performs an incremental zr-resolution operation

on this structure. The substructures corresponding to the results of the zr-resolution operation are

returned by the formalism as feature nodes. The designer then selects a substructure, SatNode to

the node at poRcn. This node can be selected from the feature-value graph shown in Figure 7.2.2

or from the massing elements shown in Figure 7.15. If the designer picked a type ú from the list of

Iegal type-resolut'ions shown in Figure 7.9, then the exploration is advanced to the next element in

the satisfler space.

7.3 Dialogue in exploration

7.3.L Unfolding visual feature nodes

As identifled in Chapter 4, the visual feature node provides a sound representation for the commu-

nication and coordination of mixed-initiative dialogue. Two partial satisflers of a query description

from xRyos and their interpretation as visual feature nodes in FOLDS are shown in Figure 7.7.

Interaction with the visual feature node involves three possible behaviours. First, the feature

1An example of these files are given in Appendix C.
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Figure 7.6: Implementation of interactive unfolding of a feature-ualue nxap using the visual repre-

sentation of a feature node.
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node can be unfolded into its constituent subparts following the standard interaction and its values.

Second, an unfolding operation can be applied to a feature-value pair. Third, the uniflcation of a

type with a feature node can be specifled. An example of interactive node unfolding in FOLDS is

shown in Figure 7.2.2. In this example, a description query returns a partial satisfier of type s/c

comprising three feature-value pairs, LIVING, PORCH, DINING and their most general substructure

nodes. The elements can be expanded and imploded using the triangular arrows, while the selected

feature-ualue pa'ir, slzp of type uector can be subject to exploration through mixed-initiative.

7.3.2 Implementation

Mixed-initiative unfolding between the designer and the explorer is implemented in FOLDE rc-

ing the signal/slot protocol for communication between the designer and the generative system.

This protocol is a straight forward adaptation of the message passing system, si,gnal-and-slots

[Dalheimer 1999] available in er2. This communication method is combined with the visual feature

node interaction to form the basis for the interactive path operations in FOtiDE. The signal/slot

mechanism, used for bi-directional communication between interface operations on a FNode and

KRYos, is shown in figure 7.8.

Figure 7.8: Interactive node operations in FOLDS use the signal/slot mechanism for communication
with xRvos. User interaction on a node, emits signals to the selected feature-ualue pa'ir. Each

feature-ualue pa,ir signal is connected to a slot that communicates with KRYos. The results of the
operation update the initial feature node with the new feature value pair.

A si,gnal is a type of message that is emitted when a particular event occurs, either initiated by

the designer at the interface or by the generative system. A slot is a function that is called in re-

sponse to a particular signal. Signals and slots are coupled together using the connect(si,gnal,slot).

If the signal is interesting to two or more objects, the connect function can couple the signal to slots

in all the objects. Manipulation of a feature-ualue pair results in a signal. When a signal is emitted,

the slots connected to it are executed immediately in KRYos. The results of the operation are then
2An elegant notification mechanism for communication bel,weel sofl,ware cornponenl,s is available ir l,he Qi, tlis-
tribution based on signals and slots. Signals are emitted by objects when they change their state in a way that
may be interesting to the outside world. Slots are normal member functions used for receiving signals. A single
slot can receive multiple signals and a signal can be broadcast to multiple slots.

Krvos FacadeFeature Value Pair
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returned to the feature node as an updated feature-ualue rnap. Technical details of the signal-slot

mechanism and dialogue through visual feature nodes are described in Appendix D. A deeper

understanding of dialogue awaits the discussion of interaction with the exploration operations in

the next section.

7.4 Tasks of exploration

The exploration operations enable tlire generat'ion, nauigati,on and synchron'isati,on of visual feature

nodes in a satisfier space, SatSpace of candidate massing configurations.

Figure 7.9: Interactive node unfolding in FOLDE showing in the DesignSpace Module.

The Design Space module shown in Figure 7.9 is the main interface to exploration operations

in FOLDE. Its comprises a graphical view of the feature value nodes, The feature nodes are shown

in first level to the left and the substructure nodes are shown in the right. During interaction

with the movement operations, type resolutions or disjunctive points are shown in smaller pop up

widgets. The central portion of the module displays the massing designs graphically. Camera,

shading and transformation controls are provided for viewing massing elements. The console linked

to the unfolding process provides feedback during exploration.

The functionality of FOLDE in supporting exploration tasks through mixed-initiative is de-

scribed here. First, the process of feature node construction describes the problem formulation and

extension process through interaction with the CoNSTRUCT and pxtpNo operations. Second, the

navigation of the feature node using the cHoIcp and RnrRACr operations are described.

nÐ

4 EATHFOON1
g EED

!t DINIiG
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OIN NG
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Finall¡ the synchronisation of feature nodes in satisfier space, supported through interaction

with the REcALL, ERASE, .lorN and MEET operations is discussed.

7.4.1 Extending feature nodes

Recall that feature node navigation is defined in Section 6.3 as the incremental mouement from

the rooted partial sati,sfi,er to another along a defined path. The exploration path is advanced

by small-grained, monotone operations over partial satisfiers. As for all paths, for each element

in the exploration path of massing designs of single fronted cottages, there exists a feature graph

corresponding to its contents. Exploration is advanced by navigation operations on the feature-

value graph of the satisfier, PSat. The operations available for unfolding a given visual feature node

ATE CHOOSE ANd RPTRACT.

(u) (b)

Figure 7.1-0: The description query, (src-noouRow : massi,ng-f), its corresponding PState, Iabelled
as a DescNod,e (a) and massing representation of type, sfc-roomrow, (t:).

The pxrpNo operation is used to unfold the implicature of a conjunctive description query.

The designer can simultaneously perceive visual change in the substructures of the developing

exploration path and trigger changes in the functional feature node representation. Both forms are

indices to the underlying design space of massing solutions. As an example, consider the initial

query shown in Figure 7.10 for massing exploration.

The designer instantiates the feature sFC-RooMRow and constrains it to be of type, massing-f.

Using the coNsrRUCT operation described in the previous section, its corresponding FNode is

provided for user interaction. The user instantiates the feature to the massing geometr¡ and

KRyos infers its type to be at least as specific as sfc-roomrow. FYom this starting point, the

EXTtrND operation is used to extend the thread specified by the type sfc-roon1,row. The thread

of exploration shown in Figure 7.10 can now be extended by user interaction. In Figure 7.71,

the initial query is extended by adding the feature, ENTITY-A and committing the massing type,

mass,ing-c as its value. The designer is then returned the visual feature node corresponding to

the advance in the computation associated with the extension of the query. Figure 7.12 shows the

introduction of the feature, ENTITY-c and committing the massing type, massing-d as its value.



7.4. TÄSKS oF EXPLOR-ATroN 721

tli rürlfilfrlv,r t',4'r.r

c ace Element

ENTITY ,q

E'massing_c
SFC FOÜMFTW
E massing_f

(u) (b)

Figure 7.11: The initial query is extended by introducing the feature, ENTITY-A with value of type,
mass'ing-c. Its corresponding DescNode is shown in (a) and the massing representation is extended

to be of type, sfc-roomrow-two, shown in (b).

The mixed-initiative dialogue enables the designer to incrementally extend the computation path

until no further exploration through EXTEND is possible.

Note that though exploration begins at a point in the satisfier space specified by the type

sfc-roomrow, it is possible to move to other points in the satisfier space. FYom this point, it is

possible to direct the exploration through either query reformulation, or substructure extension.

Through mixed-initiative, these possibilities enable richer forms of interaction to explore the moti-

vating example of single-fronted cottage massing configurations.

Desc

SatSpace Element

E'sfc rootnrow three

ENTITV Ê

E rnassing_c

ENTITY C

E
E SFC ROOMROW

E ftìassing_f

(") (b)

Figure 7.72: The exploration is advanced by introducing feature) ENTITY-c with value of type,
rnassi,ng-d. Its corresponding DescNode is shown in (a) and the massing representation is extended

to be of type, sfc-roomrow-three, shown in (b).

To evaluate the range of interactions further, consider the state of the interface shown in Fig-

ure 7.13. The visual feature node generated in its attribute-value matrix notation of type s/c is as

follows :

E

E.

m arri ng_d
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sfc

DINING: massing

HEIGHT: l3l integer

SIZE: vector

OX: l4l integer

OY: [a]

LIVING: massing

HtrIGHT: l3l

SIZE: vector

OX: [5] integer

OY: [5]

PORCH: massing

HEIGHT: [3]

SIZE: vector

OX: [5]

OY: [5]

In this example, the PState comprises three features LIVING, DINING, PORCH and their massing

values. Note the co-reference tags that indicate the heights of each of the geometries representing

the type rnass'ing are structure shared. F\rrther note that the sizes, here denoting the layout

dimensions, are also the same. Given these constraints, the massing explorations generated from

this problem statement will maintain the type constraints associated with the type s/c.

Of specific interest is the fact that the designer is not restricted to exploration within these

constraints. The designer can return to a previous Pstate of the current exploration and change

the constraints to generate a new set of partial satisflers. F\rrther, the designer can modify a

generated partial solution of type SState and use this entity as a starting point for another cycle of

generation. Thus, the task of exploration through mixed-initiative allows the designer to modify,

change and retract not only the initial PState, but also use the generated collection of partial

satisfiers to advance the exploration.

While the distinction between problems and solutions is maintained in the domain layer, the

nature of the formalism permits interchange between these distinctions. Thus, mixed-initiative en-

ables the freedom to reformulate and change the nature of generation without losing the advantages

of the underlying order structure. The next section shows how the CHoIcE operation permits even

more freedom in exploration in the case of disiunctive problem statements.

7.4.2 Choice in exploration

Disjunctive problem statements comprise the composition of queries as explained above. However,

the disjunction operator, "1" provides natural choice points to the selection of solutions in FOLDS.

As an example, consider the problem shown in Table 7.2.
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Figure 7.13: An EXTEND operation in FOLDS. Note that a description node of type uni,uersal is
introduced as a massing element. This element is extended by interaction to be of type house. A
list of features, DINING, LIVING of type scalar and the constraints on them (both share the value of
the feature HtrIGHT) are incorporated into the satisfier. These features are assigned type scalar as

this type represents the most general or least specific resolution of the features under the current
problem statement.
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Figure 7.14: The exploration of a disjunctive query description. The values of the conjuncts within
the disjunct are shown in the visual feature node representation in the lefb. Their corresponding

design states with massing representations and type extensions are shown in the right.
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(SFC'HOUSE GEOM POS : point &
SFC'HOUSE GEOM COMMAND : command) &
( DU DU'LABEL :: FU FU'LABEL
k DU GEOM COMMAND:: SFC'HOUSE GEOM COMMAND
k, PORCH SFC'PORCH : massing'a
k PORCH SFC'PORCH MASSEL'A DU GtrOM :: DU GEOM) &

( sFC'HOUStr ROOMROW ENTTTY'A MASSEL'A:: SFC'HOUStr GEOM ) -
SFC'HOUSE ROOMROW ENTITY'A DU GtrOM :: SFC'HOUSE GEOM
SFC'HOUSE ROOMRO\M ENTITY'B DU GEOM :: DU GEOM )

SFC'HOUSE ROOMROW trNTITY'A DU GEOM :: SFC'HOUStr GEOM
SFC'HOUStr ROOMROW ENTITY'B DU GtrOM :: DU GtrOM
SFC'HOUStr ROOMROW ENTITY'C DU GtrOM :: DU GEOM ) -

ROOMRO\M ENTITY'A MASSEL'A:: SFC'HOUSE GEOM
SFC'HOUSE ROOMROW trNTITY'B DU GEOM :: DU GEOM
SFC'HOUStr ROOMROW ENTITY'C DU GEOM:: DU GEOM
SFC'HOUSE ROOMROW ENTITY'D DU GEOM:: DU GEOM)

Table 7.2: Path descriptions from the massing example presented as a collection of disjunctive
descriptions. Disjunctions signify non-deterministic choice points in the satisfler spaces. The de-

signer constrains the massing exploration to the paths shown above and provides the constraints
on features through structure sharing and path equality.

In the above PState, the feature sFC-HousE is constrained by two path equations. Line f1
of Table 7.2, constrains the exploration path sFC-HousE GEoM Pos to be of type poi,nt. This is

analogous to the natural language statement,

The posi,tion of the geornetries of this type must be g'iuen as a point in the geometry window.

Thus any geometry that satisfies the feature sFC-HousE is associated with a point, provided by

the designer through the geometry interface. Line f2 states that the exploration path, sFC-HousE

cEoM CoMMAND is constrained to be a command type of command. The path SFC-HOUSE PORCH

has the type mass'ing-a arrd its extension path MASSEL-A DU GEoM is structure shared with the

current path nu ctroM. The next part of the query is a collection of four disjunctions describing

the constraints on the entities that are introduced in the path sFC-HousE RooMnow. Line f 7,

10, 13, 17 in Table 7.2 equate the structure at the end of path sFc-HousE RooMRow trNTITY-A

MASSEL-A with the current structure DU GEOM. The rest of the query constrains the formalism

to generate alternate arrangements for the value of RooMRow comprising one, trvo) three or four

massings. The disjunctive choice points are maintained within the SatSpaceEl representation, such

that they can be displayed in a graphical interface for user intervention as shown in Figure 7.15.

In this figure, two possible resolution paths exist. The user must choose between the two disjuncts

in order to resolve the non-determinism.
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Figure 7.15: Interface to resolving disjunctions with the cuolcp operation in exploration. Disjunc-
tive problems present the user to with the alternative possiblities to resolve.

In the example above, mixed-initiative in FCCTOE presents a natural way to resolve the non-

determinism arising out of the resolution of disjunctive problems, that is, problems with many

alternative arrangements. This is necessarily an explanatory example: the scalability of the propo-

sition remains to be tested in very large sets of disjunctions. One solution to very large sets of

disjunction is foreshadowed in the discussion on incrementality in Section 2.4.1.

7.4.3 Retract

As described in Section 6.3 on Page 96, the Rp'rRRCr operation enables the exploration to move to

any previotts feature-ualue map available in the path sequence. In the case of the massing example,

path retraction provides the means to move from a more detailed feature value to a less detailed

one. Consider the exploration of a massing model of a house as shown in Figure 7.72. The designer

begins with an overall massing model of the house of type s/c, creates an exploration fragment to

detail the Rootr¡Row to the type, sfc-roomrow-three. At this point in the exploration, it may be

necessary to abstract arù/ay some of the exploration details and redirect the exploration along a

different path. The RETRACT operation enables a designer to reverse the effects of the most recent

trxrEND operation on the current node. F\rrther, the RETRACT operation is also the exploration

equivalent of the conventional model of undo, which is the action of backing up the current path
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to the previous state. The "path sequence" in the design space is the set of feature nodes that are

more abstract (less specific in terms of information) than the current node.

Using this operation, the designer can then return to change the expioration of the massing

model, and modify aspects of the earlier RooMRow exploration a¡rd retract the massing to the

type sfc-roon'ùrou)l which is a less specific type. This act of moving to less specific states during

exploration is illustrated in Figure 7.16.

Figure 7.16: Path retraction enables the designer to move from the currently selected substructure
to the set of states that are strictly less specific in terms of information than the current substruc-
ture. The feature node at the end of the path snc-uousE RooMRow can be retracted along the
types sf c-roomrow -three, sf c-roomro w -tw o, sf c-roomro w.

Mixed-initiative enables the explorer to perform a RETRACT operation on the substructure node,

denoted by the feature path src-nousE RooMRow in the partial satisfler. This operation allows

afc

sfc houae maBsing

houBe

dufu
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the user to move back along the current path sequence at the finest level of granularit¡ that is, an

incremental zr-resolution step. Thus, the massing entities denoted by the types s/c-roonzrow-two,

sfc-roomrow-three, sfc-roomrow-four ate available to the designer. The designer can choose to move

backwards along this path using the RprRRct operation to move to the less specific states denoted

by the types, sfc-roomrow, sfc-roomrow-two, sfc-roomrow.

7.4.4 Reuse of past exploration

In the massing example thus far, exploration moves along a single thread of exploration are de-

scribed. As discussed in Section 6.4, synchronisation operations provide the designer with the

ability to integrate two distinct threads of exploration in the design space into a unified state.

The npcell operation allows the designer to access the problems and solutions of past explo-

rations which have been stored in a database of exploration histories for the given design project.

In the case of the massing example discussed above, note the descriptions in Figure 7.17. They

represent distinct queries over the massing type system undertaken in different sessions. It is pos-

sible, using the RpcRl-l- operation to query the design space, seeking to find exploration paths that

might satis$r the specification for the current path snc-uousE RooMRow ENTITY-c SKILLION.

Using unification, mixed-initiative dialogue can incorporate past exploration paths into the current

path of exploration. Since the monotone operations based on incremental n-resolution maintain

information integrity and consistency in the space, it is possible to engage the Rpcall operation

to recover the results of previous explorations. In another thread of exploration, the SKILLION is

elaborated in the exploration of type house. The npcer-L operation is used to extend the path

RooMRow trNTITy-C to a skillion. The result of the recall is shown in Figure 7.17.

The RpcalI, operation can operate on two levels. First, the recall of paths corresponding to

the type of the curent node, which acts as an index for recall. The use of a feature structure as an

index to a collection of design cases is covered in fWoodbury et al. 1999]. Second, this operation

deals with tracing the exploration history of a current node in the design space. This corresponds

to a notion of object evolution and design history of the current node. This operation allows the

dialogue layer to enable extended interactions across and between sessions, between different parts

of the design space and between different designers.

7.4.6 Erasure

The definition of information removal, or erasure [Woodbury et al. 2000] is a novel backward

navigation technique [Woodbury et al. 2000]. The ERASE operation conceptually extends simple

retraction as shown in Figure 7.16. The pRnsp operation allows the designer to perform non-

destructive undo, destructive deletion and suppression of features in the design space.

Figure 7.18 shows how the trRASE operation is used in massing exploration to set the value of the
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Figure 7.17: Using the RpcRr,L operation. The exploration of type sfc-house is developed with
the features poRcH, HALLwAv, RooMRow shown in (a). In another thread of exploration, the
sKILLIoN is elaborated in the exploration of type house shown in (b). The Rpcer,L operation is
used to extend the path featroomrow entity-c to a skillion by combining (a) and (b). The result of
the recall is shown (c).
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Figure 7.18: The ERASE operation allows the designer to remove massing entities from a configura-
tion. The exploration of type sfc-house is developed with the features PoRcH, HALLwAY, RooMRow
shown in (a). The massing entity corresponding to the pxutv-e is deleted from the composition
leaving the massing and corresponding feature node shown in (b).
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feature path noovtRow ENTITn-e to the type uniuersal to suppress its effect on the massing. The

intensional nature ofthe feature nodes is apparent in this operation, as erasure is achieved by feature

suppression rather than removal. The only difference is that the new states are are conceptually

less specific than the feature nodes from which they are computed. An implementation of erasure

in the general case as outlined in Section 2.4.3 awaits further research.

7.4.6 Joins and Meets

Since unification is defined with respect to the ordered collection of feature structures as a least

upper bound, it is also possible to conceive of unification as a formal means for combining two

partial designs signified as exploration paths in a coherent, single exploration path. The ;olN

operation provides a means for computing the unifi,cation of two distinct exploration paths. In

the implementation of FOËDS, JoIN failed consistently to result in a least upper bound. While

JoIN remains a valid synchronisation operation, it requires stringent type compatibility in order to

succeed. The uniflcation of partial designs through ;orN requires further work, both at the level

of the substrate as well as in its implementation in FOËDE. The tuepr operation corresponds to

computing the subsumption of two exploration paths.

(") (b) (")

(d)

Figure 7.19: The MEET operation allows the designer to explore massing entities from a configu-
ration through synchronisation of multiple paths of exploration. The MEET of the confi.gurations
shown in (a), (b) and (c) is the configuration of type s/c shown in (d).

Figure 7.19 depicts massing states structures in a subsumption relation. The example represents

the decomposition of a massing design using the MEET operation. The upper nodes denote building
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entities from separate exploration. The lower node denotes their respective reductions to single

entity.

The uppr operation presents a sophisticated means for large scale information synchronisation.

A user interacts with the MEET operator by selecting two paths, each from a different state as shown

in Figure 7.19. The explorer then traverses the subsumption ordering and moves the computation

to the meet of the selected states. The user can then choose to continue the exploration process as

the result is a design state automatically placed somewhere in the subsumption ordering. If the two

paths are the root nodes of states in the design space, anti-unification produces the most specific

subsumer of those two states.

7.5 Discussion

From the implementation of FOLOS and an example demonstration in the exploration of massing

designs for single-fronted cottages, it is now possible to discuss the findings arising out of the

prototype implementation. The findings are as follows:

- A substantial effort is required to author a valid type system in terms of speciS'ing types,

features and constraints on types. In the current implementation, a type system is constructed

manually with a text editor and this process remains error-prone. To make this process

interactive, extending the domain layer to the authoring of type systems is necessary.

- The clear distinction between problems and solutions identified in the domain layer is blurred.

In the example discussed above, following the SEED Knowledge level, functional decompo-

sitions and design solutions are specified in different parts of the type hierarchy. This is

borne out by the example to be an unnecessary construction for design space exploration. As

implemented in FOLDE, problem formulation and solution generation are distinct processes.

However, in the mixed-initiative environment, these categories are interchangeable. This is a

reflection of real world designing, where solutions and problems remain intertwined in com-

plex ways. Further, in the formal substrate, no distinctions are made between problems and

solutions.

- Mixed-initiative permits the satisfier space to be independent from the design space. The

real power of this independence is revealed in the making of choices and the recording of

the history of exploration. A trail of exploration rationale is built up in the satisfier space

and these are easily accessible to the designer. This permits the designer to experiment

and explore with a range of problem statements, without losing the threads of intentional

exploration. Mixed-initiative permits the complexity of design space (large subsumption

ordered graph) to be encapsulated in satisfier space (folded intentional tree). This proved to

be the most successful aspect of the implementation.
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- A loss of generality comes with the tree formulation of the SatSpace. This is a trade off with

respect to ease of use and implementation. This loss of generality in satisfier space means

that the implications of redundant states through structure sharing in the case of non-trivial

type hierarchies (the massing example has only 43 types) is not currently known and awaits

a construction of larger automated type systems. However, this is not a problem in theory:

given the subsumption ordering of design space, redundant states would be automatically

detected3.

- The dialogue layer construct of visual feature nodes is posited in Chapter 5 as a straight for-

ward adaptation of feature structure notation. As borne out by the example implementation,

it demonstrates the mixed-initiative nature of interaction but is a limiting case for explo-

ration. The visual feature nodes generate and control the configuration of massing designs.

The visualisation of these designs is achieved through a straight forward mapping into the

three-dimensional viewer in FOLDS. A more compelling interface metaphor, for example the

direct manipulation of graphic entities, is necessary for seamless exploration. As far as possi-

ble, dialogue needs to be construed in terms of the language designers understand best, two

and three dimensional visual representations, not in terms of symbol level abstractions and

their visualisation. The lack of direct manipulation of massing entities to further exploration

remains a limitation in F9LDE.

- The tasks of exploration in FOLDE mirror the movement algorithms of the formalism. All of

these are conceptual variations of information ordering and inference operations available at

the symbol level. Currentl¡ the implementation is truly mixed-initiative in three operations,

EXTEND, cHoICE AND RETRACT. At the time of writing, ERASE is performed without mixed-

initiative interaction. As explained in the example, the feature path is suppresed in terms of

the formulation enunciated in Chapter 2, Section 2.4.3. The complexity of mixed-initiative

erasure at the user level requires further research.

- The case of JoIN proved problematic to demonstrate through mixed-initiative. The theo-

retical soundness and completeness of this large grained synchronisation operation has been

argued in the thesis ( See for example, Section 2.4.4 and Section 6.4.3). However, the demon-

stration of its validity in the general case in FOLDS awaits further research into the nature

of synchronisation from the perspective of implementation. The successful implementation

and demonstration of .roIN requires careful and automated construction of the TypeSystem,

in relation to type checking for computing compatibiliiy of joins. In the manual example

illustrated here, this proved difficult to achieve as types became specialised and incompatible

fairly early in the process.

3This is foreshadowed in \Moodbury et al. [2000] discussion of duplicate detection
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- The case of MEET proved to be the only large scale operation demonstrated through mixed-

initiative. This is attributed to the fact that the formalism consistently returns the greatest

lower bound, which in the example is the simple massing of type sfc-roomrow. Reconstructing

the intermediate nodes in the path to the greatest lower bound would make this operation

more compelling as a metaphor for exploration.

- The FCILOE implementation opens a new area in terms of query and retrieval interfaces for

recall operations. In the case of RncAlL, simple substitution rather than inference is used in

the current example due to the lack of persistence and storage mechanisms for exploration

results. However, given a persistent data storage of past explorations, mixed-initiative is

potentially an effective mechanism for search, match and retrieval of past explorations. Taken

together, a type hierarchy editor, a visual description authoring environment and a repository

of exploration results present a potentially powerful environment for developing a new form

of systematic design reuse.

7.6 Summary

This chapter describes a prototype implementation, FOLDS, of the mixed-initiative interaction

model developed in Part II. The FOLDS prototype is implemented over the xnYos, an implemen-

tation of the formal machinery of design space exploration. FOLOS demonstrates mixed-initiative

interaction between the formalism and the designer. An example of mixed-initiative exploration

in the domain of three dimensional configurations of massing designs is described. Through this

example, the role of the mixed-initiative interaction model during exploration is demonstrated. In

the next chapter, the conclusions ofthe study with reference to the hypotheses investigated, the de-

velopment of the mixed-initiative interaction model, the prototype implementation and directions

for future work are presented.



Chapter 8

Conclusions

This study investigates the role of mixed-initiative interaction in design space exploration. In this

Chapter, the results of this investigation, the constraints on the results and directions for further

work are described.

8.1 Mixed-initiative Exploration

The research hypotheses on the role of mixed-initiative in design space exploration, posed in Sec-

tion 1.4 on page 19 can now be addressed.

8.1.1 Assumptions

The assumptions underlying the study are as follows:

7. The process of computati,onal erplorat'ion can be formally encoded with a design space descrþ-

ti,on forrnalism.

The design space exploration formalism provides a sound basis for representing the concepts

of state, move and structure. First, types, features and descriptions taken together provide

well founded support for representing problem and solution states. The state representation

supports the formal properties of intentionality, partialness, structure sharing, and cyclicity as

discussed in Section 2.2.3. Second, the inference algorithms over this representation support

a principled notion of exploration moves that enumerate partial states under a subsumption

ordering. Moves generate new states, navigate and modify existing states. These moves are

discussed in Section 2.4. Finally, underpinning the exploration of partial satisfiers is an order-

ing based on subsumption. In Chapter 2, a description formalism for representing the formal

substrate comprising state, move and structure is described. The work on the formal sub-

strate has been reported in Woodbury et al. [1999], Burrow & Woodbury [1999], Woodbury

135



8.1. MrxED-rNrrrATrvE ExpLoR-ATroN 136

et al. [2000] and in Chang's [1999] and Burrow's [2003] theses. The implementation of the

formal theory of design space exploration is available in xRnos [Burrow 1999].

2. Integrating the role of the desi,gneri,n computat'ional erplorat'ion with a descri,pti,on formalism

requ'i,res an interaction paradigm.

Interaction paradigms provide a mechanism for introducing human design intent into compu-

tational exploration. Such a paradigm provides a systematic exposition of how communica-

tion, coordination and control strategies enable a designer to interact with a formal system.

Manual, automated and cooperative paradigms for integrating the user with the system have

been proposed in the literature. These models are described in Section I.2. These accounts

adopt a "black-box" approach to user interaction, where communication, coordination and

control is based on the apriori, division of labour between user and system. These paradigms

posit a neat separation of the tasks to be performed between the user and the system under a

global control policy. The mixed-initiative interaction paradigm models a more fine grained

division of labour, allocating and sharing control over the same task jointly between the user

and the system. This fine grained division of control offers a more flexible mechanism for

acquiring and relinquishing initiative between the designer and the formalism.

8.1.2 Research hypothesis

The mi,red-i,nitiatiue formulation for supporting user interaction with a formalism is a useful

paradigm for design space exploration. To identifii how the mixed-initiative paradigm of interaction

can address the problem of computational exploration, the following hypothesis was investigated:

That a mi,red-i,niti,atiue model of interacti,on presents a promis'ing neu o,pproach for i,ntegrati,ng

the roles of the user and the description form,al'ism'in computat'ional erplorat'ion.

This hypothesis posits the need for a mixed-initiative model of interaction for supporting de-

sign space exploration. The requirements necessary for addressing mixed-initiation exploration are

identified in Chapter 3. To integrate the designer's view of exploration identified in chapter 1

with the entities supported by the description formalism described in Chapter 2, an interaction

model for supporting mixed-initiative in developed in Part II. To address the requirements of

mixed-initiative, the thesis develops an interaction model comprising the following: a representa-

tion of the doma,in, a communication layer for dialogue between the user and the formalism and

operations for performing the taslcs associated with exploration. The interaction model proposes

feature node unfolding as the interaction paradigm for integrating the role of the user and the role

of the formalism in design space exploration. Feature node unfolding is implemented in FOLDS.

The prototype comprises interfaces for constructing fcaturc nodcs, a navigator of interacting with

visual representations of partial satisfiers, a viewer for visualising geometry in partial states and

a communication mechanism for coordination and control of dialogue between the designer and
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the formalism. Mixed-initiative interaction is demonstrated through an example in the domain of

architectural design: the exploration of three-dimensional massing confi.gurations.

The fundamental contribution of mixed-initiative interaction to design space exploration is

that i,t enables the desi,gner to ma'intai,n erploration freedom, preseraes the underlying structure of

erplorat'ion and permi,ts a finer granulari,ty of di,alogue.

These characteristics of the mixed-initiative formulation of interaction can be summarised as

follows:

1. Maintenance of exploration freedom.

Mixed-initiative maintains freedom for incorporating the intentional actions of the designer at

any state of exploration. The sati,sfi,er space provides a unified model for representing the set

of problems, subproblems, problem revisions and associated designs that a designer actually

considers. Problems need not be fixed. Designs can be partial or complete with respect to the

initial problem formulation. A designer may make varied choices that imply different kinds

of design space operations. All are captured in the satisfier space. Symbolically, the satisfier

space is a tree of visited design possibilities. The independence of the satisfier space from

design space is developed in Section 4.5 and demonstrated in the example of mixed-initiative

exploration outlined in Section 7.2.

2. Preservation of order.

Mixed-initiative enables order preseruing exploration. The structure of exploration is repre-

sented through the ordering relation of subsum,pti,on. The concept of an ordered design space

underpins interaction between the designer and the description formalism. In it, the collec-

tion of exploration states are ordered by the relation of subsumption. Exploration moves

are cast in terms of moves in a design space upwards or downwards in an information order-

ing. In Section 2.3, the ordering of exploration structure through subsumption is described.

Mixed-initiative provides a principled way for keeping track of additions, deletions and other

forms of change as the exploration progresses without negating the underlying subsumption

ordering of possible states.

3. Granularity of interaction.
Mixed-initiative permits a finer granularity of interaction between between the designer and

the formalism. It supports incrementality and turn-taking in the process of exploration dia-

logue. Through incrementality, emphasis is shifted from the the final results of exploration to

its intermediate constructive steps. Through turn-taking, the formal movement algorithms

are made accessible to the designer. The incremental, turn-taking model of interaction per-

mits a sound treatment of exploration non-determinism, where disjunctions in description

queries, alternative constraints, conflicts and errors can be resolved by user intervention,
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8.2 Contributions of the thesis

The mixed-initiative interaction model for design space exploration is predicated on the develop-

ment of three interface level constructs: the feature node representation (Section 4.4) in the domain

layer, a visual notation representing feature nodes (Section 5.2.1) in the dialogue layer, and a set

of unfolding operations over feature nodes (Section 6.1) in the task layer. The contributions of the

thesis are as follows:

1. Feature node representation.

An interface construct for composing both the substrate concepts and the designer's view of

exploration in a common representation.

2. Visual notation for feature nodes.

A visual notation for presenting the input and output modalities of both the formalism and

the user in an integrated manner.

3. Unfolding operations.

Operations for unfolding feature nodes both by formal computation (intrinsic attributes) and

by user interaction (extrinsic attributes).

8.2.1 Feature node representation

The feature node is an interface construct for composing the designer's view of exploration and

the substrate concepts available in the formalism into a common representation. The designer's

view of exploration is in terms of problems, solutions, choices and history. In this view, the

process of exploration is elaborated as problem formulation and reformulation, solution generation

and reuse, choice-making over alternatives and revisions and the ability to use the rationale or

history of exploration. The symbol substrate provides a formalism stated in terms of the logical

language of typed feature structures. It is a generic theory supporting the computational concepts

of information ordering, partiality, intensionality, structure sharing and satisfiability. The symbol

level is construed in terms of types, features, descriptions and resolution algorithms. This approach

to search and exploration through mixed-initiative is reported in Datta & Woodbury [2000] and

Datta & Woodbury [2001].

The role of the domain layer in the mixed-initiative model of exploration (described in Sec-

tion 3.2.3) is to support the designer's view of the domain, provide a shared representation that

mediates between the designer's view and the formal substrate and support joint responsibility over

domain goals. The feature node representation addresses these requirements as follows:

- Support for the designerts view of the domain.

The feature node, FNode expresses the relationship between a problem state, PState and an
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alternative design that is a partial solution to the problem, SState and enables the designer to

access the processes of problem formulation, solution generation and design space navigation.

The FNode captures what choices a designer might make and how a designer would make such

choices, that is, design intention. Finall¡ a Sati,sfi,er Space composes a set of ancestor and

progeny feature nodes recording the history of exploration, as uncovered by the designer's

actions. The satisfier space is a a tree of visited design possibilities such that each element

in the satisfier space is a feature node, Fnode, which connects to the underlying design space

machine.

- Joint responsibility over goals.

The goals of exploration are bounded by the domain of discourse encoded in the TypeSystem.

The designer can specifi' problems as descriptions which appear in the interface as feature

nodes. The results of formal exploration are also cast in the same representation. An exam-

ple of such a domain is given in Section 7.2. The first element of a FNode is a PState (see

Figure 7.5). By interaction with this element, the designer can either modify (reformulate)

the PState or generate a new problem state. The rest of the elements of a FNode are entities

representing SState nodes generated by the formalism. These are the partial satisfi.ers (solu-

tion states) of the FNode. By interaction with these elements, the designer can unfold the

possible solution states of the current problem. In this manner, through feature nodes, both

the user and the formalism share joint responsibility in advancing the goals of exploration.

8.2.2 Visual notation for feature nodes

The visual notation presents the input and output modalities of both the formalism and the user

in an integrated manner. The visual representation of a feature node is based on extensions to the

Rvwt notation developed in computational lingustics. While the nvu notation visually describes

feature structures, the notation introduces typed feature structures as the medium of dialogue and

a mode of user manipulation.

The role of the dialogue layer in the mixed-initiative model of exploration (described in Sec-

tion 3.4.3) is to support the representation (input and output) and integration (turn-taking) of

dialogue between user and formalism. The visual notation for feature nodes addresses these re-

quirements as follows:

- Support for the representation of dialogue.

The intrinsic attributes of a feature node, FNode are mapped onto elements of the AVIr¡ nota-

tion. This mapping annotates the feature node with the type, feature names) feature values

and co references taken from the underlying symbol substrate. Through the intrinsic at-

tributes of a feature node, the formalism is able to represent its input and output modalities.
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The notation is extended into interaction objects by specifiiing interaction logic for represent-

ing the extrinsic attributes of a feature node. The feature structure representation and the

interaction logic are brought together in the dialogue layer construct, the Vi;ual feature node.

The designer's input and output modalities are handled through the extrinsic attributes of a

feature node. The connection between a visual feature node, VNode and a FNode using the

avlvt notation is described in Section 5.2.1-.

- Support for the integration of dialogue.

The process of mixed-initiative dialogue during exploration is implemented using visual fea-

ture nodes. Through this interface construct, the user is able to participate in a dialogue with

the description formalism. The dialogue layer supports a model of incremental turn-taking.

T\rrn-taking allows the designer to manipulate the output from the formalism through visual

means. It permits the formalism to manipulate the input from the designer in terms of typed

feature structures. The integration of dialogue through user interface objects is implemented

in FOLDS and is described in Section 7.3.1.

The graphical notation for mixed-initiative dialogue developed here is reported in Datta &

Woodbury 12002] and Datta 12002].

8.2.3 Unfolding operations

Operations for unfolding feature nodes both by formal computation (intrinsic attributes) and by

user interaction (extrinsic attributes) are supported. To incorporate mixed-initiative, it is necessary

to integrate system-driven and designer-driven moves in the task layer. This is addressed by treating

both types of operations under a common conceptual metaphor, termed, unfolding. Visual feature

nodes can be unfolded by formal and behavioural properties during exploration.

During exploration, system-driven moves modify the i,ntrinstc attributes of a feature node. The

unfolding of the intrinsic properties of a visual feature node is based on the movement operators of

the exploration formalism described in Section 2.4. The formal portion of an unfolding operation

operates on a partial satisfier PSat through the visual feature node, VNode.

Designer-driven moves represent the unfolding of the extrinsic attributes of a visual feature

node. The unfolding of extrinsic properties of the feature node is based on interaction behaviour of

a visual feature node, VNode. These behaviours are described in Section 5.3. The designer operates

on the visual elements of the feature node to affect change during exploration and these changes

are cast as extrinsic to the representation.

The mixed-initiative unfolding of feature nodes comprises the generation, nau'igat'ion and syn-

chron'i,sat'ion of feature nodes. The role of the task layer in the mixed-initiative model of explo-

ration (described in Section 3.3.3) is to support the construction and reformulation of problems,
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the navigation of problems and solutions and the synchronisation of exploration results. Unfolding

operations over feature nodes address these requirements as follows:

- Support for problem formulation and solution generation.

The designer represents the problem state through a query description, Ó in the attribute-

value description language. The explorer converts / using the satisfiability algorithm into a

problem state, d. The CONSTRUCT operation takes a problem state d, computes its visual

feature node representation, VNode, and displays it for user input. Through the pxrpNn

operation, the designer can interact with the resolution process, by selecting a feature-ualue

pa'ir and seeking to extend it to the next state. Exploration is advanced by stepwise operations

on the feature-ualue rno,p displayed as a visual feature node. At each step, the explorer

(description formalism) constructs a sequence of partial satisfiers, PSat through incremental zr-

resolution. The sequence of interactions for unfolding a feature node through the CONSTRUCT

and pxtpNn operations are described in Section 6.2.

- Support for the navigation of problems and solutions.

This operation of unfolding corresponds to the task of navigating attributes of a visual fea-

ture node. Navigation in the design space is supported through the operations of CHoICtr,

RETRAcT. Navigation operations enable the designer to locate, identify and move through

the collection of generated nodes and their paths. The sequence of interactions for unfolding

a feature node through the cHoosE and RprRacr operations are described in Section 6.3.

- Support for the synchronisation of exploration results.

Support for synchronisation addresses the problem of unfolding the results of two distinct

exploration paths in the satisfier space with respect to their underlying ordering in the design

space. Synchronisation of distinct exploration paths is supported through the operations

of RncAlt,, ERASE) MEET, ¡oIN. The sequence of interactions for unfolding a feature node

through these operations are described in Section 6.4.

8.3 Constraints on the results

A number of constraints that limit the scope of the results reported in this study are outlined.

Restriction on subsumption-ordered design spaces.

The framework of design space navigation proposed in Chien [1998] uses a five-dimensional sruc-

ture to integrate problems, designs, versions and alternatives. During exploration, objects can be

added to any of the dimensions of the design space, an arbitrary number of times. As reported in

Chien & Flemming [1997], this formulation leads to computational intractability in keeping track

of relationships between components of the design space.
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This problem is partly alleviated in this study by keeping the conception of a design space simple:

using a formal structure in defining the design space based on a restricted but well understood set of

properties. New nodes are added along a single dimension in a strictly monotonic fashion based on

the relation of subsumpti,on. To limit its complexity, one restriction enforced on the formal model

of a design space is to separate the subsumption ordering of the underlying design space from

user interaction. This is done through by mediating the interaction through the SatSpace, which

represents the tree of visited nodes rather than the full design space. Thus the mixed-initiative

model operates over a strictly monotonic, single-dimensional design space. No claims can be made

on non-monotonic, multi-dimensional and alternate conceptions of design space.

Restriction to functional decomposition

The scenario of designing outlined in this thesis is restricted to abstract, functional attributes. The

semantics of a design, the relation between conceptual and graphical domains is not addressed.

Two approaches that establish explicit relations in design semantics are proposed in Klein & Pineda

[1990] and in Harada et al. [1995]. The work reported in this study is limited by two assumptions.

First, designs are assumed to be strictly feature structure-like. Second type information, for ex-

ample, the types massing and house correspond to mutually exclusive decompositions. Thus the

mixed-initiative model of interaction operates on designs based on functional view of exploration.

No claims can be made on the manipulation of visual and geometric properties of designs.

Restriction to massing configurations

The mixed-initiative interaction model as implemented in FOLOE is limited to the demonstration

of a single class of configuration problem, namely massing. The SEED fFlemming et al. 1993, Akin

et al. 1995, Flemming & Chien 1995, Akin et al. 1997] project provides a discussion of work done in

supporting a comprehensive class of configuration problems, particularly the relationships between

different configuration modules. The mixed-initiative model of interaction described in this thesis is

restricted to exploring massing configurations. While the mixed-initiative interaction model is more

general than the example used to demonstrate it, no claims can be made about other configuration

tasks such as structure or the relationships between configuration problems such as layout and

enclosure. This requires the implementation of additional cases in these types of configuration

design.

Restriction on unfolding

In FOLDE, the representation of massing elemerrts is restrictecl l,o a one-lo-ole lrappilg between

geometric entities and partial satisfiers. The continuous transformation of a generated geometry,
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that modifies or conflicts with the constrained bounds of the functional specification is not permit-

ted. Unfolding is restricted to feature nodes and the manipulation of geometry in design states is

treated as external to the formal exploration process. The mixed initiative model does not address

the relationship between the formal movement algorithms and model transformation operations

external to zr-resolution. No claims are made on the handling of geometric manipulation during

exploration.

8.4 F\rture directions

F\rrther extensions to the model of mixed-initiative exploration is necessary to address the limita-

tions discussed above. Four potential areas in design space exploration that remain are as follows:

- Interaction with type systems.

Domain knowledge is encoded through the specification of types, features and constraints.

Each component is manually edited in its own file, using a standard text buffer, which is

then loaded onto the interface using a shell console. The KRYOS feature structures system

parses this data into the TypeSystems. This process becomes complex and error-prone as

more types, features and constraints are added onto the system. The graph visualisation

program) DAVINCI [F]öhlich & Werner 1994, Fböhlich & Werner 1995] is used to correct the

complex relationships between types, features and constraints. To facilitate the authoring of

scalable TypeSystems, more comprehensive support for writing type systems is necessary. An

interactive editor would facilitate the crucial process.

- Description processor.

The authoring of descriptions comprises the processes of writing, displaying, browsing and

parsing description fragments. In the massing design example, a substantial effort is spent

in formulating and reformulating description queries. Description authoring comprises a two-

stage process. Valid syntactically correct description fragments in FOLDE are parsed into

description nodes in xRnos while invalid descriptions are labelled with the lype absurd and

returned for reformulation. Valid description nodes are then labelled in FOLDS by dumping

their memory address into strings from the raw data provided by the KRYos feature structures

system. An interactive description processor that maintains the persistence of descriptions

by naming them, would enhance formulation and reformulation cycle of description authoring

in F9LDE .

- Visualisation of design spaces.

The development of algorithms for visualising the components of design space remains an ares

for future work. The work of Tecuci et al. [1999] in the visualisation of evolving knowledge
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bases using mixed-initiative methods presents a possible way. The development of history-rich

tools for interaction [Wexelblat 1999, Wexelblat & Maes 1999] and mechanisms for implement-

ing and tracing object evolution [Feijo & Lehtola L996] offer new possibilities for the support

for tracing the rationale of exploration.

o Incorporation of concrete domains.

F\rrther progress on the theoretical characterisation of concrete domains within the theory of

typed feature structures is necessary. Burrow foreshadows how this may be done. In Burrow

[1999], integer intervals are incorporated into type hierarchies using OrderTypes. Chang's

[1999] Geometric Feature Structures extends this idea of order types lFlurrow 2003] to repre-

sent geometric information directly within the framework of typed feature structures. Han-

dling interaction with such types of concrete domain information remains a topic of future

research.



Appendix A

Typed Feature Structures

Typed feature structures provide a representation for design space exploration in which both the

action of exploration and the structure of a design space are given a sound theoretical basis. Typed

feature structures provide well-founded support for an object-and-relations view of representation

and within that view support intentionalit¡ partialness, structure sharing, and cyclicity. Typed

feature structures can tersely express and solve simple flnite-domain generation of alternative map-

pings of function into form in the building domain [Woodbury et al. 1999]. Feature structures

provide a representation for the constraints on the design space, relates those constraints to the

generation of designs and supports intermediate, partial representations of design states.

A deep understanding of typed feature structures requires an appreciation of its formal me-

chanics. Carpenter [Carpenter 1992] provides a complete description of typed feature structures,

including many proofs on the logic of typed feature structures. This appendix describes the formal

definitions and terminology underpinning the exploration formalism described in Chapter 2.

,4'.1 Terminology and definitions

4.1.1 Type Hierarchy

The finite set of types is organised into a structure according to information specificity. The type

o subsumes type r (written as o f r) if type r contains strictly more information than type a.

Type o is a super-type of .r ; T a subtype of ø. Beyond the partial order properties implied by type

subsumption (which is not same relation as the feature structure subsumption relation), a feature

structure type hierarchy is required to have two additional properties. First, for any set of types

there is at most one type that is directly subsumed by all types in the set. A set of types with a

common subtype is said to be bounded or consistent. This condition on the type hierarchy amounts

to saying that there must be a unique most general subtype for any consistent set of types in the

hierarchy. Second, there must be a most general type (conventionally called Bottom and written

745
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I ) at which all types meet. This condition is implied by the first if the sets of consistent types

includes the empty set. Together with the partial order conditions of transitivity, anti-symmetry

and reflexivity, these conditions create what is called a bounded complete parti,al order, refereed to

a BCPO.

With types are associated features, drawn from a finite set Feat of features. The function Intro :

Feat ---+ Type defines for every feature a unique most general type at which that feature is introduced

into the type hierarchy. All sub-types of Intro(f) contain / and / is said to be appropriate for

Intro(f) and its successor sub-types. Suhrtype feature inclusion and being a complete function in

Feat implies that any feature that is multiply inherited from two or more super-types is, in fact,

the same feature, thus some typical ambiguities of multiple inheritance do not arise. The partial

function Approp: Feat x Type -- Type gives a type restriction on the values of a particular feature:

Approp(f ,r) is the most general type that a value of feature / in type r carr have. On Approp are

placed the conditions of upward closure mentioned above and that feature values can only become

more specific in subtypes, that is, if for two types ø and r, Approp(/,ø) is defined and o f r then

Approp(f ,r) is also defined and Appropj,o) = Approp(f ,r).

Definition 1 (Appropriateness Specification [Carpenter 1992]) An appropriateness spec'i-

fi,cati,on over the inheritance hierarchy (TAp",a) and, features Feat is a partial functi,on Approp:

Feat x Type r+ Type that meets the followi,ng condit'ions:

Feature Introduction for euery feature f e Feal, there is a m,ost general type Intro(/) e Type

such that Approp(f ,Intro(f)) i,s defined

Upward Closure if Approp(f,o) i,s defi,ned and o t 1, then ATrprop(f ,1) is also defined and,

Approp(f , o) = Appr op(f , 1)

^.1.2 
Feature Structures

Given an inheritance hierarchy, a BCPO of types (Typ", f) and a set of features Feat, a typed

feature structure is formally defined as,

Definition 2 (Feature Structures [Carpenter 1992]) ,4 feature structure i,s the tuple F :
(Q, q,0, õ) , where

o Q i,s a fini,te set of nodes,

. S e Q is the rool node,

o 0 : Q r--+ Type i,s the node typing functi,on,

o ô : Feat x Q - Q is the partial feature vahte funct'ion, and,
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o Q i,s the smallest set such that Q e Q and q € I Aq' : õU,ù -- q' e Q.

Definition 3 (Resolved Feature Structure [Carpenter 1-992]) A feature stru,cture F i's re-

solved if and only i,f

Vn € Path,Vú e Type : ú (Typ" r(F@zr) ---+,F.@zr satisfi,es Cons(ú) (A..1)

Definition 3 describes the properties of a fully resolved feature structure. However, resolved

feature structures are the endpoints in a constraint resolution process. Since the design space is

explicitly concerned with partiality it will include intermediate stages in the resolution process as

design states

4.1.3 Typ. System

A type system is composed of the objects types, features, constraints and descript'ions.

Definition 4 (Type System) ,4 TypeSystem is the quadruple ((Typ", f) , Feat, Cons, Desc) where

o (Type,=) is an'inheritance hi,erarchy of types,

o Feat i,s a fini.te set of features,

o Cons 'is a constrai,nt system and'

o Desc is a descript'ion language.

^.L.4 
Descriptions

Definition 5 (Generator) The set of generators ouer a TypeSystem and, collection of descrip-

t'ions Desc is the least seú Gen such that

o o e Gen z/ø € Desc

o r:þ €Gen if r€. Path,/€Desc

o 7(1 ! zrz € Gen 'if r1,r2 € Path

. óv rþ,ö ¡ t/ e Gen xf ó,lþ € Gen

,A'.1.5 Type constraints

Given a type inheritance hierarchy (TAp", f ), and an appropriateness specification, Approp a con-

straint system can be defined as

Definition 6 (Constraint System [Carpenter 1992]) I constraint system i's a total function

Cons : Type r-+ Desc.
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The type t of a feature structure f- asserts only that the represented object is an instance of ú or

some subtype. By stating restrictions on the feature structures of each type, we assert additional

properties on the feature structures and therefore, by implication, about represented objects. The

constra,int system expresses restrictions on a substructure, according to its type, which determine

Iegal labellings over a finite but arbitrary collection of paths.

Let Desc be the resulting collection of descriptions and Ç be the resulting collection of feature

structures. A constraint system associates every type o with a description / in Desc. A feature

structure of tvpe ø must satisfy the constraint S,

oèÓ,

where / is an arbitrary description. Taken in the form of an implication, a feature structure f,
satisfies a system of constraints if every one of its substructures satisfies the constraints on its type.

An algorithm for constraint resolution determines whether a feature structure satisfies a constraint

system. A substructure satisfies the constraint system if it satisfies the type constraints for its type

and all super-types. A feature structure is resolued if it satisfies the constraint system at every

substructure.

The process of constraint resolution constructs and orders these partially resolved feature struc-

tures. It is a complex recursive process - as substructures are resolved new substructures and type

labellings are introduced that require further resolution steps.

A type constraint description at a substructure is satisfied if a most general satisfier subsumes

the constrained substructure. Therefore, constraint resolution is the search for the most general

feature structure subsumed by both a constraint satisfier and the current substructure.

4.1.6 Incremental z--resolution

The fundamental structure construction process is called zr-resolution [Carpenter 1992, p 230]. It
is a non-deterministic search for solutions to a query description stated formally in terms of paths.

A solution is a feature structure, which satisfies a descri,pt'ior¿ and the constraint system. Starting

with the most general satisfier(s) of the query, all of the solutions to the query can be effectively

enumerated.

Given a type system and a description, a zr-resolution procedure enumerates the most general

feature structures satisfuing the conjunction of description and type constraints. In design, non-

deterministic resolution is more useful in the generation of branch points in the design space than for

retrieving the set of solutions. Design processes are intrinsically processes of incremental construc-

tion, where the representation of the intermediate states of constraint resolution is essential. Hence,

incrementality and nondeterminism in the resolution process are critical to supporting exploration.

The following definition extends the formalism to address these difficulties. A non-deterministic

rewriting procedure that enumerates solutions to a given constraint system based on a strongly
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typed system is proposed by Burrow fBurrow 2003]. The incremental zr-resolution procedure is

a special case of the approach described Carpenter's Typed Feature Structures [Carpenter 1992,

p 227 2421.

Definition 7 (Incremental zr-Resolution [Burrow &'W.oodbury 1-999]) Giuen F a feature

structure and r, a patlt, to F, such that F@n is defined, a functr,on recording resolut'ion steps 4,, and

a type t such that t 1-¡ro. r(F@zr) Aú' lryp" t ---+ tt e A(F@r), we talce ¿n incremental zr-resolution

step

(¡', A) ! ¡.P' ,6'¡
i,ff

=4 e MGSats(Cons(t))

Vzrl e Path

F'@tr - f'@n'L-l tr.¿

¿ € A/(,F/@?T)

(A.2)

(A.3)

(A.4)

In incremental zr-resolution, each decision point in the enumeration is available as an interme-

diate result. An intermediate state satisfies the invariant that every node in the partially resolved

satisfier has been resolved against a down-set of types whose join subsumes the target type. The

elements of Antichainlattice fBurrow 2003] represent intermediate states in the summation of type

constraints. An intermediate state satisfies the invariant that every node in the partially resolved

satisfier has been resolved against a down-set of types, called the Antichainlattice, whose join

subsumes the target type. The elements of Antichainlattice [Burrow 2003] represent intermediate

states in the summation of type constraints. The subsumption ordering of these objects form a lat-

tice structure called an antichain lattice. An antichain lattice is shown in Figure 4.2. An antichain

is the set of mutually incomparable elements in a partially ordered set, poset.

The solution is the result of a sequence of extension steps corresponding to the satisfaction of

constraints, which are organised into an inheritance hierarchy oftypes. Since zr-resolution proceeds

by extension, the resultant search space can be order embedded into the information ordering over

feature structures. Since constraints are drawn from an inheritance hierarchy, alternatives may be

organised according to notions of abstraction. Thus, if feature structures are employed to represent

functional decompositions, zr-resolution non-determinism allows exploration in terms of alternative

functional decompositions.

The operation in Definition 7 is one step in an incremental zr-resolution search. During the

search pïocess the current partial satisfier evolves via numerous such resolution steps with the

addition of information from the constraint system. Each step acts on a substructure of the cnrrent

partial satisfier. This is depicted in Figure 4.1. The argument zr selects the substructure, and the

argument ú selects the constraint to resolve. The definition of a step includes restrictions that ensure
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resolution steps are goal directed and well ordered with respect to the type hierarchy. Namely, that

ú be a super-type of the type at zr and that all types more general than ú are already resolved at zr.

The execution of a step involves unification at the substructure.

F F,

T,L

Figure A.L: The generating procedure, zr-resolution captures a relation from descriptions to the

satisfiers and is the main generative mechanism in the system. The resultant feature structure in
each sequence is the most general satisfier of the query description [Burrow & \Moodbury 1999].

Deflnition 7 differs from [Carpenter 1"992, p 231] in its granularity, and in explicitly recording the

resolution of each type constraint. Rather than resolve the conjunction of constraints from types

subsuming r(F @zr'), a sequence of steps accumulates this same down-set and records the progress in

A. Given a query description D, r-resolution is the construction of sequences of feature structures

PsCP1aP2a...lPn.Theinitialfeaturestructureineachsequenceisamostgeneralsatisfier
of the query description. The sequence represents the inclusion of type information in the form of

constraints - each element extends its predecessor by unification with a type constraint. Since

most general satisflers may occur as collections and unification may fail, the search for resolved

feature structures involves a collection of sequences.

An example of incremental zr-resolution is given by compiling the following disjunctive descrip-

tion over the type hierarchy,

(LIVING HEIGHT == DINTNG HEIGHT) I

(LIV]NG HEIGHT == DINTNG HEÏGHT

& LIVING SIZE 0Y == PORCH SIZE 0Y

& LMNG SIZE 0X == LIVING SIZE 0Y

& PORCH HEIGHT == LIVING HEIGHT)

A partial satisfler is constructed from the query and this node becomes the subject of an

incremental zr -resolution.

uFt

It
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t1l :

conjr:nct-0x812b498

disjunct-0x80bb070

house

DINING: scalar
HEIGHT: [2] universal

LIVING: scalar
HETGHT: [2]

disjunct-0x80cbff8
sfc
DINING: scala¡

HEIGHT: [3] universal
LIVING: nassing

HEIGHT: [3]

SIZE: vector
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0Y: t4l
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Appendix B

UML Notation

The Unified Modelling Language [Fowler, Scott & Jacobson 1997, Jacobson, Booch & Rumbaugh

1998], uML, is a formally defined, object-oriented modelling notation. It aims to provirì.e a standard

notation for modelling systems, particularly sofbware intensive systems where an object-oriented

implementation is anticipated. It is independent of programming language or development tech-

niques.

In the UML, a model is a complete representation of a system from a particular viewpoint, that

is, an aggregation of a set of views from a speciflc perspective. At the same time, systems are

composed of many nearly independent models representing many independent subsystems, each of

which can be treated as a model. Thus, a system is implicitly represented by a top-level model

with subsidiary models representing the subsystems.

In uML, a mod.el is made up of diagrams and text. The ulur, speciflcationl describes diagrams

as "views of a model", each representing a particular perspective that the overall model integrates.

Thus a un¿l model is an abstraction of a system, and models the concepts, relationships, behaviours

and interactions in the system. Models are made up of model elements. Models and model elements

are rendered graphically in diagrams.

In unr- notation, model concepts are expressed as symbols icons. Relationships are expressed by

adorned lines, with semantic content. The way the model concepts connect provides the meaning

of the model. Thus, underlying the graphics of the model are the specifications of model elements,

a mix of formal and informal elements. Diagrams are two dimensional and text is used to annotate

the diagrams. Their are three kinds of relationships in diagrams, namely,

o connection.

Adorned lines connect icons and symbols, forming connecting paths.

o containment.
lObject Management Group [online]. 1999. urral specification, Version 1.3. Available from wr¡/v/.omg.org

153



8.1. MoDELLTNG coNcEPTs r54

Enclosed shapes such as boxes and circles contain symbols, icons and lines.

o visual attachment.

Elements close together, such as a name above a line or a number next to a box imply that

they apply to that element.

8.1 Modelling concepts

In this stud¡ a subset of symbols from the uvIl, notation is used to express modelling concepts.

This subset is presented in this section. The reader can refer to these definitions for understanding

the diagrams that are presented in uvtl, notation in the thesis.

8.1.1 Symbols

-æult--
designêr

ACTOR USE CASE SEQUENCE DIAGRÀM

state

Node A

CLASS & OB.JECT STATE PACKAGE

t

Figure B.1: Symbols in uur, notation.

Actor

.Nn actor is something or someone outside the system that interacts directly with the system.

IJse case and Sequence diagrams

A, use case is a sequence of interactions between an actor and the system.

A pattern of interaction among objects is shown on an interaction diagram. Interaction diagrams

colre in lwo folms based ol the same underlying information but each emphasising a particular

aspect of it: sequence diagrams and collaboration diagrams.

obiA objB

problem

Node
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A sequence diagram shows an interaction arranged in time sequence. In particular, it shows

the objects participating in the interaction by their lifelines and the rnesso,ges that they exchange

arranged in time sequence. It does not show the associations among the objects. A. collaboration

is a collection of objects that interact to implement behaviour. A collaboration is used to specify

the realisation of a use case.

Class and Object

A class is an abstraction of a set of possible objects that share the same attributes, operations and

relationships. An object is an instance of a class.

Package

A, Paclcage is a ulul, container used to organise model elements.

State

A state is the situation or status of an object as the result of an interaction. A state can model

ongoing activity.

8.L.2 Relationships

In uML, lines are used to express dynamic connections between model elements, relationships

between model elements and interactions.

GENERÄLTZATION AGGREGATTON

ASSOCTATTON COMPOSÏTION

a

Figure B.2: Relationhips in ulr,tl notation.
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Generalisation

A generalisation is a relation between two elements in which one is a more general form of the

other.

Association

An assoc,i,ation maps one object to another set of objects. Aggregation and composition are special

forms of association. A plain form of association shows the relationship between peers.

Aggregation

Ãn aggregat,ion represents a part-whole relationship between one object and several subparts. One

element is the whole and the other(s) are parts.

Composition

A, composi,ti,on is an aggregation that exhibits strong ownership on its parts, that is, the parts

belong to the composing object.

8.1.3 Diagrams

In uML, diagrams are the graphical presentation of semantic models. In this study, two diagram

types, the class diagram and the sequence diagram are used.

Class diagram

A class is the descriptor for a set of objects with similar structure, behaviour, and relationships.

uut provides annotation for declaring classes and specifying their properties, as well as using classes

in various ways. The class d,iagram is a static structural representation of the interfaces, packages

and relationships the comprise a model specification. Use case diagrams show actors, use cases and

their relationships.

Interaction diagrams

Interaction diagrams are used for modelling dynamic situations. A sequence diagram shows an

interaction arranged in a time sequence comprising objects, the messages that pass between them

and the interaction that occurs. A sequence diagram has a list of participating objects, an object

lifeline, the time-ordered visual framework for message exchange between objects exchange between

objects.

A collaboration diagram shows the passing of objects between objects focusing on the order of

their execution.
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Figure B.3: Class diagram in ulvtt notation.

set_disjuncts

- _s.grt=tVJ9s- _ _

SatSpaceElem PSat PState

Figure 8.4: Sequence diagram in ult¿1, notation



App"ndix C

Massing Configurations in FCIÐE

The massing configuration problem described in Chapter 7 is based on the creation of a TypeSystem

(defined in Section 4.1.3) in xRyos. The definition comprises the declaration of types, features,

constraints and descriptions. Examples of these components of the massing TypeSystem are given

in this Appendix.

C.1 An inheritance hierarchy of types

The specification of the inheritance hierarchy of the massing configuration problem is given as

follows:

l""llr**trF*****'t **********,F**'kd(¡1.******'t *t¡1.*********t*dc*{(***'1.**x***l.l.l.xo/oo/o

"/,"/""A Kryos : type hierarchy $Id: sfc.types,v 1.1.1.L L999/L2/22

"/,"/,"/, o5: 19:29 akids Exp $

"/r"/r"/r******t**{.***'F't *,t*************,ß***,t t**¡1.********t'Ftt*l(¡1.*xxxx,t,txl.x'/o'/o

% nath types

integer
inherit universal;

scafar

inherit universal;

% basic spatial types

158
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point
inherit universal;

position
inherit point;

centre

inherit point;

geon

inherit uliversal;

"/0"/r"/r*,***X*,t 'F 
¡ß t(¡ß ***** t( * *** *** 'l* * * * ¡l( ** *'t 'k* ¡1. ¡ß * ** ** *,k'ß r(* tlc,lc ¡l(***** XX X X* *X*o/oo/o

"/r"A"I

,A,/,,/, SEED KNOI,üLEDGE LEVEL TYPES

"/r"/r"A

"/"frlr*r**rf*X*******'k**¡1.¡F*****¡F*{(********,1.**'ß't'k*****¡1.,}**'l***'1.*XX**'f *'*XX'/oo/o

btype

in-herit universal;

brief
inherit r:niversal;

fr:¡ction
inherit uaiversal;

du

in-herit universal;

fu
inherit r:niversal;

configuration
inherit du;

/oa single geometry
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nassing

inherit conf iguration ;

layout
in-herit conf iguration ;

solid
inherit scalar;

wal1

inherit scalar;
column

inherit scalar;
slab

inherit scalar;

'/,nassing types

nassing-a
inherit nassing;

nassing_b

inherit massing-a;

nasslng_c

in-herit rnassing-b;

nassing-d

in-herit nassing-c;

masslng_e

in-herit nassing-d;

nassing-f
in-herit nassing-e;

% a house is a functional specification related to a fornal model

house

inherit fu;

%derived sfc types

skillion
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inherit nassing;

sfc-house

inherit house;

%single u¡its
sfc-haI1

inherit fu;
sfc-roon

inherit
sfc-roomrow

intrerit
sfc-porch

inherit
sfc-skillion

inlerit
sfc-kitchen

inherit

fu;

fu;

fu;

skillíon;

fu;

intrerit fu;

% double units
sfc-roomrow-two

inherit sfc-roontow;

sfc-roomrow-three

intrerit sf c-roonrorv-trúo ;

sfc-roomrow-four

inherit sfc-roomrow-three:

% nassing exploration tn)es

house-massing in-herit house & nassing;

%sfc-massing in-herit sfc & nassing;
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sfc inherit sfc-house & house-massi-ng;

%conna¡d conponents

comm¡nd

inherit universal;

arg-1ist
ínherit universal;

enpty-arg-1ist
inherit arg-list;

nonempty-arg-Iist

ir¡herit arg-list;
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C.2 Appropriateness specifications

The specification of the appropriateness specifications (feature introduction, as explained in Sec-

tion A'.1.1) of the massing configuration problem is given as follows:

'fo'fo'fo*rfrf*rf*d(***rl.*******t *****,1.**trFt*d(****rl.rFtrF****{.*,ßt(,1.,1.***rF*rl.r**Xf.*xx*o/ol/o

'/"T,"/" Irypr opriateness Specif icat ions

l"'/o'/r****xx{.*******,t**¡1.***,ß*****ttt(¡1.*****,t t'Írl.****rß,ß*******,t t(,k**x*****o/o'/o

"/, a hook to base datatypes

scalar
intro SCALAR : integer;

,/,

point
basic spatial type

intro
&

&

intro
&

intro
&,

intro
&,

intro
&,

k

scalar
scalar
scalar;

OX

OY

oz

"/"

geon

"/,

massing

POS

COMMAND

DU-LABEL

GEOM

FU-LABEL :

FUNCTION :

point
conma.nd;

A complex data type for geometric elements

,A Design Unit representation
du

"/,

fu
Fu¡ction Unit representation

scalar
geon;

scalar
fu:rction;

nassing types introduce a function u¡it a¡rd a position

MASS-LABEL

MASS-POS

FU

scalar
position
fu;
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v,

"/,

house

building types are described with massing

=) functional names and positions

"A a single fronted cottage, i.
"A introducing sone features

sfc-house

intro
8r

&

8t

&

sfc is a type of house

intro
8r

e,

8r

&

&,

HOUSE

LIVTNG

DINING

SKILLION

LOUNGE

BED

SFC-HOUSE

PORCH

R00MR0r¡

ROOMNIIM

HALL

nassing-a

du

du

skillion
du

du;

fu
sfc-porch

sf c-roomrorrr

scalar
sfc-haII;

'/" Types of nassing

sfc-roonrow

intro SFC-ROOMROÏJ : massing;

sfc-hall
intro SFC-HALL : massing;

sfc-porch
intro SFC PORCH

sfc-room

intro
8r

intro SFC-R0OM : nassing;

nassing

BATHR0OM : massing

HALLI,IAY : massing

skillion
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KITCHEN : massing;

sfc-skillion
intro SFC SKILLION mass].ng;

sfc-kitchen
intro SFC-KITCHEN : massing;

sfc bath

intro SFC-BATH : nassing;

%single fuactional fabels with 2 du

8r

sf c-roomrorr-tno

intro
8r,

massing-b

intro MASSEL B

massing-c

intro MASSEL-C

ENTITY-A :

ENTITY-B :

sfc-room

sfc-room;

o/o single functional labels with 3 du

sfc-roonrow-three
intro ENTITY-C : sfc-roon;

sfc-roonrow-four
intro ENTITY-D : sfc-room;

"/, nassing types are expressed as features r,rith design units
o/o attached to them

nassing-a

intro MASSEL-A : massing;

massing

nassing-d

masslng;
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intro MASSEL-D

massing-e

intro MASSEL-E

massing-f

intro MASSEL-F

: nassing;

: nassing;

nass].ng;

"/, conmand features

conma¡d

intro ARG-LIST : nonenpty-arg-1ist;

"/" recr¡rsive ty?es for creating lists
nonenpty-arg-1ist

intro ARG : scalar
& AL-TAIL : arg-list;
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C.3 Constraint declarations

The specification of constraints on types and features of the massing configuration problem is given

as follows:

ofoolofo***riF*¡1.****,t t'k***1.***,ß,t*d(*******t*******'ß*'1.,1.**'F**t ¡1.******'fx*,f,X**"/oo/o

"/,'/,"/, Constraint System

"l'/rfr***X*X****+**'f *******,t't*d(1.***,1.**d(¡f ********t***'k***¡1.******'t xx,t ***o/oo/o

scalar
cons SCALAR : integer;

% basic spatial types

point
cons 0X :

& 0Y:
&. oz:

scalar
scalar
scalar;

,/,

geon

du

v,

nassing

POS

COMMAND

FU-LABEL

FUNCTÏON

MASS-LABEL

MASS-POS

FU

: point
: conna¡d;

Geon constraints

cons

Function unit constraints
the fu labe1 is the same as the nassing label

8t

T,

To

fu
cons

% tne du labe1 is the sârne as the nassing label
cons DU-LABEL : fu
& GEOM : geon;

nassing types introduce a function unit a¡rd a position

&,

scalar
fu-nction;

cons scafar
positionk

8r fu
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,/,

house

constraints on the house type

cons

&

&

&,

8r

8r

&

HOUSE

BATI{ROOM

LIVING

DINING

KITCHEN

LOUNGE

BED

: mass1ng

:du
:du
:du

:du
:du
: du;

"I constraints on single fronted cottage type

sfc-house

cons SFC-H0USE : du

& P0RCH : sfc-Porch

& R00MR0W :

( sfc-roomrow I

sfc-roonrow-two I

sfc-roomrow-three I

sfc-roonrow-four

)

ROOMNUM :

( scalar I

integer

)

SKILLION SFC-SKILLION GEOM

POS : point
HALL : sfc-haIl;

% single functional labels with du

sfc-roomrow

cons SFC-RO0MR0Ìí : du;

&

&

&t

sfc-haI1
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cons SFC-HALL : du;

sfc-porch
cons SFC-PORCH : du;

sfc-room

cons SFC-ROOM : du;

sfc-skillion
cons SFC-SKïLLI0N du;

sfc-kitchen
cons SFC-KITCHEN : du;

sfc-bath
cons SFC-BATH : du;

"/" síng1e functional labels with 2 du

sfc-roomrow-two

cons ENTITY-A : sfc-room

& ENTITY-B : sfc-roon;

"A single fu¡ctional labels with 3 du

sfc-roomrow-three

cons ENTITY-C : sfc-room;

sfc-roomrow-four

cons ENTITY-D : sfc-room;

oA massing types are expressed as features with design units

'/" attached to then

massing-a

cons MASSEL-A : massing;

nassing-b

cons MASSEL-B : nassing;
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masslng_c

cons MASSEL-C : nassing;

nassing-d
cons MASSEL-D : massing;

nassing-e

cons MASSEL-E : nassing;

nassing-f
cons MASSEL-F : nassing;

% connand features

conna¡d

cong ARG-LIST : nonenpty-arg-list;

'/, constraints on list ltype
nonenpty-arg-list

cons ARG : scalar
&, AL-TAIL : arg-list;

%ror
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C.4 Descriptions

The specification of initial descriptions is explained in Section 4.1.4. An example of the output of

parsing a generator from the massing configuration problem is given as follows:

sfc'house

SFC'HOUSE: geom

DU: [1] du

DU'HEIGHT: [2] universal

DU'LABEL: [3] tu

DU'LENGTH: integer

FU: [3]

COMMAND: comma¡rd

POSITION: centre

ROOMROTü/ : sfc' roomrow' trvo

ENTITY'B: geom

DU: du

DU'HEIGHT: [2]

ENTITY'A: geom

DU: [1]

PORCH: sfc'porch

SFC'PORCH: [1]
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Design and Implementation Details

In Part III, a software prototype, FOUDE, is used to demonstrate the mixed-initiative interaction

model for design space exploration. This appendix presents the design of the software components

underlying FOLDS. The domain objects and interactions between the software components are

presented visually using the notation of the Unified Modelling Language [Erich Gamma & Vlissides

1995], utr¡1. As with the description of the interaction model in Part II, the notation of ulvrl permits

a sufficient level of abstraction to describe the entities and their interactions without burdening the

description with the symbol level implementation in C++.

The software components of the mixed-initiative exploration system, F{)LDE, developed in this

thesis comprise the following:

. KRYOS

KRyos is an implementation of Carpenter's typed feature structures, designed and developed

by Burrow [2003] in C++. The libraries implement the design space exploration machinery

underlying the description formalism described in Chapter 2. xRvos [Burrow 1999] comprises

five libraries. Containers is a library of basic data structures. Patterns] a library implementing

reusable design patterns [Erich Gamma & Vlissides 1995]. Orders is a library of order struc-

tures. FeatureStructures is a library comprising parsers, data structures for representing and

reasoning with feature structures. TFSShells provides commandline shell programs for inter-

action with the exploration machinery, such as the incremental zr-resolution of descriptions.

o the er cur toolkit

The FOLDS interfaces and interaction framework are implemented using the multi-platform

Q++ graphical user interface toolkit, Qt1. The interactive components of the mixed-initiative

model are implemented in C++ using the QT libraries for the front end and OpenGL for 3D

graphical interaction. The Qr cut toolkit provides the basic building blocks for elementary

lAvailable from Tloll Tech, http://www.troll.no/
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user interface widgets, basic data structures and higher level application components for

interface design. The Qt Class hierarchies, documentation and other details are available in

the Qr web site, http://www.troll.no/.

o Geometry visualisation is supported in FOTOE using the open source MindsEye 3D rendering

and modeling package2 based on the OpenGL [Neider, Davis & Woo 1993] 3D graphics library.

The design framework of FOLDE comprises the following software layers:

Facade The Facade layer of FCILOE enables the encapsulation of the components described above,

namely, KRvos, the Q'r GuI libraries and the MindsEye. For example, the KrFacade class

provides a unified interface to elements of the KRvos libraries.

Module The module layer is a grouping abstraction that provides a framework for developing user-

centred views of the context. In FOLDS, a module comprises a context and a view, which

implement specific functional classes associated with the mixed-initiative interaction model.

Explorer The Explorer is the front end layer of FOLOE. It serves as an aggregation of a collection

of modules.

Each of the components of the above sofbware layers of FOTDS are described in the following

sections.

Facade

The Facade layer describes the interface to the components of the kernel of the design space ex-

ploration machinery. The design criteria for this interface is the use of the object-oriented façade

design pattern as described in Erich Gamma & Vlissides [1995]. A façade pattern provides a uni-

fled interface to a set of interfaces in a subsystem and defines a higher-level interface that makes

the subsystem easier to use. The façade pattern simplifles access to a related set of objects by

providing a single façad,e object that all objects outside the set use to communicate with the set.

The implementation of communication between the designer and the formal substrate take place

through the singleton class, KrFaçade. The relationships between the formal components of xRvos

arrd FOTDE are shown in Figure D.1. The subcomponents of the Facade layer provide access to

the xRvos Feature Structure System.

The urr,rl notation in this figure represents how the KrFaçade implements the façade design pat-

tern and communicates with the substrate of xRvos objects, Inheritanceflierarchy, ConstraintSys-

tem, AppropSpecificati,on, comprising the TypeSystem constructed in Section 7.2 on Page 110.

2Available from http://mindseye.sourceforge.net/main.html
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KrFacade

InherltilcêH1êrarchy conBtr
Àppropspêclf lcaelon con6t*

ConEtralntsysÈêh conÊt *

D Nod onÈ

Figure D.1: The implementation of the domain layer constructs, their connection to FOLDE,
the communication between the designer and the generative design system take place through the
singleton, KrFaçade. The notation in this figure shows how KrRaçade implements the façade design

pattern and communicates with the underlying objects, InheritanceH'i,erarchy, ConstraintSystem,
AppropSpecification, SatSpace in the kryos feature structures system.

AII communication with the Kryos feature structures system in FOLDS uses this single interface

object, KrFacade, that encapsulates the underlying complexity of KRvos within it. Any communi-

cation between the kryos libraries and SOLDE is done through a collection of messages to KrFacade,

which communicates with the underlying implementation and returns the results to FOúDS. The

Façade pattern ensures that the KrFacade object acts as an intermediary for method calls between

FOTOE objects and other external objects not known to the FOTOE objects. FOTOE sends the

files to KRyoS for parsing. KRYOS parses the files and if the speciflcation is error-free, creates a

satisfier space corresponding to the problem domain and signals the designer to continue.

Module

The interfaces of FOLDE are organised into independent subsystems called modules. Modules are a

grouping abstraction that aggregate the design space interaction machinery into speciflc functional

entities, composing a u,iew and a contert. In FOLDE, the ScModule Class is the basic root class

in the dialogue interfaces. First, the ScModule connects the formal domain and the operations

for exploration to the user. Second, the ScModule provides the base class for implementing the

interaction between the resolution machinery and the user. Figure D.2 shows the composition of

an ScModule class that provides the interface to the kernel facade classes and access to a loadable

collection of prototype modules and a console.

Further, the ScModule implements operations for registering and unregistering a prototype

module [Erich Gamma & Vlissides 1995, p 121]. This design makes the FOLDE system extensible

and flexible. For example, external modules for evaluation and building performance tasks, can

be dynamically incorporated into FOLDE Alternatively, the system can be enhanced simply by



t75

ScModule

: ScView
: enum

(context:Sccontext *,name:char *) : Sccontext *

: Sccontext * : scModule *

:Sccontext *,mienum
: void

O: enum moduleTl4re
), QWidget*

O : Sccontext

ScView
ScContext *nodule: ScModule

-kryoe
rfold:

: KrFacade *
FldFacade *

-Sccontext ( )
: KrFacade *

+-ScView

charconst void
const char void

O : virbual void

KrFacade
- instance;: KÍFacaale
- _types; : ManualT]4)es
- feats: ManualFeats
- cons: Manualcona
- Dsat sDace: SatsDace

+constructjeat_space O ; bool
+6at_space O : Satspace
+InÊtanceO: KrFacade

Figure D.2: The ScModule Class and its context
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extending the functionality of the ScModule.

Explorer

The Explorer is the front end of FOÜDE, comprising an aggregation of modules. Three modules of

the explorer, ScConsoleModule, ScEntryModule and DesignSpaceModule are described here.

ScConsoleModule

Figure D.3: The organisation of the ScConsoleModule class

The ScConsoleModule, shown in ulr¿1, notation in Figure D.3, is the container module that loads

all the context necessary for design space exploration. Other modules of SEED, as well as external

libraries are available to the explorer through this module.

ScModule
+mE)4)e: enum noduleType = DEFAULT
+iE6Víewr Scview
+ítsconEexE: ScConLexL *

+makeNewwindow (contexc : SccontexE *, name : char r ) : Sccontext *

sccontexL r

#-scModule

O: enum moduleType

ScContext

ScConsole
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ScEntryModule

The entry module, shown in Figure D.4, provides provides the interface hooks to initialise the Kryos

svstem, load in project definitions, construct the design space and begin the process of exploration.

Figure D.4: The organisation of the ScEntryModule class

The console module, shown in Figure D.5, described above provides a messaging interface for

communication between FOTOE and NRvos.

ScDesignSpaceModule

The software components described thus far implement the interfaces necessary to connect FOLOS

with Knyos, to create a flexible and extensible module design and to implement a communication

mechanism between the user and the underlying formalism. The ScDesignSpaceModule shown in

Figure D.6, implements the dialogue and task layers of the interaction model directly and permits

mixed-initiative exploration. In this module, contexts and views that permit interaction with the

visual notation, and interaction with the tasks of exploration are implemented.

ScModule

: 6tâÈ1c scD6caÈevlew

coDsole: SckyóÉcoheô1e

scDstatevlewPrlvate

ScContêxt
kryô6: kFa.ade *
fôld: FldFâ.âdê *

rneuModule (co¡texE : scconte* r, mEWê : Ðum rcduleType) : scüÔdule *
rkrfacadêO: þFacade *
ro fh,fÈ:ftÞe)
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SaLNode lo console

a Design Space

Lõadlr0 Descilpllon

mnslruclsd
conslrucled

nl
COMPLETEDseì node:

WALL LEN:

Figure D.5: FOTAE interface to the Kryos Feature Structure System. The SC Entry Module
provides provides the interface hooks to initialise the Kryos system, load in project definitions,
construct the design space and begin the process of exploration. The console provides a messaging

interface for communication between FOLOE and xnvos.

ScView

0Popupuenu

*)
*)

virtuar

rconeE char
I void

I void
: virtual void

KrFacade void
void

- _ttl)es- feats:
- conê:

i ! Md@ITl4)es
Ma¡ual FeaE s

MùEIConê

O: bool

| rcFacade

Figure D.6: The organisation of the ScDesignSpaceModule class
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Figure D.7 shows the ScDesignSpaceModule, comprising views of the current state of exploration

and interface constructs for supporting dialogue and task operations through mixed-initiative.

Figure D.7: The ScDesignSpaceModule in FOLDS. Note that the visual notation for feature nodes

is introduced in the top half of the window. The ScEntry module is shown in the lower right. The
design space module includes a geometry viewer in the lower half of the window. As exploration
progresses, support for exploration specific tasks are provided through type and feature operations.

4liiltil
!LVilG

E
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