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ABSTRACT

Characterization of the complex dynamics of economic cycles, by identifying regular
and irregular patterns and regime switching between different dynamic phases in the
economic time series, is the key to improve economic forecasting. Statistical analysis of
stock markets and foreign exchange markets have demonstrated the intermittent nature of
nonlinear economic time series, which exhibits non-Gaussian behavior in the probability
distribution function of price changes and power-law dependence on frequency in the
spectral density. Nonlinear deterministic models of economic dynamics are capable of
simulating intermittent time series arising from & transition from order to chaos, or from
weak chaos to strong chaos, which can explain the origin and nature of intermittency
observed in economic systems.

This thesis studies complex economic dynamics based on a forced van der Pol os-
cillator model of business cycles. This model can be derived from Kaldor’s nonlinear
investment-savings functions as well as Goodwin’s nonlinear accelerator-multiplier with
lagged investment outlays. The technique of numerical modeling is applied to characterize
the fundamental properties of complex economic systems which present multiscale and
multistability behaviors, as well as coexistence of order and chaos. In particular, we focus
on the dynamics and structure of unstable periodic orbits and chaotic saddles within a
periodic window of the bifurcation diagram, at the onset of a saddle-node bifurcation and
at the onset of an attractor merging crisis, as well as in the chaotic regions associated
with type-I intermittency and crisis-induced intermittency, in nonlinear economic cycles.
Inside a periodic window, chaotic saddles are responsible for the transient motion preced-
ing convergence to a periodic attractor or a chaotic attractor. The links between chaotic
saddles, crisis and intermittency in complex economic dynamics are discussed. We show
that a chaotic attractor is composed of chaotic saddles and unstable periodic orbits lo-
cated in the gap regions of chaotic saddles. Both type-I intermittency and crisis-induced
intermittency are the results of the occurrence of explosion following the onset of a local
or a global bifurcation, respectively, whereby the gap regions of chaotic saddles are filled
by coupling unstable periodic orbits.

Nonlinear modeling of economic chaotic saddle, crisis and intermittency can improve
our understanding of the dynamics of economic intermittency observed in business cycles
and financial markets. In view of the universal mathematical nature of chaotic systems,
the results obtained from our simple prototype model of economic dynamics can in fact be

applied to more complicated economic scenarios, including nonlinear spatiotemporal eco-
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nomic systems. Characterization of the complex dynamics of economic systems provides
an efficient guide for pattern recognition and forecasting the turning points of business
and financial cycles, as well as for optimization of management strategy and decision

technology.
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CHAPTER 1

INTRODUCTION

Economic systems exhibit ubiquitous complex dynamics evidenced by large-amplitude and
aperiodic fluctuations in economic variables such as foreign exchange rates, gross domes-
tic product, interest rates, production, stock market prices and unemployment (Hommes
2004). Traditionally, economists have studied economic dynamics using the Newtonian
approach by treating the economic fluctuations as linear perturbations near the equi-
librium (Scarth 1996, Gandolfo 1997, Shone 2002). The linear approach is valid only
for small-amplitude fluctuations and cannot describe the complex characteristics of large-
amplitude and aperiodic economic fluctuations. Large-amplitude fluctuations in economic
and financial systems are indications that these systems are driven far away from the equi-
librium whereby the nonlinearity dominates the system behavior; aperiodic economic and
financial fluctuations are manifestations of chaos which is intrinsic in a complex system.
Hence, a non-Newtonian approach based on nonlinear dynamics is required to understand
the nature of complex economic dynamics.

In recent years, there is a growing interest in applying nonlinear dynamics to eco-
nomic modeling. For example, Chiarella (1988) introduced a general nonlinear supply
function into the traditional cobweb model under adaptive expectations, and showed that
in its locally unstable region it contains a regime of period-doubling followed by a chaotic
regime. Puu (1991) studied the nonlinear dynamics of two competing firms in a mar-
ket in terms of Cournot’s duopoly theory; by assuming iso-elastic demand and constant
unit production costs this model shows persistent periodic and chaotic motions. Keen
(1995) introduced a real financial sector and two stylized facts into Goodwin’s growth
cycle model; the resulting nonlinear system is able to model the complex behavior of
Minsky’s financial instability hypothesis, with the transition from stability to instability
and possible breakdown determined by the level of economic inequality, interest rate and
debt. Scarth (1996) derived a nonlinear standard aggregate demand and supply model
of a closed economy consisting of IS, LM, and Phillips curve relationships, described by
the logistic function which admits chaotic cycles for a range of control parameters; this
model indicates that the standard practice of linear approximations in macroeconomics
is a definite limitation. Brock and Hommes (1997) applied the concept of adaptively
rational equilibrium to a cobweb type demand-supply model where agents can choose

between rational and naive expectations, which shows that in an unstable market with



positive information costs for rational expectations, a high intensity of choice to switch
predictors leads to highly irregular equilibrium prices converging to complex dynamics
such as a strange attractor. Rosser (2001) showed that in an integrated global ecologic-
economic system a variety of chaotic and catastrophic patterns appear in the models of
global warming dynamics and fishery dynamics, which complicate global policy making
efforts. Hughston and Rafailidis (2005) applied a chaotic approach to develop dynamical
models for interest rates and foreign exchange; they used the Wiener chaos expansion
technique to formulate a systematic analysis of the structure and classification of these
financial models. Many more examples of nonlinear economical modeling can be found in
the books on complex economic dynamics (Puu 1989, Chiarella 1990, Zhang 1990, Brock,
Hsieh and LeBaron 1991, Rosser 1991, Benhabib 1992, Medio 1992, Lorenz 1993, Day
1994, 2000, Thomas, Reitz and Samanidou 2005).

One of the main signatures of complex systems is intermittency, which is characterized
by abrupt changes of the system activity with alternating periods of quiescent low-level
fluctuations and bursting high-level fluctuations. Temporal intermittency and spatiotem-
poral intermittent turbulence are pervasive in nature and soclety, e.g., the flow of carsin a
heavy traffic in the cities, the floods and draughts of rivers such as the Nile, the fluid tur-
bulence in atmosphere and ocean, and the sunspot cycles (Vassilicos 1995). Intermittency
exhibits multiscale behavior (power-law dependence on frequency/wavenumber) and non-
Gaussian statistics (heavy-tail probability distribution function of fluctuations), involving
information transfer between different scales. There is evidence that intermittency is also
a fundamental feature of complex economic and financial systems. For example, Miller
et al. (1990) presented a statistical analysis of four foreign exchange spot rates against
the U.S. dollar; they found that the mean absolute changes of logarithmic prices follow
a scaling law against the interval on which they are measured and there is a net flow
of information from long to short timescales, which implies that the behavior of long-
term traders (who watch the markets only from time to time) influences the behavior of
short-term traders (who watch the markets continuously). Mantegna and Stanley (1995)
showed that the scaling of the probability distributions of the Standard & Poor 500 index
can be described by a non-Gaussian process with dynamics that, for the central part of
the distribution, corresponds to that predicted for a Lévy stable process. Ghashghale
et al. (1996) reported an analogy hetween the information cascade in foreign exchange
market and the energy cascade in hydrodynamic turbulence, and concluded that the in-
termittent behavior of turbulent flows, with typical occurrence of laminar periods which

are interrupted by turbulent bursts, corresponds to clusters of high and low volatility in
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the foreign exchange markets, which gives rise to relatively high values of the probability
densities of price changes both in the center and the tails. Krawiecki, Holyst and Helbing
(2002) considered a model of financial markets consisting of many interacting agents, and
obtained time series of price returns showing chaotic bursts resulting from the emergence
of attractor bubbling or on-off intermittency, resembling the empirical financial time series
with volatility clustering; the probability distributions of returns exhibit power-law tails.
Mattedi et al. (2004) studied the financial risk of the aerospace sector and developed a
new index for this sector based on the New York exchange and the Over the Counter
markets; they showed that the statistical characteristics of this index is more volatile but
less intermittent than other traditional market indicators such as the Dow-Jones indus-
trial index and the Standard & Poor 500 index, which suggests that the existence of long
memory correlations impacting the volatility clustering patterns of this index.

Chaotic systems are known to describe various types of intermittency, which occur
whenever the behavior of a system seems to switch back and forth between two (or more)
qualitatively different behaviors even though all the control parameters are kept constant
and no noise is present (Hilborn 1994). The intermittent route to chaos was first dis-
covered by Manneville and Pomeau (1979); they identified three types of intermittency
whereby the system seems to switch between periodic/quasiperiodic behavior and chaotic
behavior due to a transition from order to chaos via a local bifurcation such as saddle-node
(tangent) bifurcation, Hopf bifurcation or period-doubling bifurcation. Another chaotic
scenario that leads to intermittency occurs when the system undergoes a global bifurca-
tion known as crisis (Grebogi, Ott and York 1983) whereby a chaotic attractor in the state
space suddenly changes in size (interior crisis), disappears (boundary crisis), or two or
more chaotic attractors merge to form a large chaotic attractor (attractor merging crisis);
in crisis-induced intermittency the systems switch between weakly chaotic and strongly
chaotic behaviors (Grebogi, Ott and Romeiras 1987). There are many examples of exper-
imental observations of chaos-driven intermittency. For example, Hayashi, Ishizuka and
Hirakawa (1983) observed a transition from order to chaos via type-I Pomeau-Manneville
intermittency in the onchidium pacemaker neuron. Ditto et al. (1989) observed crisis-
induced intermittency in a magnetoelastic ribbon experiment.

Stable and unstable periodic orbits are the basic elements of complex dynamical sys-
tems, and are the key to explain the origin and nature of chaos-driven intermittency. A
complex system consists of order and chaos; order is governed by stable periodic orbits,
whereas chaos is governed by unstable periodic orbits. In particular, unstable periodic

orbits are the skeleton of chaotic attractors and chaotic saddles (Auerbach et al. 1937,
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Civitanovic 1988, Hilborn 1994). Chaotic saddles are non-attracting chaotic sets which are
responsible for chaotic transients (Grebogi, Ott and Yorke 1983, Kantz and Grassberger
1985), and are the backbones of chaotic attractors (Szabd and Tél, 1994a, 1994b). In
addition, chaotic saddles are responsible for intermittency in the chaotic regions outside
a periodic window (Szabé et al. 2000), e.g., beyond a saddle-node bifurcation (type-I
intermittency) and beyond an interior crisis (crisis-induced intermittency). There is ex-
perimental evidence of unstable periodic orbits, chaotic transients and chaotic saddles.
For example, Schief et al. (1994) detected the presence of unstable fixed-point behavior in
a spontaneously bursting neuronal network in vitro and demonstrated that chaos in brain
dynamics can be controlled and anticontrolled by changing the stability properties of the
unstable fixed point. Jénosi, Flepp and Tél (1994) reconstructed the chaotic transient
behavior of a laser based on a long time series in a laboratory experiment; they showed
that the motion on the chaotic transient is more unstable than on the coexisting chaotic
attractor. Faisst and Eckhardt (2003) identified a family of unstable traveling waves,
originating from saddle-node bifurcations, in a numerical experiment for flow through a
pipe; these unstable structures provide a skeleton for the formation of a chaotic saddle
that can explain the intermittent transition to turbulence and the sensitive dependence
on initial conditions in this flow.

Chaotic transients and chaotic saddles are fundamental to the understanding of com-
plex economic dynamics. Lorenz (1993) observed chaotic transient motion in a Kaldorian
model of business cycles. Lorenz and Nusse (2002) demonstrated the potential relevance
of chaotic saddles in the Goodwin’s nonlinear accelerator model of business cycles. Apart
from the works by Lorenz (1993) and Lorenz and Nusse (2002), most economic literature
and books on complex economic dynamics (Puu 1989, Chiarella 1990, Zhang 1990, Ben-
habib 1992, Brock, Hsieh and LeBaron 1991, Rosser 1991, Medio 1992, Day 1994, 2000,
Thomas, Reitz and Samanidou 2005) have only dealt with chaotic attractors, paying no
attention to chaotic transients and chaotic saddles.

In Chapter 2, a forced van der Pol oscillator model of economic cycles is formulated
as the prototype model to describe the complex economic dynamics. The fundamental
properties of nonlinear dynamics of economic cycles are studied, including discussions on
order and chaos, Poincaré map, bifurcation diagram and periodic window, multistablilty
and basins of attraction, unstable periodic orbit and chaotic attractor.

In Chapter 3, based on numerical simulations of the forced oscillator model of non-
linear economic cycles, it is shown that after an economic system undergoes a dynamical

transition from an ordered to a chaotic state, the system maintains its memory before the
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transition and the economic variables switch alternatively between periods of quiescent
and bursting fluctuations. This type-I economic intermittency arises from a local bifurca-
tion known as the saddle-node bifurcation. An economic path evolves from a periodic to
an aperiodic pattern when the exogenous forcing amplitude passes a critical value whereby
the system loses its stability due to a saddle-node bifurcation. The power spectrum of
the type-I intermittent time series is broadband and displays power-law behavior at high
frequencies, similar to the real data of foreign exchange and stock markets. The char-
acteristic intermittency time, measuring the average duration of quiescent periods in the
intermittent economic time series, is a function of the exogenous forcing amplitude. The
scaling law of the characteristic intermittency time is useful for forecasting the turning
points of nonlinear economic cycles.

In Chapter 4, a new type of crisis-induced intermittency in nonlinear economic cycles
is discussed. It is shown that after an economic system undergoes a global bifurcation
knowrn as attractor merging crisis, the system has the ability to keep the memory of its
weakly chaotic state before crisis. As the result, the economic variables switch alterna-
tively between periods of weakly and strongly chaotic fluctuations. Similar to the type-I
economic intermittency, the power spectrum of the time series of the crisis-induced eco-
nomic intermittency is broadband and presents power-law behavior at high frequencies,
typical of volatile financial markets. As the system moves away from the crisis point, it
becomes more chaotic, consequently the discrete spikes of the power spectrum become
less evident due to increasing multiscale information transfer in the complex economic
systems. The exponent of the scaling law of the characteristic intermittency time of the
crisis-induced economic intermittency is much larger than that of the type-1 economic
intermittency:.

In Chapter 5, an attractor merging crisis in chaotic economic cycles is characterized.
Tt is shown that the van der Pol model of economic cycles is invariant under the flip
operation. Symmetry is a common property of complex systems that exhibit attractor
merging crisis. The analysis is performed in a complex region within a periodic window
of the bifurcation diagram determined from the numerical solutions of a forced oscillator,
where a saddle-node bifurcation marks the beginning of the periodic window. As the
exogenous forcing amplitude increases after the saddle-node bifurcation, two coexisting
periodic attractors of period-1 undergo a cascade of period-doubling bifurcations leading
to two weakly chaotic attractors. An attractor merging crisis occurs when two coexisting
weakly chaotic attractors merge to form a single strongly chaotic attractor, which marks

the end of the periodic window. The onset of attractor merging crisis is due to the head-on
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collision of the pair of coexisting weakly chaotic attractors, respectively, with a pair of
mediating unstable periodic orbits of period-3 and their associated stable manifolds. In
addition, it is demonstrated that the two coexisting weakly chaotic attractors also collide
with the boundary of the basins of attraction that separates the two weakly chaotic
attractors.

The aim of Chapter 6 is to perform an in-depth study of unstable periodic orbits and
chaotic saddles in complex economic dynamics. In particular, the roles of unstable periodic
orbits and chaotic saddles in crisis and intermittency in complex economic systems are
investigated. The technique of numerical modeling is applied to characterize the dynamics
and structure of unstable periodic orbits and chaotic saddles within a periodic window
of the bifurcation diagram, at the onset of a saddle-node bifurcation and of an attractor
merging crisis, as well as in type-I intermittency and crisis-induced intermittency, of a
forced oscillator model of economic cycles. The links between chaotic saddles, crisis and
intermittency in complex economic dynamics are analyzed.

The conclusion is given in Chapter 7.



CHAPTER 2

NONLINEAR DYNAMICS OF ECONOMIC CYCLES

Complex dynamics of economic systems can be studied by applying the concepts and tech-
niques of nonlinear dynamics and chaos. Some models of business cycles, such as Kaldor’s
nonlinear investment-savings functions and Goodwin’s nonlinear accelerator-multiplier,
can be reduced to the van der Pol equation which describes relaxation oscillations. By
introducing an exogenous driver, the forced van der Pol equation can be adopted as a
prototype model for complex economic dynamics. Numerical solutions of this model can
elucidate the fundamental properties of complex economic systems which exhibit a wealth
of nonlinear behaviors such as multistability as well as coexistence of order and chaos.
Unstable periodic orbits are the skeleton of chaotic attractors in complex economic sys-

tems.

2.1 Empirical evidence of nonlinearity and chaos in economic data

Recently, there is a growing interest in nonlinear dynamics and chaos in economics. Ac-
tual economic time series are rarely characterized by regular (periodic, sinusoidal) dynam-
ics typical of linear systems. Instead, various types of irregular (aperiodic, non-sinusoidal)
forms of large-amplitude fluctuations in economic time series are often observed, which
cannot be adequately explained by linear analysis. The significant fluctuations indicated
by many economic variables relative to their mean values suggest that most economic
systems are far away from the equilibrium, i.e., inherently nonlinear.

Chaotic motions can arise in nonlinear economic systems if the time series is aperiodic
and displays sensitive dependence on initial conditions (Puu 1989, Lorenz 1993). Empir-
ical evidence of complex behaviors of nonlinear deterministic systems can be obtained by
calculating statistical quantities such as Lyapunov exponents, entropies, fractal dimen-
sions, and correlation dimensions. These quantitative measures of chaos are defined for
infinitely large data sets. In practice, a large amount of data points are often unavail-
able in macroeconomic time series. In contrast to the laboratory experiments where a
large amount of data points can easily be obtained, most economic time series consists of
monthly, quarterly, or annual data, with the exception of some financial data with daily
or weekly time series. This imposes severe limitation on the accuracy of nonlinear analysis
of economic data. In view of this limitation, additional tests are desirable.

Brock (1986) performed a test for chaos in detrended quarterly US real GNP data from



1947 to 1985 by calculating the correlation dimension and the largest Lyapunov exponent
and applying an additional residual test, and concluded that chaos should be excluded in
the GNP data. Barnett and Chen (1988) examined several monetary aggregates and found
positive values for the largest Lyapunov exponents in some of their data, which provides
evidence of chaos. Frank, Gencay and Stengos (1988) applied the shuffle test proposed
by Scheinkman and LeBaron (1989) to German, Italian, and U. K. GNP data, and ruled
out the presence of chaos in their GNP data, but found evidence of nonlinearity. Sayers
(1989) calculated the correlation dimension and the Lyapunov exponents and applied the
additional residual test to U. S. business cycles, including GNP, pig-iron production, and
unemployment rates, and did not find the presence of chaos but obtained evidence of
nonlinear structures. Further literature survey on empirical evidence of nonlinearity and

chaos in economical data will be given in the remaining chapters of this thesis.

2.2 Modeling nonlinearity and chaos in economic dynamics

Nonlinear dynamics models are useful to explain irregular, large-amplitude, fluctua-
tions that appear in complex economic systems (Hommes 2004). The complex behaviors
of nonlinear economic systems restrict the use of purely analytical methods to investigate
nonlinear economic models. In general, numerical simulations provide the most efficient
way to derive information from nonlinear economic models. In contrast to nonlinear
analysis of economic data which are restricted by the small sample size as well as noise,
numerical modeling of economic systems can provide the large sample size required to
characterize chaotic behaviors, and determine the dynamical behaviors of economic sys-
tems in the absence and in the presence of noise. Economic models can be formulated by
either discrete-time or continuous-time approaches (Puu 1989, Lorenz 1993).

Since the outset (Samuelson 1939, Hicks 1950), business cycle models have mos? fre-
quently been formulated in discrete time, as difference equations or iterated maps such
as the logistic map (Scarth 1996). The main reason for taking the discrete-time approach
is the relative facility to handle these models, without the need of heavy computation.
For example, Stutzer (1980) characterized the qualitative dynamics of a discrete-time
version of a nonlinear macroeconomic model, which shows complex periodic and random
aperiodic orbit structures. Nusse and Hommes (1990) considered a discrete modified
Samuelson model of nonlinear multiplier-accelerator and showed that period-doubling bi-
furcation and period-halving bifurcation leading to chaos can occur; the chaos disappears
when the accelerator is increased. Day and Pavlov (2002) developed a variation of Good-

win’s graphical model to explain the rudiments of Keynesian real/monetary cycle theory,



which possesses nonlinear dynamical properties of irregular, asymmetric fluctuations. Xu
et al. (2002) studied the Kaldorian business cycle model in two-dimensional discrete form
and introduced an approach to detect cyclical patterns (unstable periodic orbits) embed-
ded in chaotic economic data and make use of the detected patterns to estimate the trends
of periodic-like motions in a chaotic evolution of economic systems.

A large number of nonlinear business cycle models are formulated in continuous time
based on either ordinary or partial differential equations. New econometric techniques
emerged recently that permit a direct empirical testing of continuous-time economic mod-
els. In this thesis, the continuous-time approach will be adopted. Goodwin (1951) was
one of the first Keynesian economists to introduce a nonlinear continuous-time dynam-
ical model with locally unstable steady states and stable limit cycles to account for the
persistence of business cycles. Rasmussen, Mosekilde, and Sterman (1985) found bifurca-
tions and chaotic behavior in a continuous-time model of the economic long wave which
explains the Kondratieff economic cycle in terms of subsequent expansions and contrac-
tions of the capital goods sector of an industrialized economy as it adjusts to the required
production capacity. Lorenz (1987a) studied a continuous-time model of three coupled
sectors of Kaldor-type business cycles, and showed that if the sectors are linked by invest-
ment demand interdependencies this coupling can be interpreted as a perturbation of a
motion on a three-dimensional torus; chaotic fluctuations appear in this model. Sasakura
(1995) investigated political business cycles in two different forced oscillator models of the
Duffin-type and van de Pol-type, respectively, by incorporating autonomous investment
and Kaldor-type induced investment function; in both cases chaotic fluctuations emerge
even when the politically motivated fiscal forcing is weak. Additional literature survey on

nonlinear economic models will be discussed in the remaining chapters of this thesis.

9.3 Van der Pol model of nonlinear business cycles: Kaldor’s nonlinear
investment-savings functions

Inspired by Keyne’s income theory and Kalecki’s model of investment (Kalecki, 1937),
Kaldor (1940) formulated the first nonlinear model of endogenous business cycles by
considering the interactions between the investment [ (Y) and the savings S(Y") functions
(where Y denotes income) and the existence conditions for self-sustaining limit cycles. By
noting that the linear forms of /(Y') and S(Y') fail to produce cyclical motions, Kaldor
proposed a S-shaped (sigmoid) nonlinear form for [ (V') and a mirror-imaged S-shaped
nonlinear form for S(Y) (Gabisch and Lorenz 1989), which yields the oscillatory motion

of business cycles. Chang and Smyth (1971) reformulated Kaldor’s model of business



cycles, given by the following coupled dynamical equations:

Y =a(I(Y,K) - S(Y, K)), (2.1)
K =I(Y,K), (2.2)

where the dot denotes the time derivative (d/dt), K denotes capital stock and « is an
adjustment coefficient; with the assumptions of Ix < 0, Sg > 0, and 0S/0K < 0.
We will show next that equations (2.1)-(2.2) can be reduced to a generalized Liénard-

van der Pol equation. Differentiating equation (2.1) with respect to time gives

V =o(lyY + IxK — SyY — Sk K) (2.3)
A substitution of equation (2.2) into equation (2.3) yields
Y —a(ly — Sy)Y —a(lx — Sg)I(Y,K) =0 (2.4)

Equation (2.4) cannot be written immediately in the form of a Liénard equation be-
cause capital stock K still appears as a second variable. In order to transform it into
a Liénard equation, additional assumptions must be made (Gabisch and Lorenz 1989,
Lorenz 1993). First, let us assume that investment and savings are independent of capital
stock K, I = I(Y) and S = S(Y), but the actual change in capital stock is determined
by savings, K = S. Following the procedure proposed by Ichimura (1955), equation (2.4)
becomes

Y —a(ly — Sy)Y —algS(Y) =0, (2.5)
which reduces to the generalized Liénard equation found in physical systems

i+ A(z)E + B(z) = 0, (2.6)

which describes the dynarmics of a spring mass system with A(z)% as a damping factor and
B(z) as the spring force. Note that there are alternative ways of transforming equations
(2.1)-(2.2) into equation (2.6) (Galeoti and Gori 1990, Lorenz 1993).

By postulating symmetric shapes of the investment and savings functions, and a par-

abolic functional form for the difference Sy — Iy, namely,
A(z) = oSy = Iy) = u(z” = 1), (2.7)

and

B(z) ==z, (2.8)
equation (2.5) can be rewritten as
i+ p(x? ~ )i +z=0, (2.9)

10



which is known as the Van der Pol equation originally derived by Van der Pol and Van
der Mark (1928) to describe relaxation oscillations in an electrical circuit model of the
heartbeat, and can serve as a prototype continuous-time model of complex economic
dynamics. Note that the parameter u is related to the adjustment coeflicient « of the

damping term.

2.4 Forced van der Pol model of nonlinear economic cycles: Goodwin’s non-
linear accelerator-multiplier with lagged investment outlays

The concept of business cycles was introduced by Samuelson (1939) by combining the
accelerator and the multiplier. This model demonstrates that two simple forces related
to the producers keeping a fixed ratio of capital stock to output (real income) and the
consumers spending of a given fraction of their incomes on consumption can combine to
generate business cycles.

Goodwin (1951) formulated a nonlinear model of business cycles which provides an
alternative to the restrictive linear accelerator-multiplier models of Samnelson-Hicks. In
contrast, Hicks’ model of nonlinear business cycles which assumed that the unconstrained
linear accelerator-multiplier model takes on special parameter values that imply the sys-
tem will explode, the Goodwin’s model does not depend on specific parameter values.
By introducing lagged investment outlays in the nonlinear accelerator-multiplier model,

Goodwin (1951) derived the following driven oscillator equation
edij + (e + (1 —a)0)g — ¢(y) + (1 — )y = I(?), (2.10)

where v denotes income, « is the marginal rate of consumption, € is a constant denoting
a lag in the dynamic multiplier process, 6 is the lag between the decision to invest and
the corresponding outlays, ¢(7) is the investment induced by the change in income, and
I(t) is an exogenous force denoting the amount of autonomous investment outlays at t.
Lorentz (1987b), Lorenz (1993), and Lorenz and Nusse (2002) considered the follow-
ing generalization of equation (2.10) to study chaotic motion in Goodwin’s nonlinear

accelerator-multiplier

i+ A(z)t + B(z) = I(t), (2.11)

where A(z) is an even function with A(0) < 0, and B(z) is an odd function with B(0) = 0.
By assuming the investment outlay is periodic and a continuous function of time of the

form

I(t) = asin(wt), (2.12)
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where o is the amplitude of exogenous force and w the frequency of exogenous force, and
Alz) = pu(z* — 1), B(z) ==, (2.13)

we obtain a forced van der Pol model of nonlinear economic cycles
i+ p(z* = 1)z + z = asin(wt). (2.14)

In addition to Kaldor’s nonlinear investment-savings functions and Goodwin’s nonlin-
ear accelerator-multiplier, the forced Van der Pol model of relaxation oscillations, given by
equation (2.14), have many other relevant economical applications (Gabisch nd Lorenz,
1989; Puu, 1989; Goodwin, 1990; Medio, 1992; Lorenz, 1993; Gandolfo, 1997; Shone,
2002; Chian, 2001; Chian, Rempel and Rogero, 2005a,b; Chian et al., 2005a,b). The
modern economy consists of a great variety of separate sectors and activities closely cou-
pled to each other. For example, Puu (1989) showed that the forced Van der Pol equation
similar to equation (2.14) can model the nonlinear dynamics of a small economy driven
exogenously by the the world market, which can produce very rich dynamical solutions
including a chaotic atractor. Puu’s model of international trade provides an illustration
of the interdependence of an individual national economy and the world economy. Cyclic
Auctuations are common characteristics of economic systems. A variety of economic cyclic
modes have been identified, including the 3-7 year business cycle, the 15-25 year construc-
tion or Kuznets cycle, and the 40-60 year Kondratieff or economic long wave. Nonlinear
interaction between different economic modes can occur, e.g., a short-period business cy-
cle can act as an exogenous force on a long-period business cycle. In addition, geophysical
cycles such as seasonal cycles, El Nifio cycles, and solar cycles may act as an exogenous
force on the fluctuations of agriculture, tourism, and fuel sectors.

In this thesis, we will investigate the numerical solutions of the forced van der Pol
model of business cycles, equation (2.14), which can be rewritten as three coupled first-

order differential equations

.’I'Cl = X9, (215)

iy = —p(z?—1)z9 — 21 + asin(2mzs), (2.16)
w

[y = - 2.17

T3 o (2.17)

In the absence of the exogenous forcing (a = 0), the origin (1 = 0, x5 = 0) is the only
" equilibrium solution of equations (2.15)-(2.17), which is an unstable fixed point (repeller);

all other trajectories of the system approach a single attracting periodic orbit (limit cycle)
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that encircles the origin, which describes periodic relaxation oscillations consisted of a
period of slow buildup followed by a sudden discharge (Alligood, Sauer and Yorke 1996).
In the presence of an exogenous forcing, equation (2.14) admits a rich variety of periodic
and aperiodic oscillations as the control parameters p, a and w are varied. Parlitz and
Lauterborn (1987) gave examples of the bifurcation diagrams of equation (2.14) by varying
the driver frequency and the driver amplitude, which show mode-locking and period-
doubling cascade. They pointed out that the system symmetry of the van der Pol oscillator
leads to the coexistence of asymmetric attractors, and introduced a generalized winding
number to compute devil’s staircases and winding-number diagrams of period-doubling
cascades. For large driving amplitudes, they found that many periodic, quasiperiodic and
chaotic attractors coexist. A systematic analysis of equation (2.14) was carried out by
Mettin, Parlitz and Lauterborn (1993) by studying its dynamical behaviors over a large
range of control parameters in the three-dimensional (u, a, w) phase diagrams, paying
special attention to the pattern of the bifurcation curves in the transitional region between
low and large dampings. Xu and Jiang (1996) performed a global bifurcation analysis of
equation (2.14) by investigating the phase diagrams in the two-dimensional (p, a) plane
with a fixed w, for medium damping. They studied the evolution of the global structures
in simple and complex transitional zones, and the number of coexisting attractors in
overlaps of mode-locking subzones.

In this chapter, we use the numerical solutions of equation (2.14) to study the funda-

mental properties of complex dynamics of economic cycles.

2.5 Order and Chaos

One fundamental characteristics of a complex dynamical system is the possibility of
order and chaos, which can exist either separately or simultaneously. In an ordered dy-
namical system, for arbitrary initial conditions, after going through a transient period
the system approaches a periodic behavior with a predictable periodicity. In contrast, a
chaotic dynamical system exhibits behavior that depends sensitively on the initial condi-
tions, thereby rendering long-term prediction impossible (Strogatz 1994). Figure 2.1(a)
shows a periodic time series of the numerical solutions of equation (2.14) for the control
parameters: o= 1, w =0.45, a = 0.083139. Figure 2.1(b) shows two chaotic time series
of the numerical solutions of equation (2.14) for the same control parameters: p = 1,
w = 0.45 and a = 0.9877, but with two slightly different set of initial conditions. The
initial conditions of the solid curve are z = 0.2108, & = 0.0187; whereas, the initial con-

dition of the dashed curve are = = 0.2100, ¢ = 0.0187. We see from figure 2.1(b) that
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Figure 2.1: Periodic and chaotic time series. (a) A periodic time series x(t) for
a = 0.983139, (b) two chaotic time series for o = 0.9877 with slightly different initial
conditions: z = 0.2108 and & = 0.0187 for the solid line, z = 0.2100 and & = 0.0187 for
the dashed line.
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Figure 2.2: Periodic attractor and chaotic attractor. (a) A periodic attractor (A;) of
period-1 in the state space (z, &) for a = 0.983139, (b) a chaotic attractor (CA) in the
state space (zx, &) for a = 0.9877.

initially the two time series are the same, however, as the time increases, the behavior of
two chaotic time series becomes very different.

The attractor is the set of points in the state space to which the trajectories approach as
time goes to infinity. Since a complex system consists of both order and chaos, it contains
both periodic attractors and chaotic attractors. When the attractor is an isolated closed
trajectory, it is called a periodic attractor (or limit cycle); when an attractor is a fractal
set of points, it is called a strange attractor (or chaotic attractor) (Ott 1993). Figures
2.2(a) gives an example of a periodic attractor (A,) for a = 0.983139, corresponding to
the periodic time series in figure 2.1(a). Figure 2.2(b) gives an example of a chaotic
attractor for a = 0.9877 (CA), corresponding to the chaotic time series in figure 2.1(b).
The trajectories of arbitrary initial conditions on a chaotic attractor will display aperiodic

behavior and sensitive dependence on initial conditions, which implies that nearby orbits
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Figure 2.3: State-space trajectory and Poincaré map. An illustration of a state-space

trajectory and the Poincaré map, T is the driver period and w is the driver frequency.

will diverge exponentially in time (see figure 2.1(b)). The average rate of divergence can be
measured by the Lyapunov exponents (Ott 1993). For a system with n-dimensional phase
space, there are n Lyapunov exponents which measure the rate of divergence /convergence

in n orthogonal directions.

2.6 Poincaré Map

To simplify the analysis of a nonlinear trajectory (orbit or flow) of a complex system,
it is often convenient to reduce a flow in the state space, namely, the numerical solution
of equation (2.14), to a discrete time map by the Poincaré surface of section method (Ott

1993). In this paper, we define the Poincaré surface of section (Poincaré map) by

P:.z(t)—z(it+T), (2.18)

where T = 2m/w is the driver period. Figure 2.3 is an illustration of a state-space

trajectory and the Poincaré map.

2.7 Bifurcation Diagram and Periodic Window

In addition to the sensitive dependence on the initial conditions, a dynamical system
is very sensitive to small variations in the control parameters (either endogenous or ex-
ogenous). As a control parameter varies, the stability of a dynamical system changes due
to a local or a global bifurcation. The bifurcation diagram provides a general view of
the system dynamics by plotting a system variable as a function of a control parameter

(Alligood, Sauer and Yorke 1996). Figure 2.4(a) shows a global view of the bifurcation
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diagram of the nonlinear model of economic cycles described by equation (2.14), where
we have kept two control parameter 1 and w fixed, and only vary the forcing amplitude
a. For a given control parameter a, the bifurcation diagram in figure 2.4(a) plots the
asymptotic values of the Poincaré points of the system variable z, where the transient has
been omitted.

The phase space of equations (2.15)-(2.17) has three dimensions, therefore the system
has three Lyapunov exponents, one of which is always zero (in the direction tangent to
the flow). For the remaining two exponents, for a stable periodic orbit the maximum
Lyapunov exponent is less than zero, for a quasiperiodic orbit the maximum Lyapunov
exponent is zero, whereas for a chaotic orbit the maximum Lyapunov exponent is greater
than zero. Figure 2.4(b) shows the maximum Lyapunov exponent as a function of a, for
the bifurcation diagram given by figure 2.4(a), calculated by the Wolf algorithm (Wolf et
al. 1985). Figure 2.4 shows that the system is quasiperiodic to the left of a ~ 1, and
periodic to the right of a ~ 1. However, in the region a ~ 1, the system can be chaotic.

An enlargement of a small region of the bifurcation diagram indicated by the arrow in
figure 2.4(a) is given in figures 2.5(a) and 2.5(b), which display a periodic window. Com-
plex dynamics is found within this periodic window, where five attractors are identified.
A saddle-node bifurcation (SNB) at a = agyp = 0.98312 marks the beginning of this
periodic window (in terms of attractors A; and Ap). An attractor merging crisis (MC)
at a = ape = 0.98765 marks the end of this periodic window. To the left of agyp and
to the right of apc, we have a chaotic attractor Ag. Two attractors A; and Ag co-exist
between asyp and apc, throughout this periodic window. Two more attractors Ay and
A, coexist for a small interval of a, between a = 0.9862400 and a = 0.9864085. Due
to the symmetry of equation (2.14) the attractors A; and A, have the same dynamical
behaviors, namely, for a given control parameter a, the maximum Lyapunov exponents of
A; and A, are the same. The same is true for attractors Az and A4. Figure 2.5(c) shows
the maximum Lyapunov exponent for either attractor A; or attractor Ay, which indicates
that there are many small periodic windows within a chaotic region, and there are many
chaotic regions within a periodic window. The rich dynamics found in this periodic win-
dow demonstrates the basic features of multistability and coexistence of order and chaos
in complex economic systems. In this thesis, we focus on the periodic window given by

figure 2.5 to investigate the complex dynamical behaviors of economic systems.
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Figure 2.5: Bifurcation diagram and maximum Lyapunov exponent: periodic window. (a)
Bifurcation diagram,  as a function of a, for attractors Ao, A; and Ajy; (b) bifurcation
diagram for attractors Ag, Ay and Ay; (¢) the maximum Lyapunov exponent Ayq. as a
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two attractors A, and A,. Attractor Ag (light gray), attractor A; (dark gray), attractor
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2.8 Multistability and Basins of Attraction

Evidently, multistability is a fundamental feature of a complex system, as seen in the
periodic window of the bifurcation diagram in figures 2.5(a) and 2.5(b). The basin of
attraction for a given attractor is the set of initial conditions each of which gives rise to
a trajectory that converges asymptotically to the attractor (Hilborn 1994). Note that
the chaotic attractor Ag persists to the right of agyp = 0.983120 and is only destroyed
by a boundary crisis at a = 0.983139. In terms of attractor Ay, the periodic window
actually starts at a = 0.983140. Hence, three attractors Ag, A; and A, coexist between
o = 0.983120 and a = 0.983139, as exemplified by the basins of attraction in figure
2.6(a) for a = 0.983139. For the initial conditions starting from the light gray region, the
trajectory converges to the chaotic attractor Ag; whereas, for initial conditions starting in
the dark gray (white) region, the trajectory converges to the periodic attractor Ay (Ag),
respectively. Between a = 0.983140 and a = 0.9862399, and between a = 0.9864086 and
a = ayc = 0.98765, two attractors A; and A, coexist, as exemplified by the basins of
attraction in figure 2.6(b) for a = 0.983140, where the light gray (white) region denotes the
basin of attraction for attractor A; (Az). Note the dramatic change in the topology of the
basins of attraction in figures 2.6(a) and 2.6(b), where the control parameter varies slightly
from a = 0.983139 to a = 0.983140. This dramatic change is due to the destruction of
the chaotic attractor Ag and its basin of attraction by a boundary crisis. Four attractors

Ay, A, As and Ay coexist between a = 0.9862400 and a = 0.9864085.

2.9 Unstable Periodic Orbit and Chaotic Attractor

Unstable periodic orbits are the skeleton of a chaotic attractor because chaotic trajec-
tories are closures of the set of unstable periodic orbits (Auerbach et al. 1987, Cvitanovic
1988). In contrast to a periodic attractor thereby all trajectories initiated from any point
in the state space are attracted to a stable periodic orbit (e.g., figure 2.2(a)), in a chaotic
attractor all periodic orbits are unstable since almost all trajectories (with the exception of
trajectories strictly along its stable manifold) in the neighborhood of an unstable periodic
orbit are repelled by it (e.g., figure 2.2(b)). Hence, a chaotic trajectory is chaotic because
it must weave in and around all of these unstable periodic orbits yet remain in a bounded
region of state space (Hilborn 1994). Unstable periodic orbits can be numerically found
by the Newton algorithm (Curry 1979). Four examples of the state-space trajectory (solid
line) and Poincaré points (cross) of unstable periodic orbits are given in figure 2.7. The
saddle-node bifurcation at a = agypg = 0.98312 generates a pair of stable and unstable

periodic orbits of period-1 associated with attractors A; and Aj, respectively, as shown in
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Figure 2.7: Unstable periodic orbits: skeleton of chaotic attractor. Examples of unstable
periodic orbits (solid line) in the state space and the corresponding Poincar point (cross)

of: (a) and (b) period-1 for a = 0.98312, (c) and (d) period-3 for a = 0.98624.

figures 2.7(a) and 2.7(b). Note that the stable and unstable periodic orbits are identical
at the onset of a saddle-node bifurcation. These two period-1 unstable periodic orbits,
represented by the dashed lines to the right of a = 0.98312 in figures 2.5(a) and 2.5(b), are
responsible for mediating the onset of a boundary crisis at a = 0.983139 which destroys
the chaotic attractor Ap. Figures 2.7(c) and 2.7(d) show the unstable (stable) periodic
orbits of period-3 associated with attractors Ag and A4, respectively, generated by an-
other saddle-node bifurcation at a = 0.9862400. These two period-3 unstable periodic
orbits, represented by the dashed lines to the right of a = 0.9862400 in figure 2.5(a), are
responsible for mediating the onset of another boundary crisis that destrays attractors As
and A, at a = 0.9864085 and are also responsible for mediating the onset of an attractor
merging crisis (MC) at a = 0.98765 which marks the end of the periodic window in figure
2.5. The unstable periodic orbits are robust. For example, most unstable periodic orbits
that appear within the periodic window continue to exist in the chaotic region to the right
of MC in figure 2.5(a) and form part of the skeleton of the chaotic attractor Ay beyond
the attractor merging crisis.

An unstable periodic orbit with period-N turns into N-saddle points in the Poincaré

surface of section, as seen in Figure 2.7. Figure 2.8(a) illustrates a saddle point (p),
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Figure 2.8: Unstable periodic orbit: stable and unstable manifolds. (a) An illustration of

a saddle point (p) with its associated stable manifold (SM) and unstable manifold (UM),

the dashed lines represent the stable (v°) and unstable (v*) eigenvectors; (b) the state-

space trajectory (solid line) and Poincar/e points (cross) of a period-3 unstable periodic
orbit for a = apc = 0.98765; (c) the stable manifold SM (line) of the period-3 saddle
point (cross); (d) the unstable manifold UM (line) of the period-3 saddle point (cross).
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which is the intersection of in-set (stable manifold SM) and out-set (unstable manifold
UM), in a two-dimensional Poincaré surface of section. The dashed lines represent the
stable (v*) and unstable (v*) eigenvectors of the linearized Poincaré map at p. At the
saddle fixed point p, the stable manifold SM is tangent to the stable eigenvector v* and
the unstable manifold UM is tangent to the unstable eigenvector v*. Trajectories on
the in-set converge to the saddle point as the time goes on; whereas, trajectories on the
out-set diverge from the saddle point as time goes on (Hilborn 1994). Figure 2.8(b) is
an example of the trajectory of an unstable periodic orbit of period-3 in the state space
for a = ayc = 0.98765. The closed curve in figure 2.8(b) turns into a saddle consisted
of 3 fixed points (crosses) in the Poincaré surface of section also shown in figure 2.8(b).
Figures 2.8(c) and 2.8(d) are enlargements of the rectangular region indicated in figure
2.8(b), where we also plotted the numerically computed stable manifold (SM) and unstable

manifold (UM) of the saddle, respectively.

2.10 Concluding Comments

The fundamental properties of nonlinear economic dynamics discussed in this chapter
form the basis for the analysis of complex economic systems. We showed that a complex
economic system exhibits multistability behavior with coexistence of attractors, including
the possibility of coexistence of order and chaos (periodic attractors and chaotic attrac-
tors). In addition, we showed that unstable periodic orbits are the skeleton of a chaotic
attractor. The complex dynamics of an econormic system can be displayed by the Poincaré
map and by the bifurcation diagram, which often contains many periodic windows. We
identified a periodic window within which complex dynamics is found, with the presence
of five attractors; the beginning of this periodic window is marked by a saddle-node bifur-
cation (in terms of attractors A; and Ajp) and the end of this periodic window is marked

by the onset of an attractor merging crisis.
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CHAPTER 3

TYPE-1 INTERMITTENCY IN NONLINEAR ECONOMIC CYCLES

In this chapter, the intermittent behavior of economic dynamics is studied by a nonlin-
ear model of business cycles. Numerical simulations show that after an economic system
evolves from order to chaos, the system keeps its memory before the transition and its
time series alternates episodically between periods of low-level apparently periodic (quies-
cent) and high-level turbulent (bursting) activities. This model of economic intermittency
exhibits power-law spectrum similar to the nonlinear time series observed in financial mar-

kets.

3.1 Introduction

Characterization of the complex dynamics of economic cycles, by organizing economic
regularities and identifying regime switching between “good” and “bad” phases in the
time series, is the key to accurate economic forecasting (Diebold and Rudebusch 1999).
In a classical book, Burns and Mitchell (1946) defined business cycles as “a type of fluctu-
ation found in the aggregate economic activity of nations that organize their work mainly
in business enterprises: a cycle consists of expansions, occurring at about the same time
in many economic activities, followed by similarly general recessions, contractions, and
revivals which merge into the expansion phase of the next cycles”. Thus, two fundamen-
tal attributes of business cycles are: comovement (i.e., synchronization) among various
economic variables or sectors, and division of business cycles into alternating (i.e., inter-
mittent) phases of low-level and high-level economic activities.

Synchronization and intermittency are ubiquitous phenomena that govern the nonlin-
ear dynamics of complex systems. Fireflies provide a good example of synchronization in
nature whereby thousands of fireflies can self-organize themselves to flash on and off in syn-
chrony. Periodic (ordered) solutions appear when coupled oscillators are phase-locked due
to phase synchronization; moreover, phase synchronization can occur in coupled chaotic
oscillators (Strogatz 1994). Selover et al. (2004) proposed that national business cycles
result from nonlinear phase-locking between different industries or sectors. Intermittency
is pervasive in our world, as exemplified by traffic flow in big cities, fluid turbulence in
atmospheres and oceans, and long-term variabilities of sunspot cycles (Vassilicos 1995; Os-
sendrijver and Covas 2003). Financial markets also exhibit intermittent behavior wherein

periods of trading frenzy are followed by periods of quiescence; on closer examination the
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periods of high volatility are themselves consisted of other sub-periods of relative quiet
and other sub-periods of relative bursty activities, which is a manifestation of self-similar
and scale-invariant properties of nonlinear systems.

Recent statistical analysis of high-frequency data of stock markets and foreign ex-
change markets have demonstrated the intermittent nature of nonlinear economic time
series, which present non-Gaussian behavior in the probability distribution function of
price changes and power-law behavior in the spectral density (Mantegna and Stanley
1995, 1996; Ghashghaie et al. 1996). The fat-tail seen in the non-Gaussian probability
distribution function is due to excess of large-amplitude fluctuations (relative to Gaussian
distribution) of economic variables. The power-law frequency dependence of the spectral
density is an indication of turbulent process involving an information cascade from large
to small time scales in financial markets.

There is an increasing interest in applying chaos concept to study nonlinear economic
dynamics. Sengupta and Sfeir (1997) performed empirical tests of volatility for monthly
data of exchange rates from February 1988 to August 1995, and concluded that chaotic
instability cannot be ruled out in general. Fernandez-Rodriguez et al. (1997) applied
a multivariate local predictor, inspired by chaos theory, to nine EMS currencies using
daily data from January 1973 to December 1994, which outperformed the random walk
directional forecasting. Muckley (2004) presented evidence of strange attractor, a long-
term memory effect and aperiodic motion in a time series analysis of daily financial data
of two equity and two commodity indices.

Intermittency is readily found in nonlinear models of economic dynamics (Mosekilde
et al. 1992; Haxholdt et al. 1995; Bischi et al. 1998). In this chapter, we study an
example of economic type-I intermittency based on a model of nonlinear business cycles
(Chian et al. 2005a,b). We will show by numerical simulations that after a transition
from order to chaos due to a saddle-node bifurcation, the time series of business cycles
becomes intermittent involving episodic regime switching between quiescent and bursting
phases. The power spectrum of the simulated intermittent time series has power-law
dependence on frequency, similar to the observed data of intermittent financial markets.
The characteristic intermittency time will be calculated and its application for economic

forecasting will be discussed.

3.2 Nonlinear Model of Economic Cycles
We adopt the forced van der Pol (VDP) differential equation to model the nonlinear

dynamics of business cycles
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Figure 3.1: A p-1 periodic window of computed bifurcation diagram, & as a function of
the driver amplitude a, for attractors A; and A,. SNB denotes saddle-node bifurcation;

dashed lines denote p-1 unstable periodic orbits; 4 = 1 and w = 0.45.

i+ p(z® — )% + z = asin(wt). (3.1)

Equation (3.1) models a small open economy forced externally by a world economy (Puu
1989), or alternatively, it models market fluctuations driven by climate variabilities (Good-
win 1990). It admits regular (periodic) or irregular (chaotic) solutions as we vary any of
three control parameters: a, w, fi.

Equation 3.1 is an example of two coupled oscillators: an endogenous nonlinear oscilla-
tor with its natural frequency and an exogenous periodic oscillator with a driver frequency
w. In a nonlinear system, the natural frequency of oscillations changes with the varia-
tion of the control parameters. Hence, in this economic model the dynamical behavior
of nonlinear business cycles depends on the competition between these two frequencies
as the control parameters are varied. The system is phase-locked (synchronized) if the
ratio of these two frequencies is a rational number; its associated solution is then periodic.
After the phase-locked solution is destroyed in a saddle-node bifurcation, the solution be-
comes chaotic. Type-I intermittency results from the transition from order to chaos via

a saddle-node bifurcation (Strogatz 1994).
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3.3 Economic Type-1 Intermittency

A periodic window of the bifurcation diagram determined from the numerical solutions
of equation (3.1) is shown in figure 3.1, where we plot & as a function of the amplitude
a of the exogenous forcing while keeping other control parameters fixed (4 = 1 and
w = 0.45) (Chian et al. 2005a,b). Within the periodic window, two (or more) coexisting
attractors A, and A, are found. At the saddle-node bifurcation a = agyp = 0.98312,
a pair of period-1 (p-1) stable (solid line) and unstable (dashed line) periodic orbits for
each attractor is generated, which evolve into two small chaotic attractors via a cascade
of period-doubling bifurcations. To the left of agyp in the bifurcation diagram, the initial
conditions converge to a chaotic attractor Ag. The aim of this chapter is to study type-I
intermittency associated with the transition of periodic attractors A1/A; to the chaotic
attractor Ag for a < asns-

Due to the symmetry of equation (3.1), which is invariant under the flip operation
¢ — —z when a = 0, the solutions admit coexistence of attractors. Figure 3.2 shows
the basins of attraction for attractors A; and A, at o = 0.98314, within the periodic
window. The set of initial conditions in the gray region of the phase space (z, ) will be
attracted to A, whereas the set of initial conditions in the white region will be attracted
to Ay. Note that for values of a between 0.983120 and 0.983139 the three attractors A,
A, and Ag coexist. The chaotic attractor A, is destroyed by a boundary crisis (BC) at
apce = 0.983139, to the right of agnB-

At a = agnp, the attractors A; and A, are periodic with period-1. The trajectories of
A, and A, in the phase space (z,%) at o = asnp are shown in figures 3.3(a) and 3.3(b),
respectively. Examples of periodic time series, i(t), for attractors Ay and A, are shown in
figures 3.4(a) and 3.4(b), respectively; the same time series plotted as a function of driver
cycles (t = 2mn/w, n=1,2,3, ...) are given in figure 3.4(c).

For a < agyg, the solutions are chaotic. The phase-space trajectory of the chaotic
attractor Ag prior to the saddle-node bifurcation is shown in figure 3.3(c). Two examples
of chaotic time series for different values of a, to the left of a = asnyp, are shown in
figures 3.5(a) and 3.5(b), respectively; the same time series plotted as a function of driver
cycles are given in figures 3.5(c) and 3.5(d), respectively. Type-I intermittency is readily
recognized in Fig. 3.5, exhibiting episodic regime switching between periods of laminar
(quiescent) phases and periods of bursting (turbulent) phases. By comparing figures 3.4
and 3.5, we identify the laminar phases ( ~ 2 and ¢ ~ 0 in the driver cycle plots) as
due to the memory effect of the post saddle-node bifurcation p-1 unstable periodic orbits

of A, and A,, respectively. As the system moves farther away from the transition point
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Figure 3.2: Basins of attraction for two co-existing attractors A and Ay at a = agyp =

0.98314. The gray (white) regions denote the basins of attraction of A (Ag).

¢ = agnp, the average duration of laminar phases decreases due to weakening memory, as
shown by the intermittent time series in figure 3.5. This implies that after the transition
from order to chaos, the regime switching of intermittent business cycles becomes more
frequent as the system moves farther away from the transition point.

The power spectra of the periodic and intermittent time series of figures 3.4 and 3.5 are
shown in figure 3.6. Figure 3.6(a) shows that when the solution is periodic the spectrum
is discrete. Figures 3.6(b) and 3.6(c) show that when the solutions are intermittent the
power spectra are broadband and have a power-law behavior at high frequencies, which

is a characteristics of chaotic systems such as intermittent financial markets.
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Figure 3.3: Phase-space trajectories of: (a) period-1 attractor (A;) for a = 0.98312, (b)
period-1 attractor (Ay) for a = 0.98312, (c) chaotic attractor (Ag) for a = 0.98311.
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Figure 3.4: Periodic time series for a = asnp = 0.98312: (a) %(t) for attractor A;, (b)

i(t) attractor Ay, (c) % as a function of driver cycles for A; and As.
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Figure 3.6: Power spectrum S(f) as a function of frequency f for: (a) a = 0.98312, (b)
a = 0.98311, (c) a = 0.9825.

The characteristic intermittency time, namely, the average duration of laminar phases
in the intermittent time series, depends on the value of the control parameter a. Close to
the transition point agyp the average duration of laminar phases is relatively longer, and
decreases as a moves away from asyp. The characteristic intermittency time (denoted by
) can be calculated from a long time serles, by averaging the time between two consecutive
bursting phases. Figure 3.7 is a plot of log,o 7 versus log,o(asns — a), where the solid line
with a slope v = —0.074 is a linear fit of the values of the characteristic intermittency
time computed from the time series. The squares (circles) denote the computed average
duration of the laminar phases related to A; (Az). Note that the circles and the squares
coincide most of the time, due to the symmetry of A; and Ay. Figure 3.7 reveals that the
characteristic intermittency time 7 decreases with the distance from the critical parameter

asn g, obeying the following power-law scaling:

7~ (agnp — a) 0™ (3.2)

This scaling formula can be used to predict the turning points, from contraction to ex-

pansion phases, of nonlinear business cycles.
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3.4 Concluding Comments

This chapter shows that after an economic system undergoes a dynamical transition
from an ordered to chaotic state, intermittency appears whereby the economic activities
switch episodically back and forth between periods of quiescent and bursting fluctuations.
As an economic systern moves farther away from the transition point, the average duration
of quiescent periods decreases. In order to understand the nature of economic intermittent
behaviors, we performed a study of type-I intermittency in a nonlinear model of business
cycles. In this example of intermittency, an economic path evolves from a regular (pe-
riodic) to an irregular (chaotic) pattern as the exogenous forcing amplitude a passes a
critical value agyp, where the system loses its stability due to a saddle-node bifurcation.
It is worth emphasizing that there is a region with intermittent chaos for attractor Ag to
the right of agyp in figure 3.1, for values of a between 0.983120 and 0.983139, which will
be a subject of further investigation.

The accuracy of business cycle forecasting relies on a precise estimate of the durations
of economic expansions and contractions and of the turning points in business cycles
(Vilasuso 1996; Schnader and Stekler 1998; Diebold and Rudebusch 1999). Nonlinear
modeling of economic systems provides a powerful tool to simulate regime switching be-

tween contraction and expansion phases, and to predict the turning points. In particular,
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the average duration of quiescent phases in business cycles can be determined from the
characteristic intermittency time of the simulated time series. Hence, the dynamical sys-
tems approach is extremely useful to analyze patterns in the fluctuations of complex
economic systems and valuable for a sound policy making.

Some interesting connections can be made between our results and other papers
discussed in the present work. For example, Vilasuso (1996) employed nonparametric
turning-point tests to investigate the duration of economic expansions and contractions
in the United States, which indicated evidence of a turning point to longer expansions in
1929. Our work adopted a nonlinear model of business cycles to simulate the duration of
expansions and contractions of an open economy driven by a global market, which can be
used to predict the turning point to a long period of economic expansions of a nation, such
as detected by Vilasuso (1996). Moreover, type-I intermittency studied in this chapter
demonstrates the ability of a chaotic enonomic system to retain the memory of its system
dynamics in the ordered regime. When the system is close to its transition point from
order to chaos, it keeps this memory for a long duration in the form of quiescent phases in
economic fluctuations. This result is in agreement with the nonlinear time-series analysis
of financial data performed recently by Muckley (2004), which obtained evidence of a

long-term memory effect in a strange attractor.
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CHAPTER 4

CRISIS-INDUCED INTERMITTENCY IN NONLINEAR ECONOMIC
CYCLES

In this chapter, a new type of economic intermittency is found in nonlinear business
cycles. Following a merging crisis, a complex economic system has the ability to retain
memory of its weakly chaotic dynamics prior to crisis. The resulting time series exhibits
episodic regime switching between periods of weakly and strongly chaotic fluctuations
of economic variables. The characteristic intermittency time, useful for forecasting the
average duration of contractionary phases and the turning point to the expansionary phase

of business cycles, is computed from the simulated time series.

4.1 Introduction

Intermittency is a fundamental dynamical feature of complex economic systems. An
intermittent economic time series is characterized by recurrence of regime switching be-
tween periods of bursts of high-level fluctuations of economic activities and periods of
low-level fluctuations. For example, an instability of the financial system leads to spec-
wative booms followed by subsequent financial crises manifested by violent price move-
ments in financial markets; the recurrence of these events results in business cycles with
alternating periods of boom and depression (Mullineux, 1990). The spectral density of
intermittent economic time series indicates power-law behavior typical of mutiscale sys-
tems. Statistical analysis of the high-frequency dynamics of stock markets and foreign
exchange markets has proven the intermittent nature of these financial systems, which
display non-Gaussian form with fat-tail in the probability distribution function of price
changes (Mantegna and Stanley 2000).

A good understanding of regime switching and memory of economic time series is es-
sential for pattern recognition and forecasting of business cycles. Kirikos (2000) compared
a random walk with Markov switching-regime processes in forecasting foreign exchange
rates; the results suggested that the availability of more past information may be useful
in forecasting future exchange rates. Kholodilin (2003) introduced structural shifts in
the US composite economic indicator via deterministic dummies and evaluated the US
monthly macroeconomic series specified by the regime-switching model. Bautista (2003)
used regime-switching-ARCH regression on the Philippine stock market data to estimate

its conditional variance and relate to episodes of high volatility including the 1997 Asian
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financial crisis; this study identified a period of high stock return volatility preceding a
bust cycle marked by a sequence of low-growth periods. Granger and Ding (1996) defined
long memory as a time series having a slowly declining correlogram, which is a property of
fractional integrated processes as well as a number of other processes including nonlinear
models; the relevance of long memory is illustrated using absolute returns from a daily
stock market index. Resende and Teixeira (2002) assessed long-memory patterns in the
Brazilian stock market index (Ibovespa) for periods before and after the Real Stabiliza-
tion Plan, and obtained evidence of short memory for both periods. Gil-Alana (2004)
presented evidence of memory in the dynamics of the real exchange rates in Europe using
the fractional integration techniques. Muckley (2004) employed rescaled-range analysis,
correlation dimension test and BDS test to obtain evidence of long-memory effect and
chaos in daily time series of financial data.

Intermittency is ubiquitous in chaotic economic systems. In a nonlinear macroeco-
nomic model (Mosekilde et al. 1992) describing an economic long wave (or Kondratiev
cycle) forced by an exogenous short-term construction (or Kuznets) business cycle repre-
sented by a sinusoidal fluctuation in the demand for capital to the goods sector, a chaotic
transition known as crisis involving a sudden expansion of chaotic attractor and a complex
form of chaos arising from intermittency are observed. In a disaggregated economic long
wave model describing two coupled industries (Haxholdt et al. 1995), one representing
production of plant and long-lived infrastructure and the other representing short-lived
equipment and machinery, mode-locking, quasiperiodic behavior, chaos and intermittency
are detected. In a model of an economic duopoly game (Bischi et al. 1998), the phenom-
enon of synchronization of a two-dimensional discrete dynamical system is studied and
on-off intermittency due to a transverse instability is detected.

An example of type-I intermittency in nonlinear business cycles was studied recently
(Chian et al. 2005a). In the economic type-I intermittency, the recurrence of regime
switching between bursty and laminar phases indicates that a nonlinear economic system
is capable of keeping the memory of its ordered dynamics after the system evolves from
order to chaos due to a local saddle-node bifurcation. Most econometric studies of long
memory treat economic data as stochastic processes (Granger and Ding 1996; Resende and
Teixeira 2002; Gil-Alana 2004), however real economic systems are a mixture of stochastic
and deterministic processes. In this chapter, we adopt the deterministic approach to
study a new type of economic intermittency induced by an attractor merging crisis due
to a global bifurcation (Chian et al. 2005b). We will show that following the onset

of an attractor merging crisis, the economic system retains its memory of the weakly
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chaotic dynamics before the crisis; as the result, the time series of business cycles becomes
intermittent displaying episodic regime switching between periods of weakly and strongly
chaotic fluctuations.

A forced model of nonlinear business cycles is formulated in Section 4.2. Economic
crisis-induced intermittency is analyzed in Section 4.3. Concluding comments are given

in Section 4.4.

4.2 Nonlinear Model of Economic Cycles
We model the nonlinear dynamics of business cycles driven by the forced van der Pol
differential equation

i+ p(z? — 1) + z = asin(wt). (4.1)

Equation (4.1) admits periodic (ordered) or aperiodic (chaotic) solutions as we vary any
of three control parameters: a, w, 4. Equation (4.1) (when a = 0) is invariant under the
flip operation (z — —z). This symmetry is a typical property of dynamical systems that

exchibit attractor merging crises (Chian et al. 2005a,b).

4.3 Economic Crisis-Induced Intermittency

The qualitative structure of the trajectory described by equation (4.1) can change (i.e.,
bifurcate) as the control parameters are varied. For example, fixed points can be created
or destroyed, or their stability can change. These changes in the system dynamics can be
represented by the bifurcation diagram. A periodic window of the bifurcation diagram
determined from the numerical solutions of equation (4.1) is shown in figure 4.1, where
we plot & as a function of the driver amplitude a while keeping other control parameters
fixed (u = 1 and w = 0.45). Within the periodic window, two (or more) aftractors
A; and A, co-exist, each with its own basin of attraction (Chian et al. 2005a,b). At
o = 0.98312, a period-1 limit cycle for each attractor Ay/A; is generated via a local
saddle-node bifurcation (SNB), which evolves into a small chaotic attractor via a cascade
of period-doubling bifurcations.

An attractor merging crisis occurs at the crisis point (MC), near a = aypc = 0.98765.
The phase-space trajectories of two small chaotic attractors (CA; and CA,) in the phase
space (x, ©), near the crisis point, are shown in figures 4.2(a) and 4.2(b), respectively.
Note that CA; and CAy are symmetric with respect to each other. In fact, the dynamic
properties of these two co-existing attractors are identical. At the crisis point, each of
the two small chaotic attractors simultaneously collide head-on with a period-3 mediating

unstable periodic orbit on the boundary which separates their basins of attraction, leading
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Figure 4.1: Bifurcation diagram of & as a function of the driver amplitude a for attractors
A, and A,. MC denotes attractor merging crisis and SNB denotes saddle-node bifurcation.

w=1and w =045

to an attractor merging crisis due to a global bifurcation (Chian et al. 2005b). As the
consequence, the two pre-crisis small chaotic attractors merge to form a post-crisis large
merged chaotic attractor (MCA), as seen in figure 4.2(c).

A Poincaré map of the phase-space trajectories of figure 4.2 is plotted in figure 4.3,
which is a superposition of two pre-crisis weak chaotic attractors (CA; and CAj) and
the post-crisis strong merged chaotic attractor (MCA). We define a stroboscopic Poincaré

map

P [z(t),2()] — [zt + T), &t +T)), (4.2)

where T = 27/w is the driver period. Note that the two pre-crisis CA; and CA, are
located in two small regions within the post-crisis MCA.

The time series of % for the two small chaotic attractors CA; and CA, at crisis,
4 = 0.98765, are shown in figures 4.4(a) and 4.4(b), respectively. The same time series
of figures 4.4(a) and 4.4(b) plotted as a function of driver cycles are shown in figure
4.4(c). From figure 4.4(c), we see that before crisis the fluctuations of economic variables

are weakly chaotic (laminar), localized in a small range of & (near £ ~ 2 and & ~ 0),
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Figure 4.2: Phase-space trajectories of: (a) pre-crisis chaotic attractor (CA,) for a =
0.98765, (b) pre-crisis chaotic attractor (CAg) for a = 0.98765, (c) post-crisis merged
chaotic attractor (MCA) for a = 0.98766.
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Figure 4.3: Poincaré map of the post-crisis merged chaotic attractor (MCA, light line) for
a = 0.98766, superposed by the pre-crisis chaotic attractors (CA; and CA,, dark lines)
for a = 0.98765.
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Figure 4.5: Post-crisis intermittent time series of & for a = 0.98766 and a = 0.988. (a)
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u = .98766

Figure 4.6: Power spectrum S(f) as a function of frequency f for: (a) a = 0.98765, (b)
= (0.98766, (c) a = 0.988

consistent with the Poincaré map in figure 4.3.

After the attractor merging crisis, there is only one large chaotic attractor (MCA) in
the system. The time series of © of MCA after the crisis, for a = 0.98766 and a = 0.988,
are shown in figures 4.5(a) and 4.5(b), respectively. The same time series plotted as a
function of driver cycles are shown in figures 4.5(c) and 4.5(d), respectively. The time
series in figure 4.5 show that the system dynamics becomes intermittent after the onset of
attractor merging crisis, with periods of weakly chaotic (laminar) fluctuations interrupted
abruptly by periods of strongly chaotic (bursty) fluctuations. A comparison of the time
series of figures 4.4 and 4.5 indicates that the laminar phases in figure 4.5 are related to
the pre-crisis attractors CA; and CA,. Hence, the post-crisis system keeps memory of its
weakly chaotic dynamics prior to crisis, and switches back and forth between the low-level
Auctuations related to CA; and CA,, linked by high-level fluctuations related to MCA.
An examination of figure 4.5 shows that, as the system moves away from the crisis point,
the average duration of laminar phases decreases and the regime switching becomes more
frequent.

The power spectra associated with the time series of figures 4.4 and 4.5 are shown in
figure 4.6. It is evident that in all three cases the high-frequency portions of the spectra
present power-law behaviors, which are typical features of intermittent financial systems

such as stock markets and foreign exchange markets (Mantegna and Stanley 2000). A
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Figure 4.7: Characteristic intermittency time as a function of the departure from the crisis
point, log,, 7 versus log,o(a — amc). The squares (circles) denote the computed average
switching time from the laminar phases related to CA; (CA5) to the bursty phases. The

solid line is a linear fit of the computed values with a slope 7 = —0.66.

closer look of figures 4.6(a)-(c) shows that as the system becomes more chaotic, the
discrete spikes of the power spectrum become less evident due to increasing multi-scale
information transfer in the system.

The characteristic intermittency time, namely, the average duration of the laminar
phases in the intermittent time series, depends on the value of the control parameter a. In
the vicinity of the crisis point apc the average time spent by a path in the neighborhood
of pre-crisis CA; and CAj is very long (implying long memory), which decreases as a
moves away from apc (implying shorter memory). The characteristic intermittency time
(denoted by 7) can be calculated by averaging the duration of laminar phases related to
CA;/CA; over a long time series. Figure 4.7 is a plot of logy, 7 versus logyo(a — anmc),
where the solid line with a slope v = —0.66 is a linear fit. The squares (circles) denote
the computed average time of the laminar phases related to CA; (CAy). Note that circles
and squares coincide most of the time, as expected from the symmetry of CA; and CA,.
Figure 4.7 reveals that the characteristic intermittency time 7 decreases with the distance

from the critical parameter, obeying a power-law scaling:
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7~ (a—apc) ™% ' (4.3)

The scaling relation for the van der Pol model of the economic type-1 intermittency yields
a scaling exponent of —0.074 (Chian et al. 2005a). Comparing with equation (4.3), we
see that the decrease of T with the distance from the critical parameter for the economic

crisis-induced intermittency is much faster than the economic type-I intermittency.

4.4 Concluding Comments

Forecasting the evolution of the complex system dynamics is the ultimate goal in
economics. Chaos and nonlinear methods provide powerful tools to achieve this goal. For
example, Bajo-Rubio et al. (1992) detected a chaotic behavior on daily time series of the
Spanish Peseta-U.S. dollar exchange rate which allows short-run predictions. Soofi and
Cao (1999) performed out-of-sample predictions on daily Peseta-U.S dollar spot exchange
rates using a nonlinear deterministic technique of local linear predictor. Bordignon and
Lisi (2001) proposed a method to evaluate the prediction accuracy of chaotic time series
by means of prediction intervals and showed its effectiveness with data generated by a
chaotic economic model.

A nonlinear prediction method being developed in population dynamics, weather dy-
namics and earthquake dynamics is based on attractor reconstruction in phase space using
the time series of observed data (Drepper et al. 1994; Perez-Munuzuri and Gelpi 2000;
Konstantinou and Lin 2004). This technique may be applied to economic forecasting.
Information obtained from modeling intermittency of a complex economic system can
guide the analysis of the reconstructed attractor by providing identifiable and predictable
recurrent system patterns (Belaire-Franch 2004), and allowing the calculation of the char-
acteristic intermittency time for each recurrent pattern. In particular, the determination
of intermittent features in the modeled economic chaotic attractors, aided by the recog-
nition of regions of high predictability in the chaotic attractors (Ziehmann et al. 2000),
and the calculation of the power-law scaling in the intermittent error dynamics (Chu et
al. 2002) may reduce prediction error and improve economic forecasting precision.

FEconomic forecasting relies on the agent’s skill to recognize the patterns of recurrence
in the past economic time series and to estimate the waiting time between bursts. Re-
currence of unstable periodic structures is a manifestation of the memory dynamics of
complex economic systems. Dynamical systems approach provides effective tools to iden-
tify the origin and nature of the recurrent patterns. In this chapter, we demonstrated how

economic intermittency is induced by an attractor merging crisis and how to recognize dif-
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ferent recurrent patterns in the intermittent time series of economic cycles by separating
them into laminar (weakly chaotic) and bursty (strongly chaotic) phases. The characteris-
tic intermittency time given by the scaling relation, equation (4.3), can be used to predict
the turning points of regime switching from contractionary phases to expansionary phases
in economic cycles.

Modeling of nonlinear economic dynamics enables us to obtain an in-depth knowl-
edge of the nature of regime switching and memory, in particular, their relation with
each other. Econometric literatures on regime switching (Kirikos 2000; Bautista 2003;
Kholodilin 2003) and long memory (Granger and Ding 1996; Resende and Teixeira 2002;
Gil-Alana 2004; Muckley ?004) have evolved largely independently, as the two phenomena
appear distinct. Diebold and Inoue (2001) argued that regime switching and long mem-
ory are intimately related, which is in fact confirmed by our analysis. As an economic
system evolves, microeconomic and macroeconomic instabilities lead to a variety of global
and local bifurcations which in turn give rise to chaotic behaviors such as crisis-induced
and type-I intermittencies. The techniques developed in this chapter can be applied to
investigate intermittency in more complex economic models and to analyze other types of
economic intermittency such as intermittency driven by a boundary crisis or an interior

crisis, on-off intermittency, and noise-induced intermittency.
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CHAPTER 5
ATTRACTOR MERGING CRISIS IN NONLINEAR ECONOMIC CYCLES

In this chapter, a numerical study is performed on a forced-oscillator model of nonlinear
business cycles. In particular, an attractor merging crisis due to a global bifurcation
is analyzed using the unstable periodic orbits and their associated stable and unstable
manifolds. Characterization of crisis can improve our ability to forecast sudden major

changes in economic systems.

5.1 Introduction

In recent years there is strong interest in the study of complex economic dynam-
ics such as chaotic business cycles (Gabisch and Lorenz 1987; Puu 1989; Lorenz 1989;
Goodwin 1990; Gandolfo 1997). Business cycles are fluctuations of macroeconomic vari-
ables resulting from instabilities in economic systems. Nonlinear evolution of economic
instabilities leads to large-amplitude fluctuations of business cycles due to trajectories far-
from-equilibrium. Complex systems approach provides a powerful tool to monitor and
forecast the nonlinear dynamics of business cycles. For example, Mosekilde et al. 1992)
studied the nonlinear mode-interaction between long-term and short-term business cycles;
in a model of the economic.long wave (Kondratiev cycle) driven by a periodic external
forcing representing short-term business cycles, they identified nonlinear phenomena such
as mode-locking, co-existence of attractors, period-doubling route to chaos, intermittent
route to chaos, and crisis. Szydlowski, Krawiec and Tobola (2001) analyzed nonlinear
oscillations in the Kaldor-Kalecki model of business cycles with time lags in terms of
bifurcation theory, and confirmed the existence of asymmetric cycles. Puu and Sushko
(2004) employed a multiplier-accelerator model of business cycles, including a cubic non-
linearity, to study a number of bifurcation sequences for attractors and their basins of
attraction.

Crisis is a global bifurcation resulting from the collision of a chaotic attractor with a
mediating unstable periodic orbit or its associated stable manifold (Grebogi, Ott and York
1983; Grebogi et al. 1987; Chian, Borotto and Rempel 2002; Chian et al. 2002; Borotto,
Chian and Rempel 2004; Borotto et al. 2004) There are three types of crisis: boundary
crisis, interior crisis and attractor merging crisis. A boundary crisis leads to a sudden
appearance/disappearance of a chaotic attractor along with its basin of attraction, which

occurs when the mediating unstable periodic orbit lies on the boundary between the basins
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of attraction of two attractors. An interior crisis leads to a sudden expansion/contraction
of the chaotic attractor, when the collision between the chaotic attractor and the medi-
ating unstable periodic orbit takes place in the interior of the basin of attraction of the
attractor. An attractor merging crisis appears in many systems with symmetries, whereby
two (or more) chaotic attractors merge to form a single chaotic attractor.

An interior crisis, with an abrupt expansion of the chaotic attractor, was identified in
a nonlinear model of economic long wave forced by a short-term business cycle (Mosekilde
1992). In this chapter, we show that an attractor merging crisis appears in a forced van
der Pol oscillator model of nonlinear business cycles. The onset of an atiractor merging
crisis is characterized using the tools of unstable periodic orbits and their associated stable

and unstable manifolds.

5.2 Nonlinear Model of Economic Cycles
We adopt the driven van der Pol (VDP) differential equation to model the nonlinear

dynamics of business cycles under the action of a periodic exogenous force

i+ p(z? — 1) + z = asin(wt). (5.1)

The equilibrium solution of the VDP equation reduces to a repeller fixed point located
at the origin (0, 0) in the phase space (z, dz/dt). In the absence of exogenous forcing (a =
0), the asymptotic solution of equation (5.1) is a limit cycle surrounding the equilibrium
fixed point. In the presence of exogenous forcing, either periodic (orderly) or aperiodic
(chaotic) solutions appear when we vary any of three control parameters: a, w, . The
VDP equation (5.1) (when a = 0) is invariant under the flip operation (z — —z). This
symmetry is a typical property of dynamical systems that exhibit attractor merging crises

(Grebogi et al. 1987).

5.3 Attractor Merging Crisis

In order to obtain a global view of the system dynamics, we construct a bifurcation
diagram from the numerical solutions of equation (5.1) by varying the control parameter
« while keeping the other two control parameters fixed (p = 1,w = 0.45). The Poincaré

plane is defined by

P:z(t)—z(t+T), (5.2)

where T' = 27 /w is the driver period.
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Figure 5.1: Bifurcation diagram of z as a function of a for: (a) attractors A; and As, (b)
attractors As and A4. (c) The maximum Lyapunov exponent Apq as a function of a for
either A; or Ay. MC denotes merging crisis; SNB denotes saddle-node bifurcation; the
dashed lines denote the mediating unstable periodic orbits of period-3; w = 0.45, p=1.

The bifurcation diagrams figures 5.1(a)-5.1(b) display a periodic window in a complex
region where four different attractors are found. The periodic window begins with a
saddle-node bifurcation (SNB) at a = 0.98312, where a pair of period-one (p-1) stable
(solid lines) and unstable (not shown) periodic orbits is generated for attractor A; (figure
5.1(a)) and attractor Ay (figure 5.1(b)), respectively; the periodic window ends with a
global bifurcation due to an attractor merging crisis (MC) at auc = 0.98765, where the
two chaotic attractors CA; and CA, combine to form a merged chaotic attractor (MCA).
The rich dynamical states displayed by the bifurcation diagram indicate that a dynamical
system is sensitively dependent on a small variation of its coﬂtrol parameters.

As we increase a after the saddle-node bifurcation (SNB), the stable periodic orbit
(SPO) of A; (Az) undergoes a cascade of period-doubling bifurcations leading to a chaotic
attractor CA; (CA,). Figure 5.1(a) (5.1(b)) shows that a second attractor Aj (A4) coexists
with A; (Aj), respectively, for a small range of the control parameter, between a =
0.9862400 and a = 0.9864085. Attractor Az (A4) is created by a saddle-node bifurcation,
where a pair of p-3 stable (solid lines) and unstable (dashed lines) periodic orbits is
generated. Aj and A, are destroyed at a = 0.9864085 due to a boundary crisis (see e.g.,
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attractors A; and Ay; (b) and (c) are the enlargements of the rectangular regions marked
in (a); the gray regions denote the basins of attraction of A, the white regions denote

the basins of attraction of A,.
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Figure 5.3: Poincaré maps of the pre-crisis chaotic attractors (CA; and CAy, dark lines)
at the crisis point ¢ = 0.98765, and the post-crisis merged chaotic attractor (MCA, light
lines) at a = 0.98766.

Chian, Borotto and Rempel 2002).

The corresponding behavior of the maximum Lyapunov exponent for either A; or
Ag, calculated by the Wolf algorithm (Wolf 1985), is shown in figure 5.1(c). Figure 5.1
shows that there are many chaotic regions within a periodic window and there are many
periodic windows within a chaotic region, which indicates that in a complex dynamical
system there is order within chaos and chaos within order.

Multistability is a basic feature of complex dynamical systems whereby two or more
attractors can coexist for a given value of the control parameter. This is depicted by the
basins of attraction in figure 5.2, at the merging crisis point MC, where two attractors
Ay and A, coexist. The set of initial conditions in the gray region of the phase space
(z,dz/dt) will lead to A;, whereas the set of initial conditions in the white region will
lead to As, as clarified in the enlarged plots, figures 5.2(b) and 5.2(c), respectively, of the
two rectangular regions marked in figure 5.2(a).

After the attractor merging crisis, the two pre-crisis chaotic attractors (CA; and CAj,)
of figure 5.2(a) combine to form a merged chaotic attractor (MCA), as shown in figure

5.3 in the Poincaré plane. The merged attractor after crisis is larger than the union of the
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Figure 5.4: Time series #(¢) for: (a) chaotic attractor CA; at a = 0.98765, (b) chaotic
attractor CAy at a = 0.98765, (c) merged chaotic attractor MCA at a = 0.93766.

two attractors before crisis. Time series plots of the economic variable (%) at pre-crisis
are given in figure 5.4(a) for CA; and figure 5.4(b) for CA, respectively, and at post-crisis
(MCA) is given in figure 5.4(c). The amplitudes of business cycle fluctuations after the
attracting merging crisis are much larger than before the crisis.

Unstable periodic orbit (UPO) plays a key role at the onset of attractor merging crisis.
We numerically determine UPO from the numerical solution of equation (5.1) using the
Newton algorithm. Analysis shows that the mediating p-3 unstable periodic orbits (M),
evolved from the saddle-node bifurcations at the birth of Ag (A4), are responsible for the
attractor merging crisis. The dashed lines in figures 5.1(a)-5.1(b) denote M. The phase
space trajectory of the two mediating UPOs that collide with A, (Ay), respectively, at
the crisis point MC are displayed in figure 5.5. Note that the two UPOs in figure 5.5 are
symmetric under reflection off z- and y- axis. This is a manifestation of the symmetry
property of the VDP equation (5.1).

Characterization of crisis in economic dynamics can be performed using the Poincaré
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Figure 5.5: Phase space trajectories, at the crisis point a = 0.98765, of the two mediating
unstable periodic orbits of period-3 responsible for attractor merging crisis of: (a) A, (b)
As.

method. On the Poincaré plane, an UPO transforms into a saddle fixed point with its
associated stable and unstable manifolds. Figure 5.6 displays the dynamical states of
chaotic business cycles on the Poincaré plane in the vicinity of A; (same region as figure
5.2(b)) before (figure 5.6(a)), at (figure 5.6(b)), and after (figure 5.6(c)) the onset of
attractor merging crisis, respectively. The crosses denote the three fixed points of the
p-3 mediating saddle. The dark lines (and points) denote the chaotic attractor, and the
light lines in figures 5.6(a)-5.6(c) denote the numerically computed stable manifolds of
the mediating saddle. Evidently, figure 5.6(b) demonstrates the head-one collision, at
the crisis point MC, of the chaotic attractor with the mediating saddle and its stable
manifolds. This collision leads to the formation of a merged chaotic attractor, seen in
figure 5.6(c).

Figures 5.6(d)-(f) displays the same system dynamics of figure 5.6(a)-(c), with the
stable manifolds replaced by the numerically computed unstable manifolds (UM) of the
mediating saddle. Our numerical calculations render support to the conjecture of Parker
and Chua, (Parker 1989) and Ott (Ott 1993) that a chaotic attractor contains the unstable
manifolds of every UPO of the chaotic attractor. Figure 5.6(f) demonstrates that the post-
crisis chaotic attractor in fact coincides with the closure of the unstable manifolds of the
mediating saddle. Although we only show the dynamical states of A; in figure 5.6, the
same behavior also applies to Ay due to the symmetry of the VDP system.

Examination of figure 5.2 shows that at the onset of attractor merging crisis, the
attractors collide head-on with the boundary of the basins of attraction that separate

attractors A; and A,. This boundary coincides with the stable manifolds of the mediating
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Figure 5.6: Poincaré map in the vicinity of CA; (same region as Fig. 5.2(b)). (a) and (d):
before crisis {a = 0.9873), (b) and (e): at crisis (a = 0.98765), and (c) and (f): after crisis

(a = 0.98766). The crosses denote the Poincaré points of the mediating unstable periodic

orbit of period-3; the dark lines (dark points) denote the chaotic attractors (CA; and
MCA); the light lines denote the stable/unstable manifolds (SM/UM) of the mediating

saddle.
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Figure 5.7: Crisis diagram depicting the system dynamics as the control parameter a
varies. Saddle-node bifurcations (SNB) occur at a certain value of a, creating two co-
existing attractors (A; and Ay), which via a cascade of period-doubling bifurcations evolve
into two chaotic attractors (CA; and CAjp). At the crisis point (MC), CA; and CA; collide
head-on with the mediating unstable periodic orbits (M; and M,), respectively, leading
to the onset of attracting merging crisis (MC) and the formation of a merged chaotic

attractor (MCA).

saddle, as demonstrated by figure 5.2(b) and 5.6(b). Hence, figure 5.2 and 5.6 provide

two alternative ways of characterizing the onset of attractor merging crisis.

5.4 Concluding Comments

This chapter shows that chaotic transitions such as the attractor merging crisis is
o fundamental feature of nonlinear business cycles. The crisis diagram for the attractor
merging crisis studied is given in figure 5.7, which summarizes the system dynamics leading
to the onset of crisis. Mathematical modeling of crisis can deepen our understanding of
sudden major changes of economic variables often encountered in business cycles. The
techniques developed in this chapter for crisis characterization (e.g., figures 5.2 and 5.6)
can contribute to improve the prediction of the onset of abrupt major changes in business
cycles as well as other economic systems.

Attractor merging crisis appears in systems with symmetry such as equation (5.1).
This type of crisis is absent when the system symmetry is broken. However, other types of
crisis phenomena such as boundary crisis (Chian, Borotto and Rempel 2002) and interior
crisis (Borotto, Chian and Rempel 2004) can be found in asymmetric systems such as the

asymmetric van der Pol equation (Engelbrecht and Kongas 1995), and are in fact present

54



in the solutions of equation (5.1). The techniques developed in this chapter can be readily
applied to characterize boundary and interior crises. Hence, crises and global bifurcations

are ubiquitous in either symmetric or asymmetric nonlinear economic systems.
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CHAPTER 6
CHAOTIC TRANSIENTS IN NONLINEAR ECONOMIC CYCLES

6.1 Introduction

In chapter 2, we showed that a nonlinear economic system is intrinsically unstable; as
the endogenous or exogenous parameters are varied, the system undergoes a variety of
local and global bifurcations such as saddle-node bifurcation and attractor merging crisis,
seen in the periodic window in figure 2.5. Chapter 3 showed that saddle-node bifurcation
is a route from order to chaos, leading to a chaotic dynamical behavior known as type-1
intermittency. Chapter 5 analyzed an attractor merging crisis in chaotic business cycles
which leads to a transition from weak chaos to strong chaos; the strong chaos exhibits a
dynamical behavior known as crisis-induced intermittency, as seen in chapter 4. In this
chapter, we will study the roles of unstable periodic orbits and chaotic saddles in type-
I intermittency and crisis-induced intermittency in complex economic systems (Chian,
Rempel and Rogers 2005b), based on the forced van der Pol oscillator model of nonlinear

economic cycles

i+ pu(z® — 1)+ z = asin(wt). (6.1)

6.2 Chaotic Saddle

Chaotic sets are not necessarily attracting sets. A set of unstable periodic orbits
can be chaotic and nonattracting so that the orbits in the neighborhood of this set are
eventually repelled from it; nonetheless, this set can contain a chaotic orbit with at least
one positive Lyapunov exponent (Nusse and York 1989). If the chaotic orbit has also
one negative Lyapunov exponent the nonattracting set is known as chaotic saddle. Both
chaotic saddles and chaotic attractors are composed of unstable periodic orbits.

Figure 6.1(a) shows a bifurcation diagram for both attractors (dark) and chaotic sad-
dles (gray) for a periodic window (same as figure 2.5(a)), where we plot & as a function of
the amplitude a of the exogenous forcing while keeping other control parameters constant
(u =1 and w = 0.45). As seen in chapter 2, within this periodic window, two or more
attractors can coexist. To plot the chaotic saddle, for each value of the control para-
menter a, we plot a straddle trajectory close to the chaotic saddle using the PIM triple
algorithm (Nusse and Yorke 1989, Rempel et al. 2004a,b). The periodic window in figure
6.1(a) begins with a saddle-node bifurcation (SNB) at asyp = 0.98312, where a pair of
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Figure 6.1: Chaotic saddle in bifurcation diagram. (a) Bifurcation diagram, & as a function
of a, for attractors (dark) Ay, Ay, Ag, A3 and A4, and the surrounding chaotic saddle SCS
(gray); (b) bifurcation diagram of (a) and the band chaotic saddle BCS (gray). SNB

denotes saddle-node bifurcation, MC denotes attractor merging crisis.

period-1 stable and unstable periodic orbits for each attractor (A; and Aj) is created,
respectively. As we increase a, the pair of period-1 stable periodic orbits undergoes a
cascade of periodic-doubling bifurcations which leads to the formation of a pair of weakly
chaotic attractors localized in two separate bands in the bifurcation diagram. We call the
region of the phase space occupied by the attractor throughout the periodic window the
band region, and the region occupied by the chaotic saddle, the surrounding region (Szab6
et al. 2000). Trajectories started in the surrounding region usually behave chaotically for
a finite transient time while traversing in the vicinity of the surrounding chaotic saddle
(SCS), after which they converge to the attractor. The transient time is related to the
structure of SCS and its manifolds. Like a saddle point, chaotic saddles possess a stable
and an unstable manifold. The stable manifold of a chaotic saddle is the sets of points that
converge to the chaotic saddle in forward time, and the unstable manifold is the sets of
points that converge to the chaotic saddle in the time reverse dynamics (Nusse and Yorke
1989). Initial conditions close to the stable manifold are first attracted to SCS and stay
close to its neighborhood for sometime, before they are repelled by its unstable manifold.
The closer an initial condition is to the stable manifold, the longer its transient time.
Note from the bifurcation diagram in figure 6.1(a) that as the control parameter a varies,
the dynamics of the surrounding chaotic saddle also undergoes considerable changes.
The end of the periodic window in figure 6.1(a) is marked by an attractor merging
crisis (MC) at apc = 0.98765, where the two banded weakly chaotic attractors merge to
form a strongly chaotic attractor. Figure 6.1(a) shows that for a small range of the control

parameter, between o = 0.9862400 and 0.9864085, attractors Az and A, coexist with A,
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and A,. Attractors Az and Ay are created by a saddle-node bifurcation at a = 0.9862400,
where a pair of period-3 stable and unstable periodic orbits are generated. Aj and Ay
are destroyed by a boundary crisis at a = 0.9864085. We will demonstrate later that the
attractor merging crisis (MC) at a = 0.98765 arises from the collision of the two banded
weakly chaotic attractors with the pair of period-3 mediating unstable periodic orbits
created at o = 0.0862400. Right after the attractor merging crisis, the pair of weakly
chaotic attractors lose their asymptotic stability and are converted into a pair of chaotic
saddles in the band regions, as shown in figure 6.1(b). It is worth pointing out that,
although in figure 6.1(a) we plot the surrounding chaotic saddle only inside the periodic
window, it is actually present throughout the whole bifurcation diagram. In the chaotic
regions beyond SNB and MC, the chaotic saddles are embedded in the chaotic attractor
Ay.

6.3 Chaotic Transient

Figure 6.2(a) shows the Poincaré map of the surrounding chaotic saddle SCS (gray)
obtained by the PIM triple algorithms (Nusse and Yorke 1989, Rempel et al. 2004a,b)
in the beginning of the periodic window, superposed by the pair of period-1 periodic
attractors A; and A, (cross) at agnyp = 0.98312. Figures 6.2(b) and 6.2(c) display the
unstable and stable manifolds, respectively, of the surrounding chaotic saddle of figure
6.2(a), found by the sprinkler algorithm (Kantz and Grassberger 1985, Hsu, Ott and
Crebogi 1988, Rempel et al. 2004a,b). Figures 6.1(a) and 6.1(b) show that the chaotic
saddles have gaps which reflect the fractal structure of a chaotic saddle along its unstable
direction. The presence of gaps in the chaotic saddle can be seen in figure 6.2(a). It follows
from figure 6.2 that a chaotic saddle is formed by the intersection of its stable and unstable
manifolds. The empty space between the intersection points along the unstable direction
is the origin of the gaps in the chaotic saddle. Inside the periodic window the gaps of the
chaotic saddle are empty in the sense that they do not contain unstable periodic orbits,
only nonrecurrent points whose orbits converge very quickly to the small neighborhood of
the period-1 attractors (Robert et al. 2000). Figure 6.3 shows examples of the time series
of the trajectory at asyp = 0.98312. For an arbitrary initial condition, the trajectory
stays a finite transient period in the neighborhood of the surrounding chaotic saddle SCS
until it converges to either of the period-1 periodic attractor A (figures 6.3(a) and 6.3(b))
or A, (Bgures 6.3(c) and 6.3(d)) at the time indicated by the arrow, depending on the
initial condition. Thus, inside the periodic window the surrounding chaotic saddle plays

the role of chaotic transient motion before converging to the attractor.
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Figure 6.2: Poincaré maps of chaotic saddle leading to periodic attractor. (a) Poincaré

map of the surrounding chaotic saddle (gray) and the pair of period-1 fixed points {cross). --. ..

A; and A; for a = 0.98312, (b) the unstable manifold (UM) of the surrounding chaotic
saddle, (c) the stable manifold (gray) of the surrounding chaotic saddle.
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Figure 6.3: Time series of chaotic transient leading to periodic attractor.(a) Time series,
i as a function of ¢, of a chaotic transient (SCS) that converges to a periodic time series
of period-1 attractor A; for a = 0.98312 after the time indicated by the arrow; (b) the
same time series of (a) plotted as a function of the driver cycles; (c) time series of a
chaotic transient (SCS) that converges to a periodic time series of period-1 attractor A
for ¢ = 0.98312 after the time indicated by the arrow; (d) the same time series of (c)

plotted as a function of the driver cycles.
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Figure 6.5: Time series of chaotic transient leading to chaotic attractor.(a) Time series,
& as a function of ¢, of a chaotic transient (SCS) that converges to a chaotic time series
of the weak chaotic attractor CA; for a = 0.98765 after the time indicated by the arrow;
(b) the same time series of (a) plotted as a function of the driver cycles; (c) time series
of a chaotic transient (SCS) that converges to a chaotic time series of the weak attractor
CA, for @ = 0.98765 after the time indicated by the arrow; (d) the same time series of (c)

plotted as a function of the driver cycles.
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Figure 6.4(a) shows the Poincaré map of the surrounding chaotic saddle SCS (gray)
obtained at the end of the periodic window, superposed by the pair of weakly chaotic
attractors CA; and CA;, (black) at apc = 0.98765. Figures 6.4(b) and 6.4(c) display the
unstable and stable manifolds, respectively, of the surrounding chaotic saddle of figure
6.4(a). Figure 6.5 shows examples of the time series of the trajectory at ap¢c = 0.98765.
For an arbitrary initial condition, the trajectory stays a finite transient period in the
neighborhood of the surrounding chaotic saddle SCS until it converges to either of the
weakly chaotic attractor CA; (figures 6.5(a) and 6.5(b)) or CA, (figures 6.5(c) and 6.5(d))
at the time indicated by the arrow, depending on the initial condition. This confirms the
results of figures 6.2 and 6.3 that inside the periodic window the surrounding chaotic

saddle plays the role of chaotic transient motion before approaching an attractor.

6.4 Unstable Structures in Type-I Intermittency

Next let’s turn our attention to the role of chaotic saddles in the chaotic regions of
figure 6.1. As shown by chapter 3, the chaotic attractor prior to the onset of the saddle-
node bifurcation, to the left of agys = 0.98312 in figure 6.1, exhibits type-I intermittency
whereby the time series of economic variables switch episodically back and forth between
periods of apparently periodic and bursting chaotic fluctuations, exemplified in figure
6.6(a); the corresponding power spectrum has a. power-law behavior at high-frequencies
as shown in figure 6.6(b), typical of real intermittent financial data.

We saw in figure 6.2(a) that at the onset of saddle-node bifurcation at agyg = 0.98312
there is a surrounding chaotic saddle (SCS) which represents the chaotic transient preced-
ing convergence to the period-1 periodic attractors A; and A,. Note that there are gaps
in the surrounding chaotic saddle in figure 6.2(a). As the system undergoes a transition
from order to chaos via a saddle-node bifurcation, the surrounding chaotic saddle (SCS) is
converted into a chaotic attractor (CA) as shown in the Poincaré map in figure 6.7(a) for
a = 0.98311, where we also plotted the fixed points (cross) of the pair of period-1 unstable
periodic orbits (M) created by the saddle-node bifurcation at asyp = 0.98312. Since the
unstable periodic orbits are robust, all the unstable periodic orbits (with the exception of
M) contained in the surrounding chaotic saddle after the saddle-node bifurcation (figure
6.2(a)) continue to exist in the chaotic region beyond the saddle-node bifurcation (to the
left of agyp). Thus, the surrounding chaotic saddle is embedded in the chaotic attractor
of figure 6.7(a), as shown in figure 6.7(b). An enlargement of the rectangular regions
of figure 6.7(b) is given in figures 6.7(c) and 6.7(d), respectively. Although the pair of
period-1 saddle points (M) appear only after the saddle-node bifurcation, the system
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Figure 6.6: Time series and power spectrum of type-I intermittency.(a) Time series of
type-1 intermittency, ¢ as a function of time ¢, for a = 0.98311; (b) the power spectrum,
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Figure 6.7: Chaotic attractor and chaotic saddle in type-I intermittency.(a) Poincaré map
of the chaotic attractor (CA) for type-I intermittency at a = 0.98311, (b) the surrounding
chaotic saddle (SCS) embedded in the chaotic attractor of (a), (c) and (d) are enlargements
of the two rectangular regions of (b). The cross denotes the pair of period-1 unstable

periodic orbits created at the saddle-node bifurcation a = 0.98312.
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keeps the memory of these saddle points even prior to the occurrence of the saddle-node
bifurcation. When an unstable periodic orbit, from either the surrounding chaotic saddle
or the gap regions in figure 6.7(b), approaches the vicinity of the location of these saddle
points (cross), it is decelerated and spends more time in the regions shown in figures
6.7(c) and 6.7(d). In other words, all orbits of the chaotic attractor mimic (synchronize
with) these period-1 unstable periodic orbits (M) when they come to their neighborhood
(Kaplan 1993). This is the origin of the laminar phases seen in type-I intermittency of fig-
ure 6.6(a), which can also be explained in terms of phase synchronization of the unstable
periodic orbits (Pikovsky et al. 1997, Pazo, Zaks and Kurths 2003, Pikovsky, Rosenblum
and Kurths 2003, ). When a chaotic orbit moves away from the regions shown in figures
6.7(c) and 6.7(d), the orbit becomes desynchronized with respect to the unstable periodic
orbit (M) created by the saddle-node bifurcation, which is manifested by the bursting
phases in type-I intermittency of figure 6.6(a).

6.5 Attractor Merging Crisis

We study next what happens to the chaotic attractors at the end of the periodic
window at apec = 0.98765. Chapter 5 showed that at ap¢ an attractor merging crisis
occﬁrs due to the collision of two coexisting weakly chaotic attractors CA; and CAy with
a pair of mediating unstable periodic orbits of period-3 and their associated manifold,
which coincides with the boundary of the basins of attraction dividing the two weakly
chaotic attractors. As the result of this crisis, two small chaotic attractors combine to
form a single large chaotic attractor to the right of apyc. Figures 6.8(a) and 6.8(b) are
the enlargements, respectively, of the two rectangular regions of figure 6.4(a), showing the
surrounding chaotic saddle SCS (black) and its stable manifold (the gray regions), the
pair of weakly chaotic attractors CA;/CA, (thin line), and the pair of period-3 mediating
saddles (cross). The stable manifold of the mediating saddle is indicated by the dashed
lines which separates the surrounding region occupied by the surrounding chaotic saddle
from the band region occupied by the weakly chaotic attractors. Figure 6.8 reveals that
at the onset of crisis, a chaotic attractor-chaotic saddle collision takes place whereby
the chaotic attractor collides with the stable manifolds of both the mediating period-3

periodic saddle and the surrounding chaotic saddle.

6.6 Unstable Structures in Crisis-Induced Intermittency
As the result of the chaotic attractor-chaotic saddle collision at the onset of the attrac-

tor merging crisis, for a greater than apc, the two banded pre-crisis chaotic attractors
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Figure 6.8: Attractor merging crisis. Chaotic attractor chaotic saddle collision at the
attractor merging crisis for a = 0.98765. (a) Poincar maps of the weak chaotic attractor
WCA, (thin line), the surrounding chaotic saddle SCS (black), the stable manifold of
SCS (gray), the mediating period-3 saddle (cross) and its associated stable manifold
SM (dashed line); (b) Poincar maps of the weak chaotic attractor WCAy (thin line),
the surrounding chaotic saddle SCS (dark line), the stable manifold of SCS (gray), the
mediating period-3 saddle (cross) and its associated stable manifold SM (dashed line).

(a) and (b) correspond to the two rectangular regions indicated in figure 12(a).
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Figure 6.9: Chaotic attractor and chaotic saddle in crisis-induced intermittency.(a)
Poincaré map of the merged chaotic attractor (MCA) at a = 0.9877; (b) and (c) are
enlargements of the two rectangular regions indicated in (a) showing the merged chaotic
attractor (MCA), the period-3 mediating saddle (cross) and its associated stable mani-
fold (SM); (d) Poincar maps of the surrounding chaotic saddle SCS (gray) and the pair
of banded chaotic saddles BCS; and BCS, (black) at a = 0.9877; (e) and (f) are enlarge-
ments of the two rectangular regions indicated in (d) showing the surrounding chaotic
saddle (SCS), the banded chaotic saddles BCS;/BCS,, the period-3 mediating saddle

(cross) and its associated stable manifold (SM).
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CA, and CA, in figure 6.4(a) merge to form a single large chaotic attractor (MCA), as
shown in figure 6.9(a), for a = 0.9877. An enlargement of the two rectangular regions
of figure 6.9(a) in the vicinities of the regions previously occupied by CA; and CA; are
plotted in figures 6.9(b) and 6.9(c), respectively, where we also plotted the saddle points
of the mediating period-3 unstable periodic orbits (cross) and their stable manifold SM
(thin line). The numerically determined surrounding (SCS) and banded (BCS; and BCS,)
chaotic saddles which are embedded in the merged chaotic attractor of figure 6.9(a) are
plotted in figure 6.9(d). An enlargement of the two rectangular regions of figure 6.9(d),
corresponding to the same regions covered by figures 6.9(b) and 6.9(c), is given in figures
6.9(e) and 6.9(f), respectively, where we also plotted the mediating saddle (cross) and
its stable manifold SM (thin line). The stable manifold (SM) of the mediating saddle
divides the merged chaotic attractor into the band region and the surrounding region.
This division can be used to guide the numerical finding of the post-crisis chaotic saddles
in the band and surrounding regions, respectively (Rempel et al. 2004a,b). It is evident
from figure 6.9 that the banded chaotic saddles BCS; and BCS, (black) are located in
the band regions previously occupied by the pre-crisis weakly chaotic attractors, since
they are in fact converted from these two banded chaotic attractors at amc- BCS; and
BCS, are found by a straddle orbit that never leaves the banded regions. Similarly, the
surrounding chaotic saddle SCS (gray) is found by a straddle orbit that never enters the
band regions.

It follows from the previous analysis that two nonattracting sets consisted of the
surrounding chaotic saddle (SCS) and a pair of banded chaotic saddles (BCS,; and BCS;)
are embedded in the post-crisis merged chaotic attractor (MCA), as shown in figure
6.9(d). Actually, the merged chaotic attractor is larger than the union of the surrounding
and banded chaotic saddles, since the gaps in the post-crisis chaotic saddles indicated in
figures 6.9(d), 6.9(e) and 6.9(f) are not empty. They are densely filled by uncountably
many unstable periodic orbits created by an explosion right after the onset of attractor
merging crisis (Szab¢ et al 2000, Robert et al. 2000). This set of unstable periodic
orbits within gaps, called coupling orbits with components in both band and surrounding
regions, are responsible for the coupling between these two regions. Before crisis, for a less
than apc, trajectories on the banded chaotic attractor never abandon the band region.
For a slightly greater than apc a trajectory started in the band region can stay in that
region for a finite duration of time, after which it crosses the stable manifold (SM) and
escapes into the surrounding region. Once inside the surrounding region, the trajectory

moves to the neighborhood of the surrounding chaotic saddle (SCS). After some time,
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Figure 6.10: Coupling unstable periodic orbits. (a) and (b) correspond to the same plots of
figures 17 (e) and (f), respectively, showing the Poincar maps of the surrounding chaotic
saddle SCS (gray) and the pair of banded chaotic saddles BCS; and BCS, (black) at
a = 0.9877, the stable manifold (SM) of the period-3 mediating saddles (not shown), and
the pair of period-13 coupling unstable periodic orbits (cross) located in the gap regions

of the surrounding and banded chaotic saddles.
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Figure 6.11: Time series and power spectrum of crisis-induced intermittency. (a) Time
series of crisis-induced intermittency, & as a function of time t, for a = 0.9877; (b) the

power spectrum, |z|? as a function of the frequency f, of the time series of (a).

the trajectory is injected back to the band region. This.process of switching between the
band and surrounding regions repeats intermittently. Hence, the coupling orbits located
in the gaps of both banded and surrounding chaotic saddles link the trajectory from one
region to the other; in principle, each switching may involve different coupling orbits.
Right after crisis, the coupling orbits created by the explosion have very long period with
the period approaching infinity as a — amc from above (Szabd et al. 2000). In that
case, it is more difficult to numerically find a coupling orbit. However, as the control
parameter o is increased further away from the crisis point aazc, shorter coupling orbits
are created. Figures 6.10(a) and 6.10(b) show a pair of period-13 coupling unstable
periodic orbits numerically found in the same regions of figures 6.9(e) and 6.9(f) using
the Newton algorithm (Curry 1979, Rempel et al. 2004a). Note that in figure 6.10 the
Poincaré points of the coupling unstable periodic orbits are in fact located in the gaps of
both banded and surrounding chaotic saddles.

Figure 6.11(a) shows the time series of crisis-induced intermittency, corresponding to
the same control parameter of figures 6.9 and 6.10. This time series alternates episodically
between the laminar periods associated with the two banded chaotic saddles and the
bursting periods associated with the surrounding chaotic saddle. The transition between
the laminar and bursting periods is linked by the coupling unstable periodic orbits. The
power spectrum corresponding to figure 6.11(a) is given in figure 6.11(b), which exhibits

power-law behavior at high frequencies, typical of real intermittent financial data.

6.7 Concluding Comments
We demonstrated in this chapter that a chaotic economic system is composed of chaotic

saddles and unstable periodic orbits situated within the gaps of chaotic saddles. These
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unstable structures are the origin of intermittency in nonlinear economic models. In
type-I economic intermittency, the laminar phases associated with low-level fluctuations
of economic variables is a result of a phase synchronization of a chaotic orbit with the
unstable periodic orbit created at the saddle-node bifurcation, whereas the bursting phases
related to high-level fluctuations of economic variables is an indication that a chaotic
orbit is far away from the unstable periodic orbit created at the saddle-node bifurcation.
We showed that the attractor merging crisis in complex economic systems is due to a
chaotic attractor-chaotic saddle collision, whereby two weakly chaotic attractors combine
to form a large chaotic attractor. After the crisis, the pair of pre-crisis weakly chaotic
attractors are converted into a pair of banded chaotic saddles. The post-crisis chaotic
attractor is composed of the surrounding chaotic saddle, two banded chaotic saddles
and coupling unstable periodic orbits in the gap regions which act as the link between
the surrounding chaotic saddle and the banded chaotic saddles. In the time series of
crisis-induced intermittency seen in figure 6.11(a), the laminar phases indicate that a
chaotic orbit is in the region of the banded chaotic saddles, whereas the bursting phases
indicate that a chaotic orbit is in the region of the surrounding chaotic saddle; the laminar
and bursting phases are connected by the coupling unstable periodic orbits which have
components in the gap regions of both surrounding chaotic saddle and banded chaotic
saddles. Characteristic intermittency time, which measures the average duration of the
laminar phases of either type-I or crisis-induced economic intermittency, can be calculated
from the numerically simulated time series. This result can be useful for forecasting the

turning point from bust to boom phases in business cycles.
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CHAPTER 7

CONCLUSION

In this thesis, we adopted a forced oscillator model of nonlinear economic cycles as a
prototype to model the fundamental dynamical behaviors of a complex economic system,
which exhibits multistability (coexistence of attractors), multiscale (power-law depen-
dence on frequency), and coexistence of regularity and irregularity (order and chaos).
Tt is important to point out that although we have selected the van der Pol model for
its mathematical simplicity and its wide interest in economics, in view of the universal
mathematical properties of nonlinear dynamical systems, the dynamical characteristics in-
vestigated in this simple model is actually applicable to other more sophisticated economic
scenarios. We succeeded in characterizing the anatomy of a complex economic system by
classifying its structure and dynamics. In terms of the system structure, our analysis
shows that a complex economic system is composed of a hierarchy of stable and unstable
structures, namely, stable and unstable manifolds of a fixed point in the state space and in
the Poincaré section, stable and unstable periodic orbits, stable and unstable manifolds
of a chaotic saddle, stable (periodic) and unstable (chaotic) attractors. In particular,
we showed that unstable periodic orbits are the building blocks of chaotic saddles and
chaotic attractors; moreover, chaotic saddles are embedded in a chaotic attractor and are
responsible for the transient motion preceding the convergence to an attractor (periodic
or chaotic). In terms of the system dynamics our results show that, as the control para-
meters are varied, a complex economic system undergoes a variety of dynamic transitions
which change its stability properties, namely, local bifurcations such as period-doubling
bifurcation, saddle-node bifurcation and Hopf-bifurcation, and global bifurcations such as
boundary crisis, interior crisis and attractor merging crisis.

Economic systems are unstable by nature, dominated by instabilities driven by both
endogenous and exogenous forces. This very unstable nature of economic dynamics is
clearly manifested by the unstable structures, such as unstable periodic orbits and chaotic
saddles, inherent in chaotic economic systems. Recently, there is a surge of interest on the
relevance of these unstable structures in economic dynamics. Lorenz and Nusse (2002)
reconsidered the Goodwin’s nonlinear accelerator model with periodic investment outlays
and used it as an economic example of the emergence of complex motion in nonlinear

dynamical systems. They showed that in addition to chaotic attractors, this model can
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possess coexisting attracting periodic orbits or simple attractors, which imply the emer-
gence of transient chaotic motion (chaotic saddles). They applied straddle methods to
numerically analyze this model in order to detect compact invariant sets which are re-
sponsible for the complexity of the transient motion, and concluded that chaotic saddles
are prevalent in nonlinear economic models. Ishiyama and Saiki (2005) numerically found
many unstable periodic orbits embedded in a chaotic attractor in a Keynes-Goodwin type
of macroeconomic growth cycle model of two countries with different fiscal policies. These
unstable periodic orbits not only look similar in shape to the chaotic attractor, there is a
correspondence between the unstable periodic orbits and the chaotic attractor in terms of
their statistical properties such as means, variances, Lyapunov exponents and probability
density functions. Each value related to labor share rates, employment ratios, expected
inflation rates and the instability of the chaotic attractor is almost the same as those of
the unstable periodic orbits. Their results indicate that both statistical and dynamical
features of a chaotic attractor in complex economic systems are captured by just a few
unstable periodic orbits, in agreement with the periodic orbit theory of dynamical systems
of Auerbach et al. (1987) and Cvitanovic (1988). This thesis renders strong support for
the conclusions, that unstable periodic orbits and chaotic saddles are essential elements
of complex economic systems, of Lorenz and Nusse (2002) and Ishiyama and Saiki (2005).

We demonstrated that intermittency is an intrinsic behavior of a chaotic economic
system by analyzing in detail two examples of economic intermittency due to a local or
a global bifurcation, namely, type-I intermittency and crisis-induced intermittency, re-
spectively. The former is generated by a saddle-node bifurcation, the latter is generated
by a crisis phenomenon such as the attractor merging crisis. In type-I intermittency, an
economic system is capable of keeping the memory of its ordered dynamics before the
transition to chaos; the time series of economic variables alternates between periods of
seemingly periodic and chaotic fluctuations. In crisis-induced intermittency, an economic
system is able to maintain the memory of its weakly chaotic dynamics before the tran-
sition to strong chaos; the time series of economic variables alternates between periods
of weakly and strongly chaotic fluctuations. These two examples of chaos-driven inter-
mittency can reproduce a number of patterns, namely, persistence, recurrence, memory,
regime switching and volatility clustering, which are present in the intermittent time series
observed in business cycles and financial markets (Diebold and Rudebusch 1999). The
robustness of the unstable periodic orbits which form the skeleton of chaotic attractors
and chaotic saddles can explain persistence, recurrence and memory patterns in business

and financial cycles. The episodic switching between different dynamic states of an inter-
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mittent chaotic system can explain regime switching observed in economic and financial
time series. The phase synchronization of unstable periodic orbits can be responsible
for the spikes in the turbulent bursts as well as the quiescent phases in the time series,
thus providing an explanation for the volatility clustering in financial data. Hence, the
techniques developed in this paper for characterizing the complex dynamics of economic
systems can become powerful tools for pattern recognition and forecasting of business
and financial cycles. For example, the anticipation of the turning points is fundamental
for forecasting business-cycle recessions and recoveries for countries showing asymmetric
cycle durations (Garcia-Ferrer and Queralt 1998). Modeling of intermittency in nonlinear
economic cycles can provide an estimate of the average duration of the contractionary
phases of economic cycles and predict the turning points to expansionary phases. The
classical NBER model of leading economic indicators was built solely within a linear
framework which is inadequate for predicting the complex behavior of business cycles. By
combining the complex system approach (such as chaotic theory developed in this paper)
and the intelligent system approach (such as neural network), a superior performance for
forecasting business cycle can be obtained relative to the classical model (Jagric 2003).
The techniques developed in this thesis can be readily applied to the study of chaos
and complexity in management systems such as logistics and supply chain management
(Mosekilde and Larsen 1988, Sosnovtseva and Mosekilde 1997), organizational dynamics
and strategic management (Senge 1990, Stacey 2000), public policy and public admin-
istration (Kiel 1994). In fact, economic dynamics is a result of complex interactions of
economical, political, social, climate, environmental and technological systems. For exam-
ple, Berry (2000) performed an eigenanalysis of macroeconomic rhythms in the inflation
rate and the rate of economic growth for the United States from 1790 to 1995, and ob-
tained strong evidence of mode-locking of (Kondratieff) long waves by geophysical cycles;
he suggested that a geophysical pacemaker may control the periodic appearance of long-
wave crises, which leads to the clustering of innovations that drive successive surge of
technological change. Nonlinear models of solar cycles, climate, and ecological systems
indicate that theses natural systems exhibit chaotic behaviors. Chian et al. (2003) showed
that the dynamical systems approach is a powerful tool to model the complex dynamics
of space environment and the solar-terrestrial relation which have great impact on the
climate, technology and environment. Sandor, Walsh and Marques (2002) discussed the
rationale and objectives for pilot greenhouse-gas-trading markets, such as the Chicago
Climate Exchange, now under development around the world; these markets represent an

initial step in resolving a fundamental problem in defining and implementing appropriate
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policy actions to address climate change. Numerical modeling based on complex systems
approach may be useful for the development of these emissions-trading markets, by as-
sisting the society to understand better the complex coupled energy-climate-environment
system and assist the policymakers to identify and implement optimal policies for man-
aging the risks related to climate change.

The sensitive dependence of a dynamical system on small variations of its parameters
can be used to control the chaotic behavior of a system by applying a small perturbation
(Ott, Grebogi and Yorke 1990), which can be useful for stabilizing economic systems and
optimizing management policies. This idea is based on the fact that a chaotic attractor
has embedded in it an infinite number of unstable periodic orbits, which provides the
flexibility to choose the most desirable periodic orbit whereby a chaotic system can be
stabilized by introducing a small perturbation to convert it from an unstable periodic orbit
to a stable periodic orbit. Lai and Grebogi (1994) showed that chaotic transient can be
converted into sustained chaos by feedback control. There is evidence of chaos control in
laboratory and numerical experiments. For example, Schief et al. (1994) applied the chaos
method to control the brain dynamics and succeeded to increase the periodicity of the in
vitro neuronal population behavior and showed that the neuronal systems can be made
less periodic by applying chaos anticontrol techniques. Lopes and Chian (1996) showed
that chaos in a coupled three-wave system, resulting from period-doubling bifurcations
and type-I intermittency, can be controlled by applying a small wave with appropriate
amplitude and phase. Kopel (1997) used a model of evolutionary market to show how
firms can improve their performance in terms of profits if the decision makers of the firms
apply the targeting method to switch from a chaotic evolution to a desired regular path.
Kaas (1998) used the chaos control technique to show that the government can in prin-
ciple stabilize an unstable Walrasian equilibrium in a short time by varying income tax
rates or government expenditures. Rosser (2001) suggested that chaotic dynamics may
actually be a desirable outcome for the sustainability of global complex ecologic-economic
systems affected by climate change, as long as the policy agents are able to implement en-
vironmental policies that keep the system dynamics within sustainable levels by directing
the management efforts at the appropriate levels of ecologic-economic interactions.

In this thesis, we only considered economic systems which are of low-dimension and
varying only in time, described by ordinary differential equations. In many areas of
economics and management, we must deal with dynamical systems which are of high-
dimension and varying both in space and time. For example, in a study of fishery man-

agement of a lake district, Carpenter and Brock (2004) concluded that because of the
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complex interactions of mobile people and multistable ecosystems, optimal policies and
management regimes will be highly heterogeneous in space and fluid in time. Some recent
papers have demonstrated that nonlinear phenomena such as chaotic saddles, crisis, type-
[ intermittency and crisis-induced intermittency, observed in low-dimensional dynamical
systems appear also in high-dimensional spatiotemporal dynamical systems (Chian et al.
2002, 2003, He and Chian 2003, 2004, Rempel et al. 2004b, Rempel and Chian 2005).
Hence, the techniques developed in this thesis can be used to model complex spatiotem-
poral economical and managerial systems described by partial differential equations.

In this thesis, we have only focused on the deterministic characteristics of an economic
system. Note, however, that uncertainty always plays a role in economy, therefore a real
economic system consists of both deterministic and stochastic dynamics (Hommes 2004).
Barnett and Serletis (2000) reviewed the literature on the efficient markets hypothesis
and chaos, and contrasted the martingale behavior of asset prices to nonlinear chaotic
dynamics; in addition, they discussed the difficulty of distinguishing between probabilistic
and deterministic behaviors in asset prices. Dhamala, Lai and Kostelich (2000) developed
strategies to detect unstable periodic orbits from transient chaotic time series, in the
presence and in the absence of noise, by examining recurrence times of trajectories in the
vector space reconstructed from an ensemble of such time series, which can be useful for
extracting unstable periodic orbits in intermittent economic and financial data. Small and
Tse (2003) addressed the question of how to detect determinism in financial time series
by examining daily returns from three financial indicators: the Dow Jones Industrial
Average, the London gold fixings, and the U.S. dollar to Japenese Yen exchange rates;
for each data set they applied surrogate data methods and nonlinearity tests to quantify
determinism over a range of time scales, and found that all three time series are distinct
from linear noise or conditional heteroskedastic models; they concluded that there exists
detectable deterministic nonlinearity in real financial time series that can potentially be
exploited for forecasting of financial markets.

In conclusion, characterization of nonlinear dynamical properties of economical time
series obtained via numerical modeling may be the first step to understand the complex
behavior of economic systems. Many of the traditional techniques being used by econo-
mists for modeling economic dynamics are based on linear approaches which are only valid
near the equilibrium, and many of the tools being used by the investment professionals
are based on the assumption that the asset returns have Gaussian distribution. In reality,
the economic dynamics is often highly nonlinear and far away from the equilibrium, and

the asset returns are usually intermittent with typically non-Gaussian distributions. The
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application of the complex system approach developed in this paper to economic modeling
and forecasting can improve decision making and policy planning, with positive impacts

to the management of economic systems.
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