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ABSTRACT

Characterization of the complex dynamics of econornic cycJ.es, by identifying regular

and irregular patterns and regime switching between different dynamic phases in the

economic time series, is the ì<ey to improve economic forecasting. Statistical analysis of

stock markets and foreign exchange markets have demonstrated the intermittent nature of

nonlinear economic time series, which exhibits non-Gaussian behavior in the probability

distribution fi-rnction of price changes and power-law dependence on frequency in the

spectral density. Nonlinear deterministic models of economic dynamics are capable of

sirnr-rlating intermittent time series arising from a transition from order to chaos, or from

weak chaos to strong chaos, which can explain the origin and nature of intermittency

observecl in economic systems.

This tb.esis studies complex economic dynamics based on a forced van der Pol os-

cillator moclel of business cycles. This model can be derived from Kaldor's nonlinear

investment-savings functions as well as Goodwin's nonlinear accelerator-multiplier with

laggecl investment or-rtlays. The techniqr-re of numerical modeling is applied to characterize

the f¡ndamental properties of complex economic systems which present multiscale and

multistability behaviors, as weil as coexistence of order and chaos. In particuiar, we focus

on th.e clynamics and structure of unstable periodic orbits and chaotic saddles within a

perioclic winclow of tire bifurcation cliagram, at the onset of a saddle-node bifurcation and

at the onset of an attractor merging crisis, as well as in the chaotic regions associated

with type-I intermittency and crisis-induced intermittency, in nonlinear economic cycles.

Insid.e a periodic window, chaotic saddles are responsible for the translent motion preced-

ing convergence to a periodic attractor or a chaotic attractor. The links between chaotic

saddles, crrsis and intermittency in complex economic dynamics are discussed. We show

that a chaotic attractor is composed of chaotic saddles and unstable periodic orbits lo-

catecl in the gap regions of chaotic saclcll.es. Both type-I intermittency and crisis-induced

intermittency are the resnlts of the occlrrrence of explosion following the onset of a local

or a global bifurcation, respectively, whereby the gap regions of chaotic saddles are filled

by coupling r-rnstable periodic orbits.

Nonlinear modeling of economic chaotic saddle, crisis and intermittency can improve

our understanding of tìre clynamics of economic intermittency observed in business cycles

and financial markets. In view of the universal mathematical natttre of chaotic systems,

the results obtained from our simple prototype model of economic dynamics can in fact be

appliecl to more complicated economic scenarios, inclr,rding nonlinear spatiotemporal eco-

vll



nomic systems. Charactenzation of the complex dynamics of economic systems provides

an efficient gr-ride for pattern recognition and forecasting the turning points of business

and financial cycles, as welL as for optimization of management strategy and decision

technology.
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CHAPTER 1

INTRODUCTION

Economic systems exhibit r.rbiquitor-rs complex dynamics evidenced by large-amplitude and

aperiodic fluctuations in economic variables such as foreign exchange rates, gross domes-

tic product, interest rates, production, stock market prices and unemployment (Hommes

2004). Traditionally, economists have studied economic dynamics using the Newtonian

approach by treating the economic fluctuations as linear perturbations near the equi-

librium (Scarth 19g6, Gandolfo 1g97, Shone 2002). The linear approach is valid only

for small-amplitr-rde fl¡ctuations and cannot describe the complex characteristics of large-

amplitucle and aperiodic economic fluctuations. Large-amplitude fluctuations in economic

and financial systems are inc-lications that these systems are driven far away from the equi-

librium whereby the nonlinearity dominates the system behavior; aperiodic economic and

financial fluctuations are manifestations of chaos which is intrinsic in a complex system.

Hence, a non-Newtonian approach based on nonlinear dynamics is required to ltnderstand

the nature of complex economic dynamics'

In recent years) there is a growing interest in a.pplying nonlinear dynamics to eco-

nomic mocleling. For example, Chiarella (1988) introduced a general nonlinear supply

function into the traclitionaL cobweb moclel under adaptive expectations, and showed that

in its locally unstable region it contains a regime of period-clor-rbling followed by a chaotic

regime. Pr-u-r (1991) stucliecl the nonlinear dynamics of two competing firms in a mar-

het in terms of Cournot's duopoly theory; by assuming iso-elastj'c demand and constant

unit production costs this moclel shows persistent periodic and chaotic motions' Keen

(1ggb) introduced a real financial sector and two stylized facts into Goodwin's growth

cycle moclei; tire resr-rlting nonlinear system is able to model the complex behavior of

IVlinsky,s financial instability hypothesis, with the transition from stability to instability

and possible breakdown cleter.minecl by the level of economic ineqr.rality, interest rate and

debt. Scarth (1996) derivecl a nonlinear standard aggregate demand and supply model

of a cLosed economy consisting of IS, LIVI, and Phillips curve relationships, described by

the logistic function which aclmits chaotrc cycles for a range of control parameters; this

model inclicates that the standard practice of linear approximations in macroeconomics

is a clefinite limitation. Brock and Hommes (1997) applied the concept of adaptively

rational eqr-rilibrium to a cobweb type clemand-supply model where agents can choose

between rational and rraive expectations, which. shows that in an unstable marl<et with
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positive information costs fbr rational expectations, a high intensity of choice to switch

preclictors leads to highly irregular eqr-rilibrir-rm prices converging to complex dynamics

sucrr as a strange attractor. Rosser (2001) showed that in an integrated global ecologic-

economic system a variety of chaotic and catastrophic patterns appear in the models of

global warming dynamics and fishery dynamics, which complicate global policy making

efforts. Hr-rghston and Rafailidis (2005) applied a chaotic approach to develop dynamical

models for interest rates and foreign exchange; they used the wiener chaos expansion

techniqr,re to formu.late a systematic anaiysis of the structure and classification of these

financial moclels. iVlany m-ore examples of nonlinear economical modeling can be found in

tlre books on complex economic clynamics (Pr,ru 1989, chiarella 1990, zhang 1990, Brock,

Hsielr and LeBaron 1991, Rosser 1991, Benirabìb 1992, Medio 1992, Lorenz 1993, Day

1994, 2000, Thomas, Reitz and Samanidor"r 2005)'

one of the main signatures of compiex systems is intermittency, which is characterized

by abrr-rpt changes of the system activity with alternating periods of quiescent low-Ìevel

fluctuations and br-rrsting high-level fluctuations. Temporal intermittency and spatiotem-

poral intermittent turbulence ale pervasive in nature and society, e'g', the flow of cars in a

heavy trafÊc in the cities, the floocls ancl clrar-rgh.ts of rivers such as the Nile, the fluid tur-

ltulence in atmosphere ancl ocean) and the sr-inspot cycles (vassilicos i995)' Intermittencv

exhibits muLtiscale behavior (power-iaw clependence on frequency/wavenumber) ancl non-

Ga*ssian statistics (heavy-tail probabiiity distribr-rtion function of fluctuations), involving

information transfer between different scales. There is evidence that intermittency is also

a funclamental feature of complex economic and flnanciai systems' For example, Müller

et al. (1990) presented a statistical analysis of four foreign exchange spot rates against

ttre U.S. clollar; they for,rncl that the mean absolute changes of logarithmic prices follow

a scaling law against the interval on which they are measured and there is a net flow

of information from long to short timescales, which implies that the behavior of long-

term traders (who watch the markets only from time to time) influences the behavior of

short-term traclers (who watch the markets continuously). Mantegna and Stanley (1995)

showed that the scaling of the probabitity clistributions of tlie Standard & Poor 500 index

can be clescribec,l by a non-Gaussian process with clynamics that, for the centrai part of

the distribution, corresponcls to that preclicted for a Lévy stable plocess' Ghashghaie

et al. (1996) reported an analogy between the information cascade in foreign exchange

market and the enelgy cascacle in hydrod,ynamic turbulence, and concluded that the in-

termittent behavior of turltulent flows, with typical occurrence of laminar periods which

ar.e interrupted by turbulent bursts, corresponds to clusters of high and low volatilitv in

2



the foreign exchange markets, which gives rise to relativeiy high values of the probability

cìensities of price changes both in the center and tire tails. Krawiecki, Holyst and Helbing

(2002) considerecl a model of financial markets consisting of many interacting agents, and

obtained time series of price returns showing chaotic bursts resulting from the emelgence

of attractor bubbling or on-off intermittency, resembling the empirical financial time series

with volatility clustering; the probability clistributions of returns exhibit power-law tails'

vlattecli et al. (2004) stuclied the financial risk of the aelospace sector and developed a

new index for this sector basecl on the New York exchange and the Over the Counter

markets; they sh.owecl that the statisticai characteristics of this index is more volatile but

less intermittent than other traditionai market indicators such as the Dow-Jones indus-

trial index ancl the Standarci & Poor 500 index, which suggests that the existence of long

memory correlations impacting the volatility clr-rstering patterns of this index'

Chaotic systems are lçnown to describe various types of intermittency, which occllr

whenever the behavior of a system seems to switch back and forth between two (or more)

qr-ralitatively clifferent behaviors even though all the control parameters are kept constant

and no noise is present (Hilborn 1994). The intermittent route to chaos was first dis-

coverecl by Manneville ancl Pomeau (1979); they i<lentified three types of intermittencv

whereby the system seems to switch between periodic/quasiperiodic behavior and chaotic

behavior clue to a transition from orcler to chaos via a local bifurcation such as sadclle-node

(tangent) bifr,rrcation, Hopf bifurcation or periocl-doubling bifurcation' Another chaotic

scenario that leads to intermittency occrus when the system undergoes a global biftirca-

tion kDown as crisis (Grebogi, ott ancl York 1983) whereby a chaotic attractor in the state

space sr,rdclenly changes in size (interior crisis), clisappears (boundary crisis), ot tvro or

rnore chaotic attractors merge to form alarge chaotic attractor (attractor merging crisis);

in crisis-incluced intermittency the systems switch between weakly chaotic and strongly

chaotic behaviors (Grebogi, ott and Romeiras 1987). There are many examples of exper-

imental observations of chaos-clriven intermittency' For example' Hayashi' Ishizr-rka and

Hirakawa (1983) observecl a transition from order to chaos via type-I Pomeau-Manneville

intermittency in the onchiclium pacemaker neLrron. Ditto et al' (i989) observed crisis-

induced interrnittency in a magnetoelastic ribbon experiment.

stable and unstable periodic orbits are the basic elements of complex dynamical sys-

tems, and are the key to explain the origin and nature qf chaos-driven intermittencv' A

complex system consists of orcler and' chaos; orcler is governed by stable periodic orbits'

whereas chaos is governecl ìly unstable periodic orbits. In particular, unstable periodic

orbits are the skeleton of chaotic attractors and chaotic saddles (Auerbach et al' 1987,

.)
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Cvitanovic 1988, Hilborn 1994). Chaotic saddles are non-attracting chaotic sets which- are

responsible for cb.aotic transients (Grebogi, Ott and Yorke 1983, Kantz and Grassberger

1985), and are the backbones of chaotic attractors (Szabó and Té1, 7994a, 1994b). In

acldition, chaotic sacldles are responsible for intermittency in the chaotic regions outside

a perioclic winclow (Szabó et al. 2000), €.g., beyond a saddle-nocle bifr-rrcation (type-I

intermittency) and beyoncl an interior crisis (crisis-induced intermittency). There is ex-

perimental eviclence of unstable periodic orbits, chaotic transients and chaotic saddles.

For example, Schief et al. (1g94) detected the presence of unstable fixed-point behavior in

a spontaneor-isly bursting neuronal. network in vitro and demonstrated that chaos in brain

clynamics can be controllecl ancl anticontrolled by changing the stability properties of the

unstable fixed point. Jánosi, Flepp and Tél (1994) reconstructed the chaotic transient

behavior of a laser basecl on a long time series in a laboratory experlment; they showed

that the motion on the chaotic transient is more unstable than on the coexisting chaotic

attractor. Faisst and Eckharclt (2003) identified a family of unstable traveling waves)

originating from saddle-node bifu.rcations, in a numerical experiment for flow through a

pipe; these unstable structures provide a skeleton for the formation of a chaotic saddle

that can explain the intermittent transition to turbulence and the sensitive dependence

on initial conditions in this flow.

Chaotic transients ancl ciraotic sacldles are fundamental to the understanding of com-

plex economic clynamics. Lorenz (1993) observed chaotic transient motion in a Kaldorian

moclel of business cycles. Lorenz and Nusse (2002) demonstrated the potential relevance

of chaotic saddles in the Goodwin's nonÌinear accelerator model of business cycles. Apart

from the works by Lorenz (1993) ancl Lorenz and Nusse (2002), most economic literature

ancl books on complex economic clynamics (Pr-ru 1989, Chiareila 1990, Zhang 1990, Ben-

habib 1992, Brock, Hsieh ancl LeBaron 1991, Rosser 1991, Medio 1992, Day 1994, 2000,

Thomas, Reitz ancl Samaniclo¡ 2005) have only dealt with chaotic attractors, paying no

attention to chaotic transients and chaotic saddles'

In Chapter 2, af'orcecl van cler Pol oscillator model of economic cycles is formulated

as the prototype model to clescribe the complex economic dynamics. The fundamental

properties of nonlinear dynamics of economic cycles are studied, including discussions on

order and chaos, poincaré map, bifr-rrcation cliagram and periodic window, multistablilty

and basins of attraction, unstable periodic orbit and chaotic attractor.

in Cirapter 3, based on nnmerical simuiations of the fbrced oscillator model of non-

lineal economic cycles, it rs shown that after an econo[l.ic system undergoes a dynamical

transition from an orderecl to a chaotic state, the system maintains its memory before the

4



transition and the economic variables switch alternativeiy between periods of quiescent

and bursting flr,rctuations. This type-I economic intermittency arises from a local' biftrrca-

tion known as the saddle-nocle bifurcation. An economic path evoives from a periodic to

an aperiod.ic pattern when the exogenous forcing amplitude passes a critical value whereby

the system loses its stability clue to a saddle-node bifurcation. The power spectrum of

the type-I intermittent time series is broadband and displays power-Law behavior at irigh

fi.eqr-iencies, similar to the real clata of foreign exchange and stock markets' Th'e char-

acteristic intermittency time, measuring the average duration of quiescent periods in the

intermittent economic time series, is a fr,rnction of the exogenous forcing amplitr-rcle' The

scaling law of the characteristic intermittency time is useful for forecasting the tnrning

points of noniinear economic cycles'

In Chapte r 4, a new type of crisis-induced intermittency in nonlinear economic cycles

is discrissed. It is shown tha,t after an economic system undergoes a global bifurcation

known as attractor merging crisis, the system has the ability to keep the memory of its

weakly chaotic state befole crisis. As the result, the economic variables switch alterna-

tively between periods of rveakly and strongly chaotic fluctuations. Similar to the tvpe-I

economic intermittency, the power spectrum of the time series of the crisis-induced eco-

norlic intermittency i5 broaclband and presents power-law behavior at high frequencies,

typical of volatile financiai markets. As the system moves away from the crisis point' it

becomes more chaotic, consequently the cliscrete spikes of the powel spectrum become

Icss eviclent clue to increasing multiscale information transfer in the complex economic

systems. The exponent of the scaling law of the characteristic intermittency time of the

crisis-induced economic intermittency is much Larger than that of the type-I economic

intermittencY.

In Chapter b, an attractor merging crisis in chaotic economic cycles is characterized'

It is shown that the van cler Pol model of econornic cycles is invariant under the flip

operation. symmetry is a common property of compiex systems that exhibit attractor

merging crisis. The analysis is performecl in a complex region within a periodic window

of the bifurcation diagram determined from the numerical solutions of a forced oscillator,

where a sacldle-node bifulcation marks the beginning of the periodic window' As the

exogenous forcing amplitr-rcle increases after the saddle-node bifurcation, two coexisting

periodic attractors of periocl-1 ttndergo a cascade of period-doubling bifurcations leading

to two weakly chaotic attr.actors. An attractor merging crisis occurs when two coexisting

weakly chaotic attractors melge to form a single strongly chaotic attractor, which marks

the end of the periodic winclow. The onset of attractor merging crisis is due to the head-on

5



collision of the pair of coexisting weakly chaotic attractors, respectively, with a pair of

nediating unstable perioclic orbits of period-3 and their associated stable manifolds. In

additton, it is demonstrated that the two coexisting weakly chaotic attractors also collicle

with the bolndary of the basins of attraction that separates the two weakly chaotic

attractors.

The aim of Cirapter 6 is to perf'orm an in-depth study of unstable periodic orbits and

chaotic sacldLes in complex economic dynamics. In particular, the roles of unstable periodic

orbits ancl chaotic saddles in crisis and intermittency in complex economic systems are

investigated. The techniqr-re of numerical modeling is applied to characterize the dynamics

and structure of unstabie periodic orbits and chaotic saddLes within a periodic window

of tÌre bifi-rrcation diagram, at the onset of a saddle-node bifurcation and of an attractor

merging crisis, as well as in type-I intermittency and crisis-induced intermittency, of a

forced osciliator model of economic cycles. The links between chaotic saddles, crisis and

intermittency in complex economic dynamics are analyzed.

The conclusion is given in Chapter 7.
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CHAPTER 2

NONLINEAR DYNAMICS OF ECONOMIC CYCLES

Complex dylamics of economic systems can be studied by applying the concepts and tech-

niqr.res of nonlinear dynamics and chaos. Some models of business cycles, such as Kaldor's

nonlinear investment-savings functions and Gooclwin's nonlinear accelerator-multiplier,

can be reduced to the van cler Pol eqr-ration which describes relaxation oscillations. By

introc-lucing an exogenolrs driver, the forced van der Pol equation can be adopted as a

prototype model for complex economic dynamics. Numerical solutions of this model can

elucidate the fundamental properties of complex economic systems which exhibit a weaLth

of nonlinear behaviors sucir as multistability as well as coexistence of order and chaos.

Unstable perioclic orbits are the sl<eleton of chaotic attractors in complex economic sys-

tems

2.I Empirical evidence of nonlinearity and chaos in economic data

Recently, there is a groling interest in nonlinear dynamics and chaos in economics. Ac-

tual economic time series ale rareì.y characterized by regular (periodic, sinr-rsoidal) dynam-

ics typical of iinear systens. Instead, various types of irreguiar (aperioclic, non-sinusoidal)

forms of large-amplitude fluctuations in economic time series are often observed, which

cannot be adeqr-rately explainecl by linear analysis. The significant fluctttations inclicated

by ¡rany economic variables lelative to their mean values suggest that most economic

systems are far away from the eqr-rilibriLrm, i.e., inherently nonlinear.

Chaotic motions can arise in nonÌinear economic systems if the time series is aperiodic

and displays sensitive depenclence on initial conditions (Puu 1989, Lorenz 1993). Empir-

ical evidence of compiex behaviors of nonlinear deterministic systems can be obtained by

calcr-rlating statistical quantities such as Lyapunov exponents, entropies, fractal dimen-

sions, ancl correlation dimensions. These qr-rantitative measures of chaos are defined for

infiniteiy large data sets. In practice, a large amount of data points are often unavail-

able in macroeconomic time series. In contrast to the laboratory experiments where a

large amount of clata points can easily be obtained, most economic time series consists of

monthly, quarterly, or annual clata, with the exception of some financial data with daily

or weekly time series. This imposes severe limitation on the accluacy of nonlinear analysis

of economic data. In view of this limitation, additional tests are desirable.

Brock (1986) performecl a test for chaos in detrended quarterly US real GNP data fiom

7



7947 to 1985 by calculating the correlation climension and the largest Lyapunov exponent

ancl applying an adclitional residual test, ancl concLuded that chaos should be excluded in

the GNP clata. Barnett and Ciren (1938) examined several monetary aggregates and found

positive values for the largest Lyapunov exponents in some of their data, which provides

evidence of chaos. Frank, Gencay and stengos (19SS) applied the shuffie test proposed

by Scheinkman and LeBaron (1989) to German, Italian, and u. K' GNP data, and ruled

out the presence of chaos in their GNP data, br-rt found evidence of nonlinearitv' sayers

(19S9) caLculatecl the correlation dimension and the Lyapr-rnov exponents and applied the

aclditional resicluai test to U. S. business cycles, including GNP, pig-iron prodr-rction, and

unemployment rates, ancl clicl not find the presence of chaos but obtained evidence of

nonlinear structures. Further literature survey on empirical evidence of nonlinearity and

chaos in economicai data will be given in the remaining chapters of this thesis'

2.2Modelingnonlinearityandchaosineconomicdynamics

Nonlinear clynanics moclels are useful to explain irregular, large-amplitude, fluctua-

tions that appear in complex economic systems (Hommes 2004)' The complex behaviors

of nonlinear economic systems restrict the use of purely analytical methods to investigate

nonlinear economic moclels. In general, numerical simulations provide the most efficient

r,vay to delive information from nonlinear economic models' In contrast to nonlinear

analysis of economic data which are restricted by the small sample size as well as noise'

numerical modeling of econorrric systems can provide the large sample size required to

characterize chaotic behaviors, and determine the dynamical behaviors of economic sys-

tems in the absence and in the plesence of noise' Economic models can be formulated by

either discrete-time or continuous-time approaches (Puu 1989, Lorenz 1993)'

since the outset (samr-relson 1939, Hicks 1950), business cycle models have most fre-

quently been fbrmulated in discrete time, as difference equations or iterated maps such

as the ì.ogistic map (Scarth 1996). The main leason for taking the discrete-time approach

is the relative faciiity to handle these moclels, without the need of heavy computation'

For example, stutzer (1980) characterized the qualitative dynamics of a discrete-time

version of a nonlineal lTlacroeconomic model, which shows complex periodic and random

aperiodic orbit structures. Nusse and Hommes (1990) considered a discrete modified

Samuelson model of nonlinear multiplier-accelerator and showed that period-doubling bi-

fr-rrcation and period-halving bifurcation leading to chaos can occur; the chaos disappears

when the accelerator is increased. Day and Paviov (2002) developed a variation of Good-

win,s graphical model to explain the rucliments of Keynesian real/monetarv cycle theory,

8



which possesses nonlinear clynamical properties of irregula ) asymmetric fluctuations. Xu

et al. (2002) str-rcliecl the Kalclorian business cycle model in two-dimensional discrete form

and introducecl an approach to detect cyclical patterns (unstable periodic orbits) embed-

decl in chaotic economic data and make use of the detected patterns to estimate the trends

of periodic-like motions in a chaotic evolution of economic systems'

A iarge number of nonlinear business cycle models are formulated in continuous time

basetl on either orclinary or partial differential equations. New econometric techniqr-res

emerged recently that permit a clirect empirical testing of continuous-time economic mod-

els. In this thesis, the continuous-time approach will be adopted. Goodwin (1951) was

one of the first Keynesian economists to introduce a nonlinear continuous-time dynam-

ical model with locally r-rnstable steacly states ancl stable limit cycles to account for the

persistence of business cycles. Rasmussen, Mosekilde, and sterman (1985) found bifurca-

tions ancl chaotic behavior in a continuous-time model of the economic long wave which

explains the Konclratieff economic cycle in terms of subseqr-rent expansions and contrac-

tions of the capital goods sector of an industrialized economy as it adjusts to the reqr'rired

prodr-rction capacity. Lorenz (19S7a) studied a continuous-time model of three cor-r'pled

sectors of Kaldor-type br-rsiness cycles, and showed that if the sectors are linked by invest-

ment clemancl interdepenclencies this cor-rplìng can be interpreted as a perturbation of a

'rotion 
on a three-dimensional torus; chaotic fluctuations appear in this model' Sasakura

(1ggb) investigated political business cycles in two clifferent forced oscillator moclels of the

Dr-rffin-type and van de Pol-type, respectively, by incorporating autonomous investm'ent

ancl Kaldor-type incluced investment fïrnction; in both cases ciraotic fluctuations emerge

even when the politically motivated fiscal forcing is wea,k. Additional literature survey on

nonlinear economic models will be discussecl in the remaining chapters of this thesis.

2-B Van der Pol model of nonlinear business cycles: Kaldor's nonlinear

investment-savings functions

Inspired by Keyne's income theory ancl Kalecki's model of investment (Kalecki, 1937),

Kaldor (1940) formulated the flrst nonlinear model of endogenous business cvcles by

considering the interactions between the investment 1(Y) and the savings ,S(Y) functions

(where y denotes income) and the existence conditions for self-sustaining limit cvcles. By

noting that the linear forms of 1(Y) and s(Y) fail to produce cyclical motions, Kaldor

proposed a s-shaped (sigmoid) nonlinear form for 1(Y) and a mirror-imaged s-shaped

nonlinear form for S(y) (Gabisch. ancl Lorenz 1989), which yields the oscillatory motion

of business cycles. Chang ancl Smyth (1971) reformuLated Kaldor's model of business

I



cycles, given by the followtng cor"rpled dynamical equations:

Y : a(I(Y, K) - S(Y, K)), Q.r)

K: I(Y,K), (22)

where the dot denotes the time derivative (dldt), K denotes capital stock and o is an

acljustment coefficient; with the assumptions of -I¡¡ ( 0, ,56 > 0, and ASIAK <0.

We will show next that eqr-rations (2. I)-(2.2) can be reduced to a generalized Liénard-

van der Pol eqtiation. Differentiating equation (2.1) with respect to time gives

Y : a(IvY + IKk - svY - sxK) (2 3)

A substittttion of eqr,ration (2.2) into equation (2.3) yields

Y - a(Iy - So)Y -a(Ix - SK)I(Y,K):0 (2'4)

Eqr-ration (2.4) cannot be written immediately in the form of a Liénard equation be-

ca1tse capital stock K still appears as a second variable. In order to transform it into

a Liénard equation, aclditional assumptions must be made (Gabisch and Lorenz 7989,

Lorenz 1993). First, let us assume that investment and savings are independent of capital

stock K) I:1(1') and S: ^9(y), br-rt the actual change in capital stock is determined

by savings, K : ^9. Following the procednre proposed by lch.imr-rra (1955), eqr,ration (2.4)

becomes

Y - a(Iy - Sn)i - alas(Y) : 0, (25)

which reduces to the genelalized Liénard equation found in physical systems

ù + A(r)r * B(r) : g, (2'6)

wlrich describes the dynamics of a spring mass system with A(r)r as a damping factor and

B(ø) as the spring force. Note that there are alternative ways of transforming equations

(2.I)-(2.2) into eqr-ration (2.6) (Galeoti and Gori 1990, Lorenz 1993).

By postulating symmetric shapes of the investment and savings functions, and a par-

abolic functional form for the difference ,9y - Iv, namely,

A(r) : a(Sv - Iv) : u(r' - 7), (2.7)

and

B(r) : r, (2 8)

eqr-iation (2.5) can be rewritten as

ù-lp,(r2-7)ùlr:0, (29)
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wh.ich is known as th.e Van cler Pol equation originaily derived by Van der Pol and Van

der Vlark (1923) to describe relaxation oscrllations in an electrical circuit model of the

heartbeat, and can serve as a prototype continuous-time model of complex economic

dynamics. Note that the paramel,er p" is related to the adjustment coefficient a of the

ciamping term.

2.4 Forced van der Pol model of nonlinear economic cycles: Goodwin's non-

linear accelerator-multiplier with lagged investment outlays

The concept of br-rsiness cycles was introcluced by Samuelson (1939) by combining the

accelerator and the multtplier. This modeL demonstrates that two simple forces related

to the producers keeping a fixed ratio of capital stock to or-rtpr-rt (real income) and the

cor'l-slrmers spending of a given fraction of their incomes on consumption can combine to

generate business cycles.

Goodwin (i951) formulated a nonlinear model of business cycles which provides an

alternative to th.e restrictive linear acceLerator-multiplier models of Samnelson-Hicks. In

contrast, Hicks' moclel of nonlinear business cycles which assumed that the unconstrained

linear accelerator-nr-rltiplier model takes on special parameter values that imply the sys-

tem wiil explode, the Gooclwin's moclel cloes not depend on specific pararneter values.

By introdr-rcing lagged investment outlays in the nonlinear accelerator-mr-rltiplier model,

Goodwin (1951) derived the following driven oscillator equation

e7y-r (e + (1 - a)0)ù - ó(a) + (1 - a)1s: I(t), (2 10)

where gr denotes income, a is the marginal rate of consumption, e is a constant denoting

a lag in the dynamic multiplier process, á is the lag between the decision to invest and

tlre corresponding otitlays, ó(ù) ts the investment induced by the change in income, and

1(f) is an exogenous force denoting the amount of autonomous investment outlays at Ú.

Lorentz (ig87b) , Lorenz (1993), and Lorenz and Nusse (2002) considered the follow-

ing generalization of equation (2.10) to str,rdy chaotic motion in Goodwin's nonlinear

accelerator-multiplier

ù + A(r)r + B(r): 1(¿), (2.11)

where A(r) is an even function with,4(0) < 0, ancl B(r) is an odd function with B(0) : 0.

By assuming the investment outlay is periodic and a continl¡.ous function of time of the

form

I(t):øsin(øú), (2'12)
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where ø is the amplitud.e of exogenous force and ø the frequency of exogenous force, and

A(r): ¡.t(r2 - I), B(r) : r, (2.13)

we obtain a forced van der Pol model of noniinear economic cycles

i -l p(r2 - I)" I r -- ø sin(øú) (214)

In addition to Kaidor's nonlinear investment-savings functions and Goodwin's nonlin-

ear accelerator-multiplier, the forced Van der Pol model of relaxation oscillations, given by

equation (2.I4), have many other relevant economical applications (Gabisch nd Lotenz,

1989; Pr,rr-r, 1989; Goodwin, 1990; Medio, 1992; Lorenz, 1993; Gandolfo, 1997; Shone,

2002; Chian, 2001; Chian, Rempel ancl Rogero, 2005a,b; Chian et a1.,2005a,b)' The

moclern econony consists of a great variety of separate sectors and activities closely con-

pled to each other. For exampie, Puu (19S9) showed that the forced Van der Pol eqr-iation

similar to equation (2la) can model the nonlinear dynamics of a small economy driven

exogenously by the the world market, which can produce very rich dynamical solutions

including a chaotic atractor. Puu's model of international trade provides an iliustration

of the interclependence of an individual national economy and the worLd economy. Cyclic

fluctuations ar:e common characteristics of economic systems. A variety of economic cyclic

modes have been iclentifiecl, inclr-rding the 3-7 year br-rsiness cycle, the 15-25 year construc-

tion or Kuznets cycle, ancl the 40-60 year Konclratieff or economic long wave' Nonlinear

interaction between different economic modes can occur, €.g., â short-period business cy-

cle can act as an exogenous force on a long-period bu.siness cycle. In addition, geophysical

cycles such as seasonal cycles, Ei Niño cycles, and solar cycles may act as an exogenous

f'orce on the fluctuations of agriculture, tourism, and fuel sectors.

In this thesis, we wiil investigate the numerical solutions of the forced van der Pol

moclel of business cycles, equation (2.14), which can be rewritten as three coupled first-

order differential equations

f1

ùz

r3

12, (2 15)

(2 16)

(2 17)

- p,(r? - \)rt - :xt * a sin(2tr4),
a
2r

Intheabsenceof theexogenousforcing(a:0),theorigin (rr:0,12-- 0) istheonly

equilibrium solution of equations (2.15)-(2.17), which is an unstable fixed point (repeller);

all other trajectories of the system approach a single attracting periodic orbit (iimit cycle)
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that encircles the origin, which d.escrìbes periodic reiaxatton osciiLations consisted of a

period. of slow br-rilclup followed by a sudden discharge (Alligood, sauer and Yorke 1996)'

In tlre presence of an exogenolls forcing, eqr-ration (2.I4) admits a rich varietv of periodic

and aperioclic oscillations as the control parameters P) 0' and c''r are variecl' Parlitz and

Lauterborn (19S7) gave examples of the bifurcation diagrams of equation (2' la) by varying

the driver freqr,rency ancl the driver amplitr"rde, which show mode-locking and period-

doubling cascade. They pointed out that the system symmetry of the van der Pol oscillator

leads to the coexistence of asymmetric attractors, and' introduced a generalized windlng

number to compute devii's staircases and winding-number diagrams of period-clor-rbling

cascades. For large driving amplitudes, they found that many periodic, quasiperiodic and

c,haotic attractors coexist. A systematic analysis of equation (2.14) was carrj'ed out by

Mettin, Parlitz ancl Lauterborn (i993) by str-rciying its dynamical behaviors over a large

range of control parameters in the three-climensional (þt, o, ø) phase diagrams, paying

special attention to the pattern of the bifurcation cluves in the transitional region between

low and large clampings. Xu and Jiang (1996) performed a global bifurcation analysis of

eqtration (2.I4) by investigating the phase diagrams in the two-dimensional (p, o) plane

with a fixecl o, for meclium clamping. They studied the evolution of the global strrictures

in simple ancl complex transitional zones, and the number of coexisting attractors in

overlaps of mode-locking subzones'

In thìs chapter, we use the numerical solutions of equation (2'14) to studv the funda-

mental properties of complex clynamics of economic cycles'

2.5 Order and Chaos

one fundamental characteristics of a complex dynamical system is the possibility of

or.der and chaos, which can exist either separateiy or simultaneously' In an ordered dy-

namical system, for arbitrary initial conditions, after going through a transient period

the system approaches a perioclic behavior with a predictable periodicity' In conttast' a

chaotic dynamical system exhibits behavior that depends sensitively on the initial condi-

tions, thereby rendering long-term prediction impossible (Strogatz i994)' Figr-rre 2'r(a)

shows a perioclic time series of the numerical solutions of eqr"ration (2'I4) for the control

parameters: [t : 1, Q:0.45, a: 0.983139. Figure 2.1(b) shows two ch'aotic time series

of tlre nu,merical solutions of equation (2.I\ for the same control parameters: þL : 7'

a :0.45 and a:0.9g77, but with two slightly difierent set of initial conditions' The

initial conditions of the solicl curve àre tr -- 0.2108, i:0'0187; whereas, the initial con-

ciition of the clashed cltrve are :r: 0.2100, à : 0'0187' We see from flgure 2'1(b) that

1t
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Figure 2.1: Periodic and chaotic time series. (u) A periodic time series r(ú) for

¿ : 0.983139, (b) two chaotic time series for a : 0.9877 with slightly different initial

conditionsir:0.2108andå:0.0187forthesolidline,r:0.2100andå:0.0187for
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Figure 2.2: Periodic attractor and chaotic attractor. (u) A periodic attractor (,41) of

period-l in the state space (r,, x) for û : 0.983L39, (b) a chaotic attractor (CA) in the

state space (*, ,) for û,:0-9877.

initially the two time series are the same, however, as the time increases, the behavior of

two chaotic time series becomes very different.

The attractor is the set of points in the state space to which the trajectories approach as

time goes to infinity. Since a complex system consists of both order and chaos, it contains

both periodic attractors and cha,otic attractors- 'When the attractor is an isolated closed

trajectory it is called a periodic attractor (or limit cycle); when an attractor is a fractal

set of points, it is called a strange attractor (or cha,otic attractor) (Ott 1993). Figures

2.2(a) gives an example of a periodic attractor (Ar) for a :0.983139, corresponcling to

the periodic time series in figure 2-1(a). Figure 2.2(b) gives an example of a chaotic

attractor for ¿ : 0.9877 (CA), corresponding to the chaotic time series in figure 2.1(b).

The trajectories of arbitrary initial conditions on a cha,otic attractor will display aperiodic

behavior and sensitive dependence on initial conditions, which implies that nearby orbits

l4

a = 0.9877
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Ar

a = 0.9877
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T = Tnla

Figure 2.3: State-space trajectory and Poincaré map. An iilustration of a state-space

trajectory ancl the Poincaré map, T is the driver period and ø is the driver frequency.

will diverge exponentially in time (see figr-rre 2.1(b)). The average rate of divergence can be

measlrecl by the Lyapr,rnov exponents (Ott 1993). For a system with n-dimensional phase

space, there are rz Lyapunov exponents which measure the rate of divergence/convergence

in rz orthogonal directions.

2.6 Poincaré Map

To simplify the analysis of a nonlinear trajectory (orbit or flow) of a compiex system,

it is often convenient to recluce a flow in the state space, namely, the numericai solution

of eqr-iation (2.14), to a cliscrete time map by the Poincaré surface of section method (Ott

1gg3). In this paper, we clefine the Poincaré surface of section (Poincaré map) by

P : r(t) ---, r(t + T), (2.18)

where T : 2trla is the driver period. Figure 2.3 is an illustration of a state-space

trajectory and the Poincaré maP.

2.7 Bifurcation Diagram and Periodic Window

In aclditiol to the sensitive dependence on the initial conditions' a dynamical system

is very sensitive to small variations in the control parameters (either endogenous or ex-

ogenor-rs). As a control parameter varies, the stability of a dynamical system changes due

to a local or a global bifurcation. The bifi"rrcation diagram provides a general view of

the system clynamics by plotting a system variable as a function of a control parameter

(Altigood, Sauer and Yorìce 1996). Frgr,rre 2.a@) shows a global view of the bifïrrcation

t

x
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cliagram of the nonlinear model of economic cycles described by equation (2.14), where

we have kept two control parameter ¡-r, and c,,, fixed, and only vary the forcing amplitr-rde

cL. For a given control parameter a, the bifurcation diagram in figure 2.a@) plots the

asymptotic values of the Poincaré points of the system variable z, whete the transient has

been omitted.

The phase space of equations (2.15)-(2.17) has three dimensions, theref'ore the system

has three Lyapunov exponents, one of which is always zero (in the direction tangent to

the flow). For the remaining two exponents, for a stable periodic orbit the maximum

Lyapr-rnov exponent ls less than zero, for a quasiperiodic orbit the maximum Lyapunov

exponent is zero, wh.ereas for a chaotic orbit the maximum Lyapr-rnov exponent is greater

tlran zero. Figr-rre 2.4(b) shows the maximum Lyapr-rnov exponent as a function of ø, for

tlre bifurcation cliagram given by figure 2.a@), calculated by the Wolf algorithm (Woif et

al. 1935). Figr-rre 2.4 shows that the system is qr,rasiperiodic to the left of a - 1, and

periodic to the right of a - 1. However, in the region a - I, the system can be chaotic.

An enlargement of a smalL region of the bifurcation diagram indicated by the arrow in

frgure 2. @) is given in figures 2.5(a) and 2.5(b), which display a periodic window. Com-

plex dyna,mics is found within this periodic window, where five attractors are identified.

A sacldle-nocle bifurcation (SNB) al' a : QINB : 0'98312 marks the beginning of this

periodic window (in terms of attractors A1 and A2). An attractor merging crisis (MC)

at ù : arrc :0.98765 marks the end of this periodic window. To the left of as¡¿6 and

to tlre right of a¡4ç, wê have a chaotic attractor As. Two attractors A1 and A2 co-exist

between ø5¡¿e ancl a¡,¡ç,l,hrourghout this periodic window. Two more attractors A3 and

Aa coexist for a smaLl interval of ø, between ø : 0.9862400 and a : 0.9864085. Due

to tlre symmetry of equation (2.7a) the attractors A1 and A2 have the same dynamical

behaviors, namely, for a given control parameter a, the maximum Lyapunov exponents of

A1 and A2 are the same. The same is true for attractors A3 and Aa. Figr-rre 2.5(c) shows

the maximum Lyapunov exponent for either attractor A1 or attractor 42, which. indicates

that there are many small periodic winclows within a chaotic region, and there are many

chaotic regions within a periodic window. The rich dynamics found in this perioclic win-

dow demonstrates the basic featnres of multistability and coexistence of order and chaos

in complex economic systems. In this thesis, we focus on the periodic window given by

figure 2.5 to investigate the complex dynamical behaviors of economic systems.
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2.8 Multistability and Basins of Attraction

Evidently, multistability is a fundamental feature of a complex system, as seen in the

periodic window of tire bifurcation diagram in figures 2.5(a) and 2.5(b). The basin of

attraction for a given attractor is the set of initial conditions eacir of which gives rise to

a trajectory that converges asymptoticaLly to the attractor (Hilborn 1994)' Note that

theclraoticattractorAepersiststotherightofasNB:0'gS3l20andisonlydestroyed

by a bor-rndary crisis at o,:0.983139. In terms of attractor Ao, the periodic window

actually starts at o, :0.983140. Hence, three attractors A¡, A1 and A2 coexist between

¿ : 0.g83120 ancl ¿ : 0.983139, as exempLified by the basins of attraction in figure

2.6(a) for a:0.983139. For the initial conditions starting from the light gray region, the

trajectory converges to the chaotic attractor A¡;whereas, for initial conditions startingin

the dark gray (white) regron, the trajectory converges to the periodic attractor A1 (42),

respectively. Between o,:0.983140 and ¿: 0.9862399, and between a: 0.9864086 and

ú : a^rc : 0.98765, two attractors A1 ancl A2 coexist, as exemplified by the basins of

attraction in figr-rre 2.6(b) Ïor a :0.983140, where the light gray (white) region denotes the

basin of attraction for attractor A1 (42). Note the dramatic change in the topology of the

lrasins of attraction in figules 2.6(a) and 2.6(b), where the control parameter varies slightly

from ø : 0.g83139 to ¿ : 0.983140. This dramatic change is due to the destructron of

the chaotic attractor A6 ancl its basin of attraction by a boundary crisis. Four attractors

Ar, Az, A3 and Aa coexist between a: 0'9862400 and ¿ : 0'9864085'

2.9 ljnstable Periodic Orbit and Chaotic Attractor

Unstable periodic orbits are the skeleton of a chaotic attractor because chaotic trajec-

tories are closures of the set of unstable periodic orbits (Auerbach et al. 1987, Cvitanovic

lgSS). In contrast to a perioclic attractor thereby al1 trajectories initiated from any point

in the state space are attracted to a stable periodic orbit (e.g., frgure 2.2(a)), in a chaotic

attractor all perioclic orbits are unstable since almost all trajectories (with the exception of

trajectories strictly along its stable manifold) in the neighborhood of an nnstable periodic

orbit are repellecl by it (e.g., fignre 2.2(b)). Hence, a chaotic trajectory is chaotic because

it must \Meave in ancl arouncl all of these unstable periodic orbits yet remain in a bounded

region of state space (Hilborn 1994). Unstable periodic orbits can be numerically found

by the Newton algorithm (Curry 1979). Four examples of the state-space trajectory (solid

line) and Poincaré points (cross) of unstable periodic orbits are given in figure 2-7. The

saddle-nocle bifurcation at ù : asNB : 0.98312 generates a pair of stable and unstable

periocÌic orbits of period-1 associated with attractors A1 and 42, respectively, as shown in
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Figure 2.7: Unstable periodic orbits: skeleton of chaotic attractor. Exarnples of unstable

periodic orbits (solid line) in the state spâce and the corresponding Poincar point (cross)

of: (a) and (b) period-l for a:0.98312, (c) and (d) period-3 for ¿:0.98624.

f.gures 2.7(a) a,nd 2.7(b). Note that the stable and unstable periodic orbits a¡e identical

at the onset of a saddle-node bifurcation. These two period-l- unstable periodic orbits,

represented by the dashed lines to the right of a :0.98312 in figures 2.5(a) and 2.5(b), are

responsible for mediating the onset of a boundary crisis a,t a:0-983139 which destroys

the chaotic attractor A¡. Figures 2.7(c) and 2.7(d) show the unstable (stable) periodic

orbits of period-3 associated with attractors A3 and Aa, rêspectively., generated by an-

other saddle-node bifurcation at a : 0.9862400. These two period-3 unstable periodic

orbits, represented by the dashed lines to the right of ¿: 0.9862400 in figure 2.5(a), are

responsible for mediating the onset of another boundary crisis that destroys attractors A3

and A¿ a,t a :0.9864085 and are also responsible for mediating the onset of an attractor

merging crisis (MC) at a: 0.98765 which marks the end of the periodic window in frgure

2.5. The unstable periodic orbits a¡e robust. For example, most unstable periodic orbits

that appear within the periodic window continue to exist in the chaotic region to the right

of MC in figure 2-5(a) a¡rd form part of the skeleton of the chaotic attractor A¡ beyond

the attractor merging crisis.

An unstable periodic orbit with period-N turns into N-saddle points in the Poinca¡é

surface of section, as seen in Figure 2.7. Figure 2.8(a) illustrates a saddle point (p),

o = 0.98312

t =0-9M24 a = 0.9&624
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Figure 2.8: Unstable periodic orbit: stable and unstable manifolds. (a) An illustration of

a saddle point (p) wiih its associated stable manifold (SM) and unstable manifold (UM),

the dashed lines represent the stable (u") and unstable (u") eigenvectors; (b) the state-

space trajectory (solid line) and Poincar/e points (cross) of a period-3 unstable periodic

orbit for a : aMC : 0.98765; (c) the stable manifold SM (line) of the periocl-3 sacldle

point (cross); (d) the unstable manifold UM (line) of the period-3 saddle point (cross).
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whicÌr is ttre intersection of in-set (stable manifold SM) and out-set (unstable manifold

UM), in a two-climensional Poincaré surface of section. The dashed lines represent the

stable (v') and unstable (v") eigenvectors of the linearized Poincaré map at p. At the

sacldle fixed point p, the stable manifold SIVI is tangent to the stable eigenvector v' and

the unstable manifold UVI is tangent to the unstable eigenvector v". Trajectories on

the in-set converge to the saddle point as the time goes on; whereas, trajectories on the

out-set tJ.iverge from the sadclle point as time goes on (Hilborn 1994). Figure 2.8(b) is

an example of the trajectory of an unstable periodic orbit of period-3 in the state space

f.or a: ctNrc :0.98765. The closed curve in figure 2.8(b) turns into a saddle consisted

of 3 fixed points (crosses) in the Poincaré surface of section also shown in figr-rre 2.8(b).

Figures 2.S(c) and 2.8(d) are enlargements of the rectangnlar region indicated in figure

2.8(b), where we aiso plotted the numerically computed stable manifold (SM) and unstable

uranifold (UM) of the sacldle, respectively.

2.LO Concluding Comments

Th.e funclamental properties of nonlinear economic dynamics discussed in this chapter

form the basis for the analysis of complex economic systems. We showecl that a complex

econonic system exhibits multrstability behavior with coexistence of attractors, including

the possibìlity of coexistence of order ancl ch.aos (periodic attractors and chaotic attrac-

tors). In acldition, we showed that unstable periodic orbits are the skeleton of a chaotic

attractor. The cornplex dy¡¿11¡ics of an econornic system can be displayed by the Poincaré

urap and by the bifurcation diagram, which often contains many periodic winclows. We

identified a periodic window within which complex dynamics is found, with the presence

of five attractors; the beginning of this periodic window is marked by a saddle-node bifirr-

cation (in terms of attractors A1 and A2) and the end of this periodic window is rnarked

by the onset of an attractor merging crisis.
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CHAPTER 3

TYPE-1 INTERMITTENCY IN NONLINEAR ECONOMIC CYCLES

In this chapter, the intermittent behavior of economic dynamics is studied by a nonlin-

ear model of business cycles. Numerical simulations show that after an economic system

evolves from orcler to chaos, the system keeps its memory before the transition and its

time series alternates episocÌically between periods of low-level apparently periodic (quies-

cent) and high-Level tu.rbulent (bursting) activities. This model of economic intermittency

exhibits power-law spectrr.rm similar to the nonlinear time series observed in financial mar-

kets

3.1 Introduction

Characterization of the complex dynamics of economic cycles, by organizing economic

regr-ilarities ancl iclentilying regime switching between "good" ancl "bad" phases in the

time series, is the key to accurate economic forecasting (Diebold and Rudebr-isch 1999).

In a classical book, Burns and Mitchell (19a6) defined business cycles as "a type of fluctu-

ation founcl in the aggregate economic activity of nations that organize their work mainly

in business enterprises: a cycle consists of expansions) occllrring at about the same time

in many econo¡ric activities, followed by similarly general recessions, contractions, and

revivaLs which merge into the expansion phase of the next cycles". Thus, two fundamen-

tal attributes of business cycles are: comovement (i.e., synchronization) among various

eco¡omic variables or sectors, ancl division of business cycles into alternating (i'e., inter-

mittent) phases of low-level and high-level economic activities.

Synchronization and intermittency are ubiquitous phenomena that govern the nonlin-

ear dynamics of complex systems. Fireflies provrde a good example of synchronization in

natr.rre whereby thousands of fireflies can self-organize themselves to flash on and off in syn-

chrony. Periodic (ordered) solutions appear when coupled oscillators are phase-locl<ed due

to phase synchronization; moreover, phase synchronization can occur in coupied chaotic

oscillators (Strogatz 7gg4). Selover et al. (2004) proposed that national business cycles

result from nonlinear phase-locking between different industries or sectors. Intermittency

is pervasive in our world, as exemplifred by traffic flow in big cities, fluid turbulence in

atmospheres and oceans, and long-term variabilities of sunspot cycles (Vassilicos 1995; Os-

sendrijver and Covas 2003). Financial markets also exhibit intermittent behavior wherein

periods of trading frenzy are followed by periods of quiescence; on closer examination the
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periods of high volatility are themselves consisted of other sub-periods of relative quiet

an¿ other sr-rb-periods of relative br-rrsty activities, which is a manifestation of self-similar

and scale-invariant properties of nonlinear systems.

Recent statistical analysis of high-freqlrency data of stock markets and foreign ex-

change marl<ets have demonstrated the intermittent nature of nonlinear economic time

series, which present non-Gaussian behavior in the probability distribution function of

price changes and power-law behavior in the spectral density (Mantegna and Stanley

lggb, 1996; Ghashghaie et al. 1996). The fat-tail seen in the non-Gaussian probability

clistribntion function is cÌue to excess of large-amplitude fluctuations (relative to Gaussian

clistribution) of economic variables. The power-law frequency dependence of the spectral

clensity is an indication of turbulent process involving an information cascade from large

to small time scales in financial marl<ets'

There is an increasing interest in applying chaos concept to study nonlinear economic

dynamics. Sengupta and Sfeir (1997) performed empirical tests of volatility for monthly

data of exchange rates from February 1988 to August 1995, and concluded that chaotic

instability cannot be rulecl out in general. Fernandez-Rodriguez et al' (1997) applied

a multivariate local preclictor, inspired by chaos theory, to nine EMS currencies using

claily data from January 1973 to December 1994, which outperformed the random walk

clirectional forecasting. IVluckley (2004) presented evidence of strange attractor, a iong-

term memory effect and aperiorlic motion in a time series analysis of daily financiai data

of two equity and two commoclity indices.

Intermittency is readily found in nonlinear modeis of economic dynamics (Mosekilde

et al. 19g2; Haxholdt et a]. 1995; Bischi et al. 1998). In this chapter, we study an

example of economic type-I intermittency based on a model of nonlinear business cycles

(Chian et al. 2005a,b). lVe will show by nurnerical simulations that after a transition

from orcler to chaos due to a saddle-node bifurcation, the time series of business cycles

becomes intermittent involving episodic regime switching between quiescent and bursting

phases. The power spectrum of the simulated intermittent time series has power-Law

dependence on frequency, similar to the observed data of intermittent financial' markets.

The characteristic intermittency time will be calculated and its application for economic

forecasting will be discusseç1.

3.2 Nonlinear Model of Economic Cycles

We adopt the forced van der Pol (VDP) differential equation to model the nonlinear

dynarnics of business cycles
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Figr-rre 3.1: A p-1 perioclic window of computed bifurcation cliagram, r as a firnction of

the clriver amplitucle ø, for attractors A1 and 42. SNB denotes saddle-node bifurcation;

claslred lines clenote p-1 unstable periodic orbits; ¡-t, 
: 7 and (, : 0.45.

ù + p"(r2 - I)" I tr: øsin(øú) (3 1)

Eqr-ration (3.1) moclels a small open economy forced externally by a world economy (Pur-r

1g8g), or alternatively, it models market fluctuations driven by climate variabiLities (Good-

win 1990). It aclmits regular (periodic) or irregular (chaotic) solntions as we vary any of

tlrree control parameters'. a) (r1 
l-1.

Equatio¡ 3.1 is an example of two coupled oscillators: an endogenous nonlinear oscilla-

tor with its natural frequency and an exogenous periodic oscillator with a driver frequency

u. In a nonlineal systerri, the natural frequency of oscillations changes with the varia-

tion of the control parameters. Hence, in this economic model the dynamical behavior

of no¡linear business cycles depends on the competition between these two frequericies

as the control parameters are varied. The system is phase-locked (synchronized) if the

ratio of these two frequencies is a rational number; its associated soiution is then periodic'

After the phase-lockecl solution is destroyed in a saddle-node bifurcation, the solution be-

comes chaotic. Type-I intermittency resr:lts from tire transition from order to chaos via

a saddle-node bifurcation (Strogatz 1994).

0

SNB

A 2

A1
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3.3 Economic Type-1 Intermittency

A perioclic window of the bifurcation diagram determined from the numerical solutions

of eqr"ration (3.1) is shown in figr-rre 3.1, where we plot i as a function of the arnplitude

ø of tire exogenous forcing while keeping other controi parameters fixed (p : 1 and

a:0.45) (chian et al. 2005a,b). within the periodic window, two (or more) coexisting

attractors A1 and A2 ale found. At the saddle-node bifurcatiorl a': ãSNB:0'98312'

a pair of period-l (p-1) stabie (solid line) and unstable (dashed line) periodic orbits for

each attractor is generated, which evolve into two small chaotic attractors via a cascade

of period,-dor-rbling bifurcations. To the left of ø5¡¿6 in the bifurcation diagram, the initial

conditions conveïge to a chaotic attractor As. The aim of this chapter is to study type-I

intermittency associated with the transition of periodic attractors AtlL, to the chaotic

attractor As for a 1 a;¡¡B'

Dne to the symmetry of equation (3.1), which is invariant under the flip operation

l_+-trwlrenQ':0,tlreso]utionsadmitcoexistenceofattractors.Figure3'2slrows

the basins of attraction for attractors A1 and A2 at ¿ : 0'98314, within the periodic

window. The set of initial conclitions in the gray region of the phase space (''') will be

attracted to 41, whereas the set of initial conditions in the white region wili be attracted

to 42. Note that for valnes of ¿ between 0.983120 and 0.983139 the three attractors A1'

A2 and Ae coexist. The chaotic attractor As is destroyed by a boundary crisis (BC) at

u,Bc :0.983139, to the right of esvB'

At ø: asNBtthe attractors A1 and A2 are periodic with period-1' The tra.jectories of

Ar and A2 in the pb.ase space (r'r) aI cL: a,sNB are shown in figures 3'3(a) and 3'3(b)'

respectively. Examples of periodic time series, i(Ú), for attractors A1 and A2 ale shown in

figr:res 3.a(a) and 3.a(b), respectively; the same time series plotted as a function of driver

cycles (t:2rn,f a, rL:1,2,3, "') are given in figure 3' (c)'

For a { r.¿slB,, tÌre solutions ale chaotic. The phase-space trajectory of the chaotic

attractor A6 prior to the saddle-node bifurcation is shown in figure 3'3(c)' Two examples

of chaotic time series for clifferent values of ø, to the left of ø : asNB, are shown in

figures 3.5(a) ancl 3.5(b), respectively; the same time series plotted as a function of driver

cycles are given in figures 3.5(c) and 3.5(d), respectively' Type-I intermittency is readily

recognized in Fig. 3.5, exhibiting episodic regime switching between periods of laminar

(qr.riescent) phases and periods of bursting (turbulent) phases' By comparing figr-rres 3'4

and 3.5, we identify the laminar phases (r - 2 and' * - 0 in the driver cvcle plots) as

due to the memory effect of the post saddle-node bifurcation p-1 unstable periodic orbits

of A1 ancl 42, respectively. As the system moves farther away from the transition point
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Figure 3.2: Basins of attr¿rction for two co-existing attractors A1 and A2 al 0' : ct,sNB :

0.98314. The gray (white) regions denote the basins of attraction of Ar (Az)

a: asNB, the avera,ge dr-rlation of laminar phases decreases cltte to weakening memory, as

shown by the intermittent time series in figr,rre 3.5. This implies that after the transition

frorn order to chaos, the regime switching of intermittent business cycles becomes more

frequent as the system moves farther away from th-e transition point'

The power spectra of the periodic and intermittent time series of figures 3'4 and 3.5 are

show' i' figr-rre 3.6. Figr-rle 3.6(a) shows that when the solution is perioclic the spectrum

is discrete. Figr-rres 3.6(b) and 3.6(c) show that when the solutions ate intermittent the

power spectra are broaclbancl ancl have a power-law behavior at high frequencies, which

is a ch.aracteristics of chaotic systems such as intermittent financial markets.
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Figr-rre 3.6: Power spectrum .9(/) as a fr-rnction of frequency f fot (a) ø : 0'93312, (b)

a: 0.98311, (") ø: 0.9825.

The characteristic intermittency time, namely, the average duration of laminar phases

in the intermittent time series, depencls on the value of the control parameter ¿. Close to

the transition point øs¡¡6 the average duration of laminar phases is relatively longer, and

clecreases as û, moves away from as¡,tB.The characteristic intermittency time (denoted by

r) can l¡e calculated from a long time series, by averaging the time between two consecutive

br-rrsting phases. Figure 3 . 7 is a plot of loglo 1 velsus log1s (ø5¡/6 - a) , where the solid line

witlr a slope 7 : -,0.074 is a linear flt of the values of the characteristic intermittency

time computed from the time series. The sqr-rares (circles) denote the computed average

duration of the laminar phases related to A1 (42). Note that the circles and the squares -¡'2

coincide most of the time, due to the symmetry of A1 and 42. Figure 3.7 reveals tliat the

characteristic intermittency time r decreases wlth the distance from the critical parameter

cLsNBt obeying the following power-law scaling

r - (asNB - a)-oozt. (3 2)

This scaling formula can be used to predict the turning points, from contraction to ex-

pansion phases, of nonlinear business cycles'

f

a=098311

t = 0 9iì25
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3.4 Concluding Comments

This chapter shows that after an economic system undergoes a dynamical transition

from an ordered to chaotic state, intermittency appears whereby the economic activities

switch episodically back and forth between periods of quiescent and bursting fluctuations'

As an economic systern moves farther away from the transition point, the average duration

of quiescent periods d.ecreases. In order to understand the nature of economic intermittent

behaviors, we perf'ormed a study of type-I intermittency in a nonlinear model of business

cycles. In this exarnple of intermittency, an economic path evolves from a regular (pe-

riod,ic) to an irregular (chaotic) pattern as the exogenous forcing amplitude ¿ passes a

criticalvaÌueasNB,wheretlresystemiosesitsstabilityduetoasaddle-nodebifurcation.

ItisworthemphasizingtiratthereisaregionwithintermittentchaosforattractorAsto

the right of as¡,,6 in figure 3.1, for values of a between 0'983120 and 0'983139' which will

be a subject of further investigation'

The accuracy of business cycle forecasting relies on a precise estimate of the durations

of economic expansions and contractions and of the turning points in business cycles

(viiasr-rso 1996; schnader and Stekier 1998; Diebold and Rudebusch 1999)' Nonlinear

modelingofeconomicsystemsprovidesapowerfultooltosimulateregimeswitchingbe-

tween contraction and expansion phases, and to predict the turning points' In particular,

y - -0.07 4

o
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the average d.uration of quiescent phases in business cycles can be determined from the

characteristic intermittency time of the simulated time series. Hence, the dynamical sys-

tems approach is extremely useful to analyze patterns in the fluctuations of compLex

economic systems and vaLuable for a sound policy making'

Some interesting connections can be made between our results and other papers

discussed in the present work. For example, Viiasuso (1996) employed nonparametric

turning-point tests to investigate the duration of economic expansions and contractions

in the Unitecl States, which indicated evidence of a turning point to longer expansions in

1929. Our work adopted a nonlinear model of business cycles to simulate the duration of

expansions and contractions of an open economy driven by a global market, which can be

used to prec{ict the tu.rning point to a long period of economic expansions of a nation, such

as detecteci by Vilasuso (1996). Moreover, type-I intermittency studied in this chapter

clemonstrates the ability of a chaotic enonomic system to retain the memory of its system

clynamics in the ordered regime. Wiren the system is close to its transition point from

orcler to chaos, it keeps this memory for a long duration in the form of quiescent phases in

economic fluctuations. This result is in agreement with the nonlinear time-series analysis

of financial data performed recentì.y by lVlr-rckley (200a), which obtained evidence of a

long-term memory effect in a strange attractor'
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CHAPTER 4

CRISIS-INDUCED INTERMITTENCY IN NONLINEAR ECONOMIC

CYCLES

In tiris chapter, a new type of economic intermittency is found in noniinear business

cycles. Foliowing a merging crisis, a complex economic system has the ability to retain

memory of its weakly chaotic dynamics prior to crisis. The resulting time series exhibits

episodic regime switching between periods of weakly and strongly chaotic fluctuations

of economic variables. The characteristic intermittency time, useful for forecasting the

average d.uration of contractionary phases and the turning point to the expansionary phase

of business cycles, is computed from the sirnulated time series.

4.I Introduction

Intermittency is a fundamental dynamical feature of complex economic systems. An

intermittent economic time series is characterized by recurrence of regime switching be-

tween periods of bursts of high-Ìevel fluctuations of economic activities and periods of

low-leveL fluctuations. For example, an instability of the frnancial system leads to spec-

*lative booms followed by sr-rbsequent financial crises manifested by violent price move-

ments in financial markets; the recurrence of these events results in business cycles with

alternating periocls of boom and depression (Mullineux, 1990). The spectral density of

intermittent economic time series indicates power-law behavior typical of mutiscale sys-

tems. Statisticai a¡alysis of the high-frequency dynamics of stock markets and fbreign

exchange markets has proven the intermittent nature of these financial systems, which

clisplay non-Ga¡ssian form with fat-tail in the probability distribution function of price

changes (Mantegna and Stanley 2000).

A good understanding of regime switching and memory of economic time series is es-

sential for pattern recognition and forecasting of business cycles. Kirikos (2000) compared

a ranclom walk with Markov switcÌring-regime processes in forecasting foreign exchange

rates; the results suggestecl that the availability of more past information may be useful

in forecasting fìrture exchange rates. Kholodilin (2003) introduced structural shifts in

ttre US composite economic indicator via deterministic dummies and evalu-ated the US

monthly macroeconomic series specified by the regime-switching model. Bautista (2003)

used regime-switching-AR,CH regression on the Philippine stock market data to estimate

its conditional variance and relate to episodes of high volatility including the 1997 Asian
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financial crisis; this study iclentified a period of high stock return volatility preceding a

bust cycle marked by a seqr,rence of low-growth periods. Granger and Ding (1996) defined

long memory as a time series having a slowly decLining correlogram, which is a property of

fractional integrated processes as well as a number of other processes including nonlinear

models; the relevance of long memory is illustrated using absolute returns from a daily

stock market index. Resende and Teixeita (2002) assessed long-memory patterns in the

Brazilian stock market index (Ibovespa) for periods before and after the Real Stabiliza-

tron PIan, and obtained evidence of short memory for both periods. Gil-Alana (2004)

presented evidence of memory in the dynamics of the real exchange rates in Europe using

tlre fractional integration techniques. Muckley (2004) employed rescaled-range analysis,

correlation dimension test and BDS test to obtain evidence of long-memory effect and

chaos in daily time series of financial data.

Intermittency is ubiqr-ritous in chaotic economic systems. In a nonlinear macroeco-

nomic model (Mosekilde et al. 1992) describing an economic long wave (or Kondratiev

cycle) forced by an exogenous short-term construction (or Kuznets) business cycle repre-

sented by a sinusoiclal fluctuation in the demand for capital to the goods sector, a chaotic

transition known as crisis involving a sudden expansion of chaotic attractor and a complex

form of chaos arising from intermittency are observed. In a disaggregated economic long

wave model clescribing two cor,rpled industries (Haxholdt et al. 1995), one representing

prodr.rction of plant and long-lived infrastru.cture and the other representing short-lived

eqr-ripment and machinery, mode-locking, quasiperiodic behaviot, chaos and intermittency

are detected. In a modei of an economic dr-ropoly game (Bischi et al. 1998), the phenom-

enon of synchronization of a two-dimensional discrete dynamical system is studied and

on-off intermittency due to a transverse instability is detected.

An example of type-I intermittency in nonlinear business cycles was studied recently

(Chian et al. 2005a). In the economic type-I intermittency, the recurrence of regime

switching between bursty and laminar phases indicates that a nonlinear economic system

is capabì.e of keeping the memory of its ordered dynamics after the system evolves from

order to chaos due to a local saddle-node bifurcation. Most econometric studies of long

memory treat economic data as stochastic processes (Granger and Ding 1996; Resende and

Teixeira 2002; Gil-ALana 2004), however real economic systems are a mixture of stochastic

and deterministic processes. In this chapter, we adopt the deterministic approach to

study a new type of economic intermittency induced by an attractor merging crisis due

to a global bifurcation (Chian et al. 2005b). We will show that following the onset

of an attractor merging crisis, the economic system retains its memory of the weakly
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chaotic dynamics before the crisis; as the resuJ.t, the time series of business cycles becomes

intermittent d.ispì.aying episodic regime switching between periods of weakly and strongly

chaotic fluctuations.

A forced model of nonlinear business cycles is formulated in Section 4.2. Economic

crisis-induced intermittency is analyzed in section 4.3. concluding comments are given

in Section 4.4.

4.2 Nonlinear Model of Economic Cycles

We model the nonlinear dynamics of business cycles driven by the forced van der Pol

differential eqr-ration

ù+¡.t(r2 -1)¿ :-tr: asin(a''ú)' (4 1)

Eqr-r.ation (4.1) admits perioclic (ordered) or aperiodic (chaotic) solutions as we valy any

of three control parameters'. 0,1 u).p. Eqr-ration (4.1) (when ø:0) is invariant under the

flip operation (r -. - r). This symmetry is a typical property of dynamical systems that

exhibit attractor merging crises (Chian et al' 2005a,b)'

4.3 Economic Crisis-Induced Intermittency

Th.e qr-ralitative structure of the trajectory rlescribed by equation (4' 1) can change (i'e',

bifurcate) as the control parameters are varied' For example' fixed points can be created

or clestroyed, or their stability can change. These changes in the system dynamics can be

represented by the bifurcation diagram. A periodic window of the bifurcation diagram

cletermined from the numerical solutions of equation (a.1) is shown in figure 4'1, where

we plot r as afunction of the driver amplitr-rde ø while keeping other control parameters

fixed (¡; : 1 and u : 0.45). within the period,ic window, two (or more) attractors

A1 and A2 co-exist, each with its own basin of attraction (chian et al' 2005a,b)' At

¿ : 0.98312, a period-l limit cycie for each attractor AtlA, is generated via a local

saddle-node bifurcation (SNB), which evolves into a small chaotic attractor via a cascade

of period-doubling bifurcations'

An attractor merging crisis occurs at the crisis point (MC), îear o': aNIC:0'98765'

The phase-space trajectories of two small chaotic attractors (cA1 and cA2) in the phase

space (r, r), near th.e crisis point, are shown in figures a'2(a) and 4'2(b), respectively'

Note that cA1 and cA2 ale symmetric with respect to each other' In fact, the dynamic

properties of these two co-existing attractors are identical. At the crisis point, each of

the two small chaotic attractors simultaneously collide head-on with a period-3 mediating

unstable periodic orbit on the boundary which separates their basins of attraction, Ieading
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Frgnre 4.1: Bif¡rcation d.iagram of r asafunction of the driver amplitr-ide a for attractors

A1 ancl42. 1VIC clenotes attractor merging crìsis and SNB denotes saddle-node bifurcation.

¡t:landø:0.45.

to an attractor merging crisis clue to a global bifurcation (Chian et al. 2005b). As the

consequence, the two pre-crisis small chaotic attractors merge to form a post-crisis large

nrerged chaotic attractor (iVICA), as seen in figure a.2þ)'

A Potncaré map of the phase-space trajectories of figure 4.2 is plotted in figure 4.3,

which is a superposition of two pre-crisis weak chaotic attractors (CA1 and CA2) and

the post-crisis strong merged chaotic attractor (MCA). We define a stroboscopic Poincaré

map

P : lr(t), t(ú)l '--+ lr(t + ?), r(t +T)), (42)

wlrere T : 2trla is the clriver periocl. Note that the two pre-crisis CA1 and CA2 are

located in two smalÌ regions within the post-crisis MCA'

The time series of i for the two small chaotic attractors CA1 and CAz at crisis,

a:0.g8765, are shown in figr.rres a.a@) and 4.4(b), respectively. The same time series

of figr-rres a.a@) and 4.4(b) plotted as a function of driver cycles are shown in figure

a.aþ). From flgure a.aþ)) we see that before crisis the fluctuations of economic variables

are weakly chaotic (laminar), localized in a srnall range of i (near r - 2 and * - 0),

0
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a

MCSNB A

^2
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Figure 4.2: Phase-space trajectories of: (a) pre-crisis cha,otic attractor (CAt) for ø :

0.98765, (b) pre-crisis chaotic attractor (CAr) for ¿ : 0.98765, (c) post-crisis merged

cha,otic attractor (MCA) for a:0.98766.
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Figure 4.3: Poincaré map of the post-crisis merged chaotic attractor (MCA, light line) for

a: 0.98766, superposed by the pre-crisis chaotic attractors (CA1 and CA2, da,rk lines)

for 0: 0.98765.
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Figure 4.6: Power spectrum ^9(/) as a function of frequency / for: (a) ø : 0.98765, (b)

a:0.98766, (.) a:0.988

consistent with the Poincaré map in figure 4'3'

AfIer the attractor merging crisis, there is only one large chaotic attractor (MCA) in

the system. The time series of r of MCA after th.e crisis, for ¿ : 0.98766 and ¿ : 0.988,

are shown in figures a.5(a) and a.5(b), respectrvely. The same time series plotted as a

function of driver cycles are shown in figures 4.5(c) and 4.5(d), respectively' The time

series in figure 4.b show that the system dynamics becomes intermittent after the onset of

attractor merging crisis, with periods of weakiy chaotic (taminar) fluctuations interrupted

abruptì.y by periods of strongly chaotic (bursty) fluctuations. A comparison of the time

series of figr,rres 4.4 and 4.5 inclicates that the laminar phases in figure 4'5 are related to

the pre-crisis attractors CA1 and. CA2. Hence, the post-crisis system keeps memory of its

weakly chaotic dynamics prior to crisis, and switches back and forth between the low-level

fluctuations related to CA1 and CA2, Iinked, by high-level fluctuations related to MCA'

An examination of figure 4.5 shows that, as the system moves away from the crisis point,

the average dnration of laminar phases decreases and the regime switching becomes more

frequent.

The power spectra associated with the time series of figures 4.4 and 4.5 ate shown in

fi.gure 4.6. It is eviclent that in all three cases the high-frequency portions of the spectra

present power-law behaviors, which are typicaL features of intermittent financial systems

such as stock markets ancl foreign exchange markets (Mantegna and stanley 2000)' A

f

u = 0 98765 a = 0.98766

u=0988
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Figtrre 4.7: Cltaructeristic intermittency time as a function of the departure from the crisis

point, logror versus logro(ø - amc). The squares (circles) denote the compr-rted average

switching time from the laminar phases related to CA1 (CAr) to the br-rrsty phases. The

solicl line is a linear fit of the computed values with a slope 7 : -0.66.

closer look of figr-rres 4.6(a)-(c) shows that as the system becomes more chaotic, the

cliscrete spikes of the power spectrum become less evident due to increasing mr-rlti-scale

information transfer in the system.

The characteristic intermittency time, namely, the average duration of the laminar

phases in the intermittent time series, depends on the value of the control parameter a. In

tlre vicinity of the crisis point a¡y¡ç the aveïage time spent by a path in the neighborhood

of pre-crisis CA1 and CAz is very long (implying long memory), which decreases as ¿

moves away from a¡¿¡6r (implying shorter memory). The characteristic intermittency time

(denoted by r) can be calculated by averaging the duration of laminar phases related to

CA,rlC/r2 oveï a long time series. Figure 4'7 ts a plot of loglol versus logto(ø - auc),

where the solid iine with a slope 7 : -0.66 is a linear frt. The squares (circles) denote

the computed average time of the laminar phases related to CA1 (CAr). Note that circles

and squares coincide most of the time, as expected from the symmetry of CAr and CAz.

Figr-rre 4.2 reveais that the characteristic intermittency time r decreases with the distance

from the critical parameter, obeying a power-law scaling:

log,o( a

y - -0.66

o

t

t

/1D.t()



, - (o - oyc)-ouu' (4 3)

The scaling relation for the van der Pol model of the economic type-I intermittencv yields

a scaling exponent of -0.074 (chian et al. 2005a). comparing with equation (4'3)' we

see that the decrease of r with the distance from the critical parameter for the economic

crisis-induced intermittency is much faster than the economic type-I intermittencv'

4.4 Concluding Comments

Forecasting the evolution of the complex system dynamics is the ultimate goal in

economics. Chaos and nonlinear methods provide powerful tools to achieve this goai' For

example, Bajo-Rubio et al. (1992) detected a chaotic behavior on daily time series of the

spanish Peseta-u.s. dollar exchange rate which allows short-run predictions' soofr and

cao (1999) performed out-of-sample predictions on daily Peseta-u's dollar spot exchange

rates using a nonlinear cletenninistic techniqr-re of local linear predictor' Bordignon and

Lisi (2001) proposecl a m.ethocl to evaluate the prediction accuracy of chaotic time series

by means of prediction intervals and showed its effectiveness with data generated by a

chaotic economic model.

A nonlinear prediction method. being cleveloped in population dynamics, weather dy-

'amics 
and earthquake dynamics is based on attractor reconstruction in phase space using

the time series of observed clata (Drepper et al. 1994; Perez-Munuzuri and Gelpi 2000;

Konstantinou ancl Lin 2004). This technique may be applied to economic forecasting'

Information obtained from modeling intermittency of a complex economic system can

guide the analysis of the reconstructed attractor by providing identifiable and predictable

recurrent system patterns (Belaire-Franch 2004), and allowing the calculation of the char-

acteristic intermittency time for each recurrent pattern. In particular, the determination

of intermitte't f'eat*res in th.e modeled economic chaotic attractors, aided by the recog-

nition of regions of trigh predictability in trre chaotic attractors (Ziehmann et al' 2000),

ancl the calculation of the power-law scaling in the ìntermittent error dynamics (chu et

aL 2002) may reduce preciiction eIIoI and improve economic forecasting precision'

Economic forecasting relies on the agent's skiil to recognize the patterns of recurlence

in the past economic time series and to estimate the waiting time between bursts' Re-

curïence of unstable perioclic structures is a manifestation of the memoly dynamics of

complex economic systems. Dynamical systems approach provides efiective tools to iden-

tify the origin and nature of the recurrent patterns' In this chapter' we demonstrated how

economic intermittency is induced by an attractor merging crisis and how to recognize dif-
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ferent recurrent patterns in the intermittent time series of economic cycles by separating

them into iaminar (weakly chaotic) and bursty (strongly chaotic) phases. The characteris-

tic intermittency time given by the scaling relation, equation (4'3), can be used to predict

the turning points of regime switching from contractionary phases to expansionary phases

in economic cycles.

N4odeling of nonlinear economic dynamics enables us to obtain an in-depth knowl-

ed.ge of the nature of regime switching and memory, in particular, their relation with

each other. Econometric literatures on regime switching (Kirikos 2000; Bautista 2003;

Kholodilin 2003) and iong memory (Granger and Ding 1996; Resende and Teixeira 2002;

Gil-Alana 2004; Muckley 2004) have evolved ì.argely independently, as the two phenomena

appear distinct. Diebold and Inoue (2001) argued that regime switching and long mem-

ory ale intimately relatecl, which is in fact confirmed by our analysis' As an economic

system evolves, microeconomic and macroeconomic instabilities lead to a variety of global

and local bifurcations which in turn give rise to chaotic behaviors such as crisis-induced

and type-I intermittencies. The techniques developed in this chapter can be appli'ed to

investigate intermittency in more compiex economic models and to analyze other types of

economic intermittency such as intermittency driven by a boundary crisis or an interior

crisis, on-off intermittency, and noise-induced intermittency.
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CHAPTER 5

ATTRACTOR MERGING CRISIS IN NONLINEAR ECONOMIC CYCLES

In this chapter, a numericai study is performed on a forced-oscillator modeL of nonlinear

business cycles. In particr-rlat, an attractor merging crisis due to a giobal bifï'rcation

is analyzed r-ising the unstable periodic orbits and their associated stable and unstable

manifoids.CharacterizationofcrisiscanimproveouÏabilitytoforecastsuddenma.ìol

changes in economic sYstems'

5.1 Introduction

In recent years there is strong interest in the study of complex economic dynam-

ics such as chaotic business cycles (Gabisch ancl Lorenz 1987; Puu 1989; Lorenz 1989;

Gooclwin 1990; Gandolfo 1997). Br-rsiness cycies are fluctuations of macloeconomic vari- j

ables resulting from instabiiities in economic systems' Nonlinear evolution of economic 
i

instabilities reads to rarge-ampritude fluctuations of business cycres due to trajectories far- 
,

from-eqr-rilibrium. complex systems approach provides a powerful tool to monitor and 
I

forecast the nonlinear dyrramics of business cycles' For example' Mosekilde et al' 1992) j

studied the nonlinear mocle-interaction between long-term and short-term business cycles; 
I

in a moclel of the economic long wave (Kondratiev cycle) driven by a periodic external 
I

forcing representing short-term business cycles' they identified nonlinear phenomena such 
i

as mode-locking, co-existence of attractors, period-doubling route to chaos' intermittent j

route to chaos, and crisis. szydiowski, Krawiec and Tobola (2001) analyzed nonlinear i

oscirations in trre Kaldor-Karecki moder of business cycres with time iags in terms of

bifurcation theory, and confirmetl the existence of asymmetric cycles' Puu and sushko

(2004)employeclamultiplier-acceleratormodelofbusinesscycles,includingacubicnon-

linearity, to str.rdy a number of bifurcation sequences for attractors and their basins of

attraction.

Crisisisaglobalbifurcationresultingfromthecollisionofachaoticattractorwitha

mediating unstable periodic orbit or its associated stable manifold' (Grebogi' ott and York

1983; Grebogi et al. 1987; chian, Borotto and Remp eI2002; chian et aI' 2002; Borotto'

chian and Remp eI2004; Borotto et al' 2004) There are three types of crisis: boundary

crisis, interior crisis and attractor merging crisis' A boundary crisis leads to a sudden

appearance/disappealance of a chaotic attractor along with its basin of attraction' which

occlrrs whe' the mediating r-rnstable periodic orbit ries on the boundary between the basins
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of attraction of two attractors. An interior crisis leads to a sudden expansion/contraction

of the chaotic attractor, when the collision between the chaotic attractor and the medi-

ating unstable periodic orbit takes place in the interior of the basin of attraction of the

attractor. An attractor merging crisis appears in many systems with symmetries, whereby

two (or more) chaotic attractors merge to form a single chaotic attractor.

An interior crisis, with an abrr-rpt expansion of the chaotic attractor, was identified in

a nonlinear mod.el of economic long wave forced by a short-term business cycle (Mosekilde

Igg2). In this chapter, we show that an attractor merging crisis appears in a forced van

cler pol oscilLator model of nonlinear business cycles. The onset of an attractor merging

crisis is characterized r-rsing the tools of unstable periodic orbits and their associated stable

and unstable manifolds.

5.2 Nonlinear Model of Economic Cycles

We adopt the driven van der Pol (VDP) differential. equation to model the nonlinear

clynamics of business cycles uncler the action of a periodic exogenous force

ù+ ¡-t(r2 -I)rtr: osin(oú) (5 1)

The eqr-iiliÌ¡rium solution of the VDP equation reduces to a repelier fixed point located

at the origin (0, O) ln the phase space (r,d,rldt). In the absänce of exogenous forcing (a:

0), the asymptotic solution of equation (5.1) is a limit cycle surrounding the eqr-rilibrium

fixed point. I1 the presence of exogenous forcing, either periodic (orderly) or aperiodic

(clraotic) solutions appear when we va y any of three control parameters: a, u, ¡t. The

VDp equatiol (5.1) (when a:0) is invariant under the flip operation (r - -r). This

symmetry is a typical property of dynamical systems that exhibit attractor merging crises

(Grebogi et al. 1987).

5.3 Attractor Merging Crisis

In order to obtain a global view of the system dynamics, we construct a bifurcation

diagram from the numericai solutions of eqr-ration (5.1) by varying the control parameter

ø wirile keeping the other two control parameters fixed (Lt : l,u : 0.45). The Poincaré

plane is defined by

P : r(t) -- r(t + 7),

where T :2rlu is the driver Period

À-

(5 2)
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Figure 5.1: Bifurcation cliagra,m of r as a function of a for: (a) attractors Ar and As' (b)

attractors A2 and An. (") The maximum Lyapunov exponent À*o' as a function of ¿ for

either A1 or 42. MC denotes merging crisis; sNB denotes saddle-node bifurcation; the

dashed lines denote the mediating unstable periodic orbits of period-3 u) : 0'45', p': 1'

The bifurcation diagrams frgures 5.1(a)-5.1(b) display a periodic window in a cornplex

region where four d.ifferent attractots are found- The periodic window begins with a

saddle-node bifurcation (sNB) a,L û, :0.98312, where a pair of period-one (p1) stable

(solid tines) and urntable (not shown) periodic orbits is generated for attractor A1 (figure

b.l(a)) and attractor A2 (figure 5.1(b)), respectively; the periodic window ends with a

gtobal bifurcation due to an attractor merging crisis (MC) aL a¡aç: 0'98765, where the

two chaotic attractors cAr and cA2 combine to form a merged chaotic attractor (MCA)'

The rich dyna,rnical states disptayed by the bifurcation diagram indicate that a dynarnical

system is sensitively dependent on a small variation of its control parameters'

As we increase ¿ a,fter the saddle-node bifurcation (SNB), the stable periodic orbit

(SpO) of A1 (42) undergoes a cascade of perioùdoubling bifurcations leading to a chaotic

attractor CAl (CA2). Figure 5.1(a) (5.1(b)) shows that a second attractor At (44) coexists

with Ar (42), respectively, for a small range of tþe control parameter, between a' :

0.9g62400 and a : 0.gg640g5. Attractor As (Aa) is created by a saddle-node bifurcation,

where a pair of pB stable (sotid lines) and unstabte (dashed lines) periodic orbits is

generated. A3 and Aa are destroyed 
^t 

a:0.9864085 due to a boundary crisis (see e.g.,

A4

I

A2

I

MC

t
SNB

I

CHAOS

MC

I
SNB

I

ORDER
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Figure 5.2: (a) Basins of attraction at the crisis point a : 0.98765 for two co-existing

attractors A1 and Az; (b) and (c) are the enlargements of the rectangular regions ma¡ked

in (a); the gray regions denote the basins of attraction of 41, the white regions denote

the basins of attraction of 42.
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Figure 5.3: Poincaré maps of the pre-crisis chaotic attractors (CAr and CAz, dark lines)

at the crisis point ¿: 0.98765, and the post-crisis merged chaotic attractor (MCA, light

lines) at a:0.98766.

Chian, Borotto and Rempet 2002).

The corresponding behavior of the maximum Lyapunov exponent for either A1 or

42, calculated by the \Molf algorithm (Wolf 1985), is shown in figure 5.1(c). Figure 5.1

shows that there å,re many chaotic regions within a periodic window and there are many

periodic windows within a chaotic region, which indicates that in a complex dynarnical

system there is order within chaos and cha,os within order.

Multistability is a basic feature of complex dynamical systems whereby two or more

attractors can coexist for a given r¡alue of the control parameter. This is depicted by the

basins of attraction in figure 5.2, at the merging crisis point MC, where two attractors

A1 and A2 coexist- The set of initiat conditions in the gray region of the phase space

(r,drldt) will lead to A1, whereas the set of initiat conditions in the white region will

lead to Az, ffi cla¡ified in the enlarged plots, figures 5.2(b) and 5.2(c), respectively, of the

two rectangular regions marked in figure 5.2(a).

After the attractor merging crisis, the two pre-crisis cha,otic attractors (CA1 and CA2)

of figure 5.2(a) combine to form a merged chaotic attractor (MCA), as shown in frgure

5.3 in the Poinca¡é plane. The merged attractor after crisis is larger than the union of the
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Figr-rre b.4: Time series r(f) for: (a) chaotic attractor CAr at a : 0.98765, (b) chaotic

attractor CA2 at a : 0.98765, (") merged chaotic attractor MCA at' a :0'98766'

two attractors before crisis. Time series plots of the economic variable r(t) af pre-crisis

are given in figr,rre 5.a(a) for CA1 and figure 5.4(b) for CAz, respectively, and at post-crisis

(MCA) is given in figr-rre 5.a(c). The amplitudes of business cycle fluctuations after the

attracting merging crisis are much larger than before the crisis.

Unstable periodic orbit (UPO) plays a key role at the onset of attractor merging crisis.

We numerically determine UPO from the numerical solution of equation (5.1) using the

Newton algorithm. Analysis shows that the mediating p-3 unstable periodic orbits (M),

evolved from the saddLe-nocle bifurcations at the birth of A3 (Aa), are responsibLe for the

attractor merging crisis. The dashed lines in figures 5.1(a)-5.1(b) denote M. The phase

space trajectory of the two mediating UPOs that colLide with Ar (Ar), respectively, at

the crisis point MC are displayed in flgr,rre 5.5. Note that the two UPOs in fìgure 5.5 are

symmetric uncler refiection off r- and g- axis. This is a manifestation of the symmetry

property of the VDP eqr,ration (5.i).

Characteriza¡ion of crisis in economic clynamics can be performed using the Poincaré

a = 0.98765
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Figure 5.5: Phase spaße trajectories, at the crisis point a : 0.98765, of the two mediating

unstable periodic orbits of period-3 responsible for attractor merging crisis of: (a) 4,, (b)

Az.

method. On the Poincaré plane, an UPO transforrns into a saddle fixed point with its

associated stable and unstable manifolds. Figure 5.6 displays the dynamical states of

chaotic business cycles on the Poincaré plane in the vicinity of A1 (same region as figure

5.2(b)) before (figure 5.6(a)),, at (figure 5.6(b)), and after (figure 5.6(c)) the onset of

attractor merging crisis, respectively. The crosses denote the three fixed points of the

p3 mediating saddle. The dark lines (and points) denote the chaotic attractor, and the

light lines in figures 5.6(a)-5.6(c) denote the numerically computed stable manifolds of

the mediating saddle. Evidently, figure 5.6(b) demonstrates the head-one collision, at

the crisis point MC, of the chaotic attractor with the mediating saddle and its stable

manifolds. This collision leads to the formation of a merged chaotic attractor, seen in

figure 5.6(c).

Figures 5.6(d)-(f) displays the sa¡ne system dynamics of figure 5.6(a)-(c), with the

stable manifolds replaced by the numerically computed unstable manifolds (UM) of the

mediating saddle. Our numerical calculations render support to the conjecture of Pa,rker

and Chua (Parker 1989) and Ott (Ott 1993) that a chaotic attractor contains the unstable

manifolds of every UPO of the chaotic attractor. Figure 5.6(f) demonstrates that the post-

crisis chaotic attractor in fact coincides with the closure of the unstable manifolds of the

mediating saddle. Although we only show the dynamical states of Ar in figure 5.6, the

same behavior also applies to A2 due to the symmetry of the VDP system.

Exa,mination of figure 5-2 shows that at the onset of attractor merging crisis, the

attractors collide head-on with the boundary of the basins of attraction that separate

attractors Ar a¡rd 42. This boundary coincides with the stable manifolds of the mediating

-3 3-33 -3

)cx
1
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Figure 5.6: Poincaré map in the vicinity of CA1 (same region as Fig. 5.2(b)). (a) and (d):

before crisis (o: 0.9873), (b) and (e): at crisis (a: 0.98765), and (c) and (f): after crisis

(ø : 0.98766). The crosses denote the Poincaré points of the mediating unstable periodic

orbit of period-3; the dark lines (dark points) denote the chaotic attractors (CA1 and

MCA); the light lines denote the stable/unstable manifolds (SM/UM) of the mediating

saddle.
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Figr-rre 5.7: crisis diagram depicting the system dynamics as the control parameter ø

varies. Saddle-node bifurcations (SNB) occul at a certain value of o, creating two co-

existing attractors (A1 ancl A2), which via a cascade of period-doubling bifurcations evolve

into two chaotic attractors (cA1 and cAz). At the crisis point (MC), CAt and CAz collide

head-on with the mediating unstable periodic orbits (M1 and M2), respectively, Ieading

to the onset of attracting merging crisis (MC) and the formation of a merged chaotic

attractor (lvICA).

saddle, as demonstratecl by figure 5.2(b) and 5'6(b)' Hence, figure 5'2 and 5'6 provide

two alternative ways of characterizing the onset of attractor merging crisis'

5.4 Concluding Comments

This chapter shows that ch.aotic transitions such as the attractor merging crisis is

a fundamental f'eature of nonlinear business cycles. The crisis diagram for the attractor

merging crisis studied is given in figure 5.7, which summarizes the system dynamics leading

to the onset of crisis. Matirematical modeling of crisis can deepen our understanding of

sudden major changes of economic variables often encountered in business cycles' The

techniques developed in this chapter for crisis characterization (e.g., frgures 5'2 and 5'6)

can contribute to improve the prediction of the onset of abrupt major changes in business

cycles as well as other economic systems'

Attractor merging crisis appears in systems with symmetry such as equation (5'1)'

Ttris type of crisis is absent when the system symmetry is broken' Howevet, other types of

crisis phenomena such as boundary crisis (chian, Borotto and Rempel 2002) and interior

crisis (Borotto, Chian and Rempel 2004) can be found in asymmetric systems such as the

asymmetric van der Pol equation (Engelbrecht and Kongas 1995), and are in fact present
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in the solutions of equation (5.1). The techniques developed in this chapter can be readily

appl,ied to characterize bonndary and interior crises. Hence, crises and global bifurcations

are ubiquitous in either symmetric or asymmetric nonlinear economic systems.
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CHAPTER 6

CHAOTIC TRANSIENTS IN NONLINEAR ECONOMIC CYCLES

6.1 Introduction

In chapter 2, we showed that a nonlinear economic system is intrinsically unstable; as

the endogenous or exogenous parameters are varied, the system undergoes a variety of

local and globaì. bifurcations such as saddle-node bifurcation and attractor merging crisis,

seen in the periodic window in figure 2.5. Chapter 3 showed that saddle-node bifurcation

is a route from order to chaos, leading to a chaotic dynamical behavior known as type-I

intermittency. Chapter b analyzed an attractor merging crisis in chaotic business cycles

which jeads to a transition from weak chaos to strong chaos; the strong chaos exhibits a

dynamical behavior known as crisis-induced intermittency' as seen in chapter 4. In this

chapter, we will study the roLes of unstable periodic orbits and chaotic saddles in type-

I intermittency and crisis-induced intermittency in complex economic systems (Chian,

Rempei and Rogers 2005b), based on the forced van der Pol oscillator model of nonlinear

economic cycles

ù + ¡t(r2 - 7), I r : asin(øf) (6 1)

6.2 Chaotic Saddle

Ciraotic sets are not necessarily attracting sets. A set of unstable periodic orbits

can be chaotic and nonattracting so that the orbits in the neighborhood of this set are

eventually repelled from it; nonetheless, this set can contain a chaotic orbit with at least

one positive Lyapunov exponent (Nusse and York 19s9). If the chaotic orbit has also

one negative Lyapr-rnov exponent the nonattracting set is known as chaotic saddle. Both

chaotic saddles and chaotic attractors are composed of unstable periodic orbits'

Figure 6.1(a) shows a bifurcation diagram for both attractors (dark) and chaotic sad-

dles (gray) for a periodic window (same as figure 2.5(a)), where we plot 'i: as a function of

the amplitud.e a of the exogenous forcing while keeping other control parameters constant

0-r:7 and ø : 0.45). As seen in chapter 2, within this periodic window, two ot more

attractors can coexist. To plot the chaotic saddle, for each value of the control para-

menter a, .we plot a straddle trajectory close to the chaotic saddle using the PIM triple

algorithm (Nusse and Yorlce 1989, Rempel et aI. 2004a,b). The periodic window in figure

6.1(a) begins with a saddle-node bifurcation (SNB) at a5¡¡s: 0.98312, where a pair of
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Figure 6.1: Chaotic saddle in bifurcation diagram. (a) Bifurcation diagram, i; as a function

of a, for attractors (dark) Ao, At, Az, As and Aa, and the sunounding chaotic saddle SCS

(Sruy); (b) biturcation diagranr of (a) and the band chaotic saddle BCS (gray). SNB

denotes saddle-node bifurcation, MC denotes attractor merging crisis.

period-l stable and unstable periodic orbits for each attractor (41 and A2) is created,

respectively. As we increase a, the pair of period-l stable periodic orbits undergoes a

cascade of periodic-doubling bifurcations which leads to the formation of a pair of weakly

chaotic attractors localized in two separate bands in the bifurcation diagra,rr. We call the

region of the phase space occupied by the attractor throughout the periodic window the

band region, and the region occupied by the cha,otic sarldle, the surrouuding region (Szabó

et al. 2000). Tbajectories started in the surrounding region usually behave chaotically for

a finite transient time while traversing in the vicinity of the surrounding chaotic saddle

(SCS), after which they converge to the attractor. The transient time is related to the

structure of SCS and its manifolds. Like a saddle point, chaotic saddles possess a stable

and an unstable manifold. The stable manifold of a chaotic saddle is the sets of points that

converge to the chaotic saddle in forward time, and the unstable manifold is the sets of

points that converge to the chaotic saddle in the time reverse dynamics (Nusse and Yorke

1989). Initial conditions close to the stable manifold are first attracted to SCS and stay

close to its neighborhood for sometime, before they are repelled by its unstable manifold.

The closer a¡r initial condition is to the stable manifold, the longer its transient time.

Note from the bifurcation diagram in figure 6.1(a) that as the control parameter a varies,

the dyna.rnics of the surrounding cha,otic saddle also undergoes considerable changes.

The end of the periodic window in flgure 6.1(a) is marked by an attractor merging

crisis (MC) at a¡as: 0.98765, where the two banded weakly chaotic attractors merge to

form a strongly chaotic attractor. Figure 6-1(a) shows that for a small range of the control

parameter, between ¿: 0.9862400 and 0.9864085, attractors As and Aa coexist with A1

SNB

I
MC

I

BCSr

A,
I.

BCS21

A2

itl



and 42. Attractors A3 ancl Aa are created by a saddle-node bifurcation at a:0.9862400,

where a pafu of period-3 stable and unstable periodic orbits are generated. A3 and Aa

aïe destroyed by a boundary crisis at e, :0.9864085. We will demonstrate later that the

attractor meïging crisis (ivIC) at ø : 0.98765 arises from the coilision of the two banded

weakly chaotic attractors with the pair of period-3 mediating unstable periodic orbits

createcl at ù : 0.9862400. Right after tire attractor merging crisis, the pair of weakly

chaotic attractors lose their asymptotic stability and are converted into a pair of chaotic

saddles in the band regions, as shown in figure 6.1(b). It is worth pointing out that,

aithor-rgh in fig¡re 6.i(a) we plot the surrounding chaotic saddle only inside the periodic

window, it is actually present throughout the whole bifurcation diagram. In the chaotic

regions beyonci SNB and tvIC, the chaotic saddles are embedded in the chaotic attractor

Ao.

6.3 Chaotic Tlansient

Figr-rre 6.2(a) shows the Poincaré map of the surrounding chaotic saddle SCS (gray)

obtained. by the PIM triple algorithms (Nr-rsse and Yorke 1989, Rempel et al' 2004a,b)

in the beginning of the periodic window, superposed by the pair of period-1 periodic

attractors A1 and A2 (cross) at, as¡¡p : 0.98312. Figures 6.2(b) and 6.2(c) display the

lnstable and stable manifolds, respectively, of the surrounding chaotic saddle of figure

6.2(a), founcl by the sprinkler algorithm (Kantz and Grassberger 1985, Hsu, Ott and

Grebogi 1988, Rempel et al. 2004a,b). Figures 6.1(a) and 6.1(b) show that the chaotic

saddles have gaps which reflect the fractal structure of a chaotic saddle along its unstable

clirection. The presence of gaps in the chaotic saddle can be seen in figure 6.2(a). It folLows

from figure 6.2 thal a chaotic saddle is formed by the intersection of its stabLe and unstable

manifolds. The empty space between the intersection points along the unstable direction

is the origin of the gaps in the chaotic saddle. Inside the periodic window the gaps of the

chaotic saddle are empty in the sense that they do not contain unstable periodic orbits,

only nonrecurrent points whose orbits converge very quickly to the small neighborhood of

the period-l attractors (Robert et al. 2000). Figure 6.3 shows examples of the time series

of the trajectory at as¡¿6 : 0.98312. For an arbitrary initial condition, the trajectory

stays a finite transient period in the neighborhood of the surrounding chaotic saddle SCS

until it converges to either of the period-1 period.ic attractor A1 (figures 6'3(a) and 6'3(b))

or A2 (figures 6.3(c) and 6.3(d)) at the time indicated by the arrow, depending on the

initiai condition. Thus, inside the periodic window the surrounding chaotic saddle plays

the role of chaotic transient motion before converging to the attractor'
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Figure 6.2: Poincaré maps of chaotic saddle leading to periodic attractor. (a) Poincaré

map of the surrounding chaotic saddle (St"y) and the pair of period-l fixed-points{eross) -

.4r and Az fot ¿ : 0.98312, (b) the unstable manifold (UM) of the sulrounding chaotic

saddle, (c) the stable manífold (gt*y) of the surrounding chaotic saddle.
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Figr-rre 6.3: Time series of chaotic transient leading to periodic attractor.(a) Time seties,

r as a function of ú, of a chaotic transient (SCS) that converges to a periodic time series

of period-1 attractor A1 f.or a : 0.98312 aïter the time indicated by the arrow; (b) the

same time series of (a) plotted as a function of the driver cycles; (c) time series of a

chaotic transient (SCS) that converges to a periodic time series of period-1 attractor A2

for ø : 0.98312 after the time indicated by the arrow; (d) the same time series of (c)

plotted as a function of the driver cycles.
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Figure 6.4(a) shows the Poincaré map of the surrounding chaotic saddle SCS (gray)

obtained. at the end of the periodic window, superposed by the pair of weakly chaotic

attractors CA1 and CA2 (black) aL a¡y¡ç: 0.98765. Figures 6.4(b) and 6.4(c) dispLay the

unstabLe and stable manifolds, respectively, of the surrounding chaotic saddle of figure

6.a(a). Figure 6.5 shows examples of the time series of the trajectory at a¡¡¡s:0.98765.

For an arbitrary initial condition, the trajectory stays a finite transient period in the

neighborhood of the surrounding chaotic saddle SCS until it converges to either of the

weakly chaotic attractor CA1 (figures 6.5(a) and 6.5(b)) or CA2 (figures 6.5(c) and 6.5(d))

at the time indicatecl by the arrow, depending on the initial condition' This confirms the

results of figures 6.2 and.6.3 that inside the periodic window the surrounding chaotic

saddle plays the role of chaotic transient motion before approaching an attractor.

6.4 Unstable Structures in Type-I Intermittency

Next let's turn our attention to the role of chaotic saddles in the chaotic regions of

frgure 6.1. As shown by chapter 3, the chaotic attractor prior to the onset of the saddle-

nocle bifurcation, to the left of asNB:0.98312 in figure 6.1, exhibits type-I intermittency

whereby the time series of economic variables switch episodically back and forth between

periods of apparently periodic and bursting chaotic fluctuations, exemplified in flgure

6.6(a); the corresponding power spectrum has a power-law behavior at high-frequencies

as shown in figure 6.6(b), typical of real intermittent financial data'

We saw in figure 6.2(a) that at the onset of saddle-node bifurcation at asNB :0.98312

there is a surrouncling chaotic saddle (SCS) which represents the chaotic transient preced-

ing convergence to the period.l periodic attractors A1 and Az. Note that there are gaps

in the surrounding chaotic saddle in figure 6.2(a). As the system undergoes a transition

from order to chaos via a saddle-node bifurcation, the surrounding chaotic saddLe (SCS) is

converted into a chaotic attractor (CA) as shown in the Poincaré map in figure 6'7(a) for

ø: 0.g8311, where we also plotted the fixecl points (cross) of the pair of period-l unstable

periodic orbits (M) createcl by the saddle-node bifurcation at asNB :0.98312. Since the

unstable periodic orbits are robust, all the unstable periodic orbits (with the exception of

IVI) containecl in the surrounding chaotic saddle after the saddle-node bifurcation (figure

6.2(a)) continue to exist in the chaotic region beyond the saddle-node bifurcation (to the

left of øs¡,rs). Thus, the surrounding chaotic saddle is embedded in the chaotic attractor

of figure 6.7(a), as shown in figr:.re 6.7(b). An enlargement of the rectangular regions

of figure 6.7(b) is given in figures 6.7(c) and 6.7(d), respectively. Although the pair of

period-1 saddle points (iVI) appear only after the saddle-node bifurcation, the system
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keeps the memory of these saddle points even prior to the occurrence of the saddle-node

bifurcation. When an unstable periodic orbit, fiom either the surrounding chaotic saddle

or the gap regions in fi.gure 6.7(b), approaches the vicinity of the iocation of these saddle

points (cross), it is decelerated and spends more time in the regions shown in fìgures

6.7(c) and 6.7(d). In other words, all orbits of the chaotic attractor mimic (synchronize

with) these period-l unstable periodic orbits (M) when they come to their neighborhood

(Kaplan 1993). This is the origin of the laminar phases seen in type-I intermittency of fig-

r,rre 6.6(a), which can also be explained in terms of phase synchronization of the unstable

periodic orbits (Pikovskyet al. 1997,Paao, Zaks and Kurths 2003, Pikovsky, Rosenblum

and Kurths 2003, ). When a chaotic orbit moves away from the regions shown in figures

6.7(c) and 6.7(d), the orbit becomes desyncirronized with respect to the unstable periodic

orbit (M) created by the saddle-node bitirrcation, which is manifested by the bursting

pl-rases in type-I intermittency of frgure 6.6(a).

6.5 Attractor Merging Crisis

We str-rdy next what happens to the chaotic attractors at the end of the periodic

window at a¡7¡ç : 0.98765. Chapter 5 showed that at o,¡¡s àn attractor merging crisis

occurs due to the collision of two coexisting weakly chaotic attractors CA1 and CAz with

a pair of mecliating unstable periodic orbits of period-3 and their associated manifold,

which coincides with the boundary of the basins of attraction dividing the two weakly

chaotic attractors. As the result of this crisis, two small chaotic attractors combine to

form a single large chaotic attractor to the righl of. a¡¡ç. Figures 6.8(a) and 6.8(b) are

the enlargements, respectively, of the two rectangular regions of figure 6.4(a), showing the

surrounding chaotic saddle SCS (black) and its stable manifold (the gray regions), the

pair of weakly chaotic attractors CI-1lCA,2 (thin line), and the pair of period-3 mediating

sadclles (cross). The stable manifold of the mediating saddle is indicated by the dashed

lines which separates the surrounding region occupied by the surrounding chaotic saddle

from the band region occupied by the weakly chaotic attractors. Figure 6.8 reveals that

at the onset of crisis, a ciraotic attractor-chaotic saddle collision takes place whereby

the chaotic attractor collides with the stable manifolds of both the mediating period-3

periodic saddle and the surrounding chaotic saddle.

6.6 Unstable Structures in Crisis-Induced Intermittency

As the result of the chaotic attractor-chaotic saddle collision at the onset of the attrac-

tor merging crisis, for ø greater than a¡y¡s,l,he two banded pre-crisis chaotic attractors
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Figure 6.8: Attractor merging crisis. Chaotic attractor chaotic saddle collision at the

attractor merging crisis for a:0.98765. (a) Poincar maps of the weak chaotic attractor

WCAI (thin line), the surrounding chaotic saddle SCS (black), the stable manifold of

SCS (gray), the mediating period-3 saddle (cross) and its associated stable manifold

SM (dashed line); (b) Poincar maps of the weak chaotic attractor WCA2 (thin line),

the surrounding chaotic saddle SCS (dark line), the stable manifold of SCS (gray), the

mediating period-3 saddle (cross) and its associated stable manifold SM (dashed line).

(a) and (b) correspond to the two rectangula,r regions indicated in figure lz(a).
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Poincaré map of the merged chaotic attractor (MCA) at o, : 0.9877; (b) and (c) are

enlargements of the two rectangular regions indicated in (a) showing the merged chaotic

attractor (MCA), the period-3 mediating saddle (cross) and its associated stable mani-

fold (SM); (d) Poincar maps of the surrounding chaotic saddle SCS (graÐ and the pair

of banded chaotic saddles BCSr and BCSz (black) a,t a:0.9877; (e) and (f) a,re enlarg+

ments of the two rectangular regions indicated in (d) showing the surrounding chaotic

saddle (SCS), the banded chaotic saddles BCü/BCS2, the period-3 mediating saddle

(cross) and its associated stable manifold (SM).
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CA1 and CAz in figure 6.4(a) merge to form a singie large chaotic attractor (MCA), as

shown in figure 6.9(a), for a : 0.9877. An enlargement of the two rectangular regions

of figure 6.9(a) in the vicinities of the regions previously occupied by cA1 and cA2 are

piotted in figures 6.9(b) and 6.9(c), respectively, where we also plotted the saddle points

of the mediating period-3 unstable periodic orbits (cross) and their stable manifold SM

(thin line). Tire numericaily determined su.rrounding (SCS) and banded (BCS1 and BCSz)

crraotic saddles wrrich are embedded in trre merged chaotic attractor of figure 6.9(a) are

plotted in figr-rre 6.9(d). An enlargement of the two rectangular regions of figure 6'9(d)'

corresponding to the same regions covered by figures 6.9(b) and 6'9(c), is given in figures

6.9(e) and 6.9(f), respectively, where we also plotted the mediating saddle (cross) and

its stable manifold sM (thin line). The stable manifold (SM) of the mediating saddle

divictes the merged chaotic attractor into the band region and the surrounding region'

This division can be used to guide the numerical finding of the post-crisis chaotic saddles

in the band and surrouncling regions, respectively (Rempel et al' 2004a,b)' It is evident

from flgure 6.9 that the banded chaotic saddles BCS1 and Bcsz (black) are located in

the band regions previor-rsly occupied by the pre-crisis weakly ch'aotic attractors, since

tlrey are in fact converted from these two banded chaotic attractors at' a¡v¡6' BCSr and

BCS2 are founcl by a stracldle orbit that never leaves the banded regions. Similarlv, the

surrounding ciraotic saddle scs (gray) is found by a straddle orbit that never enters the

band regions.

It follows from the previous analysis that two nonattracting sets consisted of the

surro*nding chaotic saddle (SCS) and a pair of banded chaotic saddles (BCSr ancl BCSz)

are embedded in the post-crisis merged chaotic attractor (MCA), as shown in figr-rre

6.g(d). Actually, th.e merged chaotic attractor is larger than the union of the surrounding

and banded chaotic saddles, since the gaps in the post-crisis chaotic saddles indicated in

figures 6.9(d), 6.9(e) and 6.9(f) are not empty. They are densely filted by uncountably

many unstable periodic orbits created by an explosion right after the onset of attractor

merging crisis (Szabó et al 2000, Robert et al. 2000). This set of unstable periodic

orbits within gaps, called cor,ipling orbits with components in both band and surrounding

regions, are responsibie for the cor-rpling between these two regions. Before crisis, for a less

Lhan a¡,¡ç, trajectories on the banded chaotic attractor nevel abandon the band region'

For a stightly greater trhan a¡y1ç a trajectory started in the band region can stay in that

region for a finite duration of time, after which it crosses the stabie manifold (SM) and

escapes into the surrounding region. once inside the surrounding region, the trajectory

moves to the neighborhoocl of the surrounding chaotic saddle (scs)' After some time,
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series of crisis-induced intermittency, :b as a function of time ú, for a : 0'9877; (b) the

po\Mer spectrum, lrl2 as a function of the fiequency /, of the time series of (a)'

the trajectory is injected back to the band region. This process of switching between the

band and surrounding regions repeats intermittently. Hence, the coupling orbits located

in the gaps of both ban<led and surrounding chaotic saddles link the trajectory from one

region to the other; in principle, each switching may involve different. coupling orbits'

Right after crisis, the cor-rpling orbits created by the explosion have very long period with

th.e period approaching infinity as ø --+ o,¡4ç from above (Szabó et al' 2000)' In that

case, it is more diffi,cult to numericalty find a coupling orbit' However, as the control

pararneter ø is increased further away from the crisis point a¡v¡ç, shotler coupling orbits

are created. Figr-rres 6.10(a) and 6.10(b) show a pair of period-13 coupling unstable

periodic orbits numerically found in the same regions of figures 6.9(e) and 6'9(f) using

tlre Newton algorithm (Curry 1979, Rempel et al. 2004a). Note that in flgure 6'10 the

poincaré points of tire coupling unstable perioclic orbits are in fact located in the gaps of

both bandeci and surrounding chaotic saddles'

Figure 6.11(a) shows the time series of crisis-induced intermittency) corresponding to

the same control parameter of figr-rres 6.9 and 6.10. This time series alternates episodically

between the laminar periods associated. with the two banded chaotic saddles and the

bursting periods associateci with the surrounding chaotic saddle' The transition between

the laminar and bursting periods is linked by the coupling unstable periodic orbits' The

power spectrum corresponding to figure 6.11(a) is given in figure 6'i1(b), which exhibits

power-law behavior at high freqr.rencies, typical of real intermittent financial data'

6.7 Concluding Comments

we demonstrated in this chapter that a chaotic economic system is composed of chaotic

sacl.dles ancl unstable periodic orbits situated within the gaps of chaotic saddles' These

u = 0.9877
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unstable structures are the origin of intermittency in nonlinear economic models. In

type-I economic intermittency, the laminar phases associated with low-level fluctuations

of economic variables is a result of a phase synchronization of a chaotic orbit with the

unstable periodic orbit created at the saddle-node bifurcation, vrhereas the bursting phases

related to high-levei fluctuations of economic variables is an indication that a chaotic

orbit is far away from the unstable periodic orbit created at the saddle-node bifurcation.

We showed that the attractor merging crisis in complex economic systems is due to a

chaotic attractor-chaotic saddle collision, whereby two weakly chaotic attractors combine

to form a large chaotic attractor. After the crisis, the pair of pre-crisis weakly chaotic

attractors are converted into a pair of banded chaotic saddles. The post-crisis chaotic

attractor is composed of the surrounding chaotic saddle, two banded chaotic saddles

and cor-rpling r-rnstable periodic orbits in the gap regions which act as the link between

the surrounding chaotic sad.die and the banded chaotic saddles. In the time series of

crisis-induced intermittency seen in figure 6.11(a), the laminar phases indicate that a

chaotic orbit is in the region of the banded chaotic saddles, whereas the bursting phases

indicate that a chaotic orbit is in the region of the surrounding chaotic saddle; the laminar

ancl bursting phases aïe connected by the coupling unstable periodic orbits which have

components in the gap regions of both surrounding chaotic saddle and banded chaotic

saddles. Characteristic intermittency time, which measures the average duration of the

laminar phases of either type-I or crisis-induced economic intermittency, can be calculated

from the numerically simr,rJ.ated time series. This result can be useful for forecasting the

turning point from bust to boom phases in business cycles'
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CHAPTER 7

CONCLUSION

in this thesis, we adoptecl a forced oscillator model of nonlinear economic cycles as a

prototype to modei the fundamental dynamical behaviors of a complex economic svstem,

which exhibits multistability (coexistence of attractors), multiscale (power-law depen-

dence on frequency), and coexistence of regularity and irregularity (order and chaos)'

It is important to point out that although we have selected the van der Pol model for

its mathematical simplicity and its wide interest in economics, in view of the universal

mathematical properties of nonlinear dynamical systems, the dynamical characteristics in-

vestigated in this si¡rple model is actually applicable to other more sophisticated economic

scenarios. We succeecled in characterizing the anatomy of a complex economic system by

classifying its structure and dynamics. In terms of the system structure' our analysis

shows that a complex economic system is composed of a hierarchy of stable and unstable

structures, namely, stable and unstable manifolds of a fixed point in the state space and in

tire Poincaré section, stable and unstable periodic orbits, stable and unstable manifolds

of a chaotic saddle, stable (periodic) and unstable (chaotic) attractors. In particular,

we showed that unstable periodic orbits are the building blocks of chaotic saddles and

chaotic attractors; moreover) chaotic sacldles are embedded in a chaotic attractor and are

responsible for the transient motion preceding the convergence to an attractor (periodic

or chaotic). In terms of the system dynamics our results show that, as the control pala-

meters are varied, a complex economic system undergoes a variety of dynamic transitions

which change its stability properties, namely, local bifurcations such as period-doubling

bifurcation, sad.dle-node bifurcation and Hopf-bifurcation, and global bifurcations such as

bor-rndary crisis, interior crisis and attractor merging crisis'

Economic systems are unstable by natr-rre, dominated by instabilities driven by both

endogenous and exogenous forces. This very unstable nature of economic dynamics is

clearly manifested by the unstable structures, such as unstable periodic orbits and chaotic

saddles, inirerent in chaotic economic systems. Recently, there is a sulge of interest on the

relevance of these unstable structures in economic dynamics' Lotenz and Nusse (2002)

reconsidered the Goodwin's nonlinear accelerator model with periodic investment outlays

and used it as an economic example of the emelgence of complex motion in nonlinear

dynamicai systems. They showed that in addition to chaotic attractors, this model can
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possess coexisting attracting periodic orbits or simple attractors, which imply the emer-

gence of transient chaotic motion (chaotic saddles). They applied straddle methods to

numerically analyze this model in order to detect compact invariant sets which are re-

sponsible for the complexity of the transient motion, and concluded that chaotic saddles

are prevalent in nonlinear economic models. Ishiyama and Saiki (2005) numerically found

many unstable periodic orbits embedded in a chaotic attractor in a Keynes-Goodwin type

of macroeconomic growth cycle model of two countries with different flscal policies. These

unstabLe periodic orbits not only look similar in shape to the chaotic attractor, there is a

correspondence between the unstable periodic orbits and the chaotic attractor in terms of

their statisticaL properties such as means) variances, Lyapunov exponents and probability

density functions. Each value related to labor share tates, employment ratios, expected

inflation rates and the instability of the chaotic attractor is almost the same as those of

the unstable periodic orbits. Their results indicate that both statistical and dynamical

features of a chaotic attractor in complex economic systems are captured by just a few

unstabLe periodic orbits, in agreement with the periodic orbit theory of dynamical systems

of Auerbach et al. (1937) and Cvitanovic (1988). This thesis renders strong support for

the conclusions, that unstable periodic orbits and chaotic saddles are essential elements

of complex economic systems, of Lorenz and Nusse (2002) and Ishiyama and Saiki (2005).

We demonstrated that intermittency is an intrinsic behavior of a chaotic economic

system by analyzing in detail two exampies of economic intermittency due to a local or

a global bifurcation, namely, type-I intermittency and crisis-induced intermittency, re-

spectively. The former is generated by a saddle-node bifurcation, the latter is generated

by a crisis phenomenon such as the attractor merging crisis. In type-I intermittency' an

economic system is capable of keeping the memory of its ordered dynamics before the

transition to chaos; the time series of economic variables alternates between periods of

seemingly periodic and chaotic fluctuations. In crisis-induced intermittency, an economic

system is able to maintain the memory of its weakly chaotic dynamics before the tran-

sition to strong chaos; the time series of economic variables alternates between periods

of weakly and strongly chaotic fluctuations. These two examples of chaos-driven inter-

mittency can reproduce a number of patterns, namely, persistence) recurrence) memory)

regime switching and volatility clustering, which are present in the intermittent time series

observed in business cycles and financial markets (Diebotd and Rudebusch 1999). The

robustness of the unstable periodic orbits which form the skeleton of chaotic attractors

and chaotic saddles can explain persistence) recLtrrence and memory patterns in business

and financial cycles. The episodic switching between different dynamic states of an inter-
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mittent chaotic system can explain regime switching observed in economic and flnancial

time series. The phase synchronization of unstable periodic orbits can be responsible

for the spikes in the turbulent bursts as well as the quiescent phases in the time series,

thus providing an explanation for the volatility clustering in financial data. Hence, the

techniques developed in this paper for characterizing the complex dynamics of economic

systems can become powerful tools for pattern recognition and forecasting of business

and financial cycles. For example, the anticipation of the tr-rrning points is fundamental

for forecasting br-rsiness-cycle recessions and recoveries for countries showing asymmetric

cycle durations (Garcia-Ferrer and Queralt 1998). Modeling of intermittency in nonLinear

economic cycles can provide an estimate of the average duration of the contractionary

phases of economic cycles and predict the turning points to expansionary phases. The

classical NBER model of leading economic indicators was built solely within a linear

framework which is inadequate for predicting the complex behavior of business cycles. By

combining the complex system approach (sr-rch as chaotic theory developed in this paper)

and the inteliigent system approach (sr,rch as neural network), a superior performance for

forecasting business cycle can be obtained relative to the classical model (Jagric 2003).

The techniques developed in this thesis can be readily appiied to the str-rdy of chaos

and complexity in management systems such as logistics and supply chain management

(lVlosekilde and Larsen 1988, Sosnovtseva and Mosekilde 1997), organizational dynamics

and strategic management (Senge 1990, Stacey 2000), public policy and public admin-

istration (Kiel 1994). In fact, economic dynamics is a resuLt of complex interactions of

economical, political, social, climate, environmental. and technological systems. For exam-

ple, Berry (2000) performed an eigenanalysis of macroeconomic rhythms in the inflation

rate and the rate of economic growth for the United States from 1790 to 1995, and ob-

tained strong evidence of mode-locking of (Kondratieff) long waves by geophysical cycles;

he suggested that a geophysical pacemaker may control the periodic appearance of long-

wave crises, which leads to the clustering of innovations that drive successive surge of

technological change. Nonlinear models of solar cycles, ciimate, and ecological systems

indicate that theses natural systems exhibit chaotic behaviors. Chian et al. (2003) showed

that the dynamical systems approach is a powerful tool to model the complex dynamics

of space environment and the solar-terrestrial relation which have great impact on the

climate, technology and environment. Sandor, Walsh and Marques (2002) discussed the

rationale and objectives for pilot greenhouse-gas-trading markets, such as the Chicago

Climate Exchange, now under development around the worì.d; these markets represent an

initial step in resolving a lirnclamental problem in defining and implementing appropriate
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policy actions to address climate change. Numerical modeling based on complex systems

approach may be useful for the development of these emissions-trading markets, by as-

sisting the society to understand better the complex coupled energy-climate-environment

system and assist the policymakers to identify and implement optimal policies for man-

aging the risks related to climate change.

The sensitive dependence of a dynamical system on small variations of its parameters

can be used to control the chaotic behavior of a system by applying a small pertr-rrbation

(Ott, Grebogi and Yorl<e 1990), which can be useful for stabilizing economic systerrs and

optimizing management policies. This idea is based on the fact that a chaotic attractor

has embedded in it an infinite number of unstable periodic orbits, which provides the

flexibility to choose the most clesirable periodic orbit whereby a chaotic system can be

stabilized by introducing a small perturbation to convert it from an unstable periodic orbit

to a stable periodic orbit. Lai and Grebogi (1994) showed that chaotic transient can be

converted into sustained chaos by feedback control. There is evidence of chaos control in

laboratory and numerical experiments. For example, Schief et al. (1994) applied the chaos

method to control the brain dynamics and succeeded to increase the periodicity of the in

vitro neuronal population behavior and showed that the neuronal systems can be made

less periodic by applying chaos anticontroi techniques. Lopes and Chian (1996) showed

that chaos in a coupled three-wave systerr, resulting from period-doubling bifurcations

and type-I intermittency, can be controlled by applying a small wave with appropriate

amplitr-rde and phase. Kopel (1997) used a model of evolutionary market to show how

firms can improve their performance in terms of profits if the decision makers of the firms

apply the targeting method to switch from a chaotic evolution to a desired regular path.

Kaas (1998) used the chaos control techniqr-re to show that the government can in prin-

ciple stabilize an unstable Walrasian equilibrium in a short time by varying income tax

rates or government expenditr,rres. Rosser (2001) suggested that chaotic dynamics may

actr-rally be a desirable outcome for the sustainability of global complex ecologic-economic

systems affected by climate change, as Long as the policy agents are able to implement en-

vironmental policies that keep the system dynamics within sustainable levels by directing

the management efforts at the appropriate levels of ecologic-economic interactions.

In this thesis, we only considered economic systems which are of low-dimension and

varying only in time, described by ordinary differential equations. In many areas of

economics and management, we must deal with dynamical systems which are of high-

dimension and varying both in space and time. For example, in a study of fishery man-

agement of a lake district, Carpenter and Brock (2004) concluded that because of the
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complex interactions of mobile people and multistabl.e ecosystems, optimal poiicies and

management regimes will be highly heterogeneous in space and fluid in time. Some recent

papers have demonstrated that nonlinear pirenomena such as chaotic saddles, crisis, type-

I intermittency and crisis-induced intermittency, observed in low-dimensional dynamical

systems appear also in high-dimensional spatiotemporal dynamical systems (Chian et al.

2002,2003, He anrl Chian 2003,2004, Rempel et al. 2004b, Rempel and Chian 2005).

Hence, the techniques developed in this th.esis can be used to model complex spatiotem-

poral economical and managerial systems described by partial differential equations.

In this thesis, we have only focused on the deterministic characteristics of an economic

system. Note, however, that uncertainty always plays a role in economy, therefore a real

economic system consists of both deterministic and stochastic dynamics (Hommes 2004).

Barnett and Serletis (2000) reviewed the literature on the efficient markets hypothesis

and chaos, and contrasted the martingale behavior of asset prices to nonlinear chaotic

dynamics; in addition, they discussed the difficulty of distinguishing between probabilistic

and deterministic behaviors in asset prices. Dhamala, Lai and Kostelich (2000) deveÌoped

strategies to detect unstable periodic orbits from transient chaotic time series, in the

presence and in the absence of noise, by examining recurrence times of trajectories in the

vector space reconstructecl from an ensemble of such time series, which can be useful for

extracting unstable periodic orbits in intermittent economic and financial data. Small and

Tse (2003) addressed the question of how to detect determinism in financial time series

by examining d,aily retu.rns from three financial indicators: the Dow Jones Industrial

Average, the London goLcl fixings, and the U.S. doltar to Japenese Yen exchange rates;

for eacir data set ihey applied surrogate data methods and nonlinearity tests to quantify

determinism over a range of time scales, and found that all three time series are distinct

from linear noise or conclitional heteroskedastic models; they concluded that there exists

detectable cleterministic nonlinearity in real financial time series that can potentially be

exploited for forecasting of financial markets'

In conclusion, characterization of nonlinear dynamical properties of economical time

series obtained via numerical modeling may be the first step to understand the complex

behavior of economic systems. Many of the traditional techniques being used by econo-

mists for modeling economic dynamics are based on linear approaches which are only valid

near the equilibrium, and many of the tools being used by the investment professionals

are based on the assumption that the asset returns have Gaussian distribution. In reality,

the economic dynamics is often highly nonlinear and far away from the equilibrì.um, and

the asset returns are usr-rally intermittent with typically non-Gaussian distributions. The
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application of the complex system approach developed in this paper to economic modeling

and forecasting can improve decision making and policy planning, with positive impacts

to the management of economic systems.
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