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Preface

Transformation is crucial to any program improvement process. Highly transformable

notations pave the way for the application of deep and pervasive program

improvement techniques. Functional programming languages are more amenable

to transformation than their more traditional imperative counterparts. Moreover,

functional programs specify only true dependencies between values, making

improvements that reveal and exploit parallelism much easier. Some functional

programming notations are more transformable than others. Bird-Meertens-

Formalism (BMF) is a functional notation that evolved as a merlium for

transformational program development. A substantial, and growing, body of work

has created novel tools and techniques for the development of both sequential and

parallel applications in BMF.
Formal program development is at its most useful when it can be carried out

automatically. Point-FYee BMF, where programs are expressed purely as functions

glued together with higher-order operators, provides enhanced scope for automated

development because many useful transformations can be expressed as easily applied

re-write rules. Moreover, realistic sequential and parallel static cost models can be

attached to BMF code so the relative merits of applying various transformations can

be accurately assessed.

In spite of its potential merits there has been little work that has utilised point-

free BMF, in a pervasive manner, as a medium for automated program improvement.

This report describes a prototype implementation that maps a simple point-wise

functional language into point-free BMF which is then optimised and paralleiised

by the automated application of, mostly simple, rewrite rules in a fine-grained and

systematic manner. The implementation is shown to be successful in improving the

efficiency of BMF code and extracting speedup in a parallel context. The report

provides details of the techniques applied to the problem and shows, by experiment
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and analysis, how reductions in high data-transport costs are achieved. We also

describe techniques used to keep the optimisation task tractable by alleviating the
hazar d of case-explosion.

The report is structured according to the stages of the compilation process, with
related work described at the end of each chapter. We conclude with our main
finding, namely, the demonstrated feasibility and effectiveness of optimisation and
parallelisation of BMF programs via the automated application of transformation
rules. We also restate techniques useful in achieving this end, the most important
of which is the substantial use of normalisation during the optimisation process to
prepare code for the application of desirable transformations. We also present a

brief summary of potential future work including the introduction of more formally
described interfaces to some of the transformative rule-sets, the automatic production
of annotated proofs and a facility to display static estimates of the efficiency code

during transformation.
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Chapter 1

Introduction

1.1 Distributed Parallel Computing
Paraliel computing has much potential. Parallel computers have substantially

more computing pov¡er and memory than their sequential contemporaries. Current

distributed parallel computers, in particular, offer scalable high-performance

computing, often, at not-unreasonable cost.

However, distributed parallel computing is hard. Computing tasks need to

be coordinated to contribute to a shared solution without interfering with each

other. Large, and increasing, volumes of data need to be managed carefully

to minimise communications costs. These factors mean program construction,

debugging, tuning and maintenance is more difficult in a parallel environment than in

a sequential environment. Errors in parallel programs are often manifest in the form

of unexpectedly bad performance or intermittent incorrect results, deadlocking, or

program crashes. These problems are not helped by the lack of a universally accepted

high-level programming model for parallel computing. As a consequence much

programming happens at a low level where many difficult details of distributed parallel

computing are exposed to the applications programmer. When a low level program

has to be ported to a new architecture, existing parallel programs have to be manually

re-tuned or re-written to extract more performance and/or just work correctly. This

costly migration process adds a large premium to the cost of owning parallel software'

As a result, distributed parallel computing is confined mainly to small but nonetheless

important niche application areas such as, geophysics, computational fluid dynamics,

computational chemistry/molecular-biology, particle and gravitational physics, finite

1



CHAPTER 1, INTRODUCTION

element methods, large scale search algorithms, image-processing, and data mining.
Such applications attract large enough returns to justify substantial investments in
parallel software. That is, distributed parallel computing is primarily used by people

who really want the exbra performance and are prepared to pay for it. This small
market does not produce the economies of scale required to drive the development
of hardware and software tools at the same pace as mainstream computing thus
maintaining disincentives to the widespread use of distributed parallel computing.

This problem would be alleviated by a widely-accepted high-level model of parallel
computing. Such a model needs to be:

General purpose: easily applicable to most applicatiorrs,

Simple: programs easily written, understood, and verified,

Efficient: exhibiting predictable performance with a low performance penalty for
using the model rather than some low-level programming notation, and

Portable: applicable to a wide range of architecture without major changes to
programs.

To date, there is no parallel distributed model that is widely believed to meet all of
these criterial so there is stiil, much, scope for work to be done.

L.2 Implementing a model
It is the task of a compiler and runtime system to efficiently bridge the distance
between the programming model and the underlying architecture. The gap between
a sufficiently simple programming model and a distributed architecture is very
large 2. In order to make the construction of the compiler/runtime system feasible
implementors typically make one or more of the following compromises.

Making parallelism explicit in the source language: Leads to a relatively
simple implementation but leaves most of the difficult work to the programmer.

lSee the survey article by Skillicorn and Talia[130] comparing a wide range of parallel models.2As with many things, an exact definition of suffic'iently simple depends vãry much on the
audience. A seasoned parallel applications programmer may find C or Fortran-MPl is sufficiently
simple, leading to a small gap between programming model and machine. However, we believe most
programmers would prefer a programming model where the details of parallel implementation are
less explicit.

2



CHAPTER 1. INTRODUCTION

Restricting the source language: Restricting the programmer to common

patterns of computation or data-access in order to limit the number of cases

the compiler has to handle and also the scope for introducing inefficiency.

Compromising efficiency: Adding a layer of interpretation that results in a loss

of efficiency for some programs.

The, current, most-widely used programming languages/libraries for distributed

platforms make the first compromise, examples include MPI[105] and PVM[51]'

Many models make the second compromise by restricting the ways in which

parallel programs can be expressed. Data parallel languages such as Data-Parallel

C-Extensions (DPCE)[106], Connection-Machine Lisp[132] and High Performance

Fortran (HPF)[118] allow a single thread of control but admit parallelism through

bulk operations on aggregate data. Skeletons support the same sort of bulk operations

but extend these with more general templates for composing parallel programss.

Examples of Skeleton impiementations include P3L[31] and SCL[43]. Other restricted

notations include LACS[116] and ZPL|I\T) which require the user to express parallel

programs in terms of transformations to arrays. As a general rule, these models with

restrictions are, at the cost of some flexibility, much easier for programming than

more explicit models.

Implementations making the third compromise offer a less-restricted programming

model at the cost of a layer of interpretation that can be costly to maintain at runtime'

Implementations making this compromise include abstractions for DSM[69] and

distributed graph reduction[135]. The extent to which performance is compromised is

heavily dependent on the sophistication of the implementation and the characteristics

of the applications run on it.
As a final note, it should be said that some implementations may not fit neatly

into the taxonomy above. Significant examples include various implementations of

the BSP model[137, 76] which achieves good performance by restricting itself to

applications expressed as a sequence of composed supersteps, and preventing the

programmer from mapping tasks to physicai processors. However, the model requires

the programmer to to explicitly specify, the tasks, and the communications that are

to take place between them.

3At their most general, Skeletons can be as explicit as more
DMP A D y n arn'i c- M e s s a g e- P as sin g - Archit ecture skeleton [42] . But

general models. An example is the
such instances are relatively rare.

3
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Some restricted implementations such as Fortran 90, HPF and Data-Parallel C-
Extensions also require the programmer to specify alignment information and thus
have a degree of explicitness. Finall¡ Vectorising Fortran compilers[l0] (section 6.2.1,
pp 305-309) provide a very implicit progïamming model, they extract parallelism from
extant sequential code, but, in general, the effective extraction of parallelism requires
a very sophisticated compiler.

This concludes our informal classification of models with implementations
targeted to distributed-memory machines. This provides a context for the language
implementation described in this report.

1.3 This work
This report describes an experimental implementation, targeted to a distributed
parallel platforms, Our implementation is based on the source language Adl. Adl
is small, strict, functional language where parallelism is expressed through bulk
operations on arrays, or vectors, as they are called in this work. These bulk operations
include the familiar data-parallel functions: nap, reduce and scan. Adl allows these
operations to be composed and tupled, Adl also provides constructs for selection,
iteration and the introduction of new scopes. In addition Adl supports arbitrary
random access to vector elements and other variables in scope and dynamic allocation
of vectors. Chapter 2 provides a number of concrete examples of Adl programs.

The current version of Adl does not support recursive definitions of functions.
Instead the language, and its implementation are directed toward the primary goal
of expressing parallelism through bulk operators over aggregates. The recursion is
likely to be included in future versions.

The parts of Adl The Adl project consists of two parts[7]. The earlier part, based
on a highly optimised multithreaded modet[54], supports efficient nested parallelism
over irregular structures by generating many small, overlapping communications. The
second part[8], the one described in this report, uses transformational programming
to generate and optimise aggregated communications.

Implementation challenges Though Adl does restrict the way in which
parallelism is expressed, compilation of Adl still presents substantial challenges,

4
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sum-sqrs(a:vof int)
let

sqrx:=x*x;
add (x,y) := x * Y

in
reduce (add,0 ,nap (sqr , a) )

endl-et
(o)

+lo.(x ' (id, id)')*
(b)

Figure 1. Adl source for sum-sqrs (part (a)) and an equivalent point-free version
(part (b)).

though parallelism is easily identified through data parallel operations such as map,

the d.istribution and communication of data remains implicit. F\rrthermore, Adl places

no restrictions on which values are available inside of its parallel operations' Any value

in scope can be arbitrarily referenced from inside these operations and, in particular,

arbitrary indexing into any vector value is allowed from within these operations.

This piaces the onus on the implementor to generate, consolidate, and minimise the

communication that is implicit in these references.

In order to bridge this gap between what is, essentiaily, the shared-memory

model of Adl language and the d.istributed memory of the target architecture the

implementation must, at some stage, convert some arbitrary references to values into

explicit communicationa. The implementation described in this report, henceforth

d,escribed as "the Adl implementation", performs this conversion very early in the

compilation process by translating Adt code into po'int-free-form. Programs written

in point-free form[l3, 59, 38] consist only of functions, no variables are allowed'

Figure 1 shows Adl source code for a program to calculate the sum of squares

of an input vector (part (a)) and its point-free equivalent. The source program is

reasonably conventionai, using the map primitive to apply the sqr function to each

element of the input vector and the reduce function to sum the list' The point-

free version consists entirely of functions glued together using function composition,

aln the presence of arbitrary indexing into vector values, the final specification of some

communications must, by necessity, be delayed until run-time. However, many colnmunications
can be specified statically and an efficient framework can be set up for the rest.

5
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denoted: '5 , and the tupling construct: (. . .)' which applies all of its constituent
functions to its input value storing results in an output tuple. The x symbol denotes
a map function that applies the prefixed function to each element of an input vector.
The I symbol denotes a reduce function that inserts the prefixed binary function
between the elements of an input vector. The point-free version is completely free of
variables for the runtime storage of values.

The lack of variables in point-free form means that functions are not only
responsible for computation on values, but also responsible for determining the
movement of valtres to functions to be executed in later parts of the program. In,
other words, in point-free programs, must contain functions to route as well as

compute data. Many of these rout'ing-funct'ions wilt still be present, in optimised
and distributed form, in the final parallel code.

To summarise: once code is in point-free form, data movement is explicit; once
data-movement is explicit, it can be optimised by replacing functions that generate
a lot of data movement with functions that generate less data movement. Similarly,
point-free code can be made explicitly parallel by inserting functions with parallel
semantics into the code. Note that all of this processing can only take place if point-
free form can:

1. express the required sequential and parallel functions

2. be transformed in the way required by this application

Fortunately, there is a large body of literature describing an algebra6 and its notation,
that together meet these requirements very well.

The Bird-Meertens formalism The Bird-Meertens Formalism (BMF) is a set of
theories of types and operations over those types[l7, !8,2r,20, lgl, bg, 1b, 114]. BMF
was developed as a medium for transformational programming. The idea is to start
with an obviously correct but inefficient specification of a program and transform it, by
the incremental application of correctness-preserving steps, to a much more efficient
but less obvious version. Because transformation is much easier in a functional context

5We use .

more compact
rather than the traditional o to denote function composition to make code slightly

6

6Actuall¡ a family of algebras for different data types.
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than an imperative contextT, BMF pïograms have functional semantics' Most BMF

programs work with aggregate types such as lists. The notation is often, but not

always, point-free and quite terses, for example:

sqrt x 'sqr *

expresses a program to find the absolute values of an input array of numberse. A large

number of simple and broadly applicable program identities can be used to transform

BMF plograms. For example, the identity Í *'g*: U' g)x can be used to fuse the

two map functions in the above program into one:

sqrt *'sqrx
: {Í *'s*: (/'s)*}

(sqrt. sqr)x

Note that the transformation is annotated with the equality used to drive it, written

in braces ({ }) AIso note that the program above is expressed in point-free form.

When BMF programs are expressed in point-free form, transformation rules can be

applied. as simple re-write rules1o.

BMF has fundamental operations corresponding to the nap, reduce and scan

constructs provided by Adl. Moreover, all of these functions have efficient sequential

and parallel implementations[126].

1.3.1 The role of BMF in this project

A priori, point-free BMF has all of the ingredients needed for targeting to a distributed

architecture. It has the explicit data transport of point-free form; it has the requisite

sequential and parallel functions and it has a large number of program identities that

can be used to transform code. What is now required, for our impiementation, is a

compiler to translate Adl into point-free BMF, and a compilation process to apply

transformations to this BMF code to produce efficient distributed code. Figure 2

gives the structure of the Adl compiler with the stages utilising BMF highlighted

in bold. The first two stages of the compiler, the lexer/parser and typechecker are

Twhere the presence of side-effects and an implicit state that evolves over time make simple,

equals-for-equals transformations, only narrowly applicable.
8See chapter 3 for a more thorough introduction to BMF.
elt should be noted that several BMF variants for functions over aggregate data, such as the map

function, exist for a large variety of types including, lists, arrays, bags, sets, trees and others.
l0lnfrequently, these rules have conditions attached which have to be true before the mle can be

validly applied.

7
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Adl source
code

Adl Syntax
Tree

Type-amotâted
Adl Syntax Tree

BMT'

Parallel BMF Optimised BMF

Target Machine Code

Figure 2. outline of the Adl implementation. Stages that use or generate
point-free BMF code are highlighted in bold.

reasonably conventional. The next four stages are all required to interact with BMF
code in some way. The novel aspects of this work lie in these stages. The last stage,

the target machine, will have to execute explicitly distributed code. Our very early
prototype code generatorf1l1] produces C/MPI code,

Briefly describing the stages that interact with BMF:

o the translator takes Adl code and converts it to point-free form with explicit
transport of values in the scope to each functionll;

o the data-movement optimiser uses incremental transformation of BMF
code to drastically reduce the quantity of data transported through the code
produced by the translator;

o the paralleliser uses incremental transformation to propagate functions with
distributed semantics through the code produced by the optimiser;

o the code generator translates distributed functions into their equivalents on
the target architecture. Sequential functions are compiled down to ordinary
imperative code.

Prototype implementations for each of these stages have been produced to
demonstrate the feasibility of the pervasive use of BMF as an intermediate form.

1lThis process is made feasible by the functional semantics of Adl. tanslation of imperative code
into BMF is an open problem.

Lexical Analysis
and Parsing Type Checker Translator

Code Generator Paralleliser Data Movement
Optimiser

Target
Machine
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The novelty of this work is the extent to which the implementation is based on

automated transformations in BMF and the techniques developed to assist the process

of automation. A brief overview of related work follows.

L.4 Related work
The other part of the Adl project In terms of lineage, the closest relative to

this work is a complementary sub-project of the Adl project investigated in [fS]. The

source language is identical and some tools such as the part'itioning funct'ion (described

in chapter 6) are very similar. However, the implementation strategy for this earlier

part is based on compilation to a highly efficient, multithreaded abstract machine.

Under that implementation, access to remote values is piecemeal and demand-

driven. Most static analysis of data requirements is confined to a separate process

to determine the partitioning of input data. In contrast, the part of the Adl project

described here uses compile-time transformations to consoiidate communications and

map code to a more low-level platform. Moreover, the intermediate forms used are

very different in the two parts of the Adl project.

EL* The Adl implementation described resembles, in some rù¡ays, the

implementation of EL*[117]. Like Adl, EL* is a small data-parallel language focused

on extracting data-parallelism from arrays. EL* permits a restricted form of recursion

that can be used to express patterns of computation such as those found in nap and

reduce. Access to global variables and array elements from within these definitions

is more restricted than the access allowed in Adl. The first stage of the EL*

implementation translates EL* source code into FP*, a strongly-typed variant of

Backus' point-free FP language[13]. The translation process from Adl to point-free

BMF uses similar strategies to the EL* to FP* translator to achieve similar ends.

At this stage, however the two implementations d.iverge. The FP* compiler[144]

performs a small amount of transformation in FP* before translating directly to CM-

Fortran[134] whose compiler targets the code to a parallel platform' In contrast,

the Adl implementation intensively optimises and parallelises the BMF code before

translation to an imperative form.

I
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Transformational programming The idea of automating at least some of the
program transformation process is a significant driver in the development of the field of
transformational programming. Many mechanisable techniques have been developed
to optimise parts of sequential and parallel functional codel27,2l,6I, 123,77, T81.

However, with some notable exceptionsl2, the application of these techniques often
involves some insight to the problem or at least proof obligationsl3. Partial
automation of the transformation process has been carried out using a theorem-
prover[98] and, more recently, using an interactive system with a built-in cost
model[3]. Mottl[10a] surveys a range of techniques for the transformation of functional
programs and describes an implementation of a safe automated partial evaluator for
a simple strict functional language. This partial evaluator could form an important
component of a larger optimisation system.

The Adl implementation is almost fully automatedla. This level of automation
is achieved by applying, with great frequency, a number of simple transformations
to point-free programsls. To make this process tractable, the Adl compiler makes
very heavy use of normalisationl6 to reduce the number of cases that need to be
handled. Note that applying transformations in this way will not achieve optimality
in most cases, that will typically require some deeper insight into the problem and
the application of conditionally beneficial transformations with reference to a cost-
model[129, 5] but, even so, efficiency is greatly enhanced.

Data-parallel and Skeleton implementations Adl is, essentially, a single-
threaded data-parallel language exploiting familiar data-parallel vector constructs
such as nap, reduce and scan. This is a similar strategy for exploiting parallelism

l2These exceptions include, Wadler's de-forestation algorithm[143] and Onoue's HYLO fusion
system[108].

l3Such as proving associativity or distributivity of binary operators.laThough not completely. Adl assumes that the programmers will use associative operators in its
reduce functions and the Adl compiler does require the programmer to provide some partitioning
information for the parallelisation stage.

15Adl limits the domain of programs to those most amenable to transformation. In particular,
Adl programs are easily converted to a compositional form. Any future introduction of a facility for
the expression of unrestricted recursive definitions will inevitably change this situation and perhaps
warrant the use of non-trivially applied techniques such as diffusion[78]. It is worth noting that
recent work[38] provides a sound basis for expressing recursive definitions in point-free-form but
work would still need to be carried out to produce a translation capturing recursive definitions in
their most effi.cient forrn.

l6Normalising transformations are ofben not directly benefi.cial in terms of effciency but they make
the subsequent application of beneficial transformations easier.
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as that used in Data-Parallel C-Extensions, HPF and Connection-Machine Lisp'

Unlike DPCE and HPF, Adl has purely functional semantics. Adl has a less explicit

communication structure than CM-Lisp.

Adl has more in common with NESL!22, 23] but its implementation strategy

differs in that Adl's compiler aims: to minimise data movement at runtime, avoid

the use of a substantial run-time system, and explicitly target a distributed machine'

This approach comes at the cost of limited support for dynamically evolving nested

parallelism which is well-handled by NESL17.

Crooke[37] implemented core components of BMF using C-Libraries combined

with a work-scheduler. Because the implementation language was C, a set of criteria

for well-formed programs was also required to avoid non-deterministic behaviour.

In terms of objectives and framework Adl has much in common with various

skeleton implementations such as P3L[31], SCL[44], Ektran[71] and the FAN

skeleton framework[5]18. There are signiflcant differences between Adl and these

implementations at a more detailed level. Access to variables other than the

immediate parameters of the skeleton functions is more implicit in Adl than it is

in most skeleton implementations. Adl allows arbitrary access to elements of vectors

in global scope, a feature not commonly found in skeleton implementations' Adl offers

fewer skeletons than either SCL or P3L and requires more partitioning information

from the programmer than P3L which uses profiiing information to determine a

good partitioning for input data. Like Adl, many skeleton implementations permit

the nesting of aggregate functions though the framework for carrying this nesting

through to the parallel platform, in some implementations such as P3L and Ektran,

is more refined than that used in the Adl implementation. Finally, amenability to

transformation at the level of the skeleton functions is a motivator for skeletons

work[b, t2,25], this is also one of the d.rivers behind the Adl implementation though

at this point, Adl makes more pervasive use of program transformations at a lower

levells and less at a higher-level than other skeleton-based platforms'

17The Adl implementation can support nested parallelism but data distribution functions have to

be statically determined. A short overview of the application of nested parallelism to Adl is given

in Appendix E
18To name a few, see chapter 2 off7l) for a more comprehensive overview.
leTlansformations in the Adl implementation are mainly focused on rationalising the movement

of data and, subsequently, on propagating parallelism through code. In the current implementation,

there is a limited fo",r, on transforming rk"l"tont to tune parallel performance. Application of such

transforms often requires reference to a cost model and some characterisation of input data. Though

we have developed a detailed dynamic cost model in the form of a simulator it has not yet been
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This concludes our very brief introductory suïvey of related work. More detailed
surveys of relevant work are given at the end of each chapter of this report.

1.5 Preview
This report describes the various stages developed in the implementation the Adl
language. Chapter 2 describes the Adl language and provides some examples of its use.
Chapter 3 describes the point-free dialect of BMF code used as an intermediate form
in the Adl implementation. Chapter 4 gives a formal description of the Adl to BMF
translation process and measures the efficiency of code thus produced. Chapter b
describes the salient features of the optimisation process to increase the efficiency of
BMF code through incremental transformation. Chapter 6 defines the process for
parallelising code and canvasses issues affecting code-generation. Finally, chapter 7
summarises the findings of our work and presents ideas for future work on this project.

integrated into the transformation system.



Chapter 2

Adl

Adl is the source language for the Adl implementation. This chapter is a brief,

informal, introduction to Adl and its primary features. The chapter has three sections.

Section 2.1 is an overview of Adl. Section 2.2 very briefly lists possible enhancements

in future versions of Adl. Finally, section 2.3 reviews the main features presented in

the chapter.

2.L The Adl language

Adt is a simple experimental language expressive enough to build, without undue

difficulty, a variety of applications. Adl is designed to encourage plogramming in

terms of parallelisable aggregate operations.

2.L.L Background

Ad.l was first proposed by Roe[ffO] as a vehicle for experimentation in high-

performance functional computing. Two Adl implementations, targeted to distributed

architectures, have been developed[7]. The first implementation[53] is multi-

threaded, using latency hiding, caching, and various other techniques to minimise

communications costs. The second stream, the implementation described here, uses

transformational programming to develop parallel implementation with aggregated

communications

13
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In developing both of these implementations Adl was found to be a good medium
for the development of smalll numerically-oriented applications.

2.t.2 Main features

The main features of Adl are:

F\rnctional semantics: Adl is referentially transparent which helps make parallel
programming, and implementation, easier.

A strong type system: types are monomorphically instantiated at compile time
for more efficient compilation.

Strict/Eager order of evaluation: permitting easier extraction of data-
parallelism. No currying is permitted. All functions are monadic (single-
valued).

Aggregate types: a vector type for holding an arbitrary number of values of
uniform type and a tuple type for holding a fixed number of values of mixed
type. Nesting of both tuples and vectors is permitted.

Second-order vector primitives: such as map, red.uce and sca¡ for the expression
of potential parallelism over vectors.

Limited type polymorphism and overloading: syntactic polymorphism is
supported allowing functions to be monomorphically instantiated to the applied
types.

Pattern matching: irrefutable patterns are used for easy access to tuple elements

No recursion: strengthens role for vector operators.

Implicit parallelism: programmer need not be directly concerned with
parallelism2.

land possibly large, though this has not yet been tested.2In Adl most vecto¡ functions have the potential to execute in parallel. The programmer is
aware' that by using these functions, that parallelism may be exploited. Note that the expression
of parallelism is limited to these functions which makes parallelism restricted as well as implicit
according to the taxonomy of[130].
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'/ A program to add a constant to every elenent
'A of a vector.

ny-const := 2;

nain a: vof int
let

add-const x := x + ny-const
in

nap (add-const,a)
endlet

?

Figure 3. A simple Adl program to add a constant to every element of a vector

Other features include familiar facilities for introducing local scope and declarations

and for random access to vector elements. The features above are not set in stone. The

restriction on recursion is likely to be lifted in future implementations but, it should

be noted that, even with this restriction, Adl is still quite an expressive programming

platform.

2.t.3 Program layout

Adl programs consist of a series of function and value declarations ending with a
function declaration. Execution of the program begins in the body of this last function

declaration. Figure 3 shows a simple Adl program to add two to every element of

vector. The execution of this program begins at the nain function. The formal

parameter to nain is the input value to the program. In this case, the input value

is a vector of integers (vof int). No other type declarations are required3 with the

type of each function being inferred by propagating the types of input values and

constants. The let construct introduces a nev¡ local scope. In this case the scope

contains just one function declaration, add-const. The body of the let is the starting

point of program execution. It contains the primitive function: nap which takes an

input tuple consisting of a function name and a vector value and applies the function

to each element of the vector value. Informally:

3Though the programmer is free to add type annotations to any other value and/or expression
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let
a:=4;
b:=a*5;
c := b - 3;
b := b + c

in
a+b

endlet

Figure 4. l.et expression with a declaration sequence containing repeated
declarations of b. This expression evaluates to 21.

nap (l,l*o,t7¡...,rn-t]) : lf ro,l *t,..., f rn-1.1

As a final note, comments start with an % and extend to the end of the line and
programs are alwavs terminated with a ? character.

2.L.4 Declaration sequences

The outermost scope of the program and the first part of any let expression consists
of a declaration sequence. Declaration sequences can contain one or more function
andf or value declarations. Adl enforces a rule that a value is not in scope until
immediately after its declaration. It remains visible until the end of the enclosing
expression or until another declaration of a value with the same name obscures it.
The effect of these rules can be seen in the Adl expression shown in figure 4. The
variable environment in scope from the body of the let expression, a + b, is:

[l r--+ 15, c Þ 6,0 r-+ 9, a r+ 4]

The variable b appears appears twice in this environment but the first instance
obscures the second, giving a + b : 2L. Semanticall¡ Adl declaration sequences
are similar to the let* construct in Scheme[l]4.

F\rnctions, scope and recursion Adl is statically scoped so functions are
evaluated in a closure containing their environment at the time of declaration.
Because this environment can contain only values declared prior to the function there
can be no recursive or mutually recursive function definitions. To illustrate, consider

aAnother equivalent form is a nested series of 1et expressions, each binding a single value.
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odd x

even x

:=ifx=1then
true

else
not(even (x-1))

endif;
:=ifx=0then

true
else

not(odd (x-1))
endif;

o/oetror tteven" not in scope

T7

Figure 5. An invalid Adl declaration sequence. The reference to even in the
definition of odd is undefined because even not in scope at this point'

the, invalid, Adl function declarations in figure 5 to determine if a natural number is

even or odd. These declarations will fail to compile because even is not in scope from

the declaration of odd. The same scoping rule also prevents functions from calling

themselves.

Higher-order functions In common with languages such as SISAL[55] and

NESL[22] Adl provides second order functions such as nap and reduce, but does

not allow programmers to define their own higher order functions. This restriction is

not an impediment to writing the numerical computations over aggregates that are

the focus of this work. However, lifting this restriction may be considered for future

implementations.

2.L.6 Types

Adl supports three primitive scalar types:

int: integer values.

real: floating point valuess.

bool: boolean values.

Integer literals are any sequence of numerals, optionally prepended with "-", without

a decimal point. Real iiterals look like integer literals except with a decimal point

sassumed to be equivalent to double in C.



CHAPTER 2, ADL 18

and at least one numeral to the right of the decimal point. Boolean literals are true
and false. Adl provides a broad range of overloaded arithmetic and comparator
functions on int and real values and some trigonometric functions on real values.
Two coercion functions, int O and f loat O are provided to allow conversions between
values of numeric type. Logic primitives such as and, or and not are provided for
boolean values.

Adl supports two aggregate types, vectors and tuples. These tvpes, and their
functions, are described in turn.

Vectors and their functions Vector literals are comma-separated sequences
of zero or more expressions enclosed in square brackets. Examples of valid
vector literals include: lI ,-2,2) , ltrue] , [1 .2,-4.01 , lsqr (3 . O) , -2 . 3] ,

[(2,true),(O,fa]se)l and tl. vectors can be nested. so, tÜ,t3,2,rf1 and
[[true], lfalse,true,falsel] are valid vectors. All elements of vectors must be of
the same type so literals such as: lI,l2,3ll and 13.4,21 are not allowed.

vector functions There are a number of primitive vector functions including:

length: written #, returns the number of elements in a vector. Example:
# lr,2,3l : 3.

index: an infix function, written ! to randomly access a vector element. Example
17,2,31 !0:1.

iota: takes a integer n and produces a list of consecutive integers from 0 to n - L

Mechanism for dynamic allocation of vectors. Example: iota 4 : [0, L,2,J].

maP: a function taking a pair consisting of a function f and a vector v and producing
a vector containing the results of applying the function to each element of
the vector. Example: nap (plus,[(1,1),(2,2),(9,3)]) : [2,4,6] where
plus (x,y) =x*I.

reduce: takes a triple (@,t,u) consisting of a binary function o, a value z and,
avector¿r. reduce returns zlf.u: []; ur if u: [u1]; anduro...@un_Lff
u : lur, . . . ,un-t]. Example: reduce (plus ,0, [1 ,2,8)) : 6.
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Toconcatenate tI^Io vectors a and b
concat (a:vof int,b: vof int)

Iet
la := #a;
Ib := #b;
fx

ifx<lathen
a!x

else
b! (x-Ia)

endif
in

nap (f, iota 11¿ + lb) )
endlet

?

Figure 6. An Adl program using both nap and iota to concatenate two input
vectors

scan: takes a pair6: (O,r), consisting of a binary function O and a vector u' scan

returns[]if u: []; ur tf u: [u1]; and[rr,...,uto...Ou??-l] ifu: [","',un-t]'
Example: scan(p1us,lI,2,3l ) : [1, 3, 6].

The semantics of length and index are self-evident. Figure 6 shows a program that

uses both nap and iota to concatenate two vectors. This usage of iota, as a generator

of indices, to guide a subsequent nap, is quite common.

Vector functions are easiiy combined. The program in figure 7 uses both map and

reduce to calculate the sum of squares of a vector.

Vector functions may also be nested. The program in figure 8 adds two to every

element of a nested input vector.

The scan function is useful when intermediate values in a calculation are required.

The program in figure 9 calcuiates the running maximum of a vector of floating-point

numbers. It bears mentioning that all vector operations that can have a parallel

implementation such as nap, reduce, and scan will, potentially, be compiled to

parallel code. This means that the programmer must use an associative binary

function in reduce and scan. Failure to do so will lead to non-deterministic results'

6Earlier versions of Adl had a version of sca¡ that took an additional
arguments. This argument has been eliminated in this version'

zero-element in its inPut
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% calculate the sum of squares
7.of a¡ input vector
sum-squares (a:vof integer) .=

let
plus(a,b)=a+b;
sqr a =a*a

in
reduce (plus ,0,nap (sqr, a) )

endlet
?

Figure 7. An Adl program to calculate the sum of squares of an input vector using
nap and reduce.

% A program to add a constant to every elenent
7. of a nested input vector.

ny_const := 2;

map_nap_addconst a: vof vof int .=
let

add_const x := x * ny_const;
fx=nap(add_const, x)

in
nap (f,a)

endlet
?

Figure 8. An Adl program that adds a constant to each element of a nested input
vector
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o/. running naximrm of a vector of reals

ruaning-nax a: vof real '=
Iet

max (x,y) = if x > y then x else Y endif;
in

scan (nax,a)
endlet

?

Figure 9. An Adl program to calculate the running maximum of a vector of
floating point numbers.

Where the programmer wishes to use a non-associative operator in reduce and scan

the non-parallelvariants: reducel,scanl (for left-reduce/scan) or reducer and scanr

(right-reduce/scan) must be used7. Additionally, a function reducep is provided for

functions that do not have a convenient zero-element8. reducep does not take a zero-

element but insists upon a non-empty input vector. reducep is potentialiy parallel'

This concludes the description of Adi vectors and vector functions. A brief

overview of the Adl tuple type follows.

tuples Thples are fixed-length aggregates of mixed type. In Adl programs, tuples

are specified as literals such as (2,3) and (true,a,5.0). Tuples can be nested

as in ((a,b), (3,c)) or ((4,5.0,faIse),b). Literals are the sole mechanism for

expressing and constructing tuples. An example performing such construction is the

function:
vec-to-pair a := (a!0,a!1)

using a literal to construct a pair out of the first two elements of an input vector.

Members of tuples in Adl are accessed through pattern matching. For example,

f i,rst(a,b) :: a;

is a polymorphic function to project the first element from a tuple. Patterns do not

need to specify all of the detail in the input tuple. For example, given a function f
TThe Adl compiler does not enforce this use but non-determinism ensues if the programmer uses

a non-associative function in reduce and/or scan.
8An example of such an operation is: left (x,y) := x;
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with the input type:
((int,boo1),vof real)

any one of the following declarations is valid:

f ((a,b),c)
f (x,y)
f z .= ,..;

The choice adopted by the programmer is dictated by the parts of the tuple explicitly
accessed on the right-hand-side of the function.

All patterns used in Adl must be irrefutable. A pattern is irrefutable if it cannot
fail to match. The patterns above are all irrefutable. In contrast, the pattern

(a,b,a))

is refutable because it can fail to match when its first and third elements are not the
same. The pattern

(a, [c] )
is refutable because it can fail to match if its second element is not a vector of length
one. Adl patterns are used solely for access to tuple elements whereas refutable
patterns can also be used for case-analysis. Adl uses if expressions rather than
patterns for case-analysis.

As a concrete example of the use of tuples and pattern matching, figure 10 shows
a program which zips and then unzips a pair of input vectors. The program is an
identity function, leaving the input unchangede, but it serves to demonstrate the role
of pattern matching and tuple literals.

This concludes the explanation of Adl types and their primitive operations.
Conditional expressions and iteration are considered next.

2.L.6 Conditional expressions and iteration
Conditional evaluation is expressed using the:

if pred'icate then consequent eLse altemati,ue endíf

construct which evaluates the boolean expression pred'icate and evaluates consequent
if it is true or altemat'iue if it is false. Examples containing if expressions have
already been shown.

eAssuming that both input vectors are the same length.
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% a program to ziP and then unziP a

% pair of input vectors. Leaving then
7. unchanged.
7" Preconditíon: vectors have the sane length

zip (a,b)
let

f x := (alx, b!x)
in

nap (f,iota (# a))
endlet;

unzip a r=

let
first (*,y)
second (x,y)

in
(map (first,a), nap (second, a))

endlet;

ziplnzirp (a:vof int, b:vof int)
unzip (zip (a, b) )

?

Figure 10. An Adl program to zip and then unzip a pair of input vectors, leaving
the input unchanged.

Iteration is expressed using while functions. while functions take the form:

wh i I e ( s úaú e -tran sf o rm er, p redi, cat e -fun cti, o n, st at e)

This expression applies the state-transforrner to lhe state to produce a rrcw state

while lhe pred,icate-functi,on, applied to state, is true. while is used whenever the

bounds of iteration cannot easily be determined prior to the beginning of iteration.

Figure 11 shows an Adl program for calculating an approximation of the square root of

a floating-point input vaì.ue, using Newton's method. The while loop will terminate,

for positive input values, after a small number of iterations.

This concludes the overview of the Adl language in the current implementation.

A brief description of possible enhancements for future versions of Adl follows'

x
v



CHAPTER 2. ADL 24

7. calcul-ate the squaïe root of a positive
% input value

epsilon := 0.00001;

ner^rtons a:real
1et

abs x := Íf x ) 0 then x else -x endif;
finished x := abs((x x lr¡ - a) < epsilon;
next_guess x := (x + (a/x))/2.0

ín
while (finished,next_guess, 1. O)

endlet
?

Figure 11. An Adl program using r.rhile to calculate the square root of a floating
point input value using Newton's method.

2.2 F\rture enhancements

There are a number of enhancements both minor and major that are likely to appear
in future versions of Adl. Perhaps the easiest enhancement is the use of syntax-level
transformations (syn,úact'ic sugar) to increase conciseness. Applications of syntactic
sugar include:

operator substitution: allowing the programmer
to use expressions like reduce(+,O,1t,2,2]) instead of the more awkward
reduce(plus,0, [1 ,2,3f), which requires the programmer to define plus.

Operator sectioning: allowing the programmeï to use operator sections like: (+1)
in contexts such as: map((+1) , [8,4,S] ).

Refutable patterns: allowing the programmer to use patterns for case analysis in
function definitions.

Adl would also be enhanced with support for more types. Useful additions include
a primitive character type and a type for multi-dimensional vectors with fixed lengths
in each dimensionlo.

loThere is much scope to leverage information relating to the shape as well as the basic type of
data structures. Jay uses the concept of shape-checking in his language Fish[g6].
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The addition of recursion will increase the ease with which many functions are

defined. Recursion will need to be supported by primitives allowing incremental

construction and destruction of the vector data-type. This will probably entail adding

an explicit concatenate (++) or cons primitive.

Finally, the addition of a facility for modules would increase scalability and re-

usability in an Adl software system. Any module system will need to cater for the

propagation of types through the program.

2.3 Summary

Adl is a simple strict functional language with a few primitive base types and

aggregate types for vectors and tuples. Adl has constructs supporting: the

introduction of local scope, easy access to elements of vectors and tuples, conditional

evaluation and iteration. Adl also admits a limited amount of polymorphism to

facilitate some code re-use within programs. A number of second-order operations on

vectors such as nap, reduce and scan are provided to structule programs and serve

as potential sources of parallelism. Adt is quite expressive in its current form but

there is scope for enhancement with features such as a richer type system and the

admission of recursive d.efinitions in future implementations. As it stands, Adi is a

good source language for this experimental implementation.



Chapter 3

Bird-Meertens Formalism

Bird-Meertens formalism [18, b8] (BMF) plays a, central role in the Adl
implementation. This chapter introduces the sub-set of BMF used and its purpose in
this implementation. The chapter is divided into three parts. Section 3.1 introduces
the salient features of BMF, section 3.2 briefly defines the role of BMF as a medium for
program improvement in this work, and, finally, section 3.3 very briefly summarises
this chapter.

3.1 rntroduction to Bird-Meertens Formalism
In essence, Bird-Meertens Formalism (BMF) is functional programming optimised for
the purpose of program transformationl.

The notation of BMF is loosely defined and extensible. BMF code is not restricted
to point-free form but it is at its most transformable when functions are written in
point-free form (see 138] for a good exposition on this topic), Functions written in
point-free form have no formal parameters and contain no names other than those
referring to other functions. There aïe no variables2, in the conventional sense, in
point-free programs.

For a concrete illustration of point-free form consider the following conventional
definition of abs, a function to generate the absolute value of its input:

absr:sqrt(sqrr)
lAlternative names relating to BMF include squiggol, poi,nt-free-foryn and. compos,it,ionat-form.2In this chapter, the word uariablemeans a namedpla"é fot .iorio! a value geneiated at run-time.

26
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In point-free form we define it thus:

abs: sqrt' sqr

where . stands for function composition. In point-free form, we aÏe not permitted

to use variables, such as r in the example above, to reference values we have put

aside for later use. The only names used in point-free programs are those of functions

deflned prior to run-time'
Point-free form ensures that prod'ucers of data and consumers of data are

j'xtaposed. This spatial locality paves the way for code to be transformed through

simple rewrites using equalities3. Together, the open ended notation, and the open-

end.ed set of equalities make up a rich programming calculus, applicable to a number

of aggregate types. This calculus is BMF. The remaining parts of this section review

the aspects of this calculus relevant to this worka starting with a simple introduction

to the transformation Process.

3.1.1 Some introductory transformations

As an example of the application of equalities, consider the following function

definitions:
abs : sqrt' sqr

sqr : x'(id,id)'
a simpie transformation, corresponding to no more than an in-lining, or instantiation,

of the right-hand-side of the equations is:

abs

: {Defi,niti,on: abs}

sqrt' sqr
: {Defini,ti,on sqr}

sqrt ' x' (id, id)'

Note that all substitutions are equals-for-equals substitutions. Also note that each

step is annotated with the equality applied (written in braces). These annotations

are a commentary of the transformational proof. Every BMF transformation comes

3This is in contrast to the transformation processes for more conventional notations whiçh require

some book-keeping to trace data-dependencies through variables.
4We use orrty-u subset of the rich variety of constructs available in BMF and point-free

programming in general, the reader is referred to [20] and [39]'
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with its own proof. A core motivation for BMF is this audit-trail of proof as the
program is transformed and, hopefully, improved.

The (id, id)' function in the program above is new. The ( , . . . , )o, or alltups
function, is a second-order function that applies its constituent functions to a copy
of its input, forming a tuple consisting of the results. so, for example:

U,s)",
will return the pair: U @) , g(u)) . The id6 function is the identity function so: (id, id). u
returns (o,r).

The transformations above illustrate the methodology of BMF but they have very
narrow applicability. The equalityT

sQr:x.(id,id)'

can only be used to convert the name sqr to its long-hand equivalent or vice-versa
Much more general transformations exist. Some of these are now reviewed.

3.r.2 General rransformations and program structures
Though narroÌ'Ã/ equalities, such as the ones we have just seen, are an important part of
BMF, the most useful and powerful equalities are those that apply to many functions.
As an example, given a function n1 that extracts the first element of an input pair,
the following equality:

n.(Í,g)" : I
can be applied to effect dead-code elimination. Its applicability is not dependent on
the contents of / or g8, making it very general. A counterpart of the above equality

sThe name "all-applied-to for tuples" is derivative of the "all-applied-to" construct for lists ([].)
which appears in Bird's seminal work on BMF[IS](section2.4). There seems to be no agreed-upon
notation for alltup. alltup is a generalisation of the pa'ir function and the spli,t function < , >, both
mentioned by Bird in 120]. It is also a generalisation of the A operator described in l3g] and similar
to a construct used by Gorlatchl63] and Roe[120]. AII of these functions map an objeàt in a category
into a product.

Gprimitive BMF functions are written in sans-serif font.TThe equality states that sqr is a function that duplicates its argument and then multiplies the
duplicates.

8This must be qualified with note that if there is some valid input value r., for which s@) : I and
f (") I I then the termination properties of the program wilt change. This is .ar"ly ari ìmpediment
to transformation in this implementation.
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is:

rz.(Í,g)":g
Other powerful equalities involving alltup functions are:

l'Ø,h)o:(f'g,f'h)"

and

U,g)".h: U.h,g'h)"
both of which show how other functions can be absorbed into alltup functions.

Equalities, Iike the ones above, can be used to prove other, more specific, equalities

For instance, the equalitY

(f 'nr,g'rz)" '(h,k)" : U 'h,g'k)"

can be proved in the following waY:

(Í'nt,g'rz)''(h,k)"
: {Í .(s,h)" : (Í ' g, I 'h)"}

U ' "t ' (h,k)" ,9 ' ltz ' (h,k)")"
: {nt'(l,g)" : l}

U 'n,9 'ltz'(h, k)")'
: {nr u, g)" : g}

(Í'n,s'k)"
Any equalities generated. go into our tool-set for transforming plograms' Also note

that not all equalities have to be generated using previously deflned equalities'

Equalities can also be generated from known properties of functions using any proof

technique at hande.

Because alltup functions can assume an infrnite number of arities, producing pairs,

triples, quadruples, quintuples and so on' there is an infinite set of equalities that

apply to them, Fortunately, it is not difficult to systematically generate and apply

such equalitieslo.

alltup functions, their corresponding zr functions and their attendant equalities

are concerned with the creation and use of tuples. A different set of functions and

sUnfortunately, such proofs sometimes require insight which inhibits mechanisation of the

transformational process.
loThis implemåntation uses such systematic techniques during tuple optimisation defined in

chapter 5
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equalities apply to list-like aggregates. These aggregates, functions and equalities are
briefly reviewed next.

3.1.3 Functions working with list-like data
Certain aggregate datatypes, including cons-lists, concatenate-lists, affays, sets, and
bags1l have the common charateristic of being containers for values of a single typ"tr.
BMF theories have been developed for each of these, and a number of other, aggregate
types' Functions such as map and reduce apply quite naturally to these types and
many' very useful, equalities apply to these, and other related, functions. The data-
type that underpins the Adl implementation is the concatenate list. Concatenate lists
are defined by the constructors:

[]n. : tl
[.] " : I"l
)l rsys : rsligs

Where []¡. is a function from un'it to the list type, l.l (make-si,ngleton) makes a
singleton list out of an element of the base type, and the -l-l- function concatenates
two lists. A key property of this type is the associativity of *]_ which allows the lists to
be decomposed and processed in parallell3. Atl of the list functions and equalities that
follow are defined on these concatenate-lists. For consistency with the corresponding
datatype in Adl, concatenate-lists will henceforth be referred to as uectors.

The most important vector functions are map and reduce. mâp, written *, applies
the preceding function to each element of a vector. so, for example:

sqrx

will square each element of an input vector. reduce, written /, inserts the preceding
binary function between each element of a vector and evaluates the resulting

llTlees and graphs also fall into this category.l2contrast this with tuples, which have a fixed number of elements of mixed type.lsContrast this with cons-lists, which have to be pulled apart one element at a time.
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expression. In addition, reduce often takes an additionai value, denoted the zero-

element, that is returned in the event that the input vector is empty' So, for example:

+lo

will find the sum of an input vector and return 0 in the event that the input vector

is empty. Another example using reduce is:

++ ll
which removes a level of nesting from a nested input vector14. The associativity of

the application of the binary operation is arbitrary. This means an application such

AS:

++ lt [[1]' [2], [3, 4]l

could produce:
([1]+r [z])t+ [3,4]

or it could produce:

[1]r+ ([2]r+ [3,4])

This is not a problem when the binary operator is associative as above. However

directed versions of reduce, í ot { are required when the binary operator is non-

associativels.

Many general transformations appiy to map and reduce. One rule, specialising the

more general promot'ion theorem [58], is

/*'*llU:#lt'f**
which says, on the LHS, that flattening a nested list and applying / to each element

of the less-nested list is the same, on the RHS, as applying .f to evely element of the

nested list and then flattening it. Viewing the above equation as a transformation

from the LHS to the RHS is the same as pushing ++ ll leftwards through /x'
A second specialisation of the promotion theorem, applying to reduce, is

@1.'l* ll: @1" '(e/")*

which says (LHS) flattening a nested list and then reducing that list with O, is the

same as (RHS) reducing all of the inner elements of the nested list with O and then

14This function is often called flatten.
15Such operations are inherently sequential. Some optimisations in BMF such as the application

of Horner,s'ruleflS] produce such directed reductions, impacting on the potential for parallelism'
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reducing the resulting list with O. Applying the equality above from left_to_right can
be viewed as a transformation that pushes +l /il leftwards through O/", absorbing
the former in the process.

We will re-visit the above equalities in chapter 6 when we describe parallelisation
of BMF programs.

There are many other identities. One intuitive identity is

f *'s*: (Í ' g)*

which describes how two map operations can be merged into one. The application
of this equality from left to right is equivalent to merging two loops that apply a
function to each element of a vector.

Transformations to mixed list and alltup functions can be applied independently
as in the example:

(f x,,gx)" .h*
: {U,g)" .h: U .h,g .h)"}

(fx.hx,gx.hx)"
: {f * .g* : (Í.g) * (appti,ed, twi,ce)}

((Í .g)*, (g.h)*)"

The identity:

zip.(Í * .lrt¡9 * .nr)" : ((f .n,g.r2)") * .zip

is interesting because it shows how the levels of nesting for alltup and
map functions can be swapped. zip is a function that takes a pair
of lists ([ro, . " ,rn-t],[ao,. . . ,u,_l) and converts it into a list of pairs
[(ro,Ao), . . . , (rn-r,y,_l)]. The identity above shows how movin g a zip function can
be used to consolidate two map functions (LHS) into one map function (RHS)16.

l6There are generalisations ofzip that convert arbitrary length tuples oflists into a list ofarbitrary
length tuples. One of these, in called tra¡sk, was used in FP*[145] and implemented as a primitive.
Another version was implemented in the source code of a demonsìration program tor Henk[ttO], a
language with a Pure type system, implemented by Roorda[l2l]. Such a gãneralisation would make
a useful future addition to the BMF dialect used in the Adl project.
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A similar transformation applies to reduce

(el"'n,Øf ¿'nr)": (e'(tt "trt,lTt'Tz)",8'(^r'rt)",(n,'n')")"1ç',a¡"'zip
where

#.rt: #.rz
merging two separate reductions (LHS) into a single reduction (RHS)17' The equality

above is conditional. It only works if we can guarantee the length of its first argument

is the same as the length of the second argument. This fact is denoted by the

predicate after the where clause. f is the list-length operator in BMF. Several of

the transformations used in this work are based on such conditional equalities.

This concludes our brief discussion on some basic iist transformations. There

are many other transformations on many other functions. The ones above serve as

examples, but they are important examples. The proof systems underlying these

equalities are to be found in category theory. A strong exposition of the categorical

foundations of BMF can be found, in [20] and some more recent work expanding the

applicability of point-free BMF can be found in [a0]'

3.L.4 IlomomorPhisms

Homomorphismsl8 are functions whose structure matches the structure of the type

on which they operate. A homomorphism on a list type is a function that has a case

for each constructor in the list type. Recall, the constructors for the list type we use

in this work are: [],,. : tl
l'1, : ["]
1l rsgs : rsl|Ys

A homomorphism on concatenate-lists is a function h with the following structure:

hil : e

hl"l : fr
h(rs)-r us) : (hrs) @ (hEs)

17The explanation for the function (ny nt,nt'nr)o to the right of O is that reduce will present
In the RHS of the equalitY above the

(pz,øz)) where p1 and p2 are the values
code to extract these two operands to
to the right of the I function.

each instance of its binary operator with a pair of operands'
pair presented to O ' (n, ' nr,ny nz)" has the form: ((p1, q1),

destined for the binary O function' (nt'nt,7r1 '?r2)o is the
form the pa\t (p1,p2). Similar reasoning applies to the code

l8Homomorphisms on an initial algebra are called
homomorphisms discussed here are also catamorphisms'

catamorph'isms [58, 20, 40]. The
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where each line matches a constructor of the concatenate list. The value e is a constant
that is produced if the input list to h is empty. ,f is applied to each element of the
list' @ is used to join list elements after they have been processed by f . e is assumed
to be the left and right identity of O, that is: e O lx : (L Ø e: tr.

The notation above is a clumsy way of writing homomorphisms. A simpler way
is to simply list the values of e, f and O:

h: {e, f ,ØX

Homomorphisms can also be uniquely expressed as a combination of map and
reducele:

h: Ø1". l*
3.1.4.L The importance of homomorphisms

Homomorphisms are important for several reasons incruding:

Versatility: Homomorphisms can be used to express a wide variety of functions.
They are pertinent to many programming problems.

Tlansformability: map and reduce have many useful equalities that apply to
them. The many functions that can be expressed as a homomorphism can
be modified/improved by these equalities.

Parallelisability: both map and reduce have obvious and efficient parallel
implementations.

Table 1 gives some examples of list homomorphisms. A much bigger class of functions
can be expressed as a homomorphism followed by a projection (n function). The
existence of these additional functions functions, called near-homomorphisms[36],
adds greatly to utility of map and reduce.

Relevance of homomorphisms to the Adl project The Adt language contains
no single construct corresponding to a homomorphism and there are no parts of the
Adl compiler designed specifically to exploit homomorphisms, yet homomorphisms,

leThere is a subtle difference between the e in a homomorphism, which is a constant and the ein reduce which is a constant function. In this work, the distinction between constant and constant
function is of little importance. The implementation can be easily adjusted to cope with one or the
other.
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Table 1. Some list-homomorphisms.

and their near-relatives, ale very important to the Adl project' This importance

stems from the fact that the Adl language is designed to encourage the programmer to

express solutions in terms of aggregate functions including nap and reduce' Any code

expressed in terms of either of these two functions inherits their transformability and

their potential for parallelism. Moreover, their combination forms a homomorphism

which can be used to express the solution to a large variety of problems. The relevance

of homomorphisms to Adt stems from the fact that the primitives of Adl can be used

to express homomorphisms, along with the fact that homomorphisms can be used to

express readily tranformable solutions to many problems'
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DescriptionHomomorphism
list of numbersthe sum of aThe function to find0,i _-L

1lsurn:
The function to find the product of a list of
numbers

prod : ( 1, id, x

The function to test iÎ pr is true for ali elements r
of the input list

alltrue p : true, p, A

The function to test if Pr is true
element r of the inPut list

for at least oneonetrue p : (false, p, V

the maximum value in a list
of numbers using the f function to return the
maximum of two numbers.

The function to findrnar: ( -oo,id,J

find the minimum value in a listThe function to
of numbers.

rnl,n: ñ, ,I
IengthThe function to find t a1l,en 0 +, )

The function to reverse a list using the l+
(concatenate in reverse function.

reu : ( []¡r, ['], +f )

The function to sort a list using the li\ merge

function
sori : {llx, /n

Formulation map/ as a homomorphism.Kt ,LL
r llmap.f :

e, id, @ Formulation of reduce O e as a homomorphism.reduce Ø e:

rs}ys : Ís*l (((løsúzs)O) *Et) and lastrs returns
the last element of the vector rs.

Formulation scanOeasa wherescan @ e: e I.rL ,O

,1t The identity function on lists.id: I{t
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3.L.4.2 The role of scan

Adl provides a small family of scan primitives but the BMF equivalent: scan2O,

written / , has not yet been mentioned. Informally the semant ics of / is:

@/ [*o,ttt...,rn-t]: fro,x)o@ rt,...,,lx¡O rr @... O rrr-r]

scan is a very versatile operation, useful when the intermediate results of a reduction
are needed. As indicated in table 1, scan can be implemented in terms of map and
reduce but, due to the inefficiency of doing this, it usually kept as a primitive in
its own right. There are several useful equalities that apply to scan, which do not
bear direct mention here, but a sample of these can be found in [64]. Like reduce,
some varieties of scan have a fast parallel implementation. The Adl implementation
exploits this parallelism.

This completes the overview of BMF. This description barely scratches the surface.
There are many more BMF types, primitives and equalities available. The reader
is referred to [20] for a good introduction to the theoretical basis of BMF and
the methodology and to [78] for an overview of some more recent developments in
optimisation of parallel BMF.

'We have also omitted descriptions of several of the BMF functions used in the Adl
implementation. These will be introduced in later chapters as they become relevant.
A description of the role of BMF in the Adl implementation follows.

3.2 The role of BMF in the Adl project
Figure 12 highlights the role of BMF in the Adl implementation. The places where
BMF is produced or consumed are highlighted in black. The primary role of BMF
in this project is as a medium for program improvement. The translator emits BMF
code which is then improved by the optimiser resulting in faster code. The syntax
of optimised code is slightly richer due to new primitives injected to increase the
efficiency of code21. The parallelisation process injects and propagates implicitly

2osometimes called prefix.
21All other things teing equal, a richer syntax in an intermediate form is a bad thing: it

gives us more cases to handle. Some rationalisation of this language may be possible in future
implementations.
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distributed BMF primitives through code22. At all stages, all code is expressed

completeiy in point-free form down to the level of BMF primitives' To a large

extent, this is made feasible by code-inlining which is made feasible by the absence

of recursion. The aim of using BMF in this project is to attempt to exploit, to the

maximum possible extent, the transformability of point-free BMF. That is, to find

out what techniques are most productive in the automated improvement of such code.

3.3 Summary
This ends our brief introduction to BMF and aspects of the point-free variant used in

the Adl implementation. To summarise: BMF is unmatched as a medium for program

transformation and improvement; transformations in BMF rely on mathematical

equalities, making them safe, and to an extent, mechanisable; it is this safety and

mechanisability that we aim to exploit in the Adl implementation' As a final note,

it should be said that point-free BMF with its need for explicit transport of values is

not an easy notation for programming. This lack of ease motivates the use of a more

22In theory, such parallelisation may seem unnecessary since it is possible to directly map the

data-flow-graph formed by BMF code and its input onto a machine with an unbounderl number of

virtual processors. However, this approach rules out any algorithms extract efficiency by recognising

the boundary between on-node and distribu ted processing. As an example, the efficient algorithm
for parallel scan given in chapter 6 relies upon such knowledge'
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friendly source language, Adl, and the implementation of an Adl to BMF translation
process. This translation process is the subject of the next chapter.



Chapter 4

Adl to BMF translation

The last two chapters explored two different notations. The first notation, Adl, is a

small strict functional language with buiit-in second-order functions' The second

notation, point-free BMF, is a calculus for programming, based on a notation,

consisting entirely of functions, glued together by second order functions'

This chapter describes a translation process from Acll to BMF. The first section

of this chapter consists of a brief statement of the role of the translator in this

project. The second section contains a brief, informal summary of what the translator

d.oes. The third, and largest, section d.efines the translator formaily. The detailed

explanations in this section can be skipped on a first reading. The fourth section

shows exampies of code produced by the translator and assesses the efficiency of this

cod.e. Finaliy we briefly summarise related work'

4.L What the translator does

In this work, the translator has the task of converting between Adl programs and BMF

programs. The nature of Adl and BMF, and their role in this work, is summarised

below.

Adl and its role Adl and the point-free BMF1 used in this project share a strict

functional semantics and a reliance on second order functions'
lHenceforth, we will use term "BMF" to refer to the dialect

project.

39

of point-free BMF used in this
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The main point of divergence is that Adl, like most languages, supports variables
as means of storing run-time data while BMF does not2. Variables provide
programmers with an abstraction of a, single-assignment, random-access store.
Such a store lets the programmer decouple consumers of data from producers of
data' With variables, the programmer concentrates more on the actual production
and consumption of values and less on how to get values between producers and
consumers, the implicit store handles the problem. This separation of concerns makes
programming simpler and is largely taken for granted, especially in non-distributed
environment where the random access store is efficiently realised in hardware,

We believe it is valuable for programmers to maintain the abstraction of a random-
access store even in a distributed environment3. Adl, the source language for this
implementation does maintain this abstraction.

BMF and its role BMF does not support variables as a means of storing run-time
data. In BMF a function producing data and a function consuming that data must be
composed with each other. tansport of data is carried out by passing values through
sequences of composed functions. Fbom the point of view of the BMF programmer
storage exists only fleetingly in the form of the immediate input and output values of
the currently executing function.

BMF is easily transformed through the localised application of program identities.
Moteover, its primitives have naturally parallel implementations. These two
properties make it, a priori, a good candidate for the intermediate form of our
implementation.

The translator's task The translator assumes that the Adl source file has been
parsed and type-checked before it begins its operationsa. The translator takes an Adl
abstract syntax tree and converts all of it to BMF. The translator is highlighted in
black in the map of our implementation shown in figure 13. One goal of this project is

2In other wotds, Adl supports point-wise functional programming while the BMF notation we
use is point-free.

3There is a strong opposing argument that, for the sake of efficiency, the distinction between access
to local values and to remote values should be visible to, and under the control of, the prograrnmer.
We believe the need for this distinction is diminished for Adl where it is most convenient for the
prograrnmer to use constructs with efficient parallel implementations and the cost of data movement
is statically reduced by the compiler.

aParsing and type-checking of Adl programs are reasonably straightforward activities and of little
research interest so we omit details of these operations from this document.
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to leverage the transformational properties of BMF to the maximum possible extent'

In keeping with this goal, the translation process v¡as kept as straightforward as

possible. Any optimisation of the Adl source oI optimisation during the translation

process is eschewed in favour of performing that optimisation once the program is

expressed in BMF5.

The primary change wrought by the translation process is the elimination of

variables. Other things including the names and semantics of primitive functions are

preserved to the maximum possible extent. An overview of the translation process is

given next.

4.2 Overview of translation
The Adl to BMF translator's primary task is to change the method of data access from

variables to functions. During translation, each reference to a variabie is replaced by

a function that projects, the value from the values in scope. So, given the program:

sinple (a: int ,b: int) -d.

our translator produces the BMF code

5An open question is what optimisations are more easily performed while the program is is still
expressed in Adl. Certainly some simple substitutions and optimisations such as common sub-

explesslon elimination appeax to be easily done in Adl. The
and what is best done in BMF is interesting future work'

question of what is best done in Adl
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7f1

that is, the function that returns the first value out of the input tuple
A slightly more compiex example

sinple2 (a: int , b : int )

is translated to the BMF code

-'(trz,h.)"

where the two input arguments are permuted before the subtraction operation is
performed.

Declaration sequences In the programs above, the only values in scope are
formal parameters. Scope is more complex in Adl programs that contain declaration
sequences' Each variable declaration in a sequence introduces a new value to the
previous scope. The translator must produce BMF code to transport values in scope
to places they are used. The Adl program:

not_as_sinple(b: int) .=

1et
a=20

in
b-a

endlet
translates to:

- .(nr,rz)" . id . (id,20)'

Reading from right to left, the first part of this program, (id,20)., wraps the input
value with the value 20 to form a tuple

(ual(b),20)

where ual(b)denotes the value that replaces the parameter b at runtime. The middle
id in the BMF code is an artifact of the translation process. The last part, - .(nr,nr)" 

,

extracts both values from the input tuple and subtracts one from the other.

:= b - a
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Functions in declaration sequences Function declarations are treated differently

from variable declarations. Variable declarations are converted immediately into code,

whereas no code is prod,uced when a function declaration is encountered. Instead a

closure is created consisting of the function's code, formal parameters and referencing

environment at the time of function declaration. Every time the function is called

code for the function is built, using the information in the closure and information

about the current referencing environment, and in-lined into the target program6'

As a concrete example of this process, consider the translation of the code:

fu¡ction-tester a: int r=

let
f (x,Y) := x * Yi
b;=20

in
f (a,b)

endlet
into the BMF code:

* . (^r ''tr2,7f2 ', nr)o '(id, (2r1, nz)')''
¡d . (id,20)"

The start of the program, on the second line above, corresponds to the

declaration b := 20. There is no code corresponding to the function declaration

f (x, y) : = x + y. Instead the first line:

t ' (*, '7r2,'tt2 'zr2)"(id, (nt,nr)")"

corresponds to the call f (a,b). The first part of this line to be executed:

(id, (n1, rz)")"

appends the values of the actual parameters of f to the end of the input tuple. The

end of the program, at the beginning of the first line:

I ' (*t "tt2,r2'r2)"

is the body of the function / appiied to the actual parameters.

The flows of data through the above program are illustrated in frgure 14. The

Adl implementation currently avoids
recursive functions into BMF is an

6ln-lining of calls to recursive functions is problematic' The
this problem by banning recursive definitions. Tlanslation of
active research topic[78, 40]
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+ id ( id,20)o

(val(a)+2)) (val(a),20)--r- -T- --r- Tx+y x y
val(a)-T-

(val(a),2)) (val(a)20)TT Tî( ( v al( a ), 20 ), (val( a),2 0 ) )T; _IT

Figure 14. The translated code for fu¡ction-tester.AdI (top), a diagrammatic
rendering of this code (middle) and a description of the data at various points of

execution (bottom).

translated code for function-tester.AdI is shown at the top of the diagram. A
graphical representation of the translated code is in the middle of the diagram. The
text below the diagram shows the set of input/output values at each stage of the
program. It is worth noting that, even though the function f accesses only the values
attached to its formal parameters, the code also transports other copies of these values
just in case they might be accessed via the variables a and/or b inside the body of
f . This leads us to an important point: the translator has a policy of producing
code that transports eaerA value that was previously visible to the code of a function
to each call of that function. This policy is conservative: the code never fails to
transport a value that is needed. The drawback of the policy is that values that are
noú needed are transported along with the ones that are.

The results of the translator's conservative policy are visible in figure 14; the
code produces correct results but is more complex than required. In this work,
the translator's sole responsibility is producing a correct translation. Later on, the
optimisation stage of the implementation, described in chapter 5 attempts to minimise
the amount of data transported.

The role of types in translation The Adl typechecker monomorphically
instantiates and annotates every node in the Adl syntax tree. The translation process
does not directly utilise this type information but it is useful for parallelisation and
code generation so it is assumed the translator preserves all type information.

id

¡d
+ id

It
20
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This concludes our brief overview of the translation process. Next, we describe

the translation process in much more detail, presenting the semantic rules used to

build our prototype transiator.

4.9 The rules of translation
The prototype translator Adl to BMF is formally defined. using Natural SemanticsfSg].

Natural Semantics is a variety of structural operational semantics (see [74] for a

very clear introd.uction). By using natural semantics we can describe an aspect of

a language or a process in terms of relati,ons between expressions' These relations

are written as rules. A set of rules can be used to prove if a relation hoids between

expressions. Moreover, if the expressions given to a set of rules is partially undefined,

the rules can be used to instantiate the undefined parts'

The rules in this chapter define the relationship between Adl code and the BMF

code produced by the translator. The relationship can be written as:

A+B

where ((+" means "translates to" . If B is unspecified the translator rules instantiate

it to the first valid, translation of A (assuming one exists) . lf B is specified then the

relationship acts as a predicate that is proven when B is a valid translation of ,4..

The translator's semantic rules have been implemented and tested using the

Centaur[24] system from INRIA. Centaur provides the means to execute a definition

in Natural Semantics against expressions in the input syntax of the definitions. In

the translator implementation, our rules are applied to Adl programs and BMF code

is automatically instantiated on the other side of the rule.

4.3.L The source and target sYntax

The abstract syntax definitions of the source and target languages follow starting

with a definition of the Adl abstract syntax.
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4.3.1.L Adl syntax

In Centaur, syntax definitions are divided into two parts. The first part defines
the classes of objects, called Phyla that appear in the abstract syntax. The phyla
mappings serve to convey the role of each part of the syntax to the reader.

The second part is the abstract syntax itself. It is written in a variant of
extended Backus-Naur form. Here, Adl construct names are in typewriter font.
Phyla names are in capitalised italics. Operators of fixed arity (e.g. nap(ID,EXp))
have round brackets. Operators with a list of descendants have square brackets (e.g.
decls lDEC.I)

A superscript of * inside square brackets indicates zero oï more occurrences of
the objects of the preceding phyla name. A superscript of + denotes one or more
occurrencesT.

Empty parentheses, following an operator (e.g. int O ) show that it has no
descendants. Other terminal objects whose range of possible values is too large to
enumerate (e'g. REAL) are defined by "implemented as" clauses. The domain from
which these values are drawn is described in English.

The following definition is the complete abstract syntax of Adl so it is quite
Iengthy8. It is included as a reference for the Adl expressions in the translator rules.
The most relevant aspect of the syntax for the reader is the allocation of syntax
objects to phyla. Phyta names are used to denote the type of expressions in the
translator rules.

Phyla

PR)G ¡--+ Programs, DECLS r--+ Declarat'ions, DEC r--+ Declaration,
EXP r+ Erpress,ions, PAT -+ Patterns, TypE r--+ Type spec,i,fier,

ID r--+ Identifi,er, IDT ¡--+ Optionally typed ,identi.fier,

BOP ¡--+ B'inary operator,, UN_OP r--+ (JnarA operator, NUM ¡--+ Integer,
REAL ¡--+ ReaL

Tldeall¡ we would have a +2 superscript for items in a tuple but this is not supported by Metal,
the Centaur language used to define this syntax.

sOne reason for this length is the explicit overloading of primitive arithmetic operations. Later
versions of this implementation will insert coercion operations during the type-checking phase.
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Abstract syntax

PROG
DECLS
DEC
EXP

PAT
TYPE
IDT
BOP

UN_OP

47

1: pr(DECLS)
::: decls IDEC.J
::: vard.ec QDT,EXP) | fundec (IDT,PAT,EXP)

::: Iet (DECLS,EXP) | fuaapp (ID,EXP) | iI{øX?,EXP,EXP) |

while (ID,ID,EXP) | nap UD,EXP) | u:-nop (BOP,EXP,EXP) 
|

íota(EXP) | reduce (ID,EXP,EXP) | reducer(ID,EXP,EXP) |

reducel (ID,EXP,EXP) | reducep(ID,EXP) | reducelp?D,EXP) |

reducerp (ID,EXP) | scan(ID,EXP) | scanl (ID,EXP) 
|

scanr (ID,EXP) I "op(UN-OP,EXP) | vecl lEXP.l I ID I NUM 
I

REAL I tuplelEXP+l
:'.: ID I typed-idQD,TYPE) | pat-ristlPAT.l
::: intO I rearO I boorO I vof QYPE) | type-tupLelTYP9+)

eqrrO 
I

neqrro
eqbbO 

I

neqbbO 
I

: ID typed-id( ID,TYPE)
: andO I orO I eqO I eqiiO eqirO eqrio

leqO leqiiO leqirO leqriO leqrro
geqO geqiiO geqirO geqriO geqrro

neqO neqiiO neqirO neqirO neqrio
leqbb (

geqbb(
)

)

BOOL
ID
NUM
REAL

etO I gtiiO I gtirO I gtriO I gtrrO I gt¡¡O I

lto I ltiio I rtiro I rtrio I rtrro I rtbbo I

plusO I plusiiO I plusirO I plusriO I plusrrO 
I

ninusO I minusiiO I ninusirO I ninusriO I ninusrrO 
I

tinesO I tinesiiO I tinesirO I tinesriO I tinesrrO I

divo I aiviio I diviro I divrio I divrro 
I

pohrerO I poweriiO I powerirO I powerriO I powerrrO I

indexO IintaivO Imodo
::: uminusO I uninusiO I uninusrO 

I

lengthO I negO I roundO I froatO I truacO 
I

sinO lcosO ltanO lasinO lacosO latano
::: trueO I falseo
::: id implemented as a string

::: nuln implemented as an'integer

::: real implemented as a real number
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4.3.L.2 BMF syntax

The conventions followed in BMF syntax are veïy similar to those followed for Adl.
Primitive BMF functions are defined in sans-serif font to help further distinguish
target and source code in the rulese.

The phyla and abstract syntax definition are each divided into two parts. The
first parts are the core of the target language. The second parts are definitions of
auxiliary constructs. The auxiliary constructs are used to set up an environment in
which the translation can take place, acting as scaffolding for the translatiorr process.
Objects defined in the Auxiliary syntax do not appear in the target code produced
by the translator.

Finally, the abstract syntax of types defines valid type annotations for functions
in BMF programs. All functions in BMF programs are annotated with a type
from the B-FTYPE phyla. The syntax for types reflects the restriction of user-
defined functions to being first-order and uncurried. It should be noted that type
annotations are, currently, not exploited by the translator or optimiser phases of this
implementation so we leave them implicit in the rules shown in this chapter and the
next. Types are exploited during parallelisation so we will see them again in chapter 6.

Phyla

B-EXP r--+ Erpressi,ons, B_K r--+ Constant funct'ions,
B-OP ¡--+ Operators, B-INT r--+ Integers, B-REAL ¡--+ Real numbers

Auxiliary Phyla

B-ENV ¡--+ Enuironn'rent, B_UAR ¡--+ Variable ena,ironment
B-VB ¡--+ Variable b'indi,ng, B_VOD r+ Variable or Dummg entrg,
B-FUN -+ Functi,on enu,ironment, B_FB ¡--+ Funct'ion b'indi,ng,

B-CLOS -> Funct'ion closure, B-NUM r-+ Number, B_V ¡--+ Variable n0,n1,e

Type Phyla

B-FTYPE ¡--+ Function types, B_TYPE ¡--+ Non-Functional types,
B-TVAR ++ Type uariables

eOur Centaur implementation does not maintain an explicit distinction between source and target
syntax, they are both components of the same syntax definition.
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Abstract syntax

B-EXP ::: b-comp(B-EXP,B-EXP) | b-alltup[B-EXP+] | b-con(B-If) |

b-allvec[B- EXP.] | b-op(B-oP) | b-id0 | b-map(B-EXP)I

b-reduce(B -EXP,B-EXP) | b-reduceI(B-EXP,B-EXP) |

b_reducer(B -EXP,B-EXP) | b-reducep(B-EXP) | b-reducelp(B-EXP) |

b-reducerp( B-EXP) | b-scan(B -EXP) | b-scanl(B -EXP) |

b-scanr(B- EXP) | b-tf(B-EXP,B-EXP,B-EXP) |

b-while(B- EXP,B-EXP) | b-addr( B-NUM,B-NUM) |

B-K ::: b-trueO I b-falseO I B-INT I B-REAL

B-OP ::: b-iota0l b-and0l b-opOl b-distl0l

b-eqQ l b-eqii0 l b-eqir0 l b-eqriQ l b-eqrrQ l b-eqbbQ I

b-neq0 | b-neqii0 | b-neqir0 | b-neqriQ I b-neqrr0 | b-neqbb0 |

b-le0 l b-leii0 l b-leirQ l b-leriQ l b-lerr0 l b-lebb0 |

b-e.0 | b-geii0 | b-geirQ I b-geri0 | baerr0 | baebbQ 
I

b-lto I b-ltii() I b-ltirO I b-ltri0 | b-ltrro I bjtbbo 
I

b-et0 | b-gtii0 | b-gtirQ I batri0 | b-gtrr0 | b-gtbu0 |

b-plus0 | b-plusii0 | b-plusir0 | b-plusri0 | b-plusrr0 |

b_minusO I b_minusii0 | b_minusir0 | b_minusri0 | b-minusrrO 
I

b-times0 | b-timesii0 | b-timesir0 | b-timesriQ I b-timesrr0 |

b-divQ I b-divii0 | b-divir0 | b-divriQ I b-divrrQ I

b-power0 | b-powerii0 | b-powerir0 | b-powerriQ I b-powerrr0 
|

b-intdivQ I b-index0 | b-mod0

b-uminius0 | b-uminusi0 | b-uminusr0 |

b-andQ l b-orQ l b-length0 l b-negQ l b-round0 l b-trunc0 
|

b-float()|b_sin()|b_cos()|b_tan()|b-asin()|b_acos()|b-atan()
B-NUM ::: b-num implemented as an integer

B-INT ::: b-int implemented as a li'fted i'nteger

B-REAL ::: b-real implemented as a li'fted real number

Auxiliary abstract sYntax

49

B_ENV
B_UAR

B-VB

::: b-env( B-UAR,B-FUN,B-NUM)
::: b-var[ B-VB. ]

::: b-vb(B-VOD,B-EXP)
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::: b_dummy0 I B_V
::: b-fun[B-FB.]
::: b-fb(B-V,B-CLOS)
: :: b-clos( B -EXP, B -NUM, B -VAR, B -UAR, B _FU N)
::: b-v implemented as a string

50

B_VOD

B_FUN
B_FB

B_CLOS

B_V

Abstract syntax of BMF types

B-FTYPE::: B-TYPE --+ B-TYPE
B-TYPE ::: b-integer_t I b_real_t I b_boolean_t 

I

B_rvAR | | B_TYPE I | @_TYPE,
B-TVAR ::: b-tv implemented as a string

, B_TYPE)

4.3.1.3 Explanatory notes for BMF syntax

BMF Syntax for Integer Constants The syntax contains two types of integer
constant. The first type, B-INZ is the phyla of lifted integersl0. All objects in this
phyla are functions that return an integer value when given an argument of any type.
They (and real number constants and boolean constants) are written in sans-serif
font.

The second type, B-llUM is the phyla of ordinary integers. B-NtlM's are used in
the auxiliary and also in the target syntax. where B-NIJM's are used as hard-wired
parameters of the b_addr( , ) function.

BMF Syntax for addressing tuple elements b-addr( , ) i. the way that r
functions are written in the abstract syntax. As shown in chapter 3, z functions are
the means by which elements of tuples are accessed. To date, we have only examined
tuples which are pairs of values:

(*,y)

where r and A are values of arbitrary type. To access ø and g/ we use the functions
7r1 and n.2 respectively. n 1 is written b-addr(2,I), in the abstract syntax, and 12

is written b-addr(2,2). When the arity of the input tuple is greater than 2 the z-

104 lifted integer is a function that returns the same integer constant irrespective of its input
value.
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functions accessing that tuple are left-superscripted with the arity of the tuple. So,

for example, to access the first, second and third elements of the tupie:

(*,a, ,)

we use the functions 3zr1 , 3r2, and 3zr3 respectively. The corresponding functions in

the abstract syntax are b-addr(3,1), b-addr(3, 2), and b-addr(3,3) respectively'

As a final but important note, the two values in the brackets of b-addr( , )

functions are fixed at compile-time. In effect, b-addr is a family of functions where

ind.ividual members are named, at compile time, by placing numbers in the brackets.

BMF Syntax for F\rnction Composition F\rnction composition is expressed

using the binary b-comp( , ) operator. Under this regime' sequences of composed

functions are built using several b-comp operators. For example the program:

f 's'h

can be written
b-comp(/, b-comP(9, h))

or, it can be written as the different but equivalent BMF expression:

b-com p (b-comP(/, g), h)

The flexibility of being able to associate b-comp expressions in any convenient order

makes the creation of code by the translator easy. However, there is a cost, incurred

at later stages of compiiation, in having to cater for multiple versions of an expression.

We could avoid multiple versions by defrning composition sequences to be lists' This

means that / ' g ' h could be written in only one way:

b-comP[/,9, h]

The compositions as lists approach used in [19](Chapter 72) and [71]. The Adl

implementation uses a binary composition instead of compositions as lists because

binary composition ofiers a mechanism for partitioning code without altering the

semantics of that code. Such partitionings are heavily exploited by the optimisation

process described in the next chapter.
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Auxilliary syntax Finally, the auxilliary syntax defines constructs used to
construct the environment, containing variable and function bindings, in which the
translator rules work. None of the elements of the auxilliary syntax appeaï in target
code' The environment is used by several rules and will be described as the rules are
introduced in the remainder of this section.

4.3.2 Interpreting the rules

The following paragraphs contain notes on how to interpret the semantic rules shown
in this section. They are also a useful guide to some conventions used throughout the
rest of this document.

4.3.2.1 How rules are structured

The environment As stated previously, all of the rules of this chapter take the
form of a relationship between Adl expressions and BMF expressions. For the most
part, the * symbol is used to denote this relationship. The rule

A+B
is an assertion that the Adl expression A translates to the BMF expression B.

In most cases A will contain code that references variables and functions. Where
variable references exist in A, it cannot be translated without a context to resolve
these references. The context we use is an environment constructed from the variable
and function declarations currently in scope. In natural semantics, a rule that applies
with respect to some environmenl ENV is written:

ENV I A+ B
This is read "A translates to B in the context of the environment ENV".

Rules with multiple lines The single-line format above is used in the axiomatic
rules for translating some terminal expressions in Adl. For most Adl expressions,
a translation rule is contingent on other properties. For example, the translation
of a variable reference cannot be proved until we can prove that the variable can
be found in the environment. More generally, the translation of a non-terminal
expression cannot be proved until the translations of its sub-expressions are proved.
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For example, to find a valid translation for the expression erpll efrp2 we need to find

a valid translation for erpl and erpr. These extra conditions are integrated into the

rules in the following manner:

ENV I erpl è b1 ENV I erp, + b2

ENV I erprl erp, + +' (bt,br)'

This reads : " elrq)rl erp, translates into the BMF expression -|' (bt, b2)' provided there

is a translation from erprto some BMF expression b1 and there is a translation from

erpr l,o some BMF expression b2, aIl in the context of the environment ENV". When

reading a rule, we read the last line first followed by the other lines, the premises, in

descending ord.er. In this document, we refer to the last line of a rule as the conclusion

of that rule.

4.3.2.2 Naming and style conventions for the translator rules

Where possible, naming conventions follow those used in the syntax of each language.

Variable names All variables in the rules are written in lower-case itaiics' This

applies whether they denote Adl code or BMF functions. Where possible, the variable

name conforms to the phylum forming its domain e.g. a variable holding BMF

expressions will usually be written as some variation of. b-erp. Where the name

of the phylum cannot be used the phylum of a variable can be determined from the

syntactic context.

The names of different variables of the same phylum within a rule are distinguished

using subscripts andf or prime (') symbols.

Rule Sets Centaur requires rules to be grouped into Rule-sets. A rule-set is a

collection of rules with a single purpose. The translator definition contains several

rule-sets and two of these, Trans and Translate., are described in this chapter.

Judgements Translator rules within each set, depending on their role, have

different formats. In Centaur, formats for rules are declared at the top of each rule

set. The conclusion of each rule in a set must adhere to one of the formats declared
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for that set. These formats are called judgements. The Translate rtle-set has a
judgement of the form:

B_ENVIEXP+B_EXP

which declares "this rule-set contains some rules whose conclusion starts with a BMF
environment followed by a l- symbol, followed by an Adl expression followed by a
=* symbol, and finishes with a BMF expression". Translate also contains another
judgement for rules for handling declarations:

B_ENV I DECLS : B_ENV, B_EXP

Different judgements are distinguished by different symbols and different phyla names.

References to other judgements References, in the premises of a rule, to a
judgement different from the one found in the conclusion of that rule are described as

calls. Where the call is to a judgement from a different rule-set, the call is qualified
by the name of the other rule-set, written in italics. Calls to different judgements in
the same rule-set do not need to be qualified.

Brackets Constructs, in both Adl and BMF, are written according to their
structure. Where operators have fixed arity, arguments are encapsulated in round
brackets. List-like structures use square brackets. List-like structures can be

composed and decomposed in the same way as cons-lists. That is, Iists consist of
a head and a tail and we can recursively access the tail of a list until we encounter
the empty list. Commas can be used as shorthand notation in some instances. The
following are equivalent.

vector 12,31

vector [2 . vector [3] l
vector [2. vector [3. vector [] I l

Note that, for the sake of our implementation, tuples are treated as list-like structures
by the semantic rules.

Constructs of zero-arity are usually followed by a pair of matching round brackets.

Integer and real constants are exceptions to these rules. They are written as a name

followed by a variable or literal (no parentheses). For example: num 3, b-num -ôy'.
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4.3.2.3 Miscellaneous terminology

The following describes a variety of phrases of relevance to the description of the

translator and to explanations of concepts throughout the rest of this document.

The notion of run-time In this chapter and in the remainder of this document

there are references made to the behaviour of target code at "run-time". For example:

"At run-time this (code) will be given input representing the current environment...".

This notion is potentially ambiguous because the nature of the target code can change

completely through the stages of compilation through to the target machine.

In this chapter, run-time is when the BMF code, taken directly from the translator,

is applied to its input values.

IJpstream-downstream BMF code is read from right-to-left and from bottom-

to-top. This unconventional reading order renders terms like "beginning", "end",

"start", and "finish" slightly unclear. To avoid ambiguity, in the remainder of this

document we refer to relative locations in BMF code using the terms "upstream" and
t'downstreamtt.

Code that is closer to the point at which the BMF program begins execution is

upstream. Code closer to the point at which execution ends is called downstream' As

an example of this usage, consider the program:

Øl ". h * .g * . f x'zip' (nr,nt)"

The function /* is upstream of gx but downstream of zip. The most-upstream function

is (r2,fl-1)o where both the 7T2 aîd zr functions are equally upstream. Finally, the

most-downstream part of the program is O/".

The meaning of bodg The explanations throughout the rest of this document

use the lerm body to refer to the core component of a BMF function or of an Adl

expression. The v¡ays we use this term are listed below.

1et body: In an expression let ( decls > in < body ) endlet the part labelled

< body > is the body of the let expression,

function body: In Adl, the function body is the code following the : = in a function

declaration. In BMF, it is the BMF code produced from the Adl code making
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up the body of a function declaration. The BMF code to add a function's actual
parameters to that function's input tuple is not part of that function's body.

map body: Used in the context of BMF to denote the code embedded inside a
map expression. The map body corresponds to the part labelled < body >
in map(< body >) (BMF abstract syntax) or in (< bodg >)x (BMF concrete

syntax).

Where the term body is used outside of the contexts above, it should be taken to
mean the core function/expression of the construct in question.

Vectors vs. Concatenate-Lists Throughout the rest of this report we use the
term vector to refer to concatenate lists.

4.3.2.4 Layout of rules in this chapter

The rules are defined in figures. Each figure contains rules for related constructs.
A figure, depending on space constraints, ilây or may not contain all of the rules
in a rule-set. For the purposes of documentation, we also display the structure of
each judgement used in a figure in the top-right-hand corner of the figure (see the
top-right-hand corner of figure 15 on page 57 for an example).

The translator rules follow,

4.3.3 The rules

The translator's definition is composed of approximately 20 different rule-sets. Most
of these sets are small, auxiliary, rule-sets containing only a handful of rules and one

or two judgements. In this chapter we describe two rule sets in detaii:

Trans: a small rule-set to pre-process Adl programs into a single expression plus an

environment.

Translate: the core of the translator, turning an Adl expression into a BMF
expression in the context of a given environment.

Rules in these two rule-sets call judgements from auxiliary rule-sets. The role of
each auxiliary rule set is briefly described as it is encountered but details of these

rules are not provided. A more complete description of the translation process can

be found in [6]. We start with a description of. Trans, the pre-processing judgement.
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Figure 15. Top level rules. Programs are formed from a list of declarations

4.3.3.1 T}re Thans rule set

The rules of. Trans are shown in figure 15. Their purpose is convert the Adl source

program from a sequence of declarations to a single let-expression and then pass this

expression, along with an environment containing bindings for formal parameters

of the function that is the program's entry point, onto the Translate rule-set for

conversion to BMF.
Trans takes, as input, a program of the form:

(aetn r)
(aetn z)

(defn n-1)
(ia) (pat) := (exp)

where the ( defn 1 ) to < defn n-1 ) are arbitrary function and variable

declarations and the last declaration:

Set Trøns is I PROG : B-EXI
I DECLS ---+ DECLS, DEC

Top rule

I decls ---+ decls',fu¡-dec (u,pat,erp)
Rename-parameters(l pat -- pat')

Rename -bound-u ars (pat, erp ---+ erpt )
Ertract-buar(pat' ---+ b-uar) Length-uar(b-uar --+ b-num)

Translate(b-env (b-uar,b-funll,b-num) F let (decls' , erp') + b-erp)
(1)

F pr( decls) : b-erp

Splitting declarations

F decls [fun-dec (u,pat,erp)) --t decls [J , fua-dec (u,pat,erp)

F decls ldec'f .decls -- decls' , dec"

(2)

F decls ldec.decLsldec'.d,eclsfl ---+ decls ldec.decls'), dec"
(3)

End Trans

<id><pat> := <exp>
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is the function declaration that is the starting-point of program execution. Trans

converts the input above to a single let expression of the form:

Iet
(defn 1)
<defn 2>

( defn n-l )

<exp>
endlet

plus an environment constructed from the formal parameter list < pat ). The first
three premises of rule t handle the re-formatting of code described above. The fourth
and fifth premises convert a modified parameter list into a variable environment under
which the tet expression above can be translated. Both the let expression and the
environment are given to the Translate rule set in the last premise to obtain a BMF
translation. \Me now look at the premises to rule 1 in more detail.

The first premise is a call to the second judgement of Trans (defined by rules 2

and 3). These rules split the declaration sequence into two parts. The first part

< defn 1 > ( defn 2> ... ( defn n-l )

(labelled decls' in rule 1) goes directly into the let expression given to Translate.
The second part

<id><pat> := <exp>
is processed further. First, the formal parameters ( pat ), are renamed by a call to
the auxiliary rule-set Rename-parametersrr. The formal parameters are renamed to
prevent a program like:

a:=2;
b := a + 5;

f(a,b):=a-b
being converted to:

11Note again, that details of auxiliary rule-sets, such as Rename4arameters, will not be given

1n

here
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Iet
a r=2;
b := a * 5

1n

a-b
endlet

where a and b, in the let body, now refer to incorrect values. A correct translation:

a:=2i
b := a t 5

-a--b

is achieved by using Rename-bound-uars to prefix underscores to the names of

variables bound to the formal parameters. We also prefix underscores to the names

of parameters in < pat > to produce < pat' ) using Rename4arameters.

Now, we have the program modified to a single let expression and a renamed

formal parameter list ( pat' >.
components of an environment from ( pat' ). Ertract-buar constructs a variable

environment from the parameter pattern'

The variable environment The variable environment is a set of bindings from

variable names to BMF code. The variable environment extracted from the parameter

list (-a, -b), byUntract-buar, ls'.

b-var[b-vb( -a,id . 11), b-vb(-b,id' r2)]

Entract-buar is able to convert arbitrarily nested parameter listsl2 to a fl,at variable

environment. The fifth premise, Length-uar finds the length of the variable

environment. This length value plays an important role in adjusting variable

references during the translation of function callsls (see rule 15 on page 68).

l2Recall from chapter 2 that patterns in AdI can be nested to any depth'
13The length value is a measure of the level of nesting of the input tuple to the current function.

This value is used during the reconstruction of a variable environment for a function closure when
that function is called.

1et

in

endlet
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Figure 16. TÏanslator rules for constants

The last premise injects the variable environment and its length into a fully-fledged
environment and then feeds this environment and the modified code into a call to
Translate in order to complete the task of translation of the new 1et expression.

4.3.3.2 T}¡:e Translaúe rule-set

The Translate rtle-set is large, so we have broken it up up into several figures. Each
figure contains a set of related rules. Each element of Adl syntax has a corresponding
rule for BMF translation. The rules of Trans correspond to these elements of syntax.
We start with the simplest rules first and progress to more complex ones.

Constants The rules for Adl integer, real and boolean literals appear in figure 16.

Each of these rules is an axiom. Their validity can be proved without resort to
premises or even to the environment. In all of these rules the Adl literal is injected
into a BMF construct, b-con denoting a constant function. That is, the Adl literal is
lifted to a BMF function.

Binary operators Figure 17 contains the rule for translating applications of binary
operators. The translation process follows the structure of the binary expression. The
two arguments to the operator are translated, in turn, by the rule's first two premises.

The third premise converts the Adl operator to its BMF equivalent by the Conuert-op
rule-set. As might be surmised, Conuert-op defrnes a trivial mapping between Adl
operators and BMF operators. The last step of translation, in the right-hand-side of
the rules conclusion, combines the results of the three premises.

Set Translate is B_ENVIEXP+B_EXP
B-ENV I DECLS: B_ENV,B_EXP

Constants
b-enu l- int z + b-con(b-int z)

b-enu F real r + b-con(b-real r)
b-enu F boolean(trueO ) + b-con(b-true0)

b-enu F boolea¡(falseO ) + b-con(b-false0)

(4)

(5)

(6)

(7)
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Figure 17. Translator rule for binary operators

B-ENVIEXP+B-EXP

Vector literals
b-enu l- vecl [J + b-allvec[]

b-enu I erp è b-erp b-enu I uecl + b-alluec

(e)

b-enu l- vecl Ierp.uecl) + b-a|lveclb-erp.b-alluec
(10)

Figure 18. Tlanslator rules for vector literals

IJnary operators and the Iota function Unary operators and the iota function

are transiated in a very similar manner to binary operators. The only difference being

one less premise to handle the single operand.

Vector literals Figure 18 contains the rules responsible for translating vector

literals. In Centaur, list-like structures, like vectors and tuples are recursively defined.

The two translation rules mirror this recursive structure.

Rule t handles empty vectors. It generates an empty b-allvec expression which is,

essentially, a lifted constant which returns an empty vector given any input'

Ruie 10 traverses a non-empty vector. The first premise translates the first item.

The second is a recursive call to handle the remainder of the vector. The conclusion

combines the results two premises into a single b-allvec function'

Tuples T\.rples are handled in a very similar rù/ays to vector literals. The only

difference is that tuples cannot be of zero-length so rü/e have a rule to handle singleton

B-ENVIEXP+B_EXP

Binary operators

b-enul erprlb-erpt
b-enu I erp"+ b-erp,

C onuert-op(bop ---+ b -op) (8)
b-enu l- binop (bop,erp1,erPù +

b -co m p ( b- op (b - op), b -a I I t u p I b- erp L,b -erp2f)
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B_ENVIEXP+B_EXP
If expressions

b-enul erplè b-erpy
b-enul erp2è b-erp2
b-enul erg+ b-erps

(1 1)
b-enu l- if ( €rpy,€rp2,€rpù + if (b-erp1,b-erp2,b-erp)

Figure 19. Tlanslator rule for conditional expressions

tuples rather than zero-length tuplesla

Iota functions The iota function is translated in the same manner as unary
functions.

If expressions Figure 19 contains the rule for translating Adl if expressions to
BMF if expressions. This is our first encounter with BMF if expressions in this
report. These expressions have the semantics:

if (b -erp r, b -erp r, b -erp r) u
: b-erpru,if (b-erpru: true)
: b-erp3 u, othemaise

Rule 11 has three premises that translate the sub-expressions, erpTt erp2) ar'd erp,
into their corresponding BMF functions.

Let expressions Iet expressions introduce variables and functions into scope.

In the following pages we describe the translation of let expressions, declaration
sequences, variable references and function applications. These descriptions outline
the core task of the translator: the replacement of the role of variables with functions.

Iet expressions consist of two parts. The first part, the declaration sequence,

brings new values and functions into scope. The second part is the body of the let
expression. The body is an expression that has access to the new environment created

laThe rule for singleton tuples is not mutually exclusive of the rule for longer tuples. This overlap
has dire consequences for efficiency when the translator fails to find a solution first time and goes
on a determined search for an alternate proof (backtracking). In short, when something goes wrong,
and rules ate not mutually exclusive, Centaur can take a very long time to give up.
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Figure 20. TYanslator rule for iet expressions

by the declaration sequence, The result of evaluating the body is the result of the

entire let expression.

The top-level rules for handling 1et expressions are shown in figure 20. Ruie 12

is pure book-keeping; it handles let expressions with an empty declaration sequence.

These empty sequences arise only as a result of pre-processing programs consisting

of a single function declaration. All other let expressions, those with non-empty

declaration sequences, are handled by rule 13. Its first premise processes the

declaration sequence, producing both an updated environment and a BMF expression.

The second premise evaluates the body of the let expression in the context of the

new environment. The BMF code, produced by each premise, is combined in the

rule's conclusion.

Declaration sequences Declaration sequences bring new values and functions into

scope. The process translating a declaration sequence must satisfy three obligations.

These are:

1. to produce BMF code for each uariable declaration encountered.

2. to produce BMF code to ensure the transport of values generated by variable

declarations to later parts of the program.

3. to keep track of new values as they enter into scope and their relative position

in the environment.

In fulfllling these obligations, the translation process turns declaration sequences into

new BMF code, with facilities to transport values, and a modified environment.

B_ENVIEXP+B_EXP
B_ENV I DECLS : B_ENV, B_EXP

Let Expressions
b-enulerp+b-erp (r2)

b-enu l- let (dec1s l) , erp) + b-erp

b-enu I decls '. b-enu' , b-erp
b-enu'l e è b-erp' (13)

b-enu l- let (decls,e) + b-comp(b-erp' , b-erp)
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The rules for handling declaration sequences include detailed definitions for
keeping track of offsets within the environment. This level of detail belies the
simplicity of the process that these rules define so, in the interest of clarity, we describe

the translation of declaration sequences informally, using examples.

Example: variable declarations The translation of the declaration sequence:

a:=4i
b := a*3

in the environment:

b -env (oldu ar, oldfun, oldu arlength)

where olduar, oldfun and olduarlength are the pre-existing variable environment,
function environment and variable environment length, respectively, produces the
code

(id, + . (n",3)")" . (id,4)'

and the new environment:

b-env(b-var[b-vb(a, id), b-vb(b, id), olduar], oldfun, olduarlength + 2)

The new code wraps its input value in tuples containing the constants 4 and 3. That
is:

(id, +.(rrr,3)')" '(id,4)" ual :
(id, + .(nr,3)")" (ual, ) :
((ual,4),7)

The new environment is the old environment with two entries added to the variable
environment and the length of the environment incremented by 2. The id expressions

bound to a and b, in the new variable environment, a e composed with the BMF
expression produced when these values are referenced (see the description of variable
translation, starting on page 66, for a summary of how references are handled).
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How the environment is updated The environment is updated incrementally

as the declaration sequence is processed. In the last example

a:=4;
b := a*3

the declaration of the variable a produced the updated environment

b-env(b-var[b-vb(a, id), olduar), oldfun, olduarlength + I)

in which to evaluate the RHS of b:

a+3

Note that the declaration of b is not visible from the RHS of a's declaration. That is,

the translator does not permit forward references. Only variables and functions that
have already been deciared can be referenced; declarations further down the sequence

are invisible. This policy preserves the semantics of Adl declaration sequences,

Example: function declarations Function declarations generate new entries

in the function environment, they do not, directly, generate code. The translation of

the declaration sequence:

l@,y)::rlai
in the environment:

b -env (oldu ar, oldfun, oldu arlength)

creates the new environment:

b -env (ol duør, b-fu n [b-fb (f , f cl o s), oldfun], oldu arlength)

The new entry in the function environment

b-fb(f , fclos)

binds the variable f to fclos where fclos is a closure for the function f . A closure

contains all of the information needed to translate a future call to a function. A
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closure contains a function's code, its formal parameter list, and the contents of the
environment at the time of declaration. In our example, fclos takes the form

b-clos (x + y, oldu arlength, oldu ar, b-va r [b-vb ( x, T t), b-vb (y, r 2)1, oldfun)

where olduar, oldfun, and olduarlength are taken from the old environment and the
function's code

x+y
and formal parameter list

b-var[b-vb( x, i:t), b-vb(y, zr2)]

make up the rest of the closure. The 7r1 and z2 functions bound to x and y indicate
that the actual parameters to f will be stored in a tuple and that the 11 and 12

functions, respectively, will be part of the code used to access these parameters. We

describe how closures are used in the section on function application, starting on
page 67.

Variables Variable references are resolved by translating Adl variables to the BMF
code that is required to access the value which is bound to the variable. It is assumed

that those translation rules applied to earlier declarations have produced code to
transport all values in scope to this current part of the program inside a nested tuple
whose structure is accurately described by the current variable environment. The

translator rule for variables need only exploit the information in this environment to
build the correct sequence of addressing functions to access the desired value from
the nested input tuple.

A simple example We illustrate how access code is built using the following
program:

f(x:int, y: int)
Iet

z:=x*y
in

y-z
endlet
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B_ENVIEXP+B_EXP

Variable names
Lookup-uar(b-uar I idr --+ b-erp)

b-env ( b-'r.,a r,b -fun,b -num) I idr è b -erp
(14)

Figure 21. Translator rule for variables

Assume the translation process has reached the variable reference y, in the expression

y-2, in the body of the let expression. At the time of y's translation, the variable

environment looks like:

b-var[b-vb(z,id), b-vb(x, 11), b-vb(y, 12)]

This environment is an encoding of the values transported to this part of the program

( (ual (x), ual(y)), ual (z))

where the term ual(uar) stands for the value attached to the variable uar.

To construct code for variable reference, the translator counts its way15 through

the variable environment, composing zr functions to its result until a binding with the

variable's name is reached. The code produced for the reference to y is:

1TZ'1ft

which can be verified as correct by applying it to the input tuple:

ntz. llt ((uøl(x),ual(y)), ual(z)) +
7T2 (ual(x),ual(y)) +
ual(y)

The foregoing gives an intuition of the construction process for access code. The rule

to handle this construction is shown in figure 21. Most of the construction task, as

outlined above, is handled by the call to the rule-set Lookup-uar in the premise.

Function applications The translation of a function application

f 1 parameter-list >

requires five steps:

lsThere is some detail hidden in the term "counts its way" due to the occassional presence of
tuple values in the input tuple.
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Figure 22. Tlanslator rule for function applications

1. Tlanslate the 1 parameter-li,st ) into BMF code.

2. Search for the closure of f in the function environment

3. Build a new environment in which to translate the code of the function.

4. Translate the function in the context of the new environment

5. Compose the translated function code with the code produced from the
translation of < parameter-l'ist ).

The rule for function applications is shown in figure 22. The first four steps above

correspond to thê four premises of rule 15. The last step is carried out by the right-
hand-side of the rule's conclusion. We illustrate these steps by way of example.

Example: translating a program containing function application In this
example we translate the program:

f a:int
Iet

gb:=b+a;
c :=4;
d := c * 3

in
gd

endl-et

B_ENVIEXP+B_EXP

F\rnction application

b-env(0-uar,b-fun,b-num) I erp + b-erp
Lookup-funenu(b-fun I id, ---+ b-clos(erp' , b-nr.trn' , b-t)ar' , b-nl,r" , b-fun'))

B ui,l d -n ew - enu (b -num, b -nLLnL', b -u af , b -u a/', b -fur{ : b - enu' )
b-enu'l erp' + b-erpt

b-e nv ( ó-uø r,b -fun,b -num) I f ua-app ( i,d, erp) +
b-com p( b-e rp',, b -alltup[b-id 0, b -erp])

(15)
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The expression yielding the result of this program is the function application

gd

in the body of the let expression. Pre-processing of the program creates the

environment
b-env(b-var[b-vb(a, id)], b-fun [], 1)

in which to translate the expression:

Iet
gb:=b+a;
c :=4;
d := c * 3

in
gd

endlet

The translation of the declaration sequence

gb:=b*a;
c :=4;

creates the code

(id,+' (id' r2,3)")"' (¡d,4)'

and updates the environment to:

b-env(b-var[b-vb(d, id), b-vb(c, id), b-vb(a, id)], b-fun[b-fb(g, gclos)1,3)

where gclos is (see the section on function declarations on page 65 for a description

of closures):
b-clos( b + a,1,

b-var[b-vb(a, id)],

b-var[b-vb(b, id)],

b-fun[])

Now, the translator is ready to process the function application:

:= c + 3d
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gd

The first step is to translate the actual parameter list d into BMF code which, in this
case is:

7T2

This function will, in the rule's conclusion, be embedded in an alltup expression

producing:

(id, n2)'

The second step of translation is frnding the closure for f in the function
environment. This step is trivial. The third step is to build the new environment in
which to translate the body of g. The new environment must contain the variable
environment as it was when g was declared

b-var[b-vb(a, id)]

and it should also incorporate the bindings from the environment produced by the
formal parameter list:

b-var[b-vb(b, id)]

The bindings for c and d must not appear, as they are not in the static scope of g,

but the new environment must take account of the fact that two new variables have

been declared since the function g was declared. The translator does this by inserting
dummy bindings, giving us the new environment:

b-var[b-vb(b, id), b-vb(dummy, id), b-vb(dummy, ¡d), b-vb(a, id)]

The number of dummy values inserted is equal to the length of variable environment
when the function is called minus the length of the variable environment when the
function was declared. In this case the number of dummy entries is 3 - L:2.

The fourth step is the translation of the function body in the context of the new

environment. This translation yields

+ . (id .r2,id.11 '11.r1)"

where the first member of the alltup function is the translation of b and the second

member is the translation of a.



CHAPTER 4. ADL TO BMF TRA¡\IS¿A?IO¡\I 7T

Figure 23. Translator rule for while expressions

The fifth and last step composes the translated code for the function body with

the code for the actual parameter (id, zr2)" to produce the final result of the function

application:
+ . (id .r2,id .lit' irt ' *t)' ' (id, r2)'

When this code is combined with the code produced from the declaration sequence

we have the translation of the entire program:

+. (id . r2,id' rt' irt' tr)o' (id,12)' (id,+' (id' t2,3)')"' (id,4)'

The correctness of this translation can be verified:

+' (id 'r2,id' rt 'lTt ' *r)''
(id,r2). (id, + . (id . r2,,3)')' ' (id, 4)' ual(a) :

+' (¡d .r2,id.rt "tTt ' tl)' ' (id,r2) ' (id, +' (id'12,3)')" (ual(a), ) :
+ . (id .r2,id.'rTt.'trt. 

^r)' 
. (id, zr2) (ual(a),\,7) :

+ . (id .r2,id.tT1'tT1'r1)" (((ual(a) ,4),7),7) :
+ (ual(a),,7)

by checking that the original Adl pïogram produces the same result, -l (ual(a),7),

when applied to ual(a).

We have now described the bulk of the translator. The key mechanisms for

producing code without variables have been established. Now we look at core

functions whose translation depends on the mechanisms we have just described.

'While expressions Figure 23 contains the rule for translating while expressions.

The two premises derive the code for the two constituent functions and of while,
along with the code for their, shared, parameter. These three sections of code are

integrated into, and around, the BMF while function in the rule's conclusion.

B_ENVIEXP+B_EXP
'While expressions

b-ena l- fun-app (id4, erp) * b-comp (b-erp" ,b-erp)
b-enu F fun-app ('id,2, erp) + b-comp (b-erp' ,b-erp) (16)

b-enu F r^rhile ('id4,'id'2, enp) + b-comp(b-while(b-erp" ,b-erp'), b-erp)
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B_ENVIEXP+B-EXP
Map expression" 

u-"roF fun-app (id,,erp)+ b-comp (b-erp,,b-erp)
b-enu l- nap ('id,erp) + b-comp(b-comp(b-map(b-erp'), b-op(distl0))), b-enp)

(17)

Figure 24. Tlanslator rule for map expressions

This is the first time we have encountered the BMF while function in this report
The semantics of while are:

while(b -erp r, b -erp 
") 

u

: u,i,f (b-erpru: true)
: while( ö- erp 1, b -erp ) (b -erp1 u), otherwise

Note that while is a partial function because an invocation of while can loop forever.

Program transformations involving partial functions, such as while and div can change

the termination behaviour of a program, especially in a strict settingl6.
Though such problems have not surfaced in tests thus far, systematic strategies

for avoiding changes in termination behaviour need to be implemented.

Map expressions Rule 17 for translating map expressions is shown in figure 24

This rule translates Adl code of the form

nap (g, e)

to BMF code of the form:

(< translati,on-of-g >) x .distl . (id, < translati,on-of-e >)"
l6under strict evaluation, a transformation like:

if (pred, L, alt) + if (pred'7rr,lrL'7r2,'tr2 .12) . (id, (I, alú)')"

introduces non-termination. Likewise, the transformation:

rz. (L,l)" + f
removes non-termination. The introduction of non-termination can be avoided by not moving partial
functions out of if functions. Avoiding the removal of non-termination is more problematic but not
as pressing, though Mottll1O4] gives a scenario where the removal of non-termination has serious
implications.
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We have not yet described the distl functionlT. distl distributes its left-hand argument

over its right hand argument. An informai definition is:

distl (u, lro,rr,.' .,rn-t)) : [(r, ro),(u,rt),. . .,(','n-r)l

The effect of distl can be observed by considering the translation of the Adl program

incr-by (a:vof int, delta:int) '=

Iet
gx=x+delta

in
nap (g, a)

endlet

to the BMF code:

(i ' (nr,rz'rt)") * 'distl ' (id, zr1)'

This code, applied. to a pair of input values (1t,2,3,4],3), is evaluated:

(-+ . (n",rz.rt)") x .distl ' (id, n 1)" (1t,2,3,4],3) :
(-r ' (n",rz .rt)") * 'distl (([1,2,3,4]' 3); lL,2''3,41) :

(-l ' (nr,tr2'tr1)")x [(([1' 2' 3' 4]' 3)' 1)' (([1' 2'3'4]'3)' 2)' :
(([1, 2, 3, 4], 3), 3), (([1, 2,3, 4],3), 4)l

(+)* [(1,3), (2,3), (3,3), (4,3)] :
14,5,6,,71

Two observations, arising from this evaluation, are:

o Some distribution of data is required to ensure the second input value (3 in this

case) is added to every element of the vector.

o The distribution of all input causes, unnecessarily, large intermediate data

structures to be created.

The second of these two observations indicate that there is scope for using a more

selective means of distribution. We explore this issue later in this chapter and describe

ways of achieving more selective distribution in chapter 5'

lTdistl appears in the FP language described
d,i,stri,bute-right appears in category theory as a

by Backusfl3]. A related function distr or
defining natural transformation r of strong

functors [84]



CHAPTER 4. ADL TO BMF TRANSLATION 74

As a final note, close scrutiny of rule 17 reveals an implementation trick. The rule
applies the function inside the map to the whole vector rather than an element inside
the input vector. This mis-match does not affect the correctness of the two sections
of code produced by the rule for function application and avoids the need to define a
new rule.

Reduce expressions In Adl, reduce expressions take the form:

reduce (f , e, xs)

where f is the name of a binary function, xs is an expression evaluating to an input
vector and e is an expression representing the value returned by reduce when its
input vector is empty, We often refer to e as the zero-element,

If the function f depends only on its paramelerc and the expression e contains no
variable references, then a valid translation of reduce is:

reduce (f , e, xs) +< translation_of_f > I <translat,i,on_of_e>. 1 translation_of_rs >

This translation schema applies in most circumstances. Unfortunately, in the rare
cases where e accesses variables, the translation of reduce must produce code that
transports values, referenced by these variables, to the translation of e. Compounding
this problem, are cases where the binary function f contains references to values other
than its parameters, that is, it references free variables. To support such references
the translator must produce code to distribute values of these variables over each
element of the input vector and also supply code to help the translation of f extract
values from its parameters in the way it expects.

The combination of code required to support variable references in e and free
variable references in f is quite complex. Such references can legitimately occur in
Adl source code and the translator, being conservative, has a rule for reduce that
produces this complex code. Fortunately, this complex code is, except in rare cases,

short-lived in our implementation. The optimisation stage of our compiler, described
in chapter 5 ascertains the references made by translator code and simplifies the
translator's BMF code accordingly. The practical effect is, that for most instances of
reduce, the simplified translation above is the one that applies.

Here, we do not show the complex, conservative, translator rule for reduce. A
full description of the rules for reduce, scar. and all of their variations is given in[6].



CHAPTER 4. ADL TO BMF TRANSLATIO¡\I 75

reducep, reducel, reducer, reducelp, reducerp, and all varieties of scan

The translator has separate rules for all variants of reduce and scan. All of these

rules are too similar to the rule for reduce to warrant a separate description. The

main difference is that rules for reducep, reducelp, reducerp, scar, scall, and

scanr are less complex because they do not handle a zero-argument.

This concludes our detailed description of the rules of the translator. We now

examine the performance of translator code.

4.4 Performance

In this section we analyse, by way of examples, the performance of the code produced

by the translator. Prior to any discussion of performance? we need to establish a

metric for sequential performance.

4.4.L Measuring sequential performance

Measurement of the translator's performance needs both an execution model and

baseline of BMF programs against which to compare the performance of the

translator's programs. Our model though very simple, incorporating none of the

vagaries involved with running programs on modern architecturesls, is sufficient for

the gross comparsions made in this context.

4.4.L.L Execution model for measuring sequential performance

A semi-formal description of the sequential execution model used in this chapter and

the next is given in appendix D. To avoid the need to examine this code in detail we

briefly characterise the model's behaviour by stating the conventions it consistently

applies.

Conventions of the sequential model The following conventions apply to the

sequential performance model:

o Storage for output of each scalar function is allocated just prior to evaluation

of that function.
18Just some of these are measured and discussed in appendix F
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o Storage for input data ofeach scalar function is de-allocatedjust after evaluation

of each function.

o The time taken to allocate or deallocate any amount of storage is one time unit.

. With the above in mind, functions on scalar data, such as * and x have the

following execution profile:

1. allocate storage for the result (one time unit).

2. perform the operation (one time unit).

3. deallocate storage for the input (one time unit).

o A vector takes up one unit of space plus the combined space used by its elements.

o A tuple takes up a space equal to the combined space used by its elements.

o The cost of copying one item of scalar data is one time unit.

o During aggregate operations, data is copied/allocated at the last possible

moment and deallocated at the first possible moment.

Using the design decisions above it is straightforward to derive an execution model

for each BMF primitive. Some examples foliow.

Execution models for some functions The following descriptions of execution

models for a selection of functions may assist in the interpretation of the examples

that follow.

length The length function, although it works on vectors, takes only three time
units. Its operation is as follows:

1. Allocate memory for the scalar result (one time unit).

2. Perform the length function by looking at the vector descriptor (one time unit).

3. Deallocate the storage allocated to the input vector (one time unit).

The length function has a peak storage consumption of one plus the storage taken up

by the vector. Note, the index function has very similar characteristics to the length

function.
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Figure 25. TimelSpace graph of sequential evaluation of the expression:
(# . nr, !.(*r, Tz)", rz,3)" (3, [1, 2, 3, 4,, 5))

iota The iota function operates as follows:

1. Allocate the result vector (one time unit).

2. Fill up the vector (time equivalent to the number of items in the vector).

3. Deallocate the input value (one time unit).

Note that the model does not currently account for the very small amount of time
taken to compute the next value in the result vector.

alltup alltup functions create a copy of the input value, in order to apply it to
each component of the alltup. The copy is made just prior to the application of each

component. There is no copy made just before the last component is applied. The

trace of the expression:

(# .nr, !.(^r ,Tz)",12,3)" (3, [1, 2,3,4,5])

shown in the graph in figure 25 illustrates the behaviour of alltup. The significant

features of the trace are the copying of the input values for the first, second, and

third components of the alltup function starting at times 0, 20, and 52 respectively.

On each occasion, copying takes time equal to the length of the value being copied.

Copying takes a large proportion of the processing time for the alltup expressionle
leMuch of this copying time can be elirninated by preventing all but the last function in the alltup

from deleting its input value. If we maintain this "no-delete-unless-I'm-last" policy we could get
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Figure 26. TimelSpace graph of sequential evaluation of the expression:
(+.(1, i,d)") * 1I,2,3,4,5]

map The map function allocates an empty output vector, taking up one unit
of space, and then consumes elements of the input vector, one at a time, allocating
space for output values and deallocating input values as it proceeds. This behaviour
gives map a quickly-alternating pattern of allocation and deallocation, evident in the
trace of the expression:

(+.(1, i,d)") * 1I,2,3,4,51

shown in figure 26.

reduce Reduce evaluates its zero-argument before using its binary function to
perform a sequential reduction of the vector. In our model, evaluation of the zero-
argument requires a copy of the input vector, just in case the evaluation of the zero-
argument demands it.

The production of the result consumes the input vector one element at a time.
Figure 27 shows a trace of the evaluation of the expression:

-tlo [7,2,3,4,5]

The decline of space consumption in the latter half of the trace represents the gradual
consumption of the input vector.

by with one copy of the input. Unfortunately, this policy complicates the model beyond what is
necessary for gross comparisons of program efficiency we need here.
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Figure 27. TimelSpace graph of sequential evaluation of the expression
-flo L,2,3,4,5]

The examples above, in combination with the conventions outlined earlier,

illustrate and delineate our metric for sequential performance. Now, we need to

establish a benchmark for comparison of translator code performance.

4.4.L.2 Baseline for comparison

We use hand-crafted BMF programs as benchmarks for assessing efficiency of

translator and, in the next chapter, optimiser code. These benchmark programs

are built with the aim of obtaining a fast execution time without excessive use of

memory2O. Now, we perform a series of comparisons between translator code and our

hand-crafted programs.

0 t3
time

4.4.2 Examples of performance of translator code

We present a sample of problems whose solutions demonstrate the performance

characteristics of translator code.

4.4.2.L Adding a constant to elements of a nested vector

An Adl program, called map-map-addconst . Adl, that adds a constant to elements of

a nested input vector is shown in figure 28

2ousing an excessive amount of memory tends to slow down BMF programs in any case; in BMF
operations have to copy data around themselves and that movement takes time.

79
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main a: vof vof i-nt
let

fx
1et

gy:=y+2
1n

map (g,x)
endlet

in
map (f,a)

endlet

Figure 28. map-rnap-addconst.Adl, an Adl program that adds a constant to each
element of a nested vector

((+.(nr,2)") *.distl . (id,r2)".id) *.distl .(id, id)".id

Figure 29. BMF code, for mapiap-addconst.Adr, produced by the translator

The translation of map-map-addconst . Adl is shown in figure 29. The translation
also consists of nested calls to map functions. The distl functions ensure that each
invocation of each map body has access to all of the elements of the nested input
vector. Such broad access is not required but it is not the translator's job to determine
this.

Figure 30 shows an equivalent hand-crafted BMF program. The relative
performance of these two programs when presented with the data:

[[1, 2, 3], 14, 5,6], [7, 8, 9]]

is shown in figure 31. The top line shows the time and space consumption of the code
produced by the translator and the bottom line shows the time and space consumption
of the hand-crafted BMF code. The very large gap in performance means there is
considerable scope for optimisation. The next chapter outline an optimisatiorr process

((+ . (¡¿,2)')x)x

Figure 30. Hand-crafted BMF code for maprap_addconst . Adl
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Traces for adding a constant to a nested vector

100 200 300 400 500 600

time (in scalar operations)

700 800

Figure 31. Time/Space graph of sequential evaluation of translator and
hand-crafted BMF code for rnapÍap-addconst . Ad1 applied to the nested vector

[[1, 2, 3], 14, 5, 61, 17,8, 9ll.

to bridge most of this gap. For now, we will focus on the reasons for this performance

gap.

The translator code suffers from the overhead of executing nested distl functions.

The most upstream distl function is responsible for the first part of the initial rise in
the top-most curve. The rising steps in each of the three peaks that follow are caused

by the application of the nested distl further downstream. Both the translator and

hand-crafted code produce the same result but the translator version uses a lot more

time and space in the process. Moreover, this performance gap increases rapidly with
both the size and level of nesting of the input vector. This is because the translator
produces code whereby all values in scope are distributed over each vector in each map

operation. At the very least, the values in scope include the vector itself, resulting in
code the space consumption of which grows, at least, with the square of the size of
the input vector to the map operation.

4.4.2.2 Summing a list of numbers (using reduce)

The program sum.Adl, shown in figure 32, uses reduce to produce a sum of the

numbers in its input vector.

Figure 33 shows the equivalent translator, and handcrafted code respectively. As

mentioned in section 4.3.3.2, the translation of reduce is very conservative. The

translator assumes access to any value in scope mi,ght be required as the reduction
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main a: vof int
let

add(x,y):=x+I
in

reduce (add,0,a)
endlet

Figure 32. sum.Adl, a program to sum a vector of integers

tf (+ '(0,#'rz)",r2' ((n'ir:_,+ . (n, .rt)(r2.irt,lT2'nr)")"))l . distl, g . *r) . (id, id)"

(")

+lo

(ó)

Figure 33. Translator code (part(a)) and hand-crafted code (part(b)) for sum.AdI.

proceeds. In reality, the need for such access rarely arises, the translator produces
quite detailed code to support it nonetheless. A full explanation of this code is given
in[6]. In contrast to translator code, handwritten BMF version of sum.Adl is very
simple:

+lo

We have already analysed the performance of this code on page 78. Figure 34

compares the performance of translator code to hand-crafted code. The very large
performance gap, already evident with very small data, shows there is much scope for
optimisation. Fortunately, as we shall see in the next chapter, the optimiser works
very effectively on most instances of reduce.

'What about scan? The observations we have just made regarding reduce also apply
to scan. Both have an inefficient initial translation, both have an efficient hand-crafted
implementation and both translated versions are amenable to optimisation. Next, we
give an example where crafting an efficient solution requires deeper analysis.



CHAPTER 4. ADL TO BMF TRANS,LA?IO¡\T

80

83

70

60

6_^p5U
o
È
€40
oo
330

20

10

0
100 600 700

Figure 34. Tirne/Space graph of sequential evaluation of translator and
hand-crafted BMF code for reduce-plus.AdI applied to the vector 17,2,3,4,51

4.4.2.3 A one-dimensional finite-difference computation

Finite difference techniques are commonly used in simulations of physical systems

and in image processing [57]. Finite difference computations are performed on arrays

of values. Each element of the array has a value or set of values. Values in each

elements are combined in some way with those of neighbouring elements to produce a

new result. This localised interaction at each datum can be applied repeatedly until
the goal of the computation is reached. The localised nature of operations in finite
difference algorithms makes them very well suited to parallel execution.

The Adl program in figure 35 contains the basic elements of a finite-difference

application. The array in this case is an un-nested vector. A new value for each

element is derived from the element's own value and the values on either side. The

function for deriving a new value is called stencil2l. To simplify our example

we apply stencil only once for each vector element and the boundary elements

of the vector are not included in the result. The translation of finite-diff .Adl
is shown in figure 36 and the hand-crafted BMF version of finite-diff .AdI is

shown in figure 37. There are only minor differences between the translator and

hand-crafted code for f inite-diff .4d1. Both versions of code distribute the entire

input vector to each invocation of the map function that produces the result. These

slight differences do have an impact on efficiency, a fact that is borne out by the

relative performances of the two programs as shown in figure 38. However, the

0 200 300 400
time (in units)

500

hand-crafted - --

2lStencil is the standard terrn for the pattern of interaction at each element in these computations.
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main a: vof int
let

stencil x := alx + a!(x-1) + a!(x+1);
addonex:=x+1;
element_index := map(addone,iota ((# a)-2))

in
map (stencil, element_index)

endlet

Figure 35. finite-diff .4d1, an Adl program to perform a simple finite-difference
computation.

(+ . (+' (! . ("r . lrrjr2)",! . (^r . .rtt- . (n.r, 1)')')",!. (nr. 1Tt,+. (r.2, 1).).).) x .

distl . (id, r")" .id.
(¡d, (+. (r.r,1)') * distl . (id, iota .- .(#.id,2)')")"

Figure 36. Code from automated translation of f inite-diff .Ad1 into BMF

(+.(+
distl.
(id, (+

(! . ("r ,,irz)",!

(id, 1)') * 'iota

(nr,-. (r.r, 1)')")o, ! . (^r,l . (trz,1)')")') * .

- . (#. id,2)')'

Figure 37. Hand-coded translation of f inite_diff .AdI into BMF

Traces for a finite difference operation
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Figure 38. Time/Space graph of sequential evaluation of translator and
hand-crafted BMF code for finite-diff .AdI applied to the vector

17,2, 3, 4, 5, 6,7, g, g, 10].
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(+ . (t t 'iTt)+'(ny r1,r2)")") x'
zip' (zip. (tr .'/Tt,'tT2 . rt)",T2)"'
((select,select.(r.r, (+.(id,1)') *.iTz)")",select.(r.t, (-'(id,1)') *.rr)')'
(id, (+. (id, 1)") x .iota . - . (#,2)")"

Figure 39. A more efficient version of f inite-diff .Adl using new functions

performance of neither version of code is impressive. Even the hand-coded version

takes over 1600 operations to perform less than 30 additions. More significantly, as

we shall soon see) the performance of both versions of code gets steadily worse as the

problem size grows. Both BMF versions of f inite-diff .Adl waste time and space

distributing the entire input vector to each element; we only need three elements for
each invocation of map not the whole vector. This waste is unavoidable if we restrict

ourselves to using the BMF functions we have seen thus far. That is, the hand-crafted

version of f inite-diff .Adl is close to optimal given the limited set of tools we have.

Fortunately, as we shall see, we can improve matters if we add more BMF primitives

to our lexicon.

Figure 39 shows a more efficient translation of finite-diff .Ad1 using extra
primitives. The functions in question are zip, from the previous chapter, and, more

importantly, a new function select. The zip function converts a pair of vectors into a

vector of pairs. The select function takes a pair consisting of a source vector and an

index vector. select produces a vector consisting of the elements of the source vector

that are indexed by the elements of the index vector. For example:

select ([10, 20, 30, 40, 50], [0, 3, 4, 3, 0, 1])

produces:

[10,40, bo,40, 10, 20]

The exact details of the code in figure 39 are not important at this point, and we will
revisit similar examples in detail in chapter 5; the important observations to make

are that:

. a means exists, to make access to elements of vectors from inside map efficient

in BMF and that

o to exploit this means \Me are forced use more BMF primitive functions and make

s'ion'i,ficant alterations to the structure of the program.
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Traces for a finite difference operation
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Figure 4O. TimefSpace graph comparing sequential evaluation of hand-crafted
BMF code for finite-diff .4d1, using existing functions to hand.crafted code using

the zip and select functions. The input data used is the vector
11,2,3,4,5,6,7,8,9,10]. Note the change of scale from figure 3g.

The extent to which efficiency is improved over the earlier hand-crafted version is
illustrated by figure 40. Note that the scale has changed to enlarge the two traces of
interest. The gap in performance between each of the three versions of BMF code for
fj.nite-diff .Adl grows quickly with the size of the input data. Figure 41 cornpares
the BMF code produced by the translator with hand-crafted BMF code and with the
improved hand-crafted BMF code. There is a significant gap between the top-line
and the micldle-line. This gap represents the improvement to be had by eliminating
transmission of superfluous members of tuples. There is an even more significant gap
between the middle line and the bottom line. This gap represents the improvement
to be had by being selective about transmission of individual vector elements. The
bottom line is linear, which means it the has the same time complexity as the best
soltrtions to this problem22. In contrast, the two upper curves are quadratic and
sub-optimal. This difference is very important, it tells us that if we want to arrive
at a BMF solution that has an optimal order of efficiency we have to be prepared
to perform optimisation that exploits patterns of vector access and, in the process,

makes substantial changes the structure of the translator code. This is the work of
the optimiser and is described in the next chapter. A short summary of related work
is given next.

22The best sequential solutions to a one-dimensional finite-difference problem of this sort have
linear time complexity.
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Time vs. data size for versions of finite-difference code
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Figure 41. The relative performance of different BMF versions of
f inite-diff .AdI applied to different sized data sets. As before, execution time is

measured in scalar operations.

4.5 Related 'Work

To the best of our knowledge closest relative to the Adl to BMF translator is the EL*
to FPx translator created by Banerjee and Walinskyfl17]. EL*, like Adl, is a small

strict functional language aimed toward the expression of of data parallel algorithms.

Both Adl and EL* support vector and tuple aggregate types and support selection

on these types.

Adl provides primitive operations such as map, reduce and scan for specifying

operations over vector aggregates and iota for allocation of new aggregates. In
contrast, EL* allows the use of a restricted form of recursion to express divide and

conquer parallelism. These recursive functions are mapped into a standard FP*
template consisting of code to align and distribute input before performing a map

on the divided data before using a reduce to combine expressions. Another point

of contrast is the handling of references to free variables within functions passed as

parameters. Such references are supported in Adl with the help of function closures

but they are not supported in EL*.
Some translation techniques are similar between the two implementations. For
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example, the mechanism translating the passing of the referencing environment
through declaration sequences appears similar. Both translators also inject excess

distribution of data into the code, though the Adl translator seems to do this to
a larger extent due to the richer referencing environment allowed for functional
arguments.

In earlier work, the translation process, described in[100], frorn a simple functional
language to the Catagorical Abstract Machine (CAM) also maps a pointwise
functional language to an almost point-free form. The primary difference between the
CAM translation rules and the Adl translator is the use of a stack in CAM. This stack
does not have to be explicitly transported by code as the referencing environment is
in Adl translator code. However, the stack is accessed in a similar manner in CAM
code to the way the nested input tuples aïe accessed in translated Adl code.

A larger and more recent body of related work defines rules to assist the conversion
of recursive functions into compositional form (BMF). Hu[78] clescribes a partly
mechanised process for converting single recursive definitions in a functional language
into BMF. This is a very much more open-ended task than that attempted by the
Adl to BMF translator. The motivation behind this work appears similar to the
motivation for our translator: once a program is expressed in compositional form
(BMF) it is more amenable to transformation and parallelisation.

The thrust of the above work is extended by Cunha et. al[39] where a translation
is defined between pointwise Haskell and a point-free functional form. Their work
differs from this translation in its scope which covers the translation of recursive and
higher-order functions in a lazy language. The Adl translator has more emphasis on
translation of numerical and array operations and works in the context of a strict
language. Again, the methodology for handling the environment in both translations
is similar, using nested tuples, though the Adl translator supports a slightly richer
variety of tuple types.

This concludes our brief description of related work. The conclusions drawn from
this chapter are presented next.

4.6 Conclusions

From the work carried out to create this chapter we arrive at the following conclusions
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Feasibility of translation Direct translation from Adl, a simple functional

language, to BMF a notation without variable references, is feasible and has been

implemented. Our implementation is an executable semantic model of the translation

process. Our implementation is conservative, it creates BMF code where all the values

that were accessible to functions in the Adl source are accessibie to corresponding

functions in the BMF translation. The translator's conservative nature keeps the

process mechanistic, deep analyses are avoided, but the code produced is not efficient.

Efficiency of translated code The translator converts from a notation where

values can be kept in scope at little cost (Adl) to a notation where keeping values in

scope incurs the cost of copying and transporting them. This cost is substantial where

functions are applied to each element of a large data set, as can occur in functions

like map.

What optimised code looks like It is clear that some optimisation of translator

code is required but what will be required of this optimisation process? We perceive

there are two parts. First, we want to eliminate the transport of surplus components

of tuples. Second, we want to eliminate the transport of surplus components of

vectors. The second form of optimisation requires the introduction of new primitives

and substantial changes to program structure.

Summary In this chapter we have shown that a translator from Adl to BMF can

be built and how such a translator is constructed. We looked at the code produced

by the translator and showed that this code needs to be optimised. Lastly, we looked

at what would be required of an optimisation process.

In the next chapter, we explore an automated optimisation process for the BMF

code produced by the translator.



Chapter 5

Data Movement Optimisation

The last chapter described a translator from Adl to BMF. This translator, whilst
reliable, was very conservative in choosing values to transmit through the program.
In this chapter we describe an optimiser that makes code more selective in the values

it chooses to transmit and, by this process, greatly increases the efficiency of code.

5.1 Chapter outline
The role of the optimiser, in the context of our implementation, is shown in figure 42

As can be seen, the optimiser takes sequential BMF code from the translator and
produces optimised sequential BMF code.

5.1.1 How the optimiser is described

The core of our prototype implementation of the optimiser, like the translator, is
defined using rules expressed in Natural Semantics,

This optimiser definition consists of several hundred rules, too many to present

here. Instead we focus on the key elements of the optimisation process and, wherever
possible, keep the discussion informal and provide illustrative examples.

6.L.2 Stages of optimisation
The results, shown at the end of the last chapter, highlighted two factors that make

translator code inefficient:

90
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Figure 42. The Adl project with the optimisation stage highlighted in black
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Figure 43. The stages of the optimisation process

1. Entire vectors are copied to each instance of a function inside map functions'

even when only a small portion of the vector is required by each instance.

2. Members of tuples not reqrtired by functions downstream are, nonetheless,

transported to functions downstream.

The first factor is remedied by altering code so that vector elements are directed

only to the places that need them. We call this remedy aector opt'im'isati,on. The

second problem is remedied by altering code so that elements of tuples that will not

be needed, are not passed downstream. We call this remedy tuple opti'm'isat'ion.

In the Adl implementation, tuple optimisation and vector optimisation are

peïformed as two, almost, separate passes. Figure 43 shows these stages of

optimisation. As can be seen, vector optimisation is performed first, followed by

tuple optimisation. Both stages produce and consume BMF code 1. The vector

optimisation stage invokes tuple optimisation on some small sections of code but

TranslatorT;pe Chea:kc;l¿si+¿l Å,¡:aiysis
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lVector optimisation produces code containing new primitive functions but the code is still BMF
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tuple optimisation does not invoke vector optimisation. Efficient code is produced
when the last stage of optimisation is complete.

5.1.3 Common elements and separate elements

There are many differences between vector optimisation and tuple optimisation but
these processes also share common elements. The next two sections outline the
cornrnon strategy and common tacti,cs respectively. Sections 5.4 and 5.5 describe

the distinct elements of vector and tuple optimisation. Section 5.6 assesses the
performance of the optimiser and the code it produces and, finally, section 5.7 surveys

related work and concludes the chapter.

6.2 The common strategy
Both vector and tuple optimisation share the following strategv

Minimising the amount of data produced at each source of data so it more
precisely matches the needs of the destination of the data.

Destination and source Where, in a BMF program, is the destination and source?

In BMF, data starts on the right, in the most upstream parts of the program, and
proceeds to the left to the innermost, most-downstream parts.

The path of optimisation Both vector and tuple optimisation start at the most
downstream part of the program and push the optimisation process, outwards and
upstream toward the source of data. Figure 44 provides a conceptual illustration of
this process and its effect on both data usage and elapsed execution time. The three
parts of the figure show snapshots of performance profiles of code at three stages of
an optimisation pass, vector or tuple2. In part (a) the optimisation pass has not
yet started. If the code were executed at this stage it would, typically, use a lot of
data, and take a long time to run. Part (b) is a snapshot of code half-way through
optimisation. At this stage the optimiser has reduced the data usage and execution
time of the downstream half of the program. There is a section of transitional code,

2The diagram most resembles the progress of tuple optimisation because it is the last pass where
all of the benefits of both stages of optimisation are made manifest.
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Figure 44. The effect of optimisation on program code from the start of
optimisation, part (a), to the mid-way through optimisation, part (b), to the final

result of optimisation part (c).
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called the uish-li,sú, that expresses the data needs of downstream code to upstream
code, the wish-list will be more fully described shortly. Part (c) of figure 44 gives a
profile of the fully optimised program, which uses substantially less data and takes

substantially less time to run than the unoptimised program.
Note that both tuple and vector optimisation rely heavily on the wish-list always

providing an accurate expression of the data needs of the code downstream of it. We
describe what the wish-list is, and how it encodes data needs next.

The wish-list: encoding data needs The wish-list is encoded slightly differently
for vector and tuple optimisation:

o In vector optimisation, the wish-list consists entirely of ordinary BMF code

o In tuple optimisation, the wish-list is injected into a filter expression whose

contents is either BMF code or a special value, called null.

We will investigate the filter expression and the role of null further in our description
of in section 5.5. At this point, it is sufficient to note that a filter expression containing
null can be safely treated as if it is the BMF id function. The main point is that, in
all cases, the wish-list either entirely consists of BMF code or can be easily mapped
to BMF code.

Encoding the wish-list as code avoids the need for extra syntax and rules to handle
a special form for wish-lists. It also means that the infrastructure used to guide

optimisation, the wish-list, is also part of the program itself. Optimisation could be

stopped at any point where a new wish-list is produced and, with very little effort, a

correct program forming a snapshot of that point of the optimisation process can be

extracted. The longer optimisation is allowed to run the more efficient these snapshots
get. The process is one of incremental convergence towards an efficient solutions.
F\rrthermore, each snapshot provides extra information that can be gathered by the
implementor for the process of fine-tuning and debugging the implementation.

Figure 45 illustrates the use of a wish-list, as applied to tuple optimisation. Part
(a) shows a simple program prior to optimisation. Part (b) shows the initial phases

3It is worth noting that this convergence is not strictly monotonic. Auxiliary rule-sets that
perform normalisation of code in preparation for future optimisation steps can, temporarily, decrease
the efficiency of code. Moreover, each of the two phases of optimisation is focused on one aspect
of performance and thus significantly improved performance may not be manifest until both phases
are complete.
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Figure 45. Part (a), an unoptimised program. Part (b), steps in the optimisation
process with the wish-list underlined.

of tuple-optimisation applied to the program (more on this soon). The wish-list is

underlined The wish-list is so-named because it precisely defrnes the data needed

by the downstream code. That is, it expresses the wishes of the code downstream.

Almost invariably, in unoptimised code, the downstream code wishes for a lot less

data than it actually gets.

Sweeping upwards and outwards The basic strategy used by tuple optimisation

(but also used by vector optimisation) can be seen in part (b) of figure 45. Firstly, the

most downstream parts are modified to become what they would be if given precisely

the data required to produce their output. So, for example, the leftmost expression

on line (1) of part (b) is converted from:

* ' (tt '1r2,'It2' r2)"

to
*'(tt1,r2)"

Simultaneously, a wish-list is inserted to provide the modified downstream code

the data it now requires. The simultaneous modification of downstream code and

insertion of a wish-list preserves program semantics. This preservation of semantics is

important because it means that even if the optimiser is, in a current implementation,

unable to work on a section of code, the result is still a correct program. That is,

the optimiser can be constructed incrementally to work on an expanded variety of
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code and still produce valid results along the way. This amenability to incremental

implementation is pleasing, from our perspective as implementors.
Once the wish-list is in-place the optimiser rolls upwards and outwards. The

current wish-list becomes the new focus of optimisation and the code immediately
upstream is modified to assume the role of the new wish-list. This effect can be seen

in part (b) of figure 45 by observing how the underlined code moves and and also by
looking at the optimised code to its left.

Note that line (2) of part (b) contains a wish-list that is fragmented over two
sections of code inside an alltup function. With the exception of function composition,
second-order functions, including alltup, allvec, if, reduce, and while, that contain
multiple functional components, open a nerü¡ front of optimisation for each of their
functional components. Each functional component is optimised independently
and the wish-lists that result are coalesced to form a new, aggregated, wish-list
immediately upstream of the second-order function.

The process of modifying code and creating wish-lists finishes when the most
upstream part of the program is reached. Any wish-list that remains at the end of
this process is left in place to become part of the program code.

To this point we have described the basic optimisation strategy, based on the
propagation of a wish-list upstream, common to both tuple and vector optimisation.

Next, we examine the smaller-scale techniques, the tactics, used by both types of
optimisation, that keep the optimisation process tractable.

5.3 Common tactics
Though the basic strategy of optimisation is simple, the details of applying it are not.
The problem lies in the unbounded number of equivalent forms that any function can

takea. The optimiser works best if at each stage of optimisation, every possible case

is captured and profitably handled by some rule. However, unless steps are taken to
reduce the number of cases, defining an effective optimiser becomes infeasible.

Two, slightly-overlapping, strategies are employed to reduce the number of cases:

aAny function can be expressed in equivalent form by composing it with an id function. This
transformation can be carried out an unbounded number of times without affecting the semantics
of the functiôn. Moreover, there are an unbounded number of ways to express an identity function
using combinations of alltup, id and zr functions.



CHAPTER 5. DATA MOVEMENT OPTIMISATIO¡\I 97

o It is made easy for rules to ignore code that is not currently interesting, thus

narrowing the window of code each rule has to match'

o Code is kept in a predictable form

\Me focus on these two strategies in turn.

5.3.1 Making it easy to ignore uninteresting code

At any intermediate stage of optimisation a BMF program has the foilowing, idealised,

form.
1opti,mi,sed-part >'<

This tells us that a program consists of an optimised part composed with an

unoptimised part. Only the unoptimised part, which, for convenience, includes the

wish-list, is of current interest to the optimiser. We can make things even better by

noticing that only the downstream part of the unoptimised part (which also includes

the wish-list) is, usually, of interest at any one time, so we have:

< opt'imi,sed-part > .

f interest'ing-unopt'im'is ed-part )'
1 un'intere sting - un opti'mi's ed- p art >

Having a small focus of interest is a good thing. All other things being equal, it
is easier to write rules for smaller sections of code than for large sections of code'

Another way of saying this is, fewer rules are needed to comprehensively capture the

cases presented by small sections of code than larger sections of code5.

The questions remain as to how code can be conveniently partitioned into

interesting and uninteresting parts and how such partitioning can be maintained.

These two questions are addressed next.

5A basic argument for this assertion can be made numerically. In a language with n different
primitive functions a function /, containing no-second order terms, can be adequately handled by
n rules. In contrast a function / .g could require tp to n2 rules and I ' S 'h could require up to
rz3 rules and so on. Of course, natural constraints in how functions can be combined will reduce
this variety. It must also be noted that this assertion has much less strength if the code has been
produced andf or pre-processed in such a rvay as to dramaticaÌly decrease the variety of forms. More
will be said about this shortly.
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Partitioning with function composition Consider the following, abstractly
represented, BMF program:

oo.ot.oz.os. Io. Ir. Iz.Uo.U1 .U2 .U3

The letters represent BMF functions composed together to form a program. The
functions Os lo Os are the part of the program that is already optimised. 16 to 12 are
the unoptimised functions which are of current interest to the optimiser. Us to (Js are
the unoptimised functions which are not yet of interest to the optimiser. A human
reading the program above can, and should, see a sequence of composed functions
with no particular associativity. F\rnction composition is an associative function so

where we draw the parentheses, if any, has no effect on program semantics. The Adl
implementation represents function composition as a binary operator and because it is
an operator of fixed arity, it must choose, at least in its internal representation, where
to draw the parentheses. Like the human reader, the Adl implementation has some

freedom in doing this. For example, for the program above the Adl implementation
could write:

((((((((((oo . o,) . oz) .or) . ro) . rr) . h) . uo) .ut) .uù .&)

or it could write

(oo. (o,, . (or.(o, . (10 . (rt Qr. (uo . (u, . (u, ur))))))))))

or with any other pattern of matching parentheses without affecting program
semantics. However, though they are semantically neutral, the brackets can still be
used to capture useful information. Brackets can help gu'ide rules to the interesting
code. For example, if parentheses are drawn the following way:

(((oo . o) .o") . o"). (((ro . rr) . h). (((uo . uù .uù .uù)

we can easily write a rule to focus on the interesting part:

Proces s -interesting -part (berp ¡ + berp ¡7)

berpe . (berp7 . berpu) è berps . (berpp. berp¡¡)

If the rule above were applied to the previous program:

o berpo matches (((Oo . O) . Or) . Ot)
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o berpt matches ((10 .å) . 12)

o berp¡¡ matches (((Yo . Ut) 'Uù 'Uù

which is precisely what we want. The association we have chosen for composition

helps the rule to focus on the 1 terms. Note that the rule is unaffected by how

parentheses are drawn within each group of O,I and [/ terms. As long as the outer

parentheses are drawn correctly the rule will work. Of course, ensuring that the outer

parentheses are drawn in the required order requires work and this, the second, issue

is addressed next.

Keeping brackets in their place Thus far, we have shown how we can use,

otherwise unimportant information, the association of function composition, to

partition code into interesting and uninteresting sections. The key to preserving this

partitioning information is for each rule, that deals with more than one partition, to

both recognise the partitions in its antecedent and produce partitions in its result. In

the Adl implementation the most common example of partitioning is between code to

the left of the wish-list, the wish-list itself and code to the right of the wish-list. AII

rules that work with code that straddles the boundary of a wish-list are responsible

for producing a new wish-list, and its required context, in their conclusion.

Both stages of the optimiser make extensive use of function composition to

partition code. Next, we examine how the optimiser tries to keep code predictable.

5.3.2 Keeping code predictable

It is important to keep code predictable. For any part of the optimiser, the greater

the variety of code it encounters, the more sophisticated that part of the optimiser

needs to be. This relationship holds in general, varied environments require highly

sophisticated, or adaptable, systems to deal with them[2]6. The cost of making our

system sophisticated enough to deal with arbitrary BMF code is too great and making

it adaptable is beyond the scope of this research. As a practical option we chose to

6We should, perhaps, add that systems that have low levels of sophistication but are highly
insensitive to change can also cope with a varied environment. However, by the metrics of the cited
article, a system that is simple but is adapted to an environment is still more effectively complex
that a system that is sophisticated but is not adapted to the environment. That is, it makes sense

to measure the complexity of a system with reference to how much of that complexity helps it in
the current environment.
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decrease the variability in our system's environment. Since the environment for the
optimiser is BMF input code, reducing variability means keeping or making that BMF
code more predictable.

This section describes general techniques used by both the vector and whole-value
optimisers to ensure that the code handled by our rules is predictable. The main
techniques used are:

o Using un-altered translator code.

o Standardising the associativity of code.

o Code compaction.

o Removing surplus identity functions.

The first of these is simply taking advantage of a feature that it already there
(unaltered translator code). The last three are forms of normalisation. These
techniques are described in turn.

Using unaltered translator code The Adl to BMF translator constructs BMF
code using standard templates. The very first stage of the optimiser can be
constructed from a small number of rules that match these templates. These
templates are quite large and they allow rules to make assumptions that they
otherwise wouldn't.

Unfortunately, the structure of translator code quickly disappears during
optimisation, which puts strict limits on the extent to which this structure can be
exploited. In more concrete terms, only one phase of optimisation, either tuple,
or vector optimisation, can actually exploit the known structure of translator code,

because each phase completely obliterates this structure. When deciding whether
tuple or vector optimisation should take place first we examined which would most
benefit from using translator code. We chose to let vector optimisation run first
because it makes heavy use of information about the origins of indexing values. When
analysing translator-code, this information about origins can be discerned by simple
inspection of addressing functions. However, both optimisation phases obliterate
this simple relationship between origins of data and the format of the functions that
address it. As a consequence, running tuple optimisation first, would mean that
origins of data would have to be established, either, using data-flow analysis, or after
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Figure 46. Two rules from a rule-set that assumes its input is left-associated and
ensures that its output is right associated.

heavy use of normalisation to force code to re-establish a the relationship between

addressing functions and data-origins. We do not encounter this problem if tuple

optimisation runs last because, unlike vector optimisation, tuple optimisation does

not have a need to track, remote origins of data and can thus be easily run after

vector optimisation has modified the code.

Next, we examine the other techniques we use to keep code predictable. All of

these techniques require the expenditure of effort on the part of the optimiser and

are thus forms of normalisation.

Standardising the associativity of composition We saw, in the last section,

how the abiiity to define the associativity of function composition helped the cause

of further optimisation by allowing code to be partitioned without changing its

semantics. Rule sets can, and do, help maintain and exploit such partitioning. For

example, a rule-set may assume that its input code is associated to the left and then

systematicaliy associate its output code to the right. This approach makes it trivial
for rules to distinguish between code that has been processed and code that has not'

As an example figure 46 shows two rules from an actual optimiser rule set that

assumes left-associativity in its input and systematically creates right-associativity in

its output. If the rule-set is given a left-associated composed sequence of functions

such as:

(((o.a) .c)'d)'e

then rule 18 will match first with the bindings {å * ((o.b) .") , lz r-+ d, rs * e}. The

top premise of the ruie will process d . e to produce an output function e' I'hat might
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((r.ö) .")."'

(a'b) . e"

r02

or might not be a composed function. The second premise makes a call to process:

which matches rule 18 again and is processed to produce

which matches the same rule again and is processed to produce

a, e"'

This code can no longer match rule 18 and, if e/// consists of two or more composed
functions, it will match rule 197, Rule 19 terminates the processing by pushing ø

into e"' to produce e////. This pushing is made more efficient if our rules ensure e"' is
associated to the rights.

Note that the rules in figure 46, require input code that is associated to the left
in order process that code completely. The Adl implementation uses a Left-assoc'iate
rule-set that, given input code of arbitrary associativity, produces output code that
is uniformly left-associated. Left-associ,ate is applied to code prior to calling many
rule-sets.

It should also be noted that such pre-processing is not always invoked. Rule-sets
exist that do not rely on pre-processing but, in our experience, such rule-sets require
more discipline in their construction and are more fragile over time.

Code-compaction The archetypal transformation in the optimiser takes the form:

ft' Íz + fz
where /3 is more efficiente than fi and /2 in combination. Unfortunately some

important transformations take the more complicated form:

ft'9'fz+h
7If ettt is not a composed sequence of functions then at least one additional rule is needed to

capture this case.
sWhich, in the absence of confounding rules, is ensured by the structure of rule 18.
eFor input data of interest.
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h's + fl
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'tf n +
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(20)

(21)

(22)

1r .''r n n

f's+h (23)f*.9*+h*
Figure 47. Key rules for compaction

where the g is intervening code that is important to the operation of .f110. Code

compaction is used to normalise g to make it more amenable to necessary analysis

and transformationll.
Code compaction minimises the number of function compositions in the critical

path through a section of code. The key rules used for code compaction are shown

in figure 47. Where rule 20 applies when a constant function K is composed with

a function upstream. The rule eiiminates this function, reflecting the fact that the

result of K is unaffected the result of any preceding code12. Rule 21 compacts an

upstream function into an alltup function. The rules iisted under number 22 proiect

a component function out of an upstream alltup functionls. Finally, rule 23 lifts the

104 concrete example of such a transformation is: ! x .((2r1, *.(nr,1)')') *'distl + select' (nt, (+ '

(id,1)') *.rz)" where the function the bindings fot fy,g and f2 arc

{fi r-+!*,9 * ((nr, I ' (t 2,1)')")*, /2 r-+ distl}

The function g is vital to the semantics of this program and it has to be properly handled during
subsequent transformation.

1lThe code for g in the previous footnote does not require compaction though, quite ofben, code

in this position does.
l2Applying this transformation can cause a program that previously did not terminate to

terminate. This is a property that the user of Adl compiler must be aware of.
13The real Adl implementation uses a few rules to systematically decompose alltup functions rather

than having a, potentially, infinite number of rules defining pointwise transformations as above.
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compaction process to composed map functions.

Apart from reducing the length of composition sequences, which has a quantitative
rather than qualitative effect on subsequent optimisation, there are a number of other
advantages to code compaction. Given code of the form:

Ít' s' Íz

these advantages of code compaction, listed in increasing order of importance, are:

1. Compaction reduces the variety of functions found in g.

2. Compaction makes all address references in g relative to the output data of /2
rather than some intermediate tuple generated inside g.

3. Compaction ensures that every function in "fr has an un-shared path of
composed functions to the values generated by fr.

Advantage 1 refers to the fact that compaction completely removes composed

sequences of alltup functions from g. This can reduce the number of rules needed

in subsequently applied rule-sets. Advantage 2 is a corollary of advantage 1, there
can be at most one layer of alltup functions between fi and the data produced by f,
making it much easier to utilise the address references left in the compacted version
of g.

Finally, advantage 3 opens the way for unfettered optimisation by producing
upstream code that can be transformed without an adverse effect on other downstream
functions. In more concrete terms, compaction changes code of the form:

(r" Í")" . g

where any optimisation of. g f.or l' ^uy affect Í",, to'.

(Í' ' g, f" ' g)"

where optimisation of each component of the alltup can proceed independently. This
last advantage greatly simplifies the optimisation process.

Removing redundant identity functions An identity function is redundant if
its removal from a program does not affect the semantics of that program. Both
translation and some parts of optimisation produce redundant identity functions,
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usually as sentinel values. These redundant identity functions take up space and,

more importantly, make code more difficult for rules to recognise'

Redundant identity functions can appear in many places and can take many forms.

In the code:

*.distl . (id,iota . #. id)' . id
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(1.(tn,r2

the underlined functions are redundant identity functions. Their removal greatly

simplifies the code:

(!) * .(id, iota ' f)'
Note that not all id functions are surplus to our needs. The remaining id function in

the program above is important to the semantics of the program.

Recognising redundant identity functions The large variety of forms that

an identity function can take confounds efforts to remove all redundant identity

functions from programs. Identity functions on tuples such as:

(nt,,nr)"

are relatively easily detected. However identity functions can be arbitrarily complex

The code:

(nr,nr)" '(nr,nr)"

is also an identity functionla, as is:

(! . (^r ,rz)") * .distl ' (id, iota 'ff)

Red.undant identities of this last form are difficult to eliminate in practicels.

Fortunately, it is possible to detect, and remove, a large proportion of the redundant

identity functions that do arise using a relatively simple set of rules.

The costs and benefits of normalisation We have now outlined the three

main forms of normalisation used in the Adl implementation, left-association, code-

compaction and the removal of identity functions. AII three of these operations

laQode compaction converts this form to previous form and thus aids in the detection of identity
functions.

15Part of the reason for this is that the constituent parts of this code are rarely seen as close

together as they are in this example. The various elements are often spread over a larger expanse
of code. Code compaction can help make such code easier to recognise and eliminate.
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exact a cost in terms of the execution time of the optimiser and only the removal
of identity functions directly and consistently contributes to faster target code. The
key benefit of these normalisation steps is the way they constrain the code so that it
can be adequately handled by a tractable number of optimisation rules. In essence

using normalisation is a trade-off between the, significant, compile-time cost of the
normalisation itself and the run-time benefit of an effective optimisation process.

This concludes our discussion of the common elements of optimisation. The next
two sections describe the two phases that employ these elements: vector optimisation
and tuple optimisation.

5.4 Vector optimisation
This section describes the Adl project's vector optimiser for BMF programs. First, we
outline the basic strategy employed by the vector optimiser, After that, we describe
the details of the vector optimisation process. We postpone any discussion of the
effectiveness of vector optimisation until the end of the chapter when we assess the
optimisation process as a whole.

5.4.I Strategy for vector optimisation
We showed, in chapter 3, that BMF code is amenable to incremental transformation
using rewrite rules. Both vector optimiser, and the tuple optimiser for that matter,
rely heavily on incremental transformation. This vector optimisation strategy is:

Use incremental code transformations to move data-narrowing functions
on uectors upstream.

This strategy is a specialisation of the, earlier stated, shared strategy of minimising
the data produced upstream so that it more precisely matches the needs of code
downstream. \Me can see this relationship by considering what a data-narrowing
operation does. A data narrowing operation converts large data items (vectors) into
smaller data items (scalars and vector-elements). If a data narrowing operation can
be moved upstream then the code that it leaves in its wake must be changed to
compensate for the reduced flow of data. This reduction in data flow typically results
in less work being done by the program. This idea is illustrated, in an abstract
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upstream

<- input data

upstreanx

Figure 48. The strategy of moving a data narrowing operation / upstream to
reduce the total amount of data movement in the program. Part (a) represents data
flow prior to optimisation and part (b) represents data flow after optimisation. Note
that f and f' are not necessarily the same function but their output must always be

the same.

manner, in frgure 48. The figure represents the program as a channei, through which

data flows from right-to-left, just as it does in BMF programsl6. The channel is a

series of composed functions. The width of the channel represents the amount of

data flowing through the functions in that part of the program. Part (a) represents

a program prior to vector optimisation. The program starts with a small amount of

data but soon the amount of data increases before encountering a function /. The

function / is a data-narrowing operation (on vectors) and its output is very much

smaller than its input. This pattern of data-flow is typical of translator code and it
is, almost always, non-optimal.

Part (b) represents the data flow through the optimised program. The function /
has been moved upstream. In the process, / is transformed into a different function //
that takes in a much smailer quantity of data. In most cases, there is little superficial

resemblance between / and // but they are related by the fact that they must produce

the same output given the same initial input to the progrl,nx.

lGwith the exception of while loops which allow data to circulate.
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The data narrowing operations There are two data-narrowing operations on
vectors:

o Vector indexing (!)

o and vector length (ff)

When the vector optimiser encounters these, it attempts to move them upstream. It
turns out that moving the ff function upstream, as far as the point of creation of its
input vector, is usually easy. On the other hand, the index function ! is reliant on
both its input vector and its index value and, as such, its movement is beholden to
the origins of both of these parameters. As a result, ! is usually much more difficult
to move upstream. Consequently, ! is the primary focus of the vector optimiser and
the discussion to follow.

At this point, we know the data-narrowing operations and we are arvare of the
vector-optimisation strategy in abstract terms. Next, we add more depth to this
understanding by looking at two, more concrete, examples of the effect of vector
optimisation on code.

First example - minor improvement The vector optimiser converts the
following unoptimised code

+ . (! . (rt, 3)', rz)" . (trt, +' (2,r2)")"' (tn,l. (1, nr)')' . (tn, +' (4,nr)")"

to the more efficient:

+. (! . (nt,3), +. (2,+. (1,+. (4,rr)")")')'

In this case, vector optimisation has the effect of compacting the code. This
compaction has the desired effect of bringing the ! function upstream but, as figure 49

illustrates, the gain in efficiency is slight. Each arc in the figure represents the
transmission of a data value. The input to the program is a tuple, consisting of a scalar
value (black line) and a vector of scalars (grey lines). In this case, the compacted,
vector optimised code, in part (b), causes the, potentially large, input vector to !

to flow through fewer functions than it did in part (a). The transformation is of
material benefitl7 and there is little more we could expect a vector optimiser to do.

lTThere is still a lot of unnecessary transport of data in the upper portion of part (b)'s diagram.
Getting rid of much of this remaining redundant transport is the task of the tuple optimiser, whose
description starts on page 143
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+ .(!.(ær r31,nr t . (nt,+.(2,nzll (zrr,+ -(1,n2ll (nt,+.( ,nzll

(a)

+.( !.(r¡r,3 l, +. (2, +. (1 r+ .(4,n21 | | f

(b)

Figure 49. The effect of moving ! upstream in a simple program. The code prior to
moving ! is shown in part (a). Part (b) shows the code after moving !.

However, the gain in efficiency is relatively insubstantial compared to the effect of

vector optimisation on the next example.

Second example - major improvement Vector optimisation has a much

greater effect when there is more redundant data transport defined by the translator

code. A typical example where there is a lot of surplus transport is the program

(! ' (tr, zrz)') *'distl ' (nt,nr)o

which permutes the first input vector according to the indices of a second input vector.

Vector optimisation converts this to the code:
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select .(nr,nr)"

The difference this transformation makes can be discerned by comparing the pictures
shown in figure 50. Part (a) shows the data movement implicit in the first version of
the program. The light-grev lines, are the elements of the source vector and the black
lines are elements of the vector of indices. The distl function produces a copy of the
source vector for every element of the index vector. At the end of the program only
one element of each copy of the source vector is used in the result. Alt of the rest of
the elements are replicated needlessly.

Part (b) of figure 50 shows a much more efficient version of the program. The
costly combination of replication plus indexing has been eliminated and replaced with
the efficient select function.

What is select? select is a function of two vectors. The output of select is a
vector containing the elements of the first vector, the source vector, indexed by the
second vector, the index vector. An example of how select works is:

select II,2,3,4] [3, 1, I,2,0]: 14,2,2,8,!]

select cannot be efficiently implemented in terms of the other BMF functions presented
thus far so, in the Adl implementation, select is a primitive function. select executes
in time proportional to the length of the index vector.

Where vector optimisation has most effect The two preceding examples
motivate and illustrate the basic strategy of vector optimisation. The effect of vector
optimisation is greatest when it applies to code that distributes copies of whole vectors
for later indexing. The great majority of such cases are encountered in, and around
map functions. The optimisation of map forms the largest part of the vector optimiser.

A note about some examples to come In the Adl implementation, vector
optimisation is very strongly focused on optimising access to vector elements. The
vector optimiser, for the most part, ignores superfluous references to elements of
tuples, on the grounds that eliminating these is the job of tuple-optimisation. As a
result of this selective focus, code produced by the vector optimiser can be cluttered
and hard-to-read18. Such clutter adds nothing to the Adl examples so we omit it,

18It can also, in some cases, still be inefficient. This is because, although the explicit references
to vector elements have been optimised, the vector as a whole may still be distributed by the code.
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(! . (nt ,nz)" )* . distl - .o(18, 18" I

select (nt ,nz)"
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Figure 50. The effect of moving ! upstream into a distl function, causing both
functions to be eliminated and replaced with select
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in some examples to come, by showing the code, much as it would be after running
both vector and tuple optimisation. In no case is this a misrepresentation as, in
all examples in this section, the gains in efficiency are almost entirely due to vector
optimisation. However, the reader should be aware that the examples omit some

messy details.

Summary and preview Thus far we have described the strategy of vector
optimisation and presented two examples to illustrate where vector optimisation has

most impact. The time has come to describe the operation of the vector optimiser in
detail. The next section describes the most challenging part of vector optimisation,
the optimisation of map. After that we will devote a, much shorter, section to
describing vector optimisation of all other functions.

5.4.2 Vector Optimisation of Map
The strategy for optimising map mirrors the vector optimisation strategy shown in
figure 48. The translator code for map behaves in a way that corresponds to part (a)
where the distl function, upstream of the map, is responsible for widening the data
and ! or f functions inside the map are responsible for narrowing it. Optimisation of
map brings these functions together and eliminates them to produce a program with
behaviour corresponding to part (b). Figure 50 gives the archetypal version of the
optimisation process for map. Part (a) shows an inefficient program with both distl
and ! functions present. Part (b) eliminates them both, Ieaving a select function in
their place, This transformation strategy is simple and, in this case, so is the rule to
implement it.

Given this simple strategy it might seem that the process for vector optimising
map is straightforward. Unfortunately, rules such as the one in figure 50 are, typically,
only applicable after long sequence of transformations to pre-process code to a form
that matches the rule. In general, a map function can contain arbitrarily many
references to one or more elements of one or more vectors. Moreover, map functions
over vectors can be nested, resulting in interactions between levels of indexing that
defy simple characterisation. To cope with this complexity, the rules for performing
vector optimisation on map are the most detailed in the optimiser.

This distribution is often left in place because the tuple optimiser has not had the chance to establish
that the vector, as a whole, does not need distribution.

a
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In the explanations ahead we avoid a strong emphasis on the low-level details of

how map functions are optimised. Instead, the focus will be on the core components of

the optimisation process and on how translator code is processed so these components

can be widely applied. Where possible, we illustrate the effect of this process with
examples.

The structure of this section is as follows. Next, we describe the anatomy of

the translator code produced from map functions in Adl and define the terminology

for the rest of this section, Second, in section 5.4.2.2 we outline the phases of

vector optimisation of map functions. Section 5.4.2.3 describes the core of the

optimisation process for indexing functions. Indexing functions are the key focus

of vector optimisation so more space is devoted to this section than others. Finally,

section 5.4.2.4 outlines how other functions, besides indexing functions, appearing in

map functions are vector optimised.

5.4.2.L Anatomy of Translated Calls to Map F\rnctions

The translator, described in the previous chapter, converts Adl calls of the form:

nap(/, e)

to:
(B) * .distl ' (id, R)"

Where B is the translation of the right-hand-side of the function / and R is the

translation of the expression e which is responsible for generating the input vector.

The id function captures an environment containing all the global values in the static

scope of /. The distl function distributes this environment across the input vectorle

and the 0* function, encapsulating B, ensures that B is applied to every element of

the input vector. The whole of this BMF code is called the map-translati,on and we

leDistribution of a similar nature occurs in the FARM skeletonf42] which is defi.ned:

FARM :: (a --+ þ - l) --+ 0 --+ [É] - lrl
FARM f enu rs: map (f enu) rs

where the environment enu is partially applied to / and implicitly distributed across the array
us. One difference between the FARM skeleton and the map-translation is that the programmer
has some control over what is contained in enu in the FARM skeleton whereas Adl source code
provides no such control. Another difference is that er¿o is destined to be the same for all instances
of the map function inside the FARM skeleton but, in the Adl translation, the explicitly distributed
environment can be, and is, tailored for each invocation of B by the vector optimiser.
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will refer to it by this name in the remainder of this report. \Me will also use the
terminology map-body to rcfer to B and the term rz,nge-generator to refer to -¿R.

For the purposes of this discussion the most significant feature of the map-

translation is that the map-body is given all of the values in scope just in case they
are needed. This is inefficient and the task of the optimiser is to reduce the size

of this set of values. The task of the vector optimiser is more specific - The vector
optimiser tries to reduce quantity of vector elements flowing into the map body by
moving data-narrowing functions such as vector-indexing and vector-length out of the
map-body. We describe how the vector optimiser approaches this task next.

5.4.2.2 Phases of Map Optimisation

Vector optimisation of map is carried out in three phases

1. Pre-Processing: normalises the functions in map-translation to allow them to
be captured by the core-processing rules that follow.

2. Core-processing: applies transformations necessary to move indexing and
length functions outside of the map-body.

3. Post-Processing: consolidates the products of core-processing to produce a

cleanly structured map function and a single wish-list for further processing.

We briefly describe each of these phases in turn

Preprocessing Before the main work of optimisation can take place and before we

can apply the rules for the cases we will consider shortly, the map-translation must be

pre-processed. Pre-processing assumes that all ! and f functions which are amenable

to further processing are already in the wish-list inside the map body. However, these

functions may be buried at some depth in the wish-list, which may obscure the values

that they are referencing. Pre-processing uses code-compaction to compress the code

immediately upstream to make I and ff functions more easily accessible and resolve

the values they are referencing. Figure 51 gives a concrete example of this process.

Part (a) of the figure shows the map-body, with wish-list underlined, prior to pre-

processing. The values being referenced by the ff and ! functions are not readily
apparent to the optimiser because of the sequence of composed alltups immediately
upstream of these functions. Pre-processing compacts this upstream code to produce
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Figure 51. The efiect of pre-processing on a map body, Part (a) shows a map body
before pre-processing. The wish-list (underlined) is quite long, the ff and ! functions
are nested several compositions deep making it impracticai to deflne a simple rule to

access them. Part (b) shows the same code after pre-processing. The f and !

functions are nested less deeply and the positions of the values they reference in the
input tuple are easily resolved. Note that / is a section of previously optimised code.

the code in part (b). The compaction process has removed intermediate layers

of functions that previously obscured the values being referenced in the functions

producing the parameters to ! and f. After compaction these functions, and their

immediate parameters can be accessed, and processed, easily and independently by

the core-processing stage.

Note that, for indexing functions, compaction is not the end of the pre-processing

phase. In certain cases the input vector is re-oriented, and the indexing functions

referencing it are adjusted, to make code more amenable to core processing The

details of this reorientation process will be described later, starting on page 127'

Core-processing Core-processing attempts, by a process of incremental

transformation, to pull index and length functions, now residing in the most upstream

part of the map body, further upstream - out of the map-body entirely. The benefit of

moving these data-narrowing functions out of the map body is that their, potentially

large, input data does not have to be distributed to each instance of the map

body. This, typically, leads to much reduced data-replication costs during program

execution.

In almost all cases, pulling a length function out of the map-body is

straightforward2O and we will not discuss this process further. In contrast puliing

an index function out of map-body is not always a trivial process. The code resulting

20As long as the vector being processed by the length function is not generated inside the map
body. It is trivially replaced by a reference to the result of an application of the length function to
the same vector upstream of the map-body.
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from this movement also varies in complexity according to the origins of the index
values and the presence or absence of nested index functions. Core processing of
index-functions is described in section 5.4.2.3. Core-processing of other non-index
functions is described in section 5.4.2.4.

Post-processing Core-processing optimises each index and length function
separately producing an alltup of isolated map functions which are consolidated further
downstream using one or more zip functions. Post-processing works to re-unite these
functions and their upstream code in order to improve readability and slightly improve
efficiency. Post-processing also has the effect of producing a single wish-list for use

in further optimisation of upstream code. Post-processing contains non-trivial code
and plays an important house-keeping role in optimisation. We do not provide a
separate description of the post-processing rules for the vector optimisation of map

here but note their effect, where appropriate, in our descriptions of the core vector
optimisation process.

This concludes our brief overview of the stages of vector optimisation of map-

translations. The most novel and challenging aspects of this work relate to the
optimisation of indexing functions, and we describe these next.

5.4.2.3 Core Processing of Indexing F\rnctions

The optimisation steps performed in the core processing of indexing functions in
map-translations are the ultimate source of most of the benefit derived from vector
optimisation. At the centre of this optimisation process lie a few simple index
processing rules. These rules, combined with the correct infrastructure to apply them,
are very effective in reducing data movement in a broad range of indexing functions.
For some nested index functions, the effectiveness of the index processing rules is

further improved with judicious reorientation of input vectors prior to the application
of these rules. Although, it is actually a form of pre-processing we delay any further
discussion of the reorientation process until page 127, afler we have described the
index-processing rules. We do this because the description of the index processing

rules makes the motivation for the reorientation process clearer.

The layout of the remainder of this section is as follows. First, we explain the
anatomy of an indexing function, defining terms for its parts. Second, we present the
index-processing rules and describe how each is applied and describe their impact on
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Figure 52. An example of a nested indexing function.

the efficiency of the program. Third, we describe the reorientation process to improve

the impact of the index-processing rules for some indexing functions. Fourth, we

describe how the vector optimiser handles map-translations with multiple indexing

functions. Finally, we describe how map-translations containing conditional functions

with embedded vector indexing functions that are handled.

Anatomy of Vector Indexing Functions Indexing functions have the form:

| . (u ector- ref erenc'ing -funct'ion,'inder- g enerati,ng -function)"

The ! symbol is a binary ,inder-operator2r. It takes a pair consisting of a vector

argument and an integer index and returns the element of the vector referenced by

the index. The uector referenc'ing functi,on generates the vector argument to the

index-operator and lhe 'inder generat'ing function generates the index argument to

the index operator.
Figure 52 shows an example of a nested indexing function with labels describing

its various parts. Note that, in this example, the inner indexing functions act as the

vector referencing function for the outer indexing function. This layout is typical of

indexing functions applied to nested vectors.

Now that we have defined the nomenclature for indexing functions we can describe

the index processing rules.

Index processing rules There are three rules for processing vector indexing

functions found in the map-bodies of map-translations. These are described in

flgure 53. These rules are derived from the IOpt rule-set of the optimiser definition22

2lOccasionally, in other parts of this report the !-symbol is referred to as an ind'er-function as

distinct from an 'ind,eni,ng-function which is the index-operator combined with the alltup function
immediately upstream. To avoid confusion, in this section, the !-symbol is called the index-operator.
In other sections the use of inder-function is further clarifled by its context.
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Set IOpt is b-erp ) b-erp

Select introduction
N of - M emb er -of - o erp (b -erp r, r 2)

M emb er -of -o erp (b -erp 
", 

r 2)

Opt(b-erp, + b-erp'r) (24)
(t . (b-erp1, b-erpr)") * .distl . (V, R)" +

select . (b-erpr,, b-erp'r)" . (V, R)"

Repeat introduction

N ot- M ember -o f -o erp (b -erp r, r 2)

N ot- M ember -o f -o erp (b -erp r, r 2) (25)
(l . (b-erp1, b-erp")") x 'distl . (V, R)" +

repeat ' (l . (b-erpr,b-erp2)",# .rz)" . (V, R)"

Catch-all rule
M emb er -of -oerp (b -erp r, r 2)

Opt ((b -erp r, b -erp r)" + b -erp) (26)
(l ' (b-erpt, b-erpr)") x .distl . (V, R)" +

(l) * 'b-erp . (V, R)"

End IOpt

Figure 53. Index processing rules

which is a specialised rule-set for handling indexing-functions which resides inside
the larger Opt rtle set used for core processing of all functions in map-translations.

Rule 24 applies when there is an immediate opportunity to replace the indexing and
distl function with a much-more efficient select function. Rule 25 applies when the
indexing function produces a value that is invariant across all invocations of the map

body. In this case, the indexing function can be dragged upstream of the map-body
and a copy made, using repeat, in place of each invocation of the original indexing
function. repeat is defined:

22It should be noted that, for clarity of exposition, more context has been added to the rules above
than appears in the actual rules in the optimiser. The actual optimiser rules do not include the distl
and (V,,R)o functions. This makes it easier to apply the rules in situations where the map-body
contains more than just an indexing function. The rules of the optimiser re-inject the results of its
rules back into context after the it applies the rules from IOpt. None of this affects the validity of
the rules in figure 53.
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repeat (u,r) : [u]+l repeal(u,,n - 1), n > 0
repeat (r.r, 0) : i]

That is, repeat takes a pair consisting of a value u and an integer z and produces a

vector 1u,...,u] containing a copies of o. The last rule (rule 26) applies when there

are no immediate and easily detectable opportunities for further optimisation.

Now, having described the purpose of each rule, we now explain how and why the

premises of each rule determine when it is applied.

Rule choice For a given piece of code, the rule from figure 53 to be applied

depends on the the presence or absence of 12 functions in either the vector-

referencing-function b-erp, or the index-generating-function b-erp2. The predicate

Member-of-oerp is true if its second parameter, in this context: î2, appears as a most

upstream function in its first parameter. The predicate Not-Member-of-oerp is true

if its second parameter, again zr2, does not appear as a most upstream function in

its flrst parameter, The significance of 12 in these rules iies with the fact that, in
the context of a map-body, a 12 fwction, appearing as a most upstream function,

must always reference the range-generator of the encapsulating map-translation. In

these rules the range-generator is denoted .R. Any function that references R can

vary between invocations of the map-body. Conversely, âny function that does not

reference R cannot vary between invocations of the map-body. This variance, or lack

thereof, is pivotal in deciding whether it is appropriate to use select (ruie 24) or

repeat(rule 25) or not to insert either of these two (rule 26)'

Scope for further optimisation The premises of the rules in figure 53 call

lhe Opt rule-set on every term that mi,ght have 12 as a most-upstream function.

Conversely, they neglect to call Opt on any term known not to have 12 as a most

upstream function. The reason for this pattern of calls is that any function uithout a

most-upstreàrrr 7T2 function can, during post-processing, be moved into the wish-list

for further processing at some later stage. Such functions do not need to be optimised

immediately. In contrast, functions that contain zr2 as a most upstream function, by

virtue of the fact that they access a value created in ,R, the range-generator, cannot

be moved further upstream for processing at a later stage. Such functions must be

processed in-situ, hence the call to Opt on these functions'
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(! . (^t, rz)') * 'distl . (id, iota . 4)'

Figure 54. A map-translation containing an indexing function amenable to
application of rule 24 (select-introduction)

select . (nr,nr)' (id, iota . 4)'
(o)

select . (id, iota . 4)'
(Ð

Figure 55. The program shown in figure 54 immediately after application of
rule 24 (select-introduction) (part (a)) and after subsequent cleanup (part (b))

We have now, briefly described the three rules of IOpt. These rules are referenced
frequently in the following discussion and so, for the sake of clarity, we will sometimes
suffix references to these rules with the corresponding name from figure 53.

Examples applying rule 24: Select Introduction Rule 24 applies whenever
the index-generating-function depends on the range-generator and the vector-
referencing-function does not. A simple example where this condition is true is shown
in figure 54. In this code the index-generating-funcbion, 12, depends on the range-
generator, iota '4, and the vector-referencing-function, zr1 does not. When rule 24 is
applied to this code it is transformed to the code in figure 55(a), which is trivially
cleaned-up in subsequent processing to produce the code in part (b). The code in
figure 55 avoids distribution of its input vector and is thus significantly more efficient
than the code in figure 54.

Figure 56 shows a program containing a nested map-translation containing a

nested indexing function23. The inner map-translation (underlined) is applicable to
n;Je 24. Figure 57(a) shows the same program after the application of rule 24 to the
inner map-translation. Part (b) shows the same program after subsequent cleanup of
the inner map-translation using simple BMF identities to merge (!.("r 'lTt¡iT2.rt)",r2)"

23Though it is not of vital significance, in this context, the program produces a square-shaped
subset of its input vector.
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((! . (! . (nt' 'r7,'tr2 . rt)",r2)') x'distl . (id, iota .#.lTt)") x.distl ' (id, iota '#'id)"

Figure 56. A nested maqtranslation, amenable to rule 24(select-introduction),
containing a nested indexing function. The inner map-translation is underlined.

(select . (! . ("r .'tr','rr2 'zrr)", nr)" . (id, iota '#'lTL)") * 'distl ' (id, iota '#'id)'
(o)

(select' (! . (rr,7r2)", iota . #' iT)")x'distl' (id,iota' #' id)'
(b)

(select . (2i1, iota ' nr)" '(t '(trt,n, o,# 'rt x'distl . (id, iota . #' id)'
c

Figure 57. The program in frgure 56 after application of rule 24
(select-introduction) to the inner map-translation (part (a)), after subsequent

cleanup (part (b)) and after post-processing (part (c)) to extract a new wish-list
(underlined).

and (id, iota . f . id)'. Part (c) shows the same proglam with the inner ma¡
translation further post-processed to have a distinct wish-list (underlined). This wish-

Iist includes, as one of its most-upstream functions, an indexing function,l.'(nr,n")",
that can be the subject of further optimisation using rrlJe 24. Figure 58 shows the

program in figure 57 (c) after the application of rule 2424 and subsequent post-

processing. An intuition of the efficiency of this program relative to the unoptimised

version in figure 56 can be had by comparing figure 59 with figure 60. Figure 59

contains a schematic of the the data flows in the unoptimised program of figure 56.

Note that, in this figure, to save space, v¡e use the darker lines to denote entire vectors;

2aNote again, that the actual versions of the rules in IOpt remove indexing functions from their
immediate context which makes possible the direct application of rule 24 to map-translations like
the one in figure 57 where indexing functions are mixed in with other functions.

(select.(r1,iota.nr)")*.distl '(n",,nr)" '(select'(id,iota'#'id)',#'id)'

Figure 58. The program in figure 57 with both the inner and outer
ma p-translations optimised.
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(( !.(!.(nt.rct,nz.Nt)",n2)")*.distl.(id,iota.#.rcr)o)*.distl.(id,iota.#. id)"

Figure 59. Data flows in the unoptimised nested map-translation shown in
figure 56. Note that each darker line in this diagram represents an entire vector

the lighter lines denote individual values. The input vector is nested. The diagram
shows how, even with the small number of actual input values shown, data flow
increases dramatically as the program executes. Downstream parts of the program
are so crowded that most individual arcs cannot be discerned. It is only at the end,
with the application of nested vector indexing operations, that data flow dramatically
decreases.

Figure 60 shows the data flows in the optimised program in figure 58. The
moderate data flows in this program stand in stark contrast to the vast quantities
of data handled by the unoptimised program. The use of select, instead of the
distl/indexing combination, greatly reduces the replication of data. Almost all of this
reduction is attributable to the application of rule 24. Next we look at an application
of rule 25 (repeat-introduction), which also leads to significant gains in efficiency.

Examples applying rule 25: Repeat Introduction Rule 25 applies when
neither the index-generating-function nor the vector-referencing-function depend on
the range-generator. In these cases the result of the indexing function is constant
across all invocations of the map-body and can be replaced by repetition of its result.
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(select. (nr, iota.æt )" )*.distl . (rlz, n, )o. (select. (id, iota. #. id¡",*. ¡¿¡'

Figure 60. Much improved data flows in the optimised map-translation shown in
figure 58. Note that each darker line in this diagram represents an entire vector.The

programs shown in this figure and figure 59 are semantically equivalent.

(! . (rt,0)") * .distl . (id, id)"

Figure 61. A map-translation containing a vector index function with a constant
index parameter.

Figure 61 contains a map-translation to which rule 25 applies. In this program the

index-generator is a constant function, 0. Rule 25 converts this code into the code

shown in figure 62(a). Post-processing further simplifies the code to that shown in

part (b). Note that the versions of the program shown in figure 62 are mtrch more

efficient than the original map-translation in figure 61 because the latter replicates the

entire vector for every invocation of the map-body, using distl, whereas the optimised

program replicates the result of the indexing function, using repeat'

Another example where rule 25 is applicable is shown in figure 63. In this code the

repeat. (! . (id,0)",# . id)'
(Ð

repeat . (! . ("t,0)', # . nr)" '(id, id)"
(o)

iota

# ¡diota

TE
iota # ¡d

iota

It

It

distl
select

¡d
iota

Figure 62. Optimised version of the program shown in figure 61
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(! ' ("t "tlr,'tT2. *t)') * .distl . (id, zr1)"

Figure 63. A map-translation containing an index function with an index
parameter that is constant for each invocation of the map-body

repeat ' (! . ("r "rTt¡'tr2.rt),# . nr)" .(id, ur1)'
(o)

repeat . (! . (tr, rz)",# .rt)"
(b)

Figure 64. Code from figure 63 after the application of rule 25
(repeat-introduction) (part (a)) and after a small amount of post-processing (part

(b))

input data is a pair (u, ø) where o is a vector and r is an integer index. The index-
generator, irz.Trt in this code references the input datar and, thus, is invariant across

all invocations of the map-body. The application of rule 25 to the code in figure 63

produces the code in figure 64(a) and, after a small amount of post-processing, then
produces the code in flgure 64(b). Again the optimised versions of the program are

very much more efficient than the corresponding translator code because they avoid
distributing copies of the input vector.

We have now seen map translations applicable to rules 24 (select-introduction)
and rule 25 (repeat-introduction). Next we look at the final, Catch-all, rule from
IOpt.

Examples applying rule 26: The Catch-all Rule The final rule for core-

optimisation of indexing-functions in map-translations is rule 26. This rule applies

when 7r2 cãrr be found as a most-upstream function in the vector-referencing function.
The appearance of z2 in the vector-referencing function is problematic since it is the
vector-referencing function that determines the vector to be indexed. If this function
contains 7T2 a,s a most-upstream function it means that the uector being i,ndered can
change between invocations of the map-body. This situation, of indexing into changing
vectots, cannot easily be characterised by a single function such as repeat or select.

The approach taken by the catch-all rule is to leave the index function where it is,
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b-erp, b-erp,

I25

VR
((! . (! .(nt.1T7j,ø2)"1 7r2 )') x .distl . (id, ") x distl . (id, iota . f)'

Figure 65. A map-translation that fills each row in its nested result vector with
elements from the diagonal of its nested input vector. Rule 26 (catch-all) is

applicable to the underlined code. The sections of code corresponding to variables
in rule 26 are labelled.

encapsulated by its surrounding map function, and separately optimise the code that
produces its parameters. Figure 65 shows a nested map translation that is captured

by rule 26.

Given a square-shaped nested vector this program returns a nested vector, of the

same shape, with each row filled with the diagonal elements of the the input vector.

The code to which rule 26 is applicable is underlined. The labeis above the line denote

the code corresponding to variables in rule 26. The first premise of rule 26:

Member-of -oerp(b-erp r, 12)

tests for the presence of a 12 function in the most-upstream parts of b-erpr:

| . (n, . itt,r2)". This premise is trivially proved. In the second premise:

Opt((b -erp 1, b -erp r)o + b -erp)

b-erp, is, again, bound to: !. (nr.nt,z2)' and b-erp, is bound to: 12. In this premise,

Opt recursively descends into the constituent functions of the alltup. The code for

b-erpr: ! . (ø1 . 1T7,ir2)" eventually matches rule 24 (select-introduction) of lhe IOpt
rule-set, producing the code:

select . (nt' 1Tt,T2)"

the code for b-erpr: n-2 is mapped, by rules for core processing of non-index functions,

to itself producing:

7f2

these two sub-results are combined and put into context by post processing to form

the result:

zip . (select . (nt .irr,lr2)",n")o '(id, iota ' # .nr)"

which corresponds to the b-erp at the end of the second premise shown above. When

integrated back into the code from figure 65 the code in figure 66 is produced. The
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((!) *'ztp. select . (nr. 7rr,r2)" ,rz) . (id, iota' #' ilr)")x distl . (id, iota . f)'(

Figure 66. The code from figure 65 after the application of rule 26 (catch-all)
Underlined code corresponds to the underlined code from figure 65.

((! .(! .(nr.1rr,r2)",rz.rt)") x.distl .(id,iota.#.r1)") x.distl .(id,iota.ff)"

Figure 67. 
^ 

programthat transposes its input vector. The n2 function inthe
inner indexing function is underlined.

underlined code is the new code that has been produced by rule 26. The program
in figure 66 is substantially more efficient than the translator code code in figure 65

because it only performs distribution of the input vector on one level.

Second example: vector transposition Figure 67 shows a nested map-

translation with a nested indexing function. This code transposes any square-shaped

input vector given to it by distributing copies of the input to invocations of a nested

map-body and then using a nested indexing function to extract the appropriate
values. Like other translator code we have seen thus far, this code is not efficient.

Unfortunately, the inner indexing function has a 12 fitnclion as one of its most-

upstream functions, which makes the inner map-translation applicable only to rule 26,

the catch-all rule.

Figure 68 shows the code in figure 67 after the application of rule 26 (catch-all).
The function:

select.(*r.rr)r2)"

is generated, as per the previous example, from the inner indexing function:

| . (nr.rt,nz)"

The function:

((!)x.zip.(select.(r1.zr t, Tz)" ,, repeat.(zr2'rt, #'r2)")'.(id, iota.f .zi1)")x.distl.(id, iota.ff.a1)"

Figure 68. Code from figure 67 after optimisation using rule 26 (catch-all)
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repeat . (ny rt,# .iT2)"

is derived from the index-generating-function:

1fz' 1Ít

by core-optimiser rules for non indexing-functions. The overall efficiency of the code

in figure 68 is much improved over its corresponding translator code but it is still
far from optimal. In particular, the code still distributes the entire input vector over

the outer dimension of the input vector. An optimal or near-optimal version of the

program would avoid the cost of this distribution by transposi,ng the input vector

and then selecting out the appropriate elements. We next explain the mechanism by

which the optimiser introduces such transposition.

Reorientation of Vectors The code in figure 67 is close to being a very good

candidate for optimisation by the rules of IOpt. If the indexing function were:

! . (! . (zr1 .'tTL,'tr2.rt)",T2)"

instead of:

! . (! . (zr1 . ilr,r2)" )rz .rt)"

we would have the same code as that shown in figure 56 which, we know, can be very

effectively optimised without resorting to the, Iess effective, catch-all rule (rule 26).

This observation points the way to an effective strategy: reorient the vector that
is accessed by the indexing function and simultaneously reorient the nesting of the

indexing functions to compensate. In the example above, this reorientation must take

the form of a transpose function where2s:

Yr,Yy, (tranpose(a)h)ly : (alg)lr

Applying this reorientation strategy to our current example produces the following

transformation:

! . (! . (zr1 .7lr)7r2)o lrz'rt)" +! . (! . (transpos€'7rr ' 1lt,7r2'rt)o,rz)"

Figure 69 shows the effect of this transformation on the program given in flgure 67.

The index function is now amenable to optimisation by applying the rules of .IOpú

used for the program in figure 56. The result of applying these rules to the program
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((!'(!.(transpose.iTt.iTt,iTz.Trr)",nr)")*.distl.(id,iota'#'rù")x.distl.(id,iota.#)')'

Figure 69. Program from figure 67 after inserting a function to transform the
input vector and rearranging the index functions to compensate.

(select . (n2, iota . *r)') * .distl' (#. ¡¿,select . (transpose. id, iota . #)")'

Figure 70. Fully optimised version of the program shown in figure 69

in figure 69 is the program in figure 70. This program is of the same order of efficiency
as optimised nested maps without transposition. The transpose primitive, if properly
implemented on a sequential machine, is O(n) cost where n is the total number of
elements in the nested input vector.

The insertion of transpose can be used to increase the effectiveness of optimisation
wherever it is possible to increase the degree to which index-generators in a nested

indexing functions arc sor-ted A precise description of what it means for index-
generators to be sorted is given in appendix C but some insight can be gained

by considering how to use transpose to help optimise more-deeply nested indexing

functions.

Coping with more levels of indexing The reorientation strategy described above

swaps the indices of adjacent levels of nested index functions to achieve an index order
more amenable to further optimisation. This strategy naturally extends to more

deeply nested index functions in the same way that swapping of adjacent elements of
a list can be used to implement a bubble-sort. For example, figure 71 part (a) shows

a triple-nested indexing function prior to reorientation and part (b) shows the same

function after reorientation. The sequence of transpose functions in part (b) performs

the series ofre-orientations necessary to swap the indices to a sorted order. Note that
the sorted order has 12 which references the range-generator of the innermost map

translation as the outermost index, followed Ly n". lt.1 and 7Tz . lTt . n. If we define

the following symbolic mapping:

{L, ,--, 7Tz ' llt ' lTt, Lt r--+ 7T2 7\, Lo ¡-+ lt2tV ¡- tt ' rt ' rt}
25Note where u and y reference an element outside the bounds ofthe nested vector I is returned.
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! . (! . (! . (nt.'trt.'trL,rz)",r2 ' 7rr)o, 12'11'r1)o

(u)

(! . (! . (tranpose . (transpose) x .transpos€ . 7r1 .'Irr .Trttirz, lTt'llt)",ir2'ilr)",il2)o

(b)

Figure 7L. A triple-nested index function (a) that can be reoriented to a form
more amenable to optimisation (b).

(v, Lo)", Lr)", L")" +
(transpose .V, Lo)" , Lz)" , Lt)" +
((transpose) x .transpose . 14 L2)", Lo)", Lt)" +
(transpose ' (transpose) x 'transpose .V, Lr)" , L1)" ,, Ls)"

Figure 72. The transformation steps used to reorient the vector accessed by the
function in in figure 71(a) under the mapping

{L, ,- '1Tz ' 7Tl ' 'ftt, Lt r+ 'tr2 lrt, LO ¡--+ ll2tV ¡-- rt ' tt ' tt}.

then a sequence of steps by which we arrive at the code in figure 71(b) is shown in
fr.gtre 72. The analogy between the application of the transformations and sorting

is apparent, with each step above corresponding to a swap of dimensions. Note that
the second swap transposes inner dimensions, hence the embedding of transpose in a
map function of its own.

Note that because transpose is limited to swapping adjacent dimensions of a nested

vector we had to use transpose three times to achieve the desired orientation. If
we assume the existence of a more powerful transpose primitive, able to swap a

pair of dimensions an arbitrary distance apart, we can sort the index-generators in
fewer steps. Figure 73 shows the transformation of the nested index function from

figure 71(a) to a sorted format using a transpose primitive parameterised with the

dimensions that need to be swapped. Note that 0 denotes the outermost dimension

and 2 denotes the dimension two levels of nesting down. The order in which these

appear in the subscripted brackets does not affect the semantics of the transpose

operation. Note that this parameterised form of transpose still performs a single

swap. Where more than one swap is required to sort the dimensions of the array then

more than one application of the parameterised transpose is still required.

(! . (!
(! . (!
(! ' (!
(! . (!
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ïTt. lTt'7TL1r2)" )rz. rt)" r7f2.7T1 .7T1

transpose(O,2) . Tt.7Tr ,7Tr¡'tT2'7T1 '7r1

Figure 73. A transformation from the code in figure 71(a) to code amenable to
further optimisation using a parameterised transpose primitive.

The implementation of transpose In our discussion to date we have

employed the transpose primitive without regard to the details of its implementation.
This implementation is non-trivial for nested vectors, because sub-vectors may be of

different lengths. The implementation of the parametric version of transpose is even

more complex. While detailed knowledge of how transpose works is not essential for
an understanding of the foregoing, it is important that a plausible schema for its
implementation exists.

In brief, our strategy for implementation recognises that the transpose of irregular
nested vectors can, if not carefully handled, Iead to the violation of simple identities

such as:

transposelor¡ .transpose(o,r) :x : tr

The key to maintaining correctness, and thus preserve such identities, is to keep, and

abide by, information relating to the orginal shape of the nested vector.

There are many plausible schemas for preserving shape information26. \A/e have

defined a prototype irnplementation of parametric transpose where shape information
is kept by ecoding index information along with values and maintaining sentinel

values.

The reader is referred to appendix B for details relating to the semantics of
parametric transpose as applied to nested vectors along with code for the prototype

implementation, written in Scheme.

Limits of re-orientation using transpose It is not always possible to use

transpose to avoid the application of the catch-all rule of IOpt. For example, figure 74

shows a program where, no matter how the index-generating functions are swapped

26Such preservation is central to defining parallel computation across nested data using structure-
flattening. Examples of implementations exploiting such flattening are NESL|22, 23] and, more
recentl¡ Nepal [30, 29]

(! . (! . (
(! . (! . (

)'
)",nr rt)",r2)"
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((!.(!'(nt.nr,l'(n",,rz.rt)")",,1'(nr,rz'rt))")x'distl'(id,iota'4)')xdistl'(id,iota'4)'

Figure 74. A program with a nested index function where reorientation would be
ineffective in avoiding the application of the catch-all rule in further optimisation.

((! .,4,!.8)') x.distl .(V,R)"
(o)

zip . (A', B')" . (V, R)"
(ó)

Figure 75. An archetypal schema for a map-translation with multiple indexing
functions (part (a)) and the same schema after core-optimisation has been applied

(part (b)).

around, a zr2 function will always appear as the most-upstream function in an inner-

indexing function. In short, no amount of swapping of index-generators will get all of

the 12 functions to the outside. This property is also is also manifest in the program,

shown earlier, in figure 65. Under these circumstances the optimiser's rules for re-

orientation will sort index-generators as well as possible but there will still, inevitably,

be some distribution of data remaining in optimised code27.

A precise specification of indexing functions that are sorted or amenable to sorting

is given in appendix C.

Handling Multiple Indexing F\rnctions The following describes work that is
done by the core optimisation process and the post-processor when applied to map-

bodies containing more than one indexing function. We describe core processing first.

Core processing of multiple indexing functions Figure 75(a) shows an

archetypal schema for a map-translation containing multiple indexing functions. Part

(b) shows the same code after the application of core optimisation. The code in A'
27Note that the presence of distribution in the code does not imply that the code is non-optimal.

For some problems the optimal solution will involve distribution.
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((! . ("r,0)', ! . (r.t, t)')') x .distl . (id, iota '#id)"

Figure 76. map-translation containing multiple index functions with constant
rrrdices.

zip.(repeat.(! .(2r1,0)",#.rz)",repeat.(! .("t,L)",#.rr)")"'(id,iota.#id)'

Figure 77. Optimised map-translation of code from figure 76 prior to
post-processing.

is the code that would result from core optimisation of ! ' A as if it were alone in the
map body. That is A/ is the A' in:

(! . A) * .distl . (V, R)" tìr, A' . (V, R)"

Where the rlet transformation denotes the application of the IOpt nÌe set to the
code to its left. In figure 75 part (b) the pair of equal-length vectors28 produced by
(A', B')" is combined into a single vector of pairs using zip.

Figure 75 is adequate for explaining how core-optimisation processes ma¡bodies
containing pairs of indexing functions. In the general case, arbitrarily many index

operations can appear in alltup functions of varying arity. The core-optimisation
rules are written to handle all such cases by inserting the appropriate combinations

of alltup, addressing and zip functions.

Post-processing of multiple indexing functions Sometimes the application
of core-processing leaves scope for further improvement to the code. For example

figure 76 shows a map-translation containing multiple index functions with constant
indices. Figure 77 shows the same code after the application of core processing. The
repeat functions copy their respective arguments the same number of times which
makes them amenable to consolidation. Figure 78 shows the program from figtre 77

after the repeat functions have been consolidated by post-processing.

As a further example, figure 79 shows an unoptimised ma¡translation containing
both constant and non-constant index generators. Core-processing produces the code

shown in figure 80. Post-processing is able to remove the repeat, select and zip
2sThese vectors are always the same length as the vector produced by the range-generator R.
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repeat. ((! . (tt,0)', ! . (*r, 1)")', #. rz)". (id,iota . #id)'

Figure 78. Post-processed version of the optimised code shown in figure 77

(!' (*r, rz)",1. (r.t,0)') x .distl . (id, iota . #¡d)'

Figure 79. Unoptimised map-translation containing an index function with a
non-constant index-generator and an index function with a constant

index-generator.

functions from this code by taking advantage of the fact that the output of both select

and repeat are of the same length so equivalent program semantics can be attained by

distributing the first parameter of repeat over the output of select. Figure 81 shows

the result of applying such post-processing to the current example. The underlined

code is used to bring the tuples in the output vector back into their original order.

This concludes our description of the vector optimisation process for handling

map-bodies with multiple-indexing functions. Next we describe how the processing

of conditional functions containing indexing functions is done.

Handling Indexing F\rnctions in Conditional F\rnctions Often map-bodies

will contain if functions. In turn, these if functions can contain index functions

that might be amenable to optimisation. Figure 82 shows a map-translation that
interleaves the first half of an input vector with its second half. An if function in the

map-body is used to achieve this. This if function can be paraphrased:

if (tr2'is-euen, access-first-half of '\, access-second-half of irr)

the function access-first-half corresponds to a simple select function:

select . (tr 1, first-half-of -i,ndices)"

Likewise, the functioî access-second-half corresponds to the select function

zip . (select . (nr,nr)",repeat . (! . (^r ,0)",#.*r)")' . (id, iota . #id)'

Figure 80. Core-optimised version of the code shown in figure 79
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((tr2,r)")*. distl . (! . (rr, 0)', select . (trt,nz)")" . (id, iota . #id)'

Figure 81. Post-processed version of the code shown in figure 79. The underlined
code brings tuples in the output vector back into their original order.

12 LS-€U€,TI,

(if( : '(mod ' (tr2,2)",0)" 
,

access-fi,rst-half

(rr, + .(nr,2)")" 
,

o,ccess-second-half

! . (*r, + . (+ . (# 'nr,2)",i. (nr, 2)')')")) *
distl . (id, iota . f . id)'

Figure 82. map-translation containing an if function that interleaves the top and
bottom halves of an input vector. The first, second and third parameters to the

higher-order if functions are marked with over-braces.

select . (q, s econd-half -of -i,nd'ices)"

Where first-half-of-i,ndi,ces and second-half-of-i,ndices are functions for producing the
first and second half of the range-generator respectively.

These two select functions indicate that there is scope for vector-optimisation,
buried inside the if function. However, a way still needs to be found to model the
way the if function, in the example, alternates between values from the first and

second half of the vector. The vector-optimiser achieves this alternation using two

clifferent functions:

o A primitive function called mask that uses the boolean results of the predicate-

part of the if function to filter out the indices not relevant to each select.

o A primitive function called priffle that interleaves the result of the select's using

the boolean results of the predicate of the if

Figure 83 shows the optimised version of the map-translation from figure 82 containing
the new primitives. The optimised code, corresponding to the original parameters to
the if function are marked with over-braces. The primes on the labels for this code

indicate that this code has been vector-optimised. The remainder of the code, with the
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priffle.
(nr,

access-first-half'

select '(tn,,+ (nr,,2)")" .(n, .nr,mask . (n, .n''.,T2)o)",
o,ccess-second-half '

select (rr,f.(+.(#'rt,2)",*'(nr,2)')')''(tr.7r1,mask.(nr.z'r,(-) x.rz)')')'.
rz IS-eU€TL

(id, (: .(mod '(nr,2)",,0)') * '¡z)" (id, iota .# .id)'

Figure 83. Optimised version of the map-translation from figure 82 with the
optimised parameter functions to the original if marked with over-braces. All of the
remaining code, except the most upstream alltup function requires no customisation.

It does not vary from program to program.

exception of the most upstream alltup function, is a standard template for optimising

the if function. This tempiate does not vary from program to program.

The role of the mask and priftle functions are central to the optimised code. The

mask function takes a vector of values and vector of booleans for parameters and

filters out all of the values of the original vector for which the corresponding element

of the boolean vector is false. mask is defined:

mask (([r]+t rs),, (ftruel++ ss)) : ["]+r mask (rs, ss)
mask (([ø]+r rs), (lfalsel++-gt)) : mask (zs, srs)

mask ([], []) : tl

In the optimised code, in figure 83 mask uses the vector of boolean vaiues produced by

the 12,is-euen' function to filter out the index values for which the original predicate

function of the if function is false (for the code accessing the frrst half of the input

vector) or true (for the code accessing the second half of the input vector). The mask

functions, in combination with the select functions, extract the appropriate parts of

the original input vector.

Once the consequent and alternative functions, corresponding to access-first-half '

and access-second-ha1,/' respectively in the example in figure 83, have produced their

results, we have two vectors whose combined length is the same as the original input

vector. These vectors need to be interleaved so that the order of results produced



CHAPTER 5, DATA MOVEMENT OPTIMISATION 136

by the original if function is preserved. The interleaving is carried out by the priffle

function.
priffle (the name is a contraction of predicate-riffie2e) takes, as input, a vector of

boolean values and two other vectors. priffle selects items from each of its second two
vectors according to whether the next value in the boolean vector is true or false.
In other words priffle is a merging operation with a predicate parameter to guide it.
priffle is defined:

priffle (ltrue)++ rs,lyl+-t ys, zs) : [y]*t priffle (rs,gs, zs)
priffle (lfalse]t+ rs)As,lzl++ zs) : [a]+f priffle (rs,ys, zs)
priffle ([], [], []) : []

Note that the final case assumes that all vectors are exhausted at the same time. The
context in which the mask ar¡d priffle are embedded, by the vector optimiser, ensures

that this is the case.

It should be noted that neither priffle or mask or the way in which they are

used here are unique. Blelloch uses similar techniques in the implementation of
NESL[22, 23]. Prins and Palmer[112] describe restrict and conbine operations in
the implementation of proteus, corresponding to mask and priffle respectively. Finally,
the role of two mask functions could be replaced by partition from the standard
List library of Haskell3o.

This concludes our discussion of the optimisation of if functions in map-bodies

and also our discussion of vector optimisation of indexing-functions in general. Next,
we briefly discuss the optimisation of other functions found in the map-body.

5.4.2.4 Processing Non-Indexing F\rnctions inside Map

Given a map translation:
(berp) * .distl . (V, R)"

The purpose of vector optimisation is to move indexing and length functions inside
berp as far upstream as possible. The rules we have just described are designed to
fulfill this purpose. However, these rules can rarely work in isolation because, berp

will, often, contain other functions beside index and length functions. In fact, index
2eRiffie is a term borrowed from Ruby [S7]. The original meaning describes the way in which two

half-decks of cards can be combined, quickl¡ by skillfully interleaving cards from the half-decks.
30The replacement of the two mask's by a single partition is an option well worth exploring in a

future version of this implementation.
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and length functions are commonly embedded in other functions such as alltup. Rules

must be in place to handle these functions to ensure that:

1. the vector-optimised code is left in a consistent state with the same semantics

as the original translation.

2. no opportunities for further vector optimisation are foregone. That is, any code

that is amenable to further optimisation is positioned so that il is erposed lo
further optimisation.

These roles are obviously important and the rules that we defined to fulfill these roles

are non-trivial. However, the details of these rules are not central to our discussion of

the vector optimiser and we omit them from this report. At this point it is sufficient

to note that such rules are required and they have the roles enumerated above.

This concludes our description of the vector optimisation of map-translations.

Next we briefly describe the vector optimisation of other functions.

5.4.3 Optimising non-map functions

Even though map functions are the focus of most of the work of the vector optimiser

there is still important work to be done involving other functions.

The remaining part of the vector optimiser carries out two major tasks:

o Constructing, maintaining, and propagating the wish-list.

o Specialised handling for the translation of the Adl reduce and sca¡ functions.

We discuss these tasks in turn.

5.4.3.I Maintenance of the wish-list

All of the top-level rules for the vector-optimiser produce a composed function of the

form:

C.W

where C is the code that is already optimised and W is a wish-list.

Together, the top-level rules ensure that:

o Index and length functions are inserted into the wish-list and they stay in the

wish-list until they are either eliminated or can be pushed no further upstream.
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o Any code downstream of any index or length function remains with the
optimised code.

As a consequence of these two rules the wish-list W can take one of two forms. The
first form:

W:id
occurs when there are no index or length functions awaiting further processing. The
second form:

W : berp uhere berp I id A (Subterm(berp,!) v Subterm(berp,ff))

occurs when there are index or length functions awaiting processing (the predicate

Subterm(f, r) is true if z is a sub-term of /).
Each vector optimiser rule described below is responsible for creating and

maintaining wish lists corresponding to one of these two forms. For clarity, in each

of the following rules the output code that corresponds to the new wish-list Iztrz is

underlined.

Constant functions, Ordinary operators and singleton address functions
Constant functions require some input to trigger their evaluation but their result is
not dependent on the value of their input. Constant functions are first-order so they
cannot contain any index or length functions, or any other functions for that matter.
The rule for constant functions is

The constant function K is the section containing the already-optimised code. The
rules for non-index, non-length, operators

op + op .id (op l! nop I #)

and singletonsl address functions

^'r, ¿* r,-'id

are also very similar. In all of these cases an id wish-list is formed.
31,{ singleton function is a function / is any function that is not a composition. That is

Singleton(f) 1s !/, g-Unffy(f , b-comp(g, å,)). Where the predicate Unify(s,ú) is true if s can be
structurally unified with ú.

K =+ K'id
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Index and length functions The rules for handling index and length functions

berp è berp' .berp"
t.. berp + id. (l.berp' .berp")

berp + berp' .berp"

ff.berp+id.( ff.berp' 'berp")

respectively. The new wish-list contains either an index or length function composed

with berpt . berp" output of the vector optimiser for the code immediately upstream.

The wish-lists produced by these rules will serve as vehicles for transporting the index

and length functions further upstream in case an opportunity to optimise them further

arises.

Composition sequences The top-level rules of the vector optimiser are structured

around code-fragments produced by the translator. As such the treatment of

composed sequences of functions is distributed among specialised rules to handle

these fragments. However, the vector optimiser's approach to handling composition

sequences can be described by four archetypal rules. These rules are shown in figure 84

Note again that the wish-lists are underlined. Rule 27 handles the cases when the

processing of both the downstream berp, and upstream berp, functions produces id

wish-lists. These combine to form a nev/ id wish-list. Rule 28 applies when the

upstream function berp, produces a non-id wish-list: berp'/ which is also the wish-list

returned in the conclusion of the rule.

Rule 27 applies when the downstream function berp, produces a non-identity wish-

Iist berp'1. This wish-list is then combined with the non-identity part of the result of

processing berp" Lo form the new wish-list:

berp'l .berp',

Note that, even though berp', contains no index or length functions it must be included

in the wish-list because these functions are contained in lhe berp'l and there is no

semantically sound way, without further processin g, lo push berp'l through berp'r.

This behaviour of upstream functions being co-opted into the wish-list is quite typical.

This behaviour is also necessary because, as we have seen during the optimisation of

map, the upstream code that supplies the arguments of length and index operations

needs to be analysed as part of the optimisation process for these functions.
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Figure 84. Archetypal vector optimiser rules for handling composed functions

The last rule in figure 84 is applied when both sets of wish-lists are non-identity
functions. In this case all code resulting from vector optimisation of berp, and berp2

goes into the wish-list.
Note that the rules in figure 84 are effective in buildi,ng up the wish-list. The

counterpart to this activity, the destruction of the wish-list, took place inside the the
Process-Map rule set described earlier. This completes the description the handling
of composed functions next we consider the handling of alltups.

Set Vecopt is

Both identity wish-lists

b-erp è b-erp

berp, è berp', .id
berp, è berp'r.id (27)berpr. berp, è berp'1. berp'r.id

Second wish-list is non-identity

berp, + berp'r.id
berp2 è berp'r. berp'l

berpi I id (28)
berp1. berp2 + berp'r. berp'r. berp'l

First wish-list is non-identity

berp, + berp'r' berp'l

berp'l l id (2e)

Both wish-lists are non-identity

berp, + berp\ .berp'l

berp, è berp'2. berp'/ berp'l + id A
berpi I id

(30)berpl' berp2 è id ' berp\ . berp'i ' berp'r. berp',j

Alltup functions There are two rules for alltup functions. The first rule:
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berp, + berp'r.id

berpn +'i"rp'..i¿
(berp1,. . .,berpn)" + (berp\,. . .,betrp',)' . id

applies when all of the functions inside the alltup produce id wish-lists. In this case

the wish-lists can be consolidated into a single id function.

The second rule:

berpl è berp'r.berp'l

'il
berpn + berp'n. berp'n

berp'l I idv

(berpr,...,berpn)"+(berp'.t.nnr,...,belxp'n.'rn)".(berp'l,...,berpi)"
berp'l I id

applies when at least one of the functions in the alltup produces a non-id wish-list. In
this case all wish-lists are grouped into an alltup function. Addressing functions link
each function in the downstream alltup function to its corresponding wish-list in the

upstream alltup.

Other functions The examples shown so far, illustrate most of the techniques

employed by the top-level rules of the vector optimiser. The rule for allvec functions

is very similar to the rule for alltup functions.

The rules for if and while are very conservative; if any of the functions they

encapsulate produces a non-identity wish-list then all code goes in the wish-list,

leaving just an id function as optimised code.

The rules for the various types of reduce and scan have similarly conservative

strategies. However, these constructs also require additional, specialised processing

and we discuss this next.

5.4.3.2 Handling reduce and scan translations

As mentioned in the previous chapter, the translation of reduce and scan functions

produces very detailed code. A translation for reduce (a reduce-translation) takes

the form shown in figure 85, where Ê is the range-generator for the input vector and

Z is the code producing the value that is the left and right identity for the binary

function O. The if function determines if the input vector is empty. If it is empty, all

data except for the input vector is directed to the function Z which then produces

the output for the entire reduce-translation. If the vector is non-empty then the
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,f (+.(0,#.rz)",< deta'iled-code) Ø l other-detai,led-cod"> l.distl, t.nr).(id,A)'

Figure 85. The basic form of code produced by the translator for reduce functions

< deta'iled-code) Ø I other-detai,led-code) f 2.distl.(id,R)"

Figure 86. A reduce-translation specialised with the knowledge Lhat Z is a
constant function.

input vector, produced by r? is distributed over the other values in scope. The vector

resulting from this distribution is then given to a reduce function with the binary O

function embedded in detailed code to ensure that O receives an input tuple that is
wrapped up with ali of the global data that it may require.

Almost all of this heavy infrastructure is there to cater for two relatively rare

cases.

1. The function Z being dependent on one of the values in scope.

2. The function O being dependent on global values; that is values other than its
immediate arguments.

If either of these cases is not true then substantial optimisations can be made.

Addressing the first case, if Z is a constant function, and thus noú dependent on

any particular value then the code in figure 85 is simplified to the code in figure 86.

Note that the function:
distl ' (id, r?)'

in figure 86 will produce an empty vector whenever A produces an empty vector. An
empty input vector would leave the function Z with no means of accessing any values

in scope. However, because Z is a constant function as we assume in this discussion,

the modified code still works.

Now, addressing the second case - if O is n,oú dependent on any values in global

scope then the code in figure 86 can be further simplified to the code in figure 87.

This code lacks the distl function of the previous versions and any of the
infrastructure for carting around values in global scope and is very much more efficient
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Ø1"

Figure 87. A reduce-translation specialised with the knowledge that Z is a
constant function and that O depends only on its immediate operands.

than the original reduce-translation. In most of our experiments the form shown in
figure 87 is the form ultimately produced by the vector optimiser.

Note that the optimiser must analyse the code in O in order to determine what

values it depends upon. This analysis requires both vector and tuple optimisation of

O to eliminate spurious dependencies.

In rare cases, vector optimisation of O produces a wish-list containing an index

and/or length function. Though there is scope to optimise upstream code with respect

to such wish-lists the current implementation makes no attempt to propagate such

wish-lists further upstream.

The translated code for sca¡ functions are vector-optimised in an almost identical

way to the corresponding reduce-translations.

Summary and Preview This concludes our description of vector optimisation.

The vector optimiser, because it analyses data requirements that are dependent on

other runtime data, is quite sophisticated. Most of its complexity resides in the

rules handling map-translations. Next, we describe the, slightly less-complex, task of

tuple-optimisation.

5.5 Tuple optimisation
T\rple optimisation is used to prevent the transmission of surplus elements of tuples

to downstream code32. The strategy employed by the tuple-optimiser is:

Moving data-narrowing operations on upstream.

The data-narrowing operations on tuples are any address function, or composed

sequenceof addressfunctionssuchas 1T2,'rrt, andzrl.z-1. Theprocessof pushingthese

32Note that tuple optimisation is not strictly limited to tuples. In the rare case where the input to
a function is not a tuple but a single value, and that single value is not needed, tuple-optimisation
will eliminate the code that produces that single value.
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1 opti,m'ised code > . <
(ó)

< opt'im'ised code > . <
(")

Figure 88. A BMF program; at the beginning of tuple-optimisation (part (a)), in
the middle of tuple-optimisation (part (b)), and at the end of tuple-optimisation

(part (c)).

operations upstream involves the periodic creation and destruction of a specialised

type of wish-list called a fi,lter.

5.5.1 The filter expression

Figure 88 gives a conceptual view of role of a filter expression during tuple-
optimisation.

Part (a) of figure 88 shows a program, prior to tuple-optimisation. At this stage the
filter contains an id function to indicate that all of the program's output is required.

Part (b) shows the program in the middle of tuple optimisation. Often, at this
stage the filter holds an alltup function containing several addressing functions.

Part (c) shows the program at the end of tuple-optimisation. By this stage the
filter will, typically, contain an id function by virtue of the fact that most programs
need all of their input values.

The filter expression assumes a very similar role to the wish-list in vector
optimisation. It acts as a bridge between optimised and unoptimised code.

Like a wish-list, a filter changes constantly to reflect the needs of optimised
downstream code as it moves upstream. Like a wish-list, a filter conveys the data
needs of downstream code.

5.5.1.1 'What makes the filter different?

The wish-list consists, entirely, of BMF code. A wish-list is just a function. A
filter, in most cases, just encapsulates BMF code but, under certain conditions it can
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encapsulate a non-BMF value called: null

The role of null Tuple-optimisation eliminates code producing values that are not

needed by functions downstream. It is guided, in this task, by the contents of the

filter. Any values not referenced in the filter are not needed and any upstream code

producing them is removed. In extreme cases, the downstream code needs no specific

data. For example, consider the tuple optimisation of:

lrue. f . g

Tuple optimisation starts by placing a filter, containing an id function, to the left of

the program:

filter(id) .true.f .s

Note that this expression is not a vaiid BMF program, it contains a non-BMF filter
expression. Also note that it could, at this point, be easily converted to a valid BMF
program by replacing the filter expression with its contents.

The next step of tuple-optimisation produces:

true . filter(null) . f . g

which says that the constant function true has no real data requirements, it just needs

data, of some kind, to trigger its evaluation. The null term is used to denote this null
data requirement. null is not a function, it cannot accept input or return a value, it
is just a term that can appear in a filter expression.

The effect of the null filter, on the upstream code, is profound. Because it doesn't

need to produce any particular value, the upstream code doesn't need to take any

particular form. Taking advantage of this fact, the tuple-optimiser replaces upstream

functions with id functions:

true . id . id .filter(null)

Because it contains a filter term, the above is still not a program so, as a last step,

the tuple-optimiser converts filter(null) term into an id function:

true .id .id .id

After one final run of the Remoue-i,ds rtle-set, all of the id functions disappear to
leave the fully optimised program:
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true

Note, that the above is an extreme example of the effect of a null fllter. In most

program null filters are quickly subsumed by merging with other filters from other

parts of the program.

\Mhy is null used only by the tuple-optimiser? The wish-list in the vector-

optimiser and the filter-expression in the tuple optimiser are corresponding parts of

different processes and, as a result their needs are different. The vector optimiser's

wish-list precisely expresses which vector elements are needed but it may also contain

functions accessing redundant tuple elements. If the wish-list does contain such

redundant access it is not the job of the vector optimiser to do anything about it.
Without this obligation, the ordinary functions found in BMF are enough to express

any wish-list the vector-optimiser might require.

The tuple optimiser uses the filter expression to precisely convey the values that
are needed by downstream code. In most cases, the existing set of BMF functions

is enough. However, there is, occasionally, a need to encode the fact that no data,

in particular, is required. There is no convenient BMF function to perform this

encoding. The null term fulfills this role.

6.5.2 The rules of tuple optimisation

The rules of the tuple optimiser are organised differently to the rules for the vector

optimiser. The top-level rules of the vector optimiser capture the various code

aggregates produced from Adl source, such as map-translations. Vector optimisation

obliterates these aggregates so the tuple optimiser works with individual BMF
functions. As a result, tuple-optimisation rules are focused on the elements of BMF
syntax rather than on elements of Adl syntax echoed in BMF, as the vector optimiser

did. We will structure most of our explanation according to these syntax elements.

However, we first have to describe the rule that initiates the tuple-optimisation
process.

5.5.2.L The top level rule

There is one top-level rrfl" fot the tuple optimiser. This rule takes an unoptimised

program
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< unopt'im'ised code >

prepends an identity filter expression to it33

filter(id). 1 unopt'im'ised code >

invokes the core rules of tuple optimiser on the combined expression

filter(id). 1 unopt'im'ised code >---+< opt'im'ised code > .filter(berp)

and unites the filter with the optimised code to produce the final program:

1 opt'imi,sed code' >

Most of the work of tuple optimisation is done by the core rules. These rules all have

conclusions with the following format:

filter(berp)' < unopt'im'ised code >--+< opti,m'ised code > .Íilter(berp')

That is, the rules at the core of tuple optimisation all attempt to push a filter through

unoptimised code in order to create optimised code and a new filter. We describe

these rules next.

5.5.2.2 Core tuple-optimisation rules

We start our description with the rules for the simplest constructs and quickly proceed

to the rules where the optimiser does most of its work. Our approach is informal;

we use rules as a device to help the narrative as opposed to adding formality. We

commence our description with the most generic rule. The rule for null filters.

null filters The rule catering for null filters is:

filter(null) . berp ---+ id . filter(null)

This rule states that any function upstream of a null filter should be converted to
id and the null filter should be preserved. \Mhere it is applicable, this rule takes

33The tuple-optimiser rules use a cornma instead of function composition in the expression
filter(id), 1 unoptimised code > because the fllter expression is not, strictly speaking, BMF code
and as such it cannot be composed with existing BMF code without, first, projecting code from the
filter expression. However, it is conceptually useful to think of the frlter and the BMF code as being
composed so we maintain this minor fiction.
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precedence over all other rules, that is, when another rule is also applicable, the

above rule is applied in preference.

We have already seen the effect of the null-filter rule in our earlier explanation of
the null term. Note that this rule is rarely applied. null fllter expressions are common

but they are almost always merged with other filter expressions before they get the

chance to be applied to the rule above. We will see an example of this merging process

in our discussion of alltup optimisation on page 149. Next, we examine the rule that
generates null-filters.

Constants The rule for constant functions is:

filter(berp) . K ---+ K . filter(null)

That is, any constant function will generate a null-filter. If berp is not null the constant

function K is preserved.

Addresses Address functions are the only functions that narrow tuples. The rule
for address functions is:

filter(berp) .^ 'tTn - id .filter(óeixp .* ir,')

The rule captures the address function in the filter expression so it can be propagated

upstream until it reaches the corresponding tuple generating alltup function.
There is a strong correspondence between the role played by address functions

in tuple-optimisation and the role played by index and iength functions in vector

optimisation.

Function composition The tuple optimiser has an explicit rule for sequences of
composed functions:

Írlter (berp r) . berp 2 -- berp'2 . filær (berp'r)
filter (benp'r) . berp, -- berp's . lilter (berp'l)

filter(berpr) ' berpr. berp, -- berp'2. berp'r.filter(berp'l)

The rule works by tuple-optimising the flrst function to create a result function berp',

and a new filter filter(berp'r) which is then used as part of the tuple-optimisation of
the second function.
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The function composition rule is the mechanism for the propagation of filter
expressions through the program. It also provides, when used in conjunction with
the rule for address functions, a mechanism for refining the focus of address functions
appearing in the filter expression. For example, tuple optimisation of the function
¡rt ' ¡rt' 7h ploceeds:

filter(id) '7T1 . 7T1 . 7T1 --+

id . filter(n'1) .nr.nt --+

id . id 'filter(er1 'rt) .n ---+

id . id . id .filter(zr1 .rt'rt)
At each step above, the filter expression is refined to be more specific about the data
it refers to.

Alltup alltup functions are tuple-constructors. They are responsible for the creation
of most surplus tuple values in unoptimised code. Not surprisingly then, alltup
functions are, typically, the functions most strongly affected by tuple-optimisation.

The rule for tuple optimisation of alltup functions is:

Select-i,tems(berp, . (berp çr,r¡, . . . berp ç2,",¡)' + berp'r)

C o mp act-addr -space (berp', + berp'/ . filter (b erp'r)
filter(berpr) . (berp çr,r¡, . . . berq p,",))o - berp',j . filter(berp'r)

The rule has two premises. The first premise calls the Select-'items rule-set.

Select-'items merges the filter with the alltup function to produce a single result
function. Figure 89 illustrates how this merging process takes place. After the
merging process is applied, the result function:

(tr",+.(nr.rt,rz)")"

produces only the data required by downstream code. This is all well-and-good.
Howevet, close scrutiny of the function above reveals that the set of address functions
it contains:

{tr2.r1,,12}

does not couer the whole of input address space. In particular, there is no value

referenced by the function rt .irt.
We eliminate this superfluous input and, simultaneously, create a new filter term

by rewriting (trz, t . (n, . rt,rz)")" to what it would be if it received only the input
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Filter Code

(t r, (ù ,r .(T8". æ,, ær)o)o)o

Result: (frr, r .(n, nr, nr)o)n

Figure 8e' An "':ii,',iîå:lïîi;3i"i:î',ffif "Ååf,H: expression and an

Result: New Result: Filter:

(nr,+ .(nr, nr)o)o (nr. n, , nr)o

112 frz'ßt nz (n, nr, nr)o (nr, nr)o

Compaction

] eup

Access map

Figure 90. The action of Compact-addr-space on the result of Select-'items

it needed and, in addition, generating a nev¡ filter term that selects only this input.
In the tuple optimiser, the Compact-addr-space rule-set performs this task of result-

modiflcation and filter-generation.

Figure 90 shows the effect of Compact-addr-space orr the result function from
figure 89. The left-hand-side of the figure shows that the address functions in the
alltup function are used to form an access map of the input value. If the input value

is a tuple and not all values of the input tuple are accessed, there will be gaps,

indicated in white, in the access map. The right-hand-side of the figure shows that
the result function is modified so there are no gaps in its access map and a new fllter
expression is built to specify the data required.

( , nr.nr)o (nr,{xr,+ .(nz. æ, , nr)o)o)o

( ) o

(nz,+.(nz.frr, nr)o)n
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map The rule for tuple optimisation of map functions is:

lilter (berp r) . berp, -- berp'z . filter (berp'r)
f rlter ((berp r) *) . (berp, ) * - (berp'r) x'f i lter ( ( ôe rp'r) *)

The premise of the rule processes the code inside the map function with respect to the

code inside the map function in the filter. The resulting code and filter are re-injected

back into map function in the rule's conclusion. The appearance of a map function
in a filter indicates that the expected output of the upstream function is a vector3a

Allvec allvec functions are morphologically similar to alltup functions. The tuple-
optimiser rule propagates the filter into each of the functions contained in the allvec

function. The individual filters produced by this process are then united to form a

new filter using the Compact-addr-space rule-set used in the rule for alltup functions.

Distl Even after vector optimisation, there may sti[ be redundant instances of distl

embedded in the code. The tuple-optimiser can safely eliminate a distl function if the
filter expression contains only addresses prefixed wilh 12. In this case, only elements

of distl's second parameter are accessed by downstream code and the distl function
can be safely eliminated. The code from the old expression, stripped of its leading ltz
functions replaces the distl function. A new filter expression is generated containing
just zr2 and positioned just upstream of the new code replacing distl.

If the filter exprersion contains references other than 12 the distl function is left
intact and the new filter expression contains id.

zip A zip function is redundant if the filter exclusively references one side of each

pair of the vector produced by that zip. If, for example, the filter expression contains

only addresses starting with z1 then the second half of each pair isn't needed and

the zip function can be replaced by the frlter expression stripped of its leading n1

functions. A new filter expression is generated containing just ø1.

The above process is mirrored if the filter expression contains only addresses

starting with 12.

34The converse - a vector emanating from an upstream function implies a filter containing a map
function - is not true. A filter downstream of a map can also be an id function. Extra rules are
required to cope with this special case in various parts of the tuple-optimiser. Later versions of the
tuple optimiser are likely to avoid these special cases by more directly exploiting the type information
accompanying the code.
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If the addresses in the filter expression contains references to both zr'1 and 12 or

contains a leading id then the zip function is kept intact and a new id filter is created.

If The data requirements of an if function is the union of the data requirements

of each of its parts. The data requirements of the consequent and alternative parts

of the if functions are determined by optimising each of them with respect to the
current filter expression. In contrast, the data needed by the predicate is determined

by optimising it with respect to an id filter. The id filter is used for the predicate

because we can safely assume that all of the output of the predicate function, a

boolean value, is required for the program to work properly.

While The current implementation does not tuple-optimise while functions with
respect to the surrounding code. Instead, the inside of while functions are tuple-
optimised with-respect to an id filter. The data needed by the while function is
determined by a combination of the needs of the iterative function and the needs of
the predicate. The iterative function, in particular, can consume its own input so it
must be optimised with respect to its own input requirements. Such optimisation is
future work.

AII other functions AII functions, other than those already mentioned a e
captured by the default rule:

filter(berpr) . berp2 ---+ berqt. berpr.filter(id)

This rule, like the rule for while inserts the code in the filter downstream of the
function and produces a new id filter expression. This catch-all rule attempts no real

optimisation.
Note, that even though this rule applies to all variations of reduce and scan the

tuple optimiser is invoked upon the code embedded in these functions during vector

optimisation. That is, by the time this rule applies to reduce and scan functions the
code in inside these functions has already been tuple-optimised.

Summary This concludes our description of the rules of the tuple optimiser. We

have outlined the top-level rules and canvassed the core issues that arise during tuple
optimisation. Note, that as with vector optimisation, we have omitted many details,

hidden in auxiliary rule sets, whose description is beyond the scope of this report.
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Next we summarise the findings arising directly from our work with the vector

and tuple optimisers. Starting with a review of the performance of the code produced

by the combined optimisers.

5.6 Findings
Our findings for this chapter are divided into

o findings relating to the performance of the optimiser and

o lessons learnt during the construction of our implementation

Both aspects provide useful information. The first helps to confirm the

effectiveness of our approach. The second describes important features of our

approach.

We describe these aspects in turn.

5.6.1 Performance

There are many ways to view the performance of an implementation but the primary
concern is the efficiency of the target code. Secondary measures of performance

include, the reliability of the optimisation process, the time it takes the optimisation
process to run, and the size and elegance of the code produced by the optimiser. We

examine efficiency of target code first.

5.6.1.1 Efficiency of target code

At the end of the last chapter, we sarü/ that the transiation process, though reliable,

often produced inefficient code. Now, at the end of this chapter, we argue that the
optimisation process we have just described greatly enhances the efficiency of that
code. In the following, we extend the examples from the previous chapter to compare

the performance of optimiser code to that of both translator code and idealised

code from the last chapter. We also include nerü¡ examples for other representative

constructs. The examples we present here are:

naprap-addconst.Adl a program containing a very simple nested map function.

sum.Adl a very simple reduce.
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nain a:vof vof int
let

fx
let

g y := y + 2
in

map (g,x)
endlet

1n
nap (f,a)

endlet

Figure 91. nap-map-addconst . Adl, an Adl program that adds a constant to each
element of a nested vector

mss.Adl two map's and a scan function with a detailed binary-operator

finite-diff .AdI a map containing multiple vector indexing operations.

transpose.Adl a nested map using indexing operations to implement transposition

of nested vectors.

Some of these examples contain code with many details. A deep understanding of the

details is not required in order to read this section. The text points out the salient

properties of the code in each case. Details are included for the sake of completeness.

The reader should note that our examination of the impact of the optimiser

extends beyond this chapter. Further examples, at the end of the next chapter, serve

to demonstrate that the optimiser ultimately improves the performance of parallelised

code,

Adding a constant to each element of a nested vector Figure 91 shows

the source code for naprap-addconst.Adl, a program we examined at the end of
the last chapter. Figure 92 shows the translator code, efficient hand-crafted code

and optimiser code, respectively, for napiap-addconst.Adl. The hand-crafted and

optimiser code are identical. The optimiser is often able to produce a good match to
hand-crafted code when presented with simple programs.
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((_|_. ("r,2)') * .distl . (id,n2)' . id) x.distl. (id,id)' . id

(o)

((+ . (i¿,2)")*)*

(b)

((+ ' (i¿,2)")*)x

(')

Figure 92. Translator code (part (a)), hand-crafted code (part (b)), and optimiser
code (part (c)) for mapiap-addconst.Adl

Figure 93 shows the relative performance of all three versions when applied to the
data:

[[1, 2, 3] ,14,5,61, [7, 8, 9]l

The curves for the hand-crafted and optimiser code are coincident.

Summing a vector of numbers Figure 94 shows the source code for sum.Adl a
program, introduced in the last chapter, that uses reduce to perform a summation
over a one-dimensional vector. Figure 95 shows the translator code, hand-crafted

code and the optimiser code, respectively, for sun.Adl As can be seen, the hand-

crafted and fully-optimised code are the same and their performance, as shown in
figure 96 is much better than that of the raw translator code. The reason for the
large difference is primarily due to the vector optimiser rules for reduce that recognise

that the binary operator *, in this case, makes no references to values other than its
immediate operands. The optimised code is, essentially, the translator code with all
of the paraphernalia used to transport references to non-operands removed.

Partial Maximum-Segment-Sums An interesting operation that can be

elegantly expressed using the primitives provided by Adl is marimum-segment-sum.
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Traces for adding a constant to a nested vector
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Figure 93. Time/Space graph of sequential evaluation of translator, hand-crafted
and optimiser code for map-map-addconst . Adl applied to the nested vector

[[1,2,3], [4,5,6], [7,8,9]]. The curves for the hand-crafted and optimiser code are
coincident.

main a: vof int
let

add(x,y):=x*y
in

reduce (add,0,a)
endlet

Figure 94. sum.Adl, a program to sum a vector of integers

,f (+ .(0,,# .rr)",n2. ((n .irt)+ ' (nt.lTt,(iT2.iTr,ll2 .nr)")"))l . distl, g . rr) . (id, id)"

(o)

+lo

(ó)

+lo

(c.)

Figure 95. Translator code (a), hand-crafted code (b) and optimiser-code (c) for
sum. Adl

translator
hancl-cralted/optirniser cocle 

-
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Traces for a simple reduction with "+"
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Figure 96. Time/Space graph of sequential evaluation of translator, hand-crafted
and optimiser code for reduce-plus.Adl applied to the vector 11,2,3,4,5]. The

curves for the hand-crafted and optimiser code are coincident.

This operation calculates the maximum sum of all the contiguous segments of a vector.

So, for example, the maximum-segment-sum of the vector:

11,2, -7,9, -1, 4, r, -3,2,3]

is 14 which is the sum of the segment [8,-1,4,7,-3,3,2]. A parallel solution to the

maximum-segment-sum problem, framed in terms of map and reduce, is presented by

Murray Cole in [36]. Since we have already examined the optimiser's treatment of
reduce we present a variation of maximum-segment-sum, based on scan that calculates

the maximum-segment-sum for all of the initial segments of a vector. The output of
this operation, that we shall name parti,al-man'imum-segment-sums, when applied to
the vector 1L,2,-7,8, -1, 4,L,-3,2,3] is the vector:

[1, 3, 3, 8, 8, 11, 72,12,L2,14]

Figure 97 shows Adl source code for partial-maximum-segment-sums. The basic

structure of the program is:

o a mâp to inject each value of the original vector into a 4-tuple.

o A scan to apply a binary operator oplus to the elements of the vector to produce

a vector of 4-tuples with a result value embedded in each one and

. a map applying the function f irst to each tuple to project out each element of
the result vector.

500200U

lranslator
hand-crafted -- ---
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main a: vof int
let

plus (x,y) := x + yi
max (x,y) := if (x > y) then x else y endif;
opJ-us ( (nssx,misx,mcsx,tsx) , (mssy,misy,mcsy,tsy) )

(max(max(mssx,mssy),plus (mcsx,misy) ),
max (misx,plus (tsx,nisy) ),
max(plus (mcsx, tsy),mcsy), tsx+tsy) ;

fx
let

mxO := max(x,0)
in

(mxO,mxO,mxO, x)
endlet;

first (mss,mis,mcs,ts)
1n

map(first, scan(oplus,map(f, a) ) )
endLet

Figure 97. Source code for mss.Ad1, a program that calculates
partial-maximum-segment-sums over an input vector. At the core of this program is

a scan function that contains the binary operation oplus that performs all of the
book keeping required to keep track of the current maximum segment sum.

The oplus operation is central to how maximurn-segment-sum works. We leave a
detailed explanation of oplus to Cole's article. For our purposes, it is enough to
know that partial-maximum-segment-sums provides an interesting working example
that uses both map and scan functions in a non-trivial context.

Figure 98 shows the translator, hand-crafted and optimised BMF code for nss . Ad1

The translator code in (part (a)) contains all of the machinery required to transport
any value in scope to each application of the binary operator. The hand-crafted code
(part (b)) and optimised code (part (c)) are streamlined to take advantage of the
fact that the binary operator accesses only its operands. Figure 99 shows the relative
performance of the three BMF versions of mss.Adl. Both the hand-crafted and
optimised code exhibit much better performance than the translator code, primarily
because they avoid transporting all values in scope to every instance of the binary
function. The optimised code is slightly less efficient than the hand-crafted code.

This appears to be due to extra code in the optimised version that flattens the nested

:= mss
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(nnt.nr)x.distl.
(id,tf (+ .(0,# .iTz)",
(nr) * .(ny nr,

(if(> .(zr1 . 7T2,7T2. iTz)",7T1. .iT2,rz . rz).
(id, (if (> .(n, . n",rz. rz)",7rr.'rr2,rz .rz).
(id, (4ry . ilt . ir2)4 rrt .irz . rz)")",

* . (^r . 7T2,'tr2 ' nr)" .(id, (an3 ' irr ''tT2)4 iTz .ilz. 
^r)")')')',

if (> '(zr1 ' 7T2,7T2. rz)",irr . il2,rz. rz).
(id, (ar2 .'trL .'tT2¡*' (tr .'/T2,iT2 . nr)" . (id, (ara. 7Tr .'tr2,4 irz' 7Tz

if(>'(r1 . iT2,'tT2. rz)",irr. 7T2,rz. rz).
(id, (+ ' (n,'7T2,'tT2 ' nr)" .(id, (azr3 .T7 .'tr2)4 7T4.irz.nr)")",4 trz

I . (nnn. lTL ''rT2)4 irs'iTz . rz)")"
'(nt' nt, (nr . nr, rz . rz)")")" / . distl,
(0,0,0,0)' .r.r).
(id, ((2r2, 1(2¡rt2,1T2 . rr)" . id.
(id, if(> .(nr. nr,rz. rz)",'rrr. ir2trz. rz)' (id,(tr2,0)')')') * .

distl . (id, id)')')' . id
(r)

159

¡z)')')")',

)')" ,7TZ'1TZ

(nnr) *'
( if (> .(nr,nr)",rt,7Tz).

(if(> .(azr1 .zTr)  T7 . z,z)",4'rTt . lTt,n nt . nr), I . (nnr "rlr)4 T2 . rr)")"
if (> .(r1, rz)" , rt, rz) .a itz . rrt, I . (nnn . zrr )4 T2 . nz)")"
if(> .(nt,nr)",rt,lrz). (+ . (".r .ir7,1T4.r2)",4 nz.rz)",
I ' (nnn'lTt,ir4' n")")" ll'

((tn,rt,irr)T2)"' (if(> .(id, 0)", id, 0), id)')*
(b)

(nn'r) *'
( if(> .(if (> '(t*r,t rz)",8 rt,8 rz), f ' (tr.,t n ¿)')',

if(> .(8211 ,'nr)",'rt,8 rz), f . (8*e,8 r¿)"),
if(> .(8n5, f . (tru,t n¿)")o,t 1r5)+ .(tru,' Ta,)"),
if(> .(+ . (trr,t zrz)o,8 zrs)o,

* ' (t*r,t rz)" ,8 nr),,
* . (t^u,t rz)")".

(nn, . nt,n nt . 'rT2)4 TB . 7Tr)4 T2 . 7T2r4 T2 . 'rrr)4 T4 ' zTr)4 iT4 . 'tr2)4 'rTz . rr)" ll .

((trr,rt)iTt)T2)" . (if(> .(id,0)', id,0), id)')*
(.)

Figure 98. BMF code for mss.Adl. Raw translator code (part(a)).
Hand-crafted-code (part (b)). Fully optimised code (part (c)). The superscript

before some ?r functions indicates the arity of the tuple being projected from (e.g
rzr2 accesses the second element of a 4-tuple.)
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Traces of program generating initial maximum segment sums.
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Figure 99. Time/Space graph of sequential evaluation of translator, hand-crafted
and optimiser code for mss.Adl applied to the vector 1I,2,-7,8,-1, 4,1,-12,2,J1.

input tuple to the binary function into an 8-tuple. Such flattening makes downstream
access to tuple elements more efficient35 but incurs a cost itself. In this case the cost
of flattening outweighs the benefits but the overall effect is marginal.

Finite difference This example was featured at the end of chapter 4 and helps to
illustrate the impact of optimisation of vector references inside map functions. The
source code for f inite-dif f . Adl is shown in figure 100. As can be seen from the code,

f inite-diff .AdI consists of a map whose function parameter contains three vector
references. Figure 101 shows four different BMF renditions of f inite-diff .4d1.
The code in parts (u), (b) and (c) is directly transcribed from the end of chapter 4.

Parts (a) and (b) are, respectively, the translator code and hand-crafted code, both,
without select. Both of these versions distribute a copy of the entire input vector
to each invocation of the map body. Part (c) is hand-crafted code using select to
distribute only the required elements to each invocation of the map body. Part (d)
is new code, produced by the optimiser from the translator code in part (a). This

3sAccess to an element of a pair of 4-tuples is a two-step process) specifrcally, selecting the correct
4-tuple and then selecting the correct element of the chosen 4-tuple. Access to an element of an
un-nested 8-tuple is a one-step process and is thus more efficient.

!Ho
È
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main a: vof int
let

stencil x := alx + a! (x-1) + a!(x+1);
addonex:=x+1;
element-index := map(addone,iota ((# a)-2))

in
map (stenci1, element-index)

endlet

Figure 100. f inite-diff .Adl an Adl program to perform a simple
finite-difference computation.

161

(+ (+.(! '(tt .7T1,ir2)",! .(*r .7t1¡-
distl . (id, r2)" .id.
(id, (+ . (r.r, 1)") x distl . (id, iota - (

. (r.r, 1)')')o, ! . (rr .1T1.)+. (n2,1)')')') x

#.id,2)')')'
(o)

(
d

(

+
ist
id, (+ . (id, 1)') x .iota

(+ (! . (nr,nr)",! . (*r,- . (nr,l)")")", l. (nr,l. (nr,l)')")") *

(# .id,2)")"
(b)

(+ . (nr . 7(r, + ' (n, .7h, 7T2)')') * .

zip . (zip - (n, . rt,'tr2 . rt)",r2)".
((select,select.(r.t, (+.(id,1)') *.rz)")",select'(rrr, (-.(id,1)') *.rr)')''
(id, (+ . (id, 1)') x .iota . - . (#,2)")"

(")

(+' (+ 'rt,rz)") x'zip'
(zip .'(selecì, r.iu.t . (r.r, (-) * .zip . (id, repeat . (1, #)')' .rz)")",
select' (rrr, (+) * .zip' (id, repeat. (1,#)")' . nz)")".
(id, (+ . (id,1)') x .iota -- .(#,2)")"

(d)

Figure 101. Four versions of BMF code for f inite-diff .4d1. Raw translator
code (part (a)). Hand-crafted code without select (part (b)). Hand-crafted code

with select (part (c)). Fully optimised code (part(d)).



CHAPTER 5, DATA MOVENTENT OPTIIVTISATION

Traces for a finite difference operation
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Figure 102. The relative performance of translator-code, hand-crafted code
without select, hand-crafted code with select and optirnised code when applied to

the input vector 17,2,3,4,5,6,7,8,9,10]. Note the near-identical performance of the
best hand-crafted code and the optimiser code.

code, like part (c)) uses select to transport just the required vector elements to each
invocation

The relative performance of each of these versions, when applied to a srnall input
vector is shown in figure 102. The performances of the translator code and both
versions of hand-crafted code are the same as they were at the end of chapter 4. The
performance of the optirnised code, iu part (d), is almost identical to the corresponding
hand-crafted code in part (c). This is undoubtedly a good result for the optimiser.

TYanspose Figure 103 shows Adl source code for a a program that transposes
a nested input vector. The code cousists of a nested map where the most
deeply embedded function contains a nested vector-indexing expression, with indices
reversed, to produce a transposition of the input vector36.

Figure 104 shows the translator code, hand-crafted code and optimised code for
transpose.Adl. The translator code relies on distributing a copy of the nested
vector to every invocation of the inner map's body. The hand-crafted code is simply
a transpose operation on the two dimensions of the input vector. The optimiser code
is more detailed than the hand-crafted code. It contains a transpose function that

36Note that the program will only procluce a correct transposition if the longest inner-vector is
a!0. If this is not the case then some trLrncation of rows will occur.
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main a:vof vof int '=
1et

f x := Iet
g y:= a!y!x

in
map (g,iota (# a))

endlet
in

nap(f,iota (# (a!0)))
endlet

?

Figure 103. transpose.Adl, a program to transpose a nested input vector

((! . (! . (rr . 7t1.jir2)",rz. rt)")x .distl . (id, iota . #. nt)". id) x
distl . (id,iota . f.! . (id,0)')" . id

(o)

tra nspose(0,1)
(b)

(select . (ø'1, iota . zrz)') * '

zip . (select . (transpose(l,.) .3 n,3 iT2)", repeat . ("r, # .t nr)")"
(a-1, iota .#.1 .(^r,0)', rz.rz)o . (id, (¡d, #)')'

(")

Figure 104. Three BMF versions of transpose.AdL The translator-code, shown
in part (a), the hand-crafted program, shown in part (b), and the optimised

program, shown in part (c).
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Figure 105. The relative performance of translator-code, hand-crafted code and
optimised BMF code for transpose . Ad1 when applied to the nested input vector

[[1,2,3] ,14,5,6], [7,8,9], [10, tl,t2]1.

swaps the appropriate dimensions but it also contains code that performs a nested
select on the transposed vector. It turns out that this nested select is semantically
equivalent to a id but the current implementation does not have the capacity to detect
this.

The relative efficiency of the translator code, the hand-crafted code, and the
optimiser code for transpose. Adl is shown in figure 105. The performance of the
optimiser code is a substantial improvement on the performance of the translator
code but there remains a significant gap between the performance of the optimiser
code and that of the hand-crafted code. The good news is that this performance gap
does not grow quickly with the size of the input. Figure 106 shows the performance of
the same programs applied to a 4 x 6 vector (twice as many elements as the previous
vector).

As can be seen, the performance gap between translator code and optimised code

has grown substantially more than the performance gap between the optimised code

and hand-crafted code. Optimiser code appears slower than the hand-crafted code

by only a constant factor which augers well for future implementations.

Summary of the performance of target code The examples we have just
presented are a sample of the experiments that we have run. The behaviour of
this sample is representative of the behaviour of target code in other code we have

tested. In all tested programs, the optimiser produced a substantial improvement in
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Traces of a program transposing a larger vector
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Figure 106. The relative performance of translator-code, hand-crafted code and
optimised BMF code for transpose. AdI when applied to a larger (a x 6) nested

input vector.

performance. The precise extent of that improvement was dependent, for the most

part, on the amount and efficiency of any redundant code, if any, Ieft behind by the

optimisation process. On balance, the optimisation process, defined so far, is very

effective in many cases but there is scope for further enhancements to eliminate some

of the redundant code remaining in some examples.

5.6.L.2 Other aspects of performance

Reliability Reliability is paramount in language implementation and even

prototypes should exhibit some measure of reliability. Our implementation does,

in the set of small examples we have tested it with, produce the same input to output
mapping over a range of test data and, by close visual inspection, the code appears

equivalent3T.

However, the optimiser stage occasionally loops or abnormally terminates on

some more complex examples. As a general observation, loops can be remedied by

making rules more mutually exclusive and/or capturing extra cases or by employing

normalisation to reduce the number of cases. Abnorrnal termination is usually caused

by the absence of an appropriate catch-all case or a simple error in a rule. Where

37The optimisation process is, in theory, capable of producing an audit trail for verification of its
correctness. However, in onr experience from tracing the proof process, such an audit trail is far too
long to inspect manually. There is probably scope to build a tool to fi.lter out the steps, deemed by
the user over time, to be obviously correct to make inspection of such proofs tractable.
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looping or abnormal termination have been encountered, we have, thus far, been able
to remedy them.

Robustness Robustness is a measure of an implementations sensitivity to changes
in its environment. The vector optimisation process and the tuple-optimisation
process have different levels of robustness. The rules of the vector optimiser are
geared precisely to the output produced by the translator. Any substantial changes
to the code produced by the translator will adversely affect vector optimisation. Tuple
optimisation is much more robust. Tuple optimisation makes few assumptions about
code. The tuple optimiser is even able to process its own output38. In subsequent
implementations of the optimiser we intend to employ assertions to codify the input
requirements of the various rule-sets. Carefully constructed assertions will provide
valuable guidance in the design of output from normalising rule-sets (e.g. Remoue-zd,s

and in designing rules catering for input to the transformative rule-sets (e.g Opt)

Time taken to compile and optimise programs The optimisation phase is

easily the most computationally intensive part of the compilation process. Our
prototype can run very slowly (in the order of minutes) when presented with
moderately large programs.

There are two primary reasons for this slowness. The first is the amount of
backtracking generated by the underlying Prolog implementation when the rule-
sets are executed. This can be and has been, partially, remedied by re-designing
rule-sets so that large proofs of premises are not undertaken when there is a good
chance of failure in the normal course of compilation. Unfortunately such redesign
appears to detract somewhat from the elegance and declarative style of natural
semantic definitions. In any case future implementations are likely to be built in
languages without backtracking so any performance penalty caused by backtracking
will disappear.

The second and, ultimately, more important contributor to the slowness of the
optimiser is the frequent use of normalisation. Casual observation of the optimiser
in the Centaur debugging environment indicates that the optimiser spends a large
part, if not the majority of its time performing normalisations such as associating

s8Moreover, it appears, from the few observations we have made so far, that Ttrple optimisation
is an idempotent operation on its own output, converging to a fixed point after one iteration.
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code to the left and removing identity functions. While there may be scope to apply

normalisation more selectively, in some cases) it is unlikely that its role with diminish

significantly in future implementations.

It remains to be seen whether slow compilation and long times spent performing

normalisation is characteristic of implementations that use the transformational

approach supported by BMF. A priori, BMF offers excellent scope for exploiting

computationally intensive transformational strategies at compile time as part of a

trade-off for producing faster target code. Whether such a trade-off is inevitable is

an open question.

5.6.1.3 Elegance of target code

One of BMF's oft touted strengths is its elegance. It is possible to write quite powerful

programs in a small amount of space using BMF notationse. Though it isn't of

paramount importance when BMF is used as an intermediate form, elegance in the

target code would seem, a-priori, to be a positive sign of convergence of form towards

efficient handwritten code.

In our experiments to date our optitniser has, on occasion, produced code

comparable in elegance and efficiency to hand-written code. However, the optimiser

has also produced programs that, while reasonably efficient, have not been particularly

elegant. Elegance, and efficiency, at least in our current implementation seem to be

largely unrelated.

5.6.2 Findings related to building the optimiser definition

Centaur and Natural Semantics are a good medium for prototyping Using

the Centaur system, we were able to create a prototype of the the optimiser at

the same time as we defined its formal semantics. Definitions expressed in Natural

Semantics have a clarity and elegance not easily emulated in most programming

Ianguages. Transcription of Natural Semantics definitions into Typol, the semantic

notation underpinning Centaur definitions, was straightforward. The debugging,

editing and display environment provided by Centaur (and shown in figure 107) was

extremely useful for locating errors in our definitions.

3eThough, we have tended to find that some of this elegance disappears once programs become
detailed and we take away the option of reverting to other notations when convenient.
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Our initial prototype ran very slowly on larger programs. This slow performance

was primarily due to a rule-structure oriented toward readability rather than optimal

performance. We refined our definition to be more syntax-directed which greatly

enhanced its performance. The refinement of a definition from one oriented towards

a human reader to one oriented toward execution seems to be quite a natural

development path. Peyton-Jones' and Meijer's article describing Henk[110] and

Tullsen's article defining Lhe Zip-calculus[136] both refine semantic definitions to be

more oriented to an executable process.

Even after refinement; our optimiser rules, at least at the top level, are easily read.

Unfortunately, this readability does not extend to ail of the lower-level rules. Low level

rules reflect the compromises taken to make an open-ended process such as program

optimisation tractable. There is, perhaps, a mismatch between the practical concerns

of optimisation and the customary purity of formal semantic definitions. However,

on balance, the discipline, elegance, and clarity provided by a formal definition was

to our advantage.

Incremental definition of optimiser rules is possible BMF is quite a forgiving

medium for optimisation. Most BMF transformations are self-contained and localised.

There are no large "all-or-nothing" transformations. This means that a partial

implementation of an optimiser can selectively ignore parts of program code and

still produce a correct, if not optimal, program.

Gaps in rules are costly Although it is advantageous to be able to work with
partial definitions during construction of the optimiser, the gaps left by partial

definitions can be costly in terms of performance of target code.

One cost is that any unprocessed section of code will have to be catered for

by other parts of the optimiser, whose complexity may have to increase as a result.

Another, more insidious, hazard of not catering for all cases occurs in rule-sets devoted

to the normalisation of code. Missing cases in normalisation rules-sets mean that
problematic code:

1. persists into the next transformative stage which, almost inevitably, will not

have specific rules to handle it and
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2. will probably persist, in perhaps a different guise, through future applications
of the normalising rule-set.

The consequence is often that chunks of unoptimised code persist through to the end

of the optimisation process. In the worst cases, these chunks accrete more code as

optimisation progresses. Not surprisingly, this unoptimised code can severely impact
the cost of the code ultimately produced by the optimiser.

Ultimately, temporary gaps are inevitable during any reasonable process of
incremental development. It is important to be aware, during development, that
their consequences are sometimes disproportionate to their size and, as a corollary, if
at all possible, gaps need to be eliminated from the final implementation. To the best
of our knowledge, all of the gaps that can be easily eliminatedaO have been eliminated
from the normalisation rules of our implementation.

Care is needed to avoid infinite loops in the optimisation process Infrnite
Ioops are a potential hazard for transformative systems. Simple loops where an
equality is applied backwards then forwards ad-infinitum, can be avoided by the
simple expedient of applying rules only in one direction[47]. This heuristic can be

thwarted by the creation of cycles between rules. To illustrate, the following two
rules:

Ur fù'fs=+ eh'U,'h)+s
ltUrf')+g(h' Ír)' fs =+ e

are mutually recursive and will cause the infinite loop:

h'Uz '/') +
Ur lù' Íz +
h'U" '/') +
Ur' Íù' ls +

a0Completely ridding all normalisation rule-sets of all gaps is more difficult than it might first
seem. For example, t}'e Remoue-'ids nlre set has lacks a rule to detect that select.(id,iota.#)'i.
equivalent to id and can be eliminated where redundant. This absence is a gap but it is one that is
difficult to eliminate completely, given the infinite number of variations on the theme of this code.
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Ultimately, it is incumbent upon the author of the rules to avoid such cycles41. Some

Ioops can be avoided by careful ordering of rules though the presence of backtracking

can defeat this in some systems. One safe route is to normalise code so that a rule

that otherwise might form part of a cycle is not needed. As a concrete example, the

Adl optimisation process associates compositions to the left so that subsequent rules

could avoid a cycle by having rules only for ieft-associated compositions.

Sundry observations on using point-free form The use of point-free BMF as a

medium for automated program development is stili an area of research. Observations

relating to what works and, just as importantly, what doesn't work, are pertinent.

Some observations follow.

Normalisation works In spite of the fact that it makes no direct contribution

to efficiency, normalisation is pivotal to the Adl implementation. Normalisation is

needed to lay the ground so that optimising rule sets can be effective without the

need for complex analysis or clever use of cases. Normalisation creates a simple

environment so that the rules that follow it can also be simple. Simpler rules are

harder to get wrong. Note that this observation is simply an extension of what is

already known about normalisation in other frelds. Normalisation is, for example,

used. heavily in preparing statements in the propositional and predicate calculus for

proof by resolutionf33]. Of course, normalisation, often manually applied, is also

heavily employed in relational databases to make it easier to maintain them in a

consistent state[49].

Action-at-a-distance is difficult One drawback of point-free form is that it
is very difficult to enact simultaneous changes to two spatially remote but related

functions. This is not a trivial issue because optimisations such as common-sub-

expression elimination can require such action-at-a-distance. This difficulty can be

overcome in Naturai Semantics by unifying one of the function with a logic variable

than can then be acted. upon in conjunction with the other function to be changeda2.

A-priori a more robust approach is to compact code in order to bring the parts to be

alThough one might envisage an automated system that could detect some such cycles.
a2This technique is used by the vector optimiser during post-processing of map functions to re-

generate addressing functions after tuple optimisation. These rules are some of many omitted from
this chapter.

L7t
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changed close enough that a simple re-write rule can be used. This approach, which we

have not yet directly employed, is one that we will explore in future implementations.

Comparing addressing functions is difficult This issue is strongly related
to the last issue. In point-free BMF, two functions addressing the same value can

Iook different. This problem, where the name of a value is context-sensitive, is due to
the fact that the addressing environment is new for each function. Again, a potential
solution is to compact code to bring addressing functions into the same context if
possible.

Pervasive transformation is easier To optimise any single part of a program
the optimiser must traverse the code from the start or finish of the program to that
point. Optimisation strategies that are able to perform useful work along the way are

at an advantage. Both vector and tuple optimisation incrementally optimise code ¿s

they traverse it.

A better zip is needed Restricting target code to use ordinary binary zip

introduces nested tuples where a flat tuple of larger arity would suffice. The clarity of
code is compromised by such usage. The use of a form such as transpose-tuple from
FP[145] or the generic zip used by Roorda in[121] is a likely refinement.

Binary composition is useful The associativity of function composition
makes it feasible to define it as an operator on lists of functions rather than a
simple binary operator. Though a list-version of the composition operator would
make it easier to read BMF programs it is unlikely to be adopted to future Adl
implementations. This is due to the fact that binary composition has proved to be
such a useful tool in guiding the optimisation process. Binary composition allows the
implementor to change the way that rule's match without materially affecting the
semantics of the code.

This concludes this chapter's findings. A summary of work related to the Adl
optimisers follows.
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5.7 Related work
This section is divided into two parts. The first part describes work that achieves

similar ends to the vector and tuple optimisers but in different domains. The second

part puts the transformational method used by the optimiser into some context.

5.7.L Optimisations related by goal

Research into optimisation of programs dates back to the first compilers 11241

and. several optimisation techniques were well established by the early 1970's[9].

Enumerating the optimisations that currently exist would take too long but Mahlke's

Masters thesis[97] contains a good survey of ciassic optimisations.

Data-flow analysis The primary optimisation technique employed by the Adl

optimiser is data-flow analysisf93, 32]. In a broad range of implementations, data-

flow analysis is used to survey data dependencies throughout a program for purposes

including: elimination of redundant code, removing invariant code from loops,

detecting opportunities for parallel execution and even optimising data distribution.

Data flow analysis is usually considered to be a form of global analysis because variable

dependencies can span large parts of a program.

The data-flow analysis performed by the Adl optimisers differs from most because

the code expresses daia flows quite directiyn', and thus results of local analysis are,

in most cases, integrated immediately into the code. This fine-grained alternation

between analysis and transformation appears to be a natural way to use point-

free BMF. The locality of transformations also gives a spatial dimension to the

optimisation process with moving fronts of optimisation appearing in code and

sweeping through the code. Lastly, in contrast with many implementations, the Adl

optimisers have very small requirements for auxiliary data structuresa4, changes are

recorded directly in the code rather than in auxiliary stiuctures.

Data movement optimisation In terms of their aims, analogues to data

movement optimisation are likely to be found in domains where there is a significant,

avoidable, cost altached to:
43There are no variables in point-free BMF to provide an implicit link between producers and

consumers of data. Instead producers and consumers are linked directly through composition.
44Some of the structures that we do use may be eliminated in future versions.

173
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1. Creating large, at least partially redundant, data structures.

2. Keeping such data accessible to later stages of a computational process.

The first point is a significant cost in many domains. The second is only of significance
where data has to be copied or carried around in order to be accessible. Examples of
optimisations tackling the first point include:

o query optimisation in databases by moving selects before joins to avert the
creation of larger-than-necessary intermediate data structures[49](section 10.7).

o definition-propagation to prevent the formation of temporary values.

o Deforestation/F\rsion[143, 10S] to avoid the creation of large temporary data-
structures.

o The judicious use of scalars in loops to avoid the creation of large temporary
arrays in imperative programs.

There is a broad resemblance between vector optimisation and query optimisation.
In vector optimisation the selection operation is brought into contact with the
distribution operation to reduce the total amount of data created. The code-

compaction carried out during tuple-optimisation is related to definition propagation
insofar as they both reduce the number of intermediate values generated between

a value's definition and its ultimate use. Loop fusion (a narrow specialisation of
deforestation/fusion) is also a side-effect of code-compactionas. There is currently no

Adl optimisation analogous to using temporary variables in loops as a substitute for
storing whole arrays.

Examples of optimisations addressing point number two, the cost of keeping data
accessible, are mainly to be found in parallel implementationsa6. In parallel systems

there can be a high communications cost attached to keeping data accessible, and
indirectly, to the creation of data structures with large amounts of redundancy. It
follows that this field provides a source of optimisations to reduce such costs.

asThus far work has made no direct attempt to employ other forms of fusion/deforestation to
optimise programs further. Integrating existing techniques into this implementation is future work.

46The idealized cost of keeping data accessible throughout a program on a von-Neumann machine
is zero. Of course, there is an actual cost ifi terms of making efficient use of the memory hierarchy
but this is usually handled by a combination of the low-level parts of the compiler, and, of course,
the hardware.
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Related optimisations in parallel computing The need to explicitly capture

the global environment for referencing is recognised, in a parallel context, by the

designers of Algorithmic Skeletons[42]. In particular, the FARM skeleton can contain

an explicit parameter to pass the referencing environment. This is very similar to the

wrapping up of the environment with the input parameters to our map function in

Adl translator code. Similarly, work in optimising IFl data flow graphs by Feo and

Cann[55] recognises the need to pass an environment to loop instances. Wu and Kelly

stated the need to filter this global environment in their work on M-Trees [113].

\Malinsky and Banerjee, in their implementation of FP*[145], recognise the need

to reduce the data movement and copying costs. Their approach is to translate

FP* code, a point-free form, to an imperative intermediate form, resembling CM-

Fortran, They :use defin'iti,on propagat'ionlo track changes to data-structures wrought

by routing functionsaT. These functions are subsequently eliminated and references

in downstream code are adjusted to compensate. Our approach differs in two major

aspects.

o We aim to retain explicit BMF routing functions at the distributed level to

allow for consolidated communication of data required by nodes ahead-of-time

rather than on-demand. Our strategy introduces the need to anticipate data

needs of downstream code and optimise accordingly. This need is much less

strong in the FP* implementation where data need.s are satisfred on-demandas.

o FP* restricts the placement of iota functions and avoids the use of functions as

general as select in order to enhance the effectiveness of definition propagationae.

Our implementation imposes no restrictions of this kind.

There are several other common optimisations used to reduce total
communications costs in a parailel context, many of them work with distributed

Fortran programs. Some of these are[68]:

a7A routing function is a function that re-arranges, copies, or projects from, aggregate data without
changing its constituent values.

asln the FP* implementation, the CM-Fortran compiler is responsible for partitioning and
generating communications implicit in random access to implicitly distributed vectors.

aeThese restrictions might be lifted if some runtime infrastructure for mapping references to their
data, in the fashion of the other stream of the Adl projectlS3], were provided by the target machine.
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Message-Vectorization/Strip-mining: dragging independent statements, that
trigger remote access to same node, outside of their enclosing loop and
consolidating them into a single request for a vector of data.

Rationalising remote access in conditionals: by transmitting data that is used

by both branches of a conditional only once and sharing it.

Moving Communications earlier: to subsume previous communication in order
to consolidate/hide50 latency costs.

The benefits of the message aggregation that message vectorization provided by
the optimisations in the first point strongly motivate this work 51. Under the
parallel model described in the next chapter message aggregation occurs quite
naturally, whether vector optimisation has taken place or not, however, without vector
optimisation the size of these messages is typically much larger. The action of vector
optimisation in pushing indexing functions outside of map functions to form a select

is also strongly related to pushing individual indexing functions outside of a loop to
form a vectorized communication command.

On the second point, there is no action in the vector optimiser corresponding to
rationalising remote access in conditionals. However, the tuple optimiser does merge

accesses to tuple elements in this way.

On the third point, there is no attempt to merge/subsume communications in the
vector optimiser. However, the tuple optimiser trivially subsumes redundant access

to elements of tuples in this way. There a e no current plans to exploit latency-hiding
in this thread of the Adl project, though there are no fundamental impediments to
doing so if the need arises.

The vector optimiser's use of a select to consolidate statically unknowable patterns
of communication is mirrored in von Hanxleden, Kennedy, et al.[141] and, in later
work by on array remapping operations by Dietz, et al. [48]. Hanxleden, Kennedy,

et al.'s paper focused on hoisting piecemeai array access to one-dimensional arrays

out of loops in Fortran-D into equivalent gathef2 and scatter operations. This
s0latency hiding is implemented by issuing a non-blocking receive before the data is actually

needed. The corresponding send has time to occur and then, when the data is actually needed, it
may already have arrived, if it hasn't the process can wait until it does.

slThese benefits are widely known[l4] and are well exploited by models such as BSP[76]
s2Gather has almost identical semantics to the parallelised code for select, which is described on

page 209 in chapter 6.
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process is complicated by the imperative semantics of Fortran and the approach

is, necessarily, conservative. The paper by Dietz, et al. focuses on optimisation

of remapping constructs that specify gather and scatter operations over regular

distributed multi-dimensional aïrays in the language ZPLll}7| Their work exploits

shape and distribution information found in reg'ion specifiers associated with values,

which helps support aggressive optimisation of the implementations scatter and

gather operations. Note that, in ZPL, the programmer is responsible for expressing

consolidated communications operations through remapping constructs, whereas in

Adl it is the job of the optimiser to do this.

Related optimisations for re-oriented vector access The problems caused

by a mismatch in the order of loop index variables relative to the indexing functions

embedded in these loops are well understoodl45], Adl vector optimisation solves this

problem using transpose to re-orient the nested vector to better match the indices

generated for the surrounding map functions, thus making it possibie, in most casesT

to move indexing functions outward and consolidate them into selects. This contrasts

with established loop-transformation techniques which leave the vector as-is and swap

the nesting of loops to achieve the same (or similar) ends. The use of transpose rather

than loop-swapping, by the vector optimiser, is partly motivated by desire to keep

transformations local. However, with the appropriate normalisation, loop-swapping

transformations might be made local, and these could be an attractive alternative to

using transpose.

Finally, it is important to mention that some other implementations reduce

communications costs by accessing distributed data on demand. Several

implementations including Id[115], SISAL[55], Lucid[11], and the multi-threading,

thread of Adl project[54] use demand-driven data-access, among other techniques,

to minimise the volume of communication. The trade-off is increased overhead from

many small messagess3.

This concludes the summary of optimisations related by goal. Next, the

transformative techniques used by both Adl optimisers are put into some context.

53Note that it is still possible to aggregate some requests for data in demand-driven system as long
as the mechanism for aggregation precludes deadlock. The potential advantages of such a system
warrant further exploration in the context of the Adl project.



CHAPTER 5, DA'TA MOVEMENT OPTIMISATIO¡ü 178

5.7.2 Optimisations related by technique

There is a large body of work on optimisation of functional programs via program
transformation. Early work includes the fold-u¡f old transformations developed by
Burstall and Darlington (citations from this part can be found in [123]). Other types
of mechanisable or partially mechanisable transformation include[108, 78]:

o tupl'ing to consolidate multiple recursive calls into one,

o di,ffusi,on turning recursive definitions into non-recursive BMF.

o fus'ion/d,eforestati,on merging composed functions and, more generally,

eliminating intermediate data structures[143].

o flatteni,ng avoiding possible load imbalance due to nesting of higher-order BMF
functions.

o parti,al-eualuat'ion to specialise calls to some functions with respect to static
knowledge of their input values[104].

Our current implementation does not exploit any of the transformations above though
there are no impediments to exploitation of these in future Adl implementationssa

A complicating factor in any process of automatic transformation is the presence

of recursive definitions which can render the composition of otherwise correct
transformation steps unsound[12e]55. nira[18] circumvents these problems by using
a calculus (BMF) of composed functions, similar in style to Backus' FP[13] but
with a strongly typed foundation based in category theoryfl3l], as a medium for
transformation. In BMF, recursive definitions are typically not exposed at the level
at which transformation takes place so the hazards of composing rewrites do not
occur. Later work in this field (see [15, 63, 38] for a sample) has shown that such
an approach can indeed lead to efficient programs and, perhaps more importantly, to
valuable insights into some problems.

There are a broad spectrum of possibilities for harnessing programming
transformation techniques as a compilation tool. Table 2 summarises the possibilities.
Each row of the table represents a type of optimisation. The meanings of the columns

544 lifting of the current embargo against recursive definitions in Adl would open the way for full
exploitation of existing diffusion techniques.

55This article provides an excellent characterisation of these problems as well as techniques for
circumventing them.
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Table 2. A characterisation of different types of optimisation according to a range
of criteria.

are:

L79

Prob domain The nature of the programs this type of optimisation can be applied

to. For the purposes of exposition, we assume that all optimisations are

restricted to functional programss6. Ranges down from "arbitraty" where any

functional definition can be optimised to various kinds of restrictions.

Purpose The purpose of the optimisation. All other things being equal, general

purpose optimisation is harder to do than specific-purpose optimisation.

Extent The spatial extent of the optimisation. Ranges down from "global" to
ttlocaltt.

Rule-choice How the rules of the optimiser are applied. Ranges down from

"automatic", where the optimiser decides which rules to apply dynamically,

to "static" where the author of the optimisation decides which rules to apply.

Rule-set How the rule-sets that govern the optimisation process are composed.

Ranges from "self-extensible" where the optimiser extends its own rule-set to

"static" where the author of the optimisation determines the rule-set.

Granularity The granularity of transformation. Ranges from "fine" to "coârse".

Fine-grained changes are incremental. Coarse-grained changes are large, often

Optimisation Prob
domain

Purpose Extent Rule-
choice

Rule-set Granularity

Ideal arbitrary general global automatic seif-
extensible

fine

User-assisted arbitrary general global assisted extensible fine
Annotated arbitrary general local

function
Iimited
auto-
matic

USCI

extends
fine

Vector/Tuple
optimisation

non-
recursive

specific global static static fine

Local opts varied specific local static/
arbitrary

static fine

Global opts varied specifrc broad static static typically coarse

56Some optimisation techniques are also applicable to imperative programs
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opaque, all-or-nothing transformations. All other things being equal, a fine
granularity is preferred for its greater transparency.

The first three rows of the table contain general-purpose optimisations. The first
row characterises an ideal optimisation, able to choose and generate rules needed to
decrease execution costs for arbitrary programs and apply these rules in a fine-grained
and transparent manner. Such systems do not yet exist. An ideal optimisation is

unlikely to be effective without extra information as to how the program is going
to be used57. The second row describes optimisations where the user-assists in the
optimisation process. Martin and Nipkow[9S] described this type of optimisation for
BMF code by assisting a theorem prover. The third row describes optimisations that
are guided by programmer annotations. The MAG system developed by de Moor
and Sittamaparaml|T] uses a simple heuristic to choose from rules, provided by the
programmer, fot each candidate function definition, to effect optimisation.

The last three rows describe optimisations directed to a specific purpose. The
fourth row describes the vector and tuple optimisation phases of the Adl compiler.
Both of these phases have a specific purpose and, indeed, they consists of even more

specialised sub-phases. The impact of each optimisation is global and pervasivess.

The choice of rule is statically determined by the implementors. The rule-set is also

static, but perhaps more easily extensible than the rules defining more conventional
approaches. The transformational granularity is fine5e. Mottl's system for partial
evaluation of definitions in a strict functional language might also be said to fall into
this category. Rule choice is governed by the structure of code which is annotated so

as to apply only to rules that will preserve this structure. Through these code-

annotations, rules can be applied in an order which leads to termination of the
sTExtra information like this is not to be underrated. Extra information about the shape of data

can greatly contribute to efficiency 186]. Systematic observations of actual program performance
have been successfully applied in incremental compilation[94]. Observations of actual program
performance while it is running lead to very effective 'hotspot' optimisations in Java Virtual-
Machines[102]. Notably, the extra information takes away a lot of the analytical burden from the
optimiser. Less information has to be deduced if you already have it to hand.

58As mentioned previously, the nature of point-free form seems to make it easier to define rules to
perform pervasive transformations than to define rules that simultaneously act on spatially separate
sections of code.

59One could argue, because the Adl optimisers compose transformations into groups, and because
there are no choice-points based on cost functions, that the granularity is actually coarse. However,
the transparency of the Adl optimisers, the lack of large steps, and the fact that they can be stopped
at almost any point and the result is still a correct program, all work in favour of calling them fine-
grained.
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transformation process. The rules of the Adl optimisers use function composition in

a similar way. Adl optimiser rules often change the associativity of composition in a
monotonic way so that, at some point, only a "finishing rule" of a rule-set will apply

which, effectively, returns the result of the transformation. Another optimisation

with a similar flavour is Onoue et al's [108] system to automatically perform fusion

in recursive functions in Gofer[88].

The last two rows capture most common forms of optimisation. Local

optimisations are fine-grained transformations that effect improvement at a local

level. Local optimisations are not assumed to be coordinated with each other and it
is this that distinguishes them from the previous four rows60. An example of a local

transformation might be the rule:

I *.g* + U.s)*

which fuses two maps. A large number of local transformation rules have been

developed for BMF. Some transformations have been usefully applied in a distributed
parallel context[62, 63, 79).

Global optimisations are those which require some sort of non-localised analysis

such as data-flow-analysis. Global optimisations tend to be coarse grained and

opaque. Often, they employ an abstraction outside of the language such as a

data-flow graph or a polytopef45] and, if successful, they apply the optimisation

in a wholesale manner. This contrasts strongly with the Adl optimisers which

incrementally approach the point where cost-reducing transformations can be

applied6l. Compilers often employ a battery of global optimisations to cover different

aspects of performance.

Fine-grained vs Coarse-grained As a frnal note, it is worth briefly comparing

fine-grained and coarse-grained approaches to optimisation. As mentioned previously,

all other things being equal, fine-grained optimisation is to be preferred due to its
60The distinction can be very fine. Philip Wadler's set of rules for concatenate eliminationll42]

can, individuall¡ be viewed as local transformations but together they form a system where the
rules are applied to a program, until they can be applied no more. There is nothing in Wadler's
rules that dictates an order of application, the system is robust enough to cope with an arbitrary
order of application (it is confluent). So we have a system but it is very loosely coordinated.

61Note that the use of localised rewrite rules does not prevent effective global optimisations from
being achieved. Visser's excellent survey of applications of rewriting strategies[140] aptly illustrates
this point.



CHAPTER 5. DATA MOVEMENT OPTIMISATIO¡\I t82

transparency and potential flexibility. However, not all things are equal. For example,

if fine-grained transformations are applied in a way that monotonically reduces cost

at each step, a local minimum can be reached. Coarse-grained transformations avoid
this problem by leaping past local minima in a single step. To be effective, fine-
grained transformation systems must sometimes make programs worse before making
them better62. The statically defined rules of the Adl optimisers achieve this by
normalising code, without immediate regard to efficiency, to a point where significant
cost-saving transformations can be applied63. Non-static systems must employ some

other technique that take account of global costs in order to avoid local minima.
Skillicorn et. al[129] describes a technique that utilises global costings to effectively
optimise BSP style programs.

This concludes our summary of related work. A brief summary of the chapter and
proposals for future work are given next,

5.8 Summary and Future Work
This chapter described the optimisation process applied to the translator code of the
previous chapter. The process consists of two phases: vector optimisation, to reduce

the transport of individual elements contained in vectors, and tuple optimisation
to reduce the transport of individual elements contained in tuples. Both phases

of optimisation work by a process of incremental transformation that maintains the
correctness of the program during optimisation. The optimisation process takes place

with very limited resort to any auxiliary data structures.
Both phases of optimisation place a heavy reliance on normalisation to reduce the

number of cases that subsequent rule-sets need to cater for. The most challenging
part of the optimisation process is catering for arbitrary combinations of vector
references inside of map functions. Optimisation rule sets are amenable to incremental
construction though it was observed that the omission of specific rules to handle each

function in normalising rule-sets were costly in terms of performance of target code.
62Elliot, Finne and de Moor[52] found that the freedom to make things worse before making them

better paved the way for some very useful optimisations in the implementation of their domain-
specifi.c language PAN.

63In an intuitive sense this can be likened to climbing up to, and going over, the edge of a very
large cliff in the cost-space.
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Finally, it was shown that the optimisation process is highly effective when applied

to a range of programs, in some cases, producing code of comparable performance to

hand-written BMF.

5.8.1 Future work

There are a number of directions for future work on the optimiser definition. A good

first step would be to rewrite the optimiser in a way that avoids the overheads of

backtracking. It is likely that, as part of this process the optimiser definition will
be ported to a new platformGa. In addition, a new version of the optimiser could be

instrumented to produce a trace of a proof as it applies its rules. A cost model could

be used to annotate the intermediate code produced by the process.

There is scope for more use of normalisation and more concrete definitions of the

input interfaces for non-normalising rule-sets and output interfaces for normalising

rule-sets. Interfaces of this kind have been usefully employed in rewriting-based

implementations in Stratego[46, 138].

Though vector and tuple optimisation warrant separate consideration, the idea

of interleaving these phases within a single pass to produce cleaner wish-iists bears

investigation.
There is some scope to apply further transformations to increase the efficiency of

code based on techniques related to deforestation[143] (to fuse composed operations)

and tupling[S0] (to avoid multiple traversals of a data structure).

Currently, we limit the, non-normalising transformations used, to those that
invariably increase the efficiency of code. A cost model could be used to guide the

application of transformations whose benefit is dependent on certain conditions6s.

The eventual goal is to incrementally improve the optimisation process with
the addition of passes to implement various optimisation techniques as they are

discovered.

The optimiser has succeeded in increasing the efficiency of BMF programs

produced by the translator. The next chapter presents a process by which these

programs can be efficiently mapped to distributed-memory architectures.

6aMost likely to be Haskellf8l] or Stratego[l39].
65Some characterisation of the input data will be required to decide whether or not to apply some

such transformations.



Chapter 6

Parallelisation and Targetting

To this point, this report has shown how a simple functional language can be converted
to point-free BMF code 1 and then shown how the efficiency of that code can be

dramatically improved through the automated application of a series of normalisation
and optimisation steps. This chapter describes a process for parallelising sequential
BMF, describes how this parallel BMF might then be mapped to a distributed
computer and then explores performance issues that can arise.

The work we describe here corresponds to the last two stages of the implementation
shown in figure 108. Prototypes for these stages are in the early stages of
developmentf146, 111]. The techniques described here form the basis of these

prototypes.

Structure of this chapter A brief preview of our approach to parallelisation and
code generation is presented next. After this, we present the parallelisation process

applied to a few important constructs followed by an overview of the code-generation
process and the issues that it raises. At the end of this chapter we present performance

results for a series of simple applications run under various conditions on a simulator
and, finally, related literature is reviewed.

6.1 Preview
Parallelisation and code generation present major design choices.

lAs with other chapters we will henceforth, in this chapter use the term BMF to mean point-free
BMF cod,e.

184
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Figure 108. The Adl project with the paralielisation and code-generation mârked
in black

o For parallelisation, these choices revolve around how explicit to make the

parallelism in the code.

o For code generation, we must choose the extent to which we rely on a run-time

system to manage the efficient execution of applications.

\Me now briefly discuss the choices we have made for these two stages.

6.1.1 Design choices for parallelisation

There is a spectrum of design choices for the parallelisation process. The two extremes

of this spectrum are:

F\rtty implicit: Use a sophisticated run-time system to exploit the parallelism

implicit in unmodified BMF code.

F\rlty explicit: Define a stage of compilation to embed most aspects of parallelism

in target code.

We briefly discuss these extremes and our design choice next'
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Figure 109. Graph of data paths foï ¡f s. (x . (id, id)" [1, 2,3,4,5,6,7,8]

Implicit parallelism Once we know the dimensions of its input data a BMF
program is easily unrolled into a data-flow graph. For example, the graph for the
expression:

+lo.(x . (id, id)') * 1L,2,3,4,5,6,7,8]

is represented in figure 109. With a run-time system able to dynamically allocate
virtual-processors there is much parallelism that can be exploited both at the level of
vector functions such as map and within alltup functions. There a two main drawbacks
to such a system:

1. The overheads of the run-time system including the maintenance of the mapping
between virtual processors and real processors.

2. Performance penalties from carte-blanche application of parallel algorithms on
virtual processors.

The second point is very significant. For some operations such as scan the optimal
parallel implementation requires the use of an efficient sequential algorithm on each

node followed by the application of a different parallel algorithm between nodes. The
use of virtual processors h'ides the boundaries between real nodes which prevents
the use of such hybrid algorithms. In summary optimal performance requires that

T

2
t
4

6
T
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asymptotically optimal algorithms can be expressed in the target code and it is a fact

that some of these optimal algorithms have distinct parallel and sequential parts.

Explicit parallelism Explicitly defined parallelism avoids many of the rtrn-time

overhead.s of implicit parallelism and provides scope to define algorithms optimised

for the chosen partitioning scheme. The costs of explicit parallelism are:

1. The need for an additional stage in the compiler to inject parallel constructs

into optimiser code.

2. A potential lack of responsiveness to varied input andf or varied runtime

conditions.

The first cost is just the trade-off between increased compilation time and better

runtime efficiency of applications. The second cost arises because, with explicit

parallelism, at least some decisions affecting performance are made at compile-time.

Such decisions are, necessarily, based on incomplete information which can lead to

sub-optimal performance if run-time conditions are not those expected by the writer

of the compiler.

Our design choice for parallelisation In our implementation, we have chosen

to use an automated process to embed expiicitly parallel constructs in optimiser

code. The parallelisation phase of the compiier is given the optimised BMF program

and an integer denoting the number of processing nodes on which to map the

program. The paralleliser then statically embeds the decomposition of data, mapping

of computations and data to processing nodes and most aspects of communication in

the target program it generates. The routing of messages generated by the parallelised

select function is handled at run-time.

Next, we briefly examine possible design choices for code generation.

6.L.2 Design choices for code generation

Design choices for code generation are determined by issues such as

1. The amount of information available at compile time.

187

2. The amount of work we expend writing the code-generation module
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Addressing the first point, our implementation assumes that code emanating from
the parallelisation process provides enough information to produce code that requires

minimal interpretation at runtime. In particular, we assume that little or no type
information has to be carried around at runtime. Using static type information the
Adl implementation monomorphically instantiates calls to polymorphic functions (

such as map2) for the sake of efficiency.

Addressing the second point, the code generation phase, could be very simple or
quite complex. Unsurprisingly, as a first implementation, we use a simple approach
to code generation. There is scope to improve efficiency using further analysis3. We

revisit the topic of code-generation in more detail in section 6.2.

6.1.3 Summary of our design choices

In both parallelisation and code generation we have opted to make as many decisions

at compile-time as possible. Parallelisation embeds nearly all aspects of parallelism

either implicitly or explicitly in the code. Code generation embeds this information
directly in the target form. Now, we examine these two processes in turn - starting
with parallelisation.

6.2 Parallelisation
Parallelisation is the process of converting a sequential BMF program into a

semantically equivalent parallel BMF program. Details of how this is done for each

construct are given later, but first we provide an overview by means of an example.

6.2.L Overview of the parallelisation process

A short example Given the the program to calculate the sum of squares in
figure 110, the paralleliser produces the code in figure 111. The functions with the
superscript: ll have the same meaning as the ordinary function with the same name

but with parallel semantics. For example, /xll is an application of the map function
2Kuchen 

[95] took the approach of defining polymorphic library functions for such constructs.
This allows applications to exploit improvements in these constructs' implementation without
recompilation.

3The cost of memory management, in particular) can be addressed by deeper analysis at this
point.
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+l '(x . (id, id)')x

Figure 110. Simple BMF program to calculate the sum of squares of an input
vector

¡ltt . ftl) *ll .((x . (id, id)')x) xll .sptito

Figure 111. Parallelised sum of squa es program

with simultaneous invocations of the function / on distinct processing nodes. The

current implementation parallelises vector operations. The splito function has a special

role. Its purpose is to convert a vector into a distributed vector of vectorsa. The

number of sub-vectors is determined by the subscript p which, at this stage, is assumed

to be a parameter supplied by the user of the compiler. splito also attaches a closure

lor a partiti,oning funct'ioní to the descriptor of its output array. The partitioning

function accepts a single integer, representing an index to a value into the original

input vector of split, and returns a pair of integers which represent the indices of the

corresponding value in the nested output vector of split6. The partitioning function

is attached to the type of the distributed vector and resides on the parent-node. The

parent-node is the processing node from which the split function was invoked. The

means by which a partitioning function can be extracted and applied are described

later in this chapter.

Now the components of the example program have been introduced. Figure 112

aTine unfold function, described by Gibbons[60] has split as a special case'
sThis function fulfils a similar role to the partitioning function used in other aspects of the

Adl project[54]. SCL (Structured Coordination Language) [43] also uses a partitioning function
but this is explicitly provided by the user. Currently Adl avoids such an explicit function because
it provides scope for non-contiguous partitionings that can compromise the use of associative but
non-cornmutative functions in reduce and scan.

6For example, if:
splitr [1, 2,3, 4,5,6,7]

produces the nested vector:
111, 2, 3], [4, 5, 6], [7]]

The partitioning function pf fot this vector could be represented as:

pf r:l"lï),ømod3)
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+/ll . (+/) *ll
+ltt . GD *tt

+ltt .ft1) *tt

((
((
t[1

x . (id, id)')x) *ll .splite 1I,2,3,4,5,6,71
x . (id, id)')*) *ll [1, 2,J],14,b,61, [7]]
, 4, gl, 

176, 25,36], [49]]

=>
+
+
+¡ltt lt+,77,491

r40

Figure 112. Evaluation of parallel sums of squares applied to [1, 2,3,4,5,6,,71

shows steps in the parallel evaluation of the program in figure 111 with ? : 3 and

with input 11,2,3,4,,5,6,7]. The result of this evaluation is exactly the same as if it
had been carried out sequentially but computations at the outer level of the nested

vector are carried out in parallel.

The new distributed semantics Thus far, we have shown how the input-output
mapping of a program can be preserved during parallelisation. Now we examine

how the execution of the parallelised program has changed. The original sequential
program operates within the confines of a single processing node. In contrast, each

parallelised function has a distributed semantics.

Figure 113 shows how the distributed computation evolves during the execution
of the parallel program from figure 111. Step 0 shows the program, data and machine
prior to execution. The box on the right represents a single node (node 0) with the
data on it. Step 1 shows the state of the program, its data and the machine after
the execution of splitr. The sub-vectors reside on the child-nodes 0.0, 0.1, and 0.2.

Step 2 shows the state after the parallel application of the inner map. Step 3 shows

the state after the parallel application of the inner reduce. Step 4 shows the finishing
state after the application of the parallel reduce.

Note that the split and parallel reduce functions trigger communication. The split

is a special case of a scatter where contiguous blocks of a vector are distributed across

a set of processing nodes. The reduce is responsible for gathering the results back

on to a single node, aggregating intermediate results using the (+) function. The
intervening map operations cause no communication.

Nodes are numbered in a hierarchical manner. Child node numbers are suffixed
with their parent node number. The hierarchy can be extended to describe a nested

distribution. Note that nested parallelism is not the prime focus of this work but it is
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Figure 113. Sequence of steps in evaluating parallel sum-of-squares applied to the
vector ll, 2, 3, 4, 5, 6, 7l
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beneficial to allow scope for the expression of regular or irregular nested parallelism
in future. A preliminary discussion of nested parallelism is in appendix E.

Now we have seen a specific example of the parallelisation process and its execution
model. A general overview of the parallelisation process follows.

General overview of the parallelisation process In keeping with the approach
to compilation we have described thus far, parallelisation occurs by applying a series

of incremental, localised, semantics-preserving, transformations. Essentially, given a
block of sequential BMF code consisting of a sequence of composed functions with
each producing a vector:

h's'l'"
the parallelisation process inserts, downstream of the code, a special identity function
on vectors. The function is defined as ++ /ll .rplit' The *]- / in this identity function
is a parallel reduce with concatenate. This function flattens a distributed list back
onto the parent node. The code with the special identity function in place is now:

l+lll 'splito.h.s.f 'e

The splito function is then pushed up upstream by a process of transformation:

l+lll'splito' h' g' r'e :
l+ lll' h''splito 'g'Í 'e :

splito ./ .e

f' .splito' e

l' ."' . split,

where, depending on their structure, h', g',, f', and e' may be modified at deeper

levels. An intuitive reading of the process is that, because splito distributes a vector
p ways and *l-/ll(or any other instance of parallel reduce) gathers it, any operation
sandwiched between the two is distributed and, of course, distributed operations may
execute in parallel. The parallelisation process proceeds from the downstream rather
than the upstream side to make it easier to ensure matching distributions for vectors
with a common destiny. Figures 114, and 115 help illustrate this point. Figure 114

abstractly illustrates the problem caused by parallelising from the wrong, upstream,
side of the program. The two converging lines represent two vectors that are destined
to be zipped together at some later point in the program. If parallelisation proceeds

t+ ltt '

++ ltt '

++ ltt'

h, .g, .

h' 'g''
h' 'g''
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++/ll. m mm split.

zap

++/ll. lfil-l l-fl]-n sptit2

Conflict here
(cannot be resolved locally) Direction of parallelisation

Figure 114. Two vectors, distributed in different ways at an earlier point of the
parallelisation process can come into conflict when they are joined by a function

such as zip. Resolving the conflict will require at least one of the instances of split to
be changed.

from the upstream side then it is possible to distribute the two vectors differently.

Later on in the parallelisation process the zip, which requires matching distributions

on its inputs, is encountered. It is awkward at this stage to go back and change one

of the split functions so that it matches the other.

Figure 115 shows how parallelising from the downstream side avoids this problem.

Part (a) shows the state of the program just prior to the parallelisation of zip. At this

point there is only one vector so there can only be one distribution. In part (b) the

zip function has been parallelised and each of its two input vectors have been given

the same distribution. Here, there is no conflict to resolve.

Paralielising from the downstream side avoids conflict where two vectors share

the same destiny but what about the converse case where two vectors share the same

origi,n? Figure 116 shows how parallelisation from the downstream direction copes

with this case. Part (a) shows how two vectors, initially given different distributions,

are found to have the same origin. Part (b) shows how this conflict is resolved by

choosing one of the two distributions. Note that there is no requirement to change

already-parallelised code as there was in figure 1147'

For the few examples shown to date, all functions in the program have vector

inputs and results. What happens if functions have non-vector input or output types?

These cases must be handled with various rules that allow parallelisation to permeate

TThis asymmetry of requirements for changing stems from an asymmetry between splito and

+l/ll . Asplitomustbechangedif therequireddistributionof its outputchanges. Incontrast,there
is no need to change +l /ll if its input distribution changes.
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++/ ll . spl¡b. z¡p

mmm
Direction of parallelisation

(a)

split t

++/ll. .(zip)*ll. 2¡Oll

m mm split.

(b)

Figure 115. Conflicting distributions caused by common destination can be
avoided by parallelising from the downstream side. Two vectors that are destined to

meet (part (a)) will share a single distribution (part (b)).

down to any vector components in these data types. It must be noted that not every

function of every program is amenable to parallelisation. Where a segment of code

cannot be parallelised it is left unaltered and the parallelisation process recommences

immediately upstream. It should also be noted that not every amenable function is

worth parallelising under all circumstances. The current process is quite eager and
will parallelise even when the pay-offs are smail or non-existent. Future versions could
avoid this by using a cost model such as that described by Skillicorn and Cai[128] to
evaluate the benefits of each step of parallelisation.
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f[T-|_|-nl.l ++/rr mmm sprit.

alltup

++/ll split,

195

Direction of parallelisation

++/ll mmm

++/ll m m m

(a)

Conflict here

mm
alltup

Resolved locally

split t

(b)

Figure 116. Parallelisation from the downstream side can result in conflicting
distributions when two vectors share a common origin (part (a)). The conflict is

easily resolved by a local decision at the common point of origin (part (b)).

6.2.2 The rules of parallelisation

This section lists parallelisation rules for most8 of the BMF syntax produced by the

optimiser. In all cases, rules are expressed in terms of moving split, through the

function from the downstream side. Where it might be helpful, the meaning of a

function is briefly recapitulated just prior to the rule. New parallel functions are

briefly described as they are introduced. The discussion surrounding each is kept as

informal as possible.

A note on types As with previous stages of compilation, rules must preserve and

maintain type information. It is assumed that every function is annotated with a
8If a function is not explicitly handled a default rule applies. This rule, given on page 215, skips

the next function and resumes parallelisation upstream of that function. This helps keep the process

correct and robust.
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Assoc'iate-Ri,ght(prog. sentinel è Ío-p ' prog')
Gen-Suffir(p + s1. s2)

Parallel'ise(ty f . progt + prog" . sentinel)
prog --+ \'proptt

Figure 117. The top level rule for the parallelisation process

monomorphic description of its type. As with data-movement-optimisation, many
parallelisation rules are not dependent on explicit type information. To keep the
discussions brief, types are only shown when the operation of parallelisation rule
depends on them.

Now to the rules. There is one rule defining the top level of the paralleliser and
this is described first. The rules for the primary rule-sets invoked by this rule follow.

6.2.2.I Top rule

The top level rule for parallelisation is shown in figure 117: The first premise composes

a sentinel function to the front of the program and then associates all occurrences of
function composition in the resulting program to the rights. The function / is the
most downstream function in the right-associated program. The sentinel function
exists to ensure that there is at least one function from which to create prog'. The
sentinel will never appear in the target program so its semantics are unimportant.
However its type can affect the second premise of this rule so, for consistency, we

set the output type of the sentinel function to be the same as the input type of the
program.

The call to Gen-Suffir in the second premise generates a suffir function for the
program based on the output type of /. For example, if the output type of the

eThe use of. Assoc'iate-Right is yet another application of normalisation. Again the the immediate
aim is not to achieve efficiency but predictability for the sake of subsequent transformations.
Assoc'iate-Right conveús an expression with arbitrary associativity of function compositions such
AS:

6' (h /r)) ff¿' fs)
to an equivalent expression with composition operators uniformly associated to the right:

h'(h'Uz U+' fuD)

As with Assoc'iate-Left the transformation applies recursively to all sub-expressions containing
composed functions.
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function / is a vector lhen Gen-Suffir will generate the function l+ I 'splito. The

suffix function always consists of two components:

1. the upstream function, s2, which uses splito functions to distribute any vector

data in the output of /. In the explanations to follow call s2 lhe d'istri,butor.

2. lhe downstream functior, s1, which uses l+/ functions to re-coalesce any

distributed vector data it receives as input. In the explanations to follow we

call s1 Lhe gatherer.

Composed together, the two components of the suffix functions form an identity

function on whatever input type they are given. The role of the suffix function is

to serve as a launch-pad for the parallelisation process invoked in the third premise.

This parallelisation process takes the distributor, s2, and pushes it as far upstream

through I .prog'as possible, leaving distributed code in its wake.

The conclusion of the rule composes prog' , the code produced by the parallelisation

process, with the gatherer function s1 to form the final result of the program.

The Gen-Suffir and, of course, the Parallelise nÌe-sets warrant further discussion

and we introduce these in turn.

6.2.2.2 Generating the suffix

Figure 118 shows the rules for Gen-Suffir. The rules all take a type and generate a

suffix function from which to start the parallelisation process. The syntax for types

was given on page 50, in chapter 4. We show the more concrete vetsion, used in

figure 118, in figure 11910.

Each of these rules generates an appropriate suffix function for a given type.

Rules 31, 32, and 33 handle functions of scalar type which present no immediate

opportunities for parallelisation. The suffix produced by these rules consists of paired

identity functions: id .id.

Rule 34 is key, it creates the suffix l+ I . splito to serve as a base for parallelisation

of vector functions upstream.
1oNote that the phyla B-TYPE contains no functional type. This is because, in the programs

produced by our implementations, functions cannot be treated as values. This restriction is relaxed
very slightly with the introduction of partitioning functions on page 203 but not in a way that affects
the workings of the paralleliser.
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Figure 118. Rules for generating a suffix function

198

B_FTYPE
B_TYPE

B_TUAR,

:: B-TYPE ---+ B-TYPE
:: integer I real I boolean 

I

B_TVAR | [ B_rypU ] | (B_TypE,... , B_TypE)::olþltl...

Set Gen-Suffir is

Integers

B:TYPE + B_EXP

integer + id1¡¡"ter-integ"t 'idirrt"ger+integer (31)

Reals
real + idreal-real .idreal-rêâl_ (32)

Booleans
boolean =) idSeelsa¡r-boolean .idboolean-boolean (33)

Vectors
tÉl + ++ lttl,'-u,, .splito (r,l-tt,ll) (34)

TLples
h + (ln)r,-B,' (lt )B,-r,
Prefir-Addr(fr," n + Ílr)
Prefir-AddrV)?," n + Íiz)

0n + (l,.t)y-B^' (fnz)B^-1^
D'istribute-Ad,ilr(f6," r" + fL)
Di,stribute-A Írzrn'lTn è

(0t, ' '.P") + Uit,...,li)" '( (35)
12¡ " 't n2

End Gen-Suffir

Figure 119. Syntax of BMF types
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Rule 35 handles tuple types. It is the most complex rule in Gen-Prefir and

warrants a deeper description. T\rples may contain a mixture of scalar, vector and

tuple types and the suffix function produced by this rule must accommodate all of

these. As an example of how this rule works, given the type:

(integer, Iinteger])

it generates the suffix function

(id .zr1 ,++ I ' n")" '(id ' 11, splito 'r2)'

The two id functions apply to the integer value in the first element of the input

tuple. The *l f and splito function access the vector forming the second element of

the input value. In the example above, the z1 functions ensure that the scalar data is

routed through the id functions and the zr2 functions ensure that vector data is routed

through the split, and *1- / functions.

As a second example, given the tyPe:

((integer, [integer]), rear)

the tuple rule generates the suffix function

((id' zr1' ry,1l l' n"'n1)', id' nr)"' ((id' zr1' nl,splitr' rz' .rr)",id' r2)"'

Again, the n-1 arrd 12 functions are used to route values from the input through the

appropriate parts of the distributor and gatherer functions. Note that where the

generated alltup functions are nested more than one addressing function is required

in the preflx.

Looking at the tuple rule in detail, l¡/e see that the premises recursively invoke

Gen-Suffir on each element i of the tuple type to produce a suffix function of the

form:

f¡t ' l¿,

In the conclusion of the rule each of these functions must be embedded in separate

alltup functions and data must be routed appropriately from f¿2, the distributor

function, lo ln, the gatherer function, and also from code upstream to f¿2. This

routing is achieved by prefixing appropriate address functions to both of these

functions. This prefixing is carried out by lhe Prefi"r-Addr rtle-set, defined in

199
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Set Prefir-Addr is
Alltup functions

B-EXP,B-EXP + B-EXP

Ít',^::.+ ri
lnr^ r¿ +

(Ít,.'.,fn)",^n+Ul, )
o (36)

n

Other functions
f ,* no è Í '^ n U I Un,...,1ò") (37)

End Prefir-Addr

Figure 120. Rules for prefixing addressing functions components of a suffix
function.

figure 120. The effect of Prefi,r-Addr is to propagate the address function into the
most deeply nested parts of the alltup function downstream.

Rule 36 handles alltup functions by recursively calling Prefi,r-Addr on each
component function of the alltup. Rule 37 applies to all non-alltup functions. This
rule simply composes the function with the required addressing function.

This completes our description of Gen-Suffir and Prefi,r-Addr. We now describe
lhe Parallel'ise rtle set, which defines the core of the paralielisation process.

6.2.2.3 The Parallelise rule-set

The Parallel'ise rtle-set is responsible for replacing all sequential code acting on non-
distributed vectors in its input program with parallel code acting on distributed
vectors in its output program. As with the stages of optimisation seen in the previous
chapter, this process is carried out by propagating the required transformations from
the most downstream parts of the program to the most upstream parts. Descriptions
of the rules for lhe Parallel'ise rule-set follow.

The sentinel function Figure 121 shows the rule that applies to code composed
with a sentinel function. A sentinel function marks the most-upstream part of the
program, which is the point at which the parallelisation process stops. The rule
returns its input values unchanged.
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Set Paralleli,se is

The sentinel function

B-EXP + B-EXP

/.sentinel + l. sentinel (38)

Figure L2L. Parallelisation rule for handling the sentinel function.

F\rnction Composition s'f+T''t'
s' 'g + g' 's" (3e)r'(/' s) + Í' 's' 't"

Figure 122. Paralleliser rule for handling function composition

F\rnction Composition AII sequences of composed functions have already been

associated to the right by the first premise top level rule in figure 117. The pre-

processing performed by this premise allows all sequences of composed functions to

be processed by the single rule defined in figure 122. The first premise recursively

applies the parallelisation process to the function / with respect to s, the distributor

function. The result is the transformed code /' and the distributor function s'. The

second premise applies the same process to the remainder of the composition sequence:

g. The final version of the distributor function s// is integrated into the composition

sequence in the rule's conclusionll.

Alltup alltup functions apply each of their constituent functions to the input value

producing a tuple of corresponding result values. The paralleliser rules for alltup

functions is given in figure 123. Rule 40 applies when the distributor function is an

alltup function. The rule parallelises / with respect to each of the components of the

distributor function producing a composed pair of alltup functions as a result. These

result functions may contain common sub-expressions and it is future work to define

rules to eliminate these.

Rule 41 applies when the function to be parallelised:

(Ír,".,fn)"
11The one exception to this statement is if / .g is the outermost composition sequence in the

program. In this case s" will be a sentinel function rather a distributor function as a result of the
application of rule 38.
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Figure 123. Paralleliser rules for handling alltup functions

Addressing functions
s .n 'tTi =+ id . (t .^ nu) (42)

Figure L24. Parulleliser rule for handling addressing functions

is an alltup function. The rule's premise selects and transforms fi, the addressed
function, with respect to s, the downstream part of the distributor function. This
rule assumes that the distributor function has some address functioî, n,tri, as its
most upstream function. The validity of this assumption is maintained, initially, by
Gen-Suffin and, later, by other the rules of Parallehjse including the previous rule
(rule 40) and a rule for addressing functions, described next12.

Addressing functions Figure 124 shows the rule for tuple-addressing functions.
This rule simply svüeeps the addressing function into the distributor function leaving
an id function behind. Very often, the addressing function will be eliminated later by
rule 41, the second rule for alltup functionsl3.

Allvec functions An allvec function applies an input value to each of its constituent
functions, producing, a vector of results. Figure 125 contains the rule for allvec
functions. The current version of the rule does not allow the suffix function s to pass

12The previous rule maintains the validity of the assumption by stripping away any surrounding
alltup function in the distributor to, eventually, reveal any leading address functions. The next rule
allows distributor functions to assimilate address functions from upstream code

13The exceptions occur when the input type of the program is a tuple and the addressing function
is accessing a part of that tuple. In these cases the elimination will not occur and the address

Alltup distributor

q. f +.fi. s',

sn.f + Í1,.t'n (40)("t,...,s,)o 'f + (Íl'" n^,...,f:^.n rn)".("i,. ..,r'n)"

Alltup target
s Íu+ il't' (41)

s .n 'ri. (1t,. . . , f,')" = fl . t'
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Figure 125. Paralleliser rule for handling allvec functions

Vector-indexing functions

id.! +!'(!ll.(rrr, rt.irz)",rz.rz)" '(^r,tpp'(pf 'tr, nr)")" '(splito't1,r2)" (44)

Figure L26. Paralleliser rule for handling vector indexing functions

through the allvec functionla. The first premises of the rule generate a new suffix

function for every function in the allvec. In the second set of premises, the distributor

component of these suffix functions are pushed through each of the component allvec

functions to produce new transformed functions f i and new suffix functions sl. These

two sets of components are combined in allvec and alltup functions respectively, in the

rule's conclusion.

Vector indexing function The vector indexing function takes a pair, consisting

of a vector and an integer, and produces the value from the vector found at the index

represented by the integer. The rule for indexing functions is shown in figure 126. The

code produced by this rule rule relies upon the application of a partitioning function

to the original index value. The pf function takes a distributed vector as input and

produces the closure of the partitioning function as output. The type of pf is:

[["]] - (:-nteger ---+ (integer, integer))

functions will remain in the final code.
l4This is an exception to the convention that all vector functions are parallelised. This exception

is made because of the typically small vector size produced by a allvec function and the likelihood
of a processing imbalance generated by the heterogeneous functions it contains.

Allvec functions
Gen-Suffir(Í,, + srr' srz)

Gen-Suffirj"+sn:'..n2)
sn' ft + f!. t't
snz. Ín J Í',. ,'n (43)

s lft,..., Ín) + (s' ltty fl'nt, ,sh. f:,.. r,]). ("i, . . ., ";)"
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Length functions

idiot"g"r-integer .# + +lll .e) xll .splitp (45)

Figure I27. Parclleliser rule for handling length functions

Map functions
splito . l* +,f x xll .splito (46)

Figure 128. Paralleliser rule for handling map functions

which makes it the oniy function in this implementation that returns a function as

a result. The app function takes a partitioning function and an integer and applies
the integer to the partitioning function to produce a pair of integers representing the
two indices used to access the appropriate element of the distributed vector. Note
the innermost index function on the right-hand side of the rule has a ll superscript to
indicate that it operates on distributed data.

Length The length function takes a vector and returns an integer representing the
length of that vector. The rule for the length function is shown in figure 127. The
code produced which is, effectively, a statement that the length of the original vector
is the sum of the lengr,hs of all of the sub-vectors of the distributed vector. Note that,
by itself, length is rarely worth parallelising, However, often it does make sense to
apply this rule if the parallelised length function is at the end of a long sequence of
other parallel codel5.

Note that the rules for both index and length create a new distributor function:
split'

Map The rule for map shown in figure 128. This rule adds a layer of nesting to the
original map function to account for the distribution of its input vector. The outer
map is parallel. This rule is a well-established identity in BMF[131].

Reduce The rule for reduce functions is shown in figure 129. This rule converts a
15In his report on the prototype implementation of the paralleliser, Windows' 1146] noted that

such an assessment is probably best made during an additional pass through the code.
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Reduce functions
ido-o .øl + e ltt . @fi *ll .splitp (47)

Figure 129. Paralleliser rule for handling reduce functions

Scan functions

splito . ell + g .(elltl .i,ni,t.last*ll, id)' . (o/) *tl 'splito (4s)

Figure 130. Paraileliser rule for handling scan functions

flat reduction, with a binary operator O, over a flat vector into a nested reduction,

with a binary operator O, over a nested vector. This rule is another well-established

BMF identity.

Scan There are several options for parallelising scan. The rule we use, producing an

efficient parallel scan, is shown in figure 130. The parallel code on the right-hand-side

of the rule was derived by Roe[120], for MIMD architectures. where:

last :!' (¡d,-' (#, 1)')'
i,nit : selectll . (id,iota . - . (#, 1)')'
g : ++ll . (split1.! . (rr,0)", (O) *tt .zipll . (t1,tai,l .rz)")"

tai,l : selectll . (id, (+. (1, ¡d).) *.iota .-.(#.id,1)')"
O : (e) x .distl .(nr,nr)"

The deflnitions of ini,t and last are reasonabiy straightforward. The workings of the

rest of the parallelised code can be illustrated by example. Given the input vector:

lr, 2, 3, 4, 5, 6,7, 8, 9,10, 11]

and O : a and p: 4 the pa,rallelised scan code upstream of I produces:

(6, 2t,45], [ [1, 3, 6], 14, 9, 1 5], 17, 15, 241, ll0, zlll)

where the second element of the tuple is a vector of scanned vectors. The first element

16,2L,45] is the result of applying parallel scan to the vector of initial last elements
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[6, 15, 24]. The function g pairs the first vector with the tail of the second vector to
produce:

[(6, [4, 9, 15]) , (2r,17,15,241), (45, [10, 21])l

the first elements of these pairs are distributed over the second elements:

[ [(6, 4), (6, e), (6, 1 5) ], [(2t, 7), (2L, t5), (27, 24)], [(45, 10), (45, 2 1 ) ] l

and added pairwise:

[[10, 15, 2L], 128,36, 451, [55, 66]l

by (O)xll. Finally, this result is concatenated with the initial sub-vector to produce:

[[1,3,6], [10, 15, 2L],,128,36,451, [55,66]]

note that the concatenate function +l ll is a distributed communication primitive to
append one distributed vector to anotherl6. Figure 131 gives a pictorial representation
of the workings of the function g.

Distl distl takes a pair of the form (r,lro,,. . . ,rn_l) and produces a vector

l(r,ro),...,(r,""-)1. The rule for distl is shown in figure 132. The new parallel
distlll function distributes a value from the parent processor over a distributed vector
on the child processors.

Zip The rule for zip is shown in figure 133. The most upstream code, the new
distributor function: (splito .TTl,splitp .Tz)", produces a pair of distributed vectors.
The pair exists at the level of the parent node but the sub-vectors exist in the child
nodes. zipll pairs these sub-vectors at the level of the child nodes, as illustrated in
figure 134. The most downstream function: (zip)xll pairs the values within each of
the sub-vectors.

Repeat Repeat takes a pair (u, n) and produces a vector of the form [u, u,,. . .,uf
of length n'. The paralleliser rule for repeat is shown in figure 135. This rule creates
a non-distributed vector of the required length using iota and distributes it, using
split. The value to be repeated can then be distributed over this vector using the

16This function, like splito has the ability to allocate more processing nodes. However, in this
example, this ability is not required, the length of the result of +l- ll is the same as the length of the
distributed input vector for which nodes have already been allocated.
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(
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)( )(
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Erûract last elements of initial
subvectors

Scan last elements

Shift last elements

Map O

Apply O

( )(

++ ( )

++ o o

++

Figure 131. Using the scanned last values of sub-vectors (step 3) to propagate a
summation of sub-vectors (step 4).

Distl functions

splite.distl + (distl) *ll .¿¡r¡¡ll '(nl,splito'r2)' (4e)

Figure 132. Paralleliser rule for handling distl functions

Zip functions

splito . zip + (zip) *ll .zipll . (split, 'iTrisplilp'r2)o (50)

4t 5t

5t

3

3

3t

3t

0t It

lx

6 7

0I l 2t 3t 4 J 6t 7x

0x lt 3x
4 5 6t 7

0t l 3t 4t 5t 6x 7t

0 It I 2 3t 4 J 5 6 7t

0t lt 2 3 4t 5 6t 7

Figure 133. Paralleliser rule for handling zip functions
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ziPll E0 l)

0.0 t2 0.1 3 034 56 7

0 t, I

010.0 (r,2) 02 (5,6)(3,4)

Figure 134. The effect of a zip operation over corïesponding elements of
distributed vectors.

Repeat functions

splito.repeat + (r.r) * *ll . (distl; *.ll .distl .(zr1,splito.iota.7T.2)" (51)

Figure 135. Paralleliser rule for handling repeat functions

parallelised code for distl. Finally, the (nt) * xll function projects the required value
out of the nested vector of pairs produced by the earlier code.

This code is not optimal, partly because of this final projection, but mostly because
split needlessly consumes bandwidth by distributing an array, which is the length of
the final result. If the final result is large compared to the number of processing
nodeslT a much less bandwidth-intensive solution is simply to distribute one copy of
the value to each node and then to repeat the value within each node. The problem
here is to achieve the desired partitioning. This can be done if the rule introduces a
new primitive:

splito . repeat + distrepeatio,integer)r[lCI]l

distrepeat that produces a nested vector along with its partitioning function. Our

@0 EÉ

IË

EÉ

17A. very likely scenario.
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Select functions

splito .select *
distselect.(r.r, (tpp) * all ' (distl) xll 'distlll '(pf 't, ,7T2)")"
(split, . .r1 splitq. T2)o

(52)

Figure 136. Paralleliser rule for handling select functions

initial implementation uses the first rule (rule 51). Later refinements will use the

second.

Select select takes a pair consisting of a source vector s and a target vector of

integers: [ú0,...,tn-t)andproducesaresultvector, [s!ú6,...,sltr-1]consistingof the

elements of the source vector indexed by the target vector. A simple rule for the

parallelisation of select is:

splito.select + (select) *ll .distl '(ø1,splito'zr2)'

which prod,uces code that sends the entire source vector for select to each nocle for

selection according to the distributed target vector. This code is not scalable to many

nodes, so a rule is need,ed that distributes only the required source data to each node.

A better rule is shown in flgure 136. The new distselect (distributed-select)

function takes a pair of distributed vectors of the form:

(t, ú)

where:

s: [[s1o,o;,.'.,5(0,n0-r¡],[sir,o¡'...'s(1,r¿1-1)],.'.,[t(0,-),"',s(o,nm-r-l)]]

and where:

t: [[ú10,0;,...,ú10,k0-r¡], [ú1r,0¡,...,tçt,kr-1)],... ,1tço,^), " ',ú(0,¡r¿-'-r)]]

Given this pair, distselect returns a distributed vector:

[[s!ú10,0¡,...,s!ú1o,r.o-r¡],[s!ú11,0),...,s!ú1r,tr-r)1,...[s!ú10,-),"',s!ú1s,/.,-'-r;11

Note that each tç,t,¡1 is a pair of values and each application sl.te,Ð of an indexing

function above, is implicitly nested.
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distselect works in two phases. The first phase requests the values indexed by
the target vector. The second phase sends the requested values to their destinations.
Figure 137 shows the two phases of the execution of:

distselect ( flo,, b,, c], ld, el, [f , g], lh, ill,
[[(0,2), (3, 1), (0,2)], [(1,1), (2,0), (2,r)], [(0, 1), (0,0)]l)

which generates the distributed vector l[c,i,,,"],1e, f , g],[b,o]1.
The parallelised code upstream of distselect in figure 136:

(r.t, (.pp) * *ll . (distl¡ xll .distlll . (pf .r, ,rr)")". (splito.nlsplitn .r2).

is responsible for distributing the source and target vector using:

(splito .7T1, splitq . 7T-2)o

extracting the closure of the partitioning function of the source vector using:

Pf 'rt

Distributing this closure of the partitioning function over the target array using:

(distl) all '¿¡t1¡ll

and, finally, applying the partitioning function to each index of the target vector to
produce the required distributed vector of pairs using:

(app) * *.ll

distselect embeds a non-uniform, personalised, many-to-many communications
patternf9O]. This is the most general of communications patterns, and is not simple
to implement efficiently. We have found it simpler, in an initial implementation,
to embed distselect in an all-to-all or total exchange primitive of the sort found in
BSP[76]18.

18BSPLibl75] provides much of the functionality required by distselect through its direct memory
access primitive: get.
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Phase 1 -requestvalues

Phase2-retumvalues

Figure 137. The operation of distselect. In the first phase requests are generated
from the target vector and sent, along with a return address. In the second phase,

copies of the requested values are copied from the source vector, generating a new
array distributed in the same v¡ay as the target vector.

1),(0,2)l 1)l

ld,el
+

K1,1

th,rl

[(0,1),(0,0)]

'i i..'! !::.rr! i..1: I i r :i i; ¡ j:i

[b,a]
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Figure 138. Paralleliser rule for handling if functions

Specialisations of select Where there is some static knowledge of the pattern of
communication created by an instance of select. More specialised primitives can be

used in its placele. For example:

select . (id, (mod . (+. (n",1)',nr)') * distl . (f, iota . #)')"

is the same as:

cshift . (¡d, 1)'

irrespective of the input value of this code. The use of such specialisations is future
work2o.

If functions Figure 138 shows the parallelisation rule for if functions. The premises

of this rule parallelise the predicate (pred), consequent (consq), and alternative (a/ú)

functions of the if function. Note that pred is parallelised with respect to an id
distributor function rather than with respect to s because the boolean output of pred
is consumed by the if function rather than functions downstream. consq and alt are
parallelised with respect to s.

The conclusion of the rule embeds all three distributor functions generated by the
premises into an alltup function, (s' , s" ,s"')o and inserts addressing functions upstream
of each of. pred',, consq', and alt.

Note, that this rule is designed to cater for the worst-case scenario where the new

distributor functions, s', s" and s"' are all distinct. This can happen, for example,

when each component of the if function accesses different parts of an input tuple.
lsThere is much work on establishing and exploiting statically knowable patterns of reference.

Von Hanxleden et al. 1141] recognise varying levels of static knowledge in code in their work aimed
at identifying and aggregating overlapping communications. The worst case code allows analysis at
the port'ion-leuel and the best case allows analysis at the reference-leuel,

2oSuch specialisations are, essentiall¡ strength-red,uct'i,ons on the distselect operator.

If functions

ido-bool_e 
"o' 

pred + pred' ' s'
s.consq+consq.s"

s .if (pred, consq, alt) + if 7f2, O,lt
\/llllll\o7ï-S/'(.S,5,5 )

(53)
7T1, CO'ILSQ
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Figure 139. Paralleliser rule for handling while functions

If there is any overlap between s', s" and s"' then there is scope for introducing

substantial efficiency gain through common-sub-expression elimination2l.

'While \ /ith the while function, the output value of one iteration is usually the

input value to the next iteration. As a consequence, the input and output types of a

while must be the same and, moreover, the paralielisation process must preserve this

property by ensuring that data that is distributed in the input to the while function

is also distributed in its output.
Figure 139 shows the parallelisation rule for while functions. The basic strategy

of the rule is:

1. Move the distributor function s from the downstream side of the while function

to the upstream side.

2. parallelise the code in the loop-body "f and the predicate function p to
compensate.

The first step in the strategy is trivial and is done in the conclusion of the nrle. The

second step is non-trivial and is carried out in the premises of the rule.

The first premise parallelises / with respect to the distributor function s producing

/'. The second premise parallelises the predicate function p with respect to id22. Note

that there is the potential for a mis-match in the distribution of output produced by

s and the distribution of input expected by l' and p'. To be more precise, s may

2lAlternatively, we could, at little cost, introduce more rules for to capture the special cases where

two or more of the new distributor functions are the same.
22As with the predicate in the if function, the id function is needed because all of the boolean

output is consumed, internally, by the while function.

While functions
s¿+o'f + f'r-o,'s'

id.p + p'¿,,-6oora"r, 't"
Reconcile-types (i,',, o + r)
Reconc'ile-types( 'ittro + rt) (54)

si-o. while(/, p) + while(f' 'r,p' 'r') ' si-o
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Set Reconc'ile-Types is

Identical types
t,,Q èido-o

Distributed input expected, non distributed given

[[r]], [r] + sptitolol_[[a]l

Non-distributed input expected, distributed given

["], [[*]l + ++ l[o]l_l.,t

Alltup types
at,0:.è ft
an, þ, è .fn

(*r,.. .,ùn),(/t,..., þ,) + (/t ..trrt.. .,ln.Tn)"

End Reconcile-Types

TYPE,TYPE + B_EXP

(55)

(56)

(57)

(58)

Figure 140. Rules for generating a type reconciliation function

produce a value containing a distributed vector where f ' andf or p/ expects a non-
distributed vectot, or vice-versa. This potential conflict is circumvented by the calls
to Reconcile-types in the last two premises. These calls compare the distribution of
vector values in the input types of f' and p/ with that of corresponding vectors in
the output type of s, and interpose the appropriate distributor/gatherer function if
required23. Figure 140 shows the rules of. Reconci,Ie-types. Rule 55 applies when the
two types are identical. No transformation is needed to reconcile the types so an id
function is produced.

Rule 56 applies when distributed input is expected but the distributor function
produces a non-distributed value. In this case, a split, function is inserted to deliver
the distributed value.

Rule 57 applies when non-distributed input is expected but the distributor
function produces a distributed value. In this case, a *l- / function is produced

2sBecause the current set of rules aggressively parallelises most vector values the potential for a
clash between distributed and non-distributed vector values is small. However, we envisage that
in future implementations parallelisation will not be so aggressively pursued and the potential for
conflict will thus increase.
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TYanspose functions

a)0
b> (5e)

splito' transposeo,u + ll I ((transposeo-1,b-1) *) * splito

Figure 141. Paralleliser rule for handling transpose functions on the non-outer
dimensions of vectors.

Default rule
Gen-Suffir(o + t' 't")

s'fB-o+s'fB-o's''st' (60)

End Paralleli,se

Figure I42. Default parallelisation rule

to flatten the data.

Finally, rule 58 applies this rule-set recursively in tuples'

transpose Figure 141 shows a rule for transpose on non-outer dimensions of a nested

vector. A rule for instances of transpose involving the outer dimension of nested

vectors is future work.

Default rule The final rule of Paralleli,se is shown in figure 142. This rule captures

any code not caught by the preceding rules. It simply leaves the old distributor

function s in place and builds a new suffix function s' ' s" upstream of / for further

processing.

This rule works well for scalar functions, including most binary and unary

operators2a. However, this rule also currently applies to functions such as iota and

priffle where there is still potential parallelism to be exploited. Devising specific rules

for other, potentially, parailel functions remains future work.

This concludes our description of the parallelisation process. The rules here

were applied, by hand25, to generate the parallel BMF code directly executed by

24The rule, temporarily, introduces redundant identity functions into programs but these are easily
eliminated by a final call to ttre Remoue-ids rule set.

254 prototype automated paralleliser based, in part, on an earlier version ofthese rules is described
in [146].
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the simulator, described in section 6.4.2, in the experiments in section 6.4.3.
In order for these experiments to provide realistic results it is important to, first,

consider how the code generated from parallelised BMF will perform on a target
architecture. We briefly explore the performance of generated code next.

6.3 Code generation
The parallelisation process produces BMF code suitable for targeting to an abstract
architecture. The job of code generation is to map this code onto a concrete
architecture.

6.3.1 Preliminary implementation
A preliminary implementation of a code generator from parallel BMF to C with
calls to MPI has been constructed by Dean Philp [111]. This implementation used a
reasonably direct mapping of BMF constructs to C-MPI.

Code for each BMF construct is generated using simple rules that map each
function to a block of C code. The monomorphic type specifications that accompany
each BMF function are used to guide storage allocation, message construction and
message decomposition. Minor issues arise from the need to separate declarations
and statements in some versions of C but these are easily dealt with.

The code generation phase can be divided into two major aspects. The first is the
generation of code for distributed parallel functions and the second is the generation
of code for the sequential, on-node, functions.

6.3.1.1 Distributed functions

Distributed functions are mapped to their closest analogue in MPI26. For example
a map is converted to a simple parallel code-block. F\rnction composition between

26Early experiments with the platform used by our implementation[lOl] indicate that in, at least
in some cases, there is little to be gained by writing custom operators in terms of send and receive.
Much, depends of course, on the underlying MPI implementation. Grove [66] has done much work in
sampling the behaviour of various constructs in various implementations. The quality of these vary
greatly. It is also possible, once we have established what the precise needs of our implementation
are, to write more specialised and efficient library functions than the robust, general-purpose calls
offered by MPI which may also make a sensible platform for our implementation.
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distributed functions is converted to a barrier-synchronisation2T. reduce is converted

to MPI-Reduce and scan is converted to MPI-Scan.

Messages are sent as generic blocks of data and efficient code is produced to

compose and decompose messages. The allocation of space for incoming and outgoing

messages is handled. on as-needed basis with dealiocation occurring as soon as the need

for the storage lapses. This memory management scheme, though not optimal, is a

reasonable one for message passing operations, which are heavyweight and expensive

enough to dominate their message allocation/deallocation costs.

6.3.1.2 On-node functions

Functions that execute on a single node are converted, using mostly simple rules,

directly to C code, Most vector operations such as map, reduce, scan' iota, select,

distl, distl, zip are represented as a loop.

In the current implementation, space is allocated for every function's output

value prior to its execution and the space allocated to its input is deallocated

after its execution. Addressing functions are converted into references into this

allocated space, cast to the appropriate type. This pattern of frequent allocation

and deallocatiôn leads to high memory management costs. We explore this problem,

and how it might be ameliorated, next.

6.3.2 Memory Management Costs

The memory-management scheme, described above, has the advantage of being simple

an¿ robust, with straightforward semantics and a simple garbage-collection scheme'

However, the frequent calls to nalloc and free that this scheme generates will incur

very significant run-time overheads.

To help quantify these overheads we ran a series of small experiments, described

in Appendix F, to estimate the average costs of allocation and deallocation relative

to the cost of executing a single instruction. FYom these experiments we derived

estimates of 100 instructions for each cail to nalloc and 70 instructions for each call

to free. Details are covered in the Appendix but it is worth noting that there is

much variation in these costs, with some calls taking much longer' In any case, the

a good reason for fusing distributed operations[62]. All
synchronisations the better. This type of optimisation is

2L7

27Tine cost of barrier-synchronisation is
other things being equal, the fewer barrier
a strong candidate for inclusion in future versions of the Adl implementation.
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costs involved with each call are such that they can significantly diminish performance
unless properly managed.

It should also be noted that, along with the raw cost of calls to nal1oc and free
our simple memory management scheme also further increases overhead in copying
structures into newly allocated memory, especially when large data structures are
involved.

Similarly large memory management costs have been encountered in other
domains. Perhaps the most relevant example comes from performance figures
collected from executing APL interpreters in Bernecky's description of the APEX
compiler [16].

The costs of memory management are typically near 20To of the total cost of
program execution in an 'interpreter. If we take this cost and transfer it into an
environment where a program is comp'iled, where we can expect other overheads to
be much smaller, this relative cost would rise dramatically. The interpreters tested
by Bernecky use a very similar memory management scheme to ours28. Clearly, this
is an issue that needs to be addressed in future versions of our implementation.

6.3.2.L Overcoming Memory Management Costs

High on-node memory management costs come from a strict adherence to the
functional semantics of BMF where values are not updated but created anew. These
costs are compounded in point-free form where no value can survive outside of a
function. Essentially, there is a mis-match between the programming model which
eschews the recycling of variables using update and the architectural model which
thrives on such recycling. Code generation must bridge this gap in the most efficient
way possible.

Fortunately, there is successful work to draw on in this area. The SISAL
compiler [55, 56] uses copy-elimination, reference count elimination and other forms
of update-in-place analysis to convert IFl, a functional form, into IF2, an imperative
form. These transformations are crucial to the efficiency of the, very effective,
Optimising SISAL Compiler (OSC).

Bernecky's APL compiler, mentioned earlier, produced SISAL target code partly
in an attempt to leverage the successful memory management of OSC. Interestingly,

2sBernecky, reduced these costs, in part, by exploiting the Optimising srsAl Compiler, which has
sophisticated strategies for reducing memory management costs.
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it was found that a mismatch in the primitive types of SISAL and APL meant that

substantial analysis had to be carried out by the APL compiler as well.

Walinsky and Banerjee's FP* compiler used a routing-function elimination

phase to generate efficient imperative code from an FP* program. All of these

implementations have made considerable gains in efficiency.

It must be noted that memory management issues have not been solved in

general for functional implementations and applications[72]. However, even with

these constraints in mind, there is reason to be optimistic of the prospect of very

significant improvements in memory management costs in our implementation before

problems needing a more advanced treatment become an issue. In short, the problem

of memory management in functional languages is non-trivial but work with SISAL

and APL has shown it can be tackled effectively for a large range of programs.

This completes the summary of the nascent code-generation process. We use the

information we have gathered from these investigations to form a realistic basis for

our simulator. Next we step back to review the performance of parallelised BMF code

on a simulated architecture.

6.4 Results
Thus far in this chapter we have described preliminary work on parallelisation and

cod.e generation. In this section we use a detailed simulator to gain some insight into

how effective the parallelisation process is. This section:

o describes the experimental methodology including a brief description of the

simulator

o compares the performance of parallelised translator and optimiser code;

o characterises the impact of different memory-management costs;

o demonstrates that this process generates speedup and points to where it can be

found.

The results of the simulation are accompanied by static analysis where appropriate'

We describe the simulation process next.
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6.4.I Methodology
our results for each program are obtained through the following process.

o Manual parallelisation of code, followed by

o Execution of the parallelised code on a detailed simulator.

The manual parallelisation step is carried out according to the parallelisation rules
from the earlier part of this chapter. The simulator warrants a more detailed
discussion at this point.

6.4.2 The simulator

The simulator is based on a detailed model of a distributed architecture built by Paul
Martinaitisf99]. The following parameters are configurable:

o The number of nodes

o The topology of the interconnect linking nodes

o The latency and bandwidth associated with each link in the interconnect.

o Message startup costs.

o The on-node cost of each primitive instruction

The simulator interprets parallel and sequential BMF instructions directly, mapping
them onto an underlying virtual distributed-memory machine. The costs of allocation
and deallocation form part of the total cost of executing each instruction. Routing of
messages between nodes is statically determined according to minimum cost functions.
The parameter values used for the experiments in this chapter are:

Interconnect: A 32-node cross-bar, and in one case, a 8x4 store-and-forward
mesh2e.

Latency: 5ps (5000ns) per-link including message startup costs3o

2eWe used two configurations test the simulator on more than one type of network.
30This is figure is quite low but some interconnects such as Quadrics' QS-1[96] better it, and

Myrinetl83] approaches it.
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Bandwidth: a peak bandwidth of Snsf byte is assumed. The effective bandwidth

measured by the simulator can, of course, be much worse when messages

are small. We assume that the maximum packet-size for the interconnect is

arbitrarily large, so effective bandwidth asymptotically approaches its maximum

as message size increases.

Instruction costs: one time unit for each primitive instruction plus allocation,

deallocation and copying costs. We have high and low settings for memory

management costs. Under the high setting we have a cost of 100 time units for

ailocation, irrespective of block-size and 70 time units for deallocation' Under

the low setting we have a cost of two time units for allocation and one time unit

for deallocation. The high cost setting simulates the performance of code with

no optimisation of memory management costs, while the low setting simulates

the performance after optimisation of memory costs31.

The cost of copying d.ata remains the same under both the high and low cost

models. When a distributed vector is copied, it is, reasonably, assumed that the

copying of elements takes place in parallel. Ideaily, the low-cost model would

minimise copying costs as weil as allocation and deallocation costs but such

minimisation requires further analysis to simulate in a sensible manner32.

The simulator also provides a detailed execution and communications trace

suitable for display in Paragraph[73] and is also able, to a limited extent, simulate

congestion on network links. \Me see some traces later in this chapter. The ability to

simulate congestion is not exploited here.

6.4.3 Experiments

We describe the outcomes of experiments on parallelised BMF code produced by the

following programs:

31The low-cost memory management setting is a compromise. The substantial costs of copying
data are still counted under the low-cost model. However this is somewhat compensated for by
the assumption that øll allocation costs are reduced under the low-cost model which is, a-priori,
somewhat optimistic.

32It should be noted that the simulator is written to avoid a reasonable amount of gratuitous
copying. The copying that does remain will probably require some contextual analysis for it to be

reduced.
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nap-maP-addconst.Adl a simple nested map, parallelised in the outer dimension.
We also run a small experiment with map-map-atan.Adl which has identical
structure but a more expensive operator.

sun.Adl a simple reduction. We also run an experiment with nss-reduce.AdI, a
reduction with a moderately costly binary operator.

mss.Adl equivalent to mss-reduce.Adl but performing a parallel scan instead of
reduce.

f inite-diff .AdI a one-dimensional stencil algorithm containing a whí1e loop

remote. AdI a simple convolution.

For each of these programs we compare the performance of translator and optimiser
code under both high-cost and low-cost memory management regimes. The data-sizes
used for experiments involving translator code are, by necessity, small due to the large
data structures created by translator code and some limitations of the simulator.
Additional experiments, involving only optimised code, are run, und.er both high
and low-cost memory management regimes, often for a variety of, somewhat larger,
data-sizes. Static analysis is provided where it helps the interpretation of the results.

It should be noted that, in terms of performance, experiments fall into three
groups.

1' map-nap-addconst.Adt and sum.Adl: these applications are very simple and
have low computation to communication ratios for all sizes of input data. These
applications are not expected to generate speedup on most distributed mernory
machines. These examples help validate the cost model and help set up the
descriptive context.

2. nap-map-atan.Adl, nss-reduce.Adr and mss.Adl: These applications have
higher computation to communication ratios that stay relatively constant as

input data grows. These applications will generate modest speedup on fast
distributed memory machines. Interestingly, if we extrapolate the performance
of processors and networks it can be expected that this modest speedup will
disappear over time as computing power continues to increase relative to
network bandwith.
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++lll.((+.(nr,2)")x.distt .(id,zr2)'.id) xlll .(distl) all .¿¡s1¡ll .(id,splito'id)'.id

(r)

+ lll. (+ . (ia,2)') * * xll .splitp

(b)

Figure 143. Parallelised translator code (part (a)) and optimiser code (part (b))
for nap-map-addconst . AdI

3. f inite-diff .AdI and renote.Adl: these applications have a computation

to communication ratio that grows as input data size grows. Given enough

data, these applications can generate substantial speedup on most distributed

platforms.

Measures for speedup are made relative to the speed of the same application

running on a single processor. So, for example, to calculate the speedup of paralielised

translator code running on a number of processors it is compared to the speed of

that same parallelised translator code running on a single processors3. Likewise,

parallelised optimised code is compared with itself on different numbers of processors.

The experiments are presented in rough order of complexity starting with:

naprap-addconst . AdI.

6.4.4 Experiment 1: nap-map-addconst . Adl

This program adds a constant to each element of a nested input vector. The structure

of the program is a simple, nested map'

Figure I43 shows the parallelised translator and optimiser code for

napiap-addconst.Adl. The parallelised translator code splits the outer climension

of one copy of the input vector into p segments, then distributes copies of the input

vector over those segments and then performs a parallel map over those segments.

The last stage concatenates the distributed vector back on to a single node.

33\Me use this measure for convenience. A slightly more accurate measure is obtained by comparing
the speed of the best sequential program against the parallel versions of the code. However, in the
experiments presented in this chapter, the difierence between this ideal measure and the measure

we actually use is small.

223
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Figure 144. Run-times of parallel translator and optimiser code for
mapiap-addconst . AdI on between 1 and 32 nodes of a crossbar-connected machine
with 32x32 input values under a high-cost regime (solid lines) and low cost regime

(dash lines).

The parallelised optimiser code splits the outer dimension of the vector into p
segments, performs a parallel map over those segments and then concatenates the
distributed vector back on to a single node.

In our first experiment, translator and optimiser code rü/ere run against a nested 32

by 32 value input vector utilising between I to 32 nodes under the high-cost and low-
cost memory management regimes. Figure 144 shows the run-times of translator and
optimiser code, on a logarithmic scale, under these regimes. Times for the high-cost
regime are plotted with a solid line and times for the low-cost regime are plotted using
dashed lines. At all points, optimiser code is several times faster than translator code,

due to the larger data structures allocated by the translator code and the consequent
costs of transmitting these structures in the distributed case. Moreover, the sizes of
intermediate structures in unoptimised code grow faster with respect to input data
size than corresponding structures in optimised code. That is, we can expect this gap
to grow with the size of input data.

Predictably, there is also a significant performance gap between programs running
under the high-cost and low-cost memory allocation regimes. This gap closes as the
number of nodes increases and communication costs start to dominate over memory
allocation costs. Most interestingly, the optimised code under the high-cost regime
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Figure 145. Speedup for optimised code for napilap-addconst . AdI applied to a
128 by 128 element input vector on between 1 and 32 nodes of a crossbar-connected

machine under both high-cost (solid line) and low-cost (dashed-line) memory
management regimes.

gives some speedup and the optimised code under the low-cost regime does not'

At it turns out, this is due to the poor ratio of computation to communication in

map-map-addconst . AdI. To verify this, when we increase the amount of computation

per-node by increasing the input data size to the optimised program by a factor of 16

we get the performance profile shown in figure 145. Even with this larger input data

there is stiil no evidence of speedup under the low-cost regime. Closer analysis of the

costs of the parts of the optimised code reveals why this is so. The computation done

by the body of the innermost maP:

+ . (id,2)'

takes 8z¿s to run. This code is fuelled by one word of data that, solely in terms of

bandwidth, takes 24ns to transmit. With such a gap between marginal computation

and communication costs, increasing the total amount of computation per-node will

result in a loss rather than a gain in performance due to paralielism3a'

3aNote that such bandwidth bottlenecks are well understood and have also been well studied in
a single-processor context. Using the terminology of Ding and Kennedy [50] the 8ns(8 instruction)
fi.gure repres ents program balance and the 24ns(24 instruction) figure represents mach'ine balance. In
a distributed context, the difference is the minimum marginal loss from distributing that computation

15 20
Number of Nodes
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+ lll. (atan) * * *ll .split,

Figure 146. Optimised code for napirap-addconst.Adl with atan substituted for
the original map body.

The unoptimised program, though less efficient in absolute terms, carries out a lot
more (redundant) computation per-\¡¡ord of transmitted data and, thus, can deliver
quite respectable speedup. Likewise, the high memory management cost regime can
also, to a large exbent, hide the imbalance. This stightly perverse outcome is well
understood, as noted by Rüde[122]:

For successful parallel computing it is helpful to parallelise the worst
sequential program one can find.

Speedup can only be attained for the optimised version of nap-map-addconst . Adl by
modifying our estimates of architectural parameters to increase either bandwidth or
average instruction costs 35.

If speedup is not easily attainable, under the low-cost regime, for the optimised
napiaP-addconst . Adl could speedup be expected from a similar program? The
answer is yes. If we modify the optimised code so that instead of an addition operation
the inner loop contains an approximating function such as atan to produce the code
in figure 146 we can attain some speedup as shown in figure I47.In this experiment
we assume that the cost of an atan operation is 64ns. This cost estimate, which will
vary from machine to machine, is comparable to the cost for atan on the Itanium
processor (circa 2001 [65]),

Only a small amount of speedup is manifest in figure I47. As with the original
naprap-addconst . Adl, bandwidth is the bottleneck. To see why this is the case rñ¡e

generalise for all programs whose basic structure, like that of rnaprap-addconst . AdI,
consists of a single split followed by a fixed-sized sequential computation on each node,
followed by a reduce with concatenate.

(16ns). In both a single-processor and distributed context, careful program design can ameliorate
but not eliminate the problem.

3sArchitectures with greater bandwidths than our model do exist. For example, the IBM Regatta-
H cluster has a bandwidth of over ZGB/Sec [67] between its closely connected nodes which translates
into a marginal cost of less than 0.íns/byte, over six times better than our model. Unfortunately,
such good performance is relatively rare and expensive. Increasing estimates of average instruction
costs also seems unrealistic, though we haventt considered any cache efiects that might increase
average instruction costs as the problem size increases.
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Figure 147. Execution time for program from figure 146 on between 1 and 32

crossbar-connected nodes on a 128x128 element input vector. The cost of an atan
operation is assumed to be 64ns.

The relative execution time of any parallel code: To relative to its sequential

counterpart: Tr is ft. For any parallel application where communication and

computation are not allowed to overlap the following (specialised from[lO]) holds:

! : a* (t , o) +t:o**' (61)
Tv P tcomp

Where:

o ,4 is the Amdahl fraction of the program, the inherently sequential portion,

o p is the number of processors,

o t"o* " is the time taken to perform communications'

o tcomp is the time taken to perform computations. It is the time taken to nrn the

parallel program on one processor. Most work, including this work, assumes

I 
-.11Lcomp - rl'
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In many parallel applications ,4 is either small or shrinks rapidly as the problem size
grows. For these applications, which includes all of those in the experiments in this
chapter, the following approximation serves well:

To -l , tto**"
r,= p* ä; (62)

t"o*, for the program in figure 146 is defined:

tcornp: t¿ns¿yca¡onrL (63)

where t¿r"¿, is the time it takes to execute one primitive instruction, co¡o, is the number
of instructions executed by atan (64) and n is the number of elements of input data.
In the previous experiment we assumed amounts of Lns,64 and 128 x I28 :16384
for these, respectively. t"o^*, is defined:

t"o**, : tht"n a -l tbanduid,th (64)

where, for the program in figure 146, running on a crossbar,

tlotun"a : (2logp)trinteJatencs (65)

and

tbandtuidth : (2 - ?l"B (66)p
where tt¿nt Jot"n"a is the link latency (5000ns in our model) and B is the amount of
time it takes to transmit an extra word on a link (24ns in our model).

If we substitute eqns (64,63,65, 66) into eqn (62) we get:

(2logp)t¿i"k_ratencs + (2 -f"1
I

T1 P
(67)

t¡ns¡¡C¿¡¿nIù

As both p and ?? grow the terms j and (2\ogp)t¿¿,k_ratency become insignificant, and
(2 - Ð approaches 2, leaving:

Tn 2nþ 2p
Ty t¿nr¡¡C¿¡onTù tinstrCatar¿

which in our experiment is: 48f64 giving a maximum speedup of: 1.33 which is in
line with the results in figure I47.In both cases the amount of speedup extracted is
small and asymptotically limited to a constant. It should be noted that this small
speedup is not an inherent property of parallel computation using map. If the amount
of computation inside the map body can be scaled up to swamp the initial costs of
distribution the benefits of parallelism can be substantial. This point is illustrated
soon in the discussion of the performance of f inite_diff .AdI.
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if( l.(0,#.¡rz)",
rz' ((tn'z1,+ ' (nr'1\,(7T2'lrt,7T2 ' zrz)')')')/ll'
(.((r1 .lrt,l. (*r. t-a,(iT2'trt,'7r2'nr)")")")l) xll '(distl) lll '¿¡t1¡ll,
g ' zrr)

.(id, splito . id)'

(o)

+ll.Glo) xll .splito

(Ð

Figure 148. Parallelised translator code (a) and optimiser-code (b) for su-m.AdI

as n and p become large the l,(Zlosùttink-ratencst and (1 - ÐP terms become less
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Figure 149. Relative performance of translator versus optimiser code for sum.AdI
applied to 5I2 input values on 1 to 32 crossbar-connected nodes under the high-cost

(solid-line) and low-cost (dashed-line) model of memory management.
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Figure 150. Speedup for optimised code for sr:n.AdI on l to 32 crossbar-connected
nodes under the high-cost (solid-line) and low-cost (dashed-line) model of memory

management with an input vector of 4096 words.
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significant leaving the approximation:
n nB p
T1 t¿nr¿yc,p¿11s'lL t¿ns¡ycptus

Substituting t¿ns¡ycprus : Sns and B : 24ns we get 24nsf3ns which gives an

asymptotic speedup of 0.125, clearly the smali size of the binary operation * precludes

any speedup for optimised sum. Adl on our model. Next we examine the performance

of reduce with a larger binary operator.

reduce with maximum-segment-sum The key factor contributing to poor

performance in the previous example is the small cost of the operation f compared

to the cost of distributing its data. The imbalance in the costs of computation and

communication can be improved, by improving the computation to communication

ratio. Such a situation arises when a slightly more computationaily expensive binary

operation is used, such O in the Maximum-segment-sum algorithm in figure 151.

Maximum-segment-sum calculates the maximum sum of any contiguous sub-sequence

of a list of numbers. The possible presence of negative numbers makes this operation

non-trivial. Computationally, the structure of maximum-segment-sum is a reduce

with a binary operator O over tuples, followed by a projection on the final tuple.

The source code for maximum-segment-sum with reduce is shown in figure 151,

while figure 152 shows parallelised optimised BMF code for mss-reduce.Adl'

The performance of this program, when run on varying numbers of processors,

with varying quantities of input data, under the low-cost model, on a crossbar-

connected machine, is shown in figure 153.

No point in the graph shows more than moderate speedup and this speedup does

not appear to be growing strongly with data-size. This observation is in line the

statically derived limit for this program running on a crossbar-connected machine,

given by substituting c6 : 190 into equation 68:

(2logp)t¿¿,re-ratency + ((1 - |)"9 + 0 - i) P
I9\t¿nr¡r(n - I)

With large p and r¿ the above can be approximated:
To* n0 13

T1 t9}t¿ns¡rn I9}t¿r"¡y

which for our architectural model is equal fo 24nsf l90n,s, giving a maximum speedup

of 7.9, in line with the performance measures shown in figure 153. Note that a cross-

bar is an ideal interconnect for a distributed memory parallel platform. If we move
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nain a: vof int
Iet

plus (x,y) := x + Ii
max (x,y) := if (x > y) then x erse y endif;
oplus ( (mssx,nisx,ncsx,tsx) , (nssy,misy,ncsy,tsy) )

(nax (nax (mssx, mssy) , plus (mcsx, nisy) ) ,
max (nisx, plus (tsx, misy) ) ,
nax (plus (ncsx, tsy),mcsy), tsx+tsy) ;

f x '=
let

nxO := max(x,0)
in

(mxO,nxO,mxO, x)
endlet;

f irst (mss,nis,ncs,ts) : = mss
in

first (reduce(oplus, (0,0,0,0),nap(f ,a) ) )
endlet

Figure 151. Source code for nss-reduce.Adl a program that calculates
partial-maximum-segment-sums over an input vector. The binary operator used is

oplus

nnr'
n lllv/ 

10,0,0,0¡"-
@/10,0,0,0¡.) xll '

((nr,nr,l.t,r2)" . (if(> .(id,0)', id,0), id)') * xll . splitp
uhere

O - if(> .(if(> .(t^r,t rz)",8 irr,8'î2))* . (trr,t n-¿)')',
if (> .(8211,8 rz)",8 i\j8 iT2),f . (trr,t rt)"),

if(> .(8zr'5, f . (t^u,t n¿)")o,8 ir¡,+ .(tru,t r+)"),
if(> .(+ . (trr,t Tz)",8 Ta)",
-F . (t*r,t rz)",8 ra),
-| ' (ttu,* rz)")"'
(nnt . nr,,n'rTr . if2)4 Ts . ift,n ny nr,n'rr2 . .tTL14 T4 . lTt,n nn' nr,n rs . rz)

Figure 152. Parallel optimised version of nss_reduce.Adl

o
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Figure 153. Speedup for optimised nss-reduce. AdI with various numbers of
nodes and data sizes on a 64 node cross-bar connected machine under the low-cost

memory management model.

to a more scalable interconnect, such as a mesh, we attain the performance shown in

figure 154. This performance, affected by longer latencies in a mesh interconnect.

It should be stressed that the above results do not preclude applications that use

reduce from exhibiting good speedup. Programs that:

1. have a long stage of parallel computation prior to a reduction or,

2. generate, as part of the parailel computation, most the data to be reduced on

each node.

can usefully exploit large amounts of parallelism. Experiments 4

(f i-nite_aiff -iter.AdI) and 5 (renote.Ail), described shortly, fit these respective

categories.
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Figure 154. Speedup for optimised mss-reduce. Adl with various numbers of
nodes and data sizes on a 64 node mesh-connected machine.

6.4.5.L Experiment 3: Scan with maximum-segment-sum

For any given operator, scan is more communications-intensive than reduce. Here,
v/e use the best parallelisation scheme for scan (described on page 205) to parallelise
both translator and optimiser code for mss.AdI (shown in figure 98 on page 159).

The parallelised version of the optimiser code for nss. AdI is shown in figure 155 (the
parallelised translator code is substantially longer).

Figure 156 shows the execution times for translator and optimiser code under both
the high-cost (solid line) and low-cost (dashed line) models of memory management
on between 1 and 32 crossbar-connected nodes. As with previous experiments,
the optimiser code is substantially faster than the translator code running on
the corresponding memory management model. However, the cost of memory
management weighs more heavily in this example than in previous ones. In fact,
the cost of the optimised code for nss. AdI on a single node, under the high-cost
memory model, exceeds that of the corresponding unoptimised code under the low-
cost memory model. This is probably due, in large part, to the amount of local
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++ ltt .((azr1)*) xll 'r.
(ellt .ini,t .(last)*ll, id)' .(e¡¡ *tt .

((('"r ,'nr,'ir1.,2 r2)"' (if (> '(id,0)', ¡d,0), id)")*) xll 'splitsz
uhere

O
g

o
tai,l
init
last

execution time

107

106

1os

L
10'

from preu'ious erample
a¡ ll . (split r.l . ("nr,O)', (O) *ll .tipll . ('nr,ta'il .2 rz)")"
(O) x .distl . ('nr,' nr)"
selectll . (¡d, (+. (1, id).) *.iota .- .(#.id,1)')'
selectll . (id, iota . - . (#, 1).).
!.(¡d,-.(#,1)')'

20

Figure 155. parallelised optimiser code for nss . AdI

5 10 15

nodes

25 30

Figure 156. Execution times for translator and optimiser code for nss . AdI under
both the high-cost (solid line) and (low-cost) models of memory management. The
execution times for translator code are the two upper iines and for optimiser code

the two lower lines.
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Figure 157. Speedups for optimised code for nss.Ad1, running under the high
(upper curve) and low-cost (iower curve), memory model when applied to a 4096

element input vector.

copying generated by the detailed code in the parallelised version36 of nss . AdI in
both optimised and non-optimised code. The high-cost memory management model
magnifies this copying cost. Note that the relative cost of the optimised code drops
as more nodes are used and the low communication costs of the optimised version
become an important factor.

Reasonable speedups are attained under all regimes, except the optimised code

under the low-cost model (bottom line), which shows negligible speedup.

Figure 157 shows the speedups for optimised code, running under the high and low-
cost, memory model when applied to a 4096 element input vector. Speedup under the
high-cost memory management model is moderately good. Speedup under the low-
cost model is still quite poor. The speedup evident in the higher curve is attributable
to the extra computation costs imposed by the high-cost memory management regime,

which will be significantly reduced when memory management costs are optimised.
Figure 158 takes the low-cost curve from figure I57 and compares it with

corresponding costs for input data vectors between 256 and 8192 elements long. As
with mss-reduce. AdI the speedup does grow with data-size but not at a particularlv

I

6

4

2

0
205

36In this case the parallelised version running on a single node.



CHAPTER 6, PARALLELISATION A¡üD TARGETTING 237

speedup

3

2.5

1.5

0.5

8000

6000

4000 nodes
datasize (words) 2000

Figure 158. Speedup of the optimiser code for mss . AdI when run on between 1

and 32 crossbar-connected nodes and between 256 and 8192 element input vectors.

fast rate. Worthwhile speedups are not going to be attained under the low-cost model

by simply increasing the data-size.

The modest speedup is, again due to the relatively high cost of inter-node

bandwidth, caused by the low ratio of computation to communication in this problem.

If we compare figure 153 to figure 158 we see the performance of the second is slightly

worse. This is due to scan, even when implemented using a good strategy, generating

more communication than reduce. The modest difference between these graphs is

testimony to efiectiveness of the strategy for scan37

The fundamental problem with nss. Adl and the other programs we have described

in our experiments, thus far, is that the ratio of computation to communication is

37This indirectly highlights a weakness in the use of virtual processors. With virtual processors,
partitions are all of size one, so the strategy of transmitting only the upper value of each partition
to the neighbouring partition is of no benefi.t.

2
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256
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main a: vof int
1et

addonex:=x+1;
first (x,y) := x;
ia := iota (#a);
f (xs,y)

let
1xs := #xs;
stencil x := xslx + xs!((x-1) nod lxs)

xs! ((x+1) nod lxs);
nxs := map(stencil,ia) ;

ny := addone y
in

(nxs,ny)
endlet;

P(xs,Y):=Y120
in

f irst(white(f ,p, (a ,0)))
endlet

238

+

Figure 159. f inite-diff .Adl an Adl program to perform a simple
finite-difference computation.

a constant, irrespective of grain-size. Computations in this category are bandwidth-
Iimited in their parallel performance.

6.4.6 Experiment 4: f inite_dif f _iter. Adl

In this experiment, and the next, we test programs where the ratio of communications
to computation improves with increasing problem size.

One way to achieve a healthy computation to communications ratio is to iterate
over pre-distributed data, performing computations on, mostly, Iocal data during each

iteration. Figure 159 shows the source-code of finite-diff-iter.Adl, a program
that fits this desirable pattern of computation38. The loop body is a simple one-

dimensional stencil operation, with each element performing a simple calculation
based on its own value and its left and right neighbours.

38This program is a modified version of f inite-dif f .AdI shown in figure 100 in chapter 5. The
important difference is the stencil operation is embedded in a while loop. The body of the while
loop avoids the use of iota to allocate a new vector f inite-diff .AdI as this would be a moderately
expensive operation in a distributed context.
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1TL ' '1Tz

( ¡d,
n2 .while( ( zr'1,

(nr.nr,rz)" . id ' (id, *'(nr,l)' ' (id, 7rz'1rz 'zr¡ n r)')''
(id, r-¡ /ll'

((+' ( +' ( !' (nt' irz' irt' 1Tt,7T2)" )

! ' (tr '1rz'iTt'7r1, mod ' (- ' (nr,\)",ny nr)')")',
I . (rr . 7Tz .'rr¡. 7r1, ffiod . (+ . (nr,L)",irz ' rr)")')')*) xll '

(distl) sll .¿¡51¡ll . (id,12.nr . rr)o)' . (id,,# .rr.rz)")"
< .(ny T2,20)")'

(id, (zr'1,0)')")" . id . (id, splitr ' iota ' f id)'
(o)

# ll 'nt
while( ( tnr,

(((+ ' (+ ' t r, r2)")x) *ll '
(zip) *ll .zipll . ((rip) all .7¡pll .(tr,., rshi,ft)",tshi,ft)"
(tnr,n,'t nr.,# 't nr)",
* ' (*r 't tr, 1)")')"'

(nr,n, ' zz, (1r2, id)' ' zr2)",
1 '(nr,20)" .12)

(id, (2r1,0)')' . (split, . id, splito . iota ' f)"
(b)

Figure 160. Parallelised translator code (part (a)) and optimiser code (part (b))
for f inite-dif f -iter. AdI

Figure 160 shows parallelised translator code (part (a)) and optimiser code (part

(b)) for finite-diff-iter.AdI. The translator code relies on indexing functions (!)

to extract the desired vector elements for each stencil operation. A parallelised distl

operation is used to transport copies of vectors required by these operations. The

main index vector, generated by the iota function, remains distributed throughout

the loop. Aside from the myriad of addressing functions the translator code is quite

straightforward but the distl operations exact a cost in terms of efficiency.

The optimiser code, in part (b) of the figure, splits both the index vector and the

input vector. The select functions that resided in the loop body have been replaced

by code for lshi,ft and rshi,ft. These functions contain detailed hand-generated BMF

code implementing a parallel circular-shift3e. In future, these functions are likely be

3sAt the time of writing, distrselect is not implemented on the simulator
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Figure 161. Parallel translator and optimiser code for 20 iterations of
f inite-diff-iter.AdI under both the fast and slow memory-management regimes

on between 1 and 8 crossbar connected nodes with 256 input values

replaced by specialised primitives.
A-priori we would expect the optimiser code to run faster because it performs less

communication inside the loop. This is borne out by figure 161. Due to the time
taken by the simulator to run translator code, the number of processors was limited,
to eight and the size of input data was limited to 256. The number of iterations
of the while loop was fixed at 20. The top curve, is the performance of translator
code under the high-cost memory management regime. As with previous examples,
speedup is good, again due to a high computation to communication ratio. The
second-from-top curve shows the performance of translator code under the low-cost
memory management regime. The third curve is the performance of optimiser code
under the high-cost memory-management regime. This code shows a substantial,
though not overwhelming improvement over the corresponding parallel translator
code. It may be that the data-size is too small to open up a substantial performance
gap. The bottom curve is the performance of the optimiser code under the low-cost
memory management model. This code is, by far, the most efficient but it also exhibits
the lowest speedup. As with previous examples the low speedup is attributable to
the low computation to communication ratio in this program at this small data-size.

8762
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Figure 162. Speedup for f inite-diff -iter.Ad1 executing with 20 loop iterations
for 1, 2,3, 4,8, 16 and 32 crossbar-connected nodes on different data-sizes.

Fortunately, in the case of f inite-diff -iter.Ad1, this ratio improves substantially

with data-size.

Figure 162 shows the speedup for finite-diff-iter.AdI running under the fast

model of memory management for a range of data sizes. The cost of running

the simulator made it impractical to collect as many data-points as in previous

experiments, but a trend is still discernible. The curve is much steeper, and the

absolute speedups are much greater, than for the previous examples in this chapter.

Note that the curve slowly levels off both in the direction of increasing nodes and

of increasing data-size. This levelling-off is explained by the fact, that even for very

large data, for a fixed number of iterations, there is a limit to speedup attainable for

finite-diff. AdL
The existence of this limit could be demonstrated through static analysis, as

with previous examples, but a strong intuitive understanding is gained by comparing

traces for different input data sizes. Figure 163 contains two space-time traces for

parallel optimised f inite-diff -iter.Adl, running on 32 crossbar-connected nodes,
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Figure 163. space-time traces for parallel optimiser code for
f inite-diff -iter.Adl running on 32 nodes of a crossbar-connected machine under

the low-cost memory management regime. Part (a) is the trace for a 5I2 element
input value. Part (b) is the corresponding, scaled-down, trace for a 1024 element

input value. Note that as the size of the input value increases the relative
significance of the loop (the central part of the trace) decreases.
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collected. by the simulator. Time is on the horizontal scale and node numbers a e on

the vertical scale. Inter-node communication is represented by angled lines. In both

diagrams there is substantial communication at the start and the end of the trace

as the initial array is distributed,aO and re-coalesced. There are smaller amounts of

communication in the loop as single values are sent between adjacent nocles in an

end-around pattern by the lshift and rshi,ft functions. The horizontal lines in the

traces represent receive-overhead and computation. Part (a) is the trace generated

for an input array of 512 elements. Part (b) is the trace generated for an input array

or L}24elements. The length of the second trace was scaled down by a factor of more

than two for the sake of comparison. Ideally, with increasing data-size, the cost of

computation, relative to the cost of communication, should increase. Unfortunately,

this is only the case for the code executing instd,e the central loop. outside of the

loop the relative cost of communication is slightly more for part (b) than part (a)' In

fact, the relative significance of the loop in the program has decreased in line with the

decreased relative cost of communications inside the loop. This change in the relative

significance of communications inside and outside of the ioop can be clearly seen in

the processor-utilisation charts in figure 164. These charts are derived from the sarne

traces as the charts in figure 163. The bright gïeen a eas repïesent compute-timeal '

The vertical green bars represent the useful computation that takes place between

invocations of bhi,ft and rsh'ift inside the loop. These bars are much thicker in part

(b) than part (a). with large data, computation-time dominates the loop' outside

the loop, the relative size of the red and yellow areas are not at all diminished by

increasing data-size. They grow and shrink stubbornly in tandem with the input data'

However, they are fixed, with respect to the number of iterations in the loop. If the

central loop had 1000 iterations, rather than five, then red areas at either end would

be dwarfed by the mostly-green area in the middle. In summary, utilisation inside

the loop increases with the size of input data, and the relative significance of the loop

grows with the number of iterations. Taken together, these two observations mean

that very good. speedup can be attained for f inite-dif f -iter ' Adl by a combination

of large data and a large number of iterations'

40In fact, two arrays are distributed.
There is scope for piggybacking of these
paralleliser can adclress.

4lwith perfect speedup the whole graph would be green

One corresponding to each instance of split in figure 160'

communications; something which futttre versions of the
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Figure 164. Processor-utilisation (Gantt) charts for parallel optimiser code forf inite-diff-iter.Adl running on 32 nodes of a crossbãr-connected machine underthe low-cost memory management regime. Part (a) is the trace for a 5r2 elementinput value' Part (b) is the corresponding, scaleà-âo*.r, trace f'or a 1024 elementinput value. Red areas represent idle processor time, yellow areas represent
receive-overhead, green areas repïesent actual compute-time.
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nain a: vof int
let

fx
1et

add(x ,Y) := x+Yi
abs x := if x(0 then -x else x endif;
dist Y := abs(x-Y)

in
red.uce(add, 0, maP(¿ist, a))

endlet
in

nap(f, a)
endlet

Figure 165. Source code for renote.Adl'

6.4.7 Experiment 5: remote . Adl

This, final, example describes an application performing a convolution where evely

value in an input vector must interact with every other input value. Intuitively, there

are two things that we might expect to see from such an application

o Relatively good performance of translator code due to a match between the

distribution performed in the application and the distribution performed by

translator.

o Good speed.up, given a large enough grain size, because one copy of an array

sent to each node is enough to fuel a large amount of local distribution and

computation.

Figure 165 shows the source code for remote.AdI, a proglam that calculates the sum

of the absolute difference between each value and every other value in an input vector'

As an example, if remote . Adl is given the input vector 17,2,3,4, 5] its output will be

[10,7,6,7, 10].

Figure 166 shows the parallelised translator and optimiser code for renote.Adl'

The translator code (in part (a)), as with all translator code, distributes all values

in scope to each function. This leads to unnecessarily detailed code and inefficient

execution. The optimiser cod.e (in part (b)), still performs some distribution, albeit of

smaller values, using either a combination of repeat and zip or distl. This distribution

is required by the problem being solved, a convolution'

245
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reduce-erp : |f (+ .(0,,# .nz)",O/ . distl, g . *r)
O : t.(nt,.r2¡r2. nr)o .(nt n1.,(nr nr,rz.rz)")")"
abs : if (< .(tr2,O)" , u - .rz, rz)

: prim'itiue operat'ion (unary m,inus)
: - . (nr.irL,r2)"

(")

t+ ltt'

246

l+ lll .(reduce,-erp.(id, (øös .(id,m,inus).) x.distl .(id,r1).)..id) x xll
(distt) all .¿¡s¡ll . (id, sptito . id)"
where

u-
rnxnus

Figure 166. Parallelised translator code (part(a)) and optimiser code (part (b)) for
renote. AdI.

Figure 167 shows the relative performance of translator and optimiser code for
renote . Adl. Both translator and optimiser code was applied to an input vector of 320
elements under both the fast and slow memory management models on between one
and eight crossbar-connected nodes. In contrast with previous examples, reasonable
speedup is attained under all four combinations of conditions. This may be due to
the relatively large input vector42 and/or the parallelism inherent in the application.
The top two curves represent the performance of translator code under the slow
memory management regime (solid line) and the fast memory management regime
(dashed-line). The bottom two lines represent the performance of optimiser code. The
gap between the optimiser and translator code under the slow memory management
regime is significant but not extreme. This is consistent with our intuition that a
certain amount of distribution is inherent in this application and not liable to be
optimised away.

It remains to be determined if the good speedups exhibited by optimiser code
persist when more nodes are utilised. Figure 168 shows the speedup gained by
running the optimised version of remote.Adl on between one and 32 nodes of a
crossbar-connected machine under both the fast and the slow memory management

42320 elements is large for this problem because of the way the vector is copied in renote. Adl
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Figure 167. The performance of renote. Adl running on between one and eight

crossbar-connected nodes with 320 input values. The top two lines represent the

performance of the translator code und,er the high cost (solid iine) and low cost

(dashed line) memory management models' The bottom two lines shows the

càrrespond.ing performance of the optimiser code under the high and low cost

memory management models'

model with an input vector of 320 elements. Under the high-cost model speedup

is very ciose to linear for the whole lange of processors' The low cost model has

near linear speedup for small numbers of processors but levels off for larger numbers'

This levelling-off appears characteristic of the impact of a slightly low and decreasing

computation to communication ratio, For renote . Adr this ratio can be improved by

increasing the data size. we would expect to see better speedup at higher numbers

of nodes for input with larger data.

To test this relationship v/e Ian a series of experiments with various data sizes to

plot the surface seen in figure 16g. For 32 processors, speedup grows quite rapidly

with data-size. For smaller numbers of processors this growth tails off as the speedup

gets closer to the maximum potential for that number of processors43' This data

indicates that good speedup is achievable, for a given number of nodes, if enough

input data used.

This completes the presentation of our experimental results' The next section

reviews related. work and, after that, the find'ings of this chapter and future work are

43Because the model does not take into account on-node cache performance' and virtual memory

performance there is no scope
machines.

for achieving speedup beyond linear speedup as there is on some real
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Figure 168. Speedup for renote.Adl running on between l and 32 nodes of a
crossbar-connected machine. The upper curve shows the speedup under the

high-cost memory management regime. The lower curve shows the speedup under
the low cost regime. The input vector was 320 elements long.
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Figure 169. Speedup for renote. Adt running on between 1 and 32 nodes with
input data between 64 elements and 44g elements.
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presented.

6.5 Related work
Related work can be, very roughly, divided into work related by the use of

transformations and work related by the use of parallel skeletons. There is substantial

overlap, so some work mentioned below straddles both categories'

Related transformational work The use of equational transformation as a

means of developing efficient parallel functional programs is not a new concept'

Backusfl3] cited amenabiiity to parallel execution and algebraic transformation as two

strengths of functional programming. Proponents of functional programming models

such as Algorithmic Skeletons[42], Divacon[28], MOA[70] and Scan-Vector[92] have

emphasised the desirability of equational transformation as a tool for programming

and program optimisation.

The use of equational transformation for parallel programming in BMF is

relatively common. A number of authors[126, 58, 35, 103] have highiighted the

usefulness and generality of BMF as a medium for parallel programming. Gorlatch

et. al.[64,63] and Hu[78](summary) have explored mechanisable formal methods for

improving the performance of BMF programs with implicit parallel semantics.

A smaller amour,t of literature is devoted to the problem of algebraically

propagating explicit paraliel functions into an extant BMF program. Skillicorn[127,

12b] outlined a technique where parallel operations can be progressively added to a

BMF program with no net change to its semantics. The parallel operations have two

interpretations:

o A functional interpretation (input to output mapping) which allows the

operations to appear in the mathematical equalities used to algebraically

transform programs.

o A separate parallel interpretation which describes the affect of the operation on

a distributed architecture.

A similar method of derivation was also developed by Roe[120] to help target programs

to both SIMD and MIMD architecture types. Partitionings can be generalised to

arbitrary complexity and. arbitrary datatypes. Pepper et. al[109] describe general

249
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schema's for partitioning. Jay[86] allows quite general decompositions of matrices in
his proposal for the GoldFISh parallel programming language. The parallelisation
process defined in this work is strongly influenced by the above work of Skillicorn and
Roe.

In other, related, work Skillicorn and Cai[128] refined the derivation process by
adding cost annotations to identities involving parallel operations. The annotations
form part of a static cost model for making estimations of the efficiency of code
while the parallel program is derived, Currently, the parallelisation process for the
Adl project does not make use of a cost model, though the simulator used in our
experiments provides a detailed dynamic model that a developer can use to tune the
parallelised program.

Related skeletons work The idea of using algorithmic skeletons for the expression
of parallelism was proposed by Murray Cole[3a]. The Adl implementation exploits
skeletal parallelism. The following contrasts the Adl implementation with three extant
Skeleton implementations, SCL, the Anacleto compiler (P3L), and the more recent
FAN Skeleton framework.

SCL (Structured Coordination Language)[43] focuses on the use of functional
skeletons to coordinate communications between program components written in
other language. Much emphasis is put on ensuring that data is aligned and
transported to its required location. Parallelism and communications are more
explicit in SCL than Adl meaning that more has to be specified by the programmer.
On the other hand, there is more flexibility in the partitioning and alignment of data
in SCL than Adl.

Anacleto[3l], the prototype implementation of P3L[41] supports task and control
as well as stream and data-parallel skeletons. P3L has a more explicit constrained
indexing scheme for access to vectors inside the nap skeleton than Adlaa. Anacleto
uses compile-time performance-analysis of code to drive aspects of the partitioning
process4s' P3L supports static arrays of fixed dimensionality and size. Adl supports

aaln the main, it is the responsibility of the programmer to give the compiler a description of
the values required within each invocation of a data-parallel construct, through parameter lists
and annotations speci$ring the scattering, broadcast and multi-cast of array values. In Adl, the
programmer is able to reference any value in scope at will. It is the compiler's task to rationalise
the transport of these values.

asThis amounts to a well-defi.ned and constrained, iterative transformation process. More detailed
transformation strategies were also explored using P3L as a medium[4].
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dynamic nested one-dimensional arrays (vectors). Another significant difference is

that P3L is built around an imperative core of C-code. Programmers are able to

recycle variables so storage management issues that arise with the Adl project do not

arise so readily in P3L.

The FAN skeleton framework[5] provides a source notation and an extensible

library of transformations for the development of skeletal parallel programs. The

source notation is more explicit in its depiction of data dependencies and of parallelism

than Adl and has a richer type system. The FAN transformational system is

interactive which gives it broader scope, along with more exacting requirements

including the need for a cost model46, than an automated paralleiisation system of

the type found in the Adl project.

6.6 Conclusions and Future ïvork

This chapter described methods for the parallelisation of point-free BMF code

and discussed issues that arise when targetting parallel code to a real distributed

architecture.

The effectiveness of the parallelisation process v¡a,s demonstrated through a

detailed simulation of the performance of a number of parallelised example programs.

It was shown that a good level of performance is attainable through the application

of the parallelisation process.

Early prototype implementations of the paralleliser and code-generator have thus

far borne-out the findings of this chapter.

There is scope for incremental improvement of the Adl paralleliser and code-

generator. First steps will involve the completing and refining early prototypes for

these stages. Other useful developments are in rough order of priority are:

1. Improved memory-management for generated imperative code'

2. The use of a cost-model to assist with some parallelisation decisions.

46an interesting observation is that under the FAN cost model, mostof the transformation rules
presented improve programs under all circumstances. Such unconditionally beneficial rules might all
be applied automatically prior to the application of conditional rules but, because the transformation
system is not confluent, such an approach may preclude the flnding of an optimal version for each
program.
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3. A new fine-tuning stage to incrementally improve parallelised code using
conditional transformations coupled with a cost model.

4. The introduction of parallelism within alltup functions

5. The introduction of nested parallelisation.

6. Facilities for tracing the parallelisation process and the efficiency of code during
its development.

7. Allowing more general block-decomposition of nested vector dar,aaT .

The first of these changes has the most potential to immediately improve performance
and, thus, has the highest priority. The second and third changes add a fine-tuning
stage to the parallelisation process. The fourth change exploits parallelism on the
second aggregate data type. The fifth change extends the existing parallelisation
process to deeper levels. The sixth change introduces facilities for debugging. The
Iast change may involve the introduction of new datatypes to the source language.

This concludes our discussion on the parallelisation process and the details of the
Adl implementation in general. The next chapter summarises and puts into context
the findings of this work and points the way to future endeavours within the context
of the Adl project.

aTPerhaps through the agency of a new type for multi-dimensional arrays but possibly through
nested parallelism combined with judicious mapping of abstract nodes to hardware nodes.



Chapter 7

Conclusions and F\rture work

This report described a compilation process which maps a simple functional language,

through point-free BMF to d,istributed parallel code. The first three chapters

provided, respectively, an overview of the process, a description of the source

Ianguage, Adl, and a deflnition of the point-free BMF dialect used as an intermediate

form. The fourth chapter defined. a translator from Adl to point-free BMF. The

fifth chapter described an efiective global optimisation plocess working via the

systematic application of local re-write rules. Finally, the sixth chapter described

a parallelisation plocess and analysed the performance of parallelised code under

different assumptions.

The findings relat:ng to this work have been described in these earlier chapters'

We provide a summarY here.

7.L PrimarY findings

It has been shown that the compilation process is effective in rationalising data

movement in a number of programs and producing ploglams exhibiting good speedup

on a simulated distributed architecture with reasonable performance parametersl.

This finding is a proof of concept of the utility of point-free BMF notation and

transformations as a med,ium for optimisation and parallelization.

Another observation, reinforced by this work, is that it is too costly, in a

distributed context, to copy every value in scope of a distributed function to each

lEarly work on a prototype code generator to C-MPI on a

is achievable on real architectures.
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node executing that function. This is widely understood and there are a range of
strategies empioyed by different implementations to rationalise the amount of copying.
For example, complementary studies within the Adl project [54] copied only scalar
values unconditionally and allowed random access to remote vector elements at run-
time, thus transporting only the vector elements actually referenced. Copying can
also be reduced by prohibiting references to free variables in functions embedded
in skeletons, as is done in EL*[117], or by having the programmer express data
distribution requirements in some explicit manner, a strategy used by p3L[31] (among
others). Our work reduces the overhead of copying by performing a novel kind
of dataflow analysis where a wave of generated code expressing the precise data
needs of downstream code is propagated backwards through the pïogram. When
analysing references to vector elements it is often impossible to statically determine
which elements might need to be copied. In our implementation, such references
are integrated into a d'istributed-select operation that performs the random access
specified by indexing operations in a consolidated fashion at runtime.

Another contribution of this work is the definition of an automaú,a'c process to
convert implicitly parallel BMF to explicitly parallel BMF via the propagation of
a split construct upstream through the code. At this stage, a preliminary prototype
implementing this process[146] has been successfully applied to a number of programs.

7.2 Secondary findings
Several secondary observations arise from our work on this implementation

7.2.L Incremental transformation offers advantages
The first of these observations is that the methodology of incremental transformation
does appear to make semantics preservation simple in practice by:

1. allowing semantics-preserving rules to be added, and tested, incrementally and

2. making errors in transformation rules relatively easy to track d.own, in part due
to the above point, but also because the transformation process consists of small
transparent steps2 rather than large opaque ones.

2 that can be traced in the debugging environment provided by centaur
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7.2.2 catch-all rules, if overused can lead to poor

performance

A second observation concerns trade-offs occurring through the use of catch-all rules

to provide d,efault behaviour for code yet to be handled, during the construction of

the optimiser. The primary ad.vantage of catch-all rules is that they allow a partially

complete rule-set to be tested on programs containing code not yet explicitly handled

by that rule-set. The main drawback is that the lack of processing that a catch-

all rule entails creates a potential performance bottleneck from the code it fails to

process. If the catch-all rule in question happens to be in a normalising rule-set

then the impact of the bottleneck can be amplified by the subsequent application of

other rule-sets which, typically, fail to properly optimise the code that has not been

properly prepared by the normalising rule-set'

As a general observation, catch-all rules are a valuable mechanism for allowing

rule-sets to be constructed and tested incrementally, but the bottlenecks that catch-

all introduce can obscure the performance benefits that the other rules in the set

might introduce. said another way, rules can be introduced and tested incrementallv

but we should not expect to observe most of the improved performance they generate

until explicit rules, to handle all code of interest, are in place'

7.2.3 The importance of normalisation

A third observation is the importance of normalisation during the compilation

process. The diversity of source-cod.e, coupled with the changes wrought over time

by incremental transformations, can result in an unmanageable case explosion' To

avoid this problem, we developed rule-sets with the sole purpose of making code

more predictable. The normalisation plocess is assisted by BMF's amenability to

transformation. Rule sets that performed normalisation were employed to remove

superfluous identity functions, to associate binary function compositions to highlight

functions of interest, and to reduce the length of sequences of composed functions

(compaction). Armed with the assumptions enforced by normalisation, the task

of subsequent rule-sets is much easier. It should be noted that to be effective,

normalisation must be applied frequently, at the cost of extra compilation time'

For most scientific applications' we believe, that the trade-off between effective

optimisation and extra compilation time is worthwhile.
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7.2.4 complex transformation rules are best avoided
A fourth observation, strongly related to the above, is that complex rules, designed
to handle diverse code, are best avoided. Complex rules are more difficult to verify
and maintain than simple ones. We found that it is, generally, much easier to use
normalisation to reduce the diversity of code and thus reduce the need for complex
rules to handle that code3.

7.2.5 Observations relating to Centaur
Our prototype implementation is one of the larger scale applications of the
Centaur system[24]. The Centaur system is an integrated prototyping environment
specialised for defining language processing components using Natural semantics.
Very substantial support is also provided for parsing, debugging and pretty printing.
We used Centaur very heavily, using it to implement the parser, several pretty-
printers, the translator and the optimiser for our prototype. In early stages of the
project we also used Centaur to implement a simple typechecker and interpreter.
We have gained considerable experience in using this system and some observations
follow.

Natural Semantics is a good medium for describing compilation Natural
semantics allows a process to be described using sets of inference rules working over
objects of defined type. Such rules provided a good substrate for expressing our
processes quickly and succinctly. Once ideas are expressed in these rules Centaur,
with little extra effort, can turn them into a working prototype.

some compromise is required to produce an efficient prototype The
simplest way to express ideas in Natural Semantics, and in almost any other
programming medium for that matter, is to write rules in a purely declarative manneï
with little regard for efficiency. Unfortunately, we quickly found that overheads
from backtracking were such that little useful computation could be done without
compromising the structure of the rules for the sake of efficiency. Our final prototype
is tolerably efficient but some of the originar elegance of the rules is gone.

sThe application of this principl e of: change the cod,e not the rules is made easier to implement
by the innate transformabilitv of BMF code.
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Centaur can take a very long time to fail The logic engine underpinning

Centaur's implementation of Natural Semantics is Prolog' As with any Prolog

implementation this engine is reientless in pursuit of potential solutions even when

no soiution exists. smali bugs in soulce code or in rule-sets often lead to the system

spending large amounts of time engaged in backtracking' To avoid this problem

we introduced more guards into our rules to prevent them being spuriously applied

and, occasionally employed. a non-logical constru cL once to prevent backtracking by

allowing only one attempt at the proof goal forming its argument.

The centaur environment is very useful The infrastructure provided by

centaur was very useful in this project. In particulal' we used the semantic debugger

very heavily. we also made heavy use of the pretty-printing faciiities for both

viewing programs on-screen and for dumping concrete syntax to files for further

processing/analysis.

7.9 Rrture \Mork

There is much scope for future work. of the highest priority is the development of a

phase of code generation to optimise memory management' such a phase will, where

possibie, utilise existing techniques to avoid allocation and copying such as those used

in the SISAL[56, 55] and FP*[144, 145] compilers'

New features can be added to the Adl language to including the introduction

of true multi-dimensional arrays to provide more flexibility in partitioning data and

some support for recursion can be added to provide a greater level of expressive power'

On the implementation side, there is scope to provide support for nested

parallelism. There is also potential to add instrumentation to the optimisation

and parallelisation processes to provide a trace of its progress' such a trace can

be combined with a static cost model to measure the impact of optimisation and

parallelisation at various stages.

There is also scope to explore the targetting of point-free code to aiternative

platforms. In this work, our focus lvas on tightly coupied distributed memorv

architectures. Emerging on-chip parailel platforms such as Explicit Data Graph

Execution (EDGE) architectures[26, 133], a-priori, offer opportunity for exploiting

parallelism in point-free notation at a fine-grained level'
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Finally, the compilation methodology used in this work ofiers great potential. The
systematic use of local rewrite rules to propagate changes of global scope provides
advantages in terms of flexibility and transparency. The use of normalisation is key
to the effectiveness of this process. There is scope for improving and extending the
definitions of our compilation process. First, by the reuse of rules can be enhanced
by the separation of rewrite rules from the strategies for their application. Systems
such as Stratego[139] support such separation. Second, by the use of more formally
defined syntactic interfaces between transformation components, in a similar manner
to1138]. The use of interfaces in particular offers the prospect of enhancing a compiler
by simplifying the incremental addition of new modules.

In summary, the implementation described in this work has demonstrated good
performance in its application domain. We have only just started to explore the
potential of point-free form as a medium for compilation, and to develop the
techniques necessary to expioit this potential. There remains much interesting work
to be done.
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Glossary

This report d,efined. a number of new terms and used, in a specialised context' a

number of existing terms. This appendix lists new terms and puts others into context'

All terms are listed in alphabetical order'

address function: Any BMF function that references an element of a tupie' All

address functions are written ^rn where rn is the arity of the input tuple and

r¿ is the element of the tuple being referenced'

aggregate function: Any function over an aggregate type or returning an aggregate

type. maP is an examPle.

aggregate type: A vector or a tuple type'

alltuple: A second. order function that applies a tuple of functions to copies of an

input value, returning a tuple of results. sometimes called alltup or written

(...)".

allvec: A second order function that applies a vector of functions to copies of an

input value, returning a vector of results. usually written [. . .]'.

array: See vector.

associative: Property of a binary function. A binary function O is associative if:

Vr,a,z : (rO Y) @ z : tr @ (A Ø z)

All binary functions given to parallelisable versions of reduce and sca¡ must

be associative in order to guarantee deterministic behaviour.

259
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axiom: A rule consisting of an assertion with no premises. An example of an axiom
is /.id =+ /.

backtracking: Attempting an alternative path to proof upon failure of the current
rule. Backtracking is, potentiall¡ a major source of inefficiency in the Adl
prototype implementation. Rules are carefully crafted to avoid redundant
backtracking with some compromise to the declarative style of the semantics.

barrier synchronisation: A synchronisation event in which every member of a
group of processes participates. Very good for simplifying the state space of a
parallel application. In the Adl project the composition of parallel components
is currently implemented as a barrier synchronisation.

binary function: In the Adl project, any function accepting a pair of values.

BMF (language): A point-free subset of Bird-Meertens-Formalism used as an
intermediate language in this work.

BMF (theories): The notation and algebra of Bird-Meerten's formalism as applied
to different aggregate types. There is a BMF theory for each of a number of
types.

body: The core part of a function or expression. For example, the body of a map
function is the function that it encapsulates. The term body is necessary to
differentiate the code that performs the core activity of a function from the
code that is used to support that activity.

compaction: A normalisation process using rewrites to reduce the number of
function compositions between the function of interest and the current site of
optimisation.

constant function: A function that, that when applied to any value, yields a
constant

category theory: The abstract study of objects and arrows. The work upon
which this implementation is, primarily, derived from the category Set of sets
and total functions. Several BMF identities on concatenate lists have proofs, at
least partly, reliant on category theorv.
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centaur: A language system which takes a syntax description, a semantic

description and a pretty printer description and produces a working prototype

of a language or Process.

concatenate-list ("f. vector): A concatenate list is an aggregate data type

defined by the constructors l-l- (concatenat"), ['] (make-singleton) and [] (the

empty list). Because *l is associative such lists can be decomposed in arbitrary

ord.ers, which allows parallelism. The constructors above are not used directly

by the Adl programmeï. Other functions, such as iota are used to provide their

functionality in an indirect waY.

conclusion/rule conclusion: The part of an inference rule that is below the line'

code-request: The newly optimised code produced by an optimisation rule'

Typically, optimisation ruies output a code-request which is optimised and a

wish-list which refers to temporary code forming a bridge between the code-

request and unoptimised code upstream of the wish-list.

composition: Function composition, denoted: ".". A binary function to combine

function such that the output of the right-hand function becomes the input of

the left-hand, function. That is: /' g ï: f @ ")
denotational: Denoting a value. A defrnition concerned only with a value'

distl: Distribute-}eft. A function, taking a pair consisting of a value and a list, that

distributes the value over the list to form a list of pairs. Can be implemented

using zip and rePeat.

distributed memory architecture: Any computer hardware where memory is

strongly associated with a particular processor and the cost-difference between

access to the memory associated with a processor and access to other, temote,

memory is relativelY large.

Data Movement Optimiser: The part of the Adt implementation responsible

for statically reducing the cost associated. with data movement in the BMF

intermediate form.
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downstream: The direction in which data moves in a BMF program. Because
programs are expressed in point-free form in this report. Downstream is
synonymous with leftwards.

environment: In the context of the translator, the term enu,ironmenú refers to the
mapping between variables and the BMF functions used to access their values.
In a more general context, the term environment refers to the variables that
are free in the scope of the original Adl function. In point-free BMF, all values
that are used by a function must be explicitly passed to that function so the
environment is tupled with the original input parameters.

expression: A term returning a value

fail: The state that occurs when a premise of a rule cannot be proven, A fail will
result in the inference engine backtracking to find a new rure.

filter (function): A common second-order function to eliminate elements of a input
list according to an input predicate. Not currently included as a primitive in
the Adl implementation.

filter (optimisation): A data-structure, used in tuple-optimisation, whose values
can be either BMF code or null. A filter expresses the data needs of downstream
code. The null value is needed to express the case of downstream code having
no specific data needs. In the current implementation a null filter is generated
only by constant functions.

front-of-optimisation: see optimisation-front

function (partial): A function that has undefined elements in its range for some
elements in its domain. An example of a partial function is div.

index function/operator: (!) a function for randomly accessing a vector at a
given location.

index generating function: The code generating an integer forming the second
argument to an index operator.

indexing function: An index operator composed with the alltup function
generating its input.
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init: A function that returns all but the iast element of its input vector

id: The identity function. The function that always returns its input'

identity (algebraic): An equation for rewriting expressions, in general, and

programs consisting of composed functions, in the context of this work'

implementation (noun): A compiler'

instance: A single invocation of a portion of code, e.g, a map body.

iota: A primitive function that dynamically allocates a list containing a sequence

of successive integers, starting at' zeto. Used as the core means for dynamic

allocation of storage in Adl'

lambda lifting: Making free-variables bound. A necessary part of Adl to BMF

translation.

last: A function returning the last element of a vector'

map: A second order function for applying an input function, elementwise to each

element of a vector. map is a primitive in Adl'

map body: The functional parameter of the nap function.

map-translation: The BMF code, produced by the translator, cortesponding to a

nap function in Adl.

mask: Function to filter a vector according to a boolean mask vector of the same

length.

model: In the context of this work: a model of the evaluation and cost of running

BMF programs. The most detailed mod,el used in this work is a trace-generating

simulator that executes parallelised BMF code on a simulated distributed

machine.

Natural Semantics: The semantic framework used to express processes in the

Centaur system. Most parts of the Adl implementation were defined using

Natural Semantics. Natural semantics shares many features with Structured

Operational Semantics.
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nested vector: A vector of vectors. Vectors in Adl have only one dimension so
a nested vector is the only way of approximating multidimensional structures.
There is no requirement that the sub-vectors all have the same length.

normalisation: The process of making code predictable for the consumption of later
rules. In the Adl implementation, examples of normalisation include, removing
identity functions, compaction, and associating functions to the left or right.

optimisation front: The site in the BMF code where optimisation is currently
taking place' This point moves from downstream to upstream as optimisation
progresses. At the optimisation front a wish-list is optimised w.r.t the upstream
code to form a code-request and a new-wish list which is now further upstream.

pair: A tuple with two elements.

parallelisation: The process of converting BMF code which is implicitly parallel
into explicitly distributed BMF code. This process is defined in a similar way
to the optimisation process with parallelisation starting from the downstream
parts of the program and moving upstream.

'Irr¡'tr2 etc: Functions to project elements from tuples. zr1 projects the first element
from a tuple, 12 the second and so on. When the arity of the input tuple is
more than two, the arity of the input tuple is written as a prefixed superscript.
For example 3213.

permutation: A re-ordering of a data structure

polymorphic: The property of being able to handle more than one type. nap,
reduce and scan are polymorphic functions. Adl allows a limited amount
of user-defined polymorphism through limited overloading of user-defined
functions.

point-free: A style of programming without the use of named variables or
parameters. Using point-free style, functions are glued together with second-
order operations such as function composition and alltup.

predicate: A function returning a boolean value.

prefix(parallel): A parallel variant of sca¡.
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premise: A clause above the line of an inference rule. All premises must be proved

true before the rule is proved true.

priffie: Predicate-riffie. A function to merge elements of two sub-vectors into a

single vector with the guidance of a vector of boolean values specifying which

vector to extract the next value from.

program(BMF): A BMF function intended for execution'

product type: A tuple.

proof: A sequence of inference steps ascertaining the truth of a desired goal. In the

context of the Adl project the translator, optimiser and (to a lesser extent) the

paralleliser are executable proof processes.

ragged vector: A vector of vectors of varying length.

range generator: The code in a translated nap function that generates the vector

of values corresponding the second input value to the original Adl nap function.

reduce: A primitive function to insert a binary operator between the elements of a

vector, evaluate this expression and return a single result. reduce has a highly

parallel implementation.

reduce body: Thc code appearing on the left-hand-side of the I symbol in the

translation of a reduce function.

repeat: A BMF function that takes a pair of the form (ø, n) and produces a

vector containing ø repeated n times. A distributed version of repeat is used to

broadcast values.

rule-set: A named group of inference rules, written in natural semantics with a well

defined purpose.

sca¡.: A primitive function that takes a binary operator and a vector and returns

a vector containing the results of inserting the operator between the elements

of each of the initial segments of the vector. As with reduce, a highly parallel

implementation exists for scan.
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scan body: The code appearing on the left-hand-side of the / symbol in the
translation of a sca¡ function.

select: A BMF function that takes a pair of vectors (s, ú) and returns the elements
of s indexed by the values in ú.

split: A BMF function that takes a vector and partitions it into a vector of
distributed vectors.

strict: An evaluation order were arguments to functions are evaluated prior to being
passed into the body of the function. Adl is strictly evaiuated.

surface: That part of a BMF function that has no other functions composed
upstream of it.

syntactic polymorphism: Polymorphism implemented by instantiation of
polymorphic functions to the types of their actual parameters. With this type of
polymorphism, a function can be instantiated more than once when it is called
with different types.

translator: The phase of the Adl compiler responsible for converting Adl code to
BMF code.

translator code: The code produced by the Adl to BMF translator

transpose: In the context of this work, a primitive BMF function to re-arrange
the elements of two dimensions of a nested vector so that indices to access

each element are swapped in those dimensions. When applied to ragged vectors
transpose may mix undefined elements into its result.

tuple: A product-type containing two or more values of possibly difierent type.

tuple-optimisation: Pass of the optimiser responsible for reducing the quantity of
data transported to support access to elements of tuples.

Typol: The language used to express the natural semantics definitions executed by
Centaur.

un¿ìry operator: A function of one non-tuple parameter.
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upstream: The direction from which data flows in BMF programs. In the examples

in this report, upstream is a synonym for rightwards'

vector: An array structure restricted to one-dimension. Vectors can be nested'

vector-optimisation: Pass of the optimiser responsible for reducing the quantity

of data transported to support access to elements of vectors.

vector referencing function: A function generating a vector forming the first

argument of an index oPerator.

wish list: A section of BMF code forming a bridge between already-optimised code

downstream and yet-to.be optimised code upstream. Typically, the wish-list

extracts a smail amount of output data from a large amount of input data'

zip: A function that takes a pair of vectors and produces a list of pairs from

corresponding elements of the input vectors'
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The transpose function

This chapter has three parts. The first part describes the issues surrounding the
implementation of parametric transpose on nested vectors. The second part is an
annotated listing of a Scheme program implementing parametric transpose. The third
part is a transcript of the output of the model run against selected test data.

8.1 rmplementation of parametric transpose
What is the meaning of a parametric transpose operation? An informal definition is:

( ( ( (transposel,,ùu) ...1i,) ...)lio...) : ( ( ..(u...tiò...ti,,) ...)

for all indices i," valid in the zth from-outer dimension of ,u and all indices i,o vaIid.
in the gth-from-outer dimension of u and where all other index values are preserved
across the equals.

Figure 170 gives a concrete illustration of the effect of transpose of dimension
0 (outermost) and dimension 2 (in this case, innermost) of a triple-nested vector.
Note, that any practical implementation of transpose has to decide which indices to
iterate over in order to build the transposed vector. The ansv/er is, generally, that the
index that each dimension of the transposed vector should range over is the length
of corresponding dimension of the original vector. Also note that, even though the
transposed dimensions r and y have moved they should still range over the lengths
they had in the original vector. This preservation of range means that when the
length of ø and the length of y are different, the shape of the transposed vector is
different.

268
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f transpose(0,1)

[[1,3,6,7],
12,'4,8],
[5,9],
[10]l

269

l.t,2,5,10],
[3,4,9],
[6,8],
tTll

Figure 170. An illustration of the effect of transposelo,z) on a triple-nested vector'

Note that the length of the middle dimension, the one unaffected by this operation
is untouched. while the lengths of the other two dimensions are exchanged'

tra nspose(0,2)

tra nspose(0,1¡ .tra nsPosele,r;

[ [[1, 2], [3, 4], [5, 6]1,

l[7, 8], [e, 10], [11, 12]1,

[[13, 14], [15, 16], [17, 18]1,

[ [19, 20], l2r, 221, 123, 241)l

[ [1, 2],

[3,4,5],
[6],
[7,8,9, 1o]]

ill1,7, 13, 19], [3,9, t5,21), [5, 11, 77,23]l

ll2, 9,, r 4, 2ol, 14, 1 o, 1 6, 221, 16, 12, 18, 24])l

Jf

Figure 171. An illustration of how naive transposition of a jagged vector leads

incorrect results. Using well-behaved transposition the last vector would be the
same as the original inPut vector'

There is one minor shortcoming in the foregoing analysis. We have referred to the

length of a dimension as if such a thing exists. Unfortunately, when the subvectors

of one or more dimensions have different lengths there is no such thing as a single

length for that dimension. How such jagged vectors are handled is discussed next.

8.1.1 TYansposing non-rectangular vectors

transpose works well with rectangular vectors and, we envisage, vectors that

require transposition will, almost invariably, be rectangular. Howevet, a complete

implementation will need to work with all semantically-correct programs and it is

possible, using carefully chosen index values, for a program to be both semantically-

correct and specify transposition of a jagged vector'

Transposing jagged vectors is a non-trivial operation. Figure 171 shows how easily

the process goes wrong. A basic identity that we expect to hold for transpose is:

transpose(0,r1 . transPose(o,r) r : :x

That is, if we transpose the same d.imensions of a vector twice we expect to get back

the same vector. In figure 171 this is most definitely noÚ the case.
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Figure L72. A nested vector floating in a sea of undefined values. Any attempt to
access beyond the bounds of a vector returns the undefined value I.

tra nspose(o,t; . tra nspose(o,r)

transpose(o,t)

Figure 173. An illustration of how padding, provided by r values, Ieads to the
correct behaviour of transpose.

The problem is caused by misaligned values and a cure for the problem is
to take account of the space surrounding the jagged vector when performing our
transposition. Our approach is to imagine the jagged vector as floating in a sea of
undefined values. Figure 172 illustrates this view. Any attempt to reference values
beyond the bounds of the vector returns I (pronounced "botto-"), the undefined
value. Following the convention used by FP*[145] it is the programmer's repsonsibility
to make sure that programs do not access undefined values. The I values, within the
bounding box surrounding the defined values of the jagged vector, provide valuable
padding for the transpose function. Figure 173 shows how transposition of the entire
bounding box enclosing a jagged vector behaves correctly. Note that the middle
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vector, in particular, is interspersed with I values. These values correspond to

attempting to access values beyond the bounds of the original nested vectorl '

Using I comes at a cost. Values in a transposed vector can be either, a valid value

or I. This representation requires a tagged-union type with the run-time penalty that

this representation entails. However, I will be accessed only in incorrect programs

and there is a strong argument that an implementation should at least allow the use

of the tagged-union type to be switched off once the programmer is confident that

the program is working.

8.2 Source code of an implementation

The source code for a test-implementation of parametric transpose, written in MIT-

scheme, follows.

An electronic copy of the source can be downloaded from

http: / /www. cs . adelaide . edu. au/-brad / src/ Ad]-/ schene/transpose . scn

The basic method used. by the implementation is to convert an arbitrarily nested

list2 into a flattened bag of data/index-list pairs. The indices of the bag are

manipulated by transpose and the bag can then be converted back into a list.

An intuitive understanding of the process can be had by loading the source code

shown in the next section into the scheme interpreter and executing the foilowing

sequence of evaluations.

list 1

s inple-transpose-I ist 1

list2
j agged-transpose-1 i st2
Iist3
ident-Iist3
backw-ident-1ist3

27t

nspose written in scheme it is
for attempts to access beyond

lFlom experiments with an experimental implementation of tra
apparent that two versions of I are needed' One version is required
the bounds of a sub-vector. Another less common version I" is required to denote an attempt to
access the first element of an empty vector. At first glance this might not seem like a special case but
the special form is required so that the empty vector can be reinstated if/when the vector containing
the empty vector is returned to its original orientation.

2Scheme's relaxed typing allows such arbitrary nesting without defining extra types.
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Note that the symbols "/" and e'/" are place-holders for references beyond the
bounds of the original vector and references to the first element of an empty vector
respectively. These place-holders are vital if transpositions are to be reversible in
general. A transcript of the output of the above expressions appears in the last
section of this chapter.

8.3 Source code for transpose. scm

t;;; Model for sequential tra¡spose
tttt

;;;; tr'Iorks by converting a nested list
;;; to a bag.

;;;; The bag elenents are then nanipulated
;;;; Final1y, the bag is turned back into a nested
;;;; list.

(define (Iist-to-bag I) (Ib-iter t 0 O))

(define (]b-iterlcv)
(cond ((nu11? t) O)

((pair? 1) (append

(if (nu11? (car t)) ;;; the first etenent is enpty list?
(list (list O (append v (list c))))
(Ib-iter (car I) 0 (append v (Iist c))))

(Ib-iter (cdr 1) (+ c t) v)))
(else (tlst (list r v))))) ;;t aton? just write bag entry.

; ; ; Auxiliary functions
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i;; different-outers co¡npares two vectors (not always of

t;; the same length and returns true if the outer dims

;;; are different. Looks at all but the last elements of

;;; the longest vector.

(define (different-outers c t)
(cond ((nul1? c) #f)

((or (and (= O (car c)) (eq? 'o/o (car t)))
(= (car c) (car t)))

(different-outers (cdr c) (cdr t)))
((= 1 (tength c)) #f)
( else #t)))

;i; length, function to find the length of a list'

(define (length l)
(it (nutr? 1)

0

(+ 1 (length (cdr I)))))

;;;different-in¡ercomparesthein¡ernostelenents(Iast
;;; elements of the current-index vector and target-index

;;t vector. If the end of the current index vector is

i;; different fron the same element of the target-index

;i; vector then there is, possibly, a nissing elenent'

(define (different-inners c t)
(cond ((or (null? c) (nu11? t)) #f)

((= 1 (Iength c)) (not (= (car c) (car t))))
(else (different-inners (cdr c) (cdr t)))))

ita.tzt¿
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;; current-shorter returns true if the current vector is shorter
; t than the target vector. rf it is (and it is the same otherwise)
;; then we should add a zero element to the end of the current-index

(define (current-shorter c t)
(cond ((nu11? t) #f)

((nutl? c) #t)
(else (current-shorter (cdr c) (cdr t)))))

;; append-zero returns the input list r¡ith a zel"o appended to the
;t end. This is used when the current vector is shorter tha¡ the
;t target value but identical otherwise.

(define (append-zero c)
(append c (tist 0)))

;; increnent the nunber associated r.rith the last erenent of
; i the input list.

(define (inc-last I)
(cond ((nurl? 1) O)

( (= 1 (lengrh 1) ) (tist (+ t (car r) ) ) )
(else (cons (car I) (inc-lasr (cdr I))))))

;;; nain-fu¡ction. calls bag-to-rist-iter and then extracts
;;; the first part of the state. The second part of the state
;;; shourd be the empty target value list -- if alr works r¡elr.

(define (bag-to-list 1)
(ir (nu11? I)

o
(car (bag-to-Iist-iter (1ist 0) 1 ))))

274
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;;i The function that does all the work'

The tra-nspose operations (and its auxiliary defs) follow'
transpose is broken into four stages '

1. conditional-pad: Scans the bag and pads the arrays out to

the highest sÏ¡apped dinension' Any entry needing pading

will have its value component changed to 'o6e

2. swap-dins: will swaP the elenents in the dinensions of

each index.
3. uapad: will remove trailing padding from the elenents'

4. restore-enpty: will replace '%e's with O if there are

275

,rt

(define (bag-to-list-iter c 1)

(it
(null? 1)
(cons O O)
(tet ((t (car (cdr (car I))))

(v (car (car 1))))
(it (different-outers c t)

(cons O 1)
(if (different-inners c t)

(tet ((statel (Uag-to-tist-iter (inc-Iast c) r)))
(cons (cons 'ofo (cat statel)) (cdr statel)))

(if (current-shorter c t)
(Ietx ((statel (bag-to-Iist-iter (append-zero c) 1))

(state2 (bag-to-list-iter (inc-Iast c) (cdr statel))))
(cons (cons (car statel) (car state2))

(cdr state2)))
(tet ((statel (bag-to-list-iter (inc-Iast c) (cdr 1))))

(cons (cons v (car statel))
(cdr statel)))))))))

trrt

,tD

,ttt

trrt

,tr,

,ttt

trtt

,tn

,rtt
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no # values in the corresponding target index 1ists

276

,rtt

;;; conditionar pad - scan the bag and pad out the arrays to the
;it highest dinension in the dinension pair argument.

(define (conditional-pad ds b)
(letrec ((nds (max (car ds) (cdr ds)))

(cond-pad (lanbda (b)
(it (nu11? b)

o
(cons (Pad-one nds (car b))

(cond-pad (cdr b)))))))
(cond-pad b)))

;t; pad-one: check the length. If it is greater than the index, do nothing.
;;; if it is less tha¡r or equal to the index then pad the target index list
;t; out with the dÍfference.

(define (pad-one n be )
(letx

((t (car (cdr be)))
(r (length t))
(s.p (- n (- I 1))))

(ir (> gap 0)
(tist ,o/"e (append t (repeat gap
be)))

(define (repeat n item)
(ir (= n o)

o
(cons iten (repeat (- n 1) item))))

'"/,)) )
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i;; Swap dinensions in each element of the bag-Iist
;;; the second stage of transPose.
(define (swap-dims dl d2 1)

(it (nuII? 1)

o
(cons (list (car (car I))

(swap-one dl d2 (car (cdr (car I)))))
(swap-dins d1 d2 (cdr I)))))

;;; Swap one

(define(swap-onefsl)
(1et*

((fst-va1 (index 1 f))
(snd-vaI (index I s))
(fst-tnp (insert 1 f snd-val))
(snd-tnp (insert fst-trnp s fst-vaI)))

snd-tnp) )

t;i index operation. returns the (n-l)th elenent of I
(define (index I n)

(i.t (= n 0)
(car I)
(index (cdr 1) (- n 1))))

;;; insert operation. returns I with the nth elenent changed to v

(define(insertlnv)
(it (= n o)

(cons v (cdr 1))
(cons (car 1) (insert (cdr 1) (- n 1) v))))

277

; ; ; renove-excess-Padding



APPENDIX B. THE TRA¡úSPOSE FUNCTION

;; t traverse the list
;; ; the list.

278

For each target remove excess #rs at the end of

(define (renove-excess-padding l)
(ir (nu11? 1)

o
(cons (remove-one-1ot (car I))

(renove-excess-padding (cdr 1)))))

(define (remove-one-Iot be)
(Iist (car be) (renove-fron-target (car (cdr be)))))

(define (renove-fron-target t)
(1etx

( (rt (reverse t) )
(crt (renove-leading-errors rt))
(ct (reverse crt) ) )

ct) )

; i; generic reverse function

(define (reverse l)
(letrec

((rev-iter (lanbda (Í r)
(if
(nutl? i)
r
(rev-iter (cdr i)

(cons (car i) r))))))
(rev-iter I O)))

t;; fu¡ction to renove leading ,% elenents
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(define (renove-leading-errors t)
(cond ((nurl? t) O)

((eq? ,y (car t)) (remove-leading-errors (cdr t)))
(else t) ) )

;;;reveïtenpty..producesarremptylistifthecoordinatesofa'#e
ti; elenent are all valid.
i;; fu¡ction is

(define (revert-enPtY I)
(nap revert-one 1))

(define (revert-one be)

(ir (eq? (car be) 'o/"e)

(check-va1id-coord be)

be) )

(define (check-valid-coord be)

(it (valid-coord (car (cdr be)))
(list O (car (cdr be)))
¡e) )

(define (va1id-coord t)
(cond ((nu11? t) '#t)

((eq? (car t) '"/") '#f)
(e1se (valid-coord (cdr t)))))

; i; nosl hre need to def ine a sorting fu¡ction
;;; to return the bag to a forn that is easy to

; i i convert back to a list.

t; i use quicksort
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(define (filter f xs)
(cond ((nu11? xs) O)

((r (car xs)) (cons (car xs) (filter f (cdr xs))))
(etse (filter f (cdr xs)))))

; t; The quicksort fu¡ction
;;; Íssues recursive carls relies on a binary firter predicate p.
;;; this p will be the equivalent of r>,, (i.e. true if first arg is
;;; ")" the second.

(define (quicksort f p)
(cond

((nu11? 1) O)
((= 1 (Iength 1)) 1)
(e1se

(Iet ((rett (fitrer (tanbda (x) (p (car 1) x)) (cdr 1)))
(right (firrer (lanbda (x) (not (p (car r) x))) (cdr r))))

(append (quicksort left p)
(append (tist (car I))

(quicksort right p)))))))

;;; custom binary conparator operator for bag elenents.
; t; the itens are conpared on the target index lists (second conponent)
;i; rather than on their value conponent. Renenber # = 0 for our
;;; purposes.

(define (bag-index-greater-than x y)
(define xt (car (cd¡ ¡ç))¡
(define yt (car (cd¡ y¡¡¡
(define turn-zero (lanbda (n) (i.f (eq?
(defíne xtn (nap turn-zero xt))

'% n) 0 n)))



APPENDIX B. THE TRA¡\TSPOSE FU¡úCTIO¡\I 281

(define ytn (map turn-zero Yt))
(define gt-iter (tanb¿a (xs Ys)
(cond ((nuII? xs) '#f) ;; nust ask this question before next

((nuII? ys) '#t) ;; nust be asked after l-ast.
((= (car xs) (car ys)) (gt-iter (cdr xs) (cdr ys)))
((> (car xs) (car Ys)) '#t)
(else'#f))))

(gt-iter xtn ytn))

; t i now for the tra¡spose oPerator

t;; it takes a bag and puts it through 4 stages'

;;; first it takes the bag and pads out all of the

t;; index lists that have lengths shorter tha¡ the highest

t;; transposed dimension. This will occur with enpty lists
t;; (whose index lists can be shorter than those itens which

;;; need aII dinensions in the aïray to specify their location.

;;; The second step is the index swap for the tra¡spose itself.
tt; This is a straightforward steP.

; i; Some transpositions calL leave trailing invalid index elenents

t;; in the index lists. These ca¡ be renoved with no effect on future

,;; operations (the senantics says that there are infinitely nany of

;; t these trailing valuesanyway) . These ca¡ be

t ; ; eliminated by rernove-excess-padding.

t;; Finally, the resulting bag is sorted using quicksort'

(define (traaspose ds b)
(letr'

((pb (conditional-Pad ds b))
(spb (swap-dims (car ds) (cdr ds) pb))
(sb (renove-excess-padding spb))
(sbr (revert-enPtY sb) )
(ssb (quicksort sbr bag-index-greater-tfran)) )

ssb) )
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t;; Test data
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,rt

(define tistl (list (Iist t 2 3)
(list 4 5 6)
(list 7 I 9)))

(define list2 (li-st (tist 1 2)
(list34b6)
o
(Iist 7)
(list 8 9 10)))

(define list3 (Iist (list (tist I 2 Ð (1ist 4 S 6) (tisr 7))
(list (Iist 8 9) O )
(I:-st (tist 70 II 12) (list 13) (tist 14))
o
(list (list 15) (Iist 16 rT 18 19))))

; t; Test applications

(define sinple-transpose-IÍst1 (bag-to-1ist
(traaspose (cons 0 1)

(tist-to-bag list1) ) ))

(define jagged-traaspose-list2 (bag-to-tíst
(transpose (cons O 1)

(Iist-to-bag tist2))))
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(define ident-1ist3 (bag-to-1ist (tra-nspose
(cons 0 1)

(transpose
(cons 1 2)
(traaspose
(cons 0 1)

(transpose
(cons 0 2)
(1i.st-to-bag list3) ) ) )) ) )

(def ine backw-ident-Iist3
(bag-to-list (traasPose

(cons 0 2)
(trarrspose
(cons 0 1)

(transpose
(cons 1 2)
(transpose
(cons 0 1)

(l-ist-to-bag 1ist3) )) ) ) ) )

8.4 Test results

To test the transpose implementation above rù/e ran the code against a number of test

expressions. To illustrate the efiect of the transpose operator we show the output of

the following expressions at the end of the code above:

sinple-transpose-Iist1: runs a single transpose on a rectangular vector, nested

to two dimensions.

jagged-tralspose-Iist2: Iuns a single transpose on a jagged vector, nested to

two dimensions.
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ident-list3: a composed series of transpositions over various dimensions of a
jagged vector, nested to three dimensions. The series of transpositions is
equivalent to an identity operation on an input vector.

backw-ident-1ist3: the series of transpositions in ident-Iist3 applied to the
same input list in reverse.

The transcript of the output of the evaluation of these expressions follows:

1 l=> listl

;Value 5: ((1 2 3) (4 5 6) (7 I 9))

1 l=> sinple-traaspose-Iist1

;Va]ue 2: ((I 4 7) (2 S 8) (3 6 9))

1 I =) 1ist2

;Value 6: ((L 2) (3 4 s 6) O e) (8 9 1o))

1 l=) jagged-traaspose-list2

;Value 3: ((1 3 "/,e T 8) (2 4 % "A Ð (A S,/" "A LO) (% 6))

1 I => 1ist3

;Value 7: (((1 2 3) (4 s 6) (7)) ((8 e) O)
((10 11 12) (13) (14)) O ((15) (16 17 18 le)))

1 I => ident-list3

;Value 4: (((1 2 3) (4 S 6) (7))
((10 11 12) (13) (14)

o)
(15) (76 17 18 1e)))

e)((a
) o (

1 I =) backw-ident-list3
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;Value 1: (((1 2 3) (4 5 6) (7))
((89)())((101112)(13)(14))()((15)(o6t71819)))



Appendix C

Sorted and Sortable indexirg
functions

A sorted indexing function is a nested indexing function where the existing rules
of the optimiser are able to remove all index operators (!). This chapter precisely
defines the property of a nested indexing function, in a map-body, being sor-ted,. We
also describe the properties that have to hold for an indexing function to be sortable.

The following section lists the assumptions and notation employed by the rest
of this chapter. Section C.2 defines the set of valid addresses that are amenabie to
sorting' Section C.3 defines a partial ordering on this set of addresses. Section C.4
defines a process for converting an index function into a list of addresses. Section C.b
uses the definitions in the previous sections to define a predicate to test if an index
function is sorted. Finally, section C.6 outlines the process by which an unsorted
index expression can be converted to a sorted index expression if it is found to be
sortable.

C.1 Assumptions
In what follows we assume that all nested indexing functions take the form:

! . (! . (. . . (! . (r, an_t)",. . .)", ¿r)", øo)o

We also assume that each index-generator, a¿:

o has undergone code-compaction, as described on page 102

286
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o and has had all superfluous identity functions removed with the exception of

any (tr1,z-2)" functions immediately upstream of a primitive non-addressing

functionl.

Whether such an indexing function is sorted to a form where it is possible to

optimise-away all index operations depends on which addressing functions appear

in the index-generating functions üo,clr,...tan-7. To extract, and analyse, these

addressing functions, we wili define:

o a set called Ad,dr that contains all valid addressing functions,

o a partial ordering on the members of. Addr,

o a function called. ErtractAd,d,rs thal extracts the set of all address functions from

an index generator,

¡ a function called ToAd,d,r which cond.enses the output set of ErtractAddrs to a

single value,

o the property an indexing function being sorted, in terms of the above entities,

and

o the property of an indexing function being sortable'

We start by defining Addr

C.2 The set of valid address functions

We deflne a set Addr:

Ad,d,r: {p e B-EXPI'is-trans-addr(p)} U {K} U {r}

which contains all address functions that can appear in a nested index function along

with an additional element K used. as a placeholder to denote constant functions which

are not dependent on any input value. The undefined value I is included to denote

lThis exception is to handle the cases where the code such as ! '

generate an index value to a nested index function. If the, otherwise
iemoved it would introduce a special case making detection of code

(nt,nz)" appears inside code to
superfluous, (nt, nr)" were to be
that is amenable to oPtimisation

more difficult.
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error values generated by a ToAddr function to be defined shortly. The predicate
'is-trans-addr(Í) is true iff:

(f : n")v
(f:op'nr)v
U : g. *t) A i,s-trans_add,r(g)

Informally, Addr is the set:

{nr, Op,'7f2r't12 . iTI, Op . 7r2,,tflt lTz . lTt . ./TL) Op .,rZ . lTt . n . . .,K}

where op is any element of B-EXP - {tn,rz}. That is op is any non-addressing
function2.

C.3 A partial ordering on address functions
We define apartial order, (o, otr the elements of Ad,d,r. p 1oQ for some p,q € Ad,d,r

(p:nr)A(q: l.nùv
@:f.nr)A(q:g.rr)V
(p : f ' rt) A (q : g'rr) A (l <" g)v
Q:K

informally, (o defines the partial ordering:

iff

7T2

oP'ltz
'1TZ ' 'lfl
'1TZ. lft K<a r <a

7T2'7r1 . 717

oP'1tz . 1tt ,'/tt 1"..-{ a

Note also that K (o K 3 and r is not related to anything by (o. Now we define a
mapping, in two stages, from the index generating functions ø¿ appearing in nested
index functions, to members of Addr.

2In non-translator code the set of addressing functions is bigger than the set {2r1, zr2}. This set
would have to be enlarged to adapt these definitions to non-translator code.3This means that the relative order of constant index-generating functions can be adjusted, with
compensating use of transpose functions, with impunity. However, because K is the greaiest element
in the partial ordering, all constant index generating functions must be more aeepty nested than
any non-constant index-generating function in order to be part of a correctly formatted nested index
function.
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c.4 Extracting address functions from index-

generators

First we d,efine a function ErtractAddrs that maps each index generating function ø¿

to the set of address functions it contains:

ErtractAd,d'rs(a¿) : {p e B-ExPladdr-seq(p, a¿) A depends(a¡,p)}

where the reiation address-seQ(P,a) holds iff:

(o : (qr,qr)') A (addr-seq(P, ø) V addr-seq(p, qr))v

(p: g. rn) A @: f . nu) A (addr-seq(s,l))v
(P: q: r¿)v
(a: op 'q) A (Upstream(op) I r¿) n addr-seq(p,q)

\Mhere (Jpstream extracts the most upstream function in a composition sequence.

ad,d,r-seq(p, q) is true if p matches a complete unbroken composed sequence of address

functions in q. und.er the earlier assumption that code is compacted, these unbroken

sequences are the absolute addresses of values in the input tuple to the nested index

function.
The second. relation in ErtractAddrs: depends(a,p) holds if:

1u e VALUE,(aþlWronslo: I) A(au I L)

where Wrong is a polymorphic function d'efined Wrong r : L. depends(f) is true if

/ is ever evaluated for valid input values to the functiona. If the address function is

never evaluated then it is not added to the result of ErtractAddrs.

C.4.L Condensing the output of ExtractAddrs

The second stage of mapping, is a function called ToAddr, that converts the output

set of EntractAd,d,rs irfto either a single member of Addr or the value I. ToAddr is

a depends detects dead code. Such detection is generally undecidable. We are assuming that an

implementation of depends will perform some conservative approximation of the semantics above

where we assume dependency unless it can be proven dependency does not exist. Also note, that
if a stage of dead-code-elimination is implemented prior
can be removed.

to vector-optimisation the call to depends
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defined:
ToAddr(Ø) : K

roAddr({p}) : p, ilp € Addr
roAddr({f }) : L, il Í Ç Addr
ToAd,dr(A) : L,if Cardi,nati,ty(A) > I

The first clause returns the place-holder K if the set of extracted functions is empty.
The second clause returns the address function contained in the set. The third clause
handles invalid address functions, this clause should not apply to valid, compacted,
translator code. The fourth clause applies when two or more different address
functions are extracted.

C.5 The property of being sorted
Given the definitions above, it is now possible to define what makes a nested indexing
function sorted. The nested indexing function:

! . (! . (. . . (! . (r, an_1)",. . .)o, or)o, ¿o)o

is sorted iff

ToAddr(ErtractAddrs(oo)) <" ToAddr(ErtractAdd,rs(or) <, . . .

< o To Addr (ErtractAddrs (a,_))

That is, if the outermost index generator is least in the partial order and the next
outermost is second-least in so on. Intuitively, it means that 12 functions must be
on the outside and more complex addressing functions should be further inside and
index-generators not dependent on any input value should be innermost.

C.6 From sortable to sorted
The section on reorientation on page 127 showed that it is possible, in some cases, to
insert tranpose functions into code in order to make the elimination of index operations
possible. In other words, transpose can be used to turn an unsorted indexing function
into a sorted indexing function. Indexing functions that can be converted in this way
arc sortable.
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An indexing function:

l' (1. ( .. (! . (r, a,,_t)",,..)o,or)o,oo)o

is sortable iff there is some permutation:

p : per"ffi,utelas, ûrt . . ., an-t]

of the index-generators for which:

ToAd,d,r(ErtractAd,d,rs(po)) <" ToAddr(ErtractAd'drs(pt) <"'''
< o To Addr (ErtractAddr s (P 

" -))
That is, a nested. indexing function is sortable if the partial ordering )o can be applied

to some permutation of its extracted and condensed addresses'

If it exists, a sorted. permutation of index generators is achieved by using

applications of transpose to swap the order of index generators.

A final note AII of the preceding definitions depend on the tuple structure built

by translator code. The definitions will change with major changes to the structure

of code produced. by the translator. In most cases' minor changes to the language

such as the add.ition of new primitives will not affect the definitions above.



Appendix D

The time-space model

This appendix describes a sequential model for the execution of BMF programs
against known data. The model is defined as a series of rules. Each rule is
associated with a BMF function. When combined, the rules form a specification for an
interpreter. This interpreter not only produces an output value but other information
about the program's execution. It is, essentiall¡ a collecting ,interpretation[82] over
BMF programs and their input data.

Amongst the other data collected by the interpreter is a trace of the the space
consumption of the program over time. This trace information is used in chapters 4
and 5 as a basis for a comparison of the efficiency of BMF programs. An executable
version of the interpreter has been implemented in Miranda¿-, and this version
corresponds to the rules shown in this appendix.

The layout of this appendix is as follows. Section D.1 defines the syntactic domains
used to describe the interpreter and its input. Section D.2 describes the semantics of
the top level rules of the interpreter and some auxiliary rules. Section D.3 presents
the rules of the interpreter and forms the bulk of this appendix. Lastly, section D.4
very briefly describes the process of extracting a trace from the final state produced
from the interpreter.

D.1 Syntax
The syntax used by the interpreter is split between three syntactic domains (phyla).
The first domain is the VALUE (see chapt er 4). UALUE contains the syntax of
valid input values for BMF functions. VALUE contains syntax for integer, real and

292
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boolean values as well as for aggregate structures i'e' tuples and vectors' For the

purposes of this interpreter, we define an additional member of the VALUE domain

called. null. nuII is a place-holder for a not-yet-defined value.

The second d.omain is B-EXP (see chapter 4). B-EXP defines the syntax of BMF

functions.

The third domain contains the syntax for defining interpreter rules' This domain

is called I-R\ILES .It contains the sequence of interpreter rules defining how the trace

is generated fbr each BMF function. The first rule in this sequence belongs to the

I-TOP phyla. other rules, at least one for each BMF function, are contained in the

I-RULE phyla. An (almost complete) abstract syntax for interpreter rule definitions

is given below.

Phyla

I-RULES v--+ Interpreter Rules, I-TOP t-+ Top r"ule,

I_RULE r-+ Interpreter Rule, I-DEF v-+ Interpreter definiti,on,

I-EXP r-+ Interpreter erpressi'ons, I-PAT ¡--+ Pattems,

I_STATE r--+ Interpreter state, I-TRACE r-+ Interpreter trace,,

I-TR v-+ Trace record, I-NUM r--+ Number ref ,

I-NAME r+ Narne, NUM t+ Number,

VALUE v-+ Value, B-EXP ¡--+ BMF functi'ons'

Abstract syntax

I_RULES
I.TOP
I_RULE
I_DEF
I EXP

::: irules I-TOP II-RULEI+
::: tïacegen I-PAT I-EXP
::: strdef I-PAT I-EXP
::: def I-NAME lI-PATl. I-EXP '

::- pass-between II-NAMEI+ I-STATE I space I-PAT I

add-to-tr ace I-STATE I-NUM I-NUM I length I-PAT I

appendI_TRACEI_TRACEIpvalI_PATIplusI_NUMI_NUMI
wJLtI_NUMI_NUMIninusI_NUMI_NUMIuninusI_NUMI
funapp I-NAME II-PATI+ |

where I-EXP II-DEFI+ | ivar I-PAT I str I-PAT '
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I-STATE
I_TRACE
I_TR
I_NUM
I_NAME
NUM
VALUE
B_EXP

::: var I_NAME I var VALtlE I irist lI_pATl. I

ituple fI_elfl+z I :ont A_øXf .

::: state I_NUM I_NUM I_PAT I_?AT I_TRACE
::: trace II_TR]. I tr_aame I_NAME.
::: tr I-NUM I_NUM.
::: inum NUM I nunvar I_NAME.
::: Implemented as a stri,ng.
::: Implemented as an ,integer.

::: see definition from chapter 4 + null.
::: see definition from chapter 4.

Abstract Syntax
irules ú4q lro,...,rn_tl r-+

tracegen (b-erp,u) r-+

strdef (b-erp, st) erp Þ
def a fpo,...,pn-tl erp r-+

pass-between [/6, ..., fn_t] enu r-+

space pat Þ
Length pat Þ
add-to-trace enu ho r\ r-+

append trs tr1 Ð
pval sú -+
plus ns n1 Ð

294

I-PAT

Notes on syntax Each interpreter rule (I-RULE) must have an I-ZAT term of the
form itupr elB-EXP ,i,-pats) where ,i-patomust be an I_pAT of the form val_ TALUE
or var I_NAME.

The main I-PAT term belonging to each interpreter rule (I-RULE) always has the
form itupl elB-EXP ,'i-patsJ where i,-patomust be an I-PAT of the form vat VALUE
or var I_NAME.

Concrete syntax The mapping between expressions in the abstract syntax and
their concrete equivalents is shown below. The rules of the interpreter will be defined
using the concrete forms.

Concrete Syntax
trg rg, ... tTn-I
?9(b-exp,v)
Str(b-erp, st) : 

"*O
A PO...Pn-t : €rP

pass-between 1fo,..., fn_r] enu

S(pat)

#pat
add-to-trace enu rùo rùt
trs++tr1
Pual(st)
nolnt
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mult n6 n1

minus rùo TLt

umi-nus r¿

funapp a þo,.
where erp lds,
ival p
str p
var 0
val u

ilist luo,...,ur-tl
ituple luo,...,ur-t7
state sti,otr
trace ltro,...,trn-tl
tr-nâme ø

tt ng n1

inum r¿

numvar 0

null

ns X n'1

TùO - ftt

-n
û Po, "'tPn-L
erp uhere ds,

p

Str(p)
a

u

luor "',un_ll
(ro, .", un_l)

(s,t,i, o,,tr)

It o,...,trr-tl
0,

(no,u)
n

,Pr'l]
', dn-tl

Ð
Þ
Þ
Þ
H

Þ
Þ
Þ
Ð
Þ
Þ
H

Þ
ä
Ð
Þ
H

H

a

null

1To complete a formal description of the interpretation
could be defined in natural semantics. We have omitted
justified by the fact that the interpreter rules are defined
such, can be understood without a lengthy introduction'

, dn-l

process an interpreter for interpreter rules
such a definition for now. This decision is

in informal mathematical notation and, as

Other concrete syntax The concrete syntax colÏesponding to VALUE and

B-EXP is shown in chaPter 4'

D.2 Semantics

There will is no formai semantic description of the interpretation or trace building

process in this report. Instead., the syntax defined above will be used as a vehicle to

present the rules of the BMF interpreterl.

In this section we d.efine, informally, the meaning of some of the framework for

the interpreter rules.
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D.2.L The trace generator

Trg is the function forming the entry-point of the time-space interpr eter. Trg accepts
a tuple containing a BMF function and a value, injects the value into an initial
interpreter state and passes the resulting state and the BMF function into the set of
trace generating rules which, eventually, generates a final interpreter state.

Type

(BMF functi,on, Value) -> Interpreter state

Semantics The semantics or Trg is defined by the following expression:

Trg (b -erp, u) : Str (b -erp, (S (u), 0, u, nutl, []))

That is, the result of Trg is the same as the result of Str with the appropriate initial
values injected into the starting interpreter state. This state consists of an an initial
space requirement ,S(o), an initial time 0, an initial input value n, an initial output
value null, and an initial empty trace []. Note that the null value is used as a
place-holder when no valid value yet exists2.

D.2.2 Interpreter rules

^9úr is the state-trans.iorming function. ,Súr is defined by the rules of the interpreter
Each rule of the interpreter defines 

^9úr with respect to a different BMF construct.

Type

(BMF funct'ion, Interpreter state) ---+ Interpreter state

where the interpreter state consists of the current space consumption, current time,
input value, output value and trace. The trace is a series of integer pairs of the form:
(space',ti,me). Each point represents an instantaneous transition3 to a new value for
space consumption at the corresponding time. ,Súr is the core of the interpreter.

Semantics
section.

The semantics of Str are defined in the interpreter rules in the next

2null is similar to I.
3Hence the use of discrete steps to graph traces in chapters 4 and b.
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D.2.3 Auxiliary function definitions

Auxiliary functions are cailed by Str to assist in the process of transforming the state'

Deflnitions of these functions follow

D.2.3.1 pass-between-passing the state

pass_between is a function used, to pass an state tuple between a series of functions'

pass-betweer¿ is used where the execution of a BMF construct can be expressed as a

composition of state transforming functions'

Type

([(1S-- /^9)]' 15) ---+ IS

where ,LS is an abbreviation for Interpreter state'

Semantics If we view the first input parameter is a cons-list a recursive definition

of pass-between is'.

'Pass-between ll st : st

pass-betueen (f : fs) st : pass-between fs (f st)

D.2.3.2 ,S-the space function

,s is a function used to determine the space consumed by a value.

Type

Value ---+ Number

Semantics S(u) will return an integer value being the space, in wordsa, currentiy

occupied by u. ,S is defined. by a small set of rules corresponding to the recursive

structure of VALUE.

D.2.3.3 ad,d-to-trace-adding new trace records

ad,d,-to-trace creates an updated state with new space, time and trace values

297

or floating point number. For
word of space.

aA. word' is defined here as the space consumed by a single integer
the sake of convenience, all scalar values are assumed to consume one
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Type

(Interpreter state, Number, Number) ---+ Interpreter state

Semantics A definition of add_to_trace is:

add-to-trace (s,t,'i,o,tr) s,i t'i : (s * sø, t +ti,,i,,o,trff [(s/ + si,tt + ti,)l)
where

t¡: (fst .last) st
¿l : (snd . last) st

where l¿sÚ accesses the last element in a trace list, /sú accesses the first element of a
pair and sr¿d accesses the second element of a pair. Note that si and ti arc increments
on the current (last) trace values rather than being absolute space and time values.

D.2.3.4 add-to trace-null-adding new trace records and setting input to null

This function is identical to add-to-trace except that in addition to updating the time
and space values it sets the input value to null. It is defined:

add-to-trace_null, (s,t,'i,o,tr) s,i ti, : (s f se, t +ti,null,o,tr++[(st I s,i,tl + ti,)])
where

t¡: (fst .Iast) st
¡¿ : (snd, . last) st

add-to-trace-null is used at the end of rules where, by convention, the input value is
set to null to record its deallocation.

D.2.3.5 append-combining two traces

append, which is written as concatenate (**-)joins two trace lists together. append,
does not check that the time in the first trace record of the second list is greater than
or equal to the time in the last trace record of the first list.

Type

(Int erp reter Trace, Interp ret er Tra ce) ---+ I nt erp ret er Trace

Semantics
Informally:

The semantics of append corresponds exactly to that of list concatenate.

l* o, ..., r ¿]++ [Ao, ..., A ¡] : [* o, ..., r i, A o,, ..., A ¡]



APPENDIX D. THE TIME-SPACE MODEL 299

D.2.3.6 LengthOPerator

The length operator (#) ir used to find the length of an input vector

Type

Value --+ Num

semantics Assuming the input is a vector the definition of f is:

-J¿ l'l nTI] \J

#l"l : 1

ffrsl*ys : (#"t)+(#st)

D.2.3.7 Projecting the output value

The operator Pual projects the input value component out of the interpreter state.

Type

I-STATE '--+ VALUE

Semantic s Pual extracts the fourth element of the interpreter state tuple. It is

defined:
Pual(s,t,'i,o,,tr) : ç

D.2.3.8 Arithmetic OPerators

The operatots -þ , x and minus (-) have their conventional meanings' They are used

for arithmetic over time and space values'

Semantics The conventional semantic definitions for these operators apply

Variable references are resolve d. to Num before these operators are applied.

D.3 Interpreter Rules

The rules of the interpreter form the core of this chapter. They describe the process

for generating the sequential traces used. in this work. The rules will be presented

shortly but, in order to motivate their structure, it is worth reiterating the conventions

that guide their construction.
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Conventions used by the interpreter The following conventions apply to the
sequential performance model:

o Storage for output of each scalar function is allocated just prior to evaluation
of that function,

o Storage for input data of each scalar function is de-allocated just after evaluation
of each function.

o The time taken to allocate or deallocate any amount of storage is one time unit.

. With the above in mind, functions on scalar data, such as f and x have the
following execution profile:

1. allocate storage for the result (one time unit).

2. perform the operation (one time unit).

3. deallocate storage for the input (one time unit).

o A vector takes up one unit of space plus the combined space used by its elements.

o A tuple takes up a space equal to the combined space used by its elements.

o The cost of copying one item of scalar data is one time unit,

o During aggregate operations, data is copied/allocated at the last possible
moment and deallocated at the first possible moment.

These conventions guide the design of the rules that follow, There is a rule for
each BMF construct. A short introduction to the semantics of each construct is given
before its rule. Each rule is followed by a synopsis of its main features.
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D.3.1 Scalar F\rnctions

Scalar functions include arithmetic, logical, trigonometric and type-coercion

functions. AII of these functions produce an output value which is one word long.

These functions have rules with the following form for any given scalar function /:

Str(f , (s,t,u,o,tr)): last-Part

uhere
first-part,
last-part
applyf(s,t,u,,o,tr)

rahere
sl :
+1LL
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add-to-trace (s, t, u, o, tr) I L

applAl first-part
(s1, ú1, null, f u,trll [(s1, t1)])

s - ,S(u)

t+2

fi,rst-par-t is the state after allocating the word of space required for the result'

last_part is the state after applying / to its input value o and then deallocating

the input value. last-par-t is the state returned by the scalar function'

D.3.2 Length

The length function takes a vector as input and produces an integer representing its

Iength. Even though its input is not a scalar, the rule for length is the same as the

one for scalar functions above with length substituted for /.

D.3.3 Vector Indexing

The index function takes pair (u s, i) as input, where us is a vector and ¿ is an integer

and returns the value os¿ âs a result. The rule for vector indexing is
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^9úr(index, (s,t, (us,i,), o, tr)) : last-part
uhere
fi,rst-part
last-part
susl,

apply-i,nder (s, t, (u s, i,), o, tr)

add-to-trace (s, t, (u s, i,), o, tr) su s,i I
ap plg -i,n der fir st-p ar-t

^9(r's!z)
(sI, t7, null, u sli,,úr+l [(s 1, ú1)] )
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uhere
sl : s-(S(us) +S(i))
tI : tlsus'i

The state fi,rst-part accounts for the allocation of space to hold the result of the
index function. The state last-part accounts for the cost of copying the indexed value
across to the space allocated for the result and for the deallocation of the original
input vector and index value.

D.3.4 The identity function
The id function returns its input value. If we strictly adhere to the conventions
followed in the rest of the interpreter then the rule for id is:

Str(id, (s,t, u, o, tr)) : last-part
uhere
fi,rst-part : add-to-trace (s,t,u,o,tr) ^9(,u) 1

last-part, : apply-i,d first-part
apply_i,d (s,t,u,o,tr) : (s - ,S(u) ,t + S(u), null,u,trll [(s - ^g(,u), t + S(u))])

However, if we are willing to make a sensible departure from convention in this case
then the rule could be simplified to:

Str(id, (s,t,u,o, tr)) : (s, ú I I, null,u,trfl [(s, t + 1)])

which just increments the time consumption by one unit. This, simpler version, is
used in the model used to generate the traces in this reports.

sOur motivation for departing from convention is that strict adherence to the convention, by
using the first version of the rule, would result in sometimes quite large costs being attached to id.
These costs are easily avoided even in a relatively naive implementation. These unrealistic costs
would impact disproportionately on translator code, due to the number of id functions that such
code typically contains. In the interests of a fair comparison we do not use the expensive rule for id
in our experiments.
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D.3.5 Function Composition

The b-com p(Í, g) function, written /.g takes an input value u and produces the result

fØu).
Str(f 'g, sú) : result

uhere
(s,t,i,,o,,tr1)
result

Str(f st)

Str(g (s,,t, o, null, trl))

Synopsis The flrst line under the uhere clause applies the function g to the input

state sú to produce a nev¡ state (s, t,'i,o,trl). The next line takes this state, with the

output value, o, moved to the input position, applies it to the function / producing

the state result which is the final result of this rule.

D.3.6 Map

The map(g) function takes an input vector ["0,.. .,rn-t] an applies I point-wise to

produce a new vector as a result.

^9úr(ma 
p g, (s, t, 1ro, ..., rn-tl, o, tr)) : last-par-t

uhere
first-part : add-to-trace (s,t,lro,...,rn-r], []' tr) f f
main-part : pass-betweenlÍo,. . .,, ln-t] fi,rst-par-t

last-part : add-to-trace-nullmai'n-par-t -11
fo G,, t,lro, ..., rn-t),lro, ...,,ui-r],tr)

: (s1, ú1, lro*r, ..., rn-tl, luo, ..., u¿l,trl)
uhere
(s1,ú1, null,u¿,trl) : Str(g,(s,t,r¿, null,tr))

Synopsis first-part is generated by a call a call to add-to-trace. This call increments

the initial time and space measures by one to account for the allocation of an empty

resuit vector. The result vector will grow incrementally as the rule for map produces

new results.

ma'in-part simulates the application of g point-wise to the input vector. The call

to pass-between transfers intermediate states between the list of auxiliary functions

[,f0, . . . , fn-\. Each of these functions applies g to the next element of the input vector
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and produces a new element of the output vector. Each input element is deallocated
as soon as it is used. Space for each output element is allocated just before it is
produced. Note that the rule does not define the [/s, . . . , Ín-l functions individually.
Instead a single function, parameterised by z, called /¿ is defined to capture their
meaning.

Finally, the last-parú state accounts for the deallocation of the now-empty input
vector after all of the point-wise applications of g have taken place.

D.3.7 Distl
The distl function takes a pair (u,1ro,...,r,_ll) and produces a vector

[(u,*o),...,(u,*"-)l consisting of copies of the first element of the pair distributed
over the second element of the pair.

Súr(distl, (t, t, (r, lro, ..., rn-t]), o, tr)) : last +art
uhere
first-part : add-to-trace (s,t, (r,lro, ..., rn-tl),ll,,tr) t t
ma'in-part : pass_betweenlÍo,..., Ín_l f i,rst;part
last-part : add_to_trace_null ma,in_par-t - (s,u + 1) 1

su : S(r)
I o (s, t, (u, l*u, ..., rn-l), l(u, ro), ..., (u, r ¿_òi, tr) :

(s 1, ú1, (u, l* o*t, ..., r n_1]),, [(u,, o), ..., (r, r ¿)], tr ++ [(s 1, tl ) ] )
where
sl :
IL:

Synopsis The state fi,rst-part accounts for the allocation of the new output vectors.
ma'in-part simulates the production of the output vector from copies of ,u and each

r¿. Each ø¿ is deallocated as soon as its value is transferred to the result vector. ø is
not deallocated because its value is needed again.

Finally, last-par-t, accounts for the deallocation of u once the production of the
entire output vector is complete.

s*su
tlsu+S(r¿)
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D.3.8 Reduce

The reduce (A, r) function takes an input vector l*o,' . ',!xn-t] and produces the output

value uo O . . . Ø :xn-t. If the input vector is empty the value produced is z applied to

lro,...,rn-t]'

^9úr(red uce ( e, r), (t, ú, [ ), o, tr) -- zero -result
uhere
zero-result : Str(2, (t, ú, [),o,tr))

^9lr 
(red uce (Ø, "), (s, t, lr s, ..., rn-t], o, tr)) : last-part

uhere
ma'in-part : pass-between lf t, ..., f n_1l (s, t, lq, .'., rn-t], rs, tr)
last-part : add-to-trace-null ma'in-part -I7
fu\, t,l,u, "', rn-t],u,tr) :

(s1, ú1, lru*r, ..., ïn-t], ul,trl)
uhere
(s1, ú1, null,ul,trl) : Str(Ø, (s,t,(u,,r¿),,null,tr))

Synopsis The interpretation of reduce can take one of two different paths. If the

input value is an empty vector, then the first rule applies the zero-element z lo the

input state6). to produce the state labeiled zero-result.

If the input value is a non-empty vector then the second rule is tsed. mai,n4art

simulates the application of O to successive elements of the input vector. Each

intermediate result is used as the left-operand of the next application' Values of

the input vector are allocated as they are consumed. The last-part, state accounts for

the deallocation of the empty input vector at the end of processing.

The interpreter has similar rules for reducel. In the rule for reducer the last element

of the vector is operated upon first and the tuple (u,ro) is reversed. For reducep,

reducelp and reducerp the first clause of the rule for handling empty input vectors is

omitted.
6The translation process ensures that the zero-element, when it remains with the reduce function,

is a constant function (see page 74.
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D.3.9 Scan

The scan(O) function takes an input vector lro,...,rn_1] and produces an output
vector lro,*o@rt,...,uoO rtØ...Ørn-tl of the cumulative application of O to the
prefixes of the input vector.

,9úr(scan (e), (r, t,|,o,tr)): empty-result
where
empty_result : ad,d,_to_trace_null (s,t, null,[],tr) O Z

,Súr(scan (e), (r, t,lro,...,rn-t],o,tr)) : last_part

uhere
first_part, : add_to_trace (s,t,frr, ...,, rn_tf ,fnsl,tr) 1 1 + S(øs)
ma,in_part : pass_between 1h,...,, fn_l

(s, t, 116, ..., rn-t],, frs], tr)
last-par-t : add_to_trace_null ma'in_par-t -I I
f{s,t,, l*0,...,rn-tl, lro, ..., u¿-1],tr) :

(s 1, ú1, fr ¿¡r, ..., r '._1f , lro, ..., u¿-7, u ¿jl, trl)
uhere
(s 1, ú1, d,'i, u¿, trI) : Str (Ø, (s, t, (u¿-1, r ¿), null, tr))

Synopsis If the input vector is empty the first clause of the rule for scan will allocate
a new empty vector for a result and deallocate the empty input vectorT returning the
new state empty_result.

If the input vector is not empty then the second clause applies. The first-part
state accounts for the copying of the first element of the input vector to the new
result vector. Note that net space consumption is increased by one to account for
the allocation of a new vector descriptor and time is increased to account for this
allocation plus the copying of the first element.

ma'in-part simulates the application of O to successive intermediate results and
successive elements of the input vector. For each application of o the current
intermediate result is applied to the next input value. The result becomes a new
intermediate value which is copied to the output vector. The old input value is then
deallocated.

7In this case, allocation and deallocation is not necessary. It is done in this rule for consistency
with the conventions used in other parts of the interpreter.
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Finally, after main-part has been prodtced. last-part accounts for the deallocation

of the input vector,

The d.efinitions for scanl, scanp and scanlp, are similar to the rules above' The

definitions f'or scanr and scanrp are more verbose but their infrequent use does not

warrant describing them here.

D.3.10 AlltuP functions

An alltup function (gr, . . . , gn)" applies a copy of its input value u to each gi producing

a nev¡ tuple, (gru,. . .7nu)'

Str ( (gr, ..., gn)", (s, t,'t), o, tr)) : last-part

where
ma'in-part : pass-betweenlh, "', ln-1f (s,t,u,o,tr)
last-Part : aPPlYe main4art'

lt,(s, t,u,(o1, "',o¿_t),tr) : (s2,t2,u,(ot' "'oi)'trz)
uhere
(s2,t2,u, o¿,tr2) : Str(g¿, (s1, ú1, u,null,trr))

: s(r)
: add,-to-trace (s1, tI,u ', (o1, '

su

trI
applye (s,t,u,(oy,

where
(s1, ú1, null, on, tr e) : Str (gn, (s, t, u, null, tr))

synopsis mai,n-part simulates the application of each p¿, except the last, to a copy

of the input value ø. A new copy of u is made immediately prior to each of these

applications and this copy is deallocated by that application.

The final state is generated by a call to the local function applye' applye simulates

the application of the last function in the alltup, 9,, to the original input value' This

remaining input value is deallocated by this last application producing the final state

for this ruie.
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, o¡-t),tr) su su

,on-t),tr) : (s1, ú1, null,,(o1,..',on),tre)
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su

trI
applye (s,t,u,fos,

uhere

: s(r)
: add_to_trace (s1, tI,u,los, ..., o¿_tf ,tr) su su

, on-zl,tr) : (s1, ú1, null,los, ..., on_.l,trl)
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D.3.11 Allvec functions
An allvec function [fo,. . . , f,_.']" applies its input value u to each /¿ producing a
vectot, [fou,"',fnqu]. Note that all /¿ must have the same types. If the allvec
function is empty, that is if it takes the form []', then it will return an empty vector
irrespective of its input.

Str(l ]", (r, t,,t),o,tr)) : (s,t,u,ll,trZ)
uhere
trL : (s,t, null,[],tr)
tr2 : add_to_trace trl (--su + 1) 2
SU : ,S(r)

Str([ fo,..., Ín-t]", sú) : last-par-t
where
ma'in_part : pass_between lÍo, ..., fn_zl st
Iast_part : applye ma,in_part

ft. þ, t, u,, 1os, ..., o¿-t], tr) : (s2, t2, u, foo, ...o¿1, tr2)
uhere
(s2,t2,u2, o¿,tr2) : Str(f¿, (sl,tI, u, null,trl))

(sL, t7, null, on_1, trl) : Str (f ,_1, (s,, t, u, null, tr))

Synopsis The interpreter handles allvec expressions in a very similar manneï to the
way it handles alltup functions. The primary difference between the allvec and alltup
rules is the clause to handle an empty allvec function. This clause updates the trace
to reflect the deallocation of the input value and the allocation of space for the empty
result vector.

The handling of non-empty allvec functions is structurally identical to the handling
of alltup functions.

sThis restriction
of the Adl compiler

is not enforced by the interpreter, it is assumed to be enforced by the typechecker
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D.3.12 Select

select takes a pair of vectors (rt,l7o,. . . ,,Ar_l) and produces a nervl/ vector

lrrl.ao,...,rslyr-1]. That is, the result produced comprises the elements of the first

vector indexed by the second vector'

Str ( select, (s, t, (r s, lao, ..., a"-tl), o, tr)) : last-part

uhere
first-part : ad,d,-to-trace (s,t, (rt,l7o,.'.,Ur_l), null,tr) I I
mai,n-par-t : pass-between lÍo, ..', f ,-_tl (s,t, (rs,l1o, .'., U.-l), null,tr)
last-part : ad'd,-to-trace-null main-part - (,S(øs) + l) 2

fu (t,t, (rt,lAr, '..,U,,_1l),luo, -",u¿-tl,tr) :
(s1, f 1, (*t,lau*r,...,an-t]), lro, ..., uu],trl)
uhere
U¿:
s1 :
tl:
trl :

Synopsis first-part increments the time and space from the initial state to account

for the allocation of an empty result vector. main-part simulates the copying of vector

elements from rs into the result vectot, dealiocating each g¿ as it goes. last-part

decrements the space consumption to account for the deallocation of rs and the,

now-emptv, g/-vector.

D.3.13 Zip

The zip function takes a pair of vectors of equal length (["0, . .' ,r,,._tf ,l7o, "',A,_l)
and produces a vector of pairs: l@o,yo),.'.,(rn-r,Ur-)1.

rsly¿

s *,S(r.'¿) - S(s,)

t+S(u¿) +1
úr*F (s1, ú1)
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St(zip, (s, t, (rs, y s), null, tr)) : last-part
uhere
n:#rs
first-part : add_to_trace (s,t, (rs,ys), null,tr) I I
last-part : add_to_trace_nullma'in_par-t -22
ma'in-part : pass-betweenlfo,, ..., fn_l fi,rst_part
Í¿ (s,t, ([r¿, ..., rn-tf ,lAn, ..., y,_l),1(ro, Ao), ..., (*n-r, U¿-ù],tr) :

(s, ú 1, (1, u*t, .'., r,_1l, la o+r, ..., y "-rl), l(ro, U o), ..., (r ¡, y o)], trt)
uhere
trI : add_to_tracetr jtL
fl : ú+(,S(rs) +S(so)) +1

Synopsis first-par-t simulates the allocation of the new result vector. ma'in-part
simulates the copying of corresponding lx¿ and gr¿ values into pairs in the result vector.
Note that úr1 increments space consumption by zero. This is due to allocation
and deallocating cancelling each other out. Note that ú1 takes account of the time
consumed by copying r¡ aîd y¿.

Finally, last-part accounts for the deallocation of the empty input vector.

D.3.14 If
The if function applies its predicate function p to its input value u and, subsequently,
produces cu lf pu : true or p a if p u : false.

Str (if (p,c,o), (s, t,,t),o,tr)): last4art,
uhere
fi,rst-part, :
(s1, ú1, null,b,trL) :
last-par-t :

Synopsis first-part accounts for the cost of making one extra copy the input value.
The middle state, (s1,ú1,'il,b,trl), accounts for the cost of evaluating the predicate
function, p. last-part simulates the evaluation of either cu or au.

add-to-trace S (u),S(u) (s, t, u, o, tr)
Str(p, first-part)
Str(c,, (sl, ú1, u,null,trl)), if b: true
Str(a, (sl, ú1, u,null,trl)), otheru,i,se
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D.3.15 \Mhile

Thefunctionwhile(/,p) takesaninputvalue,u,andsuccessivelyapplies f tou while

p u is true. If p L) : false lo begin with then / will never be applied. Note that while

is potentially non-terminating.

Str( while(/, p), (s, t,'t),o,tr)) : cond-do Pual(nert4art) fi'rst-part
uhere
first-part : add-to-trace S(u) ^9(u) (s, t,u,o,tr)
nert-part : Str(p, first-part)
cond-do false st : st

cond-do true st : ^9úr(while(/,?), (s3, t3,o3,null,tr3))
uhere
(s3, ú3, null,o3,tr3) : Str(f , st)

Synopsis first-part accounts for the copying of the input value required to evaluate

the predicate, p. nert-part simulates the appiication of the predicate function. The

output of nert-part, and the state first-part are then applied to the local function

cond-do which either returns lhe first-part or the state produced by a recursive call

to the rule for while with a modified state, depending upon whether the result of the

predicate is true or false.

D.3.16 Priffie
The priffle (predicate.riffie) function take a triple of vectors (bs,rs,ys) and produces

a result vector rs which is the result of merging zs and gs according to to the boolean

values in ós. More precisely, for each successive b¿,ir.bs., the next element r¿, in rs, is

the next element of rs if b¡ : true and the next element of gts otherwise. Note that

#bs : #rs: #rs -f #As.
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Str( Priffle, (t,t, ( [ó0,

lro,
[Yo,

where

fi"rst-par-t
ma'in-part

last-part

Ío (", ú, (

where
ul:

oL

trL
IT

( [óu*r, ..., bn-t], lr ¡ ¡t, ..., r;t], lAn,

(lbo+r, ..., bn-t], [r ¡, ..., rt-l], lA r*r,
["0,..., rir,ïj],i,f b¿: ¡yu"

lro, ..., r ¿¡, A n], otherwis e

add-to-trace tr 0 tI
S(tastol) - S(óo)

.,a*-tl),'i,fbo: ¡ru"

.,A*-t]), otherwise

,bn-t]',

, lx;tl,
, a*-tl), o, tr)) : last-par-t

: add-to-trace (s,t, ([ó0, ..., bn-t],rs,ys),o,tr) L I
: pass-between lfo, ..., fn-rl first-part
: add-to-trace-null main_par-t -33
lbo, ..., bn-t], lr ¡, ..., Wt], lA*, ..., a*_l),
["0, ..., r¿-1],tr) : (s, ú1, ul, ol,trl)

Synopsis first-part accounts for the allocation of a new result vector. main-part,
simulates the transfer of values from either rs or grs according to the next value in ós.

Space for new output values is allocated and space consumed by the input values used
is deallocated. Finall¡', last-par-t accounts for the deallocation of the three, now-empty,
input vectors.

D.3.17 Mask

mask takes a pair (rs,bs) and filters rs according to the boolean values in ós. If
bs¿ : ¡ru" then rs¿ is included in the result vector, otherwise it isn't.

mask is used, in conjunction with priffle, to process the functions, corresponding
to different branches of a conditional, embedded in a map body, separately.
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Str( mask, (s,t,(rs, lbo, ..., b"-r]) ,o,tr)) : last-part

uhere
fi,rst-part, : ad'd-to-trace (s,t, (rs, [b6, ..',bn-t]), null,tr) I I
main-part : pass-between lfo, ..., f ,,_rl fi,rst-part
last-part : add-to-trace-null ma'in-par-t -(^9(zs)) t
f¿ (s,t, (rs,lb¿, ...,b*-tl), os,tr) :

(s1, ú1, (rs,lb¿¡1,.'., ó,,-r]), osll o,trl)
rnhere

: lrsli,), if b¿

: ll, othertaise
: s+(,S(o) -1) -S(óc)
: t+(^9(o) -1) +1
: úr*f (s1, ú1)
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o

s1

tl
trI

Synopsis first-par-t accounts for the allocation of a new empty vector for the

result. marn-part simulates the conditional copying of elements of. rs according to

the corresponding values in bs. Elements of both input vectors are deallocated as

each f¿, called. to produce main-part, is invoked. Finally, last-part accounts for the

deallocation of both, now-empty, input vectors'

D.3.18 Tlanspose

In the current time-space model transpose is specialised to operate on just the outer

two dimensions of the nested input vector. That is, in this model,

transpose : transpose(0,1)

For maximum flexibility, future versions of this model must be extended to implement

transpose over arbitrary dimensions in the same fashion as the model described in

appendix B. The current rule for transpose is:
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Str( transpose, (s,t, rs, o,tr)) : last-part
uhere
last-part : (s2 , t2, null , newrs , tr2)
s2 : s1 -S(zs)
t2 : t2+L
tr2 : trlf]- (s2,t2)
s1 : s-lS(newrs)
tI : t-lS(newrs)
trI : úr*f (s1, ú1)

newïs : trans rs
[[ø10,0), rço,t¡, . . ., r(o,ms-t)],

r --- [rir,o¡, rçt,t)t. . . rrçt,m1-L))t
tro,ns

[[ø10,0) )ï(7,o)''
lrço,t¡,r(t,t)t.

, rçn-t,o1

,Içn-I,l)

[rç,,_t,o)tre1¡,. ..,r(n_r,-,-r-r)]] lre,ms-t)tr(r,ms-t),. . .,t(n_ r,-o-r)]]

Synopsis The trace generated by the rule for transpose abstracts over most internal
details of the operation. There are only two steps in the trace. The first step allocates
enough space for the transposed result vector. The second step takes time equivalent
to the size of this result vector and the final st. The trans function, informally,
describes the functional semantics of transpose.

This completes the description of the interpreter. Next we, very briefly outline
the process we used for extracting and displaying traces.

D.4 Extracting the trace
The interpreter rules described above define the process for generating an interpreter
state for a given sequential BMF program and its input data. The process of
extracting a trace-graph from this state is straightforward.

First the trace is projected out of the state by using the function:

get-trace (s, t,'i, o, tr) : ¡y

the trace úr is in the form of a list of pairs. For plotting this list is converted into a
text file with a pair of numbers on each line. This is done using the Miranda show
function and facilities for file output.

314
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Once the trace data is saved to a file in the above format it is a simple matter to

plot the data in a graphing package. In our case we used Gnuplot.



Appendix E

Nested Parallelism

Thus far, this report has described the introduction of one level of parallelism to
BMF code. While one level is satisfactory for many applications there are some

conditions under which it is desirable to exploit parallelism on more than one level by
nesting parallel constructs. For the Adl programmer there are three broad contexts in
which the use of nested parallelism may be warranted by the improved performance
it generates:

o The extension of block partitioning to more than one dimension;

o the efficent exploitation of parallelism on irregular nested vectors with fixed
shape;

o and the efficient exploitation of parallelism on irregular nested vectors with
dynamically changing shape.

In the following, the use of nested parallelism in each of these three contexts is

discussed in turn. First however, as a preparatory step, we present the methodology
r,Ã/e use for expressing nested parallelism in BMF code.

E.1 Methodology
For most functions, adding nested parallelism to BMF code is a simple extension of
the process for adding a single layer of parallelism to BMF code. Figure 174 shows the
process of propagating a single layer of parallelism through a BMF program which
calculates the sums of squares of an input vector. The outermost function types

316
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Figure !74. Parullelisation process for code to calculate the sum of squares for a
Iist of numbers.

I f ç.nt1-rnt)' ( x' (id, id )' ) x 
1 ¡ 
tntl-llntl)

tl+l;.ntl)

ntl-llintlltt) ' (x ' (id, id)')x1¡tr,4*¡tntl)

, id)') * *f¡¡0,,41,,-¡[rnt]ltt) ' splito 1¡;,,4-ttin¿llll)

+
+

Figure 175. Propagation of a second layer of parallelism through the program
from figure L74.

in the progïam are written as subscripts. Parallel vector types are annotated with

the (ll) superscript. Another layer of parallelism can be added to this program by

propagating parallel functions through the sequential code embedded inside parallel

constructs. In general, any function / whose type unifies with [[o]]ll --+ B is a
cand.idate for adding another layer of parallelism. The most downstream candidate

function in the parallelised program in figure I74 is (+/)*lff-rflr-[in¿]r) and this is

where the process of propagating a second layer of parallelism starts in figure 1751.

Note that the transformation between the last two lines does not serve to propagate

parallelism any further into the code, but rather it distributes the outer map function

in (+/ll . (+/)*ll;all ovet its component functions in order to more cleariy demarcate

the stages of the program. The nested parallel program in the last line of figure 175

introduces a hierarchy of paralielism where each element of the input vector is

distributed once by splito and each of these distributed elements is further distributed

by splito*ll. This hierarchy is apparent in the snapshots, shown in figure 176, of

the execution of the nested parallel program on the last line of flgure 175. Note

that, in this case, the hierarchy is balanced which makes it a simple matter to map

the virtual nodes of the hierarchy efficiently onto actual nodes of a machine2. In

lThe type subscripts have been omitted for the sake of readability
2The simulator, described in chapter 6, uses the mapping:
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*7ll.67ll¡*ll1*7 ¡*ll*ll. 1r. (id, id)o)xxlllll.sp¡¡q*ll.sp¡ib [1,2,3,4,s,6,j,8] 0 11,2,3,4,s,6,7 ,81
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Figure 176. Snapshots of the execution of the nested parallel program from
figure L75.
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general, hierarchies do not have to be balanced and, in programs with the appropriate

conditional functions, they do not even have to have uniform depth. such unbalanced

hierarchies will require a more sophisticated mapping from virtual to real nodes.

It should also be noted that applying nested parallelism to the one-dimensional

sum-of-squares ploglam above is not going to produce better performance than

applying the same degree of parallelism on a single level. However, there are general

classes of probiem where nested parallelism can be of substantial benefit and the

remainder of this chapter is devoted to describing these classes of problem and

outlining how nested. parallelism can be applied to them. We start with problems

that benefit from the extension of block partitioning to more than one dimension.

8.2 Using nesting to extend block partitioning to
more than one dimension

In Ad1, and in its implementation, multid.imensional vectors are emulated by nested

single-dimensional vectors. So, for example, the two dimensional structure in

figure ITT(a) is emulated, in Adl, by the nested vector in figure L77(b)' Partitioning

nested vectors along one dimension is straightforward: figure 178 shows a simple

partitioning of the outer dimension of the nested vector shown in figure 177(b)'

This partitioning, which may be appropriate if the application requires limited

interaction between elements of sub-vectors, divides the array into longitudinal strips'

Unfortunately, there are many applications that require substantial interactions

spanning more than one dimension. Stencil algorithms, for example, typically require

interactions between each element and its neighbouring elements in all dimensions.

Figure 17g(a) shows the inter-node interactions generated a stencil algorithm running

over the partitioned vector from frgure 178. Figure 179(b) shows the communications

arising from an alternative partitioning of the same vector. A simple cotrnt of the

number of arrows shows that the two-dimensional block-partitioning shown in (b)

generates less communication than the one-dimensional block partitioning. If we

{[0,0.0,0.0.0] r+ nod,e 0, [0.0.1] r' node 1, [0'1,0'1'0] ++ nod'e 2, [0.1.1] F+ node 3]

of nodes of the virtual machine to physical nodes. Note that this mapping places virtual parent

nodes on the same physical nodes as their children. This is done on the assumption that the amount

of work done by parent virtual nodes is small compared to the work done by virtual nodes at the

bottom of the hierarchv.
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Figure 177. A two dimensional structure, part (a), and its representation in Adl,
part (b).

Figure 178. Simple 4-way partitioning of the outer dimension of the nested vector
shown in figure I77(b).
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Figure 179. Comparison of communications costs arising from a stencil algorithm
on a one-dimensional partitioning of a two dimensional vector, part (a), and a two

dimensional partitioning of the same vector, part (b).

generalise the partitioning schemes in part (a) and (b) to p nodes and square datasets

whose side is length r¿ we find that the partitioning scheme of part (a) gives rise to:

(p - t)"

two-way inter-node communications and the partitioning scheme of part (b) gives rise

to:
2(\/P - L)n

two-way inter-node communications. We can see that, in terms of communications,

a two-dimensional block partitioning of data for a two dimensional stencil algorithm

is asymptotically better than a one dimensional partitioning. This means that, for

some important algorithms, there are substantial gains to be had by dividing our

data in more than one dimension. In Adi this means that it advantageous to exploit

parallelism both between and within sub-vectors, which entails the use of nested

parallelism.

8.2.I Nested block partitioning in Adl

Nested parallelism on nested, structures in Adl is implemented by propagating parallel

constructs through the outer and inner level of the array. To illustrate this process,



APPENDIX E. NESTED PARALLELISM 322

P o.o

ao ãl a2 a.
J

P o.r

a4 a-J &6 a7

a7

aol al 4z a3r

a3z

a'l.z

ats

a4t 451 a6t a7t

443 453 473

a__
-1t 475

a06 ar6 az6 436

ãol at'j az'l 437

Figure 180. Nested vector from figure I77(b) partitioned across two nodes in the
outer dimension

imagine a sequential BMF program working over a nested vector:

.f * *¡¡o¡¡-¡¡p¡1

such a program would accept input, and produce output, with a structure similar to
that shown in figure 177(b). The first step of parallelisation propagates split through
/ * x giving:

+ /[l¡¡B111,,- rwrj' I * * *¡¡¡o111tt-¡¡¡B¡¡¡r'split2 fto]r-tttol¡rl

In this version, the function / x xxll is presented with data with a structure like that
shown in figure 180. The second stage of parallelisation propagates split through /*
the innermost map of f * aall giving:

+r /ff¡p1;1,,-ttBll ' (+ l'rlrurr-rr' / * *[!,¡1,, ' split, to]-ttall) * *ll¡*111,,*¡¡¡9111rr ' split2 ttû¡*tttd¡tl
rù¡e can further transform the program above to consolidate the splitting and merging
into distinct phasess:

++ lll . (+f 7tt¡ * *ll .,f * *ll * xll .splitz x *ll .split,

The central / * xll * xll function is presented with data having the nesting structure
shown in figure 181. This partitioning allocates a square-shaped block to each of the

sAgain, we have omitted type subscripts for the sake of readability.
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Figure 181. The nested vector from figure L77(b), block-partitioned in both the
outer and inner dimensions.

physical nodes mapped to the virtual nodes 0.0.0, 0.0.1, 0.1.0 and 0.1.1. The inner

function / is applied simultaneously in each of these nodes in the sequence indicated

by the four thick arïows in figure 182. Note that the innermost ievel of parallel

execution occurs inside a sequential map. To date, in this work, we have implicitly

assumed that in an application of sequential map:

(/) * [ro, ntt.. .,rn-t]: lf ro, f ,r,.. ., Í ,n-tl

the execution of each application, / z¿ must finish completely before execution the

next application f r¿+t begins. This makes sense when each application, itself, runs

sequentially. However, in the execution trace represented in figure 182 the function

,f **ll, applied to the members of the sequential vectors loo, or, a2, aB] and [aa, a5, a6, o,7],

is parallel. If we insist, for example, that, f * *ll oo finish completely before we start

the execution of any of ,f * *lla1 then we introduce an unnecessary synchronisation

between nodes 0.0.0 and 0.0.1. In order to avoid the costs of such synchronisations

the semantics of sequential map should be refined to have explicit synchronisation

oniy at the end of the map in cases where the map-body is parallel'
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Figure 182. Thace of execution of ,f x xll x *ll applied to the data structure from
fir'ure 181."b

8.2.2 Nesting other structures
So far we have looked at how to propagate nested parallelism through the BMF
code produced by the Adl implementation in order to partition data into blocks in
more than one dimension. For most BMF functions this process is a straightforward
extension of the single-level parallelisation process. However, some important
constructs, such as select, defy a simple extension of parallelisation strategies to a
nested context. This is unfortunate because important classes of parallel algorithm,
such as stencil algorithms make intensive use of select. For example, a sequential
version of a simple stencil that repeatedly applies a binary operator / to each element

and its lower-left neighbour until a condition is met can be written:

while(/ x x .zip. (id, select .(id,lshi,ft)o 'select * .zip. (id*,,ushi,ft)")",not-done)

Where lshi'ft,, ush'ift, and not-done a,re place-holders for BMF code to generate left-
shifted indices, generate up-shifted indices and perform a boolean test for loop
completion respectively. Parallelisation of the program above in one dimension mostly
involves replacing the left-most select with distselect composed with some additional
detailed code as per the rules in chapter 6. However, parallelising two dimensions to
achieve a block partitioning leads to a much more complex code, involving at least:
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1. A stage to set up data for inter-block transfers

2. A stage to perform the inter-block transfers

3. A stage to perform intra-block transfers

In general, each stage will involve calls to select and/or distselect as weli as detailed

code to create the index vectors for these calls. The ievel of detail involved is

somewhat at odds with the relatively simple operation being performed.

8.2.3 Simpler block-partitioning
A strong argument could be made that part of the complexity arising from block

partitioning is due to the emulation of multi-dimensional arrays using nested lists.

If Adl supported genuine multi-dimensional arrays there would be no need for such

emulation. With multi-dimensional arrays as a primitive type, functions such as map

could be naturally applied to all dimensions and block partitioning could be specifled

without the need for nesting. The expression of parallelism over multiple-dimensions

of regular multi-dimensional structures would be straightforward'

Such an extension to the Adl type system would involve the redefinition of vector

primitives such as map, reduce, scan, iota, length and index in a generic, shape-

polymorph,ic way. Such polymorphism has already been extensively explored in

languages such as FISh[85] and in a parallel-context in GoldFISh[86] so there are

already solid foundations for such an approach. However, the use of multi-dimensional

arrays only supplants the need for nested parallelism when structures are regular.

Nested parallelism becomes more attractive when a problem does not lend itself to

an efficient solution using regular structures. We examine strategies for exploiting

nested parallelism over irregular structures in the next two sections.

E.3 lJsing nested parallelism to exploit parallelism
over static irregular structures

Many parallel applications, including some finite-element and sparse-matrix

algorithms, operate over static data structures whose optimal distribution does not

evolve significantly over the course of the computation. In these cases) it is appropriate
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Figure 183. An irregular nested vector

to exploit parallelism using a static nested decomposition of irregular data over the
nodes of the machirre.

In Adl irregular data structures are best expressed using nested vectors. The
effective exploitation of parallelism over such vectors will involve nested parallelism.
In the last section, we showed how multiple levels of nesting could be used to produce
a block partitioning. The same techniques could be easily applied to irregular nested

structures but, without modification, would be prone to produce poor load balancing.
In this section, we show how the techniques from the last section can be modified to
produce better load-balancing.

E.3.1 A simple schema

Figure 183 shows an irregular nested vector which is the intended data-source for
a parallel computation. Figure 184 shows a one dimensional decomposition of
the vector. Assuming that each data value corresponds to a similar amount of
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Figure 184. Irregular nested vector from figure 183 partitioned in one dimension,
producing poor load-balancing.

computationa, this regular decomposition gives a poor load-balances. If we are

prepared to use more processing nodes we can achieve a better load-balance by

exploiting nested parallelism. Figure 185 shows how each of the larger sub-vectors

can be further distributed to achieve a more even global distribution of work. Note

that each sub-vector resides on at least one separate node and that the longer sub-

vectors are divided over different numbers of nodes to the shorter sub-vectors. This

non-uniformity in node-allocation requires the use of a split that is sensitive to the

statically determined partitioning scheme for its data. This means that instead of

having:
splito x .splitn

4For most computations, this assumption is very reasonable but there are exceptions, such as

LU-factorisation of matrices, so the assumption is worth making explicit.
sEven if we are prepared to use contiguous partitions with different numbers of elements in each

a better load balance can be obtained but it is possible, for a given number of nodes, to come up
with a data distribution that defies a load-balanced one-dimensional decomposition.
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Figure 185. Irregular nested vector from figure 183 partitioned in two dimensions,
producing improved load-balancing.

as used in the last section, to sub-divide data, v¡e use

splito x .splito

where each p¿ is determined by the partitioning function for the input data. The
partitioning scheme shown in figure 185 is is good but not perfect. Nodes po.t.o, po.+.o

and p6.5.6 have a small amount of work compared to the others. These small chunks

of work can be consolidated by choosing an appropriate mapping of virtual nodes to
physical nodes. For example, a mapping:

{ [0,0.0,0.0.0] ¡--+ Nod,e r, [0.0.1] r--+ Nod"e f , [0.0.2] r--+ Nod,e 2,

[0.0.3,0.1,0.1.0] ¡--+ Node 3,10.2,,0.2.0] ¡--+ Nod,e 4,10.2.11++ Nod,e 5,

[0.4,0.4.0,0.5,0.5.0] r--+ Nod,e 6,10.6,0.6.0] ¡--+ Node 7,,10.7,0.7.0] r--+ Node B,

[0.7.1] r--+ Node 9,[0.7.2]v-+ Nod,e 10]
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will achieve a reasonable load-balance at the cost of run-time infrastructure to support

the mapping6.

8.3.2 Nesting other functions in an irregular context

The issues that arise from nesting other structures besides map in an irregular context

are similar to those in a regular context. For most functions, the propagation of a

nested level of parallelism through the program is a simple extension of propagating

a single level of paralleiism. However, some constructs, such as select produce

quite detailed code when parallelised in more than one dimension. With irregular

structures, the optimal implementation of the partitioning function is different from

that in a regular context. In a regular context the partitioning function can,

typically, be captured as a simple mathematical function. In an irregular context, the

partitioning function is much more likely to be implemented as an index into a lookup

tableT. The overhead of maintaining such a table is minimal in most applications if
the partitioning is static. This overhead grows if the partitioning of data structures

evolve as computation proceeds. We examine the issues surrounding such dynamically

evolving nested parallelism next.

8.4 Using nested parallelism to exploit parallelism
over evolving irregular structures.

Important classes of parallel application including of molecular, gravitational, and

weather simulations, create an uneven and evolving distribution of work over their

computational domain. In such applications, any static distribution of work in

a parallel machine is likely to produce a poor load-balance at some point in the

computation. In response to this problem, application writers have employed

strategies to, periodically, migrate work from busy nodes to idle nodes to maintain a

reasonable load-balance. These strategies fall into two broad categories:

6It should be noted that having multiple virtual processors per-node introduces a higher-than-
necessary communications costs for effi.cient parallel implementations of algorithms such as scan.

However, if the number of virtual processors per node is kept at a moderate level then these extra
costs are not prohibitive.

TThe other thread of the Adt project[54] implemented the partitioning function using a highly
optimised lookup table.
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1. Strategies that maintain the explicit structure of the data and periodically
perform explicit migration of work according to various heuristics.

2. Strategies that flatten parallel structures to an single dimension of parallelism
and maintain a simple, near optimal, partitioning of data throughout the
computation.

Both strategies have their advantages and drawbacks. For example, strategy 2 almost
always produces a better load balance than strategy 1 but at the cost of relatively
frequent redistribution of data. We briefly examine these strategies in turn.

8.4.L Using work migration to implement dynamically
evolving irregular nested parallelism

Work migration requires some fine-grained control at least at the level of the run-time
system over data partitioning. Such fine-grained control could be achieved by having
many more virtual processors than physical nodes. A run-time system could then,
periodically:

1. migrate data,

2. alter the mappings in the partitioning functions, and

3. broadcast the changes to each physical node

To preserve correctness these actions would need to be carried out in such a way as

to appear atomic from the point of view of the executing program. Other aspects of
parallelisation would remain the same as they did in previous sections.

Work migration would impose several overheads on the executing program. These
include: the cost of monitoring work balance; the cost of calculating and distributing a
new partitioning function; the cost of migrating the data; and the cost of maintaining
a large number of virtual processors.

A-priori maintaining the atomicity of work-migration would not be difficult since
work-migration could be integrated to parts of the program requiring a global
synchronisation.

Note that extent to which load-balancing is maintained is highly dependent on
how often work migration occurs, the granularity of virtual processors, and the
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quality of the information used to inform the work-migration process. It is up to the

implementor to carefully balance the costs and benefits of a work-migration strategy.

Next, we consider the data-flattening strategy.

8.4.2 Using flattening to implement dynamically evolving
irregular nested parallelism

The use of flattening in a parallel functional context was pioneered by Blelloch

using the language NESL[22, 23]. The NESL implementation works by flattening

nested vectors, maintaining a record of their shape, and using flat segmented data-

parallel operations over the flattened data. The segmented operations use the shape

descriptors associated with their input vectors to inform the semantics of their

operation. Load balancing is preserved by maintaining a simple one-dimensional

partitioning of the flattened data. Chakravarty and Keller (and others)[30, 29,91.,92]

in Nepal, their parallel extension to the functional language Haskell, extended the

flattening transformation to a much broader variety of types. The also formalised the

transformations needed to functions to allow them to work with flattened arguments.

In both cases, the partitioning of data is kept implicit until run-time8 and the

primitives of the language provide the efficient segmented operations needed.

Flattened. parallelism could be implemented for Adl by applying a flattening

transformation, extend,ing that used in NESL, to allow vectors to contain tuple

elements. Such extensions already exist in Nepal so their feasibility is not in question.

However, the use of flattening in an Adl implementation would substantially change

the compilation process. The usefulness of data-movement-optimisation would be

maintained. because its transformations would continue to reduce data movement in

a flattening implementation. In contrast, the parallelisation process would cease to be

a part of the compiler and move to the run-time system. The code-generation process

would be less straightforward with the need to map the nested function invocations

in BMF code to segmented operations. Finally, it is likely that the run-time system

would need to be substantial to help maintain the partitioning as the program runs.

In summary, it appears feasible to implement dynamically evolving nested parallelism

8Though, it must be noted, that in Nepal the programmer is able to embed sequential lists inside
parallel lists.
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in Adl using flattening transformations but such an implementation would be very
different to the current implementation.

8.5 Conclusion

This chapter has described a methodology for propagating nested parallelism through
Adl programs and described three broad classes of application where the exploitation
of nested-parallelism is useful. The efficient options for implementation vary from
class to class. Regular nested parallelism might be best substituted for a single level of
parallelism in the context of a richer type system. Static irregular nested parallelism
would typically need a detailed partitioning function and support for more virtual
processors. Dynamic irregular nested parallelism will probably need the support of a
substantial run-time system to support either work migration or structure flattening.

It seems that the best system to use varies with the regularity of the problem.
It seems unlikely that one system will be optimal for all problem domains. Careful
consideration of the likely problem domain for Adl is needed before deciding on an

implementation strategy.



Appendix F

Costs of malloc and f ree

Our parallel simulator, used to generate the results in section 6.4 requires estimates

of the cost of nalloc and f ree in order to model the costs of memory management

on each node. In this appendix we describe the outcome of several basic experiments

designed to quantify these costs.

F.1 Factors

The costs of malloc and f ree depends on a number of factors including:

o the hardware

o the design of the libraries that implement nalloc and f ree.

o the quantity and pattern of allocation/deallocation.

These factors interact to produce quite complex patterns of performance that are

perhaps best studied empirically. \Me set up series of basic experiments in an attempt

to come up with a simple characterisation of the costs of f ree and nalIoc.

F.2 Methodology
\Me are interested in the cost of free and nalloc under conditions that we will test

in the simulator. These conditions are:

o Flequent calls to malloc for small blocks of data (mostly less than 5000 words)

333



APPENDIX F. COSTS OF MALLOC A¡\TD FREE 334

o A variable but mostly short interval between the allocation of a block with
nalloc and its deallocation using free.

o As a corollary to the above two statements we might expect that at a typical
point in time dynamic memory might contain a large number of small blocks,
adding up to a small to moderate memory consumption overall (at least for the
data-sizes used in the simulator).

We want measure costs in terms of instructions since this metric allows reasonable
cross-architecture comparisons.

Getting raw times Our rar'Ã/ measurements are performed with high-resolution
timers. These timers measure wall-clock time in units of nanoseconds. This resolution
is more than adequate for our purposesl. Measurements are taken by inserting a call
to get the time before and after calls to nalloc and free.

Getting instruction times To convert raw times to instruction times we need

an estimate of the cost of basic instructions on each architecture. To do this we
created some benchmark programs to measure the cost of varying length sequences

of increment2 and assignment statements. The compiler \Mas run with optimisation
turned off to ensure that the code we write is the code that runs. We are searching
for the marg'inal cost of instruction execution and this can be extracted and verified
by looking at the relative costs of different length instruction sequences.

Overcoming confounding factors There are a number of possible confounding
factors including

1. Systematic cache effects caused by calls to the timing functions and the code
to record the times.

2. A bias in the results caused by the particular set of block-sizes chosen.

3. A bias in results caused by the particular pattern of allocations and deallocations
used.

lwe might expect the actual resolution of the timers to be somewhat lower and for probe-effects
to deliver some randomness in times, though at a scale that is not problematic in an experiment
with many trials.

2Every increment in each sequence was to the same variable which could limit execution speed
on some architectures.
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The first factor might be significant if the code collecting the time causes code and

data that is useful for nalloc and free to evicted from the caches. We try to minimise

this effect by inserting mostly lightweight code between calls to the timers and nalloc
and f ree. It could be argued that some use of the cache is likely to occur as the result

of normal execution of program code in any case so, in a sense, the effect of the timing

probes might occur in real code anyway.

Factor number two might be a problem if we were unlucky enough to choose block-

sizes that, by coincid.ence, matched points of good or poor performance for nal-l-oc

and. f ree. To overcome this we chose a large number of block-sizes (100) at intervals

of 50 words (a number of no particular significance on most architectures). Block sizes

are always odd (i.e. 1 word, 51 words, 101 words). The randomness of our actual

cost measurements seems to indicate that we achieved a reasonably good sample of

the spectrum of performance.

Bias resulting from factor number three is difficult to eliminate without knowing,

in advance, the likely pattern of memory allocation used by code generator. Our

experiments tend to allocate and dealiocate data in a systematic way. When we

altered. an experiment to allocate randomly size blocks of data the peformance data

changed but not radically.

Overall, from the experiments we describe below we can expect a reasonable

characterisation of the cost of nalloc and free. This characterisation can be

improved in a number of ways but, given the variations \Me tried and the moclerate

consistency of the actual results under quite different conditions, it is unlikely that

our results are far off the mark.

Experimental platforms We timed nalloc and free on two architectures:

o A 4-processor Sun Sparc Ultra running Solaris 5'9.

o A Dual-processor PowerPC running Darwin 6.6

For the flrst platform we use the gethrtimeO library call declared in <sys/tine.h>.

For the second platform we used the nach-absolute-tíneO library call declared in
(nach/nach-tine . h>.
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F.3 Experimental results

F.3.1 Raw instruction execution speeds

On both platforms we found the marginal cost of increment and assignment
instructions were very similar to each other. On both architectures the cost of
executing the first instruction in a sequence was very high, very likely, the result
of cache-effects. Once the execution of a sequence was underway performance seemed
quite consistent. The costs of both assignment and increment statements on the
older Sun platform are around 59 nanoseconds (plus or minus one nanosecond). On
the newer PowerPC platform the execution costs of increments and assignments are
around 0.25 nanoseconds (very small variations around this point).

We have described our experimental setup and some factors to watch out for. Now
we can show the results. First we describe the cost of nalloc.

F.3.2 The cost of mall-oc

In this section we examine the results of a series of experiments to arrive at an estimate
of the cost of naIloc. Each experiment assumes a different pattern of calls to nalloc
and free.

Cost of nalloc without deallocation In our simplest experiment we performed
50 calls to malloc on each of a series of 100 block sizes between four bytes (one
integer) and 19804 bytes (4951 integers), at 200 byte intervals. In this experiment we
made no calls to free.

Figures 186 and 187 show scatter-plots of data points collected the Sun and
PowerPC platforms respectively. Note the different scales in the diagrams. In both
figures the nalloc's involving small blocks of data tended to be the least costly3. The
effect of block-size appears more pronounced on the Sun platform where the cost of
allocating larger and larger blocks increases typical costs from around 50 instructions
to between 2000 and 10,000 instructions.

For the PowerPC platform costs for small blocks are clustered about two
modes at approximately 100 and 3000 instructions respectively. Perversely, average

3\Mith the notable exception of the very first nalloc performed in each program - probably due,
in part, to instruction cache effects.
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Figure 186. Cost of calls to nalIoc, measured in instructions, on the Sun server
platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size. No deallocation was performed.
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Figure 187. Cost of calls to nalloc, measured in instructions, on the PowerPC
platform. 50 calls are made for each block-size and cails are made in ascending

order of block-size. No deallocation was performed'
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Figure 188. Cost of calls to malloc, measured in instructions, on the Sun server
platform. 50 calls to nalloc are made for 100 different block-sizes. The block-size

used for each successive call is randomly determined. No deallocation is performed

performance improves as we allocate larger block sizes. Costs on the PowerPC are
more variable than they are on the Sun with some calls on the PowerPC costing more
than 100,000 instructions.

Note, that there is a possible bias factor in this experiment: ,rve are allocating the
larger blocks from a heap that is more "full" than the heap from which we allocate
smaller blocks. We can remove this factor by allocating the large and small blocks in
a random order. We show the results of using such a random allocation next.

Allocating large and small blocks in a random order In our second
experiment we allocate the same mix of large and small blocks but we permute the
sequence of allocations so blocks of different sizes are allocated in some randomly
determined order. So, whereas, in the previous experiment, we allocated 50 blocks of
one size followed by 50 blocks of the next size up and so on, in this experiment we
might allocate a block of 1051 words followed by a block o125I words followed by a
block of one word and so on, in randomly determined order until all 5000 blocks have
been allocated.

The results of this experiment for the Sun and PowerPC platforms are shown in
figure 188 and 189 respectively.
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Figure 189. Cost of calls to nalloc, measured in instructions, on the PowerPC
platform. 50 calls to malloc are made for 100 different block-sizes. The block-size
used for each successive cali is randomly determined. No deallocation is performed

In both figures there are more low-cost allocations of larger blocks and high-cost

allocations of smaller blocks. This appears to indicate that at least part of the low

cost for smaller blocks in the previous experiment was due to the fact that they were

allocated into a less full heaP.

However, even with randomised allocation order, smaller blocks typically cost less

to allocate than larger blocks. Though, there seems to be no simple function that

adequately characterises the cost of nalloc in these experiments.

Note that there is still scope for improving these experiments. In our

implementation, calls to nalloc will be interspersed with calls to free. This on-the-

fly freeing up of memory is likely to change the behaviour of nalloc. We examine

the cost of nalloc when it is interspersed with calls to f ree next.

Cost of malloc when immediately followed by free We ran experiments to

measure the cost of nalloc when it is immediately followed by a call to free. In
such circumstances nalloc is always allocating into a completely empty heap' The

results of this experiment for the Sun platform and the PowerPC platform are shown

in figure 190 and 191 respectivelY.

Figure 190 shows a remarkable uniformity of allocation times across the range of

block-sizes. Figure 191 displays different behaviour for the lower and upper end of

r .l
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Figure 190. Cost of calls to naIloc, measured in instructions, on the Sun server
platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size. Deallocation is performed after each call.
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Figure 191. Cost of calls to nalloc, measured in instructions, on the PowerPC
platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size.Deallocation is performed after each call.
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Figure 192. Cost of calls to nalloc, measured in instructions, on the Sun server

platform. 50 calls to nalloc are made for each block-size followed by 50 calls to
f ree these blocks. Calls are made in ascending order of block-size.

the ranges. The sharpness of the discontinuity may indicate a change in algorithm

for larger block sizes.

In both cases the variability in allocation costs is low. This uniformity is probably

due to the fact that every allocation is into an empty heap'

Note that, like their predecessors, these experiments also fail to accurately capture

the conditions likely to prevail in our implementation. The likely scenario in our

implementation is to have clusters of allocations, foliowed by some processing, followed

by clusters of deallocation. Our next experiment attempts to mimic this behaviour.

The cost of nalloc followed by delayed deallocation. In this experiment our

programs allocated 50 blocks of data of a given size, reported costs of these allocations,

and then freed the 50 blocks of data. The program starts by allocating 50 blocks of

one-word and finishes by deallocating 50 blocks of 4951 words. The results of this

experiment for the Sun platform and the PowerPC platform are shown in figure 192

and 193 respectively.

In figure 193 as in the previous experiment, there is a very uniform cost for

malloc's of different sized blocks of data. Most blocks are allocated within 40

instructions though there are some blocks that take about six times longer than that
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Figure 193. Cost of calls to nalloc, measured in instructions, on the PowerPC
platform. 50 calls to nalloc are made for each block-size followed by 50 calls to

f ree these blocks. Calls are made in ascending order of block-size.

and yet more blocks that take over 50 times longer than the best case to allocate.
These outlying allocation times are large enough to significantly affect the average

allocation time.
In figure 193 the bulk of measurements lie in the same bands as the previous

experiment with the outlying costs for smaller block sizes being higher.

An estimate for the cost of nalloc Characterisation of the results in these

experiments using a cost function or a constant is not easy. A simulator seeking
maximum fidelity might seek to model these costs as a set of distributions from which
to sample, according to the circumstances under which allocation occurs. However,
such a complex model is too heavyweight for our current purposes. Instead we opt
to use a constant to characterise the cost of malloc. Our choice of constant must
take account of the, mostly, small data sizes used in our simulation experiments. It
is best to make the choice of this constant, from the wide range of possible values,
conservative so as not to artificially inflate computation to communications ratios in
parallel programs. With this in mind we use an estimate of 100 instructions per call.
This value is in keeping with the data shown in figures 192 and 193.
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Figure 1g4. Cost of calls to free, measured in instructions, on the Sun server

platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size. free is called immediately after each block is allocated.

F.3.3 The cost of f ree

\Me measured the cost of free in two experiments corresponding to the last two

experiments we used to measure the cost of naIloc. In the first experiment we called

free immediately after a call to nalloc which means that the heap contains one

block prior to the call. In the second experiment 50 calls to free are made after

every 50 calls to malloc. We present our results next.

Cost of immediate use of free This experiment corresponds to the experiment

where we measured the cost of nalloc with immediate deallocation. In this

experiment we took away to probes to measure the cost of nalloc and replaced

them with probes to measure the cost of free.
Figures 194 and 195 give performance figures for calls to free on the Sun and

PowerPC architectures respectively.

In both figures there is less variation apparent than the corresponding calls to

nalloc in figures 190 and 191. With the exception of one extreme outlier (at

around 3300 words) the cost of free on the Sun is approximately 30 instructions.

Performance is more varied on the PowerPC and there is a sharp drop in performance

for block-sizes 3101 words and over. The cost of free for smalier block-sizes is

clustered around 70 instructions.
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Figure 195. Cost of calls to f ree, measured in instructions, on the PowerPC
platform, 50 calls are made for each block-size and calls are made in ascending

order of block-size. free is called immediately after each block is allocated.

Cost of delayed use of free This experiment is a modified version of the
experiment that measured the cost of nalloc with delayed deallocation. We replaced
the timing probes surrounding nalloc with timing probes surrounding free.

Figures 196 and 197 show results of these experiments on the Sun and the PowerPC
architectures respectively. The scale in figure 196 is linear rather than logarithmic
to best capture the range of costs. This figure indicates that free is slightly more
expensive when calls to free are delayed until multiple allocations have been made.
A notable exception is the cost of freeing one word of memory. Our timer consistently
registered a cost of zero instructions for this activity indicating that the call takes
some time less than the actual resolution of the high-resolution clock.

Figure 197 tells a more complex story, For the most part, the cost of deallocation
has increased dramatically from the earlier experiment with immediate deallocation.
The cost of free for most smaller block-sizes is greater than the cost for larger block-
sizes4. This cost-profile is difficult to characterise with a single scalar or function.

An estimate for free A blanket estimate for the cost of free is harder to make
than for nalloc. As with nalloc a simulation of maximum fidelity would employ a

r!rrrrrrrrttttrrr¡t¡tttlrtlll¡ttrltl:¡¡l¡¡r¡¡¡l¡¡¡¡r¡¡l¡lli¡
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aPerhaps this high cost is the reason there seems to be a change of algorithms for larger blocks.
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Figure 196. Cost of calls to free, measured in instructions, on the Sun server
platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size. free is called after every 50 allocations.
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Figure 197. Cost of calls to free, measured in instructions, on the PowerPC
platform. 50 calls are made for each block-size and calls are made in ascending

order of block-size. free is called after every 50 allocations.
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function to sample from a set of distributions. However, our model only requires a
loose approximation of costs. A figure of 70 instructions is a good approximation of
the cost of free on the Sun. The costs on the PowerPC defy characterisation but a
figure of 70 is a reasonable estimate for many smaller block-sizes.

F.4 Conclusion

After sampling the performance of nalloc and f ree on two architectures on a variety
of block-sizes with different patterns of allocation and deallocation we have the
following observations :

o The costs of malloc and free form distributions that depend on the timing of
allocation and deallocation, the platform and the size of the data allocated.

o There is no simple function that characterises the cost of mall-oc as a function of
block-size. With the exception of a cost discontinuity on the PowerPC platform
the cost of nalloc seems to depend more on how many other blocks are currently
allocated in the heap than on the size of the new block being allocated. Even
when nalloc allocates into empty memory performance can vary from call to
call.

o There is no simple function that characterises the cost of free on both
platforms. As with nalloc the cost of free seems to depend more on the number
of blocks already allocated than on the size of the block being freed.

o Cost estimates of 100 instructions for nalloc and 70 instructions for free are
not unreasonable as an approximation for a simple model. There is scope to use

experimentally derived distributions, such as the ones derived in this chapter,
to inform a more detailed model in future.

It must be stressed that any refinement of our cost estimates should involve sampling
for a greater variety of block-sizes and using more realistic patterns of allocation
and deallocation. The most accurate model for the costs of mal1oc and free
would probably come from a detailed model of the algorithms used on a particular
architecture. The implementation of such a model is beyond the scope of this work.
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