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Abstract

Most previous lattice calculations have been done in quenched QCD, where the

effects of fermion vacuum fluctuations are neglected in the creation of the gluon field

configurations. The sea-quark masses may be thought of as infinite in the quenched

approximation. Due to computational resource issues, the quenched approxima-

tion provided the basis for the vast majority of lattice calculations until relatively

recently. In order to meaningfully test QCD against experimental observation, re-

alistic simulations with the dynamical sea-quarks are needed. Computing resources

becoming available now are powerful enough to treat up, down and strange quarks

dynamically.
A major component of this work consists of full lattice QCD calculations of

some of the fundamental quantites of QCD, We are computing the gluon and quark

propagators in full QCD and investigating the effects of finite sea-quark masses on

these. We have used the configurations generated by the MILC collaboration to

do nonperturbative simulations with 2 + L flavors of dynamical quarks. We have

performed extensive simulations with realistic quark vacuum polarization (quark

loops) to evaluate the effect of unquenching.

We use an improved staggered fermion action "AsqTad" in the dynamical sim-

ulations. Current simulations with dynamical staggered quarks have the benefits of

both good chiral properties at moderate lattice spacing and being computationally

inexpensive. A highlight of this study is the first results for gluon and quark propa-

gators in Landau gauge with 2*1 flavors of dynamical quarks. A comparative study

of quenched and unquenched results for both quark and gluon propagators, which

probes the effects of dynamical sea-quarks is a significant part of this work.

In the second part of this thesis, we study the scaling behavior of the quark and

gluon propagator in Landau gauge with 2 f 1 flavors of dynamical quarks on two

lattices with different lattice spacings and similar physical volumes in order to test

whether we are close to the continuum limit for these lattices. We compare the mass

function and wave renormalization function for two different lattice spacings and

find them to be consistent within errors. The Asqtad quark propagator shows good

scaling behavior as does the gluon propagator for the lattice spacings considered'

The work carried out in this thesis provides a clear understanding of the role of

dynamical sea-quarks on the Landau-gauge Green's functions.

Testing of the violation of positivity of the gluon propagator comes in the

third part of this thesis. Correlation functions play an important role in the non-

perturbative studies of the gluon propagator and confinement. Violation of positiv-

ity is considered to be a sufficent condition for confinement. An infrared suppressed

propagator always violates reflection positivity and we found explicit evidence for

this in our study.
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1

lntroduction

The standard model describes the interactions of the fundamental constituents of

matter. The standard model, based on the Sauge group SU(3) S SU(2) I t/(1)'
is one of the great successes of the gauge theory revolution. The universe appears

to be governed by four kinds of forces: strong, electromagnetic, weak and gravita-

tional. The particles undergoing strong forces (nuclear forces) are known as hadrons.

The key to the understanding of the strong interaction is the representation of all

hadrons as composite of basic fermions called quarks and antiquarks within the

theory known as Quantum Chromodynamics (QCD). The description of matter in

terms of quarks and leptons, QCD and Electroweak (EW) Theory with their gauge

field quanta is referred to as the Standard Model of particle physics. It is a powerful

tool to understand the hadron spectrum, their internal structures and their interac-

tions. Hadron interactions occur through the interactions of their quark and gluon

components. The strength of these interactions is characterized by the so-called

coupling constant. When the forces are weak, the predictions of the theory can be

worked out in terms of an expansion in powers of the coupling constant, which is

referred to as perturbation theory.

Quantum chromodynamics, called QCD, is the theory of strong interactions. It
is a non-abelian variant of QED (Quantum ElectroDynamics), the quantum gauge

theory which describes the interaction between electrons and photons. QtrD is
referred to as an abelian gauge theory, since the group structure is U(1) and since the

elements of this group all commute with each other. Non-abelian gauge theories are

built on group structures le.g. SU(N)] whose elements do not commute. QCD, the

gauge field theory which describes the interaction of quarks and gluons, is one of the

ãornpot .trts of the SU(3)6lSU(2)Elt/(1) Standard Model. The theoretical picture of

the strong interactions began with the identification of elementary fermions, called

quarks, that make up the proton and other hadrons. The strong interaction is

associated with the unbroken non-abelian symmetry group SU(3). QCD is a non-

abelian gauge field theory describing the strong interaction between quarks and

antiquarks with the gluons being the quanta of the QCD Sauge fields.

Non-abelian gauge field theories, formulated in 1954 by C,N. Yang and R.L. Mills,

are non-abelian quantum versions of Maxwell's theory of electromagnetism. In for-

mulation, QCD and QED are strikingly similar. Both are gauge-invariant quantum

field theories. The coupling constant of QCD characterizes the strength of the inter-

action between quarks and gluons in a similar manner to the fine structure constant

in QED. The smallness of the QED fine structure constanl', a x Ilt37, guarantees

the prediction of physical quantities with high precision using perturbation theory'

QCD has been shown to be an asymptotically free gauge field theory, where the

interaction between quarks and gluons becomes weaker in the short-distance limit.

Perturbation theory is extremely successful in Quantum Electrodynamics and is

1



1.1. Quarks and gluons

useful in the high energy regime of Quantum Chromodynamics, but no matter what
the coupling, some features of a theory, such as spontaneous symmetry breaking,
can not appear at any finite order in perturbation theory. If the coupling that
characterises a theory is strong, which is the case in QCD at intermediate to low
energies, then the perturbative series will converge poorly, or not at all. In such a
case we must turn to nonperturbative methods.

1 .1 Quarks and gluons
Quarks, invented in 1964 by M. Gell-Mann and G. Zweig, are basic to the un-
derstanding of hadron spectroscopy. The simple and elegant theory of QCD is
formulated in terms of quarks and gluons. Quarks are the building blocks of pro-
tons, neutrons and related subatomic particles. There are six quarks: up, down,
strange' charm, bottom and top. Protons and neutrons are bundles of 3 quarks and
any number of quark-antiquark pairs. Quarks and gluons experience and transmit
strong forces which are described by a theoretical concept called color. "Color" is
a conserved quantum number which is absent in leptons. QCD has three different
kinds of charge, 'color' where as in QED there is only one kind of charge. Color
charges of QCD have nothing to do with physical colors. Rather, they have proper-
ties analogous to electric charge. A quark of a given flavor has three different color
states' Conventionally, they are labeled red, blue and green. Antiquarks have the
corresponding anticolors. Triplets of quarks containing equal portions of the three
colors are color neutral or 'white'.

The fundamental idea of QCD is that the color charges of quarks act as the
sources of the strong, so-called chromodynamic forces between quarks just like elec-
tric charge between charged particles. At a qualitative level, it successfully accounts
for many observed phenomena. Color-induced interactions between quarks are medi-
ated by gluons, the massless spin-1 gauge bosons of QCD. Quarks can change their
color state after emitting or absorbing gluons. Due to color conservation, gluons
also carry color quantum numbers and hence as a result they also interact with each
other. This self interaction of gluons makes QCD very different from QED where
photons can not interact directly. Thus the standard theory of hadronic interac-
tions is based on quarks interacting with non-abelian gauge fields. The non-abelian
nature of the theory means that the gluons couple to themsleves.

This thesis is organized as follows:
The principal of gauge invariance is a most significant underlying concept and it

is one basic property QCD has in common with QED. QCD also has other "internal"
svmmetries which are explained in the 2"d Chapter. The extraordinary thing about
quarks and gluons is that they are never seen as free particles in nature. Indeed, no
object with color charge has ever been seen. This property is called confinement. It
implies that all observable particles with strong interactions have zero color charge.
Confinement is also discussed in Chapter 2, Numerical simulations of lattice QCD
allow us to study quark confinement. Some results leading to confinement of gluons

2



1.1 . Quarks and gluons

are presented in Chapter 8. Some results from perturbative QCD are also discussed

briefly in Chapter 2. The proton is made up of two up quarks and a down quark

(2m, + trLd = 12 MeV), The mass of the proton is 938 MeV. Where does the proton

mass (938 MeV ) 12 MeV) come from? Infact, the proton mass comes from the

current quarks acquiring mass through dynamical mass generation, which is a form of

spontaneous symmetry breaking. Dynamical mass generation and chiral symmetry

breaking are discussed in Chap|'et 2.

In the mathematical formulation of QCD, the basic quantities are quark and

gluon fields, which are functions of the space-time coordinates. Discretization of

space-time is introduced to allow numerical treatment. This procedure turns dif-

ferential operators into finite difference operators and the fields are defined either

on the links or on the points of a space-time lattice. Quantization is acheived by

Feynman's path integral representation.

The primary role of the lattice is to provide a non-perturbative regularisation.

It provides a minimum wavelength through the lattice spacing a,'i.e., a maximum

momentum of r f a. I have described the principles of lattice calculations, the use of

path integrals, the gauge fixing, the standard Wilson actions, and improved lattice

actions in Chapter 3. Techniques involving the staggered fermion formalism as well

other method for putting fermions on the lattice are also briefly explained in this

chapter.

The quenched approximation, in which the effect of quark loops is neglected'

reduces the computational time for numerical simulations dramatically, and hence

has been used in many of the previous studies. The quenched approximation ig-

nores the fermion contribution to the path integral. Unquenched QCD (full QCD)
corresponds to the real world, though it is computationally expensive. Computing

resources avaliable now are powerful enough to treat up, down and strange quarks

dynamically. We may also assume that up and down quarks are degenerate, since

this reduces the computational costs of simulations to minimum. The quenched ap-

proximation can be safely applied for the heavier quarks, namely charm, bottom and

top quarks [Kan] for the typically low energies considerecl here. There are three phys-

ical sources of systematic errors in any lattice calculation, They are finite volume,

quark masses moa and the nonzero lattice spacing. The quenched approximation

where it used is the main algorithmic source of systematic error [Got97].

The main focus of this thesis is the results for two-point Greens functions in full

QCD. We compute full QCD calculations for a number of reasons:

o To describe the real world with the inclusion of dynamical quarks.

o To investigate the effect of dynamical sea-quarks on the gluon and quark propa-

gators,
o To reduce the systematic erroIs due to the quenched approximation.

Simulating with light dynamical quarks for full QCD calculations is a difficult

task. Also lattice simulations with light fermions are computationally demanding.

Incorporating fermions into the functional integral demands significant additional

effort. The computational cost of Monte Carlo simulations in a box of length ,L with

3



1 .1. Quarks and gluons

lattice spacing ø and quark mass rnq scales approximately as [FGMS03, DeGOa]

(Lla)4(rla)'(tl^)'. (1 1)

The first term in parentheses takes account of the number of sites, the second term
gives the cost of "critical slowing down"- the extent to which successive configu-
rations are correlated []JeGU4]. 'l'his occurs because the Monte Carlo acceptance
probability diminishes with decreasing lattice spacirrg. The third term gives the
cost of inverting the fermion propagator. This makes it too expensive at present to
let the z and d quarks be as light as they are in nature. The numerical cost increases
substantially with decreasing quark masses as the CPU time for unquenched simu-
lations increases as quark mass decreases. So unquenched simulations are typically
performed using light quark masses (u and d) with masses larger than half of the
strange quark mass, Improved Kogut-Susskind staggered fermion actions are less
expensive than the Wilson-type of action to simulate with on both coarse and fine
lattices. The lightest dynamical quark masses are obtained with staggered fermions.
We have performed dynamical fermion simulations with staggered fermions (two
light and a heavier strange quark), where the strange quark has its physical value.

We have performed calculations of the quark and gluon propagator in quenched
and full QCD on coarse and fine lattices with similar physical volumes. In Chapter 4,
I have explained the basics of the gluon propagator, the lattice implementation and
the calculation of the gluon propagator both in quenched and full QCD. The effect
of dynamical sea-quarks on gluon propagator can be clearly seen. The comparison
of quenched and full QCD results for the gluon propagator is the highlight of this
chapter. We have also studied the sea quark mass dependence on the gluon prop-
gator. These results for the nonperturbative study of the gluon propagator both in
quenched and unquenched QCD is obtained from high statistics lattice simulations.

In Chapter 5, we study the role of dynamical sea-quarks on the quark propagator.
The quark propagator results also shows us that the degree of mass generation
is diminished when we include the sea-quarks in the calculation. Quenched and
unquenched results are also presented for a comparitive study. We also study the
sea-quark mass dependence of the quark propagator.

Chapter 6 deals with the computation of the gluon and quark propagator on a
fine lattice. The results reveal that the effect of sea-quarks are very much similar to
the case of the coarse lattice.

In Chapter 7, we study the scaling behavior of gluon and quark propagators by
working on two different sets of lattices with different lattice spacings. We find good
scaling overall for the lattice spacings considered.

We test positivity of the gluon propagator as a test of whether or not the gluon is
confined in Chapter 8. We calculate the reaì space propagator (Schwinger function)
on both fine and coarse lattices. When the Schwinger function becomes negative,
reflection positivity becomes violated, which is a sufficent condition for gluon confine-
ment. Positivity violation for the gluon propagator has been studied in the quenched
case before but we are doing the first test of positivity for the gluon propagator in
full lattice QCD here.

4



1.1 . Quarks and gluons

Chapter 9 closes with the conclusions and remarks on the work presented in this

thesis and with a discussion of possible future studies'
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QCD and perturbative QCD

In QED, perturbative calculations of quantities of physical interest are possible

because of the smallness of the electron photon coupling constant e - 0.303, (o :
fi : t ¡tSZ¡ . This success arises from the fact that the increasingly complicated

hÏgher-order terms become decreasingly important. The smallness of the coupling

constant in QED gave physicists confidence that perurbation theory was a reliable

approximation to the theory. In contrast to QtrD, the strongly interacting particles,

"the hadrons" have a coupling constant of order 1 meaning that perturbation theory

is not useful in predicting the spectrum of strongly interacting particles.

In the late fifties and sixties it was generally believed that the strong interac-

tions of hadrons may not be described in any sense by the perturbative method of

quantum field theory. Accordingly, formulations based on the perturbative method

were discarded in the theory of strong interactions and suitable formulations inde-

pendent of the perturbative approach were sought. Perturbation theory can not be

expected to provide us with detailed information about strong coupling problems

such as quark confinement and dynamical chiral symmetry breaking.

After years of struggle, a theory has emerged to give us the best understanding

of the strong interactions and this theory is referred to as QCD. The principal

breakthrough which eventually led to quantum chromodynamics was the discovery of

the property of asymptotic freedom of non-abelian gauge theories like QCD for which

Gross, Politzer and Wilczek received the 2004 Nobel prize in Physics. QCD is an

asymptotically free theory and using that property one can safely use perttrrbation

theory to discuss short-distance interactions. In QCD, the coupling constant at

typical energies available in present-day accelerators is a, - !.
The perturbative treatment of QCD is allowed for very large mometum transfers'

However, in manv body problems of the hadron system, a non-perurbative treatment

of QCD is necessary. Techniques of nonperturbative QCD are also important for

physics beyond the Standard Model. In the low-energy region where the coupling

constant g is large and perturbation theory fails, it is possible to use Lattice QCD
to carry out a first-principles exploration of the non perturbative behavior of QCD.
To date, the testing of QCD against experimental studies is restricted to the domain

of high-energy scattering where perturbation theory can be applied.

In 7g74, Wilson proposed a formulation of quantum chromodynamics (QCD)

on a discrete space-time lattice. Via the functional integral formalism one could

non-perturbatively regularize QCD by introducing such a lattice. The lattice was

constructed through the introduction of the lattice spacing ø. Then we can formulate

QCD on lattice such that when we take ¿ -+ 0 we recover the standard continuum

form of QCD. Clearly, there are many such discretisations possible with correct

continuum limit. Obviously those discretisations which are cheap to compute and

with the fastest convergence to the continuum limit are preferred.
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2.1. QED and the gauge principal

For any theory to provide a successful description ofstrong interactions it should
simultaneously exhibit the phenomena of confinement at large distances and asymp-
totic freedom at short distances.

2.1 QED and the gauge principal
The principle of gauge invariance is one of the most significant concepts used in
modern particle physics. The basic method of gauge theory is to ensure that the La-
grangian describing the interaction of particle wave functions, remain invariant under
certain symmetry transformations which reflect conservation laws observed in na-
ture. The Lagrangian density for the free electromagnetic field (in usual Minkowski
space) is

L"^: -!F"""" '4- t"r' ' (z.t)

where Ft,:0r4, - 0,Aris the electromagnetic field tensor and Aris the electro-
magnetic vector potential. The Lagrangian density of the free Dirac field is given
by

Lr,". -- ,þ(, Ø - rn)rþ : {(i1p0,, - rn)lþ , (2.2)

where r/ is the fermion field and zn is the fermion mass. The full Lagrangian for
charged Dirac fermions interacting with the electromagnetic field is

Lqøo:rþ(iØ -m)rþ -1rr,r,'- "rþ1rrþAr. (2.J)
4

The group we consider here is the Abelian group I/(1) which denotes the shift in
the phase of the electron. Under a global phase transformation tþ(r) -+ ei"4;(r) for
a constant phase o, we see that the Dirac density is invariant. A gauge transforma-
tion is a local phase transformation, a -+ a(r). Under such a gauge transformation
',þ(r) -+ 

";'"@)þ(r), 
the Dirac Lagrangian density is changed by the transformation

and is not invariant due to the dérivative. The invariance under gauge transfor-
mations of the fermions thus requires a compensating gauge transformation of the
electromagnetic field.

Ar) 4-!ar*ç*¡. (2.4),e
With the requirement that the electromagnetic (photon) field transform in this way
\rye see that the sum of the first and third terms in Eq. (2.3) are no\/ gauge invariant.
It is easily seen that the photon Lagrangian density is itself gauge invariant and
needed to introduce a photon kinetic term. Hence, the requirement of the gauge
invariance for the Dirac fermion field has lead directly to the QED Lagrangian
density of Eq. (2.3). This resulted simply from the requirement that the local U(1)
phase invariance of the Dirac fermion (the electron) be generalized to a local phase
invariance. We can express things in a more compact form by introducing the gauge
covariant derivative 

n :u p _ Ap + ieAp(r). (2 5)
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2.2. QCD and nonabelian gauge invariance

The QED Lagrangian density can then be written more simply as

FprFt"' (2.6)

This Lagrangian is then invariant under U(I) gauge transformati,onsby construction,

Indeed, it is important to emphasize that the most successful theory in physics, QED,
follows trivially from the requirement that electrons be locally phase ínvariant,'i.e.,

U(1) gauge invariant.

2.2 QCD and nonabelian gauge invariance

Quantum chromodynamics is correspondingly defined as a field theory by its own

Lagrangian density. QCD is based on the extension of the idea explained above, but
with the U(1) gauge group replaced by the SU(3) group of phase transformations

on the quark color fields, Notations and conventions in this section follow [PS]. The

Lagrangian density for the free fermion field, ,þ("), in Minkowski space is given by

(supressing the spinor, flavor and color indices as is standard)

Lr*(r):rþ(i Ø-*)rþ(*), (2'7)

and is invariant under global gauge tranformations,

,þ(r) -+ G',þ("), ú(") -+ ,þ(")GI, (2 s)

where G e SU(N), where lú: 3 for QCD. The U(1) version of G is e'o. The

principle of gauge invariance states Lhaf L(r) should also be invariant under local

SU(3) go,uge transformations,

,þ(") -+ G(r){(r), ,þ(r) -+ $(r)GI (r). (2 e)

However, we can see that L1".*(*) is not locally gauge invariant as

Lr*(*) -+ L:r,""(!x) : ,þ(*)(i' ø - m)rþ(r) + d'@)GI (r)lØ G(r)þ(r)l (2.10)

The problem is that ô, now acts non-trivially on G(ø). We can resolve this problem

by introducing a gauge covariant derivative in analogy with the [/(1) case,

Dtr: õ, - i,grAr, (2.11)

where g, is the QCD ("strong" ) coupling, the gluonic field A, (r) : A"t"T.(r) contains

the eight gluon vector fields A, andTo are the eight generators of SU(3). In analogy

with Eq. Q.a) Ihe gauge freld Ar(r) is then required to tranform under an SU(3)
gauge transformation as

,þLqno
1

P-rn)Iþ- 4
L

A,(,) -+ G(r) (o,n * *r,) cI @)

9
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2.3. Gauge fixing

As G(r)Gt(r) : 1, we have (ðrG(r))GI(r): -G(*)(ðrCI(r)) and hence the
covariant derivative tranforms as

D rrþ(*) -+ G(r) D rrþ("),

and thus as a result of our definition, Eq. (2.72'), we see that

L(r) :'þ(')(¿ þ - *)'þ(,) ,

(2.13)

(2.14)

is invariant under local SII(N) gauge tranformations, with ,¡/: 3 for QCD. Hence
we see that in QCD the gauge group is Su(3) (non-abelian), and the quarks (,r/)
and gluons (Ar) belong to the fundamental and adjoint representations of SU(3)
respectively. We also have Ar(r¡ : Afl(r)T"(r), where we have eight gluon fields
Afl@) andTo with ø: 1,...,8 are the eight generators of ^9U(3). Again we must
add a kinetic term for the gluon field which is itself gauge invariant and hence the
final SU(3) gauge invariant QCD Lagrangian is given by

1L:rþ(")(,p -m)',þ(r) Fr"(r)FP" (r)- -tr (2.15)
2

where Ft, : õrA, - ôrA, + grlAp, A"l is the antisymmetric field tensor, which sat-
isfies [D¡,, D,]: -,ig,Fuu. It is straightforward to verify that the 2"d of Eq. (2,1b)
is invariant under the gauge transformation of Eq. (2.12). The important new
feature of the Lagrangian Eq. (2.15) is that it includes cubic and quadratic self-
interactions among the gauge fields through the gluon kinetic term ltrF*Fu". The
self-interactions have arisen from the need to write down a kinetic term (quadratic
in A), which is gauge-invariant under a nonabelian gauge transformation,

2.3 Gauge fixing
The gauge invariance of L@), where the gauge field has the freedom of gauge trans-
formations, actually makes it somewhat difficult to quantize the theory. One way of
getting rid of this difficulty is to eliminate the freedom of the gauge transformation
by imposing constraints on the freId Aft. This problem is solved by adding to L(r)
gauge-fi"ri,ng and ghost densities Lsuus",.Cghost The most common choice being the
covariant gauge fixing

t' I r- 
1a,,,,1,,,,çr¡]', 11 I ( oo, (2.16)pgauge - 2 L

where the parameter À is effectively a Lagrangian multiplier. It is customary to
write

(2.r7)
1)

2a
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2.3. Gauge fixing

where the parameter a is called the gauge parameter. Eq, (2.16) defines the set of

"covariant"gauges, the most familiar of these being the Feynman gauge (o : 1) and

Landau gauge (o:0).
As a covariant constraint, we may choose the Lorentz condition

õrAP :0 . (2,18)

By the constraint of Eq, (2.1S), the arbitrariness of the freld A9, due to the freedom of

gauge transformations is eliminated. Hence a constraint such as Eq, (2.18) is called a

gauge fixing condition. We will see that the Lorentz gauge condition is automatically

a result of working in the Landau gauge limit, o -+ 0, of the covariant gauges. The

Landau/Lorenlz gauge has many Gribov copieslper gauge orbit.
It will be useful to describe the usual gauge-fixing a,rguments and Fadeev-Popov

anasatz. The following discussion closely follows that in [Wil03].
The standard lattice definition of QCD is equivalent to the choice of a Gribov

copy free gauge-fixing. This follows since there is a negligible chance of selecting

two gauge-equivalent configurations (strictly zero except for numerical round-off

error) in any finite ensemble of gauge field configurations, Calculations of physi'cal

obseruables are unaffected by arbitrary gauge transformations on the configurations

in such an ensemble, since observables are by definition gauge invariant. A lattice

QCD calculation using an ideal gauge-fixed ensemble will give a result for a gauge-

invariant (i.e., physical) quantity which is identical to doing no gauge fixing at all,

i.e., equivalent to the standard lattice calculation of physical quantities,

We begin by reviewing the standard arguments for constructing QCD perturba-

tion theory, which use the Faddeev-Popov gauge fixing procedure to construct the

perturbative QCD gauge-fixed Lagrangian density. The naive Lagrangian Eq. (2.15)

is neither gauge-fixed nor renormalized, however it is invariant under Iocal SU(3)"oro,

gauge transformations G(r). For arbitrary, small u"(r) we have

G(r) = exp {-zs, (^" 12) r"(*)} € ^9U(3) , (2'19)

where The Àf2:To are the generators of the gauge group SU(3) and the index a

runs over the eight generator labels o': I,2,'.',8.
Consider some gauge-invariant Green's function (for the time being we shall

concern ourselves only with gluons)

r 
I oo eislA] , (z.zo)@l r@lAl) lCI) : J oo olAl eisØt ¡ ,

where O[A] is some gauge-independent quantity depending on the gauge fietd, Ar(r)'
We see that the gauge-independence of OlAl and S[A] gives rise to an infinite quan-

1An ideal gauge-fixing condition, FIA]:0, defines a surface called the Fundamental Modular

Region (FMR) that intersects each gauge orbit once and only once and typically where possible

contains the trivial configuration Ar:0. A non-ideal gauge-fixing condition, F'lA):0, defines

a surface or surfaces which intersect the gauge orbit more than once. These multiple intersections

of the non-ideal gauge fixing surface(s) wiih the gauge orbit are referred to as Gribov copies.

11
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o
a2

-"\-¿

g

gauge
orbit

Fig. 2.1: Gauge orbit containing A, and showing the effect of A, on the gauge
transformation G. Figure courtesy of [Wil03],

p

FlAl=0

F'[A]=Q
Au=0

Fig.2.2: Ideal, FIA], and non-ideal, F'lAl, gauge-fixing. Figure taken from [wil03]

tity in both the numerator and denominator, which must be eliminated by gauge-
fixing. The Minkowski-space Green's functions are defined as the Wick-rotated
versions of the Euclidean ones.

The gauge orbit for some configuration A, is defined to be the set of all of its
gauge-equivalent configurations. Each point Afr on the gauge orbit is obtained by
acting upon ,4, with the gauge transformation G. By definition the action, .9[A], is
gauge invariant and so all configurations on the gauge orbit have the same action,
e.9., see the illustration in Fig. 2.1,

By definition an ideal gauge fixing is free from Gribov copies, i.e.,lhe multiple
intersection points of a gauge-fixing surface with the closed gauge-orbit of gauge-
equivalent field configurations. The ideal gauge-fixing surface F[A] : 0 specifies
the FMR for that gauge choice and by definition the corresponding gauge-fixing
surface intersects every gauge orbit once and only once. Fig. 2.2 is a depiction of
these surfaces represented as dashed lines intersecting the gauge orbits within this
configuration space. Typically the gauge fixing condition depends on a space-time
coordinate, (u.g., Lorentz gauge? axial gauge, etc.), and so we write the gauge fixing
condition more generally as f (Al;ø) :0.

Let us denote one arbitrary gauge configuration per gauge orbit, A9r, as the origin

t2



2.3. Gauge fixing

for that gauge orbit, i.e., corresponding to G equal to identity (u"(r) : 0) on that

orbit. Then each gauge orbit can be labelled bV Ao, and the set of all such A0, is

equivalent to one particular, complete specification of the gauge. Under a gauge

transformation, G, we move from the origin of the gauge orbit to the configuration,

Afl, where by definition

Aor9 Al:GAorGI -(ilsò@pG)GI. (2'2r)

Let us denote for each gauge orbit the gauge transformation, õ : GlAo), as the

transformation which takes us from the origin of that orbit, A0r, to the corresponding

configuration on the FMR, Alt* = Af,, which is specified by some assumed ideal

gauge fixing condition
F(lA"l;r) :0'

In other words, an ideal gauge fixing has a unique G which satisfies

F(lA');r)lc:c:0,

and hence specifies the FMR as Ac = AX*o € FMR' Note then that we have

'p¡rllnn D(G - G)

The inuerse Fad,d"eeu-Popou determi,nar¿ú is defined as the integral over the gauge

group of the gauge-fixing condition, i'e',

IDA: DAO DG,

a"t [A"t*] : ¡ot [¿G]

I DG õ(G - c¡n;'¡a1

(2.22)

aF' [,4"'*] :- [ DG õl1lA]l

:' I o" 6(G _cl l¿.t (¿{(t¿];ø)\ l-r Q'23)

r I \ òG6l)l
Let us define the matrix MplAl as

Mo(lAl;r,a)"b: õF"(lAl;r)l6cb(ù. (2'24)

Then lhe Fød,d,eeu-Popou d,etermi,nant for an arbitrary configuration A, can be de-

fined as 
Ar[A] : ldet MrlAll ,

slnce
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2.3. Gauge fixing

By definition, we have

and hence

DG LFIAI d[Ft,4]l

D(G - G) LFIAI d[F [,4]l

(2.26)

2¡FMP': DA D(G - c¡ n"¡alatFtÁll
(2.27)

DA LF[A]6lFlAll

Since for an idea,l gauge-fixing there is one and only one G p", gauge orbit, such
that F([, ];r)le:0, then ldetMplAll is non-zero on the FMR. The fi,rst Gri,bou
horizon is defined to be those configurations with det Mp[A]: 0 which lie closest to
the FMR. By definition the determinant can change sign on or outside this horizon.
Clearly, the FMR is contained within the first Gribov horizon and for an ideal gauge
fixing, since the sign of the determinant cannot change, we can replace I det M¡ i wiih
det Mp.

These results are generalizations of results from ordinary calculus, where
ldet (0f¿ I 0r¡)lilo : I d,rr. . . drn õ@) 6@))
and if there is one and only one d which is a solution of f-(ñ): 0 then the matrix
Mij = 0f¿l0r¡ is invertible (i.e., non-singular) on the hypersurface i@) :0 and
hence detM 10.

2.3.1 Faddeev-Popov technique and standard gauge
fixing

Let us no\¡/ assume that we have a family of. i,deo,l,garrge fixings p([l]; r) : f ([A]; r)-
c(r) for any Lorentz scalar c(r) and for /([A];r) being some Lorentz scalar func-
tion, (e.g., õpAr@) or npAr(r) or similar or any nonlocal generalizations of these).
Therefore, using the fact that we remain in the FMR and can drop the modulus on
the determinanr, we have I pA'** : I DA det MplA] 6lf tAl- c] . since c(r) is an
arbitrary function, \.ve can define a new "gauge" as the Gaussian weighted average
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over c(ø), i.e.,

Dc exp

D

I oou*" o( I
o(l
o(t

{ 
" 

I o^'4.)'} I "o 
detMplA) alrlAl - cl

DA detMp[A]exp darf (fAl; r)2

dar

ADyDX exp da r da s V@) M p (lAl; 
", a) x(a)

'"*o{-*, Id,arrqAl;")'} , e28)

where we have introduced the anti-commuting ghost fields X and X, Note that this
kind of ideal gauge fixing does not choose just one gauge configuration on the gauge

orbit, but rather is some Gaussian weighted average over gauge fields on the gauge

orbit. We then obtain for an arbitrary Green's function

(c¿l r(ot...l) lCI) - Ï D:þ?1þ?PPx-ql l=ets:"",t t . Q,s)

where we have denned the QCD ^",,::r:::1#'äi'rïÏ;'" ro,- ¿.,.,mined
by the exponents in Eq. (2.28), i,.e.,

Sqco[ú, 1þ, Ap,X,X] :

* I o^, 7@)Mp(lAl;*,a)x@). (2'30)

First consider the standard covariant gauge, which we obtain by taking f (4; r) :
ðrAp(r) and by neglecti,ng the fact that this is known to lead to Gribov copies' We

need to evaluate MelA) in the vicinity of the gauge-fixing surface (specified by G):

Mr(lAli r,a\ob : dr=Lll;r") : õla'Aa.9r),,'(ùl 
^' 

õ Afl(r)
, õGb(ù 6Gb(ù 

t: ai"#ó' (2'31)

Under an infinitesimal gauge transformation about the FMR, 6G : G - G, we have

(Aé), -+ (Ac+tc)¡,, where

(A.*u.)i(r) : (AÕ)î(") + s"f"b"u)b(r)ai@) - Tru"(r) + o(u2) (2.32)

and hence near the gauge fixing surface (i.e,, for small fluctations along the orbit

around AIto) using

M, (lAl; !1, a)"b = ailõ A!t"(r) I 6 (õ ub (E) I ) l,=0,

we find
Mr(Al;lx,a)ob : aî" (l_.a*u6"a + s,,.b"AÏ(z)]¿{+) t. - ù) (2.33)
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2.4. QCD Feynman rules

We then recover the standard covariant gauge-fixed form of the QCD Lagrangian

Lqcolrþ,t¡t, A,x,X) : -|rrrr,r* - *@rAr)r+ t,ú¡(¿ p - m¡)rþ¡
f

+@uy;¡(ar,6"b - g,¡"b'A'r)xu. (2,.24)

wlrere itrclex / corresponds to quark flavors and where the QCD action is Sqçp :
I ¿nrLqco. yi and /6 are the scalar ghost and antighost fields. In the quantiza-
tion procedure, ghost fields anticommute, despite their spin [B+95]. In an SU(¡/)
theory, the ghost fields ensure that the gauge fixing does not spoil the unitarity of
the "physical" S matrix that governs the scattering of quarks and gluons in the
perturbation theory. This Lorentz covariant set of naive gauges corresponds to a
Gaussian weighted average over generalized Lorentz gauges, where the gauge pa-
rameter o is the width of the Gaussian distribution over the configurations on the
gauge orbit. Setting o : 0 we see that the width vanishes and we obtain Landau
gauge (equivalent to Lorentz gauge, ôpAr(r): 0). Choosing a:7 is referred to as
"Feynman gauge" and so on.

Because of gauge fixing the new Lagrangian Lqco is by construction no longer
gauge-invariant. A potentially troublesome phenomenon in gauge field theory is the
Gri,bou ambi,guity. Gauge-fixing is necessary to remove gauge transformations from
the theor¡ because they represent nonphysical degrees of freedom. However, there
will be some configurations related by local gauge transformations that satisfy the
gauge condition. These are called Gribov copies and occur both in the continuum
and on the lattice and are the multiple solutions to the gauge-fixing condition on a
single gauge orbit.

The Faddeev-Popov technique can also be used to fix the gauge of lattice fields
and this will discussed in more detail later. In the continuum theory we often use
perturbative methods to calculate certain quantities. Gauge fixing is not needed for
lattice studies of gauge invariant quantities as already discussed. But it is necessary
for performing perturbation theory on the lattice and for studying gauge dependent
quantities like the quark and gluon propagators on the lattice. If we use standard
lattice gauge fixing, which neglects the fact that Gribov copies are present, then at
large momenta / DA wlll be dominated by configurations lying on the gauge-fixed
surfaces in the neighbourhood of each of the Gribov copies [GPP+01, vBg7,Neu87,
Tes98] on the trivial orbit. These will all contribute equally and so in perturbation
theory Gribov copies can be neglected.

2.4 QCD Feynman rules
Feynman diagrams in QCD are obtained by employing the quark-gluon propagators
and vertices as the building blocks. The Feynman rules for the QCD Lagrangian
can be derived from a functional integral over the fields,r/ ,{ and Ar. We have seen
in the previous section that the action plus the gauge-fixing contribution becomes
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2.4. QCD Feynman rules

Eq. (2.3a). To extract the feynman rules from this action, we will decompose the

lagrangian density into a free part and an interacting part,

L: Lo * Lt. (2.35)

Note that for brevity the "Lagrangian density" will often simply be referred to as the
,,Lagrangian". Here the free Lagrangian 4s is made up of three parts [Mut87] each

of which corresponds to the participating particles, i. e., the gluons, Faddeev-Popov

ghosts and the quarks,
L: Ll + Lî + ¿ä'", (2.36)

Ll : ú¡(*)(i þ, - m¡)rþ¡(r) (2'37)

1'l
L3 : -)t rr,1*)F,'(") - ,;(orAþ(r))2 (2.38)

Ll' : (lrx")@rxi). (2.3e)

As Eq. (2.3g) is of the form of the Lagrangian for massless charged scalar fields, we

recognize that the Fadeev-Popov ghost is spin zero though it is fermionic owing to its

nature as a Grassmann number. In Eq. (2.3S) the gauge fixing term f,f;Fis included.

The remaining part of the Lagrangian L after substracting .Cs is the interaction

Lagrangian f,1 which amounts to

Lt : Lr(A" , Xo , Xo* ,',þ , ',þ) (2 '40)

: -g: f"o"{arAi - a,A!t") Q.+t)2' \

_g? çou" f"d" Ai,A?,Ac¡1,¡d.u (2.42)_ï f 
*" 

r"d'e ¡a ¡b ¿cu ¡du

-g,f"b"(Apx".)xb A:, + g1þT"túAi . Q.43)

From this, we can read off Feynman rules for Yang-Mills theory: Wavy, dotted and

solid lines represent the gluon, ghost and quark, respectively; the arrows on the ghost

and quark line show a flow of the ghost and fermion number, respectively. The loop-

sign factor is an extra minus sign needed for closed ghost and quark loops [Ynd]' The

gluon, ghost and quark propagators are represented respectively by the functions

given below:

D",?,(,):6ob lffi#(n,,-(1 -*) *l , Q'44)

D"b@):õobilffi#, Q45)

.e(z) : Iffi[!*"-,o". (2.46)

Here a fixes the gauge where e.9., Q:1is Feynman gauge and o:0 is Landau
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2.4. QCD Feynman rules

Gluon Propagator:

Ghost Propagator:
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Fig. 2.3: QCD feynman rules
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J,*,3-gluon vertex
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4-gluon vertex: azþz

gluon-ghost vertex

gluon-quark vertex:
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Fig.2.4: QCD feynman rules for vertices
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2.5. Results from perturbative QCD

gauge. The factor (-1) associated with each quark and ghost loop is called the loop-
sign factor. The loop-sign factor always accompanies a fermion loop integration.
The measure for integration of each loop is given uv ï ffi. The rules for loop
integration are explained in Fig. 2.3. In the rules, õ"b,6ii, g¡.tu and. ô"8 represent
the contraction of the group, Lorentz and spinor indices, respectively, at the point
where the loop closes. Also d¡r, is given by

dt",: ep, - (1 - ") W e.4T)

To obtain the Feynman rules for vertices, recall 
^ 

f 2 : 7o which are the color
matrices and the generators of the SU(3) group explained in the previous section.
The group structure is given by

lT",Tol : ifob"T" ,

where a,b,c:1,2,...,8 and the f"b" are the structure constants. They are anti-
symmetric under the interchange of two indices:

1 \/3frrs : l, fu, : fzsa : lzsz : fz+s : f.¡'a : .fasz
r _r

'¡ J 458 - .l 678
2 2

Feynman rules for the vertices are depicted in Fig. 2.4,, where the functions I/ and
W are well explained in [Mut98]. In evaluating Feynman diagrams that contain
loops, divergent integrals over momenta occur. Divergences of perturbation theory
are removed by absorbing them into the definition of the bare quantites through a
renormalization procedure [8P93]. This is done by introducing a new dimensional
scale ¡;, called the renormalization scale or point. The renormalized quantities in the
theory, like the coupling constant g" depend explicitly on p. The renormalization
of the coupling necessitates the introduction of a scale p. This is the scale at which
the physical parameters of the theory are fixed.

2.5 Results from perturbative QCD
In constructing a theor¡ the information about the properties of the coupling con-
stants between the fields is of primary importance. The coupling constants depend
on momenta. Studying the behaviour of the coupling at large momentum transfers
(lQl' -+ oo), in the so called asymptotic region is important. Asymptotic properties
of the effective charges of abelian and non-abelian fields are different. In the case of
abelian fields, the effective coupling constant gro\4/s like the log of a log with increas-
ing Q', while for non-abelian gauge theories it decreases like a log. Asymptotically
free fields play an important role in our understanding of the gauge theory of strong
interactions.
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2.5. Results from perturbative QCD

C)(, (a)

A qco

hadronization

<- confinement
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perturbative QCD

S
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asympt.

freedom

a

Fig. 2.5: Schematic view of running coupling constant. Figure taken from [Kho0a]

2.5.1 Asymptoticfreedom
Non-abelian gauge theories are asymptotically free. Asymptoti,c freedorn is a feature

of quantum chromodynamics (QCD), the quantum field theory of the interactions

of quarks and gluons, which was discovered by David Gross, Frank Wilczek, and

David Politzer in 1973. For this great discovery they won the Nobel prize in 2004.

The QCD running coupling is defined as

d,(Q\-s?(Q') ' Q'48))/ 4rr I

where o, is small at large momentum transfers. The consistent use of the running

coupling in perturbative expansions is possible for large Q where a, is numerically

small. So in an aymptotically free theory, there is no barrier to use perturbation

theory at large momenta, At smaller scales, af Q S 1 GeV, os grows as shown in

Eq. (2.5) and perturbation theory becomes useless. In QCD, perturbation theory

is legimate in the large momentum region. At long distances (small momentum

transfers), quarks and antiquarks interact and form hadrons. QCD is asymptotically

free because the antiscreening of the gluons overcomes the screening due to quarks

[Gro99]. Asymptotic freedom implies that the coupling g, ) 0 as the momentum

scale of the probe -+ oo. The renormalized coupling constant tends to be very small

as the relevant momentum scale grows, We will see in the next section that at
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2.5. Results from perturbative QCD

large momenta, q2 : -Q', the theory behaves as a free-field modulo logarithmic
corrections. This is the celebrated property of asymptotic freed,om. The p function
in non-abelian theory is given by [Gro9g]

o@) = rh:rrrloo: {b, + r{ra,+ "' , (2.4s)

where

2

3 D*,r, (2.50)
R

p function is the rate of change of renormalized coupling at scale p corresponding
to a fixed bare coupling 96 [PS]. The bare Green's functions depends on the bare
coupling 96. The bare coupling constant is defined as

n,-n3'o:#' (2.51)

In the case of the Stl(3) gauge group such as QCD, C.q. : ly' : 3 , T¡ : I for
each Dirac fermion, and ,A/¡ is the number of fermion and thus h : -[t - itl
Thus one can tolerate as many as 16 triplets of quarks before losing asymptoiic
freedom. That is asymptotic behavior is possible only if there are a limited number
of fermions in the theory (no more than 16 quark flavors in QCD). We see that
as long as 11 - ?¡V¡ ) 0, the coupling constant decreases with p! This is the
statement of asymptotic freedom . The coupling constant will decrease at shorter
distances with the result that one can use perturbation theory with confidence for
short distance physics. On the other hand at large distances, the coupling constant
increases leaving the domain where perturbative calculations can be trusted.

2.5.2 Running coupling constant for QCD
In QED, the coupling constant defined on the mass shell is small enough to guarantee
the perturbative expansion meaningful at any achievable finite order of perturbation
theor¡ although it should be noted that perturbative QED forms an asymptotic
series. The increase ofthe effective charge prevents the separation of quarks to large
distances in QCD. The charge the experimentalist measures depends on the Q2 of the
experiment; r(Q') = # is referred to as the "running coupling constant". The
running coupling constant, *(Q') in QED describes how the effective charge depends
on the seperation of the two charged particles. The effective coupling constant is
reduced by the presence of this screening charge. In the large Q2 : -g2 limit

t(QI: ----s9--1- #t"s($ 
' (2'52)

To eliminate explicit dependence of a(Q2) on the cutoff M, we choose a reference
momentum p. The renormalization procedure is then to subtract *(p') from a(Q2).
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2.5. Results from perturbative QCD

We find

*(e,): ?\y') =. (2.b3)
t - ffitoe(ff)

At large distances, the effective coupling constant a gets smaller in QED . The

situation in QCD is different, where the net coupling constant gets larger at larger

distances. The Q2 behavior of the QCD coupling, a"(Q2) is different from that for

a(Q\.In the covariant gauge, the coefficient of t"e(#) is given by

+fffr'- 3r,l e.54)

Combining Eq. (2.53) and Eq. (2.54), we obtain the QCD "running coupling con-

stant"
*"0t')t,(Q\:

1+ %P(11 - fr,n-rr)tog(
Q1t
la" /

(2,55)

The sign of the coefÊcient is the same as in QED, only in a world with more than

16 quark flavors. a,(Q2) decreases with increasing Q2 and therefore becomes small

for short-distance interactions. This is we say that QCD is "asymptotically ftee" '

From Eq. (2.bb), we see that at sufficiently small Q2,the effective coupling becomes

large. It is customary to denote the Q2 scale at which this happens by A, where

t\2:u2.*ol--:!1 .^.1 (2.56)
t1se - r¡//tri p\)

the momentum scale A is often referred to as the QCD scale parameter (A'qco)

and is the only adjustable parameter in QCD except for the quark masses. It then

follows that Eq. (2.55) may be written as

a,(e2', - r2tr 
e.l1)

(33 - zrv¡)log($)

For Q2 values much larger than .4.2, the effective coupling is small and a perturbative

description in terms of quarks and gluons interacting weakly makes sense. As Ç2 ->
oo7 oE -+ 0. For Qt of order 42, quarks and gluons are seen to arrange themselves

into strongly bound clusters, namely hadrons. Thus A, a free parameter is the

boundary between a world of quasi-free quarks and gluons, and the world of pions,

protons and so on.

2.5,3 Running mass
For asymptotically free theories, the leading log result for the running mass at

Q' = -q2 > Â2qcr is given by

ïn

tå r"s(d;)lo' '
M(Q,):

23

(2.58)



2.6. Symmetries of QCD

where ñz (the mass analog of Â) is the renormalisation group invariant mass pa-
rameter and d,¡a: 6,-!Ð is the anomalous dimension of mass. The renormalised
mass, mr, is related to rñ using Eq. (2.b8) by

ffit,jV[0r'):-ffi j (2.bg)
[å r"e(^-#)]o* '

where the renormalisation point dependence is explicitly indicated. The asymptotic
behavior of the running mass is in general gauge dependent [Rwg4].

2.6 Symmetries of QCD
In this section we discuss some symmetries of the QCD Lagrangian density. Chiral
Symmetry and its dynamical breaking is important in the gluon and quark propaga-
tor studies. Chiral symmetry of the quark terms in the Lagrangian proves to be use-
ful in generating low energy expansions of QCD [Fis03,Leu94,Man96,trck98]. Chiral
symmetry is one of the fundamental properties of the theory of particle physics. It
follows from the invariance of the Lagrangian under independent global transforma-
tions on left and right handed fermion fields.

The quark part of the QCD Lagrangian from Eq. (2.1b) is

(2.60)

where m is a diagonal matrix containing the masses of six different flavors of quarks.
Since the up, down and strange quarks have relatively small masses, the real world
has an approximate .9U(3)¡u.,,o. chiral symmetry, In the chrial limit (the case of
massless quarks) 1 nl, :0, the fermionic part of the QCD Lagrangian density in the
continuum is

L^:o:1þi,p1þ . (2.6I)

This Lagrangian is invariant under axial rotations

lþ(*) -+ e'"lutþ(r) , ,þ(") -+ $(r)ei"tu. (2.62)

This symmetry of the massless Lagrangian is called chiral symmetry, It is one of
the most important svmmetries of QCD and strong interactions. In the chiral case,
the quark fields can be decomposed in terms of their helicity ,þ : ,þrct l 1þris,it,

, 7-1s, l-|rys
'tþrcft : 

,-rlt t tÞright: -;rþ. (2.63)

The resulting Lagrangian is symmetric under the global unitary flavor transfor-
mation ,SU(3)1"¡¡ x ,SU(3).;r¡, x U(1)1"1 x U(1).¡slìt, which generates the conserved
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2.6. Symmetries of QCD

currents

ip: rþlprþ (2'64)

iu, --'Þlrl"lt (2'65)

ifi: {1rT"þ (2.66)

iur":rþ^yúuT"rþ, (2.67)

where T": 
^12 

are generators of of the gauge group Stl(3) which we have seen in

the earlier sections ofthis chapter. These currents are conserved on the classical level

of the theory. In the presence of a non-vanishing mass matrix rn, the divergences of

these currents are given bY

0rjr:0,
6r iu, : 2i,rþturþ - #r*op Fl,F:p ,

6'iT" : ,þlT" ,rn),þ ,

a' jl"" : 
'þ{7" ,rn}'þ'

(2,6s)

(2.6e)

(2.70)

(2.71)

Only one current is conserved and in the presence of nonzero quark mass it describes

the baryon number conservation in strong interaction process. The second term of

Eq. (2.6g) expresses the anomalous nonconservation of the axial current, known as

Adler-Bell-Jackiw anomaly. The vector current in Eq. (2.70) is conserved in the case

of identical quark masses [Fis03] and describes the approximate flavor symmetry in

the light quark sector of QCD.
If we have a non-vanishing quark mass matrix in the Lagrangian of QCD, the

axial vector current Eq. (2.71) is no longer conserved and we say that the symmetry

is broken. This is called erpli,ci,t chi,ral symmetry breaki,ng (ECSB). Since the masses

of light quarks are light, we still expect approximate degenerate parity partners of

the lowest lying hadron spectra, if the current masses are the only reason for the

breaking of chiral symmetry. However, such parity partners are not observed in

nature. The solution to this problem is dynamical chiral symmetry breaking. For

QCD to describe the strong interactions observed in nature, it is crucial that chiral

symmetry is broken. In the case of dynamically broken symmetry, the Lagrangian

is invariant under the symmetry but the vacuum state is not. It can be shown

that the case of dynamical symmetry-breaking leads to the occurance of zero-mass

particles called Goldstone bosons. This is known as Goldstone's theorem' In any

physical system in which the vacuum state breaks a symmetry there must exist a

zero-mass, spinless boson carrying the quantum numbers of this symmetry transfor-

mation, These massless particles are called Goldstone bosons. In QCD, the pions

are approximate Goldstone bosons arising from the dynamical symmetry breaking

of chiral symmetry. Dynamical mass generation via the dynamical breaking of chiral

symmetry gives rise to almost the entire nucleon mass.

The biggest advance of the early 1960's was the discovery of flavor symmetry of

hadrons, SU(3), by Gell-Mann and Yuval Neeman and then the beginning of the
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2.7. Confinement

understanding of dynamically broken chiral symmetry [Rob03]. Dynamical chiral
symmetry breaking (DCSB) is fundamental to understanding the strong interaction
spectrum. It explains how the strong interaction generates constituent quark masses
of the order of several hundred MeV even in the chiral limit of zero bare quark
masses in the Lagrangian. It is an essentially non-perturbative mechanism that
give rise to a momentum dependent quark mass, M(e\, in the chiral limit, that
is large in the infrared but power suppressed in the ultraviolet. When there is no
ECSB renormalisecl quark mass, we have exact chiral symmetry and M(Q2) is given
by [RWea]

dv-L

M(Q') Q2-+æ c

Q'

where c is a constant independen| of Q2
(m:0) in Landau gauge c satisfies

(2.72)

In the limit of exact chiral svmmetry

4tr2dxa (qq)c'- t ¡A¡¡^r*Y' 
(2'73)

¡; is the renormalization scale and (qq) is the quark condensate which is a measure
of the degree of dynamical chiral symmetry breaking. It is defined as (4q) : (vacl :

ø(o)q(O) : lvac), where lvac) refers to the nonperturbative vacuum and the normal
ordering of the operators is with respect to the perturbative vacuum. The asymptotic
form of the quark mass can be summarized as

M(e'r)Q2-+* " l, Q' 1o' ' , ^ltoe(Ë1v\.ùfo*.: 
0, L'"t^-G] +-lr"ffiãäJ Q74)

where for exact chiral symmetry (m:0), the second term on the RHS is zero, while
in the presence of ECSB (* * 0), the second term gives the dominant asymptotic
behavior.

The physical QCD vacuum lies very close to a dynamically broken phase of an
exact chiral symmetry [You04]. With the quark masses being so small on hadronic
scales' explicit symmetry breaking is small and can be systematically treated as a
perturbation.

2.7 Confinement
When the quark model of hadrons was first introduced by Gell-Mann and Zweig in
7964, an obvious question was "where are the quarks?". The absence of isolated
quark states became a much more urgent issue with the success of the quark-patron
model, and the introduction of quantum chromodynamics in 7972. Confinement
requires that the fundamental excitations of QCD (quarks and gluons) can not
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2.7. Confinement

be observed although they underlie the interactions. The confi,nemenú phenomena

expresses the fact that all physical states that are observed are color SU(3) singlets'

The most elementary picture of confinement mechanism builds on the idea of a

fl,ur-tube. In QED with Abelian photons the force between e* and e- is an attractive

Colomb law. The fields spread out to infinity since the photon field does not couple to

itself. However the QCD case is different. The non-abelian nature of the gluon field

implies that it couples to itself. This leads to the result that the energy minimising

configuration between a quark and an anti-quark is a tube of colored flux. Such a

flux tube would then have a potential energy which is a linearly rising function of

the distance between the two quarks. In other words, quarks would be confined, as

the energy required to separate them is infinite.
In general, if the potential between two quarks is proportional to the distance

between them, then the two quarks can never be separated:

Confinementpotential:V(r) e or t Q'75)

where o is called the string tension. Furthermore, the string may break, creating a

quark-antiquark pair held together by another string. Thus, they can be separated

if they are bound by a linear potential but only in such a way that two new flux

tubes are formed and the quarks stay confined'

In Euclidean space (t -+ -lt6), we can study the Wilson IoopW(C) (see the

section, QCD on a lattice in Chapter 3 for more details), where C is a rectangular

loop with width .R in one spatial direction and length ? in the time direction. If the

potential between the quarks grows lineraly with the distance of separation rR [Kak],
then the quarks are confined and we have

W(R,T) -+ exp(-oBT) (2.76)

in the limit of large Euclidean time T. Since the area of the Wilson loop is RT, the

area law for the behavior of the Wilson loop for large ? gives us confinement. The

renormalization group approach gives us a compelling theoretical argument that

the coupling constant is large at small energies i,.e.,larger coupling constant at low

energies is consistent with the idea that the quarks are permanently bound inside

a hadron. At larger and larger distances, the coupling constant increases, so that
at a certain point perturbative calculations can no longer trusted, Confinement is

called "infrared slavery" which is the flip side of asymptotic freedom. Thus within
one theory) we are able to interpret two divergent facts, that quarks appear to be

confined at low energies but act as if they are approximately free particles at high

energy,
The basic properties of confinement and approximate ,9U(3)S SU(3) flavor sym-

metry of light quarks qualitatively describe many features of the hadron spectrum

and of other low energy strong interaction phenomena. But due to strong couplings,

a precise quantitative description of these phenomena is difficult. This spoils to some

extent even the predictions of perturbative QCD, because the confinement acts also

on the initial and final states of every short distance process'
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2.8. Schwinger functions

Confinement in QCD is related to the ui,olation of positi,uity. In this thesis we
provide evidence for the violation of positivity of the gluon propagator in Chapter
8' We find that the spectral function describing the gluon propagator is not positive
definite. Color confinement in QCD requires no colored states to be present in
the positive definite space of physical states defined by some suitable condition
maintaining physical S'-matrix unitarity.

The description of the long distance strong color force requires non-perturbative
methods. One of the main motivations for the introduction of lattice gauge theory
was the need to formulate QCD non-perturbatively in order to explain confinement.
A successful calculation of low energy hadronic parameters in lattice QCD yields
convincing evidence for QCD as the correct theory of strong interactions.

2.8 Schwinger functions
Quantum field theories can be described in terms of infinite hierarchies of functions.
There are different but equivalent hierarchies, like the Wightman functions and
Schwinger functions to mention only two possibilities.

The Wightman functions W"(*t,...,rn) are defined as the vacuum expectation
values of the product of field operators:

W"(rr,...,rn);: (f-)lÕ(ø1)...O(ø")l)fi. (2.TT)

The set of functions W" has to satisfy the Wightman axioms in order to ensure
that the W" coruesponds to a standard Garding-Wightman QFT and the additional
constraint

(f-¿1,4-,41CI) > 0 foralt A:D [ ¡¡a^rrfn(rr,...,r,)e(r)...A@,) ,, (2.T5)
nJ k

makes sure that the metric of the Hilbert space is positive semidefinite. It has
been proven that the hiearchy of functions W" contains the information that is
necessary to reconstruct the Hilbert space and deduce the action. This is known as
reconstruction theorem for the Wightman functions.

The Schwinger functions ,S"(21 ,...,rn) are defined as the Wightman functions
for imaginary times:

S"(rr,...,rn) :W"(-i,rf),ir,...,-i,ía),i,). (2.Tg)

and they are the Euclidean Green's functions. These functions have some remarkable
properties [Haa]:

(?) If we exclude the coincidence of points, i.e., remain outside of the sub-
manifold

L: {rr,...,rni irtr: rj forsome k + j}, (2.80)

then the ,S' are analvtic functions.
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2.8. Schwinger functions

(ii) S" is Euclidean invariant

S"(g"r,'..,9rn) : S"(rt,'.',rn) ,

where gr : Rr * a; R € SO(4).
(iii) S" is symmetric under permutations'

S"(rrr.,...,lxPn) : S"(rt, "',rn) ,

for any permutations,

(2.81)

(2.82)

n
Pn

1

P1

The Euclidean correlation functions can be continued back to Minkowski space if
they obey a positivity condition. The conditions on the hierarchy {^9"} which guar-

antee that their analytic continuation leads to distributions in Minkowski space sat-

isfying the Wightman axioms have been found by Osterwalder and Schrader [Haa].
Their work shows that besides (z) to (iii) lhe essential requiremenL is refl,ecti,on

positi,uity. It is called Osterwalder-Schrader positivity or reflection positivity'

The Osterwalder-Schrader reflection positivity is the Euclidean counterpart of

the positivity constraint of Eq. (2'78) and is defined as

Ds"*^ (ot/" I /-l) > o, (2.83)

nrrn

for all test functions fi, f*where the tensor product frØ f^ understood as

lÍ,ø f^l(*r,'..,!xn,Ar,.'.,A^) :: ln(rt, "',r,)'f^(At, "',U^) ' (2'84)

and the O-operation is defined as

Øfn(*r,...,rn) :- Í,(0*r,...,lrn) wilh 0r : 0(ra,i) : (-r4,i) ' (2'85)

If the hierarchy ,S" does satisfy Osterwalder-Schrader reflection positivity then the

corresponding Hilbert space will have a positive semidefinite metric. A fundamental

principle of quantum mechanics is the positivity of the norm in Hilbert space of

states. Physically this expresses the possibility of probabilities. When translated to

the condition of imaginary-time Green's functions, this physical positivity condition

is known as reflection positivity. Violation of positivity is another condition for

confinement. In this thesis we study whether or not the gluon propagator violates

reflection positivity.
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3

Lattice QCD

The lattice formulation of QCD was invented by Wilson in 1974. Lattice methods

are presently the only way to compute masses and matrix elements beginning with
the QCD Lagrangian, i.e., from first principles. The lattice is a cutoff which reg-

ulates the ultraviolet divergences of quantum field theories. Other regularization

schemes such as dimensional regularisation are often tied closely to perturbative ex-

pansions: one calculates a process to some order in a coupling constant, divergences

are removed order by order in perturbation theory by absorbing them into the defini-

tion of the bare parameters of the theory [DeG96], Several analytic approximation

methods are available on the lattice: weak coupling expansions, strong coupling

expansions and mean field approximation. However, Monte-Carlo numerical simu-

lations are the only known first principles technique for studying QCD and allow us

to bridge the gap between the strong and weak coupling regimes. Numerical simu-

lations using lattice QCD allows us to address non-perturbative phenomena such as

confinement and dynamical chiral symmetry breaking, to study fult QCD (with the

effect of dynamical sea-quarks), pure Yang-Mills QCD and the glueball spectrum,

to compute static potential between quarks, the propagators, the running coupling

constant starting from non-perturbative data and the parameters of the chiral La-

grangian and to learn more about the QCD vacuum, its topological properties and

its condensates [Pen95]. The ultimate aim of numerical studies of QCD on the lat-

tice is a quantitative understanding of the dynamics of strong interactions from first

principles.

The principle of the method is to discretize space-time on a four-dimensional

Iattice. This amounts to excluding the high energy modes and including a cutoff. In

an asymptotically free theory we can recover these modes by adjusting the coupling

in a well-defined, controlled way by taking the limit of the discretization scale to

zero [Wil99].

As space-time is to be discretized on a hypercubic lattice, contact with experi-

ment only exists in the continuum limit, when the lattice spacing is taken to zero.

The numerical implementation of the path integral approach requires the following

five steps;
o Discretization of space-time;
o The transcription of the gauge and fermion degrees of freedom into lattice equiv-

alents;
o Construction of the discretized action;
o Definition of the measure of integration in the path integral;
r The transcription of the continuum operators into discretized forms that can be

used to probe the physics.
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3.1. Overview of the lattice approach

3.1 Overv¡ew of the lattice approach
Lattice QCD calculations are a non-perturbative implementation of quantum field
theory using the feynman path integral approach.

In this Chapter I will describe the principles of lattice calculations, the use of
path integrals, gauge-fixing, standard actions and improved staggered actions. Some
basics of lattice formulation follows [Lep96]. A detailed and thorough study can
be found in the texts by Heinz Rothe [Rot0b], Montvay & Münster [MM] and Jan
Smit [Smi02] and in the review articles [Gup97] and [Ric99]. W" formulate quantum
field theory on a finite lattice, calculate the desired observables using appropriate
numerical techniques and then obtain the physical result by carefully taking the
infinite volume and continuum (a -+ 0) timits.

3.2 Gauge field basics
On the lattice, we sacrificeLorentz invariance but preserve all internal symmetries-
including local gauge invariance. This preservation is important for nonperturbative
physics, In the infinite volume, continuum limit Lorentz invariance is recovered. For
example gauge invariance is a property of the continuum theory which is highly rel-
evant to nonperturbative physics, so maintaining it as we move to the lattice means
that all of its consequences will be preserved. On the lattice, we replace the space-
time coordinate r, by a set of integers np (rp - aTù,, where ¿ is the lattice spacing).
The construction of the gauge field is more complicated. In the continuum, the
gauge frelds Ar(r) carry 4-vector Lorenlz indices, and mediate interactions between
quarks. They carry a space-time index p in addition to an internal symmetry index
a, (Afl(r)). In the continuum a fermion moving from site r to y in the presence
of gauge freld Ar(r) : Afl(r)To picks up a phase factor given by the path ordered
product.

,þ(ù : p"ll io"Au(,)a",8(r), (3.1)

where the 2-operator path-orders lhe Ar's along the integration path. Note that
the ordering is important since 7''s and hence ,Ar's do not commute .

We use Ur's as dynamical variables in place of Ar's on the lattice. The eight
types of gluons that mediate interactions between quarks are written interms of the
matrix Ar(r) which we have seen in Chapter 2. Eq.(3.1) suggests that gauge fields
are associated with links that connect sites on the lattice. So each link is associated
with a path ordered product which is explained in the coming sections.

3.3 Field theory on a lattice
The functional integral in Minkowski space is not in general well-defined in the
continuum and is not suited for numerical studies. Hence, most nonperturbative
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3.3. Field theory on a lattice

p

x+v

U"(*)

x
Ituk)

Fig. 3.1: A schematic of a lattice showing the association of the SU(3) matrices

Ur(r) with the links of the lattice. Figure courtesy of [Ric99].

numerical studies using either Dyson-Schwinger equations or lattice simulations are

carried out in Euclidean space. Indeed, even the contour integrals that underlie

all perturbative calculations can be viewed as being carried out in Euclidean space

with the results analytically continued to Minkowski space using Cauchy's theorem.

We begin by formulating QCD in Euclidean space, which we accomplish by a Wick

rotation from Minkowski space,
t -+ -i,tB, (3.2)

where ú is Minkowski-space time and ú¿ is its Euclidean counterpart. Note that the

wick rotation takes the trace of the evolution operator into the partition function

of statistical mechanics, tr (e-iHt¡ -+ tr (e-Êt') when we identify úø with 0 : #,
where k is Boltzmann constant and 7 is the temperature'

The Euclidean action and functional integral are obtained from the Minkowski

space equivalents by the analytic continuations

x+ lL

dar -+ -i, d,arEI (3,3)

.y+op + i,"yu .ðt, (3.4)

^lp Ap -+ -i"YE . At , (3 5)

ArBr -+ -i,AE . BE . (3 6)

where a.b -- D|=ra¿b¿, àrrd. the Euclidean Dirac gamma matrices, ^'1f;, have the
properties

{lt,f} - 2õ¡",' (3'7)

The truclidean "/5 matrix can be written as

^'- -f Êt{Ê (3.8)t5- 
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3.3. Field theory on a lattice

The proper Gteen's functions of the Minkowski-space theory are Wick-rotated ver-
sions of their Euclidean space counter parts.

Let us recall that the gauge fields Ar(r) are 3 x 3 matrices

Ar(r): Ai@)r", (3.e)

where the To,,a,:1,,. . . ,8 are the generators of SU(3), satisfying

lT",Tul: 'ifabc7c, (3.10)

tr (T"Tb) : 1a"0. (3.11),2

The structure of the.9tl(3) group is captured in the real numbers fob', which are
the .9U(3) structure constants. We will now work exclusively in Euclidean space.
The field-strength tensor is

Fh : 0rA?.,- õ"Afl + g,Í'b'AbrA:, , (3.12)

and it is straightforward to see that

1

UtrFuv

where

Ft", : Fi,T" : õpAi - A,Ai" + i,g,lAr(r), A,(r)) ,

and in terms of which the Euclidean continuum action is

1s- d4r -tr (Fþ,Fp,).

Ð -1.ttu- 
4

(3.13)

2
(3.14)

In the lattice approximation, we only know the fields on the lattice sites or on the
lattice links. Thus all derivatives in field equations, the action, and the like must be
converted to finite differences. For example, the second derivative of a scalar field /
at some point r¡ on the lattice is given approximately by

Fi,F;,,

õ12
: Lf) ó@¡) + o(o') ,

0'ö(,
(3.15)

where

ng o@) 
_ ó(r + a) - 2óþ) + ó(r - a). 

(3.16)

A quantum field theory involving the field / is defined in continuum Euclidean space
by an action, SCó] from which a generating functional,

lfZ[nn):u lOOusøló]*ldaró(ùn@), (3.17)L'l 
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3.4. QCD on a lattice

may be constructed and from which all physical quantities can be obtained. The

a(r) is the source term and the normalisation is

v - [ró"_s"rrr. (3.18)"-.l "'o

The elements of the field theory - the n-point Green's functions - are constructed

from Eq. (3.17) by differentiating the generating functional with respect to the

source, then setting those sources to zero. For r¿ differentiations we obtain from this

approach the n-point Euclidean Green's function'

Gn(rr, 12, "', rn) -- \ó(*t)ó(rr) "' Ó(""))

I1
Dóó("t)ó("r) "'ó(r,)¿-sutÔ). (3,19)

Z

3.4 QCD on a lattice
The continuum action for the Yang-Mills theory in Euclidean space is

(3.20)

where
Fr,(r) : \pA,(r) - 0,Ar(r) + i'g,lAr(r), A"(*)l' (3'21)

is the field tensor, a traceless 3 x 3 hermitian matrix. This is just the gluon part of

the QCD action.
The gauge fields, A, specified by variables on the links joining the sites, are acted

upon by gauge transformations, G(r) e SU(N) such that

Ar(") -+ Af (r) : G(r)(Ar(r) + iaòGI @), (3.22)

In the continuum, !,he "link uariable" on the link joining a site ø to one at r * aþ is

determined by the line integral of A, along the link:

Ur(*) : P exp -19 t f ,"*"0 (3 23)A(a)'da

where the p-operator path-orders the Ar's along the integration path. and where

ir denotes the unit vector in the Euclidean space-time direction p. We use Ur's in
place of Ar's on the lattice. The Ur's of Eq. (3.23) can equally well be written as

,sJt : I on,i¡t F,,(r)Fu,(,) ,

(3.24)

Note that for a smooth freld Ar(r) and a small enough "a" , we have Ur(r) -
"ias"Ar(r). 

The lattice spaci,ng, ø, is the distance between sites on the lattice. It
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3.4. QCD on a lattice

is the smallest unit of length in a lattice regularized theory. So tlr(r) is the link
connecting lattice sites ø and r 'l a[r, and represented pictorially by a directed line
from r to r t p, where this line is the integration path for the line integral in the
exponent of Ur(r):

aaa

r
O Þtl

U,(')

The figures in this section are taken from [Lep9S]. In the conjugate matrix Ui@¡
the direction of the line integral is flipped and so we represent U)(r) by a line going
backwards from r -l þ to r:

aaaa

. r.-* .+ p

uI@)

The links are unitary, i.e.,U):fIir, and as the inverse of a link is just the link
coming back, it follows that

ul"øl : u-p(r + a,p). (3.2b)

The links obey the simple gauge transformation law

ui ø¡ : G(r)ur(r)GIr(r + o,tt"). (3.26)

A Wilson loop function,

W(C) : !rrP"-of.gA'd' ,, G.27)
for any closed path C built of links on the lattice can be computed from the path-
ordered product of the Ur's and Uf 's associated with each link, For example, if C is
the loop

a

.+P

a

a

a

a

aaa

u

Io +llr
then

1w(c): ;,' (ur(n)u,(r + ap) . . .uJ@) . (3.28)

It will be shown that the trace of any closed loop of links is gauge invariant. The
most basic Wilson loop (1x1) is called the plaquette, and it is defined to be

pr,(r):ur(r)U,(r + aþ)U[(r+ a¡.t+ aî,)Uj(r), (3.29)
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3.4. QCD on a lattice

where Pr,(r) is the product of the link variables around the small sqaure at the site

ø in the p,u plane. It can be shown, by pairwise application of Eq' (3.2a) and the

Baker-Campbell-Hausdorff formula (see below) that

Pr,(r) -.*p{re, o'(a¿,1r) - 0,Ar(r) + ¿g,lAr(r),¿,(")])} , (3'30)

where the term in exponential looks like the freld strength tensor, Eq. (3.21). The

simplest lattice gauge action is thus

sclul--* t tr{r-t{r*+P1",)}, (3.31)

plaquettes

: S;t * higher order terms. (3'32)

The coupling constant of the theory has been absorbed into the parameter,

2N6
(3.33)

13
g?

,,g;

giving Eq. (3.32) a form that emphasises the analogy with statistical physics (c.f.,
/)- 1\
lJ - kr)'

Our lattice gauge theory is now defined by the generating functional

lfz:; 
JoU"-t"fu]rsources, 

(3.34)

in terms of the link variables, Ur. The measure,

D(J:flaurç"¡, (3.35)

frtþ

which properly defines integration over a compact group element is called t,he Haar

rneasure. Its properties

I
DU:I, (3.37)

DUV:0 YV e G. (3.38)

ensure ga¿ge invariance of the path integral. The normalisation in Eq.(3.3a) is, of

course,

Z- DUe-sclu) (3.3e)

The discretization acts as an ultraviolet cutoff, Pmax: f,, so looPs will be finite if
perturbation theory is applied to the lattice generating functional. Furthermore,
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3.5. Relation to the continuum

the lattice formulation maintains exact gauge invariance, unlike field theory with a
naÏve UV cutoff [Mut9S]. As the elements of the gauge field, the links, are written in
terms of a complex exponential, e.g., (J, = eiôr, they are bounded above and below.
The gauge group is thus seen to be compact. Eq. (3,32) is only one of the many
possible lattice actions that reduce to the desired continuum action. The simplicitv
of this particular action, the Wilson action, is attractive and its locality makes it
cornputationally effi cient.

3.5 Relation to the cont¡nuum
Observables in lattice gauge theory need to be related to the continuum physical
world to recover meaningful results for the continuum theory. In order to obtain the
theory in the continuum, the lattice spacing has to taken to zero; at the same time,
the cut-off necessarily goes to infinity and we have to construct renormalized physical
quantities that remain finite in the continuum limit [Nec03]. It is also important to
know the behavior of physical quantities in the continumm limit so that we will be
able to judge whether lattice quantum chromodynamics goes over into continumm
theory of strong interactions of hadrons as o -+ 0. In practice, quantities of interest
calculated at different values of lattice spacing ø, need to be extrapolated to a:0.
We have seen that the Lattice formulation creates an approximation to a continuum
theory that is UV regulated and maintains exact gauge invariance. Now we shall
more thoroughly explore its relation to the continuum theory.

Define ór(") in terms of the link variables by

Ur(*)- eis"ó,(,) €,gU(N) , (3.40)

where Ór(r) is N x l/ complex matrix and can be thought of the lattice gauge
field on a hypercubic lattice. From Eq. (3.23) and Eq. (J.24) we see that for a
continuous Ar(") in the limit ¿ -+ 0, that ór(r) -+ aAr(r). Note that g" and ór(r)
are dimensionless. Gauge transformations, G(r) e .gu(¡/), act upon the links as

ui ø¡ : G(r)ur(r)GI (r + atl) (3.41)

which, to leading order in g,, corresponds to

ó"røl : G(r)(ór(*) + i,ðþ)Gr @) . @.42)

where çÌ (r + øp) has been expanded about r. This has the same form as the gauge
transformation for continuum fields. One can construct a gauge invariant action
from any closed loops of link variables, the simplest of which is the plaquette,

Pr,(r) : U r(r)U,(r + a¡t)U)(r + a¡t + aû')U)(r)

- 
"is 

" 
Ô u @) 

"i 
s 

" 
ó, (r * a îL) e- i s 

" 
þ, (r* a it-t aî') 

"- 
i s 

" 
þ, (r)
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3.5. Relation to the continuum

To demonstrate this, we gauge transform each link in the plaquette using Eq. (3,a1)

to give

ef,@) : G(r)ut"(r)GI (r + aîù x G(r + a¡t)u,(r + aþ)GI (n + aþ * aî')

x (c(r -t aù)tJr(r + a,lGI (r -t a¡t + "û))I 
x (c(r)u,(")Gl (r + aþ + aî'))I

: G(r)Pp,(r)GI (r) '

As we have already seen, it is the trace of P* lhat occurs in the action, so ân action

composed of traces over plaquettes is automatically gauge invariant, since by the

property of the trace tr [G(") ' " , Ci(")] : tt ["']'
This result can be readily seen to apply to a closed loop of any size and shape'

As the fields þ, are complex matrices, they are in general not commuting and

so we need to use the Baker-Campbell-Hausdorff formula

eAeB : "e+n+ll,t,nJ+... 
(3.44)

to express the plaquette in terms of the gauge fields. Each commutator carries one

additional power of the coupling, g,, and one additional power of lattice spacing ø

(recall ór(*) - ø) and so expansion to one commutator will be sufficient for our

purposes here. Applying Eq. (3.44) pairwise we obtain

Pr,(r) : exp{ig,(orf| + ó,(r + a'tt') - ór('+ aÛ) - o,@))
t

- s? ( 1a,,(r), ó,(, + ot )l + lót"@ * aû,), ó,(r)] - lór(*), sr@ + aû)l
2 \ Lvøt"

- lór(r),,ó,(*)l - ló,(, + au),Ór(, + où)l - lÓ,(' + o't-L),Ó,(*)))) . o(s',)'

(3.45)

As the links are SU(¡r/) matrices, any product of the links such as P¡,,, is also an

element of Stl(l/), [see Eq. (3.43)]. In analogy with Eq. (3.40) we can define Or,(r)
as 

pp, : 
"is"Þ¡,,(r). 

(3.46)

Note that (Þr, is dimensionless. We can expand the þr(r) fields by performing a

one dimensional Taylor expansion about r, where ô[ is the nth partial derivative in

Ihe p, direction,2.e.,

ór(, + oî,) -- ór(r) -t al,þr(r¡ * tu\,or(r) + " ' . (3'47)

To best demonstrate how this discussion relates to a corresponding continuum the-

ory, we will expand the vector fields, d¡, about the midpoint of the plaquette

ft:- ' 
a(¡t'+û')

"*ï. 
(3'48)
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3.5. Relation to the continuLlm

Hence, for example, if we have

ór(, + aû) : ór(r) + f,a,6rçr) - iurør(") + . . .,

then at the midpoint we get

ór(f +aî,):,þr(")*aõ,rþr(r) - n7rór(")+... . (3.49)

Combining Equations (3.45) with (3.49) gives us

Q r,(r) : ór(ñ) + ó,(r) - ór(r) - ó,(r) * aôrþ,(ñ) - o0,ór(r) + O(a2)
. is,,
+ î ([ó,(r), ó,(r)l + lór@), ó"(r)] - lór@), ór@)l

- lór@),ó"(*)l - ló,@),ór(r)l - ló"@),ó"(r)l) (3.b0)
: o(ôró,(r) - o,ór(ñ)) + i,s,lór(r),ó,(r)l)

a3,
+ h(a'ró,(") - aió,(r)) + o(a').

Now we construct a lattice gauge action

^s[¿/] 
: *Dtr{r - 

t 
ro*+ h.c.)} ta.rrl

: 
T 

,i1{*,,o0' - +(o,,(,))n * oøî)} (3 b2)

which has, to lowest order in lattice coupling and spacing, the same form as the
continuum gauge action, Eq. (3.20). Note that "h.c." is shorthand for hermitian
conjugate.

This action, Eq. (3.51), is called the wi,lson acti,on. we now have a gauge theory
on a discretized truclidean space. It remains to relate our theory to the continuum,
The lattice gauge fields are related to the continuum fields through

(3.53)

(3 54)

which means that from Eq. (3.50)

a-2e r,(r) : Fr,(r) + o(a2) + o(a2 s!)

Thus

(3.55)

1 , ^- 1 I

z"ng?\t'{o',,(")} ;;r ; ,l o^.tr{F;,(r)} . (3 b6)

So we recover the contin,ir- Vung-Mills action as the lattice spacing goes to zero.
Therefore in the limit ø -+ 0 the lattice action S[U] tends to the conntiuum action.
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3.6. Lattice gauge-fixing

If D denotes a dimensionless observable, then its expectation value on the lattice

differs from the value in the continuum by dimensionless corrections of order an and

higher :

plat - ¡cont a o(o"), (3.57)

where the power n, depends on the chosen discretization of the QCD action. The

correction term for typical values of ¿ can be quite large, and an extrapolation to

the continuum limit is then required to obtain the required result [SW02]. If r¿ is

large, the rate of convergence to the continuum limit is more rapid, which is the

case by construction for improved actions. Improved actions are necessarily more

non-local and so are slightly more expensive to compute with.

3.6 Lattice gauge-fixing
Gauge fixing in Yang-Mills theories is well understood in the perturbation regime

where Gribov copies can be neglected, For the calculation of physical observables

it is not necessary to fix the gauge provided that one never includes two gauge

equivalent fields in the Monte carlo estimate of integration over the gauge fields'

This is automatic as the probability of accessing two gauge-equivalent fields in a

finite ensemble is utterly negligible. However, gauge fixing is necessary to study the

Green's functions of fundamental quantities such as the gluon and quark propagators

and the quark gluon vertex. Common gauge choices are covariant gauge' maximal

axial gauge (nt"At":0 where 4 in Minkowski space is a fixed time-like vector) and

Coloumb gauge.

The quark propagator and gluon propagator are gauge dependent and we work

in the Landau gauge for ease of comparison with other studies. Landau gauge

is a smooth gauge that preserves the Lorentz invariance of the theory, so it is a
popular choice. Landau gauge corresponds to the Lorertlz gauge fixing condition

ðrAr(r): 0. Lattice gauge fixing is achieved by maximising a functional [BBL+99]
whose extremum in the continuum implies the gauge fixing condition, ôrAr(r) : g'

The usual Landau gauge fixing functional is

Fil{u}l: t T" tuî ø) + ul(,)Ì} , (3 58)

11'r

where the superscript G denotes that Ff varies as G moves along the orbit of gauge

equivalent configurations defined by Eq. (3.41) and

G(r) : s¡t -i t u"(r)T" (3.5e)

a

We have seen from Eq. (3.5S) rhat Ff is a functional of the links U and hence the

functional of the gauge transformation G. For maximising the lattice functional,

consider the variation of Eq, (3.58) under gauge transformations. A maximum
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3.6. Lattice gauge-fixing

of the functional implies the continuum Landau gauge. By taking the functional
derivative of Eq. (3.5S), we obtain

õFr 1.\-;--:i. :=x) t, {luif.-t')-uifA-@iø-î,)-ui@Dt] r"} . (3.60)òu"lr) 2 /-/

We have seen that the gauge links ur(r) are defined by Eq. (3.24). Connection
with the continuum is made by Taylor-expanding Ar(r -l aþt) abottt ø, integrating
term-by-term, and then expanding the exponential, typically to leading order in g",,

noting that errors are of O(g?"'). Expanding Eq. (8.60), we obtain

6Fr _
6a"(r)

(3 61)

s,o'Ðft {[0rAr(r)
11

+|*' a',ar@) + #u,,o,o) + o("\fr") * o4lon)

An extremum of Eq. (3.58) implies that ffi and hence implies that

\a*t'rç,) : t {-#rr^,(*) -'tt' (3.62)
l.r l.L

where ?11 represents O(aa) and higher-order terms. Clearly in the continuum limit,
Eq. (3.62) becomes ôrAr(r) : 0 as desired. The "one-link" functional can be
generalised to functionals using "n-link" terms:

çG -\--1Fi : 
Hn"{uir@) 

+ h.c.}, (3.63)

where

ufr(r) :uf(n) +uf(r+o,tt) ui @+ @-r)"tù. (3.64)

Taking the functional derivative yields

,ffi: ),nI" {lui,@ - t) - uf,@)- h c l"'}

: sa,2 (?,. {lu,o,øt. &{þ#u"o,ø¡ (3 65)

*ffu¡,o,(*) + )] ,"j * ctrs?"\)

and so vr'e can approach the condition 0rAr(r) : 0 more rapidly in the continuum
limit by choosing an appropriate rz-link functional.
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3.6.1 Tadpole improvement and improved Landau gauge

fixing
We are using improved Landau-gauge-fixing functional, Ff^, = tFl - fiff to

remove O("') errors arising from the the gauge fixing condition, where Ff is a two-

Iink functional of the form of Eq. (3.63). Here we are taking a linear combination

of one-link ("fic) and two-link functionals. The mean field (tadpole) improvement

parameter u6 is defined by

tuo"tr<r*>)
(3 66)

Tadpole improvement is the first step in a systematic procedure for improving the

action, The uls cancel lattice tadpole contributions. The small bare coupling in the

traditional lattice theory is a symptom of the "tadpole problem" [Lep98]. We have

seen from Eq. (3.2a) that all gluonic operators in lattice QCD are built from the

Iink operator Ur(r). The leading_term in the Lagrangian that couples quarks and

gluons contains the usual vertex ,þgA.ltþ. In addition, it contains vertices with any

additional powers of. agAr. Consider

Ur(r) - "ias"A,(r):1+ 
i,ag,Ar-#O'rr) +." (3.67)

The O(g2,) term corresponds to a gluonic tadpole diagram. Pairs of ,4r's generate

ultraviolet divergent factors of $ that cancel extra ø's. But the contributions gen-

erated by the extra vertices at. srpptessed by powels of g?,and turn out to be

uncomfortably large in typical lattice simulations. These are the tadpole contribu-

tions. The next term ffAl, is also poorly suppressed.

The mean value u¡ âccourts for these tadpole contributions by dividing every

link operator by ue. That is, in every lattice operator we replace

ur(r) -+
ur(")

Ug
(3.6s)

where us is computed numerically in a simulation. We adopt a "steepest decents"

approach [D+88] to perform gauge fixing, The gau_ge transformation is G(r) :
exp{-zaÐr0rArçr)} To maximise, for example Ff , we use Eq. (3'65) to derive

the gauge transformation

(3,6e)

where o is a tuneable step-size parameter and

,r: (
I
4

t (")

G,(") - exp {io't"l}

A
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where the subscript, "traceless" denotes the substraction of the average of the color-
trace from each of the diagonal color elements.

This gauge transformation is calculated for every link on the lattice, and then
applied as in Eq. (3.26). This procedure is repeated until the convergence criterion
is met (as discussed below). For a small enough, it is possible to show that the
functional, Uq. (3.58), monotonically increases with each iteration and that the
convergence criterion will be satisfied wilhin a finite number of iterations.

Similarly, Lr(*) and A¡-o(ø) are obtained from the functional derivatives of F2
and f1-o respectively.

L2 r Ur(*-2¡t)Ur(r- þ)=h+

-Ur(r)Ur(r + aþ) - h.c
traceless

(3.71)

(3.74)

and

A,-o(") = äo, @) - |n,ç"¡ (3.72)

The resulting gauge transformation is

Go(r) - exp

-1 
r

-I-T-

(3.73)

where the index ¿ is either 1, 2 or Imp. At each iteration Gt^o@) is unitarised
through an orthonormalisation procedure. For a given functional Ff;, the gauge
fixing algorithm proceeds by calculating the relevant A¿ in terms of the mean-field-
improved links, and then applying the associated gauge transformation, Eq. (3.73),
to the gauge field. The algorithm using conjugate gradient Fourier acceleration is
implemented in parallel, updating all links simultaneously, and is iterated until the
Lattice Landau gauge condition

{io'ra}
io,(")-t o(a2) ,

1
0t^p

VN" I,. {4,-o1r¡ar-o(r)t},

is satisfied with accuracy of 0¿ 1 70-12.
A configuration fixed by Ar(r) will satisfy Eq. (3.62). Substituting Eq. (3.62)

into Eq. (3.71) yields

L,(r) : -2,isa2Ð{-#rf"A,(*) + la'rarçr) -.nt + ?1,}
11

= -2i,sa2Ð{!u'ror(*) - u, + xr} , (3.2b)
11
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3.6. Lattice fixing

where ?11 represenls O(aa) and higher order terms. Collecting terms of 0@6) and

higher to'11¿ where the index'i is either 2 or Imp' Similarly,

ar-p(z) : -2i,sa2t{- #u'rorn, -?{t-rut^o}. (3'76)

l.L

Since the improved measure has no O(a2) error of its own, Eq. (3.76) provides an

estimate of the absolute size of these discretisation errors.

3.6.2 The lmproved gauge act¡on

The lattice regularization of field theory provides a unique tool to study its non-

perturbative behavior. The determination of physical quantities from the lattice

results in systematic uncertainties, if the lattice spacing is finite. One can simply

make the lattice spacing smaller and smaller until a safe extrapolation to the con-

tinuum limit is obtained. Very fine lattices require time-consuming and demanding

computation lPap98]. A more efficient approach is to improve the discretization pro-

cedure according to some theoretical precription and so more rapidly approach the

continuum limit. That theories can be constructed by this was shown by Symanzik

many years earlier.
In Wilson's formulation of lattice QCD, the discretization effects are of the order

of a2, which can be large. An improved version of the Wilson's action gives discreliza-

tion errors of O(aa) or higher. The improvement method by Symanzik [Sym83]

consists in adding irrelevant terms to the standard action with appropriately chosen

coefficients to cancel the lattice artifacts in the n-point Green's functions up to a

given order in a2. These irrelevant terms vanish in the contiuum limit.
The O(a2) tadpole-improved gauge action is defined as

,sc : T f #.'{ t -;(P,. + Pl,)}
Pr ß'77)

- P \--1 ,-f, lro -Rt,)\,- l2u'o Lr".., Nr"'\' 2\'"1'tu '

where D.".t includes both the 1x 2 and the 2 x 1 "rectangle operators" 'i.e',

n!rîr(r) : ut"(r)u,(r + aþ)u,(n -t aû, + aþ)u[(r + zù)ui(r + aù)ui(r) ,

R'rît (r) : ut"(r)ur(r + a¡t)u,(r + zþ)u[(r + aþ + aî')u[(r + aû')ui(r) '

Thus we cancel O("") errors in the Wilson action Eq. (3.52) by adding another Wil-
son loop. The action based on these loops has O(a2) errors. But adding these terms

to the Wilson action in the right combination, the O(a2) terms can be cancelled

whilst keeping the correct continuum limit. The inclusion of the rectangular Wilson

loop is known as Symanzik improvement. Since in the continuum limit u¡ -+ 1 we
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3.7. Fermions

see that Eq. (3.77) reproduces the continuum action as û, -+ 0, provided B takes the
standard value of T.The improved action in Eq .(3.77) also has shown to have
excellent rotational symmetry.

3.7 Fermions
The formulation of fermion fields on the lattice has been a huge problem. Lattice
fermion actions are constructed by a suitable discretization. Fermions are repre-
sented on the lattice by anticommuting spinors T/ on the lattice sites. Lattice fermion
actions are constructed by a suitable discretization of the covariant Dirac operator.
The simplest is

Dr(r,ù: 
*QJr(r)6y,,+p- u)(r- tt)õa,,_î,), (3.7s)

which is equivalent to Eq. (2.1I) up to terms of O(a2). This "naïve" Dirac operator
is, however, problematic on a lattice. Fermions will play an important role in this
study. They are an integral part of field theories in general and QCD in particular,
so it is important to discuss their lattice implementation. In Euclidean space, free
fermions are represented by the action

stl,þ,,þl: dar$(r)(tr7, + m){(r) , (3.7e)

where 7¡.t ffe the 4 x 4 Dirac matrices in their Euclidean form. Lattice fermion
actions are constructed using Eq. (3.78). Such an action may be written in terms
of a fermion matrix

S rlrþ, rþl : Drþ.(r) N.B(r, ùúB@) , (3.s0)

where the fermion and antifermion fields, þ and ry' respectively, dwell on the lattice
sites r and y. The simplest discretisation, where the derivative is replaced by a
finite difference, leads to the famous "doubling problem". Each species of continuum
fermion becomes 2d species of lattice fermion, where d is the number of space-time
dimensions. One popular choice of discretisation is the Wilson fermion action where

Kop(r,g): (
4r 1ml-
0,

) 6*06.p
2o,

ûtA

þrr
I [f" - 1t")op6a,*+î, + (r t 1r).,B6y,,-e] , (e.sl;

which solves the doubling problem at the cost of chiral symmetry. The 15 unwanted
quark flavors gain masses proportional to the cutoff. The real number, r f 0, is
typically set to one. The gauge interaction is introduced by including the gauge
fields in the Dirac operator, analogously to the continuum case where the derivative
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3.8. Unquenched QCD

is replaced by a covariant derivative. The finite difference operators in Eq. (3.S1)

become

õa,r+t" -+ Ur(r)6,s,r+t, (3.82)

õa,,-, -+ õo*-pu[(" - î,), (3.83)

and the Wilson fermion action is equivalent to the continuum fermion action lo O(a)

(c.f. O(a2) for the Wilson gauge action)'
When the fermion part is added to the lattice gauge action, the fermionic fields,

being Grassman variables, can be integrated out. Hence, for an arbitrary n-point

Green's function of the Lattice QCD fields, i.e. gauge links, quarks and anti-quarks

Gn: (rþtrþr',.rþrrþr"'Yr "'), (3.S4)

where we have omitted spinor and space-time indices and the fields are understood

to be at arbitrary coordinates,

Gn: ï ou (,t' .ø )spt/'..detKe-s" (3.85)
I DU detKe-sc

where

\,þ.-.ú. )," : t DÚ?!+:ú 
::-" 

s', 
(3 86)

I Or¡tOrpe-s,

Computing the determinant of the fermion matrix, delK, is extremely expensive.

For this reason, many lattice simulations have used the ansatz

detK: 1. (3.87)

which is equivalent to ignoring all fermion loops in the theory. This is called the

quenched approximation. The quenched approximation while convenient does not

correspond to the real world, It may turn out that the effects of vacuum polarization

do not influence the hadron spectrum significantly. Only a calculation in full QCD
can provide us with an answer to how quenched QCD result are modified by the

presence of dynamical quarks. It is commonly believed that while the quenched

approximation is reasonable for heavy quarks it fails badly for physical mass quarks.

3.8 Unquenched QCD
The quenched approximation ignores the fermion contribution to the path inte-

gral, i,.e., detK : 1. Because of the appearance of the fermionic determinant, the

times required for numerical simulations in full QCD are much much larger than

in quenched QCD. The limitations of computer power was the main reasons for

quenched QCD calculations. Physically, the quenched approximation corresponds

to quenched QCD which is not real-world QCD. In unquenched QCD, we need to
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3.9. Lattice fermion action

evaluate the determinant of the fermion matrix. Until the mid-nineties it was essen-
tially impossible. Though the quenched approximation can cause uncontrollable ten
or twenty percent errors, it makes things faster. Physically, it amounts to neglecting
dynamical fermions in the simulation. As people started to remove the quenched
approximation another problem came up. Evaluating the determinant gets slower
as we go to smaller and smaller quark masses as discussed in the introduction. This
forces us to work aü unphysical values of the up and down quark masses. That is
the situation today. Simulations are forced to use masses that are larger than the
physical up and down quark masses and we need to extrapolate to the physical limit
(which is near ^-_ 0).So it is possible to simulate with dynamical fermions, but,
for the most part, we simulate at unphysical masses. We set valence and sea-quark
mass values equal and recover the real theory, namely "full QCD" by attempting to
extrapolate to the physical mass regime. The Kogut-Susskind formulation of lattice
fermions is attractive for full QCD simulations due to the reduction of the degrees
of freedom which reduces the compuational efforts [B+00b]. In this work, we car-
ried out full QCD simulations with 2 l_ 1 flavors of dynamical sea-quarks using the
improved staggered fermion action.

3.9 Lattice fermion action
Lattice fermion actions are constructed bv a suitable discretisation of the covariant
Dirac operator. The simplest is Eq. (3.78), and it corresponds to action which de-
scribes 16 degenerate types of fermions. These degenerate types are called "tastes".
So the naive discritization of lattice fermions induces 16 tastes. So if we take Dirac
equation, and construct a "naive" approximation to it, we find that the theory de-
scribing a single quark is actually describing 16 identical copies of quark. Obviously
we don't want to simulate 16 degenerate quarks, we want to simulate one quark, so
we need to figure out some method of getting rid of the other 1b tastes.

3.1 0 Staggered fermion Action
The majority of Dynamical Monte Carlo simulations have been carried out with
Kogut-Susskind fermions. This approach reduces the number of tastes through a
technique called "staggering". It puts the four spin components of the Dirac spinor
on different sites of the lattice. The staggered fermion action posseses a continous
axial flavor symmetry in the limit of vanishing fermions. This allows us to study
spontaneous chiral symmetry hreaking and the associated Goldstone phenomenon
with out having to tune any parameters, as would be required in the case for Wilson
fermions. In the case of staggered fermions the chiral limit just corresponds to setting
the quark masses t'o zero. On the other hand, for Wilson fermions chiral symmetry
is explicitely broken by the fermionic action. Staggered fermions are cheaper to
simulate on big lattices. The number of degrees of freedom for Wilson fermions
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3.10. Staggered fermion Action

is much larger than for Kogut-Susskind fermions. Consequently simulations with
Wilson fermions have been performed on much smaller lattices than those using

staggered fermions,
Consider the naïve quark action Eq. (3.78) at tree-level, i'e., w\th Ur(r) : 1

everywhere. In momentum space, the propagator is

soþ) :+, (3.8s)v \¡ / Ðrlrsin(Pr) +Tno'

where the lattice momentum

nt" € -Lp Lþ

2'2
(3.se)( )

covers the first Brillouin zone, In the massless case, this propagator has a pole

at pp : 0,T for each É¿. So a mode with momentum near zero will describe a low

momentum continuum quark, but so will a mode with momentum near 7r [BHL+05].
That means the naïve quark action describes 2d :76 species of degenerate fermions.

This is the (in)famous "doubling problem." Note that QCD only has asymptotic

freedom for l/¡ a T, and 16 flavors is rather close to this transition. Another

consequence of doubling is the loss of the axial anomaly, In continuum QCD, the

axial symmetry is broken by quantum effects, but on the lattice the doublers of the

naTve quark action conspire such that the symmetry breaking terms exactly cancel.

As with gauge actions, there are many possible lattice fermion actions that reduce

the desired continuum action. The best know solution to the doubling problem is

the Wilson fermion action, which uses a chiral symmetry breaking term to give

the doublers mass of O(a-r) (the cutoff). This is described in many places [Rot05].
Here we will briefly discuss the other main type of lattice fermion action, the Kogut

Susskind or staggered action. The discussion below follows that of [Rot05,BHL+05,
B+esl,

The principle observation that leads to the staggered formalism is that the dou-

bling problem occurs at the edge of the Brillouin zone. If the available momenta

only spanned half the Brillouin zone, there would be no problem. The difficulties

lie in recovering the correct theory in the continuum limit. Halving the Brillouin
zone is equivalent to doubling the "effective" lattice spacing, so imagine a situation

where the field of a particular fermion species is spaced out by two links in every

direction. We shall see how it is possible to reduce the 2d Dirac spinors - each

with 2dl2 components - to 2d/2 by distributing the degrees of freedom across the

hybercube. This process is called "spin diagonalisation." For concreteness, we shall

restrict ourselves to d:4 (Euclidean) space-time dimensions.

Consider the local change of variables

,þ(") : t(r)y(r)
,þ(r):7(r)ft(r) ,

49

(3.eo)



3.10. fermion Action

where f (z) is a unitary 4 x 4 matrix that satisfies

tI @)1rl(r + ap) : rtt"@). (8.91)

This is accomplished by
f (ø) : ti'ti,ti'tin , (3.92)

where the staggered phases are: r¡r(r): (-1)Ð,<¡,'". Explicitly

Tr(r) :1
rtz(r) : (-1)"
rts(r) : (-1;''+"
Ta(r) : (-I¡"'+"'*"' '

Note that Eq. (3.90) is satisfied if X is a Grassman variable with just one component
(although it could have more). W" can now write the Kogut-susskind action as

s :;D,n,@)x@)Dry(r) + *Ðx',)x@), (3.e3)
rtþ û

where D is the lattice covariant derivative given in Eq. (3.7S). The Dirac structure
has been completely absorbed into the staggered phases, r¡.

To see more clearly what has been done, consider the staggered action in terms
of the hypercubes. We re-label the position vector

rr:2hr l pp, (3.94)

where ht": 0,.'.,+- 1 and pt":0,1. Then we define

xo(h) : x@). (3.e5)

giving us a relationship between the single component Grassman fields on a lattice
with spacing ø and 16 component Grassman fields on a lattice with spacing2a. From
these components one then constructs the 4 flavored, 4 component Dirac fields by
taking the appropriate linear combinations:

,,þ[(h): r !{r ),¡xo(n¡, (3.e6)
p

where the f, are now 
F
'p:11'"Y3"Y0r"1'nn (3.97)

and "A/ is a normalisation. So spin-diagonalisation has reduced our 16 Dirac fields
to four distributed around a hypercube and the continuum spin-flavors are recon-
structed from linear combinations of the staggered. One major advantage of the
staggered formulation over the Wilson is that it retains a U(1) x U(1) chiral sym-
metry. It is not the same symmetry as continuum QCD, but it protects the theory
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3.10. Staggered fermion Action

from additive mass renormalisation and ensures that the pion is a genuine Goldstone

boson.
We will work mostly in momentum space, so it will be necessary to construct

the Fourier transform of the staggered action, In analogy to the "blocking" we

performed in coordinate space, we write

,^ - 
2nn,kr:-.1 | nr-0,...,Lr-7 (3.9S)

as kr: p¡" I lra¡",, where

2rm, L,,
Pp:-j,- | *r-0,"',;-1

ul-L

Qr:0rI,

(a is like p above) and define Ï*= I f*. Then we have

t1

(3. ee)

(3.100)

(3.101)l_: I,

x@): f r"or'"*(*): I, | "nlr+"") 
"X*(p) (3.102)

ap:0

a

Using

6oþ : n¡r6o1"B¡"1 
^oaz

^,. fl ifu<¡1,o"\t-t): I o orherwise

(3.103)

(3.104)

we can define
(7 ),u: (-1)"'ô a+o(rt),þ (3'1ob)

where the i, satisfy

{7r,7,},8 :26¡",õ..a (3'106)

7Ir:i[,:7i:1r, (3'107)

forming a "staggered" Dirac algebra. Putting all this together, we can derive a

momentum space expression for the KS action,

t : 
l,\,x,@)l'+(7,).usin(p,) 

+ m6,pfxB@)' (3'108)

This will be very convenient as it casts the action into a familiar form,

51



3.10. Staggered fermion Action

3.10.1 lmproved staggered fermion action
Due to the large computational requirements, full QCD lattice simulations typically
use improved actions, which allow better physics to be extracted from simulations at
moderate lattice spacings. The standard staggered-fermion action has leading errors
of the order of 42, unlil<c thc Wilson formulation which has an order a artifact, whicli
can be cancelled by the "clover" improvement, A thircl nea,rest neighbor coupling
introduced by Naik cancelled order "a2" violations of rotational symmetry in the
free quark propagator [Lep96].

In the standard KS action, the derivative term is estimated by a simple nearest-
neighbours finite difference. This can improved by the addition of a three-link,
next-to-nearest-neighbours piece, called the Naik term [Nai89]. The coefficients are
chosen to eliminafe O(a2) errors, improving the rotational symmetry of the action,
This resulting Naik action is

s¡¿: iÐn,@)x@)1,,(r,(*)r@+ r,) -uj(r- t)x@- î,))
r;p

+ c2(Ur(r)Ur(n + þ)Ur(r + z¡t)y(r + 3p)

- u)(r - ¡t)u)(r - zþ)u)(r - rtùxr- - 3t))] + *Dx:r)x@)
(3.10e)

At tree-level, this action is O(a2) accurate when cr : å and c2 : -k. We can
see that the standard Kogut-Susskind action (recall Eq. (3.93)) is obtained with
coefficients ct : I and c2: 0. Thus we find that the conventional "one-link" quark
action has c1 : 1 and cz:0 and the "Naik" action has c1 : $ and cz: _ h.

Such an action was tested in [B+98]. Flavor symmetry breaking in this action
is still large, but this can be reduced by "fattening" with three, five and seven
link terms [KO99, LS99]. The result of this fattening is to reduce the coupling
of the quarks to hard gluons with momentum of the order of the cutoff, as this
type of gluon exchange results in the flavor-changing interactions that give rise to
flavor symmetry breaking. These terms can, however, introduce erïors into the low-
momentum behaviour of the quark propagator, but these are compensated for by
the addition of a planar three-link Lepage term [Lepg9].

The quark action that will be of particular interest to us is the AsqTad quark
action. It is a type of fat-link staggered action using three-link, five-link and seven-
link terms to cancel O(o') errors and improve flavor symmetry. There are a number
of ingredients to this improvement. Complete details of the formulation of the
AsqTad action can be found in [KO99]. All coefficients are taclpole improved,
producing the rather sophisticated "AsqTad" (o', tadpole improved) action. In this
thesis, the essential aspect of the AsqTad is its tree-level form.

At tree-level (i,.e., no interations, links set to the identity), the staples in this
action make no contribution, and the action reduces to the Naik action, We can per-
form the same analysis as discussed in the previous section to derive the momentum
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space action which has the tree-level form

t : I,l,x.@)lr+(7,),usin(p,)(f 
i"1o,¡ - fi sin(s r,)) + *'*)xp@) ,

from which the kinematic momentum can be obtained. This is described ," rÍ:1l:l
Chapter.
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4

Unquenched gluon propagator

The study of the gluon propagator-the most fundamental quantity of QCD and its

infrared behavior provides a powerful tool for understanding QCD and the physics

of confinement in non-abelian gauge theories. Perturbatively the gluon is expected

to behave like a massless particle. But in the real world such behavior is not possible

at large distances due to the color confinement of QCD. There \Mere many studies

dealing with the infrared behavior of QCD towards the end of the seventies and the

method (truncated Scwinger-Dyson Equations) used in all these approaches is more

or less the same [Had]. Lattice QCD- the nonperturbative calculational method-

allows a direct probe into the behavior of the gluon propagator in the infrared.

The gluon propagator, the most basic quantity of QCD, has been subject to
much calculation and speculation since the origin of the theory. In particular there

has long been interest in the infrared behavior ofthe Landau gauge gluon propagator

as a probe into the mechanism of confinement [Man99]'
In this thesis, we present the first results of gluon propagator calculation using

2 + I fl,avors of dynamical quarks-two light and one strange, and quenched simula-

tion for comparison. One way of studying the effects of dynamical sea-quarks is to

calculate in quenched and full QCD, using same fermion action in both câ,ses, for the

same set of lattice with same lattice spacing. This comparison study clearly reveals

the effect of dynamical sea-quarks on the gluon propagator. We study the gluon

propagator in Landau gauge using configurations generated by the MILC collabora-

tion [BO01] available from the Gauge Connectionl, These use "AsqTad" improved

staggered quarks, giving us access to relatively light sea quarks. We analysed the

gluon propagator in Landau gauge with an improved action on a 203 x 64 lattice
in quenched unquenched set of lattices. We find that the addition of dynamical

quarks preserves the qualitative features of the gluon dressing function q2D(q2) rn

the quenched case - enhancement for intermediate infrared momenta followed by

suppression in the deep infrared - but produces a clearly visible effect. A signif-

icant suppression of the infrared enhancement with respect to the quenched case

is observed. It is interesting to compare these results to those of a recent Dyson-

Schwinger equation study [ADFM04].
The highlight of our work is the comparitive study of gluon propagator including

and neglecting quark masses in the calculation, Since the gluon propagator is gauge

dependent, its properties can be studied only after fixing the gauge.

Some authors have argued it to be infrared finite [Gri78, Sti86, Zwa97] while

others favored infrared singular [Man79, BP95]. There is a long history of its
study on the lattice, in quenched QCD [MO87,BPS94,MMS95,Ma00,B+99,B+00a,
NF 00, BBL+01, LRG02, LSWPgg, LSWPg8, BHLWO2, BBLWO0] and in quenched

SU(2) [Cuc98, CMT03]. The restriction to quenched lattice gauge theory calcula-

t http : / /www.qcd-dmz.nersc. gov
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tions has been due to the lack of sufficient computational resources. The quenched
theory differs from full QCD only in the relative weighting of the background gauge
configurations (due to the fermion determinant), but the evaluation of the Green's
functions is otherwise the same. In the quenched approximation the fermion de-
terminant is replaced by unity and this corresponds to the complete suppression of
all quark loops. The dynamics of the gluon field depends upon the determinant of
the Dirac opelator'. The retnoval of quark loops is equivalent to the limit where all
sea-quark masses are taken to infinity. In this chapter, we report the first results for
the gluon propagator from an unquenched lattice computation.

4.1 The gluon propagator in the literature
The Greens functions of the fundamental fields such as gluon, ghost and quark
propagators are gauge dependent. The gluon propagator is the gluon two point
correlation function. The gluon propagator is the Fourier transform of the time-
ordered matrix element of two gluon frelds Afi(r), where ø runs from 1 to N2 - 1

for .9tl(,n/) group [Man99]

Dî,,i(q): -i I o+r";ø'(0lT(Ai'ìA!,(0))10) (4.r)

In covariant gauges, the propagator has the form

Di"i(q): -,iõoblfu* - fflD(q') +,9*n"(ø\f , Øl)

where the parameter a specifies the gauge. In Landau gauge a :0. The Euclidean
two-point Greens function in momentum space in the Landau gauge is given by

Dî"i@) : gab(õ,, - ff)nro\ (4 3)

To zeroth order in perturbation theory,

Do(q') iq'

D(q') may be obtained from D"rb, via

D(q\:! +t Dî,,i,(q)rorqf o,\¡ / 8 3 ,o

,(o) :* +tDi,î(q). 
(4'4)

I 4ro

The factor j for zero momentum is due to an additional degree of freedom. In order
to measure the propagtor on lattice, it is necessary to fix the gauge.
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4.2 The gluon propagator on the lattice
The detailed study of the gluon propagator on the lattice can be found in [LSWP98,
BHLWg2,BBL\ /00,WBB+]. We have seen from the previous chapter that the gauge

links Ur(r) are expressed in terms of the continuum gluon fields as Eq. (3.24). From

this, the dimensionless lattice gluon freld A!r(r) rnuy be obtained from

a!,@ + t)12) : #(u,(,) - ul"(")) - #"@,(,) - uÌ"(")), (4'5)

which is accurate Lo O(a2).
We calculate the gluon propagator in coordinate space

Df;b,(r,ù = (,+:r(r),q!,@)), (4.6)

using Eq. (a.5). To improve statistics, we use translational invariance and calculate

1Dï"i@:;(Ð A",(r)A!"(r+s)) , (4,7)

where here the angle brackets imply an ensemble average'

The scalar part of the gluon propagator is given by,

1 _\- 1 \-nD(ù: 
^j-, .L xrz _ t L-i,"u(u), (4 8)
J\¿-L-J\;-r-

which is then Fourier transformed into momentum space using

D(q) : Ðdu o n@), (4 e)

g

On the lattice, due to periodic boundary conditions, the discrete momenta f
available are

q
2trn, Lp Lp

2 2
(4.i0)

þ n* e (aL
l.r

where .L, is the lattice length over direction ¡-l'

The range of ri is determined by the fact that our lattices have an even ntrmber

of points in each direction and that \rye use periodic boundary conditions. Assuming

that the deviations from the continuum are negligible, the scalar function D(q2) can

be extracted from Di,,!,(q) using

(4 11)

pa

This expression is also valid on a finite volume, provided q is not too close to
zero [LSWP99]. The finite volume induces an effective mass rn - ] which becomes

significant for q sufficiently close to zero.
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4.2. The gluon propagator on the lattice

4.2.1 Tree-levelcorrect¡on
For a -+ 0, the lattice propagator is related to the continuum propagator by (recall
Eq. (3.s7))

o'o(q') - a2 Dconr(q,) + o("n) .

At tree level

D(qr): L,, (4.r2)q'

The improved gauge action Eq. (3.77) together with the gluon field defined in
Eq. (a.5) has the O("') improved tree-level behavior

D,, 4.- I-'(p,):#4{.in' ff)+}sina (ry)}, (413)

where

o,:'ffi, nt', (-+,+], Ø,4)

¿ is the lattice spacing and L, is the length of the lattice in the p direction. As
explained in [BBL+01] this suggests a "kinematic" choice of momentum,

""'(T) + ]si,'a (ry), (4.15)

ensuring that the lattice gluon propagator has the correct tree-level behavior,
Since QCD is asymptotically free, we expect that q2 D(qt) -+ r up to logarithmic

corrections as q2 -+ oo. Hence, Fig.4.1 and Fig.4.3 present q2D(q2), which is
expected to approach a constant up to logarithmic corrections as q2 -+ oo. All
figures have a cylinder cut imposed upon them, i,.e., aIl momenta must lie within a
cylinder of radius two spatial momentum units centered about the lattice diagonal.

4.2.2 Renormalization
In the study of the gluon propagator [Wil98], \rye can see that the bare lattice gluon
propagator D(q") is related to renormalised continuum propagator Dn(q; ù bV

D(qo): Zt(p,a)Dn(q; p), (4.16)

for momenta, q, sufficiently small compared to the cutoff, ø-1. ¡l is the renor-
malization point. Dn(q;p) only becomes truly independent of ¿ when the cutoff
is removed: in the limit that a -+ 0. In a renormalizable theory such as QCD,
renormalized quantities become independent of the regularization parameter in the
limit where it is removed. 23 is then defined by some renormalization prescription.
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We choose the momentum space subtraction (MOM) where the renormalisation con-

stanl Zs(¡.t", ø) is determined by imposing a renormalisation condition at some chosen

renormalisation scale ¡;, e.g.,

1
Dn(q)lq,=p,

p2

i.e.,i1takes the tree-level value at the renormalizationpoint. We have chosen þ:4
GeV here.

The renormalized gluon propagator can be computed both non-perturbatively

on the lattice and perturbatively in the continuum for choices of the renormalization
point in the ultraviolet [LSWPgg].

4,3 Details of calculation

The gluon propagator is gauge dependent, so the gauge configurations must be

gauge fixed for its calculation. We work in the Landau gauge for ease of comparison

with other studies. It is also the simplest covariant gauge to implement on the

lattice, Landau gauge is a smooth gauge that preserves the Lorcnt'z invariance of

the theory, so it is a popular choice, It will be interesting to repeat this calculation

for the Gribov-copy free Laplacian gauge, but that will be left for a future study.

Similar calculations have been done in Laplacian gauge [ADFFO2b, BHL\'VO2]'

We compute the lattice QCD gluon propagator in Landau gauge for 192 con-

figurations quenched with B : 8.0 and for the unquenched set with four different

Iight sea-quark masses (see Table 4.I for the number of configurations and B values

used) for the 203 x 64 lattice. The parameters are summarized in Table 4.1. The

lattice spacing is approximately 0.125 fm [D+Oa]. The configurations generated by

the improved action trq (3,77) are gauge fixed by maximising the improved gauge

fixing functional fflo discussed in the previous Chapter, The algorithm using con-

jugate gradient Fourier acceleration is implimented in parallel, updating all links

simultaneously, and is iterated until the lattice Landau gauge condition is satisfied.

The gluon propagator is plotted in units of GeV. Plotting the propagator multiplied
by q' shows more detail of the infrared behavior.

The MILC configurations were generated with the O("') one-loop Symanzik im-

proved [Sym83] Lüscher-Weisz gauge action [L\ /S5]. The dynamical configurations

use the "AsqTad" quark action, an O(a2) Symanzik improved staggered fermion

action. B and the bare sea-quark masses are matched such that the lattice spacing

is held constant. The lattices we consider all have the same dimensions. This means

that all systematics are fixed; the only variable is the addition of the quark loops.

The parameters are summarized in Table 4.1. The lattice spacing is approximately

0.125 fm [D+04].
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4.4. Effects of dynamical quarks to gluon propagator

Table 4.1: Lattice parameters used in this study. The dynamical configurations
each have two degenerate light quarks (up/down) and a heavier quark (strange).
In physical units the bare masses range from - 16 MeV to - 79 MeV. The lattice
spacing is ¿ - 0.125 fm.

Dimensions B Bare Quark Mass ff Configurations
I 203x64
2 203x64
3 203x64
4 203x64
5 203x64

quenched

0.01, 0.05

0.02, 0.05

0.03, 0.05

0.04, 0.05

8.00

6.76

6.79

6.81

6.83

t92
193

249

21.2
tt-ùùt

4.4 Effects of dynamical quarks to gluon prop-
agator

Lattice studies strongly suggest that the quenched gluon propagator is infrared
finite [BBL+01]. As is customary, we will begin by considering the (necessarily
finite) gluon dressing function, q'D(q2). In Fig. 4.1 we compare the well-known
quenched dressing function with that for 2-ll flavor QCD. For the moment we only
consider the lightest of our dynamical quarks as we expect that they will show the
greatest difference from the quenched case.

The addition of dynamical quarks to the gauge fields produces a significant visible
effect in the dressing function, in the region of infrared hump. We can clearly see the
difference between quenched and unquenched gluon dressing function in this region.
It is also very clear from the Fig.4.1 that unquenching results in a reduction of
around 30% at 1 GeV [P+06a].

We can see that the qualitative features of the propagator-enhancement of the
intermediate infrared momenta followed by supression in the deep infrared are un-
changed. Indeed there is a clear difference between quenched and dynamical quark
behavior in the infrared region. The addition of quark loops to the gluon propagator
softens the infrared enhancement without altering its basic features. The screening
of dynamical sea quarks brings the 2 * 1 flavor results significantly closer to the
tree-level form, q2 D(qz) : I. In Fig. 4.2, o¡r results for gluon dressing function
in quenched and full QCD are compared to the results obtained for the same from
DSE approach. The screening effect from the qrrark ìoop is clearly visible in DSE
results also. For momenta p larger than p: 0.5 GeV, the gluonic self interaction
becomes less important in this region and the gluon dressing increases [F405].

In Fig. 4.3, we show the gluon dressing function for the lightest and for the
heaviest u and d quark masses in our set. These correspond to bare light-quark
masses of - 16 MeV and - 63 MeV respectively; a factor of four difference. The
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Fig. 4.1: Gluon dressing function in Landau gauge. Full triangles correspond to

the quenched calculation, while open circles correspond to 2+1 flavor QCD. As the

lattice spacing and volume are the same, the difference between the two results is

entirely due to the presence of quark loops. The renormalization point is at p': 4

GeV. Data has been cylinder cut [LSWP99]'

bare strange-quark mass is the same in both cases (- 79 MeV). The mass dependence

of the gluon dressing function is only just detectable. We expect that increasing the

sea-quark masses further willinterpolate between the curves in Fig.4.1. We see that
the gluon propagator changes in the expected way. As the sea-quark mass increases,

the curve moves towards the quenched result. However, for the range of bare quark

masses studied here the change is relatively small. This transition would be better

studied with heavier sea quarks.

Another view of the mass dependence of the gluon propagator is provided in
Fig. 4.4. We choose one data point from the infrared hump (q - 7.12 GeV) and plot

it for each choice of bare light-quark mass, Although the variation in the propagator

at this momentum is only 4.57o over the range of quark masses investigated here,

the light sea-quark mass dependence is clearly resolved.

In Fig. 4.5, we present results for the gluon propagator, D(q2). The largest effects

of unquenching are observed in the deep infrared. The shape of the curves suggest

that the previous results indicating the infrared-finite nature of the quenched gluon
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4.5. Results
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Fig' 4.2: Comparison of our results for the gluon dressing function in quenched and
unquenched QCD to the corresponding result from the DSE approach [FAO5].

propagator [BBL+01] are unchanged upon unquenching. The results suggest that
the gluon propagator of QCD is infrared finite. It will be interesting to examine
the behavior of D(0) as a function of volume to elucidate this aspect of the gluon
propagator further. Finall¡ in Fig. 4.6, the light sea-quark mass dependence of the
renormalized gluon propagator is illustrated for a momentum point in the infrared
region. To avoid finite volume artifacts, the second smallest nontrivial momentum is
considered. Whereas the mass dependence of the propagator for the masses studied
here is at the 4.57o level for q - 1.12 GeV, the variance is larger in the infrared
region at 6% for q - 0.31 GeV,

4.5 Results
The addition of quark loops has a clea,r, qrrantita,tive effect on the gluon propagator.
While its basic structure is qualitatively similar, there is significant screening of the
propagator in the infrared. As anticipated, the effect is to suppress the non-abelian
enhancement of the gluon propagator in the nonperturbative infrared-momentum
region. This is relevant to analytic studies of the gluon propagator and confine-
ment [ADFMO4]. Despite the clear difference between the quenched and dynamical
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Fig. 4.3: The sea-quark mass dependence of the Landau gauge gluon propagator

dressing function renormalized at p,: 4 GeV' Filled squares correspond to u' and d

bare masses - 63 MeV and bare s-quark mass - 79 MeV, Open circles correspond

to the same strange-quark mass, but with bare u and d masses - 16 MeV. Data has

been cylinder cut [LSWPgg]. Increasing the sea-quark masses alters the results in

the expected way, z.e. towards the quenched data.

results, we see little dependence on the dynamical quark mass for the range of avail-

abte light sea-quark masses. The dependence that is observed is consistent with
expectations.

We have also done calculations of gluon propagator on finer lattice which is

discussed in Chapter 6. Calculations on finer lattices are currently underway to
provide more information on the ultraviolet nature of the propagator and provide a

test for finite lattice spacing artifacts.
We would like to extend the study to a wider range of dynamical masses to study

both the chiral limit and the transition to the quenched limit. Finally, a study of the

volume dependence of the propagator will provide valuable insights into the nature

of the propagator at q2 - 0.
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Fig. 4.4: The renormalized propagator at one momentum point in the infrared hump
of the gluon dressing function (q - 1.72 GeV) is shown here as a function of the
bare light-quark mass.
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Fig. 4.5: The sea-quark mass dependence of the Landau gauge gluon propagator

renormalized at p,: 4 GeV. Filled triangles illustrate the quenched propagator while

filled squares correspond to bare up/down masses - 63 and bare strange-quark mass

- 79 MeV. Open circles correspond to lighter bare up/down masses - 16 MeV but

with the same strange quark mass. Data has been cylinder cut [LSWPgg].
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Fig.4.6: The light sea-quark mass dependence of the renormalized gluon propagator
at a momentum point in the infrared region (q 10.31 GeV).
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5

Unquenched quark propagator

The quark propagator is the basic entity of QCD, though it is not directly ob-

servable in an experiment. But it has been the focus of many studies to gain

better understanding of chiral symmetry breaking and the mechanisms by which

it occurs IBMSY9O]. In the low momentum region it exhibits dynamical chiral

symmetry breaking and at high momentum it can be used to extract the running
mass [BHW02]. It is an input in DSE based model calculations. The infrared struc-

ture of quark propagator gives insight to the dynamical mass generation. So quark

propagator is interesting for studying the phenomenon of dynamical chiral symmetry

breaking.
In this Chapter, we discuss unquenched calculation of the quark propagator in

Landau gauge with 2 f 1 flavors of dynamical quarks and report the first results

for the quark propagator including dynamical quark effects. To verify the effect of
dynamical sea quarks on the quark propagator, we have done a series of simulations
of quenched QCD and 2 * 1 flavor QCD with a range of quark masses. We study the

quark propagator in quenched and full QCD using an improved staggered fermion

action "AsqTad" which has O(aa), O(o'g') errors.

5.1 The quark propagator in literature
A "propagator" is the amplitude for a quark to move between space-time points.

The quark propagator S(r,A : A) for a quark mass rn in the presence of a gluon field

A, plays a central role in many investigations of lattice quantum chromodynamics.

The quark propagator is defined by

s.,a: -i\lr(1þ"(")rþB(E))lo) , (5'1)

where a and p are the spinor indices. S(r,a: A) is a matrix and a given element

of this matrix gives the amplitude of propagation of a quark with some spin, color

and space-time point to another space-time point, spin and color.

At tree level (,4, : 0), the quark propagator is identified with the fermionic

Greens function in Euclidean space,

(Ø+m)t,(r,a):6n(,-a), (5'2)

where rr¿ is the bare quark mass. In momentum space this equation is solved by,

L¡(p) : -:*. (b.3)
x p+rn

Ã¡(p) = S'o(p) denotes the tree-level propagator in.momentum space. Thus in the

presence ofgauge field interactions, we can define Srt(p) to be the Fourier transform
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5.2. The quark propagator on the Lattice

of the interacting fermionic Green's function,

(þ+m)x¡(r,ù:64(r-a).
In momentum space, the renormalised inverse quark propagator is

Sr'(p): s"å(p) - >(p)
: z-t(p\l¡ ú + M(p')l: i, úA(p2) + B(p'),

where 
s;å(p) :'iþ+m

s(,,y) : -t oru-ljfçotlr,-1

(5 4)

(5.5)

5.2 The quark propagator on the Lattice
The systematic study of the quark propagator on the lattice has also provided fruit-
ful interaction with other approaches to hadron physics, such as instanton phe-
nomenology [Dia03], chiral quark models [RAB03] and Dyson-Schwinger equation
studies [BPRTO3,ADFMO4]. The lattice is afirst principles approach and has pro-
vided valuable constraints for model builders. In turn, such alternative methods can
provide feedback on regions that are difficult to access directly on the lattice, such
as the deep infrared and chiral limits.

The quark propagator has previously been studied using Clover [SW01,SLW01],
staggered [BHw02,BHLWO3] and overlap [BBL+02,zBL+04] actions. For a review,
see [BHL+05]. Alt these actions have different systematic errors and the combination
of these studies has given us an excellent handle on the possible lattice artifacts. In
every case, however, they have been performed in the quenched approximation and
have been restricted to modest physical volumes. The quark propagator is gauge
dependent and we choose the ever popular Landau gauge.

We have seen from Chapter 3 that the n-point Green's functions Gn(*,. . . rr)
are obtained from the generating functional (recall Eq. (3.17)).

The quark propagator identified as two-point fermionic Green's function is given
by

(5.6)

(5,7)

n:o,n:o

Changing the variables

DúD 1þD A rrþ @),,þ (*), -'eeco

: þþ@),þ(")).

-T 1í - --.-l1þ-+1þ:1þ-nK
,þ -+ ,þ' : rþ - K-'n,
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5.2. The quark propagator on the Lattice

and rewriting the fermionic part of the generating functional as

1
zlrt,rl] | ,r'rfr "D' 

-'1" x'Þ' 

"Ð*nK-'n
(5.10)

zl0l

As in the continuum, we want the measure DU (see Chapter 3) to be gauge inavriant.
As per the Grassman integration rules the measure is invariant under the above

transformation, which enables us to write

zlrt,nl: 

^det 

KeD"tK-'n. (5.11)

The fermion matrix y'l (introduced in Chapter3) is a function of the gauge links in
an interacting theory. Considering the full theory' we can write

ZW,rl, Jr): 

^ 

I 
DU det Kl(Jle-sclul-Ð'nK-rn+rt"ut" ' (5'12)

and
õ22 1

. / \ .-/ \
ònlr)Òq\a) zl0)

DU KIU)-r ð,et KIU)e-sclul. (5.13)

n:o,q:o

Now it is clear that the calculation of the quark propagator amounts to the inversion

of the fermion matrix.
þþ@)'þ(')) : K(r,a,u)-'' (5'14)

Equation (5,14) says that the quark propagator is calculated by inverting the

fermion matrix. Lattice QCD allows a direct probe of the nonperturbative quark

propagator,
To carry out simulations, we must select

o Lattice spacing (a) via coupling parameter B * þ
o Grid size (l/,3 x ¡/r)
o Quark masses (mu,m¿,m,)
o The number of configurations averaged over.

To eliminate systematic errors, we st
o Take the continuum limit ø -+ 0
The lattice calculation of quark propagator requires the following steps [BHL+05];
o A statistical ensemble of lattice g uge configurations is generated by some

method, quenched simulations using the pseudo heat-bath algorithm. Unquenched

(Z + t flavor) simulations using the standard hybrid-molecular dynamics "R algo-

rithm", with one pesudofermion field for runs with degenerate quarks and two pesud-

ofermion fields for runs with different up and down and strange quark masses [GLT+S7]
r Each configuration is gauge fixed: Landau gauge is selected.

o From the ensemble of configurations, on each configuration, the quark propa-

gator is calculated by

I t(", ùK(y, z) : õ(r, z) , (5.15)
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5.2. The quark tor on the Lattice

where K is the fermion matrix for the AsqTad quark action. The inversion is
computed by a suitable method, in this case a multi-mass conjugate gradient algo-
rithm [Jeg96].

o The propagator is Fourier transformed to momentum space.
o The result is averaged over all gauge configurations in the ensemble.
In the continuum , Lorenl,z invariance allows us to decompose the full propagator

into Dirac vector and scalar pieces, so in momentum space

s-t(p') : ¡A(p2)t .p + B@\, (b.16)

or, alternatively,
s-t(p'): z-t(p\lit'p+ M(p')1, (b.12)

where M (p') and Z (p2) are the nonperturbative mass and wave function renormal-
ization functions, respectively. This is the bare propagator which, once regularized,
is related to the renormalised propagator through the renormalisation constant

s(o;p'): zz(a; p)S'""0,r;p'), (5.18)

where a is some regularisation param eter, e. g. , lattice spacing, Asymptotic freedom
implies that, as p2 -+ oo, ^S(p') reduces to the free propagator

S-'(p') -+ it 'p I m, (5.19)

up to logarithmic corrections. The mass function M is renormalization point inde-
pendent and for Z we choose throughout this work the renormalization point as 3
GeV, where m is the bare quark mass.

We use an improved Kogut-Susskind quark action, "o?^d" or "AsqTad" action
which removes lattice artifacts up to order of a2g2. From Eq, (3.10s) we write the
tadpole improved, tree-level form of the KS quark propagator as

s;)(n;m) : "r,+(1),u, sin(pr) t m6oB (5.20)

where p¡, is the discrete lattice momentum given by

2rnu 
n,,, . (-L, 11 (b.21)P'": aLt" n" \ + 'T)'

and u6- the mean field (tadpole) improvement parameter defined by Eq. (3.66).
Lattice quark propagator got the correct continuum form,

sià@): it (7).usin(pr)A(p) + B(p)õ*B
l.L

: z-'(p)1, t (t,).usin(p,) + tw(p)6*B) . g.22)
p
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5.2. The quark propagator on the Lattice

We define a new momentum variable for KS action,

Q¡" = sin(pr)

We can then decompose the inverse propagator

z-'(q): #*rr{T qs-'}

m(q): ffirr{^s-'},

(5.23)

(5.24)

(5 25)

where the trace over the spin-flavor indices of the staggered quarks yields a factor

of 16 and the factor ÄI" from the trace over color. In practice, we can calculate

these quantities without inverting the propagator. For more details of calculation

avoiding the inversion of the propagator see section 5.4 of this Chapter'
Comparing Eq. (5.17) and Eq. (5.22) we see that dividing out q2 in Eq. (5.24)

is analagous to dividing out p2 in the continuum and ensures that IhaT' Z has the

correct asymptotic behavior. So by considering the propagator as a function of Qp,

we ensure that the lattice quark propagator has the correct tree-level form, i.e.,

'st'"t(qr)
1:._)

L'Y.q+Tn
(5.26)

and retains its continuum behavior. We have seen from Chapter 4 that the same

philosophy has been used in study of the gluon propagator as well. It has been also

used in the previous studies of gluon propagator [LSWP99,BBL+01] and Clover and

Overlap quark propagators [SW01, SL\ /01, BBL+02, ZBL+04]'
The AsqTad action obtained by adding a few terms to the conventional Kogut-

Susskind action, namely three-link, five-link and seven-link staples and a third-
neighbor coupling, removes all tree-leveI O(a2) errors. From Eq. (3.110) we see that
the quark propagator with this action has the tree-level form

S;)(n;m): uoiÐ(\r).usin(pr)tt * 
åsin2(pr)] 

tm6op. þ.27)
p

As in the case of gluon propagator calculation which I have explained in the previous

Chapter, we also use configurations generated by the MILC Collaboration [8001]
available from the Gauge Connection [GC]. These use "AsqTad", O(a2) improved

staggered quarks [KO99], giving us access to relatively light sea quarks. The com-

putational expense using this action is quark mass dependent, and roughly a factor

of 2.5 for the lightest quark masses \/e are using [B+01]. In the quenched approxi-

mation, the quark propagator for this action has excellent rotational symmetry and

is well behaved at large momenta [BHL+O4b], We use quenched and dynamical

configurations at the same lattice spacing and volume, which enables us to observe

the relatively subtle effects of unquenching. These lattices are also somewhat larger

than those of previous studies, giving us access to smaller momenta.
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5.3. Details of the calculation

The formulation of the AsqTad fermion propagator calculations are performed
on a 203 x 64 lattices. The tree-level quark propagator with the AsqTad action has
the form

s-t(p) : iD:yrq(pr) + m, (5.28)
It

where q(pp) is the kinematic momentum given by [BHW02] so we repeat the above
analysis, this time defining

8¡":- sin(pr)[1 + ]si','(pr)]. (b.2e)

Thei, form a staggered Dirac algebra see Eq. (5.39). Having identified the kine-
matic momentum, we define the mass and renormalization functions by

,s-'(p) : z-1{øl[z ¡ (j,)q,(pr) * xtfø)). (5.30)
11

Complete details of the extraction of the mass and renormalization functions from
the AsqTad propagator are described in the upcoming section.

5.3 Details of the calculation
The quark propagator is gauge dependent and we work in the Landau gauge for
ease of comparison with other studies. We used Symanzik improved gauge action.
Landau gauge is a smooth gauge that preserves the Lorentz invariance of the theory,
so it is a popular choice.

An improved Landau-gauge-fixing function aI, Ff,,o = +Ff - hfg is used
where

Fit{u}l: D Tr, {ri O¡ + uf (*)t} , (b 31)
11'r

Ff : f lt {ui @)ui @ + t)+ h.c.} . (b.32)" fr2 \

More technical details of gauge fixing are explained in Chapter 3. As this gauge fix-
ing Eq. (3.74) finds a local minimum of the gauge fixing functional, \¡¡e are necessarily
sampling from the first Gribov region. Our ensemble contains no gauge-equivalent
configurations and hence has no Gribov copies as such. However, only our con-
figurations are local minima and absoluúe minima and theref'ore are not from the
Funda,mental Morlular Region (FMR) [Wil02], However, they are necessarily from
the first Gribov region, r,.e., the region containing the FMR and bounded by the sur-
face where the Faddeev-Popov determinant first vanishes. It is known from previous
SU(3) studies that neither the gluon nor quark propagator display any obvious Gri-
bov noise above and beyond the ensemble statistical noise and so we do not consider
it further here [GPP+02,SIMPSO5b,SIMPSO5a]. It will be interesting to repeat this
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5.3. Details of the calculation

Table 5.1: Lattice parameters used in this study. The dynamical configurations

each have two degenerate light (up/down) quarks and a heavier (strange) quark.

The lattice spacing is a : 0.125(3) fm, where the uncertainty reflects the variation

of a over the set of lattices considered in this analysis. Bare light quark masses

nLa:0,01,0.02,0.03,0.04 correspond to masses of 16 - 63 MeV. The bare strange

quark mass is n'La -- 0.05 or 79 MeV.

Dimensions B Bare Quark Mass f Config
quenched

16 MeV, 79 MeV
32 MeV, 79 MeV
47 MeV, 79 MeV
63 MeV, 79 MeV

7 203x64
2 203x64
3 203x64
4 203x64
5 203 x64

8.00

6.76

6.79

6.81

6.83

265

203

249

268

318

calculation for the Gribov-copy free Laplacian gauge, and to do a systematic search

for Gribov noise in Landau gauge, but these are left for future studies.

The MILC configurations were generated with the O("') one-loop Symanzik-

improved Lüscher-Weisz gauge action [LW85]. The dynamical configurations use the

AsqTad quark action [8001], an O(a2) Symanzik-improved staggered fermion action

which removes lattice artifacts up to order a292. The dynamical configurations have

two degenerate light fermions for the u and d quarks and a heavier one for the

strange quark. The lighter u and d are taken to be of equal mass, as light of I of the

physical strange quark mass, while the third quark flavor has been kept close to the

strange quark mass. Simulations at the physical light quark mass value has not been

possible so far even with the improved "Asqad" quarks. Hence chiral extrapolations

are needed to reach the physical value.

The simulation parameters are summatized in Table 5'1.

Weighting for the fermion determinants is provided by the so-called, "fourth root

trick.", We have seen from Chapter 3 that a staggered fermion is a lattice formula-

tion of four continuum flavors nowadays called "tastes". The fermion determinant

for a single quark flavor in this framework is represented by a rooted determinant

det(D,1rrr","¿)å. There is concern that the use of the fourth root of the staggered

fermion determinant to respresent the fermion determinant of a single sea-quark

does not fit in an obvious way into the frame work of local lattice theory at non-

zero lattice spacing. This raises the question of whether the dynamical staggered

fermion formulation is a first principles approach to QCD or simply a phenomeno-

logical model which describes QCD well in a certain regime [Ber06]. Infact, such

"rooted" staggered quarks have been used by the MILC colloboration for recent dy-

namical simulations, which are in good agreement with experiment for many simple

hadronic quantities. This complex question will not be considered further here. We

will proceed on the assumption that " fourth root trick." is meaningful.
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5.4. Extraction of the scalar functions

5.4 Extraction of the scal ar tunctions
The AsqTad quark action IKO99] is a staggered action using three-link, five-link and
seven-link staples as a kind of "fattening" to minimize quark flavor (often referred
to as "taste") changing interactions. The three-link Naik term lNai89] is included
to improve rotational symmetry by improving the finite difference operator, and
the five-link Lepage term [Lepg9] is included to correct errors at low momenta that
may be introduced by the above mentioned staples. The coefficients are tadpole
improved and chosen to remove all tree-level O(a2) errors.

At tree-level (i.e. no interactions, links set to the identity) the staples in this
action make no contribution, so the action Eq. (3.109) reduces to the tree-level Naik
action,

s(o) : ;Dx',)n,@) 13t"r" + p) - x@ - p))
r'þ 

r,
- fifrø+ 3p) - x@- rr))] + *Dx@)x(ù, (b 33)

fr

where the staggered phases are: r¡r(r): 1-1¡((')'' and

7 ifu<¡t
0 otherwise

1

24
(3pr) I m6op

(5.34)

In momentum space, the quark propagator with this action has the tree-level form

sÍ'i -'@;*)

: iD(it"l* 
lSsin(p,)

11

1: iD6t)"B sin(pr)[1 *Usin '(pr)) * m6*p. (b.35)
11

where the a, B are themselves four-vectors: ap: 0, 1, and likewise for B; thus the
quark propagator in Eq. (5.35) is a 16 x 16 matrix. This familiar form is obtained
by defining

6oþ : ilu6."¡"Þrl 
^oð.2

(7,) *u 
: (- 1)"5 .'¡(u),B.

The mod 2 in Eq. (5.36) ensures its validityin Eq. (b.37). The 1, satisfy

{7r,7,}.B : 2õ¡",öoB

nI -;I - ã* --Itt- Ip- I¡t- l¡tt
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5.4. Extraction of the scalar functions

forming a "staggered" Dirac algebra.

Staggered actions are invariant under translations of 2a, and the momentum on

this blocked lattice is given by Eq. (3.99). We calculate the quark propagator in
coordinate space,

G(r,y): Q@)X(a)), (5.40)

and obtain the quark propagator in momentum space by Fourier transform of
G(r,O). To write the Fourier transform of the staggered field we write the mo-

mentum on the lattice

kr:zP l rr-0,...,Lr-1 (5.41)
lJþ

so that kt, : pp * ra, and define fi = I !r. Then

D, (5.42)
ap:0TT: T,

and

Now it will be convenient to re-write this

G(k) : G(t +,,rõ) : Gõ(t) :T 
"-uk"Gçr,0¡

x@) : 
Io"or 

"*(r) : I, I ,r{o+"")." X.(p),

G(*,ù : 
Ð 1r,,"*o {¿@ + atr)' r - i(t + þn)' a}

x (x"(ùxp(t))

: t [ "ln@-ù "t'r(a'rþ'fl 
g.B@).

/-/ I
op JP

(5.44)

(5.45)

(5.43)

(5.46)

Í

Ð I,Ð'"0{- ¿(I+rõ)r}

t I,

x exp{z(p + ra)r)S"B@)

õoñ*¿S,p(p)
aþ

: I su,B(t). (5.47)
p

In the interacting case, the quark propagator asymptotically approaches its tree-

level value due to asymptotic freedom. At finite lattice spacing the actual behavior

is closer to
S(q;*)-1 1 

5(o) (q;*luo), (5.4s)
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5.5. Quenched results

where ue is the tadpole (or mean-field) improvement factor defined by

u¡ : ((Tt Urrur))rtn. (b.49)

Assuming that the full lattice propagator retains its free form (in analogy to the
continuum case) we write

sià@: iÐ(7).uør@r)A(p) + B(p)õ,p (b.bo)
l.r

: z-r{r)ll ¡ (tr).uø,@r) + M(p)6,pf, (b.bl)
11

where q is the tree-level momentum, Eq. (5.29). Combining this with Eq. (b,a6)
above, we can extract the scalar functions (which we now write in terms of q) as
follows: 

G.Ø): z(q)-'>'t-Ð":q',! M(q)
q2+M2(q) , (5'52)

from which we obtain

I"'G,(q):16^t
z(q)tt (q)

q'+ M2(q)

: l6N"ß(q), (5.53)

and

(\

itt(- 1)o,qrTr[c.(q)] : rcw.r" o#P\n)aþL

Putting it all together we get

A(q) : Z-'(q) :

aQ)
mQ)
z(q) A'(q)q" + B,(p)

: l6N"q2A(q)

A(q)
A'(q)q'+ B'(qp)

ß(p)

(5.54)

(b.bbl

(5.56)

(5.57)u(q):ffi
By calculating A, B instead of A, B, we avoid inverting the propagator. We calculate
the ensemble average of "4 and ß and thence M and Z .

5.5 Quenched results
First we compare our quenched results to some previously published data obtained
on a smaller lattice [BHLWO3], All the data illustrated in the following are cylin-
der cut [BBL+01]. This removes points most susceptibte to rotational symmetry
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5.6. Effects of dynamical quarks

breaking, making the data easier to interpret. As is well known, the definition

of lattice spacing in a quenched calculation is somewhat arbitrary, and indeed the

quoted estimate for our smaller ensemble is not consistent with that published for

the MILC configurations, We determined a consistent value of the lattice spacing

by matching the gluon propagator calculated on the old ensemble to that of the

neu/ ensemble [BHL+O4a]. This procedure yields a new nominal lattice spacing of
ø: 0.105 fm and physical volume of 1.73 x 3.4 fma for the old lattices, Examining

the quark propagator on the two quenched ensembles, shown in Fig, 5,1, we see that
the agreement is excellent. This indicates that both finite volume and discretization

effects are small. The flattening in the deep infrared of both scalar functions is a
long-standing prediction of DSE studies [BPRT03].

We show results for the larger quenched lattice for a variety of bare quark masses

in Fig. 5.2. Once again we see that for quark masses less than or approximately

equal to that of the strange quark, the lowest momentum point of the mass function

is insensitive to quark mass.

5.6 Effects of dynamical quarks
The difficulties with simulating dynamical fermions results most insight based on

quenched approximation ignoring the dynamics of sea quarks. Sea quarks may be

thought as infinite in quenched approximation. More over, the quenched approxi-

mation is very wrong in chiral limit where the sea quark masses are close to zero.

Computing resources now available are powerful enough to begin treating up, down

and strange quarks dynamically. Dynamical QCD is computationally expensive with
the inculsion of sea quark loops. For the first time we will learn about the sea- quark

mass dependence of the quark propagator.

We report the first results for the quark propagator including dynamical quark ef-

fects. We use configurations generated by the MILC Collaboration [8001] available

from the Gauge Connection [GC]. These use "AsqTad", O(a2) improved staggered

quarks [KO99], giving us access to relativety light sea quarks. In the quenched ap-

proximation, the quark propagator for this action has excellent rotational symmetry

and is well behaved at large momenta [BHL+O4b]. W. use quenched and dynamical

configurations at the same lattice spacing and volume, which enables us to observe

the relatively subtle effects of unquenching. These lattices are also somewhat larger

than those of previous studies, giving us access to smaller momenta. We compare

the scalar functions for the quenched and dynamical propagators. For a given bare

mass, the running mass depends upon both the number of dynamical quark fla-

vors and their masses. To make the most appropriate comparison we select a bare

quark mass for the quenched case (ma:0,01) and interpolate the dynamical mass

function so that it agrees with the quenched result at the renormalization point,

Q : 3 GeV. The results are shown in Fig. 5.3. The necessary bare quark mass)

rna, -- 0.0087, is a little smaller for the dynamical case.

The dynamical case does not differ greatly from the quenched case. For the
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Fig. 5,1: Comparison of qrtenched wave-function renormalization and mass functions
at approximately the same bare quark mass. The quark propagator from the 203 x 64
lattice with lattice spacing a:0.I25 fm at m: 47 MeV (open circles) is compared
with the previously published quark propagator from a 163 x 32 lattice with lattice
spacing a : 0.105 fm at m:45 MeV (full triangles). The renormalization point
for Z (q2) is set at Ç : 3 GeV.
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5.6. Effects of dynamical quarks
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5.6. Effects of dynamical quarks
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for non-zero quark mass. The mass function for the unquenched dynamical-fermion
propagator has been interpolated so that it agrees with the quenched mass func-
tion for mo, : 0.01 at the renormalization point, g : 3 GeV. For the unquenched
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5.6. Effects of dynamical quarks

renormalization functions, there is no discernible difference between the quenched

and unquenched cases. However the mass functions do reveal the effects of dynamical
quarks. Dynamical mass generation is suppressed, in the infrared, in the presence

of dynamical quarks relative to that observed in the quenched case when the mass

functions are the same at the (UV) renormalization point. This is in accord with
expectations as the dynamical quark loops act to screen the strong interaction.
Further comparisons can be made in the chiral limit. In Fig. 5.4, both quenched

and dynamical data have been extrapolated to zero bare quark mass by a fit linear
in the quark mass. In the dynamical case, the extrapolation was done for the case

when the valence and light sea quark masses are identical. As discussed above, for
a given bare quark mass, the running mass is larger in full QCD than in quenched

QCD. This is apparent from the fact that the bare mass must be chosen smaller in
the dynamical case in order that the running masses âgree at large momenta e.9,, see

Fig. 5.3. This is in qualitative agreement with perturbation theory, In the quenched

case the mass runs more slowly than it does with three light quark flavors. Fig. 5,5

shows the mass and renormalization functions in the dynamical case for a variety
of quark masses. Here the valence quark masses and the light sea quark masses are

matched. The results show that the renormalization function is insensitive to the

bare quark masses studied here. The renormalization function is infrared supressed.

We have seen from the extraction of scalar function section in this Chapter that,
the quark renormalization function is given by

z(q): A'(q)q'! B'(q,). 
(b.b8)

A(q)

The denominator of this wave-function renormalization function increases as q ap-

proaches zero which causes the infrared supression. Even though the function ß'(qp)
in the numerator is like A'(q), which is also an increasing function of q, as q ap-

proaches zero, it is almost constant as the bare quark mass decreases, in contrast to

At(q) which increases when the bare quark mass decreased, The results for the mass

function are ordered as expected with the larger bare quark masses, rn, giving rise

to a larger mass function. Our results for the scalar functions on the coarse lattice
are in good agreement with the published results of [FN06]. Numerical simulations

of lattice-QCD provide direct access to DSE calculations. We refer to Fig, 5.6, to
make a comparitive study of our lattice results with the DSE approach of reproduc-

ing it from our full QCD gluon propagator data. The Dyson-Schwinger equations

are a nonperturbative approach to study continuum QCD. The DSEs are useful tool
and can be used directly to understand hadrons as bound states; the importance of
dynamical chiral symmetry breaking (DCSB); and the confinement of quarks and

gluons. The DSE for the dressed-quark propagator is given by [KR0a]

¡lt' \¿
,s(p)-t : zz(i"y 'p i trLb^,") + z, I o'Dr,(p - q)ntrs(ø)liØ;p), (5'59)

Jq

where Dr,(k) is the dressed-gluon propagator,li(q;p) is the dressed-quark-gluon

vertex, ïtL6¿," is the À-dependent current-quark bare mass, and jf ,: Ïn d'aqlQr)a
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Fig. 5.6: Our full QCD lattice results reproduced via the continuum DSE [8T06]

represents a translationally-invariant regularisation of the integral. Here ,A the reg-
ularisation mass-scale, the Z¿(¡-t', L") are the quark-gluon-vertex and quark wave
function renormalisation constants, which depend on A and the renormalisation
point, ¡-r. The lattice results for S-l(p) ir given by Eq.(5.17). Comparison has
been made.by solving Eq. (5.59), with kernel factors Z1g2Dr,(k)f?,&;p) replaced
by DÎ)(k)\nlî&') Dt":(k) is a fit to our lattice gluon propagator data and
l?(kt) is a phenomenological vertex amplitude determined so that the DSE solution
for S(p) fits our data [8T06]. We can clearlyseen from Fig. 5.6 that the lattice reults
are in precise agreement with DSE results. Finally, we comment on the approach to
the chiral limit. In Fig. 5.7,we show the mass function for five different momenta
plotted as a function of the bare quark mass. The momenta considered include the
lowest momentum of 0.155 GeV and 0.310, 0.495, 0.700 and 0.9g3 GeV to explore
momentum dependent changes in the approach to the chiral limit. At larger mo-
menta, the mass function is observed to be proportional to the bare quark mass.
However, at small momenta, nonperturba,tive effects make this dependence more
complicated. For example, a recent Dyson-Schwinger study predicts a downward
turn as the bare mass approaches zero [BPRT03].

For the lowest momentum points, nonlinear behavior is indeed observed. For
the quenched case, curvature in an upward direction is revealed as the chiral limit
is approached, leading to the possibility of a larger infrared mass function for the
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5.6. Effects of dynamical quarks

lightest quark mass, despite the reduction of the input bare quark mass. In contrast,

a hint of downward curvature is observed for the most infrared points of the full QCD
mass function as the chiral limit is approached. It is interesting that the nature of
the curvature depends significantly on the chiral dynamics of the theory which are

modified in making the quenched approximation. Similar behavior is observed in
the hadron mass spectrum where the coefficients of chiral nonanalytic behavior can

change sign in moving from quenched QCD to full QCD. [L+04,YLTW02].
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6

Comparison of unquenched and
quenched quark and gluon propagator
on a fine lattice

The n-point Green's functions are the building blocks of a field theory and in lat-
tice the simplest are quark and gluon propagators. We can use them to study

fundamental properties of QCD, both qualitative: dynamical mass generation, the

transition from perturbative and nonperturbative regimes, confinement; and quanti-

tative: quark and gluon condensates, running quark masses, running coupling [B+].
The gluon and quark propagator contains valuable information about nonperturba-

tive QCD. The systematic study of the quark propagator on the lattice has provided

fruitful interaction with other approaches to hadron physics, such as instanton phe-

nomenology [Dia03], chiral quark models [RAB03] and Dyson-Schwinger equation

studies [BPRTO3, ADFMO4]. As a first principles approach lattice QCD has pro-

vided valuable constraints for model builders. In turn, such alternative methods can

provide feedback on regions that are difficult to access directly on the lattice, such

as the deep infrared and chiral limits.

Lattice QCD enables us to study the nonperturbative nature of QCD from the

first principles. As space-time is replaced with a discretized lattice, physical results

from the lattice simulations can be obtained once the effects of finite lattice spacing ø

and finite volume V are under control [Ma00]. One of the most important systematic

erroïs comes from the finite lattice spacing which generates an errors of the order of

al\qcn.

In this chapter, we are presenting work clarifying the robustness of our earlier

results on the gluon and quark propagators which we have studied in the previous

chapters. We are extending our calculations on coarser lattices to a finer lattice,

The infrared part of any lattice calculation may be affected by the finite volume of

the lattice. Larger volumes mean either more lattice points with increased computa-

tional cost or coarser lattice with corresponding discretisation errors. The desire for

minimizing discretization errors at reasonable physical volumes thus provides strong

motivation for using improved actions.

We study the gluon and quark propagator on two lattices:coarse and fine and

compare the results to see any effect of finite lattice spacing as well.

We have already seen the results for both propagators with and without the ef-

fects of dynamical sea-quarks on the coarse lattice which I have explained in Chap-

ters 4 and 5. In this chapter we are performing a comparison of both quenched

and full QCD results on a fine lattice with lattice spacing ø : 0.09 fm and volume

(2,52fm)3.
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6.1. Gluon tor on a fine lattice

Table 6.1: Lattice parameters used in this study. The dynamical configurations
each have two degenerate light quarks (up/down) and a heavier quark (strange).
The light bare quark masses for the 283 x 96 lattice are 14.0 MeV and 27.I MeY
with a strange quark mass of 67.8 MeV. The lattice spacing is ø - 0.09 fm [A+Oaa]
for the 283 x 64 lattice.

Dimensions 13 0, Bare Quark Mass f Config
1 283x96
2 283 x96
3 283x96

0.086 fm
0.086 fm
0.086 fm

8.40

7.09

7.r7

quenched

14.0 MeV, 67.8 MeV
27.l MeV,67.8 MeV

110

108

110

6.1 Gluon propagator on a fine lattice
We have performed calculations of the gluon propagator in Landau gauge for 110
configurations for quenched with B : 8.4 and for unquenched set with two different
light sea-quark masses (see 6.1 for the number of configurations and B values used)
for 283 x 96 lattice. The lattice spacing is approximately 0.09 fm. The technical
details of gauge fixing and the lattice calculation of the gluon propagator are already
explained in the previous chapters.

In Fig. 6.1, we present the behavior of gluon propagator in quenched and full
lattice QCD for 283 x 96 lattice with lattice spacing ø : 0.09 fm. The results
are similar to our previous comparison of quenched and unquenched gluon dressing
function q'D(q2) on 203 x 64 lattice Fig.4.1. The difference between quenched and
dynamical quark behavior in the infrared region is significant. In quenched QCD,
there are only gluon loops present. In the unquenched case, the addition of quark
loops decreases the effect of the gluon loops at large momenta. The compelling
evidence we have seen from Fig. 4.1 suggests that adding fermion loops suppresses
the non-abelian effects as one might naively expect. In other words, the addition
of sea-quark loops moves the result slighly back towards their tree-level form. The
unquenching effect on the fine lattice is the same as that of coarse lattice which we
have studied in chapter 4, showing around 30% of reduction in the dressing function.

6.1.1 Sea-quark mass dependence on gluon propaga-
tor

In Fig. 6.2, we are trying to see any mass dependence for the dressing function in
the finer lattice with heavier light sea-quark mass (rn :27.I MeV), lighter light
sea-quark mass (rn : L4.0 MeV). The bare strange-quark mass is the same in both
cases (rn : 68 MeV). At there is not much difference between both light quark
masses we hardly seen any dependence in this case. But in our previous study,
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6.2. Fine lattice quark propagator

recall Fig. 4.3, we have seen mass dependence as there is a a factor of four difference
between the light quark masses chosen. As the sea-quark mass increases, the curve
moves towards the quenched result. For the fine lattice, we have only two light
sea-quark mass to compare the mass dependence so the sea-quark mass dependence
is not that prominent compared to the results from the coarser lattice. It would be
better studied with a range of heavy sea-quark masses for the fine lattice to see any
significarrt effect.

In Fig. 6.3, we are highlighting the results of the quenched and unquenched gluon
propagator, D(q') for the fine 283 x 96 lattice. It is clear from the results that as
the bare sea-quark mass increases, the result is moving towards the quenched result
which is expected. The results (shape of the curve) indicates that the qualitative
features of the quenched and unquenched gluon propagator are the same as Fig. 4.5.

6.2 Fine lattice quark propagator
We study the AsqTad quark propagator on a fine 283 x 96 lattice using the O(a2)
Symanzik improved gauge action for the quenched and unquenched set of lattices.
We use 120 configurations for quenched set with p: 8.4. Full QCD simulations are
run with two different set of light sea-quark masses (see Table 6.1 for the number
of configurations and þ values used). We will first report the results of quark
propagator on a finer lattice, 283 x 96 with lattice spacing ø : 0.090 fm. We explore
two light sea quark masses, rno, :0.0062 (^ :14.0 MeV) and ma : 0.0124 (* :
27.1 MeV). The bare strange quark mass was fixed at rna:0.081, ot rn:62.8 MeV
for a :0.09 fm. The values of the coupling and the bare light sea-quark masses are
matched such that the lattice spacing is held constant. The simulation parameters
are summarized in Table 6.1 with the lattice spacings taken from [A+O a]. Alt the
configurations we use in this study were generated by the MILC collaboration [8001]
available from the Gauge Connection [GC]. The dynamical configurations have two
degenerate light fermions for the u and d quarks and a heavier one for the strange
quark.

The computation of lattice quark propagator after gauge fixing the MILC con-
figurations, extraction of scalar functions are described in detail in Chapter 5. In
Fig. 6.4 we show the results of mass function M(q') and wave-function renormal-
ization function Z(q') for the case of heavier light quark mass (rn :27.I MeV) for
a variety of valence quark masses. We set valence and sea masses equal to recover
the true theory, namely "full QCD". In unquenched simulations, the valence quark
mass can be different from the mass of dynamical sea-quarks which corresponds to
"partially quenched" QCD.

In Fig. 6.4, just one valence quark mass rn : 27.I MeV is matched to the light
sea-quark mass, this is the full QCD result. Filled squares in this figure correspond
to full QCD result. It is also noted that one valence quark mass is matched with
the strange quark mass rn : 67.8 MeV which is also the full QCD result for the
strange quark. The others are partially quenched results. Nevertheless, the data
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6.2. Fine lattice quark propagator
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6.2. Fine lattice quark
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6.2. Fine lattice quark propagator
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6.2. Fine lattice quark propagator

are ordered as we expected, i.e., the larger the bare valence quark mass, the higher
is the M(q'). It is also in reasonable agreement with the behavior of M(q2) in the
quenched case [B+05]. The wave-function renormalization function Z(q2), on the
other hand, is infrared suppressed. The smaller the bare valence quark mass the
more pronounced the dip at low momenta.

Fig. 6.5 is the same as Fig. 6.4 except the case sea-quark mass, which is lightest
(m: 74.0 MeV) of our light sea-quark masses for a variety of valence quark masses.
In these figures, one valence quark mass (14.0 MeV) is identical to the light sea
quark mass, corresponding to the full QCD result. Others are partially quenched
result except one more full QCD result for the strange quark mass m : 67.8 MeV
which matches with the valence quark mass. Comparing Fig. 6,4 with Fig. 6.b, we
see from the plots that for a given bare quark mass, the running mass depends upon
both the valence quark mass and the sea-quark mass.

Next, we compare the scalar functions for the quenched and dynamical propaga-
tors on a fine lattice. For a given bare mass, the running mass depends upon both the
number of dynamical quark flavors and their masses. To make the most appropriate
comparison we select a bare quark mass for the quenched case (*:27.1 MeV) and
interpolate the dynamical mass function so that it agrees with the quenched result
at the renormalization point, Q : 3 GeV. The results are shown in Fig. 6.6. The
necessary bare quark mass, m : 30.5 MeV, is a little higher for the dynamical case.
Unfortunately we have only two sets of dynamical data to interpolate.

On the fine lattice also, the dynamical case does not differ greatly from the
quenched case as we have seen on the coarse lattice. However, the effects of sea-
quarks are clearly visible in the case of mass function. Dynamical mass generation
is suppressed, in the infrared due to the presence of the sea-quarks. In the case
of renormalization functions, there is not much discernable difference between the
quenched and unquenched cases.

6.2.1 Sea-quark mass dependence on quark propaga-
tor

In Figs. 6.7 and 6.8 we instead hold the valence quark mass fixed and vary the sea
quark mass. The top figures in both cases corresponds to the light sea-quark and
seem to be noisier in each case. In this case our valence quark mass is the lightest
(*:14.0 MeV). The bottom one in both figures are clean where we used the
heavier valence quark mass (rn: 135.6 MeV). This also shows us that lighter quark
masses are harder to simulate on the lattice. Clearly the dependence oveï this small
range of sea, qrrark masses is weak. Llnfortunately we only have two dynamical sets
to compare, and for the lightest valence quark the data are relatively noisy.

We have presented the first results for the gluon and quark propagator on a fine
lattice in which the effects of 2-f l dynamical quark flavors are taken into account.
We have studied and analysed the gluon and quark propagator on a fine lattice with
and with out the effect of dynamical sea-quarks. The comparison of quenched and
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6.2. Fine lattice quark propagator
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6.2. Fine lattice quark tor
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6.2. Fine lattice quark propagator

full QCD results for gluon propagator on the fine lattice is the same as the result

we have seen from the coarse lattice. But we could not see as clearly the effect of

sea-quark mass dependence on the fine lattice gluon propagator compared to the

coarse lattice one. This may be due to the finer lattice being somewhat noisier.

Moreover our range of dynamical sea-quarks is limited (2 set of masses) on a fine

lattice compared to the coarse lattice calculation (4 set of masses). The results

obtained for the AsTad quark propagator on a fine lattice are consistent with those

from a coarse lattice. The qualitative effects of dynamical sea-quarks are the same

in both cases.
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7

Scaling behavior of the quark and
gluon Þropagator in full QCD

7.1 Scaling behavior of the quark propagator

We study the scaling behavior of the quark propagator on two lattices with similar

physical volume in Landau gauge with 2 + 1 flavors of dynamical quarks in order

to test whether we are close to the continuum limit for these lattices, We use con-

figurations generated with an improved staggered ("AsqTad") action by the MILC

collaboration. The calculations are performed on 283 x 96 lattices with lattice spac-

ing ø : 0.09 fm and on 203 x 64 lattices with lattice spacing a : 0.12 flm. We

calculate the quark mass function, M(q2), and the wave-function renormalization

function, Z(q'), for a variety of bare quark masses. Comparing the behavior of these

functions on the two sets of lattices we find that both Z(q') and M(q2) show little
sensitivity to the ultraviolet cutoff suggesting that we are close to the continuum

limit for these lattices.

In this study we focus on the Landau gauge quark propagator in full QCD, and

extend our previous work [B+05] to a finer lattice with lattice spacing ¿ : 0.09

fm [A+04a] but similar physical volume in order to test whether we are close to the

continuum limit for these lattices. The scaling behavior of the momentum space

quark propagator is examined by comparing the results on these two lattices. Our

results show that there are no significant differences in the wave-function renormal-

ization function and quark mass function on the two sets of lattices. Therefore the

scaling behavior is good already at the coarser lattice spacing of a:0.12 fm.

The configurations we use in this study were generated by the MILC collab-

oration [A+04a, BO01] and are available from the Gauge Connection [GC]. The

dynamical configurations have two degenerate light fermions for the u and d quarks

and a heavier one for the strange quark. Weighting for the fermion determinants

is provided by the so-called, "fourth root trick." While the current numerical re-

sults [Dur05] provide compelling evidence that the fourth root trick gives an ac-

curate estimate of the dynamical fermion weight, the formal issue of proving that

this provides the determinant of a local fermion action from first principles remains

unresolved.

The "Coarse" lattice spacing a : 0.t25 fm and a wide range of sea-quark masses,

with lowest up and down quark mass rn - 16 MeV about 3 times the physical value.

The "fine" lattice spacing ø : 0.09 fm and the lowest bare quark mass of m: I4'0
MeV about 5 times the physical value. These two lattices have simliar volume

> (2.5fm)s [A+05].
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7.1. Scaling behavior of the quark propagator

Table 7.1: Lattice parameters used in this study. The dynamical configurations
each have two degenerate light quarks (up/down) and a heavier quark (strange).
The light bare quark masses for the 283 x 96 lattice are 14.0 MeV and 27.1 MeV
with a strange quark mass of 67.8 MeV. For the 203 x 64 lattice the bare quark
llässes r'ä,Irge frorn 15.7 MeV to 78.9 NIeV. The lattice spacing is a - U.12 tm t'or
the 203 x 64 latticc and a - 0.0g fm [A+Oaa] for the 283 x g6 lattice.

Dimensions B Bare Quark Mass f Config0,

1 283x96
2 283 x96

0.086 fm
0.086 fm

7.09

7.77
108

110

14.0 MeV, 67.8 MeV
27.l MeY, 67.8 MeV

3 203x64
4 203x64
5 203x64
6 203x64

0.121 fm
0.121 fm
0.120 fm
0.119 fm

6.76

6.79

6.81

6.83

15.7 MeV, 78.9 MeV
31.5 MeV, 78.9 MeV
47.3 MeV, 78.9 MeV
63.1 MeV, 78.9 MeV

203

249

268

318

7.1 .1 Details of the calculation
The MILC configurations were generated with the O("') one-loop Symanzik-improved
Lüscher Weisz gauge action [L\ /S5]. The dynamical configurations use the AsqTad
quark action [Lep99], an O(a2) Symanzik-improved staggered fermion action which
removes lattice artifacts up to order a2 92. The AsqTad action is a good candidate
for a fermion action to be used in dynamical simulations [KO99]. The study of the
AsqTad action also shows highly improved chiral symmetry.

We refer to the ¿:0.09 fm lattice as the "fine" lattice and the a:0.72 fm one
as the "coarse" lattice.

we explore two light quark masses, nùo, :0.0002 (* : 14.0 Mev) and. ma :
0.0724 (* : 27.1 MeV). The bare strange quark mass was fixed at rrLcr, :0.031,
or m : 67.8 Mev for a : 0.09 fm. The values of the coupling and the bare
light quark masses are matched such that the lattice spacing is held constant, The
simulation parameters are summarized in Table 7.1 with the lattice spacings taken
from [A+0aa].

7.1 .2 Heavy and light quark scaling behav¡or
Here we work on two lattices with different lattice spacing but similar physical
volume. We compare the wave-function renormalization function Z(q') and mass
function M(q') for two lattices with different lattice spacing ø in full lattice QCD.

In Fig. 7.7, we show the quark propagator from the fine lattice for full QCD
(light sea-quark mass and valence quark mass equal) with the light quark mass set
to rn : 27.l MeV. This is compared with data from the coarse lattice by a simple
linear interpolation from the four different data sets so the running masses are the
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7.1. Scaling behavior of the quark propagator
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7.1. Scalin behavior of the quark propagator
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7.2. Scaling behavior of the gluon propagator
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Fig. 7.3: The scaling behavior of gluon propagator dressing function renormalized

at p - 4 GeV for the quenched case. Triangles corresponds to gluon propagator of

283 x 96 lattice. The open circles is the gluon propagator data from 203 x 64 lattice.

Good scaling is observed.

same at Q2 : 3.0 GeV. Good scaling is observed. The wave function renormalization

function also shows good scaling behavior. Bare masses are obtained by matching

M(q') at renormalization point of q - 3.0 GeV.

Fig. 7.2 repeats this for the lighter sea quark, m : 1-4.0 MeV. In this case the

bare quark masses are lighter, so we are close to chiral limit. The quark propagators

are in excellent agreement, showing no dependence on the lattice spacing. Our

calculation scaling well suggesting that \rye are close to the continuum limit.

7.2 Scaling behavior of the gluon propagator

In this study we focus on Landau gauge gluon propagator in full QCD, and ex-

tend our previous work [BHL+O+a] to a finer lattice with lattice spacing ø : 0.09

fm [A+04b] and similar physical volume, and study the scaling behavior of the mo-

mentum space gluon propagator by comparing the results on these two lattices. The

improved computational resources currently available makes this big lattice size sim-

ulations possible for gluon propagator. There have been few studies of the scaling

behavior of gluon propagator [AdFFO2a]. The renormalised propagator should be-

come independent of lattice spacing as we approach the continuum limit [WilgS].
We can see this expected result in our study of scaling behavior of the renormalised
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7.2. behavior of the gluon propagator
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Fig. 7.4: The scaling behavior of the renormalized propagator in full QCD al ¡,r, 
: 4

GeV. Triangles corresponds to gluon dressing function from 283 x 96 with lattice
spacing ø : 0.09 fm for quark mass rn : 27.0 MeV. The open circles is the data
from 203 x 64 with lattice spacing a:0.725 fm for quark mass rn :22.7 MeV which
is matched value calculated from the interpolated data for a set of quark masses. A
small violation is seen in the large momentum region.

propagator for the quenched case in Fig. 7.3. Here we work on two lattices with
different lattice spacings and similar physical volumes. 150 configurations are used
for 283 x 96 lattice with lattice spacing a :0.09 fm and 192 configurations are used
for 203 x 64 lattice with lattice spacing a:0.125 fm. The propagator is renormalised
at LL - 4 GeV. These two sets of data almost lie on the same curve again indicating
that good scaling is found for the quenched results.

7.2.1 Heavy and light quark scaling behavior
We now turn to a study of the scaling behavior of the renormalised propagator in
full QCD for both lattices. In Fig. 7.4, we are making a comparison fbr results from
283 x 96 lattice for light bare quark mass 7r¿ : 27.0 MeV and that from 203 x 64
lattice with the matched bare qrta,rk mass rn : 22.7 MeV which was obtained fom
our previous calculation [P+06b] after interpolating four set of light quark masses.
The data agree within error bars. Some very small systematic difference at the
highest momenta is suggested, but since this is where the discretiza|ion errors will
be greatest it is not at all surprising.

We also repeated this full QCD scaling by choosing lighter light quark mass
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7.2. Scaling behavior of the gluon propagator
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7.2. Scaling behavior of the gluon propagator

m : 14.0 MeV for finer lattice and for coarse lattice with matched quark mass
m : 17.20 MeV calculated from our previous study which is plotted in Fig. 7.5.
The unquenched result looks the same as in Fig. 7.4with a little violation of scaling
in large momentum region.

In this study we performed a systematic comparison of the AsqTad quark propa-
gator in full QCD for two lattices with different lattice spacing in order to establish
how close these lattices are to the scaling region and hence to the continuum limit.

We compared the two functions Z(q2) and M(q2) on fine and coarse lattices
and found them to be consistent within errors. We can thus deduce that for both
lattices \^/e are close to the scaling region for the quark propagator, which for exam-
ple makes these lattices suitable for future studies attempting to determine quark
masses IBGLMOO].

Our comparitive study of gluon propagator on a fine and coarse lattice shows
good scaling behavior as well. The addition of quark loops has a clear, quantitative
effect on the gluon propagator on the fine lattice in agreement with what is seen
on the coarse lattice. Excellent scaling behavior is observed for the gluon dressing
function both in quenched and unquenched case. Our calculation demonstrates good
scaling for gluon propagator on both lattices in quenched and unquenched QCD.
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B

Violation of positivity

Lattice QCD has enjoyed considerable success in predicting the origin of the masses

of the strongly interacting particles observed in nature. QCD should be able to

predict the bound state spectrum of hadrons built from quarks and gluons, which are

confined permanently within the hadrons. Lattice Landau gauge and other related

gauge fixing methods are known to violate spectral positivity [4004]. Gauge fixing

is an important technique in studying confinement for lattice studies. As we have

seen from previous chapters, the gluon propagator is a gauge dependent quantity'

It has been known that non-abelian gauge field propagators show a violation of

spectral positivity,
The gluon propagator is the most basic quantity of QCD. There has been con-

siderable interest in the study of the behavior of gluon propagator. The infrared

behavior is an excellent probe into the mechanism of confinement [Man99] and as

input for many other calculations. The ultraviolet bahavior has been used to calcu-

late the running coupling constant of QCD [B+99]. The gluon propagator is gauge

dependent and one needs to fix the gauge to do lattice calculations. Landau gauge

is the simplest covariant gauge to implement efficiently on the lattice. It will be

interesting to repeat this calculation for the Gribov-copy free Laplacian gauge, but

that will be left for a future study.

The infrared behavior of the Green's functions is related to confinement as sup-

ported by the studies done in Refs. [LRG02, GLR04]. A detailed non-perturbative

study of the gluon propagator is essential to understand the phenomena of confine-

ment. As gluons control the inter-quark dynamics, we expect that gluon propagators

will manifest confining behavior in the small momentum region. There has been

considerable interest in the possible violation of spectral positivity for QCD and its

relation to confinement. The Landau gauge gluon propagator is predicted to vanish

aL zero momentum lZwa9|,Zwa94l. This implies that the real space propagator

violates reflection positivity. There are earlier indications of the non-positivity of

the gluon spectral density from the two sources of non-perturbative results, lattice

simulations [FNOa] as well as from the DSE studies [AvS01].

Correlation functions play an important role in non-perturbative studies of the

gluon propagator and confinement. One possible manifestation of confinement is

that the correlation functions are given by entire functions in the momentum space'
,i.e., no singularities are present in any region of the complex p2-plane of the 2-point

correlation functions.

We perform studies of the positivity of the gluon spectral function in Landau

gauge in quenched QCD as well as in full QCD. We find a violation of spectral

positivity for the gluon propagator in both cases. The positivity test also shows

good scaling on our comparison of the real space propagator on two different sets of

lattices with different lattice spacing. 
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8.1. The covariant description of confinement

8.1 The covar¡ant description of confinement
Covariant quantum theories of gauge fields require indefinite metric spaces [vSA00].
This implies that apart from positivity, most other properties of a local quantum
field theory, a,nd most ìmportant properties of Green's functions and amplitudes,
remain valid in such a formulation [AvS01]. In QCD, colored states are expected to
exist in the indefinite metric space of asymptotic states.

We know from perturbation theory that covariant gauges contain states of neg-
ative norm. Ignoring the positivity of the representation space implies some mod-
ifications to the standard framework of quantum field theory. These modifications
to the standard framework of quantum field theory are necessary to accomodate
confinemeni in QCD.

8.2 Gluon conf¡nement and positivity

We have seen from Chapter 2 that Wightman functions contain important informa-
tions and from them the Hilbert space can be constructed (recall the reconstruction
theorem). Wightman used positive energy to formulate analytic continuation of
expectation of Minkowski field theories to Euclidean space. The reconstruction of
Garding-Wightman quantum field theory from the corresponding Euclidean Greens
function is possible if and only if they obey the Euclidean Osterwalder-Schrader
axioms [TCM05]. Among the axioms, a fundamental role is played by the axiom of
reflection positivity which is a requirement for establishing the Euclidean counter-
part to the positive definiteness of the norm in the Hilbert space of the corresponding
Garding-Wightman quantum field theory, This positivity condition involves the ar-
bitrary partial sums of the n-point correlatio_n function [AvS01]. This axiom for the
special case of 2-point correlation function D(r - y), rs

darday f. (-rs, æ)ñ@ - ù Í ?ao, a) > o, (s 1)

where f (-*0, æ) is a fast decreasing complex test function, a so-called Schwartz func-
tion and /* is its complex conjugate. For more details see section 5.3.4 of [AvS01].
This is the necessary and sufficient condition for the existence of Katten- Lehmann. ^=representation of D(*-A),'i.e., a spectral representation of the propagator with pos-
itive spectral function. In other words this condition is necessa,ry for interpreting
the fields in terms of stable particles. Thus, a violation of Eq. (8.1) implies that the
Euclidean 2-point function cannot represent the correlation of a physical particle,
This can be viewed as one manifestation of confinement.

The connection between positivity and the Euclidean correlation function is spec-
ified clearly in [A+97]. The spectral representation for the Euclidean propagator
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8.2. Gluon confinement and positivity

D(p) \n momentum space can be written as

The Fourier transform is

D(p') : o(p],F') : T orlo) ,, where p" : p3 + F'
J I' -Tù
0

p2*s,

(s 2)

(8.3)

(8 4)

(s.5)

D(t,F\ : I #o(p\,F\ "o,o'

"i dro 
?_ooot . _ | 

"-,r. with ø :
I 2r pf;+u2 2u"

-oo

Inserting Eq. (8.2) in the Fourier transform of the Euclidean propagator (Eq. (8.3))'

and making use of the fact that

we can then obtain
oo

D(t,i2): ds p(s)
1

2u
-ut

0

Since s : L,)2 - F', it follows that ds : 2udu. Substituting for s and ds in Eq. (8'5)'

we find
oo

D(t,F\ : t d,u p(u2 - pl e--'t (8 6)\/¡rJ

t/F
For a positive spectral function we have by definition, p(s) ) 0 and hence we see

that D(t,F") >_ 0 from which Eq. (S.1) readily follows and vice versa. Thus the

statement of reflection positivity is equivalent to a positive spectral density p(s).

This implies that the temporal correlator at zero spatial momentum D(t,P : 0) can

be written as

oo

C(t): D(t,O): du p(u2) e-'t

The behavior of D(t,p:0) provides direct insight into mass-like properties associ-

ated with the fields. A positive density p(r') clearly implies that

c(ú) > o. (s.8)

Having C(t) > 0 for all f does not guarantee the positivity of p@2) [CMT05]. On

the other hand, finding C(t) < 0 for some value of f implies that p(r') can not be

positive for all ø2 suggesting confinement for the corresponding particle.
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8.3. Violation of reflection positivity

It is obvious from Eq. (s.2) that for a free particle of mass rn, one has

P(s) :6(s-m2)

and hence from Eq. (8.5), we obtain

1

2w
C(t¡: D(t,O) : ds d(s - ^')

ut

(8 e)

0

oo

1

2r"2ud,u utt
ls=m2

(8.10)

0

1

-e
-mt

n'L

It is easy to see from Eq. (S.10), that the Schwinger function decays exponentially

C(t)^e-*t' (8'11)

and is positive definite. Therefore a free propagator satisfies reflection positivitv.

8.3 Violation of reflection positivity
An infrared suppressed propagator always violates reflection positivity [AvS01]. This
follows from Eq. (8.2), where we observe that the only way of inducing a decrease
of D(p2) with decreasing p2 is by having p(s) take negative values for some range of
s. Indeed, we will see numerical evidence for this simple observation in this study.
The positivity violation in the spectral function of the propagator leads to the color
confinement of degrees of freedom. If a certain degree of freedom has negative norm
contributions in its propagator, it can not describe a physical asymptotic state.
Therefore negative norm contributions to the spectral function signal the absence of
asymptotic states from the physical part of the state space of QCD and is a sufficient
condition for the confinement.

On the lattice , the real spâce propagator can be evaluated using the discrete
Fourier transform

r N-1

c(t¡: if "-2nikotlN 
D(po,o), (s.12)

ko:t-l

where l/ is the number of points per lattice side, p6 is the Euclidean time component
of the lattice momentum, k¡ is an integer and D(p6) is the propagator in momentum
space.

When a real space propagator C(t) (Schwinger function) becomes negative, re-
flection positivity becomes violated, which means that gluon is confined and no
more a physical particle. Such a violation of positivity is considered as a sufficient
condition of confinement [FN04].
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8.4. The results

8.4 The results

The MILC configurations were generated with the O("') one-loop Symanzik im-

proved [Sym83] Lüscher Weisz gauge action [LW85]. \Me use configurations gen-

erated by MILC collaboration available from the Gauge Connection [GC]. The

dynamical configurations use the "AsqTad" quark action, an O(a2) Symanzik im-

proved staggered fermion action. The coupling B and the bare sea-quark masses are

matched such that the lattice spacing is held constant. The lattices we considered

all have the similar physical volumes. The parameters are summarized in Table 7'1.

8.4,1 Evidence for violation of positivity

It has been demonstrated in quenched QCD that the gluon propagator violates

spectral positivity [4003]. The explicit evidence for the non-positivity of the real

space lattice Landau gauge propagator in three-dimensional pure SU(2) case is

found in [CMT05]. We investigate the positivity violation case in full QCD on a

fine lattice. First we give the result for the 203 x 64 lattice for both quenched and

unquenched case. In Fig. 8.1, the real space propagator C(t) for 203 x 64 lattice
plotted as a function of dimensionful ú for a set of sea quark masses in unquenched

case and quenched case. It is clear that positivity is convincingly violated in both

cases.

In Fig.8.2, the real space propagator C(t) for the 283 x 96 lattice is plotted as

a function of dimensionful t for a set of sea quark masses in full QCD and in the

quenched case. It shows that the real space propagator C(t) is negative for a range

of values of ú, showing a violation in positivity'

Next, we aim to study the analytic structure of the gluon propagator in the time

like momentum by taking the absolute value of the Schwinger function in unquenched

QCD. This is the first result for positivity violation for the gluon propagator with
the effect of dynamical fermions. Compelling evidence for the non-positivity of the

gluon propagator has been presented in the SU(2) case and in the three-dimensional

Yang-Milts theory [LRG02,CMT03]. In Fig. 8,3, we are doing a comparison study

of the absolute value of the Schwinger function from our full and quenched QCD
simulations with the numerical results from DSE calculations. It is clear from the

figure that the zero crossing occurs al t x 5 GeV-1 = 1 fm. This is roughly the

size of the hadron and hence the correct scale at which the gluon screening should

occur. As our bare quark mass is the heaviest rn : 63.0 MeV, our zero crossing

slightty deviates from ú = 5 GeV-1 which is in accord with the l/¡ : 0 result from

the DSE calculation. The result is consistent, as the bare quark mass increases, the

result will move towards the quenched case. The comparison of the quenched result

(l/¡ : 0) shows similar behavior.
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8.4. The results
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Fig. 8.1: The real space propagator C(t) for 203 x 64 lattice plotted as a function
of dimensionful ú for two bare light sea quark masses in unquenched and quenched
cases, It is clear from the plot that positivity is violated in both cases.
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8.4. The results
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Fig. 8.2: The real space propagator C(t) for 283 x 96 lattice plotted as a function

of dimensionful ú for two bare light sea quark masses in unquenched and quenched

cases. It is clear from the plot that C(t) is negative for a range of values of Ú.
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8.4. The results
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function from our fine lattice calculations in quenched QCD as well as in full QCD.
The bare quark masses for full QCD simulations are nù: 63.0 MeV and m : 16.0
MeV respectively. The bottom figure shows the numerical results for the absolute
value of the Schwinger function from the DSE result compared to the fits in the
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Fig. 8.4: The scaling behavior of the real space propagator C(t) as a function of

dimensionful f for two set of lattices in the quenched case. Tliangles correspond to

20s x 64lattice while open circles correspond to 283 x 96 lattice. It is clear that C(f )
is negative for medium and large values of ú and violates positivity. Good scaling is

observed for the quenched case.

8.4.2 Scaling violation in positivity

We now turn to study the scaling behavior of the real space Landau gauge gluon

propagator. We have calculated the real spâ,ce propagator on a fine and coarse

Iattices and thereby analysed a scaling of violation in positivity of both cases. In
Fig. 8.4, we studied the real space propagator C(t) as a function of dimensionful f
for two set of lattices in quenched case. Tliangles corresponds to 203 x 64 lattice
while open circles corresponds to 283 x 96 lattice. It is clear that C(t) is negative for

medium and large values of ú and violates positivity. Good scaling is observed for

the quenched case. In Fig. 8.5, the unquenched real space propagator from both

lattices plotted as a function of dimensionful ú. A reflection positivity violation has

already been observed in the unquenched gluon propagator [FN05]. Our unquenched

lattice simulation result for both lattices also agree as seen in Fig. 8.5. The filled

triangles correspond to C(t) for light quark mass ?7¿ :27.7 MeV from the 283 x 96

lattice. The open circles correspond to C(t) data obtained by interpolating four sets

of light quark masses from the 203 x 64 lattice by matching the mass function on

tL7

0.0

A

o

quenched -2}sx64
quenched--2Bsx96

v

4

a

4ö

f
9
T
I õ

Þ

4

6o4g6ocÇF4Ðoeæõéot ÞÞ0



8.4. The results

-1H
|i

'l r

+)
b

1.0

0.8

0.6

0.4

0.0

-0.2 012345
ú (fm)

Fig.8.5: The unquenched real space propagator C(t) from both lattices plotted as
a function of dimensionful t. The filled triangles correspond to C(t) for the light
quark mass rn : 27.1 MeV from the 283 x 96 lattice. The open circles correspond
to C(t) data obtained by interpolating four sets of light quark masses from the
203 x 64 lattice by matching the mass function on two lattices at q : 4 GeV which
was calculated in Ref. [P+06b]. Good scaling is observed for full QCD as it was for
the quenched case.
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Fig. 8.6: This figure is same as Fig 8.5 except that here the light bare quark mass

is m : 14.0 MeV for 283 x 96 lattice. While very small scaling violtions may be

inferred, the scaling is on the whole very good.
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8.4. The results

two lattices at q : 4 GeV which was calculated in Ref. [P+06b] \À,le also studied the
scaling behavior of the real space propagator in the unquenched case for the lightest
bare sea quark mass for the 283 x 96 lattice which is m:14.0 MeV, (see Fig. 8.6).

So in summary) we have seen good scaling for the real space propagator. The
violation of positivity of the gluon propagator has been investigated bv calculating
and analyzing the real space propagator both in quenched and unquenched cases.
The Landau gauge gluon propagator displays positivity violation, Our results signal
a strong violation of reflection positivity for the gluon propagator both in quenched
and full QCD. We have also calculated the real space propagator on a fine and coarse
lattice to verify whether the non-positivity behavior of the real space propagator is
scaling approximately. We have found resonable scaling in the reflection positivity
violation of the real space propagator.
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I
Conclusions

Quantum Chromodynamics (QCD) provides the framework for the understand-

ing of the strong interactions. To date it has provided a very successful theory

which has been tested by confronting experiment in both the perturbative and non-

perturbative regimes. The ultimate aim of lattice QCD simulations is to numerically

resolve the dynamics of quarks and gluons inside the nucleon and to either verify or

disprove that QCD is indeed the fundamental theory of the strong interactions.

The gluon dynamics clearly depends on the sea-quarks. Most numerical simula-

tions in the past have been done in "quenched approximation," where the determi-

nant is simply replaced by one. To study the effect of all fermion loops, we have done

simulations in "full QCD," where the sea-quark masses and valence quark masses

are equal.

Full QCD simulation is the current critical task of lattice QCD. Simulating with
dynamical sea-quarks enables us for the first time, to study hadron physics based on

the principles of QCD without any approximation. Up to now most intensive studies

have been done in the quenched approximation. Moreover, quenched approximation

is one of the main sources of systematic uncertanties in lattice calculation.

It has been a long standing goal to perform non-perturbative simulations in full

QCD. We have used configurations generated by the MILC collaboration and avail-

able from the "NERSC Gauge Connection" to achieve this goal. The development

in recent years of an improved staggered fermion formulation has made full QCD
lattice simulations possible. Employing an improved staggered formalism, the so-

called "AsqTad" fermions, simulations with the light u and d quarks, taken to be of

equal mass, as light as $ of the physical strange quark mass have been achieved by

MILC, while the mass of the third quark flavor has been kept close to the strange

quark mass [Hel06].
Unquenched calculations are done with improved staggered quarks. Numerical

simulations of dynamical fermions within the framework of the staggered formalism

are both computationally less expensive and phenomenologically successful. Us-

ing the staggered fermion formulation, vatious collaborations have performed high-

precision lattice QCD calculations that are in excellent agreement with experimen-

tally known measurements. However, this success is clouded by the problematic

issue of the validity of the fourth root trick. Though, Wilson fermions avoids the

theoretical uncertanity involved with the fourth root trick, it demands greater com-

putational cost since the lattice spacing needs to be much finer'

Many non-perturbative studies have been done for the gluon and quark propaga-

tor in quenched QCD. However, for technical and computational reasons, simulations

with dynamical sea-quarks could not be performed before. We have calculated the

fundamental quantities of QCD with the effects of three light quark flavors. First
we have calculated the gluon propagator with the effect of 2* 1 flavors of dynamical
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sea-quarks using MILC configurations generated with fhe O(a2) one-loop Symanzik
improved [SymS3] Lüscher-Weisz gauge action [LW85]. The dynamical configu-
rations use the "AsqTad" quark action, an O(a2) Symanzik improved staggered
fermion action. We performed simulations on a203 x 64 lattice with lattice spacing
a : 0.125 fm with lighter up, down and strange quark masses. For a comparitive
study of quenched and unquenched gluon propagators, we also computed the gluon
propagator in quenched QCD as well. The unquenching effect on the gluon prop-
agator is clearly visible. We found compelling evidence that adding fermion loops
slightly supresses the non-perturbative effects of the gluon loops. The screening of
dynamical sea quarks brings the 2 * 1 flavor results significantly closer to the tree-
Ievel form. We also studied the sea-quark mass dependence of the Landau gauge
gluon propagator by analysing the gluon dressing function for the lightest and for
the heaviest u and d quark masses in our set. These correspond to bare light-quark
masses of - 16 MeV and - 63 MeV respectively; a factor of four difference. The
bare strange-quark mass is the same in both cases (- 79 MeV). We found that as
the sea-quark mass increases, the result moves toward the quenched result which is
expected.

The effects of dynamical sea-quarks were also studied on the quark propagator.
We have calculated the quark propagator in momentum space using the AsqTad im-
proved lattice fermion action which removes tree-level lattice artifacts to order (a2),
in quenched, partially quenched and unquenched QCD. We have seen that the Asq-
Tad action provides the quark propagator with an improved rotational symmetry.
We have calculated the wave-function renormalization function and mass function
for a variety of sea-quark masses for both quenched and unquenched QCD. We also
have compared the scalar functions for the quenched and dynamical propagators.
For a given bare mass, the running mass depends upon both the number of dynam-
ical quark flavors and their masses. To make the most appropriate comparison) we
have selected a bare quark mass for the quenched case (ma :0.01) and interpolated
it with the dynamical mass function so that it agrees with the quenched result at
the renormalization point, Q : 3 GeV. We have found that the mass functions do
reveal the effects of dynamical quarks, Dynamical mass generation is suppressed,
in the infrared, in the presence of dynamical quarks relative to that observed in the
quenched case. For the renormalization functions, there is no discernible difference
between the quenched and unquenched cases. As for the gluon, the presence of dy-
namical quark loops has the effect of moving the mass function closer to its tree-level
form.

Our QCD simulations with 2 + 7 fl.avors of quarks clearly indicate the effects of
dynamical quarks on the gluon and quark propagators. Our studies indicatc that thc
effect of dynamical sea-quarks is greater on the gluon propagator than on the quark
propagator. We have found compelling evidence for the effect of dynamical chiral
symmetry breaking in the mass function. The scaling behavior of the AsqTad quark
propagator has also been studied by extending the calculation to a finer lattice with
lattice spacing a : 0.09 fm. We have also compared the mass function and wave-

722



renormalization function on two lattices with similar physical volume, with different

lattice spacing a, with and without the effects of dynamical sea-quarks, The quark

propagator from the fine lattice for full QCD (light sea-quark mass and valence quark

mass equal) with the light quark mass set to m:27.1 MeV, is compared with data

from the coarse lattice by a simple linear interpolation from the four different data

sets, so the running masses are the same at q2 : 3'0 GeV' Good scaling is observed'

The wave function renormalization function also shows good scaling behavior. Bare

masses are obtained by matching M (q') at renormalization point of q - 3'0 GeV. We

found that the quark propagators are in excellent agreement, showing no discernbile

dependence on the lattice spacing.

The statement that quarks and gluons are confined is an observational one, in

that, to date no free quarks and gluons have ever been seen. The development of a

detailed understanding of the confinement of quarks and gluons in QCD is a difficult
problem, We have addressed the gluon confinement problem in this thesis by testing

the positivity violation of the gluon propagator. We have demonstrated that the

gluon propagator obtained from both quenched and unquenched lattices violates

the Osterwalder-Schrader reflection positivity, which we can regard as a signal for

confinement.

Quark and gluon propagators are two of the three non-perturbative quantities

used as an input of DSE quark propagator calculation. One of the major goals

of lattice QCD is the calculation of hadron masses from first principles. We have

presented the first results for the quark propagator on a fine lattice with the AsqTad

action. Our results for the quark propagator on a coarser lattice have recently

been confirmed by [FN06]. We compared mass and wave-functions renormalization

function on a fine and coarse lattice in which the effects of 2 -l1 dynamical quark

flavors are taken into account. We find that Z(q') and M(q2) agree on both lattices

indicating good scaling behavior for ø ( 0.125 fm. A scaling behavior study for

gluon propagator is also performed on these lattices in a similar \May. They are also

in good agreement.
We would like to extend the study of quark and gluon propagator to a wider

range of dynamical masses to study both the chiral limit and the transition to the

quenched limit. In future, studying the quarks and their confinement by extending

the present framework will be interesting. A study of the ghost propagator on fine

lattice in unquenched QCD is currently underway'
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A

Notations and conventions

Throughout this thesis, I use the natural units ñ : c : 1 where ñ, : hl2tr with h,

the Planck constant and c the velocity of light. Energies and masses are given in
GeV where 1 GeV : !.602 x 10-7J. It is convenient to note that

1rm: -&=- (A1)
0.197328 GeV

Our metric in Minkowski space {r' , P: 0, 1,2,3} is given by

gþ' : (A 2)

1

with
goo : +1 : gtt: g": g33 : _I, otherwise:0. (A'3)

The contravariant vectors of space-time coordinate and energy-momentum are given

by
nP - (ct,r), PP: (Elr,P), (4.4)

where I and r are the time and space coordinate respectively and E and p àre

the energy and momentum. Bold-faced symbols here represent three dimensional

vectors. The contravariant vectors are

ï p. : ll ¡rvlxu 
: (ct, _r)

pt": gprP' : (Elc,-n). 
(A 5)

The contravariant vector of space and time differentiation is defined as

ap
a

- ðr,
(A 6)

with V the gradient operation in three dimensional space

A.1 Dirac matrices
The Dirac gamma matrix 7p, with þ : 0, ' ' ' ,3 in Minkowski space satisfies the

anticommutation relations

{'Y',1'}-2g", ^l2s:! (A'7)

The matrix J5 is defined by
'yu : i,'yo1t"y''yt (A s)
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4.1. Dirac matrices

and anticommutes with all 7ø;

{'ys,^tq} :0. (A 9)

We use chiral basis for representation of the gamma matrices in this thesis. The
Minkowski-space matrices are given by

0

0

-1
0

0

The Wick rotation

t -+ -'ir, (A.10)

transforms vectors from Minkowski-space to Euclidean space with the metric given
by the Kronecker symbol ôr,:

forp": v
forp, f u.

(A.11)

and the Euclidean Dirac gamma matrices are chosen to be Hermitean, and are simply
denoted AV ú 0t -- 7,2,3,4), have the properties

bt,lf} :26¡,,. (4.12)

The Euclidean J5 matrix can be written as

Ê : _f ÊÊÊ (A.13)

The connection between the Dirac matrices in Euclidean and Minkowski space is

1,2,3 Minkowski (A.14)

^,Euclidean ^'-.4 Minkowski 
- - .0 Minkowski

14 I"l --'y

":(+ j, Ï ï)
0

1

0

0

-1
0

0

0

0

0

0

-f
0

0

0

-1

t:(:
0 00-i\
0 0 i 0l
0 i 0 01,
-i o o o)
1 0 0 0\
010 0l
00-1 0l
-i o o 4)

tt: (

1

0

0

0

n":{å

^,Euclidean17,2,3 z'Y

L26

(A.15)



A.2. Lattice notations

The Euclidean Dirac gamma matrices are then given by

00
00
0-i
-i0

0

0

0

0

-1
0

loo1
,': f 1 3 3

\o1o
/oo

',' : 13 -0,\ro
/t o

-5 f o 1

'-[:,8

il
01

0

i
0

0

L

0

0

0

0i0
0 0-i
000
-i 0 0

1

A.2 Lattice notations
Vectors in the discrete space of the lattice theory are always denoted by r. Unit
vectors are written as p with ¡; - 1, ' ' ' ,4. and the lattice spacing, ø, is usually

implicit. If the lattice volume is finite, the lengths Lrin the direction p¿ are denoted

by L, and .L, - Lt : Lz : -L3, where .L¿ is the lattice size in "time" and .L, in

"space" direction. An .L3 x .L¿ lattice is considered to mean an Ls spatial lattice

and, L¿ Euclidean time slices. The spatial volume in lattice units is denoted by

L3 : LtLz-L3. The total number of lattice points is

V : LtLzLsLt. (4,16)

-1 0

0

0

0

0

0

t27





B

G roup-theoretic q uantities

8.1 The U (I) group
The U(1) group is a special case of the SU(¡/) groups. It consists of the group of

complex numbers on the unit circle.

8.2 The SU(¡rr) groups
The SU(,nrI) group consists of elements isomorphic to the l/ x ,¡/ unitary matrices

with unit determinant.
U .UI : (JI .(J , der(J : r (8.1)

The matrices U in Eq. (B.1) form the fundamental representation of the ,Stl(,n/)

group.

8.3 The SU(z) group
The standard choice for the generators of the SU (2) group are Pauli matrices

å)

00
00
10^': (T B) ,

(i

(l1 (l å),
0-i
i0 o3o':( 0

-1
(B 2)

(8.3)

o

These matrices together with the unit matrix,

1- 10
01

form a basis of the complex 2 x 2 matrices.

8.4 The SU(s) group

In this thesis, SU(3) group play an important role. For SU(3), T": \,wilh

j :7,2,3; À4 À5

^': (i i å)

0

0

L À
1

-t/g

1 29



8.4. The ^9U(3) group

The / are totally anti-symmetric, the dob" a dob" are totally symmetric, and the
nonzero elements (up to permutations) are as follows:

7 : ft t :2luz :2fz+a :2fzsr :

We can introduce the matrices Co with elements Cu"": -,iÍoæ= -ifabc

lT",Tul: i t ¡abc7c , lc",c'l: i,l. r"u"c"

and anticommutation relations are

{T",Tu}: )- ¿abc7c+ 1¿".

: -2frca : - 2ftaz 2 
": 

6Lasa

2 feqs

ß"
zlu

1

^ 
: d1¡e : dzzs : dasg : -dsss ,\/ó

-1
2J5: 

d++a : dssa : daaa : dzza ,

1

i: drnu : drcz : dzqz : dzsa: ds¿+: dess : drca - -dszz

For an arbitrary SU(¡/) group, we define the invariants C4, Cp, Tp by

õotC.s: tr c"Cb: t ¡o".' ¡b""' ,

(B 4)

(B 5)

(8.6)

78

cc

one has

6,*cp: (Ð r"r") *:Ðr.rfr,

Tr:!'2

6ouTp : trT"Tb : I f#,Tt,,
k,i

Ct C
N2 -7¡/ F- 2N
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C

Fu nctional derivatives

Some basic results from multivariable calculus has been used in Section 2.3. Recall

the identity

[ ¿"f $"¡(Ð : t, (c'1)
.t

where /i. u vector of real numbers with n components. Consider asituation where

/ is specified in terms of r¿ variables d, s I that ¡ -- íf"¡. We can make a change of

integration variables from / to ø in the following \4/ay,

I o'*u,*,(Ãd)) 1..'(#) l,=o: 
t, (c 2)

where we have inserted the Jacobian determinant for this change of variables' This

is true as long ur i hur one zero within the integration range, or equivalently, if this

change of variables corresponds to a change of basis.

A functional is an application of the space of sufficiently smooth functions, {t(")}
into the complex numbers:

F: f -+ Flf).

We treat functional 
" 

F lf , g, . ' 'l in the same way. We may consider a functional as

a generalization of an ordinary function in the following sense: divide the space of

r values in ly' cells, and let each r¡ lie one in each cell. Then F [/] is the limit for

vanishing cell size of .F.N (f,,''', f), f¡ = f@). The derivative ffi tt

ðF¡u(fr,"' ,

of¡
FN(fr,"',f¡) * €,".) - -PN(/r,,.., f¡,. "): Iim

¿-+0

i,. e. , it may be obtained by shifting r¡ -+ r¿*eô¿¡. so, in the limit, \rye can define [Ynd]

where ô, is the delta function at g: õo@): õ(r - E)' For integral functionals:

Flfl: dr Kp(r) f (r);

aFVl : lim 
Flf + €õal

Aõl@) e+o e

##:Nr(a)
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Taylor series can be generalizes to functional series. If Kn(q, . . . , rn) are symmetric
and we consider the functional

F[/] =s'I r
' la J 

o"t "' drnK,(tt¡"',r")f(*r) "' Í(r*),

we may easily verify that

K'(*r.,"',rn): ==, lF[fl 
''- õÍ(rr),...6f @ò'

Functional integration obeys rules analogous to those of ordinary integration. We
define, for example,

I ndÍ',)Flll= J's" I or, "' dt¡tFw(rt, "', rò'
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Using lattice quantum chromodynamics (QCD) we perform an unquenched calculation of the gluon propa-

gator in Landau gauge. We use confrgurations generated with the AsqTad quark action by the MILC collabo-

ration for the dynamical quarks and compare the gluon propagator of quenched QCD (i.e., the pure Yang-Mills

gluon propagator) with that of 2*1 flavor QCD. The effects of the dynamical quarks are clearly visible and

lead to a significant reduction of the nonperturbative infrared enhancement ¡elative to the quenched case.

DOI: 10.1103/PhysRevD.70.034509 PACS number(s): 12.38.Gc, 11.15'Ha, 12.38.4w, 14.70'Di

I.INTRODUCTION

The gluon propagator, the most basic quantity of QCD'
has been the subject of much calculation and speculation

since the origin of the theory. In particular there has long

been interest in the infrared behavior of the Landau gauge

gluon propagator as a probe into the mechanism of confine-

ment [1]. Some authors have argued it to be infrared finite

[2-4] while others favored it as infrared singular [5,6]. There

is a long history of its study on the lattice, in quenched QCD

l1-I9l and in quenched SU(2) [20,21]. The restriction to

quenched lattice gauge theory calculations has been due to

the lack of sufficient computational resources' The quenched

theory differs from full QCD only in the relative weighting

of the background gauge configurations (due to the fetmion
determinant), but the evaluation of the Green's functions is
otherwise the same. In the quenched approximation the fer-

mion determinant is replaced by unity and this corresponds

to the complete suppression of all quark loops. The removal

of quark loops is equivalent to the limit where all sea-quark

masses are taken to infinity. In this paper, we report the first
results for the gluon propagator from an unquenched lattice

computation.
We study the gluon propagator in Landau gauge using

configurations generated by the MILC collabotation 122]
available from the Gauge Connection [28]. These use

"AsqTad" improved staggered quarks, giving us access to

relatively light sea quarks. We find that the addition of dy-

namical quarks preserves the- qualitative features of the gluon

dressing function SzDklz) in the quenched case-
enhancement for intermediate infrared momenta followed by

suppression in the deep infrared-but produces a clearly vis-

ible effect. A significant suppression of the infrared enhance-

ment with respect to the quenched case is observed. It is

interesting to compare these results to those of a recent

Dyson-Schwinger equation study [23].

II. DETAILS OF THE CALCULATION

The gluon propagator is gauge dependent and we work in
the Landau gauge for ease of comparison with other studies.

It is also the simplest covariant gauge to implement on the

lattice. Landau gauge is a smooth gauge that preserves the

Lorentz invariance of the theory, so it is a popular choice. It
will be interesting to repeat this calculation for the Gribov-
copy free Laplacian gauge, but that will be left for a future

study.
Tie MILC configurations 'were generated with the 0@2)

one-loop Symanzik improved [24] Lüscher-Weisz gauge ac-

tion [25]. The dynamical configurations use the "AsqTad"
quark action, an O(az) Symanzik improved staggered fer-

mion action. B and the bare sea-quark masses are matched

such that the lattice spacing is held constant' The lattices we

consider all have the same dimensions. This means that all

systematics are fixed; the only variable is the addition of
quark loops. The parameters are summarized in Table I. The

lattice spacing is approximately 0.125 fm126l.
In Landau gauge the gluon propagator is entirely trans-

verse. In Euclidean space, in the continuum, the gluon propa-

gator has the tensor structure

n*,G):(u-,-T)o*'r, (r)

and at tree level

^1D(q'): -q'
(2)

TABLE I. Lattice parameters used in this study. The dynamical

confrgurations each have two degenerate light quarks (up/down)

and a heavier quark (strange). In physical units the bare masses

range from - 16 to -79 MeV. The lattice spacing is a
:0.125 fm.

Dimensions P Bare
quark mass

Number of
configurations

I
2

3

4

5

203x64
203x64
203x64
203x64
203x64

8.00

6.76

6.79

6.81

6.83

quenched

0,0r,0.05
0.02, 0.05

0.03, 0.05

0.04, 0.05

1.92

193

249

2t2
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FIG. 1. Gluon dressing function in Landau gauge. Full triangles
correspond to the quenched calculation, while open circles corre-
spond to 2*1 flavor QCD. As the lattice spacing and volume are
the same, the difference between the two results is entirely due to
the presence of quark loops. The renormalization point is at ¡,r:4 GeV. Data have been cylinder cut [16].

With this lattice gauge action the propagator at tree level is

PHYSTCAL REVIEW D 70,034509 (2004)
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FIG. 2. The sea-quark mass dependence of the Landau gauge
gluon propagator dressing function renormalized at p.:4 GeY.
Filled squares conespond to u and d bare masses -63 MeV and
bare s-quark mass :79 MeV. Open circles corespond to the same
strange-quark mass, but with bare u and d masses : 16 MeV. Data
have been cylinder cut [16]. Increasing the sea-quark masses alters
the results in the expected way, i.e., towa¡ds the quenched data.

ITI. SIMULATIONS RESULTS

Lattice studies strongly suggest that the quenched gluon
propagator is infrared finite 114]. As is customary, we will
begin by considering the (necessarily finite) gluon dressing
function, SZD(S\.In Fig. 1 we compare the well-known
quenched dressing function with that for 2-l I flavor QCD.
For the moment we only consider the lightest of our dynami-
cal quarks as we expect that they will show the greatest
difference from the quenched case.

Indeed there is a clear difference between quenched and
dynamical quark behavior in the infrared region. The addi-
tion of quark loops to the gluon propagator softens the infra-
red enhancement without altering its basic features. The
screening of dynamical sea quarks brings the 2*l flavor
results significantly closer to the tree-level form, SzD@z)
-1.

In Fig. 2 we show the gluon dressing function for the
lightest and for the heaviest u and d quark masses in our set.
These correspond to bare lighlquark masses of - 16 MeV
and -63 MeV, respectively; a factor of four difference. The
bare strange-quark mass is the same in both cases
(-79 MeV). The mass dependence of the gluon dressing
function is only just detectable. We expect that increasing the

1.40

1.39

1,36

1.37

1.36

1,35

1.34

1.33

1.32

1,31

I O.O2 0.O3 0.04 0.06 0.06 0.0?n (ceV)

FIG. 3. The renormalized propagator at one momentum point in
the infrared hump of the gluon dressing function (q-1.12 GeV) is
shown here as a function of the bare light-quark mass.

15

Y 10
s

5

05

(3)

where

2¡n.,
(4)

a is the lattice spacing and L* is the length of the lattice in
the ¡"c direction. As explained in Ref. li4], this suggests a
"kinematic" choice of momentum,

2

o-'\ (p p) : )+ {'^,(+)- l,'*('#) J,

ø ¡,@ r)=; sin2
I

+ 
T 

sln'

Pp: oL,'
I L. L'

nt,.\- ) , )

(s)

ensuring that the lattice gluon propagator has the correct
tree-level behavior.

The bare gluon propagator D(q) is related to the renor-
malized propagator D nk ; tt) through

D(q):Zr(p,a)Dn(q;p), (6)

where ¡l is the renormalization point. In a renormalizable
theory such as QCD, renormalized quantities become inde-
pendent of the regularization parameter in the limit where it
is removed. 23 is then defined by some renormalization pre-
scription. We choose the momentum space subtraction
(MOM) scheme where Z3(p.,a) is derermined by imposing
the renormalization condition

Ppa
a

Ppa
2

Þo
o

b
a

(7)

i.e., it takes the tree-level value at the renormalization point.
In the following figures we have chosen þ:4 GeY.

Dp(q)lr,:r,: \,

:-
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FIG. 4. The sea-quark mass dependence of the Landau gauge

gluon propagator renormalized at p':4 GeV. Filled triangles illus-

trate the quenched propagator while fllled squares correspond to

bare up/down masses :63 and bare strange-qua¡k mass - 79 MeV.

Open circles correspond to lighter bare up/down masses :16 MeV

but with the same strange quark mass. Data have been cylinder cut

[16].

sea-quark masses further will interpolate between the curves

in Fig. 1. We see that the gluon propagator changes in the

expected way. As the sea-quark mass increases, the curve

moves toward the quenched result, However, for the range of
bare quark masses studied here the change is relatively small.

This transition would be better studied with heavier sea

quarks.
Another view of the mass dependence of the gluon propa-

gator is provided in Fig. 3. We choose one data point from

the infrared hump (q:1'12 GeV) and plot it for each choice

of bare light-quark mass. Although the variation in the

propagator at this momentum is only 4.57o over the range of
quark masses investigated here, the light sea-quark mass de-

pendence is clearly resolved.
In Fig. 4 we present results for the gluon propagator'

O(q2).The largest effects of unquenching are observed in

the deep infrared. The shape of the curves suggest that pre-

vious results indicating the infrared-finite nature of the

quenched gluon propagator [14] are unchanged upon un-

quenching. The results suggest that the gluon propagator of

QCD is infrared finite. It will be interesting to examine the

behavior of D(0) as a function of volume to elucidate this

aspect of the gluon propagator further.
Finally, in Fig. 5 the light sea-quark mass dependence of

the renormalized gluon propagator is illustrated for a mo-

mentum point in the infrared region. To avoid finite volume

artifacts, the second smallest nontrivial momentum is consid-

ered. Whereas the mass dependence of the propagator for the

masses studied here is at the 4.5Vo level for q:1.12 GeY,
the variance is larger in the infrared region at 67o fot q
:0.31 GeV.

PHYSICAL REVIEW D 70, 034509 (2004)
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FIG. 5. The light sea-quark mass dependence of the renormal-

ized gluon propagator at a momentum point in the infrared region
(s:0.31 GeV).

In a recent Dyson-Schwinger equation (DSE) study

123,271the inclusion of the quark DSE in the gluon DSE was

found to slightly diminish its infrared enhancement.

Osterwalder-Schrader positivity is still violated. Our results

are consistent with the qualitative features of that prediction'

Iv. CONCLUSIONS

The addition of quark loops has a clear, quantitative effect
on the gluon propagator. While its basic structure is qualita-

tively similar there is significant screening of the propagator

in the infrared. As anticipated, the effect is to suppress the

non-Abelian enhancement of the gluon propagator in the

nonperturbative infrared-momentum region. This is relevant

to analytic studies of the gluon propagator and confinement

[23]. Despite the clear difference between the quenched and

dynamical results, we see little dependence on the dynamical
quark mass for the range of available light sea-quark masses'

The dependence that is observed is consistent with expecta-

tions.
Calculations on finer lattices are currently being made,

which will provide more information on the ultraviolet na-

ture of the propagator and provide a test for finite lattice

spacing artifacts. We would like to extend the study to a

wider range of dynamical masses to study both the chiral
limit and the transition to the quenched limit' Finally,

a study of the volume dependence of the propagator will
provide valuable insights into the nature of the propagator at

qz:0.
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'We present an unquenched calculation of the quark propagator in Landau gauge with 2* 1 flavors of
dynamical quarks. We use configurations generated with an improved staggered ("Asqtad") action by the

MILC Collaboration. This quark action has been seen to have excellent rotational symmetry and scaling

properties in the quenched quark propagator. Quenched and dynamical calculations are performed on a

203 x 64lattice with a nominal lattice spacing of a : 0. 125 fm. The matched quenched and dynamical

lattices allow us to investigate the relatively subtle sea-quark effects, and even in the quenched case the

physical volume of these lattices gives access to lower momenta than our previous study. We calculate the

quark mass function and renormalization function for a variety of valence and sea-quark masses.

DOI: 10.1103ÆhysRevD.7l.054507 PACS numbers: 12.38.Gc, 11.15.Ha, 12.38.4w, 14.65.-q

I. INTRODUCTION

Quantum chromodynamics is widely accepted as the

correct theory of the strong interactions and the quark
propagator is its most basic quantity. In the low momentum
region it exhibits dynamical chiral symmetry breaking
(which cannot be derived from perturbation theory) and

at high momentum it can be used to extract the running
quark mass [1]. In lattice QCD, quark propagators are tied
together to calculate hadron masses and other properties'
Lattice gauge theory provides a way to calculate the quark
propagator directly, providing access to quantities such as

operator product expansion (OPE) condensates [2]. In turn,
such a calculation can provide technical insight into lattice
gauge theory simulations.

The systematic study of the quark propagator on the

lattice has also provided fruitful interaction with other

approaches to hadron physics, such as instanton phenome-

nology [3], chiral quark models [4] and Dyson-Schwinger
equation (DSE) studies [5,6]. The lattice is a first principles
approach and has provided valuable constraints for model
builders. In turn, such alternative methods can provide
feedback on regions that are difficult to access directly
on the lattice, such as the deep infrared and chiral limits.

The quark propagator has previously been studied using

Clover [7,8], staggered [9,10], and Overlap Lll,l2l actions.

For a review, see Ref. [13]. All of these actions have

different systematic errors and the combination of these

studies has given us an excellent handle on the possible

lattice artifacts. In every case, however, they have been

performed in the quenched approximation and have been

restricted to modest physical volumes.
In this paper we report first results for the quark

propagator including dynamical quark effects. We use

configurations generated by the MILC Collaboration Ii4]
available from the gauge connection [15]. These use

"Asqtad," (O(az) improved staggered quarks [6], giving
us access to relatively light sea quarks. In the quenched

approximation, the quark propagator for this action has

excellent rotational symmetry and is well behaved atlarge
momenta [1]. We use quenched and dynamical configura-
tions at the same lattice spacing and volume, which enables

us to observe the relatively subtle effects of unquenching.
These lattices are also somewhat larger than those of
previous studies, giving us access to smaller momenta.

II. DETAILS OF THE CALCULATION

The quark propagator is gauge dependent and we work
in the Landau gauge for ease of comparison with other

studies. Landau gauge is a smooth gauge that preserves the

Lorentz invariance ofthe theory, so it is a popular choice. It
will be interesting to repeat this calculation for the Gribov-
copy free Laplacian gauge, and this is left for a future
study.

The MILC configurations were generated withthe O(az)
one-loop Symanzik-improved Lüscher-Weisz gauge ac-

tion [17]. The dynamical configurations use the Asqtad
quark action, an (0(a2) Symanzik-improved staggered fer-
mion action. They have two degenerate light fermions, for
the u and d quarks, and a heavier one for the strange quark.

We explore a variety of light quark masses, with the bare

strange quark mass f,xed at ma : 0.05, oÍ m :79 MeV
for a : 0.125 fm [18]. In all cases theAsqtad action is also

used for the valence quarks. The values of the coupling and

the bare sea-quark masses are matched such that the lattice
spacing is held constant. This means that all systematics
are fixed; the only variable is the addition of quark loops.

The simulation parameters are summarizedin Table I.
On the lattice, the bare propagator S(a; p2) is related to

the renormalized propagator S'"n(Á¿; p2) through the renor-
malization constant

ts50-7998 / 2O0s / 7 1 (s) / 0s4507(7)$23.00 054507-1 @ 2005 The American Physical Society
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TABLE I. Lattice parameters used in this study. The dynami-
cal configurations each have two degenerate light (up/down)
quarks and a heavier (strange) quark. The lattice spacing is a :
0. 125(3) fm, where the uncerlainty reflects the variation of a
over the set of lattices considered in this analysis. Bare light
quark masses ma : 0.07,0.02,0.03,0.04 correspond to masses
of 16-63 MeV. The bare strange quark mass is ma :0.05 or
79 MeV.

Dimensions B Bare quark mass # Configuration

PHYSTCAL REVTEW D 71,054507 (2005)

III. QUENCHED RESULTS

First we compare our quenched results to some previ-
ously published data obtained on a smaller lattice UOl. All
the data illustrated in the following are cylinder cut [19].
This temoves points most susceptible to rotational symme-
try breaking, making the data easier to interpret. As is well
known, the definition of lattice spacing in a quenched
calculation is somewhat arbitrary, and indeed the quoted
estimate for our smaller ensemble is not consistent with
that published for the MILC configurations. We deter-
mined a consistent value of the lattice spacing by matching
the gluon propagator calculated on the old ensemble to that
of the new ensemble [20]. This procedure yields a new
nominal lattice spacing of a: 0,105 fm and physical
volume of 1.73 X 3.4 fma for the old lattices. Examining
the quark propagator on the two quenched ensembles,

r.2

1.0

1

2

3

4
5

quenched

16 MeV, 79 MeV
32 MeV,79 MeV
47 MeY,79 MeV
63 MeV,79 MeV

265
203
249
268
318

S(a; pz) : Zz@; p)S'""Q"; p2). (1)

In the continuum limit, Lorentz invariance allows one to
decompose the full quark propagator into Dirac vector and
scalar pieces

s-t(p2): iA(pz)y. p + B(p2) (2)

or, alternatively,

s-1(p2) : Z-t(p2)liy. p + M(p2)1, (3)

where M(p2) and Z(p2) are the nonperturbative mass and
wave-function renormalization functions, respectively.
Asymptotic freedom implies that, as p2 - *, S(p2) re-
duces to the free propagator

s-t(p2)-iy'p+m, (4)

up to logarithmic corrections. The mass function M is
renormalization point independent and for Z we choose
throughout this work the renormalization point as 3 GeV.

The tree-level quark propagator with the Asqtad action
has the form

s-t(p) : i}T,,q(p*) + m, (s)
p

where q(p *) is the kinematic momentum given by [9]

e¡" = sin(p*L[r + ]'i",{rr)]. (6)

The y, form a staggered Dirac algebra [see Eqs. (45) and
(46)1. Having identified the kinematic momentum, we
define the mass and renormalization functions by
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FIG. 1 (color online). Comparison of quenched wave-function
renormalization and mass functions at approximately the same
bare quark mass. The quark propagator from the 203 X 64 lattice
with lattice spacing a : 0.125 fm at m: 47 MeV (open
circles) is compared with the previously published quark propa-
gator from a 163 x 3}lattice with lattice spacing a : 0. 105 fm
at m :45 MeV (full triangles). The renormalization point for
Z(qz) is set at q: 3 GeV.
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Complete details of the extraction of the mass and renor-
malization functions from the Asqtad propagator are de-
scribed in the appendix.
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FIG. 2 (color online). The quenched renormalization function
(top) and mass function (bottom) for a selection of quark masses'

including ma: 0.100, about twice the strange quark mass. The

renormalization point for Z(qz) is set at 4 = 3 GeY.

shown in Fig. 1, we see that the agreement is excellent'
This indicates that both finite volume and discretization
effects are smaÌl. The flattening in the deep infrared of
both scalar functions is a long-standing prediction of DSE
studies [5],

We show results for the larger quenched lattice for a

variety of bare quark masses in Fig. 2. Once again we see

that for quark masses less than or approximately equal to

that of the strange quark, the lowest momentum point of
the mass function is insensitive to quark mass,

IV. EFFECTS OF DYNAMICAL QUARKS

Here we compare the scalar functions for the quenched

and dynamical propagators. For a given bare mass, the

running mass depends upon both the number of dynamical
quark flavors and their masses. To make the most appro-
priate comparison we select a bare quark mass for the
quenched case (ma: 0.01) and interpolate the dynamical
mass function so that it agrees with the quenched result at

the renormalization point, 4 : 3 GeV. The results are

0.6
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q (cev)
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tlG. 3 (color online). Comparison of the unquenched (full

QCD) and quenched quark propagator for nonzero quark mass,

The mass function for the unquenched dynamical-fermion
propagator has been interpolated so that it agrees with the

quenched mass function for ma: 0.01 at the renormalization
point, 4 : 3 GeV. For the unquenched propagator this corre-

sponds to a bare quark mass of rna :0.0087.

shown in Fig. 3. The necessary bare quark mass, ma:
0.0087, is a little smaller for the dynamical case.

The dynamical case does not differ greatly from the

quenched case. For the renormalization functions, there

is no discernible difference between the quenched and

unquenched cases. However the mass functions do reveal

the effects of dynamical quarks. Dynamical mass genera-

tion is suppressed, in the infrared, in the presence of
dynamical quarks relative to that observed in the quenched

case when the mass functions are the same at the (UV)
renormalization point, This is in accord with expectations

as the dynamical quark loops act to screen the strong

interaction.
Further comparisons can be made in the chiral limit. In

Fig. 4 both quenched and dynamical data have been ex-

trapolated to zero bare quark mass by a fit linear in the

quark mass. In the dynamical case, the extrapolation was

done for the case when the valence and light sea-quark
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FIG. 4 (color online). Comparison of the unquenched (full
QCD) and quenched quark propagator in the chiral limit. The
renormalization function is renormalized at q : 3 GeY.
Whereas little difference is observed in the renormalization
function, the mass functions indicates that dynamical mass
generation is suppressed by the addition of quark loops,

masses are identical. As discussed above, for a given bare
quark mass, the running mass is larger in full QCD than in
quenched QCD. This is apparent from the fact that the bare
mass must be chosen smaller in the dynamical case in order
that the running masses agree at large momenta e.g., see
Fig, 3.

Figure 5 shows the mass and renormalization functions
in the dynamical case for a variety of quark masses. Here
the valence quark masses and the light sea-quark masses
are matched. The results show that the renormalization
function is insensitive to the bare quark masses studied
here. The results for the mass function are ordered as

expected with the larger bare quark masses, m, giving
rise to a larger mass function.

Finally, we comment on the approach to the chiral limit.
In Fig. 6 we show the mass function for five different
momenta plotted as a function of the bare quark mass.
The momenta considered include the lowest momentum of
0.155 GeV and 0.310, 0.495, 0.700 and 0.993 GeV to
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FIG. 5 (color online). Renormalization (top) and mass (bot-
tom) functions for four different quark masses in full QCD,
where the valence and light sea masses are matched. The
wave-function renormalization function Z is renormalized at
q :3 GeY.

explore momentum dependent changes in the approach to
the chiral limit. At larger momenta, the mass function is
observed to be proportional to the bare quark mass. How-
ever, at small momenta, nonperturbative effects make this
dependence more complicated. For example, a recent
Dyson-Schwinger study predicts a downward turn as the
bare mass approaches zero [5].

For the lowest momentum points, nonlinear behavior is
indeed observed. For the quenched case, curvature in an
upward direction is revealed as the chiral limit is ap-
proached, leading to the possibility of a larger infrared
mass function for the lightest quark mass, despite the
reduction of the input bare quark mass, In contrast, a hint
of downward curvature is observed for the most infrared
points of the full QCD mass funcrion as the chiral limit is
approached. It is interesting that the nature ofthe curvature
depends significantly on the chiral dynamics of the theory
which are modified in making the quenched approxima-
tion. Similar behavior is observed in the hadron mass
spectrum where the coefficients of chiral nonanalytic be-
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FIG. 6 (color online). The chiral limit approach of the mass

function for selected momenta. Results from quenched QCD
simulations are illustrated at top whereas full dynamical-fermion

QCD results are illustrated at bottom. Nonlinear behavior is

observed for the lowest momentum points, in opposite directions
for quenched and full QCD.

havior can change sign in moving from quenched QCD to

full QCD 12t,221.

V. CONCLUSIONS

We have presented first results for the mass and wave-

function renormalization functions of the quark propagator

in which the effects of 2-ll dynamical quark flavours are

taken into account. In contrast to the significant screening

suppression of the gluon propagator in the infrared [20],
the quark propagator is not strongly altered by sea-quark

effects. In particular, the renormalization function is in-
sensitive to the light bare quark masses studied here, which
range from 16 to 63 MeV and also agrees well with
previous quenched simulation results. Screening of dy-
namical mass generation in the infrared mass function is

observed when comparing quenched and full QCD results

at finite mass and in the chiral limit. The approach of the

mass function to the chiral limit displays interesting non-

PHYSICAL REVIEV/ D 71, 054507 (2005)

trivial curvature for low momenta, with the curvature in
quenched and full QCD in opposite directions.
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APPENDIX: EXTRACTION OF THE SCALAR
FUNCTIONS

The Asqtad quark action [6] is a staggered action using

three-link, fivelink and seven-link staples as a kind of
"fattening" to minimize quark flavor (often referred to as

"taste") changing interactions. The three-link Naik term

[23] is included to improve rotational symmetry by im-
proving the finite difference operator, and the five-link
Lepage term l24l is included to correct errors at low
momenta that may be introduced by the above mentioned

staples. The coefficients are tadpole improved and chosen

to remove all tree-level ()(az) ercors.

At tree level (i.e. no interactions, links set to the identity)
the staples in this action make no contribution, so the

action reduces to the tree-level Naik action,

s@ :;>xt'lr,t"l[f 
t xG + t.t') - xG - t't'))

x,lL

- )rro + 3p) - x@ - rrlt] * *\xi)x@),

(41)

where the staggered phases are 17 r@): (- 1¡1k)'' un¿

*) __ Il ir 
,v 

1 tt a2)
10 otherwise

In momentum space, the quark propagator with this action
has the tree-level form

s'f i' @, m) : i> (r ì " ullsin(p,) - ),i"rz o -l)
lL

t m6op

: ir(7t")"6 sin(pr)[t + ]rin'trrl]
It

t m6oB, (43)

where the ø, B are themselves four-vectors: ar:0, I,
and likewise for B; thus the quark propagator in Eq. (43)
is a 16 X 16 matrix, This familiar form is obtained by

defining

6 *B: l¡'õouBrlmodz' (44)

a

ô
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(Vì"p: (-l)'rô" +{t,t.u. (45)

The mod2 in Eq, (,A4) ensures its validity in Eq. (45). The
7, satisfY

O *,7,'I^B : 26 *,'ôoB, (46)

lL:lT,:vi":T*, (47)

forming a "staggered" Dirac algebra.
Staggered actions are invariant under translations of 2a,

and the momentum on this blocked lattice is

2rrm,, I L..,-:-; | ^*:o'..',;- r. (48)

rùy'e calculate the quark propagator in coordinate space,

G(x, y) : Q@)20)), (Ae)

and obtain the quark propagator in momentum space by
Fourier transform of G(x,0). To write the Fourier transform
of the staggered field we write the momentum on the lattice

k*: 2rnr

PHYSICAL REVIEV/ D 71,05450'7 (2005)

In the interacting case, the quark propagator asymptoti-
cally approaches its tree-level value due to asymptotic
freedom. At finite lattice spacing the actual behavior is
closer to

S(q;^) - Lgu:t1rtm/uo), (A17)

where us is the tadpole (or mean-field) improvement factor
defined by

uo: ((Trur..q))t/a. (A1s)

Assuming that the full lattice propagator retains its free
form (in analogy to the continuum case) we write

s;þ(Ð: i\@)"nq*Ø*)A(p) + B(p)6"p (Ale)
It

: z-I(p) i\@)*pau@) + M(p)s*B
It l

Lþ
flp:0,,..,Lr-l (410) where q is the tree-level momentum, Eq, (6). Combining

this with Eq. (415) above, we can extract the scalar func-
tions (which we now write in terms of 4) as follows:

i\(-l)",q* + M(q)
G"(q): z(q) q'+ Mz(q)

(A2t)

from which we obtain

(420)

(422)

(1'23)

(424)

sothat kp: ppl rra, anddefine lo= jln.fhen

I-:1, I,
a..:o

(411)

(At2)

lL

t / exp{i(p * arr). x - i(l + þrr). y}
aP J P't

,ip(x-y) 
"in(a'*- 

Þ'ì g *Uç01. (A14)

lrrc,(q) : t6N, #ffi : ßN 
"ß(q),

- t)" r' q *TrlG *(q)l : t6N 
"q2 V-Høx (x"@)Vp(I))

Now it will be convenient to rewrite this

G(k) : G(l + î16) - G a(t) : \e-ik'G(x, 0)

xG) : [ "'o'x&) 
: I r"'',*'o)'xo(p),Jk Jpî

and

G(x, y) :
and

r::(
dlt(413)

: l6N,q2A(q).

Putting it all together we get

:àI,lexP{-i(/ +rr6)x}

A(q):z-,(q):W#?ø6

n(q):ffi:æ#@6

x

X exp{l(p + na)x}S,p(p)

6 o¡6,aS,p(p) (A1s)

(A2s)

¡¡' ''' - 
ß(ø)'(q): ñ 

(426)

By calculating 4,3 instead of A, B, we avoid inverting
the propagator. We calculate the ensemble average of A
and ß and then M and Z.

Isu,B(/)'p
(Al6)
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Vy'e study the scaling behavior of the quark propagator on two lattices with similar physical volume in

Landau gauge with 2 * 1 flavors of dynamical quarks in order to test whether we are close to the

continuum limit for these lattices. 'We use configurations generated with an improved staggered

(,,Asqtad") action by the MILC collaboration. The calculations are performed on 283 X 96 lattices

with lattice spacing a : 0.09 fm and on 203 X 64 lattices with lattice spacing a : 0.12 fm. We calculate

thequarkmássfunction,M(qz),andthewave-functionrenormalizationfunction, Z(qz),for avarietyof
bare quark masses. Comparing the behavior of these functions on the two sets of lattices we find that both

Z(qz) and M(q2) show little sensitivity to the ultraviolet cutoff.

DOI: 10.1103ÆhysRevD.'73.054504 PACS numbers: 12.38.Gc, 1l.l5.Ha, 12.38.4w, 14,65.-q

I.INTRODUCTION

Quantum Chromodynamics (QCD) is widely considered

to be the correct theory of the strong interactions. Quarks
and gluons are the fundamental degrees of freedom of this

theory. The quark propagator contains valuable informa-

tion about nonpefurbative QCD. The systematic study of
the quark propagator on the lattice has provided fruitful
interaction with other approaches to hadron physics, such

as instanton phenomenology [1], chiral quark models [2]
and Dyson-Schwinger equation studies [3,4]. As a first
principles approach lattice QCD has provided valuable

constraints for model builders. In turn, such alternative
methods can provide feedback on regions that are difficult
to access directly on the lattice, such as the deep infrared
and chiral limits.

The quark propagator has previously been studied using

Clover [5,6], staggered [7,8] and Overlap t9-111 actions'

For a review, see Ref. [12]. All these actions have different
systematic errors and the combination of these studies has

given us an excellenthandle on the possible lattice artifacts
in quenched QCD.

In this study we focus on the Landau gauge quark

propagator in full QCD, and extend our previous work

[13] to a finer lattice with lattice spacing ø : 0.09 fm

[14] but similar physical volume in order to test whether

we are close to the continuum limit for these lattices. The

scaling behavior of the momentum space quark propagator
is examined by comparing the results on these two lattices.

Our results show that there are no significant differences in

the wave-function renormalization function and quark

mass function on the two sets of lattices. Therefore the

scaling behavior is good already at the coarser lattice
spacing of a : 0.12 fm.

The configurations we use in this study were generated

by the MILC collaboration [14,15] and are available from
the Gauge Connection [6]. The dynamical conf,gurations

have two degenerate light fermions for the u and d quarks

and a heavier one for the strange quark. Weighting for the

fermion determinants is provided by the so-called, "fourth
root trick.". While the current numerical results [17] pro-

vide compelling evidence that the fourth root trick gives an

accurate estimate of the dynamical fermion weight, the

formal issue of proving that this provides the determinant

of a local fermion action from first principles remains

unresolved.

II. DETAILS OF TTIE CALCULATION

The quark propagator is gauge dependent and we work
in the Landau gauge for ease of comparison with other

studies. Landau gauge is a smooth gauge that preserves the

Lorentz invariance of the theory, so it is a popular choice.

As derived in Ref. [18] an improved Landau-gauge-fixing
functional, f?^, = t f? - ¿^îi is used where

r ?Uu\): 
à;rr{ufl(x) 

+ uc*(x)r}, (1)

f g : Z)r'gffx)ufl(x+ ¡û) + h.c.). (2)
x,lL

uc*(x) : G(x)u*(x)G(,+ t)I, (3)

G(x) : "*p{-i!, "(*)T'1, Ø)lî )

and us is the plaquette measure of the mean link. We adopt

a "steepest decents" approach. The functional derivative

of f?^p with respect to ar' provide

Ar(") = LS¡u *ç* - þL) - u *(x) - h.c.luu..r".. (5)
uoT
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Lz@) )
uõ \lu *l* - 2p.)u *(x - u)

p

- U *(x)U *(x + rc) - h.c.]t,u""r",, (6)

and

A,,no(") = lA1(x) - i\r@\
The resulting gauge transformation is

Gr,p(r) : 
"^n{f 

l,.o{")},

(t)

where ø is a tuneable step-size parameter. The gauge fixing
algorithm proceeds by calculating the relevant A¡ in terms
of the mean-field-improved links, and then applying the
associated gauge transformation, Eq. (8), to the gauge field.
The algorithm using conjugate gradient Fourier accelera-
tion is implemented in parallel, updating all links simulta-
neously, and is iterated until the Lattice Landau gauge
condition

-1A, : .lrr{Â¡.'0(x)A¡,0(x)t} (9)"rmp VN, ,
is satisfied with accuracy of 0¡ < 10-12.

As this gauge fixing finds a local minimum of the gauge
fixing functional, we are necessarily sampling from the
first Gribov region. Our ensemble contains no gauge-
equivalent configurations and hence has no Gribov copies
as such. However, our configurations are local minima
and absolut¿ minima and therefore are not from the
Fundamental Modular Region [19]. It is known from pre-
vious SU(3) studies that neither the gluon nor quark propa-
gator display any obvious Gribov noise above and beyond
the ensemble statistical noise and so we do not consider it
further here [20-22]. It will be interesring to repeat rhis
calculation for the Gribov-copy TreeLaplacian gauge, and
to do a systematic search for Gribov noise in Landau gauge
, but these are left for future studies.

The MILC configurations were generated withthe 0(a2)
one-loop Symanzik-improved Lüscher-Weisz gauge action
1231. The dynamical configurations use the Asqtad quark
action 1241, an O(az) Symanzik-improved staggered fer-
mion action which removes lattice artifacts up to order
a2g2. We refer to the a:0.09 fm lattice as the "fine"
lattice and the a : 0.12 fm one as the "coarse" lattice.

We explore two light sea-quark masses, ma: 0.0062
(m : 14.0 MeV) and ma : 0,0124 (m : 27.1 MeV). The
bare strange quark mass was fixed at ma : 0.037, or m :
67.8 MeV for a :0.09 fm. The values of the coupling and
the bare light sea-quark masses are matched such that the
lattice spacing is held constant. The simulation parameters
a¡e summarized in Table I with the lattice spacings taken
from [14].

On the lattice, the bare propagator S(o; p2) is related to
the renormalized propagator S'"n(p;p2) through the renor-

PHYSICAL REVIEV/ D 73,054504 (2006)

TABLE I. Lattice parameters used in this study. The dynami-
cal configurations each have two degenerate light quarks (up/
down) and a heavier quark (strange). The light bare quark masses
for the 283 x96 lattice are 14.0 MeV and 27.1 MeV with a
strange quark mass of 67.8 MeV. For the 203 X 64 lattice the
hare quark masses range from 15,7 MeV to 78.9 MeV. The lattice
spacing is a = 0.12 fm for the 203 x 64 lartice and a = 0.09 fm
I l4l for rhe 283 X 96 lanice.

Dimensions p a Bare Quark Mass # Config

1 283 x96
2 283 x96
3 203x64
4 203 x64
5 203x64
6 203x64

14.0 MeV, 67.8 MeV
27.1 MeY,67.8 MeV

15.7 MeV 78.9 MeV
31.5 MeV 78.9 MeV
47.3 MeY,78.9 MeV
63.1 MeV 78,9 MeV

108

110

malization constant [13]

S("; p2) : Zz(a; p)S'"'}.t; p2). (10)

In the continuum limit, Lorentz invariance allows one to
decompose the full quark propagator into Dirac vector and
scalar pieces

s-1(p2) : z-r(pz)l¡y.p + M(p2)), (11)

where M(p2) and Z(p2) are the nonperturbative mass and
wave-function renormalization functions, respectively.
Asymptotic freedom implies that, as p2 - æ, S(pz) re-
duces to the tree-level propagator

s-1(p2)-iy ptm, (r2)

up to logarithmic corrections. The mass function M is
renormalization point independent and for Z we choose
throughout this work the renormalization point as ¡r, :
3.0 GeV, i.e.,

s'"n(,,; p2) : l(q; P'z!: t, (13)
zz@; p)

thus defining Zz@; p).
The tree-level quark propagator with the Asqtad action

has the form

s-l(p) -- iZv*qØ,") + nt, (14)
lL

where q(p *) is the kinematic momentum given in [7]

Q ¡, - sin(p *)[1 + ]sin2(pr)1. (15)

The y * form a staggered Dirac algebra (see Eq. (4.6) and
(4.7) of Ref. [13]). Having identified the kinematic mo-
mentum, we define the mass and renormalization functions
by

7.09

7,11

6.76

6.79

6.81

6.83

203
249

268
318

(8)
0.086 fm
0.086 fm

0.121 fm
0.121 fm
0.120 fm
0.119 fm

0s4504-2
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r.u 3.0 3 õ 4.0

FlG.2 (color online). The unquenched wave-function renorm-

alisation function for the two different values of the light sea-

quark mass on the fine lattice (14.0 MeVand 27.1 MeV). The

valence quark masses are m:14.0MeV (top) and m:
135.6 MeV (bottom), the lightest and heaviest in our current

sample, respectively. The renormalization function is renormal-
ized at 4 : 3.0 GeV.

(16)

Additional details can be found in Ref. [13]

III. NUMERICAL RESULTS

In Fig. 1 we show the results for the mass function M(qz)
and wave-function renormalization function Z(qz) for the
lightest of our light sea-quark masses for a variety of
valence quark masses. In these figures, one valence quark

mass (14.0 MeV) is identical to the light sea-quark mass, as

in full QCD. The others are partially quenched results. The

data are ordered as we expect, i.e., the larger the bare

valence quark mass, the higher M(q'). The wave-function
renormalization function, Z(qz), on the other hand, is

infrared suppressed and the smaller the valence quark
mass, the more pronounced the dip at low momenta. In
Figs. 2 and 3 we instead hold the valence quark mass fixed
and vary the sea-quark mass. Clearly the dependence

over this small range of sea-quark masses is weak.

Unfortunately we only have two dynamical sets to com-
pare, and for the lightest valence quark the data are rather

noisy.
Next we work on two lattices with different lattice

spacing but similar physical volume. We compare the

wave-function renormalization function Z(qz) and mass

tz
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FIG. 1 (color online). The unquenched wave-function renor-
malization function Z(q2) and mass function M(q2) for a variety
of valence quark masses (shown in the inset), with the light sea-

quark mass fixed at m : 14.0 MeV. The renormalization func-
tion is renormalized at q : 3.0 GeV.
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FIG. 4 (color online). Comparison of wave-function renormal-
ization function Z(q2) and mass function M(q2) for two different
Iattices. Triangles correspond to the quark propagator at mass
21.1 MeY from 283 X 96 with latrice spacing a : 0.09 fm. The
open circles are the data from 203 X 64 with lattice spacing a :
0.12 fm obtained by interpolating four different set of light
quark masses making the M(q2) value matched for both lattices
at q : 3,9 GeV. The renormalization point for Z(q2) is set at
ct : 3.0 GeV for both lattices.

function M(q') for two lattices with different lattice spac-
ing a in full lattice QCD.

In Fig. 4, we show the quark propagator from the fine
lattice for full QCD (light sea-quark mass and valence
quark mass equal) with the light quark mass set to m :
27.l };IeY. This is compared with data from the coarse
lattice by a simple linear interpolation from the four differ-
ent data sets so the running masses are the same at qz :
3.0 GeV. Figure 5 repeats this for the lighter sea-quark,
m : 14.0 MeV. The quark propagators are in excellent
agreement, showing no dependence on the lattice spacing.

IV. CONCLUSIONS

In this study we performed a systematic comparison of
the Asqtad quark propagator in full QCD for two lattices

t1l \D. Diakonov, Prog. Part. Nucl. Phys. 51,113 (2003); hep-
ph{0212026.

[2] E. Ruiz Arriola and \ùy'. Broniowski, Phys. Rev. D 67,
01 4021 (2003); hep-pV 0301202.
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FIG. 5 (color online). This figure is same as Fig. 3, except the
light quark mass of 283 X 96 with lattice spacing a : 0.09 fm is
m : 14.0 MeV. The renormalization point for Z(q2) is set at

S : 3.0 GeV for both lattices.

with different lattice spacing in order to establish how
close these lattices are to the scaling region and hence to
the contiuum limit. We compared the two functions Z(q2)
and M(q2) on fine and coarse lattices and found them to be
consistent within errors. We can thus deduce that for both
lattices we are close to the scaling region for the quark
propagator, which, for example, makes these lattices suit-
able for future studies attempting to determine quark
masses [25].
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