USE OF AN OVINE BACTERIAL ARTIFICIAL CHROMOSOME LIBRARY FOR THE STUDY OF BOVIDAE GENOMES

by

Clare Alexandra Gill

December, 1999

A thesis submitted in partial fulfilment of the requirements of the award of
PhD in the Department of Animal Science at the University of Adelaide

CONTENTS

Page
Table of Contents ii
List of Tables vii
List of Figures viii
Abbreviations x
Abstract xiv
Declaration xvi
Dedication xvii
Acknowledgments xviii

1. LITERATURE REVIEW 1
1.1 Introduction 2
1.2 Objectives 2
1.3 Literature review 3
1.3.1 Genome mapping 3
1.3.2 Ovine genome maps 5
1.3.3 Tools for genome mapping 7
1.3.3.1 Reference flocks for genetic linkage analysis 7
1.3.3.2 Genetic linkage analysis 8
1.3.3.3 Microsatellites 9
1.3.3.3.1 Mechanisms for generating microsatellite length variation 9
1.3.3.4 Physical mapping strategies 12
1.3.3.4.1 Chromosome identification 12
1.3.3.4.2 Somatic cell hybrids 13
1.3.3.4.3 Radiation hybrids 16
1.3.3.4.4 In situ hybridisation 20
1.3.3.4.5 Fluorescence in situ hybridisation 20
1.3.3.4.6 Primed in situ hybridisation 21
1.3.3.5 Large-insert libraries 23
1.3.3.5.1 Cosmid libraries 23
1.3.3.5.2 Yeast artificial chromosomes 25
1.3.3.5.3 BAC and PAC libraries 28
1.3.4 Investigation of genome structure and function 29
1.4 Research plan 31
2. MATERIALS AND METHODS 33
2.1 Tissue culture 34
2.1.1 White blood lymphocyte culture 34
2.1.1.1 Lymphocyte enrichment using Ficoll-Hypaque 34
2.1.1.2 Lymphocyte enrichment using 0.85% ammonium chloride 35
2.1.1.3 Lymphocyte enrichment by centrifugation 35
2.1.1.4 Evaluation of media 35
2.1.1.5 Colchicine titration curve 37
2.1.1.6 Synchronisation with thymidine and elongation with 5 -BrdU 37
2.1.2 Fibroblast cell lines 39
2.1.2.1 Fibroblast growth medium 39
2.1.2.2 Initiation of fibroblast cell lines 39
2.1.2.3 Passaging fibroblasts 40
2.1.2.4 Freezing fibroblasts for long-term storage in liquid nitrogen 41
2.1.2.5 Recovering cells from liquid nitrogen 41
2.1.2.6 Harvesting fibroblasts for G-banded metaphase chromosomes 42
2.2 Super-fast primed in situ targeting 43
2.2.1 Slide preparation 44
2.2.2 Optimised SPRINT reaction for human satellite III 44
2.2.3 Generation of sheep satellite I primer by restriction enzyme digestion 44
2.2.4 Detection and microscopy 45
2.3 BAC library construction 46
2.3.1 Preparation of high molecular weight DNA 46
2.3.1.1 Isolation of white blood cells 46
2.3.1.2 Preparation of microbeads 47
2.3.1.3 Isolation of sperm heads 48
2.3.1.4 Confirmation of microbead quality 48
2.3.2 Partial digest of genomic DNA 49
2.3.3 Size selection 49
2.3.4 BAC Vector preparation 50
2.3.4.1 Digestion and dephosphorylation of pBeloBAC11 52
2.3.5 Ligation and transformation 53
2.3.5.1 Determination of insert sizes 54
2.3.6 Culturing colonies for the BAC library 54
2.3.7 BAC DNA extraction and formation of single-pools 55
2.3.7.1 Single-pool working stocks for PCR 56
2.3.7.2 Preparation of superpools 56
2.3.8 Storage of the BAC library 57
2.3.9 Preparation of row and column DNA 57
2.4 BAC library characterisation 58
2.4.1 Sizing BAC inserts 58
2.4.2 PCR-based screening strategy 59
2.4.2.1 Optimisation of PCR conditions 60
2.4.2.2 Analysis of PCR products by agarose gel electrophoresis 62
2.4.2.3 Screening superpool DNA 66
2.4.2.4 Screening single pools 66
2.4.2.5 Screening row and column DNA 66
2.4.2.6 Confirmation of individual BAC 67
2.4.3 Sequencing 67
2.4.3.1 Template for sequencing 67
2.4.3.2 End-labelling primers 68
2.4.3.3 Cycle sequencing 68
2.4.3.4 Sequencing gel electrophoresis 69
2.5 Physical mapping 70
2.5.1 Preparation of CotI DNA 70
2.5.1.1 DNA extraction from thymus 70
2.5.1.2 DNA extraction from liver 71
2.5.1.3 RNase Treatment 72
2.5.1.4 Shearing DNA by autoclaving 72
2.5.1.5 S1 nuclease treatment of sheared DNA 73
2.5.2 Biotinylation of BAC DNA 73
2.5.3 Fluorescence in situ hybridisation 74
2.5.4 Dual-FISH 76
2.5.5 Fluorescence microscopy and photography 76
2.6 Construction of a BAC restriction map for keratin associated protein genes 77
2.6.1 Plasmid end rescue 77
2.6.1.1 Preparation of electrocompetent E. coli 77
2.6.1.2 Transformation of plasmid end rescued products 78
2.6.1.3 Inverse PCR 79
2.6.2 Large-scale restriction mapping 79
2.6.2.1 Radiolabelling probe DNA 81
2.6.2.2 Probe hybridisation 81
2.6.2.3 Shot-gun sequencing 82
3. SPRINT: A SUPER-FAST METHOD FOR PRIMED $I N$ SITU TARGETING
3.1 Introduction 85
3.2 Results 86
3.2.1 Optimisation of white blood lymphocyte culture 86
3.2.2 Optimisation of SPRINT signal 88
3.2.3 Localisation of human satellite III on G-banded chromosomes 89
3.2.4 Localisation of sheep satellite I by SPRINT 93
3.2.5 Attempted localisation of single copy sequences by SPRINT 93
3.3 Discussion 95
4. CONSTRUCTION AND CHARACTERISATION OF AN OVINE BACTERIAL ARTIFICIAL CHROMOSOME LIBRARY 99
4.1 Introduction 100
4.2 Results 102
4.2.1 Quality of high molecular weight DNA 102
4.2.2 Size-selection for BAC library construction 102
4.2.3 Determination of average insert size 104
4.2.4 PCR-based screening 105
4.2.5 Sequencing 109
4.2.6 Estimation of chimaerism 109
4.3 Discussion 110
5. PHYSICAL MAPPING IN SHEEP USING OVINE BAC CLONES 120
5.1 Fluorescence in situ hybridisation 125
5.1.1 Biotinylation of BAC clones 125
5.1.2 CotI DNA preparation 126
5.1.3 Suppression of repeats with CotI DNA 131
5.1.4 Chromosome identification 132
5.2 Integration of the ovine genetic linkage map and physical map 134
5.3 Dual localisation of BAC clones 135
5.4 Estimation of genome size 141
5.5 Discussion 146
6. COMPARATIVE MAPPING USING OVINE BAC CLONES 152
6.1 Suppression with sheep, cattle and goat CotI DNA 157
6.2 Physical assignment of ovine BAC clones to bovine chromosomes 158
6.3 Physical assignment of BAC clones to caprine and cervine chromosomes 164
6.4 Attempted localisation of BAC clones to human and mouse chromosomes 164
6.5 Discussion 164
7. INVESTIGATION OF GENOME ORGANISATION USING BAC CLONES
7.1 Organisation of the wool follicle 169
7.2 Keratin-associated protein genes 173
7.3 Results 174
7.3.1 Isolation and physical mapping of a BAC clone containing KAP1.1 174
7.3.2 BAC end rescue 175
7.3.3 Long-range restriction mapping of a KAP-containing BAC clone 176
7.3.4 Shot-gun sequencing 178
7.3.5 Fine-scale comparative mapping 182
7.4 Discussion 186
8. GENERAL DISCUSSION 193
8.1 Use of BAC clones 195
8.2 BAC library construction 195
8.3 Ordering BAC clones 198
8.4 Use of BAC contigs 199
8.5 BAC clones and functional studies 200
8.6 Summary 203
REFERENCES 205
APPENDICES 264
Appendix I: Recipes for solutions 265
Appendix II: pBeloBAC11 277
Appendix III: KAP contigs and sequence alignments 287
SUBMISSION OF RESULTS 314

LIST OF TABLES

Pg.
Table 1.1: Genomic mapping database on the world wide web 6
Table 2.1: Treatments and media used to culture white blood cell lymphocytes from sheep and cattle 36
Table 2.2: Primers and reaction conditions used to screen the ovine BAC library 63
Table 3.1: Optimisation of SPRINT conditions 90
Table 3.2: Single copy sequences used in SPRINT reactions 94
Table 4.1: Summary of results from screening the ovine BAC library 111
Table 5.1: Equivalent sheep, cattle and goat chromosomes according to the Texasnomenclature.130
Table 5.2: Physical map locations of ovine BAC clones localised to G-banded metaphase chromosomes by fluorescence in situ hybridisation. 138
Table 5.3: Comparison of ovine physical and genetic maps to estimate genome size 144
Table 6.1: Physical map locations of ovine BAC clones localised to G-banded bovine metaphase chromosomes. 160
Table 6.2: Physical map locations of ovine BAC clones localised to G-banded caprine metaphase chromosomes. 162
Table 6.3: Ovine BAC clones that have been isolated for comparative mapping loci 163
Table 7.1: Keratin associated protein gene families 174
Table 7.2: Repetitive DNA elements in sequence from a KAP-containing BAC 183

LIST OF FIGURES

Pg.
Figure 1.1: Models for microsatellite variability by slipped-stranded mispairing 11
Figure 1.2: HAT selection for somatic cell hybrids 17
Figure 1.3: Examples of large-insert cloning vectors 27
Figure 2.1: Layout of superpool DNA 57
Figure 2.2: PCR-based screening strategy to identify BAC clones 61
Figure 2.3: Plasmid end rescue 80
Figure 3.1: Localisation of human satellite III by SPRINT 91
Figure 3.2: Localisation of ovine satellite I by SPRINT 92
Figure 4.1: Partial digest of ovine DNA with HindIII 106
Figure 4.2: Pulse-field electrophoretic analysis of BAC insert size 107
Figure 4.3: Distribution of insert sizes in the ovine BAC library 108
Figure 4.4: Physical localisation of BAC clones to sheep metaphase chromosomes 115
Figure 5.1: Rearrangements that have been described for cattle (BTA), sheep (OAR) and goat (CHI) chromosomes. 127
Figure 5.2: Ideograms used for chromosome identification. 128
Figure 5.3: G-banded karyotype of the domestic sheep (Ovis aries) 129
Figure 5.4: Dot blots of BAC clones probed with repetitive DNA elements. 136
Figure 5.5: Localisation of a BAC clone for BM6438 to 1q1.1-1.3 by FISH to G- banded sheep metaphase chromosomes. 137
Figure 5.6: Physical assignments of BAC clones on sheep chromosomes 143
Figure 5.7: Dual localisation of ovine BAC clones for LDLR and GAPR 145
Figure 6.1: Comparative physical mapping by FISH in sheep, cattle and goat using
ovine BAC clones 159
Figure 7.1: Organisation of the hair follicle 171
Figure 7.2: Expression of keratin genes in wool follicle differentiation 172
Figure 7.3: Southern analysis of a KAP-containing BAC clone 179
Figure 7.4: Long-range restriction map of an ovine BAC clone containing KAP1.1 180
Figure 7.5: Comparative sequence analysis of a BAC clone containing KAP1.1 184

ABBREVIATIONS

,	minute
"	second
A	adenine
BAC	bacterial artificial chromosome
bp	base pair
5-BrdU	5-bromodeoxyuridine
BSA	bovine serum albumin
BTA	Bos taurus
C	cytosine
${ }^{\circ} \mathrm{C}$	degree Celsius
cDNA	complementary deoxyribonucleic acid
cfu	colony forming units
CHEF	contour-clamped homogeneous electric field
CHI	Capra hircus
CIAP	calf intestinal alkaline phosphatase
cm	centimetre
cM	centiMorgan
dATP	2'-deoxyadenosine 5'-triphosphate
dCTP	2'-deoxycytosine 5'-triphosphate
dGTP	2'-deoxyguanosine 5'-triphosphate
$\mathrm{dH}_{2} \mathrm{O}$	distilled water
DMSO	dimethyl sulphoxide
DNA	deoxyribonucleic acid
dTTP	2'-deoxythymidine 5'-triphosphate
EDTA	ethylenediamine tetra acetic acid

FCS	foetal calf serum
FISH	fluorescence in situ hybridisation
FITC	fluorescein isothiocyanate
g	gram
G	guanine
HAT	hypoxanthine, aminopterin, thymidine
HBSS	Hank's balanced sodium salts
HPRT	hypoxanthine phosphoribosyl transferase
HSA	Homo sapiens
h	hour
IPTG	Isopropyl-ß-D-thiogalactopyranoside
ISH	in situ hybridisation
KAP	keratin associated protein
kb	kilobase
kDa	kiloDaltons
KIF	keratin intermediate filaments
KRT	keratin
L	litre
LB	Luria broth
LINE	long interspersed nuclear element
M	molar
mA	milliampere
ml	millilitre
mM	millimolar
mRNA	messenger ribonucleic acid
megabase	
nanetres	

ng nanograms
OAR Ovis aries
OD optical density
PAC Pl derived artificial chromosome
PBS phosphate buffer saline
PCR polymerase chain reaction
PHA phytohaemaglutinin
pmol picomoles
PMSF phenylmethyl sulfonyl fluoride
PPD11 ρ-phenylenediamine dihydrochloride, pH 11
PRINS oligonucleotide primed in situ hybridisation
RH radiation hybrids
RLGS restriction landmark genome scanning
rpm revolutions per minute
RNA ribonucleic acid
S-phase stationary phase
$\mathrm{SCH} \quad$ somatic cell hybrids
SDS sodium dodecyl sulphate
SINE short interspersed nuclear element
SNP single nucleotide polymorphism
SPRINT super-fast primed in situ targeting
SSC sodium chloride sodium citrate
SSM slipped-stranded mispairing
STC sequence-tagged connectors
T thymine
TAE tris acetate ethylenediaminetetra-acetic acid
TBE tris borate ethylenediaminetetra-acetic acid

TE	tris ethylenediaminetetra-acetic acid
TK	thymidine kinase
$\mu \mathrm{g}$	microgram
$\mu \mathrm{l}$	microlitre
$\mu \mathrm{M}$	micromolar
U	restriction endonuclease unit
UTR	untranslated region
UV	ultraviolet
V	volts
v/v	volume for volume
w/v	weight for volume
X-Gal	5-bromo-4-chloro-3-indolyl- β-D-galactopyranoside
YAC	Yeast artificial chromosome

Abstract

Incorporating genes for wool quality traits into breeding programmes would benefit producers, but to target these genes, their location in the genome must be known. The aim of this project was to develop tools to assist in the construction of the ovine genome map so economic trait loci in sheep can be identified. Methods leading to a rapid improvement in the status of the ovine physical map were of particular interest.

In an attempt to utilise short PCR products or oligonucleotides for physical mapping, super-fast primed in situ targeting (SPRINT) was developed. To demonstrate the efficacy of SPRINT for detecting repeats, human satellite III and ovine satellite I core sequences were used to prime in situ incorporation of fluorescein into a newly synthesised strand. SPRINT, however, was ineffective at detecting single copy sequences, and consequently, an ovine bacterial artificial chromosome (BAC) library was generated as a source of large-insert probes for fluorescence in situ hybridisation (FISH).

A library of 59,904 HindIII BAC clones with an average insert size of 103 kb representing two genome equivalents was constructed from the DNA of a purebred Suffolk ram. The ovine BAC library was characterised by PCR-based screening of pooled DNA, and BAC clones for 69 microsatellites and genes were isolated. Fifty loci were anchors for the ovine genetic map and 19 were comparative mapping loci. At least one BAC clone was physically assigned by FISH to every sheep chromosome, except OAR18, and no chimaeric clones were detected by chromosomal in situ hybridisation. These anchored clones were used to confirm chromosome identification in dual localisation experiments with previously unmapped loci. Additionally, ovine BAC clones were simultaneously mapped to sheep, cattle and goat metaphase chromosomes to improve the knowledge of genome organisation and rearrangements that have occurred in the evolution of these three closely related members of the Bovidae family.

To demonstrate the utility of BAC clones for investigating genome structure and function, a BAC clone containing a keratin associated protein gene (KAP1.1) that mapped to 11 q 3.1 was characterised by long-range restriction mapping and shot-gun sequencing. Sequences from the ovine KAP BAC clone were compared to GENBANK sequences from a homologous human BAC clone. There was strong support for the localisation of an as yet unidentified type I keratin gene, as well as the high sulphur KAP1.1, KAP1.3, KAP1.4, KAP2.3 and KAP3.4 genes within the $\sim 100 \mathrm{~kb}$ BAC clone. A striking feature of both the ovine and human sequences was the localised, high concentration of repetitive DNA in this region. It is speculated that since KAP genes lack introns, they may require the accumulated repetitive DNA in the intergenic regions for proper regulation or function.

The ovine BAC library is available for collaborative research and will be a valuable resource for comparative mapping, positional cloning, and studying gene function and regulation.

DECLARATION

I certify that this thesis does not contain material which has been accepted for the award of any degree or diploma; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

DEDICATION

To Jeff, for his loving support, motivation and patience.
To my family, for all their encouragement.

ACKNOWLEDGMENTS

I would sincerely like to thank my supervisor, Prof. Cindy Bottema, for her guidance and enthusiastic support throughout my PhD and for her editorial comments on this thesis. I thank my co-supervisor, Dr. Barry Powell for his helpful comments on the keratin study.

I am indebted to Dr. Scott Davis, Dr. Jerry Taylor and Dr. Noelle Cockett for their contributions to this project, which was also supported by the International Wool Secretariat. I thank Li Cai, Song and Xiaodong Wu, Ryan Harbinger, Jeff Gill and Brenden Holland for their help in constructing the BAC library and everyone in the lab at Texas A\&M who made my stay so enjoyable.

Thanks also to Dr. Dan Gallagher and Jan Cook for helping me to initiate and maintain the fibroblast cell lines; Tracy Shay and Helena Kojevnikoff for helping to extract the BAC DNA pools; Lillian Allen, Annette Pollington, and Bozena Kruk for their assistance with library screening and FISH; Dr. Graham Webb and Judy Cheong for their help with photography. I also thank the other staff and students in the Dept. of Animal Science who have helped make the past few years very enjoyable and productive. Finally, many thanks to my friends and family for all their support and for helping to keep me sane!

CHAPTER 1

LITERATURE REVIEW

1.1 Introduction

Wool produced in Australia in 1996-97 had a gross value of $\$ 2.6$ billion with 156 million sheep and lambs shorn. The yield of clean wool, free of impurities in the fleece (eg. grease, dirt and vegetable matter), that is used by the textile industry is about 65% of the shorn fleece (Australian Bureau of Statistics). Over the past decade the gross value and clean wool yield have stabilised, so methods that help to improve the quality and quantity of clean wool need to be adopted by producers to increase profitability. By incorporating genes for economically important traits (eg. fibre diameter, fibre strength, clean fleece weight) into breeding programmes, producers will be able to make genetic gains more rapidly than by traditional methods. However, before producers can target these genes, the regions of the genome where they are located must first be identified.

1.2 Objectives

The aim of this project was to develop a set of tools to assist in the construction of a dense genome map for sheep so that the regions of the genome containing genes for economically important traits could be identified, and subsequently isolated and characterised. In particular, the objectives were:

1) To develop novel molecular biological techniques to physically localise genes, polymorphic microsatellite markers, and other repetitive DNA elements from the ovine genome that would be useful for genome mapping. Specifically,
i) to improve the sensitivity, resolution, speed and cost-effectiveness of in situ hybridisation methodologies for sheep, and
ii) to construct an ovine bacterial artificial chromosome library.
2) To use these newly developed tools to investigate the organisation of the ovine genome, including the structural and functional roles of genes and interspersed repetitive
elements in the genome. In particular, the organisation of the keratin associated protein gene family and its associated repetitive elements was investigated as this gene family may be involved in wool quality traits.

1.3 Literature Review

1.3.1 Genome mapping

A genome map is a combination of the genetic and physical maps for a species, which gives the location of genes and their genetic neighbours. Such a map also provides information on the evolution of genomes, gene structure and functional aspects of gene location (Goodfellow, 1993). The ultimate goal of ovine genome mapping, from a production perspective, is to isolate and characterise economically important genes (eg. genes that affect growth rate, body composition, disease resistance and wool characteristics). In order to achieve this, a dense map of polymorphic markers and physically localised genes must be developed (Beckman and Soller, 1983; Crawford et al., 1995; de Gortari et al., 1998). This could be accomplished by using comparative mapping information from other closely related livestock species (de Gortari et al., 1997; Schibler et al., 1998b) and 'map-rich' species like human and mouse (REFS) as a source of genes and new markers to generate de novo mapping information in sheep.

The human and mouse genomic maps are very well developed because of the vast resources allocated to these projects. Rather than independently duplicate the production of very dense genome maps that has been one focus of the human and mouse projects, livestock genome mappers can target their gene searches based on the information that has already been generated in these 'map-rich' species. The human and mouse maps consist of over 10,000 and 7000 microsatellites, respectively, with an average spacing between markers of about 0.2 cM or 400 kb (Dib et al., 1996, Dietrich et al., 1996). The relatively small spacing between markers is now adequate to isolate genes by shot-gun sequencing strategies (Claverie, 1994; Roach, 1995). By 1996,
~ 16000 genes had been mapped in humans and 4000 genes had been mapped in mouse (Dib et al., 1996; Schuler et al., 1996; Dietrich et al., 1996). More than 30,000 genes have now been mapped in humans (Deloukas et al., 1998; Weissenbach, 1998; Strausberg et al., 1999) and this number continues to increase rapidly. Full-length sequences for only about 6000 genes are in the Genbank database (Strausberg et al., 1999). The remaining assigments were made using expressed sequence tags (ESTs) that have been clustered into "Unigenes" based on sequence similarity. There are now numerous Internet sites to access the enormous amount of mapping and sequence data being generated by the human genome project which can be exploited for comparative mapping in 'map-poor' species (Table 1.1).

Livestock gene mapping projects have generally adopted the strategies developed by the human genome project. Initially, most mapping in sheep was performed using somatic cell hybrids (Tucker et al., 1981; Saidi-Mehtar et al., 1991; Burkin et al., 1998). The advent of PCR technology (Saiki et al., 1988) and development of microsatellite markers (Dietrich et al., 1992; Serikawa et al., 1992; Weissenbach et al., 1992) was the main impetus for the construction of genetic maps (Crawford et al., 1995; de Gortari et al., 1998). Fluorescence in situ hybridisation (Bauman et al., 1980) has superceded radioactive in situ hybridisation (Pardue and Gall, 1969) for the physical localisation of genes, and fine mapping of candidate regions has utilised a variety of large-insert libraries such as cosmids (Buchanan et al., 1993) and YAC clones (Broom and Hill, 1994). Bacterial artificial chromosomes (BAC) are now the library of choice for gene mapping (Kim et al., 1996) and an ovine BAC library will be another tool for gene isolation in sheep and other livestock species. It seems likely that the next tools to be adopted by livestock researchers will be genotyping with microarrays of single nucleotide polymorphisms (SNP-chips; Ramsay, 1998; Sapolsky et al., 1999) and physical mapping by PCR-based screening of radiation hybrid (RH) panels, although an RH
panel is not yet available for sheep (McCarthy et al., 1997; Deloukas et al., 1998; Womack et al., 1997; Yerle et al., 1998).

1.3.2 Ovine Genome Maps

Beckman and Soller (1983) proposed that a genetic map consisting of 200 markers spaced at regular intervals over the entire mammalian genome would be needed to give about a 90% chance that any one of the markers would segregate with a gene of economic interest. The size of the ovine genome was estimated to be a minimum of 2770 cM based on the number of chiasmata per cell (Chapman and Bruere, 1977). The first generation ovine genome map covered 2070 cM and consisted of 246 DNA polymorphisms with an average spacing between the 174 framework markers of 14.4 cM (Crawford et al., 1995). Markers comprised 86 anonymous microsatellites derived from the sheep genome, 126 microsatellites from cattle, 1 microsatellite from deer and 33 polymorphic markers associated with known genes. The physical location of 65 of these markers was determined by in situ hybridisation. There was poor coverage on chromosomes $5,7,11$ and 13 with linkage groups spanning $<50 \mathrm{cM}$. Although the general location of several economically important genes (eg. Booroola fecundity gene) was determined from this genome map, the spacing between markers (several million bases) was too large to efficiently isolate genes by a positional candidate cloning approach. Once critical regions of the genome were identified, fine mapping was undertaken to place more informative markers within the regions and thereby reduce the size of the critical regions.

Many of the markers on the ovine genetic map were assigned using 'comparative' gene mapping strategies that rely on the conservation of unique sequences between species. Microsatellites are flanked by unique sequences and it has been found that $40-$ 80% of the polymorphic microsatellites from cattle can be used in sheep, goats and other Bovidae (Georges et al., 1991; Vaiman et al., 1994).

Table 1.1: Genomic Mapping Databases on the World Wide Web

	Web Site	Web Address
Human	Human genome database	http://www gdh org
	Whitehead/MIT Center for Genome Research	http://www-genornc wi.mit.edu/
	Généthon	http://wwu gencthon fr/genethon_en.html
	Human Transcript Map	http://wuw mhin nlm nih.gov/science96/
	Human Genome Project	http://wur aril ėo/TechResources/Human_Genome/projecthgp.html
	The Institute for Genomic Research	
	Human Genome Organisation (HUGO)	http://hugo edt org
	Stanford Human Genome Centre:	http://shge stantord.edu/
Murine	Mouse genome informatics MRC HGU Mouse Atlas	http://www.informalics.jax.org/ http://glengoyne.hgu.mrc.ac.uk/
Bovine	US Bovine gene mapping	http://bos.cvm.tamu.edu/bovgbase.html
	Bovine ArkDB	http://www.ri.bbsrc.ac.uk/cgi-bin/arkdb/browsers/browser.sh?species=cattle
	BovMap - INRA	http://locus.jouy.inra.fr/cgi-bin/bovmap/intro.pl
	Animal Genome Database in Japan	http://ws4.niai.affrc.go.jp/jgbase.html
	MARC	http://sol.marc.usda.gov/
	Cattle genome database (CSIRO, Australia)	http://spinal.tag.csiro.au/
Ovine	Sheep ArkDB	http://www.ri.bbsrc.ac.uk/cgi-bin/arkdb/browsers/browser.sh?species=sheep
	AgResearch SheepMap Database	http://dirk.invermay.cri.nz/
	CAB sheep map	http://rubens.unimelb.edu.au/-jillm/pages/isag_chr.htm
Caprine	GoatMap	http://locus.jouy.inra.fr/bovmap/goatmap
Comparative	Bovine and Human on mouse comparative maps	http://bos.cvm.tamu.edu/htmls/HBM.html
	Human and Mouse on bovine comparative maps	http://bos.cvm.tamu.edu/htmls/BHM.html
	INRA comparative homology database	http://locus.jouy.inra.ff/cgi-bin/lgbc/mapping/common/taxonomy.pl
	Homologous unigenes between human and mouse	http://www.tree.caltech.edu/Hs-Mm.html
Other	Online mendelian inheritance in animals	
	Agricultural Genome Information System (AGIS)	http://probe.nalusda.gov:8000/
	National Centre for Biotechnology Information	http://www.ncbi.nlm.nih.gov/
	Genomic and Genetic Resources on the WWW	http://www.nhgri.nih.gov/Data/
	Livestock Animal Genome Databases	http://probe.nalusda.gov:8300/animal/index.html
	Roslin Institute	http://www.ri.bbsrc.ac.uk/homepage.html
	Online cytogenetics of animals	http://www.angis.su.oz.au/Databases/BIRX/ocoa/
	Mendelian inheritance in sheep (COGNOSAG)	http://www.angis.su.oz.au/Databases/BIRX/mis/

The human and mouse maps are very extensive and many of the markers on the bovine map were derived by using sequences from these maps (Womack, 1991), which have in turn been used on the sheep map.

The second generation ovine genetic linkage map consists of 519 markers and 70\% of the markers are common to the USDA MARC bovine map (Kappes et al., 1997). The average spacing between adjacent linked markers is $\sim 6.4 \mathrm{cM}$ (de Gortari et al., 1998), but the physical map is still less well developed. There are 222 genes and 207 markers on the ovine physical map (ArkDB, 6/8/99).

1.3.3 Tools for genome mapping

1.3.3.1 Reference flocks for genetic linkage analysis

Physical mapping techniques localise genes to specific chromosomal regions, but the genetic association of genes can only be measured by the frequency with which they are co-inherited. A genetic map is constructed by testing the inheritance of genetic markers within families. An essential requirement of genetic linkage studies is families in which the segregation of loci can be demonstrated unequivocally. The number of families required to construct a genetic map depends on the density of the map, the degree of informativeness of the families due to allelic segregation, and the family size (Crawford et al., 1995; Montgomery and Crawford, 1997; Broad et al., 1998).

International ovine 'reference mapping families' have been established in New Zealand and Australia as a common resource for researchers involved in genome mapping (Broad and Hill, 1994). The five breeds that contributed to the pedigrees (Texel, Coopworth, Perendale, Romney and Merino) were used to try to maximise the heterozygosity of the F_{1} generation, and thus maximise the informativeness of markers within the population. Large full-sib families (7 to 17 individuals) were established using two rounds of multiple ovulation and embryo transfer (Crawford et al., 1995).

Nine three-generation, full-sib pedigrees with a total of 98 progeny were used for segregation analysis to generate the most recent genetic linkage maps (Crawford et al., 1995; de Gorlari et al., 1998).

Genetic data collected from the International Mapping Flock was merged with data from the USDA reference population to produce the second-generation linkage map (de Gortari et al., 1998). The USDA reference population of 247 backcross progeny was produced by mating four F1 rams (two Suffolk x Romanov, a Rambouillet x Romanov and a Roman x Rambouillet) to 44 Romanov ewes (de Gortari et al., 1997).

1.3.3.2 Genetic linkage analysis

Genetic linkage is the co-segregation of pairs of genes or genetic markers due to their proximity on the same chromosome. During meiosis, frequency of recombination is proportional to the distance between two loci on the chromosome and rarely occurs between loci that are close together. If the parental genotypes are known, then the distance between two loci can be estimated from the genotypes of their offspring, because they indicate the proportion of recombination events that occurred during meiosis (Hetzel, 1991; Broad and Hill, 1994). The unit of distance in a genetic linkage map is centiMorgans (cM), where 1 cM corresponds to a recombination frequency of 1%.

Linkage is exploited when analysing the effect of one or more markers on a phenotype in animals from a pedigree. Genetic linkage analysis is carried out using a panel of polymorphic markers, selected from a genetic map on the basis of their distribution. This is followed by some form of interval mapping analysis in which recombination fractions and the size of gene effects are estimated. Linkage between markers and economically important traits will enable the introduction of these traits into elite germlines by marker assisted selection or by genetic engineering. In turn, this will lead to improvements in animal health and productivity (O'Brien et al., 1988).

1.3.3.3 Microsatellites

Microsatellites are ideal genetic markers because they are highly polymorphic and easy to analyse by the polymerase chain reaction (PCR). Microsatellites are tandem arrays of a $2-6 \mathrm{bp}$ core sequence that are embedded in DNA which usually is unique sequence. Microsatellites are ubiquitous in eukaryotes (Valdes et al., 1993) and are abundant throughout the genome in coding and non-coding regions, occurring approximately once every 10 kb (Tautz, 1989). Microsatellites are common in introns, 3' untranslated regions and 5' untranslated regions, but exonic microsatellites are rare (Ellegren, 1993). Dinucleotide repeats are the most abundant microsatellites and nearly all the markers on the ovine genetic map are $(\mathrm{GT})_{\mathrm{n}}$ repeats (de Gortari et al., 1998).

In general, the inheritance of microsatellite alleles is stable and Mendelian. However. several human diseases have been described that are due to an expansion in the number of trinucleotide repeat units from one generation to the next (Richards and Sutherland. 1992). Examples include Fragile X caused by expansion of a CCG repeat and Huntington`s disease which is due to expansion of a CAG repeat (Mandel, 1993).

There is considerable variation in the repeat motifs present in different species. For instance, arrays of (TAA) are common in plants, but are rare in mammals (Tautz et al., 1986). There is also variation in the repeat motifs that are present in coding regions. Dinucleotides and tetranucleotides are generally found in non-coding regions, but 57% of GC rich trinucleotides are found in coding regions (Wang et al., 1994).

1.3.3.3.1 Mechanisms for generating microsatellite length variation

Microsatellite length variation in eukaryotes is biased towards expansion. Slipped-stranded mispairing (SSM) during replication has been invoked as the mechanism for the evolution of microsatellites and for the generation of length variability. SSM is an intra-helical event involving two strands of a single DNA duplex. Local denaturation and displacement of a strand of the DNA duplex causes mispairing of
complementary bases within a microsatellite (Levinson and Gutman, 1987). Polypyrimidine or polypurine DNA tracts, common in microsatellites, are susceptible to local denaturation and would allow SSM (Murphy et al., 1989). Replication or repair gives insertion or deletion of repeat units. The most common change should be a single repeat loss or gain (Tautz, 1992; Strand et al., 1993).

SSM, as described above, cannot be the mechanism for the massive expansions that have been observed in human diseases caused by trinucleotide repeat instabilities (eg. Fragile X). In these diseases, the microsatellite in the offspring is often larger than the sum of the repeat alleles inherited from the parents (Richards and Sutherland, 1994). Mitotic cross-over is not the source of the expansion because linkage disequilibrium is observed, meaning that alleles on either side of the repeat are always co-inherited with the disorder from the transmitting parent (Oostra and Verkerk, 1992; The Huntington's disease collaborative research group, 1993).

Richards and Sutherland (1994) proposed a new model for SSM that explains both small variations in microsatellite length and the generation of large expansions (Figure 1.1). Anchored slippage events with single-strand breaks cause loop formations. When the Okazaki fragment is anchored at the 5^{\prime} end, repair mechanisms add bases. The increased length means that the chance of another single-strand break is also increased. When two single-strand breaks occur, the Okazaki fragment is no longer anchored and can slide along the sequence, adding many bases.

Figure 1.1: Models for microsatellite variability generated by slipped-stranded mispairing. (a) When the microsatellite is <80 repeats, only one single-strand breaks is likely to occur within the repeat during replication. Slippage during polymerisation can result in the addition of a few copies of the repeat. (b) For microsatellites >80 repeats, it is possible that two single-strand breaks within the repeat occur during replication. The strand between these breaks is not anchored by unique sequence and is free to slide during polymerisation, enabling the addition of many more repeat units than were present in the original sequence. (Adapted from Richards and Sutherland, 1994).

1.3.3.4 Physical mapping strategies

1.3.3.4.1 Chromosome identification

Physical mapping is the localisation of sequences to specific chromosomal regions by physical methods, such as the detection of probe sequences hybridised to metaphase chromosomes. Consequently, the unambiguous identification of chromosomes is essential for physical mapping.

A 'karyotype' refers to the number and appearance of the chromosomes of a species. For instance, the human karyotype consists of 17 pairs of 'metacentric' autosomes of various sizes, 5 pairs of 'acrocentric' autosomes and 2 metacentric sex chromosomes, whilst the bovine karyotype is 29 pairs of similarly sized acrocentric autosomes and 2 metacentric sex chromosomes. Metacentric means that the chromatid arms are joined by a centromere that is positioned centrally and acrocentric means that the centromere is positioned towards one end. The ovine karyotype consists of 27 pairs of chromosomes including three pairs of metacentric autosomes. The remaining autosomes and X chromosome form a gradually descending size-series of acrocentrics. The Y chromosome is a small metacentric (Broad and Hill, 1994).

A comparison of the bovid karyotypes has revealed extensive chromosomal homology. Chromosome 1, the largest of the sheep metacentrics is the equivalent of cattle chromosomes 1 and 3 fused at the centromeres. Chromosome 2 is the homologue of cattle chromosomes 2 and 8 centrically fused and chromosome 3 is the equivalent of cattle 5 fused to cattle 11. This homology extends to all of the other chromosomes except cattle chromosomes 8 and X (ISCNDA, 1990).

The unambiguous identification of sheep and cattle chromosomes is difficult because the chromosomes cannot be identified on the basis of morphology alone, since they are mainly acrocentric and decrease gradually in size. Metaphase chromosomes can be identified by the banding patterns that are generated by different stains, due to the differential uptake of the stain by various domains along the chromosome arms.

Structural banding methods are based on the intrinsic nature of the chromosomes and are applied to fixed chromosomal preparations, while dynamic banding techniques are based on a modification of the chromosomal DNA induced by the incorporation of a thymidine analogue during cell culture (Broad et al., 1998). Common structural banding techniques are Q-banding produced by quinacrine mustard (Casperson et al., 1968); Gbanding, produced by trypsin digestion and Giemsa dye (Wang and Federoff, 1972); Rbanding produced by treatment with hot salt solutions and Giemsa dye (Sehested, 1974), and C-banding produced by multiple treatments in acidic, basic and hot salt solutions followed by Giemsa staining (Pardue and Gall, 1970). Dynamic methods include replication banding produced by exposing the cells to $5-\mathrm{BrdU}$ in late S phase and staining with Hoescht (Latt et al., 1976). Simultaneous R- or G-banding of propidium iodide stained chromosomes can also be induced using an alkaline (pH 11) pphenylenediamine antifade solution (Lemieux et al., 1992).

Unless sequential banding is performed, these banding techniques are unable to distinguish several of the ovine autosomes (specifically 21, 24, 25 and 26). A combination of Q-banding, G-banding and silver staining of the nucleolar organiser regions on prometaphase and early metaphase chromosomes (for increased resolution) from sheep with Robertsonian translocations (centromeric fusions) has resolved these ambiguities (Ansari et al., 1993). Banding techniques are important tools in physical gene mapping because (in combination with in situ methods) they help to confirm the order of genes along the chromosomes (Burkholder, 1993).

1.3.3.4.2 Somatic cell hybrids

Somatic cell hybrids (SCH) have been used extensively as a tool for assigning genes and markers to chromosomes. They have been particularly useful for mapping in livestock species where large backcross families for genetic linkage analysis are expensive to generate.

SCH contain chromosomes from two different species (eg. sheep x hamster; (Burkin et al., 1998)) and are formed by virus or polyethylene glycol (PEG) mediated cell fusion (Harris and Watkins, 1965; Pontecorvo, 1975). SCH can be used for gene mapping because although the hybrids will initially contain a complete complement of chromosomes from both species, in the next few divisions, chromosomes from one species will be lost (Abbott and Povey, 1995). A gene can be assigned to a particular chromosome by examining a panel of hybrid cell lines that have retained different combinations of chromosomes from the species of interest and by testing for the presence of absence of the gene or a gene product. Isozyme analysis, Southern blotting and PCR are commonly used to make these assignments.

Hamster tumour cells are often used as 'acceptor' cells in fusions because the chromosomes are rarely lost in culture. Blood lymphocytes or cultured fibroblasts from the species of interest can be used as 'donor' cells. To select for hybrids, a mutation is introduced into the rodent parent that can be complemented by the normal chromosomes of the species of interest. The chromosome (or partial chromosome) that carries the functional gene will always be retained. Hamster cells with mutations in hypoxanthine phosphoribosyl transferase (HPRT) or thymidine kinase (TK) are often used (Abbott and Povey, 1995).

HPRT is utilised in an alternative pathway for the synthesis of nucleotides from exogenous hypoxanthine supplied to the cell. HPRT ${ }^{-v e}$ mutants can be selected by adding 8 -azaguanine or 6 -thioguanine to the culture medium. Only those cells that do not incorporate these base analogues, that are competitive inhibitors of hypoxanthine, into their DNA can survive. TK enables cells to incorporate thymidine from the culture medium into nucleotides, avoiding the de novo pathway. $\mathrm{TK}^{-v e}$ mutants can be selected by adding the analogue 5-bromodeoxyuridine to the medium (Abbott and Povey, 1995).

Hybrid cells are selected by culture in a medium that allows them to out-grow the parental cells. In general, only the fastest growing parent is inhibited (ie. the hamster
cells). For example, ouabain, an ATPase inhibitor, is frequently added to the media at concentrations that do not affect the fused cells but selectively kills donor parent cells. HAT (hypoxanthine, aminopterin, thymidine) selection is also commonly used (Szybalski et al., 1962; Littlefield, 1964). Aminopterin inhibits folic acid reductase and blocks de novo synthesis of nucleotides (Figure 1.2). Instead, cells must use the alternative pathway of nucleotide synthesis that requires incorporation of hypoxanthine and thymidine. Consequently, normal cells can grow but $\mathrm{HPRT}^{-\mathrm{ve}}$ or $\mathrm{TK}^{-\mathrm{ve}}$ cells cannot. Hybrids selected in HAT medium will always retain the chromosomes equivalent to human chromosome 17 or X that carry the genes for TK or HPRT, respectively.

To generate panels of hybrids that retain different combinations of chromosomes for gene mapping, auxotrophic hamster mutants with different nutritional requirements, or temperature sensitive mutants have been used. Alternatively, dominant acting bacterial markers (eg. antimetabolite resistance) can be introduced by DNA transfection, electroporation or retroviral infection (Athwal et al., 1985; Warburton et al., 1990; Kurdi-Hairdar et al., 1993). Incorporation of the bacterial marker is random, but the chromosome carrying it will be retained.

Sheep x rodent somatic cell hybrids (Cianfriglia, 1979; Saidi-Mahter et al., 1981; Tucker et al., 1981) have been used extensively to establish syntenic groups, but the chromosomes retained in these original hybrids were not characterised. Cytogenetic characterisation is important because the chromosome content of hybrids is not always stable. Discordancy between markers in uncharacterised hybrids might be due to further chromosome loss and could lead to incorrect physical assignments.

Recently, a cytogenetically characterised sheep x hamster somatic cell hybrid panel was completed (Burkin et al., 1998). Lymophocytes from sheep carrying normal and Robertsonian translocation chromosomes were fused with different Chinese hamster auxotrophs to selectively "capture" specific sheep chromosomes. Particular cell hybrids were treated with BrdU or grown in non-selective medium to promote further sheep
chromosome loss (Burkin et al., 1993; Broad et al., 1995; Broad et al., 1996; Burkin et al., 1997a; Burkin et al., 1998). A large number of hybrids were cytogenetically characterised to assemble the panel of 30 hybrids. More than half of the hybrids in the panel contain single sheep chromosomes. These monochromosomal hybrids are a resource for positional cloning and for the development of radiation hybrids.

More than 65% of the assignments (153/234) on the ovine physical map (ArkDB 11/9/98) have been made using SCH. The complete sheep x hamster panel was used to assign 9 genes and to confirm the chromosomal assignments of 110 microsatellite markers (Burkin et al., 1998).

The advantage of mapping with SCH is that, provided the gene (or gene product) from the two species can be distinguished, physical assignments do not require polymorphism. However, physical localisations made with hybrids are often limited to a whole chromosome assignment and do not give the order of genes along the chromosome. A subsequent localisation by in situ hybridisation is often performed (Ryan et al., 1993).

SCH will continue to be useful for mapping short cDNA probes that would be difficult to assign by in situ hybridisation. However, in situ hybridisation methods are more efficient than SCH for localising genes or markers to discrete chromosomal bands provided large-insert clones are available.

1.3-3.4.3 Radiation hybrids

Goss and Harris (1975) initially described the production of radiation hybrids (RH), but the technique was not widely used until the advent of PCR-based screening methods (Cox et al., 1990). Analysis of RH is a powerful statistical tool to produce maps of gene order and relative distance, regardless of allelic variation (Schläpfer et al., 1997).

SALVAGE
 PATHWAYS

Figure 1.2: HAT (hypoxanthine, aminopterin, thymidine) selection for somatic cell hybrids. Aminopterin inhibits folic acid reductase and blocks de novo synthesis of nucleotides. To continue to divide, cells must use the alternative pathway of nucleotide synthesis that requires incorporation of hypoxanthine and thymidine. (From Abbott and Povey, 1995).

Radiation hybrids are made by subjecting a monochromosomal hybrid and a marker gene (eg. HPRT or TK) to lethal irradiation that fragments the chromosomes (Cox et al., 1990). Alternatively, diploid cells can be irradiated as a source of donor DNA for 'whole-genome radiation hybrids' (Walter et al., 1994). In either case, the fragments are fused to non-irradiated, HPRT or TK deficient hamster cells in HAT medium. The gene for the selective marker will always be retained, but the greater the distance between other markers, the more likely they will be contained in different fragments and consequently will segregate independently. Resolution of RH maps is dependent on the radiation dosage.

Human and mouse RH panels have enabled the construction of dense physical maps (Deloukas et al., 1998; McCarthy et al., 1997). These maps are a powerful resource for positional candidate cloning, comparative mapping and for establishing minimum-tiling paths of large-insert clones (eg. YACs and BACs) for large-scale sequencing (Mahairas et al., 1999; Siegel et al., 1999). Mapping 3' UTR regions of cDNAs on two RH panels produced the human RH map of 30,181 unique genes (Deloukas et al., 1998). The GB4 3000-rad panel is suitable for long-range ordering of markers and consists of 93 hybrids each retaining $\sim 32 \%$ of the human genome in random fragments of $\sim 10 \mathrm{Mb}$ (Walter et al., 1994). The G3 $10000-\mathrm{rad}$ panel is 83 hybrids that each retain $\sim 15 \%$ of the human genome in $\sim 4 \mathrm{Mb}$ fragments (Schuler et al., 1996; Deloukas et al., 1998). Using the G3 panel, it is possible to order markers that are $\sim 1 \mathrm{Mb}$ apart with odds greater than 1000:1 and the average resolution of the G3 map is $\sim 500 \mathrm{~kb}$. Recently, the TNG3 30,000-rad panel was generated by Research Genetics and can resolve the order of markers that are separated by just 100kb (Carey, 1997). Whilst the G3 panel (and probably the TNG3 panel) allows high-resolution mapping, the panel does not represent the complete genome and so it must be used in tandem with the G4 panel (McCarthy et al., 1997).

The mouse RH panel was produced using a $3000-\mathrm{rad}$ dose of radiation to create a panel with a high retention rate (27.6\%) of donor DNA for optimal mapping. A preliminary map of 271 markers was produced to characterize this panel (McCarthy et al., 1997).

Recently, a bovine RH panel and a porcine RH panel were completed (Womack et al., 1997; Yerle et al., 1998). The bovine 5000-rad panel consists of 101 hybrids and the retention rate is estimated to be about 30%, although it is not clear whether the bovine content of the hybrids has been cytogenetically tested. The 152 porcine hybrids produced by fusing lymphocytes or fibroblasts irradiated with $6000-7000-\mathrm{rad}$ to hamster cells were cytogenetically characterized. After assessing the porcine content of each hybrid, 118 were selected to form a RH mapping panel. The retention rate within the mapping panel varied from $9-50 \%$ (average 29.3\%; Hawken et al., 1999).

The availability of these livestock RH panels will greatly accelerate the production of the physical maps for these economically important species. RH mapping enables type I and type II markers to be integrated into a single map (Hawken et al., 1999) and allows comparative mapping information from 'map-rich' species to be efficiently utilised. For example, parellel RH mapping in humans and cattle for 24 orthologous genes was able to identify three chromosomal breakpoints and reveal internal structural rearrangements between HSA17 and BTA19 (Yang and Womack, 1998). Radiation hybrid maps for other bovine chromosomes are currently being developed (J.F. Taylor, Texas A\&M University, pers. comm.). A RH map of porcine chromosome 15 demonstrated that the resolution was 18 times greater than the genetic linkage map (Yerle et al., 1998). Nine hundred type I and type II markers have now been scored on the porcine RH panel to produce a first-generation RH map of 757 linked markers for pigs (Hawken et al., 1999). To date, a sheep RH panel has not been produced, but with the completion of the SCH panel containing monochromosomal hybrids (Burkin et al., 1998), it seems likely that one will soon be available.

1.3.3.4.4 In situ hybridisation

In the absence of radiation hybrids, in situ hybridisation methods are the best way to determine physical gene order and to localise markers to discrete chromosomal regions. In situ hybridisation (ISH) was first described by Pardue and Gall (1969) and is the molecular hybridisation of a radioactive DNA probe to chromosomal DNA. The 'sensitivity" of ISH is related to the length of the target sequence on the metaphase chromosomes and to the length of the probe able to hybridise to the target, and then to itself, so as to create concatenated matrices. ISH is most efficient with satellite DNA that is highly repeated but most difficult with single-copy sequences. The probe is labelled by incorporating radioactive nucleotides into the sequence by nick translation or by other DNA labelling methods. The radioactivity is detected by autoradiography and the sequence is lexalised to a specific chromosome region by examining the distribution of silver grains on metaphase spreads (Gosden and Lawson, 1994).

ISH has a number of disadvantages including low sensitivity, high background (ie. silver grains on other chromosomes or not associated with any chromosomes) and long exposure times for experimental results. It can take anywhere from days to months for sufficient autoradiographic signal to enable detection of the sequence. Also, only one radioactive probe can be detected at a time. The need for a more rapid and sensitive, non-isotopic physical mapping strategy was realised (Bauman et al., 1980) and led to the development of fluorescence in situ hybridisation (FISH).

1.3.3.4.5 Fluorescence in situ hybridisation

Fluorescence in situ hybridisation (FISH) is the hybridisation of biotin-labelled or digoxygenin-labelled probes to metaphase chromosomes. Biotin is an endogenous component of several organs and is often present in active cells. Digoxygenin is as sensitive as biotin, but has no endogenous production (Warford and Lauder, 1991).

Fluorescein-conjugated avidin (for biotin) or anti-digoxygenin antibody is bound to the probe after hybridisation. Consequently, the site of probe hybridisation can be visualised by fluorescent microscopy.

The advantages of FISH compared with ISH are safety, high spatial resolution, sensitivity and the fact that different targets can be visualised simultaneously in the same sample by using probes with different coloured fluorescent labels (Shuxian et al., 1993). Although physical mapping by SCH has been more commonly used in sheep than ISH, SCH assignments are generally limited to entire chromosomes. ISH and FISH have been used to localise 91 genes or markers to discrete bands on ovine metaphase chromosomes (ArkDB, 6/8/99). Continued efforts are needed to increase the number of genes (or comparative mapping markers) that have been localised to particular chromosomal bands because they enable mapping information to be extrapolated from 'map-rich' species. A dense physical map assembled either by ISH or RH mapping will greatly assist the search for economically important traits as it provides physical map locations for candidate genes.

Plasmid-derived sequences are generally insufficient for FISH mapping because the target is too small and the intensity of the fluorescent signal is dependent on probe length. Large-insert clones (eg. cosmids, BACs, PACs and YACs) are required for efficient physical mapping by FISH. Long hybridisation times (several hours) limit the number of markers that can be processed and the immunochemistry involved in the detection of biotin-labelled or digoxygenin labelled probes is laborious and expensive. Oligonucleotide primed in situ hybridisation (PRINS) is a recent advance in physical mapping which may overcome many of these problems.

1.3.3.4.6 Primed in situ hybridisation

PRINS is a rapid alternative method to FISH that is based on sequence-specific annealing of unlabelled oligonucleotides to chromosomes in situ. The oligonucleotide is a
primer for strand elongation catalysed by a DNA polymerase that uses target chromosomal DNA as the template (Koch et al., 1989). The new strand can be detected indirectly by using biotin-labelled or digoxygenin-labelled nucleotides as a substrate for strand elongation. Alternatively, the new strand can be labelled directly with fluorescein-labelled nucleotides. Direct detection is faster, easier, produces less background signal and is as sensitive as the indirect method (Koch et al., 1992; Terkelson et al., 1993).

Since the priming oligonucleotide is not labelled, high concentrations can be used to allow fast hybridisation without the production of extensive background. Good signals can be obtained from repetitive sequences in less than an hour and unique sequences can be detected in less than three hours (Volpi and Baldini, 1993). Differences in signal strength are due only to differences in the number and organisation of target sequences because short oligonucleotide primers give rise to as much strand elongation as longer probes or primers (Hindkjær et al., 1994).

Several probes can be detected simultaneously by repeating the PRINS reaction multiple times with different coloured nucleotides for each probe. The chromosomal DNA may only be completely denatured at the start of the first PRINS reaction, so the first probe used may give the strongest signal. Therefore, the probe with the smallest target should be used first to maximise the signal for that probe (Volpi and Baldini, 1993; Hindkjær et al., 1994).

Cycles of denaturation, annealing and extension (as for PCR) can be used to amplify PRINS signal. Instead of a single strand being synthesised, multiple strands are produced by each subsequent cycle. This increases the amount of fluorescent label accumulating at the target site, and therefore, increases the visualisation of short targets. The new strands remain loosely associated with the target, and there is limited diffusion of product away from the chromosomes (Gosden and Hanratty, 1993).

The advantages of PRINS compared with FISH are the lower background, shorter analysis time and increased signal intensity (Shuxian et al., 1993). PRINS should become the method of choice for physical mapping of anonymous markers and may enable plasmid-derived sequences to be physically mapped. The main disadvantage of PRINS is that the thermal kinetics of the reaction are not fully understood, so the procedure needs to be optimised for each new probe sequence used (Gosden and Lawson, 1994).

1.3.3.5 Large-insert libraries

A genomic library is a collection of clones that has a high probability of containing at least one copy of every sequence in the genome. The number of clones (N) required for a genomic library is a function of the desired probability of finding any given unique sequence within the library (P), the average insert size of the cloned DNA (I), and the genome size (GS) (Clarke and Carbon, 1976):

$$
\begin{aligned}
& \mathrm{N}=\frac{\ln (1-\mathrm{P})}{\ln (1-\mathrm{I} / \mathrm{GS})} \\
& \mathrm{P}=1-(1-\mathrm{I} / \mathrm{GS})^{\mathrm{N}}
\end{aligned}
$$

Large-insert DNA libraries are a resource for the construction of dense physical maps (Kotani et al., 1997), for the development of minimum tiling paths for large-scale sequencing (Mahairas et al., 1999; Siegel et al., 1999) and for the identification and isolation of markers and genes (Davis et al., 1999; Pirottin et al., 1999). Vectors for cloning large fragments are just specialised plasmid or bacteriophage systems.

1.3.3.5.1 Cosmid libraries

Cosmids are modified plasmids (Figure 1.3a) with \cos sequences for packaging DNA into bacteriophage lambda (Royal et al., 1979). The cloning capacity of cosmids
is a function of the size of DNA that can be packaged into the head of lambda, and the vector size. Cosmid inserts generally range from $33-47 \mathrm{~kb}$, and cosmids were the first specialised cloning system that enabled the isolation of relatively large genes within a single insert. High-resolution physical mapping by FISH (eg. to determine gene order) became routine once cosmids with large inserts were available (Lichter et al., 1990).

Cosmid libraries have been constructed for humans (Van Dilla and Deaven, 1990), mice (Chen et al., 1982), rats (Hassett et al., 1989), chickens (Buitkamp et al., 1998), pigs (Haley et al., 1987), cattle (Clontech, Palo Alto, CA) and sheep (Buchanan et al., 1993). Clones isolated from livestock cosmid libraries have been used to investigate gene expression and regulation (Kojima et al., 1997; Rijnkels et al., 1998), for comparative mapping studies (Comincini et al., 1997; Sonstegard et al., 1998), and to integrate physical and genetic linkage maps (Toldo et al., 1993; Ellegren et al., 1994; Ferretti et al., 1997; Robic et al., 1997).

The frequency of repetitive sequences (eg. SINEs and microsatellites) in the sheep genome was estimated by analysing cosmid clones (Buchanan et al., 1993). Porcine and bovine cosmid-derived $(\mathrm{CA})_{\mathrm{n}}$ microsatellites were isolated and physically assigned by ISH or FISH to anchor and orientate linked markers on the physical maps (Ellegren et al., 1994; Toldo et al., 1993; Mezzelani et al., 1995; Ferretti et al., 1997). An iterative PCR-based screening method was utilised to efficiently isolate cosmids linked to specific chromosomal regions (Heaton et al., 1997). Cosmids containing homologues of human genes can be isolated and physically assigned to identify regions of conserved synteny, establish boundaries of conservation and evaluate gene order within livestock maps (Sonstegard et al., 1997).

Cosmids now have limited use for large-scale physical mapping projects because of a number of technical problems associated with them. Libraries constructed in cosmid vectors frequently contain clones that do not carry inserts of foreign DNA. Cosmids are often chimaeric, carrying two or more DNA fragments that are not
contiguous in the genome. Some cloned DNA fragments are unstable with loss or rearrangement of cloned segments due to recombination between repetitive elements (Poustka et al., 1984). Chimaerism and instability are problematic when chromosomewalking experiments are undertaken (Yokobata et al., 1991). Another problem is differential growth of clones leading to over- or under-representation of particular cloned sequences in a DNA library. For example, in Clontech's bovine cosmid library, a cloning artefact similar to 1.715 bovine satellite DNA is found in 60% of all the clones (Vaiman et al., 1993).

Improvements have been made to cosmid vectors to increase insert stability and to enable transfection and selection in mammalian cells (Poustka et al., 1984; Kioussis et al., 1987; Ishiura et al., 1989). However, the relatively small insert size (compared with YACs, BACs, and PACs) means that 350,000 clones are required to achieve a 99% probability that a particular single-copy sequence will be represented in the library. Cloning systems that accept larger inserts were developed to reduce the number of clones required for good genome coverage and contig assembly.

1.3.3.5.2 Yeast artificial chromosomes

Burke, Carle and Olson (1987) first constructed yeast artificial chromosomes (YAC) that are able to maintain inserts from $500-1000 \mathrm{~kb}$. YAC clones have been used to construct large-scale, 'sequence-ready' physical maps by walking along regions of mammalian chromosomes (Orti et al., 1997; Wong et al., 1997) and to examine the structure and function of large genes (Pearce et al., 1993; McCormick et al., 1995). YAC clones are constructed by isolating large genomic restriction fragments and ligating vector arms to their ends. All the sequences required for the constructs to function as chromosomes in yeast are on the vector arms.

The YAC vector (eg. pYAC4; Figure 1.3b) is propagated as a circular plasmid in E. coli. It contains a unique restriction endonuclease site (eg. EcoRI) in the SUP4 gene,
as well as ARSI (for initiation of DNA replication) and CEN4 (yeast centromere) elements required for stable single-copy propagation of the artificial chromosome. TRPI, HIS3 and URA3 are selectable markers. TEL sequences derived from Tetrahymena telomeres function as telomeres in yeast. To clone an insert, the vector is digested with BamHI (which cuts adjacent to the TEL sequences) and with EcoRI. YAC clones are introduced into the host yeast strain by spheroblast transformation and plated onto selective medium. Several YAC vectors are now available with improved selectable markers or genes allowing for selection of mammalian cells transfected with YAC clones (Riley et al., 1992; Markie et al., 1993; Tucker et al., 1997).

Although their very large-insert size makes YAC clones a powerful resource for physical mapping, the YAC cloning system has a number of disadvantages. Yeast cell densities in an overnight culture are significantly lower than E. coli meaning the yield of DNA is low. Only $2-8 \%$ of the DNA recovered is YAC DNA and it is difficult to separate from yeast DNA. Manipulation of YAC DNA can be problematic if intact molecules are needed and YAC DNA may need to be prepared in agarose plugs to limit shearing (Moir and Smith, 1998).

About 1% of YAC clones are unstable giving rise to deletion derivatives, while 10% of YAC clones carry two independent YACs because of co-transformation. The most serious problem is that $40-60 \%$ of YAC clones are chimaeric. It is thought that most chimeras are caused by recombination within the yeast cell between repetitive elements on co-transformed YACs, rather than from co-ligation events (Green et al., 1991; Larionov et al., 1994). Use of recombination-deficient yeast hosts has been shown to result in fewer chimaeric clones (Ling et al., 1993; Haldi et al., 1994) although the cloning efficiency is lower in these hosts. Bacterial artificial chromosomes (BACs) and P1-derived artificial chromosomes (PACs) are recent innovations that should avoid the problems associated with YACs.

B

Figure 1.3: Examples of large-insert cloning vectors. A) Cosmid vector, pJB8. B) YAC vector, pYAC4. C) PAC vector, pCYPAC2. D) BAC vector, pBeloBAC11. (Adapted from Moir and Smith, 1998).

1.3.3.5.3 BAC and PAC libraries

Bacterial artificial chromosomes (BACs; Shizuya et al., 1992) and P1-derived artificial chromosomes (PACs; Ioannou et al., 1994) have a cloning capacity of 100 300 kb and high cloning efficiency ($10^{4}-10^{6}$ transformants per $\mu \mathrm{g}$ DNA). BAC vectors (eg. pBeloBAC11; Figure 1.3c) are based on the E. coli F factor and PAC vectors (eg. pCYPAC2; Figure 1.3d) are based on the P1 phage replicon. pBeloBAC11 has all the essential genes from the F factor (oriS, repE, parA and parB) which maintain the vector at one or two copies per E. coli genome, as well as the chloramphenicol resistance gene and a polycloning site in the lacZ gene for blue-white colour selection of recombinant clones (Wang et al., 1997). The pCYPAC vectors are derived from the Pl vector, pAd10SacBII, and have both a plasmid and P1 lytic replicon, as well as the kanamycin resistance gene and a polycloning site in the $s a c B$ gene for selection of recombinants. The $\operatorname{sac} B$ gene converts saccharose to levan, which is toxic to E. coli. A pUC19 linker in $\operatorname{sac} B$ silences the gene during vector preparation, and must be completely excised prior to ligation of insert into the $s a c B$ polycloning site, otherwise a high percentage of clones will be non-recombinants (Ioannou et al., 1994).

Both PAC and BAC clones are stable with $<3 \%$ of clones showing rearrangements after 100 generations (Shizuya et al., 1992; Ioannou et al., 1994; Woo et al., 1994; Wang et al., 1994; Cai et al., 1995; Al-Bayati et al., 1999). Maintenance and stability of largeinserts has been attributed to characteristics of the host, DH10 E. coli, which has a defective recA gene so homologous recombination is not possible (Wyman and Wertman, 1987; Hanahan et al., 1991). By extrapolating results from FISH experiments, it has been estimated that BAC libraries contain $<4 \%$ chimaeric clones (Shizuya et al, 1992; Cai et al., 1995; Schibler et al., 1998a). Almost no chimerism has been detected in PAC libraries (Ashworth et al., 1995; Hubert et al., 1997; Matsumoto et al., 1997).

BAC and PAC clones are now preferred for fine-scale physical mapping of candidate regions (Taylor et al., 1998; Vaiman et al., 1999a) and as templates for large-
scale sequencing (Cai et al., 1998) because of the low frequency of rearrangement and the relative ease of DNA purification. BAC and PAC DNA may be separated from the endogenous E. coli chromosomal DNA by standard alkaline lysis procedures similar to those used for plasmid and cosmid preparations (Sinnett et al., 1998). A BAC or PAC library covering the ovine genome would be a key resource for identifying economically important genes by positional cloning and for investigating other aspects of genome structure and function.

1.3.4 Investigation of genome structure and function

Once a comprehensive genome map for a species is developed, the next challenge is to understand in vivo gene function and the mechanisms that underly gene expression including cell specificity, developmental regulation and interactions between genes. From an animal production perspective, the goal is to identify the function of genes that confer economically important traits and to characterise the mutations that affect expression of these genes.

Transgenesis provides a means for investigating gene function and helps elucidate the role of genome structure in gene expression. Initially, transgenic experiments had unpredictable results, often with the transgene failing to be expressed in the target tissue. Short plasmid or bacteriophage inserts containing a gene and promoter region were mainly used and transgene expression was shown to be related to the integration site (Linton et al., 1993; Rosen, et al., 1996). By using large-insert clones for transgenesis, it has recently been demonstrated that position-independent expression is related to the occurrence of dominant cis-regulatory elements such as enhancers, insulators and locuscontrol regions (Peterson et al., 1993; Peterson et al., 1995; Lien et al., 1997; Nielsen et al., 1997; Porcu et al., 1997; Nielsen et al., 1999; Stinnakre et al., 1999). These regions may control several genes with related fuctions within a multigene locus and can be located more than 50kb away (Nielsen et al., 1997; Nielsen et al., 1999).

Given that only $\sim 10 \%$ of mammalian genomes are coding DNA, it will be interesting to see whether the remaining "junk" DNA, like microsatellites, short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs), has any modulating or regulatory role in gene expression. These repetitive elements are capable of forming unusual DNA structures, such as Z-DNA (Vogt, 1990) and cruciforms (Jelinek and Schmid, 1982; Hanke et al., 1995). They have been implicated in translational and rotational positioning of histone octamers influencing nucleosome formation over neighbouring regions (Englander et al., 1995), in interactions with DNAbinding proteins and other cellular factors that are important for appropriate gene expression or cell proliferation (Sakamoto et al., 1991; Cox et al., 1998), and in rearrangements and deletions leading to altered structure and function of key genes (Lehrman et al., 1987; Purandare and Patel, 1997).

Transgenesis not only provides the opportunity to study the fundamentals of genome structure and function in vivo, but enables directed changes or improvements to be made to economically important traits in livestock (Wall et al., 1997; Moffat, 1998; Muller and Brem, 1998). Traditionally, improvements in wool quality and clean wool yield have arisen through selection of natural mutations that alter the expression of wool genes. Mutations may change the properties, abundance or location of proteins in the fibre, or affect the expression of whole gene families. Transgenesis is being used to make directed changes in wool gene expression that alter the properties of wool and enable the relationship between the structure of the wool fibre and its performance as a textile fibre to be investigated (Powell et al., 1994; Bawden et al., 1998). The availability of a library of stable, large-insert clones will be valuable for sheep transgenesis experiments as a source of transgenes and their long-range regulatory elements.

1.4 Research Plan

The aim of this project was to develop a set of tools to improve the ovine genome map so that the regions of the genome containing genes for economically important traits in sheep could be identified.

The US Department of Agriculture distributes ovine microsatellite primers for genetic linkage analysis. The primers are designed in the unique DNA sequence that flanks ovine microsatellites. If these primers (or PCR products generated by them) could be directly localised on metaphase chromosomes, then a fully integrated genomic map could be rapidly developed. Novel methods for physically localising these oligonucleotide primers on metaphase chromosomes were investigated in an attempt to improve the ovine physical map. When it became apparent that a modified PRINS procedure was not suitable for the localisation of single-copy sequences, sources of large-insert probes for FISH were examined.

To generate a source of stable, non-chimaeric, large-insert clones for FISH, an ovine BAC library was constructed and characterised. Two BAC clones for every chromosome were isolated from the library to directly anchor and orient the ovine genetic maps. These anchored clones were also used to confirm chromosome identification in dual localisation experiments with previously unmapped genes or markers. Ovine BAC clones were simultaneously mapped to sheep, cattle and goat metaphase chromosomes to improve the comparative map between these three livestock species.

To demonstrate the utility of BAC clones for investigating genome structure and function, a BAC clone containing a keratin associated protein gene was isolated. A restriction map of the BAC for KAP1.1 was developed. The location of repetitive elements (microsatellites, SINEs) and other KAP genes within the BAC was investigated by Southern blot hybridisation.

The ovine BAC library is a powerful resource for physical mapping and for the identification and isolation of economically important genes. In the future, it will continue to be a source of probes for physical and comparative mapping. Efforts to expand and order the ovine BAC library would benefit the search for economically important genes.

CHAPTER 2

MATERIALS AND METHODS

MATERIALS AND METHODS

The recipes for all solutions are listed in Appendix I.

2.1 Tissue culture

Peripheral blood and fibroblast cell lines derived from skin were the two sources of cultured cells used to prepare metaphase chromosome spreads for physical mapping by in situ hybridisation. All tissue culture was performed in a laminar flow hood using aseptic techniques.

2.1.1 White blood cell lymphocyte culture

White blood cell lymphocytes were used as a source of metaphase chromosomes for super-fast primed in situ targeting experiments (section 2.2). Sheep and cattle blood were collected in lithium-heparin vacutainers (Becton Dickinson) from the jugular vein using an 18 gauge needle (Terumo), mixed thoroughly to prevent clotting and stored at $4^{\circ} \mathrm{C}$. The culture conditions were optimised to obtain a high mitotic index and elongated ("stringy") metaphase chromosomes. Various methods for enriching lymphocytes (sections 2.1.1.1-2.1.1.3) were investigated and the media and supplements were varied to try to increase the mitotic index (section 2.1.1.4). The amount of colchicine used to break the spindle fibres was titrated since it affects chromosome contraction (section 2.1.1.5) and stringy chromosomes are desired for gene mapping. A high mitotic index and chromosome banding were produced by synchronising the cells at mid-S phase with 5 -bromodeoxyuridine (section 2.1.1.6).

2.1.1.1 Lymphocyte enrichment using Ficoll-Hypaque

A 5 ml aliquot of heparinised blood was mixed with 5 ml Hank's Balanced Sodium Salts (HBSS, Life Technologies) and the diluted mixture was carefully overlayed on 5 ml Ficoll-Hypaque (ICN) in a 15 ml Falcon tube. The tubes were centrifuged at 600 g for 40^{\prime} at $20^{\circ} \mathrm{C}$ in the swing bucket rotor of a Sorvall RT 6000 D . The portion of the
gradient containing the opaque band of white blood cell lymphocytes was carefully removed and washed in 9 ml HBSS and then centrifuged at 200 g for 20 . The pellet was resuspended in 10 ml culture medium (section 2.1.1.4).

2.1.1.2 Lymphocyte enrichment using 0.85% ammonium chloride

A 5 ml aliquot of heparinised blood was mixed with $45 \mathrm{ml} 0.85 \%$ ammonium chloride and incubated at $4^{\circ} \mathrm{C}$ for 2 h . The mixture was centrifuged at 200 g for 10^{\prime}. The pellet was washed in $50 \mathrm{ml} 0.85 \%$ ammonium chloride and centrifuged again at 200 g for 10'. The wash and centrifugation were repeated, and the pellet was resuspended in 10 ml culture medium (section 2.1.1.4).

2.1.1.3 Lymphocyte enrichment by centrifugation

Whole blood was centrifuged at 350 g for 10^{\prime} and then 10 ml culture medium (section 2.1.1.4) was inoculated with 0.5 ml cells taken from the buffy coat at the plasma-blood interface.

2.1.1.4 Evaluation of media

A comparison was made between Ham's F10 medium (CSL) and RPMI 1640 (CSL) for sheep and cattle white blood cell lymphocyte culture (Lin et al., 1976; Lin et al., 1977). The combinations of lymphocyte treatment, medium and supplements that were used are listed in Table 2.1. In addition to foetal calf serum (CSL) and glutamine (CSL), each culture was supplemented with 1.8% phytohaemagglutinin-M (PHA-M, Life Technologies) which is a mitotic stimulant and 1% penicillin-streptomycinfungizone solution (CSL). PHA-M primarily affects T-cells and although pokeweed mitogen can be used to stimulate B cells, its inclusion in the culture medium was not evaluated in these experiments.

Table 2.1: Treatments and media used to culture white blood cell lymphocytes from sheep and cattle.

Lymphocyte treatment	Medium	Supplements
Ficoll enriched	Ham's F10	20% FCS
Ficoll enriched	RPMI 1640	20% FCS
$\mathrm{NH}_{4} \mathrm{Cl}$ enriched	Ham's F10	$20 \% \mathrm{FCS}$
$\mathrm{NH}_{4} \mathrm{Cl}$ enriched	RPMI 1640	$20 \% \mathrm{FCS}$
Enriched by centrifugation	RPMI 1640	$20 \% \mathrm{FCS}$
Enriched by centrifugation	RPMI 1640	$15 \% \mathrm{FCS}+1 \%$ glutamine
Whole blood	Ham's F10	$15 \% \mathrm{FCS}+1 \%$ glutamine
Whole blood	RPMI 1640	$15 \% \mathrm{FCS}+1 \%$ glutamine
Whole blood	RPMI 1640	$20 \% \mathrm{FCS}$

The culture tubes were incubated with loose lids on their sides at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ for 68.5 h and then $100 \mathrm{ng} / \mathrm{ml}$ colchicine (Sigma) was added to each culture. The cultures were incubated for a further 1.5 h , and the cells pelleted by centrifugation at 200 g for 10^{\prime}. The medium was removed by aspiration and the cells resuspended in 10 ml 0.075 M hypotonic KCl pre-warmed to $37^{\circ} \mathrm{C}$. The tubes were incubated at $37^{\circ} \mathrm{C}$ for 24^{\prime} and then centrifuged at 200 g for 10^{\prime}. The pellet was resuspended by adding 10 ml chilled $3: 1$ methanol: acetic acid fixative drop-wise. The cells were incubated at $4^{\circ} \mathrm{C}$ for 30^{\prime} and pelleted at 200 g for 10^{\prime}. The fixative was replaced and the cells incubated again for 30^{\prime} at $4^{\circ} \mathrm{C}$. The centrifugation and incubation were repeated once more, and finally the cells'were resuspended in 1.5 ml fresh fixative.

The cells were dropped onto slides using a pasteur pipette from a height of $\sim 20 \mathrm{~cm}$ with three drops per slide. The slides were air-dried and stained with $5 \mu \mathrm{~g} / \mathrm{ml}$ propidium iodide (Sigma) for 5^{\prime}. The slides were rinsed $3 \times 20^{\prime \prime}$ in PBS. The mitotic index was
determined by counting 500 cells using an Olympus BH-2 phase microscope at 10 x magnification.

2.1.1.5 Colchicine titration curve

Colchicine is a mitotic inhibitor that prevents microtubule formation (Lawce and Brown, 1991). To evaluate the effect of colchicine (Sigma) on chromosome contraction, $6 \times 10 \mathrm{ml}$ cultures were either inoculated with 0.5 ml whole blood or lymphocytes that were enriched using Ficoll-hypaque (section 2.1.1.1). The white blood cells were cultured in RPMI 1640 supplemented with 20% FCS, 1.8% PHA and 1% penicillin-streptomycin-fungizone solution. The cultures were incubated at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ for 68.5 h and then colchicine was added so that the final concentration was $50 \mathrm{ng} / \mathrm{ml}, 100 \mathrm{ng} / \mathrm{ml}, 200 \mathrm{ng} / \mathrm{ml}, 300 \mathrm{ng} / \mathrm{ml}, 400 \mathrm{ng} / \mathrm{ml}$ and $500 \mathrm{ng} / \mathrm{ml}$, respectively. The cultures were incubated at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ and then harvested as described in section 2.1.1.4.

RPMI 1640 supplemented with 15% FCS, 1% glutamine, 1.8% PHA and 1% penicillin-streptomycin-fungizone solution was also inoculated with either whole blood or enriched lymphocytes and then cultured at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ for 68 h (P. Pearce, AgResearch Grasslands Research Centre, New Zealand, pers. comm.). Colchicine was either added 1.5 h before the cells were harvested (as in Lin et al., 1976) or it was added at a final concentration of $600 \mathrm{ng} / \mathrm{ml}$ after 12^{\prime} in 0.075 M hypotonic KCl (following the protocol of Pearce, pers. comm.). Other time intervals were not attempted.

2.1.1.6 Synchronisation with thymidine and elongation with 5 -BrdU

Cells can be synchronised using excess thymidine to inhibit DNA synthesis by negative feedback regulation. The cells accumulate at mid-S phase of the cell cycle until the thymidine is removed from the medium. Normal chromosome condensation during metaphase can be prevented by the addition of 5-bromodeoxyuridine ($5-\mathrm{BrdU}$) to
the culture medium after the thymidine arrest. 5-BrdU binds preferentially to GC-rich DNA and causes differential elongation of the chromosomes (Lawce and Brown, 1991). The sites of 5 -BrdU incorporation can be visualised as chromosome bands because they have decreased staining with Hoechst 33258, Giemsa and propidium iodide (Bickmore and Craig, 1997).

To produce R-bands and to determine whether synchronisation with thymidine and $5-\mathrm{BrdU}$ increased the mitotic index or the quality of the metaphase spreads, 10 ml cultures of RPMI 1640 supplemented with 15% FCS, 1% glutamine, 1.8% PHA and 1% penicillin-streptomycin-fungizone solution were inoculated with 0.5 ml whole blood.

In general, the culture tubes were incubated with loose lids on their sides at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ for 70 h and then arrested for 16 h with $300 \mu \mathrm{~g} / \mathrm{ml}$ thymidine. The cells were pelleted by centrifugation at 400 g for 10^{\prime} and rinsed with new medium. After being pelleted again, the cells were resuspended in medium containing $20 \mu \mathrm{~g} / \mathrm{ml} 5-\mathrm{BrdU}$ and cultured for 6 hours prior to harvesting (Schollmeyer et al., 1981; Buckle and Craig, 1986).

To determine the efficacy of $5-\mathrm{BrdU}$ alone for chromosome synchrony and elongation, the culture tubes were incubated with loose lids on their sides at $37^{\circ} \mathrm{C} / 5 \%$ CO_{2} for 62 h before $200 \mu \mathrm{~g} / \mathrm{ml} 5-\mathrm{BrdU}$ (Sigma) was added. The blood was cultured for a further six hours prior to harvesting (Dutrillaux and Viegas-Pequinot, 1981; Eichenbaum and Krumins, 1983).

The cells were pelleted by centrifugation at 400 g for 10 ', resuspended in 8 ml 0.075 M hypotonic KCl , and incubated at $37^{\circ} \mathrm{C}$ for 24^{\prime}. After $12^{\prime}, 600 \mathrm{ng} / \mathrm{ml}$ colchicine was added to the tubes and mixed thoroughly. When the incubation was complete, 2 ml 3:1 methanol:acetic acid fixative was added to the tubes and they were centrifuged at 400 g for 10^{\prime}. The cells were washed three more times in 5 ml fixative by centrifugation at 400 g for 5^{\prime} before test slides were made from cells resuspended in 1 ml fixative.

2.1.2 Fibroblast cell lines

Although the conditions for white blood lymphocyte culture were optimised to maximise the mitotic index (15-20\%), only a small proportion of the metaphase spreads were satisfactory for gene mapping. Consequently, sheep, cattle and goat fibroblast cell lines were established to prepare metaphase chromosomes for comparative mapping studies by fluorescence in situ hybridisation. The major advantage of fibroblasts over lymphocytes is that they grow as a monolayer, and the metaphase cells can be preferentially recovered because they do not adhere to the growing surface as strongly as the interphase cells.

Sheep cell lines were initiated from ear punches (section 2.1.2.2) taken from three Rambouillet rams (\#601, \#606, \#608) at Texas A\&M University with the assistance of Dr. Dan Gallagher who developed the culture and harvesting methods described in sections 2.1.2.2-2.1.2.6. A fourth sheep cell line was initiated at the University of Adelaide from a Tukidale ram. Cattle cell lines were prepared from a Limousin steer (\#771) and from a Simmental cow that has a 14:20 Robertsonian translocation. A fibroblast cell line was also established for an Angora goat.

2.1.2.1 Fibroblast growth medium

Fibroblast cells were cultured in Dulbecco's modified Eagle's medium (DMEM, CSL) with $10 \% \mathrm{v} / \mathrm{v}$ foetal calf serum (CSL) and $1 \% \mathrm{v} / \mathrm{v}$ penicillin-streptomycinfungizone (CSL). Immediately before use, $1 \% \mathrm{v} / \mathrm{v} 200 \mathrm{mM}$ glutamine (CSL) was added.

2.1.2.2 Initiation of fibroblast cell lines

Before taking an ear punch, the area was swabbed with ethanol and shaved. The ear punch was transferred to a 15 ml Falcon tube of growth medium and stored at $4^{\circ} \mathrm{C}$. To prepare the ear punch for culture, it was sterilised by a brief wash in 100% ethanol in a petri dish. Any remaining hair was removed with sterile forceps before one epidermis
was cut away from the cartilage. The remaining epidermis and cartilage were stored in growth medium at $4^{\circ} \mathrm{C}$ in case the cells failed to grow or there was a massive infection of the culture.

The epidermis was rinsed successively in six drops of growth medium and in the final drop it was cut into tiny pieces ($\sim 1 \mathrm{~mm}$) with a sterile scalpel. The pieces were transferred with a pasteur pipette to two $25 \mathrm{~cm}^{2}$ culture flasks (Falcon) containing 1 ml growth medium. To help keep each piece on the bottom, a small scratch was made with the pasteur pipette. The pieces were arranged in a grid-like pattern with ~ 20 pieces/flask. The medium was replaced and was sufficient to completely cover the bottom of the flask without causing the pieces to float.

The flasks were incubated with loose lids at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$. The skin pieces were examined every day beneath an Olympus CK2 dissecting microscope and any contaminated pieces were removed from the flask. The medium was also replaced every day until fibroblasts were established (up to 2 weeks), and then the volume in the flask was increased to 5 ml and the cells were grown to confluence.

2.1.2.3 Passaging Fibroblasts

The medium was removed and the cells were washed twice with $1-5 \mathrm{ml}$ HBSS (Life Technologies) to remove any trace serum that would inhibit trypsin. To recover cells from a $25 \mathrm{~cm}^{2}$ flask, 0.5 ml Multicell trypsin/EDTA (Surgical and Medical) was used whilst 2.5 ml was used for both $75 \mathrm{~cm}^{2}$ (Falcon) and $175 \mathrm{~cm}^{2}$ flasks (Nunc). The flasks were incubated at $37^{\circ} \mathrm{C}$ for 5^{\prime} and then the cells were dislodged by vigorously tapping the flask against one hand. The cells were viewed under the Olympus CK2 dissecting microscope to confirm that they were in solution before 4.5 ml growth medium was added to the flask to stop the trypsinisation. The solution was transferred to a 15 ml Falcon tube and another 4.5 ml growth medium was used to rinse the growing
surface of the flask to collect any remaining cells. The cells were pelleted by centrifugation at 250 g for 5^{\prime} in the swing bucket rotor of a Sorvall RT 6000D.

The supernatant was removed leaving $\sim 200 \mu \mathrm{l}$ above the pelleted cells. The cells were resuspended by flick mixing and the volume was adjusted to $1-2 \mathrm{ml}$ with growth medium. The cells were then transferred to new flasks and incubated at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ until confluent. The cells were passaged several times into 5 ml growth medium in $25 \mathrm{~cm}^{2}$ flasks to remove any contaminating epithelial cells. When the cell line was ready for a chromosome harvest (section 2.1.2.6) or to be frozen for long-term storage in liquid nitrogen (section 2.1.2.4), the cells from two $25 \mathrm{~cm}^{2}$ flasks were passaged into two $175 \mathrm{~cm}^{2}$ flasks containing 30 ml growth medium and incubated at $37^{\circ} \mathrm{C}$ until they were $>70 \%$ confluent.

2.1.2.4 Freezing fibroblasts for long-term storage in liquid nitrogen

The cells were trypsinised as described in section 2.1.2.3. After pelleting the cells by centrifugation at 250 g for 5^{\prime}, the medium was removed and the cells were resuspended in 10 ml growth medium containing 10% sterile dimethyl sulphoxide (DMSO, Sigma). The cells were mixed well to ensure a homogeneous solution and then split into $10 \times 1 \mathrm{ml}$ aliquots in Nunc tubes. The cells were frozen slowly by wrapping them in insulating material and chilling them at $4^{\circ} \mathrm{C}$, before freezing them at $-80^{\circ} \mathrm{C}$ and then transferring them to liquid nitrogen. One tube was recovered from liquid nitrogen (section 2.1.2.5) within days of freezing to check the viability of the frozen cells.

2.1.2.5 Recovering cells from liquid nitrogen

The cells were removed from liquid nitrogen and thawed quickly in warm water $\left(25-37^{\circ} \mathrm{C}\right)$. The vial was dipped in 70% ethanol and $500 \mu \mathrm{l}$ cells were added to two $25 \mathrm{~cm}^{2}$ flasks containing 4.5 ml growth medium with fresh glutamine. The flasks were incubated with loose lids at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ overnight. The medium was then removed
and the flasks were rinsed with $2 \times 5 \mathrm{ml}$ HBSS to remove any DMSO carried over from the freezing solution (section 2.1.2.4), which can inhibit cell growth. The medium was replaced and the flasks were incubated at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ until the cells were confluent, at which time they were passaged as in section 2.1.2.3.

2.1.2.6 Harvesting fibroblasts for G-banded metaphase chromosomes

The cells from $2 \times 175 \mathrm{~cm}^{2}$ flasks were passaged (2.1.2.3) into $4 \times 75 \mathrm{~cm}^{2}$ flasks containing 10 ml growth medium with glutamine and $45 \mu \mathrm{~g} / \mathrm{ml} 5-\mathrm{BrdU}$ which arrests the cells at mid-S phase of the cell cycle. The flasks were incubated with loose lids at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ for 24 hours. The medium was removed and the cells rinsed twice with 5 ml HBSS. The medium and glutamine were replaced and $10^{-5} \mathrm{M}$ thymidine (Sigma) added to release the cells from arrest at mid-S phase. The flasks were incubated at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ for 6 hours to enable the cells to progress to metaphase.

Colchicine was used to break the spindle fibres, but the amount of colchicine and length of incubation affected chromosome contraction. Stringy chromosomes were desired for FISH, and it was found that $0.5 \mu \mathrm{~g} / \mathrm{ml}$ colchicine and a 15 ' incubation at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ produced ideal metaphase spreads.

The medium was removed and 2 ml 0.075 M hypotonic KCl pre-heated to $37^{\circ} \mathrm{C}$ was added. As soon as the KCl was added to the flasks, timing of the next 25^{\prime} period was commenced. Each flask was vortexed vigorously for 1' making small wavelets all over the growing surface of the flask to dislodge the metaphase cells. The cells from every tube were transferred to a single 15 ml Falcon tube. Another 2 ml 0.075 M KCl was added to the flasks and the vortexing step was repeated. The cells were transferred to the same Falcon tube as before.

The cells were centrifuged at 250 g in the swing bucket rotor for 5^{\prime}. The medium was aspirated leaving $\sim 200 \mu \mathrm{l}$ above the pellet. The cells were flick mixed, then 12 ml 0.075 M KCl was added and the tube was incubated in a $37^{\circ} \mathrm{C}$ waterbath for the
remainder of the 25^{\prime}. Fresh fixative ($3: 1$ methanol:acetic acid) was added to fill the tube $(\sim 3 \mathrm{ml})$, mixed well and the cells pelleted again by centrifugation for 5^{\prime} at 400 g . The medium was removed again and the cells were flick mixed prior to adding 12 ml fixative. After mixing well, the tube was centrifuged at 400 g for 5^{\prime}. This step was repeated twice before the cells were resuspended in an appropriate volume to make slides. Generally, the cells were resuspended in 0.5 ml that was sufficient for $15-20$ slides of well-spread metaphase chromosomes.

Glass microscope slides (Marienfeld) were cleaned by soaking them in 5\% Decon 90 for 2 hours followed by a rinse in running water for $\sim 1 \mathrm{~h}$. The slides were rinsed briefly in deionised water followed by 3 washes in 100% ethanol and then airdried.

The cells were dropped onto the slides using a pasteur pipette from a height of $\sim 20 \mathrm{~cm}$ with one drop at each end of the slide. The slides were air-dried and the best chromosome morphology was obtained when the drying time was $45-60$ seconds. The slides were artificially aged at $37^{\circ} \mathrm{C}$ for 2 days and then stored with desiccant at $-20^{\circ} \mathrm{C}$.

2.2 Super-fast primed in situ targeting

Super-fast primed in situ targeting (SPRINT) is essentially a polymerase chain reaction (PCR) on a slide and was developed in an attempt to find a cheaper and more rapid way of physically localising single-copy genes to metaphase chromosomes than by existing techniques (eg. fluorescence in situ hybridisation). The SPRINT reaction conditions were optimised for human satellite III (section 2.2.2) by altering the primer and MgCl_{2} concentrations, dNTP ratios, Taq DNA polymerase and annealing temperature (Garbett, 1994). Digestion of clones as a source of SPRINT primers was tested for sheep satellite I (section 2.2.3) and various single-copy genes.

2.2.1 Slide Preparation

Slides of G-banded human metaphase spreads (provided by Dr. G. Webb) and Rbanded sheep and cattle chromosomes prepared from white blood lymphocytes (section 2.1.1.6) were denature in 70% formamide $/ 2 \mathrm{xSSC}$ for 2^{\prime} at $70^{\circ} \mathrm{C}$. The slides were plunged into a coplin jar of 70% ethanol at $-10^{\circ} \mathrm{C}$ to restrict snap-back reannealing of the chromosomal DNA. They were then dehydrated through an ethanol series (70%, $95 \%, 100 \%$) and air-dried. In addition to fresh preparations, old slides of several human males and females that had been sealed with a silica gel drying agent at $-20^{\circ} \mathrm{C}$ and carefully stored for up to 7 years were also used.

2.2.2 Optimised SPRINT reaction for Human Satellite III

Each $25 \mu \mathrm{l}$ reaction mixture contained 67 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.8), 16.6 \mathrm{mM}$ (NH4) $)_{2} \mathrm{SO}_{4}, 0.2 \mathrm{mg} / \mathrm{ml}$ gelatine, 0.45% Triton X-100, $50 \mu \mathrm{M} \mathrm{dATP}, 50 \mu \mathrm{M} \mathrm{dGTP}, 50 \mu \mathrm{M}$ dCTP, $50 \mu \mathrm{M}$ dTTP, $5 \mu \mathrm{M}$ fluorescein-12-dUTP (Boehringer Mannheim), 4.5 mM $\mathrm{MgCl}_{2}, 2.5 \mathrm{U}$ Taq DNA polymerase (Bresatec Ltd.), and $2.5 \mu \mathrm{~g}$ (AAGGT) ${ }_{5}$ (synthesised by Bresatec Ltd.).

The reaction mixture was sealed under a $20 \times 25 \mathrm{~mm}$ parafilm coverslip with rubber cement before the slide was placed on a satellite slide attachment to the Omnigene temperature cycling system (Hybaid). The slide was incubated at $55^{\circ} \mathrm{C}$ for 20^{\prime} and then the SPRINT reaction was stopped by immersing the slide in $50 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ EDTA (pH 8.0) at $60^{\circ} \mathrm{C}$ for 2^{\prime}.

2.2.3 Generation of sheep satellite I primers by restriction enzyme digestion

The 560 bp insert of a pGEM-7Zf(+) clone of sheep satellite I (courtesy of Ms. Stacey Rizza) was amplified by PCR using 10ng/ $\mu \mathrm{l}$ universal forward sequencing primer and $10 \mathrm{ng} / \mu \mathrm{l}$ reverse sequencing primer in a $50 \mu \mathrm{l}$ reaction consisting of 50 mM $\mathrm{KCl}, 100 \mathrm{mM}$ Tris- $\mathrm{HCl}(\mathrm{pH} 8.3$), $125 \mu \mathrm{M}$ dGTP, $125 \mu \mathrm{M} \mathrm{dATP}, 125 \mu \mathrm{M} \mathrm{dTTP}, 125 \mu \mathrm{M}$
dCTP and 0.5U AmpliTaq DNA polymerase (Perkin Elmer). The plasmid insert was amplified over 32 cycles $\left(94^{\circ} \mathrm{C} 1^{\prime}, 45^{\circ} \mathrm{C} 1^{\prime}, 72^{\circ} \mathrm{C} 1^{\prime}\right)$ using a Perkin Elmer thermal cycler.

The PCR product was purified directly through a Wizard ${ }^{\text {TM }}$ PCR prep column (Promega) according to the manufacturer's instructions. A $10 \mu \mathrm{~g}$ aliquot of the $\sim 790 \mathrm{bp}$ amplified fragment was precipitated with $1 / 20$ volume 4 M sodium chloride and 0.6 volumes isopropanol. The DNA was digested with 10U Sau3AI (Promega) in a $10 \mu \mathrm{l}$ reaction (6 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.5), 6 \mathrm{mM} \mathrm{MgCl} 2,50 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM} \mathrm{DTT}$) for 2 h at $37^{\circ} \mathrm{C}$ to produce fragments from $50-150 \mathrm{bp}$. This digestion mixture was used as the source of primers for SPRINT.

The SPRINT reaction was identical to that used to amplify human satellite III except that the slide was heated to $90^{\circ} \mathrm{C}$ for 5^{\prime} to denature the Sau3AI fragments prior to the incubation at $55^{\circ} \mathrm{C}$.

2.2.4 Detection and microscopy

The slides were washed $2 \times 2^{\prime}$ in $2 x S S C$ and $2 \times 2^{\prime}$ in PBS before the chromosomes were counterstained by immersing the slides in $5 \mu \mathrm{~g} / \mathrm{ml}$ propidium iodide for 5^{\prime}. The slides were rinsed $3 \times 20^{\prime \prime}$ in PBS and then $100 \mu \mathrm{l} \rho$-phenylenediamine dihydrochloride, pH 11 (PPD11) antifade mountant was added. The mountant was sealed under a $24 \times 60 \mathrm{~mm}$ glass coverslip with nail varnish. The slides were viewed using an Olympus Vanox microscope with blue epifluorescence used to detect the fluorescent SPRINT signal, combined with dull fluorescence of the G-banded or Rbanded chromosomes. Photographs were taken on Fugichrome ASA 400 colour positive film that was programmed to ASA 2560 (1.6 x ASA 1600) for dark field.

2.3 BAC library construction

Bacterial artificial chromosomes (BAC) are a cloning system based on the E. coli F plasmid that can stably maintain inserts from 100-500kb (Shizuya et al., 1992). BAC clones are easily mapped by fluorescence in situ hybridisation (FISH) and consequently, they are a useful tool for efficiently generating accurate, high-resolution physical maps (Cai et al., 1995). A sheep BAC library was constructed from high molecular weight DNA encapsulated in agarose microbeads. To achieve at 95% probability of finding any unique sequence within the BAC library a total of 59,913 clones with an average insert size of 150 kb are required (section 1.3.3.5).

2.3.1 Preparation of high molecular weight DNA

High molecular weight DNA was obtained for BAC library construction by encapsulating either white blood cells or sperm heads in agarose microbeads prior to enzymatic digestion. The microbeads protect the DNA against shearing so that megabase lengths can be recovered.

2.3.1.1 Isolation of white blood cells

A 500 ml blood sample mixed with 25 ml anti-coagulation solution was collected from a purebred Suffolk ram (\#30, Texas A\&M University) and 300 ml was used immediately. The blood was transferred to $6 \times 50 \mathrm{ml}$ Falcon tubes and centrifuged at 1500 g for 15^{\prime} ' in the swing bucket rotor of a Sorvall RT 6000 D . The buffy coat was collected from each tube and mixed with 5 ml Hank's balanced sodium salts (HBSS (pH 7.0), Life Technologies). The volume was adjusted to 30 ml and then 10 ml aliquots were carefully overlayed onto 5 ml Histopaque (Sigma) in 15 ml Falcon tubes. The tubes were centrifuged for 40^{\prime} at 350 g with no brake. The white blood cell layer was transferred to a new tube, washed with 10 ml HBSS and centrifuged for 10^{\prime} at 150 g with brake $=1$. The pellet was resuspended in 5 ml HBSS and the white blood cell concentration was
determined using a haemocytometer. Cell quality was monitored by staining with trypan blue solution (ie. dead cells were stained blue).

2.3.1.2 Preparation of Microbeads

Before preparing the microbeads, 20 ml mineral oil and $5 \mathrm{ml} 1 \%$ low melting point agarose (FMC. Seaplaque) in HBSS were pre-warmed to $45^{\circ} \mathrm{C}$. A 400 ml beaker containing 120 ml HBSS, that was continuously stirred, was chilled by packing the beaker in ice. The cells in HBSS were also pre-warmed and then mixed with the agarose solution. Then the mineral oil was added quickly and mixed very vigorously by swirling for ~ 5 seconds. This mixture was poured into the cold HBSS and stirred for 5^{\prime}.

The microbeads and oil were transferred to 50 ml Falcon tubes and centrifuged at 500 g for 10 . The supernatant was removed and the microbeads from each tube were resuspended in 10 ml HBSS, then pooled in $2 \times 50 \mathrm{ml}$ Falcon tubes and centrifuged again at 500 g for $11 \mathrm{I}^{\prime}$. The supernatant was removed and then SDE solution was added to a final volume of 50 ml . The tubes were rocked occasionally for 10 ' before centrifugation at 500 g for 10 . The microbeads were resuspended in ESP solution containing $1 \mathrm{mg} / \mathrm{ml}$ proteinase K (Boehringer Mannheim) and rocked at $50^{\circ} \mathrm{C}$ overnight. The tubes were cooled to room temperature and then centrifuged at 500 g for 10 '. The incubation with ESP solution containing $1 \mathrm{mg} / \mathrm{ml}$ proteinase K was repeated for a further ~ 10 hours at $50^{\circ} \mathrm{C}$.

The microbeads were pelleted at 500 g for 10^{\prime} and resuspended in 25 ml TE (pH 8.0) and split into two 12.5 ml aliquots. One aliquot was pelleted and resuspended in 0.5 M EDTA for long-term storage at $4^{\circ} \mathrm{C}$. The other aliquot was treated with TE containing 1 mM phenylmethyl sulfonyl fluoride (PMSF, Sigma) to destroy the proteinase K . The tube was left on ice for 1 h and inverted infrequently before being centrifuged at 500 g for 10^{\prime} at $4^{\circ} \mathrm{C}$. The microbeads were again resuspended in TE containing 1 mM PMSF and left on ice for another hour. The tubes were centrifuged
again and the microbeads were resuspended in TE containing 0.1 mM PMSF and incubated at $4^{\circ} \mathrm{C}$ overnight. After pelleting the microbeads at 500 g , they were washed three times with 13 ml TE for 1 hour on ice to remove the PMSF. The microbeads were pelleted at 500 g for 10^{\prime} at $4^{\circ} \mathrm{C}$ and all the TE was carefuily removed.

2.3.1.3 Isolation of Sperm Heads

To evaluate the use of semen rather than white blood cells as the source of DNA for BAC library construction, 5 straws of semen were obtained from the purebred Angus bull, Y6, that was the animal used to construct the bovine BAC library (Cai et al., 1995). The bovine library was being expanded while the ovine library was being constructed.

The ends of the straws were cut and the semen was collected by capillary action into eppendorf tubes. The semen was mixed, then split into $250 \mu \mathrm{l}$ aliquots and 1 ml solution A was added. The semen was pelleted by centrifugation at 3000 rpm for 5^{\prime}, then resuspended in solution A and centrifuged again. These washes were repeated 3 times before each pellet was resuspended in 1.5 ml solution B and incubated at $50^{\circ} \mathrm{C}$ for 30'. The sperm heads were washed 3 times with HBSS (pH 7.0) by centrifugation at 5000 rpm for 5^{\prime} and then pooled into 5 ml . The cell number was determined using a haemocytometer and then the sperm cells were encapsulated in agarose microbeads as described (section 2.3.1.2).

2.3.1.4 Confirmation of microbead quality

The quality of the high molecular weight DNA encapsulated in the microbeads was checked on a contour-clamped homogeneous electric field (CHEF) gel prior to partial digestion with HindIII (section 2.3.2). Conditions were selected that prevented high molecular weight DNA $(>1 \mathrm{Mb})$ from progressing into the gel, so that the extent of DNA shearing could be determined. Enough microbeads were loaded with a cut tip
($\sim 2 \mathrm{~mm}$ diameter) to fill a lane on a 1% agarose gel in $0.5 \times$ TBE. After the microbeads were loaded, the lane was capped with 1% low melting point agarose. The DNA was electrophoresed in $0.5 \times$ TBE using a CHEF-Mapper (Biorad) at $6 \mathrm{~V} / \mathrm{cm}$ for 18 h at $14^{\circ} \mathrm{C}$ with a fixed angle of 120°. Both the initial and final switch times were 40 seconds. The gel was stained with $0.5 \mathrm{mg} / \mathrm{ml}$ ethidium bromide for 10^{\prime} and destained for 30^{\prime}.

2.3.2 Partial digest of genomic DNA

To determine the amount of HindIII required to obtain DNA fragments with an average size of 150 kb , partial digests were prepared using $0 \mathrm{U}, 0.5 \mathrm{U}, 2.5 \mathrm{U}, 5 \mathrm{U}, 10 \mathrm{U}$, 20U and 40U HindIII (Promega). Each $100 \mu \mathrm{l}$ reaction contained $50 \mu \mathrm{l}$ microbeads, 6 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.5), 6 \mathrm{mM} \mathrm{MgCl} 2,100 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT, 4 mM spermidine, $1 \mathrm{mg} / \mathrm{ml} \mathrm{BSA}$ and an appropriate amount of HindIII. The reactions were prepared in duplicate and incubated on ice for 15^{\prime} and then at $37^{\circ} \mathrm{C}$ for 15^{\prime}. The digests were loaded onto a 1% agarose CHEF gel in $0.5 \times$ TBE. The total volume of both duplicates was loaded in a single lane and a tissue wick was used to remove excess fluid, leaving the microbeads in the well. A lambda concatomer (ProMega lambda ladder, Promega) was loaded either side of the digests and the lanes were capped with 1% low melting point agarose. The CHEF gel was run at $6 \mathrm{~V} / \mathrm{cm}$ for 18 h at $14^{\circ} \mathrm{C}$ with a fixed angle of 120° in 0.5 x TBE. Both the initial and final switch times were 40 seconds. The partials were repeated using $8 \mathrm{U}, 4 \mathrm{U}, 2 \mathrm{U}, 1 \mathrm{U}, 0.75 \mathrm{U}, 0.5 \mathrm{U}, 0.25 \mathrm{U}, 0.125 \mathrm{U}$ and 0.0625 U HindIII, since in the original series all digests using greater than 10 U had been to completion.

2.3.3 Size selection

The amount of HindIII required for an average insert size of 150 kb was determined from the partial digests (2.3.2). Two thirds of the microbeads were digested with 0.75 U HindIII and the remainder were digested with 1 U HindIII. The reactions were prepared as described (section 2.3.2) and $300 \mu \mathrm{l}$ microbeads were loaded in a
single lane of a 1% agarose CHEF gel in $1 \times$ TAE with $50 \mu \mathrm{l}$ microbeads and a lambda concatomer loaded on both sides. The CHEF gel was run at $6 \mathrm{~V} / \mathrm{cm}$ for 20 h at $14^{\circ} \mathrm{C}$ with a fixed angle of 120° in $1 \times$ TAE. Both the initial and final switch times were 90 seconds.

The apparatus was dismantled and the lane containing DNA for size selection was cut away using a glass coverslip and stored in $1 \times$ TAE at $4^{\circ} \mathrm{C}$. The remainder of the gel was stained in $0.5 \mu \mathrm{~g} / \mathrm{ml}$ ethidium bromide for 10^{\prime} and destained for 15^{\prime}. The unstained piece and stained pieces were reassembled on a UV light box (300 nm) and five cuts were made so that there were four gel pieces that spanned the region of digested DNA. The size-selected gel pieces were cut in half lengthwise and placed in 1.5 ml eppendorfs. The surface of each piece was washed briefly three times with TE.

The gel pieces were weighed, melted by incubating in a $70^{\circ} \mathrm{C}$ waterbath for 5^{\prime} and then allowed to equilibrate at $45^{\circ} \mathrm{C}$ for 5^{\prime} before 1 U GELase (Epicentre Technologies)/100mg gel slice was added to the top of the molten agarose. The GELase was mixed in by pipetting up and down once slowly with a wide-bore tip. The reaction was incubated at $45^{\circ} \mathrm{C}$ for 1 h and then placed on ice to ensure that the agarose was completely digested.

A 2% agarose gel in $1 \times$ TAE was prepared and $20 \mu 1$ size-selected DNA was loaded with $500 \mathrm{ng}, 250 \mathrm{ng}, 100 \mathrm{ng}, 80 \mathrm{ng}, 60 \mathrm{ng}, 40 \mathrm{ng}, 20 \mathrm{ng}, 10 \mathrm{ng}$ and 5 ng of uncut lambda DNA. The DNA was electrophoresed at 100 V for 0.5 h and the gel was stained in $0.5 \mu \mathrm{~g} / \mathrm{ml}$ ethidium bromide. The concentration of the size-selected DNA was determined from the gel by comparison to the lambda standards. The three largest sizeselections were used in the ligation (section 2.3.5).

2.3.4 BAC vector preparation

A stab of the vector, pBeloBAC11 in JM109 E. coli cells was obtained from Dr. R. Wing (Texas A\&M University) and kindly donated by Dr. D.H. Shizuya and Dr. M.

Simon (California Institute of Technology). pBeloBAC11 is a single copy vector, so large amounts of cells are required to produce $\mu \mathrm{g}$ amounts of vector DNA. The vector was cultured from the stab by inoculating 5 ml LB containing $30 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol. This was grown for 6 hours at $37^{\circ} \mathrm{C}$ with shaking and then $500 \mu \mathrm{l}$ aliquots were used to inoculate $8 \times 500 \mathrm{ml}$ of medium. These cultures were incubated at $37^{\circ} \mathrm{C}$ with shaking for 20 hours.

Plasmid DNA was prepared by the large-scale alkaline lysis method (Sambrook et al., 1989). The cells were centrifuged for 30^{\prime} at 5200 g using 250 ml tubes in the GSA rotor of a Sorvall RC50 centrifuge. The cells from each tube were resuspended in 6.25 ml solution I with $2.5 \mathrm{mg} / \mathrm{ml}$ lysozyme (ie., 25 ml solution I per litre of cells). Next, 12.5 ml Solution II was added to each tube (ie., $50 \mathrm{ml} / \mathrm{L}$ cells), mixed well by inversion and placed on ice for 10^{\prime} before 9.25 ml solution III was added (ie. $37 \mathrm{ml} / \mathrm{L}$ cells). The tubes were mixed gently by swirling and left on ice for 10 ' before they were centrifuged at 8000 g for 30^{\prime}. The supernatant was decanted from the tubes, filtered through Kimwipes and then incubated for 15^{\prime} at room temperature with $0.1 \mathrm{mg} / \mathrm{ml}$ RNase (Boehringer Mannheim). Approximately 200 ml of supernatant was recovered prior to purification.

The plasmid DNA was purified using a Qiagen 500 kit following the manufacturer's instructions. Each 'tip 500' column was equilibrated with 10 ml QBT buffer before 50 ml supernatant was added and allowed to enter the resin by gravity flow. The columns were washed with 30 ml QC buffer and then the DNA was eluted in 15 ml QF buffer. The DNA from each column was precipitated in 0.7 volumes isopropanol and pelleted by centrifugation at 15000 g for 30^{\prime} at $4^{\circ} \mathrm{C}$. The pellets were rinsed with ice cold 70% ethanol and airdried. Each pellet was resuspended in 2.5 ml TE (pH 8) and pooled.

To remove any residual chromosomal DNA that may interfere with cloning, the pooled DNA was again purified down a Qiagen 500 column and precipitated with
isopropanol as before. The pellet was resuspended in 8 ml TE and a cesium chloride gradient was prepared as the final purification step. The resuspended DNA was mixed with 8.81 g CsCl to a final density of $1.6 \mathrm{~g} / \mathrm{ml}$. The volume of each centrifuge tube was adjusted to 12 ml with $1.5 \mathrm{~g} / \mathrm{ml} \mathrm{CsCl}$ and $1.7 \mathrm{~g} / \mathrm{ml} \mathrm{CsCl}$ before $200 \mu \mathrm{l} 10 \mathrm{mg} / \mathrm{ml}$ ethidium bromide was added and mixed by inversion. The Beckman quick-seal tubes were capped and centrifuged in a Sorvall TV-865 ultra-centrifuge rotor at 27000 g for 24 h at $20^{\circ} \mathrm{C}$.

A 21 gauge needle (Neolus) was used to puncture an airhole in the top of the centrifuge tube. A needle attached to a 5 ml syringe was then used to puncture the tube below the vector band visualised under UV (312 nm). The band was collected and the supernatant was split between 3 eppendorf tubes, with $\sim 500 \mu 1 /$ tube. An equal volume of CsCl saturated isoamyl alcohol was added to each tube and mixed by inversion. The pink layer containing the ethidium bromide was removed and the procedure was repeated until no pink was visible. The DNA was pooled into an Oakridge tube and precipitated with 2.5 volumes ethanol and 0.1 volumes 2 M NaCl at $4^{\circ} \mathrm{C}$ overnight. The DNA was pelleted by centrifugation at 10000 rpm for 20^{\prime}. The pellet was rinsed with 70% ethanol, air-dried and then resuspended in $200 \mu \mathrm{lddH} \mathrm{C}_{2} 0$ overnight at $4^{\circ} \mathrm{C}$.

2.3.4.1 Digestion and Dephosphorylation of pBeloBAC11

Prior to use in BAC library construction, a test digest of $5 \mu \mathrm{l}$ pBeloBAC11 ($\sim 750 \mathrm{ng}$) with HindIII, followed by re-ligation and transformation by heat shock into DH10ß E. coli cells was performed to check the vector's quality.

To make the library, $20 \mu \mathrm{~g}$ pBeloBAC11 was digested overnight at $37^{\circ} \mathrm{C}$ with 40 U HindIII (Promega) in a $200 \mu \mathrm{I}$ reaction containing 6 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.5), 6 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 100 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT, 4 mM spermidine and $1 \mathrm{mg} / \mathrm{ml} \mathrm{BSA}$. After digestion, the volume was increased to $500 \mu \mathrm{l}$ and the DNA was extracted twice with $25: 24: 1$
phenol:chloroform:isoamyl alcohol and once with chloroform before being ethanol precipitated and resuspended in $50 \mu \mathrm{I} \mathrm{ddH}_{2} 0$.

The digested vector was dephosphorylated at $37^{\circ} \mathrm{C}$ for 45^{\prime} with 5 U calf intestinal alkaline phosphatase (Promega) in a $100 \mu \mathrm{l}$ reaction containing $50 \mu \mathrm{M}$ Tris- $\mathrm{HCl}(\mathrm{pH}$ 9.3), $1 \mathrm{mM} \mathrm{MgCl} 2,100 \mu \mathrm{M} \mathrm{ZnCl}_{2}$ and 1 mM spermidine. The reaction was stopped with 0.5% sodium dodecyl sulphate, 5 mM EDTA and $10 \mu \mathrm{~g}$ proteinase K at $55^{\circ} \mathrm{C}$ for 30^{\prime}. The DNA was extracted twice with 25:24:1 phenol:chloroform:isoamyl alcohol and once with chloroform before being ethanol precipitated and resuspended in $200 \mu \mathrm{l}$ $\mathrm{ddH}_{2} \mathrm{O}$.

2.3.5 Ligation and transformation

To create a library of clones with an average insert size of 150 kb , the size-selected DNA and pBeloBAC11 were ligated and then transformed into DH10ß E. coli. Each $100 \mu \mathrm{l}$ reaction contained 40 ng insert DNA, 20ng vector DNA, 30 mM Tris- $\mathrm{HCl}(\mathrm{pH}$ 7.8), $10 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM} \mathrm{DTT}, 1 \mathrm{mM} \mathrm{ATP}$ and 4 U T4 DNA ligase (Promega). The vector and insert DNA were incubated at $40^{\circ} \mathrm{C}$ for 5^{\prime} without mixing. The buffer and enzyme were then added slowly and mixed once using a wide bore pipette. The ligations were incubated at $16^{\circ} \mathrm{C}$ overnight.

The ligated DNA was transformed into DH10ß electromax competant E. coli (Life Technologies) by electroporation. On ice, $2 \mu \mathrm{l}$ ligation was mixed with $20 \mu \mathrm{l}$ DH10 β cells and transferred to a microelectroporation chamber (Life Technologies). The chamber was placed into a cell-porator-safe (Life Technologies) that was filled with wet ice and the cells were electroporated using a cell porator with voltage booster (Life Technologies) set to $400 \mathrm{~V}, 330 \mu \mathrm{~F}, 4000$ Ohms, low ohms impedance and fast charge rate. The cells were transferred to $250 \mu \mathrm{l}$ SOC medium pre-heated to $37^{\circ} \mathrm{C}$ and were incubated at $37^{\circ} \mathrm{C}$ for 1 h with vigorous shaking. The entire $250 \mu \mathrm{l}$ was spread onto

14 cm diameter LB plates containing $12.5 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol, $62.5 \mu \mathrm{~g} / \mathrm{ml}$ Xgal (Promega) and $500 \mu \mathrm{M}$ IPTG (Promega). The plates were incubated at $37^{\circ} \mathrm{C}$ for 20 h .

2.3.5.1 Determination of insert sizes

To determine which of the size selections produced clones with the largest inserts, ten colonies for each of the three selections were cultured overnight at $37^{\circ} \mathrm{C}$ in 5 ml LB containing $12.5 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol. The plasmid DNA was extracted by the alkaline lysis method (Sambrook et al., 1989), precipitated with isopropanol and resuspended in $50 \mu \mathrm{l} \mathrm{TE}$ at $65^{\circ} \mathrm{C}$ for 5^{\prime}.

The inserts were excised from the vector by digestion with NotI and electrophoresed on a 1% agarose CHEF gel in $0.5 \times$ TBE as described (section 2.4.1). From the CHEF gel, it was determined that the second largest size-selected gel slice produced clones with the largest inserts, so this DNA was used to construct the BAC library. Another ligation was prepared and the entire ligation was electroporated into DH10 β electromax competent E.coli and plated onto LB agar containing $12.5 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol, $62.5 \mu \mathrm{~g} / \mathrm{ml} \mathrm{Xgal}$ and $500 \mu \mathrm{M}$ IPTG as described (section 2.3.5).

2.3.6 Culturing colonies for the BAC library

The BAC clones were cultured in $1200 \mu \mathrm{l}$ microtubes (Evergreen Scientific) arranged in boxes in a 12×8 format. Each tube was filled with $300 \mu \mathrm{LB}$ containing $12.5 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol. Each tube was inoculated with a different white colony picked manually from the plates with toothpicks. The toothpicks were left standing in the culture boxes until all the boxes to be cultured for the day were filled and then removed. The boxes were incubated at $37^{\circ} \mathrm{C}$ with shaking for $18-24 \mathrm{~h}$.

2.3.7 BAC DNA extraction and preparation of single-pools

Once the colonies had been cultured, the aliquots for DNA extraction were removed prior to the addition of glycerol storage solution to the tubes (section 2.3.8). Using a 12 -tip multichannel pipette (Lab Systems), a $100 \mu \mathrm{l}$ aliquot was taken from each tube in a box, pooled in an autoclaved plastic reservoir (Jomar Diagnostics) and then transferred to a 50 ml Falcon tube. The cells from the "single-pool" were pelleted by centrifugation at 1500 g for 5^{\prime} in the swing bucket rotor of a Sorvall RT 6000 D . The supernatant was decanted and the BAC DNA was extracted from the cells by a standard alkaline lysis mini-preparation (Sambrook et al., 1989). The cells were resuspended in $200 \mu \mathrm{l}$ solution I containing $5 \mathrm{mg} / \mathrm{ml}$ lysozyme and transferred to a 1.5 ml eppendorf. The tubes were incubated at room temperature for 5^{\prime} and then on ice for 5^{\prime} before $400 \mu \mathrm{l}$ solution II was added and mixed by inversion. After a 5 ' incubation on ice, $300 \mu \mathrm{l}$ solution III was added, mixed well, and the tubes incubated at $-80^{\circ} \mathrm{C}$ for 10^{\prime}. The tubes were thawed at room temperature and centrifuged at 14000 g for 5 ' to pellet the cellular debris. The supernatant was decanted into a new 2 ml eppendorf and $1 \mu \mathrm{l} 10 \mathrm{mg} / \mathrm{ml}$ RNase (Boehringer Mannheim) was mixed in thoroughly by inversion before the tubes were incubated at $37^{\circ} \mathrm{C}$ for 30^{\prime}. One volume of $25: 24: 1$ phenol:chloroform:isoamyl alcohol was added to each tube, mixed by inversion and centrifuged for 5^{\prime} at $14,000 \mathrm{~g}$. The upper aqueous phase was transferred to a new tube and extracted once with an equal volume of chloroform. After centrifugation at $14,000 \mathrm{~g}$ for 5^{\prime}, the upper aqueous phase was again transferred to a new tube and $540 \mu \mathrm{l}$ isopropanol (0.6 volume) was added. The tubes were incubated at $-80^{\circ} \mathrm{C}$ for a minimum of 15^{\prime}, thawed at room temperature and the DNA was pelleted by centrifugation at $14,000 \mathrm{~g}$ for 15 '. The supernatant was decanted and the pellet was rinsed with $500 \mu \mathrm{l} 70 \%$ ethanol and centrifuged at $14,000 \mathrm{~g}$ for 5^{\prime}. The pellet was air-dried and then resuspended in $200 \mu \mathrm{l}$ TE (pH 8.0) overnight at $4^{\circ} \mathrm{C}$. After the DNA was eluted, it was split into $2 \times 100 \mu \mathrm{l}$
aliquots and one aliquot of each single-pool was retained at Texas A\&M and the other was returned to the University of Adelaide and stored at $-20^{\circ} \mathrm{C}$.

2.3.7.1 Single-pool working stocks for PCR

A $1 / 10$ dilution of every single-pool was made $(10 \mu \mathrm{l}$ BAC DNA $+90 \mu \mathrm{l}$ ddH20) as a working stock for amplification by the polymerase chain reaction. To confirm that each working stock contained DNA, they were all amplified by PCR using two primers designed from pBeloBAC11. The reaction mixture consisted of 20 mM Tris- $\mathrm{HCl}(\mathrm{pH}$ $8.4), 50 \mathrm{mM} \mathrm{KCl}, 125 \mu \mathrm{M}$ dGTP, $125 \mu \mathrm{M}$ dATP, $125 \mu \mathrm{M} \mathrm{dTTP}, 125 \mu \mathrm{M} \mathrm{dCTP}, 25 \mathrm{pmol}$ forward primer (5^{\prime} GAA AAT ACC GCA TCA GGC 3^{\prime}), 25 pmol reverse primer (5^{\prime} GGA TCC CCG GGT ACC GAG 3^{\prime}), $1.5 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 1 \mu \mathrm{l}$ single-pool DNA working stock and 0.5U Taq DNA polymerase (Life Technologies). The reactions were amplified using an Omnigene thermal cycler (Hybaid) and the following cycle conditions:

1 cycle: $94^{\circ} \mathrm{C} 4^{\prime}$
35 cycles: $94^{\circ} \mathrm{C} 1^{\prime}, 50^{\circ} \mathrm{C} 1^{\prime}, 72^{\circ} \mathrm{C} 1^{\prime}$
1 cycle: $72^{\circ} \mathrm{C} 10^{\prime}$

2.3.7.2 Preparation of superpools

"Super-pool" DNA was produced by combining $20 \mu \mathrm{l}$ from 8 single-pool DNA working stocks so that the entire library was represented in 78 tubes (Figure 2.1). This combination had previously been shown to produce robust PCR results (Cai et al., 1995) and allows PCR to be performed in 96 -well plate format. The superpools were stored in a microtitre plate with strip caps (Integrated Sciences) at $-20^{\circ} \mathrm{C}$. Although this meant the superpools were subjected to multiple freeze-thaws, it avoided the problem of evaporation of the BAC DNA that was encountered when the plate was stored at $4^{\circ} \mathrm{C}$.

\mathbf{H}	\mathbf{G}	\mathbf{F}	\mathbf{E}	\mathbf{D}	\mathbf{C}	\mathbf{B}	\mathbf{A}	
$1-8$	$9-16$	$17-24$	$25-32$	$33-40$	$41-48$	$49-56$	$57-64$	
$65-72$	$73-80$	$81-88$	$89-96$	$97-104$	$105-112$	$113-120$	$121-128$	
$129-136$	$137-144$	$145-152$	$153-160$	$161-168$	$169-176$	$177-184$	$185-192$	$\mathbf{2}$
$193-200$	$201-208$	$209-216$	$217-224$	$225-232$	$233-240$	$241-248$	$249-256$	$\mathbf{4}$
$257-264$	$265-272$	$273-280$	$281-288$	$289-296$	$297-304$	$305-312$	$313-320$	$\mathbf{5}$
$321-328$	$329-336$	$337-344$	$345-352$	$353-360$	$361-368$	$369-376$	$377-384$	$\mathbf{6}$
$385-392$	$393-400$	$401-408$	$409-416$	$417-424$	$425-432$	$433-440$	$441-448$	
$449-456$	$457-464$	$465-472$	$473-480$	$481-488$	$489-496$	$497-504$	$505-512$	$\mathbf{7}$
$513-520$	$521-528$	$529-536$	$537-544$	$545-552$	$553-560$	$561-568$	$569-576$	$\mathbf{9}$
$577-584$	$585-592$	$593-600$	$601-608$	$609-616$	$617-624$			$\mathbf{1 0}$

Figure 2.1: Layout of superpool DNA for BAC library screening by the polymerase chain reaction. The 78 superpools each contain 8 plates of 96 BAC clones.

2.3.8 Storage of the BAC library

After the aliquots for DNA extraction had been removed, an equal volume of 2 x BAC storage solution was added to every tube. The cells and glycerol solution were mixed thoroughly by pipetting up and down, and then $100 \mu 1$ aliquots from every well were transferred to three gamma-sterilised microtitre plates (Technoplas). The plates were sealed with tape and stored at $-80^{\circ} \mathrm{C}$. The cells remaining in the culture tubes were stored at $-20^{\circ} \mathrm{C}$ as a working copy of the library. One $-80^{\circ} \mathrm{C}$ copy of the library was retained at Texas A\&M University, one copy was stored at Utah State University and the third copy was returned to the University of Adelaide.

2.3.9 Preparation of row and column DNA

The plates stored at the University of Adelaide were used to generate three additional stocks of single-pool DNA as well as DNA from all the rows and columns. The microtitre plates were thawed at room temperature and the cells were mixed thoroughly by pipetting up and down. All the solution was dispensed back into the microtitre wells and what remained in the tip was sufficient to inoculate microtubes
containing $800 \mu \mathrm{l}$ LB with $12.5 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol. The cultures were incubated at $37^{\circ} \mathrm{C}$ with shaking for $18-24 \mathrm{~h}$. For single-pool DNA, $300 \mu \mathrm{l}$ aliquots were taken from every tube in a box and pooled. A $100 \mu 1$ aliquot was then taken from each tube of a row or each tube of a column and pooled. The BAC DNA was extracted by a standard alkaline lysis mini-preparation (Sambrook et al., 1989) as described (section 2.3.7). After the aliquots were taken for DNA extraction, the cells were stored (section 2.3.8).

One copy of the BAC library was stored at the University of Sydney and two copies of the library were stored in different $-80^{\circ} \mathrm{C}$ freezers at the University of Adelaide. A working copy of the library was also stored at $-20^{\circ} \mathrm{C}$. One copy of the single-pool DNA and the row and column DNA was sent to Utah State University and one copy of the single-pool DNA was sent to AgResearch, New Zealand.

2.4 BAC library characterisation

To determine the amount of the genome covered by the BAC library, clones were sized (section 2.4.1) and genes and microsatellite markers were amplified by the polymerase chain reaction (PCR) (section 2.4.2).

2.4.1 Sizing BAC inserts

A total of 139 BAC clones were selected at random from the library and sized by CHEF gel electrophoresis. In addition to this, BAC clones that were isolated from the library by PCR-based screening (section 2.4.2) were also sized. BAC DNA for sizing was prepared by a standard alkaline lysis mini-preparation (section 2.3.7) from 5 ml overnight cultures in LB with $12.5 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol. The DNA was resuspended in $50 \mu \mathrm{l}$ TE overnight at $4^{\circ} \mathrm{C}$.

The insert DNA was excised by digestion with NotI which has two recognition sequences in pBeloBAC11 that flank the HindIII cloning site. Each $25 \mu \mathrm{l}$ digest consisted of $3 \mu \mathrm{l}$ BAC DNA, 6 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.9), 6 \mathrm{mM} \mathrm{MgCl}_{2}, 150 \mathrm{mM} \mathrm{NaCl}$,

1 mM DTT, 4 mM spermidine and 10U NotI (Promega). The reactions were incubated at $37^{\circ} \mathrm{C}$ for 5 h and then the total digest was loaded onto a 1% agarose CHEF gel in 0.5 x TBE. A slice of a lambda concatomer (Promega) and 250ng HindIII lambda ladder (Promega) were loaded in a single lane.

To separate fragments from 100-500kb, the BAC DNA was electrophoresed using a CHEF DRII apparatus (Biorad) at $6 \mathrm{~V} / \mathrm{cm}$ for 18 h at $14^{\circ} \mathrm{C}$ with a fixed angle of 120°. The initial switch time was 9.8 s with a linear ramp to the final switch time of 35.3s. To separate fragments from $25-200 \mathrm{~kb}$, the gel was run for 16 h with an initial switch time of 1.4 s and a final switch time of 13.5 s .

2.4.2 PCR-based screening strategy

The ovine BAC library was screened by PCR with a variety of primers for microsatellite markers and genes of interest to establish the amount of the genome that the library covered. Primers for PCR were kindly donated by Dr. Jill Maddox (University of Melbourne) and Dr. Noelle Cockett (Utah State University). Primers for genes of interest were made available by Prof. Cindy Bottema or were designed from published sequences using Oligo 4.0 software (Molecular Biology Insights, Inc.). Primers containing hairpins or which could form dimers at the 3 ' end were avoided.

Primers were selected so that at least two BAC clones for every sheep chromosome were isolated from the library. Where possible, a marker near the centromere and a second marker near the telomere were selected from the ovine genetic linkage map (Maddox et al., 1996; de Gortari et al., 1998). The BAC clones containing these markers would then anchor the physical and genetic linkage maps for each of the chromosomes.

To minimise the number of PCR reactions that needed to be performed in order to isolate an individual clone containing a sequence of interest, the BAC DNA was pooled. The first screen was of the 78 superpools which each contained 8 plates of 96 BAC
clones (section 2.3.9). In the second step, the 8 single-pool working stocks (section 2.3.8) that corresponded to a positive superpool were screened. Then finally the row and column DNA from the positive plate were screened. The intersection of the row and column identifies the location of the positive BAC clone (Figure 2.2).

2.4.2.1 Optimisation of PCR conditions

The PCR conditions for every set of primers were optimised so that a single product of the expected size was amplified. Reactions were performed in Omnigene 96 well microtitre plates (Hybaid). A standard $25 \mu 1$ reaction consisted of 20 mM Tris- HCl (pH 8.4) $, 50 \mathrm{mM} \mathrm{KCl}, 125 \mu \mathrm{M}$ dGTP, $125 \mu \mathrm{M}$ dATP, $125 \mu \mathrm{M}$ dTTP, $125 \mu \mathrm{M}$ dCTP, 25 pmol forward primer, 25 pmol reverse primer, $1.5 \mathrm{mM} \mathrm{MgCl}_{2}, 100 \mathrm{ng}$ DNA template and 0.5U Taq DNA polymerase (Life Technologies). The reactions were overlayed with mineral oil and amplified using an Omnigene thermal cycler (Hybaid) with satellite attachments with the following conditions:

Simulated tube control
Calibration factor: 500
1 cycle: $94^{\circ} \mathrm{C} 4^{\prime}$
35 cycles: $94^{\circ} \mathrm{C} 1^{\prime}, \mathrm{T}_{\mathrm{A}} 1^{\prime}, 72^{\circ} \mathrm{C} 1^{\prime}$
1 cycle: $72^{\circ} \mathrm{C} 10^{\prime}$

STEP 1:
Screen super-pool DNA

STEP 2: Screen single-pool DNA

STEP 3: Screen row and column DNA

2 R1 R2 R3 R4 R5 R6 R7 R8 C1 C2 C3 C4 C5 C6 C7 C8 C9C10C11C12 G

Figure 2.2: PCR-based screening strategy to identify a clone from the ovine BAC library that contains a sequence of interest. The 78 super-pools each consisting of 8 plates of 96 BAC clones are screened first. The second step is to screen the 8 single-pools (96 clones/pool) that correspond to a positive reaction. Finally, DNA from the rows and columns is screened and the intersection of the positive row and positive column is the address of the BAC of interest (eg. 2R4C6). (G: genomic control).

Initially, an annealing temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ of $55^{\circ} \mathrm{C}$ was used. This temperature was altered if a single product could not be produced by adjusting the stringency of the PCR through either the magnesium or primer concentration. If no bands were produced under the standard conditions, then either the annealing temperature was decreased or a magnesium titration was performed ($1.5 \mathrm{mM}, 2 \mathrm{mM}, 2.5 \mathrm{mM}, 3 \mathrm{mM}, 3.5 \mathrm{mM}, 4.5 \mathrm{mM}$). If multiple bands were present, then either the temperature was increased and a magnesium titration or a primer titration ($1 \mathrm{x}, 1 / 2 \mathrm{x}, 1 / 5 \mathrm{x}, 1 / 10 \mathrm{x}, 1 / 20 \mathrm{x}, 1 / 50 \mathrm{x}$) was performed. The optimum conditions for the primer pairs that were used to screen the BAC library are listed in Table 2.2.

2.4.2.2 Analysis of PCR products by agarose gel electrophoresis

PCR products were separated by electrophoresis on 2% agarose gels in $1 \times$ TAE for $0.5-0.9 \mathrm{~h}$ at $7.5 \mathrm{~V} / \mathrm{cm}$. A 'wide mini-sub cell' electrophoresis unit (Biorad) was used routinely with either 15,20 or 30 lanes depending on the number of samples. The PCR products were sized against a pGEM ladder cut with HinfI, RsaI and SinI (Promega). Gels were stained in $0.5 \mu \mathrm{~g} / \mathrm{ml}$ ethidium bromide for 10^{\prime} and photographed under UV illumination (312 nm) using an integrating camera and Gel-Documentation 1000 System (Biorad). The images were captured using Molecular Analyst software and printed on photographic paper with a Hewlett Packard 890CXI Inkjet printer.

Table 2.2: Primers and reaction conditions used to screen the ovine BAC library.

Ch.	Locus	Primer sequence	pmol	$\left[\mathrm{Mg}^{2+}\right]$	$\mathrm{T}_{\text {A }}$	Citation ${ }^{1}$
15	ADCYC	5' AAAGTGACACAACAGCTTCTCCAG 3'	20	1.5 mM	$58^{\circ} \mathrm{C}$	X16451
		5' AACGAGTGTCCTAGTTTGGCTGTG 3'				
6	BM415	5^{\prime} GCTACAGCCCTTCTGGTtTG 3'	5	1.5 mM	$55^{\circ} \mathrm{C}$	G18413
		5^{\prime} GAGCTAATCACCAACAGCAAG 3^{\prime}				
12	BM719	5^{\prime} 'TTCTGCAAATGGGCTAGAGG 3'	12.5	1.5 mM	$55^{\circ} \mathrm{C}$	G18427
		5^{\prime} CACACCCTAGTTTGTAAGCAGC 3^{\prime}				
3	BM827	5^{\prime} GGG CTG GTC GTA TGC TGA G 3^{\prime}	12.5	1.5 mM	$55^{\circ} \mathrm{C}$	U06763
		5^{\prime} GTT GGA CTT GCT GAA GTG ACC 3^{\prime}				
19	BM1303	5^{\prime} CTTGGGAAAAATTGCCAGC 3^{\prime}	12.5	1.5 mM	$55^{\circ} \mathrm{C}$	G18424
		5' СTCTGCCGCTTGCCTCTC 3'				
6	BM1329	5^{\prime} TTGTTTAGGCAAGTCCAAAGTC 3^{\prime}	12.5	1.5 mM	$55^{\circ} \mathrm{C}$	G18422
		5' AACACCGCAGCTTCATCC 3'				
1	BM1824	5' GAGCAAGGTGTTTTTCCAATC 3'	25	1.5 mM	$55^{\circ} \mathrm{C}$	G18394
		5^{\prime} CATTCTCCAACTGCTTCCTTG 3^{\prime}				
18	BM3413	5' TCCCTGGTAACCAATGAATTC 3'	25	1.5 mM	$55^{\circ} \mathrm{C}$	G18492
		5' CAATGGATTTGACCCTCCC 3'				
16	BM4107	5^{\prime} AGCCCCTGCTATTGTGTGAG 3^{\prime}	12.5	1.5 mM	$55^{\circ} \mathrm{C}$	G18519
		5' ATAGGCTTTGCATTGTtCAGG 3'				
8	BM4208	5^{\prime} TCAGTACACTGGCCACCATG 3^{\prime}	5	1.5 mM	$55^{\circ} \mathrm{C}$	G18509
		5^{\prime} CACTGCATGCTTTTCCAAAC 3^{\prime}				
1	BM6438	5' TTGAGCACAGACACAGACTGG 3'	1.25	1.5 mM	$55^{\circ} \mathrm{C}$	G18435
		5^{\prime} ACTGAATGCCTCCTTTGTGC 3^{\prime}				
26	BM6526	5' CATGCCAAACAATATCCAGC 3'	25	1.5 mM	$55^{\circ} \mathrm{C}$	G18454
		5^{\prime} TGAAGGTAGAGAGCAAGCAGC 3'				
15	CD3D	5^{\prime} CTGCTTTGCTGGACATGAG 3'	25	1.5 mM	$51^{\circ} \mathrm{C}$	X52933
		5'CTGATAGAGCTGGTCATTCCC 3'				
21	CD5	5' CAACTAGTCATTCTTGAGGGATTTC 3'	25	3 mM	$55^{\circ} \mathrm{C}$	Matthew and Maddox, 1994a
		5' ATACGGAAAAAATACCAGATTAGACACT 3'				
5	CSF2		25	1.5 mM	$53^{\circ} \mathrm{C}$	Maddox, unpublished
X	CSRD241	5' TAACACGGGCAAACAGCCTTTCA 3'	20	1.5 mM	$50^{\circ} \mathrm{C}$	Davies et al., 1996
		5' GTCTGTTTGGTAAACAGATAGCA 3^{\prime}				
14	CSRD270	5' TTGCCTGAGCCAATTCTTTACAGT 3'	25	1.5 mM	$55^{\circ} \mathrm{C}$	Drinkwater et al., 1997
		5' TGCTTGCAGCTGTGGTTGTATTAG 3'				
10	CSRD287	5' ACAAAGGGCATGACTGAGCAACTA 3'	2.5	1.5 mM	$60^{\circ} \mathrm{C}$	Drinkwater et al., 1997
		5' GGagaggattcangtgcatcagta 3'				
26	CSSM043	5' AAAACTCTGGGAACTTGAAAACTA 3'	25	1.5 mM	$55^{\circ} \mathrm{C}$	U03824
		5' GTTACAAATTTAAGAGACAGAGTT 3'				
20	DQA 1		12.5	1.5 mM	$61^{\circ} \mathrm{C}$	Maddox, unpublished Maddox, unpublished
20	DQA2		12.5	1.5 mM	$51^{\circ} \mathrm{C}$	
20	DQB		25	2.5 mM	$65^{\circ} \mathrm{C}$	Maddox, unpublished
20	DRB1		25	1.5 mM	$55^{\circ} \mathrm{C}$	Maddox, unpublished
20	DRB2		25	1.5 mM	$58^{\circ} \mathrm{C}$	Maddox, unpublished Maddox, unpublished
20	DYB		25	1.5 mM	$50^{\circ} \mathrm{C}$	

Table 2.2 continued.

Ch.	Locus	Primer sequence	pmol	$\left[\mathrm{Mg}^{\mathbf{2 +}}\right]$	T ${ }_{\text {A }}$	Citation ${ }^{1}$
2	FN1	5'TCCAACCCAGAGAAACAAGCGT 3'	5	1.5 mM	$50^{\circ} \mathrm{C}$	G42685
		5^{\prime} GATCCCAATCCAAATCCAAAGT ${ }^{\prime}{ }^{\prime}$				
15	FSHB	5 'TGGGATATAGACTTAGTGGC 3^{\prime}	20	1.5 mM	$50^{\circ} \mathrm{C}$	S64745
		$5^{\text {' CAGTTTCTAAGGCTACATGGT }}{ }^{\prime}$				
11	GH2		2.5	2 mM	$60^{\circ} \mathrm{C}$	Bottema, unpublished
12	HUJ614	5' CGCCAGGCATGGTGAAGTCG 3'	25	1.5 mM	$55^{\circ} \mathrm{C}$	M93653
		5^{\prime} CCCAGCACAGTACAGGCTGC 3^{\prime}				
3	IFNG	5^{\prime} TTGTGACTGTTAGCTAGATGTGTT 3'	25	3.5 mM	$52^{\circ} \mathrm{C}$	Z54144
		5' ATACACATATTATGCCCATCTTTT 3'				
3	IGF1	5^{\prime} gTGGTtGTtGTCAGAGATGAGT 3'	1	1.5 mM	$45^{\circ} \mathrm{C}$	U01338
		5' CTCCTTCTGTTCCCCTCCTGG 3^{\prime}				
3	IL1A	5' ACATTGTGAGGGATACAAAGATGT 3'	25	2 mM	$55^{\circ} \mathrm{C}$	AF117652
		5' GAGATTCTTAGAGTCACAGGAAGC 3'				
13	IL2RA	5^{\prime} AGCAGAGGTACAGGTGGTAAGCA ${ }^{\prime}$	20	1.5 mM	$50^{\circ} \mathrm{C}$	Matthew and Maddox, 1994b
		5' GATAGCCTTGGAGAAGGTAGCGTAT 3'				
5	IL3	5' AGCCTCTCTATCTTGCATCTGCTC 3'	25	1.5 mM	$55^{\circ} \mathrm{C}$	Z18291
		5' TCATCTGAGTTCAAGGAGCCCT 3'				
5	IL5	5^{\prime} GACAGTTTCCTACGATGCTTATTGTC 3^{\prime}	25	1.5 mM	$45^{\circ} \mathrm{C}$	U17053
		5^{\prime} TCTCCTCCAGAAACTTTCACTACAG 3'				
4	IL6	5' CTAAAAGTATGAGCGTTAGGAC 3'	25	1.5 mM	$50^{\circ} \mathrm{C}$	X62501
		5^{\prime} GAGGTAAGCCTACACATTTCA 3^{\prime}				
7	ILSTS005	5^{\prime} GGAAGCAATGAAATCTATAGCC 3^{\prime}	25	1.5 mM	$50^{\circ} \mathrm{C}$	L23481
		5^{\prime} TGTTCTGTGAGTTTGTAAGC 3^{\prime}				
9	ILSTS008	5' GAATCATGGATTTTTCTGGGG 3^{\prime}	12.5	1.5 mM	$55^{\circ} \mathrm{C}$	L23483
		5' TAGCAGTGAGTGAGGTTGGC 3'				
9	ILSTS011	5^{\prime} GCTTGCTACATGGAAAGTGC 3^{\prime}	12.5	1.5 mM	$55^{\circ} \mathrm{C}$	L23485
		5^{\prime} CTAAAATGCAGAGCCCTACC 3^{\prime}				
24	ILSTS043	5^{\prime} TATTCAAAGTCACAGACGCC 3^{\prime}	25	2 mM	$55^{\circ} \mathrm{C}$	L37218
		5' TAGGGAATGGCGAATTTGCC 3^{\prime}				
5	IRF1		25	1.5 mM	$53^{\circ} \mathrm{C}$	Maddox, unpublished X01610
11	KAP1.1	5' TATGACAAAGCAAGCCAGGG ${ }^{\prime \prime}$	25	1.5 mM	$63^{\circ} \mathrm{C}$	
		5^{\prime} GAGTTGGGTTGAGAGGAGGG 3^{\prime}				
1	KAP6.1	5^{\prime} CCAATGGCATGAAGGTGT 3^{\prime}	25	1.5 mM	$50^{\circ} \mathrm{C}$	M95719
		5' AAAAAGGGAAGGGTTGGTG 3'				
3	KRT2.13	5^{\prime} GCCTGTAGGCGTGAGGGTTTT 3^{\prime}	25	1.5 mM	$55^{\circ} \mathrm{C}$	X72379
		5' AAGGGCCAAGAGTCATTCACAT 3'				
3 p	LGB	5^{\prime} AGCAACACACCCAGCACCAG ${ }^{\prime}$	2.5	1.5 mM	$59^{\circ} \mathrm{C}$	X12817
		5^{\prime} CAGGAGGCACTTCATGGCTG 3'				
3	MAF23	5' GTGGAGGAATCTTGACTTGTGATAG 3^{\prime}	1.25	2 mM	$58^{\circ} \mathrm{C}$	M38719
		5' GGCTATAGTCCATGGAGTCGCAG 3'				
23	MAF35	5 ' TCAAGAATTTTGGAGCACAATTCTGG 3^{\prime}	25	1.5 mM	$50^{\circ} \mathrm{C}$	M80518
		5^{\prime} AGTTACAAATGCAAGCATCATACCTG 3^{\prime}				
4	MAF50	5^{\prime} GTAGACTACTCATGAAAATCAGGTCTTAGG 3^{\prime}	12.5	1.5 mM	$55^{\circ} \mathrm{C}$	M77377
		5^{\prime} GGGACATGCAGCTATACACTTGAG 3^{\prime}				
22	- MAF92	5^{\prime} TAGAATGTCATGTTCTCAGCATTCCC 3^{\prime}	25	2 mM	$60^{\circ} \mathrm{C}$	M80527
		5' AACCCATGAATCATCTCTAACTACCTC 3'				
17	MAF209	5' GATCACAAAAAGTTGGATACAACCGTGG 3'	20	1.5 mM	$50^{\circ} \mathrm{C}$	M80358
		5' TCATGCACTTAAGTATGTAGGATGCTG 3'				
16	MAF214	5^{\prime} GGGTGATCTTAGGGAGGTTTTGGAGG 3^{\prime}	0.5	1.5 mM	$55^{\circ} \mathrm{C}$	M88160
		5' AAtGCagGagatctgaggcagggacg 3'				

Table 2.2 continued.

Ch.	Locus	Primer sequence	pmol	$\left[\mathrm{Mg}^{2+}\right.$]	$\mathrm{T}_{\mathbf{A}}$	Citation ${ }^{\text {I }}$
1 p	McM58	5' CTGGGTCTGTATAAGCACGTCTCC 3'	5	1.5 mM	$55^{\circ} \mathrm{C}$	L34283
		5' CAGAACAATAAACGCTAAACCAGAGC 3'				
19	McM111	5^{\prime} CTGCCTGTCTGTAAAATGGAGCT 3^{\prime}	25	1.5 mM	$55^{\circ} \mathrm{C}$	L35310
		5^{\prime} ACTATCCCAGCCTCCTTGAGG 3'				
23	McM136	5' GCA CAC ACA TAC ACA GAG ATG CG 3'	1.25	1.5 mM	$53^{\circ} \mathrm{C}$	L38978
		5' AAA GAG GAA AGG GTt AtG tct gGa 3'				
4	OarHH64	5^{\prime} CGTTCCCTCACTATGGAAAGTTATATATGC 3'	25	1.5 mM	$55^{\circ} \mathrm{C}$	L12558
		5^{\prime} CACTCTATTGTAAGAATTTGAATGAGAGC 3'				
6	OarJMP8	$5^{\circ} \mathrm{CGGGATGATCTTCTGTCCAAATATGC} 3^{\prime}$	25	1.5 mM	$55^{\circ} \mathrm{C}$	U35059
		5' CATTTGCTTTGGCTTCAGAACCAGAG 3'				
26	OarJMP58	5' GAAGTCATtGAGGGGTCGCTAACC 3'	25	1.5 mM	$57^{\circ} \mathrm{C}$	U35058
		5' CTTCATGTTCACAGGACTTTCTCTG 3'				
25	OarVH72	5' CTCTAGAGGATCTGGAATGCAAAGCTC 3'	25	1.5 mM	$55^{\circ} \mathrm{C}$	L 12548
		5^{\prime} GGCCTCTCAAGGGGCAAGAGCAGG 3'				
21	OarVH110	5^{\prime} CTCTAGAGGATCACAGAGAGTCGG 3^{\prime}	25	1.5 mM	$55^{\circ} \mathrm{C}$	L12550
		5' GCAGAAACATTTTTTTCCTTCAATATAGTTTCCC 3'				
17	OarVH116	5' AGTGTGACTAGAGAACTAAATTTTGAAGGTC 3'	25	1.5 mM	$55^{\circ} \mathrm{C}$	L12551
		5' TATTTTTTCCATCAAAAAGAACTCTATAGGGC 3'				
4	OBS	5'GTCTGGAGGCAAAGGGCAGAGT 3'	2.5	1.5 mM	$64^{\circ} \mathrm{C}$	U50365
		5^{\prime} CCACCACCTCTGTGGAGTAG ${ }^{\prime}$				
21	OPCML	5^{\prime} CCTGACTATAATGTACAGATCCCTC 3'	25	1.5 mM	$50^{\circ} \mathrm{C}$	X12672
		5' GCAGAATGACTAGGAAGGATGGCA 3^{\prime}				
25	PRF	5' ССТСТGCACATTCTTGTGGA 3'	25	1.5 mM	$50^{\circ} \mathrm{C}$	
		5' GATAGGCGTCTGTGGCTGTG 3^{\prime}				2000
19	PRL	5^{\prime} GGAAAGTGAACATGA 3^{\prime}	20	4.5 mM	$50^{\circ} \mathrm{C}$	Bottema,
		5^{\prime} GCCCTCTCTTCTACAA 3'				unpublished
9	RJH1	5' TGATtTAGATGCTtTGCTAATGCCA 3'	1.25	1.5 mM	$55^{\circ} \mathrm{C}$	U47049
		5^{\prime} GGATTCTTTACCACTAGCCCCACCT ${ }^{\prime}$				
7	RNASE6		25	2 mM	$50^{\circ} \mathrm{C}$	Bottema,
						unpublished
11	SCYA	5^{\prime} 'TTTCTTCCTCCTATTTCCCCTTCT ${ }^{\prime}$	25	2 mM	$55^{\circ} \mathrm{C}$	Maddox,
		5' ACCCACTTCTTCTTGGGGTC 3'				unpublished
Y	SRY	5' TGCCAGGAGGTATTGAGGGG 3^{\prime}	25	2 mM	$63^{\circ} \mathrm{C}$	Bottema,
		5^{\prime} CAGAGGAGCAGTTATTTTGG 3^{\prime}				unpublished
18	TGLA 122	5^{\prime} AATCACATGGCAAATAAGTACATAC 3^{\prime}	25	1.5 mM	$55^{\circ} \mathrm{C}$	Crawford et al.,
		5' СССТССТССАGGTAAATCAGC 3^{\prime}				1995
14	TGLA357	5' GCAGAGTCTGAGTTTAAACTTCTCTAACACC 3'	25	1.5 mM	$55^{\circ} \mathrm{C}$	Crawford et al.,
		5'GAGGGCAAAAAGGTTTGGGGTGTATGG 3'				1995
14	UWCA5	5^{\prime} CTT CCC TGT GTT AGG CTA TGT 3^{\prime}	12.5	1.5 mM	$55^{\circ} \mathrm{C}$	L15338
		5^{\prime} CAA GAG AAG ACA AGA CTA CAG A ${ }^{\prime}$ '				
$\begin{gathered} \mathrm{X} / \\ \mathrm{Y} \end{gathered}$	ZFX/ZFY		2.5	2 mM	$55^{\circ} \mathrm{C}$	D84097

[^0]
2.4.2.3 Screening superpool DNA

To minimise the number of freeze-thaws to which the superpool DNA was subjected, each week 2μ l aliquots of every superpool were dried down in Omnigene mictrotitre plates (Hybaid) at $37^{\circ} \mathrm{C}$ and the plates stored at $4^{\circ} \mathrm{C}$ until used in PCR. A genomic DNA control (100 ng) and a negative (no DNA) control were also included on the plate. A master-mix containing all the reagents for 85 PCR reactions was prepared, mixed well and then split so that each reaction was 25μ l. The reactions were overlayed with mineral oil and amplified using the optimum conditions for the primer pair (Table 2.2). Positive superpools were identified by comparing the size of any PCR products generated by the superpool DNA to the genomic DNA control after agarose gel electrophoresis (section 2.4.2.2).

2.4.2.4 Screening single pools

The eight single pools that corresponded to a positive superpool were screened by PCR using $1 \mu \mathrm{l}$ of the single pool working stock as the template for PCR. Reactions containing a $1 \mu \mathrm{l}$ aliquot of the positive superpool, 100 ng genomic DNA and a no DNA control were also prepared.

2.4.2.5 Screening row and column DNA

A $1 \mu \mathrm{l}$ aliquot of BAC DNA from the 12 columns and 8 rows that corresponded to a positive single-pool were amplified by PCR. Reactions for the positive superpool, single pool, genomic DNA control and no DNA control were also included in this screen. The individual BAC containing the sequence of interest was located at the intersection between the positive row and positive column.

2.4.2.6 Confirmation of individual BAC

Once the location of the individual BAC was determined, the box containing the working stock of cells was recovered from the $-20^{\circ} \mathrm{C}$ freezer. A sterile 100 ml bottle containing 50 ml LB with $12.5 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol was inoculated with the appropriate BAC clone and incubated with shaking at $37^{\circ} \mathrm{C}$ for $18-24 \mathrm{~h}$. The BAC DNA was extracted by a standard alkaline lysis miniprep (Sambrook et al., 1989) as described (section 2.3.7) and resuspended in $50 \mu \mathrm{l}$ TE. The superpool, single-pool, row, column, individual BAC and genomic DNA control were all amplified by PCR to ensure that the clone that had been isolated generated a product of the expected size. The identity of the PCR product, and therefore the BAC, was confirmed by sequencing prior to physical mapping.

2.4.3 Sequencing

To avoid making incorrect physical mapping assignments, the identity of every BAC clone isolated from the library was confirmed by sequencing prior to fluorescence in situ hybridisation. PCR product was generated from the individual BAC, and this product was used as the template for cycle sequencing reactions with $\gamma 32 \mathrm{P}-\mathrm{dATP}$ labelled primers.

2.4.3.1 Template for sequencing

PCR products were generated using $1 \mu \mathrm{l}$ of the individual BAC (section 2.4.2.5) as the template and the same PCR conditions that were used to screen the BAC library (Table 2.2). To generate sufficient product for sequencing, $6 \times 25 \mu 1$ reactions were prepared and the success of the amplification was checked by agarose gel electrophoresis as usual. The remaining product was pooled and precipitated with 0.6 volumes isopropanol and $1 / 20$ volume 4 M NaCl . The tube was incubated at $-80^{\circ} \mathrm{C}$ for 30^{\prime} and then centrifuged at $14,000 \mathrm{~g}$ for 10^{\prime} to pellet the DNA. The pellet was rinsed
with 70% ethanol and centrifuged again for 5^{\prime} at $14,000 \mathrm{~g}$. The DNA was air-dried and resuspended in $40 \mu \mathrm{IE}$.

2.4.3.2 End-labelling primers

Each template was sequenced with both the forward and reverse primers which were labelled with γ^{32} P-dATP (Amersham) using reagents supplied in a Sequitherm Excel II sequencing kit (Epicentre Technologies). Each $25 \mu \mathrm{l}$ end labelling reaction consisted of 25 pmol primer, 33 mM Tris-acetate (pH 7.8), 66 mM potassium acetate, 10 mM magnesium acetate, $500 \mu \mathrm{M}$ DTT, 3 U T4 Polynucleotide Kinase and $1 \mu \mathrm{l} \gamma^{32} \mathrm{P}$ dATP. The reaction was incubated at $37^{\circ} \mathrm{C}$ for 30^{\prime} and then stopped by heating to $70^{\circ} \mathrm{C}$ for 5^{\prime}.

2.4.3.3 Cycle sequencing

For each primer, a $17 \mu \mathrm{l}$ pre-mix was prepared in a PCR tube and consisted of 1.5 pmol end-labelled primer, $1 \times$ Sequitherm EXCEL ${ }^{\text {TM }}$ II sequencing buffer, $1 \mu \mathrm{l}$ purified PCR product ($\sim 75 \mathrm{ng}$) and 5U Sequitherm EXCEL ${ }^{\text {TM }}$ II DNA polymerase. The termination mixes were $15 \mu \mathrm{M}$ each of dATP, dCTP, dTTP, 7-deaza-dGTP and 0.0255 mM ddGTP or 0.45 mM ddATP or 0.525 mM ddTTP or 0.3 mM ddCTP, respectively. Four tubes ($\mathrm{G}, \mathrm{A}, \mathrm{T}, \mathrm{C}$) containing $2 \mu \mathrm{l}$ of the appropriate termination mix were prepared for each primer and combined with $4 \mu \mathrm{l}$ pre-mix. The sequencing reactions were overlayed with mineral oil and placed in a Perkin Elmer DNA thermal cycler. A two-step thermal cycling profile was used for all the sequencing reactions:

1 cycle: $95^{\circ} \mathrm{C}$ for 5^{\prime}
30 cycles: $95^{\circ} \mathrm{C} 30^{\prime \prime}, 72^{\circ} \mathrm{C} 1^{\prime}$.

When the cycles were complete, $3 \mu \mathrm{l}$ sequencing gel loading buffer ($95 \% \mathrm{v} / \mathrm{v}$ formamide, 10 mM EDTA, 0.1% xylene cyanol, 0.1% bromophenol blue, pH 11.0) was added to every tube.

2.4.3.4 Sequencing gel electrophoresis

A Life Technologies Model S2 sequencing gel apparatus was used. The small plate was coated with Rainkote (Maxwell Chemicals), both plates cleaned thoroughly with 5% SDS, and rinsed with $\mathrm{ddH}_{2} 0$ and ethanol. The plates were assembled with 0.4 mm spacers and two 24 well sharks-tooth combs. A sequencing gel was prepared by mixing 100 ml de-gassed 6% acrylamide with 560μ freshly prepared 10% ammonium persulphate (Sigma) and $22.5 \mu \mathrm{l}$ TEMED (Biorad) to catalyse the polymerisation. The gel was poured, allowed to set for 60^{\prime}, and then pre-run in $1 \times$ TBE at 70 W for 60^{\prime} or until the gel temperature reached $50^{\circ} \mathrm{C}$. The sequencing reactions were denatured at $75^{\circ} \mathrm{C}$ for 5^{\prime} and then snap chilled on ice. Immediately before loading $4 \mu \mathrm{l}$ each sample on the gel, the wells were cleaned out with $1 \times$ TBE running buffer. The gel was run for 75 'at 70 W or until the first dye front had just run off the bottom of the gel. This length run was sufficient to read 200-300 bases. For a longer read, the samples were re-loaded in another set of lanes after the first 75^{\prime}. The apparatus was dismantled and the gel was transferred to a 13×16 inch sheet of Whatman paper, vacuum dried at $80^{\circ} \mathrm{C}$ for 60^{\prime}, and exposed to X-ray film (Fuji) for 1-3 days. The film was developed for 3^{\prime} in a working stock of Phenisol (Ilford) and fixed for 3^{\prime} in a working stock of Hypam X-ray rapid fixer that contained hardener (Ilford). The film was rinsed thoroughly in running water and air-dried. The sequence was read from the bottom to the top, input into the Oligo 4.0
programme and aligned with previously published sequence using Seqed version 1.0.3 or BLAST 2.0 (Altschul et al., 1997).

2.5 Physical mapping

To estimate the number of chimaeric clones in the BAC library, all the BAC clones that were isolated by PCR-based screening were physically mapped by fluorescence in situ hybridisation.

2.5.1 Preparation of CotI DNA

CotI DNA is required to suppress repetitive DNA in probes that are used for FISH. In previous studies, it has been shown that whilst there is some crosshybridisation of repetitive DNA between species, some repeats are unique to a species (Jobse, et al., 1995; Modi et al., 1996). Consequently, CotI DNA was prepared for sheep, cattle and goat. Whenever a young animal died, the thymus and liver were recovered as sources of DNA and the tissue was stored at $-20^{\circ} \mathrm{C}$. DNA was extracted from thymus (Ausubel et al., 1992) or liver (Towner, 1991) to prepare CotI DNA.

2.5.1.1 DNA Extraction from thymus

A thymus was recovered from storage at $-20^{\circ} \mathrm{C}$ and thawed at room temperature. The $\sim 12 \mathrm{~g}$ thymus was cut into 2 g amounts, frozen in liquid nitrogen and ground into a fine powder with a mortar and pestle. Each 2 g of powdered tissue sample was incubated with 24 ml digestion buffer and $0.1 \mathrm{mg} / \mathrm{ml}$ pronase (Boehringer Mannheim) in a 50 ml Falcon tube at $50^{\circ} \mathrm{C}$ overnight with shaking. After the overnight incubation, 1 volume of 25:24:1 phenol:chloroform:isoamyl alcohol (PCI) was added and mixed thoroughly by inversion. The tubes were centrifuged for 10^{\prime} at 1600 g in the swing bucket rotor of a Sorvall RT 6000D centrifuge. If there was a definite interface following this centrifugation, then the upper aqueous phase was transferred to a new
tube. If the interface was not definite, then only the top 10 ml of the upper aqueous phase was recovered, replaced with 10 ml digestion buffer and the tube centrifuged again at 1600 g for 10^{\prime}. After this spin, the aqueous phase was transferred to new tubes so that each tube contained $\sim 20 \mathrm{ml}$ solution. The extraction with PCI was repeated and followed by an extraction with an equal volume of chloroform. The DNA was precipitated by adding $1 / 20$ volume 4 M sodium chloride and 0.6 volume isopropanol and incubating the tubes at $4^{\circ} \mathrm{C}$ for 15^{\prime}. The DNA was spooled around a 1 ml pipette tip and the supernatant was poured off. The spooled DNA was then rinsed in 70% ethanol, air-dried and resuspended in 10 ml TE overnight at room temperature with gentle rocking. After the DNA was thoroughly resuspended, it was treated with RNase as described (section 2.5.1.3).

2.5.1.2 DNA Extraction from liver

If a thymus was unavailable, then a liver was thawed at room temperature and cut into 2.5 g amounts. The tissue was frozen in liquid nitrogen and ground to a fine powder with a mortar and pestle. Each 2.5 g powdered tissue sample was transferred to 10 ml CTAB (Sigma) buffer and incubated at $65^{\circ} \mathrm{C}$ for 15^{\prime} with occasional shaking. After this incubation, 10 ml chloroform was added to each tube and mixed by inversion before centrifugation at 3500 g for 10 . The upper aqueous phase was transferred to a new tube and $0.2 \mathrm{vol} 5 \%$ CTAB was added before the chloroform extraction was repeated. The upper aqueous phase was transferred to a new tube and an equal volume of CTAB precipitation buffer was added. The tubes were incubated at $4^{\circ} \mathrm{C}$ for 15 and then centrifuged at 3500 g for 15 ' to pellet the nucleic acid. The supernatant was decanted and 2 ml TE containing 1 M NaCl was added to the pellet. The nucleic acid was redissolved at $65^{\circ} \mathrm{C}$ for 10^{\prime}. The DNA was precipitated by adding 2 volumes 100% ethanol. After the tubes were mixed by inversion, they were immediately centrifuged at 3500 g for 15^{\prime} at $4^{\circ} \mathrm{C}$. The supernatant was decanted and the pellets rinsed with 70%
ethanol. The tubes were centrifuged again at 3500 g for 10 ', the supernatant decanted, and the pellets air-dried. The DNA was dissolved in 10 ml TE overnight at room temperature with gentle rocking and then treated with RNase.

2.5.1.3 RNase Treatment

A $10 \mu \mathrm{l}$ aliquot of $10 \mathrm{mg} / \mathrm{ml}$ DNase-free RNase was added to each tube and incubated at $37^{\circ} \mathrm{C}$ for 30^{\prime}. An equal volume of $25: 24: 1$ phenol: chloroform: isoamyl alcohol (PCI) was added to every tube, mixed thoroughly and centrifuged at 3500 g for 10'. The upper aqueous phase was transferred to a new tube and the PCI extraction was repeated. Again, the upper aqueous phase was transferred to a new tube and an equal volume of chloroform was added. The tubes were mixed by inversion and then centrifuged at 3500 g for 10^{\prime}. The aqueous phase was recovered and the DNA was precipitated with $1 / 20$ volume 4 M sodium chloride and 0.6 volume isopropanol at $4^{\circ} \mathrm{C}$ for 15 '. The DNA was either spooled around a 1 ml pipette or pelleted by centrifugation at 3500 g for 15 '. After rinsing with 70% ethanol, the DNA was air-dried and then resuspended in a total of 20 ml TE by rocking at room temperature overnight.

The DNA quality and quantity was checked by spectrophotometry at 260 nm and 280 nm . If the OD 260:280 ratio was <1.6, then the DNA was re-extracted with PCI and chloroform before continuing. If the ratio was >1.8, then the RNase treatment was repeated.

2.5.1.4 Shearing DNA by autoclaving

The DNA was pooled in a sterile autoclave-resistant tube and then autoclaved for 1^{\prime} at $121^{\circ} \mathrm{C}, 103 \mathrm{KPa}$. The sheared DNA was transferred to a 50 ml Falcon tube and precipitated with $1 / 20$ volume 4 M NaCl and 0.6 volume isopropanol. The DNA was pelleted by centrifugation at 3500 g for 15^{\prime}, the pellet rinsed with 70% ethanol and centrifuged for a further 5^{\prime} at 3500 g . The supernatant was decanted and the pellet was
air-dried before being resuspended in a total of 5 ml TE by rocking overnight at room temperature.

The amount of shearing was determined by loading $1 \mu \mathrm{l}$ sheared DNA on a 1% agarose gel in $1 \times$ TAE and electrophoresing at 100 V for 1 h . The gel was stained with $0.5 \mu \mathrm{~g} / \mathrm{ml}$ ethidium bromide for 5^{\prime}. The majority of fragments should range from 100bp to $\sim 1 \mathrm{~kb}$.

2.5.1.5 S1 nuclease treatment of sheared DNA

The volume of the sheared DNA was adjusted to 5 ml with TE and then 0.5 ml 20 xSSC was added. The DNA was denatured in a boiling water bath for 10 and then chilled on ice for 2^{\prime}. The tubes were incubated at $68^{\circ} \mathrm{C}$ for 10 to allow the repeats to hybridise and then chilled on ice for 2^{\prime}. Next, $550 \mu \mathrm{l}$ S1 nuclease buffer (Life Technologies), $83 \mu \mathrm{l} 3 \mathrm{M} \mathrm{NaCl}$ (50 mM final concentration) and $15,000 \mathrm{U}$ S1 nuclease (Life Technologies) was added to the tube and incubated at $37^{\circ} \mathrm{C}$ for 60^{\prime}. The DNA was extracted once with an equal volume of PCI and centrifuged at 3500 g for 10^{\prime}. The upper aqueous phase was transferred to a new tube and an equal volume of chloroform was added. After mixing thoroughly, the tube was again centrifuged at 3500 g for 10^{\prime} and the aqueous phase was recovered. The DNA was precipitated as previously with $1 / 20$ volume 4 M NaCl and 0.6 volume isopropanol. After pelleting and rinsing the CotI, DNA it was resuspended in 1 ml TE. The DNA was quantitated by spectrophotometry at 260 nm and 280 nm and $1 \mu \mathrm{l}$ was electrophoresed on a 1% agarose gel at 100 V for 1 h and stained with $0.5 \mu \mathrm{~g} / \mathrm{ml}$ for 10^{\prime}.

2.5.2 Biotinylation of BAC DNA

Biotin-labelled dATP was incorporated into $1 \mu \mathrm{~g}$ BAC DNA by nick translation using the reagents from a Bionick labelling system (Life Technologies). A trace amount of tritium-labelled dATP was also included in the reaction so that the tubes containing
the labelled DNA could be established by scintillation counting. In each labelling reaction, there was $1 \mu \mathrm{Ci}{ }^{3} \mathrm{H}-\mathrm{dATP}$ (Amersham), $20 \mu \mathrm{M} \mathrm{dCTP}, 20 \mu \mathrm{M} \mathrm{dGTP}, 20 \mu \mathrm{M}$ dTTP, $10 \mu \mathrm{M}$ dATP, $10 \mu \mathrm{M}$ biotin-14-dATP, 50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.8), 5 \mathrm{mM} \mathrm{MgCl}{ }_{2}$, $10 \mathrm{mM} \beta$-mercaptoethanol, $10 \mu \mathrm{~g} / \mathrm{ml}$ nuclease-free BSA, $1 \mu \mathrm{~g}$ BAC DNA, 2.5 U DNA polymerase I and 0.0375 U DNase I. The reagents were mixed well and the reaction incubated at $16^{\circ} \mathrm{C}$ for 1 h before $5 \mu \mathrm{l}$ stop buffer was added.

Whilst the reaction was proceeding, a 5 cm Sephadex G50 column (Pharmacia) was prepared in a short pasteur pipette and the column was washed twice with TE. A rack of 15 eppendorf tubes was prepared and the first eppendorf tube was placed beneath the column. Once the column was dry, the $55 \mu \mathrm{l}$ nick reaction was layered on the top followed by $455 \mu \mathrm{TE}$. Once the total volume was collected, the second eppendorf was placed below the column and $100 \mu \mathrm{l}$ TE was layered on top. Fractions 210 were all $100 \mu \mathrm{l}$ and fractions $11-15$ were $500 \mu \mathrm{l}$ to ensure that all the unincorporated nucleotides were recovered from the Sephadex.

The amount of tritium in each fraction is an indication of the amount of biotin in each fraction. Consequently, $2 \mu \mathrm{l}$ aliquots of each fraction were mixed thoroughly with $150 \mu \mathrm{ldd} \mathrm{H}_{2} 0$ and 1.5 ml scintillation fluid in 3 ml opaque scintillation tubes (Beckman). The amount of tritium in each tube was established using a Beckman LS3801 β-counter. The tubes in the initial 10 fractions that had the most counts contained the labelled BAC DNA and these fractions were pooled for use in FISH. The amount of incorporation was calculated based on the counts.

2.5.3 Fluorescence in situ hybridisation

In a total volume of $100 \mu \mathrm{l}, 100 \mathrm{ng}$ biotinylated BAC DNA, $8 \mu \mathrm{~g}$ CotI DNA from the species being mapped and $50 \mu \mathrm{~g}$ salmon sperm DNA were mixed and precipitated with $5 \mu \mathrm{l} 4 \mathrm{M} \mathrm{NaCl}$ and $60 \mu \mathrm{l}$ isopropanol at $-80^{\circ} \mathrm{C}$ for 20^{\prime}. The DNA was pelleted by centrifugation at $18,000 \mathrm{~g}$ for 10^{\prime} and rinsed with 70% ethanol. The pellet was air-dried
and the DNA resuspended in 20μ l hybridisation solution (10% dextran sulphate (Pharmacia) in 50% formamide, $2 \times \mathrm{SSC}$) using a cut tip. The DNA was either resuspended at $4^{\circ} \mathrm{C}$ overnight or at $37^{\circ} \mathrm{C}$ for several hours and mixed thoroughly by vortexing at regular intervals.

The DNA was denatured at $72^{\circ} \mathrm{C}$ for 5^{\prime} and then snap chilled on ice for 2^{\prime} before incubating at $37^{\circ} \mathrm{C}$ for 60^{\prime} to pre-anneal any repetitive DNA in the probe to the CotI DNA, thereby suppressing the repeats prior to hybridisation to the chromosomes.

Slides of metaphase chromosomes (section 2.1.2.6) were pre-heated to $72^{\circ} \mathrm{C}$ in an empty coplin jar and then denatured in 70% formamide $/ 2 x S S C$ at $72^{\circ} \mathrm{C}$ for 2^{\prime}. The slides were then dehydrated through an ethanol series (ice-cold $70 \%, 70 \%, 95 \%, 100 \%$) and air-dried.

The probe mix was placed on the slide with a cut tip beneath a $22 \times 22 \mathrm{~mm}$ coverslip and sealed with rubber cement. Two probes were used per slide since there were two drops of cells on each slide and generally 5 slides were processed at once. The slides were incubated in a humid chamber at $37^{\circ} \mathrm{C}$ overnight.

The coverslips were removed and the slides were washed 3×5 ' in 50% formamide $/ 2 \mathrm{xSSC}$ at $40^{\circ} \mathrm{C}$ and $3 \times 5^{\prime}$ in 2 xSSC at $40^{\circ} \mathrm{C}$. The slides were then transferred to $4 \mathrm{xSSC} / 0.05 \%$ Tween 20 (Sigma) at room temperature for 3^{\prime}. After this wash, the slides were removed one at a time, tapped dry and $100 \mu \mathrm{l} 4 \mathrm{xSSC} / 1 \%$ BSA was placed on each slide beneath a $24 \times 50 \mathrm{~mm}$ coverslip and incubated at $37^{\circ} \mathrm{C}$ for 30^{\prime} in a humid chamber. Next the slides were incubated at $37^{\circ} \mathrm{C}$ for 30^{\prime} with $60 \mu \mathrm{l}$ of a $1 / 200$ dilution of FITC-avidin (Vector Laboratories) in $4 x S S C / 1 \%$ BSA. After this incubation, the slides were washed $3 \times 5^{\prime}$ in $4 \times S S C / 0.05 \%$ Tween 20 at $40^{\circ} \mathrm{C}$. A $1 / 100$ dilution of biotinylated anti-avidin (Vector Laboratories) in $4 \times \mathrm{xSC} / 1 \%$ BSA was prepared and each slide was incubated with $60 \mu \mathrm{l}$ of this solution at $37^{\circ} \mathrm{C}$ for 30^{\prime}. The slides were washed $3 \times 5^{\prime}$ in $4 \times S S C / 0.05 \%$ Tween 20 at $40^{\circ} \mathrm{C}$. The incubation with FITC-avidin and the washes in $4 \mathrm{xSSC} / 0.05 \%$ Tween20 were repeated before the slides were stained in
$5 \mu \mathrm{~g} / \mathrm{ml}$ propidium iodide in PBS for 5^{\prime}. The slides were washed $3 \times 20^{\prime \prime}$ in PBS, tapped dry and $100 \mu \mathrm{l}$ PPD11 antifade mountant was placed on each slide and sealed with nail varnish beneath a $24 \times 60 \mathrm{~mm}$ coverslip.

2.5.4 Dual-FISH

To confirm that the BAC clones for microsatellite markers which were selected to be on the same chromosome from the sheep genetic linkage map were physically on the same chromosome, dual-FISH was performed. Dual-FISH was also used to confirm the location of previously unmapped genes by hybridisation with a BAC for the chromosome to which the gene had been assigned by karyotyping. The procedure was identical to a single localisation except that both probes were included in the hybridisation mix along with sufficient CotI to suppress each probe. For instance, if each probe required $8 \mu \mathrm{~g}$ CotI for suppression in separate localisations, then in a dual localisation $16 \mu \mathrm{~g}$ CotI was needed.

2.5.5 Fluorescence microscopy and photography

Slides were viewed with an Olympus BX70 microscope. Chromosomes stained with propidium iodide were visualised under green epifluorescence. Fluorescein was detected with blue epifluorescence combined with dull fluorescence of the chromosomes.

Colour photographs were taken on Fugichrome ASA 400 colour positive film which was programmed to ASA 1600 for dark field with an additional correction of 1.6 (ASA 2560).

Black and white photographs for karyotyping were taken on KODAK technical pan film which was programmed to ASA 800. For photographs taken with green epifluorescence, an additional correction of 2.0 (ASA 1600) was used. The negatives were developed in $\mathrm{HC1} 10$ developer dilution B for 11^{\prime} at $20^{\circ} \mathrm{C}$ and fixed for two
minutes with Hypam fixer containing hardener (Ilford). The negatives were printed on glossy multigrade IV paper (Ilford) at a contrast level of one. The prints were developed for $90^{\prime \prime}$ in Ilford paper developer (diluted 1:14) and fixed for $60^{\prime \prime}$ in Hypam fix without hardener (diluted 1:9).

2.6 Construction of a BAC restriction map for keratin associated protein genes

A BAC clone was isolated from the library that contained the gene for keratin associated protein 1.1 (KAP1.1, Powell et al., 1983). A large-scale plasmid preparation was prepared by standard alkaline lysis method (Sambrook et al., 1989) to generate sufficient DNA for plasmid end rescue (section 2.6.1) and restriction mapping (section 2.6.2). The BAC DNA was treated with $10 \mu \mathrm{~g} / \mathrm{ml}$ DNase free RNase, extracted once with 25:24:1 phenol:chloroform:isoamyl alcohol, once with chloroform, precipitated with 0.6 volumes isopropanol and resuspended in 1 ml TE.

2.6.1 Plasmid end rescue

Each end of the BAC insert was isolated by plasmid end rescue (Figure 2.3) as described in Cai et al. (1995). Separate 250ng aliquots of the BAC clone were digested to completion with 10U SacI, BamHI, SphI and EcoRI in $25 \mu 1$ reactions at $37^{\circ} \mathrm{C}$ for 5 h . The digested products were self-ligated under dilute conditions (Collins and Weissman, 1984) in a $40 \mu \mathrm{l}$ reaction with 10 U T4 DNA Ligase (Promega) and 32 ng digested DNA at $16^{\circ} \mathrm{C}$ overnight. The right-hand end of the BAC was recovered by transformation into electrocompetent E. coli (section 2.6.1.2) and the left-hand end was recovered by inverse PCR (section 2.6.1.3).

2.6.1.1 Preparation of electrocompetent E. coli

A $-80^{\circ} \mathrm{C}$ glycerol stock of DH10ß E. coli was used to inoculate 50 ml SOB and the culture was incubated with shaking at 150 rpm at $37^{\circ} \mathrm{C}$ overnight. A 1 ml aliquot of SOB
was saved as a blank for spectrophotometry and the remaining 749 ml was inoculated with 0.75 ml from the overnight culture. The cells were incubated at $37^{\circ} \mathrm{C}$ until they reached mid-log phase which was equivalent to an $\mathrm{OD}_{550 \mathrm{~nm}}$ of $0.5-0.6$.

The cells were transferred to sterile Nalgene centrifuge tubes and pelleted at 3000 g for 10^{\prime} in the JA10 fixed angle rotor of a Beckman J2-HS centrifuge. The supernatant was decanted and the cells were resuspended in $250 \mathrm{ml} 10 \%$ glycerol by gently swirling the cells in a small volume of glycerol and then adding the remainder. The cells were pelleted again by centrifugation at 3000 g and the wash in 10% glycerol repeated. After the cells were pelleted by centrifugation, the supernatant was decanted and the cells resuspended in the glycerol remaining in the bottom of the tubes. The cells were transferred to a single 50 ml Falcon tube and pelleted by centrifugation at 3500 g for 10 ' in the fixed angle rotor of a Sorvall RT6000D centrifuge. Finally, the cells were resuspended in $3 \mathrm{ml} 10 \%$ glycerol, split into $125 \mu \mathrm{l}$ aliquots and frozen at $-80^{\circ} \mathrm{C}$.

2.6.1.2 Transformation of plasmid end rescued products

A $2 \mu \mathrm{l}$ aliquot of each of the ligated products that were generated following digestion with SacI, BamHI and SphI was transformed into $40 \mu 1$ electrocompetent DH5α using a 0.2 cm cuvette in a Biorad gene pulser attached to a Biorad pulse controller set to $2.5 \mathrm{KV}, 25 \mu \mathrm{FD}$ and 200 Ohms . The cells were incubated in 1 ml SOC medium at $37^{\circ} \mathrm{C}$ for 60^{\prime} and then $100 \mu \mathrm{l}$ was plated on LB agar containing $12.5 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol. The plates were incubated overnight at $37^{\circ} \mathrm{C}$. White positive transformants were selected and cultured in 5 ml LB containing $12.5 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol overnight at $37^{\circ} \mathrm{C}$. The BAC DNA was extracted by a standard alkaline lysis mini-preparation (section 2.3.7). The DNA was linearised by digestion with the same enzyme that was used for sub-cloning, and the smallest insert was selected for sequencing following electrophoresis on 1% agarose. The BAC DNA was
sequenced manually using the M13 reverse primer (5^{\prime} CAC ACA GGA AAC AGC TAT GAC C 3^{\prime}) in a cycle sequencing reaction as described (section 2.4.3).

2.6.1.3 Inverse PCR

An aliquot of each of the ligated products that were generated following digestion with SacI and EcoRI was used as the template for inverse PCR. IPCR1 (5' GGA TCC CCG GGT ACC GAG 3') and IPCR2 (5' CTA GAG TCG ACC TGC AGG 3') were designed from pBeloBAC11 (Cai et al., 1995) and were immediately adjacent to the HindIII cloning site used to generate the BAC library. Each $100 \mu 1$ reaction consisted of 20 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.4), 50 \mathrm{mM} \mathrm{KCl}, 125 \mu \mathrm{M}$ dGTP, $125 \mu \mathrm{M}$ dATP, $125 \mu \mathrm{M}$ dTTP, $125 \mu \mathrm{M} \mathrm{dCTP}$ (Life Technologies), $1.5 \mathrm{mM} \mathrm{MgCl} 2,25 \mathrm{pmol}$ IPCR1, 25 pmol IPCR2, $2 \mu \mathrm{I}$ ligated product and 1U Taq DNA polymerase (Life Technologies). The products were amplified for 35 cycles $\left(94^{\circ} \mathrm{C} 1^{\prime}, 56^{\circ} \mathrm{C} 1^{\prime}, 72^{\circ} \mathrm{C} 1^{\prime}\right)$ with a final extension at $72^{\circ} \mathrm{C}$ for 10'. Products were sequenced directly with IPCR1 and IPCR2 as described (section 2.4.3).

2.6.2 Large-scale Restriction mapping

The restriction enzymes NotI, XhoI, ClaI, SfiI and NruI were used individually and in pairs to digest 20μ l aliquots of the large-scale preparation for the BAC clone containing the gene for KAP1.1. Each $30 \mu \mathrm{l}$ reaction consisting of 25 mM Tris-Acetate (pH 7.8), 100 mM potassium acetate, 10 mM magnesium acetate, 4 mM spermidine, 10 U each enzyme and the BAC DNA was incubated at $37^{\circ} \mathrm{C}$ for 5 h . The products were electrophoresed on a 1% agarose CHEF gel using the conditions to separate fragments from $25-100 \mathrm{~kb}$ (section 2.4.1).

Figure 2.3: A strategy for BAC end rescue. BAC DNA is digested and self-ligated to create subclones containing some vector plus one end of the insert. The left end of a BAC clone is isolated by inverse PCR and then the product is sequenced with internal primers. The right end is recovered by transformation and this subclone is sequenced with M13R. (From Cai et al., 1995).

The gel was rocked in denaturing solution for 15^{\prime} and then in neutralising solution for ${ }^{\prime} 5^{\prime}$. The DNA was transferred to a Hybond-N nylon membrane (Amersham) in 20xSSC (Southern, 1975). Capillary transfer of the DNA onto the membrane was allowed to proceed for 24 h . The membrane was rinsed briefly in 2 xSSC , blotted dry and then the DNA was fixed by exposure to UV light (312 nm) for 1^{\prime}.

2.6.2.1 Radiolabelling probe DNA

The Southern blot of the BAC for KAP1.1 was probed with various other KAP genes and repetitive elements to establish how many other genes and markers were present in the BAC clone. A $(\mathrm{GT})_{30}$ oligonucleotide was end-labelled with $\gamma^{32 \mathrm{P}}$-dCTP as for sequencing (section 2.4.3.2). Plasmid DNA probes for keratin associated protein genes (donated by Dr. Barry Powell) and for the BovA Alu-like element (courtesy of Mrs. Jan Cook) were labelled with $\alpha^{32} \mathrm{P}-\mathrm{dATP}$ using a nick translation kit (Promega). Each $50 \mu \mathrm{l}$ nick consisted of $10 \mu \mathrm{M} \mathrm{dCTP}, 10 \mu \mathrm{M} \mathrm{dGTP}, 10 \mu \mathrm{M} \mathrm{dTTP}, 50 \mathrm{mM}$ Tris- HCl (pH 7.2), 10 mM MgSO4, $100 \mu \mathrm{M}$ DTT, $1 \mu \mathrm{~g}$ plasmid DNA, $1.85 \mathrm{MBq} \alpha 32 \mathrm{P}-\mathrm{dATP}, 5 \mathrm{U}$ DNA polymerase I and 20pg DNase I. The nicks were incubated at $15^{\circ} \mathrm{C}$ for 60^{\prime} and then the reaction was stopped with 25 mM EDTA. The DNA was denatured by incubating with $10 \mu \mathrm{l} 500 \mathrm{mM} \mathrm{NaOH}$ for 5^{\prime} and then neutralised with $10 \mu \mathrm{l} 500 \mathrm{mM} \mathrm{HCl}$ immediately before the probe was added to the hybridisation solution (section 2.7.3).

2.6.2.2 Probe hybridisation

The membrane was pre-hybridised in 20 ml hybridisation solution at $50^{\circ} \mathrm{C}$ for 1 h prior to the addition of the radiolabelled probe which was incubated with the membrane at $50^{\circ} \mathrm{C}$ overnight. The membrane was then washed $4 \times 15^{\prime}$ with $2 \times S S C / 0.1 \%$ SDS and $1 \times 20^{\prime}$ with $0.5 \% \mathrm{SSC} / 0.1 \% \mathrm{SDS}$ at $65^{\circ} \mathrm{C}$. The membrane was wrapped in plastic and exposed to X-ray film for 1-3 days. The same membrane was probed multiple times by
removing the old probe in $0.1 \% \mathrm{SSC} / 0.1 \% \mathrm{SDS}$ at $90^{\circ} \mathrm{C}$ for 15^{\prime} prior to prehybridisation at $50^{\circ} \mathrm{C}$.

2.6.2.3 Shot-gun sequencing

To further characterise the BAC clone containing KAP1.1, shot-gun sequencing was performed. Libraries of BAC subclones were prepared by digesting $1 \mu \mathrm{~g}$ aliquots of BAC DNA with 40 U HindIII, Sau3AI, Tsp509I, or PstI at $37^{\circ} \mathrm{C}$ for 2 h. The digested DNA was ligated to HindIII, BamHI, EcoRI, or PstI cut pBluescript, respectively. Each $25 \mu \mathrm{l}$ ligation mixture was incubated at room temperature for 2 h and then $1 \mu \mathrm{l}$ aliquots were transformed into $20 \mu \mathrm{LH} 10 \beta$ E. coli by electroporation. A 1:500 dilution of the tranformation was plated onto LB agar containing $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin, $50 \mu \mathrm{~g} / \mathrm{ml}$ IPTG and $40 \mu \mathrm{~g} / \mathrm{ml} \mathrm{X}$-gal. After incubation at $37^{\circ} \mathrm{C}$ overnight, white colonies were picked into 96 -well plates, with $100 \mu \mathrm{l}$ LB containing $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin in each well.

For the four-base cutters (Sau3AI and Tsp509I), the inserts were amplified with M13F and M13R in $50 \mu \mathrm{l}$ PCR reactions with an annealing temperature of $50^{\circ} \mathrm{C}$. Each reaction was inoculated directly with $1 \mu \mathrm{l}$ cells diluted $1: 100$ in water. All products $>500 \mathrm{bp}$ were purified for sequencing using a QIAGEN PCR purification kit according to the manufacturer's instructions.

For the six-base cutters (HindIII and PstI), DNA from each sub-clone was prepared using an Autogen robot. The DNA was digested with HindIII or PstI to check for the presence of empty clones. Every clone containing an insert was sequenced.

The $\mathrm{ABI}^{\mathrm{TM}}$ BigDye ${ }^{\mathrm{TM}}$ terminator cycle sequencing ready reaction kit with AmpliTaq DNA polymerase, FS (Perkin Elmer) was used to sequence $5.5 \mu \mathrm{IPCR}$ product or $2.5 \mu \mathrm{l}$ Autogen DNA with M13F or M13R primers in $10 \mu \mathrm{l}$ reactions with $4 \mu \mathrm{l}$ BigDye ${ }^{\mathrm{TM}}$ mix. The sequencing reactions were performed on a GeneAmp PCR System 9700 (Perkin Elmer) over 25 cycles $\left(96^{\circ} \mathrm{C} 10 \prime, 50^{\circ} \mathrm{C} 5^{\prime \prime}, 60^{\circ} \mathrm{C} 4^{\prime}\right)$. Sequences were purified on Centri-sep ${ }^{\mathrm{TM}}$ sephadex columns (Princeton Separations), vacuum dried and
then resuspended in $1.5 \mu \mathrm{l}$ gel loading buffer ($5: 1$ deionized formamide: 25 mM EDTA with $50 \mathrm{mg} / \mathrm{ml}$ blue dextran). Samples were denatured at $96^{\circ} \mathrm{C}$ for 2^{\prime} and then loaded on a $0.2 \mathrm{~mm} 4.25 \%$ Seaquate ${ }^{R}$ polyacrylamide gel (Sooner Scientific) with 48 lane sharkstooth comb in an ABI377 automated sequencer (Perkin Elmer). Data were collected for 7h using run module "Seq Run 36E 2400". The gels were tracked and then the chromatograms were analysed and assembled into contigs in Sequencher 3.1.1 (Gene Codes Corp.).

CHAPTER 3

SUPER-FAST PRIMED IN SITU TARGETING

SUPER-FAST PRIMED IN SITU TARGETING

3.1 Introduction

The ovine genetic linkage map now consists of 519 markers with an average spacing of $\sim 6.4 \mathrm{cM}$ between adjacent linked markers (de Gortari et al., 1998), but the physical map is less well developed. Only 91 loci have been physically assigned to specific chromosomal regions by in situ hybridisation in sheep and just 25 of these have been mapped by genetic linkage analysis as well (ArkDB, AgResearch 6/8/99). These 25 loci act as anchors for 17 chromosomes meaning that there are still 11 chromosomes that have not been anchored directly, although the genetic linkage maps for every sheep chromosome have been oriented and anchored indirectly through the homologous bovine chromosomes (Kappes et al., 1997).

In order to be able to use comparative mapping data from the extensively developed human and mouse genomic maps to select candidate genes to positionally clone economically important genes in livestock species, the ovine physical map needs to be developed further. The United States Department of Agriculture distributes PCR primers for genetic linkage analysis in sheep. It would be advantageous to develop a technique that would allow these PCR primers, or the product generated by these primers, to be used for physical mapping to rapidly increase the number of linked markers on the ovine physical map. The use of a non-radioisotopic hybridisation method (oligonucleotide primed in situ DNA synthesis or PRINS) was investigated because the technique potentially yields experimental results more rapidly than either traditional radioactive methods or fluorescence in situ hybridisation (FISH).

FISH is the hybridisation of biotin-labelled (Brigati et al., 1983) or digoxygeninlabelled (de Frotos et al., 1989) probes to metaphase chromosomes whereas PRINS is a rapid detection method based on the sequence specific annealing of unlabelled oligonucleotides to chromosomes in situ. These oligonucleotides are primers for chain
elongation catalysed by thermostable polymerases (eg. Taq) using the target chromosomal DNA as the template (Koch et al., 1989). The new chain is labelled by the incorporation of either a biotin-labelled or digoxygenin-labelled nucleotide as a substrate for chain elongation. Since the priming oligonucleotide is not labelled, high concentrations of the primer can be used to allow rapid hybridisation without the production of extensive background.

Physical mapping by FISH generally requires long probes ($>3 \mathrm{~kb}$) and plasmidderived sequences are often insufficient because the target is too small and the intensity of the fluorescent signal is dependent on probe length. Differences in signal strength after PRINS though are only due to differences in the number and organisation of target sequences because short oligonucleotide primers give rise to as much chain elongation as longer primers (Hindkjær et al., 1994).

In this chapter, a modification of the conventional PRINS reaction is presented. The super-last primed in situ targeting (SPRINT) reaction uses a fluorescein-labelled nucleotide to label the newly synthesised strand so that it can be visualised directly (Koch et al., 1992). The microsatellite core sequence, (AAGGT) ${ }_{5}$, of human satellite III, and restriction endonuclease digested fragments of sheep satellite I were used as primers for SPRINT to demonstrate the efficacy of this physical mapping technique for repetitive sequences. The limitations of using this technique for single-copy sequences are discussed.

3.2 Results

3.2.1 Optimisation of white blood lymphocyte culture for metaphase spreads

Prior to the physical mapping experiments it was necessary to optimise the production of good quality metaphase chromosome spreads. A metaphase spread deemed suitable for physical mapping by in situ hybridisation was one with elongated
("stringy") chromosomes that did not overlap and produced G-bands or R-bands when treated appropriately.

The size of the pellets recovered during harvesting was an indication of how well each of the cultures grew. Cultures inoculated with Ficoll-hypaque enriched lymphocytes (section 2.1.1.1) grew better than those cultures inoculated with lymphocytes enriched by ammonium chloride treatment (section 2.1.1.2) or cultures inoculated with white blood cells from the buffy coat at the plasma-blood interface (section 2.1.1.3). Interestingly, cultures inoculated with whole blood grew as well as the Ficoll-hypaque enriched lymphocytes.

The best growth medium was RPMI supplemented with 15% FCS, 1% glutamine, 1.8% PHA and 1% penicillin-streptomycin-fungizone solution. In this medium, 8% of non-synchronised cells were in metaphase. Arrest with BrdU alone also resulted in 8% metaphase cells, but a mitotic index of $15-20 \%$ was routinely achieved by arresting the cells with thymidine and releasing them with BrdU. However, in all cases (ie. nonsynchronised and synchronised), $\sim 95 \%$ of the metaphase cells were not suitable for physical mapping because they were too contracted, and consequently, the chromosomes were poorly banded. This is likely to be due to the length (1.5h) of the colchicine treatment because decreasing the concentration of colchicine did not affect the severity of chromosome contraction. When $200-600 \mathrm{ng} / \mathrm{ml}$ colchicine was added for only $12^{\prime}, 30-45 \%$ of the metaphase cells contained well-spread, elongated chromosomes suitable for physical mapping. When $<200 \mathrm{ng} / \mathrm{ml}$ colchicine was used, the chromosomes in some cells were still attached to the spindle fibres.

Elongated, R-banded chromosomes for SPRINT were produced by inoculating supplemented RPMI with whole blood, arresting the cells at mid-S phase with thymidine, releasing them with BrdU , and then inhibiting microtubule formation with $600 \mathrm{ng} / \mathrm{ml}$ colchicine for 12^{\prime}. Only $5-7 \%$ of these cells were suitable for physical mapping.

3.2.2 Optimisation of SPRINT signal

A human satellite III probe has been shown to hybridise strongly to the $q 12$ bands of chromosomes $1,9,16$ and Y , moderately to the p13 bands of chromosomes 13,14 , 15,21 and 22 and weakly to the centromeres of $5,7,10,17,20$ and Y by traditional in situ hybridisation techniques (Gosden et al., 1975; Grady et al., 1992). Satellite III was chosen to optimise the SPRINT signal because of the three levels of signal intensity that have previously been observed. Under optimum conditions SPRINT signal should be observed on all target chromosomes.

Three Taq DNA polymerases (Perkin Elmer, Bresatec Ltd. and Boehringer Mannheim) were tested and it was found that all three enzymes were able to produce strong SPRINT signal for human satellite III provided that at least 2.5 units of enzyme were used. The sensitivity of the SPRINT reaction for each of the enzymes was dependent on the Mg^{2+} concentration. The optimum Mg^{2+} concentration was determined empirically by amplification of satellite III in a standard PCR. It was found that the different Taq DNA polymerases required different salt concentrations to produce the same results. The surface area to volume ratio of a tube differs vastly from that created by a coverslip on a slide. Consequently, the conditions had to be checked on the slides and were found to match the results of PCR. Taq polymerase from Bresatec Ltd. produced the strongest SPRINT signal for human satellite III at 4.5 mM Mg^{2+} (Table 3.1) and both Amplitaq from Perkin Elmer and Taq from Boehinger Mannheim gave a strong signal at $1.5 \mathrm{mM} \mathrm{Mg}^{2+}$.

For the Bresatec Ltd. Taq polymerase, maximum sensitivity and specificity was achieved when the reaction was performed at $55^{\circ} \mathrm{C}$. When higher annealing temperatures were used $\left(60^{\circ} \mathrm{C}, 65^{\circ} \mathrm{C}\right)$, the intensity of the SPRINT signal decreased and some centromeres, presumably the shorter regions of satellite III, no longer produced any signal (Table 3.1). The age of the slides had no significant effect on the success of
the SPRINT reaction, with old slides producing as much signal as freshly prepared slides.

The minimum amount of each unlabelled dNTP required for SPRINT was found to be $50 \mu \mathrm{M}$. Several ratios of dTTP to fluorescein-12-dUTP were tested (1:1, 2:1, 5:1 and $10: 1$). All of these ratios produced specific SPRINT signal, but since fluorescein-12-dUTP was the most expensive component of the reaction, the ratio that required the least amount of fluorescein (10:1) was selected (Table 3.1). It was also possible to generate specific SPRINT signal with just $5 \mu \mathrm{M}$ fluorescein-12-dUTP and no competitor dTTP.

It was found that $2.5 \mu \mathrm{~g}$ of the probe (AAGGT) ${ }_{5}$ was the minimum amount of primer needed to generate SPRINT signal on all target chromosomes (Table 3.1). However, it is predicted that this amount would need to be optimised for each new oligonucleotide used.

3.2.3 Localisation of human satellite III on G-banded chromosomes

The addition of 5-bromodeoxyuridine to the cultured lymphocytes enabled the metaphase chromosomes to be banded using the alkaline PPD11 antifade mountant. The G-bands or R-bands and fluorescent SPRINT signal were visualised simultaneously under blue epifluorescence (Figure 3.1). Human satellite III was localised strongly to the variable bands $1 \mathrm{q} 12,9 \mathrm{q} 12,16 \mathrm{q} 12$ and Yq12, to a lesser extent to bands p 13 of chromosomes $13,14,15,21$ and 22 and weakly to the centromeres of chromosomes 5 , $7,10,17,20$ and Y . These results are consistent with prior reports using traditional in situ methods (Gosden et al., 1975; Grady et al., 1992).

Table 3.1: Optimisation of SPRINT conditions. SPRINT conditions were optimised as described in section 2.2 using Taq polymerase from Bresatec Ltd. Mg^{2+} concentration was optimised first, followed by temperature, dNTP ratio, dTTP:dUTP and finally primer concentration.

Variable	Conditions			
	1.5	2.5	4.5	7.5
	$1,9 \mathrm{a}$	$1,9,16, \mathrm{Y}^{\mathrm{b}}$	All target ${ }^{\mathrm{c}}$	$1,9,16, \mathrm{Y}$
Temp $\left({ }^{\circ} \mathrm{C}\right)$	50	55	60	65
	All target	All target	$1,9,16, \mathrm{Y}$	1,9
dNTPs $(\mu \mathrm{M})$	20	50	100	200
	No signal	All target	All target	All target
dTTP:dUTP	$1: 1$	$2: 1$	$5: 1$	$10: 1$
	All target	All target	All target	All target
Primer (ng)	500	1000	2500	5000
	No signal	1,9	All target	All target

${ }^{\mathrm{a}} 1,9=$ SPRINT signal on the q 12 bands of 1 and 9.
${ }^{\mathrm{b}} 1,9,16, \mathrm{Y}=$ SPRINT signal on the q 12 bands of chromosomes $1,9,16$ and Y.
${ }^{\text {c All target }}=$ Strong SPRINT signal on the q12 bands of chromosomes $1,9,16$ and Y , moderate signal on the p13 bands of chromosomes $13,14,15,21$ and 22 , and weak signal at the centromeres of $5,7,10,17,20$ and Y.

Figure 3.1: Localisation of human satellite III by SPRINT on metaphase chromosomes. (A) Satellite III located on R-banded metaphase chromosomes of a human male. (B) Karyogram of a PPD11 G-banded human late prophase viewed under blue epifluorescence. G-positive chromosomal arms are stained bright orange with propidium iodide. Satellite sites are labelled by SPRINT with fluorescein and show yellow. The position of the centromeres is marked by a white line between the chromosome pairs. The positions of overlaps between the chromosome arms are marked with green lines. The metaphase spread for the karyogram was prepared in 1988 and the slides were stored under dessicating conditions at $-20^{\circ} \mathrm{C}$. SPRINT conditions were as described in section 2.2.

A

B

Figure 3.2: Localisation of ovine satellite I by SPRINT on metaphase chromosomes. G-positive chromosomal arms are stained bright orange with propidium iodide. Satellite sites are labelled by SPRINT with fluorescein and show yellow. SPRINT conditions were as described in section 2.2 .

3.2.4 Localisation of sheep satellite I by SPRINT

When $2.5-10 \mu \mathrm{~g}$ of the undigested ovine satellite I PCR product was used as a primer for SPRINT, no signal could be detected. The PCR product was digested with Sau $3 A I$ to increase the effective primer concentration and specific SPRINT signal was found in regions near the centromeres of all autosomes (Figure 3.2). Chromosome 1, which is the largest of the naturally-fused metacentric chromosomes, was only lightly labelled and the sex chromosomes were unlabelled. These results are consistent with previous reports using in situ hybridisation methods (Novak, 1984; Burkin et al., 1996).

3.2.5 Attempted localisation of single copy sequences by SPRINT

Various primers for microsatellites and genes were tested at increasing concentrations and at different annealing temperatures in an attempt to detect single copy sequences by SPRINT (Table 3.2). No consistent signal was detected on metaphase chromosomes and was rarely visible in interphase cells ($<5 \%$) by direct incorporation of fluorescein. Incorporation of biotin by PRINS was also tried with both a single and double amplification using FITC-avidin and biotinylated goat anti-avidin. The fluorescent background increased with successive rounds of amplification but no signal was discernable. PCR products for each of the microsatellites and genes were cloned by blunt end ligation into SmaI cut pBluescript so that large amounts of the product $(1-50 \mu \mathrm{~g})$ could be used as a SPRINT primer. The whole clones, excised inserts and restriction digested fragments of the clones were tested as SPRINT primers, but no signal was detected above the high generalised background that was associated with using the cloned products.

Table 3.2: Single copy sequences used in SPRINT reactions. Oligonucleotide primers, cloned PCR product generated by those primers and restriction digested fragments of the cloned product were all tested as sources of primers for SPRINT. Various concentrations of each source of primer were tried at each annealing temperature (TA).

Locus	SPRINT Primer Type	[Primer]	$\mathrm{T}_{\text {A }}$
ILSTS005	Oligonucleotide primers Cloned PCR product	$1 \mu \mathrm{~g}$	50
		$5 \mu \mathrm{~g}$	55
		$10 \mu \mathrm{~g}$	60
		$50 \mu \mathrm{~g}$	70
MAF35	Oligonucleotide primers Cloned PCR product	$1 \mu \mathrm{~g}$	50
		$5 \mu \mathrm{~g}$	55
		$10 \mu \mathrm{~g}$	60
		$50 \mu \mathrm{~g}$	70
BM1824	Oligonucleotide primers Cloned PCR product DdeI digested fragments	$1 \mu \mathrm{~g}$	50
		$5 \mu \mathrm{~g}$	55
		$10 \mu \mathrm{~g}$	60
		$50 \mu \mathrm{~g}$	70
FSHB	Oligonucleotide primers Cloned PCR product DdeI digested fragments	$1 \mu \mathrm{~g}$	50
		$5 \mu \mathrm{~g}$	55
		$10 \mu \mathrm{~g}$	60
		$50 \mu \mathrm{~g}$	70
ADCYC	Oligonucleotide primers Cloned PCR product	$1 \mu \mathrm{~g}$	50
		$5 \mu \mathrm{~g}$	55
		$10 \mu \mathrm{~g}$	60
		$50 \mu \mathrm{~g}$	70
OPCML (OCAM)	Oligonucleotide Cloned PCR product	$1 \mu \mathrm{~g}$	50
		$5 \mu \mathrm{~g}$	55
		$10 \mu \mathrm{~g}$	60
		$50 \mu \mathrm{~g}$	70
KAP1.1	AluI, Sau3AI, Tru91 digested genomic clone	$1 \mu \mathrm{~g}$	50
		$5 \mu \mathrm{~g}$	55
		$10 \mu \mathrm{~g}$	60 70

3.3 Discussion

Probes which target repetitive sequences, like human satellite III and ovine satellite I, have been localised to metaphase chromosomes by FISH (Grady et al., 1992) and PRINS using biotin-labelled or digoxygenin-labelled probes or nucleotides (Gosden and Lawson, 1994). The hybridised FISH probe or the newly synthesised DNA strand generated by PRINS is detected using fluorescein-conjugated antibodies. For a largescale physical mapping project though, the long hybridisation time of several hours required for FISH limits the number of markers that can be processed. Moreover, the immunochemistry involved in the detection of biotin-labelled or digoxygenin-labelled probes is laborious and expensive.

The extent of human satellite III and ovine satellite I detected on chromosomes by SPRINT using a fluorescein-labelled nucleotide was comparable to that produced by PRINS and FISH but with the background fluorescence much diminished. The components of the reaction mixture have been optimised so that signal can be detected on all target chromosomes without the need for further signal amplification using antibodies or by using cycles of denaturation, annealing and extension (cycling PRINS; Gosden and Hanratty, 1993). The strong, specific labelling obtained in 20 minutes illustrates that the SPRINT technique is both fast and sensitive, and is ideal for rapid physical mapping of repetitive sequences. The main disadvantage of SPRINT is that the thermal kinetics of the reaction are not easily predicted, so that the procedure needs to be optimised for each new probe sequence used. The requirement for very high primer concentrations and high Taq concentrations suggests that the organisation or spatial arrangement of the chromatin must somehow limit the SPRINT reaction.

All attempts to physically map single copy sequences by SPRINT were unsuccessful. Numerous sets of primers for microsatellite sequences and genes were used in SPRINT reactions. Various primer concentrations ($1-50 \mu \mathrm{~g}$), annealing temperatures $\left(50-70^{\circ} \mathrm{C}\right)$ and cycling profiles were tested, but no fluorescent signal could
be visualised by standard fluorescence microscopy on metaphase chromosomes or in interphase nuclei. Biotin-labelled nucleotides were also used in conventional PRINS reactions, but the background was too high to discern any specific signal. On several occasions, upon completion of the SPRINT reaction, the reagent mixture was pipetted onto agarose gels to assess whether diffusion of the product away from the chromosomes was responsible for the lack of signal. Only unincorporated nucleotides were detected on these gels (data not shown). To evaluate whether PCR amplicons are being generated in the SPRINT reaction it should be possible to denature the labelled products away from the chromosomes and detect them by gel electrophoresis. For improved sensitivity, radioactive nucleotides could be used, but such experiments were not attempted herein.

Since the PRINS technique was developed (Koch et al., 1989), there has only been one report describing the localisation of a single copy gene by PRINS (Cinti et al., 1993), and the signal was detected using a Confocal Laser Scanning Microscope (CLSM). The human factor IX gene was localised to the X chromosome by CLSM, but was barely detectable by standard fluorescence microscopy. CLSM allows long exposures, the signal-to-noise ratio can be manipulated and the signal can be enhanced. Since the factor IX gene had previously been physically mapped to Xq27 (Nguyen et al., 1987), it may have been less difficult to detect the signal than it would have been for a previously unmapped gene. There does not appear to be anything unusual about either the organisation of the X chromosome or the factor IX gene that would enable it to be more readily detected by PRINS than other single copy genes.

Porcine α interferon has been localised to chromosome 1 by DISC-PCR (direct in situ single copy PCR) which is essentially cycling PRINS except that a colorimetric reaction with horseradish peroxidase was used instead of detection with fluorescently labelled nucleotides (Troyer et al., 1994). Another innovation that was used was a thermocoupler attached to a glass slide so that the temperature on the reaction surface
was monitored directly. This method of controlling the thermal cycles is probably more precise than the "simulated" cycle control used for the Hybaid Omnigene slide block.

As for the human factor IX gene, porcine α interferon had previously been physically mapped to 1q2.5 (Yerle and Gellin, 1989; Sarmiento et al., 1993) which is an easily distinguished chromosome. Out of 290 spreads that were analysed a total of 59 signals were detected. Only 21 were localized to a position on chromosome 1 and just 10% of these (ie. 2 signals) were on both chromatids. Given that only 1% of all the spreads had signal on both chromatids, it would be very difficult to assign a previously unmapped gene to a particular chromosome by this method.

It seems likely that single-copy sequences cannot readily be detected by SPRINT because the newly synthesised strand incorporating fluorescently labelled nucleotides is too short (only a few hundred bases) to be visualised on metaphase chromosomes by standard fluorescent microscopy. Since the signal was not visualised in interphase nuclei, where the chromatin is much less contracted than at metaphase, alternative strategies such as using extended chromatin fibres (Heiskanen et al., 1994) to improve the resolution were not attempted.

Whilst it is unlikely that SPRINT could ever be used for a large-scale physical mapping project for single-copy sequences, it is an ideal method for rapidly localising repetitive DNA sequences to metaphase or interphase cells. SPRINT could be used to investigate centromere organisation and the evolution of repeats in closely related species. In human genetics, PRINS with chromosome-specific repeats is being used to identify supernumerary chromosomes (Koch et al., 1993), to detect aneuploidy (Adinolfi et al., 1993; Pellestor et al., 1995) and to sex foetuses (Adinolfi et al., 1993). Enlarged euchromatic regions, indicating trisomy for a region of the genome containing coding information and which are, therefore, associated with a high risk of phenotypic abnormality, have been detected using the Alu repeat as a primer for PRINS (Callen et al., 1997). In livestock, SPRINT with a panel of chromosome specific repeats could be
used to test for aneuploidy, which is a major cause of fertilisation failure (Pellestor et al., 1995). Another cause of reduced fertilisation in livestock is Robertsonian translocations (eg. cattle 1:29 and cattle 14:20 translocations). It may be possible to detect such translocations in sperm cells by SPRINT using chromosome specific repeats and two different fluorophors (Volpi and Baldini, 1993). If there were a translocation, then the two signals would always appear together. Sexing pre-implantation embryos (Thomsen et al., 1992) by SPRINT with X or Y specific repeats would be a valuable tool for the dairy and meat industries.

Since it was not possible to use SPRINT to add loci to the sheep physical map, alternative strategies to improve the map were investigated. A library of large-insert bacterial artificial chromosome clones was developed as a source of probes for physical mapping by fluorescence in situ hybridisation (FISH).

To accurately localise single-copy probe sequences physically on chromosomes, preparations of elongated metaphase spreads are required. Even after optimising the culture conditions for ovine lymphocytes, only $5-7 \%$ of all the cells were suitable for making assignments to particular bands. When this study began, fibroblast cell lines for sheep were not available in the laboratory. Fibroblasts grow as a monolayer and can be passaged several times without any change in their karyotype. In the metaphase stage, fibroblasts adhere less tightly to the growth support than during other stages of the cell cycle (Lawce and Brown, 1991). As a consequence of this, they can be easily enriched to obtain a very high mitotic index $(>80 \%)$. Given the poor yield of chromosomes suitable for mapping from lymphocyte cultures, it was advantageous to develop ovine fibroblast cell lines as a source of metaphase spreads for mapping by FISH.

CHAPTER 4

CONSTRUCTION AND CHARACTERISATION OF AN OVINE BACTERIAL ARTIFICIAL CHROMOSOME LIBRARY

CONSTRUCTION AND CHARACTERISATION OF AN OVINE BACTERIAL ARTIFICIAL CHROMOSOME LIBRARY

4.1 Introduction

In order to identify regions of the genome that contain genes for economically important traits in livestock species and to isolate those genes so that they can be utilised in breeding programmes, high density genome maps are required. Large-insert clones are used to efficiently obtain accurate, high resolution physical maps of eukaryotic genomes (Cai et al., 1995). One aim of this project was to integrate the ovine genetic and physical maps by localising type II microsatellite markers to metaphase chromosomes by fluorescence in situ hybridisation (FISH). Consequently, an ovine bacterial artificial chromosome (BAC) library was constructed as a source of large-insert probes for FISH.

A DNA library is a collection of clones that has a high probability of containing at least one copy of every DNA sequence in the genome. A library of clones with large DNA inserts ($100 \mathrm{~kb}-1 \mathrm{Mb}$) is a valuable tool for any genome mapping project. Recently, yeast artificial chromosomes (YAC), P1-derived artificial chromosomes (PAC), and bacterial artificial chromosomes (BAC) were developed (Burke et al., 1987; Ioannou et al., 1994; Shizuya et al., 1992). These vectors can carry $\sim 500 \mathrm{~kb}, 75-100 \mathrm{~kb}$ and $100-300 \mathrm{~kb}$ of genomic DNA, respectively. YAC libraries have been constructed for humans (Albertson et al., 1990), mice (Larin et al., 1993; Kusumi et al., 1993) rats (Cai et al., 1997), cattle (Libert et al., 1993; Smith et al., 1996), sheep (Broom and Hill, 1994) and pigs (Rogel-Gaillard et al., 1997). The primary advantage of YAC technology is that the very large clones enable long segments of mammalian chromosomes to be investigated by chromosome walking (Silverman et al., 1989). However, there are some difficulties associated with YAC technology. First, cloning efficiencies are low which means that it is a very laborious and expensive process to
construct a library which completely covers the genome (Smith et al., 1990). Second, YAC clones are often chimaeric, consisting of DNA from different parts of the genome that have accidentally been combined into a single clone (Green and Olson, 1990). For instance, it has been estimated that at least one third of the clones in the bovine YAC library are chimaeric (Libert et al., 1993). This is a serious hindrance to physical mapping and chromosome walking because the true location of the gene of interest cannot be readily determined.

The PAC cloning system is based on the P1 bacteriophage with the large-insert DNA packaged into phage particles that infect Escherichia coli with high efficiency. Human PAC libraries have been constructed (Ioannou et al., 1994; Gingrich et al., 1996) but until recently no PAC libraries were available for livestock species. A porcine PAC library is now available (Al-Bayati et al., 1999). Although PAC clones are stable, the in vitro packaging system limits the use of this cloning system.

BAC libraries have been constructed for a number of plant species including sorghum (Woo et al., 1994), rice (Wang et al., 1995), soybean (Marek and Shoemaker, 1997) and lettuce (Frijters et al., 1997) as well as for humans (Kim et al., 1996), mice (Research Genetics inc.), cattle (Cai et al., 1995), goats (Schibler et al., 1998a) and horses (Godard et al., 1998) using cloning systems based on the E. coli F factor. BAC clones are stable, easy to manipulate and are not chimaeric (Shizuya et al., 1992, Ioannou et al., 1994, Woo et al., 1994, Cai et al., 1995). The only disadvantage of BAC technology for chromosome walking is that the DNA inserts are somewhat smaller than those maintained by YAC clones. Despite this, BAC clones are becoming the vector of choice for physically mapping genes to specific chromosomal locations and for isolating the genes by positional cloning. Additionally, BAC clones can be used in functional studies to investigate gene structure, expression and regulation. Although the BAC vector does not contain a selection system or reporter genes suitable for expression in eukaryotic cell lines (Kim et al., 1998), methods for modifying BAC clones so that the
genes and regulatory elements can be studied in cell lines have recently been described. BAC clones can be retrofitted with expression cassettes by restriction digestion (Mejia and Monaco, 1997), homologous recombination with a shuttle vector (Yang et al., 1997) or Cre-mediated recombination (Chatterjee and Coren, 1997; Kim et al., 1998). BAC DNA can be modified by nested-deletion (Chatterjee and Coren, 1997) or sitespecific mutagenesis (Boren et al., 1996), and then expressed in eukaryotic cells (Baker and Cotten, 1997; Chen et al., 1997). BAC clones have recently been used in transgenic animal studies to determine gene function (Antoch et al., 1997) and to demonstrate the importance of long-range regulatory elements in gene expression and the developmental or stage-specific activation of genes (Porcu et al., 1997; Nielsen et al., 1997).

The construction and characterisation of an ovine BAC library are described in this chapter. The quality of the library was determined by PCR-based screening and fluorescence in situ hybridisation (FISH). A BAC library covering the ovine genome will be a key resource for comparative gene mapping studies, for identifying quantitative trait loci (QTL) by positional cloning and for functional studies to understand gene expression and regulation.

4.2 Results

4.2.1 Quality of high molecular weight DNA

The quality of DNA prepared by encapsulating white blood cells in agarose microbeads was confirmed by CHEF gel electrophoresis prior to library construction. The majority of the DNA was $>1 \mathrm{Mb}$ and was retained in the well or at the compression band (Figure 4.1).

4.2.2 Size-selection for BAC library construction

The ovine BAC library was constructed by ligating HindIII digested sheep DNA fragments into the HindIII cloning site of the pBeloBAC11 vector. This restriction
enzyme was selected to avoid the bulk of the centromeric DNA that is resistant to digestion with HindIII and remained in the compression band when the fragments were separated by CHEF gel electrophoresis (Figure 4.1).

The partial digests with 0.75 U and 1 U HindIII gave a majority of fragments in the size range from 50-250kb (Figure 4.1). The DNA fragments in this size range were excised from low melting point agarose so that the average insert size of the library would be 150 kb . The CHEF gel for size selection was electrophoresed in $1 \times$ TAE rather than $0.5 \times$ TBE because borate ions inhibit ligation. The switch time was also altered to $90^{\prime \prime}$ because a $40^{\prime \prime}$ switch time previously had been found to adversely affect the ligation efficiency of the fragments, presumably because the 5^{\prime} overhang or phosphate group were lost. The lambda ladder, however, was not resolved when a 90 " switch time was used and the spread of fragments that were excised from the gel was based on their mobility in the previous CHEF gel that used a 40 " switch time. This problem is likely to account for the smaller than expected insert sizes that were recovered from the library (section 4.2.3).

The region of the gel corresponding to fragments in the desired size range was cut into four pieces. DNA from the three gel pieces containing the largest fragments was ligated to pBeloBAC11 and transformed by electroporation into DH10ß E. coli. Colonies produced from each ligation were sized and it was determined that the DNA in the second largest gel piece would be used for library construction. Many of the inserts obtained from the largest gel piece were actually smaller than those from the second largest piece and may indicate that the majority of fragments in that gel slice exceeded the cloning capability of the BAC vector. The transformation efficiency for the BAC clones was $1.5 \times 10^{6} \mathrm{cfu} / \mu \mathrm{g}$ or ~ 300 transformants from $1 \mu \mathrm{l}$ of ligation product (ie. ~ 600 colonies/plate). To achieve a 95% probability of finding any unique sequence within the library, a total of 59,913 colonies with an average insert size of 150 kb are required (section 1.3.3.5). Two $100 \mu \mathrm{l}$ ligations were required to produce sufficient
colonies for the BAC library and a total of 59,904 white colonies (624×96-well plates) were picked.

Although a second round of size selection has been shown to give a more uniform insert size distribution across the library it is accompanied by a 10 fold reduction in transformation efficiency (Cai et al., 1995). Consequently, the ovine BAC library was generated from DNA that was only subjected to a single size selection to maximise the efficiency of library construction.

4.2.3 Determination of average insert size

The average insert size of the BAC clones was determined by CHEF gel electrophoresis (Figure 4.2). In initial sizing experiments, double bands were observed that migrated through the gel about 7 kb apart and hindered accurate sizing of the BAC clones (Figure 4.2a). Faintly staining high molecular weight bands were also visible. The doublet migrated through the gel about a well-width apart. Initially, the samples were loaded whilst the gel was dry and then the wells were capped with low-melting point agarose which was allowed to set before the gel was placed in the electrophoresis buffer. It was thought that perhaps some of the DNA was being trapped at the back of the well so that it was migrating through the extra agarose used to cap the well. Alternatively, the molten agarose may have been denaturing some of the DNA with the different conformations migrating through the gel matrix at different rates. To eliminate these possibilities as the source of the second band, the samples were mixed with gel loading buffer and the gel was loaded in the electrophoresis buffer. However, the additional band and faint high molecular weight bands persisted. It was determined that the doublet was due to incomplete digestion of a NotI site on the vector since pBeloBAC11 is 7.4 kb . The faintly staining high molecular weight bands were due to supercoiled and open-circular BAC DNA (Wang and Lai, 1995). The problem was overcome by reducing the amount of DNA used in the NotI digest to $\sim 100 \mathrm{ng}$ (Figure
4.2b). Linearised BAC DNA prepared by standard alkaline lysis is not stable and some degradation was visualised as a smear on the CHEF gels. A total of 139 clones were selected at random and the average insert size was determined to be 103 kb with a range from 25 kb to 410 kb (Figure 4.3). This corresponds to 2 genome equivalents (59,904 x $103 \mathrm{~kb}=\sim 6 \times 10^{9}$) assuming that the ovine genome is $3 \times 10^{9} \mathrm{bp}$. Therefore, there is an 88% chance (since $P=1-(1-I / G S)^{N}$, section 1.3 .3 .5) of finding any given sequence of interest in the library.

Only one of the BAC clones that were selected for sizing failed to have an insert suggesting that less than 1% of the clones in the library are empty clones. Many of the clones that were sized produced a single insert band. However, 32 inserts had at least one internal NotI site. NotI sites are indicative of CpG islands which are associated with all house-keeping genes and some tissue specific genes in mammalian genomes (Gardiner-Garden and Frommer, 1987; Aïssiani and Bernardi, 1991).

4.2.4 PCR-based screening

The BAC library was screened by PCR with primers for 80 microsatellite markers and genes (Table 4.1). Primers were selected so that at least two BAC clones were isolated for every sheep chromosome. At least one positive superpool was found for 69 loci. IL5 and IRF1 were both found within a single BAC clone. DQB, DQA1 and DQA2 were not found in the library. It is expected that they were clustered within 100 kb of each other, and would, therefore represent a single missing BAC clone (J. Maddox, pers. comm.). If these three genes are treated as a single locus, then it can be estimated that there is an 88.5% chance of finding any sequence of interest in the ovine BAC library. This agrees with the estimation based on the average insert size (section 4.2.3).

Figure 4.1: Partial digestion series of ovine DNA with HindIII to generate fragments with an average size of 150 kb . The amount of enzyme ($0-8 \mathrm{U}$) used in each digest is indicated. The fragments were sized against lambda concatomers. The digests were loaded onto a 1% agarose CHEF gel in $0.5 \times \mathrm{TBE}$ and the gel was run at $6 \mathrm{~V} / \mathrm{cm}$ for 18 h at $14^{\circ} \mathrm{C}$.

Figure 4.2: Pulse-field gel electrophoretic analysis of insert size in the ovine BAC library. Inserts were removed from the vector by dige stion with NotI. The DNA was separated on the basis of size by electrophoresis using a CHEF-DRII apparatus (Biorad). Samples were loaded on a 1% agarose gel in $0.5 \times \mathrm{TBE}$ and run at $14 ; \mathrm{C}$ for 16 h at $6 \mathrm{~V} / \mathrm{cm}$ with an initial pulse time of 1.4 s and a linear ramp to a final pulse time of 13.5 s . The size standard is composed of lambda concatamers (Promega) and a HindIII lambda ladder (Promega). A) Example of the doublets and faint high-molecular weight bands caused by incomplete digestion of BAC clones with NotI. B) Complete digestion of BAC clones when 100ng DNA was used in the digest enables accurate sizing. Degraded DNA is visible as a smear.

Figure 4.3: Distribution of insert sizes in the ovine BAC library

An individual BAC clone was isolated for each locus that had at least one positive superpool. PCR products generated from the individual clones were sequenced manually prior to physical mapping and the sequences were aligned with published data.

4.2.5 Sequencing

The identity of every BAC clone that was isolated by PCR-based screening was confirmed by sequencing prior to physical mapping. PCR products generated from each clone were used as the template for sequencing since the BAC vector is a single-copy vector and it is not possible to recover sufficient plasmid for sequencing from a standard 50 ml preparation. The PCR products generated from the BAC clones were sequenced manually in both directions and then aligned with published sheep or cattle sequences (Table 4.1). Many of the microsatellites used to construct the sheep genetic linkage map were originally isolated from cattle and for 33 loci that were sequenced only cattle data were available in the GENBANK database. Every clone that was isolated shared at least 84% sequence identity with the published sequences over a minimum of 64 bp and this was considered sufficient to confirm that the correct clones had been isolated. Any differences in the alignments which were due to microsatellite polymorphisms (ie. a different repeat length to the published allele) were not included in the calculation. As expected the best alignments (KAP1.1, MAF214, IL2RA, IL6, KRT2.13) were achieved when the sequence was compared to sheep data.

4.2.6 Estimation of chimaerism

The proportion of chimaeric clones in the BAC library was evaluated by physically mapping 45 of the 69 clones identified by PCR-based screening (section 4.2.4). The BAC clones that were physically mapped by FISH to ovine metaphase
chromosomes (Figure 4.5) ranged in size from 25 kb to 250 kb and no chimaeric clones were detected.

4.3 Discussion

There are a number of biases in the ovine BAC library because it was constructed using HindIII size-selected DNA fragments extracted from a Suffolk ram. For the Australian wool industry, it would have been desirable to use a fine-wool Merino as the DNA source, but no suitable animals were available for sampling in North America. This means that if a gene for a particular trait is isolated from the library, then the exact genotype that causes characteristics peculiar to the fine-wool Merino cannot be established using the library.

Since the BAC library was made from male DNA, both the X and Y chromosomes are represented but each sex chromosome is under-represented since there is only one copy of each in the genome and two copies of every autosome. Apart from the pseudo-autosomal region, there are very few genes on the Y chromosome. However, there are many important genes on the X chromosome that control X-linked traits. To increase the representation of the X chromosome, additional clones prepared from female DNA could be added to the library.

The restriction enzyme HindIII was selected for library construction to avoid the bulk of the repetitive centromeric DNA sequences, which may mean that regions immediately adjacent to the centromere are poorly represented in the library. However, a BAC clone containing the microsatellite BM6438 has been isolated from the library. BM6438 is linked to the horn-polled gene in cattle and has been mapped by genetic linkage analysis to the centromere of both cattle and sheep chromosome 1 . The proportion of clones in the library containing centromeric sequences could be investigated using satellite DNA probes.

Table 4.1: Summary of results from screening the ovine BAC library by PCR with primers for microsatellites and genes. The number of positive superpools for each locus (NF: not found) and the size of the individual BAC clone (ND: not done) that was isolated for a locus are listed. PCR products generated from the BAC clones were sequenced prior to physical mapping and were compared to published sheep (Ovis) or cattle (Bos) sequences.

Locus	Sources	No. of Positive Superpools	Insert Size (kb)	GENBANK Sequence Accession \#	Origin of Pub. Sequence	\% Sequence Identity
ADCYC	N. Cockett, Utah State Uni., UT, USA	6	100	X16451	Bos	92% over 68 bp
BM415	N. Cockett, Utah State Uni., UT, USA	NF	-	G18413	Bos	
BM719	N. Cockett, Utah State Uni., UT, USA	2	100	G18427	Bos	95.7\% over 70bp
BM827	N. Cockett, Utah State Uni., UT, USA	3	ND	U06763	Bos	90\% over 111 bp
BM1303	N. Cockett, Utah State Uni., UT, USA	3	125	G18424	Bos	91.7% over 60bp
BM1329	N. Cockett, Utah State Uni., UT, USA	2	235	G18422	Bos	87.3\% over 95bp
BM1824	N. Cockett, Utah State Uni., UT, USA	3	250	G18394	Bos	88% over 137bp
BM3413	N. Cockett, Utah State Uni., UT, USA	1	405	G18492	Bos	91.7\% over 118bp
BM4107	N. Cocketh, Utah State Uni., UT, USA	2	155	G18519	Bos	91.2\% over 91bp
BM4208	N. Cockett, Utah State Uni., UT, USA	4	30	G18509	Bos	96% over 108bp
BM6438	N. Cockett, Utah State Uni., UT, USA	1	70	G18435	Bos	90\% over 196bp
BM6526	N. Cockett, Utah State Uni., UT, USA	5	80	G18454	Bos	90.5\% over 95bp
CAPN2 ${ }^{3}$	C. Bottema, Uni. of Adelaide, SA, Aust.	NF	-	J05065	Bos	9.5\% over 95b
CD3D	J. Maddox, Uni. of Melbourne, VIC, Aust.	2	240	AF117651	Ovis	94% over 105bp
CD5	J. Maddox, Uni. of Melboume, VIC, Aust.	NF	-	M97195	Ovis	退
CSF2	J. Maddox, Uni. of Melbourne, VIC, Aust.	1	ND	${ }^{1}$ Unpublished	Ovis	91\% over 136bp
CSRD241	N. Cockett, Utah State Uni., UT, USA	4	30	${ }^{2}$ Not in Genbank	Bos	$(\mathrm{GT})_{17}$

Table 1 continued.

Locus	Sources	No. of Positive Superpools	Size (kb)	GENBANK Sequence Accession \#	Origin of Pub. Sequence	\% Sequence Identity
CSRD270	N. Cockett, Utah State Uni., UT, USA	1	85	${ }^{2}$ Not in Genbank	Bos	$(\mathrm{GT})_{30}$
CSRD287	N. Cockett, Utah State Uni., UT, USA	1	230	${ }^{2}$ Not in Genbank	Bos	$(\mathrm{GT})_{26}$
CSSM043	N. Cockett, Utah State Uni., UT, USA	1	40	U03824	Bos	92.3\% over 130bp
DQA1	J. Maddox, Uni. of Melbourne, VIC, Aust.	NF	-	Z28418	Ovis	-
DQA2	J. Maddox, Uni. of Melbourne, VIC, Aust.	NF	-	Z28421	Ovis	
DQB	J. Maddox, Uni. of Melbourne, VIC, Aust.	NF	-	Z28425	Ovis	-
DRB1	J. Maddox, Uni. of Melboume, VIC, Aust.	1	55	M73984	Ovis	93.6\% over 140bp
DRB2	J. Maddox, Uni. of Melboume, VIC, Aust.	2	50	S83920	Ovis	93% over 183bp
DYB	J. Maddox, Uni. of Melboume, VIC, Aust.	2	55	Z27401	Ovis	93\% over 63bp
FN1	Komblihtt et al., 1983	2	80	-	Bos	97% over 105bp
FSHB	N. Cockett, Utah State Uni., UT, USA	1	215	S64745	Ovis	95\% over 80bp
GAPR^{3}	C. Bottema, Uni. of Adelaide, SA, Aust.	4	147	X12602	Bos	98\% over 161 bp
GHRH^{3}	C. Bottema, Uni. of Adelaide, SA, Aust.	3	188	U29611	Bos	93\% over 152bp
GH2	C. Bottema, Uni. of Adelaide, SA, Aust.	1	ND	M37310	Ovis	98% over 210 bp
HUJ614	N. Cockett, Utah State Uni., UT, USA	1	ND	M93653	Bos	93\% over 101bp
IFNG	J. Maddox, Uni. of Melbourne, VIC, Aust.	2	75	Z73273	Ovis	95% over 140bp
IGF1	C. Bottema, Uni. of Adelaide, SA, Aust.	1	ND	X17229	Ovis	98.4\% over 66bp
IL1A	J. Maddox, Uni. of Melboume, VIC, Aust.	NF	-	AF117652	Ovis	98.
IL2RA	N. Cockett, Utah State Uni., UT, USA	2	75	${ }^{1}$ Unpublished	Ovis	100\% over 115bp
IL3	J. Maddox, Uni. of Melbourne, VIC, Aust.	4	60	Z18897	Ovis	95\% over 197bp
IL5	J. Maddox, Uni. of Melbourne, VIC, Aust.	3	95	U17052	Ovis	96\% over 127bp
IL6	J. Maddox, Uni. of Melbourne, VIC, Aust.	1	195	X62501	Ovis	100\% over 75bp
ILSTS005	N. Cockett, Utah State Uni., UT, USA	3	ND	L23481	Bos	90\% over 102bp

Table 1 continued.

Locus	Sources	No. of Positive	Size (kb)	GENBANK Sequence	Origin of Pub.	\% Sequence Identity
ILSTS008	N. Cockett, Utah State Uni., UT, USA	3	45	L23483	Sequence	

Table 1 continued.

Locus	Sources	No. of Positive	Size (kb)	GENBANK Sequence Superpools	Origin of Pub.	\% Sequence Identity
OarJMP8	N. Cockett, Utah State Uni., UT, USA	2	135	OAU35059	Sequence	

${ }^{1}$ Sequence for comparisons provided by Dr. J. Maddox.
${ }^{2}$ Sequence unavailable for comparison. PCR products contain the expected microsatellite repeats.
${ }^{3}$ BAC clones isolated and sequenced by L. Allen (1997).
${ }^{4}$ BAC was isolated with primers for SCYA, but was subsequently shown to be another member of this gene family.

Figure 4.4: Physical localisation of ovine BAC clones to sheep metaphase chromosomes by fluorescence in situ hybridisation. A) BM1329 (235kb clone) localised to $6 \mathrm{q} 1.6-\mathrm{q} 1.8$. B) IFNG (75kb clone) localised to 3 q 1.4 . C) BM4208 (30 kb clone) localised to $8 \mathrm{q} 2.3-\mathrm{q} 2.5$. D) FSHB (215 kb clone) localised to $15 \mathrm{q} 3.3-$ q3.4. Arrows indicate fluorescent signal. Bars represent $10 \mu \mathrm{~m}$.

Similarly, a probe for the telomeric repeat, (TTAGGG) ${ }_{n}$, could be used to isolate telomeric clones. To overcome some of the biases in the library due to the use of a single restriction enzyme, additional clones could be prepared using another enzyme (eg. BamHI).

The coverage of the ovine BAC library was evaluated by sizing inserts and by PCR-based screening. The presence of additional bands due to incomplete digestion of the BAC clones could lead to an over-estimation of insert size, and therefore, genome coverage, if this was the only method used to characterise the BAC library. Indeed, sizing was the only form of characterisation that was presented for the recently constructed chicken BAC library (Zimmer and Verrinder Gibbins, 1997). Although the size standard is not resolved in any of the figures that are presented by the authors, they claim that the library has an average insert size of 390 kb ranging from 25 to 725 kb . It remains to be seen whether the expected coverage based on size is supported by screening. Extensive PCR-based screening of the sheep BAC library for 80 markers and genes verified that the estimation of genome coverage made on the basis of size was accurate.

The difficulties in sizing the BAC clones by pulsed-field gel electrophoresis could be overcome by using flow cytometry (Huang et al., 1996). In this method, large DNA fragments are labelled with a bis-intercalating dye and passed through a laser illuminated detection volume to produce photon bursts. The burst size is proportional to the number of dye molecules bound to the DNA, and therefore, is proportional to fragment length. Whilst sizing by pulsed-field gel electrophoresis requires ng amounts of linearised DNA and the gel needs to be run for hours to separate the fragments, the advantages of flow cytometry are that the size of undigested, supercoiled BAC DNA can be established in minutes using pg amounts of DNA.

The insert sizes in at least two of the BAC libraries that have been constructed previously were smaller than expected (Cai et al., 1995; Frijters et al., 1997) with the
average insert size of the clones below the size of the DNA that was selected to make the BAC libraries. The ovine BAC clones were also smaller than expected, but within the selected size range, with an average insert size of 100 kb instead of the intended 150 kb . This may be due to preferential cloning of smaller DNA fragments which comigrate with the larger fragments as previously described (Cai et al., 1995; Frijters et al., 1997), or it may to be due to inaccurate sizing of the fragments that were excised to make the library, since the molecular weight ladder was not resolved under the conditions that were necessary to guarantee a good cloning efficiency.

The smaller than expected insert sizes means that at present there is an 88% chance of identifying an ovine BAC clone containing a sequence of interest (section 1.3.3.5). This obviously means that about 1 in 10 genes of interest are missing from the library and it should be expanded to ensure that there is a 99% of isolating any sequence. Prior to completion of the library, the CHEF gel conditions should be investigated to determine whether a different set of pulse times would enable the molecular weight marker to be resolved and yet still maintain good ligation and transformation efficiencies.

No chimaeric BAC clones were detected by FISH but, due to limits in sensitivity, this does not preclude the possibility of there being small regions of non-contiguous DNA within the clones. It has been demonstrated using Southern hybridisation to DNA from somatic cell hybrids that BAC clones, which appeared non-chimaeric, by FISH did indeed map to multiple chromosomes (T. Broad, AgResearch, pers. comm.). Furthermore, two microsatellites isolated from a single BAC clone have mapped to two different linkage groups (T. Broad, pers. comm.). It will remain to be seen whether chimeras that were not detected by FISH are discovered by these alternative methods in the sheep BAC library described herein.

The present coverage of the library is quite adequate for physical mapping studies because the exact sequence is not required to obtain hybridisation. Consequently, if a
locus is not present in the ovine library then either the cattle (Cai et al., 1995) or goat (Schibler et al., 1998a) BAC libraries could be screened and those clones used for comparative mapping. The expansion of the BAC library to 99% coverage is necessary though so that ovine BAC clones for any sequence can be isolated for functional studies where the exact sheep sequence is required to determine the physiological basis for phenotypic variation due to DNA sequence variation at the locus. Also, the BAC library would need to be expanded if the clones in the library were to be ordered so that contigs could be developed for every chromosome.

Recently, another ovine BAC library was constructed (Vaiman et al., 1999b). The impetus was to generate a source of clones that could be used to develop an animal model for prion diseases by transgenesis in mice. A cell line derived from a Romanov ram with increased susceptibility to scrapie due to the genotype of the PRNP gene (VRQ/VRQ) was the source of DNA for library construction. This HindIII library has 90,000 clones with an average insert size of 123 kb and represents three genome equivalents. Unfortunately, the same biases exist in this library as the one constructed in the present study, since a male from one breed was used as the source of DNA and the same enzyme (HindIII) was used for the entire library.

The two libraries combined, however, represent five genome equivalents, meaning there is theoretically now a 99% probability of finding any given sheep sequence in one of the libraries (section 1.3.3.5). Large BAC libraries (10x genome coverage) constructed with a single enzyme in mice have a higher than expected number of missing loci (N. Jenkins, NCI-Frederick Cancer Research and Development Center, pers. comm.). This is likely to be due to variability in the abundance of enzyme sites throughout the genome. It is expected that HindIII-rich and HindIII-poor regions of the genome would be more likely to be absent from the ovine BAC libraries because of the size selections made for library construction. It would be worthwhile screening the Romanov BAC library for the 11 markers and genes that were not found in the

Suffolk BAC library herein. If these loci were also absent from the Romanov library it would suggest that rather than by chance, some property of the sequence in these regions is making each locus recalcitrant to BAC cloning with HindIII.

Prior to physical mapping studies, PCR products generated from the BAC clones were sequenced to verify the identity of the clones. All the products shared $>84 \%$ sequence identity with previously published sequences for the genes and markers screened. Sequencing alone, however, does not necessarily verify the identity of BAC clones isolated for genes from large families (Cai et al., 1995; Schibler et al., 1998a). Members of large gene families that arose by duplication events are often highly conserved sharing $>90 \%$ sequence identity. The only confirmation of clone identity in such cases is coincident mapping data. A BAC clone for a SCYA chemokine was isolated from the ovine library and shared 95% sequence identity with the sequence from which the primers were derived. The BAC clone was expected to map to OAR11, but a microsatellite isolated from this clone was subsequently mapped by genetic linkage analysis to OAR13 (J. Maddox, pers. comm.). It is presumed that the BAC clone contains another member of the SCYA gene family. This result demonstrates the care that must be taken to avoid making incorrect map assignments when members of large gene families are involved.

The ovine BAC library, described herein, will be a powerful tool for comparative mapping and the positional cloning of genes for economically important traits. BAC clones containing genes of interest could be modified and expressed in mammalian cells or used in transgenesis programmes. The ovine BAC library will also enable genome organisation, gene regulation and chromosome evolution in closely related species, such as deer, to be investigated.

CHAPTER 5

PHYSICAL MAPPING IN SHEEP USING OVINE BAC CLONES

PHYSICAL MAPPING IN SHEEP USING OVINE BAC CLONES

Physical mapping is the localisation of genes or markers to specific chromosomal regions. A physical map is a useful tool in the search for genes for economically important traits because it can define the actual region that contains the candidate genes or markers that are closely linked to the trait of interest. The physical maps for sheep and cattle (eg. ArkDB at Roslin: http://www.ri.bbsrc.ac.uk:8080/cgi-bin/arkdb) are in their infancy compared to the dense physical maps that are available for human (eg. Whitehead/MIT physical map at http://carbon.wi.mit.edu:8000/cbibin/contig/phys_map) and mouse (eg. MGI-Whitehead/MIT physical map at http://www.informatics.jar.org/mitmaps.html). However, human and mouse physical mapping data can be utilised to improve the density of genes on the livestock maps. Physical localisation of large-insert clones containing human and mouse gene homologues (comparative mapping loci) helps to define critical regions containing economically important traits. Candidate genes that localise to the same region as the comparative mapping loci can then be extrapolated from the gene-rich human and mouse maps.

In 1998, the ovine physical map consisted of 178 genes and 54 markers (ArkDB, 11/9/98). There are currently 222 genes and 207 markers on the physical map (ArkDB, 6/8/99) and several physical mapping methods have been utilised to localise these loci to specific chromosomes. The majority of the physical assignments in sheep (338/429) have been made using somatic cell hybrids (Saidi-Mehtar et al., 1981; Burkin et al., 1993; Burkin et al., 1998). The recently completed, cytogenetically characterised sheep x hamster somatic cell hybrid panel was used to verify the chromosomal assignments of 110 microsatellite markers (Burkin et al., 1998), leading to a rapid increase in the number of markers on the physical map. Whilst this method localises loci to particular chromosomes, it does not reveal the precise band location. This limits the amount of comparative mapping information that can be taken from the human and mouse physical maps because gene order is not conserved at the whole chromosome level.

In situ hybridisation (ISH) of radioactive probes or fluorescence in situ hybridisation (FISH) of fluorescent probes to target sequences on the chromosomes is a more precise localisation method and enables loci to be mapped to discrete chromosomal bands. Only 10 of the 197 physical assignments that were made in 1999 were FISH localisations. Indeed, only 91 loci have been mapped by ISH or FISH in sheep and just 25 of these have been mapped by genetic linkage analysis as well (ArkDB, 6/8/99). Three of the new assignments (NRAMP1, BM1237 and IGF2) directly anchored the physical and genetic linkage maps for chromosomes 2,7 and 21, respectively. There are still 11 chromosomes ($3,8,11,12,16,20,22,23,25,26$ and X) for which the physical maps and genetic linkage maps have not been directly anchored by FISH.

One of the primary objectives of this project was to place more loci on the ovine physical map. Specifically, the aim was to use FISH to map ovine BAC clones containing loci that have been mapped by genetic linkage analysis (chapter 4) to anchor and orient all the linkage maps to their respective chromosomes. The other objective was to place more comparative mapping loci on the physical map in co-localisation experiments with the anchor BAC clones to avoid the problems associated with chromosome identification in Bovidae (Popescu et al., 1996).

The production of a physical map of a species requires the unambiguous identification of all the chromosomes (Ansari et al., 1993). The identification of the chromosomes in Bovidae (eg. sheep, cattle and goat) is quite difficult because the chromosomes are similar in shape and decrease gradually in size. The cattle (BTA) and goat (CHI) karyotypes consist of 29 acrocentric chromosomes and the sheep (OAR) karyotype is 3 metacentric chromosomes and 23 acrocentric chromosomes.

At the 1976 Reading conference (Reading, 1980) and the second international conference on standardization of domestic animal karyotypes in 1989 (ISCNDA, 1990), standard nomenclature for the cattle, sheep and goat chromosomes was developed based
on G-banding and R-banding patterns. There appears to be extensive conservation between the sheep, cattle and goat karyotypes on the basis of the chromosome banding patterns (Evans et al., 1973; Hayes et al., 1991; Hediger et al., 1991a; Kaftanovskaya and Serov, 1994; Iannuzzi and Di Meo, 1995). This is largely supported by genetic linkage data (Kemp et al., 1993; Vaiman et al., 1996; de Gortari et al., 1997; de Gortari et al., 1998) and comparative mapping assignments (Hayes and Petit, 1993; Echard et al., 1994; Vaiman et al., 1996). Every goat chromosome and every arm of the sheep karyotype has a bovine homologue with some minor rearrangements (Table 5.1). BTA1 and BTA3 correspond to the metacentric OAR1, BTA2 and BTA8 correspond to OAR2, and BTA5 and BTA11 correspond to OAR3. The nomenclature for cattle and goat are identical (Popescu et al., 1996), but the numbering system is different for sheep (Table 5.1).

There were several ambiguities in the Reading (1980) and ISCNDA (1990) karyotypes, and these have only recently been resolved (Ansari et al., 1994; Ansari et al., 1996; Popescu et al., 1996; Ansari et al., 1999). The ovine chromosome identifications that were contentious were $4,6,8,9,19,20,21,23,24,25$ and 26. Chromosome-specific reference markers have been assigned to every sheep and cattle chromosome to assist in chromosome identification (Ansari et al., 1996; Popescu et al., 1996; Ansari et al., 1999)(Table 5.1). For instance, chromosome 4 and 6 have similar banding patterns and were interchanged in the ISCNDA (1990) karyotype. This led to the concurrent assignment of β-casein (CSN2) to both sheep chromosome 6 (Ansari et al., 1992) by the Reading (1980) G-banded karyotype and sheep chromosome 4 (Hayes et al., 1993) by the ISCNDA (1990) R-banded karyotype. The Reading (1980) convention is now used and β-casein is the reference marker for sheep, cattle and goat chromosome 6 (Table 5.1).

A similar problem was identified for BTA25 and BTA29. Insulin-like growth factor 2 (IGF2) and lactate dehydrogenase-A (LDHA) were mapped by in situ
hybridisation to BTA29 in an animal carrying the traditional 1:29 Robertsonian translocation (Schmutz et al., 1996). LDHA had also been assigned to syntenic group U7 (Womack and Moll, 1986) and this linkage group was localised to BTA25 by FISH using two cosmids, BMC3224 and BMC8012 (Bishop et al., 1994). However, when these cosmids were mapped again by FISH in cells carrying the $1: 29$ translocation they were localised to the translocated chromosome, BTA29 (Schmutz et al., 1996). Consequently, the physical assignment and linkage group nomenclature for BTA25 and BTA29 have been interchanged to eliminate this inconsistency (Popescu et al., 1996). The homologous chromosomes in sheep are OAR24 and OAR21, respectively.

The G-banding patterns for sheep and goat are identical, but there have been some minor rearrangements compared to the cattle karyotype. Goat and sheep chromosomes 8 (according to the Reading (1980) convention, but referred to as chromosome 9 by Kaftanovskaya and Serov (1994) and Iannuzzi and Di Meo (1995)) are shorter than the cattle homologue 9. Conversely, CHI14 and OAR9 (Reading (1980)) are longer than the cattle homologue BTA14 (Kaftanovskaya and Serov, 1994). Genetic linkage analysis demonstrated that there has been a translocation of the centromere of BTA9 to BTA14 to generate OAR9 (Crawford et al., 1995; de Gortari et al., 1998). The remainder of BTA9 is equivalent to OAR8 (Figure 5.1a).

There has also been a rearrangement in the band order and shape of the sheep and goat X chromosome compared with the cattle X chromosome (Evans et al., 1973; Hayes et al., 1991; Hediger et al., 1991a; Ponce de León et al., 1996; Hassanane et al., 1998). Several models for the evolution of the sheep, cattle and goat X chromosomes from an ancestral buffalo- or goat-type chromosome have been proposed (Kaftanovskaya and Serov, 1994; Iannuzzi and Di Meo, 1995; Ponce de León et al., 1996; Hassanane et al., 1998). Chromosome painting probes showed that the bovine Xp arm is homologous to Xq3.2-Xq3.6 of sheep and goat chromosomes (following the band numbering of Ansari et al., 1996 but referred to as Xq4 by Ponce de León et al., 1996). In addition, bovine
$\mathrm{Xq4.1-Xq} 4.3$ (the terminal three bands) is homologous to Xp 1.2 -q1.2 in sheep and goat (Hassanane et al., 1998), and it has been demonstrated by genetic linkage analysis and FISH that these bands correspond to the pseudo-autosomal region (Ponce de León et al., 1996; Galloway et al., 1996) (Figure 5.1b).

Some caprine microsatellite markers (eg. TGLA245, HEL13, OarVH98, OarCP9, OarHH22, BM4305) and the β-globin gene cluster (HBB) map to non-homologous chromosomes in cattle and sheep (Simi et al., 1989; Vaiman et al., 1996). Similarly, ovine markers BMS66, BMS719, BM3627, BM4439, BMS2840 and HEL6 map to linkage groups other than the expected cattle homologues. These differences may be due to as yet undefined translocations or more likely they are due to amplification of closely related sequences flanking a second locus (de Gortari et al., 1998). Improving the density of genes and markers on the ovine physical map by FISH with BAC clones will help to define the boundaries of chromosomal rearrangements which will aid the search for positional candidate genes from the human and mouse maps.

5.1 Fluorescence in situ hybridisation

Standard sheep (Ansari et al., 1996) and cattle ideograms (ISCNDA, 1990) were used in this study (Figure 5.2). Goat nomenclature followed cattle as recommended by Popescu et al. (1996), except for X, which followed sheep. A G-banded ovine karyotype was constructed using the sheep ideogram as a reference (Figure 5.3).

5.1.1 Biotinylation of BAC clones

Prior to physically mapping ovine BAC clones to metaphase sheep chromosomes by FISH, the identity of the BAC was confirmed by sequencing (section 4.5) to avoid making incorrect physical assignments. Once confirmed, the BAC clones were labelled with biotinylated-dATP by nick translation in the presence of trace tritiated-dATP. The \% incorporation of tritium into the BAC DNA was measured by scintillation
counting as an estimate of the \% of biotin incorporated. Routinely, 15-30\% incorporation was achieved. However, if the DNA was poorly labelled ($<10 \%$), nick translation was repeated and if it failed for a second time, the DNA was re-isolated.

5.1.2 CotI DNA Preparation

CotI DNA was prepared from both sheep liver and thymus. A CTAB extraction method (Towner, 1991) was used to isolate the DNA from liver to avoid precipitating glycogen and other monosaccharides associated with the tissue matrix. A standard pronase digestion was used to extract DNA from thymus (Ausubel et al., 1992). The recovery from thymus was 5 mg DNA/g tissue (65 mg total), whilst the yield from liver was only 0.2 mg DNA/g tissue (3 mg total). The yield from liver was inadequate for CotI DNA preparation since at least 20 mg DNA was required as starting material. Spleen does not have the extensive tissue matrix associated with liver, and it was evaluated as an alternative source of DNA. A yield similar to thymus was recovered by pronase digestion (4.2mg DNA/g tissue).

The DNA was sheared by autoclaving to produce fragments with an average length of 600 bp . The original protocol (A. Nesci, personal communication) recommended a 15^{\prime} treatment at $121^{\circ} \mathrm{C}, 103 \mathrm{Kpa}$. However, after 15^{\prime} all of the DNA was $<100 \mathrm{bp}$. Various times from 1-10' were tried, and it was found that a 1' treatment produced fragments in the appropriate size range. After shearing, the DNA was treated with S1 nuclease and the final yield of CotI DNA was $13.35 \mu \mathrm{~g} / \mu \mathrm{l}$ (26.7 mg total).

Figure 5.1: Rearrangements that have been described for cattle (BTA), sheep (OAR) and goat (CHI) chromosomes. A) Translocation of the centromeric region of BTA9 (light blue) to BTA14 (dark blue) to generate OAR8 and CHI14. The remainder of BTA9 corresponds to OAR9 and CHI9 (green). This translocation has been defined by genetic linkage analysis but the physical boundaries are yet to be defined by FISH. The bands included in the translocation in this schematic are as described by Kaftanovskaya and Serov (1994). B) Rearrangements that have occurred on the X chromosome. Microdissected chromosome paints were used to define these rearrangements (blue: Ponce de Le $₫ n$ et al., 1996; red: Hassanane et al., 1998). The blue region also corresponds to the pseudoautosomal region. The bands for BTAX are numbered according to ISCNDA (1990) whilst OARX follows the numbering system of Ansari et al., 1996.

Figure 5.2: Ideograms used for chromosome identification. A) Ovine G-banded (left) and R-banded (right) karyotype (from Ansari et al., 1996). B) Bovine G-banded (left) and R-banded karotype (from ISCNDA (1990) except that BTA4 and BTA6 have been interchanged to follow the Reading (1980) convention).

Figure 5.3: G-banded karyotype from a single metaphase spread of a normal ram. Bands were generated as described in section 2.1.2.6.

Table 5.1: Equivalent sheep, cattle and goat chromosomes according to the Texas nomenclature (Popescu et al., 1996). The chromosome-specific reference markers recommended by Ansari et al. (1994) and Popescu et al. (1996) are shown.

Cattle	Sheep	Goat	Reference Markers
1	1 q	1	SOD1, TF
2	2 q	2	VIL1, FN1
3	1 p	3	HSD3B, NGFB
4	4	4	INHBA
5	3 q	5	IFNG, LALBA
6	6	6	CSNo, CSN β
7	5	7	RASA, PDEA
8	2 p	8	IFNA, INFW
9^{a}	8	9	IGF2R, ESR
10	7	10	CYP19, HEXA
11	3 p	11	LGB
12	10	12	RB1
13	13	13	IL2RA
14^{a}	9	14	TG, CRH
15	15	15	FSHB
16	12	16	PIGR, LAMC1
17	17	17	FGG
18	14	18	GPI
19	11	19	GH1
20	16	20	MAP1B
21	18	21	IGH γ, GMBT16
22	19	22	LTG, RHO
23	20	23	(B)OLA
24	23	24	DSCI, MBP
25	24	25	ELN, PRKCB1
26	22	26	APT1, CYP17
27	26	27	DEFB
28	25	28	CGN1, TAC2R
29	21	29	LDHA, IGF2
X $^{\text {b }}$	X	Y	PF1
Y	15	ZFY	

[^1]
5.1.3 Suppression of repeats with CotI DNA

In the absence of CotI DNA, the repetitive DNA in the BAC clones hybridises uniformly to the chromosomes (ie. painting the chromosome arms) and masks the true location of the unique DNA in the clone. Consequently, the labelled BAC DNA was pre-annealed to ovine CotI DNA to suppress the repetitive DNA within the BAC clone and prevent it from hybridising to numerous sites in the genome. A CotI DNA concentration titration ($2 \mu \mathrm{~g}, 4 \mu \mathrm{~g}, 6 \mu \mathrm{~g}, 8 \mu \mathrm{~g}, 10 \mu \mathrm{~g}, 12 \mu \mathrm{~g}$) was performed. It was found that, in general, $8 \mu \mathrm{~g}$ CotI DNA was sufficient to suppress the repeats within the BAC clone, whilst still producing strong hybridisation signal at a unique location on the chromosomes. Although $8 \mu \mathrm{~g}$ was used initially, some BAC clones required less suppression ($5 \mu \mathrm{~g}$) to reveal a hybridisation signal, whilst others required much more $(25 \mu \mathrm{~g})$ to completely suppress the repeats (Table 5.2$)$. Even with $25 \mu \mathrm{~g}$ CotI, BAC 347R4C6 for OarVH116 was still under-suppressed and hybridised to numerous sites along the arms of several chromosomes, similar to a SINE painting pattern. It is possible that this clone contains a low-copy repetitive element that is not well represented in CotI DNA. Conversely, the BAC clones for BM3413 (168R8C5) and OBS (608R2C8) were over-suppressed with $5 \mu \mathrm{~g}$ CotI DNA and no fluorescent signal was detected. It may be that these clones largely consist of repetitive DNA elements and contain very little single-copy DNA. BAC 210R5C6 for BM4107 was undersuppressed with $8 \mu \mathrm{~g}$ CotI DNA and this FISH localisation needs to be repeated with more CotI DNA.

A dot blot of some of the BAC clones was probed with the BovA repetitive element (a SINE) and the microsatellite (GT) 3 $_{30}$ to establish whether there was any relationship between the presence or absence of these repeats and the amount of CotI DNA required for adequate suppression (Figure 5.4). Given that the amount of DNA in each dot was equal (100 ng), any difference in the intensity of the dots may indicate a difference in the length of the repeats (ie. a longer repeat may hybridise better than a
shorter repeat) or the number of repeats (ie. two separate repeats may hybridise more strongly than a single repeat). There was, however, no relationship between the amount of CotI DNA needed and the intensity of the dots probed with either the microsatellite $\left(r^{2}=0.0147\right)$ or the SINE element $\left(r^{2}=0.0122\right)$. Similarly, the intensity of the dots showed that there was no relationship between the presence of a microsatellite and a SINE in the same clone ($\mathrm{r}^{2}=0.2369$). Only two BAC clones (ILSTS008 and BRN) failed to hybridise with either the microsatellite or the SINE. However, sequencing showed that the PCR product amplified from the clone ILSTS008 contained a (CA) 7 repeat. Similarly, the BAC for IGF1 contained a $(\mathrm{CA})_{6} \mathrm{AATA}(\mathrm{CA})_{8}$ interrupted repeat, OarEL01 contained a $(\mathrm{CA})_{7}$ repeat and PRL contained a $(\mathrm{AC})_{3} \mathrm{TTT}(\mathrm{CA})_{3}$ interrupted repeat but these also failed to hybridise to the $(\mathrm{GT})_{30}$ probe. It may be that the repeats are too short or that some secondary structure prevents hybridisation. The data from the dot blots, therefore, were not able to assist in predicting the amount of CotI DNA required for suppression.

5.1.4 Chromosome identification

Ovine fibroblast cell lines were the source of metaphase chromosomes for FISH. Since fibroblasts at metaphase do not adhere to the growing surface as strongly as interphase cells, the chromosome preparations were enriched for metaphases. In general, more than 90% of all cells on the slide were prophase or metaphase cells and 70% of these were suitable for physical mapping, being elongated and well-spread with few overlapping chromosomes.

For each BAC clone at least 20 metaphase cells were scanned under the microscope to establish the location of the fluorescent signal. Under optimum CotI DNA conditions, signal was observed in 90% of cells and on both chromatids of both chromosomes 70% of the time. A minimum of 3 well-banded metaphase spreads was scored from high-contrast black and white film to assign each BAC clone to a specific
chromosomal band (Table 5.2). Three BAC clones (158R2C6 for CD3D, 140R8C10 for DRB2 and 102R1C11 for PRL) could not be assigned because the metaphase spreads were poorly banded or not banded at all and these FISH localisations need to be repeated.

Propidium iodide (Lemieux et al., 1992) stains the centromeres and telomeres brightly when the chromosomes are G-banded. This aided chromosome orientation which can be difficult using other stains (eg. Hoescht). However, it hindered band identification in some cases, particularly when the fluorescent signal was adjacent to the centromere (eg. BM6438) or the telomere (eg. OarJMP58). Indeed, it was impossible to visualise the signal on black and white film if the BAC was located at the centromere as for BM6438 and colour photographs were taken instead (Figure 5.5).

Occasionally, the chromosomes were simultaneously G-banded and R-banded. This was particularly noticable for the smallest chromosomes making identification problematic. It was, however, difficult to decide whether the small chromosomes were truly R-banded or whether they took on that effect because of the brightly staining centromeres and telomeres. In humans, background R-banding has been observed with the propidium iodide staining method even when the cells have not been arrested with BrdU and it may be an effect of the high pH of the PPD11 antifade mountant (G. Webb, pers. comm). To refine the localisation of several markers that mapped to bands adjacent to the centromere (eg. BM827 on OAR3, IL2RA on OAR13 and CSRD241 on OARX) or telomere (eg. MAF92 on OAR22), a different stain (eg. Hoescht) or banding method could be used.

In cases where chromosome identification was ambiguous or where there was no previous mapping information in sheep, cattle or goat, a co-localisation experiment was performed with two BAC clones that were expected to map to the same chromosome on the basis of linkage (section 5.3).

5.2 Integration of the ovine genetic linkage map and physical map

A total of 69 clones were isolated from the ovine BAC library with at least two BACs for every chromosome, except OAR8, 10, 11, 18 and 22. To date, 45 BACs (for 46 genes and markers) have been physically localised to discrete chromosomal bands by FISH (Figure 5.6). Each of these BACs mapped to the expected chromosome based on previous mapping information (Table 5.2). At least one BAC was mapped to each sheep chromosome, except OAR18. BAC clones 601R8C12 for TGLA122 and 168R8C5 for BM3413 have been isolated for OAR18 but these still need to be localised physically. McM58 (BAC 21R4C10) has been isolated for OAR1p, the only other cattle chromosome equivalent for which a BAC clone is yet to be localised by FISH. In addition, FISH localisations for a second BAC per chromosome still need to be performed for 13 chromosomes (OAR4, 8, 10, 11, 12, 14, 16, 17, 18, 19, 21, 22 and X).

Of the 69 clones that have been isolated, 50 clones are anchors for the genetic map and 19 are comparative mapping loci (ie. BAC clones isolated for gene sequences rather than microsatellites), with 9 of these comparative mapping loci acting as anchor loci as well. To date, 29 anchor and 17 comparative mapping loci (including 6 that also act as anchors) have been localised by FISH (Figure 5.6). The physically localised BAC clones directly anchor and orient the linkage maps with respect to the physical maps for every sheep chromosome, except OAR18 and OAR2 since neither FN1 nor LPL have been mapped by genetic linkage analysis. The genetic maps for OAR2 and OAR18 are already anchored by NRAMP1 and GMBT16, respectively (Georges et al., 1991; Pitel et al., 1995).

The location of GAPR, which was previously unmapped, was confirmed by dual localisation (section 5.3). Perforin (PRF) mapped to 25q1.4-2.1 which has conserved synteny with a segment of human chromosome 10. ILSTS011 mapped to 9 q 2.1 and this defines the boundary of the translocation between cattle 14 and 9 .

5.3 Dual localisation of BAC clones

To avoid making incorrect mapping assignments, dual localisation experiments were performed if the chromosome identification by G-banding was ambiguous or if there was no previous mapping information in sheep, cattle or goat. For instance, it was confirmed that GAPR mapped to 5 q 3.5 by simultaneously localising LDLR to 5 q 1.3 (Figure 5.7). Dual localisations were also performed for LPL and FN1 on OAR2, RNASE6 (formerly SRN) and ILSTS005 on OAR7, and IL2RA and GHRH on OAR13. These co-localisation experiments verified that each of these pairs of BAC clones did map to the same chromosomes. Adequate suppression was only achieved if the amount of CotI DNA required to suppress the repeats in each clone was included in the mixture. For example, $8 \mu \mathrm{~g}$ CotI DNA suppressed the repetitive DNA in the BAC clones for GAPR and LDLR when they were hybridised separately. Consequently, $16 \mu \mathrm{~g} \operatorname{CotI}$ DNA was required for adequate suppression in the dual FISH experiment.

Figure 5.4: Dot blots of BAC clones probed with repetitive DNA elements. Each dot contained 100ng DNA. A) The loading scheme indicating the loci known to be contained within each of the BAC clones. B) Hybridisation with (GT) $)_{30}$. C) Hybridisation with the BovA SINE element. The probes were labelled with ${ }^{32} \mathrm{P}-\mathrm{dATP}$ and the autoradiographs were exposed overnight.
A

BM6438	DYB	LDLR	BA/6526	[GFl	ILST008	II, 3	BM1329	Perforin	[FNG
B*1719	DRB1	5641606	IL2RA	MAF92	IMP8	ILSTSOI	15.41466	BM1824	FSH3
OarELOL		CSRD287	25215c10	SCYA	3616609	[L5/[RFP]	BM1227	BM4107	PrRL
JMMP58	Mide35	169 ct lo 5	KRT2,13	ILSTSO5	LPL	CSTRO24	Oarveil ${ }^{\text {a }}$	SRN	CSF2
Csrd270	KAP L, 1	DRB2	547,407	BRN	LGB	cD31	VE11 16	K.APl,	BRN
5781208	OarHilital	KRTAPG	OB	5741705	CSSiri43	Ocam	ADCYC	[N1	GAPr
IL6	FCB48	BM1303	II.STS 43	Jalle	BN3413	+\%	$(\mathrm{GT})_{30}$	Vector	-ve

B

Figure 5.5: Localisation of a BAC clone for BM6438 to 1q1.1-1.3 by FISH to G-banded sheep metaphase chromosomes. The fluorescent signal produced by BM6438 was photographed under blue epifluorescence using Fugichrome colour positive film set at ASA 1600 with a further correction of 1.6.

Table 5.2: Physical map locations of ovine BAC clones localised to G-banded metaphase chromosomes by fluorescence in situ hybridisation. Published mapping information for each locus and the method that was used to make the chromosomal assignment are listed (L: linkage, SCH: somatic cell hybrids, FISH: fluorescence in situ hybridisation). The amount of CotI DNA required to suppress repeats within the BAC clones is indicated (OS: over-suppressed, US: under-suppressed). The number of chromosomes that were scored to assign the bands is in parentheses (NA: not assigned. NI): not done).

Locus	${ }^{1}$ Published Map Location	Mapping Method	BAC	CotI	Physical Location of BAC clone	
ADCYC	15	L	443R7C6	$8 \mu \mathrm{~g}$	15q1.4-2.2	(4)
BM719	12	L	296R6C9	$25 \mu \mathrm{~g}$	12q2.2-2.3	(7)
BM827	3	L	153R6C4	$8 \mu \mathrm{~g}$	3p1.2-1.5	(4)
BM1303	19	L, SCH	139R7C8	$25 \mu \mathrm{~g}$	19q1.2-1.3	(5)
BM1329	6	L, SCH	5R3C4	$8 \mu \mathrm{~g}$	6q1.6-1.8	(8)
BM1824	1 q	L, SCH	284R5C4	$25 \mu \mathrm{~g}$	1 q 4.2	(8)
BM3413	18	L	168R8C5	$5 \mu \mathrm{~g}$	OS	
BM4107	16	L	210R5C6	$8 \mu \mathrm{~g}$	US	
BM4208	8	L, SCH	408R8C6	$8 \mu \mathrm{~g}$	8q2.3-2.5	(8)
BM6438	1	L, SCH	321R4C8	$25 \mu \mathrm{~g}$	1q1.1-1.3	(6)
BM6526	26	L, SCH	304R4C7	$5 \mu \mathrm{~g}$	26q1.2-1.3	(6)
CD3D	${ }^{2} 15$	${ }^{2} \mathrm{~L}$	158R2C6	$8 \mu \mathrm{~g}$	NA	
CSF2	5q1.3-1.5	FISH	295R7C7	$8 \mu \mathrm{~g}$	5q1.3-1.5	(5)
CSRD241	X	L	22R8C7	$12 \mu \mathrm{~g}$	Xq1.1-1.4	(4)
CSRD270	14	L	306R8C4	$8 \mu \mathrm{~g}$	14q1.3-1.4	(7)
CSRD287	10	L	100R4C3	$25 \mu \mathrm{~g}$	10q1.3	(6)
CSSM043	26	L, SCH	475R8C2	$8 \mu \mathrm{~g}$	ND	
DRB1	${ }^{2} 20$	${ }^{2}{ }^{2} \mathrm{~L}$	569R6C11	$8 \mu \mathrm{~g}$	20q2.2	(10)
DRB2	${ }^{2} 20$	${ }^{2} \mathrm{~L}$	140R8C10	$8 \mu \mathrm{~g}$	NA	

Table 5.2 continued

Locus	${ }^{1}$ Published Map Location	Mapping Method	BAC	CotI	Physical Location of BAC clone	
DYB	${ }^{2} 20$	${ }^{5} \mathrm{~L}$	78R3C6	$8 \mu \mathrm{~g}$	20q3.2-3.3	(4)
FN1	2q4.1-4.4	FISH, SCH	597R6C12	$8 \mu \mathrm{~g}$	2q4.1	(10)
$\underset{3,4}{ }{ }^{\text {FSHB }}$	15q2.4-qter	L, ISH	94R8C7	$12 \mu \mathrm{~g}$	15 q 3.2	(5)
${ }^{3,4}$ GAPR	UNMAPPED	- ${ }^{-}$	560R5C11	$8 \mu \mathrm{~g}$	5 q 3.4	(10)
${ }_{4}^{\text {GH2 }}$	11	HSA17 BY FISH	382R1C2		ND	
${ }^{4}$ GHRH	13	BTA13 BY L	327R8C12	$8 \mu \mathrm{~g}$	13q2.4	(10)
HUJ614	12	L, SCH	364R5C10		ND	
IFNG	3 q 2.3	FISH	237R5C6	$25 \mu \mathrm{~g}$	3q2.3	(8)
IGF1	3	SCH	402R7C8		ND	
IL2RA	13q1.2-1.5	L, FISH	43R5C3	$25 \mu \mathrm{~g}$	13 q 1.3	(6)
IL3	5q1.3-1.5	FISH	319R7C9	$8 \mu \mathrm{~g}$	5q1.5	(4)
IL5/IRF1	5q1.3-1.5	FISH	233R6C6	$8 \mu \mathrm{~g}$	5q1.5	(7)
$\stackrel{\text { IL6 }}{ }$	${ }^{2} 4$	${ }^{2} \mathrm{~L}$	290R2C10	$25 \mu \mathrm{~g}$	4q1.4-1.5	(4)
ILSTS005	7	L, SCH	220R8C7	$8 \mu \mathrm{~g}$	7q3.6-qter	(6)
ILSTS008	9	L, SCH	337R8C6	$8 \mu \mathrm{~g}$	9 q 2.6	(6)
ILSTS011	9	L, SCH	35R2C11	$25 \mu \mathrm{~g}$	9q2.1	(12)
ILSTS043	24	L	292R3C5	$8 \mu \mathrm{~g}$	24q1.2-1.3	(4)
KAP1.1	11	L	164R5C4	$25 \mu \mathrm{~g}$	11 q 3.1	(5)
KAP6.1	1	L	516R8C6		ND	
KRT2.13	3	L	374R2C7	$25 \mu \mathrm{~g}$	3 q 2.1	(6)
${ }^{4}$ LDLR	5	BTA7 BY L	192R4C7	8 $\mu \mathrm{g}$	5 q 1.3	(8)
LGB	3 p 2.7	FISH	103R8C4		ND	
${ }^{4}$ LPL	2	SCH	323R6C9	$8 \mu \mathrm{~g}$	2 p 2.4	(10)
MAF23	3	L, SCH	68R6C1		ND	
MAF35	23	L, SCH	249R5C9	$8 \mu \mathrm{~g}$	23q1.7-2.1	(5)
MAF92	22	L, SCH	87R3C2	$8 \mu \mathrm{~g}$	22q2.3-qter	(10)
MAF214	16	L	68R6C1	$8 \mu \mathrm{~g}$	16 q 1.7	(4)

Table 5.2 continued

Locus	${ }^{1}$ Published Map Location	Mapping Method	BAC	CotI	Physical Location of BAC clone	
McM58	1	L	21R4C10		ND	
McM111	19	L	140R4C7		ND	
McM136	23	${ }^{2} \mathrm{~L}$	39R7C7	$8 \mu \mathrm{~g}$	23q1.7-2.1	(4)
OarEL01	24	L, SCH	141R6C6	$25 \mu \mathrm{~g}$	24q1.8	(6)
OarFCB48	17	L, SCH	220R5C3	$8 \mu \mathrm{~g}$	17q2.1-2.3	(4)
OarHH56	20	L, SCH	605R5C8		ND	
OarHH64	4	L	537R7C4		ND	
OarJMP8	6q3.4-3.5	L, SCH, FISH	547R7C11	$8 \mu \mathrm{~g}$	6q3.4-3.5	(6)
OarJMP58	26	L, SCH	535R4C6	$8 \mu \mathrm{~g}$	26q2.1-qter	(6)
OarVH72	25	L, SCH	396R6C11	$8 \mu \mathrm{~g}$	25q1.2-1.3	(5)
OarVH110	21	L, SCH	298R1C1		ND	
OarVH116	17	L	347R4C6	$25 \mu \mathrm{~g}$	US	
OBS	4	SCH	608R2C8	$5 \mu \mathrm{~g}$	OS	
OCAM	21	L, SCH	343 R 8 Cl 1	$8 \mu \mathrm{~g}$	21q2.1-2.2	(4)
PRF	25	HSA10q22 BY ISH	187R7C3	$25 \mu \mathrm{~g}$	25q1.4-2.1	(9)
PRL	19	BTA23 BY L	102R1C11	$8 \mu \mathrm{~g}$	NA	
${ }^{4}$ RNASE6	7		79R1C6	$8 \mu \mathrm{~g}$	7q1.5	(6)
SCY@	${ }^{2} 11$	${ }^{2} \mathrm{~L}$	131R7C4		ND	
SRY	Y	SCH	574R7C5	$5 \mu \mathrm{~g}$	Ypl.1-1.2	(6)
TGLA122	18	L	601R8C12		ND	(5)
UWCA5	14	L, SCH	59R6C5		ND	
ZFX/ZFY	Xp1.3/Yp1.2-1.3	SCH, FISH	602R4C4		ND	

[^2]
5.4 Estimation of genome size

It was possible to estimate genome size by measuring the physical distance between anchor BAC clones and by comparing it to the genetic distance (Ferretti et al., 1997). The genetic linkage maps (Maddox et al., 1996; de Gortari et al., 1998) for 10 chromosomes were anchored with 2 BAC clones (Figure 5.6). There are now 17 chromosomes that have 2 anchors if previously mapped anchors are included. The physical distances between anchors were evaluated (as in Ferretti et al., 1997) by measuring the length spanning hybridisation peaks, defined by band assignments (Lichter et al., 1990). When anchors were assigned to more than one band the central position was taken. The length of the interval was estimated as a percentage of the total karyotype.

To estimate genome size, only 9 pairs of anchors that each represented more than 1% of the genome were considered (Table 5.3). Consequently, RP0011-CSRD287 on OAR10 (0.62%), FSHB-ADCYC on OAR15 (0.88%), BM4107-MAF214 on OAR16 (0.62%), FGF2-OARFCB48 on OAR17 (0.53%), DYB-DRB1 on OAR20 (0.53%), IGF2-OCAM on OAR23 (0.18\%) and MAF35-McM136 on OAR23 (0.35\%) were not included in the calculation. The two anchors for OAR14 (GP1 and CSRD270) are not integrated into the same map, so a genetic distance between them could not be calculated. GP1 is an anchor for the second-generation ovine linkage map (de Gortari et al., 1998) and CSRD270 was mapped by Maddox et al. (1996). All the genetic distances used to estimate genome size are from de Gortari et al. (1998), except for the anchors for OAR4 (TCRB-IL6) which are from Maddox et al. (1996). Both maps for OAR4 are 130 cM long, so the relative distances between markers should be similar and should not influence the estimation of genome size greatly.

Figure 5.6: Physical assignments of 46 BAC clones on sheep chromosomes. Green indicates existing anchors; comparative mapping loci are in blue and the set of anchor BAC clones mapped herein are in red. Green underlining indicates the anchor already existed and comparative mapping loci underlined with red are also anchors.

Table 5.3: Comparison of the ovine physical and genetic maps to estimate genome size

OAR	Markers	$\begin{gathered} \text { Length } \\ \text { (\% genome) } \end{gathered}$	${ }^{1}$ Genetic distance sex ave. (cM)	Inferred genome size sex ave. (cM)
1	BM1824-BM6438	4.26	153.2	3592
3	KRT2.13-BM827	2.09	42.1	2017
4	TCRB-IL6	3.09	${ }^{2} 81.5$	2642
6	OARJMP8-BM1329	2.90	82.5	2841
7	RNASE6-ILSTS005	2.54	88	3463
9	ILSTS008-ILSTS011	1.45	27.9	1922
19	RHO-BM1303	1.27	53.7	4227
24	OAREL01-ILSTS043	1.09	31.4	2884
26	OARJMP58-BM6526	1.09	34.5	3168
	TOTAL	19.78	594.8	3007
'de Gortari et al. (1998) ${ }^{2}$ Maddox et al. (1996)				

Figure 5.7: Dual localisation of ovine BAC clones for LDLR and GAPR to $5 q 1.3$ and $5 q 3.5$, respectively. Bar represents $10 \square \mathrm{M}$.

The intervals for the 9 chromosomes that could be considered cover 19.8% of the whole genome. The total genetic distance covered by the intervals between markers is 595 cM , giving an estimate for the whole genome of 3006 cM . Estimates of genome size obtained by considering individual intervals vary considerably (Table 5.3), but the mean of $2985 \mathrm{cM}(\pm 266 \mathrm{SEM})$ is similar to the minimum genome size of 2770 cM predicted by chiasmata counts (Chapman and Bruere, 1977).

5.5 Discussion

The assignment of 45 BAC clones for 46 genes and markers to G -banded ovine metaphase chromosomes by FISH increases the number of physical assignments in sheep to 475 with 137 loci now mapped by ISH methods. This represents a 52% increase in the number of markers mapped to discrete chromosomal bands. The assignments of IL3, OarJMP8, IL2RA and FSHB to 5q1.5, 6q3.4-q3.5, 13q1.3 and 15q3.2, respectively, validate previous localisations (Hediger et al., 1991b; Pearce et al., 1994; Ansari et al., 1995; Hawken et al., 1996). The physical positions of IL3, IL2RA and FSHB have been refined and they are each now assigned to a single band.

An additional 41 new assignments by FISH were made but several BAC clones were not assigned because they were either over- or under-suppressed. In such cases, overlapping BAC clones could be isolated by plasmid end-rescue to build a contig of the immediate region by chromosome walking (Cai et al., 1995). These newly identified clones may have sufficient unique DNA sequence to enable FISH hybridisation to a discrete location, thereby localising the marker or gene of interest.

For those clones that were localised to G-banded chromosomes, there was no obvious association between whether a BAC clone was isolated for a gene or marker and whether it mapped to a light or dark G-band. Several of the assignments were clustered in the same band or adjacent bands. INFG and KRT2.13 mapped to 3 q 1.4 and 3q2.1, respectively. LDLR mapped to 5q1.3, and the BAC clones for IL3, IL5 and IRF1
mapped to 5 q 1.5 . $\operatorname{CSF} 2$ was localised to $5 \mathrm{q} 1.3-\mathrm{q} 1.5$. The order of these clustered markers could be ascertained by multiple colour FISH (Schläpfer et al., 1998; Gallagher et al., 1998; Gallagher et al., 1999) or fibre-FISH on extended chromatin fibres (Brunner et al., 1998; Liu et al., 1998; Horelli-Kuitunen et al., 1999).

A number of markers were localised to more than one band. Most of these broad localisations were due to the problems associated with band identification near the brightly staining centromeres and telomeres. In most cases these assignments could be refined by using an alternative staining strategy. Some localisations, however, are unlikely to be refined, because genes that are part of large families may be clustered at those locations. Genes that arise by duplication events share significant sequence identity, and therefore, may all hybridise to the fluorescent probe, causing a broader localisation than expected for a single gene.

The physical locations of 36 of the BAC clones anchor and orient all the ovine genetic linkage maps, except OAR2 and OAR18 (Maddox et al., 1996; de Gortari et al., 1998). OAR18 will be anchored once the BAC clones for TGLA122 and BM3413 have been localised by FISH because these markers are already on the genetic linkage map. LPL and FN1 for OAR2 have not been mapped by genetic linkage analysis. The BAC clones for these loci both hybridised strongly with the $(\mathrm{GT})_{30}$ probe indicating that in each of these clones there is at least one microsatellite (Figure 5.4). Similarly, BAC clones for the other comparative mapping loci, except GHRH and SRY which were not assessed, all hybridised to the $(\mathrm{GT})_{30}$ probe. By isolating polymorphic microsatellites from these clones (eg. by shot-gun subcloning (Cai et al., 1995; Schibler et al., 1998a)) and then scoring them across the IMF animals, the comparative mapping loci could be integrated into the genetic map.

The set of anchor BAC clones that were isolated in this study can be used for unambiguous identification of ovine chromosomes. The availability of this set of clones means that researchers with minimal cytogenetic experience of the sheep karyotype can
readily make new, accurate physical assignments in sheep. It is important that prior to the release of this set of clones as a mapping tool, the current assignments are verified in some way. So far, four pairs of BAC clones have been co-localised by dual FISH confirming that both BAC clones map to the same chromosome. The remaining pairs should be mapped by dual FISH to guarentee that these BAC clones map to the same chromosomes and there has been no mis-identification based on G-banding patterns. Alternatively, microsatellites isolated from these BAC clones could be mapped by genetic linkage analysis. For example, three microsatellites have been isolated from the BAC containing perforin (PRF) and all three mapped to OAR25, thereby validating the FISH assignment of the clone to 25q1.4-q2.1 (J. Maddox, pers. comm.).

When this study began, the most comprehensive genetic linkage map that was available for sheep was developed by Maddox et al. (1996). Whenever possible, markers were selected from this map to isolate BAC clones to develop the set for unambiguous chromosome identification. The physical mapping data revealed that the genetic linkage maps for 11 chromosomes (OAR5, 7, 8, 9, 10, 15, 17, 18, 20, 23 and 26) were inverted with respect to the centromere. In the second generation ovine genetic linkage map (de Gortari et al., 1998), all 26 autosomes were anchored by direct physical assignment in sheep or indirectly using comparative mapping data from cattle. The new physical assignments of ovine BAC clones containing anchor loci verify directly that these ovine genetic maps are oriented correctly with respect to the centromere.

The addition of 36 anchor BAC clones to the ovine physical map allowed a preliminary evaluation of the alignment between the physical and genetic maps. Markers on 16 chromosomes defined intervals representing 24.4% of the total karyotype. Only 9 intervals that each represented $>1 \%$ of the genome were considered in the estimation of genome size to minimise the bias due to differences in the rate of recombination along the length of the chromosomes. The rate of genetic recombination is lower at the centromere than at the telomere, so the relationship between the physical
and genetic maps is not uniform along the length of a chromosome (Bray-Ward et al., 1996). Near the centromere, short genetic distances correspond to large physical distances, whereas near the telomere, large genetic distances cover short physical distances.

The Kosambi map distance covered by the 9 intervals is 595 cM , giving an estimate for the whole genome of 3006 cM (section 5.4). The interval on OAR1 covers 80% of the q -arm and the estimate of the entire genome is similar (3592cM). The smallest estimates were for OAR3 (2017 cM) and OAR9 (1921 cM). The intervals on these chromosomes do not include any telomeric markers and the region on OAR3 spans the centromere. The mean estimate obtained by considering individual intervals was $2976 \mathrm{cM}(\pm 246 \mathrm{SEM})$ and is similar to the minimum genome size of 2770 cM predicted by chiasmata counts (Chapman and Bruere, 1977). The current length of the sheep linkage map is 3190 cM and measures have been taken to minimise inflation of genetic distances due to typing errors (de Gortari et al., 1998).

Although only a fraction of the total genome was considered in the present calculation, there is good correspondance with previous estimates of sheep genome size (26 autosomes, X, Y). Similar estimates have also been made for other species. The bovine genome was estimated to be 2800 cM by chiasmata counts (Logue and Harvey, 1978) and the two bovine genetic maps are 2900 cM and 3540 cM , respectively (Kappes et al., 1997; Barendse et al., 1997). Ferretti et al. (1997) estimated that the bovine genome (29 autosomes, X, Y) was $4176 \mathrm{cM}(\pm 1360$ SEM) using intervals that covered more than 40% of the genome. The large standard errors may reflect imprecise FISH assignments and this estimate overlaps previous estimates at the extremes of the range. $\operatorname{Pig}(18$ autosomes, X, Y), mouse (19 autosomes, X, Y), human (23 autosomes, X, Y) and goat (29 autosomes, X, Y) genome sizes have been estimated as $2000 \mathrm{cM}, 1600 \mathrm{cM}$, $3800-4000 \mathrm{cM}$ and 3250 cM respectively (Davisson and Roderick, 1989; Ellegren et al., 1994; Ferretti et al., 1997). As proposed by Ferretti et al. (1997), these estimates
suggest that there is a tendency for genome size to increase with the number of chromosomes, rather than the size in base pairs. A better alignment of the ovine physical and genetic maps will be possible once more ovine BAC clones are isolated and mapped by FISH. An alternative strategy would be to physically localise characterised bovine and caprine BAC clones (Cai et al., 1995; Schibler et al., 1998a) on ovine chromosomes. These additional assignments will enable a more robust estimate of genome size, particularly if each of the terminal genetic markers are physically mapped.

In closely related species, such as sheep, cattle and goats, it has been demonstrated that about 50% of microsatellites from one species are polymorphic in the others (Crawford et al., 1995; Vaiman et al., 1996; de Gortari et al., 1998). The second generation ovine linkage map was developed using predominantly anonymous, bovine microsatellite markers (402/504) to enhance the comparative maps between these livestock species. This will assist in the map-based search for the genes controlling economically important traits by enabling direct comparisons of regions with conserved marker order between livestock species. One problem with this approach is that very few microsatellites associated with genes that are anchors to the human or mouse maps are integrated into the ovine genetic map. Consequently, the current strategy for genetic map development in sheep does not take advantage of the vast amounts of comparative mapping information available from the gene-rich human and mouse maps.

Zoo-FISH chromosome painting experiments have identified which chromosomal segments in cattle and sheep are homologous to individual human chromosomes (Hayes et al., 1995; Solinas-Toldo et al., 1995; Chowdhary et al., 1996; Iannuzzi et al., 1999). However, since so few type I anchor loci are mapped in sheep, it is not yet possible to determine whether gene order within these syntenic blocks is conserved or whether numerous minor rearrangements have occurred. Recently, bovine BAC clones have been used to build framework comparative maps for a number of chromosomes (Schläpfer et
al., 1998; Gallagher et al., 1998; Sonstegard et al., 1998; Larsen et al., 1999; Gallagher et al., 1999). Similarly, a comprehensive goat cytogenetic map was developed using 160 caprine BAC clones for genes (Schibler et al., 1998b). These FISH experiments revealed numerous chromosomal rearrangements within small genomic regions, demonstrating the need for dense comparative maps to efficiently utilise human and mouse mapping data in the search for economically important genes.

The location of breakpoints in conserved synteny between the ovine and human comparative maps need to be defined to permit accurate selection of positional candidate genes (Sonstegard et al., 1998). This study has demonstrated the ease with which ovine BAC clones for microsatellites and genes can be isolated and physically localised to discrete chromosomal bands by FISH. A concerted effort should now be made to isolate and physically localise more BAC clones containing sequences orthologous to human or mouse genes to help define chromosomal breakpoints, critical regions, and ultimately, identify positional candidate genes for traits of interest. In addition, these BAC clones should be simultaneously mapped in cattle and goats to develop fully integrated comparative maps for these species.

CHAPTER 6

COMPARATIVE MAPPING USING OVINE BAC CLONES

COMPARATIVE MAPPING USING OVINE BAC CLONES

Comparative mapping is the localisation of orthologous genetic loci in multiple species (Sun et al., 1997). Comparative mapping is possible because conserved synteny of homologous genes has been observed in species from diverse mammalian orders (Lyons et al., 1997). The principle objective of comparative mapping studies in livestock species such as sheep, cattle, and goats is to elucidate regions containing economically important genes, using information from other livestock maps and from the gene-rich human and mouse maps. Localising markers associated with quantitative trait loci to specific chromosomal regions allows candidate genes to be identified from the other maps based on location and function.

Sheep, cattle and goat chromosomes are highly conserved as demonstrated by very similar banding patterns (Iannuzzi and Di Meo, 1995; Hayes, 1995). There is, however, little similarity between the banding patterns of these chromosomes and those of human and mouse (Hayes, 1995). Lack of conservation of bands suggests that there have been many intrachromosomal and interchromosomal rearrangements since the divergence of these species from a common ancestor. By mapping many homologous genes across species, these rearrangements will be better defined, allowing the evolutionary history of chromosomes to be traced back to an ancestral type (Womack and Kata, 1995).

Livestock genetic linkage maps have largely been constructed using polymorphic, type II, microsatellite markers. In general, there is insufficient homology in the sequence flanking microsatellites for these regions to be amplified across different mammalian orders, and consequently, they are not useful as comparative mapping markers (O'Brien et al., 1993). It is type I loci (genes) that are most useful for comparative mapping because these coding regions are conserved in mammals, so orthologous chromosomal regions can be defined across species. Unfortunately, few type I loci are included in the current livestock
linkage maps, largely due to the lack of polymorphisms within coding sequences. Alternative strategies have been employed to identify homologous regions between species and to integrate genes into livestock genomic maps for comparative mapping purposes.

Early comparative mapping efforts involving livestock species relied on synteny mapping using somatic cell hybrids (Womack and Moll, 1986; Womack and Kata, 1995). Although synteny mapping can reveal which genes are grouped together on a chromosome, it does not elucidate gene order. Comparison of human, mouse and cattle syntenic maps reveals segments of conserved synteny between these species. Interchromosomal rearrangements that occurred since the divergence of humans and cattle from a common ancestor can be inferred from the syntenic maps (Womack and Kata, 1995).

A more recent strategy to investigate interchromosomal rearrangements is ZOO-FISH with heterologous probes (Scherthan et al., 1994). Human chromosome-specific painting probes have been hybridised to the chromosomes of numerous mammalian species to delineate regions of conserved synteny (reviewed by Wienberg and Stanyon, 1997). Human paints have been hybridised to cattle (Chowdhary et al., 1996; Hayes, 1995; Solinas-Toldo et al., 1995), pig (Fronicke et al., 1996; Goureau et al., 1996; Rettenberger et al., 1995) and sheep chromosomes (Iannuzzi et al., 1999) to reveal 46-50, 47, and 48 regions of conserved synteny, respectively. Burkin et al. (1997b) used sheep chromosome paints on Indian muntjac deer chromosomes and compared the hybridisation patterns to previous studies using human chromosome paints (e.g. Yang et al., 1997) to predict conserved chromosomal segments between sheep and human genomes. Each of these studies demonstrated that several human chromosomes paint whole sheep, cattle and pig chromosomes, whilst others paint two or three different chromosomes. In several cases, complex rearrangements must have occurred to generate the hybridisation pattern that is visualised. For instance, OAR7 and BTA10 are painted by seven alternating segments of HSA5, 14 and 15 , respectively
(Hayes, 1995; Iannuzzi et al., 1999). Neither the centromeres nor the Y chromosome hybridise to the human paints indicating the presence of divergent repetitive elements. Human X, 13 and 17 are conserved intact and paint a single chromosome in every mammalian species that has been tested (Womack, pers. comm.). It has been hypothesised that the evolutionary arrangement of the X chromosome is restricted due to inactivation mechanisms (Ohno, 1973). There is, however, no obvious explanation for the conservation of HSA13 and 17. It is noteworthy that both of these chromosomes carry clusters of tumour suppressor genes which regulate expression of other adjacent genes (Papp et al., 1996; Phelan et al., 1995; Gardiner et al., 1997; Panayiotidis et al., 1997).

The hybridisation pattern of human paints on sheep chromosomes is very similar to that visualised for cattle (Iannuzzi et al., 1999), but the comparison is more complex for distantly related artiodactyls. For example, pig chromosome specific paints were recently hybridised to thovine chromosomes revealing 44 segments of conserved synteny between these two species (Schmitz et al., 1998).

Although chromosome painting reveals regions of conserved synteny and the interchromosomal rearrangements that have occurred, it cannot detect intrachromosomal rearrangements or reveal gene order within the conserved regions. Mapping comparative anchor tagged sequences (CATS) across numerous species has been proposed as one way to resolve this issue (O'Brien et al., 1993; Lyons et al., 1997; Chen et al., 1999). A set of 410 evolutionarily conserved primer pairs, evenly distributed throughout the human and mouse genomes, were designed in exons with the amplification product spanning an intron. Polymorphisms are more likely in intronic sequence enabling CATS to be incorporated in linkage maps. CATS primers were tested on 20 mammals from 11 orders and successful amplification was achieved with $32-75 \%$ of the primers depending on the species. Although there has been limited success with these primers, for species with very few
mapped genes, any additional data is welcome. At present, the only comparative maps that have been developed using CATS are synteny maps (Lyons et al., 1997). Again, these maps do not address the issue of whether gene order is conserved within regions of conserved synteny. As mapping tools that do not require polymorphisms (eg. radiation hybrids, FISH mapping with large-insert clones) become more widely available, CATS will probably be superseded.

There is already only limited reliance on CATS for comparative mapping. Instead, primer pairs to amplify conserved sequences (ie. exons) in other type I loci are being selected from human gene mapping databases (e.g. traced orthologous amplified sequence tags (TOASTs), Jiang et al., 1998). Preliminary linkage or physical (FISH or RH) maps that incorporate genes for human homologues have been developed for several pig (Sun et al., 1999; Van Poucke et al., 1999) and cattle chromosomes (Sun et al., 1997; Schläpfer et al., 1998; Sonstegard et al., 1998; Larsen et al., 1999). These maps demonstrate that although synteny is conserved, there have been numerous intrachromosomal rearrangements altering gene order.

A recent, comprehensive study in goats (Schibler et al., 1998b) mapped 202 type I loci by FISH (160 genes, 23 microsatellites near coding sequence, 4 comparative anchor tagged sequences (CATS), and 15 expressed sequence tags (ESTs)) to locations consistent with previous ZOO-FISH results in cattle. Goat BAC clones were isolated for the 160 genes using 62 primers derived from human sequence, 63 from cattle, 17 from sheep, 11 from goat and 7 from other species. In total, 255 genes were mapped in goats and human map locations are available for 249 of these. From these data, twice as many rearrangements between humans and goats were identified compared with results from ZOO-FISH studies. In fact, it seems that intrachromosomal rearrangements are as frequent as interchromosomal rearrangements; they are just not as easily detected. These data
highlight the need for extensive comparative maps because complex chromosomal rearrangements can occur. If there are insufficient markers to define the extent and nature of these rearrangements, candidate gene identification will be hindered.

BAC libraries are now available for sheep, cattle and goat, and several hundred clones for genes and markers have already been isolated from these libraries. By utilising these clones for FISH in other closely related species, framework comparative maps can be rapidly developed. In this study, the localisation of ovine BAC clones onto cattle, goat and deer chromosomes by FISH is demonstrated.

6.1 Suppression with sheep, cattle and goat CotI DNA

Suppression of repetitive DNA in the BAC clones was required to detect discrete FISH signals on Bovidae chromosomes. Without suppression, the arms of most chromosomes were painted.

For cattle, the same amount of ovine CotI DNA was used as for FISH on sheep chromosomes (Table 5.2). However, in all cases, suppression was inadequate with numerous, large grains along the arms of the chromosomes. Even pre-annealing the BAC DNA for up to 4 h with increased CotI (up to $25 \mu \mathrm{~g}$) failed to improve suppression.

To test whether the repeats in the species being mapped might also affect suppression, bovine and caprine CotI DNA was prepared from thymus tissue. Similar yields of CotI DNA were recovered as for sheep ($\sim 12 \mu \mathrm{~g} / \mu \mathrm{l})$. The average length of cattle fragments was 800 bp , but the average fragment length for goat was less than 200 bp . When bovine CotI DNA was pre-annealed to the ovine BAC clones and hybridised to bovine chromosomes, adequate suppression was achieved with a similar amount of CotI DNA as that used in sheep with ovine CotI DNA (Table 6.1). However, when goat CotI DNA was used for mapping on goat chromosomes, the repeats were poorly suppressed. Better
suppression was achieved when sheep CotI DNA was used instead, but in many cases the repeats were still somewhat undersuppressed, with small grains lightly painting the chromosomes. Ovine BAC clones were also mapped to red deer and fallow deer chromosomes and suppression was better with deer CotI DNA than sheep CotI DNA (Kasprzak, 1998).

6.2 Physical assignment of ovine BAC clones to bovine chromosomes

Ovine BAC clones for 12 microsatellite markers and 15 genes were mapped by FISH to homologous locations on bovine chromosomes (Figure 6.1, Table 6.1). Of these loci, 4 were not previously mapped in cattle (CSRD270, CSRD287, GAPR and OarJMP58). IL2RA was the only marker previously assigned to a discrete band by FISH (Yoo et al., 1995) and the new BAC assignment verifies the localisation to 13q1.4. However, this marker has not been integrated into a genetic linkage map of cattle and the BAC clone will allow the isolation of polymorphic markers for such analysis. Likewise, CD3D which maps to 15 q 2.1 has not been mapped by genetic linkage analysis. The FISH assignments for the other 23 ovine BAC clones anchor the genetic maps for 18 bovine chromosomes. The BAC clones for CD3D, IGF1 and PRL were assigned in cattle, but have not yet been assigned in sheep. BAC clones to anchor BTA3, 9, 17, 19, 20, 21, 22, 24, 25, 28, 29 and X still need to be assigned because suppression with bovine CotI DNA needs to be optimised for these BAC clones.

A

BM1329
235kb

OAR6q1.6-1.8
BTA6q1.4-2.1
CHI6q1.4-2.1

B

BM1824
250kb

Figure 6.1: Comparative physical mapping by FISH in sheep (OAR), cattle (BTA), and goat (CHI) using ovine BAC clones. A) 5 R 3 C 4 for BM1329. B) 284 R 5 C 4 for BM1924. Bands are shown on the left-hand pair of chromosomes and the arrow indicates signal on the right-hand pair. Bar represents $10 \mu \mathrm{~m}$.

Table 6.1: Physical map locations of ovine BAC clones localised to G-banded bovine metaphase chromosomes by fluorescence in situ hybridisation. Published mapping information in cattle for each locus and the method that was used to make the chromosomal assignment are listed (L: linkage, SCH: somatic cell hybrids, FISH: fluorescence in situ hybridisation). The amount of bovine CotI DNA required to suppress repeats within the BAC clones is indicated. The number of chromosomes that were scored to assign the bands is in parentheses.

Locus	${ }^{1}$ Published Map Location	Mapping Method	BAC	CotI	Physical Location in Cattle	
ADCYC	15	OAR15 BY L	443R7C6	$8 \mu \mathrm{~g}$	15 q 1.4	(3)
BM719	16	L	296R6C9	$25 \mu \mathrm{~g}$	16 q 2.3	(4)
BM827	11	L	153R6C4	$8 \mu \mathrm{~g}$	11q1.2-1.3	(4)
BM1329	6	L	5R3C4	$8 \mu \mathrm{~g}$	6q1.4-2.1	(6)
BM1824	1	L	284R5C4	$25 \mu \mathrm{~g}$	1 q 4.4	(4)
BM6438	1	L	321R4C8	$25 \mu \mathrm{~g}$	1q1.2-1.3	(3)
CD3D	15	SCH	158R2C6	$12 \mu \mathrm{~g}$	15q2.1	(3)
CSF2	7	SCH	295R7C7	$8 \mu \mathrm{~g}$	7q1.3-1.4	(5)
CSRD270	18	OAR14 BY L	306R8C4	$8 \mu \mathrm{~g}$	18q1.3-1.4	(3)
CSRD287	12	OAR10 BY L	100R4C3	$8 \mu \mathrm{~g}$	12q1.2	(4)
DRB1	23	L	569R6C11	$8 \mu \mathrm{~g}$	23 q 2.2	(3)
DYB	23	L	78R3C6	$8 \mu \mathrm{~g}$	23q2.4-qter	(4)
FN1	2	SCH, L	597R6C12	$8 \mu \mathrm{~g}$	2q3.4-3.6	(3)
${ }^{3}$ GAPR	7	${ }^{2}$ OAR 5 q3.5 BY FISH	560R5C11	$8 \mu \mathrm{~g}$	7q2.6-2.7	(6)
${ }^{3}$ GHRH	13	L, SCH	327R8C12	$8 \mu \mathrm{~g}$	13q2.1	(5)
IGF1	5	SCH, L	402R7C8	$8 \mu \mathrm{~g}$	5q3.2-3.4	(5)
IL2RA	13 q 14	FISH	43R5C3	$25 \mu \mathrm{~g}$	13q1.4	(3)
IL6	4	L	290R2C10	$25 \mu \mathrm{~g}$	4q1.4-1.6	(4)
ILSTS005	10	L	220R8C7	$8 \mu \mathrm{~g}$	10q3.4-qter	(3)

Table 6.1 continued

Locus	${ }^{1}$ Published Map Location	Mapping Method	BAC	CotI	Physical Location in Cattle	
ILSTS008	14	L	337R8C6	$8 \mu \mathrm{~g}$	14q1.6-1.8	(4)
ILSTS011	14	L	35R2C11	$8 \mu \mathrm{~g}$	14q1.3-1.5	(4)
3LDLR	7	L	192R4C7	$8 \mu \mathrm{G}$	7 q 1.5	(6)
${ }^{3}$ LPL	8	L	323R6C9	$8 \mu \mathrm{~g}$	8 q 2.3	(6)
MAF92	26	L	87R3C2	$8 \mu \mathrm{~g}$	26 q 2.3	(3)
OarJMP58	27	OAR26 BY L	535R4C6	$8 \mu \mathrm{~g}$	27q2.1-qter	(4)
PRL	23	L	102R1C11	$8 \mu \mathrm{~g}$	23q2.1	(4)
RNASE6	10	L	79R1C6	$8 \mu \mathrm{~g}$	79R1C6	(6)

${ }^{\text {' As listed in ArkDB sheep and cattle genome databases (www.ri.bbsrc.ac.uk) }}$
${ }^{2}$ This study
${ }^{3}$ FISH performed by L. Allen (1997)

Table 6.2: Physical map locations of ovine BAC clones localised to G-banded caprine metaphase chromosomes by fluorescence in situ hybridisation. Published mapping information in goat for each locus and the method that was used to make the chromosomal assignment are listed (L: linkage, SCH: somatic cell hybrids, FISH: fluorescence in situ hybridisation). The amount of ovine CotI DNA required to suppress repeats within the BAC clones is indicated. The number of chromosomes that were scored to assign the bands is in parentheses.

Locus	TPublished Map Location	Mapping Method	BAC	CotI	Physical Location in Goat	
BM719	16	L	296 R 6 C 9	$25 \mu \mathrm{~g}$	$16 \mathrm{q} 2.2-2.4$	(3)
BM1329	6 q 1.5	FISH	5 R 3 C 4	$8 \mu \mathrm{~g}$	$6 \mathrm{q} 1.4-2.1$	(6)
BM1824	1	BTA1 BY L	284 R 5 C 4	$25 \mu \mathrm{~g}$	1 q 4.4	(4)
BM4208	9 q 2.6	FISH	408 R 8 C 6	$8 \mu \mathrm{~g}$	$9 \mathrm{q} 2.5-2.6$	(3)
BM6526	27 q 12.2	FISH	304 R 4 C 7	$5 \mu \mathrm{~g}$	$27 \mathrm{q} 1.2 .2-2.1$	(3)
CD3D	15	BTA15 BY SCH	158 R 2 C 6	$12 \mu \mathrm{~g}$	15 q 2.1	(3)

[^3]Table 6.3: Ovine BAC clones that have been isolated for comparative mapping lwi. Physical map locations were determined by FISH in sheep, cattle and goat. Mapped loci that were not assigned in this study are in parentheses (iomparative mapping information for these loci in humans, mice, rats and pigs is listed.

	Locus	Human	Mlouse	Ral	Pig	Sheep	Cattle	Goat ${ }^{1}$
ADCYC	Adenylate cyclase 2	5p15.3-p15.2				15q1.4-2.2	15q1.4	
CD3D	Antigen CD3E, delta polypeptide	11 q 23	4				15q2.1	15 q 2.1
CSF2	Colony stimulating factor 2	5p23-31	11			5q1.3-1.5	7q1.3-1.4	
DRB1	MHC class II, DRB1	6			7	20q2.2	23q2.2	
DYB	MHC class II, DYB					20q3.2-3.3	23q2.4-qter	
FN1	Fibronectin 1	2q34	1C1-1C5		15q2.5	2q4.1	2q3.4-3.6	
GAPR	GTPase activating protein receptor					5q3.4	7q2.6-2.7	
GHRH	Growth hormone releasing hormone	20q11.2	2			13q2.4	13q2.1	
IFNG	Interferon gamma	12q24.1			5p1.1-q1.1	3 q 2.3		(5q2.2-2.3)
IGF1	Insulin-like growth factor 1	12q22-q23	10	7	5 q 2.5		5q3.2-3.4	(5q3.1)
IL2RA	Interleukin 2 receptor	10p15-14	2A2-A3			13 q 1.3	13q1.4	(13q1.5)
IL5	Interleukin 5	5 p 31.1	11A5-B1	10		5q1.5		
IL6	Interleukin 6	7p21-15	5	4	9p1.4-1.5	4q1.4-1.5	4q1.4-1.6	
KAP1.1	Keratin associated protein 1.1					11q3.1		
LDLR	Low density lipoprotein receptor	19p13.2	9			5q1.3	7 q 1.5	(7q1.5)
LPL	Lipoprotein lipase	8p22	8	16	14q1.2-1.4	2p2.4	8 q 2.3	
PRL	Prolactin	6 p 22.2	13	17	7pl.1-pl.2		23 q 2.1	
RNASE6	Seminal ribonuclease	14				7q1.5	10q1.5	
SRY	Sex determining region Y	Yp11.3			Yp1.2-1.3	Yp1.1-1.2		

${ }^{\prime}$ Physical assignments from GoatMap (http://locus.jouy.inra.fr/cgi-bin/lgbc/mapping/common/main.pl?BASE=cattle)

6.3 Physical assignment of ovine BAC clones to caprine and cervine chromosomes

To demonstrate that ovine BAC clones could also be mapped in goats, six ovine BAC clones for 5 microsatellites and 1 gene were assigned to homologous locations on caprine chromosomes by FISH (Figure 6.1, Table 6.2). Similarly, ovine BAC clones for 6 microsatellites and 6 genes have been hybridised to red and fallow deer (Kasprzak, 1998, data not shown).

6.4 Attempted localisation of ovine BAC clones to human and mouse chromosomes

Ovine BAC clones were hybridised to human and mouse chromosomes (provided by G. Webb) under various conditions. Experiments were performed 1) with and without suppression, 2) at various annealing temperatures (room temperature to $37^{\circ} \mathrm{C}$), 3) with various amounts of probe, and 4) with and without amplification of the fluorescent signal using avidin and biotinylated anti-avidin. No signal was detected with any of the conditions tested.

6.5 Discussion

Suppression of repetitive elements within the ovine BAC DNA probe is critical for physical mapping to discrete chromosomal regions. Consequently, the BAC DNA was pre-annealed to sheep CotI DNA prior to hybridisation on metaphase chromosomes. Surprisingly, it was found that the chromosomes from closely related species affected the results. Better suppression was achieved when equal amounts ($\mu \mathrm{g}$) of bovine CotI DNA was used on bovine chromosomes and cervine CotI DNA was used on deer chromosomes than when ovine CotI DNA was used. These results, however, cannot be taken as conclusivebecause the reciprocal experiment (bovine or cervine CotI DNA on ovine chromosomes) was not tested. The observations may also be confounded by the difference
in CotI DNA fragment length. Goat CotI DNA did not suppress well, but the fragment length was short ($<200 \mathrm{bp}$). The bovine and cervine CotI DNA fragments were longer ($\sim 800 \mathrm{bp}$) than the ovine fragments ($\sim 600 \mathrm{bp}$) and suppressed better. To determine whether fragment length is affecting the efficacy of suppression, it would be interesting to test whether bovine or cervine CotI DNA better suppress FISH experiments on goat chromosomes than ovine CotI DNA.

An alternative explanation for the difference in effectiveness of CotI DNA from different species, is that excess CotI DNA present in the hybridisation mixture after preannealing, suppresses repetitive regions on the chromosomes. This would, thereby, block non-specific hybridisation of the probe DNA to those chromosomal repeats sharing partial sequence identity with repetitive elements in the probe. In at least two ZOO-FISH painting experiments, a combination of CotI DNA from the species that the probe was derived from and the species that was being painted was used to suppress repeats (Goureau et al., 1996; Schmitz et al., 1998). This combinatorial might also improve suppression in single gene FISH.

Even without suppression, no hybridisation was detected when ovine BAC clones were mapped to mouse or human chromosomes, despite trying various conditions. One parameter that was not varied was hybridisation length. For ZOO-FISH with human chromosome-specific painting probes, the most important factor affecting signal intensity is the duration of hybridisation (Pinkel et al., 1988; Scherthan et al., 1994). Hybridisation of human paints on bovine chromosomes was allowed to proceed for 3 days at $37^{\circ} \mathrm{C}$ (Hayes, 1995). It will be interesting to determine whether a longer hybridisation period enables discrete fluorescent signals to be detected on human and mouse chromosomes when BAC clones are used as probes instead of whole chromosome paints. Conversely, if human or mouse BAC clones could be localised to ovine chromosomes there would be a huge pool of
comparative markers available for mapping since these libraries are extensively characterised. It does not seem likely, however, that physical mapping between such distantly related species would ever be routine.

In this study, 25 FISH assignments were made in cattle and 6 in goats using ovine BAC clones as probes, demonstrating the relative ease with which comparative mapping by FISH in closely related species can be undertaken using large insert clones. Both genes and microsatellites markers were mapped. Inclusion of some microsatellites on comparative maps is important to anchor the maps to existing linkage maps. However, to make full use of the gene-rich human and mouse maps, it is important that more type I loci are mapped in livestock. To date, 19 comparative mapping loci have been isolated from the ovine BAC library. Human map locations for 16 of these loci are available. Likewise, 11 have been mapped in mice. 5 in rats and 8 in pigs (Table 6.3). In this study, only CD3D was mapped in goats, however, 4 of this set of comparative mapping loci (IFNG, IGF1, IL2RA, LDLR) have previously been mapped in goats (Table 6.3).

Hundreds of BAC clones for genes and microsatellites have already been isolated from the cattle, goat and sheep BAC libraries (Schibler et al., 1998b; S.K. Davis, pers. comm.). These clones represent a largely untapped resource for comparative mapping. As demonstrated in this study, it is possible to map BAC clones from one species in other closely related species. Consequently, by mapping all these clones in sheep, cattle and goats, framework comparative maps could be rapidly developed.

Extensive comparative maps will be essential in the search for major genes and quantitative trait loci that encode economically important traits. First, the boundaries of candidate regions need to be well defined so that positional candidates can be selected from the human and mouse maps. Then, fine-mapping of the critical region must be undertaken to identify the genotype causing the phenotype of interest. Stable, large-insert clones are
proving invaluable for fine-mapping by enabling deep contigs of the critical region to be developed for large-scale sequencing. The positional candidate cloning approach and the use of large-insert clones for contig development was successfully applied to identify the major genes causing spider lamb syndrome in sheep (Cockett., unpublished) and double muscling in cattle (Grobet et al., 1997; Sonstegard et al., 1998; Pirottin et al., 1999). Contigs of largeinsert clones are also being employed in the search for POLL in cattle (Stillwell et al., 1999; Davis et al., 1999), PIS in goats (Schibler et al., 1998a; Vaiman et al., 1999a) and FecB in sheep (Lumsden et al., 1999). The availability of ovine BAC clones for fine-scale, comparative mapping in sheep will aid the search for genes that are responsible for economically important traits in this valuable livestock species.

CHAPTER 7

INVESTIGATION OF GENOME ORGANISATION USING BAC CLONES

INVESTIGATION OF GENOME ORGANISATION USING BAC CLONES

Bacterial artificial chromosomes are an ideal tool for the study of genome organisation. The clones are stable, non-chimaeric and of sufficient length ($>100 \mathrm{~kb}$) to enable chromosome walking and long-range restriction mapping to be undertaken with relative ease. The keratin associated protein (KAP) genes were selected for this investigation because before this study there was a paucity of mapping information available for these genes in sheep. Keratin intermediate filament (KIF) genes and KAP genes have been associated with variation in wool fibre diameter (Parsons et al., 1994) and staple strength (Rogers, 1994), and would be valuable genes to incorporate in advanced breeding programmes using marker assisted selection. Elucidating the organisation of these genes in the sheep genome would assist in understanding their regulation. Many of the type I and type II KIF genes are tightly clustered in two separate domains in humans (Romano et al., 1988; Cerrato et al., 1997) and mice (Nadeau et al., 1989; Compton et al., 1991), but the organisation of the KAP genes has not been described. There is some evidence of clustering of the KAP genes in sheep (Powell et al., 1983). It was of interest to know whether members of different KAP families were grouped together as this may have regulatory implications.

7.1 Organisation of the Wool Follicle

Hair is composed of about $50-100$ different keratin proteins derived from several multigene families that are expressed in tissue-specific and differentiation-specific patterns (Powell et al., 1991). The mature hair follicle is a derivative of the epidermis (Figure 7.1). All the cell types of the hair shaft (ie. inner root sheath, cortex, cuticle and medulla) except for the outer root sheath (ORS) arise from germinative cells in the follicle bulb as distinctive differentiation programmes are activated. The ORS is continuous with the epidermis, and epidermal rather than hair-type keratins are expressed. In the inner root sheath (IRS),
trichohyalin granules are expressed first, in association with $8-10 \mathrm{~nm}$ filaments. About $10-$ 20% of cells from the follicle bulb progress to the cortex. Keratins are synthesised as the cells move upwards with expression maximal about a third of the way up the length of the follicle. During keratinocyte differentiation in the wool follicle, the acidic type I (KRT1.n) and basic type II (KRT2.n) low-sulphur KIF proteins are assembled into filaments which become embedded in a matrix of high-sulphur KAPs and high-glycine/tyrosine KAPs. The KIFs are the first detectable hair-specific keratins and the KAP families are activated at later stages of differentiation (Powell et al., 1991).

The cortex contains two cells types (orthocortex and paracortex), with differing organisation, which are filled with KIFs and separated by intercellular material that appears in the terminal stages of differentiation. There are at least two KAP families that are expressed separately in the cortex (KAP4.n) and the cuticle (KAP5.n) (MacKinnon et al., 1990; Powell et al., 1991). Expression of the KAP4 family in the paracortex is induced by infusion of cysteine (Fratini et al., 1994).

Figure 7.1: Organisation of the hair follicle. The regions where the main events of cell proliferation in the follicle bulb take place and the subsequent formation of the keratinized hair shaft are depicted. (From Powell and Rogers, 1994).

Figure 7.2: Expression of keratin (KRT) and keratin associated protein (KAP) genes in wool follicle differentiation. Schematic of overlapping gene expression was assembled by comparing RNA in situ hybridisation analyses of many follicle sections. (From Powell and Rogers, 1994).

7.2 Keratin associated protein genes

The KAP genes encode a heterogenous group of proteins that form the matrix in which the microfibrils of the wool fibre are embedded. The KAP gene families (Table 7.1) have been classified on the basis of their protein sequences as high glycine-tyrosine KAP genes (KAP 6.n, KAP7, KAP8), high sulphur KAP genes (KAP1.n, KAP2.n, KAP3.n) and ultra-high sulphur KAP genes (KAP4.n, KAP5.n) (Powell et al., 1994). Recently, a number of KAP genes have been mapped by genetic linkage analysis to several different ovine chromosomes. KAP6.1, KAP7, KAP8 and trichohyalin were mapped to ovine chromosome 1 and are closely linked to one another (Parsons and Cooper, 1995; McLaren et al., 1997). KAP1.1 and KAP1.4 are separated by 1.9 kb (Powell et al., 1983) and have been mapped to chromosome 11 with KAP1.3, KAP3.2 and KRT1.2 (McLaren et al., 1997). All five of these genes are closely linked to one another on OAR11. KAP5.1 was mapped to ovine chromosome 21 (McLaren et al., 1997). Genetic linkage analysis demonstrated that KAP protein genes from related families (eg. high sulphur KAP genes) are clustered. The high glycine-tyrosine KAP genes are the first KAPs to be expressed in the wool follicle, followed by the high sulphur KAP genes, and then the ultra-high sulphur KAPs (Figure 7.2). Consequently, it is possible that there is a relationship between the clustering of KAP genes and their expression in the wool follicle. Plasmid-based probes for each of the keratin associate protein gene families are available (Fratini et al., 1994) and were used in this study to establish whether multiple different KAPs were present within a single BAC clone known to contain KAP1.1.

Table 7.1: Keratin associated protein gene families

Gene or Gene Family	Alternative name
KAP1.n	High-sulphur keratin B2 family
KAP2.n	High-sulphur keratin BIIIA family
KAP3.n	High-sulphur keratin BIIIB family
KAP4.n	Ultra high-sulphur keratin cortex family
KAP5.n	Ultra high-sulphur keratin cuticle family
KAP6.n	Type II high glycine/tyrosine keratin family
KAP7	High glycine/tyrosine type I component C2
KAP8	High glycine/tyrosine type I component F
KAP9.n	Ultra high-sulphur keratin cortex family
KAP10.n	
KAP11.1	
KAP12.n	

7.3 Results

7.3.1 Isolation and Physical Mapping of a BAC Clone containing KAP1.1

Primers specific for KAP1.1 (Table 2.2) that amplified a 329 bp product were designed from the sequence for a genomic clone (Powell et al., 1983; GENBANK \#X01610) and were used to screen the ovine BAC library. A single BAC clone (164R5C4) was identified by PCR-based screening. The PCR product from the BAC clone was sequenced and shared 100% sequence identity with the published genomic sequence for KAP1.1 (Powell et al., 1983). The BAC clone was mapped by FISH to ovine chromosome 11q3.1.

7.3.2 BAC End Rescue

To isolate overlapping clones, sequence from each end of the KAP-containing BAC clone was recovered by BAC end rescue (Figure 2.3). Inverse-PCR products containing the left-end of the BAC clone were obtained from EcoRI and BamHI self-ligations. A $\sim 300 \mathrm{bp}$ EcoRI product was sequenced and a pair of primers were designed to re-screen the BAC library:

SWKL2F: 5' GAT GCA ACA CAG TTC 3'
SWKLR: 5^{\prime} GTG ATA CTG GTG CAT GCG G 3'

Optimum conditions for amplification over 35 cycles were: 2.5 pmol each primer, 2.5 mM Mg^{2+} at $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ for 1^{\prime}. A single $\sim 50 \mathrm{~kb}$ BAC clone (578 R 2 C 8) overlapping the left-end was recovered from the library. This BAC clone did not contain KAP1.1 (ie. it failed to amplify by PCR with KAP1.1 primers). HindIII digestion of the two BAC clones revealed three coincident bands ($\sim 8 \mathrm{~kb}, 5 \mathrm{~kb}$ and 3 kb) indicating the maximum overlap was $\sim 16 \mathrm{~kb}$.

An $\sim 20 \mathrm{~kb}$ SacI sub-clone was the smallest transformant recovered containing the right-end of the BAC clone. No sequence of sufficient quality for primer design was recovered from this sub-clone by manual sequencing. Ultimately, automated sequence for the right-end of the BAC clone was obtained directly from the BAC itself using $1 \mu \mathrm{~g}$ template, $16 \mu \mathrm{l}$ BigDye mix and 50 thermal cycles (as recommended for BAC end sequencing by PE Biosystems). Primers from this sequence can now be designed to isolate a clone overlapping the right-end of the BAC clone.

7.3.3 Long-range restriction mapping of a KAP-containing BAC clone

To investigate whether additional KAP genes were clustered within the same BAC clone, long-range restriction mapping was performed using endonucleases that recognise rare restriction sites (Ceratto et al., 1997). BAC DNA was digested in single and double restriction reactions with NotI, XhoI, ClaI, SfiI and NruI and the resulting fragments were separated by CHEF gel electrophoresis (Figure 7.3a). NotI and NruI cleave the vector twice, $S f i$ and XhoI cut once, and there are no ClaI recognition sites in pBeloBAC11 (Appendix 2). Only two NotI fragments were generated. Thus, there were no internal NotI sites in the BAC insert and it was estimated to be $\sim 94 \mathrm{~kb}$ from the CHEF gel. Digestion with SfiI yielded a single band, so there were no Sfil sites in the insert.

The BAC DNA was transferred to a nitrocellulose membrane and hybridised sequentially with the BAC clone itself, pBeloBAC11, KAP-gene family probes, BovA and $(\mathrm{GT})_{30}$ (Figure 7.3b-h). Hybridisation with the vector was useful for orientation and positioning of some of the restriction sites. ClaI digestion generated two fragments ($\sim 55 \mathrm{~kb}$ and $\sim 48 \mathrm{~kb}$) and the larger fragment was cleaved into two equal pieces by $S f i I$ (visualised as a single band), one of which hybridised to the vector. This enabled the two ClaI sites to be placed unequivocally on the restriction map (Figure 7.4).

Digestion with NruI yielded 3 fragments ($\sim 89 \mathrm{~kb}, 8.5 \mathrm{~kb}$ and 5.4 kb). The 5.4 kb fragment hybridised strongly to $\mathrm{pBeloBAC11}$, as expected. The 8.5 kb fragment also hybridised, so this fragment must contain the larger of the two remaining portions of vector (ie. 1249 bp) plus $\sim 6.5 \mathrm{~kb}$ of insert, thereby enabling the sole NruI site in the insert to be positioned.

Positioning the XhoI fragments on the restriction map was problematic. The fragment sizes for double digests with XhoI/SfiI (~26-23-19-7kb) and XhoI/NruI (~30-27-20-10-85.5 kb) could not be explained. When these digests were repeated, different length fragments
were generated ($\sim 45-26-23-7 \mathrm{~kb}$ for XhoI/SfiI and $\sim 41-23-19-7-8.5-5 \mathrm{~kb}$ for XhoI/NruI), indicating that at least one of the enzymes in the original digests was incorrect (data not shown). The XhoI sites either side of the vector were positioned using the NotI/XhoI and XhoL/SfiI digests. The order of the remaining two XhoI fragments, and therefore, the position of the last XhoI site could only be determined by examining the hybridisation patterns for the KAP family probes. The most consistent hybridisation pattern for KAP1.1 was obtained when the 6 kb XhoI fragment was adjacent to a 27.5 kb XhoI fragment that included $\sim 2 \mathrm{~kb}$ of vector. The location of a XhoI and ClaI site within $\sim 1 \mathrm{~kb}$ of each other agreed with previous sequence data for KAP1.1 (GENBANK \#X01610).

Distinct hybridisation patterns were obtained for the KAP1.n, KAP2.n and KAP3.n probes. Several KAP probes hybridised weakly to fragments that were inconsistent with the most likely location of the particular gene, suggesting there was some crosshybridisation between the gene families. KAP2.n was localised to a 6.5 kb NruI fragment adjacent to the vector (Figure 7.4). Both the KAP1.n and KAP3.n probes hybridised to broad regions ($>20 \mathrm{~kb}$), separated by $\sim 25 \mathrm{~kb}$, indicating there may be several members of these gene families located together. A BovA repeat was localised to the same fragment as KAP2.n and a $(\mathrm{GT})_{\mathrm{n}}$ repeat was localised to the XhoI/NruI fragment that was also positive for KAP1.n.

As expected, the KAP5.n probe did not hybridise to the ovine BAC clone. However, KAP4.n, KAP10.n and KAP12.n genomic probes all hybridised to the same fragment as KAP2.n and BovA. Given the size of these genes, it was not possible for them all to be colocated in a single 6.5 kb fragment. To determine whether the probes were cross-hybridising to KAP2.n or BovA, the BAC DNA was digested with Sau3AI, HaeIII and AluI and then hybridised with each of the probes to generate fingerprints. The hybridisation patterns for KAP2.n and BovA were distinct. The hybridisation patterns for KAP4.n and KAP12.n
overlapped BovA. KAP10.n was not hybridised, but the forward sequence from this genomic clone formed a contig with KAP12.n, so it is likely that this clone also contains BovA (see below). There were additional positive bands for BovA, indicating there may be other short stretches of BovA within the BAC clone that did not previously hybridise. Indeed, 10 separate sequences containing BovA subclasses, that did not form contigs together were obtained by shot-gun sequencing (section 7.3.4).

7.3.4 Shot-gun Sequencing

To further characterise the KAP-containing BAC clone, shot-gun sequencing was performed. Four libraries of sub-clones for shot-gun sequencing were generated from Sau3AI (\wedge GATC), Tsp509I ($\wedge \mathrm{AATT}), \operatorname{HindIII}$ (A^AGCTT) and PstI (CTGCA^G) digested fragments of BAC DNA cloned into complementary restriction sites in pBluescript (ie. BamHI, EcoRI, HindIII and PstI, respectively). A fifth library of MspI ($\mathrm{C}^{\wedge} \mathrm{CGG}$) fragments was cloned into AccI digested pMCS. A combination of four-base and six-base cutters was chosen to aid contig development with the larger HindIII and PstI fragments forming a framework upon which smaller fragments could be assembled. Different recognition sequences (GC-rich vs AT-rich) were chosen to minimise cloning biases due to base composition. The Sau3AI library was the most efficient ($\sim 1.7 \times 10^{10}$ transformants $/ \mu \mathrm{g}$), followed by the Tsp509I and MspI libraries (5.71 x 10^{9} transformants $/ \mu \mathrm{g}$), and the HindIII and PstI libraries ($\sim 4.8 \times 10^{9}$ transformants $/ \mu \mathrm{g}$).

Figure 7.3: Southern analysis of a KAP-containing ovine BAC clone. A) CHEF gel electrophoretogram of BAC DNA digested with combinations of NotI (N), XhoI (X), ClaI (C), SfiI (S), NruI (U). Digested DNA was separated on a 1% agarose gel in $0.5 \times$ TBE at $14^{\circ} \mathrm{C}$ for 16 h at $6 \mathrm{~V} / \mathrm{cm}$ with an initial switch time of 1.4 s and a final switch time of 13.5 s . The DNA was sized against a lambda concatomer (Biorad) and a HindIII lambda ladder. B-H) Schematic representations of autoradiographs following hybridisation with (B) OBAC 164R5C4, (C) pBeloBAC11, (D) a KAP1.1 genomic clone, (E) a KAP2. 12 genomic clone, (F) a KAP 3.3 genomic clone (G) BovA genomic clone, and (H) a (GT) $)_{30}$ probe.

Figure 7.4: Long-range restriction map of an ovine BAC clone containing KAP1.1. The HindIII (H) BAC clone was digested with NotI (I), XhoI (X), ClaI (C), SfiI (S) and NruI (U) and hybridised to KAP gene family probes. Regions containing at least one KAP3.n gene (orange), KAP1.n gene (green) and KAP2.n gene (red) were identified. The BAC also hybridised to BovA (blue) and (GT) ${ }_{n}$ (yellow). Restriction fragment sizes are shown and hybridisation patterns are colour coded. Hatching indicates that only weak hybridisation was detected. KAP1.1, a putative Z gene and KAP1.4 were localised precisely and were oriented (arrows) by published sequence data (GENBANK \#X01610).

It was estimated that 400 clones with an average insert size of 750 bp were required for 95% sequence coverage of the BAC clone $(\mathrm{N}=\ln (1-0.95) / \ln (1-750 / 100,000)=397$, section 1.3.3.5). To obtain the 400 templates for sequencing, first the Sau3AI, Tsp509I and MspI libraries were amplified with universal primers (M13F and M13R) and products $>500 \mathrm{bp}$ were purified (96 products for Sau3AI, 48 for Tsp509I, 48 for MspI). Secondly, the HindIII and Psi/ clones were sized (500 bp - 20kb) and 96 clones from each library were sequenced directly. In addition, each of the KAP gene probes used for Southern analysis was sequenced.

The templates were sequenced with M13F and then non-redundant HindIII and PstI clones were sequenced with M13R. Overall 80% of the sequences were successful, but only $6 / 48$ of the M/sp/ fragments produced sequence. About 10% of all the sequences were either E.coli or the BAC vector. A total of 82,314 insert bases of good quality were obtained from 2 +4 xquences, with an average of 337 insert bases/sequence. There were 52 orphan sequences and 46 contigs representing 39,025 non-redundant bases. A search for internal restriction sites revealed three subclones that were chimaeric or the result of partial digestion. Two of these subclones were from the Tsp509I library and the other was a Sau $3 A I$ subclone. These sequences were split at the internal recognition sites, but all remained orphans. The rest of the subclones were surprisingly rich in TspI sites. A total of 282 internal Tsp509I sites were identified, yielding an average of one TspI site every 138 bp of sequence.

The forward sequences from the KAP4 and KAP5 gene family probes used for the Southern analysis formed a contig with a minimum of 95% homology. Similarly, the KAP10 and KAP12 probes formed a contig, but none of these four KAP probe sequences formed contigs with any sub-clone sequences.

7.3.5 Fine-scale comparative mapping

Every orphan sequence and consensus sequences for the contigs were imported into Repeat Masker (http://ftp.genome.washington.edu/cgi-bin/RepeatMasker). A total of 17,607 repetitive bases (45% of the sequence) were classified into 20 repeat sub-classes (Table 7.2). Long interspersed nuclear elements (LINE) represented 37.4% of the repeats, short interspersed nuclear elements (SINE) accounted for 6.7% of repeats and the remaining 1.2% was due to long terminal repeats (LTR). The most common repetitive element in the KAP BAC clone sequence was BovB (22\%). In addition, a (TTA) ${ }_{6}$ microsatellite was identified, but no $(\mathrm{GT})_{\mathrm{n}}$ repeats were sequenced.

After masking the repeats, the resulting single-copy sequence was aligned to nonredundant (nr), high-throughput genome scan (htgs), general survey sequence (gss) and expressed sequence tag (dbest) databases of GENBANK by BLASTN. Some of the sequences aligned to different ovine KAP genes. The GENBANK sequences for these genes were imported into the data set to assist contig assembly. Contigs containing sequences similar to KAP1.1 and KAP1.4 (GENBANK \#X01610), KAP1.3 (\#X02925), KAP2.3 (\#U60024), and KAP3.4 (\#M21103) were recovered.

Table 7.2: Types of repetitive DNA elements in $39,025 \mathrm{bp}$ of sequence from a KAP containing BAC clone. Repeat sub-classes were identified using Repeat masker (http://ftp.genome.washington.edu/cgi-bin/RepeatMasker) and are ordered according to their contribution to the total sequence.

Repeat	Class	Sub-class	bp	\# of seq.	\% of seq.
LINE	BovB	BovB	8705	25	22.31
	L1	L1_BT	1815	4	4.65
		L1	796	3	2.04
		L1M4	767	3	1.97
		L1_Art	556	4	1.42
		L1Mec	404	1	1.04
		L1MC2	384	1	0.98
		L1M3	287	1	0.74
		L1M4	228	2	0.58
		L1MD2	224	1	0.57
		L1MB4	79	1	0.2
LTR	Letroviral	MLT2D LTR	348	265	1
SINE	Artiodactyl	MLT2CB	204	1	0.89
	DovA repeat	147	1	0.68	
		Bov-tA2	699	4	0.52
		Bov-tA3	491	1	1.38
		Bov-tA1	378	2	1.26
		BovA2	366	3	0.97
	MIR	MIR	543	4	0.94

Figure 7.5: Comparative sequence analysis of a BAC clone known to contain KAP1.1 reveals other genes within the $\sim 100 \mathrm{~kb}$ insert. Repetitive elements (hatched) in human sequence AC007455 were masked using Repeat Masker and then the remaining unique sequence (red) was compared to other sequences in the Genbank database by BLASTN. Three regions with homology to keratin associated protein (KAP) or keratin (KRT) genes are shown. Sequences from shot-gun subclones of OBAC 164R5C4 were aligned to AC007455 by BLAST2 (Green). Genbank accession numbers are given for alignments with significant homology to KAP or KRT genes.

There were 25 cases (7 orphans and 18 contigs) covering 9965 bases where the sequence aligned (E value <0.001) to a human chromosome 17 BAC clone (GENBANK \# AC007455). The human clone contains an EST (\#H92565), and is mapped on HSA17 at $2040 \mathrm{cR}_{10000}$ and in the reference interval from D17S933-D17S800 at $58.3-62.9 \mathrm{cM}$. After masking the repetitive DNA in the human sequence, the unique sequence was aligned by BLASTN to the nr database (Appendix III). Three regions which shared sequence identity with KAP1.n ($\sim 10-24 \mathrm{~kb}$), KAP3.n ($\sim 41-64 \mathrm{~kb}$) and KRT1.n ($\sim 66-85 \mathrm{~kb}$) genes were recovered (Figure 7.5). Within each of these regions, there were several alignments with similar likelihood, suggesting that there may be multiple genes from these families clustered together. BLAST2 with the GENBANK entry for KAP1.1 (X01610) revealed regions with $74 \% .70 \%$. 75%. and 70% sequence identity from $8757-9310 \mathrm{bp}, 15294-16017 \mathrm{bp}, 20154-$ 21066 hp and $21851-2+234 \mathrm{bp}$ of AC007455, respectively. KAP3.4 (M21103) aligned to AC 007455 from $41031-41396$ at $73 \%, 45468-45706$ at $70 \%, 50150-50716$ at 74%, and 55809-56859bp at 77\%. KRT1.2 (M23912) aligned to AC007455 from 69044-69419 at $65 \%, 87633-88029$ at 65%, and 71162-71400 at 79\%.

A human BAC clone (GENBANK \#AC004231) that overlapped the right-hand end of AC007455 was also identified. By BLASTN, it was shown to contain sequence similar to keratin 13 ($25-40 \mathrm{~kb}$ away from AC007455), cytokeratin 20 ($70-85 \mathrm{~kb}$ from AC 007455) and keratin 12 ($90-100 \mathrm{~kb}$ from AC007455).

By anchoring sequences from the sub-clones to the human BAC sequence, the most likely location of KAP genes within the ovine BAC could be determined (Figure 7.5), validating the arrangement of the KAP genes in the restriction map. There was strong support for the localisation of KAP1.3, KAP1.1, KAP1.4, and KAP3.4 within the single ovine BAC clone ($>500 \mathrm{bp}$ sequence at $>98 \%$ sequence identity). One contig had 200 bp of
sequence which shared 100% sequence identity with KAP2.3. There was a short alignment at $\sim 15 \mathrm{~kb}$ with high homology to KAP1.1 (91% over 62 bp), but this sequence did not form a contig to any other subclone sequences. Likewise, a very short segment of KAP3.4 (100\% over 34 bp) aligned at $\sim 49 \mathrm{~kb}$, but did not form a contig with any other subclone sequences. These alignments may be at conserved motifs and suggest that related KAP1.n and KAP3.n genes are at these locations.

Two contigs, anchored to the human sequence at 69 kb and 72 kb , had homology to human type I keratins by BLASTN, but no similarity to ovine keratins could be demonstrated by this search. By BLAST2, however, the sequence anchored at 69 kb and another sequence at 71 kb shared 78% (over 135 bp) and 82% (over 203bp) sequence identity with ovine KRT1.2 (GENBANK \#M23912).

7.4 Discussion

Development of a restriction map for the KAP-containing ovine BAC clone was hampered by several factors. First, hybridisation with the BAC clone itself revealed that the DNA was not transferred uniformly to the nitrocellulose membrane, with the middle lanes being most affected and giving the weakest hybridisation signals. In subsequent Southern experiments with BAC clones, the DNA was allowed to transfer for 3 days, rather than overnight, and resulted in more intense and uniform hybridisation (data not shown).

Second, banding patterns for two of the double digests could not be explained. The optimum temperature for digestion with SfiI is $50^{\circ} \mathrm{C}$, but all digests were performed at $37^{\circ} \mathrm{C}$. It was initially thought that perhaps under these sub-optimal conditions SfiI had been able to cleave the relatively simple DNA of the vector, but had not been able to cleave a recognition site within the intact BAC insert. Then, after digestion with XhoI, SfiI had been able cut at a recognition site in one these smaller fragments because of the more relaxed
arrangement of the DNA. However, it was subsequently realised that the banding patterns for neither the XhoI/SfiI digestion nor the XhoI/NruI digestion could be explained, so at least one of the enzymes in these mixtures must have been incorrect.

Third, several of the enzyme combinations generated multiple fragments of similar size so it was difficult to localise the KAP genes to particular fragments. In addition, neither SfiI nor NotI cleaved the BAC insert, so these enzymes added no information to the restriction map of the insert. In future studies, test digests with a panel of rare-cutting restriction enzymes should be performed and only those enzymes that can be shown to cut the insert should be used in map development.

The restriction map of BAC clone 164R5C4 revealed there was at least one KAP2.n gene in the NruI fragment adjacent to the left end of the BAC clone and at least one KAP3.n gene within the XhoI fragment adjacent to the right end of the BAC clone. The KAP1.n genes spanned a XhoI fragment and a XhoI/NruI fragment adjacent to the KAP2.n fragment. Without sequence data, it was impossible to speculate as to how many KAP genes were present within these fragments or indicate their precise location. Fortuitously, KAP1.1, a putative Z protein and KAP1.4 could be positioned and oriented exactly, because the GENBANK entry for these genes (X01610) contained both a XhoI and ClaI site.

Developing a single contig of sequence for a 100 kb BAC is a laborious and expensive process, but would be necessary to fully characterise the gene content and arrangement of regulatory elements within the clone unless comparative sequence data were available. A preliminary round of shot-gun sequencing was performed with a view to using sequence data from the human genome project to develop a comparative alignment of this region. The complete sequence of a human chromosome 17 BAC clone (AC 007455) covering most of the ovine KAP BAC clone was released in May 1999. No genes were annotated in the
sequence, but there was an EST (H92565) at $\sim 78 \mathrm{~kb}$. The EST was surrounded by repetitive DNA and no corresponding sheep sequence for this region was obtained from the BAC clone. This was one of the few stretches of unique DNA within the human BAC clone for which at least one shot-gun sequence from sheep was not obtained.

The organisation of the human BAC clone was investigated using Repeat Masker to categorise the repetitive DNA, and BLASTN to identify regions with similarity to known genes. This search revealed three regions with similarity to KAP1.n, KAP3.n and KRT1.n genes. Anchoring shot-gun sequences from the ovine BAC clone to the human sequence validated the location of KAP and KIF genes within the ovine clone predicted by BLASTN and by restriction mapping. KAP1.1 and KAP1.4 have previously been mapped to OAR11 (McLaren et al., 1997). This study demonstrated that genes highly similar to KAP1.3, KAP2.3 and KAP3. 4 also map within this $\sim 100 \mathrm{~kb}$ ovine BAC clone. In addition, there is at least one as yet unidentified type 1 KIF gene within the clone. Conclusive identification of the KAP and KIF genes is difficult because of the high degree of similarity between family members. For example, there is 96% similarity between the GENBANK entries for KAP1.3 and KAP1.1 and KAP1.4 over 378bp. Also, the complex and inconsistent nomenclature that has been used to describe the KAP and KIF genes made GENBANK searches difficult. Indeed, it became apparent that some of the ovine KAP and KIF genes that have been described in the literature have not been submitted to GENBANK. It would be advantageous, now that a standard nomenclature for the KAP and KIF genes has been adopted (Powell and Rogers, 1994), to update the GENBANK entries to include the new names.

Fingerprinting the BAC clone demonstrated that the probes for KAP4.n and KAP12.n cross-reacted with BovA. Consequently, the hybridisation of these KAP genes to the BAC clone was a false positive result. No members of the KAP4.n, KAP10.n or

KAP12.n families have yet been mapped in sheep. Primers for these gene families could be designed from the genomic clones (KAP4.3, KAP10.1, KAP12.1) to isolate BAC clones for mapping studies.

By sequencing libraries of shot-gun subclones from the ovine BAC clone, 39,025 nonredundant bases were generated. There was 2.1 x redundancy in the sequence and only $\sim 41 \%$ of the BAC clone has been sequenced to date. After trimming the sequences, there was an average of 337 good bases. Consequently, 890 sub-clones would be needed for 95% sequence coverage of the BAC clone. This estimate presumes that it is possible to clone and sequence every fragment with equal likelihood. These data clearly demonstrate that this is not necessarily the case. Only $6 / 48$ sub-clones from the $M s p I$ library could be sequenced. Presumably, the MspI ($\mathrm{C}^{\wedge} \mathrm{CGG}$) sub-clones which failed to sequence are GC-rich. To obtain sequence from GC-rich templates using the BigDye kit, the reaction conditions should be optimised by reducing the extension temperature and increasing the magnesium concentration (Perkin Elmer Applied Biosystems, BigDye kit instructions).

Only clones $>500 \mathrm{bp}$ were sequenced, but it was demonstrated that Tsp509I recognition sites occurred on average once every 138 bp of sequence. It would be worthwhile returning to this library and picking additional smaller clones for sequencing, since these are currently not represented in the contigs. For the other existing libraries though, it would not be worthwhile to pick additional clones because it is more likely that a previously sequenced sub-clone would be picked again than a novel one. Instead, to generate additional sequences from the BAC clone, it would be better to create sub-clone libraries with different enzymes.

Even after sequencing the additional sub-clones, it is likely that there will still be gaps in the sequence. Since comparative human sequence is available for the entire region, the sheep contigs could be crudely ordered, so predictions could be made about which contigs
should overlap. Consequently, gaps in the sequence could be filled by sequencing from large (eg. HindIII or $P s t I$) sub-clones in the putatively overlapping contigs with primers designed from the end of existing unique sequence. The only remaining regions that would be difficult to assemble are those contigs that end with large blocks ($>2 \mathrm{~kb}$) of repetitive DNA. Mutations in the repeat unit need to be identified within these blocks so the unique mutated bases can be incorporated at the 3^{\prime} end of a sequencing primer (S.K. Davis, pers. comm.).

In humans, it has been estimated that whilst Alu (a SINE) and L1 (a LINE) account for $>90 \%$ of all interspersed repeats and may constitute $13-18 \%$ of the total DNA in a chromosomal band, neither of these repetitive elements are randomly distributed (Chen and Manuelidis, 1989; Korenburg and Rykowski, 1988). Alu, which is GC-rich (56\%), predominates in early replicating, GC-rich, reverse (G-light) bands. Conversely, L1, which is AT-rich (58%), is concentrated in late replicating, AT-rich, G positive (G-dark) bands. It has been proposed that the distribution of Alu and L1 (ie. GC vs AT content of a chromosomal band) may be a major cause of chromosome banding patterns produced by fluorescent dyes (Korenburg and Rykowski, 1988). The distribution of SINE and LINE elements in other mammalian genomes has not been extensively investigated. In mice, as in humans, there is a predominance of SINEs in R-bands and LINEs in G-bands (Boyle et al., 1990). In pigs, this differential distribution also exists, but is much less pronounced (Thomsen and Miller, 1996).

In Bovidae, the main classes of dispersed repeats are BovA SINEs (Bov-A2 and BovtA) and BovB LINEs (Lenstra et al., 1993). Indeed, these repeats have been shown to be specific for Ruminantia (Jobse et al., 1995). The BovB repeat was originally described as a SINE, but has since been demonstrated to belong to a bovine dimer-driven (BDDF) LINE
family (Szemraj et al., 1995). Like the human L1 repeat, BovB is commonly truncated at various 5' positions (Korenbrug and Rykowski, 1988; Szemraj et al., 1995). Additionally, the distribution of the 5^{\prime} ends of BovB in the genome is not random (Szemraj et al., 1995), but the localisation of BovA or BovB to particular chromosomal bands has not been described. Given that BovB is AT-rich (57.2\% estimated from GENBANK \#M94327, bases 17286-19062; Szemraj et al., 1995), it seems likely that it would follow the pattern of L1 distribution in humans, and localise to G positive (dark) bands. Similarly, BovA, like Alu, is GC-rich (57\% estimated from GENBANK \#X64124 (Bov-tA) and \#X64126 (BovA2)), and therefore, would be expected to be concentrated in G-light bands.

The ovine and human sequences from the BAC clones containing the tissue-specific, late-replicating, high-sulphur KAP genes are AT-rich (57.6% and 60.6%, respectively) and LINEs are the predominant repeat class associated with these genes (22% BovB and 17% L1, respectively). Sheep and human BAC clones containing these genes map to corresponding G-dark bands (11q3.1 and 17q12 (Ceratto et al., 1997), respectively). These sequence and physical mapping data provide some evidence that L 1 and BovB are distributed similarly within the human and sheep genomes.

Given that it is estimated that interspersed repeats account for $\sim 20 \%$ of DNA in a chromosomal band (Chen and Manuelidis, 1989; Korenburg and Rykowski, 1988), a striking feature of both the ovine and human sequences for the KAP-containing BAC clones was the localised, high concentration of repetitive DNA (45% and 41%, respectively) within this $\sim 100 \mathrm{~kb}$ region. Repeat-rich intergenic regions between KIF genes have been previously described (Romano et al., 1988), but the nature of KAP intergenic regions has not been reported previously. It is interesting to note that whilst KIF genes generally have six introns, KAP genes are intronless (Powell et al., 1983; MacKinnon et al., 1990; Rogers
et al., 1998). It is speculated, herein, that since KAP genes lack introns, they require the accumulated repetitive DNA in the intergenic regions for proper regulation or function.

The type I and type II KIF genes in humans are clustered, separated by $5-10 \mathrm{~kb}$ intergenic regions (Romano et al., 1988; Rosenberg et al., 1988; Cerratto et al. 1997; Rogers et al., 1998). Acidic (type I) cytokeratins and hair keratins have been mapped to human chromosome 17q12-q21, while the basic (type II) keratins are clustered on chromosome human 12q11-q13 (Milisavljevic et al., 1996). Homologous type I and type II keratins in mice are located on chromosomes 11 and 15, respectively (Nadeau et al., 1989; Compton et al., 1991). This study demonstrated that several high sulphur KAP1.n, KAP2.n and KAP3.n genes are also clustered on human chromosome 17q12-21 and map to a homologous region in sheep (11q3.1).

The roles of gene order and clustering, repetitive DNA and other elements, in regulation of the high sulphur KAP genes, could be investigated by introducing systematically modified BAC clones by trangenesis into an animal model. It has widely been suggested that hierarchical, temporal and spatial expression of KAP and KIF genes is due to the organisation and regulation of these genes in clustered domains (Compton et al., 1991; McClaren et al., 1997; Bawden et al., 1998). It has recently been demonstrated using BAC clones for transgenesis that regulatory elements controlling several genes with related functions within a multigene locus can be located more than 50 kb away from that locus (Nielsen et al., 1997; Nielsen et al., 1999). Transgenic studies with KAP- or KIF-containing BAC clones would help unravel the complex control of keratin gene expression in the wool follicle.

CHAPTER 8

GENERAL DISCUSSION

GENERAL DISCUSSION

The ultimate goal of livestock gene mapping projects is to isolate the genes responsible for traits of economic importance. In order to do this, dense genome maps are required. In this study, two different strategies for adding markers and genes to the ovine physical map were investigated. Initially, oligonucleotide primers and PCR products were tested as a source of probes for super-fast primed in situ targeting (SPRINT). The modified primed in situ hybridisation (PRINS) procedure relied on the visualisation of fluorescence emitted by excited molecules of fluorescein attached to nucleotides directly incorporated by Taq DNA polymerase into the newly synthesised strand and localised on metaphase chromosomes. While hybridisation signals generated by primers targeting highly repetitive regions, such as satellite DNA, were clearly visible, single copy sequences could not be detected by SPRINT. Consequently, this approach was abandoned in favour of the use of large-insert BAC clones as a source of probes for FISH. The idea of using PCR products directly for in situ hybridisation has recently been revisited using tyramide signal amplification for detection (Schriml et al., 1999). Signal strength is magnified ~ 1000 fold compared with standard FISH, thereby enabling short PCR products ($350-1000 \mathrm{bp}$) for single-copy sequences to be detected. Tyramide has yet to be used to detect PCR products containing microsatellite sequences on metaphase chromosomes and such products would have to be carefully designed to ensure there was sufficient unique flanking DNA for specific hybridisation. It would be worthwhile further investigating tyramide technology for cytogenetic mapping in livestock.

In the absence of an effective method for physically localising short, single-copy sequences on metaphase chromosomes in sheep, an ovine BAC library was constructed as a source of stable, large-insert probes for FISH. At least two BAC clones were isolated for
every chromosome and to date, an additional 45 genes and markers have been added to the ovine physical map.

8.1 Use of BAC clones

These physically mapped clones can be used for unambiguous chromosome identification, and in addition to dual localisation experiments to confirm new physical assigments, they are presently being used to identify the chromosomal origin of extended chromatin fibres in fibre-FISH (C.D.K Bottema, pers. comm.).

The BAC clones can also be used for chromosome identification in other species and to examine regions of conserved synteny between species. The set of ovine BAC clones described herein, plus additional clones to represent all 34 deer genetic linkage groups (http://www.ri.bbsrc.ac.uk/cgi-bin/arkdb/browsers/browser.sh?species=deer) are currently being physically mapped in red deer to assign the genetic linkage maps to particular chromosomes (C.D.K Bottema, pers. comm.).

8.2 BAC library construction

In comparison to the recently developed dog (8x), pig (10x) and cattle (12x) BAC libraries, and human (25x) and rat (10x) PAC libraries (Woon et al., 1998; Li et al., 1999; Osoegawa et al., 1998; bacpac.med.buffalo.edu), genome coverage for the sheep BAC library described herein is poor (2 x) and the library has several intrinsic biases (discussed in chapter 4). Nevertheless, PCR based screening supports the estimate based on insert size that there is an 88.5% chance of finding any unique sequence within the library. In combination with the other 3 x sheep BAC library (Vaiman et al., 1999b), there is theoretically a 99% probability of finding any given sequence in one of the two libraries which is quite adequate for physical mapping studies.

Deep BAC libraries ($>10 \mathrm{x}$ genome coverage) are being produced to construct ordered contigs and minimum tiling paths for large-scale sequencing of whole genomes (Mahairas et al., 1999; Siegel et al., 1999). To minimise the number of clones within each contig, clones with very large, yet stable, inserts are desirable. It is well documented that the average insert size of BAC clones in many of the libraries that have been produced are smaller than expected, ranging from 100-120kb (Cai et al., 1995; Frijters et al., 1997; Osoegawa el al., 1998). Recently, several modifications to the BAC procedure have resulted in consistently larger clones with average insert sizes from 160-235kb (Osoegawa et al., 1998: Li et al., 1999). Rather than microbeads, agarose plugs are now being used because centrifugation to separate the microbeads from excess mineral oil is avoided. Additionally, it is presumed that DNA encapsulated in a plug migrates through the agarose CHEF gel more uniformly than DNA in microbeads since the potential for the DNA to exit and then re-enter the agarose matrix multiple times (ie. between adjacent microbeads) is greatly reduced (S.K. Davis, pers. comm.).

The principle improvement to the procedure that has resulted in increased insert size is the use of altered CHEF gel conditions for size selection. Prior to digestion, the plugs are electrophoresed under conditions that remove inhibitors (eg. residual salts from DNA preparation) and degraded DNA from the plugs. Intact DNA molecules remain in the plugs and are subsequently digested to give fragments ranging from $150-250 \mathrm{~kb}$ as usual. The subsequent CHEF gel electrophoresis is critical because small fragments ($<120 \mathrm{~kb}$), that are usually preferentially cloned, literally run backwards off the gel leaving only the fragments in the desired size range. These fragments are then compressed into a narrow band and extracted from the gel. Electroelution of the size selected DNA from the gel results in better integrity than digestion with an agarase (Strong et al., 1997; Osoegawa et al., 1998),
but the DNA is significantly diluted and must be concentrated by dialysis against TE containing polyethylene glycol (PEG8000) prior to ligation (Osoegawa et al., 1998).

Although this new sizing method produces larger BAC clones, there is a concomitant loss in transformation efficiency, probably due to additional handling of the linearised, high molecular weight DNA. Under optimum conditions with the new method, the transformation efficiency is just $2.5 \times 10^{5} \mathrm{cfu} / \mu \mathrm{g}$ (Osoegawa et al., 1998), compared with $1.5 \times 10^{6} \mathrm{cfu} / \mu \mathrm{g}$ that was achieved for the ovine BAC library herein (chapter 4). This 6 -fold reduction in efficiency greatly increases the cost of library construction since the commercial electrocompetant cells are one of the most expensive components of the library. Precipitation of BAC DNA with tRNA to change the topological form (ie. induce supercoiling) has been reported to increase transformation efficiency 70 -fold. However, the results presented were equivalent to those achieved for the sheep library, without precipitation (Zhu and Dean, 1999).

The ovine library herein was transformed by electroporation at 400 V , equivalent to a field strength of $16 \mathrm{kV} / \mathrm{cm}$. It has previously been shown that the optimum field strength for transformation of large DNA fragments is $13-14 \mathrm{kV} / \mathrm{cm}$ (Sheng et al., 1995; Frijters et al., 1997; Zimmer et al., 1997) with smaller fragments preferentially transformed at higher field strengths. Consequently, it is apparent that the average insert size of the ovine clones could be improved without any loss in transformation efficiency simply by altering the field strength for electroporation. As proposed by Sheng et al. (1995), pulse regimens for electroporation should be investigated because open circular DNA molecules of different sizes require different amounts of time to pass through pores in the cells. Although a single-pulse is currently used, it is envisaged that an initial high voltage pulse to open the pore followed by a period of lower voltage to maintain the open pore would be even more effective for transformation of large BAC molecules.

The best strategy to adopt for BAC library construction (ie. large BAC inserts vs high efficiency) will ultimately depend on the objective behind library development. To simply add markers and genes to the physical and genetic maps, BAC clones in the range from $100-120 \mathrm{~kb}$ are sufficient, and so, the most efficient and cost effective method of producing clones should be employed. For contig development, the cost of arraying the BAC clones will ultimately dwarf the cost of library construction, so modified procedures should be used to generate clones with the largest possible inserts to minimise the number of clones within each tiling path.

8.3 Ordering BAC clones

Ordered arrays of BAC clones are being developed by a number of methods, including BAC end sequencing (Mahairas et al., 1999), radioactive fingerprinting by restriction landmark genome scanning (RLGS; Okazaki and Hayashizaki, 1997), and fluorescent fingerprinting (Gregory et al., 1997; Marra et al., 1997; Ding et al., 1999; Cao et al., 1999). As part of the human genome project, $450,000 \mathrm{BAC}$ clones are being arrayed by sequencing each end of the clones and by fingerprinting each clone with a single enzyme (HindIII) to generate 'sequence-tagged connectors' (STC) every 3.3 kb across the genome (Mahairas et al., 1999). These STC are seeds for sequence extension from minimally overlapping BAC clones. Contig assembly using this strategy relies primarily on sequence data with fingerprints of each clone being used for confirmation to avoid generating chimeric contigs across repetitive regions.

Without sequence data, fingerprints generated by a single restriction enzyme are not sufficient for contig assembly because of the inability to distinguish small overlaps or assembly errors (Taylor et al., 1996; Ding et al., 1999). Both RLGS and fluorescent fingerprinting employ two or more restriction enzymes (Okazaki and Hayashizaki, 1997;

Gregory et al., 1997; Ding et al., 1999). Typically, BAC DNA is cleaved with a 6bp-cutter (eg. HindIII) to generate fragments that are subsequently labelled (radioactively or with different coloured fluorophors). The labelled fragments are then digested with one or more common endonucleases (eg. Sau3A, EcoRV). Only the subset of fragments that remain labelled after the second cleavage are visualised (~ 30 bands). RLGS has not been used as extensively as tluorescent fingerprinting because it depends on two-dimensional electrophoresis to separate the labelled fragments (Okazaki and Hayashizaki, 1997). Fluorescent fingerprints can be run on an automated sequencer and several BAC clones labelled with different coloured fluorophors can be multiplexed in a single lane (Gregory et al., 1997). Precise sizing of fragments is achieved by including a size standard in every lane. The data are analysed with Genescan software (Perkin Elmer) and can be loaded directly into FPC software (ftp.sanger.ac.uk) for contig assembly (Soderlund et al., 1997). FPC uses an algorithm to cluster the clones into contigs based on the probability that they must overlap duc to the similarity of their banding patterns.

8.4 Use of BAC contigs

Apart from developing minimum tiling paths for sequencing, ordered arrays of BAC clones will be useful for positionally cloning genes of economic importance. If two flanking markers that have tight linkage to the gene of interest have been identified, then the array of BAC clones between those markers could be examined. By isolating novel markers from within the arrayed clones, the critical region containing the gene of interest could be reduced to a managable size for sequencing by shot-gun subcloning.

Sequencing the ends of arrayed BAC clones with known positions in the genome will be valuable in the production of the next generation of genetic linkage maps using single nucleotide polymorphisms (SNPs). In humans, SNPs have been shown to occur about once
every 1000 bp , although expressed sequences were less polymorphic than random genomic sequences (Wang et al., 1999). It is expected that a similar abundance of SNPs will be found in livestock species. One strategy to identify livestock SNPs would be to amplify BAC end sequences in a breed panel and look for base variations between individuals. It will ultimately be important to identify SNPs that occur both between and within breeds. Since a SNP is only a two allele system, it is not yet known how many SNPs will be required at any one locus (ie. haplotype analysis) to provide as much information as the multiple allele microsatellites. The huge advantage of SNPs over microsatellites is that the oligonucleotides used for SNP detection can be arrayed on a chip so that a whole genome scan can be conducted for thousands of markers simultaneously (Sapolsky et al., 1999; Wang et al., 1999).

Currently, the ovine BAC library contains an insufficient number of clones for genome-wide contig development. Generating additional BAC clones for sheep with larger inserts will facilitate development of ordered arrays of clones for marker and gene identification in the future.

8.5 BAC clones and functional studies

Large, stable BAC clones are also desirable for functional studies because they are more likely to contain all the long-range regulatory elements required for positionindependent expression than short plasmid inserts (Peterson et al., 1995; Lien et al., 1997; Nielsen et al., 1999; Stinnakre et al., 1999). One hindrance to the use of BAC clones for functional studies in mammalian systems is that the original BAC vector, pB eloBAC11, did not contain a selection system or reporter genes suitable for expression in mammalian cells (Kim et al., 1998). Complex systems were used to modify the clones for functional studies in mammalian cells (Mejía and Monaco, 1997; Yang et al., 1997; Chatterjee and Coren,

1997; Kim et al., 1998). In addition to modifying the vector, systems were developed to make targeted modifications to the BAC insert, but these methods either require shuttle vectors or are not suitable for use in the host DH10ß E. coli cells (Boren et al., 1996; Yang et al., 1997; Chatterjee and Coren, 1997; Messerle et al., 1997; Jessen et al., 1998). A new BAC vector, pEBAC, based on the backbone of pBeloBAC11 also includes hygromycin and thymidine kinase genes for selection in eukaryotic cells as well as oriP and EBNA-1 genes to facilitate episomal maintenance (Narayanan et al., 1999).

Targeted modification can be made to BAC clones by homologous recombination in DH10 β cells using pEBAC in combination with a second plasmid, pGETrec (Narayanan et al., 1999). Unlike previous methods which require a new shuttle vector to be designed for every modification, the pGETrec vector does not carry the modified sequences. Instead, the L-arabinose inducible expression plasmid carries the bacteriophage λ gam gene that inhibits recBCD nuclease which is active in $\mathrm{DH} 10 \beta$ cells. In the absence of recBCD nuclease activity, linear double-stranded DNA is not degraded. Consequently, PCR products containing the desired modifications (eg. a reporter gene, insertion, deletion or point mutation) can be introduced into the BAC clones by electroporation followed by homologous recombination (Narayanan et al., 1999). By using an inducible system where the ability to introduce modifications is only transient, unwanted rearrangements due to recombination between repetitive elements is minimised. The modified BAC can be purified away from pGETrec by a standard plasmid preparation and subsequent electroporation into DH10 cells. The availability of this simple system for modifying BAC clones will facilitate functional studies to identify gene function and the regulatory elements that control their function, and will ultimately lead to the use of modified BAC clones in gene therapy or transgenesis programmes.

The utility of BAC clones for investigating genome organisation was exemplified in this study by considering the keratin associated protein (KAP) gene family. It was demonstrated that several KAP and keratin genes are clustered within a single 100 kb ovine BAC clone. NotI digestion resected the insert intact (chapter 7), so it could easily be ligated to the new pEBAC vector for expression in mammalian cells. Future experiments will need to demonstrate that the cloned sequence is sufficient for position-independent, tissue-specific expression within the wool follicle. Once it is established that long-range regulatory elements are contained within the BAC, subsequent modifications can be performed to investigate gene function and regulation. For instance, by generating a series of deletions by homologous recombination, it would be possible to determine whether the unusually high percentage of repetitive DNA, or other motifs within the sequence, were important for gene function and would enable any regulatory elements to be identified. It would also be interesting to investigate whether gene order affects the expression cascade within the follicle by changing the position of genes within the BAC.

Even with sophisticated mapping tools such as large-insert clones, FISH, radiation hybrids, sequencing and fingerprinting, problems that will continue to plague genome mapping are the correct identification of members of large gene families and distinguishing genes from pseudogenes. As highlighted in this study for the SCYA and KAP genes, sequence data alone is sometimes insufficient to confirm the identity of genes that have arisen by duplication events because sequence conservation is very high. Avoiding errors in gene identification is vital for comparative mapping where inferences are made about the location and identity of neighbouring genes based on previous mapping information in other species. Only coincident mapping data is sufficient to confirm the same gene has been isolated. Simultaneous analysis of sequence data, physical and genetic linkage results
and fluorescent fingerprints will help avoid making incorrect gene designations and map assignments.

8.6 Summary

An ovine BAC library consisting of 59,904 clones with an average insert size of 103 kb , which corresponds to about two genome equivalents was constructed as a resource for genome mapping in sheep. The rapid identification of 69 BAC clones by PCR-based screening, and the addition of 45 of these clones to the physical map by FISH, clearly demonstrates that the ovine BAC library is an efficient tool for map development. These new physical assignments represent a 52% increase in the number of markers mapped to discrete bands in sheep. Furthermore, these additional localisations enabled a preliminary evaluation of the alignment between the ovine physical and genetic maps. Examination of 9 intervals gave an estimate of the whole sheep genome of 2976 ± 246 SEM which is similar to the previous estimate based on chiasmata counts (Chapman and Bruere, 1977).

Although PCR products generated from each BAC clone were sequenced prior to FISH and in all cases aligned with published sequence $>85 \%$, sequence data alone was not always sufficient to confirm the identity of members of large gene families (eg. SCYA). Coincident mapping information is the only way to guarantee that the correct gene has been isolated. Verification of all the physical assignments by dual FISH and genetic linkage analysis has been commenced.

The ovine BAC library will continue to be useful for comparative mapping and positional cloning of economically important traits. BAC clones containing 12 microsatellites and 15 genes were mapped by FISH to homologous locations on bovine chromosomes, and 5 microsatellites and 1 gene were physically mapped in goat.

Comparative analysis of human sequence for the keratin associated proteins on HSA17 was critical to the construction of a long-range restriction map of a 100 kb BAC clone containing KAP1.1. At least four other KAP genes and a keratin gene were also located within the BAC clone which mapped to OAR11q3.1. To construct the fine map of the KAP region, more than 40% of the BAC was sequenced by shot-gun subcloning. An unusual feature of the sequence was that it was 45% repetitive. KAP genes are intronless and it is proposed that these genes require accumulated repetitive DNA in intergenic regions for proper regulation and function. Further investigation of the organisation and function of these clustered genes and transgenesis studies with modified BAC clones would help unravel the complex control of keratin gene expression in the follicle.

The development and characterisation of the ovine BAC library and the mapping data presented herein represent a significant contribution to the sheep mapping community. The ovine BAC library is a powerful new tool for sheep genome mapping and is available for collaborative research.

REFERENCES

REFERENCES

Abbott, C. and Povey, S. (1995). Somatic Cell Hybrids: The Basics. IRL Press, Oxford.

Adinolfi, M., Davies, A., Sharif, S., Soothill, P. and Rodeck, C. (1993). Detecton of trisomy 18 and Y-derived sequences in fetal nucleated cells obtained by transcervical flushing. Lancet 342: 403-404.

Aïssani, B. and Bernardi, G. (1991). CpG islands: features and distribution in the genome of vertebrates. Gene 106: 173-183.

Al-Bayati, H.K., Duscher, S., Kollers, S., Rettenberger, G., Fries, R. and Brenig, B. (1999). Construction and characterization of a porcine P1-derived artificial chromosome (PAC) library covering 3.2 genome equivalents and cytogenetical assignment of six type I and type II loci. Mamm. Genome 10 (6): 569-572.

Albertsen, H.M., Abderrahim, H., Cann, H.M., Dausset, J., Le Paslier, D. and Cohen, D. (1990). Construction and characterization of a yeast artificial chromosome library containing seven haploid genome equivalents. Proc. Natl. Acad. Sci. USA 87: 4256-4260.

Allen, L. (1997). Comparative mapping in sheep and cattle. Honours Thesis. University of Adelaide. South Australia.

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.

Ansari, H.A., Pearce, P.D., Maher, D.W., Malcolm, A.A., Wood, N.J., Phua, S.H. and Broad, T.E. (1992). Resolving ambiguities in the sheep karyotype: a molecular cytogenetic approach. Proceedings of the $10^{\text {th }}$ European colloquium on cytogenetics of domestic animals. 10: 21-25 (1992).

Ansari, H.A., Pearce, P.D., Maher, D.W., Malcolm, A.A. and Broad, T.E. (1993). Resolving ambiguities in the karyotype of domestic sheep (Ovis aries). Chromosoma 102: 340-347.

Ansari, H.A., Bosma, A.A., Bunch, T.D., Long, S.E. and Popescu, C.P. (1994). Clarification of chromosome nomenclature in the sheep (Ovis aries). Report of the committee for the standardization of the sheep karyotype. Cytogenet. Cell Genet. 67: 114115.

Ansari, H.A., Pearce, P.D., Maher, D.W. and Broad, T.E. (1995). Human chromosome 10 loci map to three different sheep chromosomes. Mamm. Genome 6: 46-48.

Ansari, H.A., Maher, D.W., Pearce, P.D. and Broad, T.E. (1996). Resolving the ambiguities in the karyotype of domestic sheep (Ovis aries). Chromosoma 105: 62-67.

Ansari, H.A., Bosma, A.A., Broad, T.E., Bunch, T.D., Long, S.E., Maher, D.W., Pearce, P.D. and Popescu, C.P. (1999). Standard G-, Q-, and R-banded ideograms of the domestic sheep (Ovis aries): homology with cattle (Bos taurus). Report of the committee for the standardization of the sheep karyotype. Cytogenet. Cell Genet. 87: 134-142.

Antoch, M.P., Song, E.-J., Chang, A.-M., Vitaterna, M.H., Zhao, Y., Wilsbacher, L.D., Sangoram, A.M., King, D.P., Pinto, L.H. and Takahashi, J.S. (1997). Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89: 655667.

Ashworth, L.K., Alegria-Hartman, M., Burgin, M., Devlin, L., Carrano, A.V. and Batzer, M.A. (1995). Assembly of high-resolution bacterial artificial chromosome, P1-derived artificial chromosome, and cosmid contigs. Anal. Biochem. 224 (2): 564-571.

Athwal., R.S., Smarsh, M., Searle, B.M. and Deo, S.S. (1985). Integration of a dominant selectable marker into human chromosomes and transfer of marked chromosomes to mouse cells by microcell fusion. Somatic Cell Mol. Genet. 11: 177-187.

Ausubel, F.M., Brent R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (eds). (1992). Preparation of genomic DNA from mammalian tissue. Ch 2.2. In: Current protocols in molecular biology. Vol. 1. Wiley-Interscience, New York. pp. 2.2.12.2.3.

Baker, A. and Cotten, M. (1997). Delivery of bacterial artificial chromosomes into mammalian cells with psoralen-inactivated adenovirus carrier. Nucleic Acids Res. 5 (10): 1950-1956.

Barendse, W., Vaiman, D., Kemp, S.J., Sugimoto, Y., Armitage, S.M., Williams, J.L., Sun, H.S., Eggen, A., Agaba, M., Aleyasin, S.A., Band, M., Bishop, M.D., Buitkamp, J., Byrne, K., Collins, F., Cooper, L., Coppettiers, W., Denys, B., Drinkwater, R.D., Easterday, K.,

Elduque, C., Ennis, S., Erhardt, G., Ferretti, L., Flavin, N., Gao, Q., Georges, M., Gurung, R., Harlizius, B., Hawkins, G., Hetzel, J., Hirano, T., Lenstra, J.A., Leveziel, H., Lewin, H.A., Leyhe, B., Lil, L., Martin Burriel, I., McGraw, R.A., Miller, J.R., Moody, D.E., Moore, S.S., Nakane, S., Nijman, I.J., Olsaker, I., Pomp, D., Rando, A., Ron, M., Shalom, A., Teale, A.J., Thieven, U., Urquhart, B.G.D., Vage, D.-I., Van de Weghe, A., Varvio, S., Velmala, R., Vilkki, J., Weikard, R., Woodside, C., Womack, J.E., Zanotti, M. and Zaragoza, P. (1997). A medium-density genetic linkage map of the bovine genome. Mamm. Genome 8: 21-28.

Bauman, J.G.J., Wigant, J., Borst, P. and van Duijn, P. (1980). A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridisation of fluorochrome-labelled RNA. Exp. Cell Res. 128: 485-490.

Bawden, C.S., Powell, B.C., Walkder, S.K. and Rogers, G.E. (1998). Expression of a wool intermediate filament keratin transgene in sheep fibre alters structure. Transgenic Res. 7 (4): 273-287.

Beckman, J.S. and Soller, M. (1983). Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theoretical and Applied Genetics 67: 3543.

Bickmore, W. and Craig, J. (1997). Chromosome bands: patterns in the genome. SpringerVerlag, Heidelberg, Germany.

Bishop, M.D., Kappes, S.M., Keele, J.W., Stone, R.T., Sunden, S.L.F., Hawkins, G.A., Solinas Toldo, S., Fries, R., Grosz, M.D., Yoo, J. and Beattie, C.W. (1994). A genetic linkage map of cattle. Genetics 136: 619-639.

Boren, J., Lee, I., Callow, M.J., Rubin, E.M. and Innerarity, T.L. (1996). A simple and efficient method for making site-directed mutants, deletions, and fusions of large DNA such as P1 and BAC clones. Genome Res. 6: 1123-1130.

Boyle, A.L., Ballard, S.G. and Ward, D.C. (1990). Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA 87 (19): 7757-7761.

Bray-Ward, P., Bowlus, C., Choi, J., Paslier, D.L., Weissenbach, J. and Gruen, J.R. (1996). FISH-Mapped CEPH YACs spanning 0 to 46 cM on human chromosome 6. Genomics 36 (1): 104-111.

Brigati, D.J., Myerson, D., Leary, J.J., Spalholz, B., Travis, S.Z., Fong, C.K.Y., Hsuing, G.D. and Ward, D.C. (1983). Detection of viral genomes in cultures cells and paraffinembedded tissue sections using biotin-labelled hybridization probes. Virology 126: 32-50.

Broad T.E. and Hill D.F. (1994). Mapping the sheep genome: practice, progress and promise. Br. Vet J. 150 (3): 237-52.

Broad, T.E., Lewis, P.E., Burkin, D.J., Gleeson, A.J., Carpenter, M.A., Jones, C., Pearce, P.D., Maher, D.W. and Ansari, H.A. (1995). Thirteen loci physically assigned to sheep

Chromosome 2 by cell hybrid analysis and in situ hybridization. Mamm. Genome 6: 862866.

Broad, T.E., Lambeth, M., Burkin, D.J., Jones, C., Pearce, P.D., Maher, D.W. and Ansari, H.A. (1996). Physical mapping confirms that sheep chromosome 10 has extensive conserved synteny with cattle chromosome 12 and human chromosome 13. Anim. Genet. 27: 249-253.

Broad, T.E., Hayes, H. and Long, S.E. (1997). Cytogenetics: physical chromosome maps. In: Piper, L. and Ruvinsky, A. (eds) "The genetics of sheep." CAB International, pp. 241296.

Broad. T.E.. Hill. D.F.. Maddox, J.F., Montgomery, G.W. and Nicholas, F.W. (1998). The sheep gene map. IL.AR 39: 160-170.

Broom, M.F. and Hill, D.F. (1994). Construction of a large-insert yeast-artificial chromosome library from sheep DNA. Mamm. Genome 5: 817-819.

Brunner, R.M., Goldammer, T., Furbass, R., Vanselow, J. and Schwerin, M. (1998). Genomic organization of the bovine aromatase encoding gene and a homologous pseudogene as revealed by DNA fiber FISH. Cytogenet. Cell Genet. 82: 37-40.

Buchanan, F.C., Littlejohn, R.P., Galloway, S.M. and Crawford, A.M. (1993). Microsatellites and associated repetitive elements in the sheep genome. Mamm. Genome 4: 258-264.

Buckle, V.J. and Craig, I.W. (1986). In situ hybridisation. Ch. 6. In: Davies, K.E. (ed). Human genetic diseases: a practical approach. IRL Press, Oxford.

Buitkamp, J., Ewald, D., Schalkwyk, L., Weiher, M., Masaanda, J., Sazanov, A., Lehrach, H. and Fries, R. (1998). Construction and characterisation of a gridded chicken cosmid library with four-fold genomic coverage. Anim. Genet. 29 (4): 295-301.

Burke, D.T., Carle, G.F. and Olson, M.Y. (1987). Cloning of large sements of exogenous DNA into yeast by means of artificial chromosome vectors. Science 238: 806-812.

Burkholder, G.D. (1993). The basis of chromosome banding. Applied Cytogenetics 19 (6): 181-186.

Burkin, D.J., Morse, M.G., Broad, T.E., Pearce, P.D., Ansari, H.A., Lewis, P.E. and Jones, C. (1993). Mapping the sheep genome: production of characterized sheep x hamster cell hybrids. Genomics 16: 466-472.

Burkin, D.J., Broad, T.E. and Jones, C. (1996). The chromosomal distribution and organization of sheep satellite I and II centromeric DNA using characterized sheep-hamster somatic cell hybrids. Chromosome Res. 4: 49-55.

Burkin, D.J., O'Brien, P.C.M., Broad, T.E., Hill, D.F., Jones, C.A., Wienburg, J. and Ferguson-Smith, M.A. (1997a). Isolation of chromosome-specific paints from highresolution flow-sorted karyotypes of the sheep (Ovis aries). Chromosome Res. 5: 102-108.

Burkin, D.J., Yang, F., Broad, T.E., Wienberg, J., Hill, D.F. and Ferguson-Smith, M.A. (1997b). Use of the Indian muntjac ideogram to align conserved chromosomal segments in sheep and human genomes by chromosome painting. Genomics 46: 143-147.

Burkin, D.J., Broad, T.E., Lambeth, M.R., Burkin, H.R. and Jones, C. (1998). New gene assignments using a complete characterized sheep-hamster somatic cell hybrid panel. Animal Genetics 29: 48-54.

Cai, L., Taylor, J.F., Wing, R.A., Gallagher, D.S., Woo, S.S. and Davis, S.K. (1995). Construction and characterization of a bovine bacterial artificial chromosome library. Genomics 29: 413-425.

Cai, L., Schalkwyk, L.C., Schoeberlein-Stehli, A., Zee, R.Y.L., Smith, A., Haaf, T., Georges, M., Lehrach, H. and Lindpaintner, K. (1997). Construction and characterization of a 10-genome equivalent yeast artificial chromosome library for the laboratory rat Rattas norvegicus. Genomics 39: 385-392.

Cai, W.W., Reneker, J., Chow, C.W., Vaishnav, M. and Bradley, A. (1998). An anchored framework BAC map of mouse chromosome 11 assembled using multiplex oligonucleotide hybridization. Genomics 54 (3): 387-97.

Callen, D.F., Yip, M.Y. and Eyre, H.J. (1997). Rapid detection of euchromatin by AluPRINS: use in clinical cytogenetics. Chromosome Res. 5 (2): 81-85.

Cao, Y., Kang, H.L., Xu, X., Wang, M., Dho, S.H., Huh, J.R., Lee, B.J., Kalush, F., Bocskai, D., Ding, Y., Tesmer, J.G., Lee, J., Moon, E., Jurecic, V., Baldini, A., Weier, H.U., Doggett, N.A., Simon, M.I., Adams, M.D. and Kim, U.J. (1999). A 12-Mb complete coverage BAC contig map in human chromosome 16p13. 1-p11.2. Genome Res. 9 (8): 763774.

Carey, A. (1997). Use of commercially available radiation hybrid panels. Ch.3. In: Dracopoli, N.C., Haines, J.L., Korf, B.R., Moir, D.T., Morton, C.C., Seidman, C.E., Seidman, J.G. and Smith, D.R. (eds). Current Protocols in Human Genetics. John Wiley \& Sons, Inc., New York, USA. 3.5.1-3.5.10.

Casperson. T.. Farber. S., Foley, G.F., Kudynowski, J., Modest, E.J., Simonsson, E., Wagh, U. and Zech. I.. (1968). Chemical differentiation along metaphase chromosomes. Exp. Cell Res. 49: 219-222.

Ceratto, N., Dobkin, C., Carter, M., Jenkins, E., Yao, X.-L., Cassiman, J.-J., Aly, M.S., Bosco, P., Leube, R., Langbein, L., Feo, S. and Romano, V. (1997). Human type I cytokeratin genes are a compact cluster. Cytogenet. Cell Genet. 77: 169-174.

Chapman, H.M. and Bruere, A. (1977). Chromosome mophology during meiosis of normal and Robertsonian translocation-carrying rams (Ovis aries). Can. J. Genet. Cytol. 19: 93102.

Chatterjee, P.K. and Coren, J.S. (1997). Isolating large nested deletions in bacterial and P1 artificial chromosomes by in vivo P1 packaging of products of Cre-catalysed recombination
between the endogenous and a transposed loxP site. Nucleic Acids Res. 25 (11): 22052212.

Chen, M., Compton, S.T., Coviello, V.F., Green, E.D. and Ashlock, M.A. (1997). Transient gene expression from yeast artificial chromosome DNA in mammalian cells is enhanced by adenovirus. Nucleic Acids Res. 25 (21): 4416-4418.

Chen, S., Lao, W., Ni, Z. and Shi, L. (1982). Constructions of gene libraries of Rana nigromaculata and Mus musculus with cosmid pHC79. Sci Sin [B]. 25 (3): 261-267.

Chen, T.L. and Manuelidis, L. (1989). SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size. Chromosoma 98 (5): 309-316.

Chen, Z.-Q., Lautenberger, J.A., Lyons, L.A., McKenzie, L. and O'Brien, S.J. (1999). A human genome map of comparative anchor tagged sequences. J. Hered. 90: 477-484.

Chowdhary, B.P., Fronicke, L., Gustavsson, I. and Scherthan, H. (1996). Comparative analysis of the cattle and human genomes: detection of ZOO-FISH and gene mappingbased chromosomal homologies. Mamm. Genome 7: 297-302.

Cianfriglia, M. (1979). Cytogenetic characterization of Chinese hamster-sheep somatic cell hybrids. Bolletino della Societa Italiano di Biologia Sperimentale (Napoli). 55: 2201-2207.

Cinti, C., Santi, S. and Maraldi, N.M. (1993). Localization of single copy gene by PRINS technique. Nucleic Acids Res. 21 (24): 5799-5800.

Clarke, L. and Carbon, J. (1976). A colony bank containing synthetic Col E1 hybrid plasmids representative of the entire E. coli genome. Cell 9: 91-99.

Claverie, J.M. (1994). A streamlined random sequencing strategy for finding coding exons. Genomics 23 (3): 575-581.

Collins, F.S. and Weissman, S.M. (1984). Directional cloning of DNA fragments at a large distance from an initial probe: A circularization method. Proc. Natl. Acad. Sci. USA 81: 6812-6816.

Comincini, S., Drisaldi, B. and Ferretti, L. (1997). Isolation of coding sequences from bovine cosmids by means of exon trapping. Mamm. Genome 8 (7):486-490.

Compton, J.G., Ferrara, D.M., Yu, D.W., Recca, V., Freedberg, I.M. and Bertolino, A.P. (1991). Chromosomal localization of mouse hair keratin genes. Ann. N.Y. Acad. Sci. 642: 32-43.

Cox, D.R., Burmeister, M., Price, E.R., Kim, S. and Myers, R.M. (1990). Radiation hybrid mapping: A somatic cell genetic method for constructing high resolution maps of mammalian chromosomes. Science 250: 245-250.

Cox, G.S., Gutkin, D.W., Haas, M.J. and Cosgrove, D.E. (1998). Isolation of an Alu repetitive DNA binding protein and effect of CpG methylation on binding to its recognition sequence. Biochim. Biophys. Acta 1296: 67-87.

Crawford, A.M., Dodds, K.G., Ede, A.J., Pierson, C.A., Montgomery, G.W., Garmonsway, H.G., Beattie, A.E., Davies, K., Maddox, J.F., Kappes, S.W., Stone, R.T., Nguyen, T.C., Penty, J.M., Matthews, M.E., Hulme, D.J., Beh, K.J., McGraw, R.A. and Beattie, C.W. (1995). An autosomal genetic linkage map of the sheep genome. Genetics 140: 703-724.

Davies, K.P., Maddox, J.F., Harrison, B. and Drinkwater, R.D. (1996). Ovine dinucleotide repeat polymorphism at eight anonymous loci. Anim. Genet. 27: 381-382.

Davis, S.L.F., Taylor, J.F., Stillwell, D.R., Gill, C.A. and Davis, S.K. (1999). Comparative sequence analysis of the down syndrome critical region in humans and cows identifies genes encoding rare transcripts. Proceedings of the Genome Sequencing and Biology meeting, Cold Spring Harbor, USA.

Davisson, M.T. and Roderick, T.H. (1989). Linkage map. In: Lyon, M.F. and Searles, A.G. (eds.). Genetic variants and strains of the laboratory mouse. Gustay Fischer Verlag, Stuttgart. pp. 416-427.
de Frotos, R., Kimura, K. and Peterson, K.R. (1989). In situ hybridization of Drosophila polytene chromosomes with digoxygenin-dUTP labeled probes. Trends Genet. 5: 366.
de Gortari, M.J., Freking, B.A., Kappes, S.M., Leymaster, K.A., Crawford, A.M., Stone, R.T. and Beattie, C.W. (1997). Extensive genomic conservation of cattle microsatellite heterozygosity in sheep. Anim. Genet. 28: 274-290.
de Gortari, M.J., Freking, B.A., Cuthbertson, R.P., Kappes, S.., Keele, J.W., Stone, R.T., Leymaster, K.A., Dodds, K.G., Crawford, A.M. and Beattie, C.W. (1998). A secondgeneration linkage map of the sheep genome. Mamm. Genome 9: 204-209.

Deloukas, P., Schuler, G.D., Gyapay, G., Beasley, E.M., Soderlund, C., Rodriguez-Tome, R., Hui, L., Matise, T.C., McKusick, K.B., Beckmann, J.S., Bentolila, S., Bihoreau, M., Birren, B.B., Browne, J., Butler, A., Castle, A.B., Chiannilkulchai, N., Clee, C., Day, D.J., Dehejia, A., Dibling, T., Drouot, N., Duprat, S., Fizames, C., Fox, S., Gelling, S., Green, L., Harrison, P., Hocking, R., Holloway, E., Hunt, S., Keil, S., Lijnzaad, P., Louis-DitSully, C., Ma, J., Mendis, A., Miller , J., Morissette, J., Muselet, D., Nusbaum, H.C., Peck, A., Rozen, S., Simon, D., Slonim, D.K., Staples, R., Stein, L.D., Stewart, E.A., Suchard, M.A., Thangarajah, T., Vega-Czarny, N., Webber, C., Wu, X., Hudson, J., Auffray, C., Nomura, N., Sikela, J.M., Polymeropoulos, M.H., James, M.R., Lander, E.S., Hudson, T.J., Myers, R.M., Cox, D.R., Weissenbach, J., Boguski, M.S. and Bentley, D.R. (1998). A physical map of 30,000 human genes. Science 282 (5389): 744-746.

Dib, C., Faure, S., Fizames, C., Samson, D., Drouot, N., Vignal, A., Millasseau, P., Marc, S., Hazan, J., Seboun, E., Lathrop, M., Gyapay, G., Morissette, J. and Weissenbach, J. (1996). A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380: 152-154.

Dietrich, W., Katz, H., Lincoln, S.E., Shi, H.-E., Friedman, J., Dracopoli, N. and Lander, E. (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131: 423-447.

Dietrich, W.F., Miller, J., Steen, R., Merchant, M.A., Damron-Boles, D., Husain, Z., Dredge, R., Daly, M.J., Ingalls, K.A., O’Connor, T.J., Evans, C.A., DeAngelis, M.M., Levinson, D.M., Kruglyak, L., Goodman, N., Copeland, N.G., Jenkin, N.A., Hawkins, T.L., Stein, L., Page, D.C. and Lander, E.S. (1996). A comprehensive genetic map of the mouse genome. Nature 380: 149-152.

Ding, Y., Johnson, M.D., Colayco, R., Chen, Y.J., Melnyk, J., Schmitt, H. and Shizuya, H. (1999). Contig assembly of bacterial artificial chromosome clones through multiplexed fluroescence-labeled fingerprinting. Genomics 56: 237-246.

Drinkwater, R.D., Harrison, B., Davies, K.P. and Maddox, J.F. (1997). Ovine anonymous dinucleotide repeat polymorphism at the CSRD264, CSRD269, CSRD270, CSRD287, CSRD2108, CSRD2138 and CSRD2164 loci. Anim. Genet. 28: 70-71.

Dutrillaux, B. and Viegas-Pequinot, E. (1981). High-resolution R- and G- banding in the same preparation. Hum. Genet. 57: 93-95.

Echard, G., Broad, T.E., Hill, D. and Pearce, P. (1994). Present status of the ovine gene map (Ovis aries); comparison with the bovine map (Bos taurus). Mamm. Genome 5 (6): 324-332.

Eichenbaum, S. and Krumins, E. (1983). A simple and reliable method of chromosome banding for prenatal cytogenetics using a bromodeoxyuridine pulse. Prenat. Diagn. 3: 291296.

Ellegren, H. (1993). Abundant $(A)_{n} \cdot(T)_{n}$ mononucleotide repeats in the pig genome: linkage mapping of the porcine APOB, FSA, ALOX12, PEPN and RLN loci. Anim. Genet. 24: 367-372.

Ellegren, H., Chowdhary, B., Johansson, M. and Andersson, L. (1994). Integrating the porcine physical and linkage map using cosmid-derived markers. Anim. Genet. 25: 155164.

Englander, E.W., Wolffe, A.P. and Howard, J. (1995). Nucleosome positioning by human Alu elements in chromatin. J. Biol. Chem. 270 (17): 10091-10096.

Evans, H.J., Buckland, R.A. and Sumner, A.G. (1973). Chromosome homology and heterochromatin in goat, sheep and ox studied by banding techniques. Chromosoma 42 : 383-402.

Ferretti, L., Urquhart, B.G., Eggen, A., Olsaker, I., Harlizius, B., Castiglioni, B., Mezzelani, A., Solinas Toldo, S., Thieven, U., Zhang, Y., Morgan, A.L., Teres, V.M., Schwerin, M., Martin-Burriel, I., Chowdhary, B.P., Erhardt, G., Nijman, I.J., Cribiu, E.P., Barendse, W., Leveziel, H., Fries, R. and Williams J.L. (1997). Cosmid-derived markers anchoring the bovine genetic map to the physical map. Mamm. Genome 8 (1): 29-36.

Fratini, A., Powell, B.C., Hynd, P.I., Keough, R.A. and Rogers, G.E. (1994). Dietary cysteine regulates the levels of mRNAs encoding a family of cysteine-rich proteins of wool. J. Invest. Dermatol. 102: 178-185.

Frijters, A.C.J., Zhang, Z., van Damme, M., Wang, G.-L., Ronald, P.C. and Michelmore, R.W. (1997). Construction of a bacterial artificial chromosome library containing large EcoRI and HindIII genomic fragments of lettuce. Theor. Appl. Genet. 94: 390-399.

Fronicke, L., Chowdhary, B.P., Scherthan, H. and Gustavsson, I. (1996). A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. Mamm. Genome 7: 285-290.

Gallagher, D.S., Yang, Y.P., Burzlaff, J.D., Womack, J.E., Stelly, D.M., Davis, S.K. and Taylor, J.F. (1998). Physical assignment of six type I anchor loci to bovine chromosome 19 by fluorescence in situ hybridization. Anim. Genet. 29 (2): 130-134.

Gallagher, D.S., Schlapfer, J. Burzlaff, J.D., Womack, J.E., Stelly, D.M., Davis, S.K. and Taylor, J.F. (1999). Cytogenetic alignment of the bovine chromosome 13 genome map by fluorescence in-situ hybridization of human chromosome 10 and 20 comparative markers. Chromosome Res. 7 (2): 115-119.

Galloway, S.M., Hanrahan, V., Dodds, K.G., Potts, M.D., Crawford, A.M. and Hill, D.F. (1996). A linkage map of the ovine X chromosome. Genome Res. 6: 667-677.

Garbett, C.A. (1994). Isolation of microsatellites from the bovine genome. Honours thesis. Flinders University of South Australia.

Gardiner, A.C., Corcoran, M.M. and Oscier, D.G. (1997). Cytogenetic, fluorescence in situ hybridisation, and clinical evaluation of translocations with concomitant deletion at 13q14 in chronic lymphocytic leukaemia. Genes Chromosomes Cancer 20 (1): 73-81.

Gardiner-Garden, M. and Frommer, M. (1987). CpG islands in the vertebrate genome. Mol. Biol. 196: 261-282.

Georges, M., Gunawardana, D.A., Threadgill, D.W., Lathrop, M., Olsaker, I., Mishra, A., Sargeant, L.L., Schoeberlein, A., Steele, M.R., Terry, C., Threadgill, D.S., Zhao, X., Holm, T., Fries, R. and Womack, J.E. (1991). Characterization of a set of variable number tandem repeat markers conserved in Bovidae. Genomics 11 (1): 24-32.

Gingrich, J.C., Boehrer, D.M., Garnes, J.A., Johnson, W., Wong, B.S., Bergmann, A., Eveleth, G.G., Lanlois, R.G. and Carrano, A.V. (1996). Construction and characterization of human chromosome 2-specific cosmid, fosmid, and PAC clone libraries. Genomics 32: 65-74.

Godard, S., Schibler, L., Oustry, A., Cribiu, E.P. and Guérin, G. (1998). Construction of a horse BAC library and cytogenetical assignment of 20 type I and type II markers. Mamm. Genome 9: 633-637.

Goodfellow, P.N. (1993) Microsatellites and the new genetic maps. Curr. Biol. 3 (3): 149151.

Gosden, G.R., Mitchell, A.R., Buckland, R.A., Clayton, R.P. and Evans, H.J. (1975). The location of four human satellite DNAs on human chromosomes. Exp. Cell. Res. 92: 148158.

Gosden, J. and Hanratty, D. (1993). PCR in situ: a rapid alternative to in situ hybridization for mapping short, low copy number sequences without isotopes. BioTechniques 15 (1): 78-80.

Gosden, J.R. and Lawson, D. (1994). Oligonucleotide primed in situ DNA synthesis (PRINS): an alternative to in situ hybridization for gene mapping and the investigation of genome organization. In J.R. Gosden (ed). Methods in molecular biology. Vol. 29: Chromosome analysis protocols. Humana Press, New Jersey.

Goss, S.J. and Harris, H. (1975). New method for mapping genes in human chromosomes. Nature 255 (5511): 680-684.

Goureau, A., Yerle, M., Schmitz, A., Riquet, J., Milan, D., Pinton, P., Frelat, G. and Gellin, J. (1996). Human and porcine correspondance of chromosome segments using bidirectional chromosome painting. Genomics 36: 252-262.

Grady, D.L., Ratliff, R.L., Robinson, D.L., McCanlies, E.C., Meyne, J. and Moyzis, R.K. (1992). Highly conserved repetitive DNA sequences are present at human centromeres. Proc. Natl. Acad. Sci. USA 89: 1695-1699.

Green, E.D. and Olson, M.V. (1990). Systematic screening of yeast artificial chromosome libraries by use of the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87: 12131217.

Green, E.D., Riethman, H.C., Dutchik, J.E. and Olson, M.V. (1991). Detection and characterization of chimeric yeast artificial-chromosome clones. Genomics 11 (3): 658-669.

Gregory, S.G., Howell, G.R. and Bentley, D.R. (1997). Genome mapping by fluorescent fingerprinting. Genome Res. 7 (12): 1162-1168.

Grobet, L., Martin, L.J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J., Fries, R., Hanset, R. and Georges, M. (1997). A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17 (1): 71-74.

Haldi, M., Perrot, V., Saumier, M., Desai, T., Cohen, D., Cherif, D., Ward, D. and Lander, E.S. (1994). Large human YACs constructed in a rad52 strain show a reduced rate of chimerism. Genomics 24 (3): 478-484.

Haley, J., Crawford, R., Hudson, P., Scanlon, D., Tregear, G., Shine, J. and Niall, H. (1987). Porcine relaxin. Gene structure and expression. J. Biol. Chem. 262 (25): 1194011946.

Hanahan, D., Jessee, J. and Bloom, F.R. (1991). Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol. 204: 63-113.

Hanke, J.H., Hambor, J.E. and Kavathas, P. (1995). Repetitive Alu elements form a cruciform structure that regulates the function of the human $\mathrm{CD} 8 \alpha \mathrm{~T}$ cell-specific enhancer. J. Mol. Biol. 246: 63-73.

Harris, H. and Watkins, J.F. (1965). Hybrid cells derived from mouse and man; artificial heterokaryons of mammalian cells from different species. Nature 205: 640-646.

Hassanane, M.S.. Chaudhary, R. and Chowdhary, B.P. (1998). Microdissected bovine X chromosome segment delineates homoeologous chromosomal regions in sheep, goat and buffalo. Chromosome Res. 6 (3): 213-217

Hassett. A.I.. I.ocker. J., Rupp, G., Kunz, H.W. and Gill, T.J. 3d (1989). Molecular analysis of the rat MHC. II. Isolation of genes that map to the RT1.E-gre region. J Immunol. 142 (6): 2089-96

Hawken, R.J., Broom, M.F., van Stijn, T, C., Lumsden, J.M., Broad, T.E. and Maddox, J.F. (1996). Mapping the ovine genes encoding IL3, IL4, IL5, and CSF2 to sheep chromosome 5q13-q15 by FISH. Mamm. Genome 7: 858-859.

Hawken, R., Alexander, L., Murtaugh, J., Flickinger, G., Beattie, C., Yerle, M., Pinton, P., Robic, A., Delcros, C., Milan, D., Gellin, J. and Schook, L. (1999). Construction and characterization of a porcine radiation hybrid panel. Plant and Animal Genome VII Conference Proceedings. San Diego, CA, USA.

Hayes, H., Petit, E. and Dutrillaux, B. (1991). Comparison of RBG-banded karyotypes of cattle, sheep, and goat. Cytogenet. Cell Genet. 57: 51-55.

Hayes, H. and Petit, E.J. (1993). Mapping of the β-lactoglobulin gene and of an immunoglobulin M heavy chain-like sequence to homoeologous cattle, sheep, and goat chromosomes. Mamm. Genome 4: 207-210.

Hayes, H., Petit, E., Bouniol, C. and Popescu, P. (1993). Localisation of the alpha S20 casein gene (CASAS2) to the homologous cattle, sheep and goat chromosomes 4 by in situ hybridization. Cytogenet. Cell Genet. 64: 281-285.

Hayes, H. (1995). Chromosome painting with human chromosome-specific DNA libraries reveals the extent and distribution of conserved segments in bovine chromosomes. Cytogenet. Cell Genet. 71: 168-174.

Heaton, M.P., Loez-Corrales, N.L., Smith, T.P.L., Kappes, S.M. and Beattie, C.W. (1997). Directed cosmid isolation of bovine markers for physical assignment by FISH. Animal Biotechnology 8 (2): 167-177.

Hediger, R., Ansari, H.A. and Stranzinger, G.F. (1991a). Chromosome banding and gene localizations support extensive conservation of chromosome structure between cattle and sheep. Cytogenet. Cell Genet. 57: 127-134.

Hediger, R., Johnson, S.E. and Hetzel, D.J.S. (1991b). Localisation of the beta-subunit of follicle stimulating hormone in cattle and sheep by in situ hybridization. Anim. Genet. 22: 237-244.

Heiskanen, M., Karhu, R., Hellsten, E., Peltonen, L., Kallioniemi, O.P. and Palotie, A. (1994). High resolution mapping using fluorescence in situ hybridization to extended DNA fibres from agarose-embedded cells. BioTechniques 17 (5): 928-933.

Hetzel, D.J.S. (1991). The use of reference families for genome mapping in domestic livestock. In: Schook, L.B., Lewin, H.A. and McLaren, D.G. (eds). Gene-mapping techniques and applications. Marcel Dekker, Inc., New York. pp. 51-64.

Hindkjær, J., Koch, J., Terkelsen, C., Brandt, C.A., Kфlvraa, S. and Bolund, L. (1994). Fast, sensitive multicolor detection of nucleic acids in situ by PRimed In situ labeling (PRINS). Cytogenet. Cell Genet. 66: 152-154.

Horelli-Kuitunen, N., Aaltonen, J., Yaspo, M.L., Eeva, M., Wessman, M., Peltonen, L. and Palotie, A. (1999). Mapping ESTs by fiber-FISH. Genome. Res. 9: 62-71.

Huang, Z., Petty, J.T., O'Quinn, B., Longmire, J.L., Brown, N.C., Jett, J.H. and Keller, R.A. (1996). Large DNA fragment sizing by flow cytometry: application to the characterization of P1 artificial chromosome (PAC) clones. Nucleic Acids Res. 24 (21): 4202-4209.

Hubert, R.S., Mitchell, S., Chen, X.N., Ekmekji, K., Gadomski, C., Sun, Z., Noya, D., Kim, U.J., Chen, C., Shizuya, H., Simon, M., de Jong, P.J.and Korenberg, J.R. (1997). BAC and

PAC contigs covering 3.5 Mb of the Down syndrome congenital heart disease region between D21S55 and MX1 on chromosome 21. Genomics 41 (2): 218-226.

Iannuzzi, L. and Di Meo, G.P. (1995). Chromosomal evolution in bovids: a comparison of cattle, sheep and goat G- and R-banded chromosomes and cytogenetic divergences among cattle, goat and rive buffalo sex chromosomes. Chromosome Res. 3: 291-299.

Iannuzzi, L., Di Meo, G.P., Perucatti, A. and Incarnato, D. (1999). Comparison of the human with the sheep genomes by use of human chromosome-specific painting probes. Mamm. Genome 10: 719-723.

Ioannou, P.A., Amemiya, C.T., Garnes, J., Kroisel, P.M., Shizuya, H., Chen, C., Batzer, M.A. and De Jong, P.J. (1994). A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat. Genet. 6: 84-90.

ISCNDA (1990). The second international conference on standardization of domestic animal karyotypes. Di Berardino, D., Hayes, H., Fries, R., Long, S. (eds). Cytogenet. Cell Genet. 53: 65-78.

Ishiura, M., Ohashi, H., Hazumi, N., Uchida, T. and Okada, Y. (1989). Simplified cosmid vectors for gene transfer to cultured mammalian cells: isolation of the gene for elongation factor 2 from the mouse. Gene 85 (2): 427-433.

Jelinek, W.R. and Schmid, C.W. (1982). Repetitive sequences in eukaryotic DNA and their expression. Ann. Rev. Biochem. 51: 813-844.

Jessen, J.R., Meng, A., McFarlane, R.J., Paw, B.H., Zon, L.I., Smith, G.R. and Lin, S. (1998). Modification of bacterial artificial chromosomes through chi-stimulated homologous recombination and its application in zebrafish transgenesis. Proc. Natl. Acad. Sci. USA 95 (9): 5121-5126.

Jiang, Z., Priat. C. and Galibert, F. (1998). Traced orthologous amplified sequence tags (TOASTs) and mammalian comparative maps. Mamm. Genome 9: 577-587.

Jobse, C., Buntjer, J.B., Haggsma, N., Breukelman, H.J., Beintema, J.J. and Lenstra, J.A. (1995). Evolution and recombination of Bovine DNA repeats. J. Mol. Evol. 41: 277-283.

Kaftanovskaya, II.M. and Serov, O.L. (1994). High-resolution GTG-banded chromosomes of catte, sheep and goat: a comparative study. J. Hered. 85: 395-400.

Kappes, S.M., Keele, J.W., Stone, R.T., McGraw, R.A., Sonstegard, T.S., Smith, T.P.L., Lopez-Corrales, N.L. and Beattie, C.W. (1997). A second-generation linkage map of the bovine genome. Genome Res. 7: 235-249.

Kasprzak, L. (1998). Comparative mapping of deer genomes. Honours Thesis. University of Adelaide. South Australia.

Kemp, S. J., Brezinsky, L. and Teale, A.J. (1993). A panel of bovine, ovine and caprine polymorphic microsatellites. Anim. Genet. 24: 363-365.

Kim, S.Y., Horrigan, S.K., Altenhofen, J.L., Arbieva, Z.H., Hoffman, R. and Westbrook, C.A. (1998). Modification of bacterial artificial chromosome clones using Cre recombinase: introduction of selectable markers for expression in eukaryotic cells. Genome Res. 8: 404-412.

Kim, U.J., Birren, B.W., Slepak, T., Mancino, V., Boysen, C., Kang, H.L., Simon, M.I. and Shizuya, H. (1996). Construction and characterization of a human bacterial artificial chromosome library. Genomics 34: 213-218.

Kioussis, D., Wilson, F., Daniels, C., Leveton, C., Taverne, J. and Playfair, J.H.L. (1987). Expression and rescuing of a cloned human tumour necrosis factor gene using an EBVbased shuttle cosmid vector. EMBO J. 6: 355-361.

Koch, J.E., Kфlvraa, S., Peterson, K.B., Gregersen, N. and Bolund, L. (1989). Oligonucleotide-priming methods for the chromosome-specific labelling of alpha satellite DNA in situ. Chromosoma 98: 259-265.

Koch, J., Mogensen, J., Pedersen, S., Fischer, H., Hindkjær, J., Kфlvraa, S. and Bolund, L. (1992). Fast one-step procedure for the detection of nucleic acids in situ by primer-induced sequence-specific labeling with fluorescein-12-dUTP. Cytogenet. Cell Genet. 60: 1-3.

Koch, J., Fischer, H., Askholm, H., Kindkjær, J., Pedersen, S., Kфlvraa, S. and Bolund, L. (1993). Identification of a supernumerary $\operatorname{der}(18)$ chromosome by a rational strategy for the cytogenetic typing of small marker chromosomes with chromosome-specific DNA probes. Clin. Genet. 43: 200-203.

Kojima, M., Ohata, K. and Yasue, H. (1997). Structural organization and chromosomal assignment of the swine endothelin-1 gene. J Vet Med Sci. 59(6): 431-5.

Korenburg, J.R. and Rykowski, M.C. (1988). Human genome organization: Alu, Lines, and the molecular structure of metaphase chromosome bands. Cell 53: 391-400.

Kornblihtt, A.R., Vibe-Pedesen, K. and Baralle, F.E. (1983). Isolation and characterization of cDNA clones for human and bovine fibronectins. Proc. Natl. Acad. Sci. USA 80: 32183222.

Kotani, H., Sato, S., Fukami, M., Hosouchi, T., Bakazaki, N., Okumura, S., Wada, T., Liu, Y.G., Shibata, D. and Tabata, S. (1997). A fine physical map of Arabidopsis thaliana chromosome 5: construction of a sequence-ready contig map. DNA Res. 4 (6): 371-378.

Kurdi-Haidar, B., Levine, F., Roemer, K., LaPorte, P. and Friedmann, T. (1993). Provirusanchored long range mapping of mammalian genomes. Genomics 15: 305-310.

Kusumi, K., Smith, J.S., Segre, J.A., Koos, D.S. and Lander, E.S. (1993). Construction of a large-insert yeast artificial chromosome library of the mouse genome. Mamm. Genome 4 (7): 391-392.

Larin, Z., Monaco, A.P., Meier-Ewert, S. and Lehrach, H. (1993). Construction and characterization of yeast artifical chromosome libraries from the mouse genome. Methods Enzymol. 225: 623-633.

Larionov, V., Kouprina, N., Nikolaishvili, N. and Resnick, M.A. (1994). Recombination during transformation as a source of chimeric mammalian artificial chromosomes in yeast (YACs). Nucleic Acids Res. 22 (20): 4154-61.

Larsen. N.J., Hayes. H., Bishop, M., Davis, S.K., Taylor, J.F. and Kirkpatrick, B.W. (1999). A comparative linkage and physical map of bovine chromosome 24 with human chromosome 18. Mamm. Genome 10 (5): 482-487.

Latt, S.A., Willard, H.F. and Gerald, P.S. (1976). Brdu-33258 Hoeschst analsis of DNA replication in human lymphocytes with supernumerary or structurally abnormal X chromosomes. Chromosoma 57: 135-153.

Lawce. H.J. and Brown, M.G. (1991). Harvesting, slide-making, and chromosome elongation techniques. Ch. 3. In: Barch, M.J. (ed). The ACT Cytogenetics Laboratory manual. Second edition. Raven Press, New York. pp. 31-105.

Lehrman, M.A., Goldstein, J., Russell, D.W. and Brown, M.S. (1987). Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell 48: 827-835.

Lemieux, N., Dutrillaux, B. and Viegas-Péquignot, E. (1992). A simple method for simultaneous R- or G-banding and fluorescence in situ hybridization of small single-copy genes. Cytogenet. Cell Genet. 59: 311-312.

Lenstra, J.A., van Boxtel, J.A.F., Zwaagstra, K.A. and Schwerin, M. (1993). Short interspersed nuclear element (SINE) sequences of the Bovidae. Anim. Genet. 24:33-39.

Levinson, G. and Gutman, C.A. (1987). Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4 (3): 203-221.

Li, R., Mignot, E., Faraco, J., Kadotani, H., Cantanese, J., Zhao, B., Lin, X., Hinton, L., Ostrander, E.A., Patterson, D.F. and de Jong, P.J. (1999). Construction and characterization of an eightfold redundant dog genomic bacterial artificial chromosome library. Genomics 58 (1): 9-17.

Libert, F., Lefort, A., Okimoto, R., Womack, J. and Georges, M. (1993). Construction of a bovine genomic library of large yeast artificial chromosome clones. Genomics 18: 270-276.

Lichter, P., Tang, C.J., Call, K., Hermanson, G., Evans, G.A., Housman, D. and Ward, D.C. (1990). High-resolution mapping of human chromosome 11 by in situ hybridization using cosmid clones. Science 247 (4938). 64-69.

Lien, L.L., Lee, Y. and Orkin, S.H. (1997). Regulation of the myeloid-cell-expressed human gp91-phox gene as studied by transfer of yeast artificial chromosome clones into embryonic stem cells: suppression of a variegated cellular pattern of expression requires a full complement of distant cis elements. Mol. Cell Biol. 17 (4): 2279-2290.

Lin, C.C., Newton, D.R., Smink, W.K. and Church, R.B. (1976). A rapid and simple method for the isolation and culture of leukocytes for chromosome analysis in domestic animals. Can. J. Anim. Sci. 56: 27-31.

Lin, C.C., Newton, D.R. and Church, R.B. (1977). Identification and nomenclature for Gbanded bovine chromosomes. Can. J. Genet. Cytol. 19: 271-282.

Ling, L.L., Ma, N.S., Smith, D.R., Miller, D.D. and Moir, D.T. (1993). Reduced occurrence of chimeric YACs in recombination-deficient hosts. Nucleic Acids Res. 21 (25): 60456046.

Linton, M.F., Farese, R.V., Chiesa, G., Grass, D.S., Chin, P., Hammer, R.E., Hobbs, H.H. and Young, S.G. (1993). Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a). J. Clin. Invest. 92: 3029-3037.

Littlefield, J.W. (1964). Selection of hybrids from matings of fibroblasts in bitro and their presumed recombinants. Science 145: 709-710.

Liu, W.S., Harbitz, I., Gustavsson, I. and Chowdhary, B.P. (1998). Mapping of the porcine erythropoietin gene to chromsome 3 p16-p15 and ordering of four related subclones by fiber-FISH and DNA-combing. Hereditas 128: 77-81.

Logue, D.N. and Harvey, M.J.A. (1978). Meiosis and spermatogenesis in bulls heterozygous for a presumptive 1/29 Robertsonian translocation. J. Reprod. Fertil. 54: 159165.

Lyons, L.A., Laughlin, T.F., Copeland, N.G., Jenkins, N.A., Womack, J.E. and O'Brien, S.J. (1997). Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nat. Genet. 15: 47-56.

MacKinnon, P.J., Powell, B.C. and Rogers, G.E. (1990). Structure and expression of genes for a class of cysteine-rich proteins of the cuticle layers of differentiating wool and hair follicles. J. Cell. Biol. 111: 2587-2600.

Maddox, J.F. and Matthew, P. (1994a). A polymorphic microsatellite detected in the ovine CD5 gene. Anim. Genet. 25: 371.

Maddox, J.F. and Matthew, P. (1994b). A polymorphic dinucleotide repeat microsatellite detected in the ovine interleukin 2 receptor alpha. Anim. Genet. 25: 200.

Maddox, J.F., Davies, K.P., Cuthbertson, R., Hulme, D.J., Henry, H., Hawken, R.J., Drinkwater, R., Dodds, K.G. and Crawford, A.M. (1996). Updating the sheep linkage map. Proceedings of the XXVth International Society of Animal Genetics conference, Tours, France.

Mahairas, G.G., Wallace, J.C., Smith, K., Swatzell, S., Holzman, T., Keller, A., Shaker, R., Furlong, J., Young, J., Zhao, S., Adams, M.D. and Hood, L. (1999). Sequence-tagged connectors: a sequence approach to mapping and scanning the human genome. Proc. Natl. Acad. Sci. USA. 96 (17): 9739-9744.

Mandel, J. (1993). Questions of expansion. Nat. Genet. 4: 8-9.

Marra, M.A., Kucaba, T.A., Dietrich, N.L., Green, E.D., Brownstein, B., Wilson, R.K., McDonald, K.M., Hillier, L.W., McPherson, J.D. and Waterson, R.H. (1997). High throughput fingerprint analysis of large-insert clones. Genome Res. 7: 1072-1084.

Marek, L.F. and Shoemaker, R.C. (1997). BAC contig development by fingerprint analysis in soybean. Genome 40: 420-427.

Markie, D., Ragoussis, J., Senger, G., Rowan, A., Sansom, D., Trowsdale, J., Sheer, D. and Bodmer, W.F. (1993). New vector for transfer of yeast artificial chromosomes to mammalian cells. Somat. Cell Mol. Genet. 19 (2): 161-169.

Matsumoto, N., Soeda, E., Ohashi, H., Fujimoto, M., Kato, R., Tsujita, T., Tomita, H., Kondo, S., Fukushima, Y. and Niikawa, N. (1997). A 1.2-megabase BAC/PAC contig spanning the 14 ql 13 breakpoint of $\mathrm{t}(2 ; 14)$ in a mirror-image polydactyly patient. Genomics 45 (1): 11-6.

McCarthy, L.C., Terrett, J., Davis, M.E., Knights, C.J., Smith, A.L., Critcher, R., Schmitt, K., Hudson, J., Spurr, N.K. and Goodfellow, P.N. (1997). A first-generation whole genome-radiation hybrid map spanning the mouse genome. Genome. Res. 7 (12): 11531161.

McCormick, S.P., Ng, J.K., Taylor, S., Flynn, L.M., Hammer, R.E. and Young, S.G. (1995). Mutagenesis of the human apolipoprotein B gene in a yeast artificial chromosome
reveals the site of attachment for apolipoprotein(a). Proc. Natl. Acad. Sci. USA 92 (22): 10147-51.

McLaren, R.J., Rogers, G.R., Davies, K.P., Maddox, J.F. and Montgomery, G.W. (1997). Linkage mapping of wool keratin and kerain-associated protein genes in sheep. Mamm. Genome 8: 938-940.

Mejía, J.E. and Monaco, A.P. (1997). Retrofitting vectors for Escherichia coli-based artificial chromosomes (PACs and BACs) with markers for transfection studies. Genome Res. 7: 179-186.

Messer, L.A., Wang, L., Tuggle, C.K., Yerle, M., Chardon, P., Pomp, D., Womack, J.E., Barendse, W., Crawford, A.M., Notter, D.R. and Rothschild, M.F. (1997). Mapping of the melatonin receptor la (MTNR1A) gene in pigs, sheep and cattle. Mamm. Genome 8: 368370.

Messerle, M., Crnkovic, I., Hammerschmidt, W., Ziegler, H. and Koszinowski, U.H. (1997). Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc. Natl. Acad .Sci. USA 94 (26): 14759-14763.

Mezzalani, A., Zhang, Y., Redaelli, L., Castiglioni, B., Leone, P., Williams, J.L., Solinas Toldo, S., Wigger, G., Fries, R. and Ferretti, L. (1995). Chromosomal localization and molecular characterization of 53 cosmid-derived bovine microsatellites. Mamm. Genome 6: 629-635.

Modi, W.S., Gallagher, D.S. and Womack, J.E. (1996). Evolutionary histories of highly repeated DNA families among the artiodactyla (mammalia). J. Mol. Evol. 42 (3): 337-349.

Moffat, A.S. (1998). Improving gene transfer into livestock. Science 282 (5394): 16191620.

Moir, D.T. and Smith, D.R. (1998). Strategies for large-insert cloning and analysis. Ch. 5 In: Dracopoli, N.C., Haines, J.L., Korf, B.R., Moir, D.T., Morton, C.C., Seidman, C.E., Seidman, J.G. and Smith, D.R. (eds). Current Protocols in Human Genetics. 5.0.1-5.0.13. John Wiley \& Sons, Inc. New York, USA.

Montgomery, G.W. and Crawford, A.M. The sheep linkage map. In: Piper, L. and Ruvinsky, A. (eds) "The genetics of sheep". CAB International, pp. 297-352.

Muller, M. and Brem, G. (1998). Transgenic approaches to the increase of disease resistance in farm animals. Rev. Sci. Tech. 17 (1): 365-378.

Murphy, G.L., Connell, T.D., Barritt, D.S., Koomey, M. and Cannon, J.G. (1989). Phase variation of gonococcal protein II: regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence. Cell 56: 539-547.

Nadeau, J.H., Berger, F.G., Cox, D.R., Crosby, J.L., Davisson, M.T., Ferrara, D., Fuchs, E., Hart, C., Hunihan, L., Lalley, P.A., Langley, S.H., Martin, G.R., Bichols, L., Phillips, S.J., Roderick, T.H., Roop, D.R., Ruddle, F.H., Skow, L.C. and Compton, J.G. (1989). A family
of type I keratin genes and the homeobox-2 gene complex are closely linked to the Rex locus on mouse chromosome 11. Genomics 5: 454-462.

Narayanan, K., Williamson, R., Zhang, Y., Stewart, A.F. and Ioannou P.A. (1999). Efficient and precise engineering of a 200 kb beta-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system. Gene Ther. 6 (3): 442-447.

Nguyen, C., Pontarotti, P., Birnbaum, D., Chimini, G., Rey, J.A., Mattei, J.F. and Jordan, B.R. (1987). Large scale physical mapping in the q 27 region of the human X chromosome: the coagulation factor IX gene and the mcf. 2 transforming sequence are separated by at most 270 kilobase pairs and are surround by several 'HTF islands'. EMBO 6 (11): 3285-9.

Nielsen, L.B., McCormick, S.P.A., Pierotti, v., Tam, C., Gunn, M.D., Shizuya, H. and Young, S.G. (1997). Human apoliprotein B transgenic mice generated with 207- and 145kilobase bacterial artificial chromosomes. J. Biol. Chem. 272 (47): 29752-29758.

Nielsen, L.B., McCormick, S.P.A. and Young, S.G. (1999). A new approach for studying gene regulation by distant DNA elements in transgenic mice. Scand. J. Clin. Lab. Invest. 59, Suppl 229: 33-40.

Novak, U. (1984). Structure and properties of a highly repetitive DNA sequence in sheep. Nucleic Acids Res. 12 (5):2343-2350.

O'Brien, S.J., Seuánez, H.N. and Womack, J.E. (1988). Mammalain genome organization: an evolutionary view. Annu. Rev. Genet. 22: 323-351.

O'Brien, S.J., Womack, J.E., Lyons, L.A., Moore, K.J., Jenkins, N.A. and Copeland, N.G. (1993). Anchored reference loci for comparative genome mapping in mammals. Nat. Genet. 3: 103-112.

Ohno, S. (1973). Ancient linkage groups and frozen accidents. Nature 244: 259-262.

Okazaki, Y. and Hayashizaki, Y. (1997). High-speed positional cloning based on restriction landmark genome scanning. Methods 13 (4): 359-377.

Oostra, B.A. and Verkerk,.A.J.M.H. (1992). The fragile X syndrome: isolation of the FMR1 gene and characterization of the fragile X mutation. Chromosoma 101: 381-387.

Orti, R., Megarbane, A., Maunoury, C., Van Broeckhoven, C., Sinet, P.M. and Delabar J.M. (1997). High-resolution physical mapping of a $6.7-\mathrm{Mb}$ YAC contig spanning a region critical for the monosomy 21 phenotype in 21q21.3-q22.1. Genomics 43 (1): 25-33.

Osoegawa, K., Woon, P.Y., Zhao, B., Frengen, E., Tateno, M., Catanese, J.J. and de Jong, P.J. (1998). An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52 (1):1-8.

Panayiotidis, P., Ganeshaguru, K., Rowntree, C., Jabbar, S.A., Hoffbrand, V.A. and Foroni, L. (1997). Lack of clonal BCRA2 gene deletion on chromosome 13 in chronic lymphocytic leukaemia. Br. J. Haematol. 97 (4): 844-847.

Papp, J., Csokay, B., Bosze, P., Zalay, Z., Toth, J., Ponder, B. and Olah, E. (1996). Allele loss from large regions of chromosome 17 is common only in certain histological subtypes of ovarian carcinomas. Br. J. Cancer 74 (10): 1592-1597.

Pardue, M.L. and Gall, J.G. (1969). Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl. Acad. Sci. USA 64 (2): 600-4.

Pardue, M.L. and Gall, J.G. (1970). Chromosomal localization of mouse satellite DNA. Science 168: 1356-1358.

Parsons, Y.M., Cooper, D.W. and Piper, L.R. (1994). Evidence of linage between high-glycine-tyrosine keratin gene loci and wool fibre diameter in a Merino half-sib family. Anim. Genet. 25: 105-108.

Parsons, Y.M. and Cooper, D.W. (1995). Linkage of wool proteins in the sheep genome. Proc. Aust. Assoc. Anim. Breed. Genet. 11: 469-472.

Payen, E.J. and Cotinot, C.Y. (1994). Sequence evolution of SRY gene within Bovidae family. Mamm. Genome 5: 723-725.

Pearce, M., Blake, D.J., Tinsley, J.M., Byth, B.C., Campbell, L., Monaco, A.P. and Davies, K.E. (1993). The utrophin and dystrophin genes share similarities in genomic structure. Hum. Mol. Genet. 2 (11): 1765-72.

Pearce, P.D., Ansari, H.A., Maher, D.W., Broad, T.E., Cambridge, L.M., Lewis, P.E., Burkin, D.J. and Jones, C.A. (1994). The assignment of fourteen new loci to ovine chromosomes. Proceedings of the $5^{\text {th }}$ Australasian Gene Mapping Workshop, Armidale, Australia.

Pellestor, F., Girardet, A., Lefort, G., Andréo, B. and Charlieu, J.P. (1995). PRINS as a method for rapid chromosomal labeling on human spermatozoa. Mol. Reprod. Dev. 40: 333-337.

Peterson, K.R., Clegg, C.H., Huxley, C., Josephson, B.M., Haugen, H.S., Furukawa, T. and Stamatoyannopoulos, G. (1993). Transgenic mice containing a 248 kb yeast artificial chromosome carrying the human β-globin locus display proper developmental control of human globin genes. Proc. Natl. Acad. Sci. USA 90: 7593-7597.

Peterson, K.R., Li, Q.-L., Clegg, C.H., Furukawa, T., Navas, P.A., Norton, E.J., Kimbrough, T.G. and Stamatoyannopoulos, G. (1995). Use of yeast artificial chromosomes (YACs) in studies of mammalian development: production of β-globin locus YAC mice carrying human globin developmental mutants. Proc. Natl. Acad. Sci. USA 92 (12): 56555659.

Phelan, C.M., Liu, L., Ruttledge, M.H., Muntzing, K., Ridderheim, P.A. and Collins, V.P. (1995). Chromosome 17 abnormalities and lack of TP53 mutations in paediatric central nervous system tumours. Hum. Genet. 96 (6): 684-690.

Pinkel, D., Landegent, J., Collins, C., Fuscoe, J., Segraves, R., Lucas, J. and Gray J (1988). Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl. Acad. Sci. USA 85 (23): 91389142.

Pirottin, D., Poncelet, D., Grobet, L., Royo, L.J., Brouwers, B., Masabanda, J., Takeda, H., Fries, R., Sugimoto. Y., Womack, J.E., Dunner, S. and Georges, M. (1999). Highresolution. human-bovine comparative mapping based on a closed YAC contig spanning the bovine m h locus. Mamm. Genome 10: 289-293.

Pitel, F., Cribiu. E.P., Yerle, M., Lahbib-Mansais, Y., Lanneluc, I., Lantier, F. and Gellin, J. (1995). Regional localization of the NRAMP gene to chromosome 2 q41-42 by in situ hybridization. Cytogenet. Cell Genet. 70: 116-118.

Ponce de León, F.A., Ambady, S., Hawkins, G.A., Kappes, S.M., Bishop, M.D., Robl, J.M. and Beattie, C.W. (1996). Development of a bovine X chromosome linkage group and painting probes to assess cattle, sheep, and goat X chromosome segment homologies. Proc. Natl. Acad. Sci. USA 93 (8): 3450-3454.

Pontecorvo, G. (1975). Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment. Somatic Cell Genetics 1: 397-400.

Popescu, C.P., Long, S., Riggs, P., Womack, J., Schmutz, S., Fries, R. and Gallagher, D.S. (1996). Standardization of cattle karyotype nomenclature: report of the committee for the standardization of cattle karyotype. Cytogenet. Cell Genet. 74: 259-261.

Porcu, S., Kitamura, M., Witkowska, E., Zhang, Z., Mutero, A., Lin, C., Chang, J. and Gaensler, K.M.L. (1997). The human β globin locus introduced by YAC transfer exhibits a specific and reproducible pattern of developmental regulation in transgenic mice. Blood 90 (11): 4602-4609.

Poustka, A., Rackwitz, H.-R., Frischauf, A.-M., Hohn, B. and Lehrach, H. (1984). Selective isolation of cosmid clones by homologous recombination in Escherichia coli. Proc. Natl. Acad. Sci. USA 81: 4129-4133.

Powell, B.C., Sleigh, M.J., Ward, K.A. and Rogers, G.E. (1983). Mammalian keratin gene families: organization of genes coding for the B2 high-sulphur proteins of sheep wool. Nucleic Acids Res. 11: 5327-5346.

Powell, B., Nesci, A. and Rogers, G. (1991). Regulation of keratin gene expression in the hair follicle. Ann. N.Y. Acad. Sci. 642: 1-20.

Powell, B.C. and Rogers, G.E. (1994). Differentiation in hard kertain tissues: hair and related structures. In: Leigh, F., Watt, R.F. and Lane, B. (eds). Keratinocyte Handbook. Cambridge University Press, Cambridge. pp.401-436.

Powell, B.C., Walker, S.K., Bawden, C.S., Sivaprasad, A.V. and Rogers, G.E. (1994). Transgenic sheep and wool growth: possibilities and current status. Reprod. Fertil. Dev. 6: 615-623.

Purandare, S.M. and Patel, P.I. (1997). Recombination hot spots and human disease. Genome Res. 7: 773-786.

Ramsay, G. (1998). DNA chips: state-of-the art. Nat. Biotechnol. 16 (1): 40-44.

Reading conference (1980). Proceedings of the first international conference for the standardisation of banded karyotypes of domestic animals. Hereditas 92: 145-162.

Rettenberger, G., Klett, C., Zechner, U., Kunz, J., Vogel, W. and Hameister, H. (1995). Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics 26: 372-378.

Richards, R.I. and Sutherland, G.R. (1992). Dynamic mutations: a new class of mutations causing human disease. Cell 70: 709-712.

Richards, R.I. and Sutherland, G.R. (1994). Simple repeat DNA is not replicated simply. Nat. Genet. 6: 114-116.

Rijnkels, M., Kooiman, P.M., Platenburg, G.J., van Dixhoorn, M., Nuijens, J.H., de Boer, H.A. and Pieper, F.R. (1998). High-level expression of bovine alpha sl-casein in milk of transgenic mice. Transgenic Res. 7(1): 5-14.

Riley, J.H., Morten, J.E. and Anand, R. (1992). Targeted integration of neomycin into yeast artificial chromosomes (YACs) for transfection into mammalian cells. Nucleic Acids Res. 20 (12): 2971-6.

Roach. J.C. (1995). Random subcloning. Genome Res. 5 (5): 464-473.

Robic, A., Milan. D., Woloszyn, N., Riquet, J., Yerle, M., Nagel, M., Bonnet, M., Pinton, P., Dalens. M. and Gellin, J. (1997). Contribution to the physically anchored linkage map of the pig. Anim. Genet. 28 (2): 94-102.

Rogel-Gaillard. C., Bourgeaux, N., Save, J.-C., Renard, C., Coullin, P., Pinton, P., Yerle, M.. Vaiman. M. and Chardon, P. (1997). Construction of a swine YAC library allowing an efficient recosery of unique and centromeric repeated sequences. Mamm. Genome 8: 186192.

Rogers, G.R. (1994). Identification of a quantitative trait locus for wool strength in romney sheep (Lincoln: Lincoln University).

Rogers, M.A., Winter, H., Wolf, C., Heck, M. and Schweizer, J. (1998). Characterization of a 190-kilobase pair domain of human type I hair keratin gene. J. Biol. Chem. 273 (41): 26683-26691.

Romano, V., Bosco, P., Rocchi, M., Costa, G., Leube, R.E., Franke, W.W. and Romeo, G. (1988). Chromosomal assignments of human type I and type II cytokeratin genes to different chromosomes. Cytogenet. Cell Genet. 48: 148-151.

Rosen, J.M., Li, S., Raught, B. and Hadsell, D. (1996). The mammary gland as a bioreactor: factors regulating the efficient expression of milk pretein-based transgenes. Am. J. Clin. Nutr. 63 (4): 627S-632S.

Rosenberg, M., Chaudhury, A., Shows, T.B., Le Beau, M.M. and Fuchs, E. (1988). A group of type I keratin genes on human chromosome 17: characterization and expression. Mol. Cell Biol. 8 (2): 722-736.

Royal, A., Garapin, A., Cami, B., Perrin, F., Mandel, J.L., LeMeur, M., Brégégègre, F., Gannon, F., LePenec, J.P., Chambon, P. and Kourilsky, P. (1979). The ovalbumin gene region: Common features in the organisation of three genes expressed in chicken oviduct under hormonal control. Nature 279: 125-132.

Ryan, A.M., Gallagher, D.S. and Womack, J.E. (1993). Somatic cell mapping of omega and trophoblast interferon genes to bovine syntenic group U18 and in situ localization to chromosome 8. Cytogenet. Cell Genet. 63: 6-10.

Saidi-Mehtar, N., Hors-Cayla, M.-C. and Van Cong, N. (1981). Sheep gene mapping by somatic cell hybridization: four syntenic groups: ENO1-PGD, ME1-PGM3, LDHB-PEPBTPI and G6PD-PGK-GALA. Cytogenet. Cell Genet. 30: 193-204.

Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, B. and Erlich, H.A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491.

Sakamoto, K., Fordis, C.M., Corsico, C.D., Howard, T.H. and Howard, B.H. (1991). Modulation of HeLa cell growth by transfected 7SL RNA and Alu gene sequences. J. Biol. Chem. 266: 3031-3038.

Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). Molecular cloning: a laboratory manual. 2nd edition. Cold Spring Habor Laboratory Press.

Sapolsky, R.J., Hsie, L., Berno, A., Ghandour, G., Mittmann, M. and Fan, J.B. (1999). High-throughput polymorphism screening and genotyping with high-density oligonucleotide arrays. Genet. Anal. 14: 187-192.

Sarmiento, U.M., Sarmiento, J.I., Lunney, J.K. and Rishi, S.S. (1993). Mapping of the porcine alpha interferon (IFNA) gene to chromosome 1 by fluorescence in situ hybridization. Mamm. Genome 4: 62-63.

Scherthan, H., Cremer, T., Arnason, U., Weier, H.-U., Lima-de-Faria, A. and Frönicke, L. (1994). Comparative chromosome painting discloses homologous segments in distantly related mammals. Nature Genet. 6: 342-347.

Schibler, L., Vaiman, D., Oustry, A., Guinec, N., Dangy-Caye, A.-L., Billault, A. and Cribiu. E.P. (1998a). Construction and extensive characterization of a goat bacterial
artificial chromosome library with threefold genome coverage. Mamm. Genome 9: 119124.

Schibler, L., Vaiman, D., Oustry, A., Giraud-Delville, C. and Cribiu, E.P. (1998b). Comparative gene mapping: a fine-scale survey of chromosome rearrangements between ruminants and humans. Genome Res. 8: 901-915.

Schläpfer, J., Yang, Y., Rexroad, C. and Womack, J.E. (1997). A radiation hybrid framework map of bovine chromosome 13. Chromosome Res. 5 (8): 511-519.

Schläpfer, J., Gallagher, D.S., Burzlaff, J.D., Womack, J.E., Stelly, D.M., Taylor, J.F. and Davis, S.K. (1998). Comparative mapping of bvoine chromsomes 13 by fluorescence in situ hybridization. Anim. Genet. 29 (4): 265-272.

Schmitz, A., Oustry, A., Vaiman, D., Chaput, B., Frelat, G. and Cribiu, E.P. (1998). Comparative karyotype of pig and cattle using whole chromosome painting probes. Hereditas 128: 257-263.

Schmutz, S.M., Moker, J.S., Gallagher, D.S., Kappes, S.M. and Womack, J.E. (1996). In situ hybridization mapping of LDHA and IGF2 to cattle chromosome 29. Mamm. Genome 7: 473.

Schollmeyer, E., Schafer, D., Frisch, B. and Schlerermacher, E. (1981). High resolution analysis and differential condensation in RBA-banded human chromosomes. Hum. Genet. 59: 187-193.

Schriml, L.M., Padilla-Nash, H.M., Coleman, A., Moen, P., Nash, W.G., Menninger, J., Jones, G., Ried, T. and Dean, M. (1999). Tyramide signal amplification (TSA)-FISH applied to mapping PCR-labeled probes less than 1 kb in size. Biotechniques 27 (3): 608613.

Schuler, G.D., Boguski, M.S., Stewart, E.A., Stein, L.D., Gyapay, G., Rice, K., White, R.E., Rodriguez-Tome, P., Aggarwal, A., Bajorek, E., Bentolial, S., Birren, B.B., Butler, A., Castle, A.B., Chiannilkulchai, B., Chu, A., Clee, C., Cowles, S., Day, P. J., Dibling, T., Drouot, N., Dunham, I., Duprat, S., East, C., Edwards, C., Fan, J.-B., Fang, N., Fizames, C., Garrett, C., Green, L., Hadley, D., Harris, M., Harrison, P., Brady, S., Hicks, A., Holloway, E., Hui, L., Hussain, S., Louis-Dit-Sully, C., Ma, J., MacGilvery, A., Mader, C., Maratukulam, A., Matise, T.C., McKusick, K.B., Morissette, J., Mungall, A., Muselet, D., Nusbaum, H.C., Page, D.C., Peck, A., Perkins, S., Piercy, M., Qin, F., Quackenbush, J., Ranby, S., Reif, T., Rozen, S., Sanders, C., She, X., Silva, J., Slonim, D.K., Soderlund, C., Sun, W.-L., Tabar, P., Thangarajah, T., Vega-Czarny, N., Vollrath, D., Voyticky, S., Wilmer, T., Wu, X., Adams, M.D., Auffray, C., Walter, n.A.R., Brandon, R., Dehejia, A., Nagase, T., Ishikawa, K., Nomura, N., Phillips, C., Polymeropoulos, M.H., Sandusky, M., Schmitt, K., Berry, R., Swanson, K., Torres, R., Venter, J.C., Sikela, J.M., Beckmann, J.S., Weissenbach, J., Myers, R.M., Cox, D.R., James, M.R., Bentley, D., Deloukas, P., Lander, E.S. and Hudson, T.J. (1996). A gene map of the human genome. Science 274: 540-546.

Sehested, J. (1974). A simple method of R-banding of human chromosomes, showing a pH dependent connection between R- and G-bands. Human-genetik 21: 55-58.

Serikawa, T., Kuramoto, T., Hilbert, P., Mori, M., Yamada, J., Dubay, C.J., Lindpainter, K., Ganten, D., Guénet, J.-L., Lathrop, G.M. and Beckman, J.S. (1992). Rat gene mapping using PCR-analysed microsatellites. Genetics 131: 701-721.

Sheng, Y., Mancino, V. and Birren, B. (1995). Transformation of Escherichia coli with large DNA molecules by electroporation. Nucleic Acids Res. 23 (11): 1990-1996.

Shizuya, H., Birren, B., Kim, U.-J., Mancino, V., Slepak, T., Tachiiri, T. and Simon, M. (1992). Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89: 8794-8797.

Shuxian, L., Harris, C.P. and Leong, S.A. (1993). Comparison of fluorescence in situ hybridization and primed in situ labeling methods for detection of single-copy genes in the fungus Ustilago maydis. Experimental Mycology 17: 301-308.

Siegel, A.F., Trask, B., Roach, J.C., Mahairas, G.G., Hood, L. and van den Engh, G. (1999). Analysis of sequence-tagged-connector strategies for DNA sequencing. Genome. Res. 9 (3): 297-307.

Silverman, G.A., Ye, R.D., Pollock, K.M., Sadler, J.E. and Korsmeyer, S.J. (1989). Use of yeast artificial chromosome clones for mapping and walking within human chromosome segment 18q21.3. Proc. Natl. Acad. Sci. USA 86: 7485-7489.

Simi, L.B., Sasi, R., Lingrel, J.B. and Lin, C.C. (1989). Mapping of the goat beta-globin gene cluster to a region of chromosome 7 by in situ hybridization. J. Hered. 80 (3): 246249.

Sinnett, D., Richer, C. and Baccichet, A. (1998). Isolation of stable bacterial artificial chromosome DNA using a modified alkaline lysis method. Biotechniques 24 (5): 752-754.

Smith, D., Smyth, A.P. and Moir, D.T. (1990). Amplification of large artificial chromosomes. Proc. Natl. Acad. Sci. USA 87: 8242-8246.

Smith, T.P.L., Alexander, L.J., Sonstegard, T.S., Yoo, J., Beattie, C.W. and Broom, M.F. (1996). Construction and characterization of a large insert bovine YAC library with fivefold genomic coverage. Mamm. Genome 7: 155-156.

Soderlund, C., Longden, I. and Mott, R. (1997). FPC: a system for building contigs from restriction fingerprinted clones. Comput. Appl. Biosci. 13 (5): 523-535.

Solinas-Toldo, S., Lengauer, C. and Fries, R. (1995). Comparative genome map of human and cattle. Genomics 27: 489-496.

Sonstegard, T.S., Lopez-Corrales, N.L., Kappes, S.M., Beattie, C.W. and Smith, T.P. (1997). Comparative mapping of human chromosome 2 identifies segments of conserved synteny near the bovine mh locus. Mamm. Genome 8 (10): 751-755.

Sonstegard, T.S., Kappes, S.M., Keele, J.W. and Smith T.P. (1998). Refinement of bovine chromosome 2 linkage map near the mh locus reveals rearrangements between the bovine and human genomes. Anim. Genet. 29(5):341-7.

Southern, E.M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-517.

Stillwell, D.R., Davis, S.K., Taylor, J.F. and Davis, S.L.F. (1999). Genetic and physical mapping of the POLL locus to bovine chromosome 1 in a Bos indicus \times Bos taurus cross. Proceedings of the Plant and Animal Genome VII conference, San Diego, USA.

Stinnakre, M.-G., Soulier, S., Schibler, L., Lepourry, L., Mercier, J.-C. and Vilotte, J.-L. (1999). Position-independent and copy-number-related expression of a goat bacterial artificial chromosome α-lactalbumin gene in transgenic mice. Biochem. J. 339: 33-36.

Strand, M., Prolla, T.A., Liskay, R.M. and Petes, T.D. (1993). Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365: 274-276.

Strausberg, R.L., Feingold, E.A., Klausner, R.D. and Collins, F.S. (1999). The mammalian gene collection. Science 386: 455-457.

Strong, S.J., Ohta, Y., Litman, G.W. and Amemiya, C.T. (1997). Marked improvement of PAC and BAC cloning is achieved using electroelution of pulsed-field gel-separated partial digests of genomic DNA. Nucleic Acids Res. 25 (19): 3959-3961.

Sun, H.S., Cai, L., Davis, S.K., Taylor, J.F., Doud, L.K., Bishop, M.D., Hayes, H., Barendse, W., Vaiman, D., McGraw, R.A., Hirano, T., Sugimoto, Y. and Kirkpatrick, B.W. (1997). Comparative linkage mapping of human chromosome 13 and bovine chromosome 12. Genomics 39: 47-54.

Sun, H.-F.S., Ernst, C.W., Yerle, M., Pinton, P., Rothschild, M.F., Chardon, P., RogelGaillard, C. and Tuggle, C.K. (1999). Human chromosome 3 and pig chromosome 13 show complete synteny conservation but extensive gene-order differences. Cytogenet. Cell Genet. 85: 273-278.

Szemraj, J., Plucienniczak, G., Jaworski, J. and Plucienniczak, A. (1995). Bovine Alu-like sequences mediate transposition of a new site-specific retroelement. Gene 152: 261-264.

Szybalski, W., Szybalski, E.H., and Ragni, G. (1962). Genetic studies with human cell lines. Nat. Cancer Institute Monograph 7: 75-88.

Tautz, D., Trick, M. and Dover, G.A. (1986). Cryptic simplicity in DNA is a major source of genetic variation. Nature 322: 652-656.

Tautz, D. (1989). Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17 (16): 6463-6471.

Tautz, D. (1992). Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 20 (2): 211-215.

Taylor, K., Hornigold, N., Conway, D., Williams, D., Ulinowski, Z., Agochiya, M., Fattorini, P., de Jone, P., Little, P.F.R. and Wolfe, J. (1996). Mapping of the human Y chromosome by fingerprinting cosmid clones. Genome Res. 6: 235-248.

Taylor, J.F., Coutinho, L.L., Herring, K.L., Gallagher, D.S. Jr., Brenneman, R.A., Burney, N., Sanders, J.O., Turner, J.W., Smith, S.B., Miller, R.K., Savell, J.W. and Davis, S.K. (1998). Candidate gene analysis of GH1 for effects on growth and carcass composition of cattle. Anim. Genet. 29 (3): 194-201.

Terkelson, C., Koch, J., Kфlvraa, S., Hindkjær, J., Pederson, S. and Bolund, L. (1993). Repeated primed in situ labeling: formation and labeling of specific DNA sequences in chromosomes and nuclei. Cytogenet. Cell Genet. 63: 235-237.

The Huntington's collaborative research group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72: 971-983.

Thomsen, P.D., Hindkjær, J. and Christensen, K. (1992). Assignment of a porcine malespecific DNA repeat to Y-chromosomal heterochromatin. Cytogenet. Cell Genet. 61: 152154.

Thomsen, P.D. and Miller, J.R. (1996). Pig genome analysis: differential distribution of SINE and LINE sequences is less pronounced than in the human and mouse genomes. Mamm. Genome 7: 42-46.

Toldo, S.S., Fries, R., Steffen, P., Beibergs, H.L., Barendse, W., Womack, J.E., Hetzel, D.J.S. and Stranzinger, G. (1993). Physically mapped, cosmid-derived microsatellite markers as anchor loci on bovine chromosomes. Mamm. Genome 4: 720-727.

Towner, P. (1991). Purification of DNA. Ch. 3. In: Brown, T.A. (ed). Essential molecular biology: a practical approach. Vol 1. Oxford university press, New York. pp. 47-68.

Troyer, D.L., Xie, H., Goad, D.W. and Skinner, D.Z. (1994). Use of a new technique to map the porcine α interferon gene to Chromosome 1. Mamm. Genome 5: 112-114.

Tucker, E.M., Dain, A.R., Wright, L.J. and Clarke, S.W. (1981). Culture of sheep x mouse hybridoma cells in vitro. Hybridoma 1: 77-86.

Tucker R.M. and Burke D.T. (1997). Two vectors for the insertion of mammalian selectable genes into yeast artificial chromosome cloned DNA. Gene 199 (1-2): 25-30.

Vaiman, D., Bahri-Darwich, I., Mercier, D., Yerle, M., Eggen, A., Leveziel, H., Guérin, G., Gellin, J. and Cribiu, E.P. (1993). Mapping of new bovine microsatellites on cattle chromosome 15 with somatic cell hybrids, linkage analysis, and fluoresence in situ hybridization. Mamm. Genome 4: 676-679.

Vaiman D., Mercier, D., Moazami-Goudarzi, K., Eggen, A., Ciampolini, R., Lépingle, A., Velmala, R., Kaukinen, J., Varvio, S.L., Matin, P., Levéziel, H. and Guérin, G. (1994). A
set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism. Mamm. Genome 5: 288-297.

Vaiman, D., Schibler, L., Bourgeois, f., Oustry, A., Amigues, Y. and Cribiu, E.P. (1996). A genetic linkage map of the male goat genome. Genetics 144: 279-305.

Vaiman, D., Schibler, L., Oustry-Vaiman, A., Pailhoux, E., Goldammer, T., Stevanovic, M., Furet, J.P., Schwerin, M., Cotinot, C., Fellous, M. and Cribiu, E.P. (1999a). Highresolution human/goat comparative map of the goat polled/intersex syndrome (PIS): the human homologue is contained in a human YAC from HSA3q23. Genomics 56 (1): 31-39.

Vaiman. D.. Billault. A., Tabet-Aoul, K., Schibler, L., Vilette, D., Oustry-Vaiman, A., Soravito. C. and Cribiu. E.P. (1999b). Construction and characterization of a sheep BAC library of three genome equivalents. Mamm. Genome 10: 585-587.

Valdes, A.M., Slatkin, M. and Freimer, N.B. (1993). Allele frequencies at microsatellite loci: The stepwise mutation model revisited. Genetics 133: 737-749.

Van Dilla, M.A. and Deaven, L.L. (1990). Construction of gene libraries for each human chromosome. Cytometry 11 (1): 208-18.

Van Poucke, M., Törnsten, A., Mattheeuws, M., Van Zeveren, A., Peelman L.J. and Chowdhary, B.P. (1999). Comparative mapping between human chromosome 3 and porcine chromosome 13. Cytogenet. Cell Genet. 85: 279-284.

Vogt, F. (1990). Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved "chromatin folding code". Hum. Genet. 84: 301-336.

Volpi, E.V. and Baldini, A. (1993). MULTIPRINS: a method for multicolor primed in situ labelling. Chromosome Res. 1:257-260.

Wall, R.J., Kerr, D.E. and Bondioli, K.R. (1997). Transgenic dairy cattle: genetic engineering on a large scale. J. Dairy Sci. 80 (9): 2213-2224.

Walter, M.A., Spillet, D.J., Thomas, P., Weissenbach, J. and Goodfellow, P.N. (1994). A method for constructing radiation hybrid maps of whole genomes. Nature Genet. 7: 22-28.

Wang, D.G., Fan, J.-B., Siao, C.-J., Berno, A., Young, P., Sapolsky, R., Ghandour, G., Perkins, N., Winchester, E., Spencer, J., Topaloglou, T., Hubbell, E., Robinson, E., Mittmann, M., Morris, M.S., Shen, N., Kilburn, D., Rioux, J., Nusbaum, C., Rozen, S., Hudson, T.J., Lipshutz, R., Chee, M. and Lander, E.S. (1999). Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science 280: 1077-1082.

Wang, G.L., Holsten, T.E., Song, W.Y., Wang, H.P. and Ronald, P.C. (1995). Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J. 7: 525-533.

Wang, H.C. and Federoff, S. (1972). Banding juman chromosomes treated with trypsin. Nature New Biol. 235: 52-53.

Wang, K., Boysen, C., Shizuya, H., Simon, M.I. and Hood, L. (1997). Complete nucleotide sequence of two generations of a bacterial artificial chromosome cloning vector. BioTechniques 23: 992-994.

Wang, M., Chen, X.N., Shouse, S., Manson, J., Wu, Q., Li, R., Wrestler, J., Boya, D., Sun, Z.G., Korenberg, J. and Lai, E. (1994). Construction and characterization of a human chromosome 2-specific BAC library. Genomics 24: 527-534.

Wang, M. and Lai, E. (1995). Pulsed field separation of large supercoiled and open-circular DNAs and its application to bacterial artificial chromosome cloning. Electrophoresis 16: 17.

Wang, Z., Weber, J.L., Zhong, G. and Tanksley, S.D. (1994). Survey of plant short tandem DNA repeats. Theor. Appl. Genet. 88: 1-6.

Warburton, D., Gersen, S., Yu, M.-T., Jackson, C., Handelin, B. and Housman, D. (1990). Monochromosomal rodent-human hybrids from microcell fusion of human lymphoblastoid cells containing an inserted dominant selectable marker. Genomics 6: 358-366.

Warford, A. and Lauder, I. (1991). In situ hybridisation in perspective. J. Clin. Pathol. 44: 177-181.

Weissenbach, J., Gyapay, G., Dip, C., Vignal, A., Morissette, J., Millasseau, P., Baysseix, G. and Lathrop, M. (1992). A second-generation linkage map of the human genome. Nature 359: 794-801.

Weissenbach, J. (1998). The human genome project: from mapping to sequencing. Clin. Chem. Lab. Med. 36 (8): 511-514.

Wienburg, J. and Stanyon, R. (1997). Comparative painting of mammalian chromosomes. Curr. Opin. Genet. Dev. 7: 784-791.

Wolf, J.B., David. V.A. and Deutch, A.H. (1990). Identification of a distal regulatory element in the 5^{\prime} flanking region of the bovine prolactin gene. Nucleic Acids Res. 18 (16): 4905-4912.

Womack, J.E. and Moll, Y.D. (1986). Gene map of the cow: conservation of linkage with mouse and man. J. Hered. 77: 2-7.

Womack, J.E. (1991). Strategies and technologies for comparative mapping. In: Schook, L.B., Lewin, H.A. and McLaren, D.G. (eds). Gene-mapping techniques and applications. Marcel Dekker, Inc., New York. pp. 3-20.

Womack, J.E. and Kata, S.R. (1995). Bovine genome mapping: evolutionary inference and the power of comparative genomics. Curr. Opin. Genet. Dev. 5: 725-733.

Womack, J.E., Johnson, J.S., Owens, E.K., Rexroad III, C.E., Schläpfer, J. and Yang, Y. (1997). A whole genome radiation hybrid panel for bovine gene mapping. Mamm Genome 8: 854-856.

Wong, G.K., Yu, J., Thayer, E.C. and Olson, M.V. (1997). Multiple-complete-digest restriction fragment mapping: generating sequence-ready maps for large-scale DNA sequencing. Proc. Natl. Acad. Sci. USA 94 (10): 5225-30.

Woo, S.-S., Jiang, J., Gill, B.S., Paterson, A.H. and Wing, R.A. (1994). Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res. 22: 4922-4931.

Woon, P.-Y., Osoegawa, K., Kaisaki, P.J., Zhao, B., Catanese, J.J., Gauguier, D., Cox, R., Levy, E.R., Lathrop, G.M., Monaco, A.P. and de Jong, P.J. (1998). Construction and characterization of a 10 -fold genome equivalent rat P 1 -derived artificial chromosomal library. Genomics 50: 306-316.

Wyman, A.R. and Wertman, K.F. (1987). Host strains that alleviate underrepresentation of specific sequences: Overview. Methods Enzymol. 152: 173-180.

Yang, F., Muller, S., Just, R., Ferguson-Smith, M.A. and Wienberg, J. (1997). Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics 39 (3): 396-401.

Yang, X.W., Model, P. and Heintz, N. (1997). Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nature Biotechnology 15: 859-865.

Yang, Y.P. and Womack, J.E. (1998). Parallel radiation hybrid mapping: a powerful tool for high-resolution genomic comparison. Genome Res. 8 (7): 731-6.

Yerle, M. and Gellin, J. (1989). Localization of leucocyte interferon gene in the q 2.5 region of pig chromosome 1 by in situ hybridization. Genetics, Selection, Evolution 21: 249-52.

Yerle, M., Pinton, P., Robic, A., Alfonso, A., Palvadeau, Y., Delcros, C., Hawken, R., Alexander, L., Beattie, C., Schook, L., Milan, D. and Gellin, J. (1998). Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet. Cell Genet. 82: 182-188.

Yokobata, K., Trenchak, B. and de Jong, P.J. (1991). Rescue of unstable cosmids by in vitro packaging. Nucleic Acids Res. 19 (2): 403-434.

Yoo, J., Ponce de Leon, F.A., Stone, R.T. and Beattie, C.W. (1995). Cloning and chromosomal assignment of the bovine interleukin-2 receptor alpha (IL-2R α) gene. Mamm. Genome 6 (10): 751-753.

Zhu, H. and Dean, R.A. (1999). A novel method for increasing the transformation efficiency of Escherichia coli-application for bacterial artificial chromosome library construction. Nucleic Acids Res. 27 (3): 910-911.

Zimmer, R. and Verrinder Gibbins, A.M. (1997) Construction and characterization of a large-fragment chicken bacterial artificial chromosome library. Genomics 42 (2): 217-226.

APPENDICES

APPENDIX I: SOLUTIONS

Anti-Coagulation Solution (pH 6.1)

	$\mathbf{5 0 0 m l}$	[Final]
Sodium citrate	125 g	$25 \% \mathrm{w} / \mathrm{v}$
Glucose	150 g	$30 \% \mathrm{w} / \mathrm{v}$
Adjust pH to 6.1 and store at $4^{\circ} \mathrm{C}$.		

SDE Solution (pH 8.0)

	1L	[Final]
Sodium dodecyl sulphate	10 g	$1 \% \mathrm{w} / \mathrm{v}$
EDTA-di sodium salt	9.3 g	25 mM
Adjust pH to 8.0.		

ESP Solution (pH 8.0)

	$\mathbf{1 L}$	[Final]
Sarcosyl	10 g	$1 \% \mathrm{w} / \mathrm{v}$
EDTA-di sodium salt	9.3 g	25 mM
Adjust pH to 8.0		
Immediately before use in microbead preparation, mix 47.5 ml ESP and $2.5 \mathrm{ml} 20 \mathrm{mg} / \mathrm{ml}$		
proteinase $\mathrm{K}(1 \mathrm{mg} / \mathrm{ml}$ final concentration).		

LB Medium

	1L	[Final]
Bactotryptone	10 g	1%
Bactoyeast extract	5 g	0.5%
NaCl	10 g	1%
Agar (for plates)	15 g	1.5%
Adjust pH to 7.5 and autoclave.		

Chloramphenicol (CM)

Stock solution: $50 \mathrm{mg} / \mathrm{ml}$ in 100% ethanol. Store at $-20^{\circ} \mathrm{C}$
Use $30 \mu \mathrm{~g} / \mathrm{ml}$ for pBeloBAC 11 plasmid preparation and $12.5 \mu \mathrm{~g} / \mathrm{ml}$ for BAC transformations and plasmid minipreps.

QBT Buffer

	$\mathbf{1 L}$	[Final]
NaCl	43.83 g	750 mM
MOPS (free acid)	10.46 g	50 mM
Isopropanol	150 ml	$15 \% \mathrm{v} / \mathrm{v}$
Triton-X 100	15 ml	$0.15 \% \mathrm{v} / \mathrm{v}$
Adjust pH to 7.0.		

QC Buffer

	1 L	[Final]
NaCl	58.44 g	1.0 M
MOPS (free acid)	10.46 g	50 mM
Isopropanol	150 ml	$15 \% \mathrm{v} / \mathrm{v}$
Adjust pH to 7.0.		

QF Buffer

	1L	[Final]
NaCl	73.05 g	1.25 M
Tris base	6.06 g	50 mM
Isopropanol	150 ml	$15 \% \mathrm{v} / \mathrm{v}$
Adjust pH to 8.5.		

0.5M EDTA (pH 8.0)

	1 L	[Final]
EDTA-di sodium salt	186.1 g	0.5 M
NaOH	20 g	
Adjust to pH 8.0 with NaOH and autoclave.		

1M Tris-HCl (pH 8.0)

	1 L	[Final]
Tris base	121.1 g	1 M
HCl	42 ml	

Adust to pH 8.0 with HCl and autoclave.

$\mathrm{T}_{10} \mathrm{E}_{1}(\mathrm{pH} 8.0)$

	1 L	[Final]
Tris-HCl	10 ml of 1 M stock	10 mM
EDTA	2 ml of 0.5 M stock	1.0 mM
Autoclave.		

4 M NaCl

	1 L	[Final]
NaCl	233.76 g	4 M
Autoclave.		

Solution A for sperm cell isolation
1L
[Final]
Tris
10 ml of 1 M stock
10 mM
EDTA
NaCl
20 ml of 0.5 M stock
10 mM

Adjust pH to 7.0 and autoclave.

Solution B for sperm cell isolation

	1L	[Final]
Tris	10 ml of 1 M stock	10 mM
NaCl	25 ml of 4 M stock	100 mM
EDTA	20 ml of 0.5 M stock	10 mM
Sodium dodecyl sulphate	5 g	$0.5 \% \mathrm{w} / \mathrm{v}$
ß-mercaptoethanol	2 ml	$0.2 \% \mathrm{v} / \mathrm{v}$
Adust pH to 8.0		

Phenylmethyl sulfonyl fluoride (PMSF)

	Amount	[Final]
PMSF	250 mg vial	100 mM
Isopropanol	14.35 ml	
Prepare in fume-hood and store at $4^{\circ} \mathrm{C}$.		

$10 \times$ TBE Electrophoresis buffer

	$\mathbf{1 L}$	[Final]
Tris base	108 g	0.45 M
Boric acid	55 g	0.45 M
EDTA	40 ml of 0.5 M stock	10 mM

$2 \times$ BAC Storage solution

	1 L	[Final]
Glycerin $(>99 \%$ pure $)$	650 ml	65%
$1 \mathrm{M} \mathrm{Tris-HCl}(\mathrm{pH} 8)$	25 ml	0.025 M
MgSO_{4} heptahydrate	24.6 g	0.1 M

Dissolve MgSO_{4} separately in 50 ml ddH 2 before adding to glycerin mix.
Autoclave and store at $4^{\circ} \mathrm{C}$.

10 N NaOH

100 ml

NaOH
40 g

Solution I

	1 L	[Final]
Glucose	9 g	50 mM
0.5 M EDTA $(\mathrm{pH} 8.0)$	20 ml	10 mM
1 M Tris- $\mathrm{HCl}(\mathrm{pH} \mathrm{8.0})$	2.5 ml	25 mM
Autoclave.		
Immediately before use add $5 \mathrm{mg} / \mathrm{ml}$ lysozyme.		

Solution II

	1 L	[Final]
10N NaOH	20 ml	0.2 N
SDS	10 g	$1 \% \mathrm{w} / \mathrm{v}$

Solution III

	1L	[Final]
Potassium acetate	294.42 g	3 M
Glacial acetic acid	285 ml	

25:24:1 Phenol:Chloroform:Isoamyl alcohol

	$\mathbf{5 0 0 m l}$
TE Buffered phenol	250 ml
Chloroform	240 ml

Isoamyl alcohol 10 ml

Cover with fresh TE and store at $4^{\circ} \mathrm{C}$.

Digestion buffer

	1L	[Final]
4 M NaCl	25 ml	100 mM
$1 \mathrm{M} \mathrm{Tris-HCl} \mathrm{(pH} \mathrm{8.0)}$	10 ml	10 mM
$0.5 \mathrm{M} \mathrm{EDTA}(\mathrm{pH} 8.0)$	50 ml	25 mM
SDS	5 g	$0.5 \% \mathrm{w} / \mathrm{v}$

Adjust volume to 1 L with $\mathrm{ddH}_{2} 0$ and autoclave.

CTAB Buffer

	1L	[Final]
CTAB	20 g	$2 \% \mathrm{w} / \mathrm{v}$
$1 \mathrm{M} \mathrm{Tris-HCl}(\mathrm{pH} 8.0)$	100 ml	0.1 M
$0.5 \mathrm{M} \mathrm{EDTA}(\mathrm{pH} 8.0)$	40 ml	20 mM
4 M NaCl	350 ml	1.4 M
PVP $(40 \mathrm{kd})$	10 g	$1 \% \mathrm{w} / \mathrm{v}$

5\% CTAB
100 ml
CTAB $\quad 5 \mathrm{~g}$

CTAB precipitation buffer

	1 L	[Final]
CTAB	10 g	$1 \% \mathrm{w} / \mathrm{v}$
1M Tris-HCl $(\mathrm{pH} 8.0)$	50 ml	50 mM
0.5M EDTA $(\mathrm{pH} 8.0)$	20 ml	10 mM

$10 \mathrm{mg} / \mathrm{ml}$ DNase-free RNase

	$\mathbf{2 5 m l}$	[Final]
RNase A	250 mg	$10 \mathrm{mg} / \mathrm{ml}$
Tris base	30 mg	10 mM
NaCl	20 mg	15 mM

Heat to $100^{\circ} \mathrm{C}$ for 15 ml and allow to cool slowly to room temperature.
Split into 1 ml aliquots and store at $-20^{\circ} \mathrm{C}$.

$10 \mathrm{mg} / \mathrm{ml}$ ethidium bromide stock

100ml
Ethidium bromide 1 g
Store in dark bottle.

50xTAE

	$\mathbf{1 L}$	[Final]
Tris base	242 g	2 M
EDTA	100 ml of 0.5 M stock	50 mM
Glacial acetic acid	57.1 ml	

20xSSC

	$\mathbf{1 L}$	[Final]
NaCl	175.3 g	3 M
Sodium citrate	88.2 g	0.3 M

Adjust pH to 7.0 and autoclave.

4xSSC/0.05\% Tween20

	1 L	[Final]
20xSSC	200 ml	4 x
Tween20	0.5 ml	$0.05 \% \mathrm{v} / \mathrm{v}$

Adjust volume to 1 L with $\mathrm{ddH}_{2} 0$.

4xSSC/1\% BSA

	100ml	[Final]
20xSSC	20 ml	4 x
BSA	1 g	1%

Filter sterilise and split into 1.5 ml aliquots. Store at $-20^{\circ} \mathrm{C}$.

PBS

	$\mathbf{1 L}$	[Final]
NaCl	8 g	137 mM
KCl	0.2 g	2.7 mM
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	1.44 g	10 mM
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	0.24 g	1.8 mM
Adjust pH to 7.4 and autoclave.		

Propidium iodide

	10 ml	[Final]
Propidium iodide	50 mg	$5 \mathrm{mg} / \mathrm{ml}$
Dissolve in PBS.		

To prepare chromosome stain, dilute $50 \mu \mathrm{l}$ propidium iodide stock solution in 50 ml PBS ($5 \mu \mathrm{~g} / \mathrm{ml}$ final).

PPD11 Antifade Mountant

	$\mathbf{1 0 0 m l}$	[Final]
p-phenylenediamine free base	100 mg	$1 \mathrm{mg} / \mathrm{ml}$
Glycerol	90 ml	9 parts
PBS	10 ml	1 part
Adjust pH to 11 and store at $-20^{\circ} \mathrm{C}$.		

$10 \times$ TBE

	$\mathbf{1 L}$	[Final]
Tris	108 g	0.9 M
Boric acid	55 g	0.45 M
0.5M EDTA (pH 8.0)	40 ml	20 mM
Filter through Whatman 541 paper.		

40\% acrylamide solution

	$\mathbf{5 0 0 m l}$	[Final]
Acrylamide	190 g	$38 \% \mathrm{w} / \mathrm{v}$
Bis-acrylamide	10 g	$2 \% \mathrm{w} / \mathrm{v}$

Heat to $37^{\circ} \mathrm{C}^{\circ}$ to dissolve.
Filter through Whatman 541 paper and store in a dark bottle at $4^{\circ} \mathrm{C}$.

6\% acrylamide sequencing gel solution

	$\mathbf{5 0 0 m l}$	[Final]
Urea	210 g	7 M
40% acrylamide solution	75 ml	$6 \% \mathrm{v} / \mathrm{v}$
$10 \times$ TBE	50 ml	$1 \times T B E$

Filter through Whatman 541 paper and store in a dark bottle at $4^{\circ} \mathrm{C}$ for up to 14 days.
$\mathbf{2} \mathbf{M ~ M g S O}_{4} / \mathbf{M g C l}_{\mathbf{2}}$

	$\mathbf{5 0 m l}$	[Final]
$\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	10.17 g	1 M
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	12.32 g	1 M

Filter sterilise.

2M Glucose

50 ml

D-Glucose
18 g
Filter sterilise.

SOC Medium

	490 ml	[Final]
Bactotryptone	10 g	$2 \% \mathrm{w} / \mathrm{v}$
Bactoyeast extract	2.5 g	$0.5 \% \mathrm{w} / \mathrm{v}$
NaCl	0.29 g	$0.058 \% \mathrm{w} / \mathrm{v}$
KCl	0.1 g	$0.02 \% \mathrm{w} / \mathrm{v}$

Adjust pH to 7.0.
Aliquot 49 ml into bottles and autoclave.
Immediately before use add $0.5 \mathrm{ml} 2 \mathrm{M} \mathrm{MgSO}_{4} / \mathrm{MgCl}_{2}$ and 0.5 ml 2 M Glucose.

SOB Medium (without $\mathbf{M g}^{\mathbf{2 +}}$)

	$\mathbf{8 0 0 m l}$	[Final]
Tryptone	16 g	$2 \% \mathrm{w} / \mathrm{v}$
Yeast extract	4 g	$0.5 \% \mathrm{w} / \mathrm{v}$
NaCl	0.47 g	$0.058 \% \mathrm{w} / \mathrm{v}$
KCl	0.15 g	$0.02 \% \mathrm{w} / \mathrm{v}$

Adjust pH to 7.0.
Autoclave in two flasks -750 ml in a 2 L flask and 50 ml in a 250 ml flask.

Denaturing Solution

	1 L	[Final]
NaCl	87.66 g	1.5 M
NaOH	20 g	0.5 M

Neutralising Solution

	$\mathbf{1 L}$	[Final]
NaCl	175.3 g	3 M
Tris- HCl	60.5 g	0.5 M
Adjust pH to 7.0.		

Probe Hybridisation Solution

	100 ml	[Final]
N-laurylsarcosine-Na salt	0.1 g	$0.1 \% \mathrm{w} / \mathrm{v}$
SDS	0.02 g	$0.02 \% \mathrm{w} / \mathrm{v}$
Blocking reagent (Boehringer)	1 g	$1 \% \mathrm{w} / \mathrm{v}$
20xSSC	25 ml	5 xSSC

Heat the solution to $37^{\circ} \mathrm{C}$ and stir vigorously until the Blocking reagent has dissolved.

APPENDIX II: pBeloBACII

Sequence Range: 1 to 7507

1600

tggcceagg
CTITcccggTa CACcagGati tattiatict

 $1660 \quad 1670 \quad 1680$

CCTHGTCGT THCCTHTCTC TGTYMTOTC COTGGAATGA ACAATGGAG TCCGAGCTCA TCGCTAATAA CTTCGTATAG CATACATTAT ACGAAGTTAT >TaqI

APPENDIX III: KAP CONTIGS AND SEQUENCE ALIGNMENTS

Cantig[0167]
Sequencher" "164 MATN PROTECT"

Cantig[AA]
 Sequencher" "164 MAIN PROUECT"

$\%$ Hole in contig Diagram Key.	
Multiple fragments same direotion	O
Both str	fragment
Both strands plus	not
p-stark 00	
-Stop codon frame 2	shov featur

Contig[F]
Sequencherm "164 MAIN PROUECT"

Contig[GG]
Sequencher" "164 MAIN PROUECT"

Cantig[JJ]
 Sequencherm "164 MAIN PROJECI"

Contig[J]
Sequencherm "164 MAIN PROWECT"

	Hole in Diagram Key.	
	Single fragment	
	Muitiple Both str	frag
	h strands plus	motis
	H.1. ${ }^{\text {costart codon }}$	reotangles
	F-Stop cocion frame 2	show fea

Contig[KK]

Sequencher" "164 MAIN PROJECT"

> Contig[L]
> Sequencherm "164 MAIN PROUBCT"

Cantig[00]

Sequencher" "164 MAIN PROUECI"

Contig[PP]
Sequencher" "164 MATN PROUECT"

Contig[R] KAP2.3
Sequencher" "164 MAIN PROUBCT"

Hole in contig Dfagram Key.	
Single fragment	Bu
Multiple fragments same direotion Both strands	fragment
Both strands plus	show motifs, hollow
Fis Stod codon frame 2	

Score $=120$ bits (75), Expect $=8 \mathrm{e}-26$
Identities $=144 / 198(72 \%)$, Positives $=144 / 198(72 \%)$, Gaps $=16 / 198(8 \%)$

164BS3F11:	91	taagaactcttagcata-gcgttgaatataaggagaattactaaaatcaaaaccaactt 149																																									
		\|																																									
AC7455:	64469	taagaactttttgcataagtgttgatgtgtaaagagaatcactaaattcaaacccagctc 64528																																									
164BS3F11:	150	tgctcaatgaataataaattctaagagactattttaatcctctatcttaag-tctccagg 208																																									
		\|																																									
AC7455:	64529	tgcccagggagtaataaatcctaagagactattttaactcacttacatatgttcttctgg 64588																																									
164BS3F11:	209	tttggttttggttggttggttgttttcccattatcagctatttaaggaagaagtactcaa 268																																									
		\|																																									
AC7455:	64589	tttggtttggtttgg--------tttctactatcaggtacct-aggaagtagcactcaa 64638																																									
164BS3F11:	269	ga----gttaaaaataa 282																																									
		\|																																									
AC7455:	64639	gattaggagaaaaaataa 64656																																									

```
Score = 156 bits (98), Expect = 1e-36 
164BS3F12: 1 gatcaggctccttcagcccacctgctgtgatacctgccacccaccctgctgtgtgcctga 60
||||| |||||||||||||||||| |||| | ||
AC7455: 45563 gatcagcctccttcagcccacctgctgtga-acctggcccc-------------tgcctg- 45608
164BS3F12: 61 ctcctgcgtgcccgactcctacgtgccaacctgttggctgctcaacagctgccaccctac 120
                            ||| |||| ||||||| ||||| |||||| ||||||||| ||||||| |
AC7455: 45609 --gctgcatgcctgactcctatgtgccatcctgttgactgctcaacaaatgccacccagc 45666
164BS3F12: 121 tccaaacctgagcggaatctctgtcacaacctgcgtccagccctgtgagggtgaagcaaa 180
AC7455: 45667 tccaaccctgagcgggctctctgtcaccacctgcatcca-------gagtgtgaaccacc 45719
164BS3F12: 181 atcctactagccaaagacaatctcaatgagctttgcccgcgttgccctaagggactgcaa 240
    | || |||||||| |||| ||||| | || |||| ||| || ||
AC7455: 45720 ttgctgctagccaaa------------gagc-ttgcccacattaccctgaggaccttcag 45766
164BS3F12: 241 ctgtcatcaagagctgctcagc 262
|0755: |||| ||| ||||||||
AC7455: 45767 tagtcattaagcgctgctcagc 45788
Score = 114 bits (71), Expect = 1e-23
Identities = 126/175 (72%), Positives = 126/175 (72%), Gaps = 18/175 (10%)
164BS3F12: 1 gatcaggctccttcagcccacctgctgtgatacctgccacccaccctgctgtgtgcctga 60
    ||||| |||||||||||| |||||||| |||||| ||||||||
AC7455: 41240 gatcagcctccttcagcccatctgctgtgacacctgccccccaccctg-------------- 41287
164BS3F12: 61 ctcctgcgtgcccgactcctacgtgccaacctgttggctgctcaacagctgccaccctac 120
AC7455: ||| ||| || ||| |||||| || |||||||||| ||||||| |
AC7455: 41288 ---ctgcaagcctgatacctatgtgccaacttgctggctgctcaacaactgtcacccgac 41344
164BS3F12: 121 tccaaacctgagcggaatctctgtcacaacctgcgtccagcc---ctgtgagggt 172
    ||| |||| || ||| | || |||| || ||||| |||||| ||
AC7455: 41345 tcccggactgagtgggatcaacctgaccacctatgttcagcctggctgtgagagt 41399
Score = 110 bits (69), Expect = le-22
Identities = 138/183 (75%), Positives = 138/183 (75%), Gaps = 20/183 (10%)
164BS3F12: 282 ttttgaacaatgatttcaaat-agaagtgg---aaaaaatgctatcatgggccctcttaa 337
    |||||||||||||||||| ||| ||| |||||||||| ||||| || |||
AC7455: 45865 ttttgaacaatgatttcaaatgagaaatgggaaaaaaaatgctaccatggatccccttac 45924
164BS3F12: 338 tt------taaataaacaccactctttcccaaaccatggggctgactcaatgactaatgc 391
    || |||||||||||| | |||||||| ||| |||| |||||
AC7455: 45925 ttcaaaactaaataaacaccactactccccaaacca-catactgcctcaacatttaatgc 45983
164BS3F12: 392 cataataacc---cgactc-tgacacatgtatgcatcatggaacccataaatatgtccag 447
    |||| ||| ||||| ||||| ||||||| |||| | ||||| ||||
AC7455: 45984 tataattacccaacgactcttgacac----atgcatcat-gaacttaaaaatacatccag 46038
```

```
164BS3F12: 448 cag 450
AC7455: 46039 cag 46041
Score = 72.9 bits (45), Expect = 3e-11
Identities = 104/160 (65%), Positives = 104/160 (65%), Gaps = 15/160 (9%)
164BS3F12: 6 ggctccttcagcccacctgctgtgatacctgccacccaccotgctgtgtgcctgactcct 65
                            || | || |||||||||||||||| | ||| | |||||||||| | ||| | |||
AC7455: 56222 ggttactggagcccacctgctgtgacaactgtcccccaccctgccacattcctcagccct 56281
164BS3F12: 66 gcgtgcccgactcctacgtgccaacctgttggctgctcaacagctgccaccctactccaa 125
    ||||||| ||||| | ||||||||| |||||| || ||||||
AC7455: 56282 gcgtgccc---------------acctgcttcctgctcaactcctgccagccaactccag 56326
164BS3F12: 126 acctgagcggaatctctgtcacaacctgcgtccagccctg 165
    |||| || |||| |||| | ||||||||
AC7455: 56327 gcctggagaccctcaacctcaccaccttcactcagccetg 56366
Score = 66.6 bits (41), Expect = 2e-09
Identities = 102/160 (63%), Positives = 102/160 (63%), Gaps = 15/160 (9%)
164BS3F12: 6 ggctccttcagcccacctgctgtgatacctgccacccaccctgctgtgtgcctgactcct 65
                            || | || |||||| |||||||| | ||| | |||||||||| | ||| | |||
AC7455: 50466 ggttactggagcccatctgctgtgacaactgtcccccaccctgccacattcctcagccct 50525
164BS3F12: 66 gcgtgcccgactcctacgtgccaacctgttggctgctcaacagctgccaccctactccaa 125
    ||||||| ||||| | ||||||||| |||||| || |||||
AC7455: 50526 gcgtgccc----------------acctgcttcctgctcaactcctgccagccaactccgg 50570
164BS3F12: 126 acctgagcggaatctctgtcacaacctgcgtccagccetg 165
    |||| || |||| |||| | ||||||||
AC7455: 50571 gcctggagaccctcaacctcaccaccttcactcagccctg 50610
Score = 207 bits (130), Expect = 6e-52
Identities = 237/333 (71%), Positives = 237/333 (71%), Gaps = 18/333 (5%)
R164P2D8: 2 cagcaacntgcccaagagaaacacgaccacacacagctctctttatccaggagaaagtac 61
    |||||| || | |||||||| ||| | | ||||||||||| |||||||||||
AC7455: 44534 cagcaatatgtcaaagagaaatgtgactataggtggctctctttattcaggagaaagtat 44593
R164P2D8: 62 atgctacttgacaatacatgctctacttgacaacacatgcttctagattgtctacttggt 121
    ||| ||||||||||| || ||||||| || | | | ||||| | || |
AC7455: 44594 atgacacttgacaatatattctctact---------atccctgtcaattgtatcttttgt 44644
R164P2D8: 122 tgtatatggcaacagttttctctgtggttgttatagcttaagataaaatgagtatacaca 181
    ||| | | |||||||||||||| |||||| ||| ||||||||||| || |||
AC7455: 44645 tgttttct----ctgttttctctgtggtgattatagtctaaaataaaatgagtgtataca 44700
R164P2D8: 182 atgagtctaggaaaaactgctcatgtttcaaaggtgaaaacaaatcatgtttctttaagt 241
    ||||| | |||| | | |||||| ||| | | |||||| | | ||| ||||
AC7455: 44701 atgagtattaaaaaaggtatccgtgtttctaagttaagaacaaa-ccttttttaaaaagt 44759
```


Score $=188$ bits (118), Expect $=2 \mathrm{e}-46$
Identities $=165 / 209(78 \%)$, Positives $=165 / 209(78 \%)$, Gaps $=2 / 209(0 \%)$

Contig3: AC7455:	2821	aattcagtggatgtcttgatgttctaaattcaagagaattcagtctatatattcaagagg agttcagtagatatccagatatccaaaattcaataaaatttagtctatatatctaggagg	2880 22620																							
Contig3:	2881	gggnnnnnnntagctaaa---aacagcacaatta---ctcttagccttagagacctggac gggnnnmin H1 U11	2934																							
AC7455:	22621	aa-aaataatagttaaatataacagcacaattattactcttagcettagaggtatggat	22679																							
Contig3:	2935	agagaatcacatggaataactacctctacaaatgagggtgttgacatggacaaaatgg	2994																							
AC7455:	22080	دgattgtcacgtggaataactat-tatgtaaaatgagagcattcatttggactaaaatgg	22738																							
Contig3:	2995	子agggctctttgaacatggaaaaccacaaacctattccaaagagcaaaggaccaatatga	3054																							
AC7455:	22739	aagtactctttgaacatgggaaaccacaaacatattccaaagagcaaaggactgatatga	22798																							
Contig3:	3055	ggagtccaaatgaaactataaaacgaagtaatttctaaactgctgctcataatgtatcat	3114																							
AC7455:	22799	ggagtccagaagaaactataaaac--agtaatttctaaactattgctcataatgtgtcac	22856																							
Contig3:	3115	aggtatttcaatgtaagccaatcagaggacccactgaaaaacaaatttatacaaaaacaa	3174																							
AC7455:	$\therefore 2 \rightarrow 5$	33gtatttcaacataagccaatcagag-atccacggagtaacaatttaaacaaaaacaa	22915																							
2.: : $: 1$:		: is fatatgccaagaagtctataaatagcagctagcgcagatatataaaaggcctgaca	3234																							
AC7455:	$\therefore \therefore \therefore=$	sgaaatatgttaacaattttgtaaacagcagctggttcagatatataaaaggaccaacg	22975																							
Contig3:	3235	cagaagtcaccacccaa--------aatcctccaagcattacaattctcagcccaactcc	3286																							
AC7455:	22976	tggaagtcaccaccaaacctcagaaactcctccaagcaacctaactcttaacccaacttc	23035																							
Contig3:	3287	tgacaccatggcctgttgctccaccagcttctgtggatttcccacttgctccactggtgg	3346																							
AC7455:	23036	tgacaccatgacctgctgccagaccagcttctgtggatatcccagcttctccatcagtgg	23095																							
Contig3:	3347	gacctgtggttccaacttttgccagccaacctgctgccagaccagctgctgccagccaac 	3406																							
AC7455:	23096	gacctgtggctccagctgctgccagccaagctgctgtgagaccagctgctgccagccacg	23155																							
Contig3:	3407	ctccattcagaccagctgctgc--------cagc----cgacctcta-----tccaga-	3448																							
		\|		l																						
AC7455:	23156	cagctgccagactagcttctgcggatttcccagcttctcaaccagtgggacctgcagctc	23215																							
Contig3:	3449	cagctgctgccagccaacttccatccaaaccagctgctgccaaccgatctccatccagac	3508																							
AC7455:	23216	cagttgctgccagccaagctgctgtgagaccagctgctgccagccaagctgctgtgagac	23275																							
Contig3:	3509	cagctgctgccagccaacctgcctccagaccagtggctgtgagacgggctgtggcattgg	3568																							
AC7455:	23276	cagctgctgccagccaagctgctgccagatcagctcctgcggaactggctgtggcattgg	23335																							

Contig3: AC7455:	3569 23336	tggcagcattggctatggccaagtgggtagcagcggagctgtgagcagccgcaccaagtg tggtggcatcagctatggccaggagggcagcagtggagctgtgagcacccgtatcaggto	3628 23395																														
Contig3:	3629	gtgccgccetgactgccgcgtggagggcaccagcctgcctccctgctgtgtggtgagctg 	3688																														
AC7455:	23396	gtgccgcccagacagtcgtgtggagggcacctacctacccccctgctgtgtggtg-	23450																														
Contig3:	3689	cacatccccgtcctgctgccagctgtactatgcccaagcetcctgctgccgcc--catcc	3746																														
		\\|		l											l			l															
AC7455:	23451	-agctgcac---gcccc--catcctgctgccaactgcacca	23485																														
Contig3:	3747	tactgtggacagtcctgctgccgcceagcctgctgctgccagcceacctgcattgagcce	3806																														
		\|							l		l		l																				
AC7455:	23486	tgcceaggce--tcctgctgccgcccgtcctactgtggacagtcctgctgccgc---cca	23540																														
Contig3:	3807	gtctgtgagcccacctgctgtgagcccacctgctgaaagcaaggttgctcatttaaaatt	3866																														
AC7455:	23541	gtctg--------ctgctgtgagcccacttgctgaaagccagtttgcttattttcaatt	23591																														
Contig3:	3867	gcccaagacacagtatctctgaataatttatcgcctcaaccacceatggacagctaacaa	3926																														
AC7455:	23592	gcctaggtcacagtgtctctgaactgttcatc-ccttgaccacctctggaccactaacaa	23650																														
Contig3:	3927	gctcttagctcccatttgggttt-ttgttatgggcgctacagagtatatgag------t	3978																														
AC7455:	23651	gttctcagac----tttgcattgcttgtgatggagactactaagtatatgagctcacaat	23706																														
Contig3:	3979	tctatctgatttcattctacaatgaatatctgtactttccacgg------caga--tgct	4030																														
AC7455:	23707	tctatctgattccattctacaatgaataccttgacccttcactggggacacagaaatgct	23766																														
Contig3:	4031	gcgta-ccacctg-tcatcatcaaattgctttggctatactatttctgattttgatgcaa	4088																														
AC7455:	23767	acaaagccacctgctgatcatcaatttgcttgggatatactatttctgatatttctgcag	23826																														
Contig3:	4089	ggttgaatattgctgacatattgtggaatttatccttttgaactgcgcacaagcctatt- 	4147																														
AC7455:	23827	gattaaaattactgacatgttgtggaatttatccatgagaactatccacaagtctaatg	23886																														
Contig3:	4148	tctcc-tgctttctgatctatttttagcttctgtttgtccccaaatttttacaacgtcaa	4206																														
AC7455:	23887	tttccatgctttataatctatttt-atctt--gtttacctaaaattttttgcaacatcaa	23943																														
Contig3:	4207	aggcacctgagtatagatagtatatcttcag-atgtcaccaatgagaatagaagctcttc	4265																														
AC7455:	23944	agacaccaaattatagccaagtgacattcctcaagtcaccagagagaatggaagctcatc	24003																														
Contig3:	4266	acccaatgttcagcttctaagaaggagactagacttttccatatttcaacatctgattcc	4325																														
AC7455:	24004	acccaacattcagcttctaagaagtaggctggacttt-ccacattttaacatctgat-cc	24061																														

| Contig 0167: | 517 | gcaagaaagctttacagactcctagaatatcacaaataagcaagcaagagaggaaatgac
 \||||||| |||||| | || | || ||| ||||||||||| | | ||||||||| | 576 |
| :---: | :---: | :---: | :---: |
| AC7455: | 72212 | gcaagaatgctttatgggcttccagtataccacaaataagccggaaggagaggaaatagt | 72153 |
| Contig 0167 : | 577 | aaaacagagatccttcatgcatgcttagaggacaattttagaatacaaaagcgttcttaa | 636 |
| | | \||| |||| || | || | |||| ||||| || ||| | ||| || | | |
| AC7455: | 72152 | aaagcagaaagact--gaggatacctggagggcaattccaggatatgagagcctcctgga | 72095 |
| Contig 0167: | 537 | cttgaatttcaagtttggatgtccetgatcgaagcaccgtctcctctcaaggattctgct | 696 |
| | | \||| ||| ||||||||||||| ||||| || ||||| || |||| |||| | |
| AC7455: | $\because 294$ | tttgtgcttccggtttggatgtccetggttgaagccccatctcctttctaggatgctgct | 72035 |
| Contig 0167: | 697 | ggcttcccttcctccatctgctgtgttgggtgtttaaccttcagggacagctgttttcaa | 756 |
| | | \||||| ||||| | |||| ||||| |||| ||||||||| | |
| AC7455: | 72034 | ggctttgattcctctacctgct------gtccttaacattcacaagcagcagttttcaa | 71982 |
| Contig 0167: | 757 | ctgtgcaaattatgtacgccgagcatggctcacaagtgttgtttgacgtgcttgttgcag | 816 |
| | | \| ||||| || || || |||||||||||||||||| || |||||| | | |
| AC7455: | 71981 | cagtgcagatgacataggctgagcatggctcacaagtgttgctcgaggtgcatgtggtcg | 71922 |
| Contag oin | 2: | aacatgggttacagggaagcct-gtgaaaaatccatttttaactaatctcaacatggaga | 875 |
| | | '\|||||| |||||| ||||| | ||||||| ||||||| || |||| || | |
| $5 \mathrm{Co}+5:$ | $\cdots \cdot$ | iacatgggctacaggaaagcetggggaaaaatcgattttcaaccaagattaacaagg-ga | 71863 |
| Contig 0ic? | 30 | agctggataaatgtcaactcagnnnnnnntcatgccaaaatttgccettcaaattatat | 935 |
| | | | |
| AC7455: | 71862 | atgttgataaatggcaactcagaaaaac--cgtgtcaaaatttgccetacaaattatgt | 71805 |
| Contig 0167: | 936 | | 974 |
| | | \| |||| || | | | || |||| || |||| |||| | | |
| AC7455: | 71804 | tctgaaaaaaac--tctgcacaatagca-ttgactgaagcotgtttcttctctgcaccca | 71748 |
| Contig 0167: | 975 | gaattgccacttcatgttcactatagcagagacagttg 1012 | |
| | | \||||||||||||||||||| ||||| | ||||| | |
| AC7455: | 71747 | gaattgccacttcatgttcactgtagcagtggcagttg 71710 | |
| Score $=632$ bits (397), Expect $=$ e-179 | | | |
| Identities $=821 / 1203$ (68\%), Positives $=821 / 1203$ (68\%), Gaps $=110 / 1203$ (9\%) | | | |
| Contig 0169: | 337 | cttctccaagcatcccagctctcagcctaacccctgacaccatggcetgctgttccacca | 396 |
| | | \|| || | ||| | | ||| | || | | ||| || | || |||| ||| | |
| AC7455: | 8899 | ctcctgccagccacgctgctgtgagaccagctgctgccagccaagc-tgctgccagacca | 8957 |
| Contig 0169: | 397 | gcttctgtggatttcccatctgttccactgctgggacctgtggctccagctgctgccgat | 456 |
| | | \|||||||||||||| || || || ||||||||||| |||||||| | |
| AC7455: | 8958 | gcttctgtggatttcctagcttctcaaccggtgggacttgtgactctagctgctgccagc | 9017 |
| Contig 0169: | 457 | caacctgcagtcagaccagctgctgccagccaacytccatccagaccagctgctgccagc | 516 |
| | | \||| |||| || | ||||||||||||||| | | ||||||||| | |
| AC7455: | 9018 | caagctgctgtgaaactagctgctgccagccaagctgctaccagaccagct---------1-1 | 9068 |

| Contig AA: | | agagctcatgttga-gtatattcatagaacttgagtagatgttgactgatgtggaaaaaa
 \||| \|||l||| | || ||| ||| | ||||||| | | ||||| ||| | |
| :---: | :---: | :---: | :---: |
| AC7455: | 67948 | 8 agatgatctgttgatgtttgtaaatcgaatttgggcagatgttgtttaagctggaataaa | 68007 |
| Score $=402$ bits (253), Expect $=$ e-110 | | | |
| Identities $=337 / 412$ (81\%), Positives $=337 / 412$ (81%), Gaps $=3 / 412$ (0\%) | | | |
| Contig F: | | gcatgattcttcagtgacaaaacggagtg-gtcttgcccttacataccaggctctgctgt
 | 248 |
| AC7455: | 69460 | gcctgacttatcagtgacacaacggacactgcctttgcctcacgcaccaggctttgctgt | 69401 |
| Contig F : | 249 | gcttgaagctcaatttccagagcgttggctgtgcgcttcagttccaagatctccgtctgg
 | 308 |
| AC7455: | 69400 | gcttggagctcaatttccagagcactggctgtgcgtttcagttccaagatctccatctgg | 69341 |
| Contig F : | | cagccetgcagctgctctgcactggatagctgctgctgattcagttcctctgtctgaaat
 | 368 |
| AC7455: | 69340 | cagccctgcagctgctecgcgctggacagttgctgctgattcagctcttctgtctgaaac | 69281 |
| Contig F : | | acaggcatgattagaatatgcaaattaggcagaagtctggatgcctgtcattttattgct | 428 |
| AC7455: | 69280 | acagacaccattagagaattcaaaaaggcagaagtctgtaagcctgacattttttcaat | 69221 |
| Contig F : | | ccaagtgccaacctgaacagcgaaccattcttccacgtctctgcggttgttggcgagcac
 | 488 |
| AC7455: | 69220 | ctgggtactgacctgaacagccaaccattcttcagcttctctgcgattgttggcaagcac | 69161 |
| Contig F: | 489 | agtttcatactgacaacgcatctcatccaagactctgttaagatccgtggtgggggcaag
 | 548 |
| AC7455: | 69160 | cgtttcacactgacagcgcatctcatccaggaccctgttgaggtcaagggtgggggc-ag | 69102 |
| Contig F: | | tgtttagct-cacactgagccggtcgccagcttgtccacgaagcacgttgac 599
 | |
| AC7455: | 69101 | tgtccagctccacactgaggcggtcgccaagctgttcacgaagcaagttgac 69050 | |
| | | | |
| Identities $=303 / 368$ (82%), Positives $=303 / 368$ (82%), Gaps $=14 / 368$ (3%) | | | |
| Contig GG: | 1 | aagcttaatgccatgggaagaggtcaacaaggacttaatgaacttaacatactcacactt | 60 |
| AC7455: | 82917 | aagctcagtgccaagtggagaggtcaacaagaatgtaatgaacttagtatactcacacct | 82976 |
| Contig GG: | 61 | gcttaataatggatgctgttagaataatgacgacagatccttttgaagacataaggtgaa
 | 120 |
| AC7455: | 82977 | gcttaataatggatgctgttag---------gacagttccttttgaagacataatttgaa | 83027 |
| Contig GG: | | gctctgaatctaat-gataagtagtasttgtgatgggtaataacttagtaacagcctaaa
 | 179 |
| AC7455: | 83028 | gctctgggtccaatagacaagtagtagttatgatgggtaataacttactaacagcctaaa | 83087 |

| Contig G: AC7455: | 923 56043 | ccaggagactcgtc-ttctttaaaaccaaatcaataaaaaacacagcttcccaacaccat \||| || || || |l||| || |||| | |l|| | ||||| || | |||| tcagaagccttatccttcttttcaatcaaacccataaataccacagactctaatagccat | 981 56102 |
| :---: | :---: | :---: | :---: |
| Contig G: | 982 | ggcttgctgtgccegcctctgctgcagcgtccccaccacccccgccaccaccatctgctc
 | 1041 |
| AC7455: | 56103 | ggattgctgtgcctctcgaggctgcagtgtccccaccgggcctgccaccaccatctgctc | 56162 |
| Contig G: | 1042 | ctctgacaaattctgcagatgtggagtctgyctgcccagcacctgsccacacacagtctg
 | 1101 |
| AC7455: | 56163 | ctctgacaaatcctgccgctgtggagtctgcetgcceagcacctgcccacacacagtttg | 56222 |
| Contig G: | 1102 | gttcctggagccaacctgctgtgacaaccgccccccaccttgccacattcctcagccotc
 | 1161 |
| AC7455: | 56223 | gttactggagcccacctgctgtgacaactgtcccccacctgccacattcctcagccctg | 56282 |
| Contig G: | 1162 | tgtgcccacctgcttcctgctcaactcttcccagcccaccccaggcetggaaagcatcaa
 | 1221 |
| AC7455: | 56283 | cgtgcccacctgcttcctgctcaactcctgccagccaactccaggcctggagaccetcaa | 56342 |
| Contig G: | 1222 | cctcacaacctacactcagcccagctgtgagccctgcatcccaagctgctgctgaccgac
 | 1281 |
| AC7455: | 56343 | cctcaccaccttcactcagccctgctgtgagccctgcctcccaagaggctgctaatggat | 56402 |
| Contig G: | 1282 | ggctgcctcacccastgcc------tgacagagtcaacceagaagctttagtgctcacct | 1335 |
| | | | |
| AC7455: | 56403 | ggctactttgctcagtgcctgagattgaaaaagtcaacatagaagctttagcattcacct | 56462 |
| Contig G: | 1336 | gtctcagtacctgcaactaattatgtctccgctttcaaagttggaacaa----ggcatta | 1391 |
| AC7455: | 56463 | atctcagtacctacaactaat--gtactctgctttagaaattggaacaaggatggtacta | 56520 |
| Contig G: | 1392 | tcacagacaaccctcacaaaaaacaa---accaagagactttcgatggccgtgtagtgga
 | 1448 |
| AC7455: | 56521 | ccacaatcacccctgcaaaaaaaagagaccaagaaactttcaatgaccat-------t | 56573 |
| Contig G: | 1449 | catcagtgaacaaggacagctggagtaggtagatgcctacaggtttcccagcgttgttca | 1508 |
| | | | |
| AC7455: | 56574 | cagctataaccaactgcagtttgaatcagtggatgcctata-gcttcctgaagctgtteg | 56632 |
| Contig G: | 1509 | gttccttcgtgttaaattgtatctttct-ttggtgctttgggaattctgtttccagtctt
 | 1567 |
| AC7455: | 56633 | attccttcatattaaagtgtctctttctgtgggtggtttgggaattctgtttcagtctt | 56692 |
| Contig G: | 1568 | gaatcgtatctttctggaaattgaggagcttcttcatgattattctaataaagtttacat
 | 1627 |
| AC7455: | 56693 | gggtggtatctttctgaaaattaaggaagttcttcatgattatcctaataaatttacat | 56752 |
| Contig G: | 1628 | ctctggcataacataaatgtctataggtatttccatttatttttgttaacacatcaaatg
 | 1687 |
| AC7455: | 56753 | ctctggcatagcacaagtgtctacaattacttctgtttatttctgttcattcattaaatg | 56812 |


```
Score = 225 bits (141), Expect = 5e-57
Identities = 280/502 (55%), Positives = 280/502 (55%), Gaps = 26/502 (5%)
Contig J: 8 agcaggagataagtgtacactcaggtaatttagattatataggggttcattggacacata 67.
AC7455: 35305 agcaggacatg-gtgtactcttaaatatctgagaatttactgggattcgcagggtacaca 35247
Contig J: 68 ggacttgaacacaaggcagtgctgtt-------attccatccgtagtgaacagcagcagt 120
AC7455: 35246 gggcttgaatgcaaggcagaggagtaggaaggcattccagctatagggaacagcagcagt 35187
Contig J: }121\mathrm{ aaatgcacagaaatggaagagaaaaaactgaaaacaagaagcaatgagtagtgcagtgct 180
    ||||||| |||| ||||| |||| ||| | | ||||| |||| |||||| ||
AC7455: 35186 aaatgcatagaagtggaaaagaacaaatggttgttaggaagccatgaatagtgcgctgtg 35127
Contig J: 181 tctaggaaataattatgtgagataaaagctaaacacagagagtcttgactcctgggatga 240
    ||||| || |||| |||||||||||||| || | ||||||||||| || ||||||
AC7455: 35126 tctagagaacaattgtgtgagataaaagc--aagatgtagagtcttgac-cccaggatga 35070
Contig J: 241 ggagtttgaactt-aatcaggtaga-ttattgaaagatgctggtatttgtttttctaaag 298
AC7455: 35069 ggtgtttgaacttgaattaagtagacccatggagaaccactggtatatatttttctaagg |||||||||||||||||||||||||||||||||||||||||||||||||||
Contig J: 299 caggtaagta---atttaac---------------mnnnnnnnnnnnnnnnnnnnnnnnnnnnn 345
AC7455: 35009 caggaagttacctctttaactccgtcatttgtaaatatggctaatgttactatcacattg 34950
```



```
AC7455: 34949 ataggatgtttaaagaataaattaaagaaagcattaaaatgtgcaatgcagtgcctggaa 34890
Contig J: 406 nnnnnnnnnnnnnnnnncaatggttcttataggtgtggtacttattattaagtaagctga 465
    |||| |||| ||||||||| | || ||| ||| ||||| ||
AC7455: 34889 catagtaagtcctcaataaatgattctaataggtgtgattgttgttactaaataagcaga 34830
Contig J: 466 gggaagctggagctcttttctt 487
    |||| ||||||||| |||||||
AC7455: 34829 gggaggctggagcttttttctt 34808
```

Score $=139$ bits (87), Expect $=2 \mathrm{e}-31$																																																	
Identities $=124 / 155$ (80\%), Positives $=124 / 155$ (80\%), Gaps $=8 / 155$ (5\%)																																																	
Contig KK:	2	agcttgatcaggaatgagtccatcottcttttcctttcttctctaaaagggggaatcta	61																																														
		\|																																															
AC7455:	82921	agcttaaccaggaatgagttcatccttcttttcctttcttctctagaaa-agggaaacta	82863																																														
Contig KK:	62	ttgatatctaataattattggtaaacttagaaatcag-------tattgtattttggtat	114																																														
		\|																																															
AC7455:	82862	ttaatgtttaataattattggtaaacttagaaatcagaagtcaatattttagtttgttct	82803																																														
Contig KK:	115	gtccaacagaatttcccatttccattgttcggaca 149																																															
		\|																																															
AC7455:	82802	gcccaatggtttccccattttcagtgtcaggaca 82768																																															
Score $=274$ bits (172), Expect $=9 \mathrm{e}-72$																																																	
Identities $=352 / 532$ (66%), Positives $=352 / 532$ (66%), Gaps $=39 / 532$ (7\%)																																																	
Contig L:		atcaagctttaagagtgattcaacattctcaaagtcacaaagtta----ttaaaaaatt	64																																														
		\|																																															
AC7455:	51299	atgaagttttaagcgttattcaacattctgaaagtcataaagttaattacttagaaaat-	51357																																														
Contig L:	65	ccaggattcagctccttgtatatctgtttgactttaagcccaattctttctatcacatc 124																																															
		\|																																															
AC7455:	51358	-cagaattcagcctcttgtatgtctg----actctaaagcccaatttttcctaccacatc 51412																																															
Contig L:	125	acagaacccccagtgctaacagagccagaaatttaataaacacaggtatgacattaactn 184																																															
AC7455:	51413	atagaaccttcaatactaatgaaaccagaagcttaatgagcacagttatgaaataaaccc 51472																																															
Contig L:	185	nnnnnnnnnmnnnmnnnnnnnnnnnnnnnnnt-ctttaacaaaatcatccaatccagctg 243																																															
		\|																																															
AC7455:	51473	aaatatgcaagagaaataaaacatgtaagattctttaacaaaatccac--atcggatta 51530																																															
Contig L:	244	taatggacaaggatatatatataggcttatagattaaagtggcagatattcagttctaa 303																																															
		\|																																															
AC7455:	51531	taatagaaaagag---tacattggttcatagattaaattggcaagtattcaattctaa 51587																																															
Contig L:	304	gaaccgggtcatatagtgagcctacc-attttgacttcatttttccttggagaaaactta 362																																															
		\|																																															
AC7455:	51588	-aatctgggcattttgaaggtgtacctatttcaacttcattttctcttagagagaactca	51646																																														
Contig L:	363	cagtggtccattctagtagtagggcaataggaatatccttctccctgccacaaca----- 417																																															
		\|																																															
AC7455:	51647	aagtggtcaactctagtaacaaggcaccagggacatacctttatttgccaccatactcag 51706																																															
Contig L:	418	---------ctaccccagtaatgaagagaacagcagtattttccaggtgattgtctgag 467																																															
AC7455:	51707	cacagatgttctaccacagtaatcaatagaatgccaatacttttcagg----tgtctcag	51762																																														

Score $=257$ bits (161), Expect $=9 e-67$
Identities $=305 / 417$ (73\%), Positives $=305 / 417$ (73\%), Gaps $=30 / 417$ (7\%)
Contigoo: 1 ctgcagcagaggcgggcacagcaagccatggtgttggaaatctggtttgctttcggtttc 60
AC7455: 50373 ctgcagctgcgagaggcacagcaatccatggcaatgggcgtctggttagctttcagtttc 50314

Contig00: 61 taggaaagaaaggtgaggtttct-aggatgaaatgtctcttctcactttgggactcttat 119
AC7455: 50313 ttaga--------tgaggattctgaggtacaatgtctcctcttttgttagggctcttat 50262

Contig00: 120 atactcctctcgttgagtgtcggtccaatcagaagacatcctcttatttgcatttatgcc 179 |l|| | || | |||||| |||| |||||| ||| |||||
AC7455: 50261 ataccctcccaagtgggcattggtccaactggaagccttcctgtt--ttg--tttatggc 50206

Contigoo: 180 gcc-ttttccactaagattctctaatcagkttggtatttacttg-ccattaagagttcct 237

AC7455: 50205 accctttttcactgagattctctaatcagtttgtcatttacatgtccattaagagttccc 50146

Contigoo: 238 gagcttattagggtagtcatgtttttgactcattgacttgtcatt---------agatga 288
AC7455: 50145 gctcttattaagttaatcatatttttgactcattgacttgtcatttttgtcacaagatca 50086

Contig00: 289 tca-tttttaactttacagggttctggaatgccaaatcttgcatga--attatggagaat 345

AC7455: 50085 tcacattttgtcttcacaggtttctggcatgccaaaccttatatgacttttatgggtaat 50026

Contig00: 346 gaatccaagtgacaattcagc--tagtttcagaggctaaa-tattctcttcattccc 399
AC7455: 50025 caatccaagtgacaattcagctgtaattttggaggccaaactcttcttgtttttccc 49969

Score $=306$ bits (192), Expect $=5 e-81$
Identities $=355 / 492$ (72%) , Positives $=355 / 492$ (72%) , Gaps $=22 / 492$ (4%)
ContigPP: 661 aaaagatggacatcaatggcagtcctgataccaatcattctttcctccaacc-atgtcat 719 AC7455: 36579 aataattgatgtcaatggcagccttgataccagccattctttctttcaatctatactat 36638

ContigPP: 720 aaaggagtttccagaaatttt-aaagatcttgcaattcaggaagtaaagaccaagtgttt 778

AC7455: 36639 aaaggaatgcactggcagtttcaaagatcatgcaattcaggaaatgaagaccaaatgttt 36698

ContigPP: 779 ttacttgcaag-catttttattaggatgacaaagtggaaagatatctgtatcctgctttt 837

AC7455: 36699 ttatttactagacatttttattaggatgacaaactttaaaggtttctatatcctgctttt 36758


```
Score = 529 bits (332), Expect = e-148
Identities = 392/448 (87%), Positives = 392/448 (87%), Gaps = 2/448 (0%)
Contig R: 339 gggccatcagctcctggccagggtatataaagggcccagagcaggaggaagacactcaca 398
    ||| || | | || |||||||||||||||||||||| |||||| ||| ||||
AC7455: 2814 gggtcacctgcacccggccagggtatataaagggcccagagggggaggaggacattcaca 2873
Contig R: 399 cctgagaacactcaactcctctcaccrcctcarccccactcggccccamacaccaccatg 458
    |||||||| || ||||||| | | || ||| | ||| || ||||||||||
AC7455: 2874 cctgagaacatccagctcctctccacagcccaacccacaccagcctcagacaccaccatg 2933
Contig R: is? uccgggctcctgttgcgggccccaccttctcctccctcagctgtggcggaggctgcctcc 518
    |||| ||||| ||||| |||||||||||||| |||| || |||||||| ||
AC7455: 2934 accgg-ctcctgctgcgg-ctccaccttctcctccctgagctacgggggaggctgctgcc 2991
Contig R: 519 agccctgctgctaccgcgacccctgctgctgccgcccagtgtcctgccagaccaccgtga 578
    |||||||||| |||||||||||||||||||| ||| |||||||||||||||
AC7455: 2992 agccctgctgctgccgcgacccctgctgctgccgccccgtgacctgccagaccaccgtgt 3051
Contig R: 579 gccgccccgtgaccttcgtgccccgctgcacgcgccecatctgcgagccetgccgccgec 638
    ||||||||||||| |||||||||||||||||||||||||||||||||||||
AC7455: 3052 }ccgccccgtgacctgcgtgccccgctgcacgcgceccatctgcgagccctgccgccgcc 3111
*こっ:: =: ... :.xtctgctgcgacccctgcagcctgcaggagggctgctgccgccccatcacctgctgcc 698
            |||||||||||| ||||||| ||||||||||||||||||||||||
A.: : :...jtgctgcgacccctgctccctgcaggaaggctgctgccgccccatcacctgctgcc 3171
Contig R: ô99 ccacatcctgccaggccgtggtgtgccgcccctgctgctgggccaccacgtgttgccagc 758
    | | || ||| ||| ||||||| | |||||||||||||||||| ||||||
AC7455: 3172 cctcgtcgtgcacggctgtggtgtgcaggccetgctgctgggccaccacctgctgccagc 3231
Contig R: 759 ctgtctctgtgcagtgcccctgctgccg 786
    |||| ||||||||| |||||||||||
AC7455: 3232 ctgtgtctgtgcagtccccctgctgccg 3259
```

SUBMISSION OF RESULTS

Gill, C. A., Davis, S. K., Taylor, J. F., Cockett, N. E. \& Bottema, C. D.K. (1999). Construction and characterization of an ovine bacterial artificial chromosome library. Mammalian Genome, 10(11), 1108-1111.

NOTE:
This publication is included in the print copy of the thesis held in the University of Adelaide Library.

It is also available online to authorised users at: http://dx.doi.org/10.1007/s003359901172

[^0]: ${ }^{1}$ Genbank Accession numbers when available

[^1]: ${ }^{\mathrm{a}} 15 \mathrm{cM}$ of BTA9 has been translocated to BTA14 to form OAR9 (Figure 5.1a).
 ${ }^{\mathrm{b}}$ Rearrangements in X chromosome structure have been defined (Figure 5.1b).

[^2]: As listed in the ArkDB sheep and cattle genome databases (www.ri.bbsrc.ac.uk)
 ${ }^{2}$ Maddox et al. (1996)
 ${ }^{3}$ Unmapped in sheep, cattle, goat, human and mouse
 ${ }^{4}$ FISH performed by L. Allen (1997)
 ${ }^{5}$ Maddox et al. (1998)

[^3]: ${ }^{1}$ As listed in GoatMap (http://locus.jouy.inra.fr/cgi-bin/lgbc/mapping/common/intro2.pl?BASE=goat)

