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ABSTRACT

The thesis is divided into two major parts,
In the first the problem of determining transport
coefficients in a simple two-component plasma 1is
approached from first principles and the Kinetic
equation which is derived is solved using an operator
technique. 'Runaway' electrons are also considered.
In the second an unusual natural phenomenon, cave
'breathing' is explained theoretically by means of a
diffusion equation and some experimental results are
given which confirm the theory. An extension to other

problems in Hydrology is made.

A Kinetic equation with Boltzmann-type
collision integral is derived in which the interparticle
potential is necessarily an exponentially shielded
coulomb (Debye) potential, The explicit collision
integral derived is of the Landau form, but with some
minor differences due to the more rigorous manner in
which approximations regarding the Coulomb logarithm
term are made. The first order equation and correspond-
ing auxiliary relations which are obtained on expanding
the velocity distribution function are written in terms

of an unknown operator which is related to the perturb-



ation from the equilibrium distribution function. The
mass, momentum and particle fluxes are also written in
terms of this operator. Thus, by solving the Kinetic
equation in the operator form the transport coefficients
can be obtained directly. The method of solution used

is similar to the Chapman-Enskog technique although in
this case the unknown is an operator rather than a function
and the expansion is in powers of the Laplacian operator
in velocity space rather than Sonine polynomials. An
exact solution to a special form of the Kinetic equation
is obtained using a Fourier transform method. This
special form corresponds to the equation describing
runaway electrons, although the solution obtained is not
directly applicable to the runaway phenomenon, Runaway
electrons are discussed further and an equation is derived
which is equivalent to that used by other authors. A
numerical method for solving the equation by expanding the
distribution function in powers of a small field dependent

parameter and spherical harmonics 1is given.

The 'breathing' of caves has been an unsolved
geophysical problem for some time. In certain regions of
the world, air is observed to move regularly into and out

of caves and vents in the ground at rates which are



inconsistent with the apparent physical dimensions of

such features. It is conjectured that these air movements
are caused by changes in atmospheric pressure and that the
large volume of air which is moved originates from the
porous limestone in which 'breathing' caves are found.

Two models corresponding to different cave shapes are
proposed and solved theoretically. The equation governing
the changes in pressure in the surrounding limestone is
found to be a diffusion equation and this is solved using
the integral transform technique. The results for one
model are in accord with the few published observations.
Further experimental results are presented from caves

which fit both models and these are discussed in detail.
Because of the similarity of the problem to the hydrological
problem of flow into a well the method of solution used is
extended to cover this case. The results are in agreement

with known results from the theory of heat conduction.
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CHAPTER ONE: INTRODUCTION

A Kinetic equation, describing the irreversible
approéch of a gas to equilibrium through a velocity or
one-particle distribution function, is fundamental to
most discussions of transport phenomena in gases and
plasmas. Historically, the Boltzmann equation, a Kinetic
equation for dilute gases (discussed in detail in the

1)

monograph of Chapman and Cowling ), was the first such
equation. In general the explicit form and range of
validity of a Kinetic equation is dependent on the inter-
action forces between the gas constituents. Although
there are overall similarities between the theoretical
treatment of gases (the word 'gas' is used here for the
unionized gascous phase of a fluid) and plasmas (completely
ionized ?gases‘) there are also distinct and important
differences. We will begin by discussing some of the
fundamental concepts of the kinetic theory of gases and

later extend this discussion to plasmas and point out the

differences between the two.



1.1 KINETIC THEORY OF GASES

The most basic starting point for the derivation
of a Kinetic equation is the Liouville equation which
governs the time-evolution of the N-particle distribution
function, The Liouville equation can be reduced to the

(2,3,4,5) .

equivalent BBGKY hierachy of equations
first member of the hierachy, in which the one-particle
and two-particle distribution functions are related is,

in effect, an exact Kinetic equation. By making suitable
approximations the hierachy can be made tractable;
irreversibility (which is not a property of the hierachy)

can be introduced, and an equation for the one-particle

distribution function obtained.

There are certain time-scales which are important
in following the approach of a gas to equilibrium: T,, the
'collision time' (T;zzg% where ry is the range of the inter-
particle forces and u is representative of the particle
speed) ; to' the 'mean free time', representative of the
time between collisions (tO =~ %t where A is the mean free
path); and To’ a macroscopic time which is representative

of the time a gas takes to relax from a non-equilibrium

state to one close to equilibrium in which the gas has no



'local memory' of its initial configuration.

An important difference between a gas and a
plasma is already apparent. In a plasma it is not
clear how the collision time or the mean free time can
be defined, since these times are dependent on the concept
of a 'collision' being a well-defined event. With long-
range interparticle forces a 'collision' becomes an ill-

defined period of interaction.

Returning to a gas, where these times are
meaninéhl, one finds that they differ considerably
between each other (T% <Y 1*)<K ‘To). This fact can be
used to advantage in deriving a kinetic equation from
the BBGKY heirachy. In the method of Bogoliubov(3),
for example, it is assumed that the behaviour of a gas
can be adequately described by the one-particle distri-
bution function for times 2T, and that, from an initial
non-equilibrium condition at t = 0, after a time 2T, the
explicit time dependence of the s-particle distribution
functions (Fs, S }2) becomes implicit and only arises
through a functional dependence on the one-particle

function (F1). This is not necessarily equivalent to

the statement of some authors that F1 is assumed to be



'slowly' varying. Under these assumptions the hierachy
can be solved by successive approximations by making a

'density expansion' of the Fs (i.e. an expansion in the

3 o
;?mmw; where n is the average number

o

small parameter
density). Irreversibility, for times long with respect
to T, is obtained through an 'initial' condition that
the particles are uncorrelated in the 'past' (i.e. a
long time back with respect to T,, but still f;to). To
first order in density a generalized form of Boltzmann's
equation is obtained which reduced to the Boltzmann
Equation if spatial inhomogeneities in F1 over distances

of order r are neglected. This equation is necessarily

valid for times long with respect to T,, of order t,-

The assumptions of Bogoliubov's method are
consistent with the original phenomenological derivation
of the Boltzmann equation. The first order in density
corresponds to the Boltzmann equation's describing only
two-particle (binary) interactions; the neglect of
spatial inhomogeneities over distances of order T and
the assumption leading to irreversibility correspond to
the 'st&sszahlansatz' of the Bolt;mann equation which can

therefore only describe the 'probable' behaviour of a gas



where detailed microscopic processes (over times of order
T,) are smoothed out. However, the Bogoliubov approach
is not entirely satisfactory, and, to higher than third
order in density it leads to divergences(é) which are

most troublesome in the application of the theory to dense

gases.

Alternative approaches have been offered by

4
other authors(7,8,9,‘0,11,12)

all of which can lead to a
generalized Boltzmann equation provided certain restrictive
assumptions, fundamentally similar to those of Bogoliubov,
are made., These methods are usually restricted to repulsive
interparticle forces, although the method of Hoffman and

(10) (12)

Green is not, and Sandri asserts that his technique

is not restricted in this way (although this seems doubtful

(13)

in view of some comments by Wu

I{f the BBGKY hierachy is written 1in a non-
dimensional form (see, for example, Sandri 1966(12)) two-
dimensionless parameters, nro3 and E% , the 'density' and
'strength' parameters, arise. Here ¢, is a value of the
potential which is representative for an interaction,and

k is Boltzmann's constant, In a gas ¢, can be taken as

the depth of the potential. In a plasma this is not a



meaningful step and the value of ¢ in the strength
parameter must be prescribed more carefully. The
density expansion used in Bogoliubov's method corresponds
to an expansion in the (small) parameter nro3 which has

been identified with the ratio of time-scales TJtO

1.2 KINETIC THEORY OF PLASMAS

We now consider the application of these
general aspects of gas kinetic theory to plasmas. It
is apparent that, for dilute gases, the Boltzmann equation
provides an adequate description of the gas for times of
order to' In plasmas this simple description is no
longer sufficient, andlcorrelation effects (the effects
of multiple, as opposed to binary, collisions) are
important, In plasmas this is due primarily to the
long-range nature of the coulomb forces which cause the
Boltzmann collision integral to diverge. This divergence
can be eliminated by the somewhat artificial expedient of
modifying the coulomb potential on heuristic grounds (viz.
by cutting-off the potential or by replacing it by a

Debye potential). In view of the above discussion it is



difficult to see exactly what the significance of such

a step is, and to see in what way and how well multiple

interaction effects are accounted for.

Most of the techniques which use the Liouville
equation as a starting point for the derivation of a
Kinetic equation can be applied to plasmas. Obviously
some modifications are necessary, since, as has already
been pointed out, the collision time'tb and the mean free
time t_ are difficult to define in a plasma. It has
also been mentioned that most methods of deriving a
Kinetic equation for a gas are restricted to repulsive
interparticle forces. However, in applying these

methods to plasmas, this presents only a formal restriction.

Bogoliubov proposed that the strength parameter
could be used as an expansion parameter for plasmas in the
same way as the density parameter is used in ordinary gas
theory. Before discussing this possibility there is an
apparent analogue in plasmas of the density parameter for
gases which must be considered. In a plasma, T the
range of the potential, can be identified with the Debye

screening length, an, since, on equilibrium considerations,

an is effectively the range of the potential of a charged



particle in the presence of other charged particles. It
would thus appear that nag could be identified as the
density parameter applicable to plasmas. This is mnot

so, primarily for two reasons; firstly ap itself is

density dependent so that naDj is proportional to n-

1
2

s

and secondly, one of the fundamental characteristics of

a plasma is that there is a large number of particles
inside a sphere of radius ap so that n-%<< ap and na§>>1 .
A;though naD:3 does not correspond to the density parameter

it is important. If € is defined as
2\~
€ = (nqp)

then € is very small and could be used as an expansion
parameter. In fact an expansion in € 1is equivalent to

an expansion in the strength parameter since

\ | ‘ e* :
€ = — — ~ ~‘ e ~J CPV‘=°“D
Ap na, ay, £.kT kT
and, for most interactions in a plasma, ¥ is a

r:aD

representative value for the mutual potential energy of

two particles. ‘

Bogoliubov's suggestion that the strength
parameter be used for plasmas in place of the density

parameter used for gases is a useful one. This is one



of the major differences between plasma kinetic theory
and the theory for ordinary gases. Kinetic equations

for the regime where the strength parameter (or € ) 1is
4
|

small have been obtained independently by Balescu( -

(using the method of Prigogine and Balescu(11) in which

the BBGKY hierachy is replaced by a system of coupled
equations for the Fourier components of the distribution
function and a diagram technique is used for the calcu-
lations) to first order in the strength parameter, and

by Lenard(15) and Guernsey(16) (by making a double
expansion, summing over all terms in one parameter, and
retaining the first order term in the strength parameter).
Further extensions of this work using the method of

(17)

Bogoliubov have been made by Wu and Rosenberg

Wu(13). Equivalent results have also been obtained

(8)

and by

using the cluster expansion technique of M,S. Green

(18) (19)

by Rostoker and Rosenbluth and others in which

the effects of the correlation functions, G = F -
-1 o 2,ab

F1,a E1,b etc.

, are assumed of order € or smaller in

relation to the uncorrelated product functions, F1 F

,a 1,b’

etc,

The Balescu-Lenard-Guernsey (BLG) Kinetic

equation, being first order in the strength parameter,



10.

%:GD

T , diverges for small interparticle separations

where @r_a is not an adequate representation of the
D

strength of the potential. The point where ¥ becomes

equal to kT for a given temperature is called the
distance of closest approach (&, ). The BLG equation
adequately accounts for only those interactions where
particles are always separated by distances > s, .
For these interactions only is the strength parameter

both representative and small.

(20)

Vlasov has proposed an equation in which

the inherent approximations are similar to those of the
BLG equation; it can be derived by completely neglecting
the correlation functions in the collision integral. The
Vlasov equation is, however, time-reversible and thus

cannot be used in problems concerned with the approach

of a plasma to equilibrium.

As an alternative to starting from the Liouville
equation, a Kinetic equation can be derived phenomenono-
logically using the theory of stochastic processes.
Because of the long-range nature of coulomb forces most

!

interactions between plasma particles cause only small



11.

changes in the particle trajectories. If it is assumed
that the effect of the many simultaneous small deflections
which a test particle in a plasma undergoes (under the
many-body influence of surrounding field particles) is
equivalent to a series of independent small deflections

(a difficult assumption to justify and strictly true only
if the mutual interactions among the field particles can

4
(2')), then a kinetic equation can be derived

be neglected
by analogy with Brownian motion. This approach leads to
a Fokker-Planck-type Kinetic equation which was first

(22) (23)

obtained by Landau énd later by other authors ]

In its original form this equation fails to account
properly for close 'collisions', and, since the assumption
of small deflections implies that the strength parameter
is small, must suffer from the same small-separation
divergence difficulty as the BLG equation. Also, since
the interparticle force is a coulomb force, and the many-
particle interactions are considered as series of binary
interactions, the divergence at large separation inherent
in the use of such a potential occurs. These divergences

can be eliminated by rather inadequate physical arguﬁents

similar to those used with the ordinary Boltzmann equation.



12.

12
Sandri( 2 has emploved the method of Frieman

(9)

and Sandri to derive a kinetic equation which, in the
appropriate limits, reduces to the Boltzmann equation,
BLG eqguation and Fokker-Planck-Landau (FPL) equation.

He uses an expansion of the independent variable, time,
in terms of a hierachy of time scales together with an
assumption regarding the order of magnitude of the
correlation functions and states that the divergences of

(13)

other approaches are eliminated. Wu disputes this

claim.

The ranges of applicability of the Boltzmann,
BLG and FPL equations can be summarized in terms of the

fundamental distances in plasma kinetic theory: the

ap
Debye length; n_%, the mean particle separation; and s, ,
the distance of closest approach, which satisfy the
relation dié(n-é<< an in most plasmas. The Boltzmann
equation satisfactorily describes only binary interactions,

r £ n

T. The BLG equation describes such interactions poorly,

Gi=

(r = particle separation), and diverges for large

is adequate only for small values of the .strength parameter
(r >4&,), and gives divergent results at small r. The FPL

equation suffers from both these defects and diverges for



13.

small and large r. By an appropriate combination of
the collision terms of these three equations it is

possible to eliminate the divergences and thus obtain
a Kinetic equation having a greater range of validity

(although this is not a direct logical consequence) .

(24)

2

This technique has been employed by Weinstock
(25) (13)

s

Frieman and Books and Wu All divergences

can, of course, be eliminated by the choice of appropriate

bl

cut-offs in the coulomb potential or by the use of a Debye

potential in the Boltzmann collision term.

An alternative procedure is an extension of

(4) to plasmas which has been

(26)

the method of Born and Green
developed by Green and Leipnik These authors
consider the time correlation functions rather than the
distribution functions and use a hierachy of equations
which is equivalent to the BBGKY hierachy. The procedure
is to obtain a solution for the two-particle function by
making an approximation to the three-particle function
which is good for situations close to equilibrium. This
approximation is called the 'disjunctive' approximation

and it will be shown in chapter three of this part of the

thesis to be closely related to a first order approximation



14.

in the strength parameter. The Kinetic equation

which is obtained can be written in a form similar to
the Boltzmann equation where the interparticle forces
are described by a potential which, in the equilibrium
limit, is a Debye potential. On making a further good
approximation the usual Boltzmann form obtains (with
Debye potential). This is a pleasing result since it
justifies the intuitively based use of a Debye potential
to eliminate divergences in the unmodified Bol tzmann
equation. The approach is well suited to the discussion
of transport phenomena in plasmas which deviate only

slightly from equilibrium and will be used in this thesis.

Throughout this thesis the validity of classical
mechanics will be assumed. However, one quantum-
mechanical aspect which is important in equilibrium theory
must be mentioned since the Debye potential, a result of
the equilibrium theory, is used extensively in this thesis.
This is the fact that a lower bound exists to the energy
of a system of charges of opposite sign. The existence
of such a lower bound is fundamental to statistical
mechanics. Statistical mechanics makes physical. sense

only if the thermodynamic quantities (Energy, Entropy, etc)



15.

are asymptotically proportional to the number of particles
in a system. In a purely classical system no lower bound
exists. The principals of both quantum mechanics and
quantum statistics must be invoked in order to obtain

the physically correct lower bound proportional to the

(46)

number of particles in the system

In a purely classical theory this can be taken
into account by cutting off the attractive coulomb

(27)

potential at small distances. This 1is done by
multiplying the mutual potential energy of two charges

by the factor (1 - e_r/R1), where R, is the radius of

the smallest Bohr orbit, if the charges are of opposite
sign. This term has little effect for the great majority
of interpaticle separations, but it does ensure the correct

quantum-mechanical lower bound to the energy of a pair of

opposite charges.



16.

1.3 SUMMARY

In this part of the thesis a Kinetic equation
is derived following the theory developed by Green and
Leipnik(26) and a method for obtaining the transport
coefficients from this equation is given. In chapter
two for subsequent reference, a detailed discussion of
scattering processes in a Debye potential field is given.
The transport cross-sections, generalizations of the total
scattering cross-section, which are needed to determine
the Kinetic equation in explicit form, are evaluated
using a cut-off coulomb field and a Debye field.
Approximate analytic expressions are given for both the
scattering angle and the transport cross-sections in the
Debye field case. The techniques used are similar to
those used by other authors(28’29), but the resultiﬁg
expressions are a slight generalization of previous

results. A rapid numerical procedure for evaluating

the scattering angle is given in Appendix A.

In chapter three a Kinetic equation valid
for small deviations from equilibrium, but restricted
in no other way, is derived in a form closely resembling

the Boltzmann equation, but in which the interparticle



175

forces must be described by a Debye potential. Equations
are developed from the BBGKY hierachy which is curtailed
by the use of a disjunctive approximation. These are

(26)

14

formally equivalent to those of Green and Leipnik
except that they involve the velocity distribution
functions rather than the time correlation functions.
The solution obtained by Green and Leipnik is used and
is written in a Béltzmann equation form. The approx-
imations employed in the derivation are discussed in
reference to those used by other authors. It is demon-
strated that the equation is accurate to first order in

the strength parameter.

In chapter four the collision integral part of
the Kinetic equation is evaluated explicitly using the
results of chapter two. The form obtained is similar

(30)

to that first given by Landau but it 1s not subject

to any restrictive conditions. An operator relating the
non-equilibrium and the equilibrium velocity distribution
functions is defined, and the collision integral 1is
rewritten in terms of this operator. The Kinetic

equation is thus reduced to a different type of equation

where the unknown is an operator rather than .a function.
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Since the mass, momentum and energy fluxes can also be
expressed in terms of this operator, a knowledge of its
form makes it possible to estimate the transport
coefficients which relate the fluxes to the gradients

of hydrodynamic quantities.

Historically, Chapman, in 1916, and Enskog,
more rigorously in 1917, were the first to derive
transport coefficients from the Boltzmann equation and
the method developed by them, the Chapman-Enskog method,
is described in detail by Chapman and CoWling(1). A
functional ansatz, similar to that used by Bogoliubov
in reducing the BBGKY hierachy to a Kinetic equation, is
fundamental to the Chapman-Enskog method. The velocity
distribution function is assumed to depend on time, only
through its dependence on the macroscopic hydrodynamic
variables, number density, mass average velocity and
temperature, and the resulting equation is solved by
expanding the deviation from the equilibrium distribution
function in orthogonal (generally Sonine) polynomials.
The functional ansatz ensures that rapidly varying solutions
of the Boltzman equation are filtered out. Such solutions

would describe processes which have characteristic times
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much less than To. Because the relaxation time for
like particles in a plasma is much less than that for
unl ike particles, the Chapman-Enskog method can be used
to describe situations where the plasma components have

different temperatures.

(1

Chapman and Cowling briefly discuss the

case of coulomb interparticle forces to first order in
the Sonine polynomial expansion (although they overcome
the divergences in an inadequate way), and also the case

where external electric and magnetic fields are presént.

(31)

Marshall has described the entire transport

=

coefficient problem from the Chapman-Enskog point of

view in some detail to first and second order using a

(23)

have

:variitional procedure. Spitzer and Harm

tegrated the equations numerically for the zero’

(32)

magnetic field case and Landshoff has calculated

coefficients to third and fourth order in the Sonine

polynomials when a weak magnetic field is present.

Kaufman(33) has found transport coefficients for a large

magnetic field, Robinson and Bernstein(34) have made

similar, but more general calculations using a variational

(35)

procedure, and Kaneko has calculated thermal conduction



20,

and thermal diffusion coefficients in a magnetic field

to sixth order in the Sonine polynomial expansion.

(36

Braginskii ,) has evaluated the transport coefficients
for the case when the temperatures of the plasma

components are not equal.

Other methods which are available for the
discussion of transport coefficients are the mean-free-

path method which was developed prior to the Chapman-

(37))

Enskog method (see, for example, Jeans the method

(38

’

of Kubo ) which is equivalent to the Chapman-Enskog

method(39), and which has been used by Green and Leipnik
to discuss diffusion in a strong magnetic field, and the

(40)

many-moment scheme devised by Grad which is the only
technique available which is not restricted to small
deviations from equilibrium. In chapter four of this
part of the thesis the Kinetic equation in operator form
is solved by a method which parallels the Chapman-Enskog
me thod. The unknown operator is expanded in powers of
the Laplacian in velocity space. This expansion
corresponds to the usual Sonine polynomial expansion and

it similarly enables the transport coefficients to be

obtained without completely determining the operator.

(2

6)

The generalization of the method to plasmas in the presence



L

of a magnetic field is briefly discussed,

The phenomenon of 'runaway' electrons is
investigated in chapter five. The collisional drag on
an electron in a plasma is a function of the speed of
the particle. If a uniform electric field is present
the resulting acceleration can exceed the collisional
deceleration for particles moving at greater than a
certain critical speed. Such particles thus accelerate
continuously and they are called 'runaway' electrons.

If the field is weak the critical speed is much greater
than the average or thermal speed of the electrons and
the flux of runaway electrons is small, The basic
problem is to evaluate the distribution function for
runaway electrons and the equation which governs the
behaviour of the distribution function can be derived
from the Kinetic equation by assuming that the electrons
interact with an equilibrium background (valid if the
number of runaways is small) and using the appropriate

high speed forms for the collision integral.

An approximate form of the equation has been

studied previously by Dreicer(41). A more fundamental

discussion of the problem, in which the correct form of



22,

(42)

the equation is used, has been given by Gurevich
who also has considered a generalization to the case
when the background particles are not necessarily in

equilibrium (Gurevich and Zhivlyuk(43)). The problem

has also been discussed by Kruskal and Bernstein(44)
who consider only a Lorentz gas (i.e. interactions of
electrons with electrons are neglected). The
expressions obtained by these authors are notin

complete accord with one another and their estimates

of the runaway flux are generally dependent on additional
(42)

physical considerations. The approach of Gurevich ,

for instance, is valid only for particle speeds below
a certain limit and his solution becomes unreal above

(45)

this. Lebedev , however, has used a similar method

which is not restricted in this way.

In chapter five of this part of the thesis
the Kinetic equation appropriate for runaway electrons

is derived from the results of earlier chapters and 1is

(42)

found to be similar to that given by Gurevich and

Lebedev(45). A numerical method for solving the

equation is developed which employs an expansion in an

electric field strength parameter and spherical harmonics,



23,

CHAPTER TWO: SCATTERING IN A DEBYE FIELD

The dynamics of the interaction of an isolated
pair of plasma particles can be determined using a
coulomb potential. Because of the extreme long-range
nature of this potential certain integrals basic to
plasma kinetic theory are found to diverge for coulomb
interactions. It is generally known however (see, for
{26] and Green(27) in

example, Green and Leipnik ), that

any real plasma, the presence of other particles has the
effect of modifying the interparticle forces in such a
way that these divergences are eliminated. In a later
chapter it will be shown, by using the results of Green
and Leipnik, that the irreversible behaviour of a plasma
can be described by means of a Boltzmann-type equation
in which the interparticle forces are given by a Debye
potential. In the explicit evaluation of the collision
term of this equation it is necessary to determine the
values of some integrals which occur quite frequently in

plasma physics. These are the 'transport (or transfer)

cross-sections'. The n-th cross-section is defined by

¢ = fo-csme) B an = [0-csm0) ao
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" ) 2 . . .
where 6 is the scattering angle, 37 is the differential
cross-section and dQl is an element of solid angle.

This may be written as
oo

P zng(\—cos“e)bdb ..... (2.1)

n
o

in which b is the impact parameter, by using the

familiar expression for the differential cross-section

D& b db

5_(_‘)_ i simB 40
The case n = 0 yields the total cross-section: the
cases n = 1 and n = 2 are the only others which occur

in the evaluation of the collision integral and further

discussion will be confined specifically to these.

If a coulomb potential is used to determine
the dependence of scattering angle on impact parameter
(Rutherford scattering) the transport cross-sections
diverge. In plasma kipetic theory qualitative
arguments are frequently used to modify the coulomb
potential and make these cross-sections finite. For

instance, it can be assumed that any pair of particles
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which are in a cloud of multiply interacting particles
can be considered as a separate, isolated, pair inter-
acting in a binary fashion. The effect of the other
particles is assumed to be manifest as a modifying

factor in the two-particle potential. From equilibrium
theory the appropriate force between the two particles

is expected to be that described by a Debye potential.
There is evidence that this description can be rigorously
justified as a good approximation and this justification
will be considered further in a following chapter,

Often in the literature a kind of cut-off coulomb
potential is used (where the cut-off is in impact
parameter rather than the range of the potential). This
can be justified, either on similar, rather inadequate,
phenomenological reasoning to the above,or by using such
a potential as an approximation to a Debye potential
which can itself, as stated above, be justified by more
rigorous means. Many of the results presented in this
chapter are comparatively well-known, although some of
the techniques used in their derivation, and the notation,
are new, A detailed comparison of the Debye and cut-off
coulomb potentials appears to be lacking from the

literature even though it is frequently stated that they
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give similar results.

2.1 SCATTERING IN A CUT-OFF COULOMB FIELD

If n, and e, are number density and charge

for type 'a' particles in a plasma of temperature T,

the Debye length, a,, is given by

-2 2. nae,
E. kT

The Debye (or Debye-Hueckel) potential 1is

N I (2.2)
where r is radius vector measured from the potential
source. The Debye potential is thus an exponentially
screened coulomb potential; for small r(La;) it is
almost the same as a coulomb potential, while for large
r(Day) it is much weaker. A test particle moving in a
Debye field is thus effectively screened from the field
particle for large r and sees the field as a coulomb one
for small r. Because of this a cut-off coulomb potential

could be used to approximate the Debye potential: in such
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a field the potential would be coulomb up to r~a,

and zero beyond this. By considering the dynamics of

a two particle interaction with this type of potential

the dependence of scattering angle on impact parameter
could be found and the tfansport cross-sections evaluated.
This is still a difficult task, however, and usually a
further approximation is made to simplify the problem.

A cut-off can be made in the impact parameter rather

than the field so that particles with impact parameter

greater than a_  are assumed to be unaffected by the field

P

particle, while those with bg a_ are assumed to behave as

D
if they had moved in a coulomb potential for all time,

rather than only during the time when the interparticle

distance |r | (or r) is less than a.

Suppose that the impact parameter cut-off 1is

made at b = bo’ Then
& = O b> b,
b
et to = Lo b< b,

Here £ is the relative velocity of the interacting

particles and the suffix zero indicates initial value.
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A is defined by

W e
4TNE, ™M
m_m, ) -
where M ( = s ) is the reduced mass. It is
a b

convenient to measure all lengths in terms of a  and

write accordingly

and to introduce the parameter, Q, defined by

2 A
Q"D Pcl

Q =

Q is thus the ratio of the potential energy of a test
particle in a coulomb field at r = a to the total
kinetic energy in the centre of mass frame. It should
be noted that Q ~ —%%ng (¢ denoting potential energy)
and Q is thus closely related to the strength parameter
mentioned in the previous chapter. In terms of B and Q

equation (3) may be written
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Using these expressions the first three transport

cross-sections are easily evaluated to give

&o = Trabl -Bol
D G 4B +Q"
= a | = L
dl “ D Bo 2_ :- h( Q’L ) ..... (2'4)
N . 4_B°1.+Qz) A 43‘: Ql
61 = T‘-QD {Q ‘“( Q" *Boz s Qi}
I{f the impact parameter cut-off is made at the Debye
length (i.e. B = 1), then, since Q is generally small
(N10—3 to 10_8), the cross-sections are approximately
<>/o S —quz
2 2 2
s = TarQ' w3 (s
a 2 \ _2_) . |
: N _ 5
The term éh(4;? ) (or l"haJ ) is often
called the 'Coulomb logarithm'. In this thesis a more

general expression will be referred to as the Coulomb

logarithm, This will be defined by
b Agcaer g SR B R s (2.6)
TayQ

Thus, for the impact-parameter-cut-off approximation the

Coulomb logarithm is
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A o= wW(E) - \n(ﬁzﬂ)

@ Q! |e.eu)

A fﬁrther approximation to J\c, where %M/f'is replaced
by the mean kinetic energy % kT, is also called 'Coulomb
logarithm' in the literature, and this form appears
extensively in plasma kinetic theory calculations. The
justification for using both this approximation and the
cut-off potential is essentially qualitative. It 1is

defined by (6) which arises naturally from the theory

used in this thesis.

(47

Sivukhin ) presents an interesting attempt
at a more quantitative justification for the use of
and the impact-parameter-cut-off potential. He supposes
that the interaction time is finite and considers a
problem more closely allied to a coulomb potential which
is cut-off at a certain distance from the source. He
obtains a term essentially the same asakc and thus
demonstrates the close approximation of the cut-off in
impact parameter to the cut-off in the range of the
potential. This latter must still be justified by a

phenomenological argument.
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2.2 SCATTERING IN A DEBYE FIELD

Scattering in a Debye potential has been
studied by Everhart et. al., Lane and Everhart, and

(28)

Firsov Their work has been extended to more

general exponentially screened repulsive potentials by
Baroody(zg). This can be extended to cover attractive

potentials and general expressions for the transport

cross-sections obtained.

Consider the scattering of two particles (of

' and 'b') in the centre of mass system. If ¢

types 'a
is the coordinate angle representing the displacement
of the relative position vector r with respect to some
fixed direction, then the solution to the orbit equation

(48)

(see, for example, Goldstein , or any other book on

classical mechanics) 1is
'\A.
: 2E. 2VY )2
19' = ’9 == é'u' a2~ T2 — WU
o MU ™ML
tko

where u = ot L =r Xxp, M is the reduced mass, V is
the Debye potential (equation (2)) and E is the total
energy. If r,, is the minimum value of r (the distance

of closest approach) and u, = 1/r,, the scattering angle,

6, is given by
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U _
u g du{&i 2y _uf} :
A L_1 MLL

u_ can be found using conservation of energy,

SE]
Nl

B
w. = wlp -F7),

where V_ = % e—r'."/a1> is the value of the Debye
potential at r = r . On using this expression for
u, and transforming the above integral by a change of

variable to x (= L= ) it becomes

Um

\ P':. A4 Y2
™ 6 _ ° T ™ 2
T3 = S‘*" s "‘}
"o P" ™

It is convenient to rewrite this expression in terms of

Q and a new parameter, y, defined by y = g_ (thus y

is the inverse of the distance of closest approach

measured in units of Debye length). Hence
\ ey -
-Qxy &
T _9 _-| dx —— = %" oottt (2T
2 2 l—Qu e '3
() S
In this form -only one energy dependent parameter (Q)
is involved. In previous calculations two parameters
are used which are both energy dependent. They are 'c'

the distance of clesest approach in head-on collision and
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d lar

repulsive forces.

& Y
*K ] , parameters which are meaningful only for
r=C

The impact parameter can be defined as the
length of the vector which is the perpendicular drawn
from one particle to the initial line of motion of the
other (i.e. b = /iz \J3><£ \ ). This is related to
the distance of closest approach and the energy parameter,

Q, by

Y -4
By +Q\je5—l = © (2.8)

Equations (7) and (8), by eliminating y between them, are
sufficient to determine the scattering angle as a function
of impact parameter for any Q. It is not possible to
determine the exact nature of this dependence analytically,

although a good approximate solution can be found for the

case of small Q (which is relevant here). For the more
general case one must resort to numerical methods. This
has been done by Everhart et. al.(28). An improved

method, in which the difficulty due to the divergence of
the integrand in (7) is overcome, and the results can be
obtained rapidly to as great an accuracy as desired, is

presented in Appendix A. Returning to an approximate
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evaluation, equation (7) can be written

! -® "‘(13 =¥z i
- &x[ <Le:l/ = x’) - (\—x’) l]
) \-Q‘d e

! ST Sy - ~tay g o
5(\-::‘) ‘ztl—{\+ Qe ‘(i-xe < )} ] dx
_ -x)(l~@y e ) :

[

Pio

1

'y "(xg Yy
Suppose that A = Qye °(1-xe Me )_ Then, if A is
(-x(- Qye™9)

small in the interval x = <0,1> , the second part of

the integrand can be expanded to give

"/‘3 ]
o 8ge T 2N May o9 4
- \ = =
2 2U~Qée”’)gﬁ st <\ =S i ) i

(=]

Separating the integrand into two parts and integrating
by parts, changing variable to 1/x and integrating by
parts again reduces this to a known integral represent-
ation of the first order modified Bessel function of the

second kind,

Q —st i
9 .= %(\-Q-ae""'*’)S e T (x*-1)" 4X

\—%%é-m’ K'(h\;) .

The approximation that A is small is valid provided
/

s _ v,
l—‘ﬁ——-—Q © |« which is true provided |Qlye™? is small.
\—Qkae3
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It can also be seen that, for small A, lel ~ A %

which indicates that the small A approximation is valid
only for small scattering angles. In view of these
facts it is meaningful only to write the solution, valid

for small 8, as

\
e =G C1 IR (2.9)
. 2
This solution has been obtained by Baroody (1962)( 9)
for repulsive forces using a similar method. It is

valid not only for small 6, but for relatively small y

(y & tQl™).

It is possible to find upper and lower bounds

for ® which are valid for all y by using the inequality

_\/15 ‘/ﬂ

| + g‘ﬁ4ﬂfq L e e g 1

so that

=ty >

"‘(xs
Qye HE ) 0.

quje

VAN

Qxye [y (<)

NVAV/AN

The left- and right-hand sides of these inequalities when

substituted into the expression for the scattering apgle

(7) give upper and lower bounds for g - g. On integrating

we find
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-4

~VA

Qye™® & g £ Qyly+) e” C2> o
= —— sS\n = . =1 3
2-Quye e z . (1—Q\je_/\’)tj+Q\je s S
which may be written as

Qye" - Qyly+) € i)
——| s'\n% < == 7| e 2.
L -aQye ? 2-@ye?)y + Quye .

_ o v -

Provided |2(Qye " - N« {(2 - Qye™™ )y + Qye |,

a relation which holds for large y (say 2 10) independent
of Q, either side of the inequality (10) is a good

approximation to shlg; Also, since for large vy,

2
de—%—+> Qy, using equation (8)
2 =Yy
l—Qy e B
Q™ ( : 9 | — 8
Q*y* e ™
Hence

1-Qy e

-‘/\J -‘/‘j -1 a
Q < | — e Q
e {l i 4(@—?:’—-%—)} > T os
Y

This shows that, in the large y limit, sh1%—>-—é%——3.

4B + Q
This is the result obtained using a coulomb potential and
is expected since large y corresponds to the case when
the test particle penetrates well into the regions where

the Debye and coulomb potentials are close together in

value.
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2.3 TRANSPORT CROSS-SECTIONS IN A DEBYE FIELD

The results of the previous section give the
scattering angle as a function of y for specified Q.
Together with equation (8) this is sufficient to
determine the transport cross-sections. The zerorth
cross-section (i.e. the total cross-section) is infinite,
although this is so only in the purely classical limit,

-

since dl::—ZW[bYeﬂ ) To evaluate & and &, we

) 2
o

must use the analytic results corresponding to large and

small vy. To do this it is necessary to divide the

integration over impact parameter into two parts: zero

to b1 (or B:) and b1 to infinity, where the choice of b

will be made later.

1

For large y, which corresponds to small B, it
has been shown that the scattering approximates to coulomb
n

scattering. If 6;(B1) denotes the contribution to &

from integration up to B,, then, for small B1, equation (4)

can be used to determine 6:(B1) and <£jB1). Hence
\ 2 2 4B+ Q"
G (8) = tmaal In(FEFE)

5.(8) = 24,(8) - Ta} Q*(32=)



38.

The remaining contributions to &, and &, come from

integration from B1 to infinity. In this range the
approximate solution 6 = QK1(%) (equation (9)) can
be used prqvided B1 is such that this solution is valid
at B = B1. In other words the value of y corresponding

to B = B1,y1 say, must be such that |Q} Y4 eJ@' is small
since this condition 1s sufficient for the validity of
(9). The use of the coulomb approximation in the lower
range of integration also places a restriction on B1
(and hence y1) since it has already been shown that this

approximation holds well only for y (i.e. Y1) 2 10.
)
Thus B1 must be chosen to make £ 2;10 and |Q|yﬂ e "

small and it can be seen that this is only possible if

1

o ). This is generally the case.

Q] is small (K

Returning to the integration from B1 to infinity

we use the fact that @ = QK1(%) is a small angle approx-
2
imation to replace 1 - cos8 = 2 Sinzg = S Q=%Q2(K (1])1
2 2 'y
in the integrand for &, obtaining
o0
2 2 1\ 2

0/. - 6,(3.) = NG a, S{K(g)} B4R .

B

. . =Y
Since B, must be chosen so that [Q]ye ¥ is small for
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B:>B1, in the range B1 to infinity Bﬁi%. Making this

substitution and integrating gives

&, - 4,(B) = Tfa:Q{B‘ KO(B‘)K,(B,‘)—%1{(&(8‘))1—(KO(B)Y}]

Now ¥y 2> 10 and B,= so that B1£-%6 and the limiting

4
1 V4

(small B1) forms for K_, and K, may be used.
: 2 .2 B,

s -4@®)=-TayQ[In% ~¥~5] (2.12)
where ¥ is Euler's constant ( 0.577216). Also since

l
\Q\y1e‘@.<< 1 and y12;10, \Q!Y1<K 1 or, using B, ~ % ,

1

ol K B1. Using this fact to simplify equation (11) and
combining this with (12) gives

g = -TMarQ [n@l « ¥+ § —\n4]

g = -ma @ [Inlal - 0.3091] oz (2:13)

a result similar to that obtained by Baroody for repulsive

potentials.

To evaluate o, the large B contribution remains

to be found. This 1is

2\'\’[ (\- Cos‘e) b db
b

&, ~4,(8)

o0
A

2 (o028 _ .40
8Ma_ L(sm S & S\ﬁ‘z)BJ\B .

"
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23

In this range of integration sinfg 4 sin % and the
integral reduces to
o0
5 -4,(8) = gTaz|sn g Bus = 2(g-qm) L. (2:14)
8,

To estimate the error caused by neglecfing the siﬁ+%
term we can use the inequality (10) modified by the
known condition that \Q\ye-‘:j is small to obtain

o

o0 4
' “) o i
Qye 40 g4 Qye “(4+1)
X{——-—?_ }848<gsnie B<g{—23 B 4B,
B

Making the change of variable to x = %:&4B this becomes,
since |Q| is small,
o0 o0 oo
4 -3 -x L4 4 4+ -x
ZQK x e dx < Jsm 2Bd4B <2ij(§+i) e dx
4B| BI 43.
which integrates to
oo
Q+ . 49 Gﬁ
\-6_8_,1 (\-38.) < ‘Sm & B4B < ‘-é—é‘l(\-\-?)B.)
®,
where small terms have been neglected. Since B1 is small
we have
oo
a4
+ 0 o =
XS\Y\ a BcLB o \65‘1 ..... (2 \S)
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Since the conditions \Q\é(B1 and |QIK 5 0 this term can

be neglected and on combining (11) and (14) &, obtains as

S =28, —MWas Q"

2

The inequality (10) can be used to determine

Isﬁlg Bd4B and hence &, in the same way as it was used
8,
to evaluate the siﬁ*% term. This results in the equality
an A 5+1B -28,
TQ'al E,@8) < d-d(e) < TQal |E08) + 222 &7
oo

where E1(2B1) is the exponential integral J e x " dx .

28,

Using the smaltl BJl

form gives

Qa2 (Ing T eind) {&-4.B)-TQag (n& « T+ In4 ~§)

a result which is consistent with (412) since ln4—%<%<ln}4.

2.4 COMPARISON WITH THE CUT-OFF POTENTIAL

The coulomb potential with impact parameter
cut-off at the Debye length gives results which are in

remarkably good agreement with the analysis using a
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Debye potential, The cut-off potentidl produces a
more realistic finite result for &_ . The relation
between &, and &, (equation (16)), which holds approx-
imately for the Debye potential, can be seen to hold
exactly for the cut-off potential. In comparing the

results for 6: it 1s convenient to consider the Coulomb
=1

logar1thm defined by JN.= Toa

The cut-off and Debye

field values forJ\.are

A\ 2 y
ctioff AL \“\—5\ = —lhiQl +o7
s (2.17)

.36

~ -nl@l +03 = ln T -

Debye

The agreement is very good since, as |Q| is small, the
logarithm term is the dominant one in each expression.
Exact correspondence is obtained when the cut-off is made
at about 0.7a;, a value which must be considered very
close to ajy due to the comparative insensiti?ity ofj\

to the exact position of the impact parameter cut-off.
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CHAPTER THREE: KINETIC EQUATION FOR

A PLASMA

The rigorous derivation of a Kinetic Equation
is not the main aim of this section of the thesis.
However, since a Kinetic equation is a necessary starting
point in most discussions, in particular the present
discussion, of plasma transport theory, and since most
other discussions lack rigor in this respect, an outline
of the derivation of a Kinetic equation from first
principles will be given in this chapter. Theée method
used is an extension of the technique developed by Born

(4) (49)

and Green as summarized by Green . Much of the
mathematical detail follows that of Green and Leipnik(26)
and will not be repeated here. However, sufficient
detail will be retained to keep track of the magnitude
of the approximations made so that the accuracy of the

final equation can be compared with those of other authors

(considered at some length in chapter one).
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3.1 THE HTZRACHY OF EQUATIONS

We will number the particles (electrons or ions)
of the plasma 1,2,3...., and denote the mass, charge,
position and velocity of the i-th particle by m , €., x,

and §; respectively. The phase-space distribution function

E is defined such that, if

- _r[ d._x; &_\9‘._
X TT (N ’

then F,df) is the probability that the a-th constituent of

d ()

the plasma consists of N, particles (a = 1,2,...) and the
i-th particle will be found in the element of actual space,
dx,, and the element of momentum space, dp,. The average

value of any microscopic quantity G is

&> =) (G 01 . (3.1

where the summation E; is over all possible values of the

N F', is a constant of the motion and satisfies the

a * N

Liouville equation.

The one-particle distribution function, f (or
f,), is the first of a sequence of functions, f, f2, f3...

(or f‘1 f f

y ab ?

..), which characterize the velocity

abe
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distributions of groups of 1,2,3.... particles in a
plasma. These functions may be defined quite generally
by

f,o= {3 6. Sl=-=) §(3-3)>

A= {36 8-m) $(5-3) T 4, S(=-m) $(-5))

f

abe  ? etc.

, similarly. These definitions written in the
form (1) in conjunction with the Liouville equation lead

to the BBGKY hierachy of equations, the first two being
ex¥

A, ¥,  E. f, , 2%, oF B
S N NEPA L

zﬁab +-§ . ?__C-L _‘_'g = bFﬂ\- Eixr aFa\s _E._:_xr ?_ﬁll- acpq\-.{“ D__E’" | B_E"\'] "'"(3.3)

3t 2oz 720" 3xm e TE. T me W | 3 [Mad3. m, 2%
1 3‘?,\‘ BFa\:Z | BQL( a_Ff‘\" —
> I EranErglees = o
<
1 eKr - - -
where F is the external force acting on a particle of

the a-th type and <, is the mutual potential energy of

two particles of types a and b and is thus, in a plasma,
e1 eb

the coulomb potential, 4hf=ZﬁE_F ;¥ 5 a5 Xy

The hierachy is insoluble until terminated by the intro-

duction of a suitable approximation,
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3.2 TERMINATING THE HIERACHY

In order to make the hierachy (3) soluble we

(26,49)

follow Green in borrowing a technique from

equilibrium theory, the 'superposition approximation'

of Kirkwood(50).

na\a r‘bc n

ac

abe n. N,

where n_ = jfa ds. (n, , Nae. similarly) is-the
number density of particles of the a-th kind at the
(27)

point x_. Green has shown that the superposition
approximation is a good approximation for use with

plasmas and is possibly better with plasmas than with

ordinary fluids, An expansion in powers of the parameter
i%?, the 'strength parameter' of chapter one, leads to

the superposition approximation when higher than first order
terms are neglected. A further consequence of this 1is

that the Debye-Hueckel approximation of equilibrium theory
is rather a better approximation than is generally suggested
and the range of validity of the Debye-Hueckel theory
extends much further than the approximations used by

Debye and Hueckel.
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The non-equilibrium generalization of the
superposition approximation, the 'generalized super-

(49)

position approximation' is

It can reasonably be expected that this approximation

is as good as the superposition approximation and is
equivalent to a first order approximation in powers of

the strength parameter. That this is so can be

illustrated in the following way. The distribution
functions f,, f,, etc. are 'mormalized' to the number
densities n,, n,, etc. As a consequence, in equilibrium,
the generalized superposition approximation reduces to the
superposition approximation. An alternative generalization
of the superposition approximation, which is independent of

it, is

F. F. F
F — a b ac I 3.5
abc ‘_—_q F.b Fc ( )

where the F,, F, etc. are 'normalized' to unity (i.e.
f, = n E, etc.). Equation (5) holds trivially in

equilibrium, and can be seen to be accurate to first order
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in the strength parameter by comparison with the cluster

expansions used by Rostoker and Rosenbluth(18) and
others(ﬂg). The cluster expansions may be written
e = RR .+ G, = L. (3.6)
Fﬂtag_ = Fa. F\, F: i G—qb Fc_ s G—\ac FQ T Gqc Fb S 3a\ec. ..... (3--’)

To obtain a Kinetic equation accurate to first order in

z
the strength parameter one assumes G~ € , g_.. ~ €

where € = (nas )-)l can be identified with the strength
parameter (see chapter one). Hence
qu Gbg Gab Ga: Gu‘ﬂ Gb¢ Gﬂb Gb: Goc 2
-+ “+ - ~J (=
. E = F.R E

This expression can be added to the right-hand side of
equation (7) to obtain an alternative expression valid
to the same degree of approximation since g, . ~ e”.

This can be factorized to obtain the generalized super-

position approximation (5) plus terms of order € as

required,

Instead of using the generalized superposition

approximation to terminate the BBGKY hierachy, a further

(49),

refinement, the 'disjunctive approximation' (see Green
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which is considered also to be an improvement, will be

(&) (o)

used, If £ f,o, ... are the local equilibrium

a s

distribution functions ('local' in the sense that the

macroscopic variables n, u and T depend on position and

\

time) and if f_, £, , ... are defined by

b

etc., then the disjunctive approximation is

N \ \ \ \

R I -k (52)
abc {q\’ ‘&; {-ac { {Vb {:c

o

-

-+

This is closely related to the generalized superposition
approximate (5) and to the cluster expansion (7), and these
relationships indicate that it is at least as good as a
first order approximation in powers of the strength
parameter, On making the substitutions f, = ft)+ f;

etc. in equation (5) and neglecting terms higher than first
order in the deviations from equilibrium, f; s f;b etc., one
obtains the disjunctive approximation. To compare the

dis junctive approximation with the cluster expansion it is

convenient to rewrite equation (7) as

F

abe

= Fub Fr_ Bl Fbc Fc\ * Ec Fb - 2F¢x Fb Fc o aqbc
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Equation (8) can be rewritten as

26 € £
+-——————-

F : Fach+ Fcha+FaCFb _2E‘FbE Na Ny N

aba

and the correspondence between the two expressions 1is
obvious. These results indicate that the disjunctive
approximation is at least as good as first order in €.
It should be noted that the disjunctive approximation
holds trivially in equilibrium and is a most suitable
approximation for discussions of transport phenomena

where deviations from equilibrium are small,

3.3 THE KINETIC EQUATION

The hierachy (3) can be simplified to

o

LR v ) =0

= . L R (3-9)

2 ‘ S . 9 , )
2—%" ~+ %a' (ﬁ‘g‘g,\ i 5___9_% (fu5) ~ g_g—"(’&ﬂ_\,..) + aigh'(ﬁu.‘l\,,) = O

l

o

where Y\, is the mean acceleration of type-a particles
and M, is the mean acceleration of type-a particles

conditional on a particle of type b being at (x,, 5.).
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f,S. is the particle flux in actual space and f, N, is
the particle flux in velocity space. We have, exactly,

the relation

v xt ext
where Ez (= ea[ge + EF x B )) 1is the external force

on a particle of type a and <Zf£>> is the mean force on
particle a due to all other particles ( 3 denotes

summation over all particles except the one in question).

<§t§> can be expressed as
£4ZE) = -2 (6 100 3P aman - £ (£ B en s,

where an amount f, f, has been added and subtracted from
the integrand to separate the macroscopic contribution,

zbﬂﬁ_ 2:%: dx, 4%, This term can be added to the
external force to obtain the total macroscopic force and
it corresponds to the Vlasov term contribution to the

Kinetic equation (see chapter one). If the macroscopic

force, F, , is defined by

F = —Z SS I8 B‘qu dx, B0
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then M\, becomes
| ! ! acp.,\.
S P EZ”EQ ot (- LR ) 48 (3.10)
Similarly we obtain

A D s U_
Y_l"ab N M“Ea {‘qb < Ma B__:_CG

This procedure separates long-range and short-range
effects, The former are grouped with the external
forces and the latter will contribute to the collision

integral which must therefore automatically include the

effects of shielding. I1f a shielded potential 4ﬁb is

defined by
QKPL BCPE \ a<p¢: ( Fqbc )
“ta . Tl — = ke dx, &35,
= " o tL)mmllEl R e 8

then equation (11) becomes

.Y_Lab =

\
m, —= Mg 2 Xa

In equilibrium Y, reduces to the Debye potential (equation

(2.2)).

Equations (10) and (12} can now be substituted

back into the hierachy (9). To simplify the resulting
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expressions we introduce the functions U, Y

.etc.
and X: ,X$, ... etc. defined by
€q. N -Fn N
A R A AE R
a . ab

(In this notation the disjunctive approximation is
\ A \
ab: Tq\, X X i Ta. . X\? - X.‘ )

After some manipulation
and using the fact that f?

and ﬁ: satisfy the same
equations as f, and f, , the first two members of the

hierachy reduce to

Da(ﬁc)m = Z, U o 2?;“’ [ag( wfm a‘[ aégﬂ A_ac; &E, .....(3.13)

D Al s e S AR 5 (3.14)
= 2
where D, = %t ~ g, g_x‘ e F. S
D.= D 2 0 sy
ao a + -g_b " ‘a_-__z_b My —hk th

and

(o)
! BQ“‘ abe (0) N (0) .\ (o) BX;L
Aa\a = Z ‘[‘j’m 3:{‘ [{(ﬂ .F“) bE (F X;bc- Fﬂ- X;\J n {:g i_g ]d‘xc J‘_.g_
with A,, defined similarly
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The disjunctive approximation is now used to eliminate

fa\bc from the expressions for Aab and Aba' The resulting
equations are identical in form to those obtained by
Green and Leipnik(26) except that the equations of these
authors describe the behaviour of the time correlation
functions which, in the above expressions, are replaced
by the velocity distribution functions, The method of

solution can now follow Green and Leipnik exactly and

need not be repeated in detail here.

Equation (13) and the assumption that the
particle densities are effectively constant within a
sphere of radius of order a,, the Debye length, can be
used to simplify the expressions for Aab and Aba. If
the terms in these expressions which are small for small
deviations from equilibrium are neglected equation (14)

becomes

D

ab

s
Yab  m,
which, apart from the inhomogeneous term D*(X;*XD

is the Liouville equation for a pair of particles in a

potential 4&. This equation can be solved. By

defining the operator O (acting on an arbitrary function
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t

o(H) = | HE-e an.

~ e

and using the boundary condition that particles are
uncorrelated at some initial time to (this introduces
irreversibility into the problem in the same way as

does the Bogoliubov technique described in chapter one)
the following expression can be obtained after correcting

some minor errors in Green and Leipnik.
o(D.("%) =2 & lo(h., ¥, ¥ - R p e 5. __(35)

where p =%.-%, , dd is an element of the cross-section
for collisions in a potential #ﬁh(see chapter two),

Voo = ¥a (g_a =5..), ¥,. similarly, and .. and §,, are
initial ('pre-collision') velocities at time t = to'
Here 'pre-collision' and 'initially' mean 'effectively

outside the range of the potential ' (which is of

order ab).

In deriving this equation two approximations
have been made. The first is that strong external forces
are absent, If strong external forces are present they

will have an appreciable affect on particle trajectories



over distances of the order of the range of 4£band mus t
appear inside the collision integral. This case 1is
considered by Green and Leipnik,. The second approximation
is that C)(r)«z 1 where C)(r) is defined by (r = x,-x, )

d € LR A
se. =G 0) =

and relates the coulomb potential to the potential 4@b.
Since @D (r) appears only as a factor multiplying terms
which are deviations from equilibrium the equilibrium

form of this function may be used. In equilibrium

is the Deb i hat () =4 LGS
is e Dg ye potential so tha (r) ~ 1 + 3 o
The approximatidn() (r) = 1 is satisfactory since the

range of the potential 4@bis only of order a For

o0
similar reasons the equilibrium form of\.{Jl=b may be used
to determine the equation (15) more explicitly provided

we consider only phenomena where deviations from equilibrium

are small.

Eliminating the operator 0 from (15) we obtain

N N

D& =3 (fE€( «¥. - - N)pddan .. (6

where the two-particle potential which describes the

particle interactions is a Debye potential. This is the
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same form as the linearized Boltzmann equation.

This equation is valid to first order in the
strength parameter and to first order in deviations from
equilibrium. Because of its similarity to the Boltzmann
equation it obviously does not suffer from the divergence
difficulties at small separations (x, — x, small) inherent
in equations which rely on an expansion in powers of the
strength parameter for their derivation (the BLG equation
of chapter one). This is partly due to the neglect of
spatial inhomogeneities over distances of order a; or less;
the approximation used to reduce the generalized Boltzmann

equation to the Boltzmann equation. Irreversibility has

been introduced by an initial condition when particles were

uncorrelated. That this initial time corresponds to when
particle separation x_ — x, was large compared with a,
introduces a time-scale into the problem. The initial

time to is a long time in the 'past' compared with the

2p

'collision time' (= o0

see chapter one), but short
compared with the time between collisions so that the

equation (16) cannot describe phenomena which have

characteristic times of order T, or less.
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CHAPTER FOUR:; TRANSPORT COEFFICIENTS

4.1 THE LANDAU FORM OF THE KINETIC EQUATION

In chapter three a Kinetic equation valid to
first order in deviations from equilibrium has been

derived.
D = T Ca = Z ORI WL B R)pdd 4B (4)

This equation can be simplified. To do so, first
consider the dynamics of a two particle interaction
involving a particle of type a and one of type b (Debye
potential). The 'initial' and ¥inal' velocities are
5‘, Eb, Ege, E&o where 'initial' and 'final' correspond
to pre- and post-collision times when the particles are
separated by amounts much greater than the range of the
interparticle (Debye) potential. From simple Coésider-
ations (which do not involve‘the explicit form of the
potential) a number of relationships can be established..
These are made clearer by reference to the following
diagram in which the points AO, Bo’ A and B are the

end-points of :‘the vectors Eé, ,Eg, s §, and gb- These
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points are necessarily coplanar. The velocity vectors
themselves, which do not, 1in general, lie in the plane
of the diagram, are not shown. The vectors‘za and’zb

are defined by

L= 5. — s, (‘Eo: €. — Ss. ), as previously, and 8 is

the scattering angle. In constructing the diagram
\ﬁa\z\ﬁ\, which follows from conservation of momentum,
has been used.

A

(-4

L~
From conservation of momentum m,|{T:| = ma\z;\. Also
T. and L. are anti-parallel. From the diagram

T.+ T, = 2psin % so that

ma ___r“b = -‘Q
ﬁ’ta "'F,\" Tb . Z/DS"Z

.....
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where M = is the reduced mass.

m“+mb

Since most interactions are such that the
change of velocity of both particles is relatively
small the terms "ﬁl—Y: and X;;Xi in the integrand in
equation (1) can be expanded as Taylor series and third
and higher order terms neglected. Hence the collision

integral C,  becomes

a/

—2a o 3§- 35\,

HF@\FW{ > “ e I%ab_qb, -ll aqS AT 34’“},045 4T,

where, to comply with a more commonly used notation, X;
\ N
and XB have been replaced by ¢ and ¢_. The X‘ and qu are

related by

=8 -0 - 0 a

Using the relation (2) C_, can be written

o o] (m, £ 24, b
HFHF“[ . G as z:‘ C.L.: gf ag,} +{—T\, Zﬁ; +3 LG 3; a&}]f"ﬁ"gb

so that

Com Loles L= f b B stk 3] pddas(e3)
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where I, can be obtained from I, by substituting

_me 24, for 2%
Ma 2%, ER

To evaluate I_, we notice that, if Eb is split

up into components parallel and perpendicular to g

-t = T, sin% é -«-T\,Cos% f_/S_L
(the circumflex denotes unit vector), the contribution
to the integral (3) from the perpendicular part will be
zero. Thus Eh can be replaced by —;§smgﬁ_=—25ml

(using equation (2)) under the integral. Similarly

I}Ebcan be replaced by
Mz . e ks T -
2] 2 (35| - § [ 21 (2pri 2(1-5i9)|

so that I, becomes

Ib i Sg F:o) F:?) p- Z_ébb {%b(\ —cos 9)} - -:;t/ef'—) 3 %bgt{%}(\—cos Y1~ 2ceos 9)}

22 P M o
P 5 (e ‘ex‘*“e)ﬂ/od_{d_i.

I, can now be expressed in terms of the transport cross-
sections & and éldefined (and evaluated for the case of a
Debye potential) in chapter one. Using the relation

éflé—ﬂazcﬁ(equation (2.16)) we find
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- (€0 e B (Re) « 1ep (e tras )

S B (el s a4

Equation (4) can be further simplified by using the
following relation (in which R(P) is an unspecified

function of,p),

: a S S -pp 3P
%ga- jR(/o) exP{-iﬂmaga —Llﬁm‘_gb} L‘__;Z . iy c!:}b

P 3E.
_ frep envfoppmse-toms) (3 -5 B)-E5E- 45,

—2m,m R( ) a a ™M . a_:éb
‘M—X% e*P{f%PM=§= '%ﬁwgb} [ - aEL

N M‘ 2 d3fL L1 aM* D 24, 4.5
%.F/o_ 35\, 35\, +=/p " agb B_Sb]J§b ..... ( )

The detail derivation of (5) is quite straight-forward
and is given in Appendix B. ‘It can be seen that, if
Ta; Q K \61\, I (equation (4)) can be written in the

form (5) with

R(p) = \\_6“—3 “J‘blsa |m"mb M‘/a‘*‘{l ; A= kl'\' -

From equation (2.13) (viz. 4=-“%‘Q1(‘“‘Q\"-3°9)”‘quQz\h\Q\),
since 1n|QI>>1 for plasmas of interest, it follows that

|| is much greater than Ta, Q. Using the above
2 2>
Dﬂ: nP

expression for 8, and the explicit form (Q—
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€,

(where X-4v£rﬂ

has been defined in chapter two) I,

with the aid of equation (5) becomes,
() (o) QWP1%2 -3 PE-Pe sz) 4T
- - 3 ] 0 - s 2 28 ]

Using this result, obtaining I, from it by putting

-%i %%i for %%:, and defining the tensor E;bas
Ko = = 202 (lnil - 309) —fﬁ R (a6)
equation (3) can be written
e ag [SF«»\ F{c) qu .(:::: -:\\t 2;\) AE\,] ,,,,, (4.7)

This result is similar to Landau's form of
the collision integral for plasmas, differing in the
exact form of the logarithm term. In the original

(30)

derivation of Landau the inherent divergences are

eliminated by introducing a quantitatively justified
shielded potential. The form (7) can also be deduced
from the Fokker-Planck equation (see, for example,
Robinson and Bernstein(34)) a derivation which suffers
from the same short-comings as Landau's (see chapter one).

In the present derivation the Debye potential occurs quite

naturally as part of the theory. Equation (7) differs
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from that of Landau in that it is strictly limited

to situations where deviations from equilibrium are
small, Equation (7) also retains an additional
p-dependent term in the integrand through the dependence
of gab on Q. The derivation presented introduces no

restrictions on the range of validity of the equation.

To simplify this Kinetic equation further the
term 1ni|Ql (= ln\gﬁé') in.gﬁ,would appear to create
some difficulty. A procedure, equivalent to thét which
has been used in similar situations by most other authors
(see, for example, Rosenbluth et. al.(23), Sivukhin(47)),
would be to replace |Q| by some average value independent
of o . Such a step is usually justified by the
statement that In|Q| is comparatively insensitive to
variations in 0 . However, this procedure is not only
unnecessary, but by its use some insight into the
problem is lost. The arguments for the choice of a
particular average value for |Q|lare generally unsatis-

(34)

factory. Robinson and Bernstein have estimated the
error in making this step. They show that it is small,
~but their result is quite sensitive to their choice of a

trial form for part of the non-equilibrium distribution
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function. In the following section we will derive a
more general result which eliminates the necessity for
this approximation and shows that it is a good approx-
imation without having to assume any trial form for the

distribution function.

4.2 THE COLLISION INTEGRAL IN OPERATOR FORM

In the previous section (the application of
equation (5)) and in chapter three the equilibrium value
for the velocity distribution function has been assumed

to be a Maxwellian distribution of the form

3/1

D= G erlew)

although this has not been stated explicitly. The

-
([

derivations given, however, do not depend on the mass
average velocity being zero and the equilibrium

distribution

¥a

(’:\ = n,(?‘ﬁ“) ex\:{ (5vv\_ _)1} ,
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where w =

%zma§§q¥°5§Q (/o=zman“) is the mass average
C

velocity, can be used equally well. We will use the
notation v, = $. — u for the peculiar velocity. The
following discussion will be restricted to small
deviations from equilibrium where the plasma components

(36)

have the same temperature. Some authors have
studied the details of the relaxation to this stage
during which the plasma components are assumed to be
individually approaching equilibrium, but not to be
near collective equilibrium; the components thus have
different temperatures. Such a situation may be
important in astrophysical applications of plasma
kinetic theory where particle number densities are very
low. Much of the work here could be generalized in
the same way that other discussions have been extended

to cover this possibility. |

In the determination of transport coefficients
the most commonly used technique is the Chapman-Enskog
me thod, discusseéd at length in Chapman and Cowling(1).
In this method the functional ansatz, that the distribution

function depends on time only through a functional

dependence -on the (time-dependent) macroscopic variables,
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n, u and T, is made. The Kinetic equation is solved

for ¢ . the deviation from equilibrium, by an expansion
procedure. It is then found that the transport
coefficients can be evaluated without determining the
form of ¢ explicitly. This method of solving the
Kinetic equation will not be used here. Instead an
operator which determines ¢ will be defined and the
Kinetic equation will be solved for the operator rather
than for the function ¢. The basis of this method is
the same as the Chapman-Enskog method in that a
functional ansatz must be made. The details of the
solution for the operator, although fundamentally
different to solving for an unknown function, bear a
degree of similiarity to the more usual method. The
Chapman-Enskog method can be generalized for the many-
moment scheme proposed by Grad(40), but the calculations,
when carried out in this way, are very cumbersome. In
plasma applications a many-moment scheme is often
desirable and the operator formalism outlined below could
be used in this application to some advantage. However,

only the usual Chapman-Enskog method will be considered

here.
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In terms of the peculiar velocities the

collision integral (7) becomes
24,
2 (o) ~(0) ?ﬁﬁb _ My “%a
RS e 'U‘ta f. *;,,,,'<a;n, oy oLl I— (4-8)

We define an operator J, (J, similarly), which relates
the deviation from equilibrium to the equilibrium

distribution function, by

m 3. 60 = £7 ?f}‘ o (29)

o

2 . ; .
Ja. can depend only on 3V since this is the only vector
operator in the problem. ~ Strictly J. should be written

i“(;i)’ a notation which will sometimés be necessary.

Later we will solve for J, by making an expansion in

powers of the Laplacian operator 1in a-velocity space,

P 2 . ) .
S v The collision integral (8) can be expressed
in terms of J, and 1b. Because of the intimate relation-

ship between the i and the ¢, the mass, momentum and
energy fluxes can also be expressed in operator form, so
that a knowledge of J will, in turn, enable the transport

coefficients to be determined.

Equation (8) becomes

(0) (o) (o) )
Ceb = s—-"-‘ ' Smb éab.{{:a :_)_-\' {:b B ¥b Ia El:! 4_‘.:"’ . a (4.‘0)
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If the tensor F .

is defined by

{o)
e T S\g“" ﬁ, dv,

i

I

equation (10) can be written in terms of F.o (FE.will

be evaluated explicitly in the next section) The

left-hand term inside the integral is

. o o) @ { > (o)
jm‘o\—g—“b ’ {:i‘g_—b (-:, dv, = ™ . } Koe " Ju (?—Ub) {:b ES

Repeated integration by parts of the powers of %—b in
J, reduces this term to

Fm gem) 7. (Bvb) Ko dy, e (412)

Since lb(?%) will be expanded in powers of the Laplacian

(2“) , this step in effect, involves a repeated application
B ]

of integral identities similar to

2

S a\r'avﬂ;dv 25 }_.:;v§d

a relation which holds when $ and ¥ vanish on the infinite

velocity surface. Equation (12) can be written as

m 6167 T3 B 4
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(where g;(%ij is the operator q;(%ij with all the v,
replaced by Vv,) since K, is a function only of the

velocity difference, v, = ¥V, - This expression 1is

simply

(o) 2
. £ 3;(55a “Fae

because J, contains terms in velocity only as
derivatives, %§ . Using the definition (11) the right-
hand term under the integral in (10) may be written

directly as
> (o)
m\: __F__ab < -)_—a; (ﬂa) 9¢:. o L
Hence the collision integral becomes

Cab = %}_ﬂ'{mb 9:0) Ib(%;a)’ga‘, - My, _Eag‘ _._L( %,a) E(:-} ..... (4"\3)

This is the required form for the collision integral.
Before proceding further it is necessary to evaluate

the tensor FE,..
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4.3 EVALUATION OF [

From equations (11) and (6) and equation

(2.17)
2 N2 ‘8____ s
_ 2Tt A SJ\_ h_ff A (4.14)
—ab m_ m,, f:' b =
where
AN =l e309 = e L
Debye \Q\
can be written
A = 2E - = 2 (4.15)
= n _'Y_\_ 5 ‘Y\ - '..-56 QD sewes 4"
1fJ/\ is defined by
2TTM*AY 7 (P8 -Lp (@
R B ety

then /\ is equivalent to what is often called the

Coulomb logarithm in the literature,(see, for example,

(23) (47)

Rosenbluth et. al, and Sivukhin and the

b

discussion after equation (2.5)). To find the tensor

.. explicitly it is necessary to evaluate the integrals

25 —~ o
[EEL2 (.

1S —p Lo )
Jui: élf;;ii £ dv

?
To simplify the calculations a, b, iab, x and

Z are introduced and defined by
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a® = ﬂ—g‘—‘
SR
Jw= Py = Jl;;:u . ':_',':- (4.16)
x = zab':
3 = PP = Zpm P
jnbis a non-dimensional velocity. x and z could be

written as suffixed variables, but the omission of
suffixes should create no confusion,. Indeed, the
suffixes on ;;b will frequently be omitted, but will
always be used when a distinction between different
particle interactions must be made. The symbol 'b'
has already been used for the impact parameter, but no
confusion should arise here. The integrals can be

evaluated using a spherical polar coordinate system with

Vo, as polar axis and p as radius vector. In such a
system
o0
_______ d'\f :—SJ. =—-2—T-T j dx CL i
S S e TS 53

Since p is replaced by z = QP,T\will be replaced by bn

‘which will be denoted by N (strictly N, -

N = bn = [@;Tn\, 2!1\]"1 ,,,,, (4.17)

136 A




73.

Integrals of the form (where h is an

arbitrary function)

can be evaluated by dividing the tensor §7%§ into unit
and traceless parts and using the fact that the

contribution from the traceless part must be a tensor

parallel to é—3ﬁ§ﬁ; The integral (18) then becomes
zglnde + (3s-G8) (4136 AT -] W4 (48 )
3 2 s 327 22 -2 )2 == /= LA

Using (18) and (18a) gives

DL A~

S\“(%) P =3/‘3/3 ('(:),‘*l"' _ —m;f ’Z-Séla +(l35=-1;41{‘3@14‘; sﬂ _____ (a4.19)
5 3

Rl S S A TS INC SN A ) JGER

R At 2T = b - AN
I‘: S/LO e dp = \—S—g_sg X g exp(—} —lx}—:f )3 dx &}
o =%

—eran oo ¥ 2
e aea B 1v] 5 X erp (-3-2x3 - %) 3*dx d
L=feiTae e - B3 Forirm-mTey
b = 3
L Ay N a 2y 42
Lefirlle e - 55] ] 3rl) ererm oy
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These integrals can be evaluated in terms of known
functions and the two integrals %W and glgiven by

§ = jw\nﬂexr{—@*ﬂ‘} -exel 9] oy

o

(e

%1 = g '}-l e_3l(cos\'1 lj’} — \) d} .

[}

The details are rather tedious and are given in

Appendix B. '%‘ and&%lcannot be described by simple
functions for all values of J and the limiting forms

for small and large J are also given in this Appendix.
Finally the corresponding small and large Y forms for

I,, I,, I3 and 14 are given in equatioﬁs (3) (6) (16)

(17) (18) and (19) of Appendix B. Further simplification
gives the following results which are best presented in

the form of a table.

Sma\\ j? Laf%t. j
£
2T T
I, o 3Ier
3,
2T ™ o
I, 5 g (37-V)
2N < 8 T N e e
L | mlwN~3) 7w (N = 1n )

5

gz (0t - \n5)
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The results

¥y
1 = ;sz Evf ¥ v (4.21)
-2
I, = g [F-0Ets <23 e | e (4:22)

(equations (3) and (6) of Appendix B) are exact and
valid for all ¥. The term 1nN is large for all plasmas
of interest. Because of this, from the tabulated

results above it can be seen that

o SR PN R ) R (4.23)
I, i

and
I 1.
22 L 2+ & luN-iS , large ¥ . .l 4.24
T o \ ) ( )

E;b(as given by equation (14)) can now be
determined using (19), (23) and (24), and (21) and
(22). We find

E = an M\Eﬂ{% §IF Evf 3 +(_%_ :C_r,n},)(]‘ﬁEﬁf(\—s..\réed)} (4.25)

=ab . mdmh:f Q::g R |

where A = 1nN for small ¥ and A = 1InN-1nY¥ for large J.
The form (14a) for E;b can be found from (20), (21) and

(22). Oﬁ comparing this with (24),]& is seen to be

the same as -Z2A. To simplify the expression for Ed,the
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following terms are defined.

P.o= ZEIELY T (4.26)
3-2%° 7 _ 3 -3
Q= 5o 2Ecf S mmme (4.27)
b . MI Ai —r
\(a\, =1 ZEMZ\mb _/\_ ..... (4‘-28)

and the traceless, dimensionless velocity tensor is

denoted by

3° (4.29)

.....

<
&

l
193
b

|
-
o

With these expressions

AR Pt R N B S (4.30)

The suffix 'ab' has been omitted from J_ in the above

and may also, on occasions, be omitted from P, , Q. and

Yoo -

Before proceeding further, it is necessary to
discuss the Coulomb logarithm term,]K, which has been
found to be -21nN for small ¥ and -Zln(g) for large S .
It will be recognized that J,, is a non-dimensionalized
a-particle velocity where the dimensions have been
removed by referring to the average speed of the b-particles

In a two-component plasma made up of electrons and



17.

(relatively heavy) ions the order of magnitude of 325
falls into distinct and widely differing ranges
depending on the types of particles which are inter-
acting (i.e. whether 'a' and/or 'b' is an electron
and/or an ion). For 'average' particles (those moving

at speeds near the thermal or root-mean-square speed)

S

Tl e o e (4-31)

a Mg

Hence, if suffix 'e' stands for electron and 'i' for

ion,
' |
je't 7 =0 ’ jee’w j'ui. ~ ’ j'n.e ~4—O -
Of these only J, is large so thatJN = -21n§ is
valid. The extra 1nY term is precisely the correction

which is needed to bring j\ﬁ into line with the wvalues
for ion-electron and like-particle interactions.

Expanding the expression for N (equation (17))

Qe B Ble,eu) M, + My Mg+ My
N = No,h T 136 (4TTE, QD) Mo 78 c:ms\'qn\'( Ten. ) o Do (4-32)
Hence, if the constant is exp(-W), W = -1n le. eb\)
\3&.(4“&. »)
_ \
N =W laMtme W @33)

e m; . eseae
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For like-particle interactions J,, is between the
'large' and 'small' ranges, However for ¥~ 1,

In¥ << 1nN, so that

ey -~

ee (Y

W= 2.

R

For electron-ion interactions, using the approximation

(31),

j\ o= \A/—\nf“—ﬂn_e_+ ln r‘:\a = \W- \nm_.r‘:T\'“e. =_/\__ ..... (4.35)

ev me e [

Since W>> 1n2, 1n2 may be neglected in equation (34),

giving

A=A =N AN -w- —\ni £ Sac ) ..... (¢.36)

.36 (4TE )

This result verifies the expression frequently called
the Coulomb logarithm in plasma physiés literature(23’47’5”

which is

_\ [ é‘eqeb\ }
"3 (avean)] -
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4.4 TRANSPORT COEFFICIENTS

The Kinetic equation for particles of type a

is, from equations (1)

-2 12
Da {:o. N Zmb a_v.'(ﬁ :_yb.Eeb e
- R iz
The macroscopic equations
multiplying through by 1,

over a-velocity space and

and (13),
: (o)
Euer Je f. ) = ZCO., =C. e (4.37)
of change are found by
MaVa and %m‘z: , integrating

summing over particle types.

These are (where %E 2

Conservation of Mass:

33_%1+Y.n°—°_ %%‘-ff\ﬂ_v-l_,}-ty n. Yo = O
9, =
S apls =€

/oarz_ —\2’_¢Y/Da\/a +Jo°ynv& +Y Ea—na-ﬁ:‘l i mag'}{“c°&§‘ = S“
P ~Yp -ZnE =0

Energy equation:

2on 2 Ju A AN EoopVo 28 + BTy ='3M=EUZC‘,A§, = Q.
2_— %E +%P°g_y: +Yi/ + E:Ylé _'-Zn‘\_/“ E'-a =0
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where the variables are defined as follows

natjgad\_g“ 5 n=zna
/Oa: WMa N 5 ﬁ':zajoa
V\ak_ka=g&1§a°§n s L =ZP=.L£“ ° _az-g«_k_f

Na Va =§ﬁx_r.4_§° = n(Ua—u)

E"‘ = v, SE.T_L Fa. A_;g_“ 3 F 222“ (":r‘essure Tenﬁor)

ThT. = w e GdE kT = Tk

-

b= 5 Tr(pa) = nkT

o
|
wi-
-
—~
-
—
1]
-
B~

O
I

nk T (\-\ydros\'a\'ic Pressur‘e)

G e[ G dE L 3 =50 (e )

The first step in the Chapman-Enskog method
for determination of transport coefficients is to

expand the distribution function in terms of an

ordering parameter

© 0} @
£ = € L ef erfls

and to assume that the collision term is of order Ed.

Hilbert(sz) has shown that the use of such an expansion

enables one to determine solutions which are completely
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determined by the number density, mass velocity and
temperature. Thus the Chapman-Enskog method can be
used if it is assumed that the gas has relaxed to a
state close to equilibrium in which the time dependence
of the distribution function appears only through a
functional dependence on the slowly varying macroscopic
variables n, u and T. This does not necessarily mean
that the distribution function is slowly varying, but
it does ensure that rapid fluctuations aré 'smoothed'
out. Near to equilibrium the behaviour of the gas is
adequately described by such a solution for the distri-

bution function.

The Kinetic equ?tion is now solved by successive
approximations. The expansion of the distribution
function in terms of & is'substituted into the Kinetic
equation and terms of the same order are collected.
Differentiatedterms are supposed to be of one ﬁigher
order than the correspond}ng undifferentiated terms
and the equations of change are used to eliminate the

time derivatives of the macroscopic variables.

Using equation(37) there is no zero-order

equation. The usual zero-order equation is obtained
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by setting the collision term (with f_, replaced by
Co . .
fa) etc.) equal to zero,. The zero order solution is

then found to be the distribution function for loqal

equilibrium, f;(:): na(f__;“)yzexp{—épma(gq—gt)l} , where n, u and
ﬁ(=i%)are functions of r and t. This fact has already
been used in the present approach and equation (37) is
strictly applicable only for small deviations from the
equilibrium situation. Consequently, in equation (37)
there is no zero-order term in the collision integral;

this part of the equation contains only first order terms
since higher order terms have been neglected in the deriving
of the equation. To first order in € the left-hand side of
(37) 1is Daf?)so that, to find a solution to first order,

the equation to be solved is

(o)

D2 - ¢

a
°)
Eliminating the time derivatives from Daf; by

use of the equations of change gives

5 (3]

(] T (2-4maw) « L&l wpmabr-552) 1 Vu

‘ aﬁl 2 . ’

where j is the conduction current,

J=2enV. =3 e (¢ s
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since the zero order contribution to ] is zero (assuming
1Y

©

a

a neutral plasma,>e, = 0). R is the first order term

)

corresponding to R, (R, corresponds to nkTd,, in the

(1.

notation of Chapman and Cowling

Even though the zero-order magnetic force term
vanishes, the magnetic field has a strong effect on the
flow and this term is weighted in comparison to other
forces by considering it to be of order €' compared with
other force terms, The extra term introduced into the

zero-order equation in this way does not affect the form

q (o
of the zero-order solution f: .

If suffix 'e' is used for electrons and 'p' is
used for ions (or protons in a hydrogenous plasma) then

m, <L m . Using this we find

(Q]

Re 2'{§: .

\
ne B =

pi-
Pi-

ne{\_E_+ wxB + = (nkT)}

which defines E'

, the 'generalized electric field'.
Further use of m.«m, reduces the Kinetic equations for

electrons and protons to

e {~

e TipE-2omec) epmlneve3 £90): Tu 1o B < S 2%:] = C
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where m (= m,) is the electron mass, e = (-e,) is the
magnitude of the electron charge. The ion equation

exhibits the familiar decoupling.

If the magnetic field is zero the Kinetic

equation is

Q [‘U‘ V\np—-— ) ~Be, Vur Ef‘gm (v, v.-3$ ,) Vul| = C .\,Ce

Replacing a by.e in equation (41) gives the electron
equation and replacing a by p, putting E\: 0 and C,.= 0
gives the ion Kinetic equation. The left-hand side

can be expressed as a perfect divergence so that

%Ea.{,c:”[/;——m_\zlnp(éﬂm w-3) « S E ‘i§]} = G Ca

i (s)
where S, = vo-V + Tu.v,; ¥ =Vu - 2§V.u. This
follows on noticing that (vaVa- %év" ) ZE: %Xg-gﬁ
and that g—v- -(ft) B = -pm“f:) Vo* Sa . Hence

—

Elmrplpmon-2) « 2 €18 Tm[ T BB,

a

The solution is subject to the auxiliary
relations which result from choosing the arbitrary

constants of the zero-order solution to correspond
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to the macroscopic variables which are therefore
determined solely by the zero-order distribution function.

These can be written

fe¢ a5 - o

(=Y

Z[£¢ movads. =0

(2]

> {4 gmavt 45 = O .
These conditions on qz can be expressed in
terms of the operator J, which is related to ¢ by
equation (9). Since f? can be written as a perfect

divergence,

g - Yo
:f““ ) o {_ﬁ? Evf :fam_ e }]

exP{‘éﬁwv:} =& = 5_—3; 3 - T3 = %&'[Lfa 9,] A

the first condition becomes

S;_v“-('l_raqa) ¢ v = O.

Integrating this by parts gives

8a (&)
S’@ Yw-J.h dw =0 (4.43)

The function g, is similar to the functions B, and Qg
which make up E_,. In fact g, can be written

4v, 9= w$R +U.Q ] = —'k- V.-E.. so that (39) becomes
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S%‘ﬂ iR B an © e (4.43 )

The second of the auxiliary relations can be

expressed as

(o)

LA
A

and, on integrating by parts, this gives

S gma T £ dv. =o. e (44)

o

The third condition is

so that, integrating by parts and using the first

condition,

2 Smnz,a T gy (4.45)
Since the equation (42) is linear, and since

the solutions to the corresponding homogeneous first-

order equation do not contribute to the required solution,

we look for a solution which is a linear combination of

the inhomogeneous terms. Consider first the part of the

general solution which depends on the temperature gradient.
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This can be writtenl?@hpand the most general possible

) .
form for IS must be used.

Hence
4y ™
Jo. = Jdo -V (4.46)
where
e () 2 3. _ 1 3.2 (t2)
l"‘ = .6: J_"- - ( 3:& dVva ® é EJ‘,_ a_a) J_"' g, eexse (4‘41)
JSO and {TD being scalar operators depending only on g—“.

Before using this expression, some tensor identities

must be established. The tensor U, has been defined

as :_fab;_fab '%é :f:;, , so that

™m \ . z
Va = A7 (mu-38w2) = U, (4.48)
This defines the tensor U, = vav. - %-év:'. The operator

which corresponds closely to this tensor is that multi-

plying JS” in equation (47). It will be denoted by

R
I
v
'o/|0/

I
w)-
1o~

g

&
(v
|;|

Hence, if h(v,) is any well-behaved function of V. then

a function H(v,) exists such that
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This 1is eas11y demonstrated by expanding the right-hand
side to give U oH = 4-—-;U BCE=RAS

. Using this
for arbitrary h{

shown that,

Hl(va) and H, (v, )

it can be

Val,

thereexist functions
such that

JorUsh = U.-JaH, =Us-J.H, (4.50)
Now, substituting the form (46) into the
collisional part of equation (42), and using the identity
(48) and equation (30) for Fobglves

Zmk ., Vip- (23 rev T uRL)- (R

:_I | Qas - °(:r)) (e\] ‘
Using (49) and (50) and the expression (47) for gfﬂ, and
noticing that \:Jq'y,fé .Qa and that g

0 4t €y

V., this becomes

2 ks - [E{$ 7R, + U TR, 5 U, T

Qu 42 U 3.7Q, . }
(R T LR T B UL QLT L 4 at U (T Q)]

)
where 3;-

Ualor= Va3 Quoy 3 V@b = VaQu2 . This can be
considerably simplified by collecting all the terms
parallel to VWB- U, to give
o {r1) {T1) C) (o) .
> ko [T (730 R - RLIEY) + Ve Vs £ Plw)]

— FM[P"‘ Vln,ﬁ ,_pm Ul - )]
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In exactly the same way the diffusion part becomes

Zm kBT -R I LB P] < € %ﬂg‘] ,,,,, (4.52)
on us ing ;)_—:G) = I;E)' E\ g:f) = é ja(E‘) =+ ga :Z)

= = »

Consider now the auxiliary relations (43), (44)
and (45) which must be satisfied by the solution for J_
The expression A}(éjf\ + gajjn) can be used to cover
(E)

Ving - g:ﬁ nd E - Ja If this form is substituted into

the relation {(43b) we find

Jiomeef

('L) (=) N (o) - -
Now J_ f? can be written as H.f, ,where H;is a function of

o~

Poob g ) (é (n{m ajfyéeﬂchﬁ - 0.

IICZ

v,, and using (49) U.H,fS can be replaced byU.h, fo H

v\ 0
H,and h, need not be determined explicitly. On multi-
plying out the terms inside‘;mJin the above expression and

using $°6=§,8-Y=U$=-V and VUU=5V'Y it becomes

51&& SR, < UL (BQH B h) + 532 U BQ, b do = ©
S&-\_r.{E.H. +%5f:(b‘Q“H.+ﬁ,hJ*%v: b* Q.. h;} dw, = O

. 2 . . Ly
since v,-VY. = 3 WYa. This relationship is satisfied

nc

identically.
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In a similar manner it can be shown that the

relation (45) is also satisfied identically and that

(44) reduces to

zivnagjf)Ff>dg. = O

a

We now solve for JSO and Jfo (and JS” and JS”

remembering that these are parts of the operator J, with

g%b replaced bym%}) by using equations (51), (52) and

(53) and expanding Jy in powers of the Laplacian operator

q . q (O} ]
in a-velocity space. Since J_

g 2
is a scalar and SV Fa

(and powers of(avji) is the only scalar operator in the

problem this is the only possible expansion of Ji) which

can be made. The expansions are written

)

Q)]

ja Z (T) (
el ,sm) Lo
T =T () L ( }

J_:En Z (ﬁMb) °<(:: (gu Y.n

Before proceeding, certain properties of(?v) must be

|v ld]

Iy
,“

e (4.54)

o/ |
:«“

determined, The new variable x_, is introduced and

defined by
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The scalar operator /\_ is defined by

b= (B =& (RS

so that the expansions (54) become

I =2 (AL
B = e = [ P (4.55)
3= () = 2V <0
where the superscripts E and T have been omitted. The

subscript a will also be omitted in cases where this

creates no ambiguity.

If H(x) is an arbitrary function of x then

[\

ARG = 4{=20 3]

DIETRE) = 4 ¢ {x 30 +(2-22) 32 - (3 -0}

These relations can be compared with the following
- - : (m) )
properties of the Sonine polynomials S_ (x) (which are

defined as the coefficient of S™ in the power series

expansion of (\—Sfm-‘ exp{—rii] ) :
(m) (m+1)
x 5 (S7) + (nem-1-x1)ST = (me) ST

« B(ST) <o eI R (S) c S < o

n
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from which it follows that

* ™ m (m (ot
x g—f(Si ’) +(n+1-2x) %(S‘(ﬂ )) - (n+1-x) S“ ‘-.: —(m+\) Sn _____ (4__57)

On comparing this with equation (56) it can be seen

‘that

(on+1)

JA) (‘@ S(N = -4 F@ (+1) 5‘,1

\a

and, using this, it is easily proved by induction that

nor@em e (m+rn)l e ©)
(A) ‘- 5111 = ( 4) m! S‘{z Q

and, in particular,

AY = oV g (4.58)

|11

Using the expansion (55) and equation (58), the

auxiliary relation (53) becomes

(o)

Z‘ma};od“ - ‘H"ﬂ!SS(.: f dv. = O, e (4.530)

This can be evaluated using the normalization integral for

Sonine polynomials;

5 ® ~@ = Nlk+p +1)
(e emae o e
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which can be written

SSR. Sl L LU S0

or, for k = 3,
® @4 e (2p+1)!
gg‘h S.h f, dv. = V\¢W 5‘,% ..... (4.59)

Equation (53a) now becomes
2 mon 2 oL 4T nl S

® > e,d,, =O (4.60)

If the expansion (55) is substituted into
equations (51) and (52) the coefficients o, and {  can
be extracted by multiplying both sides of the equations
by the Sonine polynomial St: and integrating over a-velocity
space. By doing so the function P(v.) is eliminated and

we find

Z ™, k,\.Vln(S S[\Uo zoiﬁ: ) Pab bznc((ﬂ A 3 ;(o)] S(,': d,
g e (xS, dve s (4.60)

and a similar equation for the diffusion contribution.

Hence we have
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0} ~{m)

T k240 () (S

()

B Py dve - ZLD RSO 6 dv) =20 ... (4.62)

"y vy

©) tm)

e Zony kS LD (BT ST 0T R, dve -3 L8 R, SO F = e ... (4.63)

1
These equations hold both when the a-particle is an
electron and, after an obvious modification (see discussion

after equation (41)), when the a-particle is an ion.

When the integrals are evaluated equations (62)
and (63) together constitute an infinite set of coupled

. . —t @ ®) @«
linear equations for the coefficients ., o_ , «,. and

Y . . o s g .
dﬁ‘ which, together with the auxiliary relation (60) is
equivalent to the usual set of equations which arises from

an expansion of the deviation from equilibrium,¢;, in

Sonine polyndmials.

The integrals in (62) and (63) are

I:‘:b N [ Ff) S(-{r:\ (A_Y P.;e, dva , and ... (4.64)
Ietric KE., SHNON A T R (4.65)

They can be evaluated by the standard method developed in

Chapman and Cowling(1). We first note that

Mg 8 : .
e AP, = -3 exb (—;_—fﬁmb‘va‘) , So that | using (=8),

= 2ar el en(2) €(220)

™Ma UN Ma

!
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Hence, using the definition for Sonine polynomials

given earlier, the integral (64) is, for n>»0, just

m

the coefficient of S"'t™ in the power series expansion

of

<]

24 oo o™ [ e o) 5 . .

a

For n = 0 the integral (64) is the same as (65).
Integral (65) ié the coefficient of S"t™in the power
series expansion of

o

2 () ot i ™ [ ([BE) exp (25 exblzt) € ... (g5

\=E/ = T eee..
o

The solution of the Kinetic equa%ion in
operator form thus reduces to a problem equivalent to
that which obtains on solving the more usual form of the
Kinetic equation. It remains only to show that the
transport coefficients can be expressed in terms of the
coefficients . Consider the diffusion coefficients

first. By definition

@) )
V. - Yb = F‘\—a_ [ﬁ ¢Q\I"“ dva  — F(\’hj-c: #’s Uy dvy

The integrals can be written in terms of the operators



96.

J, and J_, in exactly the same way that the auxiliary

relations were written in operator form to give

A U F AN N

Using Ja= U@ + I € and  T.= $30+ 0

this becomes

where J, j;(%;) Substituting the expansion (55)
gives
VooVo = 5U%6 (Lo ~olh) 3 E (S -<0) ... (4.66)

where the zero-th coefficients are related by equation

(60).

Similarly the heat flux becomes

C‘l Z g (Sm vt - l) J ‘FM Av;a

so that

) : ‘ oA 3 e
g-zonYe =7 5l DT dn

— a
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On expanding J, this becomes

o™ ) ) (A}

A -BLnYe = B {Tme (e g (Wl L)

which, eliminating E° by using (66), reduces to
(E) ('n Q2] LT\ LE‘
S 3n 940- O{b‘ ) - doo °{b| )]
4 "ﬁzna\iﬂ E ’('57 Y\"[S[ L9
3 (o( + olb.
+(Va- Vo) AT 1} _____ (4.67)

Hence, as is to be expected, the coefficients of
diffusion, thermal diffusion and thermal conduction are
completely determined by the zero-th and first coefficients

of the expansion of the operator J.

\ €)
Dab i _,sTe oL e e o7 £ (4‘ 58)
D, = 55 oo, (4.69)
T == 1(3 ae s N
)
3nk| & w o, (@ ®
>\ = % [c(m “ o&b‘ = :('(;E'z- (4‘.. “+ o(bt )—_\ _____ (4- -’O)

To evaluate the o, the integrals (64a) and

(65a) must be evaluated, in order to determine I:“:b and
I:;b . Performing the integrations and defining w by

m
W o= ;ﬁ- shows that Iu¢ (n £ 0) is the coefficient of

a

S"'t™ in the expansion of

w |

= G (n-1)! (w+t)_3ﬁ[l- wt+S]—%
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and I::b is the coefficient of S"t™ in the expansion of
An . —h . wis 4t 4 G=se T
?“(__4_) nll (w+1) (1- st) s Wik
mn mn
For n = O L = INae - The results, up ton = 2,
m = 2, are presented in table form below where 2 factor
472  has been omitted for simplicity.
FIERY,
mn 3‘\-‘»\”
Table of I ., Tows
n
m o) \ 2
2w V2wt
o — M
l U=y (rew)™
\ w _3w? O W’
2(1+wW) (- w)* G+ wo?
2 ZIw? 5w 05 W
21+ w)? A40+w) 2 (1+ w)*
S mo sm)
Table of |, (———Amq
n
m © i 2
o \ _ 2w 12w’
\+tw (\+w)1
‘ w _ Qw i+ 8w + 2 1W(35W1+l6w -4)
2(1+w) Qe w)? (o)
5 3w’ _w(EBEwietbw - 4) 216w 32wt 34w 4 14)
g+ w)* 4 (1+w)? (+w)®
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The usual procedure is to curtail the expansion
(in this instance the expansion of J) after a finite
number of terms. The transport coefficients can be
obtained to 'first order' by considering only the first
two terms of the expansion. The linear equations to
solve follow when the tabled results are substituted into
equations (62) and (63). The case when the a-particle

is an ion is solved first to give

&)
L, = O (AT
M _ ==
Ly = ReplzZ C o (472)
My -3e o
where Z = — = 1800 and C = ——po— In the expression
m, dm* Kk o ‘

for C, e and m are the charge (magnitude) and mass of an

electron and kee is the electron-electron value of kab

(equation (28)). The electron equation, using equation
(60) and the results (71) and (72), gives
© ] ®) Be @ Be & =
o<e\ ~ g+l "(eo == 0<e| = TE e S g+~23 i (4\(3)

Using these results we find for the diffusion

coefficient (equation (68))
Yz z — )
D,, = 1.09 (4Te) = (Tr;'m) (;;) (M)

T - fnfeEerse
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which 1s the usual first order result. The thermal-

diffusion ratio

k D

T D\;

a

can be found either directly from (68) and (69) or from
the coefficient of V, — V, in equation (67). Using (60)

and (71) we find

(D]

L g e _ e da
T 0((5) 1 d(:; .

Co

The two results can be secen to be equal on inspection

and they give

oo @0

In verifying the equality of the two expressions for kg
termé of order Z have been neglected since they have also
been neglected in the values for theo«,given by equation
(73). However, a more detailed calculation shows that
the identity holds when these terms are retained. In a

similar manner the thermal conductivity is found to be

V= von omest 8 (LT (R

which agrees with other estimates to first order. Thus,



although there is not an exact correspondence between

the expansion of the operator J and the Sonine polynomial
,expansion of¢5 the resulting values of the transport
coefficients are the same to first order and this equality

should hold to higher orders.
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4.5 AN EXACT SOLUTION

In the previous section an integro-differential
equation similar to the Boltzmann equation has been
reduced to a differential equation in which the unknown

is an operator. If the tensor F, is defined by
E. =2 mE. e (4779)
= 3 =

this equation can be written (using equation (37)
2 © ()
ne = L[0T E)-E L] (+75)

Since the operator J depends only on %% on taking the

Fourier transform this differential operator becomes an
algebraic function in the transform space, The
possibility therefore arises of reducing equation (75)

to an algebraic equation by the use of Fourier transforms.
Because there are two terms on the right-hand side it is
not immediately obvious how this could be done. However,

if these terms are considered separately, their form

indicates that, by taking the Fourier transform, J could

be reduced to an algebraic function.

Although it has not been possible to obtain
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an exact solution to equation (75) it is possible to
obtain an exact solution for a particular case in which
one of the parts of the collision term vanishes. If
the background distribution of the b-particles is 1in
equilibrium the term me.,;-ga\, vanishes and the Kinetic

equation becomes

This equation describes the behaviour of a special group

of type-a particles. The particles themselves are not

in an equilibrium state,. However, the total number of
particles in the group is so small that they collide only
with particles outside the group and these particles,
external to the special group, are in equilibrium. Runaway
electrons are an example of such a group. Runaway
electrons are a small group of fast-moving particles which
interact only with an equilibrium background of ions and

electrons and do not interact among themselves.

Before proceeding the tensor F, must be

evaluated explicitly. From equation (40)

=a i Zrﬂ"k“b(\é-_-]ib - Q ja: Qab)
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[
I
a
o

il
1L4>

where "’ \_:_Ja =3 ke = 5 S , the circumflex denoting
a unit vector (or a tensor composed of unit Vectorsf.

The functional forms of P,, and Q_ are given by

equations (26) and (27). We will consider the a-particle

to be an electron and write

j,=jee s ke=kee W =

Substituting explicit expressions for P, and Q_,, . and
-\ﬁ

using the facts that ke\,= keZ mP=Z'm, J;‘,=Ji3 > |

2

equation (77) becomes after some manipulation and ignoring

small terms of order Z_‘

F. = E. = mk W (P «0.@) .. (4.78)

o

where

Po = 39 (Beeds + 1) .. (479)

1

B} = P
Re= $ITERET -3 (Eek S + 1) - 2¥7%e

Equation (76) therefore becomes, on dropping the suffix

'e' for simplicity,

O = - BT {3 (g G} 6 (gp Gy 6]
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which, on differehtiating the left-hand term of the

collision part, expanding and collecting terms reduces
to
T 2 e 3P @ 5%.2 ~ e
DF = -m BT (P-4@) -3¢0 - 376+ 033: 337 a80)

This relation is still not amen able to the
elimination of the differential form of J by the use of
a Fourier transformation. However, the possibility of
such an elimination can be demonstrated by considering
an oversimplification of the problem. Suppose that the
distribution function depends only on the magnitude of i.
In this case the deviation from equilibrium,<#, will have

the following property;

2 _ 529

3F T = ¥ ¢
This is not a completely unphysical assumption. Volume
viscosity effects contribute to the distribution function
in this way. Volume viscosity is a second order (in
density) effect and may be relevant in plasmas in view
of the long-range nature of the interparticle forces.
In this instance, however, the assumption is made only

in the interests of mathematical simplification.
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It means that Jf® is parallel to J and may therefore be
written

g: F(‘ﬂ i \I J F(o)

Using this, and commuting J and %9 where necessary,

equation (81) becomes

¢ = ke[ 3 175 7]

Now if H is any vector function

$-TH=§

3 »3JH = §:7H
so that
:1_3-:?:3‘:("\: é-:zg-_:fF@\ - é:;if:‘:m i %_zp(ﬂ’

The Kinetic equation therefore becomes,

replacing Df by
the appropriate first order term

DEP = —onkee [BF (pedq) 3T 67,

where

JT

Pe2g= 32 (e -2veT)
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It can now be seen that by dividing equation
(83) through by (P + %%Q) the equation is reduced to
one in which the left-hand side is a known function of ¥

(ﬂ“ker—;—"\_(f) , say)

L(3) = -3¢ oere (4.8%)

If 3 denotes the Fourier transform operator

i(e-3)
F{r} = (ilﬁ.]aj\-\(j) e " 43

taking the transform of both sides of (84) gives
) ;. e
F{LY = -tp-TCep) F{#Y
which is simply an algebraic equation for J.

This example serves to illustrate the approach
which is necessary in order to obtain an exact solution
to the special Kinetic equation, equation (76). We will
now consider a more realistic example, the problem of the
diffusion of the special group of particles described by
(76). It has already been noted that the diffusion
coefficients depend only on the function P,, in the tensor
F.. (see discussion leading to equation (61)). Hence

equation (81) becomes
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P )
\jlj'gc ]‘

Here the coefficient of

DE = —mk, ﬁmn—{ %? JEe
3

IF‘is -g-; rather than ~—j71
as might be expected on inspection of equation (81).
This is because P and Q are related and a contribution
2P

¥ actually comes from Q on differentiation of the

original equation.

It is more convenient to retain the form

~mk, 52“ 3_?.(\51 )

for the right-hand side. Following the usual Chapman-
Enskog procedure and considering only the diffusion part
of the operator J (lm)) we find (see, for example,

equation (42))

(e g = —mk i PIOES wers (4-85)

Dividing through by P and taking the Fourier transform

of both sides of this equation gives

3im

e F{E] - -mke RIOC F{) L (4-26)

The diffusion part of J can be written JG\E\ so that

g
© . e p}

\"nlke IT_I' 31 { gm}

J

- (4.87)
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This is an exact solution for the diffusion part of the

operator J.

To evaluate the diffusion coefficient one has
only to know the zero-th coefficient in the expansion of

i ®)

S
in powers of(%ﬂ o This expansion corresponds to an
. . . L2
expansion of the transform i(—lp) in powers of p  so that,

to find the diffusion coefficient, D, , it is only necess-

ary to find the coefficient of p° in the solution of (87).

For near-thermal and higher speeds Erf ¥ = |

so that we may approximate P by %‘jﬂ. Using the follow-

ing Fourier transforms
F{eT} = @mi exp(-3¥)
5] _ ~31, 2 P
F{3e7} = 5 @ |E-0D(]) - 2¢)
where D(g) is Dawson's Integral

3
D(‘j) = e—‘:j J' e—: dx >

(=]

and collecting coefficients of p° (JG) = o, +.ceien) in
equation (87) gives -

(S ge
D(a = ma.ke ind (4_“,.)3/:. ..... ( 0
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Hence, using (68) for the diffusion coefficient and

substituting for k we find

0., = Serar (2RI - (4.89)

This expression is of the same form as the usual
diffusion coefficient, but the numerical factor is
somewhat smaller. It is the coefficient for diffusion
of a small group of non-equilibrium electrons in an
equilibrium plasma. As such it would be expected to
be smaller in value than the full diffusion coefficient,
Although this is a rather special problem the solution
(89) is exact and the corresponding exact solution to
the Kinetic equation does not rely on any of the usual

expansion procedures.

Although the original equation (76) is
appropriate for runaway electrons the solutions presented,
((84) and (87)), are not. The distribution function
for runaway electrons must be non-isotropic so that the
form of solution, %% parallel to 3, is not valid. The

diffusion solution (87) is more relevant, but only for
t

the early stages in the development of runaway particles

when the distribution function for these particles is
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close to equilibrium. It is a much later stage, when
a steady-state has been reached which is of greatest
interest and this problem will be discussed further in

the next chapter.

4.6 FURTHER REMARKS

Viscosity has not been considered in the
preceding sections. In determining the coefficient
of viscosity the method outlined for the diffusion and
thermal coefficients in 4.4 can be used in a completely
analogous fashion. The appropriate trial form for J,
is

. ) (O] () 2 1) 2 . v2).
I“ - [B—ir..y ké-'-ys\;ks:_-]j—b’ M S_n\:}__q'y%j <

a o

For diffusion the function Q_ was found to be unimportant.
In discussing viscosity the Q. term cannot be neglected.
Equation (58) is a key relation in the determination of
diffusion coefficients. The equivalent equation which

must be used for viscosity 1s

a

i 5 (nY o
(a) »Ba—vq 2 —BmaVa 4) 0 S%(x“) Q‘
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Transport coefficients in the presence of a
magnetic field can also be discussed using the methods
of section 4.4 since the magnetic term in the Kinetic

equation can be written directly in operator form as

e, (vax 8) T 6 .

A1

The exact solution given in section 4.5 to a
specialized problem indicates that it may be possible,
by the use of Fourier transforms, to obtain an exact
solution the general Kinetic equation. Although the
usual Chapman-Enskog postulates have been used in this
chapter, the operator method could also be used 1in
conjunction with many-moment schemes. The possibility
that a Fourier transform procedure following the lines
of section 4.5 may lead to an exact solution of the
Kinetic equation is a most important aspect of the

operator form presented in this thesis,
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CHAPTER FIVE: RUNAWAY ELECTRONS

Runaway electrons occur when a plasma is
situated in an electric field. The retardation of an
electron by collisions with other particles decreases
as the speed of the electron increases. In the presence
of an electric field all particles experience an
acceleration, the electrons in the direction of -E.
If an electron is moving sufficiently fast the collisional
drag can be less than the acceleration caused by the field.
Such a particle will experience a net positive acceleration
and ,its speed will increase indefinitely: these particles
are said to 'runaway'. No matter what the magnitude of the
field is, there will always be some electrons moving fast
enough to runaway. The larger the field the more runaway
electrons there will be, ;nd, in fact, if the field
strength is sufficiently large even average electrons can
runaway; for this to happen the field must be such that
the acceleration due to the field is the same as the

collisional drag on thermal electrons.

Some insight into this phenomenon can be gained
using simple semi-quantitative arguments. It is of

interest to determine the particle speed above which the



field acceleration exceeds the collisional deceleration

(41)

(this is the 'critical' speed). Dreicer and
P

Spitzer(51), for example, determine the changes in the
velocity component parallel to the field due to the field
and due to collisions and, by equating the two, show that

the critical speed is proportional to the inverse of the

magnitude of the field strength
Ve < E R CR))

However this result is rather misleading since, if the
runaway problem is considered from a kinetic theory point
of view, the critical speed is actually proportional to

-3 (44,45)

E For a weak field this critical speed is quite

large, certainly well in excess of thermal speeds.

The basic problem is to determine the distribution
function for runaway electrons. We will restrict ourselves
here to the case of a weak electric field and a homogeneous
plasma and look for a steady-state solution to the relevant
Kinetic equation. If a plasma is in equilibrium and a
weak field is 'turned on' a small number of electrons, those
with sufficiently high speeds (i.e. in the 'runaway region')
will immediately become runaway electrons. Since the

critical speed is high the number of such electrons must be



small and they will tend to collide only with the
equilibrium background of slower moving particles. The
effect of the field is manifest predominantly in the
runaway electrons and these willysoon become removed
appreciably from equilibrium. The early stages of this
development, during which the runaway group is still close
to equilibrium, has been discussed in the previous
chapter. Here we are interested in the more general
solution. As time progresses some particles will
continually be scattered by random collisions into the
runaway region and particles in the runaway region will
accelerate rapidly and escape from the confines of the
plasma. A steady-state solution could therefore be
maintained by introducing into the problem a high-speed
sink and a balancing source at thermal speeds to fit

this qualitative description.

The fundamental Kinetic equation for runaway

electrons is equation (4.81) (or(4.76));

wll ) D e 3P 2] AN D ©
D¢ = -mk. BT P9)33e -3 33601 088: 53] .G
where ¥ = 3. = é@m.‘fez. Since the runaway particles

are moving at above thermal speeds the limiting forms for
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P and Q can be used,

-\

P %%, Q-af <}y

The small term must be retained for reasons which

2
2%°
will be explained below. Equation (2) becomes

2€ fra _ N2 .76 _ 4 @ L (32 _2\55.2 ©
*_Pree ok PTG HB T S03 (5 -5)3%: 5 )...63

It has been shown in section 4.3 that, for large J o

ke depends on ¥. The Coulomb logarithm term in ke(Ji)
is -21nN for small ¥ and -21n(§) for large J. This

is a feature which has not been noticed by previous
authors. However, it is of only minor importance.

Since 1nY is such a slowly varying function of J, and
since the correction is appreciable only for I ZTJ‘
(which is generally larger even than the particle speeds
we are considering in this instance), we are justified in

omitting this ¥-dependence.

Now, from the definition of J, m3 Fe= 2

Sv » we

fele.

find

) r%‘f-\_;_r(:—\g +2~§C)



so that equation (3) becomes

2 VW _apRf ) a2 2, 9.2\ ¢ $3-2 \|(
-JET ';'R!a J E a:_s 3{ ;gl's +(§- :’j' a_‘!) 4.’1(%!' _3 !! a:.)] PR *1* F) """ (5 4)
where

a —-eE s a E
L= 2m JT Ke J:":‘ SHCEEY Tee*n

(45) (41,42)

follows the notation of Lebedev Some authors
have used the 'critical field', E., as a parameter which is

related to o by

E_= L E,

<

In the weak field case o  is a small parameter.

Equation (4) becomes

Rt R T R R -t R CEY IR
It can now be seen why it was important to retain the
sméll term in Q . It is this term which leads to the last
two bracket-ed terms in equation (4a). If the small term
has been ignored only the first bracket-ed term would

remain. This term, on expansion in spherical polar
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coordinates, contains no derivatives with respect to

the speed J and thus represents only the diffusion of
particles in a plane normal to J. The last term on the
left-hand side of (4a) is the most important one since

it describes the effect of collisional retardation in

the direction of motion. The second term contains only
small contributions to both the other terms. In summary
then, the left-hand side of equation (4a) contains a
diffusion term, a small term and a drag term. It is
permissible to neglect the small term and, of the remaining
terms to consider only the drag term since it is this term

which is responsible for the essential effects of collisions

on runaway electrons. The diffusion term will have only
an overall blurring effect on the solution. Equation (4a)
becomes:
_[=2 1 2 a2 26 _ 5. 2¢ e
j;—:—'ﬂmkebt ~e B3 3 3%y

i \( 1 1 3 x‘= - —1— _‘- X
Since X is negative we can write lpﬁn mk, Wwhere

is a positive constant. Hence
a A )\1 2€
-B—Et “+ (—7\4 E = ?)gj =l@n N e (5.5)

In this equation.:N[E describes the effect of the field

. . . s : . 3
ln accelerating electrons in the -E direction and Y

\33
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describes the drag on an electron due to collisions
tending to reduce the magnitude of ¥ in the direction

of J. It is evident from this equation that the

critical speed is when \—)w{i’_\E_‘ ~ \7\—%3\ so that Tft'val_\"'E-lﬁ
as stated previously. Equation (5), being only a first
order differential equation could be solved exactly and

a solution has been obtained by Green {(pers. comm.).
However, this equation does not have any diffusion term

and so will not be used here.

Instead, using a spherical polar coordinate
system with -E as polar axis, J as radius vector and with
M= cos® where © is the latitudinal angle the complete

equation (4a’) becomes

. 2€ RN, _1y2€ _L Y2 (2R
IA B—F o (j/“a‘f (/“) '{3‘( a‘s’*H(‘ 29/ 3% +( 750 o\ P )*)

which can be written

SF
S+ o(€)

(where 0 is a complicated differential operator) for

simplicity.

In order for a steady-state solution to exist

we need to introduce a sink and a source into equation (6).
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f
The sink can be assumed to be such that particles moving
at higher than a fixed (large) speed are removed from the
system. The source can be taken to be Maxwellian and of

2

strength S so that a term Se™¥ must be added to the right-

hand side of (6) and (6a). Equation (6a) is thus
2 cof) = S, L (5.7)

where we have introduced the variable x, x =Y".

The source term can be troublesome. It is not
immediately obvious that the asymptotic solution (t->o) of
(7), which is physically the required solution, is the
same as the steady-state ( %EE(D) solution. If £ = f

o

when t = 0 the formal solution to (7) is

-e0O ¢ 10
- e ¢ « j et (SEJ)AT.

-0
Assuming that as t-»>w, f>g and e f,> 1 then the

function g satisfies
(-
. -x0
q= f = 5 e (Se*)d4T.

We must verify that O(g) = Se ™ . Applying the operator 0

to the above equation and integrating gives

O(g) = O(e) _.— S[e*,o e'x]m

o
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Since the 'initial distribution is Maxwellian (Ae_x, say)

we have
0(3) = 0(fa) +Se™ - 26, e (5.8)
On inspection of equation (6) it can be seen that 0(f,) = O
so that -
S £, s f
This means that f_, = f, = A€ and equation (8) becomes

O(g) = O .
This is not the required form of the equation.

However, if we replace the operator O by 0 + €, where €
is a small positive number, in the above argument and
ultimately allow € to vanish we find f_ = 0. The

equation for g is therefore

0(3) = Se~ oo (529)

which is the required steady-state equation.

On rewriting (9) with the operator expanded in

terms- of x we find
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L LN 2 C‘ a a G
3_f:1+%-§‘(\-4/1x) +i‘—:=?3}'iQ-P ):‘/:_ 'lio( (\-/A ) g}‘ = ﬁfi e | o (‘5-\0)

>

Except for the source term, this is the same equation

(42) and Lebedev(45). These

as thét given by Gurevich
authors justify the omission of the source term by

' saying that the source can be considered to be located
wholly in the small-F region and can be omitted because

the solution is required only for large 3f 4 Near thermal
speeds the solution is assumed to be the equilibrium
(Maxwellian) distribution function and the large-¥ solution
must match this in an intermediate range. '~ The solution

of Gurevich is an unacceptable one since it is functionally

, L . -
dependent on (1—ol*x )" which is unreal for large values of x.

Gurevich also has to assume a particular trial form
e (_(o) e"\?{c()\(") + (<) (/L—\)}

for the solution, without any quantitative justification.
Lebedev has attempted to reformulate the approach of
Gurevich to eliminate the unreal behaviour of the solution.
He assumes the same trial form and obtains a solution
which he claims is valid for all x (i.e. all speeds) by
using an expansion in oL However, it is not clear how

his solution is obtained, nor how he employs the matching
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condition for small J . As Lebedev has pointed out,

there i1s a wide variation from author to author in the
solutions to the runaway electron problem. Also, as
illustrated above, the necessity for a source term
introduces some complications in to the problem, and

its omission should be justified by a more complete
discussion than that given by most authors. Equation (10)
has a greater range of validity in velocity-space than
generally attributed to it. The‘approximations made

are good even close to thermal speeds and the equilibrium

distribution function is a solution for L= 0 and S = 0O

which is valid for all speeds.

Since o« is a small parameter one would expect
to be able to solve equation (10) by an expansion in
powers of this parameter. Before attempting this, an
idea of the form of the solution can be obtained by
considering a simplification of the equation (Green, pers.

~

comm, ),

-2

2t ?F 2 e
=) = e

This is a simple first order differential equation in %&

corresponding to (10) near fL: 1 and with the ﬂu—dependence
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neglected. The solution is
K
_ld‘b‘
. 22 DF 1 é 2
exp(x -iad™*) 5 = _ZRS‘E e de.

L -

Changing variable to y = 3«t* gives
. , s

B 2€ e e
ex‘:(x—ricl‘x‘) S "1—)\2 oL Yy e dy.

The boundary conditions will affect: the explicit form of
this solution.  Further consideration is unnecessary since
it can be seen that a solution, convergent for all x, can
be obtained as an expanSion is powers of «* which will be
proportional to strength of the source, S, (an expected
result) and will contain a Maxwellian tefnyefx, and a term

-3, .
x_h. For S = 0 there can be no steady-state solution.

We look for a solution of the form

F(/ﬁ:) = 2%\ o[% é-x 3(/*,") o .-.-.(5‘”)

Equation (10) becomes

R e RE-SA TP R TSR R

o
aAn
We now suppose that the solution is 3=Za{ G so that

n=o

._i g :13“ z; +2x3/“" (- ]"/""[ > “‘3n-'-) ~30 SH} -~ L5 ef5:13)

The zero order e,c“ua\'\on is therefore



125,

29, _ 29 > V)23 _ ™
T - 32 <L Al E) L

This is a separable equation with a solution of the form

g(P,x) = UKrJX(x) where U and X satisfy

Y 2V

(o0 5w 2as = GUERReR L (5.14)
2 o 3a

e SN ST S (5.15)

The U equation is Legendre's equation which indicates that
the solution is an expansion in spherical harmonics. The
solution to (14) must be finite for all m and so must
contain only Legendre polynomials. This restricts the

arbitrary constant, C, to the form m(mt+1) where m is a

positive integer. Equation (15) thus becomes
' K 2% Y. 2
x5 %55 —amerOX = —lUx (316D

The solution to the homogeneous equation corresponding to
equation (16) is a linear combination of confluent

hypergeometric functions,

X = C,M(a,0,2) « C, U (a,0,%)

Here a = im(mt+1) is a non-negative integer, C, and C, are
arbitrary constants and M and U"are Kummer functions. The
small-x form of U"is ~x~' 4+ Inx which will not give a

Maxwellian distribution for small x so that C, = O,



Knowing the solutions to the homogeneous equation the
general solution to equation {‘6) can be obtained by
the standard method as

x x

Ya M -k JEA Y3 -
X - CIM *o{ ng e L,{“d:n +<‘(.JUJ(J<’€ Mc(.:c‘

a o

Using the asymptotic forms of M and U"this can be reduced
to

PR Y
(T x
. oot S

oL+ 2

so that the general solution for fg@,x) to this order is

‘% = 2‘1&»)]

F(/u)x} _ e—‘tgio( 1? C N /M(M-H) O )P (/'L) * L m(m+|-) - 5_1

L
”z

for large x.

It is considered that continuing this expansion
to higher orders will generate a form of the solution
whtich would be particularly suitable to numerical
computation methods since it can be seen from the form
of equation (13) that higher order terms will involve

similar Legendre polynomial expansions. It 1s hon»ed

to do this 1in the future.
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CONCLUDING REMARKS

In this part of the thesis the intuitively
correct use of a Debye potential with a Boltzmann
equation collision term as a Kinetic equation for a
plasma has been justified for near equilibrium situations.
The collision term has been evaluated explicitly and
written in an operator form. It has been shown that the
Kinetic equation can be solved for the unknown operator
by a method similar to the Chapman-Enskog method, and
that the usual transport coefficients can be obtained
in a straightforward manner. An indication that the
operator form of the Kinetic equation is a very convenient
and powerful form has been given by obtaining an exact
solution under certain restrictive conditions which
correspond closely to those associated with runaway
electrons. Finally the problem of runaway electrons
where a steady-state is maintained by a source has been
discussed. A number of avenues for future work remain

open.
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APPENDIX A

In chapter two the scattering angle for
scattering in a Debye field is evaluated approximately.
An accurate estimate requires integration of the integral

(equation (2.7))

_\’x‘ﬂ =i
g [t ) o

x \-—Qye

SE

in which the integrand diverges at the upper limit of
integration. Whenever an integrand diverges, provided
that the integral is finite, the following technique can
be used to evaluate the integral rapidly. Consider the
behaviour of the integrand close to the point where 1t
diverges (in this instance at x = 1). Suppose that

h(x,y,Q) is defined as

—1xy

I S Y
I\ —Q=
\'\(x:j;Q) = [__—Lﬂ/,,a —xi—l
- QY=

Then, for small &
-\{1

h(1-8 94,Q) = H(\j,Q) S

which defines H(y,Q) as

-.-l/ _"
Q Ve @ TR
H{y,Q) = { A +2}

\—Q\:)e_“J
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Using this expression, if A is small and D<

(so that
AD >0 as n»>o0) we have
i=AD
Ha "y
S h(I,*j‘Q) dxz = —2H(‘3,Q) A (D -‘).
-4
Hence ”
. —AD -AD® ~AD
jh(x,g,qy&x—_{j +f‘ +J T }h&x
-o -a -4 -apt

\=AD

=Z°°A"‘/1J W ds

WeC \-a

\-AD
= (\—A"l)_‘g "dx |

-a

The range of integration of (1) can now be

split into two parts,

\-a \

=g h o= +j ndx

o -8

r
2

PO

Of these the first integral presents no computational

difficulties and the second can be approximated using

(2)

to any required degree of accuracy by the rapidly

converging sequence
-AaD

1-aD o\ =AD" -AD>
i \ i .
ﬁj hdx {j + l‘ﬁj }hdx - {J *‘T-‘_:j }h& RS i

-8 -a

B \-ap*
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In the following program this method has been
used with D = 1/10 and A= 1/10. Values of the energy
parameter Q (written as AA), the impact parameter B
(actually B2 written as BSQ), the required order of
accuracy (DEL) and the value of (ﬂ - ﬂs )-1 (AAA) are
fed in as initial data, From these values, y (Y(J)) is

computed for various B using the relation (equation (2.8))

2 4 =Yy
By +Qye " -\ = 0.

. —I/b
The upper and lower limits of \sin%\ (AHI :\ <3?9+0e —
v (2-@ye M)y +Qye™s
and ALO = —lzif—fv—\ , see equation (2.10)) are calculated
2L-Qye? '

and the integral of the function

_\f.j

—Ilz
|- Qxvye J
h(x.9.Q) HKﬂLr,— -I]

\-Q ;je_-

is computed using Simpson's rule and the technique outlined
above to the specified degree of accuracy. This integral
gives the deviation of ©/2 (half the scattering angle)

from the approximate value which corresponds to ALO.

lg\ {ANG) and cos® (THCOS) are then calculated from the
value of the integral for each of the specified values of
BZ.

The program is written in FORTRAN for use on a

CDC 6400 model computor.



.. PROGRAM TEGR (INPUTSOUTPUT)
DIMENSTON Y(bO)9UINT(900)vbINT(900)9CINT(60)'BSQ(BO)OTHETA(BO)
DIMENSION. TRECOS(B(O)
DIMENSTON B{(B0)
DIMENSIUN THY (BO) s ALO(BO) « ANG(BO) yAHI (80)
OImeENSION ANGS(900)
DIMENSTON BSUA(BO) sDIF(B0) s COR(80)
COMMON/ZAA/ZAA
ARA=] 46246752955 7426
AAZw] %1l 43 (=b)
DEL=040000u01 .
HSUI1)=].009999E~4
HS@(2)=1.6009990008E=6
BSWI3)=1,0000993005E-4
BSQ{4)=1,0000090484L-2
HOG15)=1.,00G00003679
BSWI(H)=L00.
LOaJ=146
YIS (=AA+SURT(AA®AA+4#BSQ(J)#(]1,=AA) ) )/ (2.%B5WQ(J))
I HOUWA (I = (]l e=AARY (JUIREXP(=1e/Y{J)))/Z (Y (JYRY(J))
o BIF Y =BSQA(JY)=BSQ(Y)
IF (ABS(DIF L) ) /BSQLUY=DEL)Be 747
T CORMCDSUIFLIIBY (DI RY (JIFY(J)/ (Lo=AAREXP (=1a/Y (J))®(Y(J)=10))
YL =Y (J) »CORC(Y)
GO 10 1
B B(J)=AASY (U)HEXP (=1, /Y(J))
ALULI)I =B (J)I/ (2e=BJ))
ALO L) ==AL0(Y)
CARLIDNS(BIN (Y () +]1e) )/ ((2e=B(J}YHY (J)2BL(J))
AHTI D) ==ART (J)
CANGS (1L)1R)10e -
po2m=1le2
o LALL SIMPLlem]Qett(leM)s] oeml0 i3t (aM)oBELIDINT (M) Y (J))
M=1
coeBINI(M)=SQINT (M) +AAARDINT (M*1)
3 M=M+)
CALL SIMP(le=)l0et % (=M)p]le=l0em®(=M=]1)sDELeDINT(M+1)eY(J))
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_ THETA(M)SSIN(BINT (M))
ANGS (M) =ALD(J)+THETA (M)
AF (ABS ( (ANGS {M) =ANGS (M=1) ) ZANGS (M) )} =DEL)He 303 .
6 ANG(J)=ANGS (M)
TJHCOAS(J) =2 ¥ LANG(J) ) ¥ (ANG(J))
HSQ(J)‘(I.-AA“Y(J)*EKP(-I./Y(J)))/(Y(J)*Y(J))
LPRINTSZ7sDEL s AAeY (U)o -
PRINTS Y (J)sALO(J) s ANG(J) s AHT (J)
4 PRINTSoHINT (M) o ANG(J) s THCOS(J) oBSQ(JdY . _ .
S FORMAT(1HO94E18610)
57 FOURMAT(1HOs3F15489+115)
STUP
_END
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SUHROUUTINE SIMP (A8 eDELTASAREASG)
M=l
={b=A)*]0,E25
H={H=A) /2,
FraxsruUNCX{Aa9G)
HJSFUNCA(B0U)
HJ= (KJ+F NX) $r
11 (=0
DOLZR=] ¢iv
£ (2#K=1)%*r1eA
FauXksEynCX{Z20)
172 C=CeF R
RIz4 #H*Cerd
IF (ARS (HI=v)=UELTA) 14913413
13 v=R] 8
RI=(KI+KJ) /@,
N=2%N
H=H/2 e
Q0. 10 11
14 AREA=RI/ 3.
RETURN, ‘ e
£ NU

FUNCTION FUNCKX(Xs2R)

CUMMON/AA/AA

IF (X)) 2492425
za FUMCX=0Qe

GO 10 23 . . ...
a% FUNCAX=SOURT (le/ { (1a=AA#RIXFEXP (=147 (X#R)) )/
C lflerAARRHEXP (=le/KH))I=X¥X)) . .

FUNSSART (La/Z ( (Y emAA#REXFEXP (=], /R))/(l--AA*R*EXP( 1./R))-X*X)!
. FUNCX=FUNCA=FUN . .
23 RETURN

ENU




B1.

APPENDIX B

B1. PROOF OF THE RELATION (4.5)

This relation gives an evaluation of the
integral

F2-pR .29
IqL: %Q'SR(f) e*‘){'%‘sma 1ﬁmb } /o3 ’ bgt <"i'§

For convenience we will write Ea=exv%%pﬂu§:} and Eg

similarly. The dlfferentlatlonSE- can be taken inside

the integral to give

4 S -
I.»,:[R(f’) %Q(EGEQ_FEPS/‘—’A:_;: 45, 4(; 5. 2 % <R( Y /"f’) 2d.

5 .
aib"

Now, since

)
a:Q(Ea Bo) = -Bma5a ELE, = g’: (‘ﬂmb(gh‘ﬂ)) EuEBa= r—::: %Q(EQEQ +Bm. 2 E.E,

the above integral becomes
I, = R(f) (BB —“,f W" L 4. +Jf5 R(p)pma BBy 2 (Fs-pe)3 3,5,_ " AE,

2 . PrEpr). 2%
e o (02552) B,
The first term on the right-hand side can be integrated

by parts to give an integral over the infinite b-velocity

surface which is zero, and a non-zero integral over

velocity space. In the second term the integrand is

identically zero. Hence

JE SN 35;, ] [f R (' /’/’) 3&] A5,
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On expanding the inteégrand by performing the

differentiation, i B2 2 , this becomes
My aEb a_gq

: a5 2%, 2
L.= (H‘)XE E. P R(f’)[lf’ = MR L 3 T :3»'%] 45

m, My
mq+mb

where M =

This can easily be expressed in

the required form, as given in equation (4.5), as

_ _2mam, R(p) Amapr Bmpza 3¢; M 2 3¢b M
o= ™ S??' ?‘*{T Sa Tbg"} “m2" 35, 1P g 3 T3P e

> 241
%-}b Jjb.
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B2: THE INTEGRALS IN CHAPTER 4.3

The integrals are I1, IZ’ I3, 14, Sland'g1

and will be evaluated in that order.
PN | _31_.1"-232

L= %S:_H' j 3e dxdy (1)

o -

On integrating over x and defining F1(z,3) by

—(3+3)» -(3-9" VL L
F (5,‘5) = e — e =-2e e ? sinh (25\5) ..... )
this becomes
_n_ (-4
Il ~ \)—_j E F\ (3;3) A}
(-]
c I, = & JTECES s (3D
_|f2_ rf ~xx . .
where Erf 3 = 2(m" | e = d=. The second integral is

[}

- e 4
2T R Bt T
s %T\&go L 3 e . dxdy,

The integration over x is straightforward and gives

L= ~E ] earren s wRaly -~ (4)

where Fz(z,3) is defined by

-3y —@(- . -yt
@3 = e e’ = 2e e cosh(23) (3
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EAR '
Using the relation Sé =-13F -23F | the expression

(4) can be simplified to

Q0

I, = b,3{(‘3 —\)S F day - L %5(%3"‘:.)‘5’3]

2

2T, = b“f*[ W= DEET < 2% e } . (6)
The third integral 1is
g 0 N R o= 3
13 = ‘E"S Xi 3 \h(—_g) e d=x d} ..... (_I
which, in the same way as 11, reduces to
Iy = ‘Sb‘ S (\"‘N \“3) ¥ d3
AL
: 13 = %,IﬁErF‘f nN =+ %‘] o s (8)
The fourth integral is
i 3*-¥-23
2 N MR Bl e
'[4 - ‘f_ﬂii S’} \n(s)x e d.xd‘é St s €))

Following the integration over x in I2 this becomes
I4 = b“33 (‘S l)g (\nN- \n'é) F d} SAE\'\N~\V\'3) 3}( }—‘ F ) A}]

9§ = X(wg VEES tan (7Y +§,) 23 N KM B}(—'é"F)d’A ..... (10)

To evaluate (10) we must find 1= S \ny %3(%{‘5)45.

Integrating by parts twice and wusing the relation for
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3F. given earlier gives
?

g i -$* g -
I=[53‘F.\n3]°+13’e + Soﬁds ~ ‘Sxas‘ﬁéa.
. =¥ -3 I aE .
Writing HF=2e ¢ (esw2383-1)+2e e’  integrating by parts

and combining terms this becomes

~§2 [} b\l j -2 Lo - HY _a oo _31

) 39 o 2 B
-\-23&'3 I 3 €2 (cosh23¥ — 1) d3 .

: a [ o4 _at .
Using this relation and _gghge 2 dy = -1i7 where ¥ is

Euler's constant, enables (10) to be written

I,- gj‘[{yﬁ(fﬂ)ggj +)_‘5e'f}\nN +JWEE S *l‘fe"j‘(%[—"e);) *(31")&] Q)

I3 and 14 depend on the integrals

5,
L

Both of these can be approximated for small or large J .

e
g n3 F\ d}

-]

gw{‘ e (cosh 293 = \7d} .

o

Consider the case where J is small first. We use the

first few terms in the expansions of cosh and sinh

(from F1) only to obtain
§, ~ 23T [ g (1 <59 %
§ = 23 - «30G-D)

TR TE I SEl

b4
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and
z 3
%1 = Eo 3"‘ 2‘5 ) d}
L4, = % Y
(33> -3+
For large ¥ we use the fact that € e over

most of the range of integration and also the approximatian

H-2)
SH(}‘) e dy = HQ)%(\-&E#Z) ~ v W@Z)
valid for large Z where H(z) is an arbitrary, but not too

badly behaved, function. %‘ and %1 be come

R Y

~8 = -Win¥

and, since cosh23¥ D\ over most of the range of
integration,
L4 a
-y "3
'%2 ~ So ‘5' e cosh 1‘53 A}

2 (* —3-
e’ S 37" e da
o

n

ol oL
v »
1Y

AR )
3 3 €

It is difficult to see the rangesof validity of
the expressions (12) to (15). However the integrals for
%“ and %1can_easily be evaluated numerically and the
results compared with the approximations given here. This

numerical integrating was carried out on a C.D.,C. 3200



B7

computer and gave the following results (where P.E.

denotes percentage error).

\P.E.| <35% : $<.69;3>1.02 for §,
34.91:3>1.04  for G,

|IP.E) < 10% : $<K.42;%)2.04 for §,

$<.53;  1.324%1.71,%)2.47 for §,.

Using the small-J¥ and large-¥ approximations
for %‘and %1, the corresponding limiting forms for Ij

and I, become, ﬁsing (8) and (11),

13 = %ﬁ T Eee3 tnN ¥ 3 e’ ] ,~sma\\ Sf (‘6)

I, = &%Dﬁ (laN “‘F*)] JdacgeS ()

q - ' =

T, = gk [URCS-DES +29€ TN «FECF T -23€ {roe-TS })'Sm“j ..... (8)

-3
14 _ %Ta_bi{_‘rﬁ (j"-l) (\n‘N-\Y\j) « 2Fe _(3¥—\)] ,(qv‘%ej ..... (\9)
An alternative method for deriving the limiting
o0
: a T :

forms for %1 is to notice that 2—% =e LF‘A3 = Fie® ey,
For small J, JWE«ff 2eY so that E;f; =23 and

%1= ¥* as before. For large¥, Ef¥ = | =z 1-3¥* so that

24.

2 . . . o a 11
- T = . On integration this gives =Jre /.
2 - we(1-237) g gives §,=le /.

as before.
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CHAPTER ONE: INTRODUCTION

The Meteorology and Climatology of caves is a
field which is of more interest to biological scientists,
concerned with environmental influences on plant and
animal life, than it is to physical scientists. One
important physical aspect is, however, the study of the
motion of air inside, and into and out of caves. This
1s an aspect of microclimatology which has been mentioned
by a number of authors, notably Geiger(1). Geiger
"classifies caves as either 'static' (subject to little
circulation of air) or 'dynamic' (in which air movements
of considerable magnitude can occur) according to whether
they have one or more entrances. His classification of
single-entrance caves as static indicates his unawareness
(possibly because it is rarely encountered in European
countries) of a most remarkable natural phenomenon;
namely large-magnitude, reversing air currents which are
observed in some single-entrance caves, This phenomenon,

and its explanation, is the main concern of the present

section of this thesis.

The term 'breathe' will be used specifically

to describe such air movements. This word has often



been used with a more general meaning to describe all
forms of air movement encountered in caves, It 1is
also used (in the United States) to describe the
short-period oscillations which occur when the air

in a cave resonates in response to external air
movements (the 'Helmholtz resonator effect' explained

(2) (3) (4))_

b

Schmidt No confusion

by Faust and Plummer
should arise because these effects will not be discussed

further.

Cave-breathing is a paradox since the question
can be asked, 'where does the air come from or go to?'
The answer may be associated with the variation of
atmospheric pressure. However, simple considerations
show that the magnitude of this effect would, in most
cases, be almost immeasurably small and therefore re-
establish the paradox. The possibility of air movement

due to atmospheric pressure changes has been noted by

(5)

Lawrence , who states it to be an effect of small
magnitude. Measurements made by Polli(é) confirm that
(at least in the cave he studied) this is so. Plummer(4)

?

in reviewing the major factors which can cause air movement
in caves, also mentions this possibility, but discards it

as a factor of little importance except in extremely large



caves. He does, however, refer to the unexplained
large magnitude of air movement in Wind Cave, South

(7)

Dakota. Moore and Nicholas discuss the effect of
air pressure changes on air in caves, but do not mention

that inordinately large magnitudes have been observed.

It has been known for many years (although
rarely reported in any literature) that a form of air
movement exists in caves of certain regions where the
variation of atmospheric pressure is the only possible
cause, but where, should this be so, the magnitude of
the phenomenon has been many times greater than would
be expected. It is this which is referred to here as
cave-breathing. Some examples of breathing caves (in

this sense) in the United States are cited by Halliday(s).

Popular belief has been that strong breathing
indicates, and can be explained by, the existence of a
large volume of undiscovered, yet penetrable, cave.
However, the number of breathing caves which are known,
and the extensive exploration of them, makes this a most
unl ikely explanation applicable to all cases. A more

(9)

realistic suggestion by Ward , (in relation to

breathing wells rather than caves), that the large



magnitude is due to the extreme porosity (in the non-
technical sense of the word) of the rock, is apparently

unigque in the literature.

Probably the most remarkable instances of
cave-breathing occur in the 'blowholes' of the Nullarbor
Plain region of southern Australia. These are apertures
in the ground, from a few inches to a few feet in diameter,
"through which there are draughts and which may make

moaning or whistling noises because of the passage of air'

(10)

(Jennings ). They frequently exude air at a sufficient

rate to completely evacuate their penetrable volume 1in a
matter of minutes. Although noticed by the earliest

explorers, no attempt was made to study their breathing

(11)

until 1957 (Bishop and Hunt ). This work was hampered

by a lack of suitable equipment and the fairly commonly

held belief that the phenomenon was due primarily to

(9)

temperature effects. In spite of Ward's statement

(12)

and the knowledge of the high porosity (King ) and the

remarkable extent of anastomosing and intense perforation

40 4
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adhered to in 1964 (Anderson(13))

The Nullarbor Plain is one of the largest



limestone karst regions in the world covering tens of
thousands of square miles(10’j4). It is, unfortunately,

a rather remote region almost 1000 miles from the nearest
population centers. The climate of the region ranées

in aspect from semi-arid to desert. As a consequence

it is rarely visited either for scientific or other

reasons and further work on the blowholes lapsed until
1964. In the meantime an attempt at explaining the
phenomenon of breathing in the Wupatki National Monument
region of the United States met with little success (Sartor

(15)). The results of these authors did, however,

and Lamar
show that the relation between air movement and pressure
changes could not be a simple one since changes in direction

of breathing lagged behind the changes in rate of change of

pressure.

In 1964 a most significant cave discovery was

(13)

made (see Anderson ) by means of aerial survey photo-
graphs of the Nullarbor Plain. This cave, 'Mullamullang
Cave', which has only one entrance and is at present the
iargest cavern in Australia, exhibits the breathing common
to the blowholes of the Plain to an unprecedented degree.

At one 'constriction' in the cave (some 200 square feet

cross-sectional area) 'winds' estimated at over ten miles



per hour were observed, This remarkable example provided
a unique opportunity to study cave breathing in detail.
Preliminary measurements were made -in 1966 during a large-
scale privately organized expedition to the cave. The
results confirmed a theoretical prediction of the present

(16)). The

author (see Wigley, Wood and Smith in Hill
detailed explanation of the breathing and the presentation

of further confirmatory evidence is the main subject of

this part of the thesis.

Chapter two gives an account of the phenomenon
as a problem in the nqn-stéady flow of gas through a porous
medium, The hypothesis that the accessible cave is a
large cavity in a much larger mass of extremely porous
material, and that external (to the cave) atmospheric
porous surrounding material to move in response to them,
is put forward. This hypothesis is examined initially
from a meteorological point of view and it is shown that
the conditions are such that the governing equations reduce
to a diffusion equation. Two models, the 'cylinder' and
'long-slit' models, of idealized caves are proposed and

the diffusion equation is solved under the boundary

conditions appropriate to these models. Results are



given from Mullamullang Cave which agree well with the

predictions of the long-slit model, and the results of
(17) (15) (18)

’

Schley , Sartor and Lamar and Conn are found
also to be in accord with the theory. Further experimental
work where readings were taken simultaneously in
Mullamullang Cave and in a nearby blowhole (this latter
though to be an example of the cylinder cave model) is
discussed. The Mullamullang Cave study indicates that

the 'fracture'* permeability dominates the 'matrix':s:
permeability of the rock in regions where cave breathing

is observed. Some of the consequences of this discovery

are examined,

In Chapter three the theory presented in the
second chapter is extended to cover a moré general
hydrological problem, that of the non-steady flow of a
fluid into a well in a confined aquifer. One of the
boundary conditions previously written as a Fourier
series is rewritten as a Fourier integral and a solution
is obtained which is a generalization of that which is

widely quoted in hydrological literature (see, for example,

* Often called 'secondary' and 'primary' permeability.



Todd(19) and de Wiest(zo)). This solution is, however,
in accord with, and formally equivalent to, that of
Ritchie and Sakakura(21) and is a well-known result of
the theory of heat conduction. A possible hydrological
consequence of the cave breathing theory is noted. This
1s the partial confinement of an aquifer in the vicinity
of a well (or cave) due to the decrease in amplitude of

air pressure fluctuations as one moves away from the well.



CHAPTER TWO: CAVE BREATHING

2.1 POROUS FLOW THEORY

Consider the problem of flow of air in a porous
medium of thickness h which lies in or on the earth's
surface, The medium is bounded by parallel impervious
1a§ers at the top and bottom and the air flow in it 1is
induced by pressure variations in a cavity inside the
medium, Two particular cavity shapes will be considered
(see Figure 1). Later these shapes will be taken to

represent two types of ideal cave; the 'long-slit' and

'cylinder' cave models,

[N

A \‘b\\x\\‘:\
A .- A “Q\K
Fig. 1. Elevation and plan of the long slit and cylinder cave models. The arrows show di-

rection of air movement during an out-flow (falling pressure) cyele. Long slit (left); cylinder
(right). )

N
\



The first cavity chosen is a long rectangular
slit of length L, height h and half-width a. The slit
is open at one end, and is assumed long enough for the
effects of flow into the other end to be ignored. (The
word 'slit' is perhaps a little misleading since it
usually implies that one of the dimensions h or a is much
larger than the other. This is not necessarily the case
here) . The geometry of this model suggests the use of a
cartesian coordinate system with origin at the center of
the lower side of the open end of the slit. The cavity

is thus confined to the region -ag¢xga, o{y«L, oz h-

72N

The second cavity chosen is a circular cylinder
of height h and radius a with axis normal to the two
impervious layers. The upper end of the cylindrical
cavity penetrates the upper impervious layer. Cylindrical
polar coordinates are suggested here, with origin at the
bottom of the cylinder, where the axis intersects the
lower impervious layer. In this system the cavity is

restricted to the region rga, 0¢3¢h,

The equations governing motion in the porous

medium are
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2

K +ULpr =0 (2.2)

dy +9é +LV 20 ~

4c A f _F 4+~ U X S & -~ /;—‘:‘\I = O — (2.3)
where k is the permeability of the medium

S is the porosity of the medium

PhP’T are the pressure, density and temperature
of the air

¢ is the earth's geopotential

M is the coefficient of viscosity of the air

) is the angular velocity of the earth's
rotation

and v is the (particle) velocity of the air, not
to be confused with seepage velocity (ﬂ = Sv) often used
in porous flow studies. The flow is assumed to be

laminar and, to make the system of equations complete,

isothermal.

These equations are the equations of dymnamic
meteorology with an additional (linear) resistive term
in the equation of motion which represents the drag due

to motion through the porous medium. As given they are,
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of course, too general for this particular application
and the Coriolis term and the effect of variation of
the dependent variables in the vertical direction can

be neglected (see below).

This approach to porous flow problems is the

(22)

'Drag Theory' proposed by Brinkman An alternative,
though less general starting point which is frequently
used is the semi-empirical law of Darcy. The two
approaches are equivalent and Darcy's Law can easily be
'deduced' from the Drag Theory provided certain restrictive

(20)). The

assumptions are made (see, for example, de Wiest
introduction of a drag term is equivalent to assuming that
the effect of the small-scale tortuous paths through which
the air travels in the porous medium is manifest as a
resistance when the air motion is considered over a L
sufficiently large scale, The resistance is proportional

to a 'coarse-ground' velocity; i.e. the velocity of the

air averaged over a length of small-scale path sufficiently
long to include a large number of small changes in direction.
There are, therefore, two separate scales of motion through
the medium; the 'microscopic' scale on which the shape of

the small-scale path along which the air mores is important,

and the 'macroscopic' scale which is described by equation



(3). It might be expected that this would be a valid
working hypothesis only for a certain range of a 'pore-
size' parameter which would be a characteristic of the
microscopic motion. For instance, it is certainly wvalid
for common porous materials where the pore-size 1s less
than the order of 1/10 mm., provided that flow velocities

are not too small or too large (the experimental validity

of Darcy's Law indicates this), but is it valid when the
pore-size 1s of the order of cms. or greater? The answer
to this question is apparently 'yes',6 provided one

considers phenomena on a sufficiently large scale compared
with the pore-size, although it would be expected that the
regime of flow velocities for which the hypothesis was valid
would be restricted in some way. The so-called 'non-1linear'
effects which are known to occur at very low flow rates are
ignored in this treatment. They would only be important

for small time intervals and so will not affect any of the

broad conclusions which will be drawn.

The boundary conditions which must be imposed

are: (i) at an infinite distance from the cavity
p = constant (= P_, say), and (ii) inside the cavity
plz = 0) = f(t). At this stage the function of time

f(t) need not be specified any more precisely than



14.

f(t) = constant (as is the case with atmospheric pressure

variations).

FFlow into a long slit,

The symmetry of the problem suggests that, if
y is the coordinate axis measured along the slit, the
vertical and y-components of the (coarse—graihed)
velocity may be neglected. Since the remaining component,
u, is small, Coriolis terms may be ignored and the

equations reduce to

) (e W)

2 + 22 -0 | (=i»a) ooee (A
PWoe w2 E cHK w0 (mra), (2:5)
2p

3_\j =) O 3 seiee (2 6)
i

= S PR T o R (21)

Using the isothermal condition, equations (6)

and (7) can be integrated. The solution is

p= Pt ep-E) ~ P, L (28)
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since ogz¢h and h 4 g/RT, so that variations in the

vertical may be ignored and equations (4) and (5) become

dP 2(Puw) |
e " 5 =0 U=lZe), (2.9)
R R L e LT R L O Ny CRD

Differentiating equation (9) with respect to x and (10)

with respect to t and subtracting gives, for |x|2> a
2P 2P /
S/“'~ =c = k3 oo (2.11)
where small terms have been neglected since, with
f(t) ~ constant,
$(1n p) K $(1n u). It is convenient now the expand
f(t) as a Fourier series,
o0
f(6) = P+ 2 P sm(nwt -€),
n=t
Under these conditions, the solution of (171) is well-
known (see, for example, Carslaw(23)L being
x -°(n<\x‘_q') .
P =P +Z IRE S\n(nwt-e,‘—o(n(\x\‘a)),
n=1\ '
where¢{:'= (n@MS/(ZPOk)), and where, to comply with the

assumed close constancy of f(t), P & L Thus the
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complete solution 1s given by

o -o (1t a)
p=[R-2 R e snfnot- €, oL fei-)] | 1=t > a,

b =~ F(e) |, \xl L a.

The amount of air flowing through the slit at
any point along its length can now be calculated.
Integrating the continuity equation over the volume
-o{x{®», y21, ogz¢h, and using Gauss's Theorem

yields the result

Dl UJZ—‘Z EE o (203)

where P, is the average pressure and U the average air
speed (measured positive inward) over the cross-section

of area A normal to the y-axis at y = 1, and dU is a

b

typical volume element. Hence

p UA =2h(L-1) [ 3E dx .

The length 1 should be small compared with L so that end

effects can be ignored. Completing the integration
either directly or using the fact that %% is proportioﬁal
2
to 3—; we find that
ax

\°1UA = 2h(L- 1)ZPnnw[a ;95 (not-e) + 2%““‘(“@‘ =G5 ITT-)] ..... (2-14)

nel
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. -11
which becomes, for a very permeable medium, (say k 210
square metres)
2h (L-1) ['Pk]\lz i T :
- £ ‘Pn m Cos(l"\wt— €.~ “). _____ (2.\5)
e [ APy l = wz—l *

Flow into a circular cylinder

Following the argument presented above it can

be shown that, for r a,

p = P(nE)

3P _ ( 1)
SSe t TRl TR e
with the boundary conditions

P =P +Z—P,,‘ sm(nwt-€) | rla,

17 —*-FL as ¢ —> oo,

The solution of the diffusion equation under
these conditions is not so well known, but it can be
obtained by considering the inverse Fourier transform
of P(Q, say) as a new dependent variable. The general

solution for Q can be expressed in terms of Kelvin
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functions. On taking the Fourier transform of the
solution which satisfies the appropriate boundary

conditions the required solution for P is obtained as

+ ZP,‘ sin(nwt - €,) {ker (Feor) ke‘r‘(ﬁo(“q) t kel (Bar) ket (Rd,a)
R ker* (T, ) ket (ol a)

2 Z-P,‘ cos(nwt - €,) {ker(ﬁdhf‘) kei (Rd.a) ~ ker(fad o) kei (72dn 1)
et kee™ (Rdga) + kei* (Fadaa)

wheré d: = (nqu/(ZPok)), as before, and 'ker' and 'kei’
are Kelvin functions of the second type and zero order
(ker(q).f ikei(q) = Ko(q [1i) where Ko is the zero order
modified Bessel function of the second type). The
functions ker and kei can be replaced by their phase

and amplitude functions, which satisfy the following

relationships
N*(q) = ker*(q) + ke"\l(cﬂ ,

| - Tkeilgd)/
3@ = arctan [V ]
so that
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fdar) |
el Z.P“NS; 5 snlret-en s BEdr)- (@) | rya

e (2.16)
and. P = £() r{a.

The rate of flow of air from the top of the
cylinder can be found by integrating the continuity
equation. Hence, as before,

oo
b UA =2“\’18r‘a—P de

¢

where U is the average wind speed through the top of
the cylinder (measured positive inward) and pe is the
average pressure over the top of the Eylinder.

. 3p . .
Integrating r , as obtained from equation (16),

3t

gives

Fe UA = 2Th {i %anql cos (nwt - €,)

n=\

n=i N (Eol,\a)

cos (nwt - €, ~ (e} + D (Redn 0‘—)} ,,,,, (2.\7)

where the first summation term can be neglected for very
permeable media, and N1 and §1 are the phase and amplitude
functions corresponding to the Kelvin functions of the

second type and first order.

In the 1imit as a»o this result reduces to
that obtained for flow into a long slit (equation (15)),

thus providing a valuable consistency check.



20.

Flow for a simple pressure variation

It is of interest now to consider a simple
example in order to appreciate more readily the

implications of the above results.

First, however, consider the solution for the
case of zero permeability. This corresponds to a cavity
which has walls which are completely impervious. From

either equation (14) or (17) this is found to be

o
N
~
00
—

p1UA =V

o/
(a3
e

where V is the volume of the cavity beyond the point
where U 1is measured. This solution holds for a cavity
of arbitrary shape. The most important consequence of
this result is that, in the impervious wall limit, the
wind speed and rate of change of pressure are in phase

with each other.

Returning now to the porous flow case, suppose
that the boundary pre=sure variation f(t) is a simple

sinusoidal function of time
() = B, ~Psnwt , (lxl or r&a)

where as before, IH <4 PO. Under these conditions, for

a long slit, the pressure inside the porous medium 1is
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given by

\\ll'j

<
, S w _ o __A*
P = PO “+ P' epr-(\x\—a)K 2/1\;:‘#) ! SN \'w’c (ix\- )\1&

I €

X

5ﬁ1
This solution shows, firstly, that the amplitude of the
pressure oscillation decreases exponentially, and secondly,
that the oscillation lags further and further behind the
boundary variation, as one moves away from the cavity

deeper into the porous medium. The average wind speed

across an area A at distance 1 along the slit is

2(L-1) B hlehk

= COs(wt— E)

1AJf" K

_ 2(L-1) KRk [a_;p] (2.19)
PlA.!/.L—S- ?ﬂt —l tsoas :

Fw

The wind speed thus lags behind the rate of change
of pressure by an eighth of a period. The magnitude of the

wind speed is the same as that for an impervious walled slit

of half-width a where
eff

a_¢g can be called the 'effective half-width' for the porous
medium, In general it will be much larger than the physical

half-width of the slit in a very permeable medium so that, as
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a consequence, the magnitude of the wind speed will be
much larger than it would be if the cavity had impervious

walls.

As seen above, in this simple case the lag 1s
one eighth of a period: for more complicated boundary
conditions the lag can easily be shown to vary considerably

either side of this value.

For the circular cylindrical hole the results
are similar, The pressure oscillation amplitude decreases
and lags further behinmi the boundary oscillation as one
proceeds deeper into the porous medium. Substituting
limiting forms for the phase and amplitude Kelvin
functions the average wind speed at the top of the

cylinder becomes

Znhpo.P‘k cs(wt-—T—T—-—-jT—-)
Spe Apf 2 4P

U =

where ¥ is Euler's constant (= .57721) and

A B

Although equation (21) appears to give an inf inite lag
whenffﬂs this possibility is never realised. This 1s
because a is always much smaller than a gf SO that A 1s

always larger than 1n2 (and 1n2 >¥). Generally, in a
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very permeable medium and for a of order 1 metre,

B23.

Hence, the lag of wind speed behind the rate of change
of pressure is greater than for the case of a long slit

and tends to one quarter of a period as a becomes-

vanishingly small.

The 'effective radius', Reff’ can be seen to
be
ZRk™
Reee = oo O S (2.22)

which is generally of the same order of magnitude as the

effective half-width a ¢y for the long slit case. Since

limiting {small a) forms have been used for the Kelvin

functions in the original expression (21) it should be

noted that Re will not tend to a__. in the large-a

if eff

limit.
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2.2 CAVE BREATHING

The results of section (2.1) can be used to
explain the inordinately large wind speeds encountered
In some single entrance caves, If typical values of
pressure and its rate of change, and of cave volume and
cross-sectional area are substituted into the equation
for a cave with impervious walls (equation 18) the wvalue
of the expected wind speed would be quite small (of order
0.1 metres per minute, i.e. 1/200 ft. per sec., through
an entrance hole of area 0.2 square metres (2 sq. feet)
leading to a cave of volume 1000 cubic metres) . For
caves of similar volume on the Nullarbor Plain wind speeds
of the order of 3 metres per second are actually observed.
The implication of such observations is that, either the
potentially accessible volume of every cave which exhibité
the breathing phenomenon is much greater (by a factor of
order 2000) than has so far been detected, or, alternatively,
most of the air comes from the porous walls of fhé ééve.
It is this latter possibility which appears to gain favour

when considered in terms of the preceding theory.

Caves which breathe in response to changes in

atmospheric¢ pressure certainly occur in the United States
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and in Australia. Examples are cited in a number of

(7,11.,13,14,%5,16,17,18)

references and many other

examples which probably fit this category exist in
popular speleological literature. Reliable
meteorlogical observations of the phenomenon of cave
breathing are, however, scarce and limited to a few
authors(15’16’17’18). On inspection of these obser-
vations it is found that they invariably indicate that,
not only is the magnitude of the breathing much larger
than would be expected, but also that there is a lag in
changes of direction of breathing behind changes in sign

of the derivative of pressure with respect to time.

Only in (16) is the significance of this fact pointed out.

Some of the world's most remarkable examples
of cave breathing occur in caves in the Nullarbor Plain
region of southern Australia, where numerous 'blowholes'
(small caves with volumes ranging from 10 to 10,000 cubic
metres) are observed to breathe at rates of the order of
1 cu. m. per sec. (35 cu. ft. per sec.). Far surpassing
this, however, at a constriction near the entrance of a
much longer cave (Mullamullang Cave) wind speeds are
regularly found averaging 2 m. per sec. over an area of

20 square metres. (This cave will sometimes be referred
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to by its alpha-numeric code symbol 'N37').

The morphology of the region is such that the
caves fall into two classes, 'deep' and 'shallow' caves
10
(107,

(Jennings

?

which can be idealized to fit the long
slit and cylindrical cavity models discussed abové.
Mullamullang, by far the largest of the deep caves (see
Figure 2), has been the subject of intense speleological
study since its recent discovery. This study included
a short period of meteorological observations early in

1966(10)
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Fig. 2. Simplified map of Mullamullang Cave, Western Australia.

27.
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The cave itself shows a marked similarity
to the long-slit model and the wind speed and pressure
observations taken inside the cave are 1n excellent
agreement with the theoretical! predictions. Typical
results are shown in Figure 3 which has been adapted
from (16}, Since pressure variations are reasonably
complex, varying lags of wind speed fluctuations behind
changes in the time derivative of pressure would be
expected, although the magnitude of the lag should still
be of the order of one eighth of a period. Also one
would ekpect, on theoretical grounds, that higher
frequency pressure oscillations superimposed on the
general trend would not be so noticeable in the observed
wind speed. These predictions are borne out by the

results.

It is fortunate that the tidal semi-diurnal
atmospheric pressure fluctuation in the Nullarbor Plain
region is of reasonably large amplitude. The observ-
ations cited in (16) were made (intentionally) during a
period when the fluctuations in pressure due to the
movement of large-scale weather systems were small, so

that the regular tidal effects would dominate any other



trends. In this way an ideal situation existed for

the comparison of the simpler theoretical

(equation (19)) with experiment.

prediction

29.
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Following on from this work a more extensive
verification using more accurate instruments was under-
taken during January 1967. A blowhole (alpha-numeric
designation N73) situated approximately at point B in
Figure 2 and shown in relation to the larger cave, N37,
in Figure 4, and which was discovered in the course of
the 1966 experiment, was chosen as a second observation
point. Over the major part of the Nullarbor Plain
there is a marked stratigraphic separation between the
blowholes and the large (deep) caves, of which Mullamullang
Cave 1s one, The former are wholly situated in the upper
layer of Nullarbor Limestone, while the latter, except 1in
the vicinity of their entrances, are in the lower Wilson
Bluff Limestone; these two layers being separated by

(10)). It would

impervious intermediate beds (Jennings
be expected that a blowhole situated close to a large cave
would thus be separated from it and that the two would
breathe independently of each other. However, the
stratigraphy of the Plain near N37 and the blowhole N73

is apparently much more complex. Indeed its geologic
description is at present an active project of the

Western Australian Geological Survey, Even so, it was

hoped that, due to their great difference in shape (N37
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being physically similar to the long-slit model and
N73 being similar in appearance to the cylinder model)
simul taneous observations of the two would show some

degree of independence.
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<N73 Blowhole.

400

— 300

f'Wai'cr Table Level.

Figure 4. Cross-section showing the relative
positions of Mullamullang Cave and the blowhole,

N73. Vertical scale shows heights above Mean
Sea Level in feet.
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Figure 5. Pressure at the surface (bold line)

and underground (dots) observation points showing
reduced amplitude at the underground station.
(12.40 mb. has been added to the underground
readings to make the observations comparable).
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Figure 6. Rate of change of pressure and volume

flow at Blowhole entrance and in Mullamullang Cave.
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significantly to the rate of breathing have been
smoothed out. ’
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Two observation points were set up, one as
shown in Figure 2 inside Mullamullang Cave and the
other on the surface at point B, the blowhole entrance.
The results are shown in Figures5 and 6. Extremely
sensitive Digital Aneroid barometers were used; properly
calibrated these can measure pressure absolutely to 0.1 mb.
and relatively to 0.01 mb. It was hoped that micro-
fluctuations in pressure would be observed which could
be correlated between the two observation stations by

the use of these instruments.

The results obtained are generally in accord

(16)

with those obtained during 1966 Two new péints

are outstanding. Firstly, there is a decrease in the
amplitude of the pfessure fluctuation in going from the
surface to the underground stafion and some of the small-
scale fluctuations noticeable at the surface station are
absent from the underground results. This is quite a
remarkable result since 1t inéiéates that there 1is an
observable damping of the pressure fluctuation along the
length of cave (a macroscopic 'pore'} between the entrance

and the observation point (although this effect may be due

in part to the difference in elevation of the two observ-
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ation points and the fact that the surface observation
point was situated some distance from the entrance to

the cave N37).

It would be possible to estimate from this
amplitude reduction a 'permeability' corresponding to
flow through a macroscopic pore, the cave itself. (It
should be noted that although Figure 2 shows a relatively
free path for air travel between the observation point
and the cave entrance this is a result of the degree of
simplification used in the drawing). The assigning of
a 'permeability' for flow through a pore or pores of the
size of the cave is a rather doubtful procedure since in
many parts of such a pore the rate of air movement is
sufficiently large for the flow to be fully turbulent.
Inside the porous medium the flow is certainly slow
enough for turbulence effects to be ignored, but in the
cave-itself the interpretation éf the results as a
permeability is a somewhat arbitrary step. However, if
such a permeability were estimated, its magnitude would
be large enough not to invalidate the hypothesis of
infinite permeability along the cave length inherent in
the theoretical treatment of the long-slit model. This

result does, however, indicate that the drag hypothesis
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on which the original equation of motion, (3), is based

may be of more general validity in this application than
would appear at first sight. Certainly the hypothesis

is valid for discussing effects where the pore-size is

of the order of centimetres.

This conclusion cannot necessarily be extra-
polated to cover the liquid flow regime. Some preliminary
observations of ground-water movement by the author do,
however, indicate that this extrapolation may be a good

one, at least in this region. 01105(24)

has shown, using
laboratory experiments, that the permeability concept is

not valid for the discussion of ground-water flow in certain
types of karstic region. His conclusion, being not in

accord with the above, illustrates the complexity of the

problem.

The second point noticeable in the 1967 observ-
ations is that the difference in air-flow characteristics
between the blowhole and the cave is only small. In
particular the times of change of direction of air movement
generally differ by only a few minutes. If the blowhole
behaved like the cylinder cave model it resembles, then the

air flow in it should lag considerably further behind the
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rate of change of pressure than does the air flow in
Mullamullang Cave (see discussion after equation (21)).
An explanation of this unexpected behaviour will be

given near the end of this section.

Because the models discussed are such broad
idealizations of the caves they represent, good
quantitative agreement between model and experiment
would not be expected. A detailed comparison would
require the spectral analysis of a long period of
observations. With the type of instruments used (non-
recording) and the necessity to use a voluntary labour
force to obtain data it was not possible to obtain the
required length of observations. It is doubtful whether
much more information could have been obtained from more

extensive data.

It is possible to estimate the permeability
of the limestone from the N37 results, and the good
qualitative agreement between theory and experiment in
this case suggests that this is not an overambitious
task. Calculation of the permeability requires a
knowledge of the porosity of the rock and the thickness

of the material which participates in the breathing,
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although only to order of magnitude accuracy in view

of the other approximations involved. The porosity

is known to be high and is quoted as 26% by King(12),

A thickness estimate of 100 metres is based on strati-

(16)

graphic work of Lowry (in Hill ), the surveys of

(16)

Hill , and aneroid levels established in the area

(25)

by Wigley and Hill The permeability, found by

using equation (19) with the frequency estimated

graphically, is
k =~ 10 Square  metres.

It is known that, when the drag theory is valid, the

permeability of a medium for liquid flow often differs

(26)

from the value for gas flow (Klinkenberg ,

T

Scheidegger However, the difference is within

the limits of accuracy of this experiment and there is

(28))

evidence (Rigden that it becomes smaller as pore

size 1increases.

9

A value of 1077 for the permeability is rather

a high one for well-consolidated limestones, but 1t is

not inconsistent with the limestone of this region of the

(10,14)

Nullarbor Plain. According to Jennings the degree
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of anastomosing and joint- and bedding-plane enlargement
is extremely high, The whole mass of rock is thought
to be riddled with anastomosing small tubes and the
calculated value of permeability strongly supports this
view, The rock in this case can be thought of as the
superposition of two porous media with pores of widely
differing sizes, similar to the way in which Barenblatt

and Zheltov(zg)

represent a fractured porous medium.

The permeability measured is that of the combined media
and the two parts are separately cons idered to contribute
'matrix' and 'fracture' effects, where 'fracture' in this
instance denotes the large-scale pores. The value,

Kk a 1077

, thus represents the combined 'matrix and
fracture' permeability, dominated by the effects of
anastomoses and fracture, rather than the 'matrix' perm-
eability. No other measurements of the combined perm-
eability of limestones seem to be available; however they
are expected to give a value much larger than the matrix

(30)). It should be noted that

permeability (Scheidegger
the matrix permeability of most limestones is appreciably
less than would be required for the rock to breathe to any
great extent, It is thus probable that breathing caves

will be found only in limestones of high fracture perm-

eability.
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In the light of this morphological discussion
the results from the blowhole, N73, which were found not
to fit the cylinder cave model, are not so unlikely.

They can be considered, rather, to substantiate the
opinion that solutional development occurs preferentially
along certain directions in limestone regions of high
porosity (Pincheme1(31)) and, in particular, in the

(10’14)). The obvious

Nullarbor Plain region (Jennings
linearity of the deep caves and of many surface features

of the Plain is the observational basis for this opinion.

It is probable that the blowhole, N73, is
situated in a region of preferential solutional development.
This is indicated by the close proximity of N73 to the
almost linear large cave, N37, and the fact that, in this
part of the Plain, the stratigraphic separation between
near-surface and deeper limestone layers is less marked,

In this case the resistance to air flow into the blowhole
would be reduced along certain preferred directions. The
cylindrical symmetry of the situation is therefore lost

and the (inverse) permeability must be considered to have
tensor properties. If the off-diagonal terms of this
tensor are supposed small the problem can be solved follow-

ing similar lines to the long-slit model theory. If the y
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direction is chosen as that along which the permeability

is greatest and preferential development is confined to

a finite range, -L to L, the solution is found to be
WP w -dylL s
PeUA = _g-o(—c('—KCos (\»\Z—T—{)— e C"s(wt_’('j,\‘-'i) ,,,,, (2.23)
‘ xRy .
(for an external pressure variation P = Po + P1 sinwt)

where
(‘ix\f- = —Z-TP:- (k-‘)xx. 5 0(3 Sim\\ov‘\(j -

and (qu

This result can also be applied to the long-slit case
where the 'permeability' effect of motion of air along

the slit is represented by (k"%, .

The estimate of permeability from the N37

results can be used for kxxE(qu Li)—‘)‘ Since

kﬂ;»>ktx, 4$L must be small, and the appropriate limiting
form of equation (23) is
2B LhP w
peUA =~ ZRBLDD
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so that
4 /7 weaes .
PcF\Jf*S
a result which is, as expected, identical to that
obtained for the long-slit model (equation (19)). The

similarity between the observations at the blowhole and
in the cave thus may be considered as providing direct
evidence for the morphological supposition of preferential

solutional development.

In conclusion, it must be pointed out that a
complete and detailed discussion of the experimental
results which have been presented does not properly
belong in a thesis of this type. Some of the points
which have been made are only speculative. In regions
such as the Nullarbor Plain, and similar regions elsewhere,
it is considered that further work along these lines by
more properly qualified observers may provide valuable
insight into the structure of limestones which would

otherwise be unobtainable.
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2.3 DISCUSSION OF OTHER RESULTS

Other qualitative measurements of cave-

(15)

s

breathing have been presented by Sartor and Lamar

Schley(17) (18).

and Conn Only Conn attempts a detailed
explanation of his results, He assumes that the
phenomenon is somehow connected with the complex structure
of the caves he studies. These are Wind Cave and Jewel
Cave, South Dakota, both of which are large systems
consisfing of numerous complicated passageways. Conn's
over-simplified argument is partly successful in that it
does predict that a lag should be observed between air
movement and rate of change of pressure (although Conn
does not state this explicitly). However, Conn's
theoretical treatment is semi-empirical and involves
fitting parameters to match theory to experiment. The
chosen values of these parameters have little physical
justification and they vary considerably from cave to cave.
Conn also concludes, erroneously, that the large magnitude
of the breathing indicates the existence of a large volume
of undiscovered penetrable cave. Both Sartor and Lamar,

and Schley, draw the same conclusion (or, rather, propose

it as an explanation), This 'conclusion' is inadequate
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since the existence of large volumes of undiscovered
cave assoclated with all breathing caves is a highly
improbable situation, It is this very possibility

that any explanation of breathing would hope to avoid,

The results given by these authors can be
Qiscussed with reference to the theory presented here.
Both Schley, and Sartor and Lamar, studied blowholes in
the Wupatki area of north-central Arizona. From the
geological discussion in Sartor and Lamar it appears
that these blowholes should fit the cylinder cave model
of the present theory. Schley gives pressure and wind
speed readings covering a 25 hour period. Assuming that
the term 8 in equation (22) of 2.2 above is approximately
5 (8 can only vary between about 3 and 10 in general),
and using values for the other unknowns from the geological

data in Sartor and Lamar, Schley's results indicate that

k m'10-9 (metres)z. His results also show a lag of the
order % to % of a period. Sartor and Lamar present

results of pressure and wind speed over a 72 hour period,

9

These indicate a value of the permeability of order 10"
(metre)z, consistent with that using Schley's results,
The results of Sartor and Lamar show lags of about % of

a period (where the pressure variation is approximately
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sinusoidal), This is in complete accord with the
cylinder cave model predictions. In particular, these
results indicate a permeability value consistent with
that obtained from the Nullarbor Plain results given

in this thesis, and they show the predicted lag of the
order % to % of a period. This latter point tends to
support the hypothesis of tensor permeability put forward

to explain the discrepancy between the N73 blowhole results

and the cylinder cave model.

Conn gives extensive results from Wind and
Jewel caves; wind speed and pressure over periods of
W, S énd 12 days. Unfortunately they are presented
on such a small scale that they cannot be analysed in
detail. The pressure changes during the observation
periods are also rather complicated (semi-diurnal tidal
fluctuations being scarcely noticeable) and the two caves
studied are such complex systems that it is not possible
to fit them to either the cylinder or long-slit models
with any confidence. However, Conn's results do show
lags of the correct order of magnitude. Also, if the
long-slit model theory is applied to them, chosing estimates

of the cave dimensions L and h based on the data presented
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by Conn and the map shown by Halliday(8), Conn's results

indicate that k.~'10-8 to 10-9 (metres)z. This value is
far from certain, particularly since the geological

structure of the limestone in the Wind and Jewel Caves

region is very different from that of the Nullarbor Plain.

Some of the results of this chapter have been
published as 'Non-Steady Flow through a Porous Medium and

Cave Breathing' in Journal of Geophysical Research, 72

b4

3199-3205, (1967) .*

In closing, some rather interesting aspects of
cave breathing are worthy of mention. Firstly, the
possibility of harnessing the effect to produce power.

At peak flow-rate Mullamullang Cave breathes at an
incredible rate (equal to the rate of flow of water from
the world's largest fresh-water springs). The production
of power on the Nullarbor Plain by this means may one day

be realised since the region is remote from other energy

* Reviewed in New Scientist 35 (555), 208 (1967) .
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sources. Secondly, the use of the cool air (about

68°F) which breathes from the blowholes of the Plain

for air-conditioning is a possibility which has already
been exploited. Out-breathing cycles were a welcome
respite from the above-century conditions which prevailed

during the observation period at the blowhole N73,
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CHAPTER THREE: EXTENSION TO HYDROLOGY

The cylinder cave model discussed in the
previous chapter is similar to a fundamental problem
in Hydrology, the flow of water from a confined aquifer
into a well. The cylinder model corresponds exactly
to the case where the piezometric head (the free level
to which water would rise in a well which penetrates the
aquifer) is a periodic function of time, This is a
circumstance which is not often realised and it is a
1ogicai step to extend the theory to cover more realistic
cases. The simplest non-steady well flow problem, that
of determining the shape of the piezometric surface for
an idealized well with constant discharge rate, was first

(32)

solved by Theis A solution to the image problem of

determining the discharge due to constant drawdown (i.e.

the reduction of piezometric head at the well) was later

(33)

using a solution to the heat
(34)

given by Jacob and Lohman
conduction equation due to Smith In the following
the more general problem of flow into a well where the
discharge (or recharge) is at an arbitrary rate will be

solved by a straight-forward generalization of the

cylinder model cave-breathing theory.
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3.1 FLOW INTO A WELL WITH ARBITRARY DISCHARGE

In a homogeneous isotropic medium the equation
describing the time evolution of the piezometric head

(h(r, t)) is

2y S 3h
vh'?at

where S* is the storage coefficient of the (confined)
aquifer, which corresponds to the porosity (denoted by S
previously) in an unconfined aquifer, and T is the
transmissivity of the medium (related to the permeability),
For the case of cylindrically symmetrical flow into a well
which completely penetrates a confined aquifer of uniform
thickness, infinite extent and with no lateral inflow the

equation becomes

Q
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Consider the problem of solving equation (1)

with the boundary conditions

(a) h—->h as r
o

(b) h(r,t) is an arbitrary function of time at

r - . e (3.2)
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The well will be assumed to have a finite radius 'a'

(not necessarily small). In the condition 2(b) above
it will be assumed that a, = a, a convenient although
not a necessary simplification. The correspondence

between this problem and the cylinder model cave breathing
problem is now apparant. S* (written S from now on)

replaces the porosity; T replaces f%% : the piezometric

head, h, replaces the pressure, P; and the well radius,
a, corresponds to the radius of the cylindrical cave.

However, where P was expanded as a Fourier series, the
boundary condition for h(a,t) must be non-periodic and
so, to complete the analogy, must be written in the form

of a Fourier integral,

o0

h(a..t) = \r\o —-E G(x) exP(ZTTth) dsz'y (3.3)

—~—o0

Equation (1) can be solved by considering the
inverse Fourier transform of h(r,t) (g{(r,x), say) as a
new dependent variable as was done in the previous chapter.
The general solution for g(r,x) is obtained in terms of
Kelvin functions. On taking the Fourier transform of
the particular solution obeying the appropriate (trans-
formed) boundary conditions (corresponding to (2(a)) and

(3)) the solution for h is found to be
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i hﬂdr) .
he,t) = hc—g G(x) ey exp{n(mxt+&§(atr)-§(o<a))}¢x ..... (3.4)

Zoo

where o« = 2NSx/T. Here N and & are the amplitude and
phase functions corresponding to the zero-order Kelvin

functions of the second type as in chapter 2. In this

instance it is more convenient to retain the modified

Bessel function form

(o K (or[T) 2mixt
C =] - x) ———— x -3
= ho- | ooy SEERL S (55)

Substitution of the solution (5) into the

continuity equation which determines the discharge rate,

OU2) = ‘-znsjr %—: dr |

and integrating over r gives

o

1Mixt

Q) = j G(x) e 2 e (3.6)

bl - 4

where

x = 2“ L K;(d&i{) -
G, (x) Tod alT K. oTT) G (=),

It is possible to determine not only the rate of discharge,

Q, for known drawdown conditions, but also the drawdown  as
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a general function of r and t if Q is known as a
function of time. The former possibility will be

illustrated by generating the solution of Jacob and

(33)

Lohman and the latter by generating the Theis

(32)

solution

3.2 CONSTANT DISCHARGE CASE

The boundary conditions generally assumed
are
(a) h—>copstant (ho) as r-o,
(b) h(r,t) = hO for t<£0,
(c) TIf the rate of flow from the well is Q(t)
then Q(t) = 0 for t<0 and Q(t) = constant
(Qo) for t2 0. ...(3.8)

The solution for h(r,t) for t >0 is then (32)

h = ho ol e E\(u)

47T
w .
where E1(u) is the exponential integral, j~exp(-x) dx/x,

w

and u = Sr2/4Tt.
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Although readily applied to field conditions
this solution (the 'Theis solution') is subject to
fairly restrictive boundary conditions and is, in some
ways artificial since the well must be assumed to have
an infinitesimal radius while the solution diverges
logarithmically at the origin. To use the solution (6)
above it is necessary to assume that the discharge is a
known function of time; in this case a step function
given by (8(c)). This determines G1(x) which 1is rélated
to G(x) through (7) which in turn determines the form of
h(r,t). With this choice for Q the transform function
G1 1s

°

2Tix

G (x) =

Equation (7) then determines G so that the general

solution for h(r,t) is

. Q. 1 Kor[t) 2mixt
h(r.)= h, - 2”& e e dx .. (3.9)

The integration contour can be displaced by an amount
c(real and positive) to below and parallel to the real
axis, This is permissable since a c exists such that

no poles occur inside the infinite rectangle formed by
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the displacement and since the contribution from the

ends of the rectangle at infinity is zero.
As the well radius approaches zero this

solution should approach the Theis solution.

In the
limit of small q

g K () — (T + 0 (9 in4q).
Hence

00—

' Q, Ko(&rﬁ) ‘ 12, oay) 2WxE
h(l",t)=ho'—' Z“TS lT‘— e {\_ O(*Q\HQ—L{)}C : dx»

-go-iC

From known Fourier integrals (see,

for example,
Campbell and Foster L2

) the following relation can be
obtained

o0 -G N
j' Ko ([2TWx3) eﬂ“xt

dx
Z LTI x
—of8 -y C

= E.(}/A-t) , £E»>0
= 0 , £ O

where z can be any finite complex quantity with positive
real part.

Using this with z = Sr/T equation (10)"
becomes

h (v‘, )

@

he '420'\’ E'(:j!‘st) 5 92

h (e, ®)

he » €€ O
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where terms which are smaller than of order a have
been neglected. This is exactly the form obtained

by Theis.

By using the ascending series expansion for
K, (q) the higher order correction terms to this result
can be obtained. The first correction term can be

obtained after some manipulation so that the solution

in(S20)}

valid for small a (more strictly the limiting process

for t> 0 becomes

hrt) = h, - o= { E (2] - 22 e |20

T ATT 4Tt 2Tt 4Tt

used above is valid only for small so that, for

4
g

any small but finite radius, § say, this solution is

1
incorrect for times g éé ). This solution is the same
as that given by Ritchie and Sakakura(21) (see also

Carslaw and Jaeger(36)) obtained using Laplace transforms,

and the methods are formally equivalent because of the

relationship between Fourier and Laplace transforms

oo =L 2T tioo
2mixt \ xt —\
£ = fp) e d- = dtr = {
E { ) S P < E ] f&e L { £
~eo-ic 2ATMe- L0
where p = 2Wix, F is the Fourier transform operator with

displaced integration contour and L-1 is the inverse
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Laplace transform operator.

3.3 CONSTANT DRAWDOWN CASE

A solution to this special case was first

given by Jacob and Lohman(33) in the form of an integral
]
Tt Tt ){ -\(Y (3))}
Q) = 8WT s&k g exp (- Ty { T e (B b ax L (30)

which they evaluated numerically, although the equivalent

integral (equation (13) below) had previously been

tabulated by Jaeger and Clarke(37).

Using the boundary conditions:

(a) h-=>constant (ho) as r>oo,

(b) h ho for t4£ 0, and

(c) h

ho - H for rga, t>0,

the solution 1s

Q) = 2HT TTa .

ﬂﬂm

(J3 Fr] awat

( T c?.‘“’\.x (3.\2)
LI {3 Fe)

which is equivalent to that obtained using Laplace

transforms. The Laplace transform solution can be
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reduced to (see, for example, Carslaw and Jaeger

o

8HT S ( Tt 7.) dy
T — exp === | emee———— = 3.13
i i i Prs (G537 R
to which (11) reduces on integration by parts. The

direct reduction of (12) to (13) can be obtained using

an interesting integral involving Bessel functions which

?

is derived below.

LEMMA :
: &y K (3) ,
=0 bl e 0.
i Ij(‘jlq. 3‘1}( ]'ol-g- \{ol} 4_ $ K° (3) b1 @_ (3) >
The relationship
Kol-ta)  Ko(ig) e LY,2 () + 1.>(q)]

for real positive g, which can easily be established
by first writing the modified Bessel functions in terms
of Hankel functions, can be used to rewrite the integral

as

o0
“ Koliy) g«
- o0
The integration contour can now be extended to include
the infinite semicircle in the lower half of the y-plane,

thus avoiding the zeroes of Ko(iy), which are all distri-

buted in the upper half of the plane, and the cut along
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the positive imaginary axis. The particular pole of
g;%g; which lies within the contour depends on the
sign of the real part of z. The Lemma is proved by

a direct application of the residue theorem.

To integrate (12) the integrand is replaced

by the integral form derived in the Lemma and the result

o0

- RTH __Tt 2 dy
Q= S e""( Sa"‘j) 9y~ 39

follows directly from interchanging the order of
integration and evaluating the simple Fourier transform

which remains.

3.4 PARTIALLY CONFINED AQUIFERS

One of the consequences of cave breathing
1s the possible effect of the phenomenon on the level

of an unconfined aquifer. It is recognised that
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fluctuations in piezometric head can be caused by
rainfall, well discharge or recharge, ocean tides,

earth tides and atmospheric pressure changes. The
latter two can only cause piezometric head fluctuations
in confined aquifers and most authors state that
atmospheric pressure changes can have no effect on the
level of an unconfined aquifer. This i1s generally

true; however, if a breathing cave {or well) intersects
the free water table a rather unique situation exists.
Throughout the aquifer there is hydrostatic balance
between the water and the air. Inside the cave or well
the air pressure changes are the same as those in the
outside atmosphere. As one moves into the rock away
from the well the amplitude of the pressure fluctuations
is reduced. Thus, at a large distance from the well the
air pressure above the water 1is effectively constant and
could have the effect of 'confining' the aquifer in these
regions. Nearer to the cave the increasingly larger
pressure fluctuations will cause the level of the ground-
water to rise and fall in response creating a situation
resembling a giant water barometer. The magnitude of

these level changes will be quite small and the relationship
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between them and the outside pressure variation would

in general be quite complicated.

Mullamullang Cave intersects the water-table
in this way and small-scale level changes were observed
in the course of the cave-breathing observations cited
in chapter two. Since the nearest point that the water
level could be studied was some distance from the cave
breathing observation point, level readings were only
taken at widely spaced and random intervals. As a
consequence only an inadequate picture of the way the
level varied with time could be obtained. No simple

relationship between pressure and level was evident.

(9)

Ward states that level fluctuations have

been observed in 'breathing' wells drilled in the porous
limestones of the Nullarbor Plain and the Murray River
valley (South Australia). In one such well, measurements
showed a definite correlation between atmospheric pressure
and‘water level; the details of these measurements are no
longer available. Ward gives no physical explanation for
the phenomenon other than that it is associated with the
breathing which, in turn, he states to be a consequence

(38)

of the high porosity of the limestone. Ineson
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describes ‘unexplained' level fluctuations (attributed to
atmospheric pressure changes) in wells penetrating 'water-
table' aquifers in chalk. He concludes that the aquifers
must in reality be confined. It appears likely that the
observations of Ward and Ineson are examples of the partial

confining of an aquifer proposed above.

It is possible to- construct models to predict
these level fluctuations theoretically, based on the theory
of cave breathing, but there would be no physical grounds
on which to base the choice of a model (i.e. in the case
of a cave the model is an idealization of what the cave
actually looks like; since there is no data available on
the shape and extent of the water-table it is more difficult
to justify a model water-table). However, it may be
possible to justify a particular model pragmatically. In
the case of Mullamullang Cave there is some indication from
this approach that the water is restricted to a channel of
finite width parallel to the cave trend, but of much smaller
extent than 1s involved in the cave-breathing (in chapter
two the limestone which breathes is assumed to be infinite

in the direction normal to the cave).

Any model, as proposed above, must assume that the

drag theory of porous medium flow is applicable to the flow
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of ground-water. While the cave-breathing results imply
that this theory is valid for the flow of air, it may not
be so for the flow of a liquid. In fact the character of
the pore spaces in the limestone below the water level may
be markedly different from that of the pores above the

(24)

water level, In view of the observation of Ollos ,

that the permeability concept is not valid for liquid flow
in at least some types of limestone, a detailed theoretical
discussion of a partially confined aquifer does not seem
warranted at this stage. However, level fluctuations
which are a consequence of partial confinement do occur
and more accurate and more extensive measurements made in
conjunction with accurate pressure observations would be

worthwhile,

Although the results of sections 1, 2 and 3 of
this chapter are fairly well-known in the theory of heat
conduction, the general treatment appears to have been
neglected in hydrological texts. Integral transform
techniques have, however, been used in this field for more

complex problems, Part of the contents of this chapter



have been published as a short paper in Journal of

Hydrology (in press).

65 .



(1)

(2)
(3)
(4)

(5)
(6)

(7)

(8)
(9)

(10)

(11)

<(12)

(13)
(14)

BIBLIOGRAPHY

Geiger, R,

Faust, B.

Schmidt, V.A.

Plummer, W.T.

Lawrence, N.E,

Polli, S.

Moore, G.W. and
G. Nicholas

Halliday, W.R.

Ward, L.K,

Jennings, J.N,

Bishop, L. and

A. Hunt

King, D.

Anderson, E.G.

Dunkley, J.R. and

T.M.L. Wigley
(editors)

The Climate near the Ground
(translation), Harvard
University Press, (1950).

Nat. Speleol. Soc. Bulletin 9,
52 (1947).

Nat, Speleol. Soc. News 17, 6

(1959).

Speleo Digest for 1962, 2-101
(1964).

Weather 10, 152 (1955).

Trieste Instituto Talassografico,
Publ. No. 300, (1953)

Speleology. The Study of Caves,
D.C. Heath and Co., Boston,
(1964).

Depths of the Earth, Harper and
Row, N.Y., (1966).

Bull. Geol, Surv. S. Aust., No 23
(1946) .

s

Cave Exploration Group (S.Aust)
Occ. Pap. No. 2, (1961):

Trans. Roy. Soc. S. Aust. 87, 41
(1963).

(In) Expedition Report, Cave
Exploration Group (S.Aust.)
private circulation only.

Trans. Roy. Soc. S. Aust. 74
25 (1949) .- '

Helictite 2, 121 (1964),

Caves of the Nullarbor (in press).




(17)

(18)

.(19)

(20)

(21)

(22)

(23)

(27)

(28)

(29)

(30)

Sartor, J.D. and

D.L., Lamar

Hill, A.L.

Schley, R.A.

Conn, H.W.

Todd, D.K.

de Wiest, R,.J.M.

Ritchie, R.H. and
A.Y, Sakakura
Br inkman, H.C,

Carslaw, H.S.

Ollos, G.
Wigley, T.M.L. and
A.L., Hill

Kl inkenberg, L.J.

Scheidegger, A.E.
Rigden, P.J.
Barenblatt, G.I.

and Yu.P. Zheltov :

Scheidegger, A.E.

{editor) :

Rand Corporation Memorandum

RM-3199-RC, (1962).

Cave Exploration Group (S.Aust,)
Occ. Pap. No. 4, (1966).

Plateau 33, 105 (1961).

Nat. Speleol. Soc. Bulletin 28,
55 (1966).

Ground Water Hydrology, John
Wiley and Sons, N.Y., (1959).

Geohydrology, John Wiley and Sons,
N.Y., (1965).

J. Appl. Phys. 27, 1453 (1956).

Research, London, 2, 190 (1949).

Introduction to the Mathematical

Theory of the Conduction of
Heat in Solids, Macmillan, N.Y.,
(1921).

Hidrologiai Kozlony 44, 21 (1964).

Helictite (in press)

American Petroleum Institute,

Drilling and Petroleum Practice,
200 (1941).

The Physics of Flow through Porous

Media, Oxford University Press,
(1957).

Nature 157, 268 (1946),
Sov. Phys. - Doklady 5, 522
(1960) .

Theoretical Geomorphology,
Springer-Verlag, N.Y., (1961).




(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

Pinchemel, P.

Theis,

C.Y.

Jacob, C.E. and

S.W. Lohman

Smith,

L.P.

Campbell, G.A. and
Foster, R.M.

Carslaw, H.S.

IR CR

Jaeger,
M.E.

Ineson,

Jaeger

J.C.
Clarke

J.

and

and

Les Plaines de Craie, Paris,
(1954) .

Trans. Am. Geophys. Union 16,
519 (1935),

Trans. Am. Geophys. Union 33,
559 (1952).

J. Appl. Phys. 8, 441 (1937).

Fourier Integrals for Practical
Applications, D. Van Nostrand
Co., Inc., (1948).

Conduction of Heat in Solids
(2nd ed.), Oxford University
Press, (1959).

Proc. Roy. Soc. Edin. A. 61,
229 (1942).

Nature 195, 1082 (1962).




JourNAL oF GEOPHYSICAL RESEARCH

Vor. 72, No. 12 JuxE 15, 1967

Non-Steady Flow through a Porous Medium and Cave Breathing

T. M. L. WicLEY

Department of Mathematical Physics, University of Adelaide
Adelaide, Australia

The theory. of flow through a porous medium into a cavity under the action of an arbitrary
pressure variation inside the cavity is used to explain the volume and phase shift of air mov~
ing into and out of caves in response to changes in atmospheric pressure. Observations of this
phenomenon (‘breathing’) can be used in conjunction with the theory to estimate the com-
bined ‘matriz and fracture’ permeability of limestones.

Introduction. Many caves are found in lime-
stone regions throughout the world, and, in some
of these regions, there are caves which are said
to ‘breathe.’ The term breathe has been used to
describe air movements caused by changes in
atmospheric pressure and also to describe the
shorter-period oscillations occurring when the
cave air resonates in response to external air
movements. This paper is concerned with the
first of these types of breathing.

In this sense, caves that breathe as a result
of changes in atmospheric pressure present an
enigma since the magnitude of the breathing
is much greater than might be expected. A num-
ber of attempts have been made to explain this
phenomenon, but they have generally lacked a
firm scientific foundation and have mainly been
confined to popular speleological literature. In
this paper the theory of time-dependent flow of
air through a porous medium is developed and
sucecessfully applied to resolve the cave-breath-
ing dilemma.

Porous flow theory. Consider the problem of
air flow in a porous medium of thickness A
which lies in or on the earth’s surface. The me-
dium is bounded by parallel impervious layers
at the top and bottom, and the air flow in it
is induced by pressure variations in a cavity
inside the medium. Two particular cavity shapes
will be considered (Figure 1).

The first cavity chosen is a long rectangular
slit of length L, height %, and half-width a. The
slit is open at one end and is assumed to be
long enough for the effects of flow into the other
end to be ignored. The geometry here suggests
the use of a Cartesian coordinate system with
origin at the center of the lower side of the

open end of the slit. The cavity is thus con-
fired to the region —a < < 0,0 <z < L,
0<z2<h.

The second cavity chosen is a circular cyl-
inder of height # and radius @ with axis normal
to the two impervious layers. The upper end of
the cylindrical cavity penetrates the upper im-
pervious layer. Cylindrical polar coordinates
are suggested here, with origin at the bottom of
the cylinder, where the axis intersects the lower
impervious layer. In this system the cavity is
restricted to the regionr < q,0 < 2z < k.

The equations governing motion in the porous
medium are

p = pRT ey
0
5;—’ + Vpv =10 )

Suv

(ok) U ©

‘;—‘t’+w+-})w+vxm+

where

k is the permeability of the medium.

8§ is the porosity of the medium.

P, p, T are the pressure, density, and tempera-
ture of the air.

¢ is the earth’s geopotential.

p is the coefficient of viscosity of the air.

Q ig the angular velocity of the earth’s rotation.

v is the (particle) velocity of the air, not to be
confused with the seepage velocity (g = Sv)
often used in porous flow studies.

The flow is assumed to be laminar and to make
the system of equations complete, isothermal.
The boundary conditions imposed are (1) at
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Tig. 1. Elevation and plan of the long slit and cylinder cave models. The arrows show di-
rection of air movement during an out-flow (falling pressure), cycle. Long slit (left); cylinder

(right).

an infinite distance from the cavity p = constant
(=P, say) and (2) inside the cavity p(z = 0) =
f(®). The function of time f(£) need not be specified
more precisely than f(f) /& constant (as is the
case with atmospheric pressure variations).

Flow into a long skit. The symmetry of the
problem suggests that, if y is the coordinate
axis measured along the slit, the vertical and
y components of velocity may be neglected.
Since the remaining component, %, is small,
Coriolis terms may be ignored and the equa-
tions reduce to

irlw=0 Gza

du ou __ (8p/dx) _ Suu
5Tl s p 200
ap/oy = 0 (6)
ap/dz = —pg Y

Using the isothermal condition, equations 6
and 7 can be integrated. The solution is

p = P(z, t) exp (—2g/(RT)) = P(z, 1)  (8)

since 0 < z < h and hgg/(RT), so that equa-
tions 4 and 5 become

ap

a3
5 T P9 =0 (sl=2a O

u_ ou_ _(pnoP / p
£ + u i (RT 6x> P — SuRTu/(pk)

(Jz] =9 (10)
Differentiating (9) with respect to z and (10)
with respect to ¢ and subtracting gives, for
|z] = a,

3P a’pP

Sug; = Pok 53 (1n

where small terms have been neglected since,

with f(£) = constant, &(In p) < §(In u). Now
f(t) can be expanded in a Fourier series,

f(t) = Py + i P, sin (nwt — ¢,)

and under these conditions, the solution of (11)
is well known [Carsiaw, 1921], being
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P =P, + ZPne—an(lzl—a)

n=1
— a(|z] — 9]
where a,° = [nopS/(2Pk)] and where, to
comply with the assumed close constancy of
f(t), P. K P,. Thus the complete solution is
given by

ot {PO + Z Pne—txn(lﬂ—a)
=1

-sin [nwt — €,

-sin [nwt — &, — a,(|z] — a)]}

lel 20 (19

p=f) [¢/<a
The amount of air flowing through the slit
at any point along its length can now be cal-
culated. Integrating the continuity equation
over the volume —o0 < 2 < o0,y > [,0 <
z < h, and using Gauss’s theorem yields the

tesult
s = [[f 2

(13)

CAVE BREATHING
U = {2K(L — )/(p. A} {Pok/(u8)}"*
f} Po\/m cos (not — e — 7/4) (15)

Flow into a circular cylinder. Following the
argument presented in the previous section it is
found that, for r > a,

p = P(r, ?)

3P _1 0P
w2l e

3201

with the boundary conditions

+ i P, sin (nwt — «,)

nm=l

P =P, r<a

P — P,

The solution of the heat equation under these
conditions is not so well known, but it can be
obtained by considering the inverse Fourier
transform of P(Q, say) as a new dependent
variable. The general solution for @ can be ex-
pressed in terms of Kelvin functions. On taking
the Fourier transform of the solution that satis-
fies the appropriate boundary conditions the
required solution for P is obtained as

as r— o«

o [ker (Vv 2a,7) ker (V/20,0) + kei (V 200) kei (V/20,0)]
[ker® (V/2a,0) + kei® (‘\/Eana)]

[ker (‘\/Ea,,r) kei (‘\/grx,,a) — ker ('\/5 a) kei (‘\/;_.a,,r)]
[ker® (V/2a,0) + kei® (V/2a,0)]

P=P,+ > P,sin (ot —
n=1

— Z P, cos (nwt — ¢,)
n=1

where p, is the average pressure and U the
average air speed (measured positive inward)
over the cross section of area A normal to the
y axis at ¥y = [, and dr is a typical volume
element. Hence,

nUA = 20(L — z)f 6”d
The length ! should be small compared with

L, so that end effects can be ignored. Complet-
ing the integration we find that

p, UA = 2h(L — 1) 2 Pow{a cos (nwt — ¢,)
+ (V2/(20,)) cos (nwt — ¢, — 7/4)} (14)

which becomes, for a very permeable medium,
(say k& 3 107 meter®)

where a.’ = (nouS/(2Pk)), as before, and
‘ker’ and ‘kei’ are Kelvin functions of the sec-
ond type and zero order (ker(q) + ¢ kei(q) =
K, (g v/1) where K, is the zero-order modified
Bessel function of the second type). The func-
tions ker and kei can be replaced by their phase
and amplitude functions, which satisfy the fol-
lowing relationships,

N*(q) = ker’(g) + kei’(g)

®(q) = arc tan (kei(g)/ker(g))
so that

i = iy Z [PL{N(V/ 20,)/ N(V 20,0)}

-sin (nwt — e, + B(V/2a0) — B(V 22,0))]

r>a (16)
and p = f(¥),r < a.
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The rate of air flow from the top of the cyl-
inder can be found by integrating the conti-
nuity equation. Hence, as before,

i ° o
p. UA = 27rh./; i dr

where U is the average wind speed through the
top of the cylinder (measured positive inward)
and p, is the average pressure over the top of
the cylinder. Using equation 16, by integration
we obtain

p.UA = 27rh{2 P.inwd® cos (nwt — ¢,)
n=1

— X P,aPoka, V 2N.(V 2a,0)

n=]

- cos l:mot — € — @(\/2aﬂa)
+ &,(V/2a,0) — 3{;”} / [usN(V/ 2ana)]} (17)

where the first summation term can be neglected
for very permeable media and N, and @, are the
phase and amplitude functions corresponding
to the Kelvin functions of the second type and
first order.

In the limit as @ —> o this result reduces to
the result obtained for flow into a long slit
(equation 15), thus providing a valuable con-
sistency check.

Flow for a simple pressure variation. It is of
interest now to consider a simple example in
order to appreciate more readily the implica-
tions of the above results.

First, however, consider the solution for the
case of zero permeability, where the walls of
the slit or cylinder are impervious. From either
(14) or (17), the solution is found to be

p,UA = V dp/dt (18)

where V is the volume of the cavity beyond
the point where U is measured. This solution
holds for a cavity of arbitrary shape. The most
important consequence of this result is that, in
the impervious wall limit, the wind speed and
rate of change of pressure are in phase with
each other. Returning now to the porous flow
case, suppose that the boundary pressure vari-
ation f(¢) is a simple sinusoidal function of time,
r< a)

f(f) = Py + Pysinwt  (|z] or

T. M. L. WIGLEY

where, as before, P, &« P,. Under these con-
ditions, for a long slit, the pressure inside the
porous medium is given by

p = Po -+ P, exp (_(le — @)V Spw/(2Pok))
.sin {wt — (|z] — a) V/ Suw/(2Pok)}

showing that the amplitude of the pressure
oscillation falls off exponentially and that the
oscillation lags behind the boundary variation
by an increasing amount as one moves into the
porous medium. The average wind speed across
an area A at distance { along the slit is

(2(L — )P,k VwPok
- cos (0t — m/4)} /(0 AN/ u8)
[2(L — DAV Pok/(p: AV b 8)}

Bp:l
o == 19
[015 (=7 /(40)) (19)

The wind speed thus lags behind the rate
of change of pressure by one-eighth of a period.
The magnitude of the wind speed is the same
as that for an impervious walled slit of half-
width @..s where

Qets = W Pok/(ﬂws) (20)

Gesz can be called the ‘effective half-width’ for
the porous medium. In general, it will be much
larger than the physical half-width of the slit
in a very permeable medium; consequently, the
magnitude of the wind speed will be much larger
than it would be if the cavity had impervious
walls.

As seen above, in this simple case the lag
is one-eighth of a period: for more complicated
boundary conditions the lag can easily be shown
to vary considerably either side of this value.

For the circular cylindrical hole the results are
similar. The pressure oscillation amplitude de-
creases and lags further behind the boundary
oscillation as one proceeds deeper into the por-
ous medium. Substituting limiting forms for the
phase and amplitude Kelvin functions, the aver-
age wind speed at the top of the cylinder be-
comes

U

I

2rhPP.k cos <wt — g == (—T_—ﬁ))

Sp, AuB
where vy is Euler’s constant (~0.57721) and

i (21)
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B = —In {(aV Suw)/(2V Pok)}

The lag of wind speed behind the rate of
change of pressure is thus greater than for the
case of a long slit and tends to one-quarter of
a period as a becomes vanishingly small.

The ‘effective radius, R, can be seen to be

Rue = { V2Pok/(uuoBS)}*  (22)

which is generally of the same order of magni-
tude as the effective half-width a... for the long
slit case. Since limiting (small a) forms have
been used for the Kelvin functions in the origi-
nal expression (21) it should be noted that
R will not tend to @.s. in the large-g limit.

Cave breathing. The above results can be
used to explain the inordinately large wind
speeds encountered in single entrance caves.
Substitution of typical values of pressure and
its rate of change, and of cave volume and cross-
sectional area into equation 18, shows that ob-
served wind speeds should be quite small (of
order 0.1 m/min through a 0.2-meter® entrance
hole in a cavity of volume 1000 meters®, com-
pared with speeds of order 3 m/sec which are
actually observed). The implication is that
either the potentially accessible volume of every
cave that exhibits this breathing phenomenon
is much greater than has been observed or, al-
ternatively, the walls of the caves are, in fact,
porous. It is this latter possibility that appears
to gain favor when considered in terms of the
preceding theory.

Breathing caves have been mentioned in pop-
ular speleological literature of the United States
[Halliday, 1966] and Australia [Bishop, 1957].
The small number of meteorological data that
are available nevertheless invariably indicates
not only that the magnitude of the breathing
is much larger than would be expected, but also
that there is a lag in changes of direction of
breathing behind changes in sign of the deriva-
tive of pressure with respect to time [Conn,
1966].

Some of the world’s most remarkable exam-
ples of cave breathing occur in caves in the
Nullarbor Plains region of southern Australia,
where numerous ‘blowholes’ (small vertical caves
with volumes ranging from 10 to 10* meters®)
are observed to breathe at rates of the order of
1 m®/sec. Far surpassing this, however, at a
constriction near the entrance of a much longer
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cave (Mullamullang Cave) wind speeds are
regularly found averaging 2 m/sec over an area
of 20 meters®.

The stratigraphy of the region is such that
the caves fall into two classes ‘deep’ and ‘shal-
low’ caves [Jennings, 1963], which can be ideal-
ized to fit the long slit and cylindrical cavity
models discussed above. Mullamullang, by far
the largest of the deep caves (see Figure 2), has
been the subject of intense speleological study
since its recent discovery. This study included
a short period of meteorological observations
early in 1966 [Wigley et al., 1966].

The cave itself shows a marked similarity to
the long slit model, and the wind speed and
pressure observations taken inside the cave
show excellent agreement with the theoretical
predictions. Typical results are shown in Fig-
ure 3. Since pressure variations are reasonably
complex, varying lags of windspeed fluctuations
behind changes in the time derivative of pres-
sure would be expected, although the magnitude
of the lag should still be of the order of one-
eighth of a period. Also one would expect, on
theoretical grounds, that small-amplitude pres-
sure oscillations superimposed on the general
trend would not be so noticeable in the observed
wind speed. These predictions are borne out by
the results.

No measurements have been made of the
permeability of the Nullarbor limestones. The
porosity is known to be about 269 [King,
1950]. Using this value, the breathing observa-
tions in Mullamullang Cave can be used to
estimate the permeability. The results indicate
that & = 107 meter’. This value is representa-
tive of the combined ‘matrix and fracture’ per-
meability rather than the ‘matrix’ permeability
of the limestone and, thus, incorporates the
effects of anastomoses and fracture. No meas-
urements of the combined permeability of
limestones seem to be available; however, they
would be expected to give a value much larger
than the matrix permeability [Scheidegger,
19613. It should be noted that the matrix
permeability of most limestones is appreciably
less than would be required for the rock to
breathe to any great extent. It is thus probable
that breathing caves will be found only in lime-
stones of high fracture permeability.

Conclusions. The theory of time-dependent
porous flow into a cavity has been presented
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Fig. 2. Simplified map of Mullamullang Cave, Western Australia.
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and has been used to explain the breathing of
caves. Two types of cave occurring in the Null-
arbor Plains region of Australia fall conven-
iently into the two classes that are theoretically
most tractable. The development of this paper
opens avenues for further research into the
theoretical discussion of more complex cavity
systems and into the further experimental veri-
fication of the two systems considered. The
theory presented also gives a new method for
estimating the combined permeability of lime-
stones in areas where breathing caves are found.
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