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ABSTRACT

The thesis is divided into two major parts.

In the first the problem of determining transport

coefficients in a simple two-component plasma is

approached from f irst principles and the Kinet ic

equation which is derived is solved using an oPerator

technique. 'Runaway' electrons are also cons idered.

In the second an unusual natural phenomenon, cave

fbreathing' is explained theoretically by mèans of a

diffusion equation and some experimental results are

given which conf irm the theory. An extension tc other

problems in Hydrology is made.

A Kinetic equation with Boltzman,î-tyPe

collision integral is derived in which the interparticle

potent ial is necessarily an exPonent ia1 ly shielded

coulornb (Debye ) potent ial , The expl ici t cóI I is ion

integral derived is of the Landau form, but with some

minor differences due to the more rigorous manner in

which approximations regarding the Coulomb Iogarithm

term are made. The first order equation and correspond-

i.g auxiliary relations which are obtained on exPanding

the velocity distribution function are written in terms

of an rrnknown operator which is related to the perturb-



ation from the equilibrium distribution function. The

mass, momentum and particle fluxes are also written in

terms of this oPerator. Thus, by solving the Kinetic

equat ion in the operator form the transport coeff icients

can be obtained directty. The method of solution used

is similar to the Chapman-Enskog technique although in

this case the unknowrr is an operator rather than a function

andtheexpansionisinpowersoftheLaplacianoperator

in veloc ity spa.ce rather than Sonine polynomials ' An

exact solution to a special form of the Kinetic equation

isobtainedusingaFouriertransformmethod.This

special form corresponds to the equation describing

runaway electrons, although the solution obtained is not

directly applicable to the runaway phenomenon' Runaway

electrons are discussed further and an equation is derived

which is equivalent to that used by other authors: A

numerical method for solving the equation by expanding the

distribution function in powers of a smalt field dependent

parameter and spherical harmonics is given'

urrsolvedThe 'breathing' of

geophys ical Problem for some

the world, air is observed to

caves has been an

t ime . In certain reg i ons of

and outmove regularlY into

of caves and vents in the ground at rates which are



incons i s tent wi th the apparent phys i caI dimens i ons of

such features. It is conjectured that these air movements

are caused by changes in atmospheric pressure and that the

Iarge volume of air which is moved originates from the

porous limestone in which 'breathing' caves are found.

Two models corresponding to different cave shapes are

proposed and solved theoretically. The equation governing

the changes in pressure in the surrounding limestone is

found to be a diffusion equation and this is solved using

the integral transform technique. The results for one

model are in accord with the few published observations.

Further experimental results are presented from caves

which f¡ t both model s and these are discussed in detail .

Because of the s imilarity of the problem to the hydrologìcal

problem of flow into a well the method of solution used is

extended to cover this case. The results are in agreement

with known results from the theory of heat conduction,
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PART I



CHAPTER ONE: INTRODUçIf-ON

A Kinet ic equation, describing the irreversible

approach of a gas to equilibrium through a velocity or

one-part icle distribution function, is fundamental to

most discussions of transport phenomena in gases and

plasmas. His torical ty, the Boltzmann equat ion , à Kinet ic

equatiorr for dilute gases (discussed in detail in the

monograph of Chapman and CowIitg(1)), was the first such

equation. In general the explicit form and range of

validity of a Kinetic equation is dependent on the inter-

action forces between the gas constituents, Although

there are overall similarities between the theoretical

treatment of gases ( the word 'g""t is used here for the

unionized gaseous phase of a fluid) and plasmas (completely

ionized !gasesr) there are also distinct and important

differences. w'e witl begin by discussing some of the

fundamental concepts of the kine t ic th'eory of gases and

later extend this discussion to plasmas and point out the

differences between the two.
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1 .1 KINETIC THEO-R.Y OF GASES

The most basic starting point for the derivation

of a Kinetic equation is the Liouville equation which

governs the t ime-evolut i on of the N-part i cle dis tr ibut ion

f unct ion. The Liouvi l, le equat ion can be reduced to the

equivalent BBGKY hierachy of equat iot" ( z '3 '4 '5' . The

first member of the hierachy, in which the one-particle

and two-particle distribut ion functions are related is,

in effect, an exact Kinetic equation. By making suitable

approximations the hierachy can be made tractable;

irreversibility (which is not a property of the hierachy)

can be introduced, and an equation for the one-particle

distribut ion funct ion obtained

There are certain time-scales which are important

in foltowing the approach of a gas to equilibrium: lo, the

'collision time' (lo^, I where "o is the range of the inter-

particle forces and u is representative of the particle

speed); to, the rmean free timet, representative of the

time between collisions (,o = I where ì is the mean free

path); and To, a macroscopic time which is representative

of the time a gas takes to relax from a non-equilibrium

state to one close to equilibrium in which the gas has no
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'1oca1 memory' of its init ial conf iguration.

An important difference between a gas and

plasma is already apparent, In a Plasma it is not

clear how the col 1 is ion t ime or the mean free t ime

be defined, since these times are dependent on the

of a'collision' being a well-def ined event. With

range interpart icle forces a 'col 1 is ion' becomes an

de f ined p"r iod of interact ion,

a

can

concep t

long-

it1-

Returning to a gas, where these times are

meaningRrt, one finds that they differ considerably

between each other (To (( to << To). This fact can be

used to advantage in deriving a kinetic equation frcm

the B.llGKY heirachy. In the method of Bogoli.rbo',.(3),

for example, it is assumed that the behaviour of a gas

carr be a<lequately described by the one-particle distri-

bution function for times >t and that, from an initiat

non-equil ibrium condit ion at t = 0, af ter a t ime )t" the

expl icit time dependence of the s-particle distribution

functions (Fs, s ) Z ) becomes impt icit and only arises

through a functional dependence on the one-particle

function (Ft ). This is not necessarily equivalent to

1
the statement of some authors that F is assumed to be
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' s I owly' varying , Under the se as sumpt ions the hierachy

can be solved by successive approximations by making a

t dens i ty expans ion' of the F" ( i . e . an expans ion in the

smal ì. parame t er Ë
to

where n is the average number

dens ity) . Irrevers ibii ity , for times long with respect

to'to, is obtained through an 'initial' condition that

the part icles are uncorrelated in the 'pastt ( i.e. a

long time back with respect to t , but sti1I I to). To

first order in density a generalized form of Boltzmann's

equat ion

Equa t i on

of order

val id for

is obtained which reduced to the Boltzmaîî

3

-hq

if spatial inhomogeneities in F., over distances

ro are neglected. This equation is necessarily

times long with respect to t", of order to.

The assumptions of Bogoliubovrs method are

consistent with the original phenomenological der,ivation

of the Bol t zmarßr equat ion. The f irs t order in dens i ty

corresponds to the Bol t zmataÍL equat ion's describing only

two-particle (binary) interactions; the neglect of

spatial inhomogeneities over distances of order to and

the assumption teading to irreversibil ity correspond to

the 'stJsszahl artsatz' of the BoIt zmaîl equation which can

therefore only describe the 'probable' behaviour of. a gas
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where detailed microscopic processes (over times of order

T.) are smoothed out. However, the Bogol iubov approach

is not ent irely sat isfactory, and, to higher than third

order in dens ity it leads to diverg..t"." (6) which are

most troublesome in the application of the theory to dense

gases.

Alternative approaches have been offered by

other authors(7'B'9'10'11'12) ali of which can Iead to a

general ized Boltzmann equation provided certain restrictive

assumpt ions , fundamental 1y s imi I ar to those of Bogol iubov,

are inaie. These methods are usually restricted to repulsive

interparticle forces, although the rnethod of Hof fman and
(10) , .(.2) r, r r: r ,Ureen' -' rs not, and Sandri' asserts that his technique

is not restricted in this way ( aI though this seems doubtful

in view of some comment s by wrr(13 ) ) .

If the BBGKY hierachy is written in a non-

dimensional form (see, for example, Sandr í 1966(12)) two-

dimensionless parameters, rro3 and # , the 'density' and

'strength' parameters, arise. Here Q" is a value of the

potential which is representative for an interaction,and

k is Boltzmann's constant. In a gas Q" can be taken as

the depth of the potential. In a plasma this is not a
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meaningfuL step and the value of ç" in the strength

parameter mus t be prescr ibed more careful Iy. The

density expansion used in Bogoliubov's method corresponds

to an expans ion in the (smal I ) Parameter ,r"^3 which has
o

been identified with the ratio of time-scales T"/ t o

1 .Z KINETIC THEORY OF PI,ASMAS

We now consider the application of these

general aspects of gas kinetíc theory to plasmas. It

is apparent that, for dilute gases, the BoltzmaÍúr equation

provides an adequate description of the gas for times of

order t^, In plasmas this s imple descript ion is no
o

longer suff icient, and correlat ion effects ( the effects

of multiple, as opposed to binary, collisions) are

important. In plasmas this is due primarily to the

long-range nature of the coulomb forces which cause the

Bot t zmarrrL coI l is ion integral to diverge. This divergence

can be eliminated by the somewhat artificial exPedient of

modifying the coulomb potential on heuristic grounds (viz.

by cutting-off the potential or by replacing it by "
Debye potential). In view of the above discussion it is
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difficult to see exactly what the significance of such

a step is, and to see in what way and how well multiple

interaction effects are accounted for.

Most of the techniques which use the LiouviIle

equation as a starting point for the derivation of a

Kinetic equation can be applied to plasmas. obviously

some modifications are necessary, since, aS has already

been pointed out, the collision time'to and the mean free

t ime t are diff icul t to define in a Ptasma. I t has
o

also been mentioned that most methods of deriving a

Kinetic equation for a gas are restricted to repulsive

interpart icle forces. However, in applying these

methods to plasmas, this presents only a formal restriction

Bogoliubov proposed that the strength parameter

could be used as an expansion parameter for plasmas in the

same way as the density parameter is used in ordinary gas

theory. Before discussing this possibil ity there is an

apparent analogue ir plasmas of the density parameter for

gases which must be considered. In a plasma, ro, the

range of the potential, can be identified with the Debye

screening length, "D, s ince, oD equi I ibrium cons iderat ions ,

"D is effectively the range of the potential of a charged



t

I

part icle in the presence of other charged part icles. I t

would thus appear that t"¡] coulcl be identif ied as the

density parameter applicable to plasmas. This is not

so, primarily for two reasons; firstly "D itsel f is

density dependent so that t"D3 is proportional to t-å,

and secondly, one of the fundamental characteristics of

a pl,asma is that there is a large number of particles

inside a sphere of radius aD so that ,t-å< aO and ^"j>f .

?Atthough rrD' does not correspond to the density parameter

it is important . If e is de:fined as

é
/ ¡\-t
¡nao /

then € is very small and could be used as an expansion

parameter. In fact an exPansion in e is equivalent to

an expansion in the strength parameter since

e" @t r=
TT_

2cp nqp €.kT
ì <¡,Dt

oÞ
E

and, for most

representat ive

two particles.

parame t er

parame ter

interac t ions in

value for the

a 15 A

mutual potential energy of

olasma- Ç' r=a¡

BogoI iubov's suggestion that the strength

be used for plasmas in place of the density

used for gases is a useful one. This is one
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of the major differences between plasma kinetic theory

ancl the theory for ordinary gases. Kinetic equations

for the regime u'here the strength parameter (ot € ) is

smal1 have been obtained independently by Bale"tt'(i 4 )

(us ing the method of prigogine and Ba1"".r-t(11 ) i.t *ii.t,

the BBGKY hierachy is replaced by a system of coupled

equations for the Fourier components of the distribution

function and a diagram technique is used for the calcu-

Iat ions ) to first order in the strength parameter, and

by Lenard(15 ) ".rd Guerns"y('1 6) (o" making a double

expansion, summing over a1I terms in one parameter, and

retaining the first order term in the strength parameter).

Further extens ions of this work us ing the .method of

Bogol iubov have been made by Wu and Rose,,u."g 
( I 7 ) and by

w,r(13). Equivalent results have also been obtained

using the cluster expansion technique of M.S. Gttttt(8)

by Ros toker and RosenbLuth( 1 B ) and others (19 ) ,,, which

the effects of the correlation functions, Gab = F2,"b

t1 ," ",, ,O 
etc., are assumed of order e or smaller in

relation to the uncorrelated product functions, F.1 ,"Fi,b,
etc.

The Balescu-Lenard-Guernsey (gLC) Kinetic

equation, being first order in the strength parameter,
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a
I f = cl^

U':*t , dlver€Jes f or smal I interpart icle separat ions

where 4- ^ is not an adequate representation of the
"= "D

strength of the potential. The point where f becomes

equal to kT for a given temperature is called the

distance of closest approach ( d. ). The BlÆ equation

adequately accounts for only those interactions where

particles are always separated by distances >> ¿" .

For these interactions only is the strength parameter

both representative and smalI.

Vlaso..(20 ) hu." proposed an equat ion in which

the inherent approximations are similar to those of the

Bl,G equation; it can be derived by completely neglecting

the correlation functions in the collision integral. The

Vlasov equation is, however, time-reversible and thus

cannot be used in problems concerned with the approach

of a plasma to equilibrium.

As an al ternat ive to s tart ing from the Liouvi I le

equation, a Kinetic equation can be derived phenomenono-

logically using the theory of stochastic processes.

Because of the long-range nature of coulomb forces most

interact ions between plasma part icles cause only smal I
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changes in the particle trajectories. If it is assumed

that the effect of the many simultaneous small deflections

which a test particle in a plasma undergoes (under the

many-body inf luence of surrounding f ield part icles ) is

equivalent to a series of independent smal I deflect ions

( a difficult assumption to justify and strictLy true only

if the mutual interactions among the field particles can
I)4\

be neglected\o')), then a kinetic equation can be derived

by analogy with Brownian motion. This approach leads to

a Fokker-Planck-type, Kinetic equation which was first

obtained by Landau(zz) "td later by other author (23)

In its original form this equation fails to account

properly for close 'coll isionsr , and, since the assumption

of small deflections impl ies that the strength parameter

is small, must suffer from the same small-separation

divergence dif f iculty as the BlÆ equation. Also, s ince

the interparticle force is a coulomb force, and the many-

particle interactions are cons idered as series of binary

interactions, the divergence at large separation inherent

in the use of such a potential occurs. These divergerrces

can be e I iminated by rather inadequate phys ical 
".grrrÅetts

similar to those used with the ordinary BoltzmarLrl equation.
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Sandr í(^2) h"" emploved the method of Frieman

and sandr¡.(9) ao deri'e a kinetic equation which, in the

appropr iate l i.rni ts, recluces to the BoI t zmarrr| equat ion,

Bi-C equation and Fokker-Planck-Landau (FPL) equation.

lle uses an expans ion of the independent variable, time,

in terms of a hierachy of time scales together with an

assumption regarding the order of magnitude of the

ccrrelation functions and states that the divergences of

other epproaches are eI iminated. wu( 
1 3 ) disputes this

claim.

The ranges of appl icabi I i ty of the Bol t zmartrr 
'

BLC and FPL equat ions can be summar ized in terms of the

fundamental distances ín plasma kinetic theoryi ^D, the

Debye length; .-3, the mean particle separation; and 4. ,

the di s tance of c Ioses t approach, which sat is fy the

relation 4<<n-i << "D in most plasmas. The Bott zma;rrrr

equation satisfactorily describes only binary interactions,
_!

" ( tr-g (r = pârticLe separation), and diverges for large

r. The BLG equation describes such interactions poorly,

is adequate only for small values of the 'strength parameter

(")/"), and gives divergent results at smalI r- The FPL

equation suffers from both these defects and diverges for
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small and large r. By an appropriate combination of

the coIl ision terms of these three equations it is

possible to eliminate the divergences and thus obtain

a Kinetic equation having a greater rang e of validity

( al though this is not a direct log ical consequence ) .

This technique has been employed by Weinsto r,u(24) ,

Frieman and Book"('u), and I{u(13). A1 I divergences

can, of course, be eliminated by the choice of appropriate

cut-offs in the coulomb potential or by the use of a Debye

potential in the BoltzmaÍLr. collision term'

An alternative procedure is an extension of

the method of Born and Green(4) to plasmas which has been

developed by Green and Leipnik(26\ . These authors

consider the time correlation functions rather than the

distribution functions and use a hierachy of equations

which is equivalent to the BBGKY hierachy. The Procedure

is to obtain a solution for the two-particle function by

making an approximation to the three-particle function

which is good for situations close to equilibrium. This

approximat ion is cal led the 'dis junc t ivet approximat ion

and it will be shown in chapter three of this part of the

thesis to be closely related to a first order aPproximation
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in the strength parameter. The Kinetic equation

which is obtained can be written in a form simil.ar to

the Bol tzmann equat ion where the interpart icle forces

are described by a potential which, in the equilibrium

limit, is a Debye potential. On making a further good

approximation the usual BoltzmaÍúr form obtains (with

Debye potential). This is a pleasing result since it

justifies the intuitively based use of a Debye potential

to eliminate divergences in the unmodified Boltzmarrrl

equation. The approach is weI I suited to the discussion

of transport phenomena in plasmas which deviate only

sl.ightly from equilibrium and will be used in this thesis.

Throughout this thesis the vaI idity of classical

mechanics wiIl be assumed. However, one quantum-

mechanical aspect which is important in equilibrium theory

must be mentioned since the Debye potentiáI, a result of

the equilibrium theory, is used extensively in this thesis.

This is the fact that a lower bound exists to the energy

of a system of charges of opposite sign, The existence

of such a Iower bound is fundamental to statistical

mechanics. Stat ist ical mechanics makes phys ical, sense

only if the thermodynamic quantities (Energy, Entropy, etc)
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are asymptotically proportional to the number of particles

in a system. In a purely classical system no lower bound

exists. The principals of both quantum mechanics and

quantum stat istics must be invoked in order to obtain

the physical,ly correct Iower bound ProPortional to the

number of particles in the syst.*(n6).

In a purely classical theory this can be taken

into account by cutting off the attractive coulomb

potential at small distances. This is ¿ot.(27) by

multiplying the mutual potential energy of two charges

by the factor (t - e r/R1 ¡, where R1 is the radius of

the smallest Bohr orbit, if the charges are of opposite

sign. This term has Iittle effect for the great majority

of interpaticle separations, but it does ensure the correct

quantum-mechanical lower bound to the energy of a pair of

oppos ite charges.
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1 .3 SUMMARY

In this part of the thesis a Kinetic equation

is derived following the theory developed by Green and

' ' (26\Leipnik'--' and a method for obtaining the transport

coeff icients from this equat ion is g iven. In chapter

two for subsequent reference, a detailed discussion of

scattering processes in a Debye potent ia1 field is given.

The transport cross-sect ions, general izat ions of the total

scattering cross-section, which are needed to determine

the Kinetic equation in explicit form, are evaluated

using a cut-off coulomb field and a Debye fieId.

Approximate analytic expressions are given for both the

scat tering angle and the transport cross -sect ions in the

Debye field case. The techniques used are similar to

those used by other author" (zs 
'29) , but the resut t ing

express ions are a sl ight gener aIízat ion of previous

results. A rapid numerical procedure for evaluating

the scattering angle is given in Appendix A.

In chapter three a Kinetic equation valid

for smal I deviat ions from equi I ibr ium, but restricted

in no other way, is derived in a form closely resembling

the BoLtzmaîr' equation, but in which the interparticle
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forces must be described by a Debye potent,ial. Equations

are developed from the BBGKY hierachy which is curtailed

by the use of a disjunctive approximation. These are

formally equivalent to those of Green and Leipnik(26) ,

except that they involve the velocity distribution

functions rather than the time correlation functions.

The solution obtained by Green and Leipnik is used and

is written in a Boltzmann equation form. The aPprox-

imations employed in the derivation are discussed in

reference to those used by other authors. It is demon-

strated that the equation is accurate to first order in

the strength parameter.

In chapter four the collision integral part of

the Kinetic equation is evaluated explicitly using the

resul ts of chapter two. The form obtained is s imilar

to that f irst given by Landau('O), but it is not subject

to any restrictive condit ions. An operator relating the

non-equil ibrium and the equil ibrium veloci ty dis tribut ion

func t ions is def ined, and the coI I is ion integral is

rewritten in terms of this operator. The Kinet ic

equation is thus reduced to a different type of equation

where the unknown is an operator rather than.a function.
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Since the nÊss, momentum and energy fluxes can also be

expressed in terms of this operator, a knowledge of its

form makes it possible to estimate the transport

coefficients which relate the fluxes to the gradients

of hydrodynamic quant i t ies .

Historically, Chapman, in 1916, and Enskog,

more rigorously in 1917, were the first to derive

transport coef f icients f rom the Bolt zmarrtt equation and

the method developed by them, the Chapman-Enskog method,

is described in detail by Chapman and Cowlr^*(1 ). A

functional artsatz, similar to that used by Bogol iubov

in reducing the BBGKY hierachy to a Kinet ic equation, is

fundamental to the Chapman-Enskog method. The velocity

distribution function is assumed to depend on time, only

through its dependence on the macroscopic hydrodynamic

variables, number density, mass average velocity and

temperature, and the resulting equation is solved by

expanding the devi at i on from the equ i I ibr ium di s tr ibu t i on

funct ion in orthogonal ( general Iy Sonine ) polynomial s .

The functional ansatz erlsures that rapidly varying solutions

of the Boltzman equation are fittered out. Such solutions

would describe processes which have character is t ic t imes
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much less than To. Because the relaxation time for

like particles in a plasma is much Iess than that for

unlike particles, the Chapman-Enskog method can be used

to describe situations where the plasma components have

dif ferent temperatures,

chapman and cowlrr*(1 ) u"iefly discuss the

case of coulomb interparticle forces to first order in

the Sonine polynomial expansion (although they overcome

the divergences in an inadequate way), and also the case

where external electric and magnetic fields are present.

Marsrr"tr (31 ) has described the entire transport

coefficient problem from the Chapman-Enskog point of

view in some detail to first and second order using a

, .'v.r i-Ftiorru.t procedure . Sp ítzer "rrd H".r( 23 ) have
.:: .

"'Ïnitegrated the equat ions nrlmer ical ly f or the zero

magnetic field case and Landshof t(ZZ) h"" calculated

coefficients to third and fourth order in the Sonine

polynomials when a weak magnetic field is present.

Ku-rrfrat(33) has found transport coefficients for a Iarge

magnetic field, Robinson and Bernst"i.r(34) have made

similar, but more general calculations using a variational

proced.ure , "rrà K"r.ko (35 ) has caI cul ated thermal cond.uct ion
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and thermal diffusion coefficients in a magnetic field

to sixth order in the Sonine polynomial expansion'

Brag inski i ( 36) h"" evaluated the transport coeff icients

for the case when the temperatures of the plasma

components are not equa1.

Other methods which are available for the

discussion of transport coefficients are the mean-free-

path method which was developed prior to the chapman-

Enskog method (see, for example, Jeans(37) ), the method

of t<.,r¡o(38) which is equivalent to the Chapman-Enskog

method(39), and which has been used by Green and Leip.it(26)

to d.iscuss diffusion in a strong magnetic field, and the

many-moment scheme devised by c""¿(40) which is the only

technique available which is not restricted to small

deviat ions f rom equil ibrium. In chapter f our of this

part of the thesis the Kinetic equation in operator form

is solved by a method which parallels the chapman-Enskog

method. The unknown operator is expanded in powers of

the Laplacian in velocity sPace. This expansion

corresponds to the usual Sonine polynomial expansion and

it similarly enables the transport coefficients to be

obtained without completely determining the operator.

The generalization of the method to plasmas in the Presence
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of a magnetic field is briefly discussed.

The phenomenon of rrunaway' electrons is

investigated in chapter five. The coll ibional drag on

an electron in a plasma is a funçtion of the speed of

the particle. If a uniform electric field is present

the resul t ing accelerat ion can exceed the col 1 is ional
deceleration for particles moving at greater than a

certain critical speed. such particles thus accelerate
continuously and they are called trunaway' electrons.

If the field is weak the critical speed is much greater

than the average or thermal speed of the electrons and

the flux of runaway electrons is small. The basic

problem is to evaluate the distribution function for
runaway electrons and the equation which governs the

hehaviour of the distribution function can be derived

from the Kinetic equation by assuming that the electrons
interact with an equilibrium background (va1id if the

number of runaways is small) and using the appropriate
high speed forms for the col I is ion integral.

An approximate form

studied previously by Dreicer

discussion of the problem, in

of the
(41)

equation has been

A more fundamental

the correct form ofwhich
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( 42)
the equation is used, has been given by Gurevich

who also has considered a generalízation to the case

when the background particles are not necessarily in

eqr-rir ibr ium (Gurevich anð. zhivryuk(43 ) ) . The problem

has also been discussed by Kruskal and Bernst"irt(44)

who consider only a Lorentz gas ( i.e. interactions of

electrons with electrons are neglected). The

expressions obtained by these authors are notin

complete accord with one another and their estimates

of the runaway flux are generally dependent on additional

phys ical considerations. The approach of Gurev'.n(+Z)

for instance, is valid only for particle speeds below

a certain limit and his solution becomes unreal above

this. Lebed...(45), however, has used a similar method

.¡'hich is not restricted in this way.

In chapter f ive of this part of the thes is

the Kinetic equation appropriate for runaway electrons

is derived from the results of earlier chapters and is

found to be similar to that given by Gureví.h(42) ..rd

Lebea"r(45). A numerical method for solving the

equation is developed which employs an expansion in an

electric field strength parameter and spherical harmonics.
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CHAPTER T1{O: SCATTERING IN A DEBYE FIELD

The dynamics of the interaction of an isolated

pair of plasma particles can be determined using a

coulomb potential. Because of the extreme long-range

nature of this potential certain integrals basic to

plasma kinetic theory are found to diverge for coulomb

interact ions. I t is general 1y known however ( see, for
(26) 

and Gre "n(2?)), that, inexample, Green and Le iPnik'

any real plasma, the presence of other particles has the

effect of modifying the interparticle forces in such a

way that these divergences are eliminated. In a Iater

chapter it will be shown, by using the results of Green

and Leipnik, that the irreversible behaviour of a plasma

can be described by means of a Boltzmann-type equation

in which the interparticle forces are given by a Debye

potential. In the explicit evaluation of the collision

term of this equation it is necessary to determine the

values of some integrals which occur quite frequently in

plasma physics. These are the rtransport (or transfer)

cross-sections'. The n-th cross-section is defined by

àdl^ (t-.."'e)
òJr-

dll (\ - .or'e) &



where 0 is the scattering

cross-section and df) is

This may be written as

24.

is the different iaI

of solid angle.

..... (z- t)

-è¿angIe, è',_

an element

æ

4: 2TT (\ -.o" o) b db

in which

familiar

b is the impact parameter, by using the

express ion for the dif ferent ial cross- sect ion

b4b

o

sìn O de

The case n = 0 yields the total cross-section: the

cases fi = 1 and n = 2 are the only others which occur

in the evaluation of the collision integral and further

discussion will be confined specifically to these.

If a coulomb potential is used to determine

the dependence of scattering angle on impact parameter

(Rutherford scattering) the transport cross-sections

diverge. In plasma kinetic theory qualitative

arguments are frequently used to modify the coulomb

potent ial and make these cross-sections finite. For

instance, it can be assumed that any pair of particles

è_4
àn



25.

whichareinacloudofmultiplyinteractingparticles

can be considered as a separate, isolated' pair inter-

acting in a binary fashion. The effect of the other

part icles is assumed to be manifest as a modifying

factorinthetwo-particlepotential,Fromequilibrium

theory the appropriate force between the two particles

is expected to be that described by a Debye potential'

There is evidence that this description can be rigorously

justifiedasagoodaPProximationandthisjustification

wiIl be considered further in a following chapter'

Often in the literature a kind of cut-off coulomb

potential is used (where the cut-off is in impact

parameter rather than the range of the potentiat)' This

can be justified, either on similar, rather inadequate'

phenomenological reasoning to the above'or by using such

a potential as an approximation to a Debye potential

whichcanitself,asstatedabove,bejustifiedbymore

rigorousmeans.Manyoftheresultspresentedinthis

chapter are comparatively well-known, although some of

the techniques used in their derivat ion, and the notat ion,

are new, A detailed comParison of the Debye and cut-off

coulomb potentials apPears to be lacking from the

literature even though it is frequently stated that they
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give similar results.

2.1 SCATTERING IN A CI]'T-OFF COULOMB FIELD

If n4 and eo are number density and charge

for type ra' particles in a plasma of temperature T,

the Debye length, a¡, is given by

>- ho ê^-zo,Þ :
r- kT

The Debye (or Debye-Hueckel) potential IS

V
ôê

exp(-r/o,) (z.z)
41T€- r-

where r is radius vector measured from the potential

source. The Debye potential is thus an exponentially

screened coulomb potential; for smalf r((ao) it is

almost the same as a coulomb potential, while for large

r()ao ) it is much weaker. A test particle moving in a

Debye field is thus effectively screened from the field

particle for large r and sees the field as a coulomb one

for small r. Because of this a cut-off coulomb potential

could be used to approximate the Debye potent ial; in such
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a field the potential would be coulomb up to r-âD

and zero beyond this. By considering the dynamics of

a two particle interaction with this type of- potential

the dependence of scattering angle on impact parameter

could be found and the transport cross-sections evaluated.

This is sti11 a difficult task, however, and usually a

further approximation is made to simplify the problem-

A cut-off can be made in the impact parameter rather

than the field so that particles with impact parameter

greater than ao are assumed to be unaffected by the field

particle, while those with b( ap are assumed to behave as

if they had moved in a coulomb potential for alI time,

rather than only during the time when the interparticle

distance l".rl (o" r) is Iess than aÞ.

Suppose that the impact parameter cut-off is

Then

e o b> b.

(2.¡ )
(or åe þ< b"

madeatb=b o'

Here .þ is

particles

the relati.¡e velocity of the interacting

and the suffíx zero indicates initial value.
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) is def ined b;.

ì
4 Tf €. 1.4

where M (
ffi*Ds
mo*m" ) is the reduced mass. It ls

convenient to measure alt lengths in terms of â¡ and

wr i te accordingly

B B.

and to introduce the parameter, Q, defined by

a 2X

b_
q,D

b
aÞ

LonP.

a is thus the ratio of the potential energy of a test

particle in a coulomb field at r = a to the total

kinetic energy in the centre of mass frame. It should

be noted that O $=qD (9 denoting potential energy)wkr

and Q is thus closely related to the strength parameter

mentioned in the previous chapter. In terms of B and Q

equation (3) may be written

o o B>8.

4B'- e'coE O
48' + Q'

B<8.
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Us ing these express ions the f irst three transport

cross-sections are easity evaluated to give

ó. = Taot B.'

L d 4Bj + q'
¿

¿

TqO'B (z-+ )zB." Q^

7

If the impact parameter cut-off is made at the Debye

length (i.e. Bo ='l ), then, since a is generally smaII

(- 10-3 to 1O-8), the cross-sections are approximately

do JI-o.o'

¿, lT oo' Q' \r,
2
lal

2
¿, zrroo'q' t t" ( tQt 2

rhe term å'"(€) r"" '"(Ë,) )

cal led the 'Coulomb logarithmr . In this

general expression will be referred to as

Iogarithm. This will be defined by

2.5(

j

is often

thesis a more

the Coulomb

¿,

Thus, for the impact-parameter-cut-of f approximat ion the

Coulomb logarithm is

lT qo^ Q'
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Jt n )
2

\Qr
n

c

A further approximat ion ts JL", where ju¡! i" replaced

by the mean kinetic energy ] tT,, i" also called 'Coulomb

logarithm' in the literature, and this form aPpears

extens ively in plasma kinet ic theory calculat ions. The

justification for using both this approximation and the

cut-off potent ial is essentially qual itative. It is

defined by (6) which arises naturally from the theory

used in this thesis.

(47 )
S ivukh in presents an interesting attempt

at a more quantitative justification for the use of

and the impact-parameter-cut-off Potent ial . He supPoses

that the interaction time is finite and considers a

problem more closely allied to a coulomb potential which

is cut-off at a certain distance from the source. He

obtains a term essentially the same as JL. and thus

demonstrates the close approximation of the cut-off in

impact parameter to the cut-off in the range of the

potential. This latter must still be justified by a

phenomenol ogi cal argument .
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2 2 SCATTERING IN A DEBYE FIELD

Scattering in a Debye potential has been

studied by Everhart et. a1., Lane and Everhart, and

(28)
-r lrsov Their work has been extended to more

general exponentially screened repulsive potentials by

Baroody(29) . This can be extended to cover attractive

potentials and general expressions for the transport

cross -sect ions obtained.

Cons ider the scattering of two part icles ( of

types 'a' and 'b') in the centre of mass system. If I

is the coordinate angle representing the displacement

of the relative position vector I with respect to some

fixed direction, then the solution to the orbit equation

(see, for example, Goldstein(48), or any other book on

classical mechanics) is

*
2v -\-/'-r^J, (LE

¿tw { 
--LML.

\l

Jtlo

rL

e"

1

l.1 L¿

*P, M is reduced mass,

(equation (2)) and E is the

the minimum value of r (the

where u =

the Debye

energy.

of closest

r
potent ia1

If rm is

Vis

total

di s t ance

approach )

byO, is given

and u, = 1f r^, the scattering angle,
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..-.. ( 2.1 )

o

u- can be found using conservation of energy,

( )

where Vm
¡ 

"-r^/ 
a'

1Srñ
potent iaI at r fa

lr.nì and transforming the

variable to x (= i_ ) it

1r
7

o--!Jo fvì

the value of the Debye

On using this expression for

above, integral by a change of

be come s

-t/2

-æ
^lI = lt¿=

z) Ioz _ Zj*
)ê fYl

It is convenient to rewrite this expression in terms of

a and a new parameter, y, defined by y =: (thus y

is the inverse of the distance of closest approach

measured in units of Debye length). Hence

-'/*t -\6
1Ì-

.l
Iêt

LI Jo

1-Qx5 e
d. -'/rì-A¿ e.

In this form-only one energy dependent parameter (a)

is involved. In previous calculat ions two parar-neters

are used which are both energy dependent. They are rcr

the distance of closest approach in head-on collision and
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parameters which are mearringful only for
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(z.e )

repul s ive forces .

The impact parameter can be defined as the

length of the vector which is the perpendicular drawn

from one particle to the initial Iine of motion of the

other (i.e. b = f:' [f*' ! I ). This is related to

the distance of closest approach and the energy parameter,

Q, by

-15
o

Equations (7) and (8), by eliminating y between them, are

sufficient to determine the scattering angle as a funct ion

of impact parameter for any Q. Tt is not possible to

determ.ine the exact nature of this dependence anaryt ical ly,

although a good approximate solution can be found for the

case of small Q (which is relevant here). For the more

general case one must resort to numerical methods. This
has been done by Everhart et. "t.(28) . An improved

method, in which the difficulty due to the divergence of

the integrand in (7) is overcome, and the results can be

obtained rapidly to as g.:at an accuracy as desired, is
presented in Appendix A. Re turning to an approximate

+B'T'
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evaluation, equation (7) can be written

ð'x

Suppose that

smal I in the

the integrand

o

o e.c

fr,-''>"'1,- {, 
- a;1J/:(r- =.'kr . ''')

(t-,.')(t-ov.-''?)

4X

small is

provided

I'
e
4- (

-rllfql-e-s e r

1*eS e
_t/g ('- =')-_><.

lz

-tl-
¿tx

Then, if 
^ 

is

second part of

val id provided
-V,lalye " is smalI.

A = | Qb e-'/ä (r-xei/'r.'/¿).
l(t-:<'r(r- oÐe-"þ) I

interval x = <0,1> , the

can be expanded to give

tt'' (t- -.'/', .") d.r

Separating the integrand into two parts and integrating

by parts, changing variable to 1 /* and integrating by

parts again reduces this to a known integral represent-

ation of the first order modified Bessel function of the

second kind,

r
a

r - Q.à"-"'

The approximat ion that A is

e

)(
t

r

t-A¡e
< I which is true
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I t can al so be seen that, f or smal l A, ìel - A +

which indicates that the small A approximation is valid

only for small scattering angles. In view of these

facts it is meaningful only to write the solution, valid

for small A, as

e

Th is solut ion

for repul s ive

vaI id not only

(v ( lol-').

)(
I

¡

e - j . 
t' 

l'* ,j'(,-Ð] ; e-y J

Kq (z,v )

has been obtained by Baroody (1962)

forces using a similar method. It

(29')

1S

It
f or 0 which

+

so that

is

for small 9, but for relatively small y

possible to find upper and lower bounds

valid for aIl y by using the inequality

T'(,- ;') <
-'l*! V,J

e

are

e

tl-J -,lqQY"' aì o

The left- and right-hand sides

substituted into the expression

(7) give upper and lower bounds

we f ind

inequal it ies when

scat ter ing a¡g le

9 on integrat ing

of these

for

for

the
Í
z
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l3

aì o
(5* r) .-n'Qj-

si.r Q
2

a
2-e,¡e (z-c 5 e-'/r¡ 5 +QT'

which may be written as

a e. Q5(5*r) e (2. ro)
- r/¿7 -a ie '' (z- oJ our) 5 + Q5 d'/Y

Prov i de d lz (ey. -nt - 1 )l <<

a relation which holds for large y (say ) lO) independent

of Q, either side of the inequality (10) is a good

approximation to "irrt. Also, since f,or large y,

Qye-75--' Qy, using equation (8)

Q'(r-QYe-'/:1

,/1 )

'/5

o' rz a-^/9

2

-l Q.l-Qye
-->

Pene trates we I I into the

Hence

- t/qou e

)i
/.t

= [, + +
7 - Q! e='/3 Q'5' av: 48'* Qt

This shows that, in the large y Iimit, "irrÇ-¿

This is the result

is expected s ince

the test particle

obtained using a coulomb potential and

large y corresponds to the case when

the Debye

value.

regions where

together inand coulomb potentials are close
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2.3 TRANSPORT CROSS-SECTIONS IN A DEBYE FIELD

The resul t s of the previous sect ion give the

scat ter ing angì.e as a f unct ion of y f or spec i f ied Q.

Together with equation (8) this is sufficient to

determine the transport cross-sect ions. The zeto, th

cross-section ( i.e. the total cross-section) is infinite,

although this is so only in the.purely classical limit,

s ince do = -71T[U"f ")]- 
To evaluate ó, and ó, we

must use the analytic results corresponding to large and

smal 1 y. To do this it is necessary to divide the

integration over impact parameter into two parts; zero

to bt (or Uì) and b. to infinity, where the choice of bt

will be made later.

For large y, which corresponds to small B, it

has been shown that the scattering approximates to coulomb

scattering'. If 4(Bl) denotes the con'tribution to "ón

f rom integ.rat ion up to 8.1 , then, f or smal l 81 , equat ion (4)

can be used to determine /r{ø,) and órtø,| . Hence

d (e,) f Tre'oo' t" (lqF*)
(z rr)

^l + E,^
d. (8,) 2 á,(9,) T o.o" e \+e,' i o'
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The remaining contribut ions to d, and d, come f rorn

integration f rom 8.,, to inf inity. In this range the

approximate solut ion O = aK (1) (equat ion (9 ) ) canty
be used provided 8,, is such that thi.s solut ion is val id

at B - 81 . In other words the value of y corresponding

to B = 81, y1 sây, mus t be such that lq I y1 "'"t' is smal l

since this condition is sufficient for the val idity of

(9). The use of the coulomb approximation in the lower

range of integration also places a restriction on 8.,

(and hence yl) since it has already been shown that this

can be seen

lolv,, "-'/''
possible if

the case.

38.

apProx-
I z

approx imat i on hol ds we I I

Thus Bj must be chosen to

sma1l and it

lOl is small

Re turn ing

we use the fact that

imation to replace 1

in the integrand for

only for y (i.e. yl) ) tO.

make yj à lO and

that this is only

(<< # ) . This is general ly

to the integrat ion f rom 8., to inf inity

e = QK, (1)ry
- cosO = 2

smal I angle

= 8' = je'(
15 A

.2stn e
z K1 (

v
ó, obtaining

d, - d, (e,) T e" o"' t {o,(, )i" B ÀB

le I y" -t'S ince B must be chosen so that is small for
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e)81 , in the

substitution

/, - ¿, (8,)

Now y, >'l

(smaLl B

range 8.,, to inf inity

and integrating gives

39.

Making this

and the I imi t ing

use d.

(2. tz)

Bè1.
Y

n".o^e'ls, Ko(a,) K,(8,) - $¡l*,fu,l) - ir<"fe,l)"il

1 I10 and B

) forms
1

so that B
0Yt'l

for Ko and K, may be

11

1

t,

f

- 4 (8,) -T.Jo"It"8.-: *tr *å]

where 1S

lql << B1 .

comb in ing

To

to be found.

/.- 4^(8,)

v12,10 , lal r, (( I or,

this fact to simplify

EuI err s

1 and

Us ing

constant ( 0.577216). Also since

fal vl "-" << us ing Bt

equat ion (11 ) and

I
Y¿

I

¿, -- - T[oo'Q"[t^\el + f * i - \^+]

4, - T[ oo'e'It" tc I o.3oeÙ (2. rs)

a result similar to that obtained by Baroody for repulsive
potentials.

this with (lZ) gives

evaluate ¿, the large B contribution remains

This is

2T1 lj'- "* e) b åb

g'rT oo' l(..^'3 - .,"t: )-8,
BdB.
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In this range of

integral reduces

To estimate the

term we can use

known condi t ion

error caused by

the inequal i ty

that lQl y. -n'

neglecting the "ttr]
( t O¡ modified by the

integrat ion

to

æ

/,-3.(B)= gT[ao' '! eae 2(¿,- d, (8,)) ..... (2. r+)

" 
ir,* ! << s1n e

z and the

is smalI to obtain

a'/l
+ ,/t

Q5 Qg" l.ó * ,)

2
E¿B sir,aOBåB < 29

Making the change of variable to x

since lOl is small,
oo

J

which integrates to

æ

B,

I
J

B,

tol
4

+
B å8.

!x+B this
v

be come s ,

aoæ

x
Br

ê

,$.. f '-rB,)

! e as 1zq" I

-

Q*

-3 --

a j". ,',*! aee < ,*. (t* se,)

I
srn

B, 48,

have been neglected. Since Bt is small

, \4 -x.
1) e á¡+x

oo

where smaltr terms

we have

J-.g,

.aã," ä BåE
tS g,' ..... (z.ts)
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S i nce the c ond i t i ons lO \<< e.,

be neglected and on combining

and this term can

(11 ) and (14) drobtains as

tot<< ff

/, z¿, - TtoJQ' (z.re)

can be used to determine

the same way as it rvas used

Th i s re sul t s in the equal i ty

@
-x -(exdx.

æ

[:

The

BáB

E1 (281 ) IS

the smal I B

inequality (10)

and hence ¿, inth

to evaluate the s i¡f

a a

9.
2

term.

lfe'oJ E,(ze,) < ¿,-3,(e,) ( ïc'oJ 
[E,{t",) " 

=g 
.-'"'l

where

Us ing

the exponent ial integral

.,, form gives
{ Er

-rr e'qo' (r^!' *f," r"+) (d,-d,(8,) (-ïe'oo" (t"T * f + t^4 5
+

a result which is consistent with (lZ¡ since

2.4 COMPARISON IVITH THE CUT-OFF POTENTIAL

r,.+ -2n <!< n+.

coulomb potential with impact parameter

Debye length gives results which are in

agreement with the analysis using a

The

cut-off at the

remarkably good
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Debye potential. The cut-off potentid.l produces a

more realistic finite result for ó.. The reLation

between /, and d, (equation (16¡¡, which holds approx-

imately for the Debye potential, can be seen to hold

exactly for the cut-off potential. fn comparing the

results for 4, it is convenient to consider the Coulomb

logarithm def ined ¡y JL = *+-.a. The cut-of f and Debye

field values for À "t"

Â.,t-"ÇÇ - Â"
,7l" iõt -'[^ \q\ + o.7

(z.r;)

^

- \nlel + o.3 = ,^ ffDebye t

The agreement is very good since, as lal is small, the

logarithm term is the dominant one in each expression.

Exact correspondence is obtained when the cut-off is made

at about 0.7ao, a value which must be considered very

close to aD d.ue to the comparative insensitivity of À

to the exact position of the impact parameter cut-off.
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CHAPTER THREE: KINETIC EQUATION FOR

A PLASMA

The rigorous derivat ion of a Kinetic Equation

is not the main aim of this section of the thesis.

Howewer, since a Kinetic equation is a necessary starting

point in most discussions, in particular the present

discussion, of plasma transport theory, and since most

other discuss ions lack rigor in this respect, an outl ine

of the derivation of. a Kinetic equation from f irst

principles will be given in this chapter. The method

used is an extens ion of the technique developed by Born

and Green(4) as summar ízed. by Green(49) . Much of the

mathematical detail follows that of Green and Leipni¡(26)

and wi I I not be repeated here . However, suf f ic ient

detail wilI be retained to keep track of the magnitude

of the approximat ions made so that the accuracy of the

final equation can be compared with those of other authors

(considered at some length in chapter one)
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3.1 TÉIE HIÐR,\CHY OF EQUATIONS

We wilt number the particles (electrons or ions)

of the plasma 1 ,2,3. . . . , and denote the mass, charge,

position and velocity of the i-th particle by m.., €i, Ii,
and E, respectively. The phase-space distribution function

F*, is defined such that, if

¿o*

<G>

4!4

-r))- f 
- F- á

TT- ( N-) |

then Fru dnn is the probabi I ity that the a- th cons t i tuent of

the plasma consists of N.. particles (a = 1 ,2,...) and the

i-th particle wiIl be found in the element of actual space,

dx;, and the elernent of momentuìÌì space, 9p.r. The average

value of any microscopic quantity G is

(¡.t )

where the

N4. Fñ

Li ouvi I le

1S

s-
surnrnat ion L is over al I poss ible values

is a const..ri of the motion and satisf ies

equa t i on.

of the

the

f^),

The one-particle distribution function, f (or

the first of a sequence of functions, f, f2, fZ

fou , fob. . . .l , which charac teríze the veloc ity(or f.
c
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distributions of groups of 1,2,3.... particles in a

plasma. These functions may be defined quite generally

by

f- : (¿ 6,-Á(=-=,) J(E-5,)>

.l, = ( >. t,- Á(=-=) á(5-5.) I, ,,, á(= -æ.¡) áfs-s,t )
(. z)

f-._ , etc., similarly. These definitions written in theôbc

form (1 ) in conjunction with the Liouville equation lead

to the BBGKY hierachy of equations, the first two being

{u; *=- 'å-. * *": ä - z"[Í*.r#"=: þ- *, o" : @

1f
1"b *E
àt =4

>F,
>-^ *5,

extc
.l-a è{., I r àj.r.

- 8-'l¡"r- àl- -

4=.4- :

àfr
ã_Iu riñq

r e4.. àÇov. a €u. aF"ç

Ë'.{"..
mb Ë¡

¿fl t

r èF"r.l .....(..¡)
-t ì-E,l

àÇo
;=. +

+- or',t^ èja à-!^ rnu ?=u àJr

exl
wÌrere F. is the external f orce act ing on a part icle of

the a-th type and Q", is the mutual potential energy of

two particles of types a and b and i" ^thrr", in a plasma,
êê

the coulomb potential, Q.o 4II€. r ' !=I--Is.

The hierachy

duction of a

is insoluble until terminated by the intro-

sui table approximat ion,
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t¿

3.2 TERMINATING TFIE HIERACHY

In order

fo1 I ow Green 
(26 

'49)

to make the hierachy (3) soluble lve

in borrowing a technique from

the ' superpos i t ion aPProximat ion'equil ibrium

of Kirkwood

theory,
(50)

ñob hÞ" ho.

Fì- t.ìe ll.

(
where û*= Jf^ d5- (nob,4obc similarly) is the

number density of particles of the a-th kind at the

point Io. G"""rr(27) has shown that the suPerPosition

approximation is a good aPProximation for use with

plasmas and is possibly better with plasmas than with

ordinary fluids. An expansion in powers of the parameter
ô.iff, the rstrength parameterr of chapter one ' leads to

the superposition approximation when higher than first order

terms are neglected. A further consequence of this is

that the Debye-Hueckel approximation of equilibrium theory

is rather a better approximation than is generally suggested

and the range of validity of the Debye-Hueckel theory

extends much further than the approximat ions used by

Debye and Hueckel.
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The non-equiI ibrium gener aLtzat ion of the

superpos it i.on approximat ion, the 'general ized super-

position approximation '(49) is

f.o f 
". 

f-. (o.+)

It can reasonably be expected that this approximation

is as good as the superposition approximation and is

equivalent to a first order approximation in powers of

the strength parameter. That this is so can be

illustrated in the following way. The distribution

functions fo, fob etc, are Inormalízed' to the number

dens i t ies [*, [ob e tc, As a consequence, in equi I ibr ium,

the generalized superposition approximation reduces to the

superposition approximation. An alternative general ization

of the superposition approximation, which is independent oÍ.

it, is

tt (¡.s )tF,Ê

where the F^, Fos etc. are 'normalizedr to unity (i.e.

fn = n*Il etc. ). Equation (5) hotds trivially in

equilibrium, and can be seen to be accurate to first order

f.o. Ef,t

F.. t"
bcF"
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in the strength pararneter by comparison with the cluster

expansions used by Rostoker and Rosenbluth(18) and

others(J9). The cluster expansions may be written

E tq" + G.o

F. + G.FFEtraÞe
+G. F r-G F.b.qacb

+ cl
J-U¿

(¡.4 )

(:.r )

To obtain a Kinetic equation accurate to

t he s t reng th parame ter one as sume s Gor- €

where ê = 1.ru.ot )-1 can be identified with

parameter (see chapter one). Hence

G." G". G.,. Gu. G-.
Fb

This expression can be

equation (7) to obtain

to the same degree of

This can be factorized

pos i t ion approximat ion

requ ired.

an a1 ternat ive express ion

approximat i on s ince gou. tu

to obtain the generalízed

( 5 ) p lus t erms of. order e

first order in

, gob. - e'

the s treng th

L
^-, e

va1 id

super -

as

++
G." Cr-

F.

added to the right-hand side of

F.F"F

L€.

2.

Instead of us ing the general ized, superpos ition

approximation to terminate the BEIGKY hierachy, a further

ref inement , the ' d.is junct ive approximat ion' ( see G"".r( n9l 
) ,
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which is considered also to be an improvement, will be
(o't (o)

used. I f f'* , f:; are the local equil ibrium

distribution functions ('Local' in the sense that the

macroscopic variables n, u and r depend on position and

time) and if f:, f)" , ... are def ined by

cI abe

- (o)

t""
{i
f:"J

f:

*Èfjj r:l {: f: f:''

+".

f-

etc. , then the dis junct ive approximat ion is

f:

{:i"f- (¡.e)

This is closely related to the general ized superposit ion

approxirnate (5) and to the cluster expansion (T), and these

relationships indicate that it is at least as good as a

first order approximation in powers of the strength
parameter. On making the substitutions fn = f!) + f:
etc. in equation (5) and neglecting terms higher than first
order in the deviat ions f rom equil ibrium, f: , f-b etc., one

obtains the disjunctive approximation. To compare the

dis junct ive approximat ion with the clus ter expansion it is
convenient to rewrite equation (Z) as

= F,F -rE F+ptroÞ c oc q -¿< b
E
I ob. -2trFtr +q

ê'b c "qlpc



Equat ion ( B ) can be rewr i t ten as

50.

..... (r .r )

tr tr F +F F +F F -2FF.F'at c bc è a< b ê b <

2 Ê-' Ê: ç.'
+ f\- ñr" fì.

and the correspondence between the two expressions is

obvious. These results indicate that the disjunctive

approximation is at least as good as first order in é.

It shoutd be noted that the disjunctive apProximation

holds trivially in equilibrium and is a most suitable

approximation for discussions of transport phenomena

where deviations from equilibrium are small.

3.3 THE KINETIC UATION

The hierachy (3) can be simplified to

àÊ- + o
ã-c * l.-(qE-) *=.'le. \-)

t* * þ--rts"l "L;(q,E") * à-({,\"") * È''(q"n,-) o

where a^ i s

and a." i s

condi t ional

the mean acceleration of type-a particles

the mean acceleration of type-a particles

on a particle of type b being at (*u, 5").
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the

the

is the particle

part icle flux in

relation

f lux in actual space

velocity space. l\¡e

51 .

and f^\o is

have, exactly,

ffio \- F

exFwhere F^ ( =

on a particle

particle a due

summat ion over

(Ë r)

ana (Ðr)
particles ( | denotes

except the one in question).

ext

Eêe

+

- <fì-+ 5^ x B ))

t-(z'E> = - Z.fffq"- tt) 'r3-* 4=, 45" - t¿ fl

exl-

of type

to a1 I

a

other

aI I par t i c I e s

expressed as

is the external force

is the mean force on

(rE) can be

+" Y;l 4=" 48,'

where an amount f- f" has been added and subtracted from

the integrand to separate the macroscopic contribution,

-lfffrËll 4-, 4Er' rhis term can be added to the

external force to obtain the total macroscopic force and

it corresponds to the VIasov term contribution to the

Kinet ic equat ion ( see chapter one ) . If the macroscopic

force, Ðo- , is def ined by

F
exh è4"t

èxo-z"Jft"tr =" 45"
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then t. b"comes

.Y,\:
E

I

r ¿ f J*" *": (q" - [t) 4=" {" (:. ro)

Similarly we obtain

IF_F

+
è:c.

(Ê"r. - [" q)è3_
è3.- i,àlf;n,:

fI

I

m4

J=. åç _ t à4.¡, ..... (r.t t)
rno è_l!a

This procedure separates long-range and short-range

effects. The former are grouped-with the external

forces and the latter wil I contribute to the coI I ision

integral which must therefore automatically include the

effects of shielding. If a shielded potential q." is

def ined by

>t, è f"t
èj"

|4"
lÍ1o èz-

/ |..r.
\ t, -ç. 4=. {.

then equation (11) becomes

Equations (10) and

back into the hierac}:^y (9).

(¡ tz)

(121 can now be substituted

To simplify the resulting

\"" : àf- ?9",

In equilibrium V., ""duces to the Debye potential (equation

(2.2)\.
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etc.express ]-ons we

and .â,4:,

ç

introduce the functions û, t",
etc. defined by

ûo
ü,= ¡ (o'tt" = ).r* I

l¡'
u^

-L +\ etc..
Ê:l

( tn this rrotation the disjunctive approximation is

l.;. -- yì.yi * f'. -'¡ì - l) -'f,.' ). Af ter some manipulation,

and us ing the f act that f:t and fþ:," sat is f y the same

equatíons as fo and fob, the first two members of the

hierachy reduce to

D"(r:"L) = U" Jf å'#:.[,ifclÐ - ç:r:' g: -t"Ì-Ë=:]&" 48, .....(:.r=)

Ð-"
àJ^

r èú.u - ììuñr >Zr - QSu - A.o - A r- ...-. (z-t+)\ èl'
ll^c è:(.

+D. T,

5-
ã
ãYþ=where + r* è

E-

and

with A"^ def ined simitarly.

ú-^
è_
Èå.

è
è5": *r" E.D* + E'' È,D"=

a..: ¿ff¿*: t# à(,:'ü:-tj"'tì -f *]*.*.
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The dis junct ive approximat ion is now used to el iminate

f,ou. f rom the express ions f or Ao" and. A"-. The resul t ing

equat ions are ident ical in form to those obtained by

Green and Leipnik(26) except that the equations of these

authors describe the behaviour of the time correlation

functions which, in the above expressions, are replaced

by the velocity distribution functions, The method of

solut ion can 'now f ol low Green and Le ipnik exactly and

need not be repeated in detail here.

Equation (13) and the assumption that the

particle densities are effectively constant within a

sphere of radius of order eD , the Debye length, can

used to simplify the expressions for Aou andAg-.

the terms in these expressions which are small for

deviat ions from equil ibrium are neglected equat ion

be come s

be

If

smal I

(t+)

D*{o - *.
a 9.r. àtt
lxo àE- - r {"r.1f,.t

rvts èxs ? €u D"o (f^*'t")

which, apart from the inhomogeneous term Þ.0 (L* {)

is the Liouville equation for a pair of particles in a

potent ial 9.r. This equat ion can be solved. By

defining the operator 0 (acting on an arbitrary function
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H) as

o (H) H(t-t") åt. t

-æ

and using the boundary condition that particres are

uncorrelated at some initial time to (this introduces
irreversibility into the problem in the same way as

does the Bogoliubov technique described in chapter one)

the following expression can be obtained after correcting
some minor errors in Green and Leipnik.

o (D-(F:'L) = Z, If t:'t:"[o('¡:" * f,,. - 'L - ¿)]r & €" .....(:.r5¡

where .Ê =l^-3" , d¿ is an element of the cross-section
for coI I is ions in a potent ial p., 

1 ""u chapter two) ,

¿" = 't: (5- = 8..) , tr. s imi I ar I y, and tr. and $". ¿¡6

initial ('pre-collision') velocities at time t = t
o

Here'pt.-collision'

outside the range of

order 
"o ) 

.

I initially' mean'effectivety

potent iat p 
"' 

(which is of

and

the

In deriving this equation two approximations
have been made. The first is that strong external forces
are absent. If strong external forces are present they

wiI t have an appreciable affect on part icle trajectories
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T

over distances of the order of the range of f." and must

appear ins ide the col I is ion integral . This case is

considered by Green and Le ipnik. The second approximat ion

is that @ (r) ¡¿ 1 where @ {.) i" def ined by (r = x^- x, )

@ (")
è V.r,
èr

and relates the coulomb potent iaI to the potent iaI {.s .

Since @ tr) appears only as a factor multiplying terms

which are deviations from equilibrium the equilibrium

f orm of this funct ion may be used. In equi I ibr ium

is the Debye potential so that @ tt ) æ I + +(t^or'.
The approximati"tr@ i.) = 1 is satisfactory since the

range of the potent ia1 Ú"" is only of ord.er âr. For

s imi I ar reasons t¡r'e equ i I ibr ium f orm of Ú., may be used

to determine the equation (1 S¡ more expl icitly provided

we consider only phenomena where deviations from equilibrium

are smal I .

Eliminating the operator 0 from (1S¡ we obtain

D^t : >" Íf c"'f:'('d:'. *'f,'. - T- - T") f & Æ" ..... (:.re)

where the two-particle potential which describes the

particle interactions is a Debye potential. This is the

à-€.t
?_ta
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same form as the linearízed Boltzmann equation.

This equat ion i s vaI id to f irs t order in the

strength parameter and to first order in deviations from

equil ibrium. Because of its similarity to the Boltzmann

equation it obviously does not suffer from the divergence

difficulties at sma11 separations (*^- xs small) inherent

in equations which rely on an expansion in powers of the

s treng th parame ter for the ir der ivat ion ( the BLG equat ion

of chapter one). This is partly due to the neglect of

spat ial inhomogene i t ies over distances of order ãD or less;

the approximation used to reduce the generalized Boltzmann

equation to the Boltzmalrrr equation. Irreversibility has

been introduced by an initial condition when particles were

uncorrelated. That this initial time corresponds to when

particle sepaïation 5*- xb was Iarge compared with aD

introduces a time-sca1e into the problem. The initial

time t- is a long time in the 'past' compared with the
o

'coll ision time' ( = 1P , s€e chapter one), but short'u
compared with the time between collisions so that the

equation (16) cannot describe phenomena which have

characteristic times of order to or less.
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CHAPTTR FOUR TRANSPORT COEFF ICIENTS

4.1 T}IE LANDAU FORlvl OF THE KINETIC EOUATION

In chapter three a Kinetic equation valid to

first order in deviations from equilibrium has been

derived.

D^L

This equation can be simplified. To do So, first

consider the dynamics of a two particle interaction

involving a part icle oÍ. tyPe a and one of tyPe b (Debye

potent iaI ) . The ' init ial t and { inal' vel oci t ies are

9-, L , 9." , E". where 'initial' and 'f inal' correspond

to pre- and post-collision times when the particles are

separated by amounts much greater than the range of the

interpart i cle ( Debye ) potent ial . From s imple .oå" ider-

ations (which do not involve. the explicit form of the

potential) a number of relationships can be established.

These are made clearer by reference to the following

diagram in which the point" Ao, Bo, A and B are the

end-points of ,the vectots E-. , E. , E- and E" . These



points are necessarily coplanar' The ve I oc i tY vectors

I ie in the Pl anethemselves, which do not, in general '

of the diagram, are not shown' The

are defined bY

vectors T* and !u

to : Þ*-E-="

p-= E* - E" ( B.= l. - Eg' ), as previously' and O is
,/-

the scattering angle. In constructing the diagram

lp.\:lpl , which follows from conservation of momentum'

has been used.
Ao

p.

/¿

= m-l!-l .

the diagram

T.+ T' = 2P

!o: Er-9""

59.

AI so

o

t-

A

B

ï"

B"

I

I

I

I

I
l¿v/

From conservation of momentum t"lltl

T- and T" are anti-Paratlel' From

.esln z

tfn-
M

fiu 'r:F Lb

so that

77 'i"9'
(+.2'l
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ffioffi uwhere M m^*ffig

Since most interactions are such that the

change of velocity of both part icles is relat ively

smal l the terms 4:-4 and fb',-f,i it the integrand in

equation (1 ) can be expanded as Taylor series and third

and higher order terms neglected. Hence the collision

integral Cou becomes

where, to comply

and t't have been

related by

is the reduced mass.

with a more

replaced by

conrnonly used notat ion,

ó^ and t'". The t' and ó^

c", = ffF:"FJ"l-t- ij: -lr"L'ä,Y: -1"-*: **ï,t"'È"t]r{d 4"

'/:

are

: çj" *'f- tj"' :q: ç:" - ç:'

Using the relation (Z\ Cob can be written

so that

c., : ffr^'rl"[t*: r". g r,#: r,r"' ilË:] *{-r". $-år,r", t'*i] f u 8,

C"u i I-* I" ; r" : ff ri'f;"'F!"-3Jr: -;!"r.,3iiir:] r us".....(+-s )
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where Io can be obtained from Ib by substituting

for #:
To evaluate Ib we

components parallel

61 .

notice tfrät, if !s is split

and perpendicular to,e

- 
f\^g ¿ó^

ãE-

up int o

-1, -[" sì" t þ- * 't" .o'! A,

(ttre circumf lex denotes unit vector) , the contribut ion

to the integral (3) from the perpendicular part will be

zero. Thus !s. can be replaced by -T',"?f- = -?sin'9 *re
(us ing equation (2)) under the integral . Similarly

!"!" "u.tt be replaced by

f ,el$ (r',.' ? (r - a s ^' 
e, )l - ¡ | *i Q pl';:3 ( r -,; "' e ¡¡]

so that Ib becomes

r, : ff {"tJ"LÊ i4¿tätr-<os ù-iry,ä"'*toi(r-.'seÏr-3"'oÌ
-+f È,'Ë: t+;('-"'€f,r+"'")]] f røLE' .

Ib can now be expressed in terms of the

sections d, and d, defined (and evaluated

Debye potential) in chapter one. Using

4=24-¡qo'Q' ( equat ion (z .16) ) we f ind

transport cross-

for the case of a

the re I at ion
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I

Equat ion ( 4 ) can be fur ther s impl i f ied by us ing the

f ollowing relation (in which R(¡) is an unsPecif ied

function of.2).

È.. f* 
(¡) exp {-àP-.s-' - { É'".s,'}

= J*c¡l 
.*Þt-å P^^l^-!r1".',s;] (&.

* i Fr-' äË:(*itr,- 3rr."' cr))

**tr, - lrr."'.'l] p 8, ..... (+-+)

P 2 -r-e . òj,

b
+:'f;'L o

ò4,
?Eg (x,r,)

-rf Ë",'#:(

z

a¿

m-)-^ E,

{5'E,

= -2;$"JY"' ""Þ{-åÉ-.E.'-¿p-.si} [ n ,- *;, ,1
-àr-r-, *; "i, li **r'*l- È; "#:l'=" ""'(4's)

The detail derivation of (5) is quite straight-forward

and is given in Appendix B. It can be seen that, íf

TroJQ'<< \/, l, I (equation (4)) can be written in the

form (5) with

R (¡) å Tr-' ñoñu F' Jm-m. ,r"=là.

From equat ion (2.13) (-, iz. ì,=-1çd(lnlQl- eog)x-fafQ'l^tQ\),

since tnlQl))1 for plasmas of interest, it follows that

Y'l ¿,

\d I is much greater than Tf oJQ'. Using

expression for ¿, and the explicit form

the above

-'-À - 
2^

Y-oo/i - qrp'



(where À=ffi n"" been

with the aid of equation

defined in chapter two) Ib,

( 5 ) becomes,

"óuàEu åE"èI

Us ing this

-*: ?j* ror

Ko¡
otí -ø¿/ = J-f-

P"

63.

. (+t)

.....(+.r)

f J 
e""+: P; ( r " r o I - .joe\(t;P+b ¿E^

byresul t, obtaining I^ f rom it put t ing

èj.
èç and def ining the tensor [.uas

b

b

- +1'À'(t^to¡ - '=o:)f1\ofru \

ä:iË:) L="]
é,,

Kos '

equation (3) can be written

r'
-ab i=- [ Jrl rI'

è
>Eu

This result is similar to Landaurs form of

the collision integral for plasmas, differing in the

exact form of the logarithm term. In the original

derivation of Landau(30), the inherent divergences are

el iminated by introducing a quantitatively justified

shielded potential. The form (71 can also be deduced

from the Fokker-Planck equation (see, for example,

Robinson and Bernstein(34)) a d.erivation which suffers

from the same short-comings as Landaurs (see chapter one).

ïn the present derivation the Debye potential occurs quite

naturally as part of the theory. Equation (7) differs
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from that of Landau in that it is strictly limited

to s i tuat ions where deviat ions from equil ibrium are

smal I . Equation (7) also retains an addit ional

70-dependent term in the integrand through the dependence

of 5," on Q. The der ivat i on present ed introduces no

restrictions on the range of val idity of the equation.

To simplify this Kinetic equation further the

term lnlal (= t"lål ) in Kos would appear to createta"f-t :
some difficulty. A procedure, egüivalent to that which

has been used in similar situations by most other authors

(see, f or example, Rosenbluth et. ^I .(23) , Sivukhlrr(47) ) ,

would be to replace lCIl by some average value independent

oÍ,p. Such a step is usually justif ied by the

statement that tttlOl is comparatively insensitive to

variations ín P - However, this procedure is not only

unnecessary, but by i ts \rse some ins ight into the

problem is lost. The arguments for the choice of a

particular average .value f or lQl are generally unsatis-

factory. Robinson and Bernst.irt(34) n"'*r" estimated the

error in making this s tep. They show that i t is smal l ,

but their result is quite sensitive to their choice of a

trial form for part of the non-equilibrium distribution
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function. In the following section we will derive a

more general result which eliminates the necessity for

this approximation and shows that it is a good aPProx-

imation without having to assume any trial form for the

dis tribut ion funct ion.

4 2 THE COLLISION INTEGRAL IN OPERATOR FORM

In the previous section (the aPPlication of

equation (5)) and in chapter three the equilibrium value

for the velocity distribut iori function has been assumed

to be a Maxwellian distribution of the form

Ë:" )" ""Þ (-+p *. 5-')Ê^oYla
2-ïT

although this has not been stated explicitly. The

derivations given, however, do not depend on the mass

average velocity being zero and the equilibrium

distribut ion

/3¡¡o
2Tf

Ë:' n^ f .*Þ{-åp-.(E-- "Ii
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where v = þ¡*^J5.Ç-4-5^ 
( p =;':rv'^n-) is the mass average

velocity, can be used equally well ' We will use the

notat ion Io = E^ - tl f or the pecul iar velocity. The

following discussion will be restricted to smalI

deviations from equilibrium where the plasma components

have the same temperature. Some "rrtho"" 
(36 ) have

studied the details of the relaxation to this stage

during which the plasma components are assumed to be

individuatly approaching equilibrium, but not to be

near collective equilibrium; the components thus have

different temperatures. Such a situation may be

important in astrophys ical aPPl ications of plasma

kinet ic theory where part icle number dens i t ies are very

Iow. Much of the work here could be general ized in

the same way that other discussions have been extended

to cover this possibitity. I

In the determination of transport coefficients

the most commonly used technique is the Chapman-Enskog

method, discussed at length in Chapman and CowlttU(1).

In this method the functional ansatz, that the distribution

function depends on time only through a functional

dependence .on the ( time-dependent) macroscopic variables,
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n, u and T, is made. The Kinetic equation is solved

for + , the deviation from equilibrium, by an expansion

procedure. It is then found that the transport

coefficients can be evaluated without determining the

form of + explicitty. This method of solving the

Kinetic equation wiIl not be used here. Instead an

operator which determines { will be defined and the

Kinetic equation wiIl be solved for the oPerator rather

than f or the f unct ion {. The bas is of this method is

the same as the Chapman:Enskog method in that a

functional ansatz must be made. The details of the

solution for the operator, although fundamentally

different to solving for an unknown function, bear a

degree of simitiarity to the more usual method- The

Chapman-Enskog method can be generalized for the many-

moment scheme proposed by Grad(40) , but the calculations,

when carried out in this wâY, are very cumbersome. In

plasma applications a many-moment scheme is often

desirable and the operator formalism outlined below could

be used in this application to some advantage. However,

only the usual Chapman-Enskog method wilt be considered

here.
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' In terms

coI 1 is ion integral

C

of the pecul iar velocit ies the

(7) be,comes

ò4, -1" 
àJ"

"Js 
m- ðJ.

68.

"lár¡ ..... (+.4)
iJ

è
llI- f:'f:' K.

:aþ
(

qb

We define an operator Jo (J" similarly), which relates

the deviation from equilibrium to the equilibrium

distribution function, bY

*- J- f:"
è4^

..... (+.e)
à 1J.

J- can depend only on fu" since this is the only vector

operator in the problem. Strictly J* should be written

J"(Ð, a notation which will sometimes be necessary'

Later ,,¡¿e wil t solve f or {- by making an exPans ion in

powers of the Laplacian operator in a-velocity sPace,

-è-.t . The collision integral (S) can be exPressed
?Tê è-\r^ -

; tJrn= of t and Ju. Because of the intimate relation-

ship between the J and the {, the mass, momentum and

energy fluxes can also be expressed in operator form, so

that a knowledge of J witl, in turn, enable the transport

coefficients to be determined.

Equation (8) becomes

I^" É",.[t:'¡" ç:' - f:" J. ç:']C oto ?rs.
ô, . ...... (+. ro)
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If the tensor Fou is defined by

á-t (+. r r)

¡

equation (10) can be written in terms of F.t ( E.o will

be evaluated expl icitì-y in the next section) ' The

left-hand term inside the integral is

tra:
( .þ\
\K"u toJ_

*" Çj'' Ir:' l" (*,) 
- 8., &"

[*"6,o'fj'J" fI')-
J-u i"J +:'-, Fj" I o-o -f, (

J_ \

of the power s of hr,

=l*+ir+&

J-"

Repeated integration bY Parts

Jb reduces this term to

since r, (*J wi I I be expanded in Powers of the
\2ã\

;i9'/ this step in effect, involves

identities similar to

a repeated

of integral

1n

..... (i.rz)

Laplacian,

appl ication

J.n Lv*
a relation which holds when õ and-l} vanish on the infinite

velocity surface ' Equation (12\ can be written as

*,Ç1"'J çl' f"(hJ.K., {"
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iwhere q"(*-J t= the

replaced by .t) s ince

velocity difference,

s impl y

derivative", fu. .

hand term under the

directly as

ope rat or

E"'i" a

I"(tJ with all the vb

function onlY of the

. This exPression is

Using the definition (11) the right-

integral in (10) maY be written

..... (+.t=)

Yo- Ic

because Ju contains terms in velocity only as

^, ç:" I, (*,J-E.s

(h) ç:ìt

E.o - rnu E"u.I"(hJ Ê:lcov: *r" [*" ç:" ]"(

m" E.t

Hence the collision integral becomes

ã\
lv.J

This is the required form for the collision

Before proceding further it is necessary to

the tens or Eo" .

integral.

evaluate



ì

4.3 EVALUATION OF F.o

From equations (lt ¡ and (6) and equation

(2.17)

71 .

J\ á.¡u (+ t+)

-\r,\Q\ * .3o9 h
t.ã6
\ai

where

2-'tr È4']'
ffioffiu

Þebye

l_tolo-

can be written

rf^

J\
^

J\ = 2t"+

is defined by

F +S"1"Ãf 4F fÍ'f"

1 (+ rs)\

(+. t+-)

thenÃi" equivalent to what is often called the

Coul omb logar i thm in the I i terature , ( see , for example ,

Rosenbluth et. ^t ,(231 and Sivukh ¡n(47) , and the

discussion after equation (2.5\) . To find the tensor

E.o explicitly it is necessary to evaluate the integrals

J,^r*ryçI"'ry, fryç1"Ð"
To simplify the calculations a, b, {.", x and

z are introduced and defined by

cb
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d.z þ nt^

t2. þ_r-.

x

árr,o = J

replaced by

be denoted

z

b -rt*ú
Jqb - li*

Fp-,

.:'r.(+.'e)1I.

Y=-il'"{J

J.o'l
1 Þ¡ P

J"o is a non-dimens ional velocity. x and z could be

written as suffixed variables, but the omission of

suffixes should create no confuEion. Indeed, the

suffixes on J", will frequently be omitted, but wiII

always be used when a distinction between different

particle interactions must be made. The symbol 'bl

has already been used for the impact parameter, but no

confusion should arise here. The integrals can be

evaluated using a spherical polar coordinate system with

vc as polar axis and¡ as radius vector. In such a

sys tem

@

J-- ¿,72-

1

Since f ít

which will

z = bf ,\will be replaced by b\

by N (strictly Nou ).

[p=" 4]l'/^ ..... (+.n)
L 2 r.=6 aoJN bn



Integrals of the form (where h is an

arbitrary funct ion)

can be evaluated by dividing tens o" t-ì-ì-
parts and using

73.

(+. ta)

fact that

into unit

the

must be a tensor

(18) then becomes

and traceless

contr ibut ion

parallel to {

where

\rt= -r- ¡-) h (p , u.) u

\n" 
2 -r-r_ Êj",4:, = *; [: I r

I,rt,= .f .å

the

the

from the traceless part

The integral-3 T"l¡..

Ê[lh à¡ ('. q - û"tl I; [.rt- .þ\- - '] h * (+ te -)+

-b-.fey

ri
-|'\sÞ
FË

Using (18) and ('1ga) gives

J'"(ä) 
ne;r Êf'4u = L. u t, *(+ ! û-td3r*- ir.)] .....(+.rr)

1r. - àt,)]

l, ì Çì- '"Þ (-1'- L*t-:') l'rx d'1

,"(ì) "*þ(-1'-2.ã - r') 1'år á7

+ (+ g-û.tl( --.-.(+.zo)

ã .'o (-t -z-t- J') t r.x á1

r, = 
Jtc*.Ê)* ; . "'"þ = #" l-

t. = Jå '"Þ) 
u ''"þ = ,î.1-J, å

21r

Jbâ

t. = Jlt"'r)'rr 
tn(Ð .'% = i"o.l f=; i'"(i) 

.'þ (-1'-z*) - ï') t d.,É d'.
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These integrals can be

functions and the two

in terms of known

and $" g iven br

evaluated

integral s I
1, = j-,^ rl"'rt-{r-r)'i -.*Þt-{1-:{ a,

j, -2_,¡@
I -t=J1e
õ

(.".h 251 à1)

T1e details are rather tedious and are given in

Appendix B. 9, anð, \. cannot be described by simple

functions f or all values of J ancl the I imiting f orms

for smalI and large f are also given in this Appendix.

Finally the corresponding smalI and large Y forms for

11, IZ, 13 and I+ are given in equations (3) (6) (le¡

(1t¡ (18) and (19) of Appendix B. Further simplification

gives the following results which are best presented in

the form of a table.

S*o\\ J Lo.3. Y

T I

2Ìr
b¿

t"'
5b'

f. 2Tr

o

u,lr-
iG-

(:'- r)

r3
LII r
b'\ r^N "{)

Tfl.
j-b'

ro fltt"* *ü -r) -alt

=r.tf-r)(("N 
-t^J)



The resul ts

ú2-J
+ 2J e

75.

(+. z t)

(+.aa)

I

I

Tq"
Yb' Erf J

**" L-(v'-r) FrÇ J lL

(equations (3) and (6) of App.ndix B) are exact and

valid for atI y. The term lnN is large for aIl plasmas

of interest. Because of this, from the tabulated

results above it can be seen that

f*
T
L1

x [^N =.r'o\l J (+ zs)

and

È \^N-l'.J lo"g. 5 (+ z+)

E", ("" g iven by equat ion (14 ) ) can now be

de termined us ing ( '1 9 ) , (23) and (24) , and (21) and

(ZZ). We find

t;
T,

L
r,

L
I,

3-:.
J-ob

F 2A 2s)

where A - lnN for small Y and A = lnN-lnJ for largeJ.

The form (14a) for Fou can be found from (2O) , (21 ) and
'-

(ZZ¡. On comparing this with (24),Jl is seen to be

the same as -ZÃ. To simplify the expression for E-u the
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fo1 1 owing terms are de f ined.

Þl-b ã ln :-' E"ç Y

3 -J'
(+ za)

(+ zr)e

zln þ n" l''\'À'
m- fnu

J+

^
k.o .... (+.ze)

and the traceless,

denoted by

dimens ionless velocitY tensor is

V." .- fü -ågJ" 1+ zr)

Wi th the se exPre s s i ons

F. k., ï, -.-.- (+.:o)

The suffix tabr has been omitted from J." it the above

and may also, oo occas ions, be omitted f rom P." , Q-u and

Before proceeding further, it is necessary to

discuss the Coulomb logarithm t"",n,Ã, which has been

found to be -2lnN f or small f and -Zfn($) for large J .

It wiII be recognized that J." is a non-dimensional ized

a-particle velocity where the dimensions have been

removed by referring to tft. average speed of the b-particles

In a two-component plasma made uP of electrons and

[¡ * v." Q"J

U:
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(relatively heavy) ions the order of magnitude of J.t

falls into distinct a¡rd'widely differing ranges

depending on the types of particles which are inter-

acting (i.e. whether 'a' and/or rb' is an electron

and/or an ion). For'average'Pa.ticles (those moving

at speeds near the thermal or root-mean-square speed)

j." rnb ..... (+-s ù
ffio

Hence , i f

i on,

suffix 'et stands for electron and 'ir for

J.t - 40
út

læ-Jre +o

Of these only J".. is large so thatÃ = -ZIn$ is

valid. The extra lnf term is precisely the correction

which is needed to brlrrg Ã"¡ into I ine wi th the values

for ion-electron and 1 ike-Particle interactions.

Expanding the expression for N (equation (1 7) )

)
YNYNJee '' ll

N*N
P le.eu I m- + lY\u

constqnt
t.i6 (4 Tr €o a¡) rìÂ -

Hence, if the constant is exP(-Ul'), 1T

(t*:) ......(+.¡z)

13 le-eol
t.36 (/+1t€. a'D

Ã uê

\
w t f1ìitllle

= \^rt - tn TL- Èw

-ln

...-. (+.::)
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For like-particle interactions fou is between the
tlarger and ' smal I' ranges. However for J - 1 ,

1nf (( lnN, so that

w 1"2 ..... (+.E+)
ee

For electron-ion interactions, using the approximation

(31),

^

e!
È W - lr. Mt*-t *

il.
, tYl¡ + lñs

W- \n mr ..... (+.rs)
ln¿

mel"t
Le'

Since W)) tnZ, ln} may be neglected in equation (34),

g lvlng

Ã." =Ã". =Ã... =Ã", =w -\n
Éle-eul

r.ã6 (41f€"oD) ....- (+.:6)

expression frequently called

pl asma phys ics I i teratu ""(23 '47 '5I

This resul t

the Coulomb

which is

ver if ies the

logarithm in

-\n
é le-er[

3 (,+Ìr €- qo)



4 . 4 TRANSPORT COEFFTCIENTS

The Kine t ic eQuat i on for

is, from equations (1) and (13),

i
t [^ = Z *" ],..(fj"l-E." - F."- J- t:')Þ-

79.

particles of type a

: IC"O C ...-. (+.zt)
4

=FÂ

Þ

The macroscopic equat ions

mul t iplying through by I ,

over a-velocity space and

These are (where *= *

Conservat ion of Mass:

)n-
è-r

of change are found by

ffioI^ and ]m-v-t , integrat ing

summing over particle types.

+ u.V

+ !. no go = *.' * r,*Y' * * Y'^oV- = O

o

Conservat ion of Momentum:

>¿ + ¡aV'$àt '/ -

P"?; -Y. Y'ÂV^ *ÂY-'V s + V' Þ- - ^.E .tr-rc.+J. R

á,r
¿tP *Y'þ - l.t- E-

q

Energy equat ion:

t*: *å pl !-* *V'1. - n.Y.'E-*/.Y.'åË * E-'gs = '."þ C.r5.

3- 4J",4t * åÞ"V's *Y'1 {r ! tVs -Zn.Y-.E.
a

o

=Q*



where the variables are defined as follows

(¡'Eu-o

áE"^.JL

Í[E g.

f [=.Æ.

--;-r.(¡_)
= åT"(P)

, f --1r^

, Pú- =2P^Y^

= n^(q" - g)

r, =Z ^^

t

80.

expans 1 on

comple tely

P^ rna Y14

no$- =

p- = *. Jg.r¡" t 45- (p..trr.. t ^=o.)

= 2 n-kT*

P-

P"

1,^

=ãPl'

E =z!"
tI

fla
a

114+ l'.1: ff^I

1 E nkT¿

Ð is the external

= t \.T (hyd.ostoti' þ'e:s're)

'1=7-ao (h"or€tux)

force averaged over a-velocitY

-- n-kT-

E 45.

and A

space.

The first step in the Chapman-Enskog method

for determinat ion of transport coeff icients is to

expand the distribution function in terms of an

ordering parameter

¡ (¿)
h+

assume that the collísion term is of order i'
(sz¡ has shown that the use of such an

one to determine solutions which are

^ r (o) r(rl ^7F^= t *Et- +L-

and to

Hilbert

enables
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determined by the number density, mass velocity and

temperature. Thus the chapman-Enskog method can be

used if it is assumed that the gas has relaxed to a

state close to equilibrium in which the time dependence

of the distribution function appears only through a

functional dependence on the slowly varying macroscopic

variables n, u and T. This does not necessarily mean

that the distribution function is slowly varying, but

it does ensure that rapid fluctuations are 'smoothed'

out. Near to equil ibrium the behaviour of. the gas is

adequately described by such a solution for the distri-

but i on func t ion,

The Kinet ic equption is now solved by successive

approximat ions . The expans i on of the di s tr ibut ion

func t ion in terms oÍ € is ' subs t i tuted into the Kine t ic

equation and terms of the same order are collected-

Differentialedterms are supposed to be of one ttigtt."

order than the corresponding undifferentiated terms

and the equat ions of chan{e are used to el iminate the

t ime derivat ives of the macroscopic variables.

Us ing

equat ion. The

equat ion t ( 37 ) there is no

usual zeto- order equat ion

zero - order

is obtained



equ i I ibr ium, tj"': n.eìa' ."pi-åp.^(E - of l , where n, u and

É(=¡{) "". functions of a and t. This f.act has already

by setting the co1 1 is ion term (with f- replaced by

fo' etc. ) equal to zero. The zero order solution is

then found to be the distribution funct ion for local

82.

from o-rj' uy

* f. g"- {.' *P-^ (.¿.u. - å I -^' ) , V g

* å(j'El "l = c- ..... (+.=a)
current ,

been used in the present approach and equation (fZ¡ is
strictly appl icable only for smal I deviat ions from the

equilibrium situation. Consequently, in equation (:Z¡

there is no zero-order term in the collision integral;

this part of the equation contains only first order terms

since higher order terms hawe been neglected in the deriving

of the equation. To first order in Ê the left-hand side of
( 3?) is D.f!) so that, to f ind a solution to first order,

the equation to be solved is

u ac

i = ¿u-ñ-V- =Z-.-J+lt¿..¿;ü-

El iminat ing the t ime der ivat ives

the equations of change givesuse of

ç'"1aL T".Vt"ts (7-*p-.--')

+fr(u."8) *.
where j is the conduction



to j is zeto

is the first

83.

( as suming

order term

in theab_g
corresponding to B. (ltj 

"orresponds to nkT

notation of Chapman and CowI ttr*(1)) .

Even though the zeto-order magnetic force term

vanishes, the magnet ic fietd has a strong effect on the

flow and this term is weighted in comparison to other
forces by considering it to be of order d'compared with
other force terms. The extra term introduced into the

zere-order equation in this way does not affect the form

of the zero-order solut ion f:) .

since the zero order contribution

a neut ral pl asma, ã e- = 0 ) . B:

used for

m.(( mr.

whichdefine"E, the

Further use of -m"(( m,

electrons and protons

B:

If suffix rer is used for electrons and 'p' is

ions (or protons in a hydrogenous plasma) then

Using this we find

R
(r)

Þ

I

ne )KTY("

ffq yr^p(å-ip."¡ *p.(.i.g.-åå.J):vq +p. E\y: *å8"y. *:] = co

Êf' þ' v' ^E 
(ï å p 

"'i) 
. p 

l'"-î,, ;ill ; : rî :; ;,:+r-- :'

rgeneral ízed electric fieldr .

reduces the Kine t i c equat i ons for

to

..,.. (+.:e)

. (+ +o)
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where m (= *.) is the electron mass, e = (-e" ) is the

magnitude of the electron charge. The ion equation

exh ib i t s the f ami I i ar de coupl ing .

If the magnetic field is zeto the Kinetic

equation is

Ç"' þ-V,^p (Ì - i p *^Ð - É e. tå' I * p*^ (s Þ - å 6- --') t V *] = Coo * Cou ..... (+.+r)

Replacing a by'e in equation (41) gives the electron

equation and replacing a by p, putting et= 0 and Cr"= 0

gives the ion Kinetic equation. The left-hand side

can be expressed as a perfect divergence so that

3-. {+""[ ù-u,^p(*É*.''.'- ?) * åì Ê - å sJ] = q-* C.,

where g- = .r.. Vt'! *
follows on noticing

n(ÐV u.vo ; VNL

and that *;- (f:) s-) = - Frn*f:' y.. s^

1

=5 V. u

Þàu^1á": ): !u=
= Vrt This

that (v^v^ -

f:'lËr^v r"p(|p m.v.'- 3) *;: È - å:-]:4^,$"1.I""-!"-lf- '] ..... (+.+z)

Hence

The solut ion is sub ject to the auxi t iary

relations which result from choosing the arbitrary

constants of the zero-order solution to correspond



85.

to the macroscop'ic variables which are therefore

determined solely by the zer.o-order distribution function.

These can be written

C)

ejc:'é^ *.Y- 45^ - o

Z-\ ci'+^å ----' ¿E- -- o

These conditions on qÞ can be expressed in

terms of the operator l- which is related to 4* Uy

equation (9). Since f!) can be written as a perfect

divergence,

exÞtip*.u;J
91

e

æ 1o [u- sJ

J {' +- ¿-9"

il

the f irs t condi t ion becomes

o7

;'(u"sJ á 4g- o.

Integrat ing this by parts gives

oJa
;õtt^ u- I. FIt 4g- o- ..... (+.+s)

The funct ion

which make up

oÞê

Ei-ob'

is similar to the functions %u and Qo¡o

In fact go can be written

41äg.=y¡[éB.*U*Q-] = t-O.E.. 
so that (39) becomes
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J .t r*' F- o ..... (+.+s *)

..... (+.++)

(+ +s)

The second of the auxiliary relations can be

e)<pressed as

¿ tj"'
ñ- é^ 4r¡* :O

and, on integrating by parts, this gives

The third condition is

t
J

ãf * #=: É- &'

4. J*"u-'J- [j' &-

-o

so that, integrating by parts and using the first
condition,

o

Sincé thg equation (42) is linear, and since

the solutions to the corresponding homogeneous first-

order equation do not contribute to the required solution,
we look for a solution which is a linear combination of
the inhomogeneor¡s terms. consider first the part of the

general solution which depends on the temperature gradient.
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form for

where

87.

be writt.nI|ìgf"p and the most general possible

-(r)J - mus t be us e d. .'Jen ce

(+ +e\il. r:''Y\^F

qn 1+.+r)

J:t'' and Jftz) being scalar operators depending only on ,t^
Before us ing this express ion, some tensor ident i t ies

must be established. The tensor Uo" has been defined

as J.of"" -å å Y"i , so that

é;"1.r-.t--3É',à') b U . (+ +s)

-(r)Jo

V.u :

U

à
àrt ?ìro

-+ 5a:
?_
èjg. )É r:' * (ä.

1¿ 2
=òVIq vq

this tensor is

It will be

z)

The operator

that multi-

denoted by

¿
e

Th i s de f ine s the t ens or [.,¡lo =

which corresponds closely to
_(f1)plying J;-' in equation (47).

o

u-H

Hence, if h(v-) is any well-behaved function of va then

a funct ion H(v^ ) exists such that

u-h (+.+e)



This

side

88.

is easily demonstrated by expanding the right-hand
to give ü.H=o1*g- ,X=uo'. using this it can be

shown that, f or arbitrary h(v*), thereexist functions
H, (v- ) and H"(vo ) such that

= v-.{-H.. (+.so¡

Now, subs t itut ing the f orm i.46) into the

collisional part of equation (42), and using the identity
(48) and equation (fO¡ forFosglves

Zrr, k., V,"e -F:'(d.)P",* u'Jl'l $a"r) - (q, ¡j''* b'e", $.Ij") {'l .

Using (49) and (50) and the expression (47) f"r Jl-t, and

not icing that V"g.= àriUo and hhor ü- f!", = 4o* çj"t g- , thi s becomes

ã -.k"rvt"p . kj"tÞ lrn''q,, * g.J"t'"'p., . b. V. {''hr,, *å-,t V^Jr,'.'e.r,.}

- t é L, J^*"çi" * y-p." It*)fj' * b' g^e." J-.'tft * åri +o-" !-(Jl-" f:) a"r]]

where IJ-lg-Q"r= !^'Irt-tQ.r,,; ü.e"u,,=!-e"u," . This can be

cons iderably s impl if ied by col lect ing al I the terms

parallel to Vl"É.U- to give

Z r, k"r[V vp (+!' I-"8, - B" fl'n+j"') * g.. y,^p fj"' ? t.a)]

: ç- [pt-^v,^p (åp*.',r.'- 3[ ..... (+.s r)

4J u.h



I¡,k., [Ë ( çi" J""''R" - q" f5'' fJ"' ) * v ; E' f:' ?] .-... (+.sz)

-(s) -(E) _
J- -- Jo 'E f é J-t'" * 9- t'"

In exactly the same way the diffusion part becomes

(e)

89.

repl aced by !-h^ f!Ì H, ,

explicitly, On multi-
the above expression and

= f.'[äe]

).(á r-o'fI'* U- Ji'f:)] d'- -Q.-

written as H, fltrwhere H.is a function of

3 r:rr,-. This relationship is satisf ied

on us lng

Cons ider now the auxil iary relations (43 ) , (44)

and (+S) which must be satisfied by the solution for J*.

The exprèssion A'(Á-J-u' + Q-T-t') "an be used to cover

V,"É-JI' andÈ'f:'. I.f this form is substituted into

the relation (43b) we find

Je, *^ ,[(ée-- ", o

Now J:' /j) can be

v^, and us ing (49)

H.and h, need not

Û- u" f!' can be

plying out the terms ins iae [.....] in

be determined

us lng

s ince y^. !f - =

identical ly.

ó.5 =5 5.u =u.5 = Y q,.J V'9 = åt"9 it becomes

Jaut,{åt-H, * !.(b'q.H,*p-.h") * å-.,: V-b'e.-h.} 4..,.. = o

f ¡ *ie^ H, * åri (rq--H, * p-hJ * 
"-"o* 

b'e-- h^] 4. = o



In

re Lat ion (45)

(44) reduces

a s imi I ar

is also

manner it

satisfied

90.

can be shown that the

ident ical Iy and that

to

f-:' á.t- o ..... (+.s¡)

we now solve for J:'' and J5'' (and í'') and 4t'',
remembering that these are parts of the operato" J" with

*, r"OIacea Uy $.,r.) by us ing equat ions (51 ) , (52) and

ti I and "*p".rai-rrg Jjt in powers of the Laplacian operator

in a-velocity space. Since .ll' is a scalar and ä- *=-
(and powers "r (þ]'t i" the only scalar operator in the

problem this is the only possible expansion of J:t which

can be made. The expansions are written

J-t.n : z. (ñ.)" /:: (Lf

-(rt)Jb

-- ¿ (ñ"I {:? (i.-)'"

=Z (,.î^J d:l (ioI"

= 4 (å,) d:Ì (i.,J*- 
(Er)

J*

certain properties "t (+rJmust be

Z- -- frj"

-(Et)J_
(+.s+)

Before proceeding,

determined. The

def ined by

new variable X* is introduced and

x- l: -- àp*.rr.* .
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The scalar operator A- is def ined by

p
à
ú.-A

z

à2H
>-E.

z
2-

so that the expansions (S+) become

Jt.,
(+.ss)

fJ''

where the superscripts E and T have been omitted. The

subscript a will also be omitted in cases where this

cre ate s no amb igu i ty.

If H(x) 1S an arbitrary function of x then

4 d."(a-)"

t,u'( il) = ã(*;)"dr.(aJ^

A (t-t t,.¡ 4 t Ì

= 4 r(''t,.:+ * (J-2,)H - (å -.)r-r]

- >H
ã=

3
2+

(+.se )

A(f'' t-t(-))

These reIations can be compared with the following

propert ies of the sonine polynomials stlt {*) (which are

defined as the coefficient of S- in the power series
expans ion of (,- r)'-' ""Þ[- -l ) ;

- L(SI') * (n*rn-,--)ST' : (rn+r)SI*''

- *_r(S'l') - (n + \-,.) L(ST') * ,,,S*.' -_ o



from which it follows that

= ["(sl') * (.' + r-2-) L (SI') - (n*,--) S:'= -(rn+,t Sf." -.... (+.sr)

On comparing this with equation (Se¡ it can be seen

that

a Ên's';' - 4 Êþ' (rr. + r) ST-''

92:

..... (a.sa)

and, us ing this , it is eas i 1y proved by induc t ion that

(¡)" F"' Sî (-+)" q* S[-" ç"'

and, in part icul ar,

(A)^ (ol
(- +)' "! tt"' SÏ]

,î

É

Us ing the expans ion ( 55 ) and equat ion ( 58 ) , the

auxiliary relation (S:¡ becomes

I *- Id.. (- +)" nl
f si +l' ,"" o ..... (+.sa.)

n

This can be evaluated using the normalizatíon integral for

Sonine polynomials;
e

I ti'sl'-* d- á- : ry 5,*



t

which can be written

oï, for k - :,

(al

V:

f tï' sT' -u-" cf' &^ Ár*2ñ^ [. (k +P *t)
pl

5r,

93.

..... (+.sr)

J'rr

Éi&,- = na\si: s

Equation (53a) now becomes

Z *-n-> do^(-+)^ r^! S." -- o

Z *^J-, : o ..... (+. e o)

If the expansion (55) is substituted into

equat ions (51 ) and (52) the coef f icients "/o^ and o{"" can

be extracted by multiplying both sides of the equations

by the Sonine polynomial S([l and integrat ing over a-ve I ocity

space. By doing so the function P(v^) is eliminated and

we f ind

r *,k..v*p f [+:"'1r;;(Hl^p"" - p",4ai](a.)"rI'] sî t
= [+ o ,"p Êf' (,.^- îl s'[' l* , ..... (+. e r)

Jé-^'

and a similar equation for the diffusion contribution.

Hence we have



p*l"mok.,[a"i] (å;)"Jt"'sli'(4.)"P., 4v" - r""Tl l?"'{,þJ cI'+J = -å,'- 5,-.....(+.62)

É*.4*ok"J{¿iÌ(äJ"ftl'sîbJq,4r^-z^"¿::Jt.s'i{aJfi'&J=pn.e^5o-.....(+.c:)

These equations hoLd both when the a-particle is an

electron and, after an obvious modification (see discussion

after equation (41)), when the a-particle is an ion.

When the integrals are evaluated equations (62)

and (63) together constitute an infinite set of coupled

linear equations for the coef f icients l::, ¿li , ¿l^' and
Itr\

dì: which, together with the auxiliary relation (60) is

equivalent to the usual set of equations which arises from

an expansion of the deviat ion from equil ibrium, {^, it

Sonine polynomial s.

The integrals in (62) and (63) are

94.

..... (+.6+)I

2,ab

: f t:' Si' {a^)" P.. 4r. , ondab

t¡n

They can be evaluated by

Chapman and Cowl tru(1 ).

..... (+es)

the standard method developed in

We first note that

I Ír", tî (a-)" fl' &.

il-
tln 5

A Ð
atob - å ."þ (ip-rrr.') , so that, vsinl (ç8),

(*; o.)" q. îr-+r"(n-r)! e*Þ(-åi-) d;"(*:-) .
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Hence, using the definition

g iven earl ier, the integral

the coefficient of Sh-rth^ in

of

Sonine polynomials

is, for n)0, just

power series expansion

same as (65).

Sn t- in the power

for

( 64\

the

4n^ -tlL

3JÍ (r- t)

For n = O the integral (64) is the

Integral ( 65 ) is the coeff ic ient of

ser ie s expans i on of

4no
3

(:1-')"(n-rli (r-si'a l]j"r(-.#- ) 
.,. n(fF) .,.Þ (#) d- -v" ¿- . -....(+. s+ -)

e

(fr)'' c nt 
",t 

(- si%(r',i" 
J 

s 
" 

r (Jç:) 
",p 

(-=:l .*Þ(#) d' á, ..... (+. 6s -)

The solut ion of the Kinet ic equai ion in

operator form thus reduces to a problem equivalent to

that which ol¡tains on solving the more u.suaI form of the

Kine t ic equat ion. I t remains only to show that the

transport coefficients can be expressed in terms of the

coefficients do. Consider the diffusion coefficients

first. By definition

V, il If:' 4. Y^ 4v- - { J çÍ'+. Yu ùuaV

The integrals can be written in terms of the operators
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J- and Jb in exactly the same way that the auxiliary

relations were written in operator form to give

-vb á-o f I" el' a=,v^ Ên- t Ê"t'

us ing ¿= 1.6lvr,,p * I.t='. Ê

Fnu

and f-= å¡j"*ü-J.n'
this becomes

V

where

glves

so that

^- V" = p*- vr"É JJj'''Êj'4=. e'Jlj'.' çI'&.+ ì

ê-n^

y^

-Ér,,"v,"p f rl" Ff'4:, - å, Êf t"n'' Fl'4=.

r=l"(h") Substituting the expansion (55)

V" þV*r (¿l'j -r::) *Fg(/:': -d:l) (+.e e)

where the zero-th coefficients are related by equation
(60),

Similarly the'heat flux becomes

? - ñ4n'Y'

!, = 4a" f (*e*o'd. * ù J* çl' 4=^

= 4 F.J 
(-"- i) J- cl' ¿:r-
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On expanding J* this becomes

1- ?e4n-Y- þ { v,"n (all * "ril ) * e' (¿51 - dil )}

which, eliminating E' by using (66), reduces to

!-?pã"-Y. = Ë[vr"É "¿!'-' 
(-¿il'*¿'J,') - ¿I] (¿Ïl *¿l')

J (Êl l
* (v-- v" )

ê (¿f,,' * ¿tF,')
,(E) r(Ê)

{oo - dbo ..... (+. sr¡

Hence, as is to be expected, the coeff icients of

diffusion, thermal diffusion and thermal conduction are

completely determined by the zero-th and first coefficients

of the expansion of the operator J.

I ,(É)
-PTe d oo ..... (+ se)

D-, (+. e r¡

Dou =

]

(.r5' * ri=,'ü

.(T)
4o.I

zp

ì ..... (+.ro)

To evaluate the /- the integrals (64a) and

must be evaluated, in order to determine tl:" and

Perf orming the integrat ions and def ining w by

shows that Iib (n I 0) is the coeff icient of

in the expansion of

2n.-1

3nkl- ,(-r ,(r)

le- Lo., + db,

(T)
doo
-r(Ð
4oo

( 65a)
mh

,ob
I2

w
flìu

mÂ

tb

(-+*)^ (,,,-,)! (* * rt4[¡ -
:T,



and tl", is the coefficient of S't- in the expansion of

-oti.r=ri""
are presented in

has be.en omitted

. The resul t s ,

t abI e form be I ow

for simplicity.

98.

up tçt n = 2,

where a factor

o+.,-+)^ .'l (w + tÍ''' (,- ,.1 'lr -

For n

m= 2

4n^
3lii;

rn

rn
n

_hñ /SJ**, \
Table of I,,.r \-+6^i

rable of ü."(*)

o I z

o 2vJ \2.^¿'
( t* r^r)'

z(t+u¿) (\ + w)3

3
3O \^/

7
3w"

ã(*;T 4(t+ur)3

3t5 \^/ +tô5 \^/

Z(t+ w

o I 2

o
2\¡V

(t+w)2
I 2 rara

t z(t+w)
qr¿vt+8w * 2

(+ \^/ /

(ã5w'+r6w - 4)2

(t+."¡ )

2
8 (t+ 9¡ ¡'

r^r(:swt+t6,^r- 4)

4(trw)a
2(-16w3+¡zw2+ 34w + [4

(¡**r)3



Us ing these

coefficient (equation

99.

results we find for the diffusion
(68))

The usual procedure is to curtail the expansion
( in this instanôe the expansion of J) after a f inite
number of terms. The transport coefficients can be

obtained to 'first order' by considering onry the first
two terms of tþe expansion. The linear equations to

solve fo1 low when the tabled results are substituted into
equations (6Zl and (63). The case when the a-particle

is an ion is solved first to give
G)1.,

/(r) z Iz4Þ, = GE c ..... (+.rz)

where I = 
mP 

æ -1800 and C = j9-- Tn f tre ê!.nrêqqmê * 1óUU and U = 4;zç;;. In the expression

for c, e and m are the charge (magnitude) and mass of an

electron and k.. is the electron-electron varue of kou

(equation (ZA¡¡. The electron equation, using equation
(60) and the results (tl¡ and (72), gives

/':l I G)
..... (+.ra)

pe- ,(r)
le 4.oBe- ,(r)-î 4., =eè2-ltq+

D"Þ --

Ã=

r.oe (4ïrÊ.r* ( )"(ËI (I\I'

'" [+-i:.-""*l



which is the usual first order result. The thermal-

diffus ion rat io

direc t 1y from ( 68 )

equat i on

and (69)

(67).

1 00.

or from

Using (60)

k
T

D,
D*

can be found either

the coeff icient of

and (71 ) we f ind

The

and

, - .{:] /e. d:-:(T: J-t = --ã--lG'
{.o (.o

two resul ts can be seen to be equal

they g ive

k. -- o.l3

Vo - Vr" 1n

on inspect i on

In verifying the equality of the two expressions for kT

terms of order Z-lhave been neglected. since they have also

been neglected in the values f or the "(ogiven by equat ion

(73). However, a more detailed calculation shows that

the identity holds when these terms are retained. In a

similar manner the thermal conductivity is found to be

ì = ro-7 (4-rT€.)= # ("*)*b.,-_\ (Ãl
which agrees with other estimates to first order. Thus,



although there

the expans ion

is not an exact

of the operator

the re suI t ing

corre spondence be tween

J and the Sonine polynomial

val ue s of' the transpor t

first order and this equality
,expansion of

coef f icients

should hold

are the same to

to higher orders.

ç,
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4.5 AN EXACT SOLUIION

In the previous section an integro-differential

equat ion s imi L ar to the Bol t zmarrr' equat ion has been

reduced to a dif ferential equation in which the unknowri

is an operator. If the tensor E^ is defined by

(+ r+)

this equat ion can be wr i t ten ( us ing equat ion ( fZ ¡

(+.rs)

Since the operator J depends only "n b, or taking the

Fourier transform this differential operator becomes an

algebraic function in the transform space. The

possibil ity therefore arises of reducing equation (75)

to an algebraic equation by the use of Fourier transforms.

Because there are two terms on the right-hand side it is

not immediately obvious how this coul.d be done. However,

if these terms are considered separately, their form

indicates that, by taking the Fourier transform, J could
be reduced to an algebraic function

: Z m, \-ouÞ-E^

D.r^ = n [{'(I¡,J,-E.J- E* j" Êj"l

Although it has not been possibte to obtain
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an exact solution to equation (75) it is Possible to

obtain arr exact solution for a particular case in which

one of the parts of the col I is ion term vanishes. If

the background distribution of the b-particles is in

equilibrium the term Z"rnrI.E-, vanishes and the Kinetic

equat ion becomes

(+rs)à
t .J- ç:lD- ç- Fãjj- -ê

This equation describes the behaviour of- a special group

of type-a particles. The particles themselves are not

in an equilibrium state. However, the total number of

particles in the group is so small that they collide only

with part icles outside the group and these part icles,

external to the special group, are in equí1ibrium. Runaway

electrons are an example of such a grouP. Runaway

electrons are. a smal I group Of fast-moving part icles which

interact only with an equilibrium background of ions and

electrons and do not interact among themselves.

Before proceeding the tensor 5^ must be

evaluated expl icitly. From equation (40 )

E" = 4-"k..(åP." * Q Y"i qr) .... q+.rr)
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where Q-=y.J g"r= írJ.r-3å , the

a unit vector (or a tensor composed

The f unc t i ona I f orms of %, and e o"

equations (Zt¡ and (27). We will
to be an electron and write

v J".

circumflex denoting

of unit vectors).

are given by

cons ider the a-part icle

fn: fiìe

expressions for Pos and e.;, and

k.þ= k.Z't, *, =Zn , J.o = JZ J >
after some manipulation and ignoring

tr mk fir- (+'ra¡

Subs t i tut ing expl ic i t

using the facts that

eqúation (77) becomes

smal I terms of order

k.. = k..

z

(éP" * Q.Q.)aE C

where

p- = |y-'(e.e J + t)

Q" -- Ê s-t Ert J - j-'(ç"ç j *

Equation (lt¡ therefore becomes, on

'e' for simplicity,

.....(+.r:)

s1
l) --#Y*.' (+ so)

dropping the suffix

DF - *k.JÉ$ tiA- (!p * goÌ. r $"'* (ép* g e)' þuf "']



which, oD

co I I i s i on

to

differentiating the left-hand term of

part, expanding and collecting terms

105 .

the

reduces

DÉ

This relation is still not amen able to the

elimination of the differential form of J by the use of

a Fourier transformation. However, the possibility of

such an elimination can be demonstrated by considering

an oversimplification of the problem. Suppose that the

distribution funct ion depends only on the magnitude "f I.
In this case the deviation from equilibrium, {, will have

the f oI lowing property;

¿é ¿Q

= -mk.JøEltr - åo) þ-J ç"'- i. y-J t"' * a i l' ir: e'"].....{+.a r)

òJ J èÍ'

This is not a completely unphysical assumption. Volume

viscosity effects contribute to the distribution function

in this way. Volume viscosity is a second order (in

density) effect and may be relevant in plasmas in view

of the Iong-range nature of the interparticle forces.

In this instance, however, the assumption is made only

in the interests of mathematical simpl ification.
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that Jf(') is paral lel to J and may theref ore be

fÊ"': JJF@'

Using this, and commuting J and þ where necessary,

equat ion ( 81 ) becomes

D F = -mk.ls [r-+e) I-J] ç"'] (+ ez)

Now if E is any vector function

å'Jl!

so that

J JiJçt"' = å,I .}.rFþ' = [, ]rIÇ"' = 3r -J t"'.

The Kinetic equation therefore becomes, replacing Df by

the appropriate first order term

I t means

written

where

!'TE =

p pcet - mk. jtr (p * ?q) ä .f r'"', ..... (+ ea)

p*]e : Y-t (E.t f - ÊJ .-"').



It
( 83 ) through

one in which

( -*k.jo-fl ttrl

can

by

the

now be s een that by dividing equat ion
)(P + ãO ) the equat ion is reduced to

lef t-hand side is a known f unct ion of .f

saY)

107 .

(+ e+)L(J) J FC"'
a
àY

If ã denotes the Fourier transform operator

l.'{ut:ll
i(R'J )

H(J) E {

taking the transform of both sides of (84) gives

¡trJ = -t!-J(-ùt) 3tr"']

which is simply an algebraic equation for J

This example serves to illustrate the approach

which is necessary in order to obtain an exact solution

to the special Kinetic equation, equation (76). We will

now consider a more realistic example, the problem of, the

diffusion of the special group of partictres described by

(t41. It has already been noted that the diffusion

coefficients depend only on the function P.r in the tensor

F", ( see discuss ion leading to equat ion (61 ) ) . Hence

eqlration (81 ) becornes
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D F -- -mu" J-tär Ir b.J F"' - r*: r r"l
Here the coeff icient of

as migr''t be expected on

This is because P and Q

-2-l:- ac tual I y conìe s f rom Q

or ig inal equat ion.

J'Jtþtis -ç" rather than -tr.
inspection of equation (81).

are related and a contribution

on di f fe rent i at i on of the

and taking the Fourier transform

equat ion gives

It is more convenient to retain the form

-*k.lÉ+I b.("Jç"')

for the right-hand side. Following the usual Chapman-

Enskog procedure and cons ider ing only the dif f us ion 'part

of the operator J (¡(=)) we find (see, for example,

equat ion (42) )

- * k. Jrr P J{et çt"t .-... (+-ss)F"'å E'

Dividing through

of both sides of

bvP

this

åe' l{Ë'J = :-mk.F rt"(-iÞ) 3{ç'"J ...,.(+.es)

The diffusion part of J can be written rGr"r so that

JGI .,..-(+.er)
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This is an exact solution for the diffusion part of the

operator J

To evaluate the diffusion coefficient one has

only to know the zero-tÌn coefficient in the expansion of

J(t' in powers of (Llrf . This expans ion corresponds to an
)

expans ion of the trans f orm J( - i_p) in powers of p so that,

to f ind the dif fusion coef f icient, Dob, it is only necess-

ary to find the coefficient of po in the solution of (87).

so

irg

For near-thermal and higher

that we may approximate P by I V-'.

Four ier trans forms

(+nf% "'p (- * Þ')

speedsErfJ æ I

Us ing the fo1 I ow-

1n

..... (+.s s)

3 t. t"]

i.' ty .-t'-i

D(5)

2i {zrrl'[e=r¡D(å) - zÞ]

Pwhere D( z ) is Dawsonrs Integral
.9

. r'J, fae d'- t

and colLecting coef f icients of po (JG) = r{.f) +

equation (87) gives

8e.

-"k. JF (,+rr)"/'
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Hence , us ing

substituting

(68) for tlre Ciffusion coefficient and

for k we find

3
t6n

This expression is of the same form as the usual

diffusion coefficient, but the numerical factor is

somewhat smaller. It is the coefficient for diffusion

of a small group of non-equilibrium electrons in an

equilibrium plasma. As such it would be expected to

be smaller in value than the full diffusion coefficient.

Although this is a rather special problem the solution

(89) is exact and the corresponding exact solution to

the Kinetic equation does not rely on any of the usual

expansion procedures.

Although the original equation (tO¡ is

appropriate for runaway electrons the solutions presented,

( ( 84) and ( 87 ) ) , are not . The dis tr ibui ion funct ion

for runaway electrons must be non-isotropic so that the

form of solution , * parallel to 9, is not valid. The

dif f us ion solut ionJgZ) is more relevant, but only f or

the early stages in the development of runaway particles

when the dis tr ibut ion funct ion for these part icles is

D cP
2\'_t
øe)

(¡.- .....(4.8e)Y
)
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close to equilibrium. It is a much later stage, when

a steady-state has been reached which is of greatest

interest and this problem will be discussed further in

the next chapter.

4.6 FURTHER REMARKS

Viscosity has not been considered in the

preceding sections. In determining the coefficient

of viscosity the method outlined for the diffusion and

thermal coefficients ín 4.4 can be used in a completely

analogons fashion. The appropriate trial form for J-

1S

Vt"s * à'l

':r-J
+ *.',.9.:Vs Jju').

For dif f us ion the f unct ion Qo, was f ound to be unimportant.

In discussing viscosity the Qou term cannot be neglected.

Equation (58) is a key relation in the determination of

diffusion coefficients. The equivalent equation which

must be used for viscosity is

gvt''
-T f >t=t
=a L èJ.

(4.)' 
"L..,,ci' 

= -pm"]. (-+)" n! Slr'r--l ç:.
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Tr ans por t

can

coefficients 1n

also be discussed

the presence of a

using the methodsmagnetic field

of sect ior. 4.4

erluzrtion can be

s ince the

written

magne t r c

dire.ctly

term i.n the

in operator

Kinetic

form as

e^ (u. " Þ) . J. ç:'

The exact solution given in section 4.5 to a

specialized problem indicates that it may be possible,

by the use of Fourier transforms, to obtain an exact

solut ion the general Kine t ic equat ion. Al though the

usual Chapman-Enskog postulates have been used in this

chapter, the operator method could also be used in

conjunct ion wi th many-moment schemes. The poss ibil ity

that a Fourier transform Procedure following the lines

of section 4.5 may lead to an exact solution of the

Kinet ic equat ion is a most important aspect of the

operator form presented in this thesis.
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CHAPTER FIVE: RUNAWAY EI,ECTRONS

Runaway_ e I e c'trons occur when a pl asma i s

situated in an electric fieId. The retardation of an

electron by collisions with other particles decreases

as the speed of the electron increases. In the presence

of an electric f ield al I part icles experience an

acceleration, the electrons in the direction of -E.
If an electron is moving sufficiently fast the collisional

drag can be less than the acceleration caused by the field.

Such a particle wilI experience a net positive acceleration

and nits speed will increase indef initely: these particles

are said to 'runaway'. No matter what the magnitude of the

field is, there wil I always be some electrons moving fast

enough to runaway. The larger the field the more runaway

electrons there will be, and, in fact, if the field

strength is sufficiently large even average electrons can

runawayi for this to happen the f iel.d must be such that

the acceleration due to the field is the same as the

collisional drag on' thermal electrons.

Some insight into this phenomenon can be gained

us ing s imple semi-quant i tat ive arguments . I t 1s of

interest to determine the particle speed above which the
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field acceleration exceeds the collisional deceleration
(this is the 'critical' speed). Drei-.."(41 ) and

Spit ""r(51) , for example, determine the changes in the

velocity component paral Iel t,o the f ield due to the f ield

and due to collisions and, by equating the two, show that
the critical speed is proportional to the inverse of the

Tagnitude of the field strength

'\t æ E -t
...-.(s.t)

However this result is rather misleading since, if

runaway problem is considered from a kinetic theory

of view, the critical speed is actually proportional

E-i (44'45) . For a weak field this critical speed

Iarge, certainly weIl in excess of thermal speeds,

the

point

to

1S qu i te

The basic problem is to determine the distribution

function for runaway electrons. we wil I restrict ourselves

here to the case of a weak electric field and a homogeneous

plasma and look for a steady-state solution to the relevant

Kinet ic equat ion. If " plasma is in equil ibrium and a

weak field is 'turned on' a small number of electrons, those

wi th suf f ic ient ly high speeds ( i .e . in the 'runaway reg ion' )

will immediately become runaway electrons. since the

critical speed is high the number of such electrons must be
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small and they will tend to collide only with the

equil ibrium background of slower moving particles. The

effect of the field is manifest predominantly in the

runaway electrons and these will soon become removed

appreciably from equilibrium. The early stages of this

development, during which the runaway group is stiII close

to equil ibrium, has been discussed in the previous

chapter. Here we are interested in the more general

solution. As time progresses some particles will

continually be scattered by random collisions into the

runaway region and particles in the runaway region will

accelerate rapidly and escape from the confines of the

plasma. A steady-state solution could therefore be

maintained by introducing into the problem a high-speed

, sink and a balancing source at thermal speeds to fit

this qualitative description.

The fundamental Kinetic equation for runaway

equation (4.81) (or (4.76)\ relectrons is

Dç _ mk. Ff [çr 
g)ä.1e"' -S y.¡ F,", *e 3 !, äre",l (s z)

where J -- 1.. = àp-"t"'. Since the runaway particles

are moving at above thermal speeds the limiting forms for



P and Q can be used,

be explained below.
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for reasons which

(2) becomes

The

wi I I

P: tl' Q= -2J-'rA5-'

smal I term ,
27?

mus t be re tained

Equat ion

$ - F+ ae - 3s, = - -k þ,r [f ç +) à' r F''- - $, :' r r' - (+ - e') ) 3, il r t'"]... ..(s.27

It has been shown ítt section 4.3 that, for large J

k. depends on f . The Coulomb logarithm term in k. (-,L)

is -2lnN for small J and -Zfn($) for large J. This

is a feature which has not been noticed by previous

authors. However, it is of only minor importance;

Since lnf is such a slowly varying function ofJ, and

s ince the correction is appreciable only f or J àN'

(which is generally Iarger even than the particle speeds

we are considering in this instance), we are justif ied in

omit t ing this J-dependence.

mf tþr= É".' yJof J,Now, from the definition ,W€

(
¿Ç

13
IE
Jz

I

f ind

J ç", *2!Ç
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so that equation (3) becomes

where

follows the notation of Lebedev

have used the ' cr i t ical f iel d' ,

related to I by

. (î,' - t i' b) -ir. (ir' -: r i, il)] ßt, * z: e), - - --. (s' +)

1 F.-t-

Jê- = (<re.)'
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(451 , some authors (41 '42)

E", as a parameter which is

E ¿-'E.

In the weak field case J^ is a small parameter.

Equation (4) becomes

-lt-=" å. 
"?ft 

- r" Ê'

+[ îi ä - ð f, -e !,ilË] - -ì,t "i fr-.e 3'iiål -ti ! Ël] . .-- (s +*1

I t can now be seen why it u/as important to retain the

small term in Q . It is this term which leads to the last

two bracket-ed terms in equation (aa)' If the small term

has been ignored only the first bracket-ed term would

remain. This term, or expansion in spherical polar

¿6
a



coordinates, contains no derivatives with respect to

the speed J and thus represents only the diffusion of

particles in a plane normal to J. The last term on the

left-hand side of (aa) is the most important one since

it describes the effect of collisional retardation in
the direction of motion. The second term contains only
small contributions to both the other terms. rn summary

then, the left-hand side of equation (aa) contains a

diffusion term, a small term and a drag term. It is
permissible to neglect the small term and, of the remaining

terms to consider only the drag term since it is this term

which is responsible for the essential effects of collisions

on runauray electrons . The dif f us ion term wi l l have only
an overal I blurr ing effect on the solut ion. Equation (4a)

beoome sl

z5 -l- Q-.?çàjf 3 : aj! :O11 r àF .zâ- la* il-t<" it - o( E

Since k. is negative we

is a pos i t ive cons tant .

can write

Hence

À-,
lr- tt-
JP-TI -k. where ì

. (ss)àF
at + l- l.¿' Ê\-

I:
F :o-

In this equatio.r -1t'Ê describes the

E

effect of the

direct ion and

field
t:.-rin accelerating electrons in the



describes the drag on

tending to reduce the

"f I. It is evident

cr i t ical speed is when

as stated previously.

which can be written

X+
¿t

an electron due to

magnitude of J in

from this equat ion

l-r¿^Èl - \"ål
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coll isions

the direct ion

that the

s o that J.-d-'- ç-'/'

Equation (5),

order different ial equat ion could be

a solution has been obtained by Green

However, this equation does not have

and so will not be used here.

Ins tead, us ing

system with -Ê "" pola¡

Á,!= cosê where o is the

equat ion (4a') becomes

being only a first

solved exactly and

(pers. conrn. ).

any diffusion term

a spherical polar coordinate

axis, J as radius vector and with

latitudinal angle the complete

o

J x' * *r(rÊ.r *G¡')i) -,t"(tr, *z:r('-ir')i5 .t'-¡.)*Á Éil))-- o.....(s.6)

o(É)

(where 0 is a complicated differential operator) for

simplicity.

In order for a steady-state solution to exist

$/e need to introduce a s ink and a source into equat ion (6 ) .
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i

The sink can be assumed to be such that particles moving

at higher than a fixed'(targe) speed are removed from the

system, The source can be taken to be Maxwellian and of

strength S so that a term S"-J" must be added to the right-

hand side of (6) and 16a). Equation (6") is thus

èJ
ãb + c(É) ....- (5.r)

where we have introduced the variable x, x =J"

The source term can be troublesome.

inrnediately obvious that the asymptotic solution

(7) , which is phys ical ly the required solut ion,

same as the steady-state ( ft= o ¡ solution. If

when t = 0 the formal solution to (7) is

It is not

(t+e) of

is the

f. of

Ê

-tO
e

' -tO
eJ

*

3= ç- +

ç. (s.*) at-

-boAs sum ing

func t i on

l"

lÏe must verify that 0(g) =

to the above equat ion and

that as t+e, f + g and e

g satisf ies

-lo
e. (s c-) at .

fo-> f* then the

Appl)ring the operator 0S e-*-

integrat ing g i.ves

-7 Io(3) = o(ç-) -S[¿-o e
æ
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Since the init ial dis tribut ion is Maxwel l ian (Ae-= , say)

we have

o(:) o (ç-) + Se- ç
S

A
.....(s. e)

..... (s::)

@

On inspection of equation (6) it can be seen that 0(f. )

so thad

-tO
e

This means that Ín = fo At- and equation (8) 'becomes

O(1) -- o

This is not the required form of the equation.

Hosrever, if we replace the operator 0 by. 0'+ e , where

is a small positive number, in the above argument and

ul t ímately al low € to vanish we f ind f n = 0. The

equation for g is therefore

0

t" t

e

o(r) 5 e-a

which is the required steady-state equation.

On rewrit ing (9 ) wi.th the operator expanded ;in

terms of x we find



à'

1ZZ.

..... (s-ro)
à-'

Except for the source term, this is the same equation

as that given by Gurev ¡.n(42) "rd Lebe¿.r(45), These

authors jus tíf.y the omiss ion of the source term by

saying that the source can be considered to be located

wholly in the smal 1-J region and can be omitted beca\rse

the solution is required only for large J' Near thermal

speeds the solution is assumed to be the equilibrium

(Maxwel I ian) distr ibut ion funct ion and the large-J solut ion

must match this in an intermediate range. The solution

of Gurevich is an unacceptable one since it is functionally

dependent on ( I - ¿'rc iâ which is unre4l f or I arge values of x

Gurevich also has to assume a Particular trial form

ç

"*pt{.(-) + {.(-) (r-')}

for the solution, without any quantitative justification.

Lebedev has attempted to reformulate the approach of

Gurevich to eliminate the unreal behaviour of the solution'

Hç assumes the same trial form and obtains a solution

which he claims is valid for all x (i.e. alI speeds) by

using an expansion in {" However, it is not clear how

his solut ion is obtained, nor how he employ's the matching

ç = Q"
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condition for small J , As Lebedev has pointed out,

there is a wide variation from author to author in the

solutions to the runaway electron problem. Also, as

i I lus trated above , the necess i ty for a source term

introduces some complications in to the problem, and

its omission should be justified by. more complete

discussion than that given by most authors. Equation (10)

has a greater range of validity in veloci ty-space than

generally attributed to it. The approximat ions made

are good even close to thermal speeds and the equilibrium

distribution function is a solution for t= O ands = O

which is val id for aI I speeds.

Since /' is a small parameter one would eipect

to be able to solve equation (10) by an expansion in

powers of this parameter. Before attempting this, an

idea of the form of the solution can be obtained by

considering a simplification of the equation (Green, pers.

comm, ) ,

15. " H ('-"r'-)
S
2ì,

-x-J<e

This is a simple

corresponding to

order dif f erent ial . ?tequat ron ln ã_

the ¡¡-dependence

first

(10) ne ar fr= 1 and with
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neglected. The solut ion is

exþ(x - å/'-') {- t"2l

Changing variable to y = itt'gives

e:Þ

The boundary conditions will aff.ect,the explicit form of

this solution.. Further consideration is unnecessary since

it can be seen that a solution, convergent for all x, can

be obtained as an expansion is powers of 4^ which will be

proportional to strength of the source, S, (an expected

result) and will contain a Maxwellian terñ1 et-, and a term

oL'u. For S = 0 there can be no steady-state solution;

lrte look for a solut'ion of the form

Ç(f ,-) å J* e- 3(¡,-) .

Equation (10) becomes

1::, '"J- (,*a¡-) +ai,.*3 "l þ[<,-f)äl - *ì-rtp, - -J%I-- -.--(s.rz)

W'e now suppose that the solut ion is 3 =

^Z__.f 
{33;-3:-åirl(,-É,:l]-r-l+-'-r.-.1-å(,-r'r=;-l=-.f'F.-(s.re)

Thc. zero ocåer e.l.latron is therc'Gore
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a separable equation with a solution of

= U(¡)X(x) where U and X satisfy

tr-f)'#¡- -)r?Y,r + CU - o

è'X àx
* ãx.' ^ è- - jm(-+r)f, -d

l2 s.

the form

..... (s. r+)

.-,.. (:.r6;

This is

8(r,*)

x a"x
--x _-ò--

àX -åcx (s rs)

The U equation is Legendre's equation which indicates that

the solution is an expansion in spherical harmonics. The

solution to (14) must be finite for all ¡ and so must

contain only Legendre polynomials. This restricts the

arbitrary constant, C, to the form m(m+'1 ) where m is a

positive integer. Equation (15) thus becomes

,7/^ 7/z
o{ x.

x^è

4, a/^

The solut ion

equation (16)

hypergeome tr ic

to the homogeneous equat ion

is a Iinear combination of

funct ions ,

corresponding to

conf I uent

X C, M(o,o,*) c U
r

( )-t xo
2

Here a = åm(m+'1 ) is a non-negat ive integer, C, and Cz are

arbitrary constants and M and U*are Kummer functions. The

small-x form of U*is -*-t + lnx which will not give a

Maxwellian dístribution for sma1I x so that Cz = 0.
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Knowing the solutions to ttre

general solrrt ion to equat ion

the standard method as

ÇÇu,') =
-Ie

for I arge

r --!1

å ì¿^) c* M (=9a),o,-)P-{¡)2rL k- h \
a/z

+I z

h omog ene ou s

(16) can be

equat t on

ot¡tarrred

the

by

X \..1*.J -

Us ing the asymptotic f orms of ìr,'t and LTrthis can be reduced

to

j\/' Y'
o( -r

s. +7/z

so that the general solut j.on f or f 9a,*) to this order is

Þ1L

rx
* .{tu Li*l .."'a-* 1"1 ¿=

)- .¿v'* F''.-*

MC

x

It is considered that continuing this expansion

to higher orders will generate a form of the solution

wÌricìr would be particularly suitable to numeric'al

computation methols since it catì be seen from the form

of equat ion ( 13 ) that h igher order terms wi I i invol ve

s imi I ar Legerrdre polvnomìaI expans iorrs. I t j s ho red

to do this in the future.
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CONCLUDING REMARKS

In this part of the thesis the intuit ively

correct use of a Debye potential with a Boltzmann

equat ion col 1 is ion term as a Kinet ic equat ion for a

plasma has been justified for near equilibrium situations.

The collision term has been evaluated explicitly and

written in an operator form. It has been shown that the

Kinetic equation can be solved for the unknown operator

by a rnethod simi lar to the Chapman-Enskog method, and

that the usual transport coefficients can be obtaine'd

in a straightforward manner. An indication that the

operator form of the Kinetic equation is a very convenient

and powerful form has been given by obtaining an exact

solut ion under certain restrict ive condit ions which

correspond closely to those associated with runaway

electrons, Finally the problem of runaway electrons

where a steady-state is maintained by a source has been

discussed. A number of avenues for future work remain

oPen.



In chapter

scatter'ing in a Debye

An accurate estimate

(equat ion (2.7ll)

t

APPENDIX A

two the s cat ter ing

f ie1 d is evaluated

requires integrat ion

A,1

angle for

approximately.

of the integral

à'x
^tIrrêl1- / J

_,1¡$

l-QiÉSe
[*I

l
a

-t (' )
r -e"¿J're

in which the integrand diverges at the upper l imit of

integration. Whenever an integrand diverges, provided

that the integral is finite, the foll"owing technique can

be used to evaluate the integral rapidly, Cons ider the

behaviour of the integrand close to the point where it

diverges (in this instance at x = 1 ). Suppose that

h(x,y,Q) is defined as

[ (x,x,Q )
\-Q-3e
\ - Q.¡ e

(-rà ' - -t/¡

.l-11t

Then, for small 5

which defines H(y,Q)

t

h (r-á, I, Q) H(ï,Q) å-'''

-tlâ

,as

A 'J(1+ t) €H (:,Q) -- -\lqt-Q.1e

/"¡

+ 'I
ì/r
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Using this

AD" -- o as

Hence

J't-
h (-,9,e)â*

l-ôD

h¿,.

-^D

expression, if A is small and D<1 (so that

n-+ oø ) we have

h(',y, Q) d= -z H (r,a) a'' luo- r).
J
l-a

+ +

áx.

ô

et

= ( t -a'')-'

I'

J
r-A

ñ"
s
L

f"*

f:J ..... (z)

The range of integration of (1 ) can now be

split into two parts,

1r _9
LL h A¡'

Of these the first integral presents no computational

difficulties and the second can be approximated using

(2) to any required degree of accuracy by the rapidly

converg lng sequence

f,þ
r-ô

=[ h
J

t-aú

tl^ "+^l^ J'*
r-AD

I

r-J-or-J6
r-ô

hðæ hå-
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In the following program this method has been

used with D - t /,o and A= t /,0. VaLues of the energy

parameter Q (written as AA), the impact parameter B

)(actually B' written as BSQ), the required order of

accuracy (DEL) and the value of (l - Jrõ I -1 (AAA) are

fed in as initial data, From these values, y (Y(J)) is

computed for various B using the relation (equation (Z.g) )

B'ï'* or'" -t o

I imits of r el
I""2I

Q9(y-,,;j'llTherupper

and ALO =

and lower
Q5d'/:

þ(2,1,a )

(rurt =

(2.10) )

a5e'rr)g+q5e-'/5
are calculated

2 -Q 5et'/:
see equat ion

and the integral of the function

-,/r

- :c'

is computed using Simpsonrs ruLe and the technique outlined

above to the specified degree of accuracy. This integral

gives the deviation of O/2 (half the scattering angle)

f rom the approximate value which corresponds to AI-O.

l9t
value of the integral for each of the specified values of

)
B'.

The program is written in FORTRAN for use on a

Crc 6400 model computor.

I

(eNC) and cosO (TIICOS) are then calculated from the
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'OUTPUT 

I
0IH[.NSI0N Y (k{0) rr.rlNT (900) ruI¡,rT (90¡) rCINT (80) rBSO (80) TTHETA (80)
IJl MLrvSI UN, I rrc0S{ tl0 }
üIr'iENSIONr B(ð01
lJIrlLf.¿SiU¡\ TFtY (80) rALU (801 rANG (80) rAHl (80)
ÜI nLl.¡5 1g¡'¡ ANbs ( 900 I
Ltl¡1Lr\¡5IO¡t IrSUA(80) rDIt lË0) rÇ.OH (80)
c(if'tPr0N/AA/AA
AAA= I . 4o2¡+752955 I 42b
AA=-1.*IU.nJt(-b)
Dh-u= (i . 0 u rJ 0 u 0 I
!lSir ( I ) = I . 0t19999E-d
bs(ì ( 2.) = L. u 0 1199900 Cl5E--6
n5t¡ (,t) =1 . 0il0u99005E-4
bstl ( 4 ) =1.. 0 u u u 090+sllL-z
H5ç t 5) = i . 0Litlû0036 19
bsQ(b)=100.
t.j(l4J=lrf)
y (J) 

= 
(:nArSeRI (AAttAAç,+.*uSe ( J) râ ( l._AA) ) ) / (2.*tsS0 (J)

I tl5qA ( J) = ( I.-¡A*y ( J) {rEXp (-I./y (J) ) ) / ly lJ) {¡v (J) I

U.lÈ ( J) =bSoA 
( J) -8SO ( J.)

ll' (ArJs (ulÈ ( J) I /BsG¡ (J) -[JEL I 8ç7 ¡7
Z COH (J) =llLF (J) {sY ( J) nY tJ) nY (J| / 12.-AAåLXP I-L.1Y (J) I r¡ (Y (J) - l. ) )

Y(J)=Y(J)rCOR(J)
. .G0 1f) I
ål |-i (J) =¡Aì¡l ( J) flËxP (-I./Y (J) )

ALrr ( J) =b ( Jt / 12.-b ( J) )
ALù ( ¡¡ =_[[r) ( J)

. AFrl tJl = (¡i ( J¡ f'(y (J) + I o I l/ I (2¡qfl (Jt ) sY (J) +tt (Jl )

Al-rI rJ)=-AnI (J)
.A¡,¡.GS(lIrl0.
L)02ø=t ¡l

"i¿. CALL S.Irap{1-ç,-10.-tË-(.1¡Þl) r l.-lO.ltJt (-H) riJf,tr[J.INI{ät) rY{J} )
M=l

-- -a i r'il ( t!{ } =ùI Nl (¡4) r.a.AA+U I t}l.l ( M r I )
J r..l=m+ 1

CALL S.LÞIP ( l. - [(ì r rl+ ( :fl ] r I . - ] {) . ÞË ( -M- I } I UEL I Il INT (ttt+ I ¡ I Y ( J }
blf,¡T ( M) =BINT (r.{-l ) + ( I.-AAA ) {tUINT ( r,,t¡ +AAAÕD I r,lT (M+ I )

. 1I1L.T A (}{-) ;S I N (I]INJ (14) J

ANGS ( ¡,I) =ALI) ( J) +THETA (M)
IF (AtlS ( (âNGSrr"r) :ANGS (ft--I t ) /ANGS(M¡ ) -DËL) 6 r 3rJ

ô AN'G ( J) =ANGS (Hl
THCTS(J) =Z-lt LANG"IJ) ) n (At{G (J) )

BSQ(J)=( I r-AA$Y (JlnE.rP (-L./Y (J) )' / lY (J)rty(J) )

- ..-PFlIl[l-5,f .ri)ËLrAArY (J) rM
pRli-¡T5rY (J) rALO (J) rANG (J) rAÞ1I (J)

_+.-P.HINT5¡ÈINT. LM) r.Aflfr(J).r 1t-tCOS ( J) rtsSO(rlt
5 FORrlAT ( lH0 r4Ë18.10)

5T ..F QHÍ{AI ( lHú r ft 15.å r I I 5.)
SIOP

- Ë¡ill
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StrdiìirU l Ir.¡E- Sl mP ( A rtJ TtJLLTÀ rAREÅ rÛ)
À¡- l

v= in-A) *1 0.L¿5
H=(Fl-A)/2.
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APPENDIX B

B.l : PROOF OF THE REL.\TION (4.5)

This relation gives an evaluation of the

integral

8,1

can be taken ins ide

åEu

For convenience we wi l1 wri te E^ = exþ[-åp-^S"] and Ep

s imilarly. The dif ferentiation $=-'

the integral to give

i=r(*,r,'#)'*: *"f,-,"
4" ¿ç -+
àEs --

Now, s ince

]r-(r-e") = -É--5- E^Eb = *;(-pr.'(S,-/-))E"E^ = *lÈ.{e-e") +Érn./-E.Eu

the above integral becomes

Iou = JH *ø, $r,(e. e") 4# ]{; +" * Ip'R(F)¡g.. 
e"e , f-'(f'2-f-f-)'li: 4l'

-, J=-r, L. (er¡r r"t-i-¡). #: o".
The first term on the right-hand side can be integrated

by parts to give an integral over the infinite b-velocity

surface which is zero, and a non-zero integral over

velocity space. In the second term the integrand is

ident ical 1y zeto. Hence

rou = J=.=,[*: È"- ÈJ'fr"*,r> G'9-r-rl'#i] +"



On expanding the

di f f erent iat i on,

B2

This can easily be expressed in

as given in equation (4.5), as

integrand by performing the

m-> à ¿

ffi Er + fu. ' this becomes

l-,= (r- -.:)J=.r"¡'n{r)þ¡--"#: " 
t e-r-,*r*; -'¡ È;"#l ¿:'

where M = 
ñ'Bb
mq+mb

the required f orm,

r." = -'çrl IY " 
*þt .+- 

s.' - e"s; ] [- åÊ 
.'rå ^ 1,.r, *i iÉ, . år. S ä". "fJ {u .



B3

82: THE INTEGRALS IN CHAPTER 4,3

The integrals are I1, IZ,

and will be evaluated in that order

I 3, 4', $, ^nd 1,I

r,
ó-?

zrr f t-tt
Jb'J" J-s

-1'-3'-2tr=
1e- dx å1 (r )

.-...(z)

On integrat ing over x and def ining î,(2,3) by

F, (r,y) = Jt'*t'' - 
-()-Jf 

= -2dT'"-1' r,nh(za:)

this becomes

Trt- i'' l]r (1,s) á1

ffifrt J ....,(=)

¡Y --r
i" "-- 

4:<' The second integral is

r, = ë"f 1, ,r J"-"'-'ã- á-áã.

T IT
b-'v

2(Tr)'where Erf 5

The integration over x is straightforward and gives

d) ..-.(+>
'II

$-b'I I [*'-rt')i (:,:l * tt' f (r,sl

where îr(2,3) is defined by

f, (1,Y) = ;(ãr:F + -(}-Y)r z. t'- ã' ç.sL(z¿î) ....-(s)



Us ing the

(4) can be

r, - o'3i
TI (:'-r ) J" Tåtl [+r{*u'q)'ãl

ãF.relation "fi =-21 F, -2T-F'

simpl if ied to

B4

the express ion

... .. ( 6)

The third integral is

-tr'- Ta-z¿x
á:. á1

which, i[ the same way as 11, reduces to

Tã (t"r.r - \n1) F, áå

-T
-L3 - .,o" lt" E.Ç J \n N

The forrrth integral is

- )'- Y^- z¡-
e dxdl

Fo1 lowing the integrat ion over x, in Iz this becomes

r. = *+" \:J' , '.(î)

T, = -j*.[*(s'-t)E'6J +2Jt*']

T4
217

.J-_3 b'

(r)

(e)

(e)

+ l,l

f l-, z '" 
(l)-'

TTlr14 .1,r. f
J

(tnu- t"1) F, d¿ - fr,^u- \n1) i(il-' a) rtl)
û

o

...I- = -o}r.!n.r")(e.cv tnN (lr)+$,) -r1."'r,.N * fi"r*r(+¡'r,)11].....(to)

To evaluate (10) we must f ind I= Ij"a 33(t-r'r,).¿a-

Integrating by parts twice and using the relation for



èñ
è4.

g iven earl ier g ive s

t -- [li'F,'"ã]: *2r Jr' *
e

oJ
F, ¿: +

?æ
J \ 1'1¿2.

B5

where J is

Writing r. = zJT'.-i'(":\^11î -,)* 2.-T'.-1', integrat ing by Parts

and combining terms this becomes

'¡Ji'r"r]- +2Jd!'-.JF E.t i *:Ydr'fi1r"l J3"¿ãt= fr:;"(t- rff! llJ
zàJ

*zve-*J-f' ¿ã'(.osl.2àJ - r) dâ .

Using this relat ion and får^1' ''a1 = -1t

Euler's constant, enables (10) to be written

t--- r+,[{ft(:'-r)8.(r *r:.t'J\nN t*tt'er€r *)rdt'({-,-IJ -(t'-,)9].....t,,>

Ig and I+ depend on the integrals

j f.-,", F, år

9, = lï'.t'(<'sh2î3 - 
r)d? '

Both of these can be approximated for small or large J

Cons ider the case where Jr is smal I f irs t . \{e use the

first few terms in the expansions of cosh and sinh

( f rom F., ) only to obtain
j, È -zJJ'3' l]tt',", (t> * r.l'1') d)

g, x -zïdr'[-+ -åx'(ì-Tl
q, È lJ.r' .....(rz)



9,

\

l]o' ot 2t' ï' á1

J"

e6

(r=)

and

For large J

most of the

J:

val id

badl y

a

we use the fact that e

range of integration and

- ( T-¡)' - ()*J)'
e. over

also the apProximation

-(ã-z)'
H(e) . J", HA) T (t + e.t Z) Ír H(z)

f or large Z where H(z)

behaved, function. 9,

Jl",

is an arbi trarY, brtt not too

and 9. u.come

\
- (T-¡)'

e d.e
ô

1, -Ir \nJ

and, s ince coshrlY )) I

integration,
@

1.

over most of the range of

t' e ã'c.sh 2f1 J'1

j,"+."'J]
o

- ( J-3)'
t' e- 4T

,'.9, z T J'.t"-

It is difficult to see the rangesof validity of

the express ions (lz¡ to ( t s ¡ . However the integral s for

+, and 1, .^n eas i 1y be evaluated numer ical ly and the

results compared with the approximations given here. This

numerical integrating was carried out on a C.D.C. 3200



computer and gave the following results (where P.E.

denotes percentage error) .

lp-e.l <35o/o J<. 6e ;J) t .oz

J(.çl;J)1.0+

B7

, [o.je 5.....(rs)
the limiting

= F a5'Er€Y.

and

so that

for

for
9,

9,

for $,

and I*

lp.e .l < loEo 3<.42;3)z.o+ f or 1,

J(. s: ; 1 .32<3<1. ?1 ,5> 2.4? f.or \,.

Using the small-Y and large-Y approximations

and t., the corresponding Iimiting forms for 13

become, using (8) and (11),

I¡=*.[t"E.ÇJ [nN *tJ"t'] ,.smo[J .,..-(16)

t. = $*[rn (\. u -,"Y)] ,te",e J .....('i)

I. = 
't*.[t*(y.-r)e.ef, 

+zvir']rnN +.FE'çJ -2Jit'{,*:'-ü }l,rrr,"\tJ.....(lg)

l* = *oL* (rLl) (rn¡r-r'nJ) + 2r'-t'(àt-r)]
An aI ternat ive method f or deriving

forms for 9.rt to notice that 't =.t'J-|, a1

For small 5, Jf e.€Jr¿ f et' so that >3,r' = 2J

9r= Y' as before. For largeT, E.f J: I : t-iJ-'

3l; = JTeï'(r-zx-') . on integration this give" 9r= fre/N

as before.
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I

The

field which is

CHAPTER ONE: INTRODUCTION

Meteorology and Climatology of caves is a

of more interest to biological scient ists

and

One

of the

This

concerned with environmental influences on plant
animal life, than it is to physical scientists.
important physical aspect is, however, the study
motion of air inside, and into and out of caves.

is an aspect of microclimatology which has been mentioned

by a number of authors , notably Ge ig"" ( i ) . Ge iger
cLassifies caves as eitherrstaticr(subject to little
circulation of air) or 'dynamicr (in which air movements

of,considerable magnitude can occur) according to whether

they have one or more entrances. His classification of
single-entrance caves as static indicates his unawareness

(possibly because it is rarely encountered. in European

countries) of a most remarkable natural phenomenon;

namely large-magnitude, reversing air currents which are

observed in some single-entrance caves. This phenomenon,

ànd its explanation, is the main concern of the present
sect ion of thi; þhes is .

The term 'breathe' wi I 1

to describe such air movements.

be used specificatly

This word has often
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been used with a more general meaning to describe aL1

forms of air movement encountered in caves. It is

also used (in the United States) to clescribe the

short-period oscillations which occur when the air

in a cave resonates in response to external air

movements ( the 'Helmhol tz resonator effect' explained

by Faus t(z) , schmidt 
( 3 ) -.d pln*.n.t (4 )) No confus ion

should arise because

further.

these effects wi 1 I not be discussed

Cave-breathing is a paradox since the question

can be asked, 'where does the air come f rom or go to'?'

The answer may be associated with the variation of

atmospheric pressure. However, simple considerations

show that the magnitude of this effect would, in most

cases, be almost immeasurably small and therefore re-

establ ish the paradox, The poss ibil ity of air movement

due to atmospheric pressure changes has been noted by

_ (5)Lawrence'-', who states it to be an effect of smal1

magnitude. Measurements made by Potli(6) confirm that

(at least in the cave he studied) this i.s so. Plttrn-.t(4),

in reviewing the major factors which can cause air movement

in caves, also rnentions this possibility, but discards it

as a factor of IittIe importance except in extremely large
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caves. He does, however, refer to the unexplained

Iarge magnitude of air movement in ÌVind Cave, South

Dakota. lvfoore and Nichol"=(7) ¿i"cuss the effect of

air pressure. changes on air in caves, but do not mention

that inordinately large magnitudes have been observed.

It has been known for many years (although

rarely reported in ar,y literature) that a form of air

movement exists in caves of certain regions where the

variation of atmospheric pressure is the only possible

cause, but where, should this be so, the magnitude of

the phenomenon has been many times greater than would

be expected, It is this which is referred to here as

cave-breathing. Some examples of breathing caves ( in

thi.s sense) in the United States are cited by Halliday(8)

Popular bel ief has been that strong breathing

indicates, and can be explained by, the existence of a

large volume of undiscovered, yet penetrable, cave,

However, the number of breathing caves which are known,

and the extensive exploration of them, makes this a most

unlikely explanation applicable to all cases. A more

realistic suggestion uy W""a(9), ( in relation to

breathing wells rather than caves), that the Iarge
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magnitude is due to the extreme porosity (in the non-

technical sense of the word) of the rock, is apparently

unique in the literature.

Probably the most remarkable instances of

cave-breathing occur in the 'blowholes' of the Nullarbor

PIain region of southern Australia. These are aPertures

in the ground, from a few inches to a few feet in diameter,

' through rvhi ch there are draught s and wh i ch may make

moaning or whistling noises because of the passage of airl

(Jennings(10) ). They frequently exude air at a sufficient

rate to completely evacuate their penetrable volume in a

matter of minutes. Although noticed by the earliest

explorers, no attempt was made to study their breathing

unti r 1957 (Bishop and Hunt 
(11 ))- This work v'as hampered

by. lack of suitable equipment and the fairly commonly

held belief that the phenomenon was due primarily to

temperature effects. In spite of Ward's stat.*.rrt(9)

and the knowledge of the high porosity (King(12), and the

remarkable extent of anastomosing and intense perforation

of the whole mass of bedrock(10 '1'4) , this bel ief was still

adhered to in 1g64 (Anderson(13))

The Nullarbor Plain is one of the largest
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Iimestone karst regions in the world covering tens of

thousands of square mi Ies 
( 1 0 'i4) . I t is, unfortunately,

a rather remote region almost -1 000 miles from the nearest

populat ion centers. The cl imate of the region ranges

in aspect from semi-arid to desert. As a consequence

it is rarely tisited either for scientific or other

reasons and further work on the blowholes lapsed until

1964. In the meantime an attempt at explaining the

phenomenon of breathing in the wupatki National Monument

region of the United States met with Iíttle success (Sartor
(15)

ancr Lamar ). The results of these authors did, however,

Show that the relation between air movement and pressure

changes could not be a simple gne since changes in direction

of breathing lagged behind the changes in rate of change of

pressure.

In 1964 a most significant cave discovery was

made (see Ander"o.r(13)) by means of aerial survey photo-

graphs of the NuIlarbor Plain. This cave, 'MulIamulIang

Caver , which has only one entrance and is at present the

largest cavern in Australia, exhibits the breathing common

to the blowholes of the Plain to an unprecedented degree.

At one rconstriction' in the cave (some 20O square feet

cross-sectional area) 'winds' estimated at over ten miles
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per hour were observed. This remarkable example provided

a unique opportunity to study cave breathing in detail.

Preliminary measurements were made -in 1966 during a large-

scale pr ivately org ar.ized expedit ion to the cave. The

results confirmed a theoretical prediction of the present

author ( see Wigley, Wood and Smith in Hit t (16)) . The

detailed explanation of the breathing and the presentation

of further confirmatory evidence is the main subject of

thi s par t of the thes i s ,

Chapter two g ives an accor¡nt of the phenomenon

as a problem in the non-steady flow of gas through a porous

medium. The hypothesis that the accessible cave is a

Iarge cavity ín a much larger mass of extremely porous

material, and that external (to the cave) atmospheric

porous surrounding material to move in response to them,

is put forward. This hypothesis is examined initially

from a meteorological point of view and it is shown that
the conditions are such that the governing equations reduce

to a diffusion equation. Two models, the 'cyrinder' and

rlong-slit' models, of idealized caves are proposed and

the diffusion equation is solved under the boundary

conditions appropriate to these models, Results are
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given from Mullamullang Cawe which agree well with the

predict ions of the long-s1 it model , and the resul ts of

schl"r(17), sartor and Lamar.(15), ..d conn(18) are found

also to be in accord with the theory. Further experimental

work where readings were taken simultaneously in

MuIIamullang Cave and in a nearby blowhole (ttris latter

though to be an example of the cylinder cave model) is

discussed. The Mullamullang Cave study indicates that

the 'fracture r'l' permeabil ity dominates the 'matrixr'k
permeability of the rock in regions where cave breathing

is observed. Some of the consequences of this discovery

are examined,

In Chapter three the theory presented in the

second chapter is extended to cover a more general

hydrological problem, that of the non-steady flow of a

fluid into a well in a confined aquifer. One of the

boundary conditions previously written as a Fourier

series is rewritten as a Fourier integral and a solution

is obtained which is a generalízation of that which is

widely quoted in hydrological literature (see, for example,

* Often called rsecondary' and 'primaryr permeabiiity.
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(1e) (zo¡Todd and de l¡Iiest ) . This solut ion is, however,

in accord with, and formally equivalent to, that of

Ri tchie and Sakat r,,".(21 ) and is a we I 1-known resul t of

the theory of heat conduction. A possible hydrological

consequence of the caye breathing theory is noted. This

is the partial confinement of an aquifer in the vicinity

of a well (or cave) due to the decrease in amplitude of

air pressure fluctuations as one moves away from the welI.
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CHAPTER TWO: CAVE BREATHING

2.1 POROUS FLOW THEORY

Cons ider the problem of f. 1ow of air in a porous

medium of thickness h which lies in or on the earthrs

surface. The medium is bounded by parallel impervious

layers at the top and bottom and the air flow in it is

induced by pressure variations in a cavity inside the

medium. Two particular cavity shapes will be considered

(see Figure I ) . Later these shapes wi l,I be taken to

represent two types of ideal cave; the rlong-s1it' and

rcyl inderr cave models. z

2a > *2 a+

II

h

L

I

I
Fig' 1. Elevation and plan of the long slit and cylinder cave moricls. The a¡¡orvs show rli-

rection of a^ir movement during an out-florv (fal.line pressure) cycle. Long slit (iel¿); cylind,-'r
(risht).
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The f irs t cavi ty chosen is a long rectanguJ.ar

sI it of length L, height h and half-width a. The slit

is open at one end, and is assumed long enough for the

effects of flow into the other end to be ignored. (The

word rslit' is perhaps a little misleading since it

usually implies that one of the dimensions h or a is much

larger than the other. This is not necessarily the case

here). The geometry of this model suggests the use of a

cartesian coordinate system with origin at the center of

the lower side of the open end of the sIit. The cavity

is thus conf ined to the reg ion -a(x(a, o ( y(L, o.(z ( h.

The second cavity chosen is a circular cylinder

of height h and radius a with axis normal to the two

impervious layers. The upper end of the cylíndrical

cavi ty pene trates the upper impervious I ayer . Cyl indr ical

polar coordinates are suggested here, with origin at the

bottom of the cylinder, where the axis intersects the

lower impervious 1ayer. In this system the cavíty is

restricted to the region F<a, o-()(h.

The equations governing motion in the porous

medium are
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P fRT (t-,)

Vr, * 9'f Y o (z.z)

H *vd *ivp +r¡x2f) I t
7v 1¡ o (2.:)

where k is the permeability of the medium

S ís the PorositY of the medium

P,f,TarethePressure,densityand.temperature
of the a ir

ö ¡= the earthts geoPotential

t is the coefficient of viscosity of the air

4 is the angular veloci ty of the earth's

rot at ion

and v is the (paiticle) velocity of the air, not

to be confused with seepage velocity (q = sv) often used

in porous flow studies. The flow is assumed to be

laminar and, to make the system of equations comPlete,

isothermal.

These equat ions are the equat ions of dy"nami c

meteorology with an addi t ional ( I inear ) res ist ive term

in the equation of motion which represents the drag due

to -motion through the Porous medium, As given they are,
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of course, too general for this particular application

and the Coriolis term and the effect of variation of

the dependent var i able s in the vert i caI direc t i on can

be neglected (see below).

This approach to porous flow problems is the

'Drag Theoryr proposed by Brinkman(22\ . An alternative,

though less general start ing point which is frequently

used is the semi-empirical 1aw of Darcy. The two

approaches are equiwalent and Darcy's Law can easily be

'deduced' from the Drag Theory provided certain restrictive

assumpt ions are made ( see, for example, de Wiest ( 20 ) ) . The

introduction of a drag term is equivalent to assuming that

the effect oÍ the small-scale tortuous paths through which

the air travels in the porous medium is manifest as a

res istance when the air mot ion is consiclered over a

sufficiently large scaIe. The resistance is proportíonal

to a'coarse-groundr velocity; i.e. the velocity of the

air averaged over a length of small-scale path sufficiently

Iong to include a large number of small changes in direction.

There are, therefore, two separate scales of motion through

the medium; the rmicroscopicr scale on which the shape of

the smal1-scale path along which the air mcrr es is important,

and the rmacroscopic' scale which is described by "quation
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(3 ) . I t might be expected that this rvould be a val id

working hypothesis onllr for a certain range of a 'pore-

size' p"rameter which would be a characteristic of the

microscopic motion. For instance, it is certainly valid

for comrnon porous -àt.rials where the pore -size is less

than the order of lllO rrìm., provided that flow velocities

are not too small or too Iarge (the experimental validity

of Darcy's Law indicates thís), but is it valid when the

pore-size is of the order of cms. or greater? The answer

to this question is apparently 'yes', provided one

considers phenomena on a sufficiently large scale compared

with the pore-size, although it would be expected that the

regime of flow velocities for which the hypothesis was valid

would be restricted in some way. The so-called 'non-linear'

effects which are known to occur at very low fl.ow rates are

iþnored in this treatment. They would onLy be important

for small time intervals and so will not affect any of the

broad conclusions which will be drawn.

The boundary conditions which must be imposed

are : ( i ) at an inf ini te di s tance from the cavi ty

p = constant (= Po, say), and (ii) inside the cavity

p(z = 0) = f (t). At this stage the function of. time

f(t) need not be specified any more precisely than
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f ( t ) az cons tant ( as is the case with atmospher ic pressure

var iat ions ) .

Flow into a long slit

The symmetry of the problem suggests that, if

y is the coordinate axis measured along the s1it, the

verÈical and y-components of the (coarse-grained)

velocity may be neglected. Since the remaining component,

11 , is smalI, Coriolis terms may be ignored and the

equat ions reduce to

+
>Jf -) o (r-r ) a (2.+)>rc )

Using the isothermal condition,

and (7) can be integrated. The solution

O,(t:.l ).o), '(z-:)

(z e)

(z.r)

equat ions ( 6)

is

v
àE

èu

ìE
z5

>j
>,

+\l à_L^.

à:c +- -tI

f
èJ tt

fu tI-=è È:r

o

-f3

þ P(-,t) ."þ (- H) æ .P (-, t)



s ince o(z(h

ver t ical may

Di f ferent iat ing

with respect to

èP
?b

àw
àr

è \.t
à:c

+ àP

and h<
be ignored and equation

¿ (P u.) o (l-t> o
):c
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var iat iorrs in the

(4) and (5) become

o (t=.f >, Cl)

respect to x and (i0)

gives, for l*l )"

s

\
)-+ (z.s)

(2. rr)

R_T
P

>'P
dæ= P.k

"^
ËP=R+

(nr^r¡S/ (2Pok)),

(2. ro)èx

equation (9) with

t and subtract ing

whe re

f(r)

6(r"
f(t)

€(t) +
n=l

Under these

known (see,

where d.2

terms have been neglected since, with

æ cons tant,

as a Fourier series,

tP" P" srn (n <l t -€l

condit ions, the solut ion of ( 1 t ¡ is weI 1-

for ex¿mple, carst".(23)), being

- d" (ì..l - q)
e srn (not'- €h-d.^(t-l- o)),

and where,

f(t), Pn(

to comply wi th the

oassumed close constancy of P Thus the
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complete solution is given by

P-Le*

where p1 is the average pressure

speed ( measured pos i t ive inward)

of area A normal to the y-axis at

typical volume element. Hence

\-l ), o- ,

(2. rz)

(z.r=)

and U the average air

over the cross-section

and dt is a

_@ -4.(r-ro)
¿ P^ e srn(nc,rt- e.-d-(l*l-'ù 

,

P x €(t) , \-l(o.

The amount of air flowing through the slit at

any point along its length can now be calculated.

Integrating the continuity equation over the volume

-æ(x(c", y). 1, o<r(h, and using Gauss's Theorem

yie I ds the resul t

TP

I

UA fft
àÞ
àr åt,

(
J.

>J å,cet

y - 1,

Þ
uA = 2h(L-1)

The length I should be small compared with L so that end

effects can be ignored. Completing the integration

either directly or using the fact that H is proportional
è'Pto * we f ind thatàx'

prUA = 2h(L-l)f¡"^t[.cos(nr,tt-.) * z4E""r(nr,rt --^- T)] (z.t+)
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very permeable medium, (say k>10
AA-ttwhich beccmes, for a

square me tres )

U t
2h (L- ).)

APr I L Ëå]'^ F- 
P. l^- 'os(ntrt - ''- l).

.P r à?\+--lr àr/

(2. rs)

Flow into a circular cylinder

Following the argument presented above it can

be shown that , f or t )z a,

P e P(r,t) ,

àP
àE èr'

with the boundary conditions

srn (nt>t - É") r( cL,

=".k(S¡

@s_P = P- *ZP"
n=(

ò

)

P *P" <¡s f --> co .

The solution of the diffusion equation under

these conditions is not so well known, but it can be

obtained by considering the inverse Fourier transform

of P(Q, say) as a new dependent variable. The general

solution for Q can be expressed in terms of Ketvin
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functions. on taking the Fourier transform of the

solution which satisfies the appropriate boundary

conditions the required solution for P is obtained as

o

+ >P^srn(nr,lE- e")
ke" (rea"r) ker(rr/"c) + kei (rz4"r) keì(rzJ"o)

ke." (rz.L..) + kçi' (4"¿. q")

PP

fP. ."r1^^. - e") ker(n¿"r) kei (rz¿.o) - ker(l-zJ"e) kei (J-zd" r)

ker' (8a.. a) t ke¡'(rz¿^ a)
ì
)

where {." = (n,,1¡S/(zPok)), as before, and rker' and 'kei'

are Kelvin funct ions of the second type and zero order

(ker(q) + ikei(q) = Ko(q JT) where Ko is the zeîo order

modified Bessel function of the second type). Ttre

functions ker and kei can be replaced by their phase

and ampliiude functions, whiçh satisfy the following

relationships

N" (1) = ker'(1) * kei'(9,) ,

Þ (r) = arcEo.n[n.,an7..r1l] 
,

so that



p = R -Ëe ffif, s,n(nt^rt-e"* þ(tza"")- +(rr¿^.))

anÀ P -- f(t) , r(o-.

The rate of flow of air from

permeable media, and N.,, and þ.,

, r), o.

19.

(2. re)

cyI inder

equat ion.

can be found by integrating the continuity

Hence, âS before,

where U is the average wind speed through the top of

the cylinder (measured positive inward) and pu is the

average pressure over the top of the cylinder.

Integrating " *, âs obtained from equation (16),

glves

where the first summation term can be

Årèl
àE

r@

b- UA = 21rh ì t lP"ono' c's(not -€")
I e [n=r

r-
b UA =2lIh\rre J

the top of the

neglected for very

phase and ampl itude

functions of the

+ffi cos (n'^rt - €" - Q 
(rd"o') + {' (Jã't"t - TÙ . . (z - rl)

are the

functions corresponding to the Kelvin

second type and first order.

In the limit as a->cp this result reduces to

that obtained for flow into a long slit (equation (15) ),

thus providing a valuable consistency check.



Flow for a simple pre s sure var i at íon

a s imple

the

20.

...- (2. is)

It 1s

example in order

implications of

of interest now to consider

to appreciate more reacli 1Y

the above resul ts .

First , however, cons ider the solut ion for the

case of zero permeability. This corresponds to a cavity

which has wal ls which are completely impervic¡us. From

either equation (14) or (1t¡ this is found to be

P UA v*
I

where V is the volume of the cavity beyond the point

where u is measured. This solution holds for a cavity

of arbitrary shape. The most important consequence of

this result is that, in the impervious waII Iimit' the

wind speed and rate of change of pressure are in phase

with each other.

Returning now to the Porous flow case, suPPose

that the boundary pre.sure variation f(t) is a simple

s inuso idal func t ion of t ime

(l-l o" r(o)

AS

fft) - P *l.rn(¡t

before, P1 << Po. Under these conditions, forwhere

a long sl it, the pressure inside the porous medrum 1s
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given by

P=P.+Pexþ (i*r-o)
)"'l 

,'.þ. -(t<\-o,(Hfl 
,

it
S/^*
2P k

Thi s solut i on shows , f irs t 1y, that the ampl i tude of the

pressure oscillation decreases exponentially, and secondly,

that the oscil lat ion Iags further and further behind the

boundary variation, as one moves away from the cavity

deeper into the porous medium. The average wind speed

across an area A at distance 1 along the slit is

2(L-t)lhJZnE
PIAJF

.os (-. - i)U

L- I P"k
Þr A t^5

The wind speed thus

of pressure by an eighth of a

wind speed is the same as that

of half-width aeff where

..... (z n)
t- T
t 4t)

lags behind the rate of change

period. The magnitude of the

for an impervious walled slit

(z zo)

h

a 
"FF

P.k
r-s

a t. can be called the 'effective half-width' for the porouseI f
medium. In general it will be much Iarger than the physical

half-width of the slit in a very permeable medium so that, as



a cons equence , the magn i tucle of

much Ìarger than it would be if

wal l s -

22.

rvind speed wil l be

c av i t y had impe ru'i ou s

the

the

As seen above, in this simple case the 1ag ls

Qne eighth of a period: for more compLicated boundary

conditions the Iag can easily be shown to vary considerably

either side of this vaIue.

For the circular cy1 indrical hole the resul ts

are similar. The pr.ess\lre oscillation amplitude decreases

and l ags f urther beh irrt the boundary os c i 11at ion as one

proceeds deeper into the porous medium. substituting

limiting forms for the phase and amplitude Kelvin

functions the average wind speed at the top of the

cy1 inder becomes

¡, _ 2lThP"q k -^-(.., rr Ìr \
v - ---=-- 

cos [,rr- - -- ì . (z.Zr)
+. A¡^P 

svJ 
\w* 2 4(ü-P) 1 ""

where f i" Euler's constant (x .5772i\ and

p - \', | ^ls '- 1
L 2JEE I

Although equation (21 ) appears to give an irrf inite 1-g

when t=p !his possibii ity is never real ised- This is

because a is always much smal ler than aef f. so that þ is

always larger than LnZ (and Inz).t). Generally, in a



very permeabl e medium and f or a of order '1 me tre ,

þ)*l .

Hence, the 1"9 of wind speed

of pressure is greater than

and tends to one quarter of

vanishingì.y smalI.

be

23.

behind the rate of change

for the case of a long slit

a period as a becomes.

The 'effective radius', Reff, can be seen to

R.cc

which is generally of the

effective half-width aef f
I imit ing ( smal I a) forms

f unc t i ons in the or ig inal

noted that R

limit.
efL will not

.... (z.zz\

same order of magnitude as the

for the long slit case- Since

have been used for the Kelvin

expression (21) it should be

tend to aeff in the Iarge-a



)L

2.2 CAVE BREATHTNC

The results of section (2.i) can be used to
explain the inordinatery rarge wind speeds encountered
rn some s ingle entrance caves. If typicat values of
pressure and its rate of change, and of cave volume and
cross-sectionar area are substituted into the equation
for a cave with impervious warrs (equation iB) the value
of the expected wind speed. would be quite small (of order
0.1 metres per minute, i.e . j /ZOA f t. per sec., through
an entrance hole of area O.Z square metres (2 sq. feet)
leading to a cave of volume 1000 cubic metres). For
caves of similar vorume on the Nulrarbor plain wind speeds
of the order of 3 metres per second are actually observed-
The implication of such observations is that, either the
potentially accessible volume of every cave which exhibits
the breathing phenomenon is much greater (by a factor of
order 2000) than has so far been detected, or, alternatively;
most of the air comes from the porous warrs of the cave.
It is this latter possibility which appears to gain favour
when considered in terms of the preceding theory.

Caves which breathe in response to changes in
certainly occur in the United Statesatmospheric pressure
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and in Australia. ExampJes are cited in a number of
(7 1i,13,',4,'5,^6,17,'48) __rreferencest"''¡ 

rt Lt

examples which probably fit this category exist in

popular speleological I iterature. Rel iable

meteorlogical observations of the phenomenon of cave

breathing are, however, scarce and limited to a few

authors (15'i6'17 
"1 

B). on inspection of these obser-

vations it is found that they invariably indicate that,

not oàty is the magnitude of the breattring much larger

than would be expected,.but also that there is a lag in

changes of direction of breathing behind changes in sign

of the derivative of pressure with respect to time.

OnIy in (16) is the significance of this fact pointed out.

Some of the worl d' s mos t remarkable examp.I es

of cave breathing occur in caves in the Nullarbor Plain

region of southern Australia, where numerous 'blqwholes'
(small caves with volumes ranging from 10 to 10,000 cubic

metres) are observed to breathe at rates of the order of

1 cu. m. per sec. (35 cu. ft. per sec.). Far surpassing

this, however, at a constriction near the entrance of a

m.Jch longer cave (¡¡ut tamul l ang Cave ) wind speeds are

regularly found averaging 2 m. per sec. over an area of

20 square metres. (This cave wiLl sometimes be referred
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to by its alpha-numefic code symbol 'N3?').

The morphology of the region is such that the

caves f al I into two classes, 'deep' and 'shal, low' caves

(Jennings(10) ), which can be ideal ízed. to fit the 
_long

sI it and cyl indrical cavity models discussed above.

Mullamul1ang, by far the Iargest of the deep caves (see

Figure 2), has been the subject of intense speleological

study since its recent discovery. This study included

a short period of meteorological observations early in

1966(16).
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Fig. 2- Simplified map of Nlullarnullang Cave,'Westcro .4.ustralia.
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'fhe cave itself shor,¡s a markecl similarity

to the long-slit moclel ancl tlre wind speecì and pressure

obserrrat i ons t a.ken ins i de the ca\¡e are in exce I lent

agreenrent wi th the theore t ical predict ions . Typical

resul ts are shown in Figure 3 which has beerr adapted

from (16). Since pressure r.ariations are reasonably

complex, varying lags of wind speed fluctuations behirrd

changes in the time derivative of pressure would be

expected, although the magnitucle of the 1.9 should still

be of the order of one eighth of a period. Also one

would expect, on theoret ical grounds, that higher

frequency pressure oscillations superimposed on the

general trend would not be so not iceable in the observed

wind speed" These predictions are borne out by the

resul ts.

I t is fortunate that the t idal semi-diurnaL

atmospheric pressure fluctuat ion in the NuI larbor Plain

region is of reasonably large amplitude. The observ-

ations cited in (lS¡ were made (intentionally) during a

period when the fluctuations in pressure due to the

movement of Iarge-scale weather systems were sma11, so

that the regular tidal effects would dominate any other
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trenis. In this way-

tÌre compar ison of the

(eeuation (i9)) rvith

situation existed for

theore t i c:¿ I predic t i on

an ideal

sir:ipler

eXper trient -

12
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FoIlowing on from this work a more extensive

verification us ing more accurate instruments was under-

taken during January i961. A bl"orvhole (aIpha-numeric

des ignat ion N73 ) s i tuated approxima-teIy at point B in

Figure'Z ant,d shown in relation to the Iarger cave, N37,

in Figure 4, and which was discovered in the course of

the 1966 experiment, was chosen as a second observation

poínt. Over the major part of the Nullarbor Plain

there is a marked strat igraphic separat ion between the

blowholes and the Iarge (deep) caves, of rvhich li4ullamullang

Cave is one, The former are wholly situated in the upper

ì.ayer of Nullarbor Lirnestone, while the latter, except in

the vicinity of their entrances, are in the lower Wilson

Bluff Limestone; these two layers being separated by

impervious intermediate beds (Jennir,g=(to)). It would

be expected that a blowhole situatecl close to a large cave

would thus be separated from it and that the trvo would

breathe independently of each other, However, the

s trat igraphy of the Pl a in ne ar N3 7 ar.d the bI owhol e Ni73

is apparently much more complex- Indeed its geologic

description is at present an act ive project of the

lV'estern Austral ian Geological Survey. Even so, it was

hoped that, due to their great difference in shape (N37
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bei,ng physical ly s imiLar to the long-sl it model and

N?3 being similar in appearance to tl-re cylinder model)

s imul taneous observat i ons of the trvo woul d show some

degree of inclependence.



Nl5 Blowhole.

- 
Mrllo.rrutlang Cove.

Figure 4. Cross-section showing the relative
po;itions of Mullamullang Cave and the blowhole,
Ñ23. Vertical scale shows heights above Mean
Sea Level in feet.
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N73 Blowhole

Mu llarnullaog
Cove

0600 tL00

TIME OF DAY

t800 0000 0600

Figure 5. Pressure at the surface (bold line)
aná underground (dots ) observat ion points showi'ng
reduced amplitude at the underground station-
(12.4O mb. has been added to the underground
readings to make the observations comparablq).
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Two observation points were set uP, one as

shown in Figure 2 ins i de Ìvful l amul I ang Cave and the

other on the surface at point B, the blowhole entrance.

The resuits are shown in Figures5 and 6- Extremely

sensitive Digital Aneroicl barometers were used; proocrly

cal ibratecl these can measure pressure absolutely to 0.1 mb-

and relatively to 0.01 mb. It was hoped that micro-

f luctuations in presslrre would be obserwed which could

be correlated between the two obserwation stations by

the use of these instruments,

The resul ts obtained are general ly in accord

with those obtained during 1966(16). 'Iwo new points

are outs tanding. Firs tly, there is a decrease in the

amplitude of the pressure fluctuation in going from the

surface to the underground station and some of the small:

scale fluctuations noticeable at the surface station are

absent f rom the underground resul t s . 'Ihis is qui te a

remarkable result since it indicates that there is an

observable damping of the pressure fluctuation along the

length of cave (a macroscopic 'pore') between the entrance

and the observation point (although this effect may be due

in part tó the di f f.erence in e.levat ion of the twp obserw-
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ation points and the fact that the surface observation

point was situated some distance from the entrance to

the cave N37),

It would be possible to estimate from this

amplitude reduction a rpermeability' corresponding to

flow through a macroscopic pore, the cave itsel f ' ( it

should be noted that although Figure 2 shows a relatively

free path for air travel between the observation point

and the cave entrance this is a result of the degree of

simplification used in the drawing). The assigning of

a'permeability' for flow through a põre or Pores of the

size of the cave is a Tather doubtful procedure since in

many parts of such a pore the rate of air movement is

sufficiently large for the flow to be fully turbulent.

Inside the porous medium the flow is certainly slow

enough for turbulence effects to be ignored, but in the

cave itself the interpretation of the results as a

permeabil ity is a somewhat arbitrary step. However, if

such a permeability were estimated, its magnitude would

be l arge enough not t.o inval idate the hypothes i s of

infinite permeability along the cave length inherent in

the theoretical treatment of the long-sI it model " This

result does, however, indicate that the drag hyPothesis
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on which the original equation of motion, (3), is based

may be of more general validity in this apPlication than

would aPpear at first sight. Certainly the hypothesis

is valid for discussing effects where the pore-size is

of the order of cent imetres.

This conclusion cannot necessarily be extra-

polated to cover the tiquid flow regime. some preliminary

observations of ground-water movement by the author do'

however, indicate that this extrapolation may be a good

one, at reast in this region. orto"(24) has shown, using

Iaboratory experiments, that the permeability concept is

not valid for the discussion of ground-water flow in certain

types of. karstic region. His conclusion, being not in

accord with the above, illustrates the complexity of the

probl em.

The second point noticeable in the 1967 observ-

ations is that the difference in air-f10w characteristics

between the blowhole and the cave is only small' In

particular the times of change of direction of air movement

generally differ by only a few minutes. If the blowhole

behaved like the cylinder cave model it resembles, then the

air flow in it should 1.g considerably further behind the



rate of change of Pressure than does the air flow

Mullamullang Cave ( see discussion after equation

An explanation of this unexpected behaviour will

given near the end of this section.

39.

1n

(21 )).
be

Because the models discussed are such broad

idealizations of the caves they rePresent, good

quantitative agreement between model and exPeriment

would not be expected. A detailed comparison would

require the spectral analysis of a long period of

observations. with the type of instruments used (non-

recording) and the necessity to use a voluntary labour

force to obtain data it was not possible to obtain the

required tength of observations. It is doubtful whether

much more information could have been obtained from more

extens ive dat a .

It is Possible to estimate the permeability

of the limestone from the N37 results, and the good

qualitative agreement between theory and experiment in

this case suggests that this is not an overambitious

task. Calculation of the permeabll ity requires a

knowledge of the porosity of the rock and the thickness

of the material which part icipates in the breathing,
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atthough only to order oL magnitude accuracy in view

of the other approximations involved. The porosity

is known to be high and is quoted as 26To by King(12¡ .

A thickness estimate of 100 metres is based on strati-

graphic work of Lowry (in Hill(16)), the surveys of

Hil I ( 1 6 ) , and aneroid levels es tabl ished in the area

by lTigley and Hilr (25) . The permeabil ity, f ound by

us ing equat ion ( I 9 ) witÈ the freque cy es timated

graphical ly, is

-9k to 91vorq rnet reS .

It is known that, when the drag theory is valid, the

permeability of a medium for tiquid flow often differs

from the value for gas flow (Klinkenberg(26) ,

Scheidegger 
(271 

). However, the difference is within

the limíts of accuracy of this experiment and there is

evidence (Rigden(28)) that it becomes smaller as pore

sLze rncreases.'

-9 peilneabil ity is rather

limestones, but it is

A value of 10 for the

a high one for well-consolidated

not inconsistent with the limestone of this regíon of the

Nul larbor Plain. According to Jenni.rrg" 
( 1o '14 ) ,n. degree
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of anastomosing and joint- and bedding-plane enlargement

is extremely high. The whole mass of rock is thought

to be riddled with anastomosing small tubes and the

calculated value of permeabil ity strongly supports this

view. The rock in this case can be thought of as the

superposition of two porous media with Pores of widely

differing sizes, similar to the way in which Barenblatt

and Z'.ertov(29) represent a fractured porous medium.

The permeabil ity measured is that of the combined media

and the two parts are separately considered to contribute

rmatrixr andrfracturer effects, where'fracturer in this

instance denotes the Iarge-scale Pores. The value,
-qk ¡¿ 1O-t, thus rePresents the combined rmatrix and

fracture' pernæabiI ity, dominated by the ef fects of

anastomgses and fracture, tãther than the 'matrix' Perm-

eabil ity. No other measurements of the combined perm-

eability of limestonea seem to be available; however they

are expected to give a value much larger than the matrix
r30)). It should be noted thatpermeabil ity (Sche idegger'

the matrix permeability of most limestones is aPpreciably

less than would be required for the rock to breathe to any

great extent. It is thus probable that breathing caves

will be found only in I imestones of high fracture perm-

eabi I i ty.
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In the light of this morphological discussion

the results from the blowhole, N73, which were found not

to fit the cylinder cave model, are not so unlikely.

They can be conaidered, rather, to substantiate the

opinion that solutional development occurs preferentially

along certain directions in limestone regions of high

porosity (Pinchernel(31 ) ) and, in particul.ar, in the

NuIlarbor Plain region (Jennings(10'1n)). The obvious

linearity of the deep caves and of many surface features

of the PIain is the observational basis for this opinion.

It is probable that the blowhole, N73, is

situated in a region of preferential solutional development.

This is indicated by the close proximity of N73 to the

almost linear large cave, N37, and the fact that, in this

part of the Plain, the stratigraphic separation between

near-surface and deeper limestone layers is less marked.

In this caae the resistance to air flow into the blowhole

would be reduced along certain preferred directions. The

cyl indrical syûr¡etry of the situation is theref ore lost

and the (inverse) permeability must be considered to have

tensor propert ies . I f the of.f - diagonal terms of this

tensor are supposed small the problem can be solved follow-

ing similar lines to the long-slit model theory. If the y
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direction is chosen as that along which the permeability

is greatest and preferential development is confined to

a f inite range , -L to L, the solut ion is f ound to be

P.UA

(for an external pressure variation P

where

J z S/^-

ä1.,. (-t - i)- Jd"c"s(r.cr-rrL f )l (z zs)

P +P sinr¿t)
o I

* (k-')-- dy sirnì\or\yzP.

and
95

This result can also be applied

where the 'permeabi I ity' ef fect

the slit is represented by (k-'

to the long-slit case

of mot ion of air along

)r,

The estimate of permeability from the N37

resul ts can be used f or k-*(=((k-t L= )-t ) . Since

ktj)) k--, {.rL mrrst be small, and the aPPropriate limiting

form of equat ion (231 is

zJZLh?'-
"{

Þ" UA cos (^t - å)
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so that

U
J t tP. k--

<os (,,rt - +) .... (z.z+)P.AIF

a result which is, as exPected, identical to that

obtained for the long-sl it model (equation (19) ) - The

similarity between the ob'servat ions at the blowhole and

in the cave thus may be considered as providing direct

evidence for the morphological suPPosition of preferential

solut ional developncnt .

In conclusion, it must be pointed out that a

complete and detailed discussion of the experimental

results which have been Presented does not properly

belong in a thesis of this tyPe. Some of the points

which have been made are only speculative. In regions

such as the Nullarbor P1ain, and similar regions elsewhere,

it is considered that further work along these lines by

more property qualified observers may provide valuable

ins ight into the structure of l imestones which would

otherwise be unobtainable.

e (zu) h P,
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2.3 DISCUSSION OF OTHER RESULTS

Other qualitative measurements of cave-

breathing have been presented by Sartor and Lamat(15),

schl"y(17) "rd conn(18). onty conn attempts a detailed

explanation of his results. He assumes that the

phenomenon is somehow connected with the complex structure

of the caves he studies. These are Wind Cave and Jewel

Cave, South Dakota, both of which are large systems

cons i s t ing of numerous compl i cated pas sageways . Conn' s

over-s impl ified argument is partly successful in that it

does predict that a lag should be observed between air

movement and rate of change of pressure (although Conn

does not s tate this expl ici t ly) . However, Connrs

theoretical treatment is semi-empirical and involves

fitting parameters to match theory to experiment. The

chosen values of these parameters hatre little physical

justification and they vary considerably from cave to cave.

Conn also concludes, erroneously, that the Iarge magnitude

of the breathing indicates the existence of a large volume

of undiscovered penetrable cave. Both Sartor and Lamar,

and Schley, draw the same conclusion (or, rather, propose

it as an explanation). This 'conclusion' is inadequate



s ince the ex i s t ence

cave associated with

improbable situation.

that any explanation

of large volumes of

al I breathing caves

It is this very

of breathing would
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undi s covere d

is a highly

possibility

hope to avoid.

The results given by these authors can be

discussed rvi th ref erence to the theory presented here.

Both Schley, and Sartor and Lamar, studied btowholes in

the Wupatki area of north-central Arizona. From the

geological discussion in Sartor and Lamar it appears

that these blowholes should fit the cylinder cave model

of the present theory. Schley gives pressure and wind

speed readings covering a 25 hour period. Assuming that

the term p in equation (ZZ¡ of 2.2 above is approximately

5 (p carr only vary between about 3 and 10 in general),

and using values for the other unknowns from the geological

data in sartor and Lamar, schiey's results indicate that
-q )k - 10 ' (metres)'. His results also show a l"g of the

or der to of a period. Sartor and Lamar present

results of pressure and wind speed over a 72 hour period.
These indicate a walue of the permeability of order 1o-9

)(metre)', consistent with that using Schley's results.
The results of sartor and Lamar show lags of about f, "t
a period (where the pressure variation is approximately

I

4
1

B
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sinusoidal ). This is in complete accord with the

cyl inder cave model ptedictions. In particular, these

resuLts indicate a permeabil ity value consistent with

that obtained from the Nullarbor Plain results given

in this thesis, and they show the predicted l"g of the

order to oÍ. a period. This latter point tends to

support the hypothesis of tensor permeability put forward

to explain the discrepancy between the N73 blowhole results

and the cyl inder cave model.

Conn gives extensive results from Wind and

Jewel caves; wind speed and pressure over periods of

17 , 11 and 12 days. Unfortunately they are presented

on such a small scale that they cannot be analysed in

detail. The pressure changes during the observation

periods are also rather complicated (semi-diurnal tidal

fluctuations being scarcely noticeable) and the two caves

studied are such complex systems that it is not possible

to fit them to either the cylinder or long-slit models

with any confidence. However, Conn's results do show

lags of the cortect order of magnitude, AIso, if the

long-slit model theory is applied to them, chosing estimates

of the cave dimens ions L and h based on the data presented

1

4
1

6



by conn and the map shown by Hatlid"y(B), connts results

indicate that k - 10-8 to 10-9 (metres)2. This value is

far from certain, part icularly s ince the geological

structure of the limestone in the wind and Jewel caves

region is very different from that of the Nullarbor Plain.

Some of the resul ts

publ ished as rNon-SteadY Flow

Cave Breathing' in

3199-3205, (1967).*

Journal of Geophysical Research , 72,

In closing, some rather interesting aspects of

cave breathing are worthy of mention. Firstly, the

possibility of harnessing the effect to produce Power.

At peak flow-rate Mullamullang Cave breathes at an

incredible rate (equal to the rate of flow of water from

the world's largest fresh-water springs). The production

of power on the Nullarbor Plain by this means may one day

be realised since the region is remote from other energy

48.

of this chapter have been

through a Porous Medium and

* Reviewecl in New Scientist 35 ( 555 ) , ZO8 (1967) .
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sources. Secondly, the use of the cool air (about

6g0[') which breathes from the blowholes of the plain

for air-conditioning is a possibility which has already
been exploited. Out-breathing cycles were a welcome

respite from the above-century conditions which prevailed

during the observation period at the blowhole N?3.
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CIIAPTER THREE: EXTENISION TO HYDROi,OGY

The cylinder cave model discussed in the

previous chapter is similar to a fundamental problem

in Hydrology, the flow of water from a confined aquifer

into a we11. The cylinder model corresponds exactly

to the case where the píezometric head (the free level

to which water would rise in a well which penetrates the

aquifer) is a periodic function of time, This is a

circumstance which is not often realised and it is a

Iogical step to extend the theory to cover more realistic

cases. The simplest non-steady well flow problem, that

of determining the shape of the piezometric surface for

an ideal ízed well with constant discharge rate, was first

solved by Theis(32). A solution to the image problem of

determining the discharge due to cons tant drawdown ( i.e.

the reduction of píezometric head at the welL) was later

given by Jacob and Lohman(33) using a solution to the heat

conduction equation due to Smith(34). In the following

the more general problem of flow into a well where the

discharge (or recharge) is at an arbitrary rate will be

solved by a straight-forward generalization of the

cylinder model cave-breathing theory.
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3.1 FLOW INTO A WELL WITI{ ARBITRARY DISCHARGE

In a homogeneous isotropic medium the equation

describing the t ime evolut ion of the píezome tr ic head

(h(r,t)) is

)h
èt

where S'i' is the storage coef f icient of the (conf ined)

aquifer, which corresponds to the porosity (denoted by S

previously) in an unconf ined aquif er, and T is the

transmiss ivity of the medium (related to the permeabil ity) ,

For the case of cylindrically symmetrical flow into a well

which completely penetrates a confined aquifer of uniform

thickness, inf inite extent and with no lateral inf low the

equation becomes

h
2

V
.*
J

T

è'h
--zdr àr

àh
AE

hòoì r
S*
T

(¡ t)

Consider the problem of solving equation (1 )

with the boundary conditions

(a) h-+h as ro

(b) h(r,t) is an arbitrary function of time at

.. (z .z)1=^1
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The well wilI be assumed to hawe a finite radius 'a'
(not necessarily smatl ). In the condition 2(b) above

it will be assumed that u1 - a, a convenient although

not a necessary simpl ification. The correspondence

between this problem and the cylinder model cave breathing

problem is now apparant. SY¡ (wri tten S f rom now on)

replaces the porosity; T replace" +; the piezometric

head, h, replaces the pressure, P; and the well radius,

a, corresponds to the radius of the cylindrical cave.

However, where P was expanded as a Fourier series, the

boundary condition for h(a,t) must be non-periodic and

so,, to complete the analogy, must be writ ten in the f orm

of a Four ier integral ,

I
-æ

h (o, t) h o

Equation (1 ) can be solved by considering the

inverse Fourier transform of h(r,t) (g(r,x), say) as a

new dependent variable as was done in the previous chapter.

The general solut ion for g ( r,x) is obtained in terms of

Kelvin funct ions. On taking the Fourier transform of

the particular solution obeying the appropriate (trans-

formed) boundary conditions (corresponding to (2(a) ) and

(3) ) the solution for h is found to be
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co

h (r, t)
-e

where X = 2TfSx/T. Here N and i[ are the amplitude and

phase functions corresponding to the zero-order KeIvin

functions of the second type as in chapter 2. In this

instance it is more convenient to relain the modified

Bessel function form

J
h(r, t) = h. - G (,.)

K"(t rJL )
K" ("t oJ_i)

Zlt ! xt
e

J.r.

4:c (s.s)
-æ

Substitution of the solution (5) into the

continuity equation which determines the discharge rate,

Q (r)

and integrating over r gives
cp

2.ìt L xt

= --2TlS èhr àb d'n
J

)Q (r) C x e(

@

(:.4)

where

G, (') 2Îf T L all K ({"'ll)
G(-). .---- (s.r¡

K" (J. o

It is possible to determine not only the rate of discharge,

Q, for known drawdown conditions, but also the drawdown as

,|

:'
.l



a general function of r and t if a is known as a

function of time. The former possibility will be

illustrated by generating the solution of Jacob and
(33)Lohman''-' and the latter by generating the Theis

solutiot(32).

3.2 CONSTANT DISCHARGE CASE

The boundary conditions generally assumed

are

54.

a( t )

cons t ant

,..(3.8)

(a)

(b)

(c)

h+ cons tant

h(r,t) = ho

If the rate

then a( t )

(Qo) for

(h
o

for

of

t), o.

) a" T+Ø,

t < 0,

flow from the well is

0 for t <0 and Q(t) :

The solution for h(r,t) for t>0 is then (sz¡

I:-"

h
Qo

h. E,(*)

where E,, (u) is the exponential integral,

and. u - sr2 /qrt .

t¡-

(-x) dxf x,



55

AI though readily appl ied to f ield condi t ions

this solution (the 'Theis solution') is subject to

fairly restrictive boundary conditions and is, in some

ways artificial since the well must be assumed to have

an infinitesimal radius while the solution diverges

logar i thmical ly at the or ig in. To \rse the solut ion (6 )

above it is necessary to assume that the discharge is a

known function of time; in this case a step function

given by (8(c)). This determines G.,(x) which is related

to G(x) through (7) which in turn determines the form of

h(r,t). With this choice for O the transform function

G, is
I

Q"
G.(-)-r' zrt L?c

Equat i on

solution

(7)

for

then determines G so that the general

h(r,t) is

h(r,t)=h"-# doJr 21Tiæ K, ("(ejî)t K" (¿rJl) aT i' xt
dx (s e)e

The integration contour can be displaced by an amount

c(reaI and positive) to below and paralleI to the real

axis. This is permissable since a c exists such that

no poles occur inside the infinite rectangle formed by
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the displacement and since the contribution from the

ends of the rectangle at infinity is zero.

solut ion

l imit of

As the we 1 1 radius

should approach the

smal I q

approaches zero

Theis solution.

0(t'r"å1).

this

t> o

In the

E> o

E< o

1K, (eF) -+ (rr'

Hence

Campbe I I

obtained

...,. (s. ro)

From known Fourier integrals (see, for example,

and Fost.t (35) ) ttre following relation can be

Í
11r I -t

J.x. u r, (rz+.)e2'lr i -
-ca-ac

,

o

where z cart be any finite complex quantity with positive

real part.

üsing this with z = S"2/T equatíon (10)

h(.,b) È h" Q.

t

becomes

h (r, t) h. t<o
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where terms which

been neglected.

by Theis.

can be obtained.

obtained after some

for t>0 becomes

are smaller than

This is exactly

order a have

form obtained

of

the

By us ing the

Kr (q) the higher order

ascending serles

correct ion terms

first correction

expans ion for

to this result

term can be

the solut i on

The

manipulation so that

h (r.t) Q"
417

\
)oh {r(i*) -H'"ol# \

l
n f s*.\
\+r./

vaI id for smal I a (more strictly the I imit ing process

used above is val id only f or *' smal l so that, f or

any smal l but f ini te radius, 5 sây, this solut ion is

incorrect for time" 3Ç'l. This solution is the same

as that given by Ritchie and Sakakur a(21) (see also

CarsLaw and Jaeger(¡6) ) obtained using Laplace transforms,

and the methods are formally equivalent because of the

relationship between Fourier and Laplace transforms

i (p)

where p = 2ïix, q is

displaced integrat ion

2Ìc+Læ

I

2-1l i
2ì{c- \ @

the Fourier transform

åx,

operator with

ztt i xt (

J

Ê(-) e-'¿r I '{ + r-ri
c

I
contour and L-' is the inverse



Laplace transform operator.

3.3 CONSTANT DRAWDOIIN CASE

58"

was f irs t

of an integral

A solution to this special case

given by Jacob and Lohman(33) in the form

Tt
(- TT

5Q(t) 8HT 5o.- v exÞ d

which they evaluated numerically, although the equivalent

integral (equation (13) beLow) had previous1y been

tabul ated by Jaeger and Cl arke ( 37 ) 
.

Us ing the boundary condi t ions :

h+constant

h-h for
o

h-h -Ho

(ho) as r'>@l

t < 0, and

for r<a, t>0,

(}f,J] -- ...(srù

(s tz)

,') ti + to'i'
o

(a)

(b)

(c)

the solut ion is

Q(t): 2HT Ïo. K,
jF Ì<"(

S
TJÞ"

Jp o-
e

21f Lxt
åx.

us ing Laplace

solution can be

which is equivalent to that obtained

transf orms. The T,aplace transf orm



59.

(:e ¡reduced to (see, for example, Carslaw and Jaeger )

The integration contour

the infinite semicircle

thus avoiding the zeroes

buted in the upper half

.... (s. ra)

which are all distri-

Q(t) 8 HT
1I

exÞ "\.iJ[-
J

(-
Tt
So'

¿5

T (Y"' * ¡i.')

to which (11 ) reduces on integration by parts. The

direct reduction of (12) to (1:1 can be obtained using

an interesting integral involving BesseI functions which

is'derived below.

LEMMA:

The re I at i onsh ip
t<, (-L q,) * K, (L.v)

K"G.a) - x¡'*l
for real positive g,

by first writing the

of Hanke I func t i ons ,

as

rrl IY""(gl + ¿'(9,)
which can easily be established

modif ied BesseI funct ions in terms

can be used to rewrite the integral

I' K, (tr)
+ 1K.(1) R(r)>o.

+

dg
.à";T

can now be extended to include

in the Iower half of the y-plane,

t

r<, (Ly)I
+ v<. ( Lr)

-æ

of Ko( iv) ,

of the plane, and the cut along



the pos i t ive imag inary ax i s
I which I ies within theY'*1'

s ign of the real- par t of z .

a direct application of the

60.

The particular pole of

contour depends on the

The Lemma is proved by

res idue theorem.

To integrate (12¡ the integrand is replaced

by the integral fonm deríved in the Lemma and the result

a 9TH
TT

.*Þ(-*.r") dy

v (Y.'* l')
follows directly

integrat ion and

which remains.

from interchang ing the order

evaluating the simple Fourier

of

trans form

3.4 PARTIALLY CONFINED AQUIFERS

One of the consequences of cave breathing

is the possible ef fect of the ph.enomenon on the level

of an unconfined aquifer. It is recognised that
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fluctuations in ptezometric head can be caused by

rainf al l, rve1l discharge or recharge, ocean t ides,

earth t ides and atmospheric pressure changes. The

Iat ter two can only cause Pi ezome tric head fluctuat ions

in confined aquifers and most authors state that

atmospheric pressure changes can have rto effect on the

level of an unconfined aquifer. This is general ly

true; however, if a breathing cave (or weI1) intersects

the free water table a rather unique s i tuat ion exis ts .

Throughout the aquifer there is hydrostatic balance

between the water and the air. Inside the cave or. well

the air press\1re changes are the same as those in the

outside atmosphere. As one moves into the rock away

from the well the amplitude of the pressure fluctuations

is reduced. Thus, at a large distance from the well the

air pressure above the water is effect ively cons tant and

coul d have the effect of 'conf iningt the aquifer in these

regions. Nearer to the cave the increasingly Iarger

pressure fluctuations wiI I cause the level of the ground-

water to rise and fall in resPonse creating a situation

resembling a giant water barometer. The magnitude of

these Ievel changes will be quite small and the relationship
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between them and the outside pressure variation would

in general be quite complicated.

Mullamu11ang Cave intersects the water-table

in this way and small-scale Ievel changes were observed

in the course of the cave-breathing observations cited

in chapter two. Since the nearest point that the water

level could be studied was some distance from the cave

breathing observation point, 1eve1 readings were only

taken at widely spaced and random intervals. As a

consequence only an inadequate picture of the way the

level varied with time could be obtained. No simple

relationship between pressure and level was evident.

W""¿(9) states that level fluctuations have

been observed in rbreathing' wells drilled in the porous

Iimestones of the Nullarbor Plain and the Murray River

valley (South AustraLia). In one such we11, ffiêasurements

silowed a def ini te correlat ion between atmospher ic pressu.re

and,water level; the details of these measurements are no

longer available. Ward gives no physical explanation for

the phenomenon other than that it is associated with the

breathing which, in turn, he states to be a consequence

of the high porosity of the l imestone. Ine"orr(38)
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describes 'unexplained' leveI fluctuat ions (attributed to

atmospheric pressure changes ) in wells Penetrating rwater-

table' .qrifers in cha1k. He concludes that the aquifers

m'rst in real ity be conf ined. It appears I ikely that the

observations of Ward and Ineson are examples of the partial

confining of an aquifer proposed above.

I t i s poss ible to. cons truct mode I s to predict

these level fluctuations theoretically, based on the theory

of cave breathing, but there would be no physical grounds

on which to base the choice of a model (i.e. in the case

of a cave the model is an idealízatíon of what the cave

actually looks Iike; since there is no data available on

the shape and extent of the water-table it is more difficult

to justífy a model water-tab1e). However, it may be

possible to justify a particular model pragmatically. In

the case of MuIlamullang Cave there is some indication from

this approach that the water is restricted to a channel of

finite width parallel to the cave trend, but of much smaller

extent than is involved in the cave-breathing (in chapter

two the limestone which breathes is assumed to be infinite

in the direction normal to the cave).

Any mode I , as proposed above , mrls t assume that the

drag theory of porous medium flow is applicable to the flow
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of ground-water. l{hiie the cave-breathing results imply

that this theory is valid for the flow of air, it may not

be so for the flow of a liquid. In fact the character of

the pore spaces in the limestone below the water level may

be markedly different from that of the pores above the

water level. In view of the observation of Ollos(24) ,

that the permeability concept is not valid for liquid flow

in at least some types of I imestone, a detailed theoretical

discussion of a partially confined aquifer does not seem

warranted at this stage. However, level fluctuations

which are a consequence of partial conf inement do occu.r

and more accurate and more extensive measurements made in

conjunction with accurate pressure observations would be

worthwhile.

Although the results of sections 1,2 and 3 of

this chapter are fairly well-known in the theory of heat

conduct ion, the general treatment appears to have been

neglected in hydrological texts. Integral transform

techniques have, however, been used in this field for more

complex problems. Part of the contents of this chapter
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have been publrshed as a short paper

H¿drology ( in Press ) .

in Journal of
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Non-Steatly Flow through a Porous Metlium antl Cave Breathing

T. M. L. Wrcr,uv

D epartment of M athematical Phgsícs, U ní,u erst tg o f Ad,elaide
A d, elaid, e, Aus tr øl:iø

The theor5r of flow through a porous medium into a cavity under the action of an arbitrary
pressure variation inside the cavity is used to explain the volume and phase shift of air mov-
ing into and out of caves in response to changes in atmospheric pressure. Observations of this
phenomenon ('breathing') can be used in conjunction with the theory to estimate the com-
bined 'matrix and fracture' permeability of limestones.

Introduction. Many caves are found in lime-
stone regions throughout the world, and, in some

of these regions, there are caves which are said
to 'breathe.'The term breathe has been used to
describe air movements caused by changes in
atmospheric pressure and also to describe the
shorter-period oscillations occurring when the
cave air resonates in response to external air
movements. This paper is concerned with the
first of these types of breathing.

In this sense, caves that breathe as a result
of changes in atmospheric pressure present an
enigmâ since the magnitude of the breathing
is much greater than might be expected. A num-
ber of attempts have been made to explain this
phenomenon, but they have generally lacked a
firm scientific foundation and have mainly been
confined to popular speleological literature. fn
this paper the theory of time-dependent flow of
air through a porous medium is developed and
successfully applied to resolve the cave-breath-
ing dilemma.

Porous flow theorg. Consider the problem of
air flow in a porous medium of thickness h
which lies in or on the earth's surface. The me-
dium is bounded by parallel impervious layers
at the top and bottom, and the air flow in it
is induced by pressure variations in a cavity
inside the medium. Two particular cavity shapes
will be considered (Figure 1).

The first cavity chosen is a long rectangular
slit of length Z, height h, andhalf.-width a. The
slit is open at one end and is assumed to be
long enough for the effects of flow into the other
end to be ignored. The geometry here suggests
the use of a Cartesian coordinate system with
origin at the center of the lower side of the

open end of the slit. The cavity is thus con-
fined to the region -ø 1a 1a,0 1ø 1L,
012 t h.

The second cavity chosen is a circular cyl-
inder of height å, and radius ø with axis normal
to the two impervious layers. The upper end of
the cylindrical cavity penetrates the upper im-
pervious layer. Cylindrical polar coordinates
are suggested here, with origin at the bottom of
the c¡'linder, where the axis intersects the lower
impervious layer. In this system the cavity is
restricted to the region r 1 a,0 1 z t h.

The equations governing motion in the porous
medium are

P: PRT

fr+vr+

ff+v.no:o
Yp*vx2Çlf S¡rv

(pt')
:01

p

(Ð

(2)

(Ð

where

fr is the permeability of úhe medium.
S is the porosity of the medium.

?, p, T are the pressure, densit¡ and tempera-
ture of the ai¡.

ça is the earth's geopotential.

¡r is the coefficient of viscosity of the air.
Q is the angular velocity of the earth's rotation.
v is the (particle) velocity of the air, not to be

confused with the seepage velocity (q : Sv)
often used in porous flow studies.

The flow is assumed to be laminar and to make
the system of equations complete, isothermal.

The boundary conditions imposed are (1) at

3199
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an infinite distance from the cavity p: constant
(:Po, say) and (2) inside the cavít'y p(z: 0) :
l(r). The fimction of time l(¿) need not be specified

more precisely than l(ú) È constant (as is the

case with atmospheric plessure variations).
FIow. into a, Iong slit. The symmetry of the

problem suggests that, if g is the coordinate

axis measured along the slit, the vertical and

gr components of velocity may be neglected.

Since the remaining component, ø, is small,

Coriolis terms may be ignored and the equa-

tions reduce to

#**Gu):o ll¡l ) ¿) (4\

^,tu*u*: 
_@+à_# ¡,1 2 o) (s)

dtdtp

ôp/ôa : 0 (6)

ðp/az: -or_ (7)

Using the isothermal condition, equations 6

and 7 can be integrated. The solution is

p : P(n, t) exp (-zs/(Rr)) x P(x, t) (8)

z

-2a+

lþ) : p, + P_r"sin 
(mcoú - e)

and under these conditions, the solution of (11)

is well known lCørsiwn,1921l, being

II

+12 +

L

I

I
Fig. 1. Elevation and plan of the long slit and cylinder cave mod_els. The arrows show di-

rectión of air movement during an out-flòw (falling pressure) cycle. Long sIír (IeÍt); cylinder
(risht).

since 0 1 z t h and'h€ g/@?), so that equa-

tions4andSbecome

#**eu):o (l,l à,) (Ð

# *,y: -(* u;) / , - s,Bru/(ph)

(l,l > ù (10)

Differentiating (9) with respect to ø and (10)

with respect to ú and subtracting gives, for
lrl ) a.
I t- r

tr#: ,"r# (1Ð

where small terms have been neglected since,

with /(ú) : constant, å(ln p) ( ô(ln u). Now

l(t) canbe expanded in a Fourier series,

I

II
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-dnr,t-d) U: l2h(L-t)/(p,A)\lPok/(LLS)l'/'

3201

(-
o : t". -f E p_e-"¡( z -a)

P: Po-l ÐP"e

'sin [ncoü - eß - o"(l*l - o)]

where a"' - ln'¡p.S/(2P"k)] and where, to
comply with the assumed close constancy of
Í(t), P" (( P". Thus the complete solution is
given by

.sin 
[øcoú - ên - a"(lnl - ø)]

lrl> o (r2)
p:Í(t) l,l<"

The amount of air flowing through the slit
at any point along its length can now be cal-
culated. Integrating the continuity equation
over the volume -oo ( r 1 æ,9 ) I,O 1
z t h, and using Gauss's theorem yields the
result

?rta: III #* (18)

P: Po* P^ sin (nut - e^)
er

P, cos (nut - e")

where p, is the average pressure and [/ the
average air speed (measured positive inward)
over the cross section of area á normal to the
gr axis at U = I, and dr is a typical volume
element. Ilence,

?¿uA : zh(L - tt f* Ø ¡,o) Jo ôt*'
The length Z should be small compared with

Z, so that end effects can be ignored. Complet-
ing the integration we find that

ptU A : 2h(L - l) l, P,nu{ø cos (nr;.t - e*)

f- (t/z/(2.)) cos @,t - e* - ¡r/+)l Qa)

which becomes, for a very permeable medium,
(say /c ) 10-" metef)

-þe"l/*, cos(ru,tt - e^ - t/+) (t5)

Flow i,nto ø ci,rcular cglinder. Tollowing the
argument presented in the previous section it is
found that, lor r ) ø,

P : P(r, t)

t,# : ,"r(# *,-'#)
with the boundary conditions

Ë

t

P : Po + Ð P"sin (moú - e) r 1 a

P->Po as r---+ 6
The solution of the heat equation under these

conditions is not so well known, but it can be

obtained by considering the inverse Fourier
transform of. P(Q, say) as a nelv dependent
variable. The general solution for Q can be ex-
pressed in terms of Kelvin functions. On taking
the Fourier transform of the solution that satis-
ûes the appropriate boundary conditions the
required solution for P is obtained as

ker kei kel t
[ker' ( 2a^a) | kei" ( 2a^a)l

kei - ker kei

[ker" (t/ia*ø) f kei' ({2",o,)J

rvhere ø,' - (ru¡p.S/(2P&)), as before, and
'ker' and 'kei' are Kelvin functions of the sec-
ond type and zero order (ker(q) f a kei(q) =
K" (q \/i) where K" is the zero-order modified
Bessel function of the second type). The func-
tions ker and kei ian be replaced by their phase
and amplitude functions, which satisfy the fol-
lowing relationships,

N"(q) : ker'1q¡ f kei'(q)

o(q) : arc tan (kei(q)/ker(q))
so that

p : Po + X tP"{N(t/2""r)/ N({zo^a)l

-sn (nat --i^ * Þ(t/zo-r) - a6/2a^ø))l

r) a lto)
andp: !(t),r 1 ø.
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The rate of air flow from the top of the cyl-
i-nder can be found by integrating the conti-
nuity equation. Hence, as before,

p"uA : 2rh [ ,! a,Jo ðt

where U is the average wind speed through the
top of the cylinder (measured positive inward)
and, p" is the average pressure over the top of
the cylinder. Using equation 16, by integration
we obtain

(-
p"U A : 2zh\>, P,$ncoa' cos (zrcuú - e")

- t r*oroho*t/ zN,(l/ zo^o)

where, as before, P' << P". Under these con-

ditions, for a long slit, the pressure inside the
porous medium is given by

p : Po f Pr exp (-(ltl - ,) Spu/(2P"h))

sin {crú - (lrl - ")
Spr't/(2Psk)l

showing that the amplitude of the pressure

oscillation falis off exponentially and that the
oscillation lags behind the boundary variation
by an increasing amount âs one moves into the
porous medium. The average wind speed across

an area á at distance I along the slit is

u:12(L-t)P,h\/,P"k
'cos (coú - o/4)l/(p,'+t/ pSl

: {2(L - t)h\/Ñ/@,a\/t,s)l

T. M. L. \ryIGLEY

..o, 
[r,rt - ên - a(t/2o*a)

t ç,(t/za*^ -i)/ [t sw(t/zo^ø)t] fta
t

ôp
ôt

(1 e)
(,-r/(4d))

where the first summation term can be neglected

for very permeable media and.l/' and (Þ' are the
phase and amplitude functions corresponding
to the Kelvin functions of the second type and

first order.
In the limit as o - > oo this result reduces to

the result obtained for flow into a long slit
(equation 15), thus providing a valuable con-
sistency check.

FIow f or a simple pressure uariation. It is of
interest now to consider a simple example in
order to appreciate more readily the implica-
tions of the above results.

tr'irst, however, consider the solution for the
case of zero permeability, where the walls of
the slit or cylinder are impervious. tr'rom either
(14) or (17), the solution is found to be

ptUA: Vðp/ôt (1s)

where 7 is the volume of the cavity beyond
the point where U is measured. This solution
holds for a cavity of arbitrary shape. The most
important consequence of this result is that, in
the impervious wall limit, the wind speed and

rate of change of pressure are in phase with
each other. Returning now to the porous flow
case, suppose that the boundary pressure vari-
ation l(ú) is a simple sinusoidal function of time,

|(t) : Po * Pr sinc¿ú (lrl or r 1 a)

The wind speed thus lags behind the rate
of change of pressure by one-eighth of a period'
The magnitude of the wind speed is the same

as that for an impervious walled slit of haif-
width ø"tt where

Aeff: Pok/(pa9) (20)

aeu cà,D. be called the 'effective half-width' for
the porous medium. In general, it will be much
larger than the physical half-width of the slit
in a very permeable medium; consequently, the

magnitude of the wind speed will be much larger
than it would be if the cavity had impervious
walls.

As seen above, in this simple case the lag
is one-eighth of a period: for more complicated
boundary conditions the lag can easily be shown

to vary considerably either side of this value.
For the circular cyiindrical hole the results are

similar. The pressure osciÌlation amplitude de-

creases and lags further behind the boundary
oscillation as one proceeds deeper into the por-
ous medium. Substituting limiting forms for the
phase and amplitude Kelvin functions, the aver-
age wind speed at the top of the cylinder be-

comes

2¡rhPoPJc.o. þ, -î-#, ÀU:
sp"ap?

where y is Euler's constant (:0.57727) aú

(2t)
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cave (Mullamullang Cave) wind speeds are
regularly found averaging 2 m,/sec over a,n area
of 20 meters'.

The stratigraphy of the region is such that
the caves fall into two classes 'deep' and 'shal-
low'caves lJenni,ngs,1963l, which can be ideal-
ized to fit the long slit and cylindrical cavity
models discussed above. Mullamullang, by far
the largest of the deep caves (see Figure 2), has

been the subject of intense speleological study
since its ¡ecent discovery. This study included
a short period of meteorological observations
early in 1966lWi,gley et aL,t966).

The cave itself shows a marked similarity to
the long slit model, and the wind speed and
pressure observations taken inside the cave
show excellent agreement with the theoretical
predictions. Typical results are shown in Fig-
ure 3. Since pressure variations are reasonably
complex, varying lags of windspeed fluctuations
behind changes in the time derivative of pres-
sure would be expected, although the magnitude
of the lag should still be of the order of one-
eighth of a period. Also one would expect, on
theoretical grounds, that small-amplitude pres-
sure oscillations superimposed on the general
trend would not be so noticeable in the observed
wind speed. These predictions are borne out by
the results.

No measurements have been made of the
permeability of the Nullarbor limestones. The
porosity is known to be about 26/6 lKing,
19501. Using this value, the breathing observa-
tions in Mullamullang Cave can be used to
estimate the permeability. The results indicate
that Ic = 1frn meter'. This value is representa-
tive of the combined 'matrix and fracture' per-
meability rather than the 'matrix' permeability
of the limestone and, thus, incorporates the
effects of anastomoses and fracture. No meas-
urements of the combined permeability of
limestones seem to be available; however, they
would be expected to give a value much larger
than the matdx permeability lScheidegger,
19611. It should be noted that the matrix
permeability of most limestones is appreciably
less than would be required for the rock to
breathe to any great extent. It is thus probable
that breathing caves will be found onJy in lime-
stones of high fracture permeability.

Conclusi,ons- The theory of time-dependent
porous flow into a cavity has been presented

P - -n l@{ sp,)/(z\/Ñ)l
The lag of wind speed behind the rate of

change of pressure is thus greater than for the
case of a long slit and tends to one-quarter of
a period as d becomes vanishingly small.

The 'effective radius,' R*t, càî be seen to be

R"r¡ : lt/ze"n¡furBs)Ì"' (22)

which is generally of the same order of magni-
tude as the effective half-width a.r, for the long
slit case. Since limiting (small ø) forms have
been used for the Kelvin functions in the origi-
nal expression (21) it should be noted that
B"rr will not tend to a"rr in the large-ø lìmit.

Caae breathing. The above results can be

used to explain the inordinately large wind
speeds encountered in si:rgle entrance caves.

Substitution of typical values of pressure and
its rate of change, and of cave volume and cross-

sectional area into equation 18, shows that ob-
served wind speeds should be quite small (of
order 0.1 m/min through a 0.2-metef entrance
hole in a cavity of volume 1000 meters", com-
pared with speeds of order 3 m/sec which are

actually observed). The implication is that
either the potentially accessible volume of every
cave that exhibits this breathing phenomenon
is much'greater than has been observed or, al-
ternatively, the walls of the caves are, in fact,
porous. It is this latter possibility that appears
to gain favor when considered in terms of the
preceding theory.

Breathing caves have been mentioned in pop-
ular speleological literature of the United States

lHallid,ag, 19661 and Australia lBishop, I957f .
The small number of meteorological data that
are available nevertheless invariably indicates
not only that the magnitude of the breathing
is much larger than would be expected, but also
that there is a lag in changes of direction of
breathing behind changes in sign of the deriva-
tive of pressure with respect to time lConn,
19661.

Some of the world's most remarkable exam-
ples of cave breathing occur in caves in the
Nullarbor Plains region of southern Australia,
whete numerous'blowholes' (small vertical caves

with volumes ranging from 10 to 100 meters')
are observed to breathe at rates of the order of
1 mt/sec. Far surpassing this, however, at a
constriction near the entra,nce of a much longer
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tr'ig. 2. Simplified map of Mullamullang Cave, Western Australia.
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and has been used to explain the breathing of
caves. Two types of cave occurring in the NuIl-
arbor Plains region of Äustralia fall conven-

iently into the two classæ that are theoretically
most tractable. The development of this paper
opens avenues for further research into the
theoretical discussion of more complex cavity
systems and into the further experimental veri-
fication of the two systems considered. The
theory presented also gives a new method for
estimating the combined permeability of lime-
stones in areas where breathing caves are found.
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