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Abstract—In repeat-pass interferometric synthetic aperture
radar (SAR), man-made scene disturbances are commonly de-
tected by identifying changes in the mean backscatter power of the
scene or by identifying regions of low coherence. Change statistics
such as the sample mean backscatter-power ratio and the sample
coherence, however, are susceptible to high false-alarm rates un-
less the change in the mean backscatter power is large or there
is sufficient contrast in scene coherence between the changed and
unchanged regions of the image pair. Furthermore, as the sample
mean backscatter-power ratio and sample coherence measure
different properties of a SAR image pair, both change statistics
need to be considered to properly characterize scene changes. In
this paper, models describing the changed and unchanged regions
of a scene are postulated, and the detection problem is expressed
in a Bayesian hypothesis-testing framework. Forming the log-
likelihood ratio gives a single sufficient statistic, encoding changes
in both the coherence and the mean backscatter power, for dis-
criminating between the unchanged- and changed-scene models.
The theoretical detection performance of the change statistic is
derived and shows a significant improvement over both the sam-
ple mean backscatter-power ratio and sample coherence change
statistics. Finally, the superior detection performance of the log-
likelihood change statistic is demonstrated using experimental
data collected using the Defence Science and Technology Orga-
nisation’s Ingara X-band airborne SAR.

Index Terms—Change detection, clairvoyant detector, coher-
ence, hypothesis testing, log-likelihood ratio, synthetic aperture
radar (SAR) interferometry.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a coherent imaging
technique capable of generating fine-resolution images of

the complex radar backscatter of a scene from large ranges.
An important application of SAR is the detection of temporal
changes in a scene. Change detection is an application to
which SAR is particularly well suited as SARs can consistently
produce high-quality well-calibrated imagery with good geolo-
cation accuracy.

Two forms of change detection in repeat-pass SAR imagery
may be considered, namely coherent and incoherent change
detection. Incoherent change detection identifies changes in the
mean backscatter power of the scene by comparing sample
estimates of the mean backscatter power taken from the repeat-
pass image pair. Typically, the sample estimates are obtained
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by spatially averaging the image pixel intensities (amplitude
squared) over local regions in the image pair. The mean
backscatter power of a scene is determined by the structural
and dielectric properties of the scene, and thus may be used to
detect changes in soil or vegetation moisture content or surface
roughness. Coherent change detection, on the other hand, uses
the magnitude of the sample complex cross correlation of an
interferometric SAR image pair to quantify changes in the
observed amplitude and phase of the image pixels. Since the
observed pixel amplitude and phase is sensitive to the relative
spatial geometry of the scattering contributions within a pixel,
coherent change detection has the potential to detect very subtle
scene changes. The observed pixel amplitude and phase, how-
ever, are also highly sensitive to mismatch in the acquisition
apertures and aberrations in the image-formation processing
[1]. Coherent change detection thus requires additional inter-
ferometric processing steps to mitigate these sources of image
decorrelation. The mean backscatter power and complex cor-
relation coefficient measure different properties of a scene and,
therefore, both coherent and incoherent change statistics should
be considered to properly characterize scene changes [2].

The sample mean backscatter-power ratio and the magnitude
of the sample cross-correlation coefficient, commonly referred
to as the sample coherence, have been employed in the literature
to detect a variety of different types of scene change as well
as classify different target types. A number of papers [3], [4]
have demonstrated the ability to discriminate between different
crops and vegetation types using the sample mean backscatter
power and coherence, and classifiers based on these statistics
have been proposed [5], [6]. The scene coherence has also
been used to identify areas inundated by flood [7], and its
use in monitoring urban development has been examined [8].
The sensitivity of the scene coherence in detecting subtle scene
changes has been demonstrated in [9], in which low-coherence
tracks, possibly due to scene disturbances arising from grazing
sheep, were detected. In [10], the interferometric processing
of 1-m resolution airborne X-band SAR imagery was used to
identify changes in an earthworks site.

In this paper, the detection and localization of fine-scale
man-made scene changes such as the passage of vehicles or
personnel across an open field are considered. The small spatial
scale of such scene changes and the desire to localize the
changes using fine-resolution imagery and small estimation
windows can result in poor detection performance using the
sample mean backscatter-power ratio or sample coherence.
Furthermore, while the mean backscatter and sample coherence
provide complementary information about the scene changes,
fusing the detections from the change statistics is problematic
as, pixelwise, the detections not do necessarily agree. In this
paper, models describing the changed and unchanged regions
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of a scene are postulated and the detection problem is expressed
in a Bayesian hypothesis-testing framework [9]. This leads to
the formulation of a new log-likelihood change statistic that
encodes both coherence and mean backscatter power changes
for detecting scene changes. Through theoretical analysis, sim-
ulation, and application to experimental data, it is shown that
the new change statistic yields superior detection performance
compared to that of either the mean backscatter-power ratio or
the sample coherence.

In Section II, an image model for a repeat-pass interfer-
ometric image pair is discussed, leading to the formulation
of the changed- and unchanged-scene hypotheses detailed in
Section III. The performance of the sample mean backscatter-
power ratio and sample coherence change statistics is analyzed
and compared in Sections IV and V. In Sections VI–VIII,
the new log-likelihood change statistic is developed and the
theoretical performance of the associated clairvoyant detec-
tor [11] is derived. Section IX evaluates the performance
degradation that may be expected for a practical generalized
likelihood-ratio change statistic in which the unknown para-
meters are replaced with their maximum-likelihood estimates
(MLEs). Finally, in Section X, the change statistics are ap-
plied to experimental repeat-pass SAR imagery acquired with
the Defence Science and Technology Organisation (DSTO)’s
Ingara X-band SAR and the improved detection performance is
demonstrated.

II. INTERFEROMETRIC SAR IMAGE MODEL

For homogeneous natural distributed target environments,
the scene is commonly modeled as consisting of a large number
of discrete scatterers having a uniform random phase and
identically distributed random amplitude [12], [13]. The nature
of the observed complex radar backscatter f has been studied
in the literature [14], and may be modeled as a zero-mean
circular complex Gaussian random variable, with variance σ2

f
being the mean backscatter power. The mean backscatter power
σ2

f is a geophysical quantity describing the local interaction of
the propagating incident electromagnetic wave with the scene’s
scattering volume. It is thus determined by the structural and
electromagnetic properties of the scattering elements in the
volume, such as their size, shape, density, dielectric constant,
as well as the properties of the incident wave such as the
wavelength, polarization, and incidence angle.

The single-channel model for the scene image may be ex-
tended to encompass multichannel collections. For a repeat-
pass interferometric SAR image pair, the joint density function
of a corresponding (registered) pixel pair Xk = [fk, gk]T may
be described by a zero-mean complex circular Gaussian random
vector with probability density function (pdf)

p(Xk) =
1

π2|Q|2 exp
(−XH

k Q
−1Xk

)
(1)

where XH
k is the complex conjugate transpose of Xk and Q is

the covariance matrix given by

Q = E
{
XkX

H
k

}
=
[

σ2
f γσfσg exp(jΦ)

γσfσg exp(−jΦ) σ2
g

]
.

(2)

The terms σ2
f and σ2

g on the diagonal represent the mean
backscatter power of the scene in the primary and repeat-pass
collections, respectively. In general, σ2

f �= σ2
g , due to the pres-

ence of scene disturbances that occur in the interval between
collections as well as antenna-pointing errors arising in the
data acquisition and radiometric miscalibration in the image
formation. The term γ exp(jΦ) is the complex cross channel
correlation coefficient and encapsulates the additional infor-
mation made available by the joint interferometric processing
of the image pair. The interferometric phase Φ is related to
the displacement between the primary and repeat-pass imaging
flight tracks and also the terrain topography [15], [16]. The
magnitude of the complex correlation coefficient γ, commonly
referred to as the scene coherence, is a value between zero and
one and is sensitive to changes in the observed amplitude and
phase of the image resolution cells.

The coherence may be expressed as the product of a number
of dominant contributions [3], [17]

γ = γSNRγbaseγsceneγvolγproc. (3)

The component γSNR is determined by the relative backscat-
ter signal to radar receiver noise ratio in the interferometric
image pair [3]. The baseline decorrelation γbase quantifies the
decorrelation that arises due to mismatch in the acquisition
geometries in the primary and repeat-pass collections [18].
The volume decorrelation γvol quantifies the decorrelation that
arises when the images are acquired with a nonzero baseline
and the scattering occurs from a volume such as a vege-
tated area [19]. The decorrelation depends the properties of
the scattering volume such as the extinction coefficient, as
well as the interferometric baseline and the polarization of
the incident radiation [20]. The component γproc quantifies
the decorrelation arising from mismatch between the coherent
acquisition apertures and image-formation processing stages
used to produce the primary and repeat-pass imagery. The
mismatch between the acquisition apertures and processing
stages manifests as image domain misregistration as well as
image defocusing [1]. The coherence term γscene quantifies the
decorrelation in the scene over the repeat-pass time interval, and
is determined by the nature and extent of the various sources of
scene change such as environmental effects, e.g., wind and rain
as well as man-made scene disturbances. Through the careful
design of the repeat-pass imaging geometry and appropriate
interferometric processing steps including compensation for
aperture and processor mismatch and image registration, it is
possible to achieve γSNRγbaseγprocγvol ≈ 1. In this case, the
coherence γ of the scene image will reflect the underlying true
scene coherence γscene.

III. SCENE-CHANGE MODEL

Discriminating between those regions affected by the scene
changes of interest (e.g., man-made changes) and those that
are not can be achieved by formulating the detection prob-
lem in a hypothesis-testing framework. In this approach, the
change-detection problem is to determine whether a pixel pair
Xk = [fk, gk]T is a realization of a null hypothesis H0 (scene
changes of interest absent) or an alternative hypothesis H1

(scene changes of interest present). Assuming that under H0

and H1 the jointly Gaussian model (1) is valid, then, in the most
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general case, the two hypotheses may be completely described
by the covariance matrices

Q0 =
[

σ2
f σfσg0γ0 exp(jΦ0)

σfσg0γ0 exp(−jΦ0) σ2
g0

]
(4)

under the unchanged-scene hypothesis H0 and

Q1 =
[

σ2
f σfσg1γ1 exp(jΦ1)

σfσg1γ1 exp(jΦ1) σ2
g1

]
(5)

under the changed-scene hypothesis H1. The mean backscatter
terms σ2

g0
and σ2

g1
describe the mean backscatter power in

the repeat-pass image under the unchanged- and changed-
scene hypotheses, respectively. The scene coherence under
the unchanged and changed hypotheses are given by γ0 and
γ1, respectively, and, in general, the coherence values may
assume any value between zero and one. Note that a different
interferometric phase Φ1 has been used to characterize the
changed scene compared to the unchanged-scene interferomet-
ric phase Φ0. This allows for the possibility of a common
translational shift in the scene wherein all scatterers in a region
are subject to a common height change (the measurement and
characterization of such scene changes is commonly referred to
in the literature as differential interferometric SAR processing
[21] and has been used to monitor glacial movement and land
subsidence). While the value of γ0 may be derived from the
observed imagery, the value for γ1 depends on the source of
the scene changes, the nature of the scene scattering, and the
resolution of the imagery. In [3], a probabilistic model for
the scatterer displacement between imaging observations was
postulated and an rms displacement of approximately 20%
of the radar wavelength was found to cause complete scene
decorrelation. For X-band radars, man-made disturbances such
as vehicle tracks across a field can potentially cause significant
scatterer displacement, and hence a complete loss in coher-
ence. However, for coarser resolution systems where the both
changed and unchanged scattering is present in a resolution
cell, a nonzero value of γ1 would be more appropriate. In the
subsequent analysis, an imaging system with fine resolution
commensurate with the scene changes to be detected is con-
sidered, for which γ1 = 0 will be assumed.

IV. MEAN BACKSCATTER-POWER CHANGE STATISTIC

From Q0 and Q1, it is evident that one approach to discrim-
inating between the changed- and unchanged-scene hypothe-
ses is to estimate and compare the mean backscatter powers
of the scene in the primary and repeat-pass imagery. Given
a homogeneous N -pixel-pair local neighborhood under test,
Xk = [fk, gk]T, k = 1, . . . , N , the MLE of the mean backscat-
ter power of the scene in the primary and repeat acquisitions is
given by the sample average pixel intensities

If =
1
N

N∑
k=1

|fk|2 Ig =
1
N

N∑
k=1

|gk|2. (6)

Provided the N -pixel realizations are independent, then If and
Ig each have a Gamma distribution with order parameter N

of the form

p(I|σ2) =
1

Γ(N)

(
N

σ2

)N

IN−1 exp
(
−NI

σ2

)
(7)

where I and σ2 are replaced by If and σ2
f for the primary

image and Ig and σ2
g for the repeat-pass image. Note that,

in practice, neighboring pixels are correlated due to the point
spread function of the SAR processor. As a consequence, in an
N -pixel sliding window, the effective number of independent
pixels, commonly referred to as the effective number of looks
(ENL), is less than N .

The sample estimates of the mean backscatter power may
be compared by forming the following mean backscatter-power
ratio proposed by Touzi et al. [22]:

r̂ =
{
R̂, if R̂ ≤ 1
R̂−1, if R̂ > 1

(8)

where R̂ = If/Ig . This statistic takes values between zero and
one and its pdf has been derived in [22]

p(r̂|R) =
Γ(2N)
Γ(N)2

(
RN

(r̂ + R)2N
+

R−N

(r̂ + R−1)2N

)
r̂N−1. (9)

From the pdf of r̂, analytical expressions for the probability of
detection Pd and the probability of false alarm Pfa as a function
of the detection threshold T may be readily derived. The Pfa is
given by

Pfa =

T∫
0

p(r̂|R = R0)dr̂

=
Γ(2N)
Γ2(N)

T∫
0

(
RN

0

(r̂ + R0)2N
+

R−N
0(

r̂ + R−1
0

)2N

)
r̂N−1dr̂

=
Γ(2N)TN

Γ(N − 1)

(
1

RN
0

1F2

(
2N,N,N − 1,

T

R0

)

+ RN
0 1F2(2N,N,N − 1, TR0)

)
(10)

where R0 = σ2
f/σ

2
g0 is the ratio of the mean backscattered

power in the unchanged regions of the scene and 1F2 is the
hypergeometric function [23]. The Pd has the same form as the
Pfa in (10) but with R0 replaced with R1 = σ2

f/σ
2
g1, which is

the mean backscattered power ratio in the changed regions of
the scene.

Fig. 1 shows simulated and theoretical receiver operating
characteristic (ROC) curves (plots of the Pd versus Pfa) for
the ratio detector r̂ obtained with R0 = 0 dB and R1 =
1, 3, 5, and 10 dB, and N = 7. It is clear that for small
changes in the mean backscatter power, the detector suffers
from a significant false-alarm rate. To achieve a probability of
detection of 0.7 for a mean backscatter-power change of 3 dB,
the associated probability of false alarm is unacceptably high
at 0.4. The false-alarm rate may be reduced by increasing the
window size N used in computing If and Ig. However, this
improvement in detection performance is only realized if the
scene’s mean backscatter power over the estimation window
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Fig. 1. Simulated (indicated by the symbols) and theoretical ROC curves for
the intensity-ratio change statistic obtained with N = 7 and mean backscatter-
power changes of 1, 3, 5, and 10 dB.

is locally stationary. When applying the ratio detector, the
estimation window must be commensurate with the size of
the scene disturbances to be detected otherwise the change-
statistic local estimate contains contributions from changed and
unchanged image pixels.

V. SAMPLE COHERENCE CHANGE STATISTIC

The scene-change models specified by (4) and (5) indicate
that regions of man-made scene disturbance may be detected
as areas of zero coherence against undisturbed areas that are
characterized by some degree of partial coherence. A simple
threshold detector based on the sample coherence evaluated
over a local neighborhood of N pixels Xk = [fk, gk]T, k =
1, . . . , N

γ̂ =

∣∣∣∑N
k=1 fkg

∗
k

∣∣∣√∑N
k=1 |fk|2

∑N
k=1 |gk|2

(11)

may be used to detect the changed regions of the scene.
The statistics of the sample coherence have been extensively

studied in the literature [24], [25]. The density function of the
sample coherence for a general repeat-pass image pair with true
underlying coherence γ is given by

p(γ̂|γ,N) = 2(N − 1)(1 − γ2)N γ̂(1 − γ̂2)(N−2)

× 2F1(N,N ; 1; γ2γ̂2) (12)

where 2F1 is the Gauss hypergeometric function. The density
function is dependent on the underlying scene coherence γ and
the number of independent pixels N used in the estimation
window. Note that, like the sample mean backscatter-power
estimate discussed in the previous section, in practice, N in
(12) refers to the ENL, i.e., the effective number of independent
realizations of the random process X in the sliding estimation
window.

The performance of the sample coherence detector (11) may
be evaluated by computing the associated ROC curve, which

Fig. 2. Simulated (indicated by the symbols) and theoretical ROC curves
for sample coherence change statistic obtained with γ0 = 0.45, 0.62, 0.75,
and 0.9, γ1 = 0, and an estimation-window size of N = 7 independent pixels.

indicates, for a given detection threshold T , the probability of
detecting a changed pixel Pd and the corresponding probability
of a false alarm Pfa, i.e.,

Pd =

T∫
0

p(γ̂|γ = 0)dγ̂ (13)

Pfa =

T∫
0

p(γ̂|γ = γ0)dγ̂. (14)

Substituting the density function given in (12) into (13) and (14)
gives the following:

Pfa =
2(N − 1)

(
1 − γ2

0

)N

Γ(N)Γ(N − 1)

N−2∑
k=0

(
N − 2

k

)
(−1)N−2−k

×
∞∑

l=0

[
Γ(N + l)
Γ(l + 1)

]2

γ2l
0

T 2N+2l−2−2k

2N + 2l − 2 − 2k
(15)

Pd = 2(N − 1)2
N−2∑
k=0

(
N − 2

k

)
(−1)N−2−k T 2N−2−2k

2N − 2 − 2k
.

(16)

Fig. 2 shows the ROC curves for N = 7, γ0 = 0.45,
0.62, 0.75, and 0.9. A comparison of Fig. 2 with the ROC
curve for the backscatter-power ratio change statistic in Fig. 1
shows that for an estimation-window size of N = 7 pixels, an
equivalent ROC performance of Pd = 0.7 at Pfa = 0.1 occurs
for a magnitude change of 5 dB (Fig. 1) or an unchanged sample
coherence of γ0 = 0.62 (Fig. 2).

The detection performance of the sample coherence change
statistic may be improved by increasing the estimation-window
size. The window size, however, must be commensurate with
the size of the scene disturbances to be detected; otherwise,
the sample coherence contains contributions from both changed
and unchanged pixels.
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VI. NEW LOG-LIKELIHOOD CHANGE STATISTIC

The sample coherence and mean backscatter ratio discussed
in the previous sections have been used extensively in the lit-
erature as both change statistics and also in scene classification
problems. In [2], the sample coherence and mean backscatter
ratio are used to detect changes in repeat-pass European Re-
mote Sensing 1 SAR imagery. It was found that the areas of
disturbance identified by each method did not necessarily agree
and each method gives complementary characterizations of
scene changes. In the context of change detection, this presents
problems in fusing the detections from the two change statistics
to achieve a single combined detection list. A further point to
note from the analysis presented in the previous sections is that
the sample coherence and mean backscatter ratio are suscepti-
ble to high false-alarm rates unless there is a significant change
in the mean backscatter power or the H0 scene coherence γ0

is high. The high false-alarm rate may be mitigated if exten-
sive averaging is carried out. Increased averaging, however,
degrades the resolution of the change statistic. Furthermore,
the estimation window must be commensurate with the size
of the scene changes; otherwise, the anticipated performance
improvement is not realized.

An alternative approach to discriminating between the H0

and H1 hypotheses given a local neighborhood of N inde-
pendent pixels Xk = [fk, gk]T, k = 1, . . . , N , is to form the
likelihood ratio given by

L =
p(X1,X2, . . . , XN ;H0)
p(X1,X2, . . . , XN ;H1)

=
N∏

k=1

p(Xk;H0)
p(Xk;H1)

. (17)

Substituting Q = Q0 in (1) gives the density function
p(Xk;H0), and Q = Q1 gives p(Xk;H1). Thus, (17) becomes

L =
( |Q1|
|Q0|

)N

exp

(
−Tr

{(
Q−1

0 −Q−1
1

) N∑
k=1

XkX
H
k

})
(18)

where Tr{A} denotes the trace of matrix A. Taking the log of
(18) and ignoring the constant term yields the following deci-
sion statistic for discriminating between the two hypotheses:

z = Tr

{(
Q−1

0 −Q−1
1

) N∑
k=1

XkX
H
k

}

= Tr{QdG} (19)

where G =
∑N

k=1 XkX
H
k and Qd = Q−1

0 −Q−1
1 . Note that G

is the sample covariance formed from the N -pixel area under
test, and under the jointly Gaussian scattering assumption, G
has a complex Wishart distribution [26]. Note also that the ma-
trices Q0 and Q1 describing the H0 and H1 hypotheses consist
of a number of unknown parameters, thus the hypotheses are
composite, and z in (19) is referred to as a clairvoyant detector
[11]. A clairvoyant detector yields the optimal detection per-
formance achievable given perfect knowledge of the unknown
parameters. In practice, suboptimal tests are implemented in
which the unknown parameters are specified by their MLEs to
form a generalized likelihood-ratio test (GLRT) [11].

VII. PDF OF LOG-LIKELIHOOD CHANGE STATISTIC

Assuming perfect knowledge of the unknown parameters in
H0 and H1, the pdf of the clairvoyant detector z in (19) may
be derived by applying a linear transform P to the image pixel-
pair vector Xk = [fk, gk]T. The matrix P is chosen such that it
diagonalizes the rank-two matrix Qd

PHQdP =
[
λ1 0
0 λ2

]
= diag(λ1, λ2) (20)

where λ1 and λ2 are the eigenvalues of Qd and the columns of
P are the corresponding eigenvectors [27]. Furthermore, it may
be shown that, given the forms for Q0 in (4) and Q1 in (5), one
of the eigenvectors is negative while the other is positive. In the
following analysis, it will be assumed that the first eigenvalue
is negative and λ1 will be taken to mean the absolute value of
the first eigenvalue (similar forms for the density functions as
those derived in the following analysis may be obtained for the
case when the second eigenvalue is negative). Defining the new
transform variables u and v such that

X =
[
f

g

]
= P

[
u

v

]
(21)

the decision statistic may subsequently be written as

z = Tr

{
Qd

N∑
k=1

([
fk

gk

]
[f ∗

k g∗k]
)}

= Tr

{
PHQdP

N∑
k=1

([
uk

vk

]
[u∗

k v∗k]
)}

= − λ1

N∑
k=1

|uk|2 + λ2

N∑
k=1

|vk|2. (22)

In general, under the transform P , the new transform variables
u and v are dependent zero-mean circular complex Gaussian
random variables with a covariance matrix of the form

C =
[

C11

√
C11C22ρe

jθ√
C11C22ρe

−jθ C22

]
(23)

where

C =
{
PHQ0P, for u and v realizations of H0

PHQ1P, for u and v realizations of H1.
(24)

Therefore, the variables a = λ1

∑N
k=1 |uk|2 and b =

λ2

∑N
k=1 |vk|2 that form the decision statistic (22) are

mutually dependent chi-square random variables with 2N
degrees of freedom [11]. The joint density function of the
two dependent chi-square random variables has been derived
by Lee et al. [28]. Applying the result of Lee et al., the joint
density function of a and b may be written as

p(a, b) =
(1 − ρ2)N (ab)N−1 exp

{
−
(

a
α + b

β

)}
(αβ)NΓ2(N)

× 1F2

(
1; 1, N ;

abρ2

αβ

)
(25)
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where 1F2 is a hypergeometric function and

α =λ1C11(1 − ρ2) (26)
β =λ2C22(1 − ρ2). (27)

The density function of the decision statistic z = −a + b may
subsequently be found from (25) by a direct evaluation of the
following integrals:

p(z) =
{∫∞

0 p(b− z, b)db, for z ≤ 0∫∞
0 p(a, a + z)da, for z > 0

(28)

where the lower limit in each integral arises because λ1 ≥
0 and λ2 ≥ 0, and so a ≥ 0 and b ≥ 0. Evaluating (28) for
z ≤ 0 gives

p(z) =
(1 − ρ2)Ne(

z
α )

Γ(N)(αβ)N

∞∑
k=0

[
µk

N+k−1∑
p=0

[(
N + k − 1

p

)

×Γ(2k + 2N − p− 1)
ν2k+2N−p−1

(−z)p

] ]
(29)

and, for z > 0

p(z) =
(1 − ρ2)Ne(

−z
β )

Γ(N)(αβ)N

∞∑
k=0

[
µk

N+k−1∑
p=0

[(
N + k − 1

p

)

×Γ(2k + 2N − p− 1)
ν2k+2N−p−1

(−z)p

] ]
. (30)

The derivation of these results is given in Appendix I. Note that
(29) and (30) are general expressions for the density function of
z. To obtain p(z;H0) and p(z;H1), the appropriate values for
C11, C22, and ρ, defined in (23) and (24), are used.

A. Special Case of Equal Mean Backscatter Power

Scene disturbances arising from subtle man-made changes,
e.g., disturbances due to the passage of vehicles through a
scene, are commonly characterized by an absence of any mea-
surable change in the mean backscatter power coupled with a
complete loss in scene coherence. In such cases, for calibrated
image pairs, a simpler closed-form solution for the density
function of the clairvoyant decision statistic may be derived.
Substituting σ2

f = σ2
g0 = σ2

g1 into (4) and (5), the Qd matrix
may be written as

Qd =Q−1
0 −Q−1

1

=
γ0

σ2
f (1 − γ2

0)

[
γ0 − exp(jΦ0)

− exp(−jΦ0) γ0

]
. (31)

The eigenvalues of Qd are given by

λ1 = − γ0

σ2
f (1 + γ0)

λ2 =
γ0

σ2
f (1 − γ0)

(32)

and the corresponding eigenvectors form the columns of the
transform matrix P that diagonalizes Qd

P =
1√
2

[
exp(jΦ0) − exp(jΦ0)

1 1

]
. (33)

The transform variables u and v, obtained by applying P to the
observations f and g, are now independent zero-mean complex
Gaussian random variables with a covariance matrix given by

C =
[
C11 0
0 C22

]

=




PHQ0P = σ2
f

[
1 + γ0 0

0 1 − γ0

]
H0

rPHQ1P = σ2
f

[
1 0
0 1

]
H1.

(34)

The decision statistic, thus, takes the form

z = −λ1

N∑
k=1

|uk|2 + λ2

N∑
k=1

|vk|2 (35)

where λ1 is taken to mean the absolute value of the first eigen-
value of Qd. The variables a = λ1

∑ |uk|2 and b = λ1

∑ |vk|2
in this case are mutually independent chi-square random vari-
ables with density functions

p(a) =
1

Γ(N)λ1C11

(
a

λ1C11

)N−1

exp
(
− a

λ1C11

)
(36)

p(b) =
1

Γ(N)λ2C22

(
b

λ2C22

)N−1

exp
(
− b

λ2C22

)
. (37)

The density function of the log-likelihood decision statistic
z = −a + b may subsequently be found by a direct evaluation
of the integrals

p(z) =

{∫∞
0 p(a)p(a + z)da, z > 0∫∞
0 p(b− z)p(b)db, z ≤ 0.

(38)

Evaluating (38), for z ≤ 0, gives

p(z) =
exp

(
z

λ1C11

)
Γ2(N)(λ1C11λ2C22)N

×
N−1∑
p=0

[(
N − 1

p

)
Γ(2N − p− 1)

ν2N−p−1
(−z)p

]
(39)

and similarly, for z > 0

p(z) =
exp

(
−z

λ2C22

)
Γ2(N)(λ1C11λ2C22)N

×
N−1∑
p=0

[(
N − 1

p

)
zp Γ(2N − p− 1)

ν2N−p−1

]
. (40)

These pdfs are derived in Appendix II. Equations (39) and
(40) are simple closed-form polynominal solutions for the pdfs
of the decision statistic. Note that these equations are general
expressions of the density function of z. To obtain p(z;H0) and
p(z;H1), the appropriate values for C11 and C22, defined in
(34), are used. Fig. 3 shows the density function of the decision
statistic z for both H0 and H1 obtained by direct computation
of (39) and (40) and also via a simulation with γ0 = 0.62
and N = 7.



PREISS et al.: DETECTING SCENE CHANGES USING SAR INTERFEROMETRY 2047

Fig. 3. Simulated and theoretical PDF curves for the log-likelihood change
statistic obtained with γ0 = 0.62, σ2

f = σ2
g0 = σ2

g1, and an estimation-
window size of N = 7 independent pixels.

VIII. DETECTION PERFORMANCE OF THE

CLAIRVOYANT DETECTOR

Expressions for the probability of detection and false alarm
for the clairvoyant log-likelihood detector, as a function of the
decision threshold T , may be derived using the pdfs p(z;H0)
and p(z;H1) given in the previous section by evaluating the
integrals

Pfa =

∞∫
T

p(z;H0)dz (41)

Pd =

∞∫
T

p(z;H1)dz. (42)

Using (29) and (30), Pd and Pfa both take the following general
form for T > 0:

Pd or fa

=
(1 − ρ2)N

Γ(N)(αβ)N

×
∞∑

k=0


µk

N+k−1∑
p=0



(
N + k − 1

p

)
Γ(2N + 2k − p− 1)

ν2k+2N−p−1

×
∞∫

T

e(−
z
β )(z)pdz






=
(1 − ρ2)N

Γ(N)(αβ)N

×
∞∑

k=0

[
µk

N+k−1∑
p=0

[(
N + k − 1

p

)
βp+1 Γ(2N + 2k − p− 1)

ν2k+2N−p−1

× Γinc

(
p + 1,

T

β

)]]
(43)

where Γinc is the complementary incomplete gamma function
given by

Γinc(a, t) =

∞∫
t

exp(−x)xa−1dx. (44)

For T ≤ 0, the integrals giving the probability of false alarm
(41) and probability of detection (42) must be partitioned into
an integral from T to 0, where p(z) is given by (29), plus
an integral from 0 to ∞, where p(z) is given by (30). The
probability of detection and probability of false alarm, thus,
both take the following form for T < 0

Pdor fa

=
(1 − ρ2)N

Γ(N)(αβ)N

×
∞∑

k=0


µk

N+k−1∑
p=0



(
N + k − 1

p

)
Γ(2N + 2k − p− 1)

ν2k+2N−p−1

×




∞∫
0

e(− z
β )(z)pdz+

0∫
T

e( z
α )(−z)pdz








=
(1 − ρ2)

Γ(N)(αβ)N

×
∞∑

k=0

[
µk

N+k−1∑
p=0

[(
N + k − 1

p

)
Γ(2N + 2k − p− 1)

ν2k+2N−p−1

×
[
βp+1Γ(p + 1) + αp+1

×
(
Γ(p + 1)−Γinc

(
p+1,

−T

α

))]]]

(45)

where the following relation has been used [23]:

t∫
0

exp(−x)xa−1dx = Γ(a) − Γinc(a, t). (46)

The values for C11, C22, and ρ used in the computation of µk,
α, and β, respectively, in (43) and (45) are defined in (24) for
each hypothesis.

Fig. 4 indicates the detection performance of the clairvoyant
change statistic z for a change scenario with γ0 = 0.62 and
an increasing mean backscatter-power ratio with σ2

g1/σ
2
g0 ≡

0, 1, 3, 5, and 10 dB. Comparing the ROC curve in Fig. 4 as-
sociated with change scenario γ0 = 0.62 and σ2

g1/σ
2
g0 ≡ 0 dB

and the corresponding ROC curve for the sample coherence
in Fig. 2 shows that the log-likelihood change statistic yields
significant improvements in detection performance. At a Pd

of 0.7, the Pfa for the sample coherence change statistic is
0.1, while for the log-likelihood change statistic, the Pfa =
0.006, which is a reduction in the false-alarm rate of over
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Fig. 4. Simulated and theoretical ROC curves for the log-likelihood statistic
obtained with N = 7, γ0 = 0.62, and σ2

g1/σ2
g0 = 0, 1, 3, 5, and 10 dB.

an order of magnitude. As the mean backscatter-power ratio
σ2

g1/σ
2
g0 is increased, the detection performance of the log-

likelihood change statistic improves, as illustrated in Fig. 4.
For a mean backscatter-power ratio of σ2

g1/σ
2
g0 ≡ 1 dB and

Pd = 0.7, the log-likelihood change statistic Pfa = 0.0025,
compared to Pfa = 0.6 for the mean backscatter-power ratio
change statistic indicated in Fig. 1. Unlike the change statistics
r̂ and γ̂, which are limited to detecting changes in only the mean
backscatter power and the coherence, respectively, the log-
likelihood change statistic uses both indicators of scene change
to distinguish between the H0 and H1 hypotheses. It should be
noted that the detection performance of the sample coherence
clairvoyant change statistic z and the mean backscatter power is
being measured using the definitions of change and no change
encapsulated in the H1 and H0 hypotheses.

A. Detection Performance Under Equal Backscatter Power

In the case where the primary and repeat-pass images have
equal mean backscatter power under both H0 and H1, substitut-
ing (39) and (40) into (41) and (42) yields the following simpler
general forms for the probability of detection and probability of
false alarm. For T > 0

P =
1

Γ2(N)(λ1C11λ2C22)N

×
N−1∑
p=0


(N − 1

p

)
Γ(2N − p− 1)

ν2N−p−1

∞∫
T

exp
( −z

λ2C22

)
zpdz




=
1

Γ2(N)(λ1C11λ2C22)N

×
N−1∑
p=0

[(
N − 1

p

)
(λ2C22)p+1 Γ(2N − p− 1)

ν2N−p−1
Γinc

×
(
p + 1,

T

λ2C22

)]
(47)

Fig. 5. Simulated and theoretical ROC curves for log-likelihood statistic
obtained with γ0 = 0.45, 0.62, 0.75, and 0.9, N = 7, and σ2

f = σ2
g0 = σ2

g1.

and for T ≤ 0

P =
1

Γ2(N)(λ1C11λ2C22)N

×
N−1∑
p=0



(
N − 1

p

)
Γ(2N − p− 1)

ν2N−p−1

×




0∫
T

exp
( −z

λ1C11

)
(−z)pdz

+

∞∫
0

exp
( −z

λ2C22

)
(z)pdz






=
1

Γ2(N)(λ1C11λ2C22)N

×
N−1∑
p=0

[(
N − 1

p

)
Γ(2N − p− 1)

ν2N−p−1

×
[
(λ2C22)p+1Γ(p + 1) + (λ1C11)p+1

× Γinc

(
p + 1,

−T

λ1C11

)]]
. (48)

Fig. 5 indicates the detection performance of the log-
likelihood change statistic under the equal mean backscatter-
power scenario with values of γ0 = 0.45, 0.62, 0.75, and 0.9,
and N = 7. Comparing this with the detection performance
of the sample coherence, as illustrated in Fig. 2, under the
same change scenarios, it is shown that the log likelihood
yields significant improvements in the detection performance,
typically in excess of an order of magnitude.

IX. GENERALIZED LOG-LIKELIHOOD CHANGE STATISTIC

The ROC curves in Figs. 4 and 5 describe the perfor-
mance of a clairvoyant detector in which perfect knowledge
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Fig. 6. Average ROC curves for the GLRT change statistic obtained using
Monte Carlo simulation techniques with unchanged backscatter power
σ2

f = σ2
g0 = σ2

g1, unchanged coherence of γ0 = 0.62, and N = 7.

of the unknown covariance matrices Q0 and Q1 has been
assumed. While such a detector is unrealizable, it gives an upper
bound on the detection performance of any practical detector
implementation.

A GLRT is an easy way to implement a practical detector in
which the unknown scene parameters Q0 and Q1 in (19) are
replaced with their MLEs obtained from the observed data. The
MLE of the covariance matrices Q0 and Q1 are given by the
corresponding sample covariance matrices [26], i.e.,

Q̂0 =
1
M0

M0∑
k=1

Xk0
XH

k0
Q̂1 =

1
M1

M1∑
k=1

Xk1
XH

k1
(49)

where the pixel pairs Xk0
= [fk0 , gk0 ]

T, k = 1, . . . ,M0, and
Xk1

= [fk1 , gk1 ]
T, k = 1, . . . ,M1, are realizations of the H0

and H1 hypotheses, respectively. The quality of the sample
covariance estimates are dependent on obtaining a sufficient
number of independent image pixels M0 and M1, which are
characteristic of the H0 and H1 hypotheses associated with
the local N -pixel area under test. In practice, this may require
some use of a priori information regarding the nature of the
scene changes. For example, fine-scale subtle scene changes
may have little effect on the mean backscatter power, in which
case it may be assumed that σ2

g0 = σ2
g1. Alternatively, given

knowledge of the terrain and sources of scene disturbance,
some change in mean backscatter power may be postulated
based on models of the phenomenology [29]. Estimates of the
coherence γ0 and interferometric phase Φ0 under the null hy-
pothesis may be obtained by using sufficiently large estimation
windows and/or applying masks to the imagery such that the
fine-scale changes will have a negligible effect on the estimated
parameters.

In the change-detection scenarios considered in this paper,
such as the detection of vehicle tracks across an open field,
the scene disturbances are typically localized and isolated to
specific regions in the scene. Furthermore, the scene changes
are also typically on a significantly smaller spatial scale than
variations in the underlying statistical properties of the scene’s

Fig. 7. Intensity SAR image of the scene acquired from the primary imaging
collection. Superimposed on the image is a schematic showing the scene
changes carried out with the rotary hoe and lawn mower.

complex radar backscatter. Under these conditions, large homo-
geneous areas for estimating the unknown covariance matrices
may be readily identified. Indeed, using a fine-resolution sensor
and processing a wide-angle collection aperture, estimation
windows consisting of a statistically significant number of sam-
ples, suitable for estimating the unknown covariance matrices,
may be readily obtained.

Closed-form expressions for the detection performance of the
GRLT have not been found. However, Monte Carlo simulation
techniques may be used to evaluate the average detection per-
formance that may be expected for typical sample sizes M0

and M1 used in the estimation of Q0 and Q1, respectively.
Fig. 6 shows the average ROC curves of the log-likelihood
change statistic obtained via Monte Carlo simulation for sam-
ple window sizes of M0 = M1 = 25, 64, 121, and 400, and
N = 7. The change-detection scenario considered in the sim-
ulation has σ2

f = σ2
g0 = σ2

g1 and γ0 = 0.62. From Fig. 6, it
is evident that, to achieve an average detection performance
comparable to that of the clairvoyant detector, window sizes
of the order of several hundred pixels are required.

X. APPLICATION TO EXPERIMENTAL DATA

To investigate the detection performance of the proposed
change statistic, a repeat-pass interferometric experiment was
conducted with the DSTO Ingara X-band horizontally polarized
SAR. In this experiment, repeat-pass collections of a flat lightly
grassed field were obtained. The field shown in the intensity
SAR image of Fig. 7 has drainage trenches approximately
1.5-m wide and 0.8-m deep that are visible as lines of low
backscatter running through the field. The field is bordered by
a line of trees on the right-hand side and by buildings and trees
on the left-hand side. The field itself consisted mostly of short
grass 10–15 cm in height with some sparse dry crop stubble in
parts of the scene. The SAR image was acquired by coherently
processing an azimuthal aperture of 8.5◦ at a 16-km standoff
range and an incidence angle of 75◦. The image has a 3-dB
resolution of 0.52 m in range and 0.15 m in azimuth, with a
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Hamming window applied, and pixel spacings of 0.35 m ×
0.11 m. The intensity image in Fig. 7 has been averaged using
a 2 × 6 pixel sliding window. The scene changes outlined in
Fig. 7 consist of a series of strips of varying lengths and widths
carried out with a lawn mower and a rotary hoe. The second
image of the scene was acquired 2 h later, and the difference
in grazing angle and slant range to the scene center between
the two images at aperture midpoint were 0.035◦ and 69.6 m,
respectively. For this interferometric baseline, a height change
of 6.3 m would result in a full 2π cycle in the interferometric
phase [10].

Fig. 8(a) shows the mean backscatter-power ratio [R̂ in
(8)] map for the primary and repeat-pass image pair, while
Fig. 8(b) and (c) shows the coherence and interferometric
phase, respectively. The scene changes that are difficult to
discern in the mean backscatter-power ratio change map appear
quite clearly in the coherence map as areas of low coherence
and as areas of rapid random-phase fluctuations in the inter-
ferometric phase map. Other areas of low coherence include
the shadowed areas as well as the road. In these areas, there
is little backscattered signal evident in the imagery, and hence,
the estimated coherence is dominated by the uncorrelated radar
system noise. The tree returns in the image also appear as
areas of low coherence due to the movement of the leaves and
branches, which occurs both during data collection and in the
interval between collection.

For the purposes of examining the image statistics and
formulating the changed- and unchanged-scene hypotheses,
an image subchip encompassing the scene changes has been
extracted from the repeat-pass image pair. As the primary and
repeat-pass images are significantly oversampled, the extracted
subchips have been subsampled by a factor of two in range and
azimuth to give a subchip size of 500 × 500 pixels.

In order to compute the log-likelihood change statistic over
the image subchip pair, estimates of Q0 and Q1 must first be
obtained. Since the scene changes are difficult to discern in
the sample mean backscatter-power ratio map of Fig. 8(a), it
shall be assumed that σ2

g0 = σ2
g1 = σ2

g . To allow for possible
variation in the mean backscatter powers σ2

f and σ2
g across the

repeat-pass subchip pair, each subchip has been partitioned into
25 nonoverlapping regions, each 100 × 100 pixels in size, over
which sample estimates of the backscatter power have been
computed by evaluating If and Ig in (6) with N = 10 000.
A thin plate spline has been fitted to both the primary and
repeat-pass sample estimates to model the spatial variation of
the backscatter power across the scene. Fig. 9 shows the thin
plate spline models obtained for the mean backscatter powers
σ2

f and σ2
g of the primary and repeat-pass image subchips. The

models indicate that the mean backscatter power across each
of the image subchips varies by approximately 6 dB. This may
possibly be due to an error in the antenna-pointing accuracy,
resulting in an antenna beam-pattern variation across the scene.

Ground-truth observations indicate that the field in the im-
aged scene is relatively homogeneous with respect to the type of
vegetation, its coverage, and size. Therefore, the unchanged H0

scene coherence γ0 is expected to be constant, and a histogram
of sample estimates computed over the entire image subchip
pair may be obtained and compared to the theoretical density
function given in (12). Fig. 10 shows the sample coherence
histogram obtained using a 3 × 3 sliding estimation window

Fig. 8. Mean backscatter-power ratio, sample coherence, and interferometric
phase evaluated over the repeat-pass image pair using a 2 × 7 pixel spatial
estimation window. (a) Mean backscatter-power ratio. (b) Sample coherence.
(c) Sample interferometric phase.
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Fig. 9. Thin plate spline models describing the spatial variation of the
mean backscatter power of the primary and repeat-pass image subchip pair.
(a) Primary backscatter-power model (decibels). (b) Repeat-pass backscatter-
power model (decibels).

applied over the entire image subchip pair. Also shown is the
theoretical density function of the sample coherence where
a true coherence of 0.62 and ENL of 7 have been found to
provide the best fit to the experimental histogram. Note that
the ENL is less than the number of pixels used in the sliding
estimation window, indicating that some residual correlation
due to oversampling exists between neighboring pixels in the
image subchips. The theoretical density function and experi-
mental histogram are in excellent agreement, with only a slight
deviation at low-coherence values due to the inclusion of the
modified low-coherence areas in the computation of the sample
coherence.

The interferometric phase Φ0 in the unchanged-scene hy-
pothesis may vary across the scene depending on the terrain
topography and any uncompensated relative phase terms that
remain after image formation. To allow for this possible spatial
variation, the sample estimates of the interferometric phase
obtained from the 3 × 3 pixel sliding estimation window
have been used to generate a thin plate spline model of the
interferometric-phase variation across the image subchip pair.
Fig. 11 shows the sample estimates of the scene and the

Fig. 10. Histogram and theoretical density function for the sample coherence
evaluated of the primary and repeat-pass image subchips.

corresponding thin plate spline model. From the model, the
phase varies by 134◦ across the image subchip scene.

Using the models just described for the covariance matrices
Q0 and Q1, the log-likelihood change statistic may now be
computed using an N -pixel sliding window across the image
subchip pair. Fig. 12 shows the sample coherence and log-
likelihood change maps evaluated over the scene using a 3 × 3
pixel sliding estimation window corresponding to an ENL of
7. Also shown are the change detections obtained by apply-
ing appropriate thresholds to the coherence and log-likelihood
change maps. The thresholds applied in each case have been
experimentally determined to achieve a fixed number of false
alarms in an area known to have no man-made ground changes,
thereby giving a Pfa = 0.018. It is clear that the log-likelihood
change statistic has a significantly better detection performance,
allowing the scene disturbances to be more readily discerned.
While it is difficult to quantify the experimental Pd given
the size and geometry of the disturbances, an estimate based
on one of the modified strips yields a Pd of 0.30 for the
sample coherence and 0.68 for the log-likelihood change. These
compare favorably with the theoretical values obtained from
Figs. 2 and 5 of 0.31 for the sample coherence and 0.795 for the
log-likelihood change statistic. The experimental probability
of detection for the log-likelihood change statistic is slightly
less than the theoretically predicted value. Possible reasons for
this discrepancy include deviations from the theoretical density
functions due to the presence of texture in the scene imagery,
small errors in the estimation of the covariance matrices Q0

and Q1 and their spatial variation, as well as inaccuracies in the
estimation of the experimental Pd due to the small sample size.

XI. CONCLUSION

In this paper, the detection of man-made scene changes
using repeat-pass SAR interferometry has been formulated as
a hypothesis-testing problem. Using a bivariate Gaussian sta-
tistical description of a repeat-pass InSAR image pair, models
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Fig. 11. Sample estimates and thin plate spline model describing the spatial
variation of the interferometric phase between the primary and repeat-pass
image subchip pair. (a) InSAR phase sample estimates in radians. (b) Thin plate
spline model of the InSAR phase in radians.

describing the changed- and unchanged-scene hypotheses are
obtained, which are parameterized by a pair of unknown co-
variance matrices. A log-likelihood change statistic for discrim-
inating between the changed and unchanged hypotheses has
been derived. The theoretical performance of a clairvoyant log-
likelihood change statistic is quantified. The detection perfor-
mance of the clairvoyant detector provides an upper bound on
the performance of any practical implementation of the change
statistic. It is shown that the degradation in the performance of a
practical implementation of the log-likelihood change statistic
is minimal, provided that sufficient sample averaging is carried
out in the estimation of the unknown covariance matrices.
Assuming that the scene changes of interest may be char-
acterized by complete decorrelation, the theoretical detection
performance of the log-likelihood change statistic is shown to
be significantly better than that of the sample mean backscatter-
power ratio and the sample coherence. The theoretical detection
performance has been verified using data acquired in a repeat-
pass experiment conducted with the DSTO Ingara X-band SAR.
The sensitivity of the change statistic to the assumptions used in
formulating the scene-change and no-change models as well as

Fig. 12. Images on the left-hand side show, from top to bottom, the sample
coherence and log-likelihood change-statistic maps evaluated over the subchip
image pair. The images on the right-hand side show the detections obtained by
applying a threshold to the corresponding change maps.

the accuracy of the parameter estimates need to be understood
to determine the robustness of the approach, and is an area of
future research.

APPENDIX I

The pdf of the clairvoyant log-likelihood change statistic
given in (22) for the general case of σ2

g0 �= σ2
g1 may be derived

by a direct evaluation of the integrals

p(z) =
{∫∞

0 p(b− z, b)db, for z ≤ 0∫∞
0 p(a, a + z)da, for z > 0.

(50)

The variables a = λ1

∑N
k=1 |uk|2 and b = λ2

∑N
k=1 |vk|2 are

mutually dependent chi-square random variables with 2N de-
grees of freedom, and their joint pdf p(a, b) is given by (25)
[28]. For z ≤ 0, setting a = b− z in (25) gives

p(z) =

∞∫
0

(1 − ρ2)N (b2 − zb)N−1 exp
{
−
(

b−z
α + b

β

)}
(αβ)NΓ2(N)

×1F2

(
1; 1, N ;

(b2 − zb)ρ2

αβ

)
db. (51)
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Substituting the series expansion for the hypergeometric func-
tion given by

1F2

(
1; 1, N ;

abρ2

αβ

)
=

∞∑
k=0

Γ(N)
Γ(N + k)k!

(
abρ2

αβ

)k

(52)

into (51) gives

p(z)=
(1 − ρ2)Ne(

z
α )

Γ(N)(αβ)N

∞∑
k=0

µk

∞∫
0

(b2 − zb)N+k−1 exp(−bν)db

(53)

where

µk =
1

Γ(N + k)k!

(
ρ2

αβ

)k

(54)

ν =
1
α

+
1
β
. (55)

Using the binomial expansion

(b2−zb)N+k−1 =
N+k−1∑

p=0

(
N+ k − 1

p

)
b2N+2k−p−2(−z)p (56)

in (53), then

p(z) =
(1 − ρ2)Ne(

z
α )

Γ(N)(αβ)N

∞∑
k=0

µk

N+k−1∑
p=0

(
N + k − 1

p

)
(−z)p

×
∞∫

0

exp(−bν)b(2N+2k−p−2)db. (57)

The integral with respect to b in (57) is in the form of a Gamma
function [23], and thus, p(z) may be written as

p(z) =
(1 − ρ2)Ne(

−z
β )

Γ(N)(αβ)N

∞∑
k=0

[
µk

N+k−1∑
p=0

[(
N + k − 1

p

)

×Γ(2k + 2N − p− 1)
ν2k+2N−p−1

(z)p

]]
(58)

where

Γ(x) =

∞∫
0

tx−1 exp(−t)dt (59)

which, for integer values of x, reduces to the factorial function
Γ(x) = (x− 1)!. Similarly, for z > 0, p(z) may be written as

p(z) =
(1 − ρ2)Ne(

−z
β )

Γ(N)(αβ)N

∞∑
k=0

[
µk

N+k−1∑
p=0

[(
N + k − 1

p

)

×Γ(2k + 2N − p− 1)
ν2k+2N−p−1

(z)p

]]
. (60)

APPENDIX II

The pdf of the clairvoyant log-likelihood change statistic for
the case when σ2

f = σ2
g0 = σ2

g1 may be derived by a direct
evaluation of the integrals

p(z) =

{∫∞
0 p(a)p(a + z)da, z > 0∫∞
0 p(b− z)p(b)db, z ≤ 0.

(61)

The variables a = λ1

∑N
k=1 |uk|2 and b = λ2

∑N
k=1 |vk|2 are

mutually independent chi-square random variables with density
functions

p(a) =
1

Γ(N)λ1C11

(
a

λ1C11

)N−1

exp
(
− a

λ1C11

)
(62)

p(b) =
1

Γ(N)λ2C22

(
b

λ2C22

)N−1

exp
(
− b

λ2C22

)
. (63)

For z < 0

p(z) =
1

Γ2(N)(λ1C11λ2C22)N

×
∞∫

0

(b− z)N−1bN−1 exp
(
− b− z

λ1C11
− b

λ2C22

)
db. (64)

Using the binomial expansion

(b− z)N−1 =
N−1∑
p=0

(
N − 1

p

)
bN−p−1(−z)p (65)

gives

p(z) =
exp

(
z

λ1C11

)
Γ2(N)(λ1C11λ2C22)N

N−1∑
p=0

(
N − 1

p

)
(−z)p

×
∞∫

0

b2N−p−2 exp
(
−b

(
1

λ1C11
+

1
λ2C22

))
db. (66)

The integral in (66) is in the form of a Gamma function
and so [23]

∞∫
0

b2N−p−2exp
(
−b

(
1

λ1C11
+

1
λ2C22

))
db =

Γ(2N− p−1)
ν2N−p−1

(67)

where

ν =
1

λ1C11
+

1
λ2C22

. (68)

Therefore, p(z) may be simplified to

p(z) =
exp

(
z

λ1C11

)
Γ2(N)(λ1C11λ2C22)N

×
N−1∑
p=0

[(
N − 1

p

)
Γ(2N − p− 1)

ν2N−p−1
(−z)p

]
. (69)
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Similarly, for z > 0

p(z) =
exp

(
−z

λ2C22

)
Γ2(N)(λ1C11λ2C22)N

×
N−1∑
p=0

[(
N − 1

p

)
zp Γ(2N − p− 1)

ν2N−p−1

]
. (70)
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