Active vibration isolation experiments using translational
and rotational power transmission as a cost function
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Active vibration isolation experiments were conducted using a transducer that measures
translational and rotational power transmission from & vibrating mass, through a single-axis active
isolator and into a beam. The transducer is capable of measuring forces and moments along:six axes
and an accelerometer array measures its motion. By combining the measured force and velocity
signals the translational and rétational power transmission was measured. Comparisons were made
of the effectiveness of several cost functions for minimizing the vibration transmitted into the beam.
The results show that active vibration isolation using power transmission as a cost function to be
minimized is limited by the phase accuracy of the transduicers. The best results were obtained from
the minimization of the weighted sum of force and velocity. © 2006 Acoustical Society of America.
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I. INTRODUCTION

Vibrating machinery usually generates vibration forces
in more than one direction and vibration isolators are often
used to reduce the transmission of vibration from the ma-
chine into the supporting structure. Typically, vibration iso-
lators are selected to maximize vibration attenvation in the
predominant vibrating direction, which is often the transla-
tional vertical axis. However, previous research has shown
that the vibrational power transmission from rotational mo-
ments cannot be neglected when considering the total vibra-
tional power transmitted into the receiving structure.

Here, results of an experimental investigation of the ac-
tive vibration isolation of a vibrating rigid mass from a sim-
ply supported beam are presented. The active vibration iso-
lator used for the investigation has a single control actuator
which is orientated vertically. The six-axis vibratory power
transducer described in Howard' is used to measure the vi-
bratory power transmitted from a vibrating rigid mass,
through a vibration isolator, and into the simply supported
beam. Several cost functions are compared in terms of their
effectiveness at reducing the vibration transmitted into the
simply supported beam. The cost. functions that are com-
pared are various combinations of squared translational and
rotational accelerations, the weighted sum of squared trans-
lational force and velocity and rotational moments and ve-
locities, signed translational and rotational power transmis-
sion, and squared translational and rotational power
transmission. Predictions of the vibration isolation attenua-
tion are made using the theory described in Howard.' The
predictions are compared with experimental measurements
of the active vibration isolation performance using a single-
axis active vibration isolator. ’

The novel work presented in this paper is the active
vibration isolation experiments involving the minimization
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of cost functions that include translational forces and rota-
tional moments, and translational and rotational power trans-
mission. The reason why this work has not been attempted
previously is because of the lack of suitable transducers ca-
pable of measuring power transmission by moments. The

. results from experiments presented here provide experimen-

tal evidence to support previously published theoretical pre-
dictions on the power circulation (or negative power flow)
phenomenon that can occur in dctive vibration isolation
implementations when the contribution of rotational power
transmission is omitted. In addition, the experimental results
demonstrate that the phase errors in the transducers used to
measure power transmission limit the usefulness of power
transmission as a cost function to be minimized. A better cost
function, which is not sensitive to phase inaccuracies, is the
weighted sum of the squared translational forces and veloci-
ties, and rotational moments and. rotational velocities.

Il. PREVIOUS WORK

Active vibration -isolation experiments have been con-
ducted by several researchers.” However, in almost all pre-
vious work they- have neglected the contribution and mea-
surement of power transmission by moments, because
suitable transducers were not available. Instead, researchers
have attempted to indirectly estimate the vibrational power
flowing through the support structure rather than directly
measuring the vibrational power flowing into the support
structure. Pinnington'6 considered the power transmitted from
a machine into & longitudinally stiffened plate, using a mul-
tipole expansion technique. Power transmission’ through fouf
passive isolators was measured using two techniques which
did not require the measurement of force at the bottom of the
isolator, and was compared with a reference technique,
which measured the force and acceleration at the mounting
point of each isolator. The first practical method of measit”
ing power transmission through each isolator was to measur®
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¢ source acceleration. The second method was to estimate
o magnitude of power generated by all sources of vibra-
on, including airborne noise. It was shown that the two
easurement techniques agreed with the reference tech-
que.

Gardonio et al™® theoretically examined the power
ansmission of a vibrating rigid mass isolated from a plate
ing two active mounts. They showed that minimization of
¢ out-of-plane component of power, when power transmis-
on due to moments was omitted, caused a “power circula-
on” phenomena (see also Refs. 9 and 10), where power was
awn into the support plate and then reabsorbed by the ac-
ve mounts. Power circulation caused greater vibration lev-
s in the plate than without active control. Gardonio’s work

it-of-plane power transmission, which was capable of nega-
values and the second was the weighted sum of the
ut-of-plane squared velocity and squared force, which is
sitive definite. A weighting factor was applied to the
uared force error signal so that it was the same order of
agnitude as the squared velocity signal. In this case, the
eighting factor was chosen to be the square of the point
obility of the receiving structure. Gardonio ef al. reported
at the second cost function gave better results than the first.
his result is not surprising as the second cost function is
ways positive and by the definition of power transmission,
‘the squared velocity or squared force is reduced to zero,
en the power transmission along a vertical (out-of-plane)
is is also reduced to zero. The surprising result was that the
cond cost function gave results close to the minimization
total power transmission, except at a few frequencies
here active plus passive isolation was worse than just pas-

Although active vibration isolators have been considered
the past, previous authors have used vibration amplitude
uared as the cost function, which does not necessarily re-
te to the power transmission into the support structure. '
ork which deals with the active vibration isolation of ma-
inery from flexible supports, which uses the power trans-
ed into the structure as the cost function to be minimized,
15 also been 1reported.2’4 In this work, the power transmis-
on was optimized by manual adjustment of the control
rces to minimize the product of force and velocity. How-
er, only the power transmission along a single translatlonal
is was considered, whereas previous research®* % has
own the importance of considering power transmission
om both translational and rotation axes.

- Moorhouse'? discusses theoretical aspects of the relative
portance of force and moment loading on several struc-
al systems such as finite and infinite plates. The methods
n be used to identify potential locations for active vibration
ntrol sources on a structure.

Ji et al.®® describe a numerical “power mode” approach
-estimate power transmission from forces and moments.
heir concept is similar to the “radiation mode” approach
at is often used in active noise control analyses.

Royston and Singh21 have considered the active isola-
on of a vibrating rigid body from a simply supported beam
hich used a nonlinear spring as a passive vibration isolating
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d two different types of cost function. The first was the

element and an “active force input” as a control actuator to
cancel the primary disturbance. The active force input was
aligned in the vertical axis with the spring and excitation
force. Royston and Singh neglected any rotational or hori-
zontal motion because of the difficulty in measuring the ro-
tational dynamics of the system, but noted in the literature
review that power transmission by rotational motion was
considered important by previous authors.

While there are many theoretical studies that highlight
the importance of rotational power transmission in the mea-
surement of total power transmission, few researchers con-
duct experimental measurements of rotational power trans-
mission.

To measure the power transmission along six axes (three
rotational and three translational), a unique “impedance
head” is needed to measure the force and acceleration in each
of these directions. Although previous authors have consid-
ered multiple ax1s vibration isolators, for use in the aero-
space 1ndustry > and machinery vibration isolation, 26-28
there has not been any experimental work reported that uses
an active vibration isolator to minimize both translational
and rotational vibration. Although Sanderson® has measured
moment mobilities in siructures, there has not been any ex-
perimental work in active vibration isolation which mini-
mizes the transmission of rotational moment loads.

Howard ef al.” showed that passive plus active vibration
isolation, using vibrational power along a vertical axis as the
cost function to be minimized, can increase the vibrational
power transmission into the support structure compared with
just passive 1solat10n A similar problem has been examined
by Gardonio e al.® for a plate, but the problem has not been
examined for a beam or a cylinder.

This paper presents results from active vibration 1sola—
tion experiments where translational force and accelerations
as well as rotational moments and accelerations are used as
cost functions to be minimized. Experimental results show-
ing the active vibration isolation performance are derived
from measured transfer function data, which is described in
the next section.

lll. TRANSFER FUNCTION METHOD TO PREDICT THE
VIBRATION ISOLATION USING ACTIVE CONTROL

The method used here to predict the isolation perfor-
mance of the system uses measured transfer function data. A
similar method has been used by Dorling et al. 3031 where
measured acoustic transfer function data were used to predict
the sound-pressure levels inside an aircraft cabin as a result
of active noise control. '

Transfer functions were measured between the driving
force on the structure and the response at the error sensors.
The driving force was measured by placing a force trans-
ducer between a primary shaker and the structure. Response
measurements were made at the six-axis force transducer and
the -acceleration transducers. Transfer functions were also
measured between the primary shaker and the error sensors
and between the control shaker and the error sensors.

The error signals from the error sensors can be written in
matrix form as [Ref. 32, Appendix A.5],
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FIG. 1. (Color online) Experimental setup for the single
axis isolator on the simply supported beam.

Single Axis Active Isolator
(control shaker inside the tube)

to measure
Kinetic Energy Lower Mass
6 Axis Force Transducer
Beam
e=d+Cx, (1)

where e is an (n,X 1) vector of n, error signals, X is a (n,
% 1) vector of control signals, d is an (1, X 1) vector of the
error signals resulting from passive control, and C is a (n,
X n,) matrix of the transfer functions between the control
signals and the error signals when the primary disturbance is
turned off. The usual goal of active control systems is to
determine the amplitude and phase of the control signals
which will cancel the primary distarbance, and is given by
rearrangement of Eq. (1) as

xo=—(O)'d. (2
Equation (2) can be solved when there are an equal number

of control signals and error signals (n,=n,). If there are more
error signals than control signals (n,>n,) then the problem

is said to be overdetermined. The matrix C is not square and '

cannot be inverted, and generally it is not possible to achieve
complete cancellation at all of the error sensors. The problem

can be transformed into a least-squares problem such that the:

cost function J which is minimized is the squared amplitude
of the error signals e, which can be written as

‘ J=elle (3)

=xHCHCx + xHCHd + d7Cx + dld. (4)

Equation (4) is in the general Hermitian quadratic form, and
has a minimum value when the control signals are given by

X = - (CHC)™'(CHa). _ (5)

When there are more control sources than error sensors
(n,>n,), the minimization problem becomes underdeter-
mined and there are an infinite number of solutions for the
control sources which will minimize the error signals. The
problem can be redefined to include a control effort term,
such as xPx, so that the cost function J is minimized with the
least amount of control effort. The cost function J is mini-
mized when the control source is given by

xo = - CH(ccH)ld. (6)

Consider the system shown in Fig. 1, where the velocity
along the vertical axis at the connection between the six-axis
force transducer and the beam is to be minimized when the
top rigid body is subjected to a harmonic vertical primary
force. A transfer function measurement is taken over the fre-
quency range of interest, between the primary driving force
-and the velocity along the vertical axis at the base of the
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isolator and this transfer function is called Z,,. The primary
driving force is then turned off and a transfer function mea-
surement is taken between the force exerted by the control
shaker and the velocity along the vertical axis at the base of
the isolator; this transfer function is called Z, . The terms d
and C become

d=7,f ™

vp'p>
C:ZUC’ (8)

where f,, is the (n, > 1) column vector of primary forces,
which for this example is f,=1.

In the experiments that follow, the optimal control forces
are calculated by using Eq. (5) and (6) depending on the
number of error sensors and control forces. In the experi-
ments where signed power transmission is minimized, the
optimal control forces are calculated by a similar method,
which is explained later in this section.

Gardonio et al. suggested minimizing the weighted sum
of squared velocity and squared force along the vertical axis
to actively control vibration transmission through an active
isolator. They gave the vector of optimal control forces as

Xp=- (A)_lba (9>
where »

A=Z87, + pLiZy., (10)

b=717, 8, + nZiZ,, Lk, (11

where p is the weighting factor which is applied to the
squared force signal so that the amplitudes of the squared
velocity signals and squared force signals are similar, Z;; is 2
transfer function between velocity or force, i, and primary of
control force, j. For example, Z,, is the transfer function
matrix of dimensions (n,Xn,) between the velocity mea-
sured at an error sensor and the driving control force.

When there are more error sensors than control forces,
Egs. (9) and (11) presented in Ref. 8 cannot be solved and
have to be rewritten in terms of the least-squares problem
formulation. The velocities and forces at the error sensors
can be written as

v=Zyf, + Lok, (12)
=758, + Zpf,. : (13)

The terms d and C become
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Equation (5) and (6) can now be used to calculate the opti-
mal control forces depending on the number of error sensors
and control forces.

The method described here can always be used to calcu-

late the theoretical control force that will minimize the the-
bretical cost function based on measured  transfer function
data. However, whether the control force can actually be
implemented in practice depends on the primary disturbance
and the causality of the transfer functions and the causality
of Egs. (5) and (6). If the primary disturbance is tonal (peri-
odic), then the causality issues are not of concern. However,
if the primary disturbance is unpredictable (random), then
the causality issues are important. The causality issues are
further discussed in Ref. 32, (Chap. 8.6).
The calculation of the optimum control forces for the
minimization of signed power transmission can be derived in
a similar manner as the previous derivation. The velocity and
fforce at the n, error sensors can be described by vectors v,
and f;, which have length n,. The velocity and force vectors
are given by

1= Zyply + 2y £, (16)
f,=Zpf, + Zs k., 17

‘where f, and f, are the primary and control force column
vectors of length n, and n,, respectively, ZiJ is a transfer
nction between Velomty or force, i, and primary or control
force, j. For example, Z. is the transfer function matrix of
dimensions (n, X n.) between the forces measured at the er-
r sensors and the driving control force. These definitions
n be used to define the time-averaged harmonic vibrational
wer transmission into the structure as

1
Power = 5 Re(vFf), : (18)

here the superscript H is the Hermitian transpose. Substi-
tion of Eqs. (16) and (17) into Eq. (18) and rearranging
sults in a quadratic expression in terms of the control force

1 .
Power = E(q?aqc +q. B+ Bl +c), (19)

we[{] g
q.= £ (20)
: _ 1 ai+(ai)T a;_(ar)T

a—aTza[—a’#(a")T a'+ (a))T (1)
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11 (b3 )T+ b :
2L wpr-n; ) 22

and the real matrices f., f., a’, a’, b],... represent, respec-
tively, the real and imaginary parts of the complex matrices
f., a, by, and b, and the complex constant ¢, which are de-

fined as

a= ZH Zf(:’ (23)
bl = ZZI;Ichpfp’ . (24)
b, =287, ‘ (25)
c=tIZ]7.f,. (26)

The power transmission into the system for passive vibration
isolation (q,=[0,0]") is given by ¢//2. The minimum of Eq.
(19) is given by

1 ‘
Power,;, = — E(ﬁTa‘lﬁ +c), 27)
corresponding to an optimum control force vector given by
Qc)ope=—0"'B. (28)

The derivation of the optimum control forces to mini-
mize squared power transmission can be achieved by follow-
ing the same process as above and has not been included
here. Readers are referred to Howard' for a complete deriva-
tion.

IV. DESCRIPTION OF THE EXPERIMENTAL SETUP

Figure 1 shows a picture of the experimental rig and Fig.
2 shows how the instruments were connected. A steel beam,
of dimensions 1.55 m long by 25 mm square, was mounted
between two knife edges which provided simply supported
end conditions. The six-axis force transducer, described in.
Howard,l was bolted to the beam, 0.75 m from the end of the
beam. Attached to the top of the force transducer was the
lower mass, which was used to support the end of the vibra-
tion isolator. The vibration isolator was a cylindrical poly-
urethane tube and inside the tube was a Ling Dynamics V203
shaker which provided a canceling force to counteract the
vibrations which passed through the outer tube. On top of the
vibration isolator was a solid-steel cylindrical mass which
weighed 7.4 kg. The control shaker was connected to the
rigid mass with a “stinger” that is stiff along the axis of the
shaker but is rotationally flexible. Five accelerometers were
attached to the beam to measure its residual vibration when
active control was applied. The five accelerometers were
used to measure the velocity of the beam and were mounted
at 0.30, 0.35, 0.40, 0.45, and 0.50 m from its end. For the
experimental system considered here, it was found that there
were three vibrational axes of greatest importance for power
transmission: vertical translation and two rotational axes
which did not include the drilling axis through the isolator.
Four accelerometers were attached to the six-axis force trans-
ducer and used to calculate the acceleration of the material
beneath the strain gauges, using the method described in
Howard.! The use of four accelerometers enables the mea-
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surement of translational motion and of rotational about one
axis. These four accelerometers were repositioned so that
motion about a second rotational axis could be measured.

Figure 2 shows how the instrumentation was connected..

All the transducers were connected to amplifiers which were
connected to the Briiel & Kjer Pulse System, which in turn
measured the transfer functions. The primary shaker was
connected to the top mass through a B&K force transducer,
which was used to measure the primary translational force,
and applied a harmonic force which swept in frequency be-
tween 5 Hz and 200 Hz.

The vibration isolation performance described here is
quantified by the change in the average of the squared veloc-
ity of the beam measured using five accelerometers. The av-
erage of the squared velocity of the beam is proportional to
the kinetic-energy (KE) of the beam. The true value of the
KE is calculated by the summation of an infinite number of
squared velocity measurements Over the length of the beam
to measure the translational and rotational accelerations,
multiplied by the mass of the beam, and has units of joules.
The metric used to describe the relative reduction in beam
vibration in the experimental results presented here is pro-
portional to the KE, as the mass term has been neglected, and
a finite number of accelerometers was used. This measure-

ment is not affected by phase errors and provides a reason-

able approximation of the global KE of the beam. It also
provides an independent measure of the isolation perfor-
mance. Comparisons of the isolation performance using a
single sensor, for example the acceleration at the base of the
isolator, do not provide a good measure because it is possible
to minimize the vibration at the sensor and increase the vi-
bration elsewhere on the supporting structure. Some of the
theoretical predictions and experimental results to follow are
limited in validity as only five accelerometers were used to
measure the average of the squared velocity. This limitation
is addressed when it is apparent that it affects the results.
The physical properties of the simply supported beam
and isolator system are shown in Table I and are used with
the theoretical analysis presented in Howard." The resonance

2008 J. Acoust. Soc. Am., Vol. 120, No. 4, October 2006

: /—-Primary Force Transducer

Strain Gauge
Amplifiers

Charge
Amplifiers

FIG. 2. (Color online) Setup of the instruments for the
experiment of the single axis isolator and the simply
supported beam.

frequencies of the simply supported beam, without the isola-
tor attached, were measured to be 29, 103, and 234 Hz.

V. EXPERIMENTAL RESULTS

In this section, the vibration isolation performance of an
active vibration isolation system when various cost functions
are minimized is compared with and without active control.
It should be noted that no attempt was made to optimize the
design of the polyurethane tube that provided passive vibra-
tion isolation. It is possible to obtain much higher vibration
isolation using a properly designed passive vibration isolator
than the results presented here. The isolation performance is
measured by monitoring the average of the squared velocity
of .the beam. The transfer function method, which was de-
scribed in Sec. III, was used to calculate the cost functions
and the average of the squared velocity of the beam.

A. No control

Figure 3 shows that the experimentally measured values
of power transmission into the beam do not match the theo-
retically predicted values. The difference is attributed to the
phase errors in the transducers. The phase accuracy of the
force transducer and accelerometer combination was mea-
sured to be about +20 ! Figure 4 shows that there is a random
+2° phase error of the relative phase angle between force and
displacement for theory and experiment. The difference in
phase angles between force and displacement is close t0
180°, which means that the difference between the force and
velocity would be very close to 90°, and hence the small

TABLE 1. Parameters used in the active isolator and beam system.

Beam length 1.550 m Beamwidth 0.025 m
Beam thickness 0.025 m Isolator location 0.750 m
Young’s modulus 207 GPa  Moment of inertia  1.6X 107 m*
Beam density 7800 kg/m®  Beam damping 748X 1076 sN/m
Tsolator stiffness k, 45870 N/m Isolator damiping c, 140 sN/m
Isolator stiffness kgy 216 N/rad Isolator damping cg 140 sN/rad
Top mass 74 kg Bottom mass 82 kg

C. Q. Howard and C. H. Hansen: Active vibration isolation
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_power transmission along the vertical Z axis for a vertical primary force of
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_errors in the phase measurements have led to the erroneous
-measurements of power transmission. Theoretical predictions
of the total power transmission were made when there was
an artificially imposed error in the relative phase between
orce and velocity of £2° and —2°, and the results are shown
Fig. 3. The results show that the theoretical predictions
ith the imposed phase errors appear similar to the experi-
entally measured results for power transmission.

. Active control

Theoretical predictions and experimental results are pre-
ented for the cases of with and without active isolation of a
ibrating rigid mass that is actively isolated from the beam.
t is theoretically possible to stop the vibration from the rigid
mass from reaching the simply supported beam if the pri-
mary force is exactly aligned with the control actuator. In
eality, this is difficult to achieve as there is usually a small
misalignment between the primary shaker and the centroid of
the rigid mass. For the theoretical results presented in this
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FIG. 5. (Color online) Theoretically predicted average of the squared veloc-
ity of the beam for no control, minimization of squared acceleration A2
along the vertical axis and the minimization of the sum of squared accelera-
tions AZ+A%, along the vertical and rotational axes.

section, it is assumed that there is 2 mm of misalignment, so
that the primary load on the top mass is F,=1 N and M,
=(0.002 Nm.

A reasonable approach to the active vibration isolation
of this system is to minimize the squared acceleration along
the vertical axis at the base of the isolator. Figure 5 shows
the theoretically predicted average of the squared velocity of
the beam for no control, minimization of squared accelera-
tion A along the vertical axis, and the minimization of the
sum of the squared accelerations A +A along the vertical
and rotational axes.

The minimization of the sum of the squared accelera-
tions Af +A”';,y along the vertical and rotational axes generally
results in smaller reductions in the average of the squared
velocity of the beam than the minimization of squared accel-
eration Af along the vertical axis. At first glance this result
appears to be counterintuitive, as controlling two axes might
be expected to produce better results than controlling one
axis. However, when minimizing the sum of the squared ac-
celerations Af +A§y there are two error sensors and one con-
trol source so the cost function is overdetermined (n,>n,).
In this case, it is not possible to calculate a control force such
that the amplitude of both error signals will equal zero. In-
stead, the sum of the squared accelerations Az +A29y along the
translational and rotational axes is minimized by increasing
the squared acceleration along the vertical axis compared to
when minimizing only the squared acceleration Ag along the
vertical axis. The one exception where this resulted in better
performance was at 108 Hz, where it can be seen in Fig. 5
the reduction in average of the squared velocity of the beam
at the rotational resonance is greater when controlling the
sum of the squared accelerations along the vertical and rota-
tional axes than when controlling the squared acceleration
along the vertical axis.

In control systems which have more error signals than
control sources (n,>n,), it is possible to weight the contri-
butions of each error signal to the overall cost function, by
multiplying each error signal by a weighting factor, thus pro-
viding a mechanism to optimism the results. A large weight-
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ing factor places greater emphasis on the corresponding error
signal in the cost function. Cost functions which use a
weighted sum of the error signals are further discussed later
in this section.

An experiment was conducted to verify the theoretical
predictions shown in Fig. 5 and the results are shown in Fig.
6.

These experimental results confirm the two theoretical
predictions that: (1) in general the reduction in the average of
the squared velocity of the beam for minimization of the sum
of the squared accelerations along the vertical and rotational
axes is less than that obtained by minimizing the squared
acceleration along the vertical axis; and (2) the reduction in
average of the squared velocity of the beam at the rotational
resonance is greater when the sum of the squared accelera-
tions along the vertical and rotational axes is minimized than
when only the squared acceleration along the vertical axis is
minimized.

Figures 5 and 7 show the limitation of using only five
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FIG. 7. (Color online) Theoretically predicted average of the squared veloc-
ity of the beam (using 14 accelerometers) for no control, minimization of

" squared acceleration AZ“ along the vertical axis and the minimization of the
sum of the squared accelerations A§+A25), along the vertical and rotational
axes.
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FIG. 8. (Color online) Theoretical signal levels of squared velocity and
squared force with the squared force multiplied by a factor of 4
=108 s?/kg”.

accelerometers to measure the average of the squared veloc-
ity of the beam. Figure 5 shows that at 95 and 115 Hz the
average of the squared velocity for the minimization of the
sum of the squared accelerations along the vertical and rota-
tional axes is lower than that obtained for the minimization
of squared acceleration along the vertical axis. Figure 7
shows the same theoretical predictions as Fig. 5, but this
time ten accelerometers mounted along the beam and four on
the force transducer were used to calculate the average of the
squared velocity of the beam. The theoretical results in Fig. 7
show that by using 14 accelerometers to measure the average
of the squared velocity of the beam, the isolation perfor-
mance at 95 and 115 HZ when minimizing the sum of the
squared accelerations A§+A2‘9y along the vertical and rota-
tional axes is similar to minimizing the squared acceleration
Az along the vertical axis. The power transmission spectrum
can be related to the KE spectrum by a frequency-dependent
function as shown by Pavi¢.?

1. Weighted sum of force and velocity

It has been suggested by Gardonio ez al.® that the mini-
mization of a weighted sum of the squared velocity and
squared force along the vertical axis will have a similar result
to the minimization of total power transmission. The purpose
of using a weighted sum of squared velocity and squared
force is to adjust the signal levels to be a similar order of
magnitude. Figure 8 shows that when the theoretically pre-
dicted value of squared force is reduced in amplitude by
multiplying by 1078 s?/kg? it has a similar signal level to the
theoretically predicted squared velocity. Figure 9 shows the
corresponding experimentally measured squared velocity
signal and the experimentally measured squared force signal
multiplied by u=10"8 s?/kg?.

Tt can be seen in Figs. 8 and 9 that the squared velocity
signal level is greater than the weighted squared force signal,
except in the frequency range between about 150 and
170 Hz. It is then reasonable to expect that the predictEd
theoretical and experimental results of the minimization ©
the weighted sum of squared velocity and squared force
should follow the response of the squared velocity except m
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FIG. 9. (Color online) Experimental results of scaling the squared force
gnal to be a similar order of magnitude as the squared velocity signal.

the frequency range between 150 and 170 Hz, where is
hould follow the results for the minimization of the squared
orce.

Figure 10 shows the theoretically predicted average of
he ‘squared velocity of the beam for no control, minimiza-
jon of squared velocity Vf, minimization of squared force
F2 and the minimization of the weighted sum of squared
elomty and squared force V2+uF2, where u=10"8 s?/kg?.

.. An experiment was conducted to verify the results from
ig. 10 and the results are shown in Fig. 11. These results
how that there is some improvement in results when the
minimization of the weighted sum of squared velocity and
quared force is used rather than the minimization of squared
cceleration.

Gardonio et al® suggested minimizing the weighted sum
f squared velocity and squared force along the vertical axis.
Another possibility is to minimize the weighted sum of the
quared velocities along translational and rotational axes,
squared forces and squared moments. Figure 12 shows the
xperimentally measured average of the squared velocity of
the beam for no control, the minimization of squared veloc-
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1G. 10. (Color online) Theoretically predicted average of the squared ve-
ocity of the beam for no control, minimization of squared velocity V2 along
vertical axis, minimization of squared force along the vertical axis F~
and the minimization of the weighted sum of V +uF? - the squared Veloc1ty
squared force where u=10"% s?/kg
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FIG. 11. (Color online) Experimental results of the average of the squared
velocity of the beam for no control, minimization of squared velocity along
the vertical axis V2 minimization of squared force F2 a]ong the vertical axis
and the minimization of the weighted sum of V'+,uF “ the squared velocity
and squared force.

ity along the vertical axis, and the minimization of the
weighted sum of V2 (sum of the squared velocities along the
vertical axis V2 and around the rotational axis V2 ) and F2
(the sum of the squared force along the vertical ax1s F? and
the squared moment Mi). The minimization of V>+ ,u,F?, the
weighted sum of squared velocities, squared forces, and
squared moments along translational and rotational axes, re-
sults in slightly better vibration isolation performance than
Vf+ MF? the weighted sum of the squared velocity and
squared force along the vertical axis.

2. Signed power transmission

The results from Howard et al.” show that active control
using signed power transmission as a cost function to be

- minimized will converge to a negative value if moments are

present and could result in the overall vibration response of
the receiving structure being greater than it was with only
passive isolation. Signed power transmission is a measure of
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FIG. 12. (Color online) Experimental results of the average of the squared
velocity of the beam for no control, minimization of the weighted sum of
V2+ ME 2 the squared velocity and squared force along the vertical axis and
the minimization of the weighted sum of V + ,u,F‘ squared velocities,
squared forces and squared moments along translatlonal and rotational axes.
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FIG. 13. (Color online) Theoretically predicted average of the squared ve-
locity of the beam for no control, minimization of signed power transmis-
sion P, along the vertical axis and when there is =2° phase error.

power transmission that takes into account its direction: posi-
tive from the vibration source to the support structure and
negative for the opposite direction. Minimizing signed power
transmission results in the most negative value being opti-
mum. It has been of concern to researchers that small phase
errors in the measurement of power transmission can corrupt
its true measure such that attempts to reduce vibration trans-
mission using active vibration control, with signed power
transmission as a cost function, will be unsatisfactory.
Figure 13 shows a theoretical prediction of the approxi-
mated average of the squared velocity of the beam for no
control and minimization of signed power transmission and
the minimization of signed power transmission when there is
a random +2° phase error. A phase error between +2° was
applied to the transfer function measurement between the
force response of the structure and the primary load Zy, and
another phase error between =2° was applied to the transfer
function measurement between the force response of the
structure and the force applied by the control actuator Zg,.
The use of two different values of phase error for the primary
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FIG. 14. (Color online) Experimental results of the average of the squared
velocity of the beam for no control, minimization of A? and minimization of
the signed power transmission P..
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FIG. 15. (Color online) Theoretically predicted average of the squared ve-
locity of the beam for no control, minimization of the sum of P.+Py, the
signed power transmission along the vertical axes and when there is %2°
phase error.

and control actuator responses simulates a random phase er-
ror that varies with time.

" The theoretical result in Fig. 13 shows that the minimi-
zation of signed power transmission along a vertical axis
with a small phase error will produce unsatisfactory results.
This was confirmed in an experiment as shown in Fig. 14.

Similar results occur when the signed total power trans-
mission is minimized. Figure 15 shows the theoretical ap-
proximate average of the squared velocity of the beam when
the signed power transmission along both the vertical axis
and the rotational axis are minimized for an accurate mea-
surement of power and when there is a +2° phase error in the
measurement of force. Figure 16 shows the corresponding
experimental result.-

The results presented in Figs. 13-16 verify that attempts
to minimize signed power transmission along either a verti-
cal axis or along the sum of the vertical and rotational axes
will be limited by the phase accuracy of the transducers. This
result agrees with the comments by Henriksen™* and Gar-
donio et al®
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FIG. 16. (Color online) Experimental results of the average of the squared
velocity of the beam for no control, minimization of Ag' and minimization of
the sum of the signed power transmission P, and Pg,.

C. Q. Howard and C. H. Hansen: Active vibration isolation




0.57

05 | \\
AN
L

-1 -0.8

© Imaginary Cohtrol Force (N}

06 04 02 0 02
Real Control Force (N)

FIG. 17. Contour plot of the theoretical squared power transmission Pg

1 ng along the vertical and rotational axes with no phase error. The white
dot shows the control force which minimizes the squared total power trans-
mission. Power transmission is inversely proportional to the darkness of the

3. Squared power transmission

The results from Howard® show that the minimization of
squared power transmission gives results better than the
minimization of signed power transmission when negative
values of signed power transmission are possible, even
though random phase errors also cause an error in the mea-
surement of squared power transmission. The theoretical
model can be used to show the effect of phase errors on the
solation performance for the minimization -of squared power
transmission. Figure 17 shows a contour plot of the squared
otal power transmission at 100 Hz for the theoretical model
when transducers have no phase errors. The shading indi-
cates constant levels of squared power transmission, and
darker shading indicates values that are closer to zero. The
axes are the real and imaginary parts of the control force, and
the white dot at the center of the rings corresponds to the
value of the control force which minimizes the squared total
power transmission. This result shows that if the transducers
had no phase errors, then the error surface would resemble a
parabolic bowl. If the transducers have phase errors then the
error surface will not have a unique global minimum but will
have an infinite number of solutions for the control force
which will minimize the erroneous measure of squared
power transmission, as shown in Fig. 18 as the dark ring.
Figure 18 shows a white dot which is at the same location as
he white dot in Fig. 17. This is the control force which an
adaptive controller should converge towards. The error sur-
face shown in Fig. 18 resembles a parabolic bowl with an
Inverted bowl at the center of the parabola. Figure 19 shows
a close-up of Fig. 18 around the control force which mini-
mizes the total power transmission with no phase error. Fig-
ure 19 shows that the control force which minimizes the true
value of squared total power transmission does not lie on the
ring of solutions which minimizes the erroneous measure of
 Squared total power transmission. Obviously an adaptive
_ Controller should converge towards the true value, but the
controller could converge to any solution on the dark ring
shown in Fig. 18. The controller needs to be guided towards
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FIG. 18. Contour plot of the theoretical squared power transmission Pg
+P§y along the vertical and rotational axes with a £2° phase error. The white
dot shows the control force which minimizes the squared total power trans-
mission with no phase error. Power transmission is inversely proportional to
the darkness of the contour. Minimum power transmission is represented by
the black ring.

the true value. Figure 19 also shows the control force which
minimizes the squared acceleration along the vertical Z axis,
which has a value near to the control force which minimizes
the true value of squared total power transmission. An adap-
tive controller could be guided towards minimizing the
squared acceleration, which will start the adaptation process
in the correct direction towards minimizing the true value of
squared power transmission. Once the controller had mini-
mized the cost function of squared acceleration, the cost
function was altered so that'it minimized the squared power
transmission. This technique was used here and the control
force which was calculated is shown in Fig. 19 as a white dot
which lies on the ring of solutions where the squared total
power transmission (with phase errors) equals zero. These
same three solutions for the control force are shown in Fig.
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FIG. 19. Contour plot of the theoretical squared power transmission Pf
+P29y along the vertical and rotational axes with a £2° phase error showing
the three different control forces which minimize the squared acceleration
along the vertical axis, the squared total power transmission with no phase
error, and the squared total power transmission with +2° phase error. Power
transmission is inversely proportional to the darkness of the contour. Mini-
mum power transmission is represented by the black ring.
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FIG. 20. Contour plot of the theoretical squared power transmission Pj:
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three different control forces which minimize, respectively, the squared ac-
celeration along the vertical axis, the squared total power transmission with
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20, where the contours show the true value of total power
transmission, that is with no phase error. The control force
which is closest to the control force which minimizes the
true value of the squared total power transmission is the bet-
ter solution. In this case the control force which minimizes
the squared acceleration along the vertical axis and the con-
trol force which minimizes the squared total power transmis-
sion with phase errors have about the same value of total
power transmission as they are both on the same contour
level. -

It is not possible to experimentally demonstrate this phe-
nomenon as the force transducers and accelerometers used in
the experiments have phase errors and cannot be compared
with an experiment without phase errors. It is possible to
experimentally demonstrate the technique described above
where the adaptation is guided towards the minimization of
squared acceleration. Figure 21 shows the experimental re-
sults for the average of the squared velocity of the simply
supported beam when the adaptive controller starts to mini-
mize the squared power transmission along the vertical Z
axis from zero control force and when the controller starts
from a control force which minimizes the squared accelera-
tion along the vertical Z axis. This result confirms that the
controller must be guided towards minimizing the true value
of total power transmission (with no phase error).

The results which follow, in which squared power trans-
mission has been minimized, were obtained using this tech-
nique to initially guide the solution towards minimizing the
squared acceleration.

Figure 22 shows the theoretically predicted average of
the squared velocity of the beam for no control, when the
squared power transmission P? along the vertical axis is
minimized, and when the sum of the squared power trans-
mission P?+P%,y along the vertical and rotational axes is
minimized when there is a random #2° phase error. This
result shows that phase errors associated with the measure-
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FIG. 21. Experimentally measured average of the squared velocity of the
beam when the adaptive controller starts to minimize the squared power
transmission along the vertical axis from zero control force and when the
adaptation starts from the minimization of squared acceleration A2

ment of power will not greatly affect the minimization of
squared power transmission. This prediction was confirmed
by experiment as shown in Fig. 23. It can be seen that the
minimization of squared power transmission along the verti-
cal and rotational axes results in a lower average of the
squared velocity of the beam at the rotational resonance of
108 Hz.

Another experiment was conducted for the case where

“the rigid mass was excited along both the vertical axis and

the horizontal axis aligned with the beam. The results from
these experiments are not presented as they are similar to
those described above, except that the peak corresponding to
the rotational resonance at 108 Hz is larger for both the con-
trolled and uncontrolled cases.

Figure 24 shows that the cost functions considered so far
provide similar levels of vibration isolation. However, the
greatest vibration isolation obtained by the minimization of
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FIG. 22. (Color online) Theoretical prediction of the average of the squareé
velocity of the beam for no control, minimization of squared acceleration A;’
along the vertical axis, minimization of squared power transmission P;
along the vertical axis with a random +2° phase error and the minimization
of the sum of the squared power transmissions P§+P§‘, along the vertical
and rotational axes with a random +2° phase error. ’
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FIG. 23. (Color online) Experimental results of the average of the squared
velocity of the beam for no control, minimization of squared acceleration Af
along the vertical axis, minimization of squared power transmission P?,
along the vertical axis and the minimization of the sum of the squared power
transmissions P§+P§y along the vertical and rotational axes.

the weighted sum of squared velocity and force along trans-
lational and rotational axes was slightly better than that ob-
tained using the other cost functions.

VI. CONCLUSIONS

A novel transducer was used to investigate the effective-
ness of various cost functions for actively minimizing the
‘transmission of vibration from a vibrating rigid mass to a
simply supported beam. The active isolator was intended to
control vibration transmission only along the vertical axis,
and the transducer was used as an error sensor allowing
‘minimization of vibration along any translational or rota-
tional axis or combination of axes. The effectiveness of each
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FIG. 24, (Color online) Experimental results of the average of the squared
Velocity of the beam for no control, minimization of squared acceleration Af
ong the vertical axis, minimization of the sum of the squared power trans-
- Missions P5+P2, along the vertical and rotational axes, minimization of the
eighted sum of V§+,LLF§, the squared velocity and force along the vertical
is and the minimization of V,2+ ,u,Ff, the weighted sum of squared veloci-
lies, forces, and moments along translational and rotational axes.
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cost function was evaluated by measuring the vibration lev-
els in the simply supported beam which acted as the receiv-
ing structure. v

The experimental results showed that the minimization
of the signed value of power transmission was ineffective in
minimizing the vibration transmitted into the simply sup-
ported beam, which was due to insufficient phase accuracy of
the transducer used to derive the signed power transmission
for the error signal for the controller. Theoretical predictions
were made which included random phase errors for the error
transducer, and these predicted results were comparable to
the measured experimental results. The results obtained by
minimizing the squared value of power transmission were an
improvement over those obtained by minimizing the signed
value of power transmission. However, the phase accuracy of
the transducer stili limited the maximum vibration attenua-
tion that could be achieved. Although the measurement of
total vibrational power transmission is theoretically appeal-
ing because the vibrational energy from the contribution of
translational and rotational vibration uses consistent units of
watts, this metric will unfortunately always be limited by the
phase accuracies of the transducers used to determine power
transmission.

The best vibration isolation performance was obtained
from the minimization of the weighted sum of the squared
translational forces and velocities and squared rotational mo-

" ments and velocities. This cost function is not limited by the

phase accuracies of the transducers and hence it is more
practical than the measurement of vibrational power trans-
mission. Similar results have been shown for the acoustic
equivalent where energy density sensing has been shown to
be more practical than the minimization of sound intensity.*
The combined force, moment, and velocity signals had to be
weighted appropriately so that the amplitude of each signal
was similar, so as not to favor the attenuation of one vibra-
tion along or around one axis over that corresponding to
another axis. The appropriate weighting factor is a function
of the structural impedance measured at the error transducer.

It can be justifiably claimed that the adjustment of the
signal amplitudes constitutes the creation of an artificially
optimum cost function, whereas the cost function of the total
vibrational power transmission is independent of the system
configuration under investigation. Although there is elegance
in the academic power transmission approach, the use of
squared force and velocity signals is a realizable and much
more practical solution.
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