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Renormalized effective actions in radially symmetric backgrounds: Partial wave cutoff method
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The computation of the one-loop effective action in a radially symmetric background can be reduced to
a sum over partial-wave contributions, each of which is the logarithm of an appropriate one-dimensional
radial determinant. While these individual radial determinants can be evaluated simply and efficiently
using the Gel’fand-Yaglom method, the sum over all partial-wave contributions diverges. A renormal-
ization procedure is needed to unambiguously define the finite renormalized effective action. Here we use
a combination of the Schwinger proper-time method, and a resummed uniform DeWitt expansion. This
provides a more elegant technique for extracting the large partial-wave contribution, compared to the
higher-order radial WKB approach which had been used in previous work. We illustrate the general
method with a complete analysis of the scalar one-loop effective action in a class of radially separable
SU(2) Yang-Mills background fields. We also show that this method can be applied to the case where the
background gauge fields have asymptotic limits appropriate to uniform field strengths, such as, for
example, in the Minkowski solution, which describes an instanton immersed in a constant background.
Detailed numerical results will be presented in a sequel.

DOI: 10.1103/PhysRevD.74.085025 PACS numbers: 12.38.�t, 11.15.Ha

I. INTRODUCTION

In the study of quantum field theories, one is often led to
consider the one-loop effective action in nontrivial back-
ground fields. While the renormalization counterterm
structure of one-loop effective actions can readily be ex-
hibited for general backgrounds, the explicit evaluation of
its full finite part in an interesting specific background still
constitutes a highly nontrivial problem. For gauge theories,
explicit analytic results are known only for very special
backgrounds: the Euler-Heisenberg effective action for a
background with constant Abelian field strength [1–3], its
generalization to a non-Abelian covariantly constant back-
ground [4–7], and a special solvable Abelian background
[8–11]. For applications in both continuum and lattice field
theory, one would like to enlarge this set of backgrounds
for which we have accurate computations of the finite
renormalized effective action.

In a series of recent publications (together with Hyunsoo
Min) [12], we presented a new method for computing the
renormalized one-loop effective action in a radially sym-
metric non-Abelian background, and used it to evaluate
explicitly the QCD single-instanton determinant for arbi-
trary quark mass values. The related computation in the
massless limit was performed in a classic paper of ’t Hooft
[13], while the heavy quark mass limit was studied in
[14,15]. The new method in [12] works for any quark
mass, not relying on small or large mass expansions, and

the result interpolates smoothly and precisely between
these two extremes. In this paper we present the general
formalism, and we introduce a simplified analysis based on
a uniform Schwinger-DeWitt expansion, replacing the
higher-order radial WKB analysis used in [12,16]. This
approach has also been used to evaluate the exact determi-
nant prefactor in false vacuum decay (or nucleation) [17].
Related techniques have been developed for a variety of
field theoretic applications, including sphalerons [18,19]
and false vacuum decay [20,21], and the relation between
the renormalization procedure in our partial-wave cutoff
method and these Feynman diagrammatic approaches is
explained in [22], where a zeta function approach to the
determinant of a radially symmetric Schrödinger operator
is also given. Finally, we note that another related method
has recently been applied to the two-dimensional chiral
Higgs model [23].

The starting idea is very simple. If the background field
is radially symmetric, the effective action � can be ex-
pressed formally in terms of one-dimensional functional
determinants of radial differential operators for various
partial waves. Explicitly, writing J for all quantum num-
bers specific to a given partial wave, it has the general
structure

 ��
X1
J�0

ln
�

det�H J �m2�

det�H free
J �m2�

�
: (1.1)

Here H J, the radial Schrödinger-type differential operator
for the Jth partial wave, contains a nontrivial (background-
dependent) potential term, while H free

J is the correspond-
ing free operator. In general, there will also be appropriate
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degeneracy factors in the sum. For a given partial wave J,
the individual determinant is finite once we divide by the
corresponding ‘‘free‘‘ contribution. These finite one-
dimensional determinants can be evaluated easily using
the Gel’fand-Yaglom method [24–30], which reduces the
computation to a trivial (numerical) integration with initial
value boundary conditions.

The nontrivial aspect of this approach is that the sum
over partial waves J diverges (in spacetime dimension
d � 2). This is of course because the formal sum in (1.1)
neglects renormalization. We solve this problem by intro-
ducing a partial-wave cutoff JL, and we isolate the diver-
gence of the sum in a form that can be absorbed via
renormalization. Specific details are presented in the
body of this paper, but the general structure is that we write
the sum as

 � �
XJL
J�0

ln
�

det�H J �m
2�

det�H free
J �m2�

�

�
X1
J>JL

ln
�

det�H J �m
2�

det�H free
J �m2�

�
� �counterterm�: (1.2)

The finite, renormalized effective action is then evaluated
as follows:

(i) The first sum is evaluated numerically using the
Gel’fand-Yaglom method.

(ii) The second sum is evaluated analytically in the
large JL limit, after regulating the determinants.
This step uses our uniform Schwinger-DeWitt ex-
pansion and Euler-Maclaurin summation.

(iii) The analytic large JL behavior of the regulated
determinants leads to the correct renormalization
counterterm, and moreover cancels exactly the nu-
merical divergences of the first sum as JL ! 1.
This produces a finite renormalized answer.

The technically difficult part of the computation is the
analytic computation of the large JL behavior of the second
sum in (1.2). This was achieved in [12] using second-order
radial WKB, based on Dunham’s formula [31]. While this
is very general, it can be quite cumbersome for compli-
cated background fields. In this paper we present a simpler
method to implement this part of the computation. The
analysis reduces to simple algebraic manipulations, and
can be more readily generalized. With this new approach
we can now evaluate exactly the finite renormalized effec-
tive action for a very general class of radially symmetric
backgrounds. In fact, with a background field involving an
unspecified radial function, the large partial-wave contri-
bution to the renormalized effective action can now be
evaluated explicitly. This will be important to discuss the
background-field dependence of the effective action and
also to test various approximation schemes.

This paper is organized as follows. In Sec. II we define
the renormalized one-loop effective action for the case of a
scalar field in a class of spherically symmetric Yang-Mills

background fields, assuming four-dimensional Euclidean
spacetime. Its Schwinger proper-time representation [2] is
given. The full amplitude is then expressed using partial-
wave amplitudes, and we also elaborate here on the role of
the two kinds of proper-time Green functions, one related
to the quadratic differential operator given in 4D spacetime
and the other for the radial quadratic differential operator.
In Sec. III we explain how the large-l partial-wave con-
tribution to the full effective action can be evaluated ex-
plicitly using a generalized DeWitt WKB expansion for the
radial proper-time Green function (i.e., the 1

l -expansion)
and the Euler-Maclaurin summation method. This allows
us to present the renormalized one-loop effective action (in
the class of spherically symmetric backgrounds) in a form
amenable to direct numerical analysis. In Sec. IV we show
that our 1

l -expansion formula can be applied to the calcu-
lation of the large partial-wave contribution even when
background gauge fields do not fall off at large distance
but approach those of uniform field strength. Also given
here is the exact partial-wave-based treatment of the effec-
tive action in the background corresponding to strictly
uniform self-dual field strengths. In Sec. V we conclude
with some relevant discussions and comments. There are
several appendices which contain supplementary materials
and some technical details. In Appendix A the explicit
form of the free radial proper-time Green function in n
spacetime dimension is considered. In Appendix B we
study the coefficient functions in the 1

l -expansion when
the potential is matrix-valued. Appendix C contains a brief
account of the Euler-Maclaurin summation formula, and
some explicit results obtained using this formula in con-
nection with our problem. In a sequel we will address
matrix-valued problems in more detail, and present de-
tailed numerical results for the general radial cases for
which the formalism is developed in this current paper.

II. EFFECTIVE ACTION IN RADIALLY
SYMMETRIC BACKGROUNDS

A. Renormalized effective action

We choose for our field theory model an SU(2)
Euclidean Yang-Mills theory with a complex scalar matter
field (in the fundamental representation), in four-
dimensional spacetime. As far as our general methodology
is concerned, the model choice is not crucial; but, by
choosing this case, we are able to crosscheck readily the
findings of the present work against those of Refs. [12,16].
The case with Dirac fields is quite similar if one works with
the squared Dirac operator. Also, by considering a gauge
theory (rather than the much simpler scalar field theory),
we can demonstrate the gauge invariance of our calcula-
tional method for the renormalized effective action.

Consider a generic Yang-Mills background: A��x� �
Aa��x� �

a

2 (� � 1, 2, 3, 4, a � 1, 2, 3; �’s denote 2	 2
Pauli matrices). The Pauli-Villars regularized one-loop

GERALD V. DUNNE, JIN HUR, AND CHOONKYU LEE PHYSICAL REVIEW D 74, 085025 (2006)

085025-2



effective action associated with scalar field fluctuations can
be represented by

 ���A;m� � ln
�

det��D2 �m2� det��@2 ��2�

det��@2 �m2� det��D2 ��2�

�
; (2.1)

where m is the scalar mass, � a heavy regulator mass, and
D2 the covariant Laplacian operator

 D2 � D�D�; �D� � @� � iA��x��: (2.2)

The Schwinger proper-time representation for the form
(2.1) is

 ���A;m� � �
Z 1

0

ds
s
�e�m

2s � e��2s�F�s�; (2.3)

with F�s� given by (s is the proper-time variable)

 F�s� �
Z
d4x trhxjfe�s��D

2� � e�s��@
2�gjxi: (2.4)

The proper-time Green’s function

 ��x;x0; s� � hxje�s��D
2�jx0i; (2.5)

admits an asymptotic expansion, the DeWitt (or heat ker-
nel) expansion [32,33]:
 

hxje�s��D
2�jx0i �

1

�4�s�2
e�jx�x0j2=4s

�X1
n�0

snan�x;x0�
�
;

for s! 0� : (2.6)

The expansion coefficients, an�x;x0� �n � 0; 1; 2; . . .�, and
especially the coincidence limits an�x;x� of the first few
terms, can be found most simply using recurrence relations
satisfied by the an�x;x0�’s. The divergence structure of
���A;m� as �! 1 is governed by the values of
tr a1�x;x� and tr a2�x;x�, and in our case we have [32,33]
 

tr a1�x;x� � 0;

tr a2�x;x� � �
1

12
tr
F���x�F���x��;

(2.7)

where F�� � Fa��
�a
2 � i
D�;D�� is the field strength.

Then the renormalized one-loop effective action in the
minimal subtraction scheme is defined as

 �ren�A;m� � lim
�!1

�
���A;m� �

1

12

1

�4��2
ln
�
�2

�2

�

	
Z
d4x tr
F���x�F���x��

�
; (2.8)

where � is the renormalization scale.

B. Radial backgrounds

It is a very difficult problem to explicitly evaluate this
renormalized effective action (2.8). For a generic back-
ground gauge field A��x�, there is currently no known
method leading to an exact evaluation of the one-loop

effective action. On the other hand, there are many inter-
esting physical applications (e.g., vortices, monopoles,
instantons, . . .) where the gauge background is radially
symmetric. In this paper we show that this radial symmetry
is strong enough to permit the computation of the renor-
malized effective action (2.8).

A large class of such radial backgrounds is covered by
the ansatz form:
 

A��x� � 2���ax�f�r�
�a

2
� 2���3x�g�r�

�3

2
;

�r � jxj �
�����������
x�x�
p

�; (2.9)

where the radial functions f�r� and g�r� are left unspeci-
fied, and ���a �a � 1; 2; 3� denote the standard ’t Hooft
symbols [13]. With A��x� of the form (2.9), the covariant
Laplacian operator �D2 becomes (here �a

2 � Ta)

 �D2 � �@�@� � 4if�r����aTax�@�

� 4ig�r����3T3x�@�

� 4f�r�2���a���bTaTbx�x�

� 4g�r�2���3���3T2
3x�x�

� 8f�r�g�r����a���3TaT3x�x�: (2.10)

We may then define [13] the operators La � �
i
2���ax�@�

(satisfying angular-momentum commutation relations

La; Lb� � i�abcLc) and use the relations

 ���a���b � �ab��� � �abc���c; TaTa �
3

4
1;

�@�@� � �
@2

@r2 �
3

r
@
@r
�

4

r2
~L2; � ~L2 � LaLa�

(2.11)

to recast the expression (2.10) as

 �D2 � �
@2

@r2 �
3

r
@
@r
�

4

r2
~L2 � 8f�r� ~T � ~L

� 8g�r�T3L3 � r2f3f�r�2 � g�r�2 � 2f�r�g�r�g:

(2.12)

Based on this form, we may associate an infinite number of
partial-wave radial differential operators with the given
system. We distinguish between three important cases.

1. Case 1: g�r� � 0, but f�r� � 0

Suppose that g�r� � 0, but f�r� � 0. This is the form
relevant to the instanton computation in [12,13]. Then
A��x� is given by the first piece only on the right-hand
side of (2.9). Then, noting that there exists another set of
angular-momentum-like operators �La � �

i
2 ����ax�@�

(satisfying 
La; �Lb� � 0 and �La �La � LaLa � ~L2) [13],
partial waves can be specified by the quantum numbers
J1 � �l; j; j3; �l3�, where

RENORMALIZED EFFECTIVE ACTIONS IN RADIALLY . . . PHYSICAL REVIEW D 74, 085025 (2006)

085025-3



 

� ~L2�0 � l�l� 1�; l� 0; 1
2;1;

3
2; . . . ;

� ~J2�0 � j�j� 1�; �with Ja � La� Ta�; j� jl 1
2j;

�J3�
0 � j3 ��j;�j� 1; . . . ; j;

� �L3�
0 � �l3 ��l;�l� 1; . . . ; l: (2.13)

The radial differential operator, representing �D2 in the
given partial-wave sector, thus assumes the form

 H J1
� �D2

�l;j�

� �@2
�l� � 4f�r�
j�j� 1� � l�l� 1� � 3

4�

� 3r2f�r�2; (2.14)

where @2
�l� is the partial-wave form of the free Laplacian

@�@�:

 @2
�l� �

@2

@r2 �
3

r
@
@r
�

4

r2 l�l� 1�: (2.15)

2. Case 2: f�r� � 0, but g�r� � 0

The system with f�r� � 0, but g�r� � 0, is simpler:
here, partial waves are specified by the quantum numbers
J2 � �l; l3; t3; �l3�, where �L3�

0 � l3 � �l;�l� 1; . . . ; l
and �T3�

0 � t3 � 
1
2 . In this case, the radial differential

operator becomes

 H J2
� �D2

�l;l3;t3�
� �@2

�l� � 8g�r�l3t3 � r
2g�r�2:

(2.16)

3. Case 3: both f�r� and g�r� nonvanishing

The situation is somewhat more complicated if both f�r�
and g�r� are nonvanishing, since �D2 will then be non-
diagonal in either basis considered above. This case can be
treated by allowing partial-wave sectors themselves to be
finite-dimensional vector spaces. Explicitly, taking a par-
tial wave specified by the quantum numbers J3 � �l; j3; �l3�,
we can represent the operator T3L3 according to

 

T3L3 $

j2
3

2l�1�
1
4 � j3

2l�1

��������������������������
�l� 1

2�
2 � j2

3

q
� j3

2l�1

��������������������������
�l� 1

2�
2 � j2

3

q
�

j2
3

2l�1�
1
4

0B@
1CA; if j3 � �l�

1

2
; � � � ; l�

1

2

T3L3 $
1

2
l; if j3 � 

�
l�

1

2

�
; (2.17)

where the 2	 2 matrix, appearing when jj3j � l� 1
2 , is defined relative to the basis vectors jj � l 1

2i. This allows us to
represent �D2 in the given partial wave by the (matrix) radial differential operator

 H J3
� �D2

�l;j3�
�

�
�@2

�l� �W�r� � Z�l;j3�
; if j3 � �l�

1
2 ; . . . ; l� 1

2

�@2
�l� �W�r� � 4lf�r� � 4lg�r�; if j3 � �l�

1
2�;

(2.18)

where

 W�r� � r2f3f�r�2 � g�r�2 � 2f�r�g�r�g; (2.19)

 Z�l;j3�
�

4lf�r� � 8�
j2

3

2l�1�
1
4�g�r� � 8j3

2l�1

��������������������������
�l� 1

2�
2 � j2

3

q
g�r�

� 8j3

2l�1

��������������������������
�l� 1

2�
2 � j2

3

q
g�r� �4�l� 1�f�r� � 8� j3

2l�1�
1
4�g�r�

0B@
1CA: (2.20)

The Gel’fand-Yaglom method has a straightforward gen-
eralization [29] to matrix-valued operators, so the numeri-
cal part of the computation follows as before. Such matrix-
valued radial operators have in fact been considered in
[23], and also occur naturally when considering fluctua-
tions of a Dirac-spinor matter field in a radially symmetric
background.

An interesting subclass of these radial backgrounds
consists of those that are self-dual (or anti-self-dual).
Such gauge fields satisfy automatically the classical
Yang-Mills field equations, and as such they are of par-
ticular importance. With our potential form in (2.9), such
self-dual or anti-self-dual configurations are obtained if
certain special functional forms are chosen for f�r� and

g�r�. Explicitly, for self-dual configurations, the following
choices can be made:

(i) f�r� � 1
r2�	2 , g�r� � 0 (i.e., A� � ���a

x�
r2�	2 �a)

for a single-instanton solution in the regular gauge;
(ii) f�r� � 0, g�r� � � B

2 � const (i.e., A� �
����ax

� B
2 �

a) for a uniform self-dual field
strength background;

(iii) f�r� � b
sinh
b�r2�	2��

, g�r� � b tanh
b2 �r
2 � 	2�� for

the so-called Minkowski solution [34] which de-
scribes a single instanton immersed in a uniform
background.

Note that the Minkowski solution reduces to the case (i) or
(ii) in appropriate limits. Anti-self-dual solutions may be
obtained for the choice f�r� � 	2

r2�r2�	2�
, and g�r� � 0 (i.e.,
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A� � ���a
x�	2

r2�r2�	2�
); this corresponds to a single anti-

instanton in the singular gauge. With any of these classical
solutions chosen as the background, our discussion above
tells us that the operator �D2 can be written in the partial-
wave expanded form. In particular, in the case of the
Minkowski solution for which both f�r� and g�r� are non-
vanishing, the related partial-wave differential operator
will take a 2	 2 matrix form.

But, in the following analysis, it will be sufficient to
assume that our background potentials are just of the radial
form (2.9)—i.e., they do not have to satisfy classical field
equations.

C. Partial-wave decomposition of effective action

Taking advantage of this radial symmetry, we can make
a partial-wave decomposition in (2.4):

 F�s� �
X
J

FJ�s�; (2.21)

where

 FJ�s� �
Z 1

0
dr trf~�J�r; r; s� � ~�free

J �r; r; s�g: (2.22)

The proper-time radial Green’s function for each partial
wave J is defined as

 

~� J�r; r0; s� � hrje�s
~H J jr0i; (2.23)

in terms of the radial operator

 

~H J �
1

r3=2
H Jr3=2 � �

d2

dr2 � VJ�r�: (2.24)

Note that we have extracted a measure factor r3=2 in
writing ~H � r�3=2H r3=2. The form of the (possibly ma-
trix valued) radial potential VJ�r� depends on the specific
form of the gauge field entering the covariant Laplacian
operator. In each case, the effective radial partial-wave
potential VJ�r� contains a centrifugal term, having the
structure

 VJ�r� �
4l�l� 1� � 3

4

r2 �UJ�r�; (2.25)

where l is the half-integer valued quantum number in
(2.13).

The partial-wave-based representation of the regularized
effective action is

 ���A;m� � �
X
J

Z 1
0

ds
s
�e�m

2s � e��2s�

	
Z 1

0
dr trf~�J�r; r; s� � ~�free

J �r; r; s�g:

(2.26)

Then, for the explicit evaluation of the renormalized effec-
tive action given by (2.8), it is convenient to separate the
partial-wave sum into two parts [12,16]: (i) the sum over
partial waves with J � JL (here, JL is chosen such that it
may refer to some large l-value, l � L); and (ii) the re-
maining infinite sum involving all J > JL terms. In the first
contribution involving the finite J-sum, the regulator plays
no role in the limit �! 1, and so may be removed from
this sum. Based on this procedure, we can now write

 �ren�A;m� � �J�JL�A;m� � �J>JL�A;m�; (2.27)

with
 

�J�JL�A;m� � �
X
J�JL

Z 1
0

ds
s
e�m

2s
Z 1

0
dr

	 trf~�J�r; r; s� � ~�free
J �r; r; s�g

�
X
J�JL

lndet
� ~H J �m

2

~H
free
J �m2

�
; (2.28)

 

�J>JL�A;m� � �
X
J>JL

Z 1
0

ds
s
�e�m

2s � e��2s�FJ�s�

�
1

12

1

�4��2
ln
�
�2

�2

�Z
d4x tr�F��F���:

(2.29)

On the right-hand side of (2.28), lndet
� ~H J �

m2�=� ~H
free
J �m2��may well be replaced by lndet
�H J �

m2�=�H free
J �m2��, the two being the same. In our model

cases, we notice that not all quantum numbers in J are
relevant for our radial Green function �J�r; r0; s�. In view
of this, for the three possible forms of H J considered
above [see (2.14), (2.16), and (2.18)], we may express the
decomposition formula (2.21) in the more explicit forms:

 

Case 1: F�s� �
X
�i;j�

�2j� 1��2l� 1�F�l;j��s� �
X

l�0;1=2;1;...

�2l� 1��2l� 2�
F�l;j�l�1=2��s� � F�l�1=2;j��l�1=2���1=2���s��;

(2.30a)

Case 2: F�s� �
X

l�0;1=2;1;...

Xl
l3��l

X
t3�1=2

�2l� 1�F�l;l3;t3��s�; (2.30b)

Case 3: F�s� �
X

l�0;1=2;1;...

Xl�1=2

j3���l�1=2�

�2l� 1�F�l;j3�
�s�: (2.30c)
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Note that the degeneracy factors here contain a common factor (2l� 1) from the �l3-sum. Here, as the notations of (2.30a)–
(2.30c) are used, the designation J � JL or J > JL may be identified with the appropriate division in the values of the
quantum number l, i.e., J � JL when l � L (L is some, arbitrarily chosen, large value) and J > JL when l > L. For
example, the low partial-wave sum in (2.28) is expressed explicitly as
 

Case 1: �J�JL�A;m� �
XL
l�0

�2l� 1��2l� 2�
�
ln

det��D2
�l;l�1=2� �m

2�

det��@2
�l� �m

2 � ln
det��D2

�l�1=2;l� �m
2�

det��@2
�l�1=2� �m

2�

�
(2.31a)

Case 2: �J�JL�A;m� �
XL
l�0

Xl
l3��l

X
t3�1=2

�2l� 1� ln
det��D2

�l;l3;t3�
�m2�

det��@2
�l� �m

2�
(2.31b)

Case 3: �J�JL�A;m� �
XL
l�0

Xl�1=2

j3���l�1=2�

�2l� 1� ln
det��D2

�l;l3;t3�
�m2�

det��@2
�l� �m

2�
: (2.31c)

The low partial-wave contribution, �J�JL , in (2.28), may be
determined numerically. On the other hand, the large
partial-wave contribution, �J>JL , in (2.29), is calculated
analytically for large L, to the desired accuracy in powers
of 1=L.

D. Low partial-wave contribution

To evaluate the low partial-wave contribution �J�JL , we
use the Gel’fand-Yaglom technique [24–30], which can be
summarized as follows. Suppose M1 and M2 denote two
second-order radial differential operators on the interval
r 2 
0;1�. Then the ratio of the determinants is given by

 

detM1

detM2
� lim

R!1

�
�1�R�
�2�R�

�
; (2.32)

where �i�r� �i � 1; 2� satisfy the initial value problems:

 M i�i�r� � 0; �i�r� � r
2l as r! 0: (2.33)

Here l is the index in the centrifugal term in (2.25). Since
an initial value problem is extremely simple to solve
numerically, this provides an efficient calculational method
for the individual radial determinants. Here we take M1 �
H J �m2, and M2 �H free

J �m2. Thus, �2�r� is in fact
known analytically. Then better numerical results are ob-
tained [12] by considering directly the initial value prob-
lem with the second-order differential equation derived for
the ratio function S�r� � ln��1�r�=�2�r��. This method
has been implemented successfully in [12] for the instan-
ton determinant computation, and for the false vacuum
decay problem in both flat [17] and curved [35] spacetime.
Furthermore, this method of calculating radial determi-
nants can be generalized to the case when the second-order
differential operator M in question contains a matrix-type
potential [29], as in our case 3. Explicit numerical results
for the three radial cases discussed above will be presented
in the sequel.

III. LARGE PARTIAL-WAVE CONTRIBUTIONS
AND RENORMALIZATION

The large partial-wave contribution cannot be evaluated
numerically because of the need to remove the heavy mass

regulator, �. Instead we compute analytically the large L
behavior of ��

J>JL
. To determine the large partial-wave

contribution ��
J>JL

[given by (2.29)], one needs the
large-l (i.e., l� L) behavior of the function FJ�s�. To
that end, in Refs. [12,16] we used the scattering phase shift
representation of FJ�s�, and then the radial WKB approxi-
mation up to second order. Here we present a much simpler
approach, introducing a new ‘‘uniform’’ DeWitt expansion
for the radial proper-time Green’s function ~�J�r; r; s�,
which remains valid when l becomes large. As we shall
see, this new approach gives rise to results in complete
agreement with those from our earlier method, with much
less labor.

A. Uniform DeWitt expansion

In the presence of the effective radial potential, V�r� �
f
4l�l� 1� � 3

4�=r
2g �V �r�, we seek a large-l asymptotic

representation of the related proper-time Green’s function
~��r; r0; s�:

 

�@s � @
2
r � V�r��~��r; r

0; s� � 0; �for s > 0� (3.1a)

s! 0� : ~��r; r0; s� ! ��r� r0�: (3.1b)

We take V �r� to be a typical smooth potential. Now, as l
becomes very large, the presence of the large centrifugal
potential, 
4l�l� 1� � 3

4�=r
2, has the consequence that our

Green’s function ~��r; r0; s� acquires a totally negligible
amplitude for s� A=l2 [where A is an O�1� constant].
Because of this property, given a certain quantity which
involves the integral of this function over s [such as, for
example, �J>JL�A;m�, given by (2.29)], it will suffice to
use an accurate representation of ~��r; r0; s� for s satisfying
the condition 0< sl2 & O�1�, and having the property that
it becomes exponentially small for s� A=l2. Although
only small-s values are relevant, the usual small-s DeWitt
expansion [the one-dimensional analogue of (2.6)] cannot
serve this purpose since it fails to account for the effect of
the large centrifugal potential term. There is a conflict
between the small s limit and the large l limit. To see
this problem more clearly, consider the behavior of the
function ~��r; r0; s�with V �r� set to zero. For this free case,
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denoted ~�free�r; r0; s�, we have a closed-form expression in
general n spacetime dimensions (see Appendix A). As l
becomes large, this function admits a uniform approxima-
tion of the form [see (A10)]
 

~�free�r; r0; s� �
1���������
4�s
p e���r�r

0�2=4s���
4l�l�1���3=4��=rr0�s

	 f1�O�s2�g; (3.2)

valid as long as s is such that 0< sl2 & O�1�. The naive
small-s DeWitt expansion is not adequate for our purpose
since it effectively replaces the exponential factor
e�f
4l�l�1���3=4��=rr0gs [which can be O�1� for s� A

l2
] by the

first few terms of its Taylor series in s.
To obtain the desired large-l expansion of our radial

proper-time Green’s function, it is convenient to set

 V�r� � l2U�r�; (3.3)

[so that U�r� remains finite as l! 1], and introduce the

rescaled proper-time variable

 t � l2s: (3.4)

Now the situation for the large-l limit of ~��r; r0; t
l2
� is

actually the same as that appropriate to the so-called
1
� -expansion of the proper-time Green function considered
previously (for a different purpose) in Ref. [36], identify-
ing � with l2. Thus, based on the result of [36], we may
immediately write the 1

l -expansion of ~��r; r0; t
l2
�, having

the structure

 

~�
�
r; r0;

t

l2

�
�

l��������
4�t
p e�f
l

2�r�r0�2�=4tg
�X1
k�0

bk�r; r
0; t�

�
1

l2

�
k
�
;

(3.5)

with suitable coefficient functions bk�r; r0; t� which are
regular near r � r0. Inserting this form in (3.1a), we see
that the coefficient functions bk�r; r0; t� must satisfy

 l2U�r�
X1
k�0

bk�r; r0; t�
�

1

l2

�
k
� l2

X1
k�0

@tbk�r; r0; t�
�

1

l2

�
k
�
l2�r� r0�

t

X1
k�0

@rbk�r; r0; t�
�

1

l2

�
k
�
X1
k�0

@2
rbk�r; r0; t�

�
1

l2

�
k
� 0:

(3.6)

We can here regardU�r� to be strictly of order �1
l2
�0, i.e., disregard the fact that it might contain terms with 1

l -suppression, to
simplify the presentation of our result. Then, (3.6) gives rise to recurrence relations satisfied by the coefficient functions
bk�r; r0; t�:
 

O�l2�: U�r�b0�r; r0; t� � @tb0�r; r0; t� �
r� r0

t
@rb0�r; r0; t� � 0; (3.7a)

O�l2�2k�: U�r�bk�r; r0; t� � @tbk�r; r0; t� �
r� r0

t
@rbk�r; r0; t� � @2

rbk�1�r; r0; t� � 0; �k � 1; 2; 3; . . .�: (3.7b)

Further, because of the boundary condition (3.1b), we must have bk�r; r0; t � 0� � �k0.
To simplify the analysis of the recurrence relations, we may introduce a new variable u (instead of r) by setting r �

r0 � tu and define a new set of functions,

 

~b k�u; r
0; t� � e1=u

R
r0�tu

r0
U�w�dwbk�r

0 � tu; r0; t�: (3.8)

[Here we have restricted our attention to the case whenU�r� is not a matrix-valued potential. The case with a matrix-valued
potential is discussed in Appendix B.] Then the above recurrence relations can be recast as
 

O�l2�:
@
@t

~b0�u; r0; t� � 0; (3.9a)

O�l2�2k�:
@
@t

~bk�u; r0; t� �
1

t2

�
@2

@u2
~bk�1�u; r0; t� � 2g0�u; r0; t�

@
@u

~bk�1�u; r0; t� � 
g0�u; r0; t�2 � g00�u; r0; t��~bk�1�u; r0; t�
�
;

�k � 1; 2; . . .�; (3.9b)

where g�u; r0; t� � 1
u

R
r0�tu
r0 U�w�dw, g0�u; r0; t� �

@
@u g�u; r

0; t�, and g00�u; r0; t� � @2

@u2 g�u; r0; t�. Since
b0�r; r0; t � 0� � 1, and so ~b0�u; r0; t � 0� � 1, we now
immediately conclude from (3.9a) that ~b0�u; r0; t� � 1 for
any t > 0. This in turn tells us that

 b0�r; r0; t� � e�
t=�r�r
0��
R
r0

r
U�w�dw: (3.10)

As a check, we note that if we choose the form
U�r� � 
4l�l� 1� � 3

4�=�l
2r2� [appropriate to the free

case with V �r� � 0], then (3.10) reduces to b0�r; r0; t� �
e�f
4l�l�1���3=4��=rr0g�t=l2�, producing the correct ex-
ponential factor in (3.2), related to the centrifugal potential
term. Clearly, in the coincidence limit of r0 � r, we
have
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 b0�r; r; t� � e�tU�r�: (3.11)

Using ~b0�u; r
0; t� � 1 in the k � 1 case of (3.9b), we obtain

 

@
@t

~b1�u; r
0; t� �

1

t2
fg0�u; r0; t�2 � g00�u; r0; t�g: (3.12)

Then, to find the coincidence limit of b1�r; r
0; t�, i.e., the

expression for r0 � r, we may set u � 0 in (3.12) [together
with the easily obtained expressions g0�0; r0; t� � 1

2 t
2U0�r�

and g00�0; r0; t� � 1
3 t

3U00�r0�] to obtain

 

@
@t

~b1�u � 0; r; t� �
1

4
t2U0�r�2 �

1

3
tU00�r�: (3.13)

This immediately leads to the expression

 b1�r; r; t� � e�tU�r�
�

1

12
t3U0�r�2 �

1

6
t2U00�r�

�
: (3.14)

Higher-order coefficients can be found similarly; for in-
stance, for b2�r; r; t� we find
 

b2�r; r; t� � e�tU�r�
�

1

288
t6U0�r�4 �

11

360
t5U0�r�2U00�r�

�
1

40
t4U00�r�2 �

1

30
t4U0�r�U�3��r�

�
1

60
t3U�4��r�

�
: (3.15)

We can now exhibit the desired 1
l -expansion structure

for our radial proper-time Green’s function in the coinci-
dence limit. Returning to the notations using V�r� and s, it
takes, based on the results of (3.11), (3.12), (3.13), and
(3.14), the following form:
 

~��r; r; s� �
1���������
4�s
p e�sV�r�

�
1�

�
1

12
s3V 0�r�2 �

1

6
s2V 00�r�

�

�O
�

1

l4

��
: (3.16)

[See Appendix A for the explicit verification that this gives
rise to a correct large-l expansion for ~�free�r; r; s�]. In
effect we have resummed all nonderivative terms in the
standard DeWitt expansion. These nonderivative terms are
all of the form �sV�k for some k, and recalling that V
depends quadratically on the partial-wave index l, we see
that all these terms are ofO�1� for sl2 �O�1�. On the other
hand, the remaining terms in the expansion (3.16) go like
s3l4 � s�sl2�2, and s2l2 � s�sl2�, etc., and so remain small
in this uniform limit of small s and large l.

This modified expansion may be used even when V�r�
contains, apart fromO�l2� terms, some subleading terms as
with the case V�r� � l2U�r� � lT�r� �Q�r�; in this case,
one can also generate an equally valid 1

l -expansion starting
from the form (3.16) by having the exponential of the

subleading terms, i.e., e��t=l
2��lT�r��Q�r�� expanded (partly

or wholly) in powers of 1
l . This can be justified when r is

restricted to the range in which T�r� and Q�r� remain
bounded. This trivial rearrangement can, in fact, be incor-
porated within our 1

l -expansion ansatz (3.5) by allowing
the power series development in the ansatz to have also
odd-power terms in 1

l .

B. Explicit large partial-wave contributions

We may use the form (3.16), with the formulas (2.22)
and (2.29), to determine explicitly the large partial-wave
contribution to the effective action. To facilitate this cal-
culation, we follow Refs. [12,16] by trading the regulator
mass � for a dimensional regularization parameter �. This
is achieved by demanding that

 �
Z 1

0

ds
s
�e�m

2s � e��2s�F�s� � �
Z 1

0

ds
s
e�m

2ss�F�s�:

(3.17)

Since F�s� � �finite constant� �O�s� for small s, we then
see that (3.17) requires

 � ln
�

�2

m2

�
�O

�
1

�2

�
� �

1

�
� �
� 2 lnm� �O���;

(3.18)

where 
 � 0:5772 . . . is Euler’s constant. Thus, the rela-
tion between � and � is given by

 �$
1


� ln�2 : (3.19)

Note that this is only to simplify our calculations; all the
s-integrations appearing below can also be carried out
within the original Pauli-Villars regularization framework.

With this preparation, we now proceed to the calculation
of �J>JL�A;m� for our case 1 and case 2. Case 3 will be
considered in the sequel.

1. Case 1

With H J1
given in (2.14), we have the radial potential

 

V�l;j��r� �
4l�l� 1� � 3

4

r2 � 4f�r�
�
j�j� 1� � l�l� 1� �

3

4

�
� 3r2f�r�2 (3.20)

which may be used in (3.16). Then, from (2.22), FJ�s� for
large enough l will follow. Further, if we represent F�s� by
the form (2.30a) and use the correspondence (3.19), it is
possible to express the first part of (2.29) [the contribution
to �J>JL�A;m� other than the renormalization counterterm]
as
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��J>JL�A;m� �
Z 1

0
dr
Z 1

0
ds
�
�

1

s
e�m

2ss�
X1

l�L�1=2

�2l� 1��2l� 2�f~��l;j�l�1=2��r; r; s� � ~��l�1=2;j�l��r; r; s�

� ~�free
�l� �r; r; s� � ~�free

�l�1=2��r; r; s�g
�
; (3.21)

where we placed the s-integral before the r-integral, in order to give an explicit result for �J>JL�A;m� for general fields.
Using (3.16) in (3.21) with V�l;j��r� given by (3.20), the right-hand side of (3.21) can be expressed as
 

��J>JL�A;m� �
Z 1

0
dr
Z 1

0
ds
�
�

1

s
e�m

2ss�
X1

l�L�1=2

�2l� 1��2l� 2�
1���������
4�s
p

	

�
e�sV�l;l�1=2��r�

�
1�

�
1

12
s3V

�l;l�1=2�
0�r�2 �

1

6
s2V

�l;l�1=2�
00�r�

�
�O

�
1

l4

��

� e�sV�l�1=2;l��r�
�
1�

�
1

12
s3V

�l�1=2;l�
0�r�2 �

1

6
s2V

�l�1=2;l�
00�r�

�
�O

�
1

l4

��

� e�sV
free
�l�
�r�
�
1�

�
1

12
s3Vfree0

�l� �r�
2 �

1

6
s2Vfree00

�l� �r�
�
�O

�
1

l4

��

� e�sV
free
�l�1=2�

�r�
�
1�

�
1

12
s3Vfree0

�l�1=2��r�
2 �

1

6
s2Vfree00

�l�1=2��r�
�
�O

�
1

l4

����
; (3.22)

where Vfree
�l� �r� � 
4l�l� 1� � 3

4�=r
2, and we recall from

(2.13) that the l summation is over integer and half-integer
values. We remark that, if we consider the total of all
explicitly kept terms in the integrand of (3.22), the ne-
glected terms would at most beO�1

l5
�; this happens because

the leading, i.e., order- 1
l4

terms coming from the four pieces
denoted O�1l4� in (3.22) [which are given in terms of
b2�r; r; t�] necessarily cancel, as the leading terms of the
potential V match those of Vfree. The above expression is
fully equivalent to that found using the second-order radial
WKB approximation for phase shifts in Refs. [12,16].
(Actually, in Refs. [12,16], the WKB approximation was
used with the Langer-modified radial potential [37]; but
this is inessential for large partial-wave contributions as the
difference corresponds to a trivial rearrangement of our
1
l -expansion series.) It is not difficult to see that this
equivalence between the result based on the radial WKB
approximation and our present approach using the
1
l -expansion persists to even higher orders also. But our
new 1

l -expansion for the radial proper-time Green function
is considerably simpler.

The l-sum in (3.22) can be performed with the help of
the Euler-Maclaurin summation formula [adapted to the l
summation over integer and half-integer values; recall
(2.13)]

 

X1
l�L�1=2

f�l� � 2
Z 1
L
dlf�l� �

1

2
f�L� �

1

24
f0�L� � � � � :

(3.23)

All terms in this expansion, including the integral term, can
be computed analytically. The result of this calculation,
which is rather lengthy, is given in Appendix C. We thus
obtain an explicit double-integral representation for
��J>JL�A;m� [see the expressions given in (C9)–(C11)].
Then the integration over the proper-time variable s can
be performed in a straightforward manner. After carrying
out these s-integrations, we find that the quantity
��J>JL�A;m� for sufficiently large L is given explicitly by
the form

 

��J>JL�A;m� �
1

8�

Z 1
0
drr3
4h�r�2 � �2f�r� � rf0�r��2� �

Z 1
0
dr
�
�2r�L� 2�h�r�

�������������������������
4L2 �m2r2

p
�
r3

8

�
2 ln

�
4L
r

�
� 


�
f4h�r�2 � �2f�r� � rf0�r��2g

�
Lr

12
�������������������������
4L2 �m2r2
p fh�r��24m2r2 � 44h�r�r2 � 75� � 39f�r�2r2 � �6r2f0�r�2 � f00�r��r2

� f�r���2f00�r�r4 � 24f0�r�r3 � 9�g
�
�O

�
1

L

�
�O���; (3.24)

where h�r� � f�r�
r2f�r� � 1�.
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For the expression of �J>JL�A;m� we must subtract the
renormalization counterterm from the expression (3.24).
Using (3.19), the renormalization counterterm appearing in
the definition of the renormalized effective action (2.8) is

 

1

12

1

�4��2

�
1

�
� 
� ln�2

�Z
d4x tr�F��F���: (3.25)

In this radial ansatz case, F�� is equal to
 

F�� � �2���af�r��r2f�r� � 1��a

�
x�
r
�x����a � x����a��2rf�r�

2 � f0�r���a:

(3.26)

Hence the counterterm reads

 

1

8

�
1

�
� 
� ln�2

�Z 1
0
drr3
4r4f�r�4 � 8r2f�r�3 � 8f�r�2

� 4rf0�r�f�r� � r2f0�r�2�:

(3.27)

Comparing the expression (3.27) with (3.24), we see that
the divergence terms as �! 0 match precisely between the
two. This also verifies that our renormalization procedure
is a gauge-invariant one. The full large partial-wave con-
tribution to the effective action, the sum of the expression
in (3.24) and minus the result in (3.27), now becomes

 

�J>JL�A;m� �
Z 1

0
dr
�
r3

4
ln
�
�r
4L

�
f4h�r�2 � �2f�r� � rf0�r��2g � 2r�L� 2�h�r�

�������������������������
4L2 �m2r2

p
�

Lr

12
�������������������������
4L2 �m2r2
p fh�r��24m2r2 � 44h�r�r2 � 75� � 39f�r�2r2 � �6r2f0�r�2 � f00�r��r2

� f�r���2f00�r�r4 � 24f0�r�r3 � 9�g
�
�O

�
1

L

�
: (3.28)

This generalizes the result of Refs. [12,16] where the
calculation was performed assuming the special form
f�r� � 1

r2�	2 (i.e., the single-instanton solution).
For any given radial function f�r�, one can then consider

the sum of this analytic expression (3.28) for the large
partial-wave contribution, and the numerically determined
result for �J�JL�A;m� [based on (2.28) and the relation
(2.32)] to determine the corresponding full renormalized
effective action. Each has quadratic, linear, and log diver-
gences for large L. For large L, the L-dependence in the
two expressions cancels, as was originally found in [12]. In
fact, to improve the numerical efficiency of the full effec-
tive action calculation, one may extend the large L expres-

sion for �J>JL�A;m� in (3.28), to include also terms up to
O� 1

L2�. This can be done with the help of our 1
l -expansion,

using the explicit expression for b2�r; r; t� in (3.15).

2. Case 2

With H J2
given in (2.16), we have the radial potential

 V�l;l3;t3��r� �
4l�l� 1� � 3

4

r2 � 8g�r�l3t3 � r
2g�r�2: (3.29)

If we represent F�s� by the form (2.30b) and use the
correspondence (3.19), the first part of (2.29) can be ex-
pressed by

 ��J>JL�A;m� �
Z 1

0
dr
Z 1

0
ds
�
�

1

s
e�m

2ss�
X1

l�L�1=2

�2l� 1�
Xl
l3��l

X
t3�1=2

f~��l;l3;t3��r; r; s� �
~�free
�l� �r; r; s�g

�
: (3.30)

For the function ~��l;l3;t3��r; r; s� [or ~�free
�l� �r; r; s�] on the right-hand side, we may use the 1

l -expansion result in (3.16) with
V�r� taken to be equal to the radial potential in (3.29) [the radial potential Vfree

�l� �r� � 
4l�l� 1� � 3
4�=r

2]. The l3-sum and
t3-sum can be done explicitly, using the formulas
 Xl

l3��l

X
t3�1=2

e�8l3t3g�r�s �
2fe4�l�1�g�r�s � e�4lg�r�sg

e4g�r�s � 1
; (3.31a)

Xl
l3��l

X
t3�1=2

l3t3e�8l3t3g�r�s �
1

�e4g�r�s � 1�2
fle�4lg�r�s � le4�l�2�g�r�s � �l� 1�e4�l�1�g�r�s � �l� 1�e�4�l�1�g�r�sg: (3.31b)

We then perform the l-sum with the help of the Euler-Maclaurin summation formula; this produces a double-integral
representation in which the integration over the proper-time variable s can be executed without too much difficulty. The
result of these manipulations is
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��J>JL�A;m� �
1

24�

Z 1
0
drr3
8g�r�2 � 4rg0�r�g�r� � r2g0�r�2� �

Z 1
0
dr
�
�r3g�r�2

�������������������������
4L2 �m2r2

p
�
r3

24

�
2 ln

�
4L
r

�
� 


�
f8g�r�2 � 4rg0�r�g�r� � r2g�r�2g

�
Lr3

90
�������������������������
4L2 �m2r2
p f6r4g�r�4 � �20� 240L�g�r�2 � 5r�rg00�r� � 12g0�r��g�r� � 15r2g0�r�2g

�

�O
�

1

L

�
�O���: (3.32)

The field strength appropriate to this case 2 reads

 F�� � �2���3g�r��
3 �

x�
r
�x����3 � x����3�g

0�r��3; (3.33)

and hence the renormalization counterterm (3.25) is given by
 

1

24

�
1

�
� 
� ln�2

�Z 1
0
drr3
8g�r�2 � 4rg0�r�g�r� � r2g0�r�2�: (3.34)

Again we see that the divergent terms as �! 0 in (3.32) match precisely those of the renormalization counterterm. The full
large partial-wave contribution, including the renormalization term, is thus given by
 

�J>JL�A;m� �
Z 1

0
dr
�
r3

12
ln
�
�r
4L

�
f8g�r�2 � 4rg0�r�g�r� � r2g0�r�2g � r3g�r�2

�������������������������
4L2 �m2r2

p
�

Lr3

90
�������������������������
4L2 �m2r2
p f6r4g�r�4 � �20� 240L2�g�r�2 � 5r�rg00�r� � 12g0�r��g�r� � 15r2g0�r�2g

�
�O

�
1

L

�
:

(3.35)

This expression can now be combined with the numerical
low partial-wave contribution to determine the finite re-
normalized effective action in a radial Yang-Mills back-
ground of the form A��x� � 2���3x�g�r�

�3

2 .

IV. CASES WITH ASYMPTOTICALLY UNIFORM
FIELD STRENGTHS

In Ref. [36] the basis for the validity of the 1
l -expansion

structure (3.5) was a perturbative argument: i.e., in the
effective potential V�r� � 
4l�l� 1� � 3

4�=r
2 �V �r�,

V �r� can be treated as a perturbation to the centrifugal
potential term. We then saw in the previous section that the
resulting explicit expression in (3.16), if used to calculate
the large partial-wave contribution of the effective action,
yields a result completely equivalent to that obtained from
using the quantum-mechanical WKB approximation with
scattering phase shifts [12,16]. It is not immediately clear
what happens if the potential is unbounded as r! 1, in
which case in the WKB language one should use a bound
state analysis rather than a scattering analysis. This is
precisely the potential form that arises when the gauge-
field strength approaches a nonzero constant value at in-
finity. Indeed, in our case 2 with g�r� � � B

2 (leading to
uniform self-dual field strengths), we have the quadratic
potential [see (3.29)]

 V �l;l3;t3��r� � �4Bl3t3 �
B2

4
r2: (4.1)

Thus, the eigenstates of the corresponding radial operator
H J2

consist of only bound states. In principle, for the large
partial-wave contribution to the effective action, one might
still try to use the quantum-mechanical WKB approxima-
tion; but, the WKB approximation for bound states has a
rather different structure from that for scattering states.

It is thus an important issue to know whether or not the
1
l -expansion for the radial proper-time Green function,
considered in the previous section, retains its validity
even when the potential V �r� blows up for large r, as
above. In fact, our 1

l-expansion-based formula in (3.16)
does describe the correct asymptotic form valid for all
r 2 �0;1� even with such an unbounded potential; with
the proviso that in (3.16), the exponential prefactor e�sV�r�

cannot be replaced by its (truncated) power series in s, for
the form to be valid even for very large r. That is, we also
have infrared physics captured correctly by our large-l
limit form of the radial proper-time Green function. We
demonstrate this below through the treatment of an impor-
tant special case, that of uniform self-dual field strengths
for which the quadratic potential (4.1) is relevant. Note that
the effective action in a uniform self-dual field strength
background has been studied by many authors before
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[7,38,39], but not using the partial-wave-based proper-time
formalism. This analysis will also provide a useful com-
parison when we consider, in the sequel to this paper, the
effective action in the inhomogeneous background de-
scribed by the form (2.9) with f�r� � 0 and g�r� � � B

2 	

tanh�r=r0�.

In our procedure the calculation of the one-loop effec-
tive action in the gauge-field background A��x� �
����ax�

B
2 �

a starts from the study of the radial proper-
time Green function ~��l;l3;t3��r; r

0; s�, satisfying the equa-
tion

 

�
@s � @2

r �
4l�l� 1� � 3

4

r2 � 4Bl3t3 �
B2

4
r2

�
~��l;l3;t3��r; r

0; s� � 0; �s > 0�: (4.2)

Just like the free radial proper-time Green function discussed in Appendix A, in this case it is possible to find the
corresponding radial Green function in a closed form, by using (for example) the method of quantum canonical trans-
formations [40,41]. It is given by an expression involving the modified Bessel function

 

~� �l;l3;t3��r; r
0; s� �

B
������
rr0
p

2 sinh�Bs�
e��1=4�B coth�Bs��r2�r02��4Bl3t3sI2l�1

�
Brr0

2 sinh�Bs�

�
: (4.3)

We check the large-l limit of the expression (4.3) directly against our general formula (3.16), as the potential is specialized
to the form V�r� � 
4l�l� 1� � 3

4�=r
2 � 4Bl3t3 �

B2

4 r
2. As we explained earlier, we want our large-l limit expression to

have validity for s satisfying the condition 0< sl2 & O�1�. But no restriction follows on the range of the radial coordinate
r, and so, for the given potential (which diverges quadratically for large r), we want our large-l limit form to be faithful
with the true behavior for an arbitrarily large value of r2s. With this point kept in mind, we may set s � t=l2 and use the
uniform asymptotic expansion for large orders for the modified Bessel function in Appendix A [see (A8)] with our
expression (4.3), in the coincident limit, to obtain the large-l limit form

 

~� �l;l3;t3�

�
r; r;

t

l2

�
�

Br

2 sinh�Btl2 �

e��1=2�Br2 coth�Bt=l2��4Bl3t3�t=l2���f
��������
1�~z2
p

�ln
~z=�
��������
1�~z2
p

�1��g����������
2��
p

�1� ~z2�1=4

�
1�

3x� 5x3

24�
�O

�
1

�2

��
; (4.4)

where � � 2l� 1, ~z � Br2=
2� sinh�Btl2 ��, and x � 1��������
1�~z2
p .

For l very large and 0< t & O�1� (but with no restric-
tion on the value of r), it is possible to simplify the
complicated exponential term in (4.4) by keeping in its
exponent only the piece � 4t

r2 �
1
4B

2r2 t
l2 , namely, the lead-

ing terms of the given exponent when l becomes very large
(but for an unrestricted value of r), and expand all the other
terms in increasing powers of 1

l . Since ~z is O�l�, this also
implies expansion in powers of 1

~z . Then, from (4.4), we
obtain the following expansion
 

~��l;l3;t3�

�
r; r;

t

l2

�
�
le��4t=r

2��B2r2�t=4l2���������
4�t
p

�
1�

4t

r2

1

l

�

�
16t3

3r6
�

4t2

r4 � 4Bl3t3t�
3t

4r2

�
1

l2

�O
�

1

l3

��
: (4.5)

It should be noted that, in the same limit, the leading terms
of our potential, V�r� � 
4l�l� 1� � 3

4�=r
2 � 4Bl3t3 �

B2

4 r
2, are given by 4l2

r2 �
B2

4 r
2. Now, according to the same

kind of reasoning as discussed after (3.16), we may replace
(4.5) by another expansion in which the exponential factor
at front is assumed by e�V�r�t=l

2
; this rearrangement is

harmless for arbitrarily large values of r2 t
l2

here. The result
of this rearrangement is to make (4.5) turn into the structure

predicted by our 1
l -expansion formula (3.16), with all

factors precisely equal.
We will now show that our radial proper-time Green

function (4.3) can be used to rederive the known expression
for the effective action. In a uniform self-dual field strength
background, it is known that [38,39]

 tr hxsjxi �
2

�4�s�2
�Bs�2

sinh2�Bs�
: (4.6)

Thus we have, as this form is used with (2.3), (2.4), and
(2.8),
 

�ren�A;m� � �
1

�4��2
2

3
B2 ln

�
m2

�2

�

� 2
Z
d4x

Z 1
0

ds
s
e�m

2s 1

�4�s�2

	

�
�Bs�2

sinh2�Bs�
� 1�

1

3
�Bs�2

�
: (4.7)

Here, in view of (2.4) and (2.22), it will suffice to show that

 

X
l�0;1=2;1;���

Xl
l3��l

X
t3�1=2

�2l� 1�~��l;l3;t3��r; r; s�

� 2�2r3 trhxsjxi (4.8)

since d4x � 2�2r3dr after the angular integration.
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Inserting the form (4.3) for ~��l;l3;t3��r; r; s� into the left-hand side of (4.8) and carrying out the l3 and t3 sums yields the
expression

 

X
l�0;1=2;1;...

�2l� 1�Br

sinh2�Bs�
sinh��2l� 1�Bs�e��1=2�Br2 coth�Bs�I2l�1

�
Br2

2 sinh�Bs�

�

�
Br

sinh2�Bs�
e��1=2�Br2 coth�Bs�

X1
��1

X1
k�0

� sinh��Bs�
z2k��

��k� �� 1�k!
; (4.9)

where we set � � 2l� 1 and z � Br2

4 sinh�Bs� , aside from using the power series representation of the modified Bessel
function. If we change the summation over �k; �� to those over �k; n � 2k� �� and use the relation

 

X1
��1

X1
k�0

� sinh��Bs�
z2k��

��k� �� 1�k!
�
X1
n�1

zn
Xkm
k�0

�n� 2k� sinh��n� 2k�Bs�
��n� k� 1�k!

�
X1
n�1

zn
2n�1 sinh�Bs�coshn�1�Bs�

�n� 1�!

�
1

4
Br2

X1
n�1


12Br
2 coth�Bs��n�1

�n� 1�!
�

1

4
Br2e1=2Br2 coth�Bs� (4.10)

[here km �
n�1

2 �
n
2� if n is odd (even)], we then see that the

expression in (4.9) reduces to

 

B2r3

4sinh2�Bs�
: (4.11)

This coincides with the expression for 2�2r3 trhxsjxiwhen
(4.6) is used for trhxsjxi. Hence we have the relation (4.8)
established.

V. CONCLUSIONS

In this work we have simplified significantly the calcula-
tional method for the one-loop effective action developed
in Refs. [12,16], so that any radially symmetric back-
ground case may now be studied with calculational effi-
ciency. The computation is split into two parts: the
contribution from low partial waves is calculated numeri-
cally using the Gel’fand-Yaglom technique, and the con-
tribution from high partial waves has been computed
analytically using a modified DeWitt expansion. It is no
longer necessary to invoke the results of higher-order
quantum-mechanical WKB approximation explicitly—
this is now automatically accounted for by using the
1
l -expansion for the radial proper-time Green function.
The main results are contained in the expressions (3.28)
and (3.35) for the analytic behavior of the large partial-
wave contribution to the renormalized effective action, for
two general classes of radially symmetric gauge fields. Our
approach observes gauge invariance, and can be used for
any mass value for the associated quantum fluctuations. It
can also be applied to the case with nonvanishing asymp-
totic backgrounds. In the sequel, we shall report an exten-
sive analysis of the Yang-Mills one-loop effective action
(not only for scalar matter but also for fermion fields as
well), taking the radial gauge-field background form of the
present work. We can then use these results to check for
instance the range of validity of the derivative expansion
[16,39].

In this work we have used the 1
l -expansion to calculate

the large partial-wave contribution to the effective action.
This expansion could alternatively be used to calculate
approximately the lower partial-wave contributions as
well. Aside from the Langer modification [37] which can
easily be incorporated in our 1

l -expansion, this is effec-
tively what we have done in Ref. [16] with the Yang-Mills
instanton background; there, the instanton determinant was
found to be good to 5% accuracy. One might be somewhat
surprised by this success. But it need not be so surprising;
observe that the 1

l -expansion as given in (3.16) also serves
to generate a systematic derivative expansion. In fact, using
the expansion (3.16), we have studied several cases of one-
dimensional functional determinants (including powerlike
potentials and the case of V�x� / sech2x), to find that the
deviation from the exact value is typically not more than
5%. This observation could potentially be used to obtain
simple approximate estimates for general radial back-
ground fields.
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APPENDIX A: THE FREE RADIAL PROPER-TIME
GREEN FUNCTION IN GENERAL SPACETIME

DIMENSION

In this Appendix we find the explicit form of the free
radial proper-time Green’s function in n spacetime dimen-
sion and then discuss its large angular-momentum limit (to
facilitate the application of our approach in problems with
spacetime dimension not equal to four). In n dimensions,
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the consideration of the Laplacian @�@� in generalized
spherical coordinates leads to the radial differential opera-
tor

 @2
�=2 �

@2

@r2 �
n� 1

r
@
@r
�
���� n� 2�

r2 ; (A1)

where r �
�����������������������������
x2

1 � � � � � x
2
n

q
, and � � 0; 1; 2; . . . . [From

this form, our expression (2.15) is recovered upon setting
n � 4 and � � 2l]. Then, noting that dnx � rn�1dn�1�,
we require the free radial proper-time Green’s function
�free
�=2�r; r

0; s� to satisfy the conditions

 �
@
@s
�
@2

@r2 �
n� 1

r
@
@r
�
���� n� 2�

r2

�
�free
�=2�r; r

0; s� � 0; �for s > 0� (A2a)

s! 0� : �free
�=2�r; r

0; s� !
1

rn�1 ��r� r
0�: (A2b)

We introduce the modified radial proper-time Green’s
function ~�free

�=2�r; r
0; s� according to

 

~� free
�=2�r; r

0; s� � r�n�1�=2�free
�=2�r; r

0; s�r0�n�1�=2: (A3)

In terms of this function, (A2a) and (A2b) can be rewritten
as
 �
@
@s
�
@2

@r2
� Vfree

��;n��r�
�

~�free
�=2�r; r

0; s� � 0; �for s > 0�

(A4a)

s! 0� : ~�free
�=2�r; r

0; s� ! ��r� r0�; (A4b)

where the centrifugal potential is

 Vfree
��;n��r� �

�
���� n� 2� �

�n� 1��n� 3�

4

�
1

r2 �
g2

r2 :

(A5)

To obtain the explicit form of ~�free
�=2, one can resort to a

variety of methods (developed to find the Green function of
the one-dimensional Schrödinger equation especially). A
particularly elegant method is the one utilizing quantum
canonical transformations, as detailed in Refs. [40,41]. As
it turns out, for ~�free

�=2, we have a simple closed-form ex-
pression involving the modified Bessel function:

 

~� free
�=2�r; r

0; s� �

������
rr0
p

2s
e��1=4s��r2�r02�I���n=2��1

�
rr0

2s

�
: (A6)

Since I��z� �
ez������
2�z
p 
1�O� 1

jzj�� for large jzj, the s! 0�

limit of this expression is

 s! 0� : ~�free
�=2�r; r

0; s� !
1���������
4�s
p e��1=4s��r�r0�2f1�O�s�g:

(A7)

The large-� limiting form of ~�free
�=2�r; r

0; s� is of interest.
Then, due to the large centrifugal potential term in (A5),
we expect that the function ~�free

�=2�r; r
0; s� be significant (i.e.,

acquire not-too-small amplitude) only when s lies in the
range 0< s & A

�2 , A denoting a constant of O�1�. Now, for
some large given value of �, suppose that we wish to obtain
a systematic approximation of ~�free

�=2�r; r
0; s� which can be

used for any s satisfying the condition 0< s�2 & O�1�
(this incidentally implies that s�� 1). Then, to study
the expression in (A6), we use the known large-order
asymptotic expansion of the modified Bessel function [42]

 

�large: I��z� �
1����������

2��
p

e��
��������������
1��z=��2
p

�ln�z=�=
��������������
1��z=��2
p

�1��

f1� �z=��2g1=4

	

�
1�

3x� 5x3

24�
�O

�
1

�2

��
;�

x �
1����������������������

1� �z=��2
p 2 �0; 1�

�
(A8)

with z � rr0
2s and � � �� n

2� 1. [Note that the expansion
(A8) holds uniformly with respect to z (i.e., for any small or
large z), and in the limit jzj ! 1 (for fixed �) goes back to
the asymptotic form given earlier.] Since we are interested
in the case 0< s�2 & O�1�, we may further take the limit
j z� j � j�rr

0�=
2s�k� n
2� 1��j ! 1 with the formula (A8)

(i.e., consider an expansion in powers of j �z j) and then use
it in (A6). After some straightforward calculations, we then
obtain the large-� expansion of the form

 

~�free
�=2�r; r

0; s� �
1���������
4�s
p e��1=4s��r�r0�2������n=2��1�2=rr0�s

	

�
1�

1

4rr0
s�
��� n

2� 1�2

�rr0�2
s2

�
1

3

��� n
2� 1�4

�rr0�3
s3 �O���3�

�
: (A9)

We remark that the form (A9) may be used to evaluate a
certain quantity which involves, say, the integration of
~�free
�=2�r; r

0; s� over the full s-range [i.e., over s 2 �0;1�],
as long as � is constrained to be large. This is because,
when � is large, (i) ~�free

�=2�r; r
0; s� becomes very small unless

s�2 & O�1� [this is also manifest in our form (A9)] and
(ii) for s satisfying the condition 0< s�2 & O�1� we can
exploit the expansion of the form (A9) for ~�free

�=2�r; r
0; s�. In

view of this, the same purpose can be served by rewriting
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(A9) as

 

~�free
�=2�r; r

0; s� �
1���������
4�s
p e��1=4s��r�r0�2��g2=rr0�s

	

�
1�

g2

�rr0�2
s2 �

1

3

g4

�rr0�3
s3 � � � �

�
;

(A10)

where g2 � ���� n� 2� � �n�1��n�3�
4 � ��� n

2� 1�2 � 1
4

[see (A5)]. Note that this series is fully consistent with our
formula (3.16) if we set V�r� to be equal to g2

r2 .

APPENDIX B: THE 1
l -EXPANSION WITH A

MATRIX-VALUED POTENTIAL

The 1
l -expansion of ~��r; r; s� given in (3.16) is valid

when the potential V�r� is not a matrix type. In this
Appendix we shall find a more general form which can
be used when V�r� and hence also the Green function
~��r; r0; s� are matrix valued. The coefficient matrices
bk�r; r0; t� in the 1

l -expansion will now have to satisfy the
matrix equations in (3.7a) and (3.7b). Choosing a new
independent variable u (instead of r) by setting r � r0 �
tu and writing bk�r0 � tu; r0; t� � �bk�u; r

0; t�, we may re-
cast these equations as

 

O�l2�: @t �b0�u; r0; t� �U�r0 � tu� �b0�u; r0; t� � 0; (B1a)

O�l2�2k�: @t �bk�u; r
0; t� �U�r0 � tu� �bk�u; r

0; t� �
1

t2
@2
�

�bk�1�u; r
0; t� � 0; �k � 1; 2; 3; . . .�: (B1b)

The solution of (B1a), satisfying the boundary condition
�b0�u; r0; t � 0� � 1, is

 

�b 0�u; r
0; t� � P
e�

R
t

0
U�r0�t1u�dt1�; (B2)

where P
� � �� denotes the t-ordering. Setting u � 0 in (B2)
then gives

 b0�r; r; t� � e�tU�r�; (B3)

i.e., our formula (3.1) for the coincidence limit of
b0�r; r

0; t� holds even when U�r� is matrix valued.
To solve (B1b) for higher-order coefficient �bk�u; r0; t�

�k � 1; 2; . . .�, one may follow the steps similar to (3.8) and
(3.9b)—rewrite the equations as those for the matrix func-
tions ~bk�u; r

0; t� which are obtained through multiplying
�bk�u; r

0; t� from the left by the inverse of the t-ordered
exponential matrix in (B2). But what we need here is
only the coincidence limits, i.e., bk�r; r; t� � �bk�u �
0; r0 � r; t� for small k, and for the latter it is actually
simpler to obtain the desired expressions by considering
the u � 0 limits of our differential Eqs. (B1a) and (B1b)
and of their derivative relations [36]. Specifically, for
�b1�u � 0; r; t�, we have the equation [by setting u � 0
with (B1b)]

 @t �b1�0; r; t� �U�r� �b1�0; r; t� �
1

t2

@2
u

�b0�u; r; t��ju�0 � 0;

(B4)

which can readily be integrated [with the ‘‘initial‘‘ condi-
tion �b1�u; r; t � 0� � 0] only if the expression for

@2
u

�b0�u; r; t��ju�0 is known. Then, setting u � 0 in the
relations obtained after single and twice differentiations
of (B1a) with respect to u, we have
 

@t
@u �b0�u; r; t��ju�0 �U�r�
@u �b0�u; r; t��ju�0

� tU0�r�e�tU�r� � 0; (B5)

 

@t
@2
u

�b0�u; r; t��ju�0 �U�r�
@2
u

�b0�u; r; t��ju�0

� 2tU0�r�
@u �b0�u; r; t��ju�0 � t
2U00�r�e�tU�r� � 0; (B6)

where the result in (B3) has been used. From (B5) it
follows that

 
@u �b0�u; r; t��ju�0 � e�tU�r�
Z t

0
dt1t1e

t1U�r�U0�r�e�t1U�r�:

(B7)

Using this result, we can go on to integrate (B6) to obtain

 


@2
u

�b0�u; r; t��ju�0 � e�tU�r�
�
2
Z t

0
dt1t1et1U�r�U0�r�e�t1U�r�

	
Z t1

0
dt2t2e

t2U�r�U0�r�e�t2U�r�

�
Z t

0
dt1t21e

t1U�r�U00�r�e�t1U�r�
�
: (B8)

Now, by using this result in (B4) and integrating the
resulting equation, we find the expression for the coinci-
dence limit b1�r; r; t��� �b1�0; r; t��:

 

b1�r; r; t� � e�tU�r�
Z t

0
dt1

1

t21

�
2
Z t1

0
dt2t2e

t2U�r�U0�r�e�t2U�r�

	
Z t2

0
dt3t3et3U�r�U0�r�e�t3U�r�

�
Z t1

0
dt2t22e

t2U�r�U00�r�e�t2U�r�
�
: (B9)

The desired 1
l -expansion, which generalizes (3.16) to the

case of a matrix-valued potential, follows upon using the
results (B3) and (B9) with (3.5). It has the following
structure:
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~��r; r; s� �
1���������
4�s
p e�sV�r�

�
1�

Z s

0
ds1

1

s2
1

	

�
2
Z s1

0
ds2s2e

s2V�r�V 0�r�e�s2V�r�

	
Z s2

0
ds3s3es3V�r�V 0�r�e�s3V�r�

�
Z s1

0
ds2s2

2e
s2V�r�V 00�r�e�s2V�r�

�
�O

�
1

l4

��
:

(B10)

APPENDIX C: USE OF THE EULER-MACLAURIN
SUMMATION FORMULA

In this Appendix we explain how the Euler-Maclaurin
summation formula [42,43] can be used to sum the various
partial-wave contributions to the effective action. First, we
present the related mathematical theory. Let f�x� be a
function with continuous derivatives up to order 2m� 2
for x 2 
a; b�, where a and b are integers. Then, for the
sum

 

Xb
n�a

f�n� � f�a� � f�a� 1� � � � � � f�b� 1� � f�b�;

(C1)

we have the Euler-Maclaurin summation formula

 Xb
n�a

f�n� �
Z b

a
f�x�dx�

1

2

f�a� � f�b��

�
Xm
k�1

B2k

�2k�!

f�2k�1��b� � f�2k�1��a�� � Rm;

(C2)

where Bj are the Bernoulli numbers �B2 �
1
6 ; B4 �

� 1
30 ; B6 �

1
42 ; . . .� and the remainder term is

 Rm �
�b� a�B2m�2

�2m� 2�!
f�2m�2�� ���; for some �� 2 �a; b�:

(C3)

This formula will be particularly useful to evaluate the sum
of slowly varying terms with decreasing derivatives. (A
nice treatment on this formula, including the derivation, is
given in Ref. [43].)

As for the partial-wave sums in our work, we may use
(C1) in the form (here l � n

2 , n being integers)

 X1
l�L�1=2

f�l� �
X1
n�2L

f
�
n
2

�
� f�L�

�

�Z 1
2L
f
�
x
2

�
dx�

1

2
f�L�

�
1

12

�
d
dx
f
�
x
2

����������x�2L
�� � �

�
� f�L�

� 2
Z 1
L
f�l�dl�

1

2
f�L� �

1

24
f0�L� � � � � ;

(C4)

assuming f�1� � f0�1� � 0, etc. To deal with various
l-sums appearing in (3.22), we may here take

 

f�l� � e�s�a2l2�a1l�a0��b0� b1l�b2l2��� ��; �a2 > 0�:

(C5)

Then, to perform the l-integral
R
1
L f�l�dl, we change the

integration variable from l to t by setting

 l �
t����������

2a2s
p �

a1

2a2
: (C6)

This will put the function (C5) in a simpler form, i.e.,

 f�l� ! ~f�t� � e�t
2
�~b0 � ~b1t� ~b2t

2 � � � �� (C7)

and the resulting integrals can be done by using the for-
mula [42]

 

Z 1
T
dte�t

2
tn �

(
1
2 �
n�1

2 �!e
�T2 Pn�1=2

k�0
T2k

k! ; �n � odd integer�
1
2 
�

n�1
2 �!erfc�T� � Te�T

2 P�n=2��1
k�0 �k� 3

2��k��n=2��1T2k�; �n � even integer�
(C8)

where �a�n � a�a� 1� . . . �a� n� 1� is the Pochhammer symbol. Now the l-sums in (3.22) can be performed explicitly.
If we discard contributions vanishing for sufficiently large L, these sums for the first two terms in the right-hand side of
(3.22) read
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 X1
l�L�1=2

�2l� 1��2l� 2�~��l;j�l�1=2��r; r; s�

� es�1=4r2�2f�r��2r2f�r�2�erfc
� ���
s
p

r
�2L� 1� r2f�r��

�

	

�
r3

8s2 �
r

32s
��1� 8r2f�r� � 8r4f�r�2� �

1

16
�f�r��r� 4r4f0�r�� � 5r3f�r�2 � r5f0�r�2�

�

�
1���������
4�s
p e�sf
4L�L�1��3=4�=r2�4Lf�r��3r2f�r�2g

�
r2L
s
�

�
�2L2 �

r2

s
�
r4

2s
f�r�

�
�

�
�

43L
12
�

2sL3

3r2 �
16s2L5

3r4

�

�

�
�

37

24
�
r2

8
f�r� �

2r3

3
f0�r� �

r4

6
f00�r� �

sL2

r2 �
sL2

3
f�r� �

8rsL2

3
f0�r� �

2r2sL2

3
f00�r� �

24s2L4

r4

�
8s2L4

3r2 f�r� �
16s2L4

3r
f0�r� �

32s3L6

3r6

�
�

�
sL

2r2 �
sL
6
f�r� � 3r2sLf�r�2 �

r4sL
2

f0�r�2 �
8rsL

3
f0�r�

�
14r3sL

3
f�r�f0�r� �

2r2sL
3

f00�r� �
2r4sL

3
f�r�f00�r� �

122s2L3

3r4 �
20s2L3

3
f�r�2 �

4r2s2L3

3
f0�r�2

�
20s2L3

3r2 f�r� �
32s2L3

3r
f0�r� �

16rs2L3

3
f�r�f0�r� �

4s2L3

3
f00�r� �

48s3L5

r6
�

32s3L5

3r3 f0�r� �
64s4L7

9r8

��
� F 1�r; s�; (C9)

 X1
l�L�1=2

�2l� 1��2l� 2�~��l�1=2;j�l��r; r; s�

� es��1=4r2��2f�r��2r2f�r�2�erfc
� ���
s
p

r
�2L� 2� r2f�r��

�

	

�
r3

8s2 �
r

32s
��1� 8r2f�r� � 8r4f�r�2� �

1

16
�f�r��r� 4r4f0�r�� � 5r3f�r�2 � r5f0�r�2�

�

�
1���������
4�s
p e�sf
4L�L�2���15=4��=r2��4L�6�f�r��3r2f�r�2g

�
r2L
s
�

�
�2L2 �

r2

2s
�
r4

2s
f�r�

�
�

�
�

43L
12
�

2sL3

3r2 �
16s2L5

3r4

�

�

�
�

4

3
�
r2

8
f�r� �

2r3

3
f0�r� �

r4

6
f00�r� �

2sL2

r2 �
sL2

3
f�r� �

8rsL2

3
f0�r� �

2r2sL2

3
f00�r� �

32s2L4

r4

�
8s2L4

3r2 f�r� �
16s2L4

3r
f0�r� �

32s3L6

3r6

�
�

�
2sL

r2 �
5sL

6
f�r� � 3r2sLf�r�2 �

r4sL
2

f0�r�2 �
16rsL

3
f0�r�

�
14r3sL

3
f�r�f0�r� �

4r2sL
3

f00�r� �
2r4sL

3
f�r�f00�r� �

218s2L3

3r4 �
20s2L3

3
f�r�2 �

4r2s2L3

3
f0�r�2

�
28s2L3

3r2 f�r� �
64s2L3

3r
f0�r� �

16rs2L3

3
f�r�f0�r� �

4s2L3

3
f00�r� �

208s3L5

3r6
�

32s3L5

3r3 f0�r� �
64s4L7

9r8

��
� F 2�r; s�: (C10)

If we set f�r� � 0 in these expression, they represent the l-sums for the last two terms of (3.22) (i.e., for those containing
the factors e�sV

0
�l�
�r� and e�sV

0
�l�1=2�

�r�). In this way we obtain the explicit double-integral representation for ��J>JL�A;m� of the
form

 ��J>JL�A;m� � �
Z 1

0
dr
Z 1

0
ds
e�m

2s

s
s�
F 1�r; s� �F 2�r; s� �F 1�r; s�jf�r��0 �F 2�r; s�jf�r��0�: (C11)

The l-sums in (3.30) can be performed in a similar manner.
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