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Abstract
In much of the literature devoted to face recognition, ex-
periments are performed with controlled images (e.g. manual
face localization, controlled lighting, background and pose).
However, a practical recognition system has to be robust
to more challenging conditions. In this paper we first eval-
uate, on the relatively difficult BANCA database, the dis-
crimination accuracy, robustness and complexity of Gaussian
Mixture Model (GMM), 1D- and pseudo-2D Hidden Markov
Model (HMM) based systems, using both manual and auto-
matic face localization. We also propose to extend the GMM
approach through the use of local features with embedded
positional information, increasing accuracy without sacrificing
its low complexity. Experiments show that good accuracy
on manually located faces is not necessarily indicative of
good accuracy on automatically located faces (which are
imperfectly located). The deciding factor is shown to be the
degree of constraints placed on spatial relations between face
parts. Methods which utilize rigid constraints have poor ro-
bustness compared to methods which have relaxed constraints.
Furthermore, we show that while the pseudo-2D HMM ap-
proach has the best overall accuracy, classification time on
current hardware makes it impractical. The best trade-off in
terms of complexity, robustness and discrimination accuracy
is achieved by the extended GMM approach.

1. Introduction
Recognizing people by biometrics (such as fingerprints,
faces, speech and iris patterns) has applications in surveillance,
forensics, transaction authentication, and various forms of
access control, such as border checkpoints and access to digital
information [13], [15], [22].
In this paper we exclusively focus on identity verification
(a two-class recognition task) based on face images. The
use of the face as a biometric is particularly attractive,
as it can involve little or no interaction with the person
to be verified [15]. Various techniques have been proposed
for face classification; some examples are systems based on
Principal Component Analysis (PCA) feature extraction [24],
modular PCA [16], Elastic Graph Matching (EGM) [6], and
Support Vector Machines [19]. Examples specific to statis-
tical models include one-dimensional Hidden Markov Mod-
els (1D HMMs) [20], pseudo-2D HMMs [7] and Gaussian
Mixture Models (GMMs) [3], [21] (which can be considered
as a simplified version of HMMs). A recent review of related
literature can be found in [11].

GMM and HMM models typically use local features (that is,
the features only describe a part of the face). This is in contrast
to holistic features, such as in the PCA-based approach, where
one feature vector describes the entire face. Local features
can be obtained by analyzing a face on a block by block
basis; feature extraction based on the 2D Discrete Cosine
Transform (DCT) [10] or DCTmod2 [21] is usually applied
to each block, resulting in a set of feature vectors. In an
analogous manner, 2D Gabor wavelets [12] can also be used.
In HMM based approaches, the spatial relations between
major face features (such as the eyes and nose) is kept (al-
though not rigidly); in the GMM approach the spatial relations
are effectively lost (as each block is treated independently).
As the loss of spatial information may degrade discrimination
accuracy, in this paper we first propose to restore some of
the relations by using local features with embedded positional
information. By working in the feature domain, the relative
low-complexity advantage of the GMM approach is retained.
Face recognition results in the literature are often presented
assuming manual face localization (e.g. see [7], [14], [20]);
in only relatively few publications performance evaluation is
found while using automatic face localization (e.g. [3], [19]).
While assuming manual (i.e. perfect) localization makes the
results independent of the quality of the face localization
system, they are optimistically biased when compared to a real
life system, where it is necessary to automatically locate the
face. There is no guarantee that the automatic face localization
system will provide a correctly located face (i.e. the face may
be at an incorrect scale and/or translated).
We show that the discrimination accuracy of the overall face
verification system can be highly dependent on the accuracy
of the face locator (detection) algorithm (i.e. the algorithm’s
ability to precisely locate a face, with no clipping or scaling
problems). In other words, face classification techniques which
obtain good discrimination accuracy on manually located faces
do not necessarily obtain good accuracy on automatically
located faces. It is shown that robustness depends on the degree
of constraints placed on spatial relations between face parts.
We also show that complexity of a face classification system
is an important consideration in a practical implementation. By
“complexity” we mean the number of parameters to store for
each person as well as the time required to make a verification.
If a face model is to be stored on an electronic card (e.g. an
access card), the size of the model becomes an important issue.
Moreover, the time needed to verify an identity should not be
cumbersome, implying the need to use techniques which are
computationally simple.
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The rest of this paper is structured as follows. Classifiers
based on GMMs, 1D HMMs and P2D HMMs are described
in Section 2. Section 3 briefly describes the employed auto-
matic face localization and feature extraction methods, while
Section 4 provides a brief description of the BANCA database
and its experiment protocols. Section 5 is devoted to experi-
ments involving manual and automatic face localization; the
complexity of the models is also discussed. Conclusions and
future areas of research are given in Section 6.

2. Classifiers Based on Statistical Models
Let us denote the parameter set for client C as λC , and the
parameter set describing a generic face (non-client specific)
as λgeneric . Given a claim for client C’s identity and a set of
T feature vectors X = {xt}

T

t=1 supporting the claim (extracted
from the given face), we find an opinion on the claim using:

Λ(X) = log P (X|λC) − log P (X|λgeneric) (1)

where P (X|λC) is the likelihood of the claim coming from the
true claimant and P (X|λgeneric) is used as an approximation
of the likelihood of the claim coming from an impostor.
The verification decision is then reached as follows: given a
threshold τ , the claim is accepted when Λ(X) ≥ τ and rejected
when Λ(X) < τ .
The parameters for the generic model are found using the
Expectation Maximization (EM) algorithm [5] using informa-
tion from all training faces. The parameters (λC ) for each
client are found by adapting the generic model using a form
of Maximum a Posteriori (MAP) adaptation [9], [18].

2.1. Gaussian Mixture Model
In the GMM based approach, all feature vectors are assumed
to be independent. The likelihood of a set of feature vectors
is found with

P (X|λ) =
TY

t=1

P (xt|λ) =
TY

t=1

NGX
k=1

wk N (xt|µk,Σk) (2)

where λ = {wk, µk,Σk}
NG

k=1, N (x|µ, Σ) is a D-dimensional
gaussian density function with mean µ and diagonal covariance
matrix Σ, NG is the number of gaussians and wk is the
weight for gaussian k (with constraints

PNG

k=1 wk = 1 and
∀ k : wk ≥ 0).
2.1.1. Embedding Positional Information: If each feature
vector in the set X describes a different part of the face,
then a classifier based purely on GMMs effectively loses the
spatial relations between face parts. We conjecture that the
relations carry discriminative information, and propose to
restore a degree of the relations in the GMM approach via
embedding positional information into each feature vector.
Doing so should place a weak constraint on the face areas
that each gaussian in the GMM can model, hence making a
face model more specific. Furthermore, since the extension is
done in the feature domain, the relative simplicity of the GMM
approach is retained. Formally, an extended feature vector for
position (a, b) is obtained with:

x
extended

(a,b) =
h “

x
original

(a,b)

”′

a b
i′

(3)

where x
original

(a,b) is the original feature vector for position (a, b).
We shall refer to a GMM system using extended feature
vectors as GMMext.

Fig. 1. 1D HMM topology,
with top-to-bottom segmentation.

Fig. 2. P2D HMM: the emis-
sion distributions of the vertical
HMM are estimated by horizon-
tal HMMs. qi represent the states
of the main HMM and rj repre-
sent the embedded HMMs states.

2.2. 1D Hidden Markov Model
The one-dimensional HMM (1D HMM) is a particular
HMM topology where only self transitions or transitions to
the next state are allowed. This type of HMM is also known
as a top-bottom HMM [20] or left-right HMM in the context
of speech recognition [17]. Here the face is represented as
a sequence of overlapping rectangular blocks from top to
bottom of the face (see Fig. 1 for an example). The model
is characterized by the following:
1) N , the number of states in the model; each state cor-
responds to a region of the face; S = {S1, S2, . . . , SN}
is the set of states. The state of the model at row t is
given by qt ∈ S, 1 ≤ t ≤ T , where T is the length of the
observation sequence (number of rectangular blocks).

2) The state transition matrix A = {aij}. The topology of
the 1D HMM allows only self transitions or transitions
to the next state:

aij =


P (qt = Sj |qt−1 = Si) for j = i, j = i + 1
0 otherwise

3) The state probability distribution B = {bj(xt)}, where
bj(xt) = P (xt|qt = Sj) (4)

In this paper each state probability distribution is mod-
eled by a GMM.

In compact notation, the parameter set of the 1D HMM is
λ = (A, B). If we let Q be a state sequence q1, q2, · · · , qT , then
the likelihood of an observation sequence X is:

P (X|λ) =
X
∀ Q

P (X, Q|λ) =
X
∀ Q

TY
t=1

bqt
(xt)

TY
t=2

aqt−1,qt
(5)

The calculation of this likelihood according to the direct
definition in Eqn. (5) involves an exponential number of
computations. In practice the Forward-Backward procedure is
used [17]; it is mathematically equivalent, but considerably
more efficient.
Compared to the GMM approach described in Section 2.1,
the spatial constraints are much more strict, mainly due to
the rigid preservation of horizontal spatial relations (e.g. hor-
izontal positions of the eyes). The vertical constraints are not
rigid, though they still enforce the top-to-bottom segmentation
(e.g. the eyes have to be above the mouth). The non-rigid
constraints allow for a degree of vertical translation and some
vertical stretching (caused, for example, by an imperfect face
localization).
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2.3. Pseudo-2D HMM
Emission probabilities of 1D HMMs are typically repre-
sented using GMMs. For the case of P2D HMM, the emission
probabilities of the HMM (now referred to as the “main
HMM”) are estimated through a secondary HMM (referred to
as an “embedded HMM”). The states of the embedded HMMs
are in turn modeled by GMMs. This approach was used for
the face identification task in [7], [20] and the training process
is described in detail in [14]. As shown in Fig. 2, we chose
to perform the vertical segmentation of the face image by the
main HMM and horizontal segmentation by embedded HMMs.
We made this choice because the main decomposition of the
face is instinctively from top to the bottom (forehead, eyes,
nose, mouth). It is important to note that the segmentation
using this HMM topology constrains the segmentation done
by the main HMM to be the same for all columns (if the
main HMM performs the vertical segmentation) or all rows
(if the main HMM performs the horizontal segmentation).
The degree of spatial constraints present in the P2D HMM
approach can be thought of as being somewhere in between
the GMM and the 1D HMM approaches. While the GMM
approach has no spatial constraints and the 1D HMM has rigid
horizontal constraints, the P2D HMM approach has relaxed
constraints in both directions. However, the constraints still
enforce the left-to-right segmentation of the embedded HMMs
(e.g. the left eye has to be before the right eye), and top-to-
bottom segmentation (e.g. like in the 1D HMM approach, the
eyes have to be above the mouth). The non-rigid constraints
allow for a degree of both vertical and horizontal translations,
as well as some vertical and horizontal stretching of the face.

3. Face Localization and Feature Extraction
For automatic face localization experiments, we use the face
detector recently proposed by Fröba and Ermst [8] (which is
partly based on Viola and Jones’ approach [25]). Eye positions
are inferred from the location and scale of the bounding box
enveloping the face. If no face is detected in a given image,
we perform the verification using, if available, other images
supporting the claim. If all given images are deemed not to
contain a face, the claim is considered to have come from an
impostor.
Based on the eye positions, a gray-scale 80×64
(rows×columns) face window is cropped out of each valid
image (i.e. an image which is deemed to contain a face). When
using manually found eye positions, each face window con-
tains the face area from the eyebrows to the mouth; moreover,
the location of the eyes is the same for each face window
(via geometric normalization). Fig. 1 shows an example face
window.
Histogram equalization is used to normalize the face images
photometrically. We then extract DCTmod2 features from each
image face [21]. We have found this combination of histogram
equalization and feature extraction to provide good results
in preliminary experiments. The feature extraction process is
summarized as follows. The face window is analyzed on a
block by block basis; each block is NP×NP (here we use
NP=8) and overlaps neighbouring blocks by a configurable
amount of pixels. Each block is decomposed in terms of

Fig. 3. Example of correct and incorrect verifications on the BANCA
database. Top row contains training images (from the controlled
condition) while the bottom row contains test images from degraded
and adverse conditions.

2D Discrete Cosine Transform (DCT) basis functions [10].
A feature vector for each block located at row a and column
b is then constructed as

x(a,b) =
h

∆hc0 ∆vc0 ∆hc1 ∆vc1 ∆hc2 ∆vc2 c3 c4 ... cM−1

iT

where cn represents the n-th DCT coefficient, while ∆hcn and
∆vcn represent the horizontal and vertical delta coefficients
respectively; the deltas are computed using DCT coefficients
extracted from neighbouring blocks. In this study we use
M=15 (based on [21]), resulting in an 18 dimensional feature
vector for each block.
When using a large overlap, the parts of each face are in
effect “sampled” at various degrees of translations, resulting
in models which should be robust to minor translations of
the faces. This is in addition to the translation robustness
provided by the GMM classifier, where the location of each
block has little influence. By itself, GMM’s built-in robustness
only works when the size of the translation is equivalent to an
integral multiple of the block size.

4. BANCA Database and Experiment Protocols
The multi-lingual BANCA database [1] was designed to
evaluate multi-modal identity verification with various ac-
quisition devices under several scenarios. The database is
comprised of four separate corpora, each containing 52 sub-
jects; the corpora are named after their country of origin.
Each subject participated in 12 recording sessions in different
conditions and with different cameras. Each of these sessions
contains two video recordings: one true claimant access and
one impostor attack. Five “frontal” (not necessarily directly
frontal) face images have been extracted from each video
recording. Sessions 1-4 contain images for the controlled
condition, while sessions 5-8 and 9-12 respectively contain
degraded and adverse conditions. The latter two conditions
differ from the controlled condition in terms of image quality,
lighting, background and pose. See Fig. 3 for an example of
the differences.
We believe that the most realistic cases are when we train
the system in controlled conditions and test it in different
conditions. Hence in our experiments we use the Matched
Controlled (Mc), Unmatched Degraded (Ud), Unmatched Ad-
verse (Ua) and the Pooled test (P) experiment protocols, which
are described in detail in [1].
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System Number of states Gaussians Total
main HMM embedded HMM per state gaussians

GMM - - - 512
GMMext - - - 1024
1D HMM 32 - 1 32
P2D HMM 16 4 64 4096

Table 1. Optimum parameters for systems based on GMM (standard
features), GMMext (extended features), 1D HMM and P2D HMM.

To increase the number of subjects, we merged the English
and French corpora, resulting in a total of 104 subjects. As
per the protocol specifications, the resulting population was
then equally divided into validation and test sets1. Subjects in
the validation set are used to optimize the verification system
(e.g. to find the optimum number of gaussians and the decision
threshold), while subjects from the test set are used for final
accuracy evaluation. This database partitioning is necessary to
avoid optimistic biases in the evaluation.
Verification systems make two types of errors: a False
Acceptance (FA), which occurs when the system accepts an
impostor face, or a False Rejection (FR), which occurs when
the system refuses a true face. The accuracy is generally
measured in terms of False Acceptance Rate (FAR) and False
Rejection Rate (FRR), defined as:

FAR =
number of FAs

number of impostor accesses
(6)

FRR =
number of FRs

number of true claimant accesses
(7)

To aid the interpretation of accuracy, the two error measures
are often combined using the Half Total Error Rate (HTER),
defined as [2]:

HTER = (FAR+ FRR)/2 (8)

A special case of the HTER, known as the Equal Error
Rate (EER), occurs when the system is adjusted (via tuning τ )
so that FAR=FRR on a particular dataset (in our case, the
validation set).

5. Experiments and Discussion
For each client model, the training set was composed of
five images extracted from the same video sequence. We
artificially increased this to ten images by mirroring each
original image. The generic model was trained with 571 face
images (extended to 1142 by mirroring) from the Spanish
corpus of BANCA (containing faces different from the En-
glish and French corpora), thus making the generic model
independent of the subjects present in the client database.
DCTmod2 features were extracted using either a four or a
seven pixel overlap; experiments on the validation set showed
that an overlap of four pixels is better for the GMM approaches
while an overlap of seven pixels is preferred by the P2D HMM
approach. For the 1D HMM approach, a seven pixel overlap
was also used, but feature vectors from the same row of
blocks were concatenated to form a large observation vector.
To keep the dimensionality of the resultant vector reasonable,
we chose to concatenate vectors from every eighth block (thus
eliminating horizontally overlapped blocks). This resulted in
126 dimensional feature vectors for each rectangular block.
In order to optimize each model, we used the validation
set to select the size of the model (e.g. number of states

1In BANCA terms, the validation set is the union of English and French
g1 sets; similarly, the test set is the union of the g2 sets.

System Protocol
Mc Ud Ua P

PCA man. 9.5 20.9 20.8 18.4
PCA auto 22.4 29.7 33.7 29.0
GMM man. 8.9 17.3 20.9 17.0
GMM auto 9.5 21.0 24.8 19.5
GMMext man. 8.5 17.5 20.8 16.4
GMMext auto 8.5 18.4 22.5 19.1
1D HMM man. 6.9 16.3 17.0 14.7
1D HMM auto 13.8 25.9 23.4 21.7
P2D HMM man. 4.6 15.3 13.1 13.5
P2D HMM auto 6.5 15.9 14.7 14.7

Table 2. HTER for manual face localization (man. suffix) and automatic
face localization (auto suffix).

and gaussians) as well as other hyper-parameters, such as the
decision threshold τ ; the parameters were chosen to minimize
the EER. The final discrimination accuracy of each model was
then found on the test set, in terms of HTER.
Table 1 shows the optimum number of states and gaussians
per state for the HMM approaches, as well as the total number
of gaussians for all approaches. It can be observed that the
P2D HMM approach utilizes the largest number of gaussians,
followed by the GMMext approach. The 1D HMM approach
uses the least number of gaussians.
For comparison purposes, we also evaluated the accuracy
of a PCA based system, which in effect has rigid constraints
between face parts. The classifier used for the PCA system
is somewhat similar to the local feature GMM approach. The
main difference is that only two gaussians are utilized: one
for the client and one to represent the generic model. Due
to the small size of the client specific training dataset, and
since PCA feature extraction results in one feature vector per
face, each client model inherits the covariance matrix from the
generic model and the mean of each client model is the mean
of the training vectors for that client. A similar system was
used in [22]. Feature vectors with 160 dimensions were found
to provide optimal accuracy on the validation set.
In Section 5.1 we present the results for manual face
localization, Section 5.2 contains results for imperfect and
automatic face localization and finally in Section 5.3 we
compare the complexity of the local feature approaches.

5.1. Manual Face Localization
Table 2 shows the results in terms of HTER for manual
face localization. When the discrimination accuracy across
different models is compared, it can be seen that the two HMM
approaches (1D and P2D HMM) obtain considerably better
accuracy than the two GMM based approaches. Comparing the
standard GMM and the GMMext approach, the results show
that use of extended feature vectors can result in somewhat
better accuracy. The P2D HMM approach obtains the best
overall accuracy.

5.2. Imperfect and Automatic Face Localization
Prior to using the automatic face locator, we first study how
each system is affected by an increasing amount of error in
the position of the eyes. For this set of experiments we used
exactly the same models as in Section 5.1 (i.e. trained with
manually localized faces). The eye positions were artificially
perturbed using:

eyex = eyegtx + ξx (9)
eyey = eyegty + ξy (10)
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where eye
gt
x and eye

gt
y are the ground-truth (original) co-

ordinates for an eye. ξx and ξy are random variables and
follow a normal distribution such that ξ ∼ N (0, σ2), where
σ2 = V · Deyes, with Deyes being the Euclidean distance
between the two eyes. V ∈ [0, 1] and can be interpreted as
the amount of introduced error.
Results in Fig. 4 show that GMM, GMMext and P2D HMM
based systems are quite robust to imperfect face localization.
In contrast, the PCA and 1D HMM systems are significantly
more sensitive, with their discrimination accuracy rapidly
decreasing as the error is increased. We attribute this accuracy
degradation to the more constrained spatial relation between
face parts; while the 1D HMM system allows for some
vertical displacement, it has rigid constraints in the horizontal
direction; in the PCA based system the relations are rigidly
preserved along both axes.
Table 2 shows that the observations from perturbation
experiments are confirmed when the automatic face locator is
utilized. The PCA system is the most affected, followed by the
1D HMM. When using manual face localization, the 1D HMM
approach outperforms the two GMM based systems; however,
for automatic face localization, the GMMext approach outper-
forms the 1D HMM system. We also note that the spatial
constraints present in the GMMext approach do not affect
the robustness of the system. The P2D HMM system again
obtains the best overall accuracy, with minimal degradation
in discrimination ability when compared to manually located
faces.

5.3. Complexity of Models
Apart from the discrimination accuracy, the complexity of
a given model is also an important consideration; here, by
“complexity” we mean the number of parameters to store
for each client as well as the time required for training and
verification. If we wish to store each model on an electronic
card (e.g. an access card), the size of the model becomes an
important issue. We are specifically interested in the number
of client specific parameters, meaning that we count only
parameters which are different between the clients.
Table 3 shows the complexity of each local feature model
used in our experiments (using hyper-parameters tuned for
optimal discrimination accuracy, such as the number of gaus-
sians); specifically, we show the number of client specific

 10

 15

 20

 25

 30

 35

 40

 0  0.2  0.4  0.6  0.8  1

H
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GMM adapt
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1D HMM adapt
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Fig. 4. HTER for an increasing amount of error in eye locations.

Model type GMM GMMext 1D HMM P2D HMM
number of client 9,216 20,480 4,032 73,728specific parameters
world model 470s 679s 192s 7967s
training time (355s) (546s) (14s) (7789s)
client model 2s 3s 3s 251s
training time (1s) (1.5s) (2s) (250s)

time for verification of 1.12s 1.28s 1.31s 19.89s
one claim (5 images) (0.24s) (0.40s) (0.22s) (18.80s)

Table 3. Complexity of the models. Times are given in terms of
seconds. Values in brackets exclude pre-processing time (e.g. face localization,
normalization, feature extraction).

parameters, the time taken to train the world model, the client
model training time, and the time required to verify one claim
(comprised of five images). The experiments were done on
a Pentium IV 3 GHz running Red Hat Linux 7.3. The times
include pre-processing time; the values in brackets indicate the
time for verification or training excluding steps such as face
localization, normalization and feature extraction. While the
implementation of GMM and HMM based systems was not
specifically optimized in terms of speed, we believe the times
presented are indicative.
As in our implementation of MAP training only the means
are adapted, the number of client specific parameters is
the sum of the parameters for the means (dependent on
the dimensionality of feature vectors). The other parameters
(e.g. weights, covariance matrices and transition probabilities)
are shared by all clients; the shared parameters can be stored
only once in the system for all clients (e.g. there is no need
to store them in each client’s electronic card).
Training of the generic model can be done off-line and
hence the time required is not of great importance; however,
the time taken to train each client model as well as the time
for one verification are quite important. There shouldn’t be a
long delay between a user enrolling in the system and being
able to use the system; most importantly, the verification time
should not be cumbersome, in order to aid the adoption of
the verification system. The GMM, GMMext and 1D HMM
approaches have short training and verification times of around
three and one seconds, respectively. We note that for these
three approaches, the pre-processing steps considerably pe-
nalize the speed of the verification. The P2D HMM approach
has a considerably higher training and verification time, at
approximately 4 minutes for training each client model and 20
seconds for a verification. With current computing resources,
this verification time can be considered as being too long
for practical deployment purposes. Hence in practical terms,
the GMMext approach obtains the best trade-off in terms of
verification time, robustness and discrimination accuracy.

6. Summary and Future Work
The results and observations can be summarized as follows:
• Good discrimination accuracy on manually located faces
does not necessarily reflect good accuracy in real life
conditions, where an automatic localization system must
be used. As an automatic locator cannot guarantee perfect
face localization, any new face verification technique
must be designed from the ground up to handle imper-
fectly located faces.
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• Systems that utilize rigid spatial constraints between face
parts (such as PCA and 1D HMM based), are easily
affected by face localization errors, which are caused by
an automatic face locator. In contrast, systems which have
relaxed constraints (such as GMM and P2D HMM based),
are quite robust.

• While the 1D HMM based approach achieves promising
accuracy for manually (i.e. perfectly) located faces and
outperforms the extended GMM approach, for automati-
cally located faces its accuracy degrades considerably and
is worse than the extended GMM approach.

• The P2D HMM approach is overall the most robust and
obtains the best discrimination accuracy, when compared
to the 1D HMM and GMM based approaches. However,
it is also the most computationally intensive approach,
making it impractical for application use on current
hardware.

• Use of feature vectors with embedded positional informa-
tion somewhat increases the accuracy of the GMM ap-
proach, with no loss of robustness to errors in face local-
ization. Along with the good accuracy of the P2D HMM
approach, this indicates that spatial relations between face
parts carry discriminative information.

• Out of the evaluated approaches, the best trade-off
in terms of complexity, robustness and discrimination
accuracy is achieved by the extended GMM technique.

Avenues of further research include:
• The MAP trained P2D HMM system could be deliber-
ately detuned (e.g. by reducing the number of gaussians
in each state) in order to reduce its complexity, and hence
reduce the time taken to perform a verification. This will
probably come at the cost of a loss in discrimination
accuracy, though the extent of this loss remains to be
seen. Embedding positional information into the feature
vectors may mitigate the loss.

• Currently in the extended GMM approach the degree
of influence of positional information is not controlled;
higher discrimination accuracy might be attained if more
weight is placed on this information. A possible indirect
way of accomplishing this is by placing an upper limit
(during training) on the variances for the dimensions
representing positional information.

• A major source of verification errors appears to be the
pose mismatch between the training and test faces. An
initial investigation on transforming frontal face models
to represent faces at other poses is given in [23]. The
results are encouraging, indicating there is room for
improvement by reducing the pose mismatch.
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