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Joint statistics between temperature and its dissipation rate components 
in a round jet 
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Institut de Mkcanique Statistique de la Turbulence, Universite’ d’Aix-Marseille II, 13003 Marseille, France 

(Received 28 November 1994; accepted 27 March 1995) 

The joint statistics between the temperature fluctuation B and all three components of the 

temperature dissipation rate ee are investigated in the self-preserving region of a slightly heated 

turbulent round jet. The main factors which determine the correIation between 6’ and 4 are the 

asymmetry of p(B), the probability density function (PDF) of f3, and the anisotropy of the. 

small-scale turbulence. The assumption of statistical independence between 0 and Ed appears .to be 

more closely approximated in this flow than in a turbulent plane jet. Relatedly, the assumption of 

local isotropy is also more closely satisfied in the round jet than in the plane jet. When 6, is in the 

range 12 standard deviations, the expectations of all components of Q,, conditioned on 0, are 

approximately equal in the fully turbulent part of the flow; the magnitude of the conditional 

expectation is consistent with the independence assumption. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

The instantaneous scalar dissipation rate e0 [=cy(fr 

=+-~$z+$), where 8,i~‘d8/dxi and a is the thermal diffusiv- 

ity] and its dependence on the scalar fluctuation B are impor- 

tant in turbulent combustion modeling.‘,’ The mean scalar 

dissipation rate (Q} (hereafter, angular brackets denote tune 
averages) features in second-order models of turbulent flows: 

e.g., through the time scale ratio ((~2)(~)-‘/(~)(~~)-1), where 

($) is the average turbulent energy and (e) is the average 

dissipation rate of ($). The dependence between 19 and gs 

reflects the dependence between large-scale and small-scale 
motions. The joint probability density function (JPDF) of 0 

and ~~ can be correlated to the average rate of creation or 

destruction of chemical species in both premixed3 and 
diffusion’ flames since the average reaction rate is propor- 

tional to the expectation of E@ conditioned on the stoichio- 
metric value of 8. 

Measurements of (ee> have been made in nonreacting 
turbulent flows: grid turbulence,5.6 a quasihomogeneous 

shear flo~,~ a self-preserving plane jet,* a self-preserving 
plane wake,g a turbulent boundary layer,” a developing 
round jet,“~‘* and a self-preserving round jet.13,t4 By con- 
trast, however. more limited experimental data are available 
for the joint statistics of 0 and cs. Iso-JPDF contours and 
correlations between the temperature fluctuation 6 and an 

approximation to the temperature dissipation rate ee were 

obtained by Anselmet and Antonia” in the self-preserving 
region of a slightly heated turbulent plane jet. They provided 

approximate support for the assumption of independence be- 

tween 0 and ee. This assumption allows the JPDF, p(&$, of 
these two quantities to be written as a product of the indi- 
vidual or marginal PDFs, viz. 

P(R%)‘P(@P(%). (1) 

Anselmet and Antonia” noted that Eq. (I) seemed to be 
more reasonabIy supported by the data as the distance from 
the jet centerline increases. Recently, using measurements of 

p( 9,B;) [unless otherwise mentioned, repeated subscripts do 

not imply summation] in a turbulent boundary layer and 

p( O,tift) [B,t=iWdt] in the developing region (xl/d 

=3- IS) of a turbulent round jet, Ansehnet et al. l6 pointed 

out that Eq. (1) is strictly valid only when p(B) is symmetri- 

cal. For a symmetrical PDF, all odd-order moments are zero; 

in particular, the skewness S,=(@)l(&3” is zero. These au- 

thors also noted fhat intermittency (as measured, for ex- 

ample, by the intermittency factor y or fraction of the time 

for which the flow is turbulent) plays a much smaller role 

than the asymmetry of p(8) in determining the correlation 

between 6, and ea. 

While Anselmet et aL’s” conclusion seems reasonable, 

it appears to be somewhat at variance with the data of Ref. 

I 1. Using Raman scattering, these authors measured the CFf4 

mass fraction (identified, for the present purpose, with @, 
two components (axial and radial) of 4 in the developing 

region (5Gxtld617) of an isothermal methane round jet. On 

the jet axis, (6$) was approximately equal to ( e2). Since (&) 

and (T3) are equal on the axis, it follows that <co) should 

conform approximately with isotropy there. Also, the corre 

lation (0~~) was very nearly zero on the axis, i.e., in apparent 

support of (1) since (&,)=(@)(~~)=0 if 0 and e0 are indepen- 
dent. Yet, p(8) is not symmetrical on the axis since the avail- 

able data indicate that SB is negative. Values of S,, were not 

reported in Ref. 11 but previous measurements,17-” also in a 

round jet, show that S, varies typically between -1 

(x,ld=3) and -0.3 (x,ld=60) along the axis. As the dis- 

tance (x2) from the axis increases, SB crosses zero and be- 

comes positive. Yet, Namazian et al.” found that the magni- 

tude of (0~) is significantly different from zero when x2)0, 

especially at x2=RU (where R, is the jet half-radius); for 

x,ld< 17, their data indicated a more pronounced departure 

of (E& from isotropy as the radial distance increased. 

The preceding observations suggest that it is not clear 

whether the degree of correlation between 6, and E@ is caused 

mainly by the departure of p (6) from symmetry or by the 
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deviation of (es) from isotropy or whether it is the result of 
both those factors. To resolve this ambiguity, we have exam- 

ined the effects on (8~) of the asymmetry of p(B) and the 
anisotropy of (ee) in the nearly self-preserving region of a 
slightly heated turbulent round jet. In this flow, Antonia and 

Mi13 have found that local isotropy of the temperature field is 

closely satisfied, in the context ‘of either the variances or 
spectra of B,i, on the axis; also, the symmetry of p(B) is 
expected to be a reasonable approximation at the point be- 

tween x2=0 and x2=Ru where S,=O. Another objective of 
this paper is to investigate the expectation of ei conditioned 

on particular values of 0, since such statisticsare required for 
closing the equation for the evolution of the PDF of a passive 
scalar 0 in turbulent flows (e.g., Refs. 20-23). We emphasize 
that, for the present work, all three components of ee are 
measured. In particular, 0,, was measured directly, thus cir- 
cumventing the use of Taylor’s hypothesis. The present joint 
statistics of 0 and es are therefore likely to be more reliable 

than if only s;: were available. It should be noted that the 
basic data set used for this paper is the same as in Ref. 13. 

II. EXPERIMENTAL SETUP AND TEST CONDITIONS 

The jet rig has an axisymmetric nozzle with a IO:1 con- 

traction ratio. The air supply was heated by an electrical fan 
heater (2.4 kW) located at the blower entrance. To obtain a 
uniform and symmetrical (about the jet axisj mean tempera- 

ture profile at the nozzle exit of diameter d=25.4 mm, the 

complete tunnel was insulated (25 mm thick insulating foam 
I with a metallic foil overlay). At the nozzle exit, the tempera- 

ture Tj (-32 “C above ambient) was uniform within + 1%. 
The exit velocity lJj was 11 m/s and the Reynolds number 
RdE Ujdlv, where v is the kinematic viscosity, was about 

1.9x 104. 1 
All measurements were made at x,/d=30 (self- 

preservation was approximately reached at x,/d-15, e.g., 

Ref. 19) and were restricted to the nearly fully turbulent 
region (O%,lR,sl) to avoid flow reversal and high local 

turbulence intensities. On the axis, the mean velocity Ua and 
mean temperature T, were 2.1 m/s and 4.8 “C (relative to 
ambient) respectively. The turbulence Reynolds number R, , 

based on the Taylor microscale X (= r/,- ‘(UT) I”/( UT,,) 1’2), 
was approximately 150 and the Kolmogorov length scale 77 

[=($/(E))“~] was about 0.17 mm. The P&let number P, 
(-(z$‘“X$a; where As={ s”)““/{ I@“~) was equal to 83. The 
half-radii R, and R,, defined on the basis of mean velocity 
and mean temperature profiles, were 75 and 90 mm, respec- 
tively. The ratio Gr/R~(Gr=gR~T,lvT, is the Grashof num- 
ber, T, is the absolute ambient temperature, Ro= UoR,Iv is 
the local Reynolds number) is about 0.0027, indicating that 
the effect of buoyancy is negligible and justifying the use of 

temperature as a passive contaminant. 
Spatial instantaneous derivatives 0,i of the temperature 

fluctuation 6’ were obtained using two parallel cold wires. 

Wollaston (Pt-10% Rh) wires of nominal diameter d,=0.63 
pm were operated by in-house constant current circuits sup- 

plying 0.1 mA to each wire. For this value of electrical cur- 

rent and for the experimental conditions outlined above, the 
velocity contamination of the temperature signal had a neg- 
ligible effect on the statistics presented in this paper. The 

wires, with a nominal length 1, of about 0.4 mm, were per- 

pendicular to the flow direction. Each wire was carefully 

checked under a microscope for straightness immediately 

prior to the experiments. Care was taken to ensure that the 

etched portion of each wire was central and parallel so as to 

minimize the uncertainty in the measurement of Axi, the 

separation in the xi direction between the wires. Following a 

detailed investigationz4 of the effect of Axi on S,i, the sepa- 

ration Ax, was chosen equal to about 3 77 since, for this value 

of Axi, the correction which. had to be applied to obtain 

reliable values of <$) was relatively small. Also, this value 

of Axi is sufficiently large to avoid the large uncertainty due 

to the electronic noise.25 

The diameter d, and length I, of the wires were chosen 

so that the ratio Z,ld, (~700) was sufficiently large to avoid 

possible attenuation at low wave numbersZ6 while the ratio 

1,lv was as small as practicable. At xlld=30 and x,lR, -0, 

the value of 1,/g (12.6) was small enough to avoid making 

a wire length correction (Wyngaard’s27 calculations show 

that for a wire length of about 37, (es) is attenuated by about 

10%). Only the central part of the Wollaston wires was 

etched to avoid difficulties associated with fully etched 

wires. For a given wire 1ength;Paranthoen et al.” found that 

the signal for a fully etched wire is more attenuated than that 

from a partially etched wire. Estimates of the temperature 

coefficient of the cold wires were made by mounting both 

wires at the jet exit using a 10 Sz platinum resistance ther- 

mometer operated. in a .Leeds and Northrup 8087 bridge 

(with a resolution of 0.01 “C). 

The cutoff frequency f, of the low-pass filter was se- 

lected by viewing the time derivative spectra on the screen of 

a real-time spectrum analyser (HP3582A). Special attention 

was given to the degree of correlation between the two sig- 

nals and to the time derivative spectra of these signals. If the 

spectra looked different, one or both of the wires were re- 

placed by newly etched ones until there was no discernible 

difference. The values off, .were identified with the frequen- 

cies at which the derivative spectra were about 2-3 dB 

higher than those corresponding to the frequencies at which 

electronic noise first became important. These settings were 

determined at each measurement location and found to be the 

same for the two wires. At xa=O and x2= R, , f, was 2.2 and 

1.2 kHz, respectively, while the Kolmogorov frequency fk 

ew1v274w is the local mean streamwise velocity) 

was about 2.0 and 0.8 kHz. 

After filtering, the signals from the two wires were 

passed through buck and gain units to offset the DC compo- 

nents and provide suitable amplification prior to digitizing 

the signals with a 1Zbit A/D converter (RC electronics) on a 

personal computer (NEC 386). A tampling frequency f, 

equal to 2 f, was used in all cases and the record duration 

was 50 s. The digital data were directly transferred from the 

personal computer to a VAX 8550 computer using an 

ETHERNET (fibre optic cable) link. The spatial and tempo- 

ral derivatives and their squared values were formed on the 

VAX computer. 
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TABLE I. Moments of temperature derivatives. 

Round jet Planet jet 

(present) (Antonia et aZ.) 

Isotropic 

value 

-dR. 0.0 0.53 1.07 0 1.. 

K2 21 0.98 1.04 1.15 2 1 

K2 31 1.03 1.08 1.2 . . . 1 

;f: 0.95 1.03 0.83 0.85 0.6 0.62 0.4 . . . 1 1 

% -1.1 -1.08 -1.15 -0.85 0 

% -0.05 -0.86 -1.01 -0 0 

% -0.04 _- 0.1 -0.08 . . . 0 

Ill. DEPARTURE FROM LOCAL ISOTROPY 

Local isotropy of the scalar field requires that 

and 

PC- e,J=p(8,J. 
One consequence of this is the equality 

(2) 
When n is odd, (#,:)=O (in particular, the skewness Se,, 

= { e;p( eFJ312 = 0); when n is even, the following ratios: 

t 01’2) 

G1= @iiJ 

and 

,, JT3) 
K31= p-J 

are unity. These ratios for n=2 and 4 and the magnitudes of 
Sesi (i= 1,2,3) are presented in Table I for x21Ru=0, 0.53, 

and 1.07. As noted in Sec. II, the present data were estimated 
from the finite difference 0,iw A MAxi at the optimum sepa- 
ration Axi”3v. Also shown in the table are the correspond- 
ing values obtained by Antonia et aLa in the self-preserving 

region (x,ld=40) of. a slightly heated turbulent plane jet. 
Table I indicates that the isotropic requirement (2)’ for y1=2 is 
very closely satisfied on the axis. It is less adequately satis- 

fied as x2 increases. Away from the axis, the departure from 

(2) is more pronounced at n=4 than n=2. The departure of 
Kzl from unity is considerably larger for the plane jet, even 

on the centerline. This implies that local isotropy of the sca- 

lar field is more closely satisfied in the round jet than in the 
plane jet, as previously noted in Ref. 13. 

The nonzero values of the skewnesses SB,i for i = 1 and 2 

(off the axis), which seem to invalidate the assumption of 
local isotropy, are associated with the mean temperature gra- 

dient (r>,i (e.g., R f e s. 29-31). The nonzero value of S0,1 

may not mainly reflect the anisotropy of the small-scale tem- 
perature field. 28,32,33 It is more likely associated with the 

asymmetry of the large-scale motion. Figure 1 shows the 

cospectrum, C00,,~2,, between 19, and pi for i=l and 2 at 

xJR,=O and 0.53:‘The cospectrum is normalized such that 
the area under the curve is equal to ISsil. The major contri- 

5 I I I , 
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% -5 
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FIG. 1. Cospectra between 0,, and 4 (i=1,2) at x21Ru=0 (-) and 0.53 

(---). (a) i=l; (b) 2. 

bution (>65%) to Se,, or S0,2 at x2/R,=0.53 occurs in the 

range kT SO. 1, suggesting that the nonzero values of SB,i 
result mainly from the asymmetry of the large-scale motion. 

As a result of symmetry with respect to x2, the cospectrum 

COO,,~~, is nearly zero at all values of k: [Fig. l(b)] on the jet 

axis. However, when kf 5 0.2, Coo,, @2, is negative both on 

and off the axis since the large scale streamwise motion is 
asymmetrical with respect to xi across the jet (as reflected by 
the presence of ramps in the temperature signals). 

Sreenivasan et al.32 provided more direct evidence of the in- 
fluence of the large-scale motion on the magnitude of So,, in 

a round jet. A conditional technique was used for removing 
the effect of the large-scale motion on 0, the skewness of the 

x1 derivative of the remaining signal was nearly zero. It is 
possible that Se,, is not a reliable indicator of local isotropy. 

The magnitude of SB,r is virtually unchanged (-1.1) at dif- 

ferent x,/R, (Table I); Sreenivasan et aZ.32 noted that the 

magnitude of 1 Se,il (~0.8) did not change either for different 

flows or over several orders-of-magnitude variation in Rh. 

IV. CORRELATION BETWEEN BAND ee 

The JPDF of et and pi (i= 1, 2, or 3) is shown in Fig. 2. 

Clearly, there are important differences between @ and ei- 
ther f2 or f3. Figure 2(a) implies a relatively high degree of 
correlation between $ and ei. The correlation coefficient, 

i.e., (&~e~~} [h ereafter, the asterisk denotes a variable 
which is centered and normalized by the root-mean-square 

(RMS) value], between these two variables is greater than 
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* .- 
%- 8 
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A.232, lavar 

-2-2024 6 8 0 246 8 0 246 8 

FIG. 2. Normalized JPDF contours of et and 4. (a) p( 6’:;” ,&r*); (b) 

p(e;*$3; (c)P(~;*. OS). Outer to inner contours: 0.0005, 0.001, 0.005, 

0.01, and 0.1. Upper and lower contours are for nzlR,=O and 0.53. 

0.8 at all xs locations. This coefficient should be 1 if Taylor’s 

hypothesis, i.e., B,t= -(VI) 8,,, applies. Figures 2(b) and 

2(c) show a close coincidence between large values of Bf$* 

and small values of 8$* and &* and vice versa, indirectly 

suggesting that periods of strong activity in 19:: and 0fs* may 

occur almost simultaneously and correspond to periods 

where 8:r* is quiescent. An important consequence of this is 
that the instantaneous behavior of r~, cannot be inferred 
solely on the basis of @r. This should be kept in mind, espe- 

cially when only the et data are available. 
Estimates of the correlation coefficient between Q 

and fluctuations of pi have been made both for 8~0 and 
8>0. A zero value of the coefficient in each case can re- 
sult from either of the following conditions: (i) statistical 

independence between 0 and pi, (ii) p( 0*, + Sfi*) 

= p( e*, - e;*), viz. symmetry of p( e:*) . In the present 
flow, condition (ii) is not satisfied since the skewness of 

Ss* is in the range 10-20, i.e., p( $*) is far from being 

symmetrical. A zero value of the correlation coefficient, 
when 0 is either positive or negative, would therefore be 
consistent with the notion of independence between 0 and 

ci. Note that a zero value of the correlation does not neces- 
sarily imply independence, e.g., Figure 6.9 of Tennekes and 

Lurnley;34 strictly, Eq. (1) needs to be verified. Table II indi- 

cates that, at x,lR,~O.8, the correlation coefficient is very 

8 I I I 

__...__ 
(4 

CL-4 
%- 

-5.0 -2.5 0.0 2.5 5.0 
0% 

8 

6 

4 

2 

0 

-2 

FIG. 3. Independence check for the JPDF of 0 and & (a) x,/R,=O; (b) 

0.53; (c) 0.8. --, p(0*,@,*); -, p(0*)p($*). Outer to inner contours: 
0.0005, 0.002, 0.006, and 0.05. 

small, typically less than 0.05, for both 8<0 and DO. This 
implies that there is a very weak dependence between 0 and 
c$. Since E~=LY(IJ$+ @a-t- &J, the dependence between es 
and 0 is expected to be also very weak; as shown in Table II, 

the magnitude of the normalized correlation 

(3) 

is indeed quite close to zero at all measurement locations. 
This, in turn, suggests that Eq. (1) is approximately valid; 

direct checks of the relation p ( 8*, 8:;) = p ( B*)p ( of.) 

(Fig. 3) corroborate this. 
Figure 4 indicates that the correlation coefficients 

(8” el:*) increase slightly with x,/R,, as noted in Ref. 15 in 

the context of a plane jet. In both jets, S’s varies in a manner 

similar to (8” $*), where the data of Se for the plane jet 
(xtld=40) were taken from Ref. 35. Note, however, that in 
the range x,lR,~1 or x,lL,Sl (L, is the plane jet half- 

width), both SB and (8” es*) are significantly closer to zero 
for the round jet than for the plane jet. Accordingly, one 
could conclude, as did Anselmet et al.,t6 that the correlation 

between t9 and pi [or es] is, to a large degree, related to the 

TABLE IL Correlation coefficients between 6J and the temperature dissipation components. The normalized correlation between 0 and co is also shown. 

(e*e?) (e*ef;r) (e*et:) 

X?lR, I!?<0 8>0 8*<0 650 e-0 6-O W%lW 

0 -0.06 0.017 -0.065 0.016 -0.061 0.012 -0.086 

0.27 -0.066 0.022 -0.032 0.003 -0.036 0.004 -0.063 

0.53 -0.038 0.033 -0.032 0.009 -0.054 -0.001 -0.047 

0.80 -0.017 0.032 -0.018 0.009 -0.032 0.01 -0.028 

1.07 -0.059 0,086 -0.018 0.043 -0.047 0.049 0.038 
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FIG. 4. Distributions of (tY*fI~~*} and S,. Round jet (present): 0, 

(e*eFr); A, (e*sl’,*); +, (e*eTT); -, s,. Plane jet: 0, (e*eT,‘) (Ansel- 

met and Antonia”); ---, SR (Browne et LzZ.~~). 

magnitude of Se. It is unlikely, however, that SB is the only 

factor, since the location where SB is zero does not coincide 

with that where (0” S:*) is zero [also see Fig. 4(b) of Ref. 

161. Figure 3 suggests that Eq. (I) is as closely validated on 
the axis [Sew-O.3 and the departure of p(B) from symmetry 

is not negligible] as at x21R,=0.8 (SB is negligible there). 

Yet, the data presented in Table I indicate that local isotropy 

is more closely satisfied on the axis. Similarly, the lack of 

correlation between 0 and I$ (i = 1,2) obtained by Namazian 

et al.,” on the axis in the developing region (xildG17) of a 

round jet, should be associated with a non-negligible value 

of So, on the basis of the data shown in Ref. 19 in the region 

3,.5e,ld=G30 of a round jet. Perhaps more importantly, the 

data of Refs. 11 and 12 support the isotropy of (E&, at least 
approximately, on the jet axis. In a slightly heated round jet, 

Anselmet et al. l6 also obtained a very small value (~0.05) of 

(f?*Q~~) atx,ld=15 dndx2=0, where S,=-0.5. Moreover, 

consistently with the relative magnitudes of ( 8” 0;*) in Fig. 
4, the departure from local isotropy is significantly smaller in 
the round jet than in the plane jet (Sec. III). These results are 

not unreasonable if one interprets local isotropy as reflecting 
a lack of dependence between the small-scale motion (which 

contributes significantly to (E&) and the large-scale motion 

(which dominates the magnitude of (82)). The above discus- 

sion strongly supports that the correlation ( 8e8) is influenced 
not just by the symmetry of p(B) but also by the level of 

departure from local isotropy. 
Jayesh and Warhafts6 presented estimates of the correla- 

tion coefficient p = ( ti**Eg) and the normalized correlation 
p&( @Q)/( @)( Q,)-- 1) for decaying grid turbulence with 

and without a mean lateral temperature gradient (T),> In 
their case, 4 was inferred from cr via Taylor’s hypothesis. 

With an imposed constant (T),s, p and pp were typically 0.1 
and 0.4 at the last measurement station, suggesting a signifi- 

cant correlation between the scalar and its dissipation rate es. 

At this station, p(e) is quite symmetrical (we estimated a 

value of 0.03 for S,). In the same flow, Tong and Warhaft37 
showed that, when (T),,#O, the departure of (Q) from isot- 

ropy is significant (typically Kit= 1.5220.2). This is ex- 

-0.02' ' ' ' """ ' ' ' """ ' ' ' """ ' 
IO" IO" 10-l IO0 

f 
k 

FIG. 5. Cospectra of 19 and @ at three values of x,/R,. (i) i=l; (b) 2; (c) 
3; -,xzlR,=O; ---, 0.53; ...I 1.07. 

petted since an imposed mean temperature gradient can act 
as a source of temperature anisotropy in grid turbulence. 

When ( T),2-0, p and pP were significantly reduced to about 

0.03 and 0.1, respectively. Yet, a discernible departure from 
symmetry can be detected in p(d) (see their Fig. 161, the 

value of SB being approximately 0.2. One would expect ee to 

satisfy isotropy roughly in this case. Note that, for the 
present experiments, p and pP are less than 0.01 on the axis, 

implying a much smaller degree of correlation between the 
scalar and its dissipation rate than for decaying grid turbu- 
lence. 

V. STATISTICAL DEPENDENCE BETWEEN 8 AND ce 

In order to gain further insight into the dependence be- 

tween 8 and f$, cospectra of 8 and pi are shown in Fig. 5, in 

the form kFCo@, vs log,, kT (where kT = klv), at three 

radial locations f&/R, =0, 0.53, and 1.07). Relatively large 

magnitudes occur in the range 0 < kr d 0.1, reflecting the 

importance of the large-scale motion. For kT > 0.1, the 
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FIG. 6. Cospectra of 0 and 4 at three values of x2/R,. -, x,/R,=O; ---, 

0.53; ... , 1.07. 

magnitude of CO~,~;~ remains discernible (typically less than 

0.015), while COALS;, and CO~,~~, are almost zero at all wave 

numbers. This indicates that the statistical dependence be- 
tween 19 and pi is weak for i=3 and 3 but relatively strong 
for i = 1. Although sl”i for i = 1, 2, and 3 were not obtained 
simultaneously, the cospectrum between 19 and .+, i.e., 

Q3. EgS can be estimated approximately using the data for 

CO~,~:. Figure 6 shows data for CO~,~,(~:); note that 

(W = 
(0 > l/2 (4 I Coo,#Wf . 

As x2 increases, the main variation in the cospectrum occurs 
at k: 5 O.l:Co~,,&k~), which is negative on the axis, 

becomes positive when x2/R,z0.5. This suggests that, on 

average, low temperatures (8<0), which are associated with 
the entrained partially-mixed (cooler) fluid, would be related 

to relatively high dissipation rates es (greater than (es)) in the 
central flow region. 

Further evidence of the dependence between pi and 0 

can be obtained from measurements of (mile>, the expecta- 
tion of fi conditioned on individual values of 8. This expec- 
tation is defined (e.g., Ref. 21) as follows: 

where 

is the conditional PDF of S,i (i=1,2,3) for particular values 

of 8. Estimates of (&$8) were made at xJR,=O, 0.53, and 

1.07; the normalized distributions of qi( 0) -( fI:l e)l( 0:) are 
shown in Fig. 7. For all values of i, qj(@ exhibit a peak (not 

well-defined) near both the lower and upper limits of the 
temperature range. High-temperature dissipation rates can 

occur at the interface-where there is a high-temperature dif- 

ference and therefore strong mixing-between the large- 

scale warmer fluid and the entrained cooler fluid; this inter- 

face is reflected by a relatively large jump in the temperature 
signal. 

x5.0 -2.5 0.0 2.5 5.0 
e* 

FIG. 7. Distributions of qi(B) at x,lR,=O, 0.53, and 1.07. -, i=l; ---, 2; 
. . . 3 , . 

Since the cooler entrained fluid comes in contact with 

warmer fluid at the interface, high values of pi may be as- 
sociated with either low or high values of @, thus leading to 
the two observed peaks of ai( The largest values of ISI are 

associated with the smallest values of qi(e). This is reason- 
able since temperatures associated with the coolest unmixed 
or partially mixed fluid and the warmest well-mixed (fully 

turbulent) ffuid are unlikely to be dissipated rapidly. Further, 
note that, at x,/R,=0 and 0.53, the left peak in q*(8) is 
stronger than that in either q2(B) or qs(@), the latter two being 

nearly equal. The right peak appears to be of equal strength 
for all i, although the jitter and likely lack of convergence of 
the data make conclusions difficult. A possible explanation is 
that the interface in the central flow region may, on average, 
be approximately normal to the x1 direction, so that a rela- 
tively large streamwise temperature change occurs. When 

conditioning is on the spatially coherent temperature jump, a 
very sharp increase is observed in (et/@ (see Fig. 9 of Ref. 
13) near the jump location, where 8 is generally negative and 

thus associated with the cooler entrained fluid. Increases in 

both ez and @s also occur at almost the same location but 

their magnitude is smaller than that of I?$. The jitter and poor 

convergence of (mile> near the high-temperature side re- 
quires comment. While much longer record durations would 

reduce the fluctuations, it is unlikely that they would yield a 

better definition of qi(B). Kailasnath et aL38 found that, even 

for very long record durations (- 15 h) obtained in the wake 

of a heated cylinder, 4 r (8) did not converge at the uppermost 

temperature end (unpublished wake data obtained in our 
laboratory corroborate this). The authors suggested that this 
lack of convergence reflects the infrequent arrival at the mea- 

surement station of very high-temperature fluid (in the 

present case the upper temperature limit would correspond to 

the temperature at the jet exit). 

For [c?]S2, qi(B)“1 at x.JR,=O and 0.53. This indi- 

cates negligible statistical dependence between 0 and fi for 

1670 Phys. Fluids, Vol. 7, No. 7, July 1995 Mi, Antonia, and Anselmet 

Downloaded 06 Apr 2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



I@ls2. For statistical independence between H and Bf,, 

($10) = (014:) or qi( 8) = ( efjl e)/( 0:) = 1. The probability 

that @ falls in the range If?/>2 is quite small (55%). This 

negates the effects of the extrema of si(Q) at large 1 e*] so that 

{e*$.*) is nearly zero when x,/R,$0.5 (Sec. IV). At 

x2/Ru = 1.07, except near the two limits of @, qi( t9) increases 

noticeably as @ increases. At this location, the departure 

from local isotropy is more significant than on the axis (Sec. 

III). Consistent with this, Southerland and Dahm14 observed 

that, in a round water jet at x,/d-235 and xZ/xl=O.ll, the 

conditional dissipation rate (~18) is generally an increasing 

function of 8 (in this case, 0 should be identified with the dye 

concentration fluctuation). These authors found a non- 

negligible departure from local isotropy (e.g., K&=1.1 and 

K$,r--1.5) at the same off-axis location (unfortunately, no in- 

formation was given on the axis). 

In decaying grid-generated turbulence, the statistical be- 

havior of qiB)=(cde>/(eo), inferred from Taylor’s hypothesis, 

was investigated by Jayesh and Warhaft36 at (T),2= C (a 

nonzero constant) and (T),z=O. When (T),,=C, y(B) de- 

pends strongly on 6’ and exhibits a rounded V shape (sym- 

metrical about t9=0) at all measurement stations x1/&l 

(~160), where M is the grid mesh length. In this case, as 

mentioned in Sec. N, the departure of {es) from isotropy is 

significant. 37 When (T) 2*O, the distribution of q (6) shows a 

strong peak near the upper limit of 0 at x,/M=62.4 but 

becomes much flatter, especially for @GO where q(e)- 1, at 

xrl/M=82.4. Although these authors were not able to mea- 

sure q(6) at further downstream distances, the trend suggests 

that q(6j tends to unity, i.e., (E& tends to be statistically 

independent of 0, as x1 increases. We believe that (e@) should 

tend to isotropy in this case. Another interesting difference in 

qt.@ for the two cases is that, when (T),,=O, like the present 
results for the round jet, the largest temperature fluctuations, 
either positive or negative, are associated with the lowest 

values of E@; when (T).2=C, however, the largest fluctua- 

tions are related to the highest dissipation rates. 

The significant difference between the present behavior 
of qi(~~ and that obtained by Kailasnath et a1.38 on the axis 

of a round water jet at x,/d=37 (R,=3900) requires com- 

ment. On the axis, their distributions of qi(0) (i=l or 2) 

increases very significantly with 0 (see Pig. 5 of Ref. 38). 

The rate of increase is several times larger than for the 

present qi(0) at x2/RU=l.07 and Southerland and Dahm’s14 

qi(e) at q/R,-I. Since (e*e~~)=(e*(e~~Ie*)), the 

qi(6’) distributions of Kailasnath et al. suggest that (8” 0:*) 
should differ significantly from zero, in contrast to the 
present nearly zero value (Fig. 4). Also, their absolute values 

of Ss should be considerably larger than the present value of 

Is~. The present value of SB ( w-0.3) on the axis is compa- 
rable to that obtained by Birch et a1.17 in a C,Hs air round jet 

(Sp-0.3) and Pitts and Kashiwagi’s in a CH, air round jet 
(So%-0.4). The present value is also not very different from 

that ( w-0.5) obtained by Anselmet et a1.16 on the axis at 

x,/d=15. However, in the same jet as used in Ref. 38, 

Prasad and Sreenivasan3”-obtained a much bigger value (>I) 
for SB in the region 13sx,/d<21. The observed differences 

between the present data and those of Ref. 38 may be attrib- 

4 

3 

52 
d 2 

1 

n 
15.0 -2.5 0.0 2.5 5.0 

e* 

FIG. 8. Comparison between q,(@ and q:(O) at x21R,=0. -, ql(e); ---, 

q:(O) for 19=~(0,~+~,-,); +, q:(O) for S=Oj. 

uted to significant differences in initial conditions between 

the two flows. This seems plausible as Gao and O’Brien4’ 

found, using direct numerical simulations of isotropic turbu- 

lence, that a nonzero correlation between tl and O,j is prima- 

rily the result of initial conditions. Similarly, in decaying 

grid-generated turbulence, Jayesh and Warhaft3’ noted that 

the residual effect of initial conditions, although not evident 

in (T) and (&), affects p(B) and q( 0) significantly, even at 

large distances downstream. While the above observations 

apply to homogeneous turbulence, similar results could be 

expected for inhomogeneous turbulent shear flows. The ef- 

fect of initial conditions clearly merits further study. 

VI. EFFECT OF TAYLOR’S HYPOTHESIS ON Q,(S) 

To investigate the effect of using Taylor’s hypothesis on- 

the measurement of q,(dj~(6f~/s>/($), a comparison is 
made, in Fig. 8, between the directly measured 4 t(0) and 
q{(e), inferred from Taylor’s hypothesis. The distribution of 

q:(e) is only single-lobed near the high-temperature side; as 
found by Kailasnath et aL3” Like ql(@l, s!(e) is quite fat 

over the range ]0*ls2. However, this plateau is absent in 

Kailasnath et aZ.‘s distribution for qi (e), the latter increasing 
monotonically with 0. A possible reason for this is that there 

may be differences in the initial conditions between the two 

jets. Another possibility is as follows. Let {a,} G=1,2,...) 
represent the discrete time series of 0. An approximation for 

( S,,)j is given by ( ej- i?- t)/r,, where r,=f,Ft. If (O,,)j is 
the instantaneous derivative at the instant when Sj occurs, 
one would expect that q:(8) wiIl weight larger values of 0 
more heavily, since the temperature signal often exhibits 

ramp-like patterns (a jump followed by a gradual decrease; 
see Ref. 32). This expectation is corroborated by Fig. 8 and 

is consistent with the distribution of qi (0) obtained by Ref. 

38 [we are assuming that they estimated q{ (0) in this way]. It 
is worth pointing out that the finite difference ( ej- ej- i)/r5 

is an adequate approximation to the time derivative when 

e=( ej+ Bi- ,)/2 but not for e=ej, since the zero value of 

( ee,,} [ = 5( ( f?“}) ,t], which follows from the stationarity of 0, 

is obtained only when f?=( Bj+ t9jj- ,)/2. 
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The comparison in Fig. 8 indicates that, on the axis, 

Taylor’s hypothesis is approximately valid for estimating 
q,(0) when Byh2-2 but inadequate when @S-2. This 
should not introduce any significant error to the conventional 

average (@, since the magnitude of J1f p( B*)G!L~* is quite 
small.25’41 The breakdown for- @5-2 is readily explained; 
the magnitude of 6’, at a point in space depends on how 
rapidly 0 changes with time; this change should be closely 
related to the instantaneous velocity of the fluid at tempera- 
ture ((T) + 6’). Obviously, the coolest (entrained) fluid should 

have a streamwise velocity which is much smaller than the 
local mean streamwise velocity (17,). Therefore, the use of 

Taylor’s hypothesis, i.e., 8,,= - (U,) $,i, will cause a signifi- 

cant attenuation of (@I 6)( Ut)-’ near the low temperature 

side; as a result, the low temperature peak in ql(9 is not 
evident in s{(8) (Fig. 6). Recent results obtained by Tong 

and Warhaft4* in a round jet corroborate this. It is difficult to 
understand why Kailasnath et al.‘s distributions of 4: and q1 
are identical on the low concentration side. 

VII. CONCLUSIONS 

The dependence between 8 and es is influenced not only 

by the symmetry of ~(9, as was pointed out by Anselmet 
et a1.,16 but also by the departure from local isotropy. The 
dependence is weaker in a round jet than a plane jet, the 
difference reflecting the smaller departure from local isot- 
ropy for the round jet. The expectation of Q, conditioned on 

0, depends strongly on 19 when the latter is either very posi- 

tive or negative. This local dependence is due to the close 
connection which exists between the large-scale motion and 

the entrainment of unmixed or partially mixed fluid; this con- 
nection does not however contribute significantly to the cor- 
relation (&,). 

In the fully turbuIent part of the flow the conditional 

expectation (~i/B) is independent of i when -2S@%2. 
Within this range, the magnitude of the expectation is nearly 
1, implying approximate independence between ei or ce and 
8. For @%-a, there are significant differences in (~i/ile> be- 
tween i = 1 and i =2 (or 3). Contrary to the conclusion of 

Kailasnath et aZ.,38 our data indicate that estimates of (g/e> 
from ($l9 and Taylor’s hypothesis are seriously in error 
near the low-temperature side. On the high-temperature side 

(@%2), it is possible that differences exist in (i?JB) for dif- 
ferent i. In this region, the poor convergence of the data 
which, as noted in Ref. 38, is mainly due to the infrequent 

arrivals of high-temperature fluid, makes it difficult to draw 
any conclusions. 
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