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Abstract

Flow through an open converging-diverging channel,
aimed at achieving maximum velocity at the throat.

Introduction

Consider a finite open converging-diverging tube or chan-
nel as in Figure 1 placed in an unbounded uniform
stream, the purpose of which is to induce an internal
flow with a maximum speed V that is significantly in
excess of the stream speed U . If this Venturi had been
part of a closed tube carrying a fixed volume flux, in
principle there would have been no limit to the veloc-
ity V achievable at the throat, by making the constric-
tion there smaller and smaller relative to the main tube’s
cross-section. However, as this happens, the drag in-
creases and more force via pressure gradient is required
to maintain constant volume flux in the tube.

On the other hand, if the Venturi is finite and open at
each end, and is placed in an unbounded uniform stream
U of incompressible viscous fluid, such large velocities V
through the throat are not possible. We hope that a sig-
nificant volume of fluid enters the Venturi and then must
speed up as it passes through its throat. However, as
the throat becomes more constricted, the drag increases
and it is harder for fluid to pass through it. Hence less
fluid actually enters the Venturi, and eventually it chokes
and simply becomes an obstacle, around which all of the
fluid flows; so V = 0. This choking phenomenon begins
with separation of the interior wall boundary layer in the
adverse zone of increasing pressure aft of the throat, and
V/U can be increased significantly only so long as such
separation does not occur.

So it would appear that an open Venturi tube has an up-
per bound on the achievable velocity augmentation ratio
V/U at the throat, and it is the purpose of the present pa-
per to discuss that ratio, and provide preliminary results
toward its theoretical determination. We use tools of po-
tential flow, and of laminar and turbulent boundary-layer
theory. In fact, very little flow augmentation is achiev-
able in laminar flow, and only the separation-delaying
effect of turbulence in the boundary layer allows V/U to
take values significantly greater than 1.

In the present paper, we treat only two-dimensional flow
in channels, although the work extends readily to three-

Figure 1: An example of a symmetric open Venturi with
end width/throat width of 1.5 and zero end slopes.
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nsional flow in tubes. We assume that the walls of
hannel are y = ±h(x), 0 < x < L. We denote the
um (throat) half-width as h0, the maximum half-
h(L) being at the exit. Our examples are generally
ft symmetric with h0 = h(L/2), although this is not
essary assumption.

viscid Flows

e channel is long compared to its width, with
<< L, in the absence of viscous effects the flow
n the channel will be uniform across the channel,
x-wise velocity u(x) inversely proportional to h(x)
nservation of mass. At the same time, the whole
ri being slender will negligibly disturb the external

m U , so that to ensure pressure continuity between
or and exterior flows, the fluid must emerge at the
= L with the stream speed U . Hence (c.f. [8],[9])

u(x) = U
h(L)

h(x)
. (1)

his inviscid basis, as large a throat velocity ratio
= h(L)/h0 as we please is achievable by making the
t half-width h0 sufficiently small.

ugh this simple one-dimensional theory by itself
fore gives no immediate answer for the maximum
of V/U , it can form the basis for subsequent

dary-layer computations that do, by supplying the
g pressure coefficient (based on the throat velocity
amely

Cp(x) = 1− u2

V 2
= 1− h2

0

h(x)2
. (2)

pressure gradient is positive whenever the channel
is increasing, and in general remains finite up to

xit. If we demand zero exit pressure gradient, the
el wall must be locally parallel to the stream, with

end slope h′(L) = 0.

e 1 is an example of a symmetric channel of this
with a thickness ratio h(L)/h0 = 1.5, namely
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(3)

is such that the pressure coefficient Cp(x) is a
ic polynomial. Within the one-dimensional ap-
mation, this channel then also has a velocity ratio
= 1.5.

ow turn to two-dimensional computations for chan-
which are not necessarily long compared to their
, when there is no such immediate relationship be-
these two ratios.

viscid Flows

full 2D potential flow about and through a finite-
h channel is equivalent to that for a cambered air-
epresenting the wall) in ground effect (representing



the symmetry plane at the channel centreline), and can
be determined by a number of numerical procedures bor-
rowed from aerodynamics.

We have developed code for a general boundary curve
y = h(x) of zero thickness, by distributing vortices along
that curve, together with their images in the symmetry
plane y = 0. The vortex strength is found so that the
flow is tangent to the boundary, subject to the Kutta
condition of zero vortex strength at the trailing edge.
This leads to a singular integral equation for the vortex
strength function, which is converted to linear algebraic
equations by discretisation assuming stepwise-constant
vortex strength on each of N panels into which the wall
curve is divided. Adequate (about 3-figure) accuracy is
achieved with N values of the order of a few hundred.

Figure 1 shows streamlines computed from such a com-
putation for the special wall shape given by equation (3),
and Figure 2 shows corresponding velocities along the
interior and exterior walls as functions of x. This is for
an aspect ratio L/(2h0) = 5 which is only moderately
slender, and the exit (and entrance) velocity at the wall
trailing edge is 1.053U , about 5% above the free-stream
value assumed by the 1D theory. Meanwhile the throat
velocity is 1.627U at the wall, about 8% higher than the
value predicted by the 1D theory. Of course, in this 2D
theory the velocity profile is no longer uniform across
the channel, and for example the centreline exit velocity
is 1.088U and the centreline throat velocity is 1.591U .
Results in closer agreement with the 1D theory would be
obtained by using larger aspect ratios L/(2h0).

The program also computes velocities exterior to the
channel, e.g. on the outside of the wall, and for example,
exterior to the throat we find a (minimum) velocity of
0.857U , see Figure 2. The present program assumes zero
wall thickness, but could easily be extended to permit the
exterior wall to be shaped in such a way as to disturb the
uniform stream as little as possible.

The wall boundary pressures computed by this program
can be used as input to a boundary-layer computation.
If the wall is of generally positive curvature, with a mini-
mum width at the throat rising to a maximum at the exit,
the interior pressure similarly rises from its minimum at
the throat, to a maximum value close to atmospheric
pressure at the exit.

Although the assumed Kutta condition guarantees that
the pressure itself approaches a finite limit at the trailing
edge, it does so (so long as the wall curvature remains
positive) with infinite positive pressure gradient. Hence
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Figure 2: Velocity distributions along interior and exte-
rior walls, for the flow of Figure 1.
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ch a channel wall, the interior-wall boundary-layer
must separate prior to reaching the trailing edge.
ugh this separation can be delayed to very close
e trailing edge, it is unlikely that shapes with such
d singularity will be optimal for maximum V/U .
e it is desirable either to cancel the trailing-edge
larity, or to make it negative with a small exit region
ourable pressure gradient. It is always possible to
ve this by reversing the wall curvature locally, but
e in the 1D theory above) this does not necessarily
that the exit pressure gradient is zero when the

ng-edge channel slope h′(L) vanishes.

xample, the special channel of Figure 1 with h′(L) =
ually allows the interior wall pressure to rise to a
maximum, i.e. the interior velocity has a local min-
(see Figure 2), just ahead of the trailing edge, so

the actual trailing edge pressure gradient takes a
rable negative-infinite value. Thus the negative cur-
e of this channel near the trailing edge somewhat
compensates, and in order to yield zero exit pressure
ent, it would be necessary to retain a small positive
lope, of magnitude about h′(L) = 0.1. Again, if we
ase the aspect ratio L/(2h0), this end singularity in
ressure gradient would reduce toward zero for walls
zero end slope, in conformity with the 1D theory.

y case, this 2D inviscid theory still allows arbitrar-
rge velocity augmentation ratios V/U , and we must
to viscous effects, incorporating drag mechanisms
eparation, to establish bounds on that ratio.

nar Viscous Flows

e are a number of ways to study laminar flows of
cous fluid about a fixed body of the type of inter-
ere, ranging up to full Navier-Stokes solution simul-
usly exterior (on a grid extending to infinity) and
or to the channel, in effect generalising the 2D po-
l flow of the previous section. Here however we are
nt to describe two simpler methods providing more
t insight, and concentrating on the interior flow.

cation-like theory

rst method is one previously used by Bentwich and
[1] for a generalised lubrication problem. This is a
er-channel interior-flow model in the spirit of the 1D
id solution described earlier, in that it holds only
(x) << L, and takes account of the exterior flow
by demanding that the pressure in the interior flow
n to atmospheric at the exit from the channel.

portant feature of this method is that the entrance
ity to the channel is determined as part of the solu-
to the problem, and is adjusted until the exit pres-
condition is satisfied. Since the resulting entrance
ity is generally significantly less than the free-stream
, this feature thus models the “choking” tendency
o drag, as described in the introduction.

actual equation solved in the interior flow is
dtl’s boundary-layer equation. However, this equa-
is satisfied not just close to the walls, but through-
he channel width, with a pressure distribution that
iform across the channel but unknown as a func-
of x along the channel. This is similar to “inverse”
dary-layer problems, as described by Keller [4].

is a “moderate Reynolds number” theory, with a
eynolds number limit corresponding to lubrication
y and an essentially parabolic velocity profile, and



a high Reynolds number limit where the viscous effects
are confined to the walls and the interior flow is uniform.
The theory interpolates between these limits, effectively
allowing the boundary layers to extend across the whole
width of the channel.

Most computations were performed for parabolic-arc
walls at (lubrication-scaled) Reynolds numbers Rh =
Uh(L)2/νL up to several hundreds. The output veloc-
ity ratio V/U increases with Rh, but becomes essentially
Reynolds-number independent once Rh exceeds about 60,
asymptoting to a maximum value which is a function only
of the width ratio h(L)/h0. Furthermore, V/U could not
be made to exceed about 1.095 for parabolic-arc chan-
nels, no matter how much we constrict the throat, the
optimum occurring at about h(L)/h0 = 2, with little ef-
fect of this ratio between 1.5 and 3.0.

Separation as defined by zero wall shear, followed by a
low-velocity near-wall backflow, occurs near the exit for
all Rh above about 30, but this does not prevent compu-
tations continuing to considerably higher Reynolds num-
bers. Note that a moderate value for the Reynolds num-
ber Rh based on the lubrication lengthscale h(L)2/L cor-
responds to a much higher value for the conventional
Reynolds number RL = UL/ν based on the channel
length L; for example Rh = 100 implies RL = 10000
for a 10:1 aspect-ratio channel.

The program was also run for the special channel of Fig-
ure 1, and a 3D representation of the velocity profile
u(x, y) at Rh = 80 is given in Figure 3. In this case
the entrance velocity is found to be u0 = 0.627U and the
maximum (centreline) velocity is V = 1.089U , occurring
at x = 0.58L, after which the centreline velocity returns
to very close to the free stream speed U at the exit.

Zero wall shear occurs at x = 0.84L, followed by a very
weak vortex close to the walls, with maximum backflow
velocity about −0.012U . Figure 3 displays the evolution
of the velocity profile across the channel, from its uniform
entrance value, with initial Blasius boundary layers at
the walls eventually growing to fill a significant fraction
of the channel, but still with a quite flat profile over the
central half of the channel at the exit station.

The blocking effect of viscosity and of the wall vortex
is significant in reducing the effective entrance velocity,
and this is why the maximum centreline velocity only
just exceeds the free stream speed even though the chan-
nel width is reduced by two-thirds. Less blockage (and
eventually no separation) occurs for a more gentle chan-
nel with a lower h(L)/h0 ratio, and then the entrance
velocity approaches the free stream speed, but the subse-
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maximum velocity still hardly exceeds it. Among
mmetric wall shapes tried, the maximum velocity
uld never be made to exceed 1.12U .

ford laminar estimation

y simple estimate for laminar boundary-layer sepa-
is available via the formula of Stratford [5] as mod-

by Curle and Skan [3], see Rosenhead [10], p. 328.
ely, to avoid separation we must have

F (x) = x
√

Cp(x)C′
p(x) < 0.102 (4)

estimate has been shown ([10], p. 331) to be remark-
accurate compared to experiment and other more
sticated laminar boundary layer computational pro-
es. Strictly x in equation (4) is arclength, but this is
ctly approximated by the Cartesian x-coordinate for
er channels. Then we use the 1D inviscid theory as
uation (2) to determine Cp(x), and in order to find
aximum value of V/U , demand that F (L) = 0.102,
ssume that separation is about to occur at the exit
e channel.

is way, for example, we can easily show that for
metric parabolic-arc wall, the maximum value of

= h(L)/h0 to avoid separation is only 1.049. This
ot worse than the lubrication-like theory predicted
parabolic-arc wall, but is explained by the fact that
tter allows weak separation.

ct we can use the Stratford formula (4) to design
est possible pressure distribution, and hence within
D model, the best possible wall shape, by requiring
the boundary layer be on the verge of separation
where in the adverse region. In that case the equa-
F (x) = 0.102 is an an ODE to determine Cp(x).
xample, assuming a fore-aft symmetric design, the
ion in x ≥ L/2, subject to Cp = 0 at the throat
/2, is

Cp(x) =
[
3

2
(0.102) log

2x

L

]2/3

(5)

t the exit x = L we must have CP (L) = 0.224 = 1−
2; hence V/U = 1.135. No symmetric open Venturi
chieve more than a 13.5% speed-up in unseparated
ar flow!

lent Flow

ly if an open Venturi is to be able to accelerate the
significantly, this must be as a result of the better
y of turbulent boundary layers to remain attached
n adverse pressure gradients, and we need to take
lence into account. Again there are many possible
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Figure 3: Velocity profiles for laminar viscous flow at Rh = 80 in the channel of Figure 1.



computational tools, ranging up to full Navier-Stokes so-
lution in the whole infinite domain, coupled with one of a
myriad of CFD turbulence models of increasing complex-
ity. However, given that our present concern is mainly
with the boundary layers on the interior walls, simpler
models for the present problem are worth exploring first.

In particular, Stratford [6] has also provided a simple sep-
aration criterion for turbulent boundary layers, namely

F (x) = Cp(x)
√

(x− x0)C′
p(x) < 0.35 (6)

for Reynolds numbers (based on length L) of the order of
106, which we assume. Cebeci and Smith [2] have demon-
strated that the formula (6) is in good agreement with
other more sophisticated methods, and with experiment.

In contrast to the corresponding laminar formula (4),
there is a complicating feature of the turbulent Stratford
formula (6) in that there is a “virtual origin” x = x0 from
which an idealised flat-plate turbulent boundary layer is
assumed to start, rather than the actual leading edge
x = 0. In reality as we move from the leading edge to-
ward the throat, there occurs a sequence of (not always
precisely defined) events involving an evolving laminar
boundary layer, then transition to turbulence, etc. Strat-
ford [6] gives empirical methods for estimating x0 (pro-
viding the transition point is known, which is not usually
the case), but since our aim here is to find upper bounds,
we can simply allow x0 to vary until the best result is
achieved.

If we again use as our first model a parabolic-arc wall,
and write down as with laminar flow the requirement that
the boundary layer is about to separate at the exit, i.e.
F (L) = 0.35, we find that the maximum value of V/U is
a quite promising 1.363, and it occurs when x0 = L/2.
That is, the most favourable situation for maximising
the throat velocity is to place the virtual origin right at
the throat itself. This is, as Stratford [6] cautions, “...
only roughly correct, as the turbulent flat plate profile as-
sumed to exist at x = x0 would not be properly formed
...”, but nevertheless the nearer we can get to this situa-
tion, the higher the achievable V/U .

An even better result is achievable once again by exploit-
ing reversed curvature near the exit. For example we
can achieve a 50% acceleration, i.e. V/U = 1.5, with
the symmetric shape of Figure 1 as given by equation
(3), which satisfies h′(L) = 0. It is notable that for this
shape, the separation crisis is not at the actual exit, the
function F (x) reaching a maximum slightly less than the
critical value 0.35 of equation (6) at x ≈ 0.9L. Within a
family like that of equation (3) having a quartic polyno-
mial pressure coefficient, this value V/U = 1.5 seems to
be about as high as one can go.

However, it is not necessarily the best V/U achievable
for any h(x). Again we can seek the optimum by requir-
ing the turbulent boundary layer to be on the verge of
separation for all x > L/2, setting F (x) = 0.35 and solv-
ing the resulting ODE for Cp(x). This would produce an
optimum “diffuser” shape, like that proposed by Strat-
ford [7], and some preliminary computations suggest the
possibility of V/U = 2 or greater.

However, there is now the extra complication of the
choice of the virtual origin x0. Choosing x0 = L/2 is
no longer acceptable for these optimal shapes, which are
singular in that limit. Virtual origins close to the throat
seem to have advantages, but Stratford’s [6] caution now
becomes more critical, and perhaps a better computa-
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l model is needed.

lusions

ity augmentation ratios of the order of V/U = 1.5
redicted by the simple but usually reliable Stratford
lent boundary layer separation criterion. This value
chieved for a special but not necessarily optimal
el shape having zero end slope. Even higher values
U may be possible without separation for optimised
el shapes, whereas laminar flow allows no higher
V/U = 1.135 before separation occurs.

e are a number of possible extensions and improve-
s in computational techniques for this class of prob-
Full Navier-Stokes solution in the whole flowfield,
and outside the channel, with suitable turbu-

modelling, is the most obvious, though computa-
lly challenging procedure. One intermediate possi-
is that of constructing a turbulent equivalent of

ubrication-like theory of [1], which would only re-
solving boundary-layer equations inside the chan-
here are a number of appealing features of such a

y, such as the determination of the entrance veloc-
nd the ability to compute a weakly separated flow
the exit, potentially allowing somewhat higher V/U
than those for unseparated flow.

resent paper has concerned itself only with theoret-
nd computational techniques. In no way does this
asis imply that such techniques are more signifi-
than actual observation, and systematic experimen-
easurements of V/U for families of open Venturis
be highly desirable.
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