Mosaic: A Non-intrusive Complete Garbage Collector for DSM Systems

David S. Munro, Katrina E. Falkner, Matthew C. Lowry and Francis A. Vaughan

Department of Computer Science, University of Adelaide,
South Australia 5005, Australia
Email: {dave, katrina, mclowry, francis} @cs.adelaide.edu.au

Abstract

Little work has been done in garbage collection
algorithms for distributed shared memory systems.
Mosaic is a safe and complete garbage collection system
that collects garbage in object systems that are
implemented above page-based distributed shared
memory systems. It is non-intrusive in its impact on
application performance.

Mosaic partitions the virtual address space into
separately managed regions, which form the basic unit of
object storage. Garbage collection operates by moving
objects between these partitions in a manner that
associates live objects together leaving unreachable
objects behind so that partitions may be reused. To
provide for safe operation of the collector a distributed
update protocol maintains sufficient local knowledge of
pointer duplication and destruction to allow safe
determination of object reachability without the need to
globally trace the object space. Mosaic exploits the
semantics of pointer operations in type-safe object
languages to allow for a weakened consistency model of
pointer update during garbage collection.

1 Introduction

With increasing size and complexity of applications,
reliance upon explicit storage management is becoming
increasingly error prone. Very large or distributed
applications are typically forced to operate with only
partial knowledge of storage operation. Attempting to
explicitly manage storage in such applications typically
leads to serious errors that can cause random program
behaviour, storage leaks and inefficiency in use of
memory. Such errors are notoriously difficult to detect
and expensive to fix. For over thirty years, numerous
garbage collection algorithms have been devised,
implemented, analysed and tested to alleviate this burden
from the developer. (See Wilson [21] for an excellent
survey). Although distributed shared memory (DSM)

systems have undergone significant development, garbage
collection in DSM systems has typically continued to be
performed using simplistic and often inefficient collectors
[8, 13].

In a DSM system, applications view and operate over a
single address space, shared and visible to a number of
nodes. From this perspective it is clear that any single-
processor garbage collection algorithm can operate in a
DSM system, but since it must traverse the global state
of the application, it operates at considerable cost to
application performance.

The challenge is to develop a garbage collection algorithm
with the desired properties of safety and completeness that
minimises impact upon application performance. Safety
ensures that a non-garbage object (a live object) is never
collected; completeness ensures that all garbage will
eventually be collected. To address the problem of
correctly determining liveness in the face of concurrent
application access, collection algorithms generally exploit
two characteristics of object systems, namely the stability
of garbage and the conservatism of reachability. Stability
means that once an object becomes unreachable then it
will remain in that state. Conservatism allows the
collector to legitimately consider a garbage object as
being live avoiding expensive co-ordination between the
collector and the application. A conservative collector is
not necessarily complete; there exist a number of
conservative and incomplete distributed garbage collection
algorithms [4, 16].

We describe Mosaic; a garbage collection algorithm that
is targeted at DSM systems and is specifically designed
to minimise the collector’s impact on application
performance. The collector is neutral with respect to the
coherency protocol chosen by the DSM system for
application use. There is a close relationship between the
strictures of conservatism in garbage collection and the
generation of multiple copies of objects in DSM systems.
Mosaic exploits this relationship to achieve safety and
completeness with minimal DSM interference. Whilst
Mosaic is unconcerned with the DSM consistency model

1£££

COMPUTER

Proceedings of the 1st International Symposium on Cluster Computing and the Grid (CCGRID ’01) SOCIETY

0-7695-1010-8/01 $10.00 © 2001 IEEE

used by the application it introduces a novel relaxed
consistency model for use in its reclamation algorithm.

Mosaic is a member of a family of collection algorithms
based on the Mature Object Space (MOS) collector [5]
(sometimes known as the Train Algorithm) with the
specific goal of dovetailing efficiently into a DSM
system. The main appeal of adapting Mosaic from a
known and proven set of algorithms is that it acquires
correctness guarantees. In addition, Mosaic inherits and
exhibits a number of desirable properties from its
predecessors, namely incrementality, completeness,
asynchrony and hence potential for scalability. Research
on this family of collectors has shown that it operates
flexibly, correctly and efficiently in a number of contexts
including main-memory systems, persistent systems and
fully distributed systems [5, 7, 14, 17]. To achieve this
marriage with minimal impact on the DSM operation is
the subject of this paper.

2 Partitioned Garbage Collection

The principal goal of a garbage collection algorithm is to
correctly distinguish those objects that can be legally
manipulated by the application program (live objects)
from those that cannot (garbage objects) and then using
this knowledge to reclaim the garbage space. This is
achieved using reachability; involving traversal of the
object graph from a set of program roots to determine
liveness. The set of live objects is determined from those
objects reachable through the transitive closure of all
roots. Safety is an essential property of any such scheme;
completeness (including the detection of cycles of
garbage) is a desirable and arguably essential property of
any garbage collection algorithm, particularly in long-
lived and distributed systems. Garbage collection
algorithms should also be efficient both in terms of their
run-time impact on the performance of the application and
in exploiting potential to increase application locality
through compaction and clustering.

Simple garbage collection algorithms assume global
knowledge; that is, they have available the entire address
space they operate upon. In systems where it is expensive
for a collector to inspect all parts of the address space this
may result in significant performance degradation. For
example, the address space may be very large and mostly
resident in stable storage. Similarly in DSM systems
global knowledge is expensive since typically the
majority of the shared address space will not be cached
within any individual node. A well-understood technique
for ameliorating this is partition-based collection. The
address space is partitioned and each portion is collected
independently, providing for a gradual and incremental
reclamation of garbage. This can offer performance
advantages through increased locality, limited disruption
and avoidance of the need for global synchronisation.
Partitioning is therefore a building block to achieving
scalability [2, 3].

In order to independently collect a partition in a safe
manner there must be some meta-data associated with
each partition to indicate the global reachability of objects
within that partition. This meta-data takes the form of a
set of object references, where the members of the set
point to those objects in the partition that have one or
more references extant outside the partition. A collector
operating upon a partition treats this set as additional
roots of reachability. A live object that is inside a
partition which is not referenced from any other object in
that partition will not be erroneously reclaimed. Much
research has been done into implementation techniques for
such sets (commonly called remembered sets or remsets)
[6, 15, 19]. These sets may be maintained asynchronously
in distributed systems, exploiting garbage collection
conservatism and thus avoiding the need for global
synchronisation.

Such a partition-based collection scheme is safe and
incremental, but not complete. The problem is that cycles
of garbage that span more than one partition will never be
collected. In a cycle spanning multiple partitions at least
one member in each partition will be referenced from
outside that partition. Thus, the members of the cycle
will appear reachable to each partition collector and will
be treated as live. To become complete a partition-based
collection algorithm must augment the collection of
individual partitions with some additional mechanism to
discover and eliminate cross-partition cycles of garbage.

In a DSM system, the problem of collecting partitions is
complicated by the fact that each node in the system is
participating in a shared address space that changes
dynamically. Objects may be physically resident on
different nodes. Indeed, portions of a partition may not be
resident in any individual nodes cache or may be
replicated on several nodes. Hence, in a DSM system the
selection of policies for partition collection and the
maintenance of meta-data become important decisions.
The problem of independently collecting partitions in a
safe and complete manner in the face of partial knowledge
is addressed by the Mosaic collector.

2.1 The Mosaic Collector

Mosaic is one of a family of incremental collectors that
are targeted at reclamation of different areas of the storage
hierarchy. The MOS collector is a partitioned main-
memory copying collector specifically designed to collect
large, older generations of a generational scheme in a non-
disruptive manner. Copying collectors move objects to a
new location allowing the entire memory range collected
to be reused en-block, as opposed to collectors that leave
objects in place, attempting to reuse the space made
available by individual garbage objects. Copying
collectors avoid memory fragmentation and are able to
exploit dynamic reclustering to improve caching
performance. MOS partitions the address space into
multi-page units called cars, which are grouped further
into trains. Trains comprise of sets of cars where each car

2 IEEE

Proceedings of the 1st International Symposium on Cluster Computing and the Grid (CCGRID ’01) ng&%%%R
0-7695-1010-8/01 $10.00 © 2001 IEEE

belongs to one and only one train. Trains are a structuring
technique through which cycles of garbage can be detected
and reclaimed. The PMOS [14] collector extends MOS to
provide incrementality in systems that extend the object
space to include secondary storage. DMOS [7] builds
upon MOS and PMOS to offer incremental collection for
distributed message-passing systems. DMOS is a
complete, non-blocking, incremental collector for
distributed object systems that does not require global
tracing.

The common attributes of these collectors are safety,
completeness, non-disruptiveness and incrementality (the
collector reclaims space incrementally). Mosaic:

e is a copying collector and naturally
compaction and reclustering,

supports

e does not impose any constraints on the order of
collection of the partitions and allows nodes to
concurrently collect partitions of the address space,

e operates correctly in the face of multiple copies of
objects being cached in a number of nodes and is
compatible with DSM relaxed consistency models,

* maintains reachability information via asynchronous
message-passing which is integrated into the DSM
consistency protocol communication,

Like its predecessors, the Mosaic algorithm is described
by the analogy of cars (conjoint partitions of the address
space comprise of a fixed number of pages) that are then
grouped into a flexible higher-level partitioning of trains.
A unique aspect of the train algorithm is the manner in
which cross-car cycles of garbage are eliminated. This is
achieved through the provision of a total ordering to
trains based on their age (time since creation). Trains may
be referred to as younger or older than other trains.
Associated with each car is a remembered set that records
those objects resident in the car which are referred to from
outside the car.

Cars are the units of collection. When a car is collected,
any reachable objects are copied out of the car into other
cars, and the entire car (with any remaining garbage) is
reclaimed as free space. Choosing a car to receive a
reachable object is done using the following set of rules,
which may require the creation of new cars.

e If the object is reachable from a car in a younger
train, the object is copied to a car in a train that is
younger than it’s current train but no younger then a
train that holds a reference to it.

e If the object is reachable, but not from a younger
train, then the object is copied into another car of its
current train.

® An object is never copied to an older train.

The effect of these rules is that live objects are continually
moved to younger trains. Objects that are only reachable
because they are members of a cross-car garbage cycle
congregate to the youngest train that holds a member of
the cycle, but are promoted no further. Because of the

stability of garbage, a train eventually becomes either
completely empty or solely garbage. By detecting either
state and reclaiming the cars of the train, completeness is
achieved. The system must ensure that there are always at
least two trains.

Mosaic uses two interacting collection mechanisms. One
mechanism operates concurrently on a per-node basis and
collects individual cars (requiring the safe maintenance of
remembered sets). The other mechanism is a global
mechanism that asynchronously detects and collects
unreferenced trains and hence cyclic garbage. Each
mechanism may be described in terms of the detection of
a global predicate. Remembered set maintenance requires
the detection of absence of references; unreferenced train
detection requires the determination of the absence of
references to any object from outside a train to within a
train. Mosaic uses a set of proven protocols, adapted from
the DMOS collector, that efficiently maintain these
predicates. Section®4 outlines this scheme.

The train algorithm leaves decisions regarding when new
trains are created, when new cars are added to existing
trains, and how cars are formed from the underlying
address space as matters of policy. This enables a great
degree of flexibility in the manner in which objects are
migrated within the address space. By collecting and
relocating cars en masse fragmentation is avoided, and
objects are naturally clustered in a manner which can be
tuned to improve application locality.

The algorithm allows any car from any train to be selected
for collection and requires that every car be eventually
collected. The completeness of Mosaic depends on four
constraints:

® objects are copied in one direction only; from older
to younger trains,

e the stability property of garbage ensures that garbage
is never copied to a train younger than its youngest
referent,

e cach car is eventually collected, and
e isolated trains are eventually reclaimed.

3 Mosaic DSM Architecture

The Mosaic garbage collector uses the car as the
fundamental block of storage space within which objects
are held. Constructing cars from pages is a natural
progression, and allows the base element of object
allocation to be seamlessly integrated with virtual
memory management. Progression to a page-based DSM
model of execution is similarly natural. The Mosaic
system makes no demand upon the nature of the
consistency model seen by the user level code and can be
used with any of the currently described DSM models.
However, the nature of object systems provides some
significant opportunities to further relax the consistency
constraints when manipulating pointers and object
location.

3 IEEE

Proceedings of the 1st International Symposium on Cluster Computing and the Grid (CCGRID ’01) ng&%%%R
0-7695-1010-8/01 $10.00 © 2001 IEEE

Embedding an object system within a page-based DSM
forces some performance tradeoffs with respect to object-
based DSM. Page-based systems generally suffer from
greater false sharing and greater cost of individual data
movement. However, the ability of Mosaic to choose
target cars during reassociation provides the opportunity
to cluster objects for better temporal locality (ameliorating
the cost of data movement by clustering objects that are
used together on the same page) [1], or for dividing
objects that are found to cause false sharing between
separate pages. Car size can be chosen to reduce the size
of the remembered set data structures since, in general, the
larger a car is, and the better the clustering of objects
within a car, the fewer intra-car references will occur.

3.1 Object Properties

The Mosaic system makes the following demands of the
underlying object system.

e Pointer Differentiation. It must always be possible,
given a pointer, to discover unambiguously all
pointers within the referend object.

e Pointer Safety. User level code must not be able to
manipulate or create pointers.

e Roots of Reachability. The object system must
provide the garbage collector with all pointers that
may exist outwith objects. Typically these are
pointers in virtual machine registers, and stack
frames. Further, it must be possible for these pointers
to be updated to reflect the new location of an object.

These properties are common to the vast majority of
object systems. The following are less common, but
typically well understood, and used in a significant
number of object designs.

e Crossing Map. Some mechanism exists to discover
all the pointers on a page when only presented with
the page address. Since objects may cross page
boundaries some mechanism must exist to discover
those pointers resident in the partial object. Crossing
maps as described by Wilson [18] suffice.

e Pointers are virtual addresses. Pointers are direct
addresses into the shared virtual address space. It is
thus possible to identify the page upon which a
referend object resides, and further, determine the car
in which it resides.

3.2 The Car Collection Consistency Model

An object system may be considered as a virtual memory
mechanism in, and of, itself. This is because user level
code is prohibited from manipulating the actual contents
of pointers. Code cannot modify or create pointers, it may
only assign or dereference them. Object creation is not
affected by users code, but is a function of the underlying
object management system, and is the only time pointers
are created. Most importantly, an object can be relocated
with no change to the user level code semantics. Thus
there is a clear duality of pointers to objects in an object
system and page tables in page-based virtual memory. In

combining a relaxed consistency page-based DSM
system, with the relaxation of consistency available with
a pointer-based object system, it is possible to exploit the
benefits of both.

The Mosaic system is intended to be compatible with the
various strengths of consistency described for DSM
architectures. Mosaic adds a new consistency model
exploited during car collection. Thus, it must be
implemented as a modification to any existing
consistency protocol; it is not possible to implement
Mosaic above an existing DSM system. This is for a
number of reasons:

e Mosaic updates pointer values in a manner that is not
safe for scalar data, and thus incompatible with the
consistency model for scalar data.

e Operation of the pointer tracking and other
housekeeping tasks used by the Mosaic algorithm
require message interchange between nodes that is
causally dependant upon modification to the
underlying shared memory space. Thus, these
messages must be delivered in FIFO order, in the
same channel as the DSM consistency messages.

Implementing Mosaic as a modification to rather than on
top of an existing DSM may seem to limit the
technique s usefulness, however we believe that
knowledge of the DSM system s structure and execution
provides significant increases in efficiency for collection.

3.2.1 Page-based DSM features

The goal of an individual car collection pass is to remove
all reachable objects from within the car, thus allowing
the car to be reused for object storage. The crucial point is
to observe that although the objects are moved to a
different location in memory a number of invariants hold.

® Moved objects are not otherwise modified.
e The source car is not modified.

e The destination car is only modified in that new
objects are appended in hitherto unused (and
otherwise inaccessible to user code) space.

These invariants allow a relaxed consistency to apply to
the pages allocated to the collected car and its target cars
for re-association. The collected car need only be held as a
read-only copy in the collecting node. Whilst the car is
being evacuated, nodes that hold a valid copy of pages
from the car may continue to read objects resident within
the car. However, no node can be allowed to gain write
access to the pages of an evacuated car. Member pages of
such a car are considered to be in a state special to the
garbage collection algorithm. User code attempting to
modify an object in an evacuating car will be redirected to
the new location of the object through a mechanism
described in Section®3.2.2.

The destination page must be held for write access.
However, since none of the objects currently resident in
the page are modified by the garbage collector, a relaxed

4 IEEE

Proceedings of the 1st International Symposium on Cluster Computing and the Grid (CCGRID ’01) ng&%%%R
0-7695-1010-8/01 $10.00 © 2001 IEEE

multiple writers protocol is possible. Since the page is
only modified by appending objects the calculation of
changes to the page is trivial and does not require the
maintenance of a ghost copy of the page, as would be
required if more general updates occurred. Mosaic does
however require that only one node be afforded append
access to any individual car.

3.2.2 Relocation and Consistency

Since Mosaic is a copying collector it is crucial for the
success of object relocation that all pointers to all
relocated objects are updated in a timely and safe manner.
Each page has associated with it a remset, containing a
list of all pointers to objects on that page from objects in
other cars. This list serves a dual purpose. First as a
component in the local roots of reachability, determining
those objects that will be reassociated. Secondly, as live
objects are copied out of the page the Mosaic system uses
the list to create a change list of pointers that must be
updated to reflect the new object location. Once the page
has been traversed this list is sent to each node which
contains a valid copy of any source pointer in the list.
This change list is the equivalent of an update consistency
message.

During object reassociation the source pages may remain
available for read access in other nodes. Before
modification of any object that resided within the
evacuated car can occur, the remote node must correctly
update its references to the object to reflect its new
location. Upon reception of a pointer update message a
node may begin to asynchronously update the pointers it
holds. Note that this update may proceed independently
of any access or consistency protocol locking that may
exist on the affected pages. Again this is safe because of
the special nature of pointers.

Pointer update must be done whilst the local computation
is blocked at a known safe point. This is the only time
where the operation of the application is blocked by the
collector. Update at a safe point allows modification of
pointers in application registers, and avoids race
conditions between the application and the collector. It
also prevents the application potentially seeing two
inconsistent copies of the object, one at the original
location and one at the new.

Update of object location is slightly complicated because
a node may have created new copies of a pointer during
the time in which the update message is being created or
processed. However, the pointer tracking mechanism will
have generated appropriate change messages that will
arrive before the update acknowledge message. If such a
change message is received the collector node builds a
new update request and restarts the update cycle.

During object evacuation a node with a valid copy of the
car may attempt to modify an object in the car. Since the
pages in the car are only available for read access the
application will block with a write access fault. At this

point two options exist to allow the application to

correctly find and modify the correct object.

e The application is designed so that it can restart the
instruction in such a way that it automatically reloads
the pointer to the referend object from the source
object, which will have been changed during the
update pass. Many virtual machines are designed or
can be implemented to restart in this manner [12,
11].

e The virtual machine is designed to understand and
correctly follow forwarding pointers. Forwarding
pointers (also known as tombstones) are degenerate
objects that are placed in the address space where the
required object used to reside. The execution engine
recognises the forwarding pointer and is redirected to
the new location. If forwarding pointers are used, the
virtual memory system replaces the page being
accessed with a synthesised page. This page contains
only forwarding pointers directly synthesised from
the update message. Once the update has completed
the synthesised page may be safely removed.

The collecting node must also safely keep track of
changes to the location of objects. Since nodes are free to
continue execution during car collection, pointers to
objects within the car may continue to be copied and
destroyed. Messages reflecting this activity may be in
transit during object relocation, and thus the owner node
must keep its own copy of the update list, which is uses
as a forwarding list to enable correct delivery of pointer
tracking messages to the object at its new location. Each
node acknowledges completion of an update message to
the originator. Since messages are delivered in FIFO
order, this acknowledgment acts to define the time when
no more pointer tracking messages will refer to the object
at its old address, thus allowing the collecting node to
determine when it no longer needs the update list.

4 Mosaic Predicate Maintenance

As described in Section®2.1, Mosaic maintains two global
predicates to ensure safe and complete operation. These
predicates detect:

e The existence of any reference to an object in a car,

e The absence of any reference to objects within a train
from outside that train.

These predicates are maintained through the use of
modified protocols taken from the DMOS garbage
collector. These protocols are designed to operate correctly
without recourse to global synchronisation, and as such
are designed to correctly reflect the causality of events
occurring on separate nodes.

4.1 Pointer Tracking.
Detection of references to objects is the problem of global
remembered set maintenance. In principle, each pointer

manipulation should be reflected in updates to the
referend objects remembered set entry. Pointer

5 IEEE

Proceedings of the 1st International Symposium on Cluster Computing and the Grid (CCGRID ’01) ng&%%%R
0-7695-1010-8/01 $10.00 © 2001 IEEE

manipulation events take two forms, the duplication of a
pointer, and the destruction of a pointer (through
overwriting by a reference to a different object.) Both
these actions can occur through the normal operation of
user code on a node. However pointer duplication may
also occur through the action of the DSM protocol, since
whenever a page is delivered to a node all pointers on that
page must be considered as having been duplicated. The
need to find all pointers on a page when it is copied
between nodes is the reason for the crossing map
capability described earlier.

From a high level view the pointer tracking algorithm
merely signals to the appropriate remembered set each
creation and deletion event, noting that a page entered
onto an output queue or copied into an intermediate buffer
should be regarded as a duplication event.

To maintain the causal relationship of pointer events
between pairs of hosts, these events are tagged with the
node at which they occurred and the protocol treats the
enqueing of a page for delivery to another node as a
duplication event at the receiver node, not at the sender.
Delivery of these events occurs in FIFO order in the same
channel as other DSM coherency messages and thus any
node is assured of maintaining a causally consistent view
of the existence of pointers. The stability property of
garbage provides the mechanism by which the
remembered set maintenance system may be assured that
no pointers exist, despite the lack of globally
synchronised of state. This is because once the sum of
pointers to an object on other nodes reaches zero, no legal
mechanism exists to manufacture a pointer and thus the
count will remain zero.

For the purposes of implementing the Mosaic collector, a
significant number of optimisations are applied to the
basic principles of the pointer tracking algorithm. In
practice, pointer tracking events are only of importance
when a cross car reference is involved. Additionally, only
the transition from some pointers to no pointers is
important to the safety of collection. Thus nodes are free
to coalesce pointer-change events, and are only actually
required to signal changes to and from zero.

Maintenance of the update information required to modify
referencing pointers is similarly open to heavy
optimisation. In principle each pointer change event
includes the address of the modified pointer so that when
the referend object moves all pointers referring to it can be
changed. Again this knowledge may be maintained
locally by a node, and utilised in response to a pointer
update message that only need identify the original and
new pointer locations.

4.2 Empty Train Detection.

Pointer tracking enables the correct detection of an
absence of pointers to objects in a car from other cars.
Empty train detection uses this remset information to
determine absence of external references, i.e., references

from outside this train to inside it. A train whose cars
have empty remsets is easily determined and reclaimed.

Trains can also become isolated when they solely contain
garbage; i.e. there is no valid path of reachability from
application roots to any object in the train. This can be
the case if and only if the remset of each car in the train
only contains entries that regard other cars in the same
train — a cycle of garbage. Since such a trainis in a stable
state then that property is readily discovered using any
standard distributed termination protocol.

S Implementation Strategies

We have presented the design of the Mosaic garbage
collector. Similar to its predecessors, Mosaic leaves much
of the implementation and policy decisions, such as car
size, train size etc., to the implementor. Here we offer
some potential approaches to a working Mosaic system.

5.1 Object Creation

The address space of the Mosaic DSM system is visible
and shareable by all nodes in the system. However each
node in the system reserves exclusive access to a set of
cars specifically for creating new objects. These cars are
notionally defined as belonging to a reserved train of
infinite age. The main idea of these nursery areas is to
enable contention free allocation of new objects; a thread
running on a node can freely create objects without the
need to synchronise with other nodes.

Work on generational garbage collection scheme [10, 19]
has shown that for most applications the majority of
objects that become garbage do so very soon after being
created. In other words, most objects die young. This
implies that frequent collection of nursery cars will
reclaim a significant amount of space. If nurseries are
isolated from the remaining object space it is possible to
use an optimised single process garbage collector that
operates independently of the distributed object space.
Such a design can collect the vast majority of garbage
very efficiently.

Mosaic ensures that nursery cars can be collected
independently of other (shareable) cars using a copy-out
scheme similar to that used in the Casper system [20]. In
this system other nodes are prevented from gaining access
to a pointer that directly refers to an object within the
nursery area. Pointers into the nursery area may be
created, but the system detects if such a pointer exists on
a page when that page is provided to another node (as part
of DSM coherency operation). Such an assignment from
an existing object to a newly created object can only occur
on the node that created the new object, since no other
node has a legal path to that object. The system then acts
to ensure that the referend object is copied out of the
nursery, and that any pointers on the page provided to the
remote node are updated before the page is sent.

In this way objects migrate from the nursery into the
shareable DSM space. As noted by Koch [9] clustering
strategies that optimise object location may be applied

6 IEEE

Proceedings of the 1st International Symposium on Cluster Computing and the Grid (CCGRID ’01) ng&%%%R
0-7695-1010-8/01 $10.00 © 2001 IEEE

during copy-out. For instance a limited closure of objects
reachable from the initially copied object may be moved
at the one time, eagerly providing other reachable objects
to the distributed computation on the same page. Care
must be taken not to copy too deeply to avoid losing the
benefits of a nursery area.

5.2 Car Collection

Since there is a separate area for the creation of new
objects then collection of a car is not necessarily triggered
by object allocation. Car collection can be initiated by
any number of policy choices that attempt to optimise
cache occupancy and mutator activity. Similarly there is a
freedom in the choice of which car to select for collection
and flexibility within the collection rules to choose target
cars.

The important constraint is that no two nodes
concurrently select the same car for collection and also
avoid the same target cars for reassociation. Any such
solutions must of course be deadlock free. One way of
achieving this simply is a design where each car has an
allocation pointer at a fixed location in the car.

For reassociation there are a number of opportunities to
make judicious choices about which car(s) to copy these
objects to. The collector could choose to allocate new cars
from the free list and assign these cars to the appropriate
trains. Alternatively some of required pages for the target
cars may already be in that node’s cache. In addition it is
worth noting that the train rules as stated above can be
somewhat relaxed. The forward progress of the train
algorithm depends on objects being copied in one
direction only, from older to younger trains. If an object
is referenced from a root or younger train then it is
sufficient to copy that object out of its current train to a
car of any younger train. There is a tradeoff here between
progressing an object to a car of the same train as its
referent and reducing inter-node traffic.

6 Related Work

Much work has been done in the area of multi-processor
garbage collection, including development of collectors
suitable for large object spaces, distributed systems and
multi-tier storage systems. Comparatively little work has
been done in the area of garbage collection for DSM
systems. Although collectors for single-processor systems
can be applied on DSM systems, the costs of coherency
management and distribution to the address space
partitioning make this an infeasible solution.

The LEMMA system [13] uses a copying collector that
requires a strongly consistent DSM system. The address
space is not partitioned, meaning that the entire address
space must be collected in one collection. After a global
synchronisation, each node in the DSM system
undertakes a parallel collection. Each node must
synchronise with the others when it requires an object not
stored locally. Additionally, in this system the collector

must acquire write locks on pages, invalidating any
application read locks.

Larchant [4] uses a copying collector with an object-based
relaxed consistency model (entry consistency). This
collector is a partitioned collector and allows multiple
nodes to concurrently collect the one partition. It is
unclear in this collector how differences in the copying
locations for objects are resolved. This collector is not
complete and requires both read and write barriers.

More recent work is described in [8]. This paper presents
a collector that may be implemented on top of an existing
DSM system. It proposes a modified reference counting
model that does not support complete collection.

As can be seen from this discussion, although garbage
collection has been recognised as necessary in DSM
systems, little work has been done in developing
collectors that are efficient, scalable and complete. Many
collectors are intrusive and require global synchronisation.

7 Summary and Future Work

We present that design of Mosaic; a safe and complete
garbage collection system for object systems that are
implemented above page-based distributed shared memory
systems. Since it is derived from a family of previously
defined collectors it inherits much of their desirable
attributes. It is a partitioned collector that allows nodes to
concurrently reclaim regions and is able to collect all
garbage including cross-partition cycles. The
implementation and analysis of this system will enable
further evaluation of Mosaic and comparison with
existing collectors in the DSM arena.

Mosaic is neutral with respect to any DSM consistency
model and hence can be readily incorporated into weak-
consistency models. It exploits the special nature of
pointers in type-safe object systems resulting in a
proposed new relaxed consistency model for use by DSM
collectors. It is non-intrusive in that it incrementally and
concurrently reclaims space with minimal interference to
application progress.

8 Acknowledgements

The work is supported in part by ARC Large Grant
A10033014.

9 References

[1] B. Buck and P. Keleher. Locality and Performance of Page-
and Object-Based DSMs. Proc. First Merged Symposium
IPPS/SPDP, pages 687-693, March 1998.

[2] P.B. Bishop Computer Systems with a Very Large Address
Space and Garbage Collection, PhD Thesis, Massachusetts
Institute of Technology, Cambridge, MA, May 1977.

[3] J.E. Cook, A.L. Wolf, and B.G. Zorn. Partition selection
policies in object database garbage collection. In
Proceedings of the 1994 ACMSIGMOD International
Conference on Management of Data (SIGMOD’94), May
1994, pp.371-382.

7 IEEE

Proceedings of the 1st International Symposium on Cluster Computing and the Grid (CCGRID ’01) ng&%%%R
0-7695-1010-8/01 $10.00 © 2001 IEEE

[4] P. Ferreira and M. Shapiro. Garbage Collection and DSM
Consistency. In Proc. First Symposium on Operating
Systems Design and Implementation. (OSDI), pages 229-
241, November 1994.

[STR.L. Hudson and J.E.B. Moss. Incremental garbage
collection for mature objects. In Proceedings of the
International Workshop on Memory Management, St. Malo,
France, 1992. Published as number 637, Lecture Notes in
Computer Science, Springer-Verlag, 1992.

[6] A.L. Hosking and R.L. Hudson, “Remembered sets can
also play cards”, Proc. ACM OOPSLA'93 Workshop on
Memory Management and Garbage Collection", Washington
DC, October 1993.

[7]1 R.L. Hudson, R. Morrison, J.E.B. Moss & D.S. Munro
"Garbage Collecting the World: One Car at a Time". Object
Oriented Programming Systems, Languages and
Applications (OOPSLA), Atlanta (October 1997), pp 162-
175.

[8] D. Kogan and A. Schuster, “Remote Reference Counting:
Distributed Garbage Collection with Low Communication and
Computation Overhead”, Journal of Parallel and Distributed
Computing, 60(10):1260-1292, October 2000.

[9] Koch, B., T. Schunke, et al. (1990). Cache Coherence and
Storage Management in a Persistent Object System.
Implementing Persistent Object Bases. A. Dearle, G. Shaw and
S. B. Zdonik, Morgan Kaufmann: 103-113.

[10] Lieberman, H. and C. Hewitt (1983). "A Real-Time
Garbage Collector Based on the Lifetimes of Objects.”
Communications of the ACM 26(6): 419-429.

[11] R. Morrison, D. Balasubramaniam, M. Greenwood,
G.N.C. Kirby, K. Mayes, D.S. Munro and B.C. Warboys,
ProcessBase Reference Manual (Version 1.0.6), Universities
of St. Andrews and Manchester Report 1999.

[12] R. Morrison, R.C.H. Connor, G.N.C. Kirby, D.S.
Munro, M.P. Atkinson, Q.I. Cutts, A.L. Brown and A. Dearle,
“The Napier88 Persistent Programming Language and
Environment”, In Fully Integrated Data Environments, M.P.
Atkinson, R. Welland (eds), pp 98-154.

[13] D.C.J. Matthews and T. Le Sergent. LEMMA: A
Distributed Shared Memory with Global and Local Garbage
Collection. Proc. Int. Workshop on Memory Management
(IWMM’95), pages 297-311, September 1995.

[14] J.E.B. Moss, D.S. Munro and R.L. Hudson, “PMOS: A
Complete and Coarse-Grained Incremental Garbage Collector
for Persistent Object Stores”, In Proceedings of the Seventh
International Workshop on Persistent Object Systems, pp
140-150, June 1996.

[15] JE.B. Moss, Addressing Large Distributed
Collections of Persistent Objects: The Mneme Project's
Approach, In Proc. Second International Workshop on

Database Programming Languages, Glenedon Beach, OR,
pages 269-285, June 1989.

[16] D. Plainfoss, and M. Shapiro, "A Survey of
Distributed Garbage Collection Techniques”, In Proc

International Workshop on Memory Management, Kinross,
Scotland (IWMMY95), pp 211-249

[17]1 J. Seligmann and S. Grarup, “Incremental Mature
Garbage Collection Using the Train Algorithm”, In
Proceedings of ECOOP'95, Ninth European Conference on
Object-Oriented Programming, pages 235-252, August 1994.
[18] Singhal, V., S. V. Kakkad, et al. (1992). Texas: An
Efficient, Portable Persistent Store. Persistent Object
Systems. A. Albano and R. Morrison, Springer-Verlag: 11-33.
[19] D. Ungar. Generation scavenging: A non-disruptive
high performance storage reclamation algorithm. In Proc. of
the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
Environments, pages 157-167, Pittsburgh, Pennsylvania,
Apr. 1984. ACM SIGPLAN Not. 19, 5 (May 1984).

[20] F. Vaughan, T. Lo Basso, A. Dearle, C.Marlin and C.
Barter, “Casper: a Cached Architecture Supporting
Persistence”, Computing Systems, 5(3):337-359, 1992.

[21] P.R. Wilson. Uniprocessor garbage collection
techniques. In Proceedings of the International Workshop on
Memory Management, St. Malo, France, 1992. Published as
number 637, Lecture Notes in Computer Science, Springer-
Verlag, 1992.

8 IEEE

Proceedings of the 1st International Symposium on Cluster Computing and the Grid (CCGRID ’01) ng&%%%R
0-7695-1010-8/01 $10.00 © 2001 IEEE

