
Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
1

A Recon�gurable Component-based Problem
Solving Environment

K.A. Hawicky, H.A. Jamesy and P.D. Coddingtonz

yDistributed and High Performance Computing Research Group

School of Informatics, University of Wales Bangor

Dean Street, Bangor, Gwynedd LL57 1UT, Wales, UK

Email: fheath,khawickg@informatics.bangor.ac.uk

Tel: +44 1248 382717 Fax: +44 1248 361429

zDistributed and High Performance Computing Research Group

Department of Computer Science, University of Adelaide

Adelaide, SA 5005, Australia

Email: paulc@cs.adelaide.edu.au

Tel: +61 8 8303 4949 Fax: +61 8 8303 4366
Abstract|
Problem solving environments are an attractive ap-

proach to the integration of calculation and management
tools for various scienti�c and engineering applications.
These applications often require high performance com-
puting components in order to be computationally feasi-
ble. It is therefore a challenge to construct integration
technology, suitable for problem solving environments,
that allows both
exibility as well as the embedding of
parallel and high performance computing systems. Our
DISCWorld system is designed to meet these needs and
provides a Java-based middleware to integrate component
applications across wide-area networks. Key features of
our design are the abilities to: access remotely stored data;
compose complex processing requests either graphically or
through a scripting language; execute components on het-
erogeneous and remote platforms; recon�gure task sub-
graphs to run across multiple servers. Operators in task
graphs can be slow (but portable) \pure Java" implemen-
tations or wrappers to fast (platform speci�c) supercom-
puter implementations.

Keywords: problem solving environments; DISCWorld;
high performance computing; grid computing; distributed
data; Java; technology integration.

I. Introduction

Problem Solving Environments (PSEs) provide a way
of integrating complex computing technologies so that
users need not be computer specialists. Collaborative
PSEs (CPSEs) extend this goal so that groups of users
can work together across distributed computing systems
without needing to be aware of the system details. Users
can focus on the application domain expertise needed
to solve their problem while the distributed computing
\glue" or middleware that makes the system work can
remain transparent to them. This goal of transparency is
however rather di�cult to achieve and this is particularly
so when a degree of change in the computer system con-
�guration is required for problem domains. This change
or \recon�guration" in the system is required in all but
0-7695-0981-9/01
the simplest of real world applications. Application sce-
narios illustrating the need for recon�guration in CPSE
are described in section II.

Recon�guration will typically involve changes to the
collaborating users and program sequences being run in
a CPSE. The running system must be able to handle
these changes { which may be unpredictable { gracefully
and should not leave broken pointers or references to ob-
jects (programs, data or users) that have changed. Our
solution to the recon�guration problem in CPSE involves
a software architecture and a prototype implementation
for a distributed computing middleware system known as
DISCWorld. We have designed two critical mechanisms
in our DISCWorld system for managing remote data and
services in a data
ow model as well as a \futures" mech-
anism for managing data and services that exist only in

potentia when the request for them is �rst made. We have
found these mechanisms provide a model capable of ro-
bustness and stability in a changing runtime environment
and also allow exploitation of parallelism in complex jobs.

A key feature of our architecture is the recognition that
the system can be managed in terms of data processing
operators with data items
owing between them. In par-
ticular a human user interacting with the system can be
modelled as a particular sort of operator with extreme la-
tency and reliability properties. Following the standard
task graph approach of data
ow systems, we model ap-
plications in terms of Directed Acyclic Graphs (DAGs)
of operators at the nodes and simple data
ow along the
connecting edges. We describe the essentials of this re-
con�gurable DAG model in section III. DISCWorld is
outlined in section IV where we explain the DISCWorld
Remote Access Mechanism (DRAM) and DRAM Futures
(DRAMF) mechanisms and how these embody the oper-
ator/data control ideas and their expression as DAGs.

We have built a number of prototype CPSEs using our
 $10.00 (c) 2001 IEEE 1

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
technology, mostly for decision support applications in-
volving access to distributed archives of geospatial data
such as aerial photography, satellite images and mapping
data. However we have focussed mainly on developing
the server-side technology to support CPSEs, since we
believe that determining the fundamental architectural
principles and interface speci�cations will be critical to
genuinely wide-area, open, and scalable CPSEs. An ob-
jective of our work is to thoroughly explore the technical
issues necessary to propose draft standards for interfacing
between distributed components of CPSEs.

The idea behind users collaborating through shared ac-
cess to programs, data and each other has been prevalent
for some years [3]. Users on a networked computer sys-
tem have found ways to interact using ad hoc mixes of
computer technologies. These include email; shared net-
worked �le systems; remote logins to other users' com-
puters and more recently the use of desktop video con-
ferencing facilities. Di�culties have arisen in the grow-
ing complexity of operations and data that users wish
to share. Particular obstacles have been the plethora
of di�erent data formats even for simple data exchange;
the lack of portability of programs across di�erent com-
puter platforms and the lack of interoperability between
programs. Research into CPSEs and their supporting
technology will hopefully open up many new and signif-
icantly more complex interactions between users across
disciplines.

II. CPSE Application Scenarios

In this section we describe some of the application areas
we have considered and how they bene�t from our ap-
proach to Collaborative Problem Solving Environments
(CPSE).

CPSEs are a much sought after solution to the needs of
human decision makers to share data, resources and ideas.
Such decision support systems are very important for a
wide variety of organisations, in the commercial, govern-
ment and defense sectors. A classic example is a defense
command and control system that will involve collabo-
ration between many decision makers in di�erent geo-
graphical locations, and data inputs from many sources,
including real-time data from the �eld of operations as
well as data from a number of distributed data archives.
In the government sector, emergency services command
centres have a similar functionality and require similar
collaborative decision support systems. Other examples
include areas such as environmental analysis and model-
ing and land use planning, which may require data and
specialised analysis from many di�erent government de-
partments.

We have developed some prototype CPSEs for both de-
fense command and control [6,8] and emergency services
response [7, 18] systems. These are technology demon-
strators that illustrate how powerful Java-based object-
oriented CPSEs can be developed using the DISCWorld
grid computing architecture. Our applications have fo-
0-7695-0981-9/01
2

cussed on the use of geospatial (i.e. spatially referenced)
data such as maps, satellite images, aerial photography,
elevation, vegetation cover, etc. A typical decision sup-
port application may require large amounts of data from a
number of distributed geospatial data archives. We have
worked with the Australian Defence Science and Technol-
ogy Organisation (DSTO) in building systems for geospa-
tial imagery analysis and exploitation [6,8]. A fundamen-
tal aspect of defense command and control systems is the
requirement for geospatial data such as maps and images
from earth observation systems. This requires a collab-
orative environment linking image data archives, image
processing applications and compute servers, specialised
image analysts, and the decision makers who use the im-
age data. In many situations the image analyst or the
decision maker may want on-demand access to an im-
age for a speci�c region, and may also request that some
specialised image processing, such as feature detection or
map overlay, be done on the image. We have developed
a prototype software environment that supports on-line
distributed data access and processing across a federated
collection of geospatial image archives and image process-
ing services.

Fig. 1. This �gure shows a prototype image analysis and process-
ing tool that enables users to edit and annotate a geospatial
image in a collaborative setting. All users see the results of the
changes, and they can add their own annotations or comments
to the collaborative e�ort. The image, along with the annota-
tion transcript, can be saved and replayed for later viewing by
a decision-maker.

Figure 1 shows a simple demonstrator system we have
built to allow catalog access, process control and shared
access to annotations and other collaboratory informa-
tion. The architecture underpinning this demonstration
is described in sections III (basic recon�gurable data
ow
model) and IV (software implementation). We focus on
the problems of manipulating shared imagery in CPSEs
for the purposes of illustration in this paper, but the data
and operators shared in our architecture are not limited
to this area.

Another demonstrator we have developed is a pro-
totype system for geospatial data collection, visualisa-
tion and processing to support emergency services re-
sponse [7,18]. The example application we have targeted
is response to a wild�re emergency. This requires coor-
 $10.00 (c) 2001 IEEE 2

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
dination of a large team of people including �re�ghters,
police and paramedics at the scene and an emergency
services response unit at a central command centre.

Our prototype system is based on a Web-based Java
applet interface connected to a server that handles input
from multiple data sources and manages state informa-
tion so that all users can see the same information on
screen via the applet interface (this is similar to the ap-
proach of the Habanero [24] and TANGO [25] systems for
Web-based collaboration). For example, airborne imag-
ing systems can transfer information on the extent of the
�re front; police and �re�ghters in the �eld (who may
be working on a laptop with a modem connection via
a mobile phone) can add information on current posi-
tions of �re trucks and roadblocks; decision makers in the
command center can provide recommendations on where
to attack the �re or set up evacuation points. Our sys-
tem allows users to overlay many types of geospatial in-
formation including roads, terrain elevation, vegetation
types, satellite images and aerial photography, positions
of emergency services personnel and equipment, and the
extent of the �re front. It also allows users to access data
processing services, including the ability to run �re simu-
lation models to estimate the spread of the �re, least path
algorithms to suggest optimal routes for emergency ser-
vices vehicles, and algorithms that use roadmap and pop-
ulation density information to suggest evacuation strate-
gies.

We are presently considering other application areas
such as those in collaborative science and engineering
where we can provide a collection of component oper-
ators and can experiment with how collaborative users
can best deploy them. Typically users wish to steer large
and complex simulations or calculations; visualise com-
plex datasets; or carry our parameter searches, coordi-
nating the results of many runs or jobs. A CPSE which
allows both graphical and scripting control is a good so-
lution to this problem.

Figure 2 shows a fundamental idea behind our ap-
proach. Collaborating users can combine recon�gurable
component operators into processing tasks, sharing data,
operator codes and results with one another. Users can
compose component operators graphically, but the sys-
tem uses a scripting language representation of the graph-
ical composition so that it may manipulate, decompose
and schedule parts of the computation.

A key issue which has emerged from all these applica-
tion areas is the need to handle complexity and change
in a running system. We believe a number of proprietary
systems have provided super�cial solutions to the graph-
ical CPSE problem but none have based their system on
a well-considered architectural model capable of support-
ing recon�guration.

III. Reconfigurable DAGs

We model all user processing requests in our system
with Directed Acyclic Graphs (DAGs). A DAG is a
0-7695-0981-9/01
3

Fig. 2. Simple graphical operator composition. Available opera-
tors are listed in the palette on the left-hand side of the display.
Users select the appropriate operators by dragging them onto
the canas at the right-hand side of the screen. When opera-
tors are released onto the canvas they are drawn in boxes with
smaller rectangles representing the inputs they require and all
the outputs they produce. Operators are joined by the user;
the joins represent data
ow between operators. When exe-
cuted operators may be placed onto di�erent machines in the
distributed system.

graph consisting of nodes (operators) and vertices (data
passed between operators). It is directed, meaning that
data
ows in one direction only. Furthermore, the graph
is acyclic, prohibiting the presence of cycles within the
structure. This allows us to treat the data items
owing
between operators simply; we do not have to use any ad-
vanced data
ow mechanisms such as token colouring to
distinguish between data originating from di�erent itera-
tions through the same graph [31]. The Directed Acyclic
Graph (DAG) model we employ for expressing combina-
tions of program components is a simple but powerful
model. It is used in a number of other systems such
as Java's Advanced Imaging (JAI) [32] toolkit and also
some standards interfaces for distributed imagery access
and exploitation [35,36]. It allows us a well-de�ned mech-
anism for con�guring and recon�guring operators at run-
time. This is particularly useful when an operator may
be an interactive program component { representing the
\human in the loop" in a CPSE.

Parameter

(Property)

(lazy or eager)

edge input (incoming data)
queue size = 1

edge output (outgoing data)
queue size = 1

property or argument)
Operator (parameterised by

Fig. 3. Parameterised operator showing data
ow along edges for
input or output.

Figure 3 shows a parameterised operator component as
employed in our model architecture. Operators have none
 $10.00 (c) 2001 IEEE 3

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
or more inputs and one or more outputs. Parameters can
be raw data, in which case they have no \producing op-
erator" or derived, in which case they do. An input can
be modelled as either an edge or as a parameter. For
the purposes of illustration we use both to explain our
system. The embedding context for operators can supply
parameters and in a sense these are the same as special
parameter-type input edges. This is shown again in �g-
ure 4 a) and b) where an equivalent DAG can be set up
with two special input edges and two parameters or with
four input edges and no parameters. This point is impor-
tant for considering humans interacting with components.
Humans will typically interact with a GUI component
and will typically input parameters by typing or clicking
a mouse or through some other input device. Our point
here is that while the front end environment will have to
provide the necessary support infrastructure for these in-
put parameters, we can still model the data
ow process
as though there were no parameters and just simple data

ow edges.

Param 3

Param 1 Param 2

Param 4

a) b)

Fig. 4. a) Parameterised DAG using single edge type and b) Equiv-
alent Unparameterised DAG using di�erently typed edges.

Operators could be relatively simple program compo-
nents such as: read an image from store; display an im-
age; crop an image producing a new one; superpose two
images producing a third; split an image into high and low
pixel intensity values producing two new images. Alter-
natively operators could be entire complex programs in-
volving a large set of inputs and/ or outputs. We describe
how we implement operators either as reusable (Java)
components or as (Java) wrappers to complete programs
in section IV.
There are a number of component primitives that can

be used to model the various activities in the CPSE.
We can implement base component classes for the �ve
principle of these: source; sink; �lter; fork/split; and
merge/join. In a simple system where we employ only
one base level data type such as an all encompassing base
image class, it is very simple to construct DAGs from op-
0-7695-0981-9/01
4

of DAG

Param 1 Param 2

Param 4

Param 3

Param 4
Param 3
Param 2
Param 1

Encapsulation

Fig. 5. Rubber Banding to encapsulate a DAG.

erators based on these �ve primitives. Any output can
feed onto any output since the data type is the same. It
is surprising how many simple but useful systems can be
built on this assumption. Allowing di�erent data types
makes the model considerably richer, but it becomes more
di�cult to establish rules for interconnecting operators to
ensure type safety.

Systems like AVS [2] provide a graphical solution to the
type connectivity problem. The front end GUI colour
codes the di�erent data types present in a particular
graph and enforces connections only between matching
colours. This solves the problem partially for relatively
simple systems but not for examples where two inputs to
an operator are of the same type but have di�erent se-
mantics. There are considerable arguments one can get
into about how rigorously the type system needs to be
de�ned in such cases. For our experimental system we do
not claim to have solved this problem. This underpins
one of the key issues for wide-area CPSEs however. It is
necessary to decide how users and their systems will ex-
change both data and operator components that they did
not write. There is a clear need for some interface stan-
dards for such components if CPSE users are to have the
freedom to access and exchange libraries of component
services. This issue is discussed further in section VI.

Interactive users of a CPSE will construct complex op-
erations or queries to their system consisting of a choice
of a palette of operators drawn from libraries belonging
to themselves or others. Interactions and changes in the
system environment due to users' own inputs or those
of others in a CPSE will require the system to be dy-
namically recon�gured. This recon�guration is needed
to support the need to change and allow late change of
the DAGs which express the computations [20]. Figure 5
illustrates one of the important concepts in our system
 $10.00 (c) 2001 IEEE 4

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Vertex (operator)

Expand as...

Directed Acyclic
Graphs (DAGs)

or operator networks

Edge (data)

Fig. 6. DAGs can contain compound services, which are expanded
at run-time. This is possible due to the lazy evaluation of
services in the DISCWorld environment. Compound services
are represented by their own self-contained sub-graph, which
can in turn contain other compound services.

whereby an entire DAG can be collapsed down to a sin-
gle sub-graph or indeed down to a single operator, in this
case a four-input or four parameter operator.

The collapse of DAGs in this way supports the idea of
combining useful operators or DAGs into reusable com-
ponents. An underlying issue is how operators and DAGs
are named. Naming and binding to data and operators is
a di�cult problem. We have made some progress using
a simple name space where every data item and compo-
nent is assumed to have a unique name. Implementation
of this assumption is generating interesting research as
there are various possible algorithms and models to en-
able this [10].

Collapsing the sub-graphs into operators is important
to allow users to work on large scale and interesting prob-
lems and to reuse the components previously constructed
by them or their collaborators or available in libraries or
databases. We have experimented with the concept of a
\CodeServer" [23] which can be remotely queried using
metadata and which will deliver a suitable operator pack-
aged as executable Java bytecode. This allows programs
as well as data to be easily migrated around a wide-area
network. This can be very useful for sharing modules in
collaborative work, and also for PSEs that involve pro-
cessing of large distributed data sets, where it is more
e�cient to move the program to the data rather than the
data to the program. The main issue underpinning the
success of such a system is how to treat and standardise
the metadata describing coded operators.

Figure 6 shows the converse idea of expanding an op-
erator or part of a graph into a sub-graph in its own
right. These collapsing and expanding ideas are vital for
producing a powerful recon�gurable system. Expanding
0-7695-0981-9/01
5

operators is useful to decompose complex operators into
parts that can be easily farmed out to achieve parallel
execution for performance reasons, or indeed to allow de-
cisions to be made by di�erent computers or users in the
collaboration network as to how a job should actually be
scheduled. This latter point is vital for both scalability
and recon�guration reasons in a distributed system.

One reason for using CPSEs is to be able to exploit and
share remote resources that may be owned by collabo-
rators. These are often specialist or high-performance
resources and access to such scarce resources is often a
major driving force behind collaboration. It is there-
fore evident that e�ciency and scalability of the under-
lying distributed computing software infrastructure are
also important issues for a CPSE.

H

A

C D

E F G

I J K

L

M N

O

B

H

A

C D

E F G

I J K

L

M N

O

B

a) b)

Fig. 7. Two di�erent orderings of execution of the operators in a
DAG

Figure 7 shows how a DAG consisting of many opera-
tors can be executed in di�erent orders { lazily or eagerly
{ resulting in di�erent execution pro�les. The
exibility
to allow this sort of recon�guration is particularly im-
portant in a system involving human interacting compo-
nents where it may be important that other components
execute as independently as possible of a slow and un-
predictable human. The
exible execution pro�le allows
system control components to make sensible scheduling
decisions [21] about when and where to execute opera-
tors.

Scheduling is important for accessing data resources as
well as computational ones. An application area we have
studied at length involves access to satellite imagery and
bulk data sets that may be too expensive or simply too
large to store in their entirety at more than one or two
locations. These data sets might be accessible only via
tape robots or in some cases through human operators
who are involved in some way in loading and unloading
tape sets. In a sense the tape or resource operator is a
human operator in the CPSE. We are investigating how
 $10.00 (c) 2001 IEEE 5

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
storage services can be managed separately in a transpar-
ent fashion from other computational aspects of CPSEs.
Our approach is to use �le system software technology to
make remote data and hierarchical storage systems such
as cached tapes and tape robots appear as remote �le
systems or databases [28].

In this section we have discussed the model on which
our architectural approach is based. We now discuss how
we have implemented this model in a prototype of our
DISCWorld system.

IV. DISCWorld - An Outline

Our Distributed Information Systems Control World
(DISCWorld) project was started in 1996 with the long
term goals of researching the underpinning issues for
a metacomputing system. Recently the popular term
\Computational Grid" [12] has superceded that of meta-
computer but the ideas remain the same { providing a
high-level middleware system that enables transparent
access to high-end compute servers and data storage dis-
tributed over a wide-area network. We aim to further ex-
plore the algorithmic and systems issues involved in build-
ing, running and maintaining such systems, which form
the basis of PSEs. CPSEs extend the goal to cope with
more interactive multi-user systems, but as explained
above we believe that interacting users can be modelled
as operator components in our system.

The key to a working system is the software design of
the DISCWorld servers, the protocols they use to commu-
nicate and the interoperability mechanisms with legacy
applications and data systems. We have approached the
problem by placing a DISCWorld daemon on every server
that participates in a DISCWorld community. The soft-
ware for the daemon is intended to be a minimal frame-
work for loading up customised modules for specialist op-
erations. These may be Java [33] byte code or wrappers to
specialist native platform codes. The design is motivated
by a need for scalability to a large number of cooperating
nodes, with as little central decision making as possible.
The local administrators or owners of a resource partici-
pating in a DISCWorld can decide what services they will
o�er by setting various policy and environment informa-
tion in its local database.

DISCWorld acts essentially as a software glue, provid-
ing interoperability between new and existing services.
Figure 8 illustrates the key ideas behind the DISCWorld
daemon \DWd". A dual network is present between all
servers in principle. A control network is used to commu-
nicate small lightweight messages that specify how servers
are interacting and cooperating, and a bulk data transfer
mechanism is used to transfer data products and partial
products between nodes. In practice these mechanisms
may be implemented on the same hardware network, or
on separate networks when available. The control infor-
mation is lighter but needs a reliable network, whereas
the bulk data needs high bandwidth but can always be
retransmitted if a network is blocked. Daemons are used
0-7695-0981-9/01
6

to provide all the necessary control information to wrap
up legacy codes and systems as well as being a frame-
work for interfacing to new codes. We have also built a
�le-system based mechanism to provide the support ser-
vices necessary to support legacy applications for which
we do not have source code access [27]. Software adapters
are used to bridge �rewalls as well as interface to other
metacomputing software systems.

DWD

Browser
WWW

Legacy Application P1 P2 P3

NFS

HFS

Control Channel

Bus Adaptor

Custom
Application

Launch

Other nodes

TCP
Bus Adaptor

Bus Adaptor
TCP

Firewall

Bulk Data
Transfer Bus

DISCWorld Daemon (DWD)

DWD

DWD

DWD

Fig. 8. DISCWorld Software Architecture Overview

The daemon's operations are best explained by a dis-
cussion of the sequence of events that take place when
a client contacts it. A user query is posed to the dae-
mon (through a CPSE front end), in the form of a well
de�ned request for some computation to be performed
on some data (using the DAG/operator model). The re-
quest must be mapped onto the available resources (op-
erators mapped to particular compute systems) that the
daemon knows about and even though the daemons are
peer-based, the daemon in question acts as a manager for
the purpose of brokering this request. Management of the
request consists of monitoring and supervising the ongo-
ing request once it has been initiated. The daemon must
also provide the user with an ability to revoke the request
should it be necessary. The daemon is also responsible
for brokering the safe delivery of the results to the user,
or temporary storage of the results and noti�cation of
the user. It can also organise the collection and storage
of performance data for the purposes of predicting future
performance and costing.
The daemon is initiated as a program by the system

administrator or as a system daemon and, once initiated,
it reads some local state information from a persistent
store (e.g. database) to con�gure itself and subsequently
listens to a particular port for user requests. Each dae-
mon has a \gossip" mechanism to allow it to determine
what services and hosts are available to it. Each daemon
stores its own internal database of servers o�ering com-
ponent services as well as their associated characteristics,
and maintains a priorities list according to some locally
de�ned policy. The daemon is highly con�gurable, and
can be customised to re
ect the local server/services it
provides to other DISCWorld daemons. It also has a
con�gurable policy for where to seek assistance from its
peers in satisfying incoming user queries.
DISCWorld was primarily motivated to deal with rel-

atively large computations that need to be carried out
 $10.00 (c) 2001 IEEE 6

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
on large datasets, and to allow use of distributed high-
end computing, communications and storage resources to
execute these problems in a timely fashion. This is par-
ticularly useful for decision support systems and CPSEs,
which generally require timely access and processing of
multiple distributed data sources.

The major services/servers that each DISCWorld dae-
mon knows about were originally substantive programs
running on high-performance platforms. Nevertheless,
the control information and \glueware" needed to build
such a system are complex but not so demanding of com-
putational performance. We have based the development
of our CPSEs on the DISCWorld environment, which has
been written in Java. Whereas up until now we have
mainly implemented operators as Java wrappers around
high-performance legacy code, the rapid improvement in
Java Virtual Machine performance has prompted us to
build more component services using pure Java. A Java
implementation allows for a number of capabilities that
can be readily implemented using the Remote Method
Invocation (RMI) Java package.

The multi-threaded mechanisms in Java allow the dae-
mon to be implemented with a prioritised set of threads
to handle the user and server-server interactions. The use
of Java threadgroups coupled with the Java security man-
ager mechanism enables threads to be placed into groups
with controlled access between the groups. This enables
the daemon control threads and groups of user threads to
be kept apart and scheduled separately within the dae-
mon. The daemons communicate via typed messages.
These are received at a central point within each dae-
mon, allowing messages to be routed to the appropriate
module. Some of these modules within our current dae-
mon prototype, include a server/services database man-
ager, a system administration console manager, a com-
putation organiser and a local execution manager. These
only accept control level messages from the central point,
although the DISCWorld model allows for a high band-
width direct communication channel between modules.
Control messages contain instructions for a single mod-
ule, and if modules within the same daemon wish to com-
municate they must sent messages via the central point.

The use of the Java object serialisation and dynamic
loading and binding allows arbitrary data structures to
be passed between both servers and clients in the DISC-
World. The code for these data structures may be loaded
dynamically. This includes operations on the data struc-
ture which means that the same data structure can have
di�erent method implementations depending on the data
contained within { thus allowing polymorphic operations.
At present, serialisation is limited by the need for both
communicating parties to use Java, which requires Java
wrappers around non-Java code. Wrappers can be done
using the Java Native Interface (JNI) API. We believe the
additional e�ort of implementing Java wrappers is out-
weighed by the ease with which objects with state can be
stored and communicated.
0-7695-0981-9/01
7

Using Java coupled with native methods to embed
other programs does not mean that the system itself is
no longer portable. The glue that controls the system
remains portable although the native method services
will not be portable. This is in keeping with our in-
tention that a particular daemon should be con�gurable
by the local administrator to re
ect the locally avail-
able server/services. In fact, a limited portability can
be achieved by careful loading of the native library for
some applications. The library that can be loaded can
be dependent of the architecture and operating system
version, which information can be made available to the
daemon as part of its con�guration. This is not com-
pletely dependable, however, and it is an attractive pos-
sibility to �nd a mechanism whereby a growing collection
of application components can be maintained as portable
modules.

The Java Bean mechanism is a useful way to approach
this. Beans are essentially codes conforming to a strict
application programming interface (API) through which
the system can manipulate them. Native methods as well
as Java code and also data can be encapsulated as Java
Beans. We use the Java Bean mechanism to implement
our portable code modules which are saved on a code-
server [23] and are transmitted as high level instructions
to servers at the request of clients. Use of well-de�ned
APIs for components means that they may have a ba-
sic portable Java implementation, and an optimised ver-
sion using native code, or even parallel code for a high-
performance parallel computer, all of which can be in-
voked by the CPSE using the same interface.

The DISCWorld model for distributed, high-performance
computing is readily implemented in Java. Performance
was originally achieved primarily from embedding native
application components in a Java software glue rather
than from code running in Java itself. However, Java Vir-
tual Machine (JVM) implementations have improved suf-
�ciently so that high performance Java application com-
ponents themselves can be utilised in a distributed envi-
ronment. We have investigated some critical benchmark
operations such as numerical analysis and image process-
ing operations in pure Java and as native methods on
various supercomputer platforms which can act as per-
formance accelerators or specialist compute servers in a
DISCWorld environment [22].

DISCWorld therefore provides us with a base platform
architecture upon which CPSEs can be constructed. Two
architectural aspects of DISCWorld are worth explaining
in more detail and which underpin the DAG model de-
scribed in section III. The DISCWorld Remote Access
Mechanism (DRAM) provides a rich pointer to allow ref-
erences between operators and data in the running sys-
tem. These are used to represent the edges in the DAG
and need to be carefully controlled if the system is to
be recon�gured. This is particularly important for long
running computations or in the case of partial failure of a
CPSE due to network vagaries or indeed some users going
 $10.00 (c) 2001 IEEE 7

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
o�ine deliberately, such as reaching the end of their work
shift. The DRAM facilities and its associated mechanism
for data futures (DRAMFs) [19] provide a general ar-
chitectural model for specifying how the system behaves
under recon�guration.

A. Remote Access Glue

The DRAM is a rich pointer because besides contain-
ing an object reference, it contains additional metadata
that can be used, for example, to decide whether the
data can be moved between machines, or whether it is
more feasible to move the data to a remote machine for
processing, or to move the service to the data. DRAMs
are unlike other, more traditional approaches to object
references; they do not refer to any memory locations,
therefore they are not fragile in the presence of remote
server restarts [17]. This is particularly useful in a col-
laborative environment as there are no guarantees that
the machine from which the data is being sourced will
stay up for the entire collaborative session. In addition
multiple references (DRAMs) can be created to the same
DISCWorld object, thus all the members of a collabora-
tive team can receive updates to the object when changes
are made.

DRAMs can be used to point to data and services. Part
of the metadata contained within a DRAM describes its
bulk characteristics, such as the size (in bytes) of the data
or program byte-code. In addition DRAMs for services
(DRAMSs) contain rudimentary information on the run-
time characteristics of the services to which they point.
These characteristics can be used to create references to
data which has not yet been created. We name these
DRAM Futures (DRAMFs) [19].

A DRAM Future contains an estimate of the time that
will take to produce the data to which it refers. This
estimate contains tolerances for any other data that may
need to be produced from previous DRAMFs. A DRAM
Future represents a guarantee by the server that creates
it, that the server will be able to generate the data in the
estimated time frame.
We believe the combination of DRAMs, pointing to

data, services and not-yet-created futures, together with
an appropriate scripting language [16] provide the neces-
sary framework to enable the e�cient construction and
utilisation of PSEs and CPSEs in a wide-area distributed
system.

B. Builder Environment

We have largely focussed on developing the server-side
software infrastructure of the DISCWorld metacomput-
ing environment. However we have experimented with
some simple client front ends that can act as DISCWorld
nodes in their own right. It is a challenging problem to
design an architecture for the visual environment that
allows users to build collaborative applications.

Figures 1 and 2 show examples of our builder inter-
face experiments. Figure 1 is a simpli�ed example show-
0-7695-0981-9/01
8

ing how a user might combine component operators to-
gether to produce a complete sequence. The example
is restricted to very simple integer calculations to illus-
trate the builder idea only. Figure 2 shows how a more
complex operator environment might be parameterised
in some way to allow users to interact with particular
components.

V. Interfacing to Other CPSEs

Technology and tools for PSEs in speci�c application
areas have been around for some years now. Tools for
problem solving in computational algebra and numeri-
cal simulations such as Matlab [34], Mathematica [39],
Maple [38] and similar systems are quite mature. More
recently e�orts have led to PSEs which enable resource
sharing such as NetSolve [4] and Ninf [30]. These were
predated by a little cited research system developed by
Mike Rezny which used the mex scripting capability of
Matlab to interact with powerful back end systems to
support operations like matrix solving [29].

Other systems such as Habanero [24] and TANGO [25]
have exploited the powerful visual and graphical capabil-
ities of Java to produce collaborative systems using the
now well known metaphors of shared whiteboards, shared
text processing and video conferencing. Such systems are
able to tap into the now widespread desktop video camera
and microphone technologies and provide an integrated
approach to sharing access to running programs. Fox
et al. have produced a demonstrator system WebWin-
dows [13] showing how many of our everyday applications
could be run at server side rather than on desktop client
systems.

Application Service Providers (ASPs) are starting to
become more prevalent on the Web and are providing ac-
cess to specialist programs or services through the now
well established Web client/server technologies. These
include the Common Gateway Interface (CGI) approach;
the servlet and smart applet approach; and web browser
plug ins. These are all appropriate for the architectural
model of single client and single server at any one trans-
action. These technologies are de�cient however for a
robust and multi-user CPSE environment.

Metacomputing or grid computing systems o�er an
ideal platform for supporting collaborative PSEs. The
DISCWorld model shares some similarities with other
grid computing systems currently in development. All of
these systems currently use their own APIs, which makes
interoperability a major issue. This is currently being
addressed by the Grid Forum [14], who are working on
standard interface speci�cations.

Globus/Nexus [11] is a system under active research
and has a powerful ability to manage interprocess com-
munication and servers by moving communications end-
points around. We are currently evaluating this feature
of Nexus and trying to determine how Java networking
mechanisms can be used to provide a similar capability.
Unlike the DISCWorld model, Globus/Nexus addresses
 $10.00 (c) 2001 IEEE 8

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
�ne-grained tasks. The external interface made use of
an entity called the I-POP which performed the tasks of
user authentication and security assurance. The I-POP
has some degree of commonality with a DISCWorld dae-
mon which must also handle these operations.

DISCWorld is designed to help schedule and run a
range of distributed computations. This is an objective
which it shares with the Nimrod [1] system. Nimrod al-
lows a user to create an interface for managing param-
eterised simulations on a series of machines using user-
supplied code. DISCWorld is aimed at the type of user
who will be less likely to want to add their own code
directly, but rather will want to utilise existing services,
albeit in user speci�ed combinations.

Legion [15] also provides an environment for integrat-
ing applications across wide-area networks. We believe
Legion tackles the problem at a substantially �ner grain
than DISCWorld, allowing the user to link communica-
tions mechanisms to their own programs. The SNIPE [9]
system also appears to operate at a �ner grain than DIS-
CWorld.

CORBA [26] is an alternative technology to Java in
many of the technical aspects required for a CPSE. We
believe current CORBA implementations are more appro-
priate for \local area DISCWorlds", where the resources
involved are all owned by one organisation and accord-
ingly administered. We are currently investigating how
some additions to a CORBA based system might allow
ORBs to �nd each other and exchange server/services
information over a wider area and cross boundaries of
ownership and administration, as we use in DISCWorld.

We are aware of other e�orts to use Java for wide-
area distributed computing, such as InfoSpheres [5]. We
believe this too di�ers from DISCWorld in the granularity
of application modules provided for.

The developers of Java and Jini have developed a num-
ber of new technologies that provide many of the low level
mechanisms and infrastructure that make construction of
a DISCWorld signi�cantly easier. They do not however
solve any of the higher level problems we outline.

We are working on a series of software protocol
adapters and brokers that may provide a level of interop-
erability between DISCWorld servers and some of the sys-
tems mentioned above. Our own e�orts with DISCWorld
and other research systems such as the Visual Component
Composition Environment (VCCE) of Walker, Rana and
coworkers [37], and other Computational Grid technolo-
gies such as Globus and Legion are gradually exploring
the fundamental issues for such a robust CPSE.

We believe these issues can be divided into two impor-
tant categories. Firstly a group of low level issues that
mostly involve standardisation and software engineering
and for which possible solutions exist.

� technologies for integration;
� security and authentication;
� networking and ensuring connectivity between users;
� compression and transport of data to make best use of
0-7695-0981-9/01
9

networks;
� remote execution of code on shared resources;
� migration of code and data for performance optimisa-
tion;
� exchanging data and format translations;
� exchanging libraries of components or services.

We believe these are potentially solvable issues with
present and emerging technologies and with a degree of
standardisation for exchange of component programs and
data.

Secondly there are a number of more fundamental
problem issues for which it is not obvious (at least to
us) how to formulate a workable solution. These include:

� naming and metadata to describe the components, re-
sources and data;
� resource discovery;
� reliability and robustness against failure;
� achieving full transparent recon�gurability in a system.

We anticipate some years of interesting research and
debate in these latter issues.

VI. Conclusions and Ongoing Strategy

Metacomputing and grid computing systems provide
high-level middleware to support e�cient and transpar-
ent access to distributed data and compute resources, and
therefore provide an ideal platform for developing collab-
orative problem solving environments. We have intro-
duced our DISCWorld metacomputing environment and
shown how this Java-based, object-oriented system has
been used to develop prototype decision support systems
and CPSEs that can be used over a wide-area network.
Recon�guration is an important aspect of Problem

Solving Environments in general and for Collaborative
PSEs in particular. Our data
ow model is a prelimi-
nary step to understanding the technical issues required
to build working systems that truly span administrative
boundaries and allow collaboration across wide areas.

Our key observation is that users can be treated in
much the same way as programs { they are all \opera-
tors in control network" albeit with di�erent latency and
reliability properties. Collaborative systems involving in-
teracting users rather than a single user making demands
of the system present their own special problems. Recon-
�guration lies at the heart of these.
We believe that using modern GUI technology such

as Java it is possible to construct sophisticated and use-
ful CPSE front ends that can exploit our architecture
and middleware components. Our prototype has proved
an e�ective way for image analysts and decision makers
to collaborate across departments in defense and govern-
ment organisations.
Outstanding issues remain those of constructing a

metadata or name space and accompanying standards to
allow user communities to exchange data and programs
more easily. We believe that a decentralised approach to
this problem is the only feasible one, but that some loose
standards need to be �rst established in much the same
 $10.00 (c) 2001 IEEE 9

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
way that an HTML speci�cation was required to stimu-
late open development of information to exchange on the
WWW.
We believe the area of CPSEs is at a critical point so-

cially and that the technology is almost mature enough
to allow rapid growth. It will require more successful
end-user application examples to be constructed to un-
earth the next level of technical issues for interdisciplinary
collaborative systems. We believe the critical issues for
future progress in CPSEs are those of component inter-
operability and interface standardisation.

References

[1] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod: A Tool
for Performing Parameterised Simulations using Distributed
Workstations. In Proc. 4th IEEE Symp. High Performance
Distributed Computing, Virginia, August 1995.

[2] Advanced Visual Systems (AVS). AVS Developer's Guide. Ad-
vanced Visual Systems Inc, release 4 edition, May 1992.

[3] Tim Berners-Lee and Mark Fischetti. Weaving the Web: The
original design and ultimate destiny of the World Wide Web
by its inventor. Harper Collins Publishers, Inc., 1999. ISBN
0-06-251586-1.

[4] Henri Casanova and Jack Dongarra. NetSolve: A Network
Server for Solving Computational Science Problems. Int. J.
Supercomputer Applications and High Performance Comput-
ing, 11(3):212{223, Fall 1997.

[5] K. Mani Chandy, Adam Rifkin, Paolo A.G. Sivilotti, Jacob
Mandelson, Matthew Richardson, Wesley Tanaka, and Luke
Weisman. A World-Wide Distributed System Using Java and
the Internet. In High Performance Distributed Computing
(HPDC-5) 1996. Caltech, March 1996.

[6] P. D. Coddington, G. Hamlyn, K. A. Hawick, J. F. Hercus,
H. A. James, D. Uksi, and D. Weber. A Software Infrastructure
for Federated Geospatial Image Exploitation Services. Tech-
nical Report DHPC-092, Distributed and High Performance
Computing Group, Department of Computer Science, Univer-
sity of Adelaide, May 2000.

[7] P. D. Coddington and K. A. Hawick. Emerging Distributed
Computing Tools and Technologies for Coordination of Emer-
gency Services. Technical Report DHPC-080, Distributed and
High Performance Computing Group, Department of Com-
puter Science, University of Adelaide, June 2000.

[8] P. D. Coddington, K. A. Hawick, K. E. Kerry, J. A. Mathew,
A. J. Silis, D. L. Webb, P. J. Whitbread, C. G. Irving, M. W.
Grigg, R. Jana, and K. Tang. Implementation of a Geospatial
Imagery Digital Library using Java and CORBA. In Proc.
Technologies of Object-Oriented Languages and Systems Asia
(TOOLS 27). IEEE, September 1998.

[9] Graham E Fagg, Keith Moore, Jack J. Dongarra, and
Al Geist. Scalable Networked Information Processing Envi-
ronment (SNIPE). In Proc. SuperComputing 97, 1997.

[10] Katrina E. Falkner. The Provision of Relocation Transparency
through a Formalised Naming System in a Distributed Mobile
Object System. PhD thesis, Department of Computer Science,
The University of Adelaide, May 2000.

[11] Ian Foster and Carl Kesselman. Globus: A Meta-computing
Infra-structure Toolkit. Int. J. Supercomputer Applications,
1996.

[12] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann Pub-
lishers, Inc., 1999. ISBN 1-55860-475-8.

[13] Geo�rey C. Fox and Wojtek Furmanski. WebWindows Moti-
vation and Application to Distributed Metacomputing. CRPC
Presentation, Annual Review at Houston, Texas, March 1995.

[14] The Grid Forum. Grid Forum Home Page.
http://www.gridforum.org/.

[15] Andrew S. Grimshaw and Wm. A. Wulf and the Legion team.
The Legion Vision of a Worldwide Virtual Computer. Com-
munications of the ACM, 40(1), January 1997.

[16] K. A. Hawick and H. A. James. A Distributed Job Place-
ment Language. Technical Report DHPC-070, Department of
Computer Science, The University of Adelaide, May 1999.
0-7695-0981-9/01
10

[17] K. A. Hawick, H. A. James, and J. A. Mathew. Remote Data
Access in Distributed Object-Oriented Middleware. To appear
in Parallel and Distributed Computing Practices, 1999.

[18] P. W. Eklund J. E. Mann, S. D. Kirkby. A JAVA Based Fire
Simulation Model for the WWW. In Proc. 3rd Australian
World Wide Web Conference, pages 296{298, Brisbane, 1997.

[19] H. A. James and K. A. Hawick. Data Futures in DISC-
World. In Proc. High Performance Computing and Network-
ing (HPCN) Europe 2000, volume 1823 of Lecture Notes in
Computer Science, pages 41{50. Springer-Verlag Berlin Hei-
delburg, May 2000.

[20] H. A. James, K. A. Hawick, and P. D. Coddington. An Envi-
ronment for Work
ow Applications on Wide-Area Distributed
Systems. Technical Report DHPC-091, Distributed and High
Performance Computing Group, Department of Computer Sci-
ence, The University of Adelaide, May 2000. Submitted to
HICSS'34.

[21] Heath A. James. Scheduling in Metacomputing Systems. PhD
thesis, Department of Computer Science, The University of
Adelaide, July 1999.

[22] J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis
and Development of Java Grande Benchmarks. In Proc. of the
ACM 1999 Java Grande Conference, April 1999.

[23] J. A. Mathew, A. J. Silis, and K. A. Hawick. Inter Server
Transport of Java Byte Code in a Metacomputing Environ-
ment. In Proc. TOOLS Paci�c (Tools 28) - Technology of
Object-Oriented Languages and Systems, 1998.

[24] National Center for Supercomputing Applications. Han-
banero. Available at http://www.ncsa.uiuc.edu/SDG/-
Software/Habanero/, last visited May 2000.

[25] Northeast Parallal Architectures Center at Syracuse Univer-
sity. The Tango Project. Available at http://www.npac.syr.-
edu/projects/tango/, last visited May 2000.

[26] Object Management Group (OMG). The Common Object
Request Broker: Architecture and Speci�cation (Revision 2.0).
Framingham, MA, July 1995.

[27] C. J. Patten, F. A. Vaughan, K. A. Hawick, and A. L. Brown.
DWorFS: File System Support for Legacy Applications in DIS-
CWorld. In Proc. Fifth IDEA Workshop, February 1998.

[28] Craig J. Patten and K. A. Hawick. Flexible High-Performance
Access to Distributed Storage Resources. In Proc. Ninth IEEE
Symp. on High Performance Distributed Computing, August
2000.

[29] Mike Rezny. Aspects of High Performance Computing. PhD
thesis, Department of Mathematics, University of Queensland,
November 1995.

[30] Satoshi Sekiguchi, Mitsuhisa Sato, Hidemoto Nakada, and
Umpei Nagashima. { Ninf { : Network base information li-
brary for globally high performance computing. In Parallel
Object-Oriented Methods and Applications (POOMA), Febru-
ary 1996.

[31] John A. Sharp. Data Flow Computing. Ellis Horwood Limited,
1985. ISBN 0-85312-724-7.

[32] Sun Microsystems. Java Advanced Imaging API. Available
from http://java.sun.com/products/java-media/jai/, Novem-
ber 1998.

[33] Sun Microsystems. Java Products Homepage. Available from
http://www.javasoft.com/products/, last visited July 1999.

[34] The Mathworks, Inc. MATLAB. Available at http://www.-
mathworks.com, last visited May 2000.

[35] U.S. National Imagery and Mapping Association. USIGS
Geospatial and Imagery Access Services (GIAS) Speci�cation,
version 3.1, N0101-B. Available from http://www.nima.mil/-
aig/products/uip/gias/, February 1998.

[36] U.S. National Imagery and Mapping Association. Geospatial
and Imagery Exploitation Service (GIXS) Speci�cation. ver-
sion 2.0, June 1999.

[37] D. W. Walker, M. Li, O. F. Rana, M. S. Shields, and Y. Huang.
The Software Architecture of a Distributed Problem-Solving
Environment. Technical Report ORNL/TM-1999/321, Oak
Ridge National Laboratory, February 2000.

[38] Waterloo Maple, Inc. Maple. Available at http://www.-
maplesoft.com, last visited May 2000.

[39] Wolfram Research, Inc. Mathematica. Available at http://-
www.wolfram.com/products/mathematica, last visited May
2000.
 $10.00 (c) 2001 IEEE 10

