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Abstract

The eight-point algorithm of Hartley occupies an impor-
tant place in computer vision, notably as a means of provid-
ing an initial value of the fundamental matrix for use in iter-
ative estimation methods. In this paper, a novel explanation
is given for the improvement in performance of the eight-
point algorithm that results from using normalised data. A
first step is singling out a cost function that the normalised
algorithm acts to minimise. The cost function is then shown
to be statistically better founded than the cost function as-
sociated with the non-normalised algorithm. This augments
the original argument that improved performance is due to
the better conditioning of a pivotal matrix. Experimental
results are given that support the adopted approach. This
work continues a wider effort to place a variety of estima-
tion techniques within a coherent framework.

1. Introduction

In a landmark paper, Longuet-Higgins [12] proposed the
eight-point algorithm—a simple direct method for com-
putation of the essential matrix. The algorithm extends
straightforwardly to computation of the fundamental ma-
trix, the uncalibrated analogue of the essential matrix [5,9].
While simple and fast, the algorithm is very sensitive to
noise in the specification of the image coordinates serv-
ing as input for computation, and as such is of limited
use. Many alternative methods have been advanced since
Longuet-Higgins’ proposal, including more sophisticated
and computationally intensive iterative algorithms [6, 8].
Hartley [7] discovered that the accuracy of the eight-point
algorithm can be greatly improved if, prior to applying the
method, a simple normalisation of image data is performed.
This fundamental modification dramatically extended the
applicability of the algorithm, and, in particular, rendered
it an excellent tool for generation of initial estimates for it-
erative methods.

Hartley attributed the improved performance of the nor-

malised eight-point algorithm to the better numerical con-
ditioning of a pivotal matrix used in solving an eigenvalue
problem. Here we offer a new insight into the working of
the method. A crucial observation is that the estimate pro-
duced by the normalised eight-point algorithm can be iden-
tified with the minimiser of a cost function. The minimiser
can be directly calculated by solving a generalised eigen-
value problem. We confirm experimentally that the esti-
mate obtained as a solution of the generalised eigenproblem
coincides with the estimate generated by Hartley’s original
method. Exploiting the cost function, we propose an al-
ternative explanation of the improved performance of the
normalised eight-point algorithm, based on a certain sta-
tistical model of data distribution. Under this model, the
summands of the cost function underlying the normalised
eight-point algorithm turn out to be more balanced in terms
of spread than the summands of the cost function underly-
ing the standard eight-point algorithm. Summation of more
balanced terms leads to a statistically more appropriate ex-
pression for minimisation, and this in turn translates into a
more accurate estimator. The proposed approach continues
a line of research due to Torr [14], Mühlich and Mester [13],
and Torr and Fitzgibbon [15], in which variants of the nor-
malised eight-point algorithm are analysed statistically. The
work presented here also forms part of a wider effort to
place a variety of estimation techniques within a coherent
framework (e.g. see [1, 2, 4, 10, 11]).

2. Estimation Problem

A 3D point in a scene perspectively projected onto the
image plane of a camera gives rise to an image point rep-
resented by a pair ������� of coordinates, or equivalently,
by the ‘homogeneous’ vector � � ������� ��

� . A 3D
point projected onto the image planes of two cameras en-
dowed with separate coordinate systems gives rise to a pair
of corresponding points. When represented by ����

��,
this pair satisfies the epipolar constraint

�
��
�� � �� (1)
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where � � ���� � is a ��� fundamental matrix that incorpo-
rates information about the relative orientation and internal
geometry of the cameras [6,8]. In addition to (1), � is sub-
ject to the singularity constraint (or, equivalently, the rank-2
constraint)

���� � �� (2)

Using � � ��������
�

���
�

��
� as a compact descriptor

of the single image datum �����	, the estimation prob-
lem associated with (1) and (2) can be stated as follows:
Given a collection ���� � � � ���� of image data and a mean-
ingful cost function that characterises the extent to which
any particular � fails to satisfy the system of the copies of
equation (1) associated with � � �� (� � 
� � � � � �), find
an estimate �� �� � satisfying (2) for which the cost func-
tion attains its minimum. Since (1) and (2) do not change
when � is multiplied by a non-zero scalar, �� is to be found
only up to scale. If the singularity constraint is set aside,
then the estimate associated with a particular cost function
� � ��� ���� � � � ���	 is defined as the unconstrained min-
imiser �� of � ,�� � �
����

� ���
��� ���� � � � ���	�

Such an estimate can further be converted to a nearby rank-
2 fundamental matrix by applying one of a variety of meth-
ods [8, 10]. In this paper, we shall confine our attention
to the pivotal component of this overall process that deter-
mines exclusively the unconstrained minimiser, as this will
prove critical to rationalising the Hartley method. For al-
ternative integrated approaches to computing a constrained
minimiser, see the CFNS method [3, 16] or the Gold Stan-
dard Method [8].

3. Algebraic Least Squares

A straightforward estimation method employs the cost
function

������ ���� � � � ���	 � �� ���
�

��
���

���
�
�
���	

�

with �� �� � �
�

��� �
�
��	

��� the Frobenius norm of � . Here
�

�
�
�
��� is the signed algebraic distance between the in-

dividual datum �� and the candidate matrix � . The alge-
braic least squares (ALS) estimate, �����, is defined as the
minimiser of ����.

A practical means for finding ����� is conveniently
derived based on an alternative expression for ���

��.
Given a matrix �, denote by �����	 the vectorisation of
�, that is the vector obtained by stacking the columns of
� on top of each other. Let � � ����� � 	 and ���	 �
�������� 	� Then, as is easily verified,

�
��
�� � �����	�

With this formula, ���� can be written as

���������� � � � ���	 � ���������� (3)

where � �
��

��� ����	����	
� and ��� � ���� � � � � �

���	
���� Now, using (3) to evolve a variational equation for

the minimiser, ����� can be characterised as an eigenvec-
tor of � associated with the smallest eigenvalue [2]. This
eigenvector can be found in practice by performing singular
value decomposition (SVD) of the matrix

� � �����	� � � � �����	�
� (4)

and taking for the desired output the right singular vector
of� associated with the smallest singular value (the min-
imum right singular vector). In this form, the ALS esti-
mator is essentially identical to the eight-point algorithm of
Longuet-Higgins [12].

4. Hartley’s Approach

Let � and �� be the centroids, or ‘centres of mass’, of
the�� and the��

�, respectively, defined by

� �



�

��
���

�� and �
� �




�

��
���

�
�
�� (5)

Let � � ������� 
�
� , �� � ���

���
�
�� 
�

� , �� �
����������� 
�

� , ��
� � ���

�����
�
���� 
�

� (� � 
� � � � � �).
Following Hartley [7], let us shift the image coordinate
systems to the respective centroids. In coordinates asso-
ciated with the transformed systems, the points of the �th
image datum can be written ����� � ������� � ��� 
�

�

and ���
��� ���

���
�
��� ���

�� 
�
� . Let

� �

�



��

��
���

����� ���	
� � ����� ���	

�

����
�

�� �

�



��

��
���

���
��� ���

�	
� � ���

��� ���
�	
�

����
�

(6)

Define the normalised data as

��� � ������ ���		�� ����� ���		�� 
�
� �

���
� � ����

��� ���
�		�

�� ���
��� ���

�		�
�� 
�� �

This amounts to setting ��� � ��� and ���
� � �

�
�

�
�,

where

� �

����� � ������

� ��� ������

� � 


�� �

�
� �

������ � ���
��

��
�

� ���� �������
�

� � 


�� �
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Let ��� � � ������ ������ ��
�

���� ��
�

����
� � Denote by ������ the

minimiser of the ALS cost function seeded with the nor-
malised data, that is, the minimiser of the function � ��
������ � ���� � � � � ����� Let � �� �� be the mapping defined
by

�� � � ���
��

��
� (7)

Clearly, if �� � �� and ��� � �
�
�

�, then ���
�� �

���� �� ��� Accordingly, the image of ������ by the inverse
mapping �� �� � can be viewed as a genuine estimate of
� . We term this the Hartley (HRT) estimate of � and write���� �; it is explicitly given by

����� � � �� ������� � (8)

The introduction of ����� is motivated by the fact that if
the modified condition number of a non-negative definite
matrix defined as the ratio of the greatest to the second
smallest eigenvalues is large, then the two least eigenval-
ues are relatively close to one another, and consequently the
eigenvectors associated with these nearby eigenvalues are
“wobbly”—a small perturbation of the matrix entries can
cause a significant change of these eigenvectors. The ma-

trix �� �
��

��� ������������
� serving to calculate ������

is in practice much better conditioned (in the above sense)
than the matrix � with which ����� is calculated. As a re-
sult, Hartley’s method is more stable, and in this sense more
advantageous, than the ALS method.

5. Normalised Algebraic Least Squares

A useful modification of ���� is, as it turns out, the cost
function defined by

�	����� ���� � � � ����

� �� ���
��

�����
�

��
���

���

�
�
����

�� (9)

The minimiser of �	��� we call the normalised algebraic
least squares (NALS) estimate of � and write ��	���. The
precise sense in which the expressions entering �	��� are
normalised will be revealed later. A key property of �	���
is that �	����� ���� � � � ���� � ����� �� � ���� � � � � ���� for
any pair �� � �� � satisfying (7). This property is instrumental
in identifying the Hartley estimate as a minimiser of a cost
function—namely it implies that

����� � ��	���� (10)

The formula for �	��� can be rewritten similarly to that
for ����. Denote by ���� ������ the � � � matrix given
by

���� ������ � ����� � ��� �� ����� ���� ��

where �� � 	
���
� 
� �� and � denotes Kronecker prod-
uct. A direct if tedious calculation shows that

�� ���
��

����
�
� 	��	� (11)

where� is given by

� � ���� ��������� (12)

In view of (11), we can rewrite (9) as

�	����	���� � � � ���� �
	
�
�	

	
�
�	

�

One consequence of this formula is that �		��� is a so-
lution of the generalised eigenvalue problem

�	 � ��	 (13)

corresponding to the smallest eigenvalue. Since � may be
ill-conditioned, solving the above eigenvector problem di-
rectly requires a numerically stable method. Leedan and
Meer [11] proposed one such method which, when applied
to the problem under consideration, employs generalised
singular value decomposition (GSVD) of a pair of matrices
�
 �� � satisfying � � 


�

 and � � �

�
� . Nu-

merical experiments show (see later) that when this method
is applied, the matrices � and �, of which the first is typ-
ically ill-conditioned, lead to a solution identical with the
solution obtained using the well-conditioned matrix ��—in
other words, equality (10) is experimentally confirmed.

6. Statistical Justification

Shifting the focus from matrices involved in computation
of estimates (which may be well or ill conditioned) to cost
functions, here we propose an alternative substantiation of
the normalised eight-point algorithm. It is not a priori clear
why �	��� should be preferable to ����. We shall present
some explanation based on a statistical argument. Our rea-
soning will also provide the promised justification of the
label ‘normalised’ for the terms forming �	���.

For each � � 
� � � � � �, let 	� be the �th residual defined
as

	� ��
�

�
�
����

with � normalised for convenience. It is a fundamental ob-
servation that different residuals may carry different statis-
tical weight. When �� and ��

� are treated as sample val-
ues of independent multivariate random variables, the 	� are
sample values of (typically) a heteroscedastic set of random
variables, i.e. with member variables having different vari-
ances. The larger the variance of a particular 	�, the less
reliable this residual is likely to be, and the more it should
be devalued. Therefore, to account for heteroscedasticity,
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it is natural to replace the simple cost function
��

��� �
�
� ,

effectively ����, by the more complicated cost function��

��� �
�
� ���� ����, where ��� ��� denotes the variance of �.

The latter function is closer in form to a natural cost func-
tion derivable from the principle of maximum likelihood
(cf. [2, 17]). We show that under a certain statistical model
of data distribution,

��

��� �
�
� ���� ���� can be identified with

�����.
Assume that, for each � � �� � � � � �, the observed lo-

cation �� is a realisation of a random variable �� �
������ where � � ������� ��

� is a fixed, non-random
location and ��� � ������������� 	�

� is a random per-
turbation. Likewise, assume that ��

� is a realisation of a
random variable ��

� � �
� ����

� with non-random �
� �

���

���
�

�� ��
� and random���

� � ����

������
�

���� 	�
� � Sup-

pose that the following conditions hold:

� ���, ���

� 
�� � � �� � � � � �� are independent;

� � ����� � � ����

�� � � for each � � �� � � � � �;

� there exist � 	 	 and �� 	 	 such that

�
�
���
����

�
�
� �����

�
�
���

�
��
�

��
�
�
� �����

for each � � �� � � � � �.

Here � denotes expectation. Note that, effectively, all the
�� have common mean value � and all the ��

� have com-
mon mean value ��. It is helpful to view � and �� as the
centroids of some individual ‘true’ non-random locations
�� and��

� that are not explicitly introduced, but are present
in the background. An immediate upshot of this type of
modelling is that the random perturbations ��� and ���

�

cannot be regarded as small in typical situations—the mag-
nitude of ��� and ���

� has to be big enough to account
for the disparity between � and the ��, and �� and the ��

�.
Denote by �� � �

�

�
�
��� the stochastic version of the

�th residual. The above conditions on the �� and �
�

� to-
gether with the additional assumption that � and �

� are
‘true’ locations bound by � , in the sense that

�
��
�� � �� ��

��

�� � � 	�

imply that all the residuals �� have common variance 
 �
�
�
�
�� ���������� Thus

��

��� �
�
� ���� ����, the random

version of the cost function introduced earlier, can simply
be written as 
��

��

��� �
�
� with 
�� a common normalisa-

tion of all the residuals. Treating (5) and (6) as formulae for
estimates of the parameters�, ��, �, �� used in our statisti-
cal model, replacing�
�� �������� with� given by (12),
and replacing the random residuals �� with the non-random
ones ��, we arrive at the expression 
�������

��

��� �
�
�

which is identical with �����. In this way, ����� becomes

statistically justified and its building blocks, the ‘algebraic
least squares’ 
���������� , are found to be appropriately
normalised.

7. Experimental Results

To assess whether the theoretical identity ���� 	 �
������ holds in practice, a series of simulations were run
using synthetic data. The simulations were based on a set
of ‘true’ pairs of corresponding points generated by se-
lecting a realistic stereo camera configuration, randomly
choosing many 3D points, and projecting the 3D points
onto two image planes. Image resolution was chosen to be
�� 			� �� 			 pixels.

Two tests were conducted, each comprising �	� 			 tri-
als. At each trial:

� the ‘true’ corresponding points were perturbed by ho-
mogeneous Gaussian jitter to produce noisy points;

� three fundamental matrices were generated from the
noisy corresponding points using the non-normalised
algebraic least-squares method (ALS), the normalised
algebraic least-squares method (NALS), and Hartley’s
method (HRT);

� and the estimates were compared in the way described
below.

The standard deviation of the noise was fixed at � � ��	
pixels (tests run with other levels of noise produced similar
results).

In our experiments, the ALS estimate was computed by
performing SVD of � given in (4) and taking the mini-
mum right singular vector. Similarly, the Hartley estimate
was computed by performing SVD of the matrix �� �
��
����� � � � ��
�����

� and applying the back transformation
prescribed by (8) to the minimum right singular vector (a
standard SVD-correction step to produce a usable, rank-2
fundamental matrix before back-transforming was ignored).
The NALS estimate was computed by employing Leedan–
Meer’s method based on the GSVD of 
� ���, with �
given by (4) and � � 
���� � 	��� � � 
��� � 	�� ��
where 	 � �	� 	� ��� .

In the first test, comparison of the estimates involved
calculating two distances �� � ��� �����	 � ��������
and �� � ��� ����� 	� ������� , with ����	, ������,
and ����� having unit Frobenius norm. The first of these
measures quantifies the discrepancy between the HRT and
NALS estimates, the second informally gauges the signif-
icance of the values of the first. All results are plotted in
Figure 1. The histogram of �� values shows that ���� 	and
������ are almost identical, with all values of �� less than
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FIGURE 1. Histograms of values of �� (upper left), �� (upper right), �� (lower left), and �� (lower right) for ��� ���
tests.

���������. The significance of this may be gauged by not-
ing that the �� histogram, capturing differences between the
HRT and ALS estimates, exhibits values that are all greater
than ���� ����.

The second test involved calculating the signed dis-
tances �� � ���������	� � �������
���� and �� �

���������	�� �����������, where

������ � �

��
���

���

�

�
����

�

�
�

�
��

�
�

�
�� ��

�

�
��

�
�
�
��

�

�

is the approximated maximum likelihood cost function
commonly underlying more sophisticated iterative meth-
ods, associated with the default covariance �� (e.g. see
[2, 10, 17]). The �� histogram exhibits extremely small val-
ues centred on zero, confirming once again the practical
equivalence of estimates ����	 and ��
���. In contrast,
the �� histogram shows differences in ����	 and ����� that
are very much larger.

8. Conclusion

A novel explanation has been presented for the improve-
ment in performance of the normalised eight-point algo-
rithm that results from using normalised data. It relies
upon identifying a cost function that the algorithm effec-
tively seeks to minimise. The advantageous character of the
cost function is justified within a certain statistical model.
The explanation avoids making any direct appeal to prob-
lem conditioning. Experimental results are presented that
support the proposed approach.
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