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Abstract

We consider the effect the competing mechanisms of buoyancy-driven acceleration (arising
from heating a surface) and streamline curvature (due to curvature of a surface) have on
the stability of boundary-layer flows. We confine our attention to vortex type instabilities
(commonly referred to as G̈ortler vortices) which havebeen identified as one of the dominant
mechanisms of instability in both centrifugally and buoyancy driven boundary layers. The
particular model we consider consists of the boundary-layer flow over a heated (or cooled)
curved rigid body. In the absence of buoyancy forcing the flow is centrifugally unstable
to counter-rotating vortices aligned with the direction of the flow when the curvature is
concave (in the fluid domain) and stable otherwise. Heating the rigid plate to a level
sufficiently above the fluid’s ambient (free-stream) temperature can also serve to render
the flow unstable. We determine the level of heating required to render an otherwise
centrifugally stable flow unstable and likewise, the level of body cooling that is required to
render a centrifugally unstable flow stable.

1. Introduction

Our concern is with the interplay of buoyancy and centrifugal forces in promoting,
or inhibiting, the growth of longitudinal vortices in boundary-layer flows over curved
heated surfaces. We consider this problem in the context of both linear and nonlinear
vortex instabilities.

The competition between buoyancy-driven and curvature (or centrifugally) induced
instabilities has receivedlittle attention although their driving mechanisms arise in a
wide variety of physically important fluid flows. These competing instabilities can
arise in two different ways. For example, incompactheat exchangers the design aim
is to maximise the efficiency of the apparatus in removing heat from a surface while
keeping the dimensions of the device to a minimum. Because of thelimitations on
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size, body curvature is invariably encountered; one typical application of curvature is
in the form of channel corrugations [9, 22] (see also the review article [17]). The effect
of such body curvature upon the buoyancy induced instabilities (and any subsequent
transition to turbulence) is then an important design issue when viewed from the
standpoint of maximising efficiency through turbulent heat transfer. On the other
hand, in cases where centrifugal instabilities naturally arise due to surface concavity,
such as on the underside of a laminar-flow control airfoil [18], the question of whether
wall cooling can be used to control the instability is an important one.

Typically in applications involving heat transfer a natural asymptotic limit arises
based upon the fact that the Grashof number is large. The Grashof numberGr is
defined as

Gr = L3gþ1T=¹2; (1)

whereL is a characteristic length scale of the flow,g is the acceleration due to gravity,
þ the coefficient of thermal expansion,¹ the kinematic viscosity of the fluid, and1T
the temperature difference between the heated surface of interest and the ambient fluid
temperature. For water at 20 degC the kinematic viscosity is¹ = 1:004×10−2 cm2=sec
and the coefficient of thermal expansionþ = 2:1 × 10−4 deg−1C (see Batchelor [2,
pp. 594–597]). If we consider a device in which the characteristic length scaleL is
equal to 10 cm and the temperature difference1T is 20 degC then the Grashof number
is O.109/. If we replace water with air the Grashof number is slightly reduced to
O.108/. In both cases we can confidently refer to the flow as having alarge Grashof
number.

Such flows (that is, flows over heat surfaces) typically exhibit instabilities in the
form of spanwise periodic, counter-rotating vortices which are aligned with the direc-
tion of the flow; one such example can be found in the work of Goldstein and Sparrow
[9]. There are a number of studies that consider the asymptotic, large Grashof num-
ber, form of disturbances to boundary layer flows over heatedflat plates. They have
identified two distinct r´egimes for the span-wise wavelength of longitudinal vortices
which appear to dominate the flow development. Hall and Morris [15] examined
the linear stability of a forced-convection boundary layer over a horizontal flat plate.
They demonstrated that such a flow is indeed unstable to longitudinal vortices which
are aligned with the direction of the flow. ForO.1/ values of the Grashof number
the instabilities have wavelength that are of order unity (relative to the boundary layer
thickness) and develop in a non-parallelmanner. It is however, only in the limit of large
Grashof numberGr � 1 that the fastest growing mode (on the basis of linear theory)
is present. This mode is governed by a quasi-parallel theory and has a growth rate of
O.Gr3=4/, a span-wise wavelength ofO.Gr−1=4/ and is confined to within a viscous
sub-layer of thicknessO.Gr−1=4/ situated at the surface of the heated plate. Because
the disturbance is localized near the wall surface, surface inhomogeneities can readily
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induce this form of instability. Furthermore Hall and Morris [15] demonstrated that
in the limit of small vortex wavenumber the vortex mode takes on the characteristics
of an oblique Tollmien-Schlichting wave which is progressively destabilised by wall
heating.

The work of Hall and Morris [15] is closely connected to the earlier work of
Timoshin [21] and Denier, Hall and Seddougui [5] who, independently, identified
the most unstable G¨ortler vortex mode in the boundary-layer flow over a concave
wall. This mode is confined to anO.G−1=5/ thickness wall bounded shear layer, has
a span-wise wavelength ofO.G−1=5/ and evolves in the stream-wise direction with
a growth-rate ofO.G3=5/, whereG � 1 is the Görtler number of the flow. One
significant difference that arises between the results of [15] and [5] is that in the latter
study the most unstable mode lies in a wavenumber r´egime distinct from that which
contains the right-hand branch of the curve of neutral stability. However, in both cases
the most unstable mode is confined to a viscous sub-layer close to the plate.

Hall and Lakin [14] extended the earlier work of Hall [11], concerning the non-
parallel evolution of weakly nonlinear short wavelength vortices, into a strongly
nonlinear régime. In this strongly nonlinear r´egime the flow is governed by a first
harmonic/mean-flow interaction in which the vortex induced mean flow is of the same
order of magnitude as the underlying basic flow (and not a small correction to the mean
flow as would arise in a traditional Stuart-Landau type of weakly nonlinear stability
theory). The vortices exist across a finite part of the boundary layer (away from the
wall) and their existence causes the stream-wise mean flow component to be radically
altered from that encountered in the absence of the vortices. Similar results were
found by Hall [12] in his investigation of the nonlinear stability of mixed forced-free
convection boundary layers over horizontal flat plates. However, in that case it was
shown that the vortex structure is confined to that part of the boundary layer adjacent
to the heated plate. Under certain conditions the mean flow component is modified
to the extent that points of inflection develop and the flow becomes susceptible to
rapidly growing high frequency Rayleigh (or Taylor-Goldstein) wave modes. This
result is in stark contrast with situations where the vortex is not present, in which case
the boundary-layer flow is stable to such wave-like disturbances. It is the presence of
the strongly nonlinear vortices which renders the flow susceptible to rapidly growing
secondary instabilities.

It is the aim of the present paper to consider various aspects of the stability of
buoyant boundary layers to longitudinal vortex motions and the effect concave/convex
curvature has on such instabilities. As a first step towards an increased understanding
of such flows we restrict our attention to steady vortex (that is, span-wise periodic)
modes of instability. The question of wave-like disturbances in buoyant boundary-
layer flows has recently been considered by Mureithi, Denier and Stott [20], Mureithi
and Denier [19] and Denier and Mureithi [6] and for the case of buoyant Poiseuille
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flow by Denier and Stott [7]. The first two of the aforementioned papers were
predominantly concerned with the modifications to the stability characteristics of
Tollmien-Schlichting waves. The latter papers, however, were concerned with the
nonlinear evolution of a single monochromatic short wavelength travelling wave. The
evolution of such a wave mode was shown to be governed by a wave/mean-flow
interaction theory remarkably similar to that found for short wavelength vortex modes
by Hall and Lakin [14]. These wave motions invariably persist in the presence of
underlying body curvature (both concave and convex) and as such have implications to
the nonlinear vortex modes to be described here. The question as to which mode, wave
or vortex, dominates the flow is a question of some importance from the perspective
of predicting transition to turbulence. A definitive answer to this question is outside
the scope of this paper.

In isolation, the results discussed above present a somewhat confusing picture in
that there are a large number of asymptotic r´egimes which appear to be disconnected.
To put these results into context we must refer to the question of the receptivity of the
flow to longitudinal vortices, that is, the question of how external disturbances become
internalized in the flow and how these develop into vortex-like motions. This question
has been considered in the context of curvature induced [5] and buoyancy induced
vortices [15]. Hall and Morris [15] demonstrated that, in high Grashof number flows,
disturbances in the free-stream (such as incipient turbulence) are not as efficient in
generating the fastest growing vortex as are disturbances localized near (or on) the
surface (such as isolated ‘hot spots’). They (that is, free-stream disturbances) can
however serve to excite short wavelength vortices that are localized within the body
of the boundary layer. On the other hand, disturbances with spanwise wavelengths
of order unity (with respect to the boundary layer thickness) will tend to promote
vortices whose spanwise wavelength is alsoO.1/. We therefore have a picture where
the response of the boundary layer in promoting vortices is intimately linked to the
form of the environmental disturbance present in the flow.

This paper therefore presents a systematic study of the competing effects of buoy-
ancy and centrifugal forces on vortex instabilities across the whole (vortex) wavenum-
ber spectrum. To do this we first formulate the equations that describe the flow of a
mixed forced-free convection boundary layer over a curved heated plate in Section 2.
In Section 3 we examine the linear stability of such flows in the natural limit of large
Grashof number. We first consider inviscid disturbances which arise whenGr � 1
and the vortex wavelength is of the same order as the boundary layer thickness. The
effect of concave/convex curvature on the inviscid vortex modes is investigated. Still
within the context of a linearized instability theory, the effect of concave or convex
curvature on the most unstable (or fastest growing) vortex mode is then considered.
In Section 4 we turn our attention to the effect of nonlinearity on the vortex insta-
bility. With the Grashof numberGr � 1 the evolution of short wavelength vortices
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is governed by the vortex/mean-flow interaction theory of Hall and Lakin [14]. The
effect of the competing buoyancy and centrifugal forces on finite amplitude vortices
is investigated. Finally in Section 5 we draw some conclusions from our work and
suggest some directions for future work.

2. Formulation

Consider the flow of a viscous fluid over a heated wall of variable curvature and let
L denote a typical length-scale over which the curvature changes. IfU∞ is a typical
speed a large distance from the wall, and¹ is the kinematic viscosity, we define the
Reynolds number,Re, as

Re= U∞L=¹:

We initially take the temperature of the plate to be uniform and equal toT0, although a
variable temperature along the plate facilitates the development of a similarity solution
of the boundary-layer equations to be considered in subsequent sections, and assume
that sufficiently far from the plate the temperature of the flow isT∞. The location of
the bounding wall is defined with respect to dimensional Cartesian coordinatesx∗, y∗,
z∗ by

y∗ = LRe−1=2ĝ.x∗=L/:

We define non-dimensional coordinates

.x; ŷ; z/ = .x∗;Re1=2y∗;Re1=2z∗/=L ;

and take the corresponding dimensionless velocity field to be

.u; v̂; w/ = .u∗;Re1=2v∗;Re1=2w∗/=U∞;

whilst the dimensionless temperature is given by

T∗=T∞ = 1 + .T0=T∞ − 1/T:

If we let ²̄ denote a typical fluid density then we may write the dimensionless pres-
sure as

p = p∗

²̄U 2
0

=
(

p̄0.x/+ p̄1.x/

Re1=2
+ Gr

Re5=2

(
p̄.x; ŷ/+ p.x; ŷ; z/

) + · · ·
)
;

where the Grashof numberGr is defined in (1) with1T = T0−T∞. The dimensionless
fluid density is given by

² = ²∗=²̄ = 1 + þ.T∗ − T∞/;
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whereþ is the coefficient of thermal expansion of the fluid.
Substituting the above dimensionless variables into the Navier-Stokes equations,

taking the limitRe→ ∞ and employing the Boussinesq approximation we obtain

ūx + v̄y + Ũx + Ṽy + W̃z = 0; (2a)

−ūūx − v̄ūy + ueuex + .1=2/Sp̄yG9.x/ − Sp̄x + ūyy + Ũyy + Ũzz

= ūŨx + Ũ ūx + v̄Ũy + Ṽ ūy + Q1; (2b)

− p̄y + �̄− P̃y +Gr2̃−G�Ũ ū+Ṽyy+ Ṽzz= ūṼx +Ũ v̄x + v̄Ṽy+ Ṽ v̄y + Q2; (2c)

P̃z + W̃yy + W̃zz = ūW̃x + v̄W̃y + Q3;

−ū�̄x − v̄�̄y + .�̄yy + 2̃yy + 2̃zz/=¦ = ū2̃x + Ũ �̄x + v̄2̃y + Ṽ �̄y + Q4; (2d)

which must be solved subject to the boundary conditions

ū = v̄ = �̄ − 1 = 0 on y = 0; (3a)

Ũ = Ṽ = W̃ = 2̃ = 0 on y = 0; (3b)

ū → ue.x/; �̄ → 0 as y → ∞; (3c)

.Ũ ; Ṽ; W̃; 2̃/ → 0 as y → ∞: (3d)

In deriving (2)–(3) we have written

.u; v;w; p;T/ = .ū; v̄; w̄; p̄; �̄ /+ .Ũ ; Ṽ; W̃; P̃; 2̃/;

so that the total flow field is decomposed into a basic boundary layer flow (denoted
by barred quantities) and a superimposed disturbance. We have also made use of
the Prandtl transformation̂y = y + ĝ.x/, v̂ = v + ĝ.x/u to transform the boundary
conditions on the surfacêy = ĝ.x/ to boundary conditions ony = 0. In (3c) we have
introduced the term

G� = 2ĝ′′.x/;

which arises as a result of the Prandtl transformation. HereG and� are commonly
referred to as the G¨ortler number and the wall curvature respectively. We have defined
G9.x/ = 2ĝ′.x/ and p̄0x = −ueuex. The parameterS = Gr=Re is the buoyancy
parameter introduced by Hall [12], ¦ is the Prandtl number andQj contains the
nonlinear terms:

Q1 = ŨŨx + ṼŨy + W̃Ũz; Q2 = Ũ Ṽx + Ṽ Ṽy + W̃Ṽz + G�Ũ 2=2;

Q3 = Ũ W̃x + Ṽ W̃y + W̃W̃z; Q4 = Ũ2̃x + Ṽ2̃y + W̃2̃z:

The precise details of this formulation are well documented in previous studies such
as [5] and [15].
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3. The growth of linear instabilities in the boundary layer

We shall initially confine our attention to small amplitude disturbances to the basic
boundary-layer flow. Consider then the Fourier decomposition of the disturbance
quantities in the span-wise direction

.Ũ ; Ṽ; W̃; P̃; 2̃/ = Ž.ũ; ṽ; w̃; p̃; �̃ /eikz + O.Ž2/

whereŽ is an infinitesimally small quantity and 2³=k is the wavelength of the (linear)
vortex with amplitudes̃u, ṽ etc. Substituting into (2) and equating coefficients of
powers of the vortex amplitudeŽ to zero gives the equations governing the unperturbed
boundary layer:

ūx + v̄y = 0; (4a)

p̄y = �̄ ; (4b)

ūūx + v̄ūy = ūyy + ueuex − Sp̄x + .1=2/S�̄G9.x/; (4c)

ū�̄x + v̄�̄y = �̄yy=¦; (4d)

with corresponding boundary conditions

ū = v̄ = �̄ − 1 = 0 on y = 0; ū → ue; �̄ → 0 as y → ∞:

The linearized equations governing the disturbance amplitude are obtained atO.Ž/ as

ũx + ṽy + ikw̃ = 0; (5a)

ūũx + ũūx + v̄ũy + ṽūy = ũyy − k2ũ; (5b)

ūṽx + ũv̄x + v̄ṽy + ṽv̄y + G�.x/ūũ = − p̃y + Gr�̃ + ṽyy − k2ṽ; (5c)

ūw̃x + v̄w̃y = −ik p̃ + w̃yy − k2w̃; (5d)

ū�̃x + ũ�̄x + v̄�̃y + ṽ�̄y = .�̃yy − k2�̃ /=¦; (5e)

with corresponding boundary conditions

ũ = ṽ = w̃ = �̃ = 0 on y = 0; .ũ; ṽ; w̃/ → 0 as y → ∞:

By cross-differentiating (5c) and (5d) we can eliminate the pressure to give

.k2v̄x + k2G� ū + ūx x y/ũ + .k2v̄y + ūx yy + k4/ṽ

+ 2
(

ūx y + ūx
@

@y

)
ũx +

(
k2ū + ūyy − ū

@2

@y2

)
ṽx − .2k2 + v̄y/ṽyy

+ .k2v̄ + ūx y/ṽy + v̄ũyy + ṽyyyy − v̄ṽyyy − k2Gr�̃ = 0; (6)
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to be solved subject to

ũ = ṽ = ṽy = �̃ = 0 on y = 0;∞:

With the basic velocity and temperature fields given by (4), the non-parallel evolution
of a single vortex mode can be determined by solving (5b), (5e) and (6) numerically;
w̃ and p̃ can then be determined from (5a) and (5d) respectively. Such a numerical
solution requires the imposition of a disturbance at some initial stream-wise location.
The parabolic (inx) partial differentialequations can then be marched forward inx and
the growth or decay of the disturbance can be monitored by, for example, the kinetic
energy of the disturbance; the reader is referredto Hall [11] for details of this marching
procedure. We do not pursue a purely numerical solution of the disturbance equations
here since our primary concern is with the large Grashof number limit typically
encountered in buoyant boundary-layer flows (see the discussion in Section1). In
this large Grashof number limit considerable analytic progress can be made towards
a solution of (6).

Before proceeding with a discussion of the large Grashof numberlimit we note the
presence of the buoyancy parameterS in the stream-wise momentum equation (4b).
The first termSp̄x is a buoyancy induced acceleration which is present in both curved
and flat plate buoyant boundary layers. The second termSG9�̄=2 is also a buoyancy
induced accelerationbut arises due to the curvature of the underlying plate; in the case
of aconcavelycurved body, for whichG� > 0, this term has a retarding influence on
the boundary layer in regions whereG9 < 0 (that is,ĝ′ < 0) and acts to accelerate
the flow in regions whereG9 > 0 (that is,ĝ′ > 0). The converse holds in the case of
a boundary-layer flow over aconvexlycurved surface.

In order to highlight the effect of buoyancy coupling and the streamline curvature
of the basic flow on the stability properties of the flow we shall consider the cases
S = 0 andSnon-zero separately. First, let us focus on the caseS = 0.

3.1. Inviscid vortex modes in the large Grashof number limit Turning our
attention to the large Grashof number limit, withS set equal to zero, we first neglect
the effects of viscosity on those vortex modes withO.1/ span-wise wavelengths. This
assumption is made on the basis of the results of Hall and Morris [15] who found that
it is only at asymptotically large and infinitesimally small vortex wavelengths that the
effects of viscosity are felt by the disturbance. Thus, if we allowGr � 1 and take
the span-wise wavenumberk to beO.1/ (corresponding to the inviscid vortex modes)
then, in order to achieve a balance between stream-wise advection, normal diffusion
and buoyancy, we must have@x ∼ Gr1=2 andṽ = O.Gr1=2ũ/. Thus we write

(
ũ; |Gr|−1=2ṽ; �̃

)
= .u0; v0; �0/exp

(
|Gr|1=2

∫
þ̂.x/dx

)
;
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whereu0,v0 and�0 are functions ofx andy only andþ̂ expands as

þ̂ = þ0 + þ1|Gr|−1=2 + · · · :

We also note that the centrifugal acceleration of the flow induced by the underlying
body curvature first exerts an influence on the inviscid vortex modes when the G¨ortler
number is of the same order of magnitude as the Grashof number, that is,

G = G0|Gr| + · · · :

Substituting these expansions into (6), we obtain to leading order, upon eliminating
u0 and�0,

@2v0

@y2
− 1

ūþ0

(
.k2ū + ūyy/þ0 + sign.Gr/

k2�̄y

ūþ0
− k2G0� ūy

þ0

)
v0 = 0: (7)

This equation must be solved subject to the usual inviscid boundary conditionsv0 = 0
on y = 0 andy → ∞ and defines an eigenvalue problem forþ0 = þ0.k/. Equation (7)
is a modified version of the Taylor-Goldstein equation; the reader is referred to Drazin
and Reid [8] for a discussion of its relevance to the stability of stratified shear flows
and to Blackaby and Choudhari [3] for a discussion of its relevance to the stability
properties of weakly three-dimensional boundary layers.

Equation (7) is readily solved using a second order accurate finite-difference scheme
in which the homogeneous boundary conditionv0 = 0 ony = 0 is replaced byv0y = 1
on y = 0; Newton iteration is then performed onþ0 until the remaining boundary
conditionv0 = 0 on y = 0 is satisfied (to within some desired tolerance). A useful
check on the accuracyand validity of our numerical scheme is obtained by comparison
with the exact solution of (7), identified by Denieret al. [5] and Timoshin [21], which
exists when̄�y = 0 and, in the absence of curvatureG0 = 0, with the results of Hall
and Morris [15]. Our numerical scheme is able to reproduce both these limiting cases.

For simplicity, the basic flow is taken to be of the Falkner-Skan type given by

ū = x1=3 f ′.�/; v̄ = � f ′.�/− 2 f .�/

3x1=3
; �̄ = x1=3g.�/; p̄ = x2=3q.�/; (8)

where the similarity variable� = y=x1=3. Although other choices of similarity variable
are available, thex1=3 form was chosen so as to provide a point of comparison with
the earlier work of Hall and co-workers [12, 15]. The functionsf , g andq in (8) are
determined from the solution of the system of equations

1

3
f ′2 − 2

3
f f ′′ = f ′′′ + 1

3
; q′ = g;

1

¦
g′′ = 1

3
f ′g − 2

3
g′ (9)
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with boundary conditions

f = f ′ = g − 1 = 0 on � = 0; f ′ − 1; g;q → 0 as � → 0:

In order for a similarity solution to exist we must take a curvature profile� = x−1=3�1.
Note also that as we are currently concerned with the case ofS = 0 the buoyancy
induced acceleration terms are absent from (9a).

The results of our calculation are presented in Figure1, for the first eigen-mode, in
the form of plots of the growth rateþ0 as a function of the wavenumber for a variety
of curvature profiles. These results are for a Prandtl number equal to unity (that is,
¦ = 1 in (9)); changing the value of¦ has only a quantitative effect on these results
and henceforth we will set¦ = 1 in all calculations in this section.

From Figure1 we observe that if the plate is curved in a concave manner, corre-
sponding to�1G0 > 0, the flow permits disturbances with larger growth rates than
if the plate were flat and the growth rates increase with increased curvature. Linear
inviscid vortex disturbances persist when the plate is curved in a convex manner, and
hence in this parameter r´egime the destabilising effect of the unstable temperature
stratification outweighs the stabilising influence of convex curvature. The stabilizing
effect of the underlying convex body curvature increases as the local radius of cur-
vature of the body is decreased. Indeed physical intuition leads us to the conclusion
that, given any level of buoyancy, centrifugal forces will ultimately stabilize the flow
if the radius of curvature of aconvexlycurved body is suitably small1 . Indeed, in the
caseG0 � 1, the growth rateþ0 appearing in (7) should be re-scaled asþ0 = G1=2

0 þ̂0

(with all other quantities unchanged). In the limitG0 → ∞ the resulting equation is
identical to that derived by Denieret al. [5, (5.8)] and thus the growth ratêþ2

0 = �k=2.
Thus in the case� < 0 (that is, in the case of a convexly curved surface) the inviscid
modes are ultimately re-stabilized.

We also note that when the Grashof number was negative no unstable modes could
be located at moderate values ofG0. However, as noted above, in the limitG0 � 1
centrifugal forces will again dominate with (9) reducing to the linear inviscid vortex
equation (see [5] and [21] for details). That equation possesses a full spectrum of
unstable solutions if� > 0 and so on this basis we can state that for a given value of
Gr < 0 (corresponding to the case of a cooled rigid wall) there will be a critical value
of G0 beyond which the flow will be unstable to inviscid longitudinal vortex motions.

We now turn our attention to the case of strong buoyancy coupling within the basic
boundary-layer flow, corresponding toSnon-zero. The effect of the underlying body
curvature is now felt when the G¨ortler number is anO.1/ quantity. In this case the
curvature effectarises not through the equations governing the disturbance but through

1There is, of course, the proviso that the radius of curvature of the body be of such a size that the
assumption of an attached boundary-layer flow is valid.



[11] Boundary layers on curved heated plates 343

FIGURE1. Growth rates (for¦ = 1) of an inviscid vortex mode as a function of the span-wise wavenumber
k with scaled G̈ortler numbers�1G0 = 3; 2; 1; 0;−1;−2;−3 and sign.Gr/ = 1. The dashed curves
correspond to�1G0 ≤ 0.

the modification to the underlying boundary-layer flow as a result of the combined
effect of centrifugal acceleration and buoyancy. Thus with the growth rate defined as
before, the disturbance equation, first derived by Hall and Morris [15], is given by

@2v0

@y2
− 1

ūþ0

(
.k2ū + ūyy/þ0 + sign.Gr/

k2�̄y

ūþ0

)
v0 = 0; (10)

(which is equivalent to (7) with G0� formally set equal to zero). The self-similar form
for the boundary-layer flow is still appropriate, however, the stream-wise momentum
equation is now given by

1

3
f ′2 − 2

3
f f ′′ = f ′′′ + 1

3
− 2

3
Sq+ 1

3
S�q′ + 1

2
SG1g (11)

which in the limitS→ 0 reduces to the stream-wise momentum equation of (9). Note
that in order to develop a similarity solution it was necessary to chooseG9.x/ =
G1x−2=3 whereG1 is a constant and that thex−2=3 factor inG9 signifies that the body
is convex, whereas the sign ofG1 is determined by whether̂g′ is positive or negative.
The case ofG1 positive corresponds tôg′ > 0. Such a convention is employed in
order to allow us to make use of a similarity solution. Non self-similar solutions must
be considered by solving the full system of partial differential equations.

The precise value, and sign, ofG1 depends upon the form of the bounding surface.
IndeedG9 = 2ĝ′ whereĝ denotes the position of the rigid surface. As suchG1 is
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FIGURE 2. The stream-wise velocity of the basic flow for¦ = 1, S = 1 andG1 = −2; 0; 2; 4;6; 8. Here
× denotes stationary points and• denotes inflection points.

related to the gradient of the rigid surface and can take both positive or negative values
(irrespective of whether the surface has concave or convex curvature). The effect
of the curvature is now felt, not through a centrifugal acceleration in the disturbance
equations, but through the variable slope of the body and acts as an additional buoyancy
induced acceleration/deceleration on the stream-wise component of the basic flow.

In Figure2 we present a plot of the stream-wise velocity component of the flow for
a number of values ofG1; included in this figure are the stationary points (that is, local
maxima of f ′). The effect of buoyancy induced acceleration is readily observed; such
an acceleration causes the stream-wise velocity to ‘overshoot’ its free-stream value.
The effect of decreasingG1 on the basic flow is (a) to decrease the local maximum
and move the inflexion point associated with this local maximum to successively
higher values of� and (b) for increasingly negative values ofG1 a new inflexion
point emerges from� = 0 and ultimately the similarity solution breaks down when
G1 reaches a level at whichf ′′ = 0; the similarity solution is no longer valid and
the flow cannot be described under the assumption of an attached boundary layer. A
plot of disturbance growth rates, determined from (10), is shown in Figure3 for the
representative casesS = 0:5 andS = 2:0. The effects of the ‘curvature’ induced
acceleration are readily seen; the growth rates for the deceleratedboundary layer, with
G1 < 0, are significantly higher than those for the caseG1 = 0 (corresponding to a
flat plate). The above situation is reversed for the boundary-layer flow over a concave
body. Thus although the effect of curvature is not felt in the disturbance equation it
has a considerable effect on the growth rates of inviscid vortex modes.
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(a) (b)

FIGURE 3. Growth rate curves for (a)S = 0:5, (b) S = 2:0, where for each figureG1 = −3;−2;−1; 0,
1; 2; 3 respectively and¦ = 1.

3.2. The most unstable vortex in the large Grashof number limit The results
of the previous section focused on vortices with wavenumberk = O.1/. As noted
in Section1, this mode of instability will generally be induced by environmental
disturbances that have a similarO.1/ spanwise periodicity. However, environmental
disturbances (such as small-scale isolated ‘hot spots’) introduced through the bounding
surface will produce a response in the flow that is (initially) localized near the surface
and having a spanwise wavelength that is short compared to the boundary layer
thickness [5, 15].

The short wavelength limit of (10) is amenable to analysis. Such an analysis has
been previously carried out by Denieret al. [5] and Hall and Morris [15] (the reader is
referred to those papers for full details). The outcome of a large wavenumber analysis
of the inviscid vortex equation is the identification of the fastest growing wall bounded
mode. We will now turn our attention to the most unstable mode in order to determine
the effect of body curvature on this mode.

As shown by Hall and Morris [15], the fastest growing vortex within a buoyant
boundary layer is confined to a wall-bounded shear layer of thicknessO.Gr−1=4/, has
a span-wise wavelength ofO.Gr−1=4/ (the vortex retaining an aspect ratio of one) and
has a stream-wise growth rate ofO.Gr3=4/. In order to elucidate the structure of this
mode we therefore write

k = |Gr|1=4k0; � = ky;
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and expand the disturbance quantities as

(
ũ; |Gr|−1=2ṽ; �̃

)
= [

.u0; v0; �0/+ O
(|Gr|−1=4

)]
exp

∫
|Gr|3=4þ̂.x/dx;

whereu0, v0, �0 are functions of� only and the scaled growth rateþ̂ = þ0+|Gr|1=4þ1+
· · · . An a posteoriestimate shows that the underlying body curvature first affects the
most unstable vortex mode when

G = G̃0|Gr|5=4:
Substituting the above expansions into the linear disturbance equations (6) yields, to
leading order in inverse powers of|Gr|1=4,

L u0 = ¼v0=k2
0; (12a)

L

(
@2

@� 2
− 1

)
v0 = sign.Gr/

�0

k2
0

− G̃0�¼�u0

k3
0

; (12b)

L1�0 = −v0−=k2
0; (12c)

to be solved subject to the boundary conditions

u0 = v0 = v′
0 = �0 = 0; � = 0;∞

and where the differential operators appearing in (12) are defined as

L =
(
@2

@� 2
− 1 − �¼þ0

k3
0

)
; L1 =

(
1

¦

@2

@� 2
− 1

¦
− �¼þ0

k3
0

)
:

In deriving (12) the basic flow has been expanded in the form

ū = ¼�k−1 + · · · ; �̄ = 1 − −�k−1 + · · · :
By re-scaling

þ00 = .¼−−3=4/þ0; k00 = −−1=4k0; G00 = �¼2G̃0=−
5=4;

u00 = − 1=2u0=¼; v00 = v0; �00 = �0=−
1=2;

(12) can be written in canonical form

L
+u00 = v00=k2

00; (13a)

L
+

(
@2

@� 2
− 1

)
v00 = sign.Gr/

�00

k2
00

− sign.�/G00�u00

k3
00

; (13b)

L
+

1 �00 = −v00=k2
00; (13c)
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(a) (b)

FIGURE4. (a) Linear, viscous growth rates of the most unstable mode for various curvatures as a function
of the wave-speed for the case¦ = 1. The dashed line corresponds to sign.�/G00 = 1 in (13b); (b) The
maximum value of the linear, viscous growth rate as a function of sign.�/G00.

with boundary conditions

u00 = v00 = v′
00 = �00 = 0; � = 0;∞:

HereL +,L +
1 areL ,L1 transformed by the variables described above.

Note that the buoyancy parameterSdoes not explicitly appear in system (13), and
the results to be presented below for the scaled growth rateþ00 do not depend uponS.
However, it is important to note that both the skin friction¼ and the temperature
gradient at the surface−− do depend implicitly uponS (see system (4)).

The eighth order system (13) defines an eigenvalue problem for the growth-rateþ00

as a function of the scaled wavenumberk00. This system was solved by replacing the
homogeneous boundary conditionu00 = 0 on� = 0 by an inhomogeneous boundary
conditionu′

00 = 1 on � = 0. The resulting two-point boundary-value problem was
then solved using the routine D02RAF from the NAG suite of subroutines. Newton
iteration was performed onþ00 until the homogeneous boundary condition,u00 = 0
on � = 0, was satisfied to within some desired tolerance.

The results of several such calculations are presented in Figure4. Figure4(a)
presents plots of the growth rate versus wavenumber for an unstably stratified boundary
layer (corresponding toGr ≥ 0). The dashed curve corresponds to theGr term set
equal to zero in (13), in which case the disturbance temperature and momentum fields
de-couple and the results of Denieret al. [5] are recovered. The middle curve, for
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which G00 = 0, reproduces the results of Hall and Morris [15] (both cases provide a
valuable validation of the numerical scheme used in the present paper). We note from
the G00 = 0 curve that the neutral vortex mode is found at wavenumberk00 = 1 and
therefore thek = O.Gr1=4/ wavenumber r´egime contains the right-hand-branch of
the neutral curve (as noted in [15]). The results presented in this figure demonstrate,
perhaps not surprisingly, that concave curvature has a de-stabilizing influence on the
flow whereas convex curvature has a stabilizing influence. In Figure4(b) we present
a plot of the maximum growth rate as a function of the scaled curvature parameter
G00. Here we observe that the maximum growth rate tends to zero as�G00 becomes
progressively more negative. Thus for large levels of convex curvature (�G00 < 0)
the most unstable vortex mode is ultimately re-stabilized. It is a consequence of the
fact that the most unstable mode is confined to a thin viscous wall layer that leads to
this result that a high degree of convex curvature, ofO.Gr5=4/, is required to fully
stabilize the flow. Thus, for the flow of a highly heated boundary layer over a body
curved in a convex fashion, the flow remains susceptible to longitudinal-type vortex
motions for a wide range of curvature profiles.

4. The nonlinear saturation of short wavelength vortices

We now turn our attention to the question of the nonlinear saturation of the vortex.
Generally this is a question that can only be resolved by resorting to a full numerical
solution of the full nonlinear system (2). However, in the limit of large Grashof
number, this system can be solved asymptotically to give information on the nonlinear
response of the flow to a finite amplitude vortex. In effect, a weakly nonlinear theory
arises which is based upon the fact that aneutrally stablevortex has a wavelength
that is small compared to the boundary layer thickness (see [11]). With this fact in
mind, we now turn our attention to the effect of buoyancy forcing on the nonlinear,
centrifugally driven, vortex instability.

In the absence of buoyancy forcing, the results of Hall and Lakin [14] demonstrate
that the nonlinear vortex motion is confined to a region of depthO.1/ located a finite
distance from the bounding surface. Thus, following the formulation in [14], we
suppose that there exists a vortex of wavelengthk, confined to a region of depthO.1/,
some distancey = y1.x/ away from the plate. The vortex activity is confined to a
region betweeny1.x/ andy2.x/, with passive viscous transition regions centred ony1

andy2 of thicknessk−2=3 which are required to smooth the decay of the vortices (see
[14] for full details). A consequence of these passive viscous layers is that all the
basic flow quantities̄u, v̄, q̄, T̄ (and their first derivatives) are continuous aty1.x/ and
y2.x/. In the following analysis it is assumed that

Gr = Gr0k4 + · · · (14)
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andS= Gr=Reis anO.1/ quantity.
We have already shown in the linear analysis of Section 3 that there are significant

differences in the stability characteristicsand disturbance structure of flows in whichS
is allowed to formally approach zero and flows in whichS is non-zero. We anticipate
similar differences in the nonlinear analysis by considering the two cases separately.

4.1. No buoyancy coupling Consider the case when the effects of buoyancy
coupling are negligible, that is, whenS → 0. We follow the methodology of [14] by
first expanding the G¨ortler number as

G = k4G0 + · · · : (15)

The basic flow expands as

.ū; v̄; p̄; �̄/ = .ū0; v̄0; p̄0; �̄0/+ k−2=3.ū1; v̄1; p̄1; �̄1/+ · · · (16)

whereas the perturbation quantities expand as

.Ũ ; Ṽ; W̃; P̃; 2̃/ = k−1
[
.U0; k2V0; kW0; k2P0;20/E + c:c

] + · · · : (17)

Here 2E = eikz andc:c denotes the complex conjugate of the preceding term. We
emphasize here that the mean flow, given by (16), is that which is induced by the small
amplitude vortex motion, represented by (17).

By substituting (15)–(17) into (2) and equating firstly the leading order mean terms
and then the leading order fundamental terms, the fully coupled vortex amplitude/mean
flow field equations can be written as

ū0x + v̄0y = 0; q̄0y = �̄0; (18a)

ū0ū0x + v̄0ū0y − ū0yy = ueuex − 1

2
H .V2

0 /
@

@y

(
ū0yV2

0

)
; (18b)

ū0�̄0x + v̄0�̄0y − 1

¦
�̄0yy = 1

2
H .V 2

0 /
@

@y

(
¦ �̄0yV2

0

)
(18c)

and

H .V2
0 /

(
�̄0y − G0� ū0ū0y

Gr0¦
+ 1

Gr0¦

)
= 0; (19)

whereH is the Heaviside function defined by

H .s/ =
{

1 if s> 0;

0 if s ≤ 0:

The boundary conditions for this system are

ū0 = v̄0 = �̄0 −T0 = 0; on y = 0; (20a)
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ū0 → ue; �̄0 → 0 as y → ∞: (20b)

Thus the problem becomes the solution of the system (18a)–(19) subject to (20). The
system of equations (18a) and (19) requires some explanation. Outside the region of
vortex activity, whereV0 ≡ 0, the system (18a) reduces to the standard boundary-layer
equations. Within the region of vortex activity the Heaviside function in (18a)–(19)
is set equal to unity; the resulting equations are a system of five partial differential
equations in five dependent variablesV0, ū0, v̄0, �̄0 and q̄0. The outer limits of the
region of vortex activity,y1.x/ andy2.x/ at whichV0 = 0, are to be determined as part
of the solution process. Aty1 andy2 we have the additional requirement thatū0, �̄0,
v̄0 andq̄0 (and their first derivatives) are continuous. It is possible to solve (18a)–(19)
using a marching procedure in the stream-wise direction; see Hall and Lakin [14]
and Denier and Hall [4] for details. We shall, however, restrict our attention to a
self-similar solution to this problem. This simplification allows us to concentrate on
the interaction between the buoyancy and centrifugal forcing at play in the problem.
We therefore focus our efforts on the Falkner-Skan profile defined in Section 3 for
which the basic flow variables are

ū0 = x1=3 f ′.�/; v̄0 = � f ′.�/− 2 f .�/

3x1=3
; �̄0 = x1=3g.�/; V0 = V.�/;

� = x−1=3�1; q̄0 = x2=3q.�/; ue = x1=3; T0 = x1=3:

(21)

Note that this similarity form was adopted by Hall [12] thus allowing for direct
comparison with his results; it also serves as a useful check on our numerical results.
Using this similarity solution (18a)–(20) become

f ′′′ + .2 f ′′ f − f ′2 + 1/=3 = −H .V 2/. f ′′V2/′=2; (22a)

q′ = g; (22b)

g′′=¦ − . f ′g − 2 f g′/=3 = −¦H .V2/.g′V2/′=2 (22c)

and

H .V 2/

(
g′ − G0�1

Gr0¦
f ′ f ′′ + 1

Gr0¦

)
= 0; (23)

with boundary conditions

f = f ′ = g − 1 = 0; on � = 0; (24a)

f ′ − 1 = g = q = 0; as � → ∞: (24b)

In addition to the boundaryconditions (24) we require the continuity of the variables
f , f ′, f ′′, g, g′ andq at � = �1; �2 whereV = 0. We solve (22a)–(24) by making
initial guesses forf ′′.0/, g′.0/ andq.0/ and integrating (22a) from � = 0 to some
value of� = �∗

1 where (23) is satisfied. Equations (22a)–(23) are then integrated
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TABLE 1. The critical values of the scaled Görtler numberG0 and critical position for Prandtl numbers
¦ = 0:5 and¦ = 1:5. Note that in the caseGr0 = 0 the energy and momentum fields decouple thus
giving results which are independent of the Prandtl number.

¦ = 0:5 ¦ = 1:5

Gr0 � G0 Gr0 � G0

0:0 1:0045 3:9252 0:0 1:0045 3:9252
1:0 0:9295 3:2680 0:25 0:9495 3:2453
2:0 0:8346 2:5393 0:50 0:8695 2:4255
3:0 0:7046 1:7631 0:75 0:7492 1:6314
4:0 0:5047 0:9653 1:00 0:4597 0:5969
4:77 0:0899 0:1046 1:08 0:0299 0:0216

from �∗
1, with initial conditions obtained from the previous region and the additional

condition thatV.�∗
1/ = 0. The integration continues until� = �∗

2 whereV is again
zero (to within a specified tolerance). Equation (22a) is integrated from� = �∗

2 to
some suitably large value of� = �∞. At this stage we will not in general satisfy the
boundary conditions at infinity and therefore Newton iteration is used to update the
initial guesses forf ′′.0/, g′.0/ andq.0/ until the far field boundary conditions are
satisfied to within some desired tolerance. All integrations were performed using a
fourth order Runge-Kutta quadrature scheme.

The results obtained from the numerical procedure described above may be found
in Figure 5 where we present plots of the upper and lower limits of the region of
vortex activity as a function of the scaled G¨ortler number for a variety of scaled
Grashof numbers. We note firstly that theGr0 = 0 curve corresponds to the case
of purely centrifugal forcing considered by Hall and Lakin [14] (note however that
[14] considered a Blasius boundary layer, and not the Falkner-Skan basic flow profile
under consideration here). For a fixed value ofGr0 there is a critical value of the
Görtler number below which the flow is linearly stable to longitudinal counter rotating
vortices. (Note that it becomes increasingly difficult to obtain convergence of our
numerical scheme as the critical G¨ortler number is approached and as such the critical
Görtler number could not be calculated.) However, it is possible to calculate the
critical Görtler number (and its critical location) using the method presented in Denier
et al. [5]. The results of this calculation are presented in Table1, for two different
Prandtl numbers¦ = 0:5 and¦ = 1:5.

From the results presented in Figure5 and Table1 we note that as the buoyancy
forcing is increased, corresponding to increasingGr0, the region of vortex activity
is extended and the critical G¨ortler number is decreased. By further increasingGr0

a level at which the critical G¨ortler number is zero can be attained; this limit is,
however, singular (in the context of our numerical scheme) since the lower limit of
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vortex activity now becomesy1.x/ ≡ 0. The flow structure in this limit (withG0

formally set equal to zero) has been described by Hall [12] and will be considered
further in Section 4.2 below.

In Figure6 we present plots of the vortex induced stream-wise velocityf ′ and the
vortex amplitudeV0 for the case ofG0 = 4:0 and a variety of values ofGr0. The effect
of increasingGr0 is readily seen. The region of vortex activity expands and the vortex
amplitude is increased. In addition the vortex induced mean flow moves further from
that found in the unperturbed mean flow and ultimately develops points of inflexion.
The flow will then be susceptible to secondary instabilities (see references [13] and
[16] for details).

4.2. The case when the buoyancy parameterS is non-zero WhenS is non-zero
the linear analysis of Section 3 demonstrated that the effect of curvature is felt first
in the basic flow; this is also the case when the instabilities are strongly nonlinear.
The situation whenS is non-zero is similar to the findings of Hall [12] where it was
shown that small wavelength vortices feel the locally destabilising effectof the vertical
temperature gradient. This gradient reaches a maximum at the plate and hence it is in
this region that the instability is initiated. Thus we assume that the vortex is situated
close to the plate and allowy1.x/ → 0. The flow is first modified by curvature effects
when the G¨ortler number isO.1/. The basic flow variables expand as before and the
equations for the flow field are

ū0x + v̄0y = 0; (25a)

q̄0y = �̄0; (25b)

ū0ū0x + v̄0ū0y − ū0yy = ueuex − Sq̄0x + S

2
G�̄09 − H .V2

0 /

2

@

@y

(
ū0yV2

0

)
; (25c)

ū0�̄0x + v̄0�̄0y − 1

¦
�̄0yy = H .V2

0 /

2

@

@y

(
¦ �̄0y V2

0

)
(25d)

and

H .V 2
0 /

(
�̄0y + 1

Gr0¦

)
= 0; (26)

where the boundary conditions are given by (20) with the minor modification that the
region of vortex activity extends fromy = 0 to y = y2.x/. In this case the value of
the vortex amplitudeV0.x;0/ at the wall is an unknown and must be determined as
part of the solution process. Because of the non-vanishing of the vortex amplitude at
the boundary a viscous wall layer is required, situated aty = 0, in which the total
flow adjusts so as to satisfy the full no-slip boundary conditions; this layer is passive
and we omit a description of it here.

We again use the Falkner-Skan similarity solution to describe the basic flow vari-
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FIGURE5. The region of existence of the vortex as a function of curvature atGr0 = 0:0;1:0; 2:0;3:0; 4:0
for ¦ = 0:5.

(a) (b)

FIGURE 6. An eigenfunction plot for (a)f ′.�/, (b) V.�/ for ¦ = 0:5, G0 = 4:0 andGr0 = 0;1; 2; 3; 4
with �1 = 1.
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ables, see (21), with G9 = G1x−2=3. Equations (25a) and (26) then become

f ′′′ + 1

3
.2 f ′′ f − f ′2 + 1/ = 2

3
Sq− S

�

3
q′ + S

G1

2
g − H .V2/

2
. f ′′V2/′; (27a)

q′ = g; (27b)

1

¦
g′′ − 1

3
. f ′g − 2 f g′/ = −¦

2
H .V2/.g′V2/′ (27c)

and

H .V2/

(
g′ + 1

Gr0¦

)
= 0; (28)

with boundary conditions

f = f ′ = g − 1 = 0; on � = 0;

f ′ − 1 = g = q = 0; as � → ∞ (29)

and the requirement thatf; f ′; f ′′; g; g′ andq are continuous at� = �2 whereV = 0.
The numerical solution of the above equations follows a similar procedure to that

outlined for the solution of (22a) and (23). We now make initial guesses forf ′′.0/,
g′.0/, q.0/ and V.0/ and integrate (27a) and (28) from � = 0 to � = �∗

2, where
V.�∗

2/ = 0 (to within some specified tolerance). Equation (27a) is then integrated
from � = �∗

2 to � = �∞, with initial conditions obtained from the requirement
of continuity of the dependent variables at the edge of the vortex region. Newton
iteration is then used to update the unknowns at the wall until the far-field boundary
conditions are satisfied.

In Figure7 we present a plot of the extent of the region of vortex activity and the
vortex induced skin-friction as a function of the curvature parameter for a variety of
values ofS. For a given value ofG1 > 0 (for the precise meaning ofG1 see the
earlier discussion in Section 3) both the extent of the region of vortex activity and the
vortex strength, as evidenced by the skin friction, are increased asS increases. Such
a simple conclusion cannot be drawn ifG1 < 0; indeed forG1 ≤ −2 the converse
holds. Furthermore, the skin friction induced by the vortex is, for a particular value
of S, decreased over that found in the absence of the vortex.

In Figure8 we again present a plot of the extent of the region of vortex activity,
now as a function ofGr0, for a variety of values ofG1. The results in this figure
demonstrate that the stabilizing effect of the retarding buoyancy/curvature induced
acceleration, for whichG1 < 0, can be overcome by increasing the level of buoyancy
through heating the fluid (that is, increasingGr0).

Finally in Figure9 we present a plot of the stream-wise velocity and the temper-
ature for the caseS = 1 for a variety of values ofG1. Comparison with Figure 2
(the unperturbed boundary layer flow) clearly demonstrates that the nonlinear vortex
structure slightly increases the value of the maximum of the stream-wise velocity. The
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(a) (b)

FIGURE 7. (a) The range of existence of the vortex, (b)f ′′.0/ (skin friction), as functions of the scaled
Görtler number with¦ = 1, Gr0 = 2 andS = 0:5; 1; 2. The dashed curve in (b) is the skin friction for
the basic boundary layer flow, in the absence of the vortex, for the caseS = 1.

FIGURE 8. The range of existence of the vortex as a function of scaled Grashof number with¦ = 1,
G1 = 8; 4; 0;−4 andS = 1.
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(a) (b)

FIGURE9. An eigenfunction plot for (a)f ′.�/ versus�, (b) g.�/ versus� for G1 = −2; 0; 2; 4; 6;8 with
S = 1 and¦ = 1.

nonlinear vortex thus acts to enhance the accelerating effect of the thermal buoyancy
within the flow.

5. Conclusions

In this paper we have considered the instability of buoyancy driven boundary layers
to linear and nonlinear vortex disturbances in the naturally occurring limit of large
Grashof number. Attention has focused on the question of how centrifugal forces,
present when the heated surface is curved, serve to modify the stability properties of
the flow. It has been shown that both the linear and nonlinear stability characteristics
are dependent on whether the buoyancy parameterS = Gr=Recan be considered
negligible or not.

In Section 3 it was shown in the case of linear inviscid disturbances, if we assumeS
to be negligible, then the effectsof curvature first become significant when the Grashof
number and G¨ortler number are of the same size. In this situation it was found that
the introduction of a positive curvature across a plate with a positive temperature
gradient increases the growth-rates of already unstable modes. If the plate is curved
in a convex manner the flow was found to be unstable with the growth-rates of
the disturbances decreasing with increasing negative G¨ortler number. However, no
unstable modes were found for stably stratified flows (corresponding toGr < 0). If
we consider the buoyancy parameterSto be non-negligible, it is shown that the effects
of curvature are felt in the basic flow when the local slope of the body, and hence
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the local Görtler number, is an order one quantity. The effect of curvature is felt,
not through a centrifugal acceleration term in the disturbance equations but instead
through a buoyancy/curvature induced acceleration in the underlying basic flow. The
fastest growing modes are modified through the introduction of the competing sources
of instability, namely buoyancy and stream-wise curvature. The growth-rates of
these, the dominant mode of disturbance, increase with increasing G¨ortler number
and decrease as the level of convex curvature increases. For a given level of buoyancy,
parametrised byS, all modes were found to be stabilised at sufficiently large negative
Görtler numbers.

The nonlinear development of short-wavelength vortices was considered in Sec-
tion 4. In the combined limit of large Grashof and G¨ortler numbers the effect of
buoyancy is to enhance the nonlinear vortex motion, and as such, allow steady, span-
wise periodic, vortices to persist into parameter r´egimes where the curvature induced
centrifugal acceleration of the flow is not sufficient to support such motions. Further-
more, in the case when buoyancy coupling is significant, that is, whenS 6= 0, the
effect of buoyancy can overcome the stabilizing influence of convex curvature. The
nonlinear vortex state can also act to accelerate the boundary layer thus increasing the
maximum value of the stream-wise velocity.

Recently, a novel wave/mean flow interaction theory (not unlike that encountered in
the present work) has been presented by Denier and Mureithi [6] and Denier and Stott
[7] for strongly buoyant boundary-layer flows whose stream-wise velocity component
attains a maximum. In such a theory the nonlinear wave travels at a speed equal to
the maximum of the unperturbed, stream-wise velocity, has a small wavelength in the
stream-wise direction and induces a mean flow correction of a size comparable to the
wave amplitude. The fact that such a maximum velocity persists, and is enhanced, in
the presence of the nonlinear vortex state suggests that the mechanism by which the
flow can support the nonlinear travelling waves of [6] and [7] will be operable. The
possibility of interactions between the short wavelength longitudinal vortices and short
wavelength travelling waves then arises. Also as noted earlier the nonlinear vortex
states described in Section4 are susceptible to secondary instabilities, in this case in
the form of Rayleigh waves. These are a manifestation of thevaricoseandsinuous
time dependent motions that are observed experimentally in G¨ortler vortex flows.
How these waves interact with the purely buoyancy driven short waves described in
Denier and Mureithi [6] presents an interesting and challenging problem. We hope to
be able to report on the solution of this problem in the near future.
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