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Abstract

Carlson has shown that if the predicted price in the linear cobweb model is taken as the
average of all previous actual prices, then stability results independently of parameter values
provided only that the demand–curve gradient is less than that of the supply curve. This
result has subsequently been generalised by Manning and by Holmes and Manning. We
investigate the robustness of their results.

1. Introduction

It is now over half a century since the publication of Ezekiel’s seminal article [5]
on the cobweb model and a rich literature has explored some of its ramifications.
Ezekiel drew attention to the fact that whether stability or instability arises in the
naı̈ve predictive model is dependent on the values of its parameters. The sequence
of successive predicted prices in a cobweb model can be regarded as values in an
iterated-function system, which is a type of dynamical system. It is therefore not
entirely surprising that Jensen and Urban [9] were able to find a broad spectrum of
complex behaviour for cobweb models, including stable, periodic orbits of arbitrary
order and chaos. See also Artstein [1]. Chiarella [4] has used a nonlinear supply
curve with exactly one inflection point to make plausible that chaotic behaviour may
result in such models. Finkenst¨adt and Kuhbier [6] have considered the question of
chaotic dynamics with respect to actual agricultural markets. This is the context in
which the cobweb model can perhaps be expected to be at its best as a descriptor of
actual behaviour, since as noted by Bull [2] there are often substantial, irreversible
commitments to future sales, inventories which are difficult or costly to hold and the
product is sold on an auction market.
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As remarked by Holmes and Manning [8], economic systems include an additional
feature not expected in physical and biological systems, namely, they involve rational
or optimizing individuals who learn from their experience. Nerlove [12] allowed for
memory in the linear cobweb model. Letp̂n denote the predicted andpn the actual
price in time periodn. Then his adaptive-expectation assumption can be written

p̂n+1 = .1 − þ/ p̂n + þpn .0 < þ ≤ 1/ (1.1)

and can be interpreted as saying that producers revise their previous expectation of
price in each period in proportion to the difference between actual price and the
previous expectation. This reduces to the na¨ıve model in the caseþ = 1. Nerlove
found that this model extended the domain of parameter values for which stability
arises. A discussion of rational learning with memory has been given by Muth [11].
See Friedman [7] for a further discussion.

In 1968 Carlson [3] made the dramatic discovery that if the predicted price in the
original linear cobweb model is taken as the average of all previous actual prices, then
stability results regardless of parameter values provided only that the demand-curve
gradient be less than that of the supply curve. This result has been generalised by
Manning [10] to the case of continuous and strictly monotone supply and demand
curves intersecting at an equilibrium pricepe. In the case of primary economic
interest, that of an increasing supply curve and a decreasing demand curve, a further
assumption is involved, namely, that there is a maximum priceM , at which demand
is zero. Holmes and Manning [8] considered the replacement of this assumption with
a boundedness condition involving the gradients of the supply and demand functions
for the case of differentiable curves and have examined the behaviour of trajectories
in the approach to equilibrium.

It is natural to put the question of the robustness of the basic Carlson-Manning
result. In the case of a linear cobweb, Carlson investigated what happens when
a uniform weighting over past actual prices is replaced by a geometric weighting
ascribing less emphasis on recent prices, that is,

p̂n+1 =
n∑

t=0

r t pt

/ n∑
t=0

r t .0 < r < 1/:

He found that, apart from the exceptional case in which the market hits equilibrium
in a finite number of steps, the market will always converge but not to the equilibrium
price pe. He stated that the result arises because the particular expectations hypothesis
gives insufficient weight to recent errors in forecasting. This result contrasts with what
happens with Nerlove’s adaptive-expectation assumption, which can be expressed as

p̂n+1 = þ

n−1∑
t=0

pn−t .1 − þ/t + .1 − þ/n p̂1
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and which gives heaviest weighting to the most recent prices. As we noted, stability
arises with this model only under additional assumptions on the parameter values. At
first sight, the stability of the Carlson-Manning result thus appears delicately poised
between instabilities associated with too much or too little weighting of recent prices.

For comparison with (1.1), the Carlson predictive model with uniform weighting
can be written as

p̂n+1 = 1

n
pn +

(
1 − 1

n

)
p̂n:

In this article we investigate the question of when stability occurs invariably for all
parameter values under a general weighting schema

p̂n+1 = þn pn + .1 − þn/ p̂n .0 < þn < 1/: (1.2)

With the empty product interpreted as unity, this may be expressed alternatively as

p̂n+1 =
n−1∑
t=0

þn−t pn−t

t−1∏
m=0

.1 − þn−m/+ p̂1

n∏
m=1

.1 − þm/;

that is, a general moving-average form. It turns out that invariable stability is not
an isolated anomaly associated with uniform weighting of past prices but arises for a
broad spectrum of models of the form (1.2). Roughly speaking, we shall find that the
key factors for stability areþn → 0 and

∑
þn = ∞, which are two of the most salient

properties ofþn = 1=n. This is somewhat reassuring, as in practice a precisely even
weighting would be impossible to achieve, if only because of rounding errors and the
fact that the currency is a discrete rather than a continuous entity. Such fluctations,
with þn regarded as a perturbation of 1=n, in any given trajectory of a market will not
disturb invariable stability provided that they are not large enough to affect the two
properties noted above. A trajectory may be regarded as a sample path of a stochastic
process and the perturbations as stochastic noise. Although couched in an entirely
deterministic framework, our analysis may thus be regarded as a stochastic analysis
taken at sample-path level.

Although we are interested primarily inwhenconvergence of.pn/ and . p̂n/ to
pe does and does not occur, our discussion uncovers a certain amount of additional
information on the behaviour of these sequences. Basic ingredients in our argument
are the equivalenceŝpn > pe if and only if pn < pe and p̂n < pe if and only if
pn > pe, which are well known in the literature and are direct consequences of the
monotonicity of the supply and demand curves.

First we establish the following simple result.
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THEOREM 1.1. Suppose the supply curve is strictly increasing and the demand
curve strictly decreasing, that they are continuous, meeting at a pricepe, and that
demand is zero at some finite priceM . Suppose further that the predicted price is
determined by(1.2). Then a sufficient condition forpn → pe and p̂n → pe for all
parameter values is thatþn → 0 and

∑
þn = ∞.

The proof devolves upon the three possible cases listed below.

(a) p̂n = pe for some finite valuem of n. In this casepn = pe and p̂n = pe for all
n ≥ m and there is nothing to prove.
(b) There are arbitrarily large values ofn with p̂n, p̂n+1 separated bype.
(c) p̂n is on the same side ofpe for all sufficiently large values ofn.

In the following section we establish case (b) of the theorem. Section3 provides a
canonical representation which is convenient for analysis and which will also be used
elsewhere. This leads to establishing part (c) of Theorem1.1in Section4. In Section5
we generalise Theorem1.1 to Theorem5.1 and make some further deductions. We
conclude in Section6 with a partial converse to Theorem5.1.

2. Proof of Theorem1.1 in case (b)

PROOF. Sinceþn → 0, then for anyž > 0 we may chooseN sufficiently large that
n ≥ N entailsþn < ž andþnM < pež. Fix ž and chooseN correspondingly.

Supposen ≥ N and p̂n > pe. Then pn < pe < p̂n so from (1.2) used twice we
have

p̂n+1 < .1 − þn/ p̂n + þn p̂n = p̂n

and

p̂n+1 > .1 − þn/ p̂n > .1 − ž/pe:

Similarly if n ≥ N and p̂n < pe then

p̂n+1 < .1 − þn/p
e + žM < .1 + ž/pe

and

p̂n+1 > .1 − þn/ p̂n + þn p̂n = p̂n:

On taking these inequalities together, we have that

p̂n > pe implies p̂n+1 ∈ ..1 − ž/pe; p̂n/ (2.1)

and

p̂n < pe implies p̂n+1 ∈ . p̂n; .1 + ž/pe/: (2.2)
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As there are values ofn arbitrarily large for whichp̂n, p̂n+1 are separated bype, there
must as a consequence of (2.1) and (2.2) be an integerm such that

p̂n ∈ ..1 − ž/pe; .1 + ž/pe/

for all n ≥ m. Sincež > 0 is arbitrary, we therefore havêpn → pe and hence also
pn → pe as desired.

3. Canonical form

For the remainder of the paper it is convenient to employ a canonical form of (1.2)
not involving pn explicitly. Suppose the demandDn at timen is given byDn = f .pn/

and the supplySn by Sn = g. p̂n/. By market clearing,f .pn/ = g. p̂n/. The function
h = f −1 ◦ g is strictly decreasing as a consequence of the properties off andg, and
pn can be expressed as a function ofp̂n by

pn = h. p̂n/:

The definition ofp̂n+1 can be written

p̂n+1 = .1 − þn/ p̂n + þnh. p̂n/:

Setqn ≡ p̂n − pe, so

qn+1 = .1 − þn/qn + þn�.qn/; (3.1)

where�.q/ ≡ h.q + pe/ − pe. The function� inherits the strictly decreasing
property ofh. Further, since the supply and demand curves intersect at pricepe, we
haveh.pe/ = pe and so

�.q/



< 0 for q > 0;

= 0 for q = 0;

> 0 for q < 0:

We have from this result and (3.1) that

qn+1

{
< .1 − þn/qn for qn > 0;

> .1 − þn/qn for qn < 0:

This gives in particular that whenqn andqn+1 are of the same sign

|qn+1| < .1 − þn/|qn|: (3.2)
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4. Proof of Theorem1.1for case (c)

PROOF. Sinceqn andqn+1 have the same sign for alln sufficiently large, for all
n ≥ N, say, (3.2) gives

|qn+1| < .1 − þn/|qn| for n ≥ N

and so

|qn+1| < |qN|
n∏

m=N

.1 − þm/ (4.1)

for n ≥ N. By a result of elementary analysis, the product on the right-hand side
tends to zero withn → ∞ if and only if

∑
þn = ∞. Hence

∑
þn = ∞ suffices to

give qn → 0, that is,p̂n → pe and hence alsopn → pe as required.

In the proof for case (c) we found that for sufficiently largen we have either
p̂n > p̂n+1 > pe or p̂n < p̂n+1 < pe. In either event. p̂n/ is therefore an eventually
monotone and bounded sequence and so is convergent. However it is not immediate
that the limit must bepe. The thrust of our proof is establishing that the conditions on
.þn/ require the limit to actually bepe. This point is not addressed by Manning [10]
and to that extent his proof is incomplete. Theorem1.1 subsumes his situation with
þn = 1=n, since 1=n → 0 and

∑
1=n = ∞.

5. Further generalisations

The assumption concerning the existence of an upper limiting priceM can be
replaced by one imposing suitable restrictions on the growth of�. We do not need a
condition as strong as the differentiability of�. An appropriate condition is that for
all q for which� is defined,� satisfies a Lipschitz condition

|�.q/| < C|q|; for C some finite constant: (5.1)

This is a global condition on growth. When� is differentiable it may even possess
gradient−∞ at some isolated points (other than zero) without this extreme local
behaviour violating the global constraint.

THEOREM 5.1. Suppose the conditions of Theorem1.1hold except that the require-
ment that demand vanishes at some finite priceM is replaced by the assumption that
� satisfies a Lipschitz condition(5.1) for all sufficiently largen. Then the conclusions
of Theorem1.1still apply. Further, the convergence is eventually monotone.



[7] Memory, market stability and the nonlinear cobweb theorem 553

PROOF. The existence ofM is invoked in the proof of Theorem1.1 only in case
(b). Now under (5.1), qn > 0 implies by (3.1) that

qn+1 > [1− þn.1 + C/]qn > 0 for all n sufficiently large;

and similarlyqn < 0 implies that

qn+1 < [1 − þn.1 + C/]qn < 0 for all n sufficiently large:

Thus.qn/ is eventually of fixed sign and then|qn+1| < |qn|. The former conclusion
implies that case (b) does not arise, giving the desired result.

As noted, while the conditionþn → 0 is used to show that case (b) does not
arise, this condition is not used further in the treatment of case (c). In the context
of either Theorem1.1 or Theorem5.1, suppose we know thatþn 6→ 0 but case (b)
does not arise. Then sinceþn 6→ 0 implies

∑
þn = ∞, we have automatically that

. p̂n/ and.pn/ must converge tope for all parameter values. Such possibilities are of
interest. Holmes and Manning [8] comment, with examples, on the extreme slowness
with which convergence tope may occur. The reason for this, at least in case (c), is
apparent from (4.1). Forþn = 1=n, (4.1) gives

|qn+1| < |qN |N=n;

so that| p̂n − pe| → 0 like 1=n, which is very slow. Ifþn were bounded away from
zero, then the convergence would be exponentially fast.

The Nerlove adaptive-expectation assumption hasþn ≡ þ 6→ 0. If case (b) did
not arise we would have convergence of.pn/ to pe for all parameter values, which is
known from the linear cobweb model not to be the case. Hence it is an easy corollary
from that fact alonethat in general case (b) must arise for some parameter values, that
is, there can be continued oscillation aboutpe in the Nerlove model aspn → pe.

In connection with rates of convergence to stability, we remark that in general (4.1)
indicates that, at least when case (c) applies, convergence tope may be hastened
by replacingþn = 1=n by something that converges to zero more slowly, such as
þn = n−Þ for 0 < Þ < 1.

6. A converse result

If
∑
þn < ∞ (or equivalently

∏
.1 − þn/ > 0) the situation is more complicated

and the behaviour of the sequence. p̂n/ can depend on the initial estimatêp0, the
precise functional forms off andg and on the sequence.þn/ used. The following is
a partial converse to Theorem1.1.
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THEOREM 6.1. Suppose the supply and demand curves are as in Theorem5.1, with
� satisfying a Lipschitz condition(5.1). Assume the predicted prices are governed by
(1.2) and thatp̂1 6= pe. If

.C + 1/þn < 1 for all n and
∑

þn < ∞; (6.1)

then it cannot happen that. p̂n/, .pn/ converge tope.

PROOF. Under the Lipschitz condition, we have with the argument of Theorem5.1
that|qn+1| > |qn|[1− .C + 1/þn] for all n, so that

|qn+1| > |q1|
n∏

m=1

[1 − .C + 1/þm]:

Since
∑
þn < ∞ we have

∑
.C + 1/þn < ∞, so that the product on the right-hand

side converges to a nonzero limit asn → ∞. As p̂1 6= pe we haveq1 6= 0. Hence
qn 6→ 0 and consequentlŷpn 6→ pe and pn 6→ pe as required.

If (5.1) holds, then
∑
þn < ∞ entails that.C + 1/þn < 1 for all n sufficiently

large. Suppose we replace (6.1) by
∑
þn < ∞. The difference made to Theorem6.1

by this weakening of (6.1) is the introduction of the possibility that the predicted price
achieves the valuepe in some finite number of steps.

Under the conditions of Theorem6.1, we have with the argument of Theorem5.1
that .qn/ is of constant sign and by (3.2) that |qn+1| < |qn|.1 − þn/. The sequence
.|qn|/ is a monotone decreasing sequence and bounded below and so is convergent.
As qn 6→ 0 and is of constant sign, we thus have that.qn/ converges to a nonzero limit.
Thus Theorem6.1 describes a situation in which.pn/ converges to a limit different
from pe. The possibility of this sort of phenomenon appears to have been unremarked
in the literature except for a footnote in Carlson [3], for which, as observed earlier,
þn 6→ 0. These considerations make it clear that one should not infer from the
convergence of a predictive schema that the limiting price ispe, at least, not without
some attention being given to the general properties of the sequence of weights
involved in the schema.
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