IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

Permutation-Based Range-Join Algorithms
on N-Dimensional Meshes

Shao Dong Chen, Hong Shen, and Rodney Topor, Member, IEEE Computer Society

Abstract—In this paper, we present four efficient parallel algorithms for computing a nonequijoin, called range-join, of two relations on
N-dimensional mesh-connected computers. Range-joins of relations R and S are an important generalization of conventional equijoins
and band-joins and are solved by permutation-based approaches in all proposed algorithms. In general, after sorting all subsets of both
relations, the proposed algorithms permute every sorted subset of relation S to each processor in turn, where it is joined with the local
subset of relation R. To permute the subsets of S efficiently, we propose two data permutation approaches, namely, the shifting
approach which permutes the data recursively from lower dimensions to higher dimensions and the Hamiltonian-cycle approach which
first constructs a Hamiltonian cycle on the mesh and then permutes the data along this cycle by repeatedly transferring data from each
processor to its successor. We apply the shifting approach to meshes with different storage capacities which results in two different join
algorithms. The Basic Shifting Join (BASHJ) algorithm can minimize the number of subsets stored temporarily at a processor, but
requires a large number of data transmissions, while the Buffering Shifting Join (BUSHJ) algorithm can achieve a high parallelism and
minimize the number of data transmissions, but requires a large number of subsets stored at each processor. For constructing a
Hamiltonian cycle on a mesh, we propose two different methods which also result in two different join algorithms. The Recursive
Hamiltonian-Cycle Join (REHCJ) algorithm uses a single processor to construct a Hamiltonian cycle recursively, while the Parallel
Hamiltonian-Cycle Join (PAHCJ) algorithm uses all processors to construct a Hamiltonian cycle in parallel. We analyze and compare
these algorithms. The results shows that both Hamiltonian cycle algorithms require less storage and local join operations than the

413

shifting algorithms, but more data movement steps.

Index Terms—Analysis of algorithms, data permutation, N-dimensional meshes, relational databases, parallel processing,

performance, range-join operations.

1 INTRODUCTION

WITH the increases in database size and query complex-
ity, highly parallel database systems supported by
general-purpose parallel architectures have become the
trend of future database systems [6]. As an important and
time-consuming operation in relational database systems,
join has attracted a significant amount of research effort for
designing efficient parallel algorithms [3], [10], [12]. In this
paper, we address the problem of range-join that gener-
alizes the conventional equijoin and band-join operations
[7] and develop efficient parallel range-join algorithms on
N-dimensional mesh-connected computers.

For two given constants e; and e; with 0 < e; < ey, we
define the range-join of two relations R (inner relation) and
S (outer relation) on attribute A from R and B from S,
denoted by R« S, to be the relation 7' obtained by
concatenating all tuples r in R and s in S such that e; <
|r.A — s.B| < ey [13]. Range-join is an important operation
in relational database systems and appears frequently in

e S.D. Chen is with Hutchison Telecommunications Limited, Hunghom,
Kowloon, Hong Kong. E-mail: stephen.chen@post.com.

e H. Shen is with the Graduate School of Information Science, Japan
Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa
923-1292, Japan. E-mail: shen@jaist.ac.jp.

e R. Topor is with the School of Computing and Information Technology,
Griffith University, Nathan, Queensland 4111, Australia.

E-mail: rwt@cit.gu.edu.au.

Manuscript received 14 Sept. 2000; revised 1 June 2001; accepted 14 Sept.
2001.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 112868.

practice, especially in the queries requiring joins over
continuous real-world domains such as time and distance.
For example, a query of “finding all pairs of customers of
two stores whose account balance differs from 100 to
1,000 dollars” for consumption pattern analysis across
different stores requires a range-join. In an online stock
trading system, all buy and sell orders are stored in two
separate tables. A query of “finding all pairs of buy and
sell orders for the same share whose prices differ between
one to three dollars” is frequently needed in an online
stock trading system. Clearly this query also requires
performing a range-join. Moreover, as a generalization of
band-join operations, the range-join algorithms can be
directly used to compute band-joins as well as equijoins.

It has been shown that the hash-based join algorithms are
superior to other algorithms for equi-join operations [12].
However, as the join condition of the range-joins involves
range comparisons rather than equalities, hash-based join
algorithms are unsuitable for range-join operations [7]
because the conventional hash functions (e.g., modulo-
division, folding, radix-transformation, and midsquare
methods) will inherently destroy the ordering property of
tuples. In contrast, permutation-based join algorithms,
which are an efficient implementation of parallel nested-
loops join algorithms, have been shown to be effective for
computing range-joins on hypercube computers [13] and
torus computers [4]. Moreover, unlike most hash-based join
algorithms which are vulnerable to data skew and will
result in an unacceptable performance for extremely

1045-9219/02/$17.00 © 2002 IEEE

414 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

skewed data, the permutation-based join algorithms are
immune to any data skew.

In general, with the assumption that each relation is
distributed evenly across all processors in the mesh
initially, permutation-based algorithms sort the two local
subsets of both relations in each processor, then permute
every subset of S to every processor in turn, where it is
joined with the local subset of R at that processor. The local
range-join operation in each processor for two sorted
subsets is implemented by a sequential sort-merge algo-
rithm presented in [5].

While efficient algorithms for range-join have been
developed on hypercube, toruses, and 2-dimensional mesh
[15], [13], [4], [5], they are unknown on N-dimensional meshes
due to the topological sophistication and architectural
challenges of N-dimensional meshes. More complex multi-
relation range-join based operations such as mutual range-
join and chain range-join have also been implemented
efficiently on hypercube [16], [14]. Because of the architec-
tural incompatibility between N-dimensional meshes of
dimension (side) size greater than 2 and hypercube (binary
cube), 2-dimensional mesh, or N-dimensional toruses, all
previous results for range-join on hypercube, 2-dimensional
mesh, and toruses are neither applicable nor extendible
directly to N-dimensional meshes.

In this paper, we develop a set of efficient parallel
algorithms for range-join on N-dimensional meshes using
permutation-based approaches. We present two new
approaches for efficiently permuting all subsets of S in
N-dimensional meshes which are the key techniques to be
employed in our range-join algorithms. Our first approach,
namely shifting, permutes the data recursively from lower
dimensions to higher dimensions; while the second
approach, namely Hamiltonian-cycle, first constructs a
Hamiltonian cycle on the mesh and then permutes the data
along this Hamiltonian cycle by repeatedly transferring
data from each processor to its successor.

The shifting approach can be applied to meshes with
different storage capacities which results in two different
data permutation join algorithms. The Basic Shifting Join
(BASH]) algorithm can minimize the number of buffered
subsets which are needed to be stored temporarily at a
processor during the permutation, but it requires a large
number of data transmissions, local join operations, and
disk I/O operations due to the low parallelism. Conversely,
the Buffering Shifting Join (BUSH]J) algorithm can achieve a
high parallelism and minimize the number of data
transmissions, but it needs to store a large number of
buffered subsets in each processor.

By using two different methods to construct a Hamilto-
nian cycle on a mesh, the Hamiltonian-cycle approach also
results in two different join algorithms. The Recursive
Hamiltonian-Cycle Join (REHC]) algorithm uses a single
processor to construct a Hamiltonian cycle in a recursive
fashion, and then broadcasts the resulting Hamiltonian
cycle to all other processors so that they know their
successors in the cycle; while the Parallel Hamiltonian-Cycle
Join (PAHC]) algorithm uses all processors to construct a
Hamiltonian cycle in parallel so that all processors can

know their successors simultaneously without the broad-
cast required in the REHC].

We present an analytical model and use this model to
analyze these four algorithms. The result shows that both
data permutation approaches outperform each other for
different configurations, mainly depending on the costs of
local join operations and data transmissions. In general, the
Hamiltonian-cycle algorithms require fewer local join
operations and less storage than the shifting algorithms,
but need more data transmissions than BUSH]. For the
shifting approach, BUSH] always outperforms BASH]
except that it has higher storage requirements. For the
Hamiltonian-cycle approach, the PAHC] is clearly more
efficient than REHCJ due to the parallel construction of
Hamiltonian cycles. We include REHC] in this paper
because the PAHCJ is based on the REHC]J, and under-
standing REHC] can help to understand the PAHC] which
is more complicated.

The remainder of this paper is organized as follows: In
Section 2, we study N-D meshes and discuss their proper-
ties, and present the permutation-based join algorithms in
general. In Sections 4, 5, 6, and 7, we present and analyze
four mesh join algorithms—BASH], BUSHJ, REHC]J, and
PAHC], respectively. Finally, we conclude the paper by
comparing these algorithms in Section 9.

2 N-DIMENSIONAL MESHES

Meshes are an important class of parallel interconnection
networks which have been well studied in the literature
[11]. In parallel database design, mesh-connected parallel
computers are characterized by the shared-nothing archi-
tecture [17]. There are several commercially available mesh-
connected computers, such as the recent Intel Paragon XP/S
[8] whose processors are connected by meshes instead of
hypercubes which were used in the earlier Intel iPSC/860.

A large number of parallel algorithms have been
designed for meshes, including sorting, routing, and
searching. However, very little research has been done on
the design of join algorithms on meshes. Simple nested-
loops and sort-merge algorithms on meshes are briefly
mentioned in [9] when a high-level comparison between
meshes and hypercubes is presented, but the author of [9]
does not present these two algorithms in detail and does
not demonstrate how to implement them. In this paper,
we first study the N-dimensional meshes in detail, then
present and analyze four new data permutation join
algorithms for them.

An N-dimensional mesh (or “N-D mesh” for simplicity) is
an interconnection network which connects p = Dy X --- X
Dy processors. D; (j=1,...,N) is called the degree in
dimension j, and it may be different for different dimen-
sions. Each processor in the computer has its own memory
and disk, and does not share any memory or disk with
others. The index of a processor corresponds to an N-vector
(t1,...,in), where i;=1,...,D; and j=1,...,N. Two
processors are linked by a bidirectional communication
link if their indices differ by one in precisely one coordinate.
A 4 x4 x4 mesh is shown in Fig. 1, where the axes are
shown in the right-top corner. Note that, unlike toruses,
there are no wraparound links at the boundary processors

CHEN ET AL.: PERMUTATION-BASED RANGE-JOIN ALGORITHMS ON N-DIMENSIONAL MESHES 415

(LLD (1.1.2)

(1,1,3)

(114

(1.2, (1.2)2)

(1,2 (1,2

2,1,1)

(2.2,

(3.1,1)

(3.2,

(2,1.9) (2.13) 2,14
22 (2.2 (221
2,314
RAm
(3,1,2) (3,1,3) (3,14
(32 (3.213 (3,20
3,38) 3314
3,43 B4

(4.1.2)

(4.2.2)

(4.3.2

(4,42

Fig. 1. A 4 x 4 x 4 mesh.

in meshes. This constraint makes it more difficult and
challenging to design algorithms on meshes than on
toruses.

In this paper, we assume that the mesh-connected
computers operate the SPMD (Single Program, Multiple
Data) model [1] as many current supercomputers do, in
which all processors at each step execute different instruc-
tions of the same program (which contains many instruc-
tions) at the same time, each on a different datum. It is also
possible that only a subset of processors execute a program
while the others are idle. Each processor can transfer data
from its memory to one of its neighbor’s memory along the
communication link between them. Parallel data transmis-
sions can only be carried out in the same dimension and in
the same direction. Other data transmissions in different
dimensions or in different directions are delayed until the
current transmissions are completed and the system (or the
algorithms) schedules them to start.

An N-D mesh has a simple recursive structure: It can be
constructed from Dy different (N —1)-D submeshes by
simply connecting each processor in the jth (N —1)-D
submesh to the corresponding processor in the (j+ 1)th
submesh with an edge in dimension N, such that their
indices differ by one in the Nth dimension, where a jth
(N —1)-D submesh is a (N —1)-D mesh in which all
processors’ Nth coordinate is j, and 1 < j < Dy.

We denote an N-D mesh by M and one of its
k-D submeshes by M which has (D; x --- x Dj) proces-
sors, where 0 < k < N. For any M;, there is a fixed list L =
[ik+1,---,in] Which determines the indices of M) in the
higher dimensions k+1 to N, where 1<4; < D; for
k+1<j<N. We call L the determinant of M. The
determinant of Mj has N — k elements. When L is empty,
My is M, and when L has N elements,)M contains only one
processor. For a k-D submesh M}, we further denote its jth
(k — 1)-D-D submesh by M;]_,, where 1 < j < Dj.

Example 1. The 3-D mesh in Fig. 1 can be denoted by M3 or
simply by M. It has 4 x 4 x 4 = 64 processors and four 2-
D submeshes M,;, M2, M3, and M,, each being a grid.
The determinant of M is empty, denoted by [], while the
determinant of each Mj is [i] (i = 1,...,4).

Each 2-D submesh M, contains four 1-D submeshes
]\/[11, Mlz,]Wf, and Mf, each being a linear array. The
determinant of its jth 1-D submesh is j:[i] = [j,1]
(j=1,...,4), where operation “:” means to prefix an
element [into list L. For example, the determinant of the
second 1-D submesh of the 2-D submesh Mj is [2,3].

Similarly, each 1-D submesh Mj also contains four 0-
D submeshes M}, M2, M3, and M, each being a single
processor. The determinant of its tth 0-D submesh is ¢ :
(4,1 =[t,7,1] (t =1,...,4). At this stage, the determinant
of a 0-D submesh is the same as the index of its single
processor.

3 ANALYTICAL MoODEL AND PERMUTATION-BASED
JOIN ALGORITHMS

In this section, after introducing the analytical model, we
present the the permutation-based join algorithms in
general.

We mainly adopt the analytical model used in [3] and,
hence, assume that both relations are initially distributed
evenly across all processors in the computer whose total
available memory is larger than the size of inner relation R.
Data are accessed and transferred in blocks. To simplify the
analysis, we do not consider the join-product skew [19] in
the data, and assume that the processing time of a join
operation depends only on the number of tuples processed.

When analyzing the algorithms, we consider three
major costs associated with the join operations: 1/0,
communication, and computation costs. The I/O cost is
required to read/write data from/to the disks, while the

416 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

communication cost is required to transfer data between
different processors across an interconnection network.
The computation cost is required for the operations which
are performed in the main memory. There are many
different in-memory operations and it is difficult, if not
impossible, to consider all of them. Thus, we focus on
only three main in-memory operations: comparison,
hashing, and probing operations. We do not consider
other in-memory operations in the algorithm analysis,
such as moving a tuple whose cost is insignificant and
negligible, and concatenating two tuples whose cost has
been included in the output cost since the number of
concatenation operations is proportional to the number of
resulting tuples generated. The notations used to describe
and analyze our algorithms are listed as follows:

e |R|,|S|: number of tuples in relations R and S;
e DBpg,Bs: number of blocks of relations R and S

(Br < Bs);
o R, _iyv,Si, iy the subsets of R and S in processor
Pz‘,l.A.A.iN;

e JS:join selective factor, defined by @.

e p: number of processors; e

e M: number of blocks of available memory in a
processor, (Br < M - p);

e T, time for reading/writing one block of data
from/to the disk;

e T;: time for transferring a block of data between two
neighboring processors;

e T.:time for comparing two values in memory;

The permutation-based join algorithms consists of the

following two phases:

1. Sorting Local Subsets: Every processor simulta-
neously reads its initial subset of relation S, sorts it
on the join attribute sequentially, and then applies
the same process to relation R.

2. Permute and Join: Every processor simultaneously
computes the local range-join for its two local
subsets of R and S, and then repeatedly reads the
current subset of S from a neighbor and performs a
local range-join operation on this arriving subset,
until all subsets of S have visited each processor
exactly once.

Clearly, the permutation-based algorithms compute the
whole join by computing totally p* subjoins independently,
that is,

p—1p-1

RS =JJRiaS)).

i=0 j=0

The purpose of sorting subsets in the first phase is to
make the local range-join operations more efficient. When
two operand subsets are stored, we can perform these local
range-join operations by using our sequential algorithm
which has been shown to be more efficient than other
possible algorithms for computing range-joins [5]. Thus,
locally sorting the initial subsets in each processor can
benefit all p? subsequent subjoin operations and, hence, the
redundant CPU processing required in the previous nested-
loops algorithm can be reduced significantly.

The first phase could be implemented by the following
statements:

for all processors P, _;, do in parallel

Read S;, ., from disk to memory;

Sort S;,...iy using a sequential external sorting
algorithm;

Write sorted S;,, _;, back to disk;

Read R, i, from disk to memory;

Sort R;, . i, using a sequential internal sorting
algorithm;

Read sorted S;, _;, from disk to memory

The total cost Tj,;(R, S, p) of phase 1 is

P (1)
. Brlog Br/p + Bslog Bs/p

p

For simplicity, we will use “subset(s)” to mean “the
subset(s) of relation S” hereafter when no confusion could
occur.

In the second phase, the local range-join operation on
one sorted subset of R and one sorted subset of S is realized
by a sequential sort-merge range-join algorithm [2], which
is based on the standard sort-merge join algorithm [18] for
equi-join, with additional backup to inspect previously
considered tuples: For each tuple s, it first joins every tuple
r such that 7. A +e; < s.B <r.A+ ey, and then joins every
tuple r such that 7. A —ey; < s.B<r.A—e;. The resulting
tuples are stored in the local disk of each processor as they
are produced, one block at a time. The running time of this
algorithm is denoted by T);(R/p, S/p). If another sequential
local range-join algorithm is used, T;;(R/p,S/p) is simply
replaced by that algorithm’s running time.

Thus, the remaining problem in the second phase is how
to efficiently permute the subsets of S to all processors.
Despite the simplicity of the problem, the task of exploring
efficient data permutation approaches for an N-D mesh is
not an easy task. We devote the following four sections to
complete this task, each presenting a parallel algorithm.

E?Li(Rv S:p) - T’io X

+ T(‘,

4 BASIC SHIFTING JOIN

4.1 Description

We start with a simple algorithm for permuting (and
joining) the subsets of S on an 1-D mesh—a linear array
with D; processors. This algorithm works in the way
similar to pulsing water through a pipe between its two
ends in turn, as suggested in Fig. 2. Thus, it consists of two
steps, each with D; — 1 iterations:

Forward Shift. Each processor P; (j =2,..., D) repeatedly
reads a subset from its left neighbor P;_;, and performs a
join on this newly arrived subset.

Backward Shift. Each processor P; (j=1,...,D; —1)
repeatedly reads a subset from its right neighbor Pj,,
and performs a join on this newly arrived subset.

Since every processor replaces its current subset with the
subset read from its neighbor, its current subset is S, after
forward-shift. Thus, we must be able to restore their
original subsets to perform backward-shift. To do so, every
processor makes a temporary copy of its original subset

CHEN ET AL.: PERMUTATION-BASED RANGE-JOIN ALGORITHMS ON N-DIMENSIONAL MESHES

P P, Pz Py

Si~_ Sew_ Ss._ Ss4 initial stage

Si ™5 ™g, ™

S, S g, Twang, o forward-shift

Si Si Si =,

Si _ -8 .S3 _ -S4 restore the initial subsets
§:< L83 ~ oS4 Sa

Sy L //544/ S4 S, ¢ backward-shift

Sy £ - Sa Sa Sa

Fig. 2. Permuting data in a linear array.

before forward-shift, and restores the original subset back
from this copy after forward-shift. This temporary subset is
called a buffered subset. The correctness of the algorithm is
obvious since every subset is visited and joined at each
processor exactly once.

This shifting algorithm for linear arrays can be general-
ized for higher-dimensional meshes based on their recur-
sive structure, and works in a recursive fashion: When
permuting the subsets on a k-D submesh M; with
determinant L, if £ = 0, the single processor in M}, performs
a local join operation on its current subset; if k> 0, the
processors in M, execute the following six steps:

1. All processors permute the subsets simultaneously
on all (k — 1)-D submeshes, each in dimensions from

0 to k — 1 recursively.
iy copies its current subset

2. Each processor P, _;
Si...iy to buffered subset S¥ ; temporarily, where

SF ., is stored in the local memory first until the

local memory is exhausted, then is stored in the local

disk.

3. Allprocessors perform a forward-shiftin dimension &
with Dj, — 1 iterations, where the local join operation
in the algorithm for linear arrays is replaced by a
recursive permutation in the lower dimensions
from 0 to k— 1.

4. Each processor P, ;. restores Sfl“ to be S;, . iy-

5. All processors perform a backward-shift in dimen-
sion k with Dy — 1 iterations, where the local join
operation in the algorithm for linear arrays is
replaced by a recursive permutation in the lower
dimensions from 0 to k& — 1.

6. Each processor P, _;, restores SZ"]

Thus, a subset S;
restored twice in Steps 4 and 6, one for performing

i

, o be Si,..ix-

\..in is backed up once in Step 2 and
backward-shift, and the other for permuting in the higher
dimension £+ 1. During the ith iteration of forward-shift,
every processor in each M;Z—1 (j=1i+1,...,Dy) reads the
subset of its neighbor in]| along the edge in dimension &
to replace its own one, and then permutes the (new) subset
on M,i_l in dimensions from 0 to k—1 recursively.
Similarly, during the ith iteration of backward-shift, every
processor in]M,Ll (j =1,Dy — i) reads the subset of its
neighbor in M]'] along the edge in dimension k, and then
permutes the (new) subset on M, 5}1 in dimensions from 0 to
k—1 recursively. Thus, the basic shift join (BASH])

417

algorithm for N-D meshes can be summarized as follows,

where the step indices correspond to the above:

Algorithm BASH] (k, L)
Input: The dimension number & of current submesh M},
and its determinant L (other parameters such as
R, S, Dj, e, and e, are global variables and, hence,
are not included here).
Output: A range-join of the subsets of R and S in Mj,.
begin
if £ =0 then
Processor P, i, in M) do
Seg-RJoin (R, ...iys Si,...ix+ €1, €2)
else
1: for j :=1to D, do in parallel BASH] (k—1,5: L);
2: for all processors P, ;, in M; do in parallel
Szkl iv T Sil ~~~~~ ins
3: fori:=2 to D, do {Shift forwards}
for j :=i to Dy, do in parallel
for all processors P, . ji,....iy iN M,Ll
do in parallel
Sttt vomsin = St oLyt in

BASHJ (k—1,j: L)

end for
4: for all processors P ;, in M}, do in parallel
Sil iy Sﬁ ic\';

5:fori:= D), — 1 downto 1 do {Shift backwards}
for j:=1 to i do in parallel

for all processors P, . ji.,,,..ix iN Mi_l
do in parallel
Sil‘,‘,‘j,im LN o Sil,,“,j-%—l‘im LaensiNT
BASHJ~(k—1,5: L)
end for
6: for all processors P ;, in M; do in parallel
Sivrin =S5 _ix
end if

end.
The algorithm starts execution by a call BASHJ (N, []).

Example 2. Consider a simplified example in which we
permute (and join) four subsets of S denoted by integers
1,2,3,and 4 on a 2 x 2 mesh. In dimension k, let store(k),
restore(k), fs(k), and bs(k) denote operations of storing
and restoring a subset, and one-step shifting a subset
forwards and backwards, respectively. The whole
process is illustrated in Fig. 3, where the rectangles
represent the processors and the integers inside them
represent the subsets of S. When a processor performs a
local join operation, its corresponding rectangle is gray-

colored.

Initially in Fig. 3a, processors Pi 1, P»1, P12, and P>
have subsets 1, 2, 3, and 4, respectively, in their local
memory. We issue procedure call BASHJ (2,[]) to start
the permutation. As k=2>0, two recursive calls,
BASH] (1,[1]) and BASH]J (1, [2]), are issued in Step 1
simultaneously. These two recursive calls are per-
formed individually and in parallel, one in row 1 and
the other in row 2, as illustrated in Fig. 3b, Fig. 3c,
Fig. 3d, Fig. 3e, Fig. 3f, and Fig. 3g.

418

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

BASHI (1,[i]) i=1,2

1 2 1 ‘ 2 J1(1)2(2)J1(1) 1(2) 1(1)[2(2) 2(1)‘2(2) 1(D)[2@®2) 1(1)2(2)‘
9 4 3 ‘ 4 ‘3(3) 44 ‘3(3) 3(4) 3(3) 44 ‘4(3)‘4(4) 33)|4 @) 33)|44)
a. initial b. local joins c. store (1) d. fs (1) e. restore (1) f. bs (1) g.restore (1) h. store (2)
BASHI (1,[i]) i=2 ‘
1(2@) 1(1) 22 ‘1(1) 20 1MW2@)] 10 2@ ‘1(1) 20 1(D2@ 1022
1 2 T 2 2 T 1 2 1 1 711 2 T

334@] [enley| Bh|E2] [GDEY| |GD|E2) ‘(3,1> 42 1®)2@ 132¢

p. restore (2) o. restore (1) n. bs (1) m. restore (1) 1. fs (1) k. store (1) . local joins i. fs (2)

| BASHIJ (1,[i]) i=1
3 4 303 3 4 4 | 4 3] 4]

3MA@ 34O a3 e (13 2 (13 CH (1L @] (13|es (TD12A)
334@ 3(H 14O ‘3(1) 42)) 3(DH4@)| 34| 3M4O| 3M4D| 3044
q.bs (2) r.local joins s. store (1) t. fs (1) u. restore (1) v. bs (1) w. restore (1) x. restore (2)

Fig. 3. BASHJ(2, []): Permuting S on a 2 x 2 mesh.

In Fig. 3b, when further permutation in the dimension
0 occurs, four processors P;; (i,j = 1,2) perform recur-
sive procedure calls BASHJ(0,[i,j]) and, hence, join
their current subsets simultaneously. Then, they store
their current subsets of dimension 1 to the temporary
copies which are shown in the parentheses in Fig. 3¢, and
then restore them back in Fig. 3e and Fig. 3g. In Fig. 3d
and Fig. 3f, the subsets are transferred between a pair of
processors within the same row in dimension 1, forwards
and then backwards. After each parallel data transmis-
sion, local join operations are performed in the proces-
sors which receive subsets.

When these two parallel recursive calls terminate at
Fig. 3g, we continue the algorithm in Step 2 where the
processors copy their current subsets of dimension 2, as
shown in Fig. 3h. Following this in Step 3, we shift the
subsets one-step downwards in dimension 2 as shown
in Fig. 3i, and recursively call BASHJ(1, [2]) in Fig. 3j,
Fig. 3k, Fig. 31, Fig. 3m, Fig. 3n, and Fig. 3o. Similarly
in Step 5, we shift the subsets one-step upwards in
dimension 2 as shown in Fig. 3q, and recursively call
BASH(1, [1]) in Fig. 3r, Fig. 3s, Fig. 33t, Fig. 3u, Fig. 3v,
and Fig. 3w. We also restore the subsets of dimension 2
in Steps 4 and 6, as shown in Fig. 3p and Fig. 3x. Note
that, in the two recursive calls after fs(2) and bs(2), some
processors keep two temporary copies in the parenth-
eses, the first one for dimension 2 and the second one for
dimension 1.

4.2 Analysis

It is not difficult to verify that every subset of S visits every

different k-D submesh exactly once for 0 <k < N and,

hence, the algorithm can correctly compute R ><? S.
During the permutation on a k-D submesh, since each

processor keeps one extract temporary copy of its current

subset of S for each dimension ¢ (i =1,...,k), it needs to

keep at most k + 1 subsets of S including the current one in
memory. Remember that each processor has M blocks of
memory in total, and it already uses Mpy/p blocks for the
local subset of R and needs to reserve one block for the
resulting tuples. Thus, the available free memory for the
subsets of S is M;=M — Br/p—1, and there are
max{0, My — (k+ 1)Bg/p} subsets which require three
disk I/O operations: one for storing them to disk (Step
2) and the other two for restoring them back to memory
(Steps 4 and 6). Thus, this disk I/O cost is

3T}, - max{0, M — (k+ 1)Bs/p}.

There are 2D, — 2 iterations in forward- and backward-
shift in Steps 3 and 5, each consisting of one parallel data
transmission (which requires 7;- Bs/p time) and one
recursive call. With another recursive call in Step 1, the
BASH] algorithm has totally 2D —1 recursive calls.
Hence, the running time T'(k) for algorithm BASH] on a

k-D submesh is given in the recurrence

T(k) =
{ T(k=1)% (2D~ 1)+ T x (D1 2254 T x 3 max{0.M; -85y k> 0
Ti;(R/p. S/p), k= 0.

To further simplify the analysis, we assume that
M; = Bg/p, that is, only one subset of S—the current
one—can fit in the memory. We then resolve the above
recurrence and obtain the total cost Tj,.,; of the whole

BASH] algorithm in dimension N as follows:

CHEN ET AL.: PERMUTATION-BASED RANGE-JOIN ALGORITHMS ON N-DIMENSIONAL MESHES 419

Thasnj(R, S) =T(N)

Bs ()
~nix . (H@Di - 1) + Ty(R/p, S/p)
i=1
N
x [[@Di - 1) + 37,
i=1

X%(l-ﬁ-Ni.ﬂ (2Dj—1)>.

i=1 j=i+1

(2)

Example 3. To compute the cost occurring in Example 2 in
which the BASH]J algorithm permutes S on a 2 x 2 mesh,
we apply (2), and obtain that the algorithm requires
eight parallel data transmissions, nine parallel local
join operations, and 12 disk I/O operations, as
indicated in Fig. 3.

5 BUFFERING SHIFTING JOIN

5.1 Description

From the preceding analysis, we know that the parallelism
of the previous shifting algorithm does not appear to be
very attractive. In particular, during the jth iteration of
forward-shift, all processors in the (k—1)-D submeshes
M} _,,...,M]_, areidlebecause they donotreceive any (new)
subsets from their neighbors in other (k — 1)-D submeshes
and, hence, they cannot perform any local join operation atall.
Similarly, during the jth iteration of backward-shift, all
processors in submeshes M "], ..., M are idle. Obviously,
the larger the cost each iteration requires, the longer idle
period these processors have. From the previous algorithm
description, we know that the cost for each iteration of both
forward- and backward-shifts is dominated by the cost for
the recursive call which permutes the arriving subsets on
some active (k — 1)-D submeshes. Moreover, in those active
submeshes performing the recursive calls, their processors
will also become idle during the recursive calls.

To obtain better parallelism, we propose a Buffering
Shifting Join (BUSH]J) algorithm that eliminates the recur-
sive calls inside forward- and backward-shifts by allowing
the processors to keep every arriving subset. In particular, if
k=0, processor P, ;. in M, performs a local join
operation on its subset as in BASH]J, but also stores this
subset into a sequence @, ., of subsets of S. Initially,
Qi,,..iy is empty.

If k>0, the BUSH] permutes the subsets on all
(k—1)-D submeshes recursively in dimensions from 0 to
k — 1 as the first step of BASH]J, but it allows each processor
P, . iy to store every arriving subset to Q;,, ;, during the
permutation. Hence, when this step terminates, P;, ;. has
stored all (D x -+ X Dj_1) subsets in its (k — 1)-D submesh
into Q;, .. i, whose fth element, denoted by Q;, .. ;,[t], is the
tth subset appended into. With @, i,, P, iy does not
need to make a temporary copy of current subset as in the
second step of BASH]. The BUSH] algorithm now starts a
loop with (D; X --- x Dj_1) steps. During the tth step for
1<t < Dyx--x Dy, the tth subset in @, ;, is trans-
ferred in forward- and backward-shift in turn as in the
previous shifting algorithm, but in each iteration, the
recursive call in the previous algorithm here is replaced
by a local join operation for the arriving subset and an

operation for storing this arriving subset. Thus, the
BUSH] algorithm for N-D meshes can be summarized
as the following recursive algorithm.

Algorithm BUSH]J (k, L)}
Input: The current dimension number £ of submesh M,
and its determinant L.
Output: A range-join of the subsets of R and S in Mj,.

begin
if £ = 0 then
Processor P, ;. in M} do
Seq—R]oin (le AAAAA ins Sil iy s €15 62);
Qi1 ,,,,, iy = S“”
else

1:forj:=1to D) doin parallel BUSHJ (k—1,j:L);
fort:=1to D; x---x D;_1 do
2: for all processors P;, _;, in M), do in parallel
Siroin = Qv [t
3: fori:=2to D, do {Forward-shift}
for j :=1i to D;, do in parallel
for all processors P, . ji.....
do in parallel
Sqth.“,j,iw,“wi,\v = Si,l‘,“ﬁjf1ﬂ',,+]‘,.‘.‘,7:wv}
Seq-RJoin (R;, iy, Si,..ixs €1, €2);
if £ < N then

Qirinirsein = Qiriinirsesiv Y Sitofingr i

; J
iy I M,

end for
4: for all processors P;
Sireine = Qiyin [t
5: fori:= D, — 1 downto 1 do {Backward-shift}
for j:=1 to i do in parallel
for all processors P, ji,..,,..iy N M',Ll
do in parallel

iv In M}, do in parallel

Tyeees

Sil«,~~«,]'~77kv+1~,~-~i,ev = Sil ~~~~~ JHLsikt1 5Ny

Seq-Rloin (R:lu, 57:1,.4.,7;\«7 e1, 62);
if K < N then
Qi irnsin = Qirgiigerin Y Si ik iy
end for
end for
end if
end.

As before, the algorithm starts execution by a call
BUSH] (N, [)-

As mentioned above, the purpose of storing subsets into
Qi,...ix 15 to permute them in higher dimensions. Thus,
when k= N, the processors do not need to store the
arriving subsets anymore because no more further permu-
tation will be performed and, hence, the two simple
conditions inside Steps 3 and 5 are required.

Example 4. We consider the same problem in Example 2,
and solve it by using the BUSH] algorithm now, as
illustrated in Fig. 4. We use the same notation and
representations which are used in Example 2.

As we can see, there is only one recursive call in
dimension 1 instead of three in the previous example.
When the recursive call terminates, every processor
stores all subsets which are initially stored in its row.

Then in dimension 2, the algorithm executes aloop with
two iterations to permute the subsets along the columns.

420

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

BUSHIJ ('1 (i i=1,2

1 2 2 2 2
1 2 1 ‘ 2 1M2@] 1O 2@ 1O 10| ey 1Oy 20|en| (02 e
| | d 3 4 1 4 1 4 4
3 4 3 4 33)/44) 33)44) 33)(34) 3(3) 4,3) 3(3) 4.3) 4(3) 4,3) (3.4 4.3)
a. initial b. local joins c. store (1) d. restore (1) e. fs (1) f.store (1) g. restore (1) h. bs (1) i. store (1)
t=2 t;l
'43‘212121"34121212‘
1,2) | (2,1) 1.2) 2.1 (1,2) 1 (2,1) (1,2) (2,1) (1:2) | @2,1) (1,2) | (2,1) (1,2) | (2,1) (1,2) (2,1)
4 3 7 4 3 [T 52 1] 4 3713 4 1 3 4] 1 2 13 4
3.4 (4,3){ 3.4)|(4,3) (3.4) | (4,3) (3.4) 4,3) (3.4)4.3) (3,4)(4,3) (3.4)|4,3) (3.4)|4.3)
q.bs (2) p. restore (2) o.fs (2) n. restore (2) m. bs (2) 1. restore (2) k. fs (2) j. restore (2)

Fig. 4. BUSHJ(2, []): Permuting S on a 2 x 2 mesh.

Each iteration has one forward-shift and one backward-
shift as before, but the recursive calls in the previous
example are replaced by local join operations here.

5.2 Analysis

As BASH]J, BUSH] permutes every subset of S to every
processor exactly once and, hence, it is also correct.
However, unlike BASH]J which requires each processor to
store at most (N + 1) subsets during the permutation, the
BUSH] requires each processor to store at most all subsets
which are initially stored the (N + 1)-D submesh where the
processor is in. That is, each processor needs to store at
most (D; x --- x Dy_;) subsets of S during the permuta-
tion. Hence, BUSH]J has a higher storage requirement than
BASH]J. On the other hand, the parallelism of BUSH] is
higher than that of BASH]J, and as a result, it requires fewer
data transmissions, parallel disk I/O operations, and local
join operations.

To simplify the analysis, we also make the assumption
that only one subset of S can fit in the free memory at a
time (M; = Bg/p). Thus, both Steps 2 and 4 require one
disk I/O operation. Steps 3 and 5 are two loops with
Dy, — 1 iterations, each consisting of one parallel data
transmission (which requires T; - Bg/p time), a local join
operation (which requires T;;(R/p,S/p) time), and a disk
I/0 operation (which requires 7}, - Bg/p time). Moreover,
Steps 2 to 5 are repeated D; x ---Dj_; times, each for a
subset in @, ;. Hence, the running time T'(k) for the
BUSH] algorithm on a k-D submesh is given in the
recurrence relation

T(k) =
T+]} Do (T 24T (D= 1) 2254 (R p,S p)x (2D1~2))
k=N
T(k-1)+] [Dix (Tux DEZZEAT x (D~ 12254 T3, (R /p,S /) % (2D4-2))
0<k<N
Tij(R/p,S/p) + Tip x 22, k=0.

The above equation clearly indicates that we do not need
the cost for copying Dy x --- x Dy_; subsets to disk when
permuting in dimension N. We solve the above recurrent
relation and have the total cost Tj,,; of the whole BUSH]
algorithm on an N-D mesh as follows:

Tbushj(Ra S) = T(N)

2B5 N i—1
=T, x 72 <(Di —-1) Dj> + T);(R/p, S/p)
i=1 j=1
N i—1
x <1+22<(Di_1) D.i))
=1 j=1
N-1 i—1 N-1
+ T, ><—S<1+Z(2D7 D]-> +2HD]->.
p i=1 j=1 j=1
(3)

Example 5. We apply (3) to compute the cost in Example 4
in which we use the BUSH] algorithm on a 2 x 2 mesh.
Then, we know that the algorithm requires six parallel
data transmissions, seven parallel local join operations,
and nine disk I/O operations, as indicated in Fig. 4.

6 RECURSIVE HAMILTONIAN-CYCLE JOIN

6.1 Overview of Hamiltonian-Cycle Approach

Both BASH] and BUSH] algorithms use the shifting
approach to permute the data on an N-D mesh. They can
work well if the cost T; of transferring a block of data
between two neighboring processors is high and the cost 1},
of a local join operation is low. Otherwise, their perfor-
mance will become less attractive because they suffer the
following two major problems:

Asynchronization of Local Join Operations. When some
processors are performing the local join operations,
others are idle because no new subset arrives.

High Storage Requirement. The BASH] and BUSH]J
algorithms require each processor to store N + 1 and
D; x --- x Dy_; subsets of S, respectively. Additional
disk I/O operations are needed to shuffle some subsets
between the memory and disk, as we have seen in their
analysis.

In the remaining of this paper, we address the above two
problems of the shifting approach, and propose a
different data permutation approach called Hamiltonian-
Cycle approach. This new approach requires a minimum
number of local join operations and two subsets of S
stored in some corner processors during the permutation. It
consists of two main steps:

CHEN ET AL.: PERMUTATION-BASED RANGE-JOIN ALGORITHMS ON N-DIMENSIONAL MESHES 421

>@——=@

Fig. 5. Permuting data along a Hamiltonian cycle.

1. Construct a Hamiltonian cycle on the given mesh
and make every processor know its own successor in
the cycle.

2. Repeatedly transfer a subset of S from each
processor to its successor in the Hamiltonian cycle
until each subset visits (and is joined at) every
processor exactly once.

A Hamiltonian cycle is a cycle which connects every
processor exactly once. Hence, every processor has only one
distant successor and it knows the index of its successor
after Step 1. As suggested in Fig. 5, all subsets of S are then
transferred along the cycle of length p in Step 2, which can
be implemented by the following statements:

All processors simultaneously perform a local join
operation;

fori:=1top—1do
Each processor transfers its current subset of S to
its successor;
All processors simultaneously perform a local join
operation

end for

Clearly, Step 2 requires p parallel local join operations in total,
each for every processor to join one different subset of S.

Recall that, in SIMD and SPMD computers, parallel data
transmissions can only be carried out in the same dimen-
sion and in the same direction. Other data transmissions in
different dimensions or in different directions are delayed
until the current transmissions are completed and the
system (or the algorithms) schedules them to start. For
example, data transmissions in Fig. 5 follow the order
indicated by the numbers associated with the arrows. In an
N-D mesh, there are N different dimensions, each with two
different directions (forward and backward). Thus, each
iteration in Step 2 takes 2N different concurrent data
transmissions for transferring every subset of S from a
processor to its successor.

For the same reason of the delay of data transmissions in
different dimensions and directions, some corner proces-
sors (such as the left-top and right-bottom corner processors
in Fig. 5) in every dimension need to store one additional
subsets of S temporarily in each iteration of Step 2. This is
required when their predecessors have already transferred
subsets to them but they have not yet transferred their
current subsets to their successors. With the same assump-
tion that only one subset of S can fit in memory at a time,
each iteration of Step 2 requires two disk I/O operations to
shuffle one subset in and out of memory once. Therefore,
the total cost of Step 2 is

B
Tperm = /Tt X ZN(p - 1)?5—}—/111}(}{/]?7 S/p) X p+Tio
5 @
» .

It is obvious that every subset of S visits and is joined at
each processor exactly once along the Hamiltonian cycle in

x2(p—1)

Step 2 and, hence, the Hamiltonian-cycle approach is
correct if a Hamiltonian cycle can be constructed correctly
on the given mesh.

Thus, the remaining problem is how to construct a
Hamiltonian cycle on the given mesh. Two different
methods for this problem are proposed in the following
and they result in two different join algorithms, namely
Recursive Hamiltonian-Cycle Join (REHC]) and Parallel Ha-
miltonian-Cycle Join (PAHC]J). In what follows, we first give
the important definitions which are used in both algo-
rithms, and then prove that a mesh with even number of
processors has Hamiltonian cycles, and finally present and
analyze these algorithms in this and the next sections,
respectively.

6.2 Definitions

An N-D mesh M is called even-sized for N > 2 if the number
of processors is even (i.e., at least one dimension degree D;
is even) and odd-sized otherwise. For a 2-D odd-sized mesh,
we have proved that it is not Hamiltonian (i.e., no
Hamiltonian cycle can be constructed on it), and have
presented a method to construct a partial Hamiltonian cycle
excluding only a corner processor [5]. Both of the proof and
construction method can be extended for any N-D odd-
sized mesh and, hence, in what follows, we concentrate
only on the even-sized meshes. Moreover, without loss of
generality, we assume that in an even-sized mesh M, the
dimension degree D, of dimension 2 is always even.

In M, let My (0<k<N) be a k-D submesh with
determinant L. For M,, we define three kinds of
processors which are important for the Hamiltonian cycle
construction on M:

e A;: a processor in M with index
N—k =L
(17' "7171k+1 '~~7ZN);
e DBy a processor in M, with index

N—k—1 =L
(17"’7172:2k+1 . "77'1\“');

e Z;: a processor in M, with index

N—k-2 =L
“ N “ —
(17 R 172a 171k7+1 o 7ZN)

if k> 2 or with index

=L
—
(D1, g1 - - - ,ZN)

otherwise.

As shown in the above definitions, the indices of A;, B, and
Z. in dimensions from k + 1 to IV are given by determinant
L of M. When k =0, M, has only one processor which is
Ay, and it does not have By and Z;. When k=1 and
Dy =2, By and Z; coincide. When k > 2, A; is adjacent to
By, and Zj,. For a given even-sized mesh, both REHC] and
PAHCJ algorithms construct the same Hamiltonian cycle
in which Ay, By, and Zy are the first, second, and the last
processors respectively, and we define the direction of this
Hamiltonian cycle to be forward.

422 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

¢ : o< ----- e
B, i E ————— ~0—=0— =@
‘ e o%o%x‘
: —— - - - - >o%o%o:

I LK —————— o=

Ay Z,
—~Q — — — - >@ ~@
o=@ - - — — o=—@<—
B2
%&77——>.%Qﬁ
| |
| |
' Y
o=@ — - — — o =—@<—©0
iﬁ****>‘ﬁ0

Fig. 6. A Hamiltonian cycle on a 2-D even-sized mesh in two opposite directions.

We call Ay, By, and Z;, the A, B, and Z processors in My,
respectively. If M is the jth submesh of a (k+1)-D
submesh M1, we further denote its A, B, and Z processors
by Ak, Bk, and Zé, respectively. According to the above
definitions, Ay.1, Bry1 and Zj1 in My for k> 2 can be
obtained recursively as follows:

Ak+1 = A]1<
Bpyy = A2 (Def-1)
L1 = B/lc

Thus, every processor P, ;. in the mesh M acts as a kind
processor in one or more dimensions, where kind is either
A, B, and Z. The highest dimension pd among these
dimensions of P, ;, is called the prime dimension of
P; ..y, and the corresponding kind pk is called the prime
kind. In the PAHC]J algorithm, every processor uses its pd
and pk to compute their successors.

Example 6. From the 3-D mesh M shown in Fig. 1, its A, B,
and C processors are A3 =P, Bs= P9 and
Z3 = P13, respectively. For each of its jth 2-D submesh
(J =1,... ,4), the A, B, and Z processors are A‘% =P
B) = Py5j, and Z) = Py, respectively.

Similarly, for each of the ith 1-D submesh of any its jth
2-D submesh (i = 1,...,4), the A, B, and Z processors are
A’ P, B“ Pgl], and Z =P respectlvely Note
that the Z processors in d1mens1on 1 is different from
those in higher dimensions. In dimension 0, every
processor is the A processor of its My which has neither
B nor Z processor.

Processor P;;; is an A processor in dimensions
from 1 to 3, and processor P is the B processor in
dimension 3 and an A processor in dimensions 1 and
2. Both of their prime dimensions are 3. Processor P33
is only an A processor in dimension 0 and, hence, its
prime dimension is 0.

We denote an edge from processor u to v by (u,v) and
prove that every even-sized mesh contains a Hamiltonian
cycle in the following theorem.

Theorem 1. Every N-D even-sized mesh is Hamiltonian for
N>2.

Proof. Proof by induction on N. When N =2, we can
always construct a Hamiltonian cycle (shown in Fig. 6a)
containing two edges (A, B;) and (Z», A;), or another

Hamiltonian cycle in reverse direction (shown in Fig. 6b)
containing two edges (A, Z;) and (Bs, As).

Assume that the theorem is true for N —1> 2. An
N-D mesh M has Dy different (N — 1)-D submeshes.
By induction, we can construct a Hamiltonian cycle on
every My ,(j=1,...Dy) in two different directions
according to the parlty of j: If Jj is even, the Hamiltonian
cycle contains two edges (4%, ,, By_,) and (Z}_ 1,Af 1)
otherwise, the direction of Hamiltonian cycle is back-
ward and the Hamiltonian cycle contains two edges
(A% 1, Z%_,) and (B),_,, A} _,). The whole Hamiltonian
cycle on M can be constructed by performing the
following two steps:

1. For all odd Jj (1 <j< Dy), remove two edges
(A%, Z_) and (Z47), A%), and add two new
edges (Ay_,, Ay")) and (237, 2});

2. For all even j (1 <j< Dy), remove two edges
(A l,Bj) and (B!, A%)), and add two new
edges (A}, ,, AN')) and (B, Biy_,)-]

Example 7. Fig. 7 show how to construct a Hamiltonian
cycle on the 4 x 4 x 4 mesh given in Fig. 1 from four
Hamiltonian cycles on its four 2-D submeshes, where the
dotted-lines, gray-lines, and bold-lines are the edges
removed, added and connecting A, B, and Z processors,
respectively. Note that, A}, A%, and B} become A3, B;
and Z3, respectively, after the Hamiltonian cycle on the
3-D mesh M is constructed. These changes follow the
formula in (Def-1).

6.3 Description

An algorithm for constructing a Hamiltonian cycle can be
derived straightforwardly from the above proof: Starting
with Hamiltonian cycles on every 2-D submesh as shown in
Fig. 6, the algorithm repeatedly executes the above two
steps to construct Hamiltonian cycles for the submeshes,
one dimension higher each time, until the whole cycle is
constructed on M.

However, we can observe that, in the above way, the
removal of two edges connecting processors A;_,, B;_;, and
Z{_, in a Hamiltonian cycle on each Mj_, yields only a
partial Hamiltonian path connecting all processors in the
submesh except Ak 1» and the two end points of this path
are B, and Z] ;. Thus, it would be more desirable to
dlrectly construct such a partial Hamiltonian path rather

CHEN ET AL.: PERMUTATION-BASED RANGE-JOIN ALGORITHMS ON N-DIMENSIONAL MESHES 423

(@)

(b)

Fig. 7. Constructing a Hamiltonian cycle on a 4 x 4 x 4 3-D even-sized mesh: (a) Hamiltonian cycles on four 2-D submeshes. (b) Hamiltonian

cycle on M.

than to construct a Hamiltonian cycle first and then to
remove its two edges. Moreover, by directly constructing a
partial Hamiltonian path, we can reduce the dimension for
the base case of the above algorithm from 2 to 0 and, hence,
simplify the description of the algorithm. We now describe
the detailed algorithm for constructing the same Hamilto-
nian cycle on an even-sized mesh.

Let P). denote the forward partial Hamilton path on M;
which starts at processor B and ends at Z;, and P, the
backward path (i.e., starts at B;, and ends at Z;). Both P;, and
P, contain each processor in M, exactly once, but exclude
Ai. On a 0-D submesh, both P, and P, are the paths
containing only a processor without any edge. Now, we
have the following recurrent definition of P}, for M;, where
1<E<N.

(A7 AT), (A3, AL),
(AP AR, (AR B, PR,
(20, 200 Py (B B,
T (Z}%—h Zli—l)’ 73}1;—1

(A1 AL), (AL, AL,
(AR AT (A 204), P
(B B, P (20 20057,
ctt (Zlg—lv Z;—l)v 7_33;—1

if Dy, is even

Py

if Dy, is odd.
(Det-2)

Although the above definition looks complicated, the
construction of P, is simple. It also works in a recursive
fashion like the construction of a Hamiltonian cycle on M,
given in the proof of Theorem 1, with the difference that it
constructs a partial Hamiltonian path on each M]_, instead
of a Hamiltonian cycle. The direction of the partial
Hamiltonian path on M/ , depends on the parity of j: If j
is even, a forward path 73?}1 is constructed; otherwise, a
backward path 73:;71 is constructed. An additional edge is
used to connect the end processor of the path on M, to the
beginning processor of the path on M] . Also depending
on the parity of j, this edge is either (Zi;l, Zij) (between

P, and 517;11) or (B]_,,B]"}) (between 7_?2_1 and PJ_}) as
indicated in the above definition. Moreover, the construction
P}, builds a path from A? | to A%, and then adds an edge
from A%, to the beginning processor of the path on M,* ,
which is either B, or Z;*, depending on the parity of D.

Let Forward-HP (k,L) and Backward-HP (k,L) be two
mutual recursive functions which returns a forward and
backward partial Hamiltonian path on a k-D submesh with
determinant L, respectively. According to the above
definition of P, function Forward-HP (k,L) can be
summarized as follows, where the paths are represented
as sequences of edges and the operation © means the
concatenation of two paths:

function Forward-HP (k, L)
Input: The current dimension number k of submesh Mj,
and its determinant L
Output: The forward partial Hamiltonian path P; on M,
begin
if £ > 0 then
Pr={();, [{Initialize}
forj:=2to Dy—1do Pp:=Pp& ((4_,A"));
if D, is even then P, := P, D ((Aijl,kajl))
else Py := Py @ (A, Z14);
for j := D), downto 2 do
if j is even then P := P, ® Forward-HP
(k—1,L:) ®(Z]_, Z5))
else P, :=P.d ‘Backward—HP
(k—=1,L:j) &((Bl_,Bl\));
Py =P & Backward-HP (k—1,L : 1);
Return Py,
end if
end

In correspondence to Pj, we have the following definition
of P for 1 < k< N:

424 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

Phy(Zhy. 22 0) Py (B, BLy),
(2P 20 P

(B AR (A AR,

5) e (Al AR (AR, A7)

Py (Zhy. Z2)) Py (BEy, BLy),
o (BT B P

(224, AL, (AR, AT,

s (AR AL (AT AL

if Dy, is even

if Dy, is odd.
(Det-3)

This leads to the following function Backward-HP:

function Backward-HP (k, L)
Input: The current dimension number & of submesh M,
and its determinant L
Output: The backward partial Hamiltonian path Py,
on M,
begin
if £ > 0 then
Pr={(); [{Initialize}
for j:=1to D, — 1 do
if jis odd then P, := P, ® Forward-HP
(k—1,L:5) &((Z]_,, Z"))
else P :=7P;® Backward-HP
(k—1,L:5) (B, BL))
if D;. is odd then P := P, & Forward-HP
(k—1,L: Dy) (2, A2)
else 7P, :=P,d Backward-HP
(k—1,L: Dy) &((B), AP));
for j = Dy — 1 downto 2 do
Pi =P ® (AL, AL
Return Py,
end if
end

By using the above two mutual recursive functions, the
the Hamiltonian cycle on mesh M in the following
statement:

Cn = ((An,Bn)) ® Forward-HP(N,[]) ® ((Zn, AN)).

forward partial Hamiltonian path Py starting at By and
ending at Zy, and finally connects edge (Zn,An) to

complete the cycle. After having constructed the cycle,

an SIMD/SPMD mesh broadcast algorithm [11], so that
every processor knows its own successor in the cycle and
hence is able to perform the permutation phase described in
the previous subsection.

6.4 Analysis

As indicated in the above two functions, P, o constructs
the whole Hamiltonian cycle by including every node
(processor) in M exactly once and, hence, the total in-
memory computation cost is Ti-p with the assumption

that the operation of including an edge into a list requires
the same cost as the operation of comparing two
numbers. The broadcast of the resulting cycle from
[11]. We assume that the data size for storing the cycle is
less than one block and, hence, the cost of this broadcast
operation is T; - Z;\LI(DL — 1). Thus, the total cost Tcxc; of
the REHC]J algorithm is the sum of the costs for
constructions and broadcasting, as well as Ty, of
permutation, that is

N
T’rehcj(Ra S) = T(? Xp+ Tt X Z(D1 - 1) + Tperm
i=1

Be
:Tt><<2N(p—1)?é+(p_N)) (5)
+Ti(R/p,S/p) x p

B
+ﬂwd@fnf+nxp

7 PARALLEL HAMILTONIAN-CYCLE JOIN
7.1 Description

The above REHC] algorithm achieves a high performance
on permuting the data after the Hamiltonian cycle is
constructed, but its parallelism of constructing the cycle
can be further improved. In the REHC] algorithm, the
Hamiltonian cycle is constructed sequentially by a single
other processors are idle during the construction. In
addition, the resulting Hamiltonian cycle is broadcasted to
other processors and, hence, additional data transmissions
are required as indicated in (5).

In this section, we improve the REHC] algorithm by
developing a new method to construct the same Hamilto-
nian cycle for a given even-sized mesh, which results in
another algorithm called Parallel Hamiltonian-Cycle Join
(PAHC]J) algorithm. Instead of using a single processor to
construct the cycle sequentially, the PAHCJ algorithm uses
all processors to find their own successors in the Hamilto-
nian cycle simultaneously. That is, in the PAHC] algorithm
all processors obtain the indices of their successors
independently without a preprocessing operation of con-
structing a complete cycle which requires additional data
transmissions.

The PAHC] algorithm is based on the REHC] algorithm
and uses its two mutually recursive definitions (Def-2) and
(Def-3) of forward and backward partial Hamiltonian paths.
In the PAHC]J algorithm, each processor P, ;. obtains its
successor’s index according to its own index in the
following two steps:

Step 1. Determine its prime dimension pd and prime kind pk,
where pk is either A, B, or Z, and pd is the highest
dimension in which the processor P; _;, actsasan A, B,
or Z processor.

Step 2. Increment or decrement one of its coordinates of its
index by 1 to obtain its successor’s index.

CHEN ET AL.: PERMUTATION-BASED RANGE-JOIN ALGORITHMS ON N-DIMENSIONAL MESHES

TABLE 1
Performance Comparison among the Four Algorithms
| Costs | BASHJ | BUSHJ | REHCJ | PAHCJ |
T ITis, (2D — 1) - 1 255n (D = DI D) | 2N(p— 1)+ [2N(p— 1)
(p—N)/ B
N N 7—1
+1
N=T 7N N=T =1 p
Tio 32 o Hj:i+1(2Dj -1 > izt (%Dilﬂjﬂ Dj) 2(p—1) 2(p—-1)
+3 +2 H7'=1 Dj +1
1. 0 0 p N+4
|Subset(S)] N+1 MY D 2 2
TABLE 2

Values of System Parameters

| System Parameter | Value | System Parameter | Value |

T; 4 msec | T; 25 msec
T, 3 psec | Ty 250 msec
150
120 /A
. 4 —+— BASH
k%0 —aBUSH,
2]
8 60 —— REHC.J
—e— PAHCJ
30
0
Dimension N{D=2)
(a)
150000
120000 !
- —— BASHJ
E 90000 . BB
k7] ,/,%
——PAHC
30000
B .
0 = T ‘
1 2 3 4

Dimension N (D=10)

(b)

Fig. 8. Cost comparison of data transfer. (a) D =2 and (b) D = 10.

425

426 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002
100
75 il
= ——BASHJ
: - —=— BUSHJ
a —— REHCJ
e = —— PAHC.
25 —
____ﬂ_l-"t’ I
e
i === —— .
1 2 3 4
Dimension N {D=2)
(a)
150000
120000 i
- / ——BASHJ
= 90000 / = BUSHU
[72]
8 60000 —h— REHCJ
/ e PAHC
30000
|
T
0 & T 5 T = T
1 2 3 4
Dimension N {D=10)

Fig. 9. Cost comparison of local join operations.

In Step 1, P, . ;, determines its pd and pk by inspecting the

coordinates of its index from dimension N to 0, as described

in the following procedure find-prime:

procedure find-prime ((i1,...,iy), varpd, varpk)
Input: The index (i1, ...,iy) of the processor
Output: The prime dimension pd and prime kind pk of
the processor

begin
pd:=N; pk:=undefined;
while pk = undefined do
1: if pd = 0 then pk := A
: elseif pd = 1 and i, = D, then pk := 7
3: elseif (i1,4,...,9p0-2) = (1,1,...,1) and 4,91 =1
and i, = 1 then pk := A
4: elseif (il,iQ, .o ,ipd_g) = (1, 1, ey 1) and ipd—l =1
and i,q = 2 then pk:= B
5: elseif (il,ig, N ,ipd,g) = (17 17 ey 1) and Z'pdfl =2

and iyq = 1 then pk:= 7
else pd := pd — 1;
end while
end.

(b)

In the above procedure, conditions 1 and 2 cope with the
special cases in dimensions 0 and 1, and conditions 3-5
correspond to the definitions of A, B, and Z, respectively.
After having determined its pd and pk in Step 1,
processor P ;. can obtain its successor’s index in Step 2
by simply incrementing or decrementing one of its
coordinates. This is because, the successor of every
processor in the Hamiltonian cycle of a mesh must be one
of its neighbors whose indices differ by 1 from its index in
exactly one coordinate. When pd = N, the successor of
lemi,v is
e the B processor in dimension N whose index can be
obtained by incrementing its i, by 1, if pk = A;
e the A processor in dimension N — 1 whose index can
be obtained by incrementing its i,4 by 1, if pk = B; or
e the A processor in dimension N whose index can be
obtained by decrementing its i,4_1, if pk = Z.
This is because the A, B, and Z processors in dimension N
are connected in the fixed pattern Ay — By and Zy — Ap.
When pd < N and pk is A, P, ;. needs to first
determine the direction dir,q1 of the partial Hamiltonian
path on its (pd + 1)-D submesh by computing the parities of
its coordinates in dimensions from pd + 2 to N as follows:

CHEN ET AL.: PERMUTATION-BASED RANGE-JOIN ALGORITHMS ON N-DIMENSIONAL MESHES

427

150
120 ’
° / —— BASHJ
= 90 = BUSHJ
© // = —— PAHCJ
30 e
_,——__.——- _—'—"____-
‘%é—_—f_
O T T T
1 v, 3 4
Dimension N (D=2}
(a)
24000
y:
18000 4
o ——BASHJ
= 4 —=— BUSHJ
+ 12000 /
2 // ——REHCJ
© —«— PAHCJ
6000 £
.,--‘f.
0 . . e ——
1 2 3 4
Dimension N{D=10)

(b)

Fig. 10. Cost comparison of disk I/O operations.

if (Zé\[:pdﬁ zJ) is even
backward if (Z}V:pd 42 z'j) is odd.

forward

dirpg = (Def — 4)

This method of computing diry,1 is based on the
construction of the Hamiltonian cycle: The whole Hamilto-
nian cycle constructed by both REHC] and PAHC]
algorithms is always forward and, hence, the partial
Hamiltonian path on the N-D mesh is also forward. For a
k-D submesh Mj which is the jth submesh of a (k+1)-D
submesh M;; for 0 < k < N, according to the recursive
definitions (Def-2) and (Def-3), we know that the direction
of the partial Hamiltonian path on M] is the same as that of
the partial Hamiltonian path on M, if j is even or is the
reverse if j is odd. Thus, by simply computing the parities of
its coordinates, every processor can determine the direction
of the partial Hamiltonian path on its k-D submesh for any &
where 0 < k < N. After determining dirpqs1, P, i, then
obtains the index of its successor as follows:

e If dirys is forward, according to (Def-2), the
successor of P, ;. is either

- the A processor in an adjacent pd-D submesh,
whose index can be obtained by incrementing its
Z'pd+1 by 1 if its Z'pd+1 < Dpd+1;

- the B processor in its pd-D submesh, whose
index can be obtained by incrementing its 7,4 by
1 if its ipgr1 = Dpay1 and Dpg4q is even; or

- the Z processor in its pd-D submesh, whose
index can be obtained by incrementing its ipq—1
by 1 if its ip411 = Dpar1 and Dpg4q is odd.

e If dirpes1 is backward, according to (Def-3), the
successor of P, ;. is the A processor in an adjacent
pd-D submesh, whose index can be obtained by
decrementing its 7,41 by 1.

For a given processor, let INC (k) and DEC (k) be two
functions, which increment or decrement its kth coordinate
respectively and return the resulting index. Hence, the
operations for obtaining the index of the successor of an A

processor can be presented by the following procedure:

function A-Successor ((i1,...,iy), pd)
Input: The index (i1, ...,iy) of a processor whose prime
kind is A in dimension pd
Output: The index of the successor of the processor
begin
if pd = N then return INC(pd)
elseif dir,.y, is forward then

428

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

20
16 "
& s / —+— BASHJ
- —=— BUSHJ
§ . . —&— REHCJ
_——— —pACy
4 ;_/_/’-
0 = ; = . o . =
1 2 3 4
Dimension N (D=2}
(a)
12000
9000 /
o / —— BASH.
|
< 6000 —=— BUSHJ
3 / —+— REHCJ
3000 /_//’/ —— PAHCY
0 & T & T = T b

Dimension N (D=10)

Fig. 11. Cost comparison of memory computation.

if (ipd+1 = Dpd+1) and (Dpd+1 is even) then
return INC(pd)
elseif (ipq+1 = Dpg1) and (Dpg41 is odd) then
return INC(pd — 1)
else return INC(pd + 1)
else return DEC(pd + 1)
end if
end

When pd < N and pk is either B or Z, P, _;, also first
determines the direction of a partial Hamiltonian path like
an A processor, but the dimension of its submesh, where the
direction dir,, of partial Hamiltonian path is determined, is
pd instead of pd + 1. It then obtains the index of its successor
according to (Def-2) and (Def-3). Thus, we have the
following two functions which return the indices of the
successors of B and Z processors respectively:

function B-Successor ((i1,...,ix), pd)
Input: The index (i1, ...,iy) of a B processor, and its
prime dimension pd and prime kind pk
Output: The index of successor of the processor
begin
if pd = N then

(b)

if Dy > 2 then return INC(pd) else return INC(pd — 1)
elseif dirpq,; is forward then

if D,; > 2 then return INC(pd — 1) else return INC(pd)
else return DEC(pd + 1)
endif
end

function Z-Successor ((i1,...,iy),pd)
Input: The index (i1, ...,in) of a Z processor and its
prime dimension pd and prime kind pk
Output: The index of successor of the processor
begin
if pd = N then return DEC(pd — 1)
elseif dir,, is forward then return INC(pd + 1)
else
if pd = 1 then return DEC(pd)
elseif D,; = 2 then return INC(pd) else
returnINC(pd — 1)
endif
end

In summary, every processor in the even-sized mesh
applies the following function Successor to obtain the index

of its successor simultaneously:

CHEN ET AL.: PERMUTATION-BASED RANGE-JOIN ALGORITHMS ON N-DIMENSIONAL MESHES 429
0.025
o 002 /
o
o 0015 —e— BASH.
& / —=— BUSHJ
n
o —i— REHC.J
o 001 — _
= // e —— PAHCJ
P 0,005 — -
0
1 2 3 4
Dimension N (D=2)
(a)
40
Ty »
9 32
o ——BASHJ
E 24 7 —=BUSHJ
8 16 —— REHCJ
s —— PAHC
(=]
- 8
/_’/4[—
Tk
O & T & T T
1 2 3 4
Dimension N {(D=10)

Fig. 12. Total cost comparison.

function Successor ((iy,...,iy))
Input: The index (i1, ...,iy) of a processor
Output: The index of successor of the processor
begin

find-prime ((i1,...,in), pd, pk);

if pk = A then return A-Successor ((i1,...,iy),pd)
else if pk = B then return B-Successor ((i1,...,iy),pd)
else return Z-Successor ((i1,...,in),pd)

end

Example 8. In Fig. 7, processor P, ;3 first determines its
pd = 2 and pk = A, then finds that its dir; is forward, and
finally obtains its successor’s index (1,1,4). Processor
P 55 first determines its pd = 2 and pk = B, then finds
that its diry is backward, and finally obtains its
successor’s index (1,2, 2). Processor P, ; 3 first determines
its pd = 2 and pk = Z, then finds that its dir, is backward,
and finally obtains its successor’s index (1, 3, 3).

7.2 Analysis

Each processor needs at most N comparisons to determine
its pd and pk in function find-prime, and at most four
comparisons to obtain its successor’s index without any
data transmissions. Thus, the total cost 7). of the

(b)

PAHC]J algorithm is the sum of the costs for finding the
successor of each processor and for the permutation, that is

Tpahr?j(Ra S) =T, x (N + 4) + Tperm
B
=T, x 2N(p— 1)?5 +T(R/p.S[p) xp (g
B
+Tip X 2(p = 1)+ T, x (N +4).
p

Therefore, the cost Tpa.; of the PAHC] algorithm is less
than the cost T}, of the REHC]J algorithm due to the
improved efficiency for construction of the Hamiltonian
cycle.

8 EVALUATION RESULTS

The detailed analysis for each of the four algorithms has
been performed in previous sections. We summarize the
results in Table 1, where |Subset(S)| is the maximum
number of S subsets to be stored in a processor.

In this section, we examine some evaluation results of the
four algorithms and compare the algorithms against four
major cost factors listed in Table 1, namely, T}, T;,, 1, and
Tj;. To validate our analytical comparison, we use the same

430 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

values of system parameters that have used in [4], [5], as
summarized in Table 2.

To simplify the comparisons, we assume that mesh M
has the same degree on all dimensions, that is,
Dy =Dy=...=Dy=D. We further assume that each
processor has the fixed number of R and S tuples
regardless the number of processors p in M.

8.1 Cost Comparison of Data Transfer T;

Fig. 8 shows the data transfer costs of all four algorithms,
where D =2 and D = 10, respectively. It is clear from the
figure that, the BUSH] algorithm always requires the least
data transfer costs, while BASH] require more 7; when p
increases.

8.2 Cost Comparison of Local Join Operations T;;
Fig. 9 shows that the BASH] algorithm requires most local
join operations. The two permutation algorithms outper-
forms the two shift algorithms because they require much
fewer local join operations.

8.3 Cost Comparison of Disk I/O Operations T},
Fig. 10 shows that the BASH] algorithm requires most disk
I/0 operations. The permutation algorithms requires fewer
disk I/O operations when D is small.

8.4 Cost Comparison of Memory Computations 7.

Fig. 11 shows that REHC] requires more local computation
cost for constructing a Hamiltonian cycle than PAHC]J.

8.5 Total Cost Comparison

Fig. 12 shows that the total execution execution time is
greatly influenced by the local join operations, and both
permutation-based algorithms require fewer local join
operations than others.

9 CONCLUDING REMARKS

In this paper, we have presented four parallel algo-
rithms to efficiently compute the range-joins operation
on an N-D mesh. All algorithms use the permutation-
based approach in which all the subsets of both relations
are sorted and each subset of S is then permuted to every
processor in turn, where it is joined with the local subset of
R at that processor. Two data permutation approaches—the
shifting and Hamiltonian-cycle approaches—have been
developed, each being used by two join algorithms. The
shifting approach minimizes the communication costs and
can be applied to a system with either large or limited
storage capability, while the Hamiltonian cycle approach
minimizes the cost for the local join operations as well as the
storage requirement.

Several conclusions can be drawn. First, BUSH]J achieves
better parallelism performance than BASH] by storing a
large number of buffered subsets of S in each processor, as
trade-offs between time and storage. Depending on which
resource is more valuable, one approach or the other should
be used. Second, the performance of the PAHC] algorithm
is obviously better than the REHC] algorithm because it
constructs the Hamiltonian cycle in parallel and is hence
more efficient. Our goal in presenting the REHC] algorithm

is to provide a starting point to understand the more
complicated PAHC]J algorithm. Third, both Hamiltonian-
cycle algorithms require less storage and fewer local join
operations but more data movements than the BUSH].
Thus, we recommend the use of the shifting algorithms only
if the communication time for transferring one data block
between two neighbor processors is greater than the time
for a local range-join operation. Otherwise, the Hamilto-
nian-cycle algorithms should be used in order to achieve the
best performance.

It is worthwhile to note that, as the range-join operation
is the generalization of the conventional equi-join and band-
join operations, all four proposed range-join algorithms can
be used to compute equi-join and band-join operations.
More importantly, all proposed algorithms are general
methods for data permutation on an N-D mesh and can be
employed for solving any problems that involve data
permutation.

Future research tasks are to implement the proposed
algorithm on a suitable parallel machine for further
performance evaluation, and to develop efficient parallel
algorithms on other parallel computer architectures and for
other database operations.

REFERENCES

[1] S.G. AkKl, The Design and Analysis of Parallel Algorithms. Orlando,
Fl.: Academic Press, 1989.

[2] S.D. Chen, H. Shen, and R.W. Topor, “Efficient Parallel Permuta-
tion-Based Range-Join Algorithms on Mesh-Connected Compu-
ters,” Technical Report CIT-94-19, CIT, Griffith Univ., Australia,
Aug. 1994.

[3] S.D. Chen, H. Shen, and R.W. Topor, “An Improved Hash-Based
Join Algorithm in the Presence of Double Skew on a Hypercube
Computer,” Proc. 17th Australian Computer Science Conf., Jan. 1994.

[4] S.D. Chen, H. Shen, and R.W. Topor, “Permutation-Based Parallel
Range-Join Algorithm on N-Dimensional Torus Computers,”
Information Processing Letters, vol. 52, no. 10, pp. 35-38, Oct. 1994.

[5] S.D. Chen, H. Shen, and R.W. Topor, “Efficient Parallel Permuta-
tion-Based Range-Join Algorithms on Mesh-Connected Compu-
ters,” Proc. 1995 Asian Computing Science Conf., pp. 225-238, Dec.
1995.

[6] D.J. DeWitt and J. Gray, “Parallel Database Systems: The Future of
High Performance Database Systems,” Comm. ACM, vol. 35, no. 6,
pp- 85-98, 1992.

[71 D.J. DeWitt, J.E. Naughton, and D.A. Schneider, “An Evaluation of
Non-Equijoin Algorithms,” Proc. 17th Conf. Very Large Databases
(VLDB), pp. 443-452, Sept. 1991.

[8] Intel Corporation. Intel Corporation Literature. Nov. 1991.

[9] H. Jhang, “Performance Comparison of Join on Hypercube and
Mesh” Proc. 1992 ACM Computer Science Conf., pp. 243-250, 1992.

[10] M. Kitsuregawa and Y. Ogawa, “Bucket Spreading Parallel Hash:
A New Robust, Parallel Hash Join Method for Data Skew in the
Super Database Computer (SDC),” Proc. 16th Conf. Very Large
Databases (VLDB), pp. 210-221, 1990.

[11] E.T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays Trees Hyper-Cubes. San Mateo, Calif.: Morgan Kaufmann,
1992.

[12] D. Schneider and D. DeWitt, “A Performance Evaluation of Four
Parallel Join Algorithms in a Shared-Nothing Multiprocessor
Environment,” ACM SIGMOD Record, vol. 18, no. 2, pp. 110-121,
June 1989.

[13] H. Shen, “An Improved Selection-Based Parallel Range-Join
Algorithm in Hypercubes,” Proc. 20th EUROMICRO Conf.,
pp. 65-72, Sept. 1994.

[14] H. Shen, “Efficient Parallel k-Set Chain Range-Join in Hyper-
cubes.” Computer J., vol. 38, no. 3, pp. 217-225, 1995.

[15] H. Shen, “An Efficient Permutation-Based Parallel Algorithm for
Range-Join in Hypercubes,” Parallel Computing, vol. 21, pp. 303-
313, 1995.

CHEN ET AL.: PERMUTATION-BASED RANGE-JOIN ALGORITHMS ON N-DIMENSIONAL MESHES 431

[16]

[17]
(18]

(19]

H. Shen, “Parallel k-Set Mutual Range-Join in Hypercubes,”
Microprocessing and Microprogramming, vol. 41, no. 7, pp. 443-448,
1995.

M. Stonebraker, “The Case for Shared Nothing,” Database Eng.,
vol. 9, no. 1, pp. 4-9, 1986.

J.D. Ullman, Principles of Database and Knowledge Base Systems,
volume 2. Computer Science Press, 1989.

C.B. Walton, A.G. Dale, and RM. Jenevein, “A Taxonomy and
Performance Model of Data Skew Effects in Parallel Joins,” Proc.
17th Conf. Very Large Databases (VLDB), pp. 537-48, Sept. 1991.

Shao Dong Chen received the BSc degree from
Shengzheng University, China, BInf (Hons) and
the PhD degree from Giriffith University, Aus-
tralia. He was an associate lecturer at Queens-
land University of Technology and is currently
working at Hutchison Telecom HK Ltd. as a
senior manager responsible for managing all 3G
IT projects. His research interest is in parallel
and distributed computing.

Hong Shen received the BEng degree from
Beijing University of Science and Technology,
the MEng degree from the University of Science
and Technology of China, and the PhLic and
PhD degrees from Abo Academi University,
Finland, all in computer science. He is a
professor in the Graduate School of Information
Science, Japan Advanced Institute of Science
and Technology. Previously, he was a professor
of computer science at Griffith University,
Australia. He has published more than 130 technical papers on
algorithms, parallel and distributed computing, interconnection net-
works, parallel databases and data mining, multimedia systems, and
networking. He has served as an editor for Parallel and Distributed
Computing Practice, as an associate editor for the International Journal
of Parallel and Distributed Systems and Networks, an editorial board
member for the Journal of Parallel Algorithms and Applications, the
International Journal of Computer Mathematics, and the Journal of
Supercomputing, and chair/committee member of various international
conferences.

Rodney Topor received the BSc degree in
mathematics from Monash University, Australia,
and the PhD degree in artificail intelligence from
Edinburgh University, United Kingdom. He has
served on the faculties of Monash University and
the University of Molbourne. He is currently a
professor of computer science at Griffith Uni-
versity, Brisbane, Australia, where he served as
Head of School from 1994 to 1997. He has been
a sabbatical visitor at Imperial College, London,
the University of Bristol, Standford University, and INRIA, Rocgencourt.
He is on the editorial board of the Journal of Intelligent Information
Systems. His research interests include declarative interfaces to
databases, parallel algorithms for database query evaluation, and data
mining. He has more than 50 papers in these and other areas. He is a
member of the IEEE Computer Society.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

