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Abstract: Hot-clutter cancellation using fast-time Space Time Adaptive Process-
ing (STAP) can occur either pre or post range processing (RP)and to date, there
has not been a direct comparison on which method offers the best results. This pa-
per provides an analytic comparison which is verified with simulation and aims to
provide insight into the location of the adaptive filter which would provide the best
hot-clutter suppression. The covariance models are testedwith signal models used
in a multichannel Synthetic Aperture Radar (SAR).

1. Introduction
Forming a SAR image in the presence of non-stationary hot-clutter will result in large regions
being distorted and unusable. Fast-time STAP has been shownto be an effective method for
suppressing the hot-clutter, while maintaining a coherentSAR image, [1]. The processing
chain for a received SAR signal involves basebanding, sampling, RP and image formation.
RP for SAR involves decoding the received signal with a Matched Filter (MF) to improve the
time/bandwidth product and hence achieve a finer range resolution.
Previous studies on the performance of hot-clutter suppression algorithms have looked at using
an adaptive filter with no RP, [2] and also post RP, [3]. The former study derived an analytical
model for the pre RP covariance and tested its performance under different simulated topograph-
ical conditions, while the latter study derived a post RP covariance model and used a simulated
scenario to compare element space and beam space approaches. The only study on fast-time
STAP performance for SAR is by Klemm, [4] who looked at simulated data applied pre RP
and concluded that firstly, fast-time filtering will degradeSAR resolution by broadening the
point spread function mainlobe and increasing its sidelobes and secondly, as range resolution
improved, sensitivity to filtering increased.
This paper presents fast-time STAP models for pre and post RPadaptive filters and compares
the relative adaptive performance as the number of fast-time taps is increased.

2. Signal model
The total received signal at the SAR,xn(·) includes the total ground return, interference from
the direct-path and ground reflected path (hot-clutter) andreceiver noise. The bistatic jammer
model is formed by the superposition of the direct path andK hot-clutter patches within a given
area,

zn(tl ,u) =
K

∑
k=0

bkJ(tl − τ̄n,k(tl ,u))exp[− jωcτ̄n,k(tl ,u)]exp[− jωd,ktl ] (1)

where(tl ,u) represents thel th fast-time sample within a pulse and the SAR position respectively,
J(·) is the jamming signal waveform,̄τn,k(·) is the bistatic delay for thekth patch,ωd,k is the fast-
time doppler frequency andbk is the relative magnitude between the direct-path and hot-clutter
signals. The zero index refers to the direct-path withb0 = 1.



Realisations of the jammer signalJ(·) can be generated by an eigen-decomposition of the jam-
mer auto-covariance,rJ(τ) = σ2

J sinc(Bτ) with bandwidth,B and power level,σ2
J. The relative

scattering magnitude is determined by a physically based model for the multipath scattering,
[5]. It uses a rough surface to define the scattering distribution between the SAR and an air-
borne jammer. The coefficients,bk = ρBk for k > 1 are formed with a hot-clutter scaling factor
ρ, relative to the direct-path and a random amplitudeBk, determined from the scattering model.

3. Fast-time STAP
The focussed output from the fast-time STAP filter is determined by the following convolution
overL̃ taps,

xfs(tl ,u) =
l+L̃−1

∑
q=l

HH(tl − tq,u)x(tq,u)

= H̃H(u)X(tl ,u) (2)
whereH̃(·) is the space/fast-time steering vector andX(·) is the fast-time received data vector.
If there areN antenna elements, the received data signal can be stacked twice with the reference
antenna at the centre of the array to give,

x(tl ,u) =
[

x−(N−1)/2(tl ,u), . . . ,x(N−1)/2(tl ,u)
]T

∈ C
N×1 (3)

X(tl ,u) =
[

xT (tl ,u) ,xT (tl+1,u) , . . . ,xT (

tl+L̃−1,u
)]T

∈ C
L̃N×1 (4)

with data components for the finalL̃ taps set to zero. Fast-time STAP then involves substituting
a weight vector for the steering vector in Equation 2. The maximum SINR weight is given by,

W(u) = γR−1
Z (u)H̃(u) (5)

whereγ is an arbitrary scaling factor andRZ(·) is the space/fast-time covariance. The form
of the pre and post RP space/fast-time steering vectors are based on the spatial and temporal
components of the received SAR signal model. The spatial steering model for thenth channel
is given by,

sn(u) = exp
[

j
ωc

c
dnsin[θ(u)]

]

(6)

whereωc is the carrier frequency,c is the speed of light,dn = nλc/2 is the antenna offset from
the array phase centre with wavelengthλc andθ(u) is the steering angle relative to the centre
of the imaging patch. The spatial steering vector,s(u) is then formed similarly to Equation 3.
The pre RP fast-time steering model is given by the SAR waveform which is a chirp. For the
l th fast-time sample andqth fast-time tap,

gpre,q(tl) = exp
[

− jBπ(tl − tq)+ jα(tl − tq)
2] (7)

whereB is the bandwidth, 2α represents the chirp rate and the fast-time samples occur attl =
Ts+(l −1)∆t whereTs is the pulse collection starting time and∆t is the fast-time sampling rate.
As the steering vector is a chirp function, it can only provide a partially accurate representation
of the target signal withiñL fast-time taps. The pre RP temporal steering vector shows this,

gpre=
[

1,exp
[

jBπ∆t + jα∆2
t

]

, . . . ,exp
[

jBπ(L̃−1)∆t + jα((L̃−1)∆t)
2]]T

∈ C
L̃×1 (8)

and is now a function of the difference between time taps. After RP, the fast-time steering model
is represented by,

gpost,q(tl) = sinc
[

B(tl − tq)
]

(9)
which is a decaying function and can therefore be accuratelyrepresented by a small number of
taps as shown by the post RP temporal steering vector,

gpost=
[

1,sinc[B∆t ] , . . . ,sinc
[

B(L̃−1)∆t
]]T

∈ C
L̃×1 (10)

Consequently better signal detection results will be achieved in gpost as the signal energy is
more concentrated.



The combined space/fast-time steering vector for each caseis then formed by the Kronecker
product of the temporal and spatial components to give,

H̃pre(u) = gpre⊗s(u) ∈ C L̃N×1, H̃post(u) = gpost⊗s(u) ∈ C L̃N×1 (11)

4. Covariance Models
The pre and post interference covariance models are based onthe estimated sample matrix form,

R̂Z(u) =
1
Lt

Lt

∑
l=1

Z(tl ,u)ZH(tl ,u) ∈ C L̃N×L̃N (12)

whereZ(·) is the space/fast-time interference signal formed similarly to Equation 4. Also,
as the instantaneous covariance models presented in [2]-[3] are fast-time dependent, the mean
estimated covariance models will be used with a minor multiplicative bias determined by the
number of averaged fast-time taps,Lt . Both models also assume that the broadband jammer is
a stationary random process within the pulse interval, and therefore the received interference
signal before,zn(·) and after RP,yn(·), can be similarly defined. The pre RP covariance is given
by,

RZ,pre(u,ζ,n,n′) = E

{

1
Lt

Lt

∑
l=1

zn(tl ,u)zn′
∗(tl +ζ,u)

}

= σ2
J ∑

k
∑
k′

bkb
∗
k′ sinc

[

B(ζ+ τ̄n,k− τ̄n′,k′)
]

exp
[

− jωc(τ̄n,k− τ̄n′,k′)+ jωd,k′ζ
]

exp
[

− j∆ωk,k′(Ts+0.5(Lt −1)∆t)
] sin

[

0.5∆ωk,k′Lt∆t
]

Lt sin
[

0.5∆ωk,k′∆t
] (13)

where∆ωk,k′ = ωd,k −ωd,k′ andζ is the delay between two fast-time taps. The post RP co-
variance requires the range compression to be included in the derivation. At baseband, the MF
reference signal is given byp∗c(−t), where the SAR waveform is a chirp defined bypc(t) =
b(t/Tp)exp

[

− jBπt + jαt2
]

with the chirp rate durationTp defined byb(t), which is unity for
0≤ t ≤ 1 and zero otherwise. This gives the post RP jammer signal model as,

yn(tl ,u) =
∫ ∞

−∞
zn(t

′,u)p∗c(t
′
− tl)dt′ (14)

The post RP covariance model is then given by,

RZ,post(u,ζ,n,n′) = E

{

1
Lt

Lt

∑
l=1

yn(tl ,u)yn′
∗(tl +ζ,u)

}

= σ2
J ∑

k
∑
k′

bkb
∗
k′ sinc

[

Bζ′(1−ζ′/Tp)−∆ fk,k′(Tp−ζ′)
]

exp
[

− jωc(τ̄n,k− τ̄n′,k′)+ jωd,k′ζ′
]

exp
[

− j∆ωk,k′(Ts+0.5(Tp−ζ′ +(Lt −1)∆t))
] sin

[

0.5∆ωk,k′Lt∆t
]

Lt sin
[

0.5∆ωk,k′∆t
] (15)

whereζ′ = ζ− τ̄n,k + τ̄n′,k′ and∆ fk,k′ = 0.5∆ωk,k′/π. This model is very similar to the pre RP
case with the sinc function containing the relative temporal delays and the correlation variable.
There are now however extra terms related to the pulse width and the differential doppler. These
differences are also present in the two exponential terms and will cause only a very small dif-
ference in the overall model. These models are used to form covariance matrices,RZ,pre and
RZ,postby varying the spatial channel indices,n,n′ and the fast-time delay,ζ.



5. Simulated Results
The SINR loss is a common method of comparing adaptive performance and is defined by SINR
divided by the interference free Signal to Noise Ratio (SNR)and is a metric between 0 and 1.

LSINR(θ(u)) =
H̃H(u) [RZ + I L̃N]−1(u)H̃(u)

H̃H(u)H̃(u)
(16)

To compare the SINR loss, simulation of a single pulse was used to model the covariance
matrix in Equation 12 and the same parameters used for the analytic forms in Equations 13
and 15. The simulation is at X-band withfc = 10GHz,B = 0.3GHz,∆t = 1/2B, Tp = 28µs,
α = 3.3×1015rad/s,σ2

J = 50dB andρ = 0.5. There areN = 5 spatial channels,L = 200 range
bins,K = 100 hot-clutter patches and the covariance matrices are estimated overLt = 3L̃N range
bins. Results are given in Figure 1 for three different fast-time taps where there is a noticeable
decrease in SINR loss of approximately 20dB due to the extra correlation between the hot-
clutter scatterers. To analyse this scenario more closely,the minimum point of the SINR loss is
measured as the number of fast-time taps is increased. Figure 2 shows a decrease in SINR loss
of close to 24dB as more taps are used.
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Figure 1: SINR loss with varyingθ(u) for: (—) simulated pre RP, (- -) pre RP, (-.-) post RP
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Figure 2: SINR loss with varying̃L for: (—) simulated pre RP, (- -) pre RP, (-.-) post RP

6. Conclusion
In summary, both pre and post RP adaptive filters perform equally well at suppressing hot-
clutter. However, since the pre RP steering vector only matches a small part of the chirp within
the received data and the post RP case matches it almost completely, the latter model is the
preferred choice for SAR signal detection.
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