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1. Introduction

We calculate the charge, magnetic and quadrupole form factors of vector mesons and the

charge form factor of pseudo-scalar mesons in quenched lattice QCD. In each case the charge radii

and magnetic moments are derived.

Our aim is to study to what extent the qualitative quark model picture is consistent with

quenched lattice QCD. Interestingly, it has been shown in a lattice calculation by Alexandrou et al.

[1] that the distribution of charge in the vector meson is oblate, and therefore not consistent with

the picture of a quark anti-quark in relative S-wave. By calculating the vector meson quadrupole

form factor we make a direct comparison with the findings of Ref. [1].

For each observable we calculate the quark sector contributions separately. Using this addi-

tional information we examine the environmental sensitivity of the light-quark contributions to the

pseudo-scalar and vector meson charge radii and we can measure the dominance of the light quark

contributions to the K and K∗.

1.1 2-pt Correlation Function

We begin the discussion with a brief description of how we extract the meson two-point func-

tions on the lattice, followed by a review of the extraction of observables from the meson 3-pt

functions.

The vector meson 2-pt correlation function is defined by,

G!!(t,!p) = "
!x

e−i!p·!x 〈#|$!(x)$!†(0)|#〉 .

where in this case $! is the standard %+-meson interpolating field $! = d̄a&!ua [2], here u,d is

the quark flavour, and a is a colour label. To evaluate this function we first insert a complete set of

energy, spin and momentum states,

G!!(t,!p) = "
s

e−E% t〈#|$!(0)|%(!p,s)〉〈%(!p,s)|$!†(0)|#〉 + ... .

Here there are contributions to the correlation function from the %+ meson, plus higher energy

terms. To evaluate the correlation functions at the hadronic level we use the formulae,

〈#|$!(0) |%(!p,s)〉 = ' (!(p,s)

〈%(!p,s)|$!†(0) |#〉 = '̄ ("!(p,s) ,

where ' and '̄ are the couplings of the interpolator to the % at the source and sink respectively and

p! = (E% ,!p). We demand that the spin of the vector meson is orthogonal to its physical momentum
because the vector meson current is conserved. The transversality condition is,

"
s

(!(p,s)("!(p,s) = −
(
g!! − p! p!

m2

)
.

Using this relation we find that at zero momentum,

G00(t,!0) = 0 ,

Gkl(t,!0) = ) kl' '̄ e−m% t + ... .
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Figure 1: Quark flow diagrams for the K∗ meson.

1.2 3-pt Correlation Function

The form factors are extracted from the hadronic matrix element 〈p′,s′|J* |p,s〉, shown di-
agrammatically in Fig. 1.2. We calculate each of the the quark sector contributions to the form

factors separately, i.e. in Fig. 1.2 we calculate this amplitude with the photon striking the light- and

heavy-quarks separately. The quark sector contributions are then combined to assemble observ-

ables. Following Brodsky and Hiller [3], for the pseudo-scalar mesons,

〈
p′|J* |p

〉
=

1

2
√
EpEp′

[p* + p′
* ]F1(Q2)

and for the vector mesons,

〈
p′,s′|J! |p,s

〉
=

1

2
√
EpEp′

( ′"* (p′,s′)(+ (p,s)J*!+ (p′, p)

J*!+ (p′, p) = −
{
G1(Q2)g*+ [p! + p′! ]+ G2(Q2) [g!+q* −g!*q+ ]+ G3(Q2)q+q*

p! + p′!

2M2

}
.

In our calculation the mesons initially have zero momentum and, after scattering with the photon,

one unit of momentum in the final state. The final momentum is in the x-direction. The covariant

vertex functions G1(Q2),G2(Q2), and G3(Q2) are related to the Sachs form factors [3] via,

GQ(Q2) = G1(Q2)−G2(Q2)+(1+
Q2

4m2
)G3(Q2) (1.1)

GM(Q2) = G2(Q2) (1.2)

GC(Q2) = G1(Q2)+
2

3

Q2

4m2
GQ(Q2) . (1.3)

In this simulation Q2 & 0.22 GeV2.
On the lattice we define the three point function,

G!*!(t2, t1,!p ′,!p) = "
!x1,!x2

e−i
!p′.(!x2−!x1)e−i!p.!x1〈#|$!(x2)J*(x1)$†!(0)|#〉

="
i, j
"
s,s′
e−Ei(t2−t1)e−Ejt1 〈#|$! |p′,s′〉〈p′,s′|J* |p,s〉〈p,s|$†! |#〉 ,
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where the interpolator creates a meson at the source, the current is inserted at an intermediate time

(time slice t1 = 14), and finally the state is annihilated at the sink at t2. We can show that the Sachs

form factors can be extracted from linear combinations of the ratios,

R!*!(p′, p) =

√√√√√√

〈
G!*!(!p′,!p, t, t1)

〉 〈
G!*!(!p,!p′, t, t1)

〉

〈
G!!(!p′, t)

〉〈
G!!(!p, t)

〉 .

In this notation ! is the Lorentz index of the interpolator at the sink, * is the Lorentz index on the

current insertion and ! is the Lorentz index of the interpolator source. It can be shown that,

GC(Q2) =
2

3

√
Em

E+m

(
R101+R202+R303

)

GM(Q2) =
√
Em

px

(
R133+R331

)

GQ(Q2) =
m
√
Em

p2x

(
2R101−R202−R303

)
.

The charge radius is defined in terms of the charge form factor as,

〈r2〉 = −6 ,

,Q2
G(Q2)

∣∣∣
Q2=0

.

Our lattice calculations are necessarily defined at finite Q2, but we continue to Q2 = 0 by assuming
GC has a monopole form,

GC(Q2) =

(
1

Q2

-2
+1

)
,

enabling the derivative to be taken. The lattice form factor calculation then defines -. Motivated

by the scaling of
GM(Q2)
GC(Q2) for baryons at small Q

2, we extrapolate GM(Q2) to Q2 = 0 by assuming,

GM(0) & GM(Q2)
GC(Q2)

,

for individual quark sectors. In terms of the magnitude of the electron charge e and the mass of the

mesonM, the magnetic moment is,

!1 = GM(0)
e

2M
.

Our simulations are done on a large 203×40 lattice, a = 0.128 fm with 380 gauge field con-

figurations. Our definition of the conserved current is O(a) improved and conserved [4, 5]. We use
the FLIC fermion action. For further details of the simulation parameters used in this calculation

see Zanotti et al. [6]. We note that the vector mesons are bound at all quark masses used in this

calculation.
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2. Results

We begin the discussion of our results with the charge radii of the vector and pseudo-scalar

mesons. From the quark model we would expect a hyperfine interaction between the quark and

anti-quark of the form
!.q·!.q̄
mqmq̄

. The interaction is repulsive where the spins are aligned, as in the

vector mesons, and attractive where the spins are anti-aligned, as in the pseudo-scalar mesons. In

Fig. 2 we show the charge radii of the vector and pseudo-scalar mesons. Indeed we find that the

Figure 2: Summary of the meson and proton charge radii.

charge radii of the vector mesons are consistently larger than the pseudo-scalar mesons, and in fact

similar to the charge radii of the proton.

Next in Fig. 3 we show the ratio of the light-quark contribution to the charge radii of the

strange and non-strange mesons. We find that there is no evidence of the environmental sensitiv-

ity in the light-quark contribution the pseudo-scalar mesons. However we do find clear evidence

of environmental sensitivity of the light-quark contribution to the vector mesons at our smaller

quark masses. The broadening of the charge distribution in the %+ is consistent with the hyperfine

repulsion discussed above.

Next we present our analysis of the magnetic moments of the vector mesons. At the SU(3)

flavour limit, the simple quark model predicts that the magnetic moment of the % meson in nuclear

magnetons is !% & 1.84!N , three times the magnetic moment of the - baryon. Our results are

consistent with this prediction.

To easily compare with previous lattice simulations [7], in Fig. 4 we report the g-factor of the

vector mesons. We note that our calculation is consistent with the previous lattice calculation.

Finally in Fig. 5 we show the quadrupole form factor of the % . We find that the quadrupole

form factor is less than zero indicating that the spatial distribution of charge within the % meson is

oblate. This is in accord with the findings of Alexandrou et al.[1].
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Figure 3: (Left) Ratio of the light-quark contribution to < r2 > fm2 in the pion and kaon. (Right) Ratio of

the light-quark contribution to < r2 > fm2 in the %+ and K∗+.

Figure 4: (Left) G-factor of the % meson. (Right) G-factor of the K∗ meson.

3. Conclusions

In conclusion, we find that the charge radii of the vector mesons are larger than the charge radii

of the pseudoscalar mesons. Indeed we find that the trend in the charge radius of the vector mesons

is similar to the charge radius of the proton. By evaluating the quark sector contributions to each

observable separately we are able to determine that there is significant environmental sensitivity

in the light-quark contributions to charge radii of the vector mesons. We find that the magnetic

moment of the % is consistent with quark model predictions at the SU(3) flavour limit, and with

previous lattice simulations. Finally we determine that the quadrupole form factor of the % meson

is negative which means that the distribution of charge in the vector mesons is oblate.
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Figure 5: %-meson quadrupole form factor at Q2 & 0.22 GeV2.
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