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We discuss the structure of the framed moduli space of Bogomolny monopoles for
arbitrary symmetry breaking and extend the definition of its stratification to the case
of arbitrary compact Lie groups. We show that each stratum is a union of submani-
folds for which we conjecture that the naturaf metric is hyper-Kaler. The
dimensions of the strata and of these submanifolds are calculated, and it is found
that for the latter, the dimension is always a multiple of four.28603 American
Institute of Physics.[DOI: 10.1063/1.1590056

I. INTRODUCTION

Recently there has been much interest in monopoles with nonmaximal symmetry breaking at
infinity. In particular questions have been raised as to when they are manifolds and when they
have hyper-Khler metrics. This note gathers together some mathematical results concerning the
structure of the moduli spaces and thiefrmetrics. These range from theorems which have been
proved in full generality through partially proved theorems to outright conjectures.

Recall that we generally expect that moduli spaces of solutions of the self-duality equations
and their reductions such as the Bogomolny equations and Nahm’s equations should be hyper-
Kahler manifolds. One reason for this is that formally such moduli spaces arise as hyger-Ka
quotients. To recall this, fix a compact, connected Lie gr@ypwith Lie algebrag, and consider
the spaced of G-connectiongvector potentialson the trivial G-bundle over flati*. By identi-

fying
ApdXp+Adx+AsdX,+ Azdxg
with the g® H-valued function
Ag+iA+jA,+KA;,

wherei, j, andk are unit quaternions4 becomes a quaternionic vector space. Formallgan

be equipped with the.? metric, making it a flat hyper-Kder manifold. Becaus&* is not
compact, the convergence of this metric will depend upon subjecting our connections to suitable
asymptotic conditions, and these will be considered in detail below. Setting this aside for the
moment, it is a straightforward exercise to check that the hypatakanoment map for the action

of the gauge groug on A is given by

A—F, e Q%(X,g)®@ImH.
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Hence the hyper-Kaer quotientA///G should be the same as the space of anti-self-dual connec-
tions divided by the action of the gauge group, and kifemetric will descend to define a
hyper-Kanler metric on the moduli space.

A monopole onRk? is a pairc=(A,®), whereA is a connection on the triviab-bundleE
—R3, and® is a section of the adjoint bundEX gg. The monopole satisfies the Bogomolny
equations

dA(I):*FA (11)

if and only if the connectiorPdx,+ A is anti-self-dual onRx R3. In particular, from this four-
dimensional point of viewsb cannot vanish at infinity, because it is independempfThus the
convergence of th&? metric and the nondegeneracy of the hypéhléa symplectic forms are
important issues in this case.

These issues were fully resolved whér- SU(2) by Atiyah and Hitchirf:they showed that
the moduli space offramed monopoles of chargk is, indeed, a complete hyper-Klar mani-
fold. Its dimension is & where the charge of the monopolekis

For a general compact Lie group of ranlt is expected that the moduli space of monopoles
with maximal symmetripreaking is a hyper-Kaer manifold although this has not been proved in
generality. Except for very simple low charge cases, there are mostly partial results which compute
the metric asymptotically near the edge of the moduli space; see, for example, Refs. 4, 5, and 17,
and references therein.

The real complications, however, arise when themoismaximal symmetry breakimghich is
our primary interest below. The case of @Jmonopoles with minimal symmetry breaking was
treated in detail in Ref. 7, but beyond this little seems to be known.

We shall present here a summary of the results discussed in the article: the reader will have to
refer forward for precise definitions.

The full moduli space of(framed monopoles of masg. and chargem is denoted by
M(u,u,[ #]=m). Here O u e g is arbitrary(maximalsymmetry breaking is precisely the con-
dition thatu should be regularandu is a unit vector inR3. m is a homotopy class, essentially a
string of integers. The boundary conditions imposed guarantee that forlseme

k
CI)(tu)z,u—ero(t*l) for t>0. (1.2

There is therefore a mag M(u, u,[ ¢]=m)— g which assign&k to (A,®). The imagel of e in
g is not the whole ofy, but rather a disjoint union o (u)-orbits

K=C(u)kiUC(m)koU---UC(m)ky. (13

It turns out that thek; areintegral elements ofg. The set of all monopolesA[®) with e(A, D)

€ C(u)k; is thejth stratumM;, say, of the moduli space. This was defined in a different way for
G=SU(r+1) in Ref. 19. In generalM; does not have dimension divisible by 4, so it cannot be
hyper-Kanler. However, if we define, fok e IC,

MU, . K) ={(A,®) e M(u,u,[ p]=m):e(A,P) =k} (1.4

[the moduli space of framed monopolestgpe (u,k)], then we shall see thab1(u,u,k) has
dimension divisible by 4 and the natural conjecture is that.thenetric makesM(u, «,k) into a
hyper-Kzhler manifold.

At least one of the strataM,, say, must be open, hence of the same dimension as
M(u,u,[ p]=m), but this stratum need not be hyperiar. If, however,C(u)k,=k;, then
M= M(u,u,kq) and then this straturis a candidate to be hyper-Kker. Notice more generally
that if k andk’ lie in C(u)k;, an elementge C(u) with ad(@)k=k’ can be regarded as a
constant gauge transformation which mapgu, u,k) diffeomorphically toM (u, u,k").
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In Sec. IV, magnetic chargems,,...,mg and holomorphic chargds,,...,h, ¢ are defined for
monopoles inM(u, u,k). The information in the magnetic charges is topological and is equiva-
lent to the homotopy class. In particular, the magnetic charges do not vary from stratum to
stratum. By contrast the holomorphic charges determine the stratym (The numbers of
magnetic charges is completely determined by the mass

We shall show that ifM(u, «,k) is nonempty, then the charges are all nonnegative, and that

dimM(u,u,k)=4(my+---+mg+h;+---+h,_o). (1.5
Dimensions of the strata and full moduli space are also determined in Sec. VI.

Il. THE MODULI SPACE AS A MANIFOLD

In this section we shall introduce various different monopole moduli spaces and explain
carefully which of them are smooth manifolds, and which are likely to admit hypateKanet-
rics. Throughout we shall be consideriggiclideanmonopoles, that is to say, monopoles on flat
R3. Note that the metric enters the Bogomolny equafibd) through the Hodge star operator.
Some work has also been done on hyperbolic monopoles, wiieis replaced by hyperbolic
three-spacét . It is expected that moduli spaces of hyperbolic monopoles will be diffeomorphic
to the corresponding moduli spaces of Euclidean monopoles, but this has not been proved in
general. On the other hand, the issue of natural metrics on moduli spaces of hyperbolic monopoles
is completely open: all that is known for certain is that tifemetric is infinite in this case.

There are two reasons why there are so many different monopole moduli spaces. The first is
that the monopoles must Heamed and this can be done either at a base-poinRinor “at
infinity.” The second has to do with the specification of the asymptotics of the Higgsdield

A. Notation
In order to discuss monopoles, we shall fix the following:

(i) G is a compact, connected, semi-simple Lie group of rankrhe complexification is
denotedG*® and Lie algebray.

(i) If aeg, O,Cg is the orhit ofa in g under the adjoint action of GC(a)CG is the
centralizer ofa, with Lie algebrac(a).

(iii) As a homogeneous spad®,=G/C(a)=G"/P,, whereP, is the appropriate parabolic
subgroup. The latter description gives the structure of a compact complex manifold.

(iv) w andk are commuting elements @f [ «,k]=0.

(v)  E—R3 will denote the trivial principalG-bundle overR®.

B. Boundary conditions and moduli spaces

The physically natural condition to impose on a solution of the Bogomolny equations is the
finite-energy condition

[ 1Fd= [ o< 2.1

We shall impose apparently rather stronger asymptotic conditions. It follows from the work of
Taubes ifG=SU(2), that (2.1) together with(1.1) implies these stronger conditions, but for
general groups this must remain a conjecture.

Following Jarvis, we assume the following.

(BC1) Along each straight line, there is a gauge in which

k 1
(D:M—Z'FO rl—+5

for all sufficiently larger.
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(BC2) In this same gauge,

k
qu)=?dl’+O I'Z_M)

for all sufficiently larger.

These conditions are closely related to the Bogomolny—Prasad—Somm@fsSdboundary
conditions of Ref. 12.

Define

C={(A,®):dyd=+F,, (A, P)satisfiesBC1 and BG2

Notice that we do not yet fixx andk: we merely assert that the boundary conditions are satisfied
for someelementsy andk satisfying

u#0, [u,k]=0. (2.2

Denote byg the group of all automorphisntsof E that preserve the boundary conditigins., g

and Vg have limits asr goes to infinity along any straight line, and the limiting values are
continuously differentiable when viewed as functions on the sphere at infifittgnG acts onC
and we would like to define the monopole moduli space as the quotieatC/G. This will have
singularities becausé does not act freely. In addition it will contain components of arbitrarily
high dimension. We shall now explain how these two problems are eliminated.

C. The degree of a monopole

The asymptotic value ob is a sectiong, say, of adE..), whereE., is the restriction oE to
the two-sphere at infinity. Since dgy) is a trivial bundle, we can view) as a continuous map
into g. By BC1, this takes values in the adjoint orl{, . This orbit is preserved by the action of
gauge transformationg on E.,, but g(¢)=ad(g) ¢, so that this map is not gauge-invariant.
However, its homotopy clas®=[ ¢] is gauge invariant, because,(G) =0, so that any gauge
transformation can be deformed to the identity. The homotopy cfaisscalled thedegreeof the
monopole. This discussion suggests the definition of spaces

C(O,.[o]=m),
where the adjoint orbit as well as the homotopy clasg @ire fixed. This is referred to as the set

of monopoles of masg and chargen. Note thatO,=G/C(u).

D. Radial scattering and interior framing

Let x e R® be any point. The moduli space of monopoles framex, aif massu and charge
m, is the quotient

M(X,0,,[¢]=m)=C(O,,[]=m)/G(X),
where
G(x)={geG:g(x)=1}.

In Ref. 15 Jarvis proved the following:
Theorem 2.1: There is a natural bijection

ry: M(x,0,,[¢]=m)—R(O,,m)

where the set on the RHS is the space of all holomorphic m%OM, with [v]=m.
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In defining’R(O,, ,m) recall from Sec. Il A thaD,, is in a natural way a complex manifold.
It is knowrP thatR(O, ,m) is a finite-dimensional smooth manifold, often referred to as a space
of rational maps. It follows that our framed moduli space can be identified with a smooth mani-
fold. It should be the case that is naturally a diffeomorphism, but to prove that one would have
to equipM(x,0,,,[ ¢]=m) with a smooth structure. Although this should be possible, we are not
aware of a detailed treatment of this issue.

E. Framing at infinity and parallel scattering

To frame monopoles “at infinity” we pick a poini e S?, viewed as the sphere at infinity in
R3. Returning to BC1, we define

Cu,p [ 1= ={(A,®) e C:limD(tu) = u,[ $]=m}
t

and
C(u,u,K)={(A,®) e C:®(tu)=p—k/2t+o(t™ 1)}
and introduce the corresponding gauge group

G(u)={geG:limg(tu)=1}.

t—oo
The corresponding moduli spaces are
M(u,pu,[p]=m)=C(u,u,[p]=m)/G(u) and M(u,k)=C(u,u,k)/G(u).

The first of these is called the moduli space(ftdmed monopoles with masg and degreen.
The second is called the moduli space(fthmed monopoles of type 4,k).

These can also be identified with spaces of rational maps:

Theorem 2.2:(a) There is a natural bijection ur:/\/l(u,,u,m)eﬁ(o”,m). (b) There is a
natural bijection ™, : M(u, x,k) —R(O i ,m).

Here ﬁ(OM,m)CR(OM ,m) is the set ofbasedrational maps, that is, those which semd
e S? to u. In part(b),

O,uk: G/H,uk: GC/P

uk» where H ,, =C(u)NC(k), (2.3

andP . is the corresponding parabolic subgroup.

Part(a) of this result was proved first by Donald$dior G=SU(2), then by Hurtubis¥ for
classical groups by a generalization of Donaldson’s approach. Both parts were proved for general
G by Jarvi$>**using parallel scattering to associate a rational map to a monopole, and nonlinear
analysis to invert this procedure.

We note in passing that Jarvis shows that the restrictiony &5 M (u, u,k) is the composition
of t,, with the projectionR(O ,,m)—R(G%/P,m).

Once again, it is not clear that smooth structures have been defined on these framed moduli
spaces. One conjectures that natural smooth structures should exist, such that these bijections are
diffeomorphisms.

As we indicated in the Introduction, it is the moduli spadeu, «,k) that have dimensions
divisible by 4 and which are therefore candidates to be hypéitdtapaces. In Proposition 6.2 the

dimension ofl"z(oﬂk,m) will be explicitly computed.

F. Discussion

Let x(t) =ut, and consider the bijection,,, for t large, of Theorem 2.1. It is tempting to
believe that this should approach the mgmf Theorem 2.2. However, they cannot be compared
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directly since they have different targets. But we could divide both sides by the appropriate groups
to get bijections

Ty :M(O,[¢]=m)—R(0,,m)/C(x) and Ty :M(O,,[$]=m)—R(O,,m)/G

and then compare them via the natural isomorphism induced by the inclusion of based maps into
unbased maps. A straightforward calculation shows that the linfit,0A,®) typically does not

exist because evaluated in coordinates it blows up. Some kind of renormalization or scaling must
be required to find the relationship between the limit gf, andT .

ll. THE L? METRIC

Formally, a tangent vector toA(®) in C is a pair A,P) satisfying the linearization aty, ®)
of the Bogomolny equations. THe? metric gives this vector length-squared equal to

| a0 (3.1
R

due to the noncompactness ¥, this need not converge. Looking back at BC1 and BC2, it is
clear that(3.1) cannot converge if the variatioh changesu or k in BC1. It is natural, therefore,
to focus onM(u,u,k) as the obvious candidate to carry a hypehl€a metric. Our first task is
to show that if the Bogomolny equations hold asymptotically, then the pak)(determines the
leading asymptotics of the monopole on the whole of the two-sphere at infinity.

We begin by noting that the boundary conditions imply that the connegtiestricts to give
a connectiora on E., and that BC1 gives

2
<D(tz)=¢(z)—7+0(t ), (3.2

where ¢ andf are smooth functions afe S? and the framing condition is

d(u)=pu, f(u)=k. (3.3

The Bogomolny equations reduce to
f
Vi=0, V¢=0, Fa=§dvol, (3.9

where dvol denotes the standard area-form of the unit two-sphere. A@4il) (satisfying(3.3)
and(3.4) are calledmonopole boundary data

We now prove that, up to gauge, the patr,t ) is completely determined by its valug (k/2)
at the base-point.

Proposition 3.1: Let(¢,f) and(¢’,f’) be boundary data for a monopole:

() Ifu and v are in &, then there is a &G such that¢(u)=ad(@)(4(v)) and f(u)
=ad@)(f(v)).

(i) If there is an he G such thatp(u)=ad(h) (¢’ (u)) and f(u)=ad()(f'(u)), then there is
a 9:S°—G such that¢9= ¢’ and f9=f'.

Proof: If ¢=0, this is a trivial case of the results of Ref. 1 classifying equivalence classes or
Yang—Mills connections over a Riemann surface. We follow the proof in Ref. 1. RecalEthat
—S?is a principalG-bundle. Thenp andf can be viewed as equivariant maps— g. Fix a point
poe E.. and let ¢(pgy) =w and f(py) =K. Because¢ and f are covariantly constant they are
constant along any horizontal path.d& P, we can joinp, to some pointpog with a horizontal
curve and thenrp(p)=ad(g)(«) andf(p)=ad(g)(k) as required.

From the discussion in the preceding paragraph it follows that we have a map
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(¢,F):Ex—0,u=G/H ., H,=C(u)NC(K).

HereO , is the orbit of (u,k). The preimage of the coskt,, i.e., the set of all pointp in E..
at which ¢(p)=u and f(p)=k, is a reduction of,, to H,, which we denote by . If p

€ E,, then any horizontal curve is also i, becausep andk are constant along horizontal
curves so the connection also reduce®}g .

BecauseS? is simply connected, standard results on reduction of bundles to their holonomy
subgroups can be uséfit follows from the Ambrose—Singer theorem that the holonomy sub-
group atpg is the subgrouHCH , obtained by exponentiating and thatE ,, reduces to a
bundleE, with structure groug.

For the final point we need to know thktis an integral element of the Lie algebra. This is
done in Ref. 9 and in a different fashion in Ref. 13. We proceed as follows. Begausg=0 the
closure of the subgroup generated by éxp{sK for anyt ands will be an Abelian subgroup of
G so a torus and hence inside a maximal torus contaikindf \ is any weight of this maximal
torus, we can form an associated line bundle which will have integer chern\dliagslt follows
that k is an integer element of and that it exponentiates to define a circle subgroup and a
homomorphismy:U(1)—G.

We have now reduced our original bundle to a subbuie S*> which is a circle bundle. It
has a connectiod and a curvaturd- with * F=k/2 a constant so that it is a circle bundle of
degree 1. IfA’ is another connection with curvatuf€ =F, thenA—A’=a with da=0 soa
=d(exp@)) for g:S>—U(1) and hence the connectioAsandA’ are equal after a gauge trans-
formation.

This gives us a method of constructing the original bundle, connection and Higgs field from
the datau andk. First take the standard() bundleQ— S? with its SU(2) invariant connection
and fixqg € Q in the fiber over the pointi. Let y:U(1)—G,,CG be the homomorphism defined
by exponentiatink. We can then fornQx G, the associated bundle, using the actiopkjz
=(qz x(z) k) for ze U(1). This inherits a connection and the Higgs field is defined by
é([a,k])=ad(K)(u). O]

Let C” denote the set of all monopole boundary dafaf() and letG” be the space of all
gauge transformations at infinity, that is mapss’—G. Define themoduli space of boundary
datato be the quotientM *=C*/G*. We have the boundary map

IM—M”, (3.9

which sends A,®) to the value of the Higgs field and curvature at infinity. Our reason for
introducing the boundary map is that we believe that the methods of Atiyah and Hitetrirbe
adapted to show that

Conjecture 3.2: Ifg(A,®)=9(A’,®"), then there is a gauge transformation g such thét A
—A’ and®9-d' are L2

The idea here is that if the condition holds, then for some gauge transforngatibfandd’
should agree up to orderrl/so that®9—®" will be square integrable. Similar considerations
should apply to the difference between the connections.

Let G”(u) be all gauge transformations which are the identity aind letC*(u,«,m) be all
pairs (¢, ) with ¢(u) = and[ ¢]=m. DenoteM “(u, u,m)=C"(u,u,m)/G*(u). We have the
commuting diagram

MU, u,m) —  MZ(u,u,m)

! !
M(O,m) — M”(O,m)

where both vertical maps are quotienting by the gr@fpm).
Conjecture 3.2 would imply that th&? metric is finite on each of the moduli spaces
M(u, u,k) of monopoles of type £,k). This suggests the following.
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Conijecture 3.3: The space®t(u,u,k) are hyper-Kdler manifolds

A natural approach to these conjectures is the analysis of the linearizatiah (A,®)
e M(u,u,k) of (1.1). Combined with the Coulomb gauge-fixing conditi@npecomes a coupled
Dirac operator o3,

D:C*(R3 HeHeadE))—C*(R3, He Head E)),

where H is regarded as the spin-bundle 6f. Unfortunately this operator is not “invertible at
infinity” and so it is not automatically a Fredholm operatorliA. Taubes analyzed it in detail
when G=SU(2), but ingeneral, rigorous results about this operator are not available. Nonethe-
less, it should be possible to find a suitable space of functions suc®thatomes a Fredholm
operator, with index calculable in terms of the type daigk). FormallyD is quaternionic, so its

L2 null space will automatically be a quaternionic vector space with compatible inner product. The
reader is referred to Ref. 2, Chaps. 3 and 4, for a detailed discussion of th& es86(2).

A. Group actions

Consider, the group of Euclidean transformationsivf, which is the semi-direct product of
SQ(3), the group of rotations anfi® the group of translations. As the monopole burile R3 is
trivial the group€ acts on the connection and Higgs field, preserves the Bogomolny equations and
commutes with gauge transformations so it acts on the full-unframed moduli space. In general this
action disturbs the framings. ¥e R®, then the subgroug, of transformations preserving,
which is isomorphic to S(), acts naturally on the moduli space of monopoles framed df
ue S?, then the subgroup of, of transformations preserving the line throughwhich is iso-
morphic to SO(2X R?, will act naturally on the moduli space of monopoles framed.at

As well as these straightforward actions the moduli sp&t@i, u,k) also carries an action of
the full group of Euclidean transformations. For this we need a different description of this moduli
space(cf. Ref. 2, pp. 15 and 16 Note that Proposition 3.1 shows tHatlefines a representation
of the circle inG, hence an associatg@d-bundle over the two-sphere. This carries a natural
SQO(3)-action and has a unique $&-equivariant connectiom and Higgs field¢ such that
¢(u)=pu andf(u)=k. The moduli spaceM(u,k) is now defined to consist of configurations
(A,®,q) where A, ¢) is a monopole andj is an isomorphism betweef( A,®) and (¢,f),
modulo the group of gauge transformations that approach the identity at infinity. ¥t(gnk)
has a natural S@)-action and can be shown to be diffeomorphich®(u, u,k). The subtlety is
[as in the cas&G=SU(2)] that the diffeomorphism between (u,k) and M(u,u,k) is not
equivariant with respect to the copy of SOR2$O(3) which fixes the direction.

B. Discussion

Assuming that thé.?> metric does define a genuine hyperkia metric onM(u,u,k), there
are many interesting open questions surrounding it. First of all, there is the issue of whether it is
complete for allu andk. Second, there are questions relating to variation of the parametard
k. It is natural to conjecture that the metrics will vary smoothly witlas long as the correspond-
ing orbit O, does not jump. An interesting conjecture of Lee, Weinberg, artfi Aggests that
these hyper-Klaler metrics should also behave well with respect to specializatipn o6 state the
conjecture, call a patj:[0,6]— g aregular deformation ofug=w(0) if w(t) is regular for all
t>0. Let M= M(u,u,k), and letg, be theL? metric on.M,.

Conjecture 3.4: Given an@+ uqe g, there is a regular deformatiop,, such that(M,,gy)
tends to(M,,gg) as t—0.

Note that Jarvi§ describes a “filling-out procedure” which associates to any holomorphic
mapu:Szﬂow< a new mapw:S’—G/T whereT is a maximal torus. This would appear to be
closely related to the idea of regular deformation of a general elemdnit it says nothing about
the behavior of the metrics.
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We have now filled in the details of our account in the Introduction up toEd), though we
have not yet shown thdt has the structure claimed {d.3). We turn to that in the next section.

IV. MAGNETIC AND HOLOMORPHIC CHARGES

We will now show how to calculate explicitly thmagnetic charge®f a monopole which
determine the homotopy classand theholomorphic chargesvhich determine the strata. We will
also make some conjectures about the possible values these can take.

In this section,u andk are as before. In additioff, is a maximal torus whose Lie algebta
contains bothu andk. Recall that a choice of Weyl chamb€&rin t gives rise to a set of simple
rootsay,...,a, and the corresponding fundamental weigkis... \, defined by

(aiNj)
(ai,ai)_éij' 4.9
We can always choose a fundamental Weyl chan@hesatisfying
al(lu‘)>01 e 1aS(/“L)>07 and aS+l(lu‘):01 LR ,ar(,u)=0, (42)

because this is just the condition thatis in the closure ofC and a particular ordering of the
simple roots.

We would like to apply the corresponding fundamental weights bait this is not possible as
we only know thatk is in the Lie algebra of the centralizer pf We can conjugat& by C(u)
until it is inside the torus but then we find tha C(u)k is not a single point but an orbit under
W, the subgroup of the Weyl group stabilising Our first result resolves this problem by

showing that we can pick out a unique elemkrdf tNC(u)k.
Proposition 4.1: Suppose that the moduli spaeu, u,k) is nonempty and we have fixed a
maximal torus containingu, a fundamental Weyl chamber C wigh in its closure and have

ordered the simple roots so they satisfy (4.2). Then there exists a uniquely determined k
e tNC(u)k, such that

as:1(K)=<0,. .. a,(k)=<0.
Moreover, we have;(k)=0 for j=1,...r.

We shall give the proof of this proposition in a moment. For now, we shall use it to define the
chargesof the monopole to be the non-negative integers

(K)o (K.
They are naturally divided intmagnetic charges
m;=x(K), ... m=xryKk)
and theholomorphic charges
h1=Xs+1(R), s 1hr—s:)\r(’|2)-

In some examples the simple roots have a natural ordering and it is convenient not to reorder them.
In that case we just choodeto be the uniquék e tNC(u)k such that wheneves; (1) =0 we

have «;(k)<0. We then say thak;(k) is a magnetic charge if;(1)>0 and a holomorphic
charge ifa;(u)=0.

The most important point to be made here is that it is easy to showrtf{@,,) =7° and the
magnetic charges determine the homotopy clasg thfe Higgs field at infinity(see, for example,
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Ref. 3. The magnetic charges therefore cannot change under continuous deformation of a mono-
pole. By contrast, the holomorphic charges can jump under continuous deformation of the mono-
pole.

Note that the strata in the moduli space are all those monopoles with theksame

As well as being non-negative the holomorphic charges satisfy the additional constraint that

ai(~k)s0 foralli=s+1,...r. This is equivalent to

S 2ai,aiys) : e, a))

— m:<0, for i=s+1,.... 4.3
1 (a14s, 014 l =1 <aj'aj> ]

We conjecture the following.

Conjecture 4.2: For a giveru there are monopoles with any collection of non-negative
magnetic charge¢m,, ... ms). Given a choice of magnetic charges there are monopoles with
any collection of holomorphic chargés,, ... h,_¢) satisfying (4.3).

It should be possible to prove this result using rational maps but it has eluded us. We can
prove, however, the following.

Proposition 4.3: For a givenu and choice of magnetic charges there are at most a finite
number of possible holomorphic charges satisfying (4.3)

We defer the proof to the next section but note that this gives the following.

Corollary 4.4: There are only a finite number of strata and in particular there must be an open
stratum

Note that this approach gives a nice picture in terms of Dynkin diagrams. For maximal
symmetry-breaking, all charges are magnétie., topological and the heuristic is that there are
m; fundamental monopoles of typefor eachi a node on the Dynkin diagram. For nonmaximal
symmetry breaking mark each nodwith «;(ux)=0. Now each Dynkin node still has associated
to it the non-negative integex;(k). This number is a magnetic chargg if i is unmarked, and
again the heuristic is that there arg fundamental monopoles of type If i is a marked node,
then )\{R) is a holomorphic charge. This labels the strata and can jump under continuous defor-
mation of the monopole. The possible holomorphic charges are constrained by inequalities which
can be deduced from the Dynkin diagram dAd).

A. Proof of Proposition 4.1

Let W, be the subgroup of the Weyl group fixingand note that it acts transitively on the set
of all fundamental Weyl chambers witha in their closure:®

To prove first that & exists we follow Jarvi§ and consider the conditiom(u—tk’)>0 for
large enough and anyk’ e tN C(u)k. As there are only a finite number of roots we can find an
€>0 such that for alt € (0,e] we have thatw(u—tk')=0 if and only if a(u)=0 and a(k’)
=0 anda(u—tk’)>0 implies a(k’")=0 anda(k’)<0. For any sucht choose a fundamental
Weyl chamber withu —tk’ in its closure. A&—0 we see that this has in its closure as well. If
this is not the fundamental Weyl chamber we first thought of we can movedteyV,, until it is
and then letkk=c(k’). Thenu—tk is in the closure of our fundamental Weyl chamber so that
ai(u)>0 fori=1,... s ande;(x)=0 anda;(k)<0 for j=s+1,....

We will see in a moment thak is unique but for now we show that;(k)=0 for all i
=1,...r.

Consideration of the twistor construction for monopoles shows ¢hahd f satisfy the fol-
lowing non-negativity constraint for any directiom. Choose any maximal toru¥ so that
¢(u),f(u) et. Choose a fundamental Weyl chamber whose closure conta{nd and let
aq, ..., be the corresponding simple roots. Define the fundamental weights. . \, by
(4.1). Then

\i(f(2))=0 forall i=1,...r
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independent of all the choices made. Note thist a conjugate ok under an element o (x) and
hence corresponds to thkefor some different monopole which also satisfies the positivity con-

straint. Hence we must hawg(k)=0 for alli=1,... r.
Consider lastly the uniquenesskf So assume we haleand (k) for oe W, and ;(k)

<0 andaj(a(l?))so for everyi=s+1,... r. LetV be the span of the roots, , . .. ,a,. This
is a root system with Weyl groupV,, . Let C;; be the inverse of the matri®;; =(«; ;). Then
both C andD are symmetric. Define

x:t—=V

by
r

(=2 a(hCjay.

Let oy be a simple root reflection fa+ 1<I<r. Then

r

X((T|(h))=j kzu (Tl(aj)(h)cjkak

r

_ h)— 2(aJ ,oq)c (h)
=X jk=s+1 (e ﬂl) ik
2ay(h)
:X(h)_ <a,| ,a|> a.
Moreover,

B 2(x(h),a)

Ul()((h))—)((h)—w
_ _ ' 2<ak!a|>
=x(h) jygﬁlcej(h)cjk—(ahal)
- 2a(h)
T
=x(o(h)).

It follows that if o W, , theny(a(k)) = o(x(K)). We also havéa; ,x(h))=a(h) so thaty(k)
and x(o(k)) are in the closure of the same Weyl chambevin Applying Humphreys’ 10.3
Lemma B? we see thaty(o(k))=o(x(k))=x(k) and hencea;(k—o(k))=0 for i=s
+1,...r. We have previously seen thaf(k— o(k))=0 fori=1,... s. Moreover, the span of
the\q, ... \gis orthogonal to the span of the;, , ... ,a,, So together they must sp&h and
hencek= o (k).

B. Proof of Proposition 4.3

Let € be the sum of all the positive roots which are in the span of the simple roots

@er1, ..., . Notice thate(k)<0. Recall® that a simple root reflection; permutes all the
positive roots except; which it sends to- «;. So ifs+1<i=<r, we haveo(€) = e—2¢; so that
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<E a@;)

(a,,a,)

So we have

=2 <<:.i'«.>> :;Z <<€ia'.>>“.§12“ 2 PNt 2 2N,

wherep;=0 because if &j<s we have(e, a;)<0. Applying e tok gives

r-s
0=<> hi=2 pim;
=1 =1

and, as each; is non-negative, this means there can only be a finite number of possibilities.

V. EXAMPLES

Let G=SU(N) and u be a diagonal matrix with eigenvalueg,,iu,, . . . i uq With multi-
plicities nq, ... ,ng and assume that,>u,>--->uy. Choose the usual fundamental Weyl
chamber. That is, ifl is any diagonal matrix with entrieigl,, ... ,idy, then it is in the funda-
mental Weyl chamber il;>d,>--->dy. Clearly this hasu in its closure. Define;(d)=d; .
Then the simple roots ar@,=x;,,—X; fori=1,... N—1. The fundamental weights satisfy

and a weight is magnetic if=n;,n,, ... ,ng_, and holomorphic otherwise.
Let C(N=C"g---@ (" be the correspondmg eigenvalue decompositiofifbfAssume that on
CNi the eigenvalues df are

kn1+~-+nj71+1$kn1+-~-+njfl+2$ o gkn1+--~+nj-
Thenk is the diagonal matrix with entriei&;, . . . ,iky.

Let M; be the stratum containingt(u,«,k). It was shown in Ref. 19 that

N
dim M;=42, (ky+---+k)+dim C(p)k,
i=1

and hence from the definition of the strata in the Introduction,

N
dim (M(U,M,k))=4; (k1++k|),

so the dimension is divisible by four as required for a hypemKamanifold. In Proposition 6.2
we shall show that this result is always true.

Notice that we could find a deformatiqu, of w« by choosingu, to be diagonal with entries
i uj(t) such that

#1(D)>uo(1)> pg(t) > > up(t),

and, of course, withu(0)= . It follows from known results on the moduli spate® that
dimM(u, uy, k) =dimM(u,u,K). In fact, the method used in Ref. 19 to calculate the dimension
formula shows thatM(u,u(t),k)) and M(u,u,k) are diffeomorphic spaces of holomorphic
maps. This result was generalized to arbitr@npy Jarvis'®
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VI. DIMENSIONS

In this section we compute the dimension of the moduli sp&t@!, «,m) by computing the
dimension ofR(O,, ,m). We shall also compute the dimensions of the strata and the moduli space

M(u, u,K) of monopoles of type £,k), by computing the dimension G&(O ,,,m).

Fix a maximal torusT, a fundamental Weyl chamber and a set of simple ragts. . . ,«, .
For a roota let g, be thea root space. Denote ¥ the standard Borel determined by this choice
of simple roots. That is the Lie algebra Bf contains the root space of every simple root. The
parabolicP is determined by the fact that its Lie algelpraontains the root spaces for the negative
rootSag;q, ... ,a.

If f:S>~G°/P is a holomorphic map, then we can use it to pull back the tangent bundle to
G°/P and the Riemann—Roch theorem tell us that

dim(HO(S%,f " X(TGY/P))) —dim(HY(S?, " X(TG%P)))=dim(G%/P)+c,(del f 1TG/P)),

where def{G%P) is the determinant line bundle 6f TG/ P andc, denotes the first Chern class.
Because the grou@ acts holomorphically oiG¢/P every element ofy defines a holomorphic
vector field onG®/P so we have a surjection of holomorphic vector bundles &?er

gxX SP—fITGY/P—0
and it follows from the short exact sequence in cohomology that
dim(HY(S?%,f"Y(TG%P)))=0.

The tangent space td~€(GC/P,m) at the functionf is just the subset of sections in
HO(S?,f~X(TG®/P)) which vanish at the base point, sBye G/P. This hasreal dimension

dimR(GS/P,m)=2(dim(H°(S?,f " Y(TG%P)))—dim(G%/P))=2c,(del f "*TG%/P)).

Each of the fundamental weighks, . .. A5 extend to one-dimensional representation$ of
and hence define homogeneous line bundlés;) over G¢P. The magnetic charges of a
holomorphic map f are my=—c,(f %(L()\;))). Choose k so that m=x;(k). Then
ci(fH(L(=N)))=x(K) for any weight.

Let € be the weight defined by the adjoint representatio® @h p. Then the weight defined
by the adjoint representation & on g/p is — e. The bundle def{(G%P) is then a homogeneous
bundle overG®/P induced by the character € so that

cy(f H(de(TGY/P))) =cy(f H(L(—€)))=e(k).
Hence
dimR(G/P,m)=2¢(k).
In the case of maximal symmetry breaking where the paratfvlis a BorelB
r
e=>, a=2> \;,
a>0 i=1

so that

r

dimR(G/B,m)=4>, m..
=1
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In the nonmaximal symmetry breaking case we can proceed further. Becamuaaveight we
know thate=ZX{_,—n;\; for some integers);. We also know that is a character oP so
invariant under the simple root reflections for i=s+1,... r. But oj(€)=€+n;a; so that we
must have

s
:2 —Ni\;
i=1

and hence

S

dimR(GY/P,m)=2>, n;m;.
=1

We can obtain some further information about the First we note that

<E ;)

<a’,,a',>

Also, if p is one-half the sum of the positive roots gmgis one-half the sum of the positive roots
a for whichg_,Cp, then we have that¢=—2p+2p, and hence

<2P 2Pp1a|> <ppiai>

<a|val> <aivai>

2(1 2

A

using the standard fact that=={_,\;. Hence

S

dim(7~€(G°/P,m))=4_Zl (1—2

e,

which agrees with the result in Ref. 20. So we have the following proposition.
Proposition 6.1: The dimension of the moduli spaeu,x,m) is

(Ppaa|>
(a, & |>

Notice that while the Lie theory guaranteess a weight, the same may not be truepgfand
hence expressions such as

i3 o-

(Ppa |>
(a,, i)

may not be integers. This is consistent with the fact that for nonmaximal symmetry breaking the
moduli space may not be hyper-Klar for the simple reason that its dimension is not a multiple
of four.

Next we calculate diﬂNQ(OMk,m) where P, is the parabolic subgroup containing all the

positive roots and the negative roatsvherea(u)=a(k)=0 and we let0 ,x=G°/P . This is
the parabolic subgroup occurring (8.3).
Thene is the sum of all these roots so that

e)=2> ak)

a>0

and we have
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S r—s
dimTQ(GC/PMk,k)=4(E m;+ >, hj)-
j=1

i=1
Hence we deduce the following.
Proposition 6.2: The dimension of the moduli spaefu, u,k) is

r—

4(251mi+j2j hj).

In particular it is divisible by four
Similarly for the strata, we have the following Corollary.
Corollary 6.3: The dimension of the stratuw(; containing M(u, u,k) is

+dimC(u) —dimC(x)NC(K).

S r—s
4(2 mi‘f’E hj
i=1 j=1
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