
PUBLISHED VERSION  

 

Murray, michael Kevin; Singer, M. A.  
A note on monopole moduli spaces, Journal of Mathematical Physics, 2003; 44 (8):3517-3531.  

© 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use 

requires prior permission of the author and the American Institute of Physics. 

 
The following article appeared in J. Math. Phys. 44, 3517 (2003) and may be found at 
http://link.aip.org/link/doi/10.1063/1.1590056 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/3625 

 

 

 

 

PERMISSIONS 

http://www.aip.org/pubservs/web_posting_guidelines.html 

The American Institute of Physics (AIP) grants to the author(s) of papers submitted to or 

published in one of the AIP journals or AIP Conference Proceedings the right to post and 

update the article on the Internet with the following specifications. 

On the authors' and employers' webpages:  

 There are no format restrictions; files prepared and/or formatted by AIP or its vendors 

(e.g., the PDF, PostScript, or HTML article files published in the online journals and 

proceedings) may be used for this purpose. If a fee is charged for any use, AIP 

permission must be obtained.  

 An appropriate copyright notice must be included along with the full citation for the 

published paper and a Web link to AIP's official online version of the abstract.  

 

31st March 2011 

 

 

 

date ‘rights url’ accessed / permission obtained: (overwrite text) 

http://link.aip.org/link/doi/10.1063/1.1590056
http://hdl.handle.net/2440/3625
http://www.aip.org/pubservs/web_posting_guidelines.html


ing at
n they
ng the
een

ations
hyper-
a

uitable
r the

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 8 AUGUST 2003

Downloaded 06 Apr 
A note on monopole moduli spaces
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We discuss the structure of the framed moduli space of Bogomolny monopoles for
arbitrary symmetry breaking and extend the definition of its stratification to the case
of arbitrary compact Lie groups. We show that each stratum is a union of submani-
folds for which we conjecture that the naturalL2 metric is hyper-Ka¨hler. The
dimensions of the strata and of these submanifolds are calculated, and it is found
that for the latter, the dimension is always a multiple of four. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1590056#

I. INTRODUCTION

Recently there has been much interest in monopoles with nonmaximal symmetry break
infinity. In particular questions have been raised as to when they are manifolds and whe
have hyper-Ka¨hler metrics. This note gathers together some mathematical results concerni
structure of the moduli spaces and theirL2 metrics. These range from theorems which have b
proved in full generality through partially proved theorems to outright conjectures.

Recall that we generally expect that moduli spaces of solutions of the self-duality equ
and their reductions such as the Bogomolny equations and Nahm’s equations should be
Kähler manifolds. One reason for this is that formally such moduli spaces arise as hyper-K¨hler
quotients. To recall this, fix a compact, connected Lie groupG, with Lie algebrag, and consider
the spaceA of G-connections~vector potentials! on the trivialG-bundle over flatR4. By identi-
fying

A0dx01A1dx11A2dx21A3dx3

with the g^ H-valued function

A01 iA11 jA21kA3 ,

wherei , j , andk are unit quaternions,A becomes a quaternionic vector space. Formally,A can
be equipped with theL2 metric, making it a flat hyper-Ka¨hler manifold. BecauseR4 is not
compact, the convergence of this metric will depend upon subjecting our connections to s
asymptotic conditions, and these will be considered in detail below. Setting this aside fo
moment, it is a straightforward exercise to check that the hyper-Ka¨hler moment map for the action
of the gauge groupG on A is given by

A°FA
1PV2~X,g! ^ Im H.

a!Electronic mail: mmurray@maths.adelaide.edu.au
b!Electronic mail: michael@maths.ed.ac.uk
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Hence the hyper-Ka¨hler quotientA///G should be the same as the space of anti-self-dual con
tions divided by the action of the gauge group, and theL2-metric will descend to define a
hyper-Kähler metric on the moduli space.

A monopole onR3 is a pairc5(A,F), whereA is a connection on the trivialG-bundleE
→R3, andF is a section of the adjoint bundleE3Gg. The monopolec satisfies the Bogomolny
equations

dAF5* FA ~1.1!

if and only if the connectionFdx01A is anti-self-dual onR3R3. In particular, from this four-
dimensional point of view,F cannot vanish at infinity, because it is independent ofx0 . Thus the
convergence of theL2 metric and the nondegeneracy of the hyper-Ka¨hler symplectic forms are
important issues in this case.

These issues were fully resolved whenG5SU(2) by Atiyah and Hitchin:2 they showed that
the moduli space of~framed! monopoles of chargek is, indeed, a complete hyper-Ka¨hler mani-
fold. Its dimension is 4k where the charge of the monopole isk.

For a general compact Lie group of rankr it is expected that the moduli space of monopo
with maximal symmetrybreaking is a hyper-Ka¨hler manifold although this has not been proved
generality. Except for very simple low charge cases, there are mostly partial results which co
the metric asymptotically near the edge of the moduli space; see, for example, Refs. 4, 5, a
and references therein.

The real complications, however, arise when there isnonmaximal symmetry breakingwhich is
our primary interest below. The case of SU~3! monopoles with minimal symmetry breaking wa
treated in detail in Ref. 7, but beyond this little seems to be known.

We shall present here a summary of the results discussed in the article: the reader will h
refer forward for precise definitions.

The full moduli space of~framed! monopoles of massm and chargem is denoted by
M(u,m,@f#5m). Here 0ÞmPg is arbitrary~maximalsymmetry breaking is precisely the con
dition thatm should be regular! andu is a unit vector inR3. m is a homotopy class, essentially
string of integers. The boundary conditions imposed guarantee that for somekPg,

F~ tu!5m2
k

2t
1o~ t21! for t@0. ~1.2!

There is therefore a mape:M(u,m,@f#5m)→g which assignsk to (A,F). The imageK of e in
g is not the whole ofg, but rather a disjoint union ofC(m)-orbits

K5C~m!k1øC~m!k2ø¯øC~m!kn . ~1.3!

It turns out that thekj are integral elements ofg. The set of all monopoles (A,F) with e(A,F)
PC(m)kj is the j th stratumMj , say, of the moduli space. This was defined in a different way
G5SU(r 11) in Ref. 19. In general,Mj does not have dimension divisible by 4, so it cannot
hyper-Kähler. However, if we define, forkPK,

M~u,m,k!5$~A,F!PM~u,m,@f#5m!:e~A,F!5k% ~1.4!

@the moduli space of framed monopoles oftype (m,k)], then we shall see thatM(u,m,k) has
dimension divisible by 4 and the natural conjecture is that theL2 metric makesM(u,m,k) into a
hyper-Kähler manifold.

At least one of the strata,M1 , say, must be open, hence of the same dimension
M(u,m,@f#5m), but this stratum need not be hyper-Ka¨hler. If, however,C(m)k15k1 , then
M15M(u,m,k1) and then this stratumis a candidate to be hyper-Ka¨hler. Notice more generally
that if k and k8 lie in C(m)kj , an elementgPC(m) with ad(g)k5k8 can be regarded as
constant gauge transformation which mapsM(u,m,k) diffeomorphically toM(u,m,k8).
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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In Sec. IV, magnetic chargesm1 ,...,ms and holomorphic chargesh1 ,...,hr 2s are defined for
monopoles inM(u,m,k). The information in the magnetic charges is topological and is equ
lent to the homotopy classm. In particular, the magnetic charges do not vary from stratum
stratum. By contrast the holomorphic charges determine the stratumMj . ~The numbers of
magnetic charges is completely determined by the massm.!

We shall show that ifM(u,m,k) is nonempty, then the charges are all nonnegative, and

dimM~u,m,k!54~m11¯1ms1h11¯1hr 2s!. ~1.5!

Dimensions of the strata and full moduli space are also determined in Sec. VI.

II. THE MODULI SPACE AS A MANIFOLD

In this section we shall introduce various different monopole moduli spaces and ex
carefully which of them are smooth manifolds, and which are likely to admit hyper-Ka¨hler met-
rics. Throughout we shall be consideringEuclideanmonopoles, that is to say, monopoles on fl
R3. Note that the metric enters the Bogomolny equation~1.1! through the Hodge star operato
Some work has also been done on hyperbolic monopoles, whereR3 is replaced by hyperbolic
three-spaceH 3. It is expected that moduli spaces of hyperbolic monopoles will be diffeomor
to the corresponding moduli spaces of Euclidean monopoles, but this has not been pro
general. On the other hand, the issue of natural metrics on moduli spaces of hyperbolic mon
is completely open: all that is known for certain is that theL2 metric is infinite in this case.

There are two reasons why there are so many different monopole moduli spaces. The
that the monopoles must beframed, and this can be done either at a base-point inR3 or ‘‘at
infinity.’’ The second has to do with the specification of the asymptotics of the Higgs fieldF.

A. Notation

In order to discuss monopoles, we shall fix the following:

~i! G is a compact, connected, semi-simple Lie group of rankr . The complexification is
denotedGc and Lie algebrag.

~ii ! If aPg, Oa,g is the orbit of a in g under the adjoint action of G.C(a),G is the
centralizer ofa, with Lie algebrac(a).

~iii ! As a homogeneous space,Oa5G/C(a)5Gc/Pa , wherePa is the appropriate paraboli
subgroup. The latter description givesOa the structure of a compact complex manifold.

~iv! m andk are commuting elements ofg, @m,k#50.
~v! E→R3 will denote the trivial principalG-bundle overR3.

B. Boundary conditions and moduli spaces

The physically natural condition to impose on a solution of the Bogomolny equations i
finite-energy condition

E uFAu25E udAFu2,`. ~2.1!

We shall impose apparently rather stronger asymptotic conditions. It follows from the wo
Taubes ifG5SU(2), that ~2.1! together with~1.1! implies these stronger conditions, but fo
general groups this must remain a conjecture.

Following Jarvis, we assume the following.
~BC1! Along each straight line, there is a gauge in which

F5m2
k

2r
1OS 1

r 11dD
for all sufficiently larger .
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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~BC2! In this same gauge,

dAF5
k

2r 2 dr 1OS 1

r 21dD
for all sufficiently larger .

These conditions are closely related to the Bogomolny–Prasad–Sommerfield~BPS! boundary
conditions of Ref. 12.

Define

C5$~A,F!:dAF5* FA , ~A,F!satisfies BC1 and BC2%.

Notice that we do not yet fixm andk: we merely assert that the boundary conditions are satis
for someelementsm andk satisfying

mÞ0, @m,k#50. ~2.2!

Denote byG the group of all automorphismsg of E that preserve the boundary conditions~i.e., g
and ¹g have limits asr goes to infinity along any straight line, and the limiting values
continuously differentiable when viewed as functions on the sphere at infinity!. ThenG acts onC
and we would like to define the monopole moduli space as the quotientM5C/G. This will have
singularities becauseG does not act freely. In addition it will contain components of arbitrar
high dimension. We shall now explain how these two problems are eliminated.

C. The degree of a monopole

The asymptotic value ofF is a sectionf, say, of ad(E`), whereE` is the restriction ofE to
the two-sphere at infinity. Since ad(E`) is a trivial bundle, we can viewf as a continuous map
into g. By BC1, this takes values in the adjoint orbitOm . This orbit is preserved by the action o
gauge transformationsg on E` , but g(f)5ad(g)f, so that this map is not gauge-invarian
However, its homotopy classm5@f# is gauge invariant, becausep2(G)50, so that any gauge
transformation can be deformed to the identity. The homotopy classm is called thedegreeof the
monopole. This discussion suggests the definition of spaces

C~Om ,@f#5m!,

where the adjoint orbit as well as the homotopy class off are fixed. This is referred to as the s
of monopoles of massm and chargem. Note thatOm5G/C(m).

D. Radial scattering and interior framing

Let xPR3 be any point. The moduli space of monopoles framed atx, of massm and charge
m, is the quotient

M~x,Om ,@f#5m!5C~Om ,@f#5m!/G~x!,

where

G~x!5$gPG:g~x!51%.

In Ref. 15 Jarvis proved the following:
Theorem 2.1:There is a natural bijection

r x :M~x,Om ,@f#5m!→R~Om ,m!

where the set on the RHS is the space of all holomorphic mapsv:S2→Om , with @v#5m.
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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In definingR(Om ,m) recall from Sec. II A thatOm is in a natural way a complex manifold
It is known6 thatR(Om ,m) is a finite-dimensional smooth manifold, often referred to as a sp
of rational maps. It follows that our framed moduli space can be identified with a smooth m
fold. It should be the case thatr x is naturally a diffeomorphism, but to prove that one would ha
to equipM(x,Om ,@f#5m) with a smooth structure. Although this should be possible, we are
aware of a detailed treatment of this issue.

E. Framing at infinity and parallel scattering

To frame monopoles ‘‘at infinity’’ we pick a pointuPS2, viewed as the sphere at infinity i
R3. Returning to BC1, we define

C~u,m,@f#5m!5$~A,F!PC: lim
t→`

F~ tu!5m,@f#5m%

and

C~u,m,k!5$~A,F!PC:F~ tu!5m2k/2t1o~ t21!%

and introduce the corresponding gauge group

G~u!5$gPG: lim
t→`

g~ tu!51%.

The corresponding moduli spaces are

M~u,m,@f#5m!5C~u,m,@f#5m!/G~u! and M~m,k!5C~u,m,k!/G~u!.

The first of these is called the moduli space of~framed! monopoles with massm and degreem.
The second is called the moduli space of~framed! monopoles of type (m,k).

These can also be identified with spaces of rational maps:
Theorem 2.2: (a) There is a natural bijection ru :M(u,m,m)→R̃(Om ,m). (b) There is a

natural bijection r̂u :M(u,m,k)→R̃(Omk ,m).
Here R̃(Om ,m),R(Om ,m) is the set ofbasedrational maps, that is, those which sendu

PS2 to m. In part ~b!,

Omk5G/Hmk5Gc/Pmk , where Hmk5C~m!ùC~k!, ~2.3!

andPmk is the corresponding parabolic subgroup.
Part~a! of this result was proved first by Donaldson8 for G5SU(2), then by Hurtubise11 for

classical groups by a generalization of Donaldson’s approach. Both parts were proved for g
G by Jarvis13,14 using parallel scattering to associate a rational map to a monopole, and non
analysis to invert this procedure.

We note in passing that Jarvis shows that the restriction ofr u to M(u,m,k) is the composition
of r̂ u with the projectionR̃(Omk ,m)→R̃(Gc/P,m).

Once again, it is not clear that smooth structures have been defined on these framed
spaces. One conjectures that natural smooth structures should exist, such that these bijec
diffeomorphisms.

As we indicated in the Introduction, it is the moduli spacesM(u,m,k) that have dimensions
divisible by 4 and which are therefore candidates to be hyper-Ka¨hler spaces. In Proposition 6.2 th
dimension ofR̃(Omk ,m) will be explicitly computed.

F. Discussion

Let x(t)5ut, and consider the bijectionr x(t) , for t large, of Theorem 2.1. It is tempting t
believe that this should approach the mapr u of Theorem 2.2. However, they cannot be compa
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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directly since they have different targets. But we could divide both sides by the appropriate g
to get bijections

r̃ u :M~O,@f#5m!→R̃~Om ,m!/C~m! and r̃ x(t) :M~Om ,@f#5m!→R~Om ,m!/G

and then compare them via the natural isomorphism induced by the inclusion of based ma
unbased maps. A straightforward calculation shows that the limit ofr̃ tu(A,F) typically does not
exist because evaluated in coordinates it blows up. Some kind of renormalization or scaling
be required to find the relationship between the limit ofr̃ x(t) and r̃ u .

III. THE L 2 METRIC

Formally, a tangent vector to (A,F) in C is a pair (Ȧ,Ḟ) satisfying the linearization at (A,F)
of the Bogomolny equations. TheL2 metric gives this vector length-squared equal to

E
R3

~ uȦu21uḞu2!dx; ~3.1!

due to the noncompactness ofR3, this need not converge. Looking back at BC1 and BC2, i
clear that~3.1! cannot converge if the variationḞ changesm or k in BC1. It is natural, therefore
to focus onM(u,m,k) as the obvious candidate to carry a hyper-Ka¨hler metric. Our first task is
to show that if the Bogomolny equations hold asymptotically, then the pair (m,k) determines the
leading asymptotics of the monopole on the whole of the two-sphere at infinity.

We begin by noting that the boundary conditions imply that the connectionA restricts to give
a connectiona on E` and that BC1 gives

F~ tz!5f~z!2
f ~z!

2t
1o~ t21!, ~3.2!

wheref and f are smooth functions ofzPS2 and the framing condition is

f~u!5m, f ~u!5k. ~3.3!

The Bogomolny equations reduce to

¹ f 50, ¹f50, Fa5
f

2
dvol, ~3.4!

where dvol denotes the standard area-form of the unit two-sphere. A pair (f, f ) satisfying~3.3!
and ~3.4! are calledmonopole boundary data.

We now prove that, up to gauge, the pair (f, f ) is completely determined by its value (m,k/2)
at the base-pointu.

Proposition 3.1: Let(f, f ) and (f8, f 8) be boundary data for a monopole:

(i) If u and v are in S2, then there is a gPG such thatf(u)5ad(g)(f(v)) and f(u)
5ad(g)( f (v)).

(ii) If there is an hPG such thatf(u)5ad(h)(f8(u)) and f(u)5ad(h)( f 8(u)), then there is
a g:S2→G such thatfg5f8 and fg5 f 8.

Proof: If f50, this is a trivial case of the results of Ref. 1 classifying equivalence class
Yang–Mills connections over a Riemann surface. We follow the proof in Ref. 1. Recall thaE`

→S2 is a principalG-bundle. Thenf and f can be viewed as equivariant mapsE`→g. Fix a point
p0PE` and let f(p0)5m and f (p0)5k. Becausef and f are covariantly constant they ar
constant along any horizontal path. IfpPP, we can joinp0 to some pointpg with a horizontal
curve and thenf(p)5ad(g)(m) and f (p)5ad(g)(k) as required.

From the discussion in the preceding paragraph it follows that we have a map
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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~f, f !:E`→Omk5G/Hmk , Hmk5C~m!ùC~k!.

HereOmk is the orbit of (m,k). The preimage of the cosetHmk , i.e., the set of all pointsp in E`

at which f(p)5m and f (p)5k, is a reduction ofE` to Hmk which we denote byEmk . If p
PEmk , then any horizontal curve is also inEmk becausef and k are constant along horizonta
curves so the connection also reduces toPmk .

BecauseS2 is simply connected, standard results on reduction of bundles to their holon
subgroups can be used.16 It follows from the Ambrose–Singer theorem that the holonomy s
group atp0 is the subgroupH,Hmk obtained by exponentiatingk and thatEmk reduces to a
bundleE0 with structure groupH.

For the final point we need to know thatk is an integral element of the Lie algebra. This
done in Ref. 9 and in a different fashion in Ref. 13. We proceed as follows. Because@m,k#50 the
closure of the subgroup generated by exp(tm1sk) for any t ands will be an Abelian subgroup of
G so a torus and hence inside a maximal torus containingH. If l is any weight of this maximal
torus, we can form an associated line bundle which will have integer chern classl(k). It follows
that k is an integer element ofg and that it exponentiates to define a circle subgroup an
homomorphismx:U(1)→G.

We have now reduced our original bundle to a subbundleQ→S2 which is a circle bundle. It
has a connectionA and a curvatureF with * F5k/2 a constant so that it is a circle bundle
degree 1. IfA8 is another connection with curvatureF85F, then A2A85a with da50 so a
5d(exp(g)) for g:S2→U(1) and hence the connectionsA andA8 are equal after a gauge tran
formation.

This gives us a method of constructing the original bundle, connection and Higgs field
the datam andk. First take the standard U~1! bundleQ→S2 with its SU~2! invariant connection
and fixq0PQ in the fiber over the pointu. Let x:U(1)→Gmk,G be the homomorphism define
by exponentiatingk. We can then formQ3xG, the associated bundle, using the action (q,k)z
5(qz,x(z)21k) for zPU(1). This inherits a connection and the Higgs field is defined
f̂(@q,k#)5ad(k)(m). h

Let C ` denote the set of all monopole boundary data (f, f ) and letG ` be the space of al
gauge transformations at infinity, that is mapsg:S2→G. Define themoduli space of boundary
data to be the quotientM `5C `/G `. We have the boundary map

]:M→M `, ~3.5!

which sends (A,F) to the value of the Higgs field and curvature at infinity. Our reason
introducing the boundary map is that we believe that the methods of Atiyah and Hitchin2 can be
adapted to show that

Conjecture 3.2: If](A,F)5](A8,F8), then there is a gauge transformation g such thatg

2A8 and Fg2F8 are L2.
The idea here is that if the condition holds, then for some gauge transformationg, Fg andF8

should agree up to order 1/r , so thatFg2F8 will be square integrable. Similar consideratio
should apply to the difference between the connections.

Let G `(u) be all gauge transformations which are the identity atu and letC `(u,m,m) be all
pairs (f, f ) with f(u)5m and@f#5m. DenoteM `(u,m,m)5C `(u,m,m)/G `(u). We have the
commuting diagram

M~u,m,m! → M `~u,m,m!

↓ ↓
M~O,m! → M `~O,m!

where both vertical maps are quotienting by the groupC(m).
Conjecture 3.2 would imply that theL2 metric is finite on each of the moduli space

M(u,m,k) of monopoles of type (m,k). This suggests the following.
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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Conjecture 3.3: The spacesM(u,m,k) are hyper-Ka¨hler manifolds.
A natural approach to these conjectures is the analysis of the linearizationD at (A,F)

PM(u,m,k) of ~1.1!. Combined with the Coulomb gauge-fixing condition,D becomes a coupled
Dirac operator onR3,

D:C`~R3,H^ H^ ad~E!!→C`~R3,H^ H^ ad~E!!,

whereH is regarded as the spin-bundle ofR3. Unfortunately this operator is not ‘‘invertible a
infinity’’ and so it is not automatically a Fredholm operator inL2. Taubes analyzed it in deta
whenG5SU(2), but ingeneral, rigorous results about this operator are not available. Non
less, it should be possible to find a suitable space of functions such thatD becomes a Fredholm
operator, with index calculable in terms of the type data (m,k). FormallyD is quaternionic, so its
L2 null space will automatically be a quaternionic vector space with compatible inner produc
reader is referred to Ref. 2, Chaps. 3 and 4, for a detailed discussion of the caseG5SU(2).

A. Group actions

ConsiderE, the group of Euclidean transformations ofR3, which is the semi-direct product o
SO~3!, the group of rotations andR3 the group of translations. As the monopole bundleE→R3 is
trivial the groupE acts on the connection and Higgs field, preserves the Bogomolny equation
commutes with gauge transformations so it acts on the full-unframed moduli space. In gene
action disturbs the framings. IfxPR3, then the subgroupEx of transformations preservingx,
which is isomorphic to SO~3!, acts naturally on the moduli space of monopoles framed atx. If
uPS2, then the subgroup ofEu of transformations preserving the line throughu, which is iso-
morphic to SO(2)3R2, will act naturally on the moduli space of monopoles framed atu.

As well as these straightforward actions the moduli spaceM(u,m,k) also carries an action o
the full group of Euclidean transformations. For this we need a different description of this m
space~cf. Ref. 2, pp. 15 and 16!. Note that Proposition 3.1 shows thatk defines a representatio
of the circle in G, hence an associatedG-bundle over the two-sphere. This carries a natu
SO~3!-action and has a unique SO~3!-equivariant connectiona and Higgs fieldf such that
f(u)5m and f (u)5k. The moduli spaceM(m,k) is now defined to consist of configuration
(A,F,q) where (A,f) is a monopole andq is an isomorphism between](A,F) and (f, f ),
modulo the group of gauge transformations that approach the identity at infinity. ThenM(m,k)
has a natural SO~3!-action and can be shown to be diffeomorphic toM(u,m,k). The subtlety is
@as in the caseG5SU(2)] that the diffeomorphism betweenM(m,k) and M(u,m,k) is not
equivariant with respect to the copy of SO(2),SO(3) which fixes the directionu.

B. Discussion

Assuming that theL2 metric does define a genuine hyper-Ka¨hler metric onM(u,m,k), there
are many interesting open questions surrounding it. First of all, there is the issue of wheth
complete for allm andk. Second, there are questions relating to variation of the parametersm and
k. It is natural to conjecture that the metrics will vary smoothly withm as long as the correspond
ing orbit Om does not jump. An interesting conjecture of Lee, Weinberg, and Yi18 suggests that
these hyper-Ka¨hler metrics should also behave well with respect to specialization ofm. To state the
conjecture, call a pathm:@0,d#→g a regular deformation ofm05m(0) if m(t) is regular for all
t.0. Let Mt5M(u,m t ,k), and letgt be theL2 metric onMt .

Conjecture 3.4: Given any0Þm0Pg, there is a regular deformationm t , such that(Mt ,gt)
tends to(M0 ,g0) as t→0.

Note that Jarvis13 describes a ‘‘filling-out procedure’’ which associates to any holomorp
mapv:S2→Om,k a new mapṽ:S2→G/T whereT is a maximal torus. This would appear to b
closely related to the idea of regular deformation of a general elementm, but it says nothing abou
the behavior of the metrics.
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



.

ll

r
y

a

ned k

e the

r them.

3525J. Math. Phys., Vol. 44, No. 8, August 2003 A note on monopole moduli spaces

Downloaded 06 Apr 
We have now filled in the details of our account in the Introduction up to Eq.~1.4!, though we
have not yet shown thatK has the structure claimed in~1.3!. We turn to that in the next section

IV. MAGNETIC AND HOLOMORPHIC CHARGES

We will now show how to calculate explicitly themagnetic chargesof a monopole which
determine the homotopy classm and theholomorphic chargeswhich determine the strata. We wi
also make some conjectures about the possible values these can take.

In this section,m andk are as before. In addition,T is a maximal torus whose Lie algebrat
contains bothm andk. Recall that a choice of Weyl chamberC in t gives rise to a set of simple
rootsa1 ,...,a r and the corresponding fundamental weightsl1 ,...,l r defined by

2
^a i ,l j&

^a i ,a i&
5d i j . ~4.1!

We can always choose a fundamental Weyl chamberC satisfying

a1~m!.0, . . . ,as~m!.0, and as11~m!50, . . . ,a r~m!50, ~4.2!

because this is just the condition thatm is in the closure ofC and a particular ordering of the
simple roots.

We would like to apply the corresponding fundamental weights tok but this is not possible as
we only know thatk is in the Lie algebra of the centralizer ofm. We can conjugatek by C(m)
until it is inside the torus but then we find thattùC(m)k is not a single point but an orbit unde
Wm the subgroup of the Weyl group stabilisingm. Our first result resolves this problem b
showing that we can pick out a unique elementk̃ of tùC(m)k.

Proposition 4.1: Suppose that the moduli spaceM(u,m,k) is nonempty and we have fixed
maximal torus containingm, a fundamental Weyl chamber C withm in its closure and have

ordered the simple roots so they satisfy (4.2). Then there exists a uniquely determi˜

PtùC(m)k, such that

as11~ k̃!<0, . . . ,a r~ k̃!<0.

Moreover, we havel j ( k̃)>0 for j 51,...,r .
We shall give the proof of this proposition in a moment. For now, we shall use it to defin

chargesof the monopole to be the non-negative integers

l1~ k̃!, . . . ,l r~ k̃!.

They are naturally divided intomagnetic charges

m15l1~ k̃!, . . . ,ms5ls~ k̃!

and theholomorphic charges:

h15ls11~ k̃!, . . . ,hr 2s5l r~ k̃!.

In some examples the simple roots have a natural ordering and it is convenient not to reorde
In that case we just choosek̃ to be the uniquek̃PtùC(m)k such that whenevera i(m)50 we
have a i( k̃)<0. We then say thatl i( k̃) is a magnetic charge ifa i(m).0 and a holomorphic
charge ifa i(m)50.

The most important point to be made here is that it is easy to show thatp2(Om)5Zs and the
magnetic charges determine the homotopy class off the Higgs field at infinity~see, for example,
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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Ref. 3!. The magnetic charges therefore cannot change under continuous deformation of a
pole. By contrast, the holomorphic charges can jump under continuous deformation of the
pole.

Note that the strata in the moduli space are all those monopoles with the samek̃.
As well as being non-negative the holomorphic charges satisfy the additional constrain

a i( k̃)<0 for all i 5s11, . . . ,r . This is equivalent to

(
l 51

r 2s
2^a i ,a l 1s&

^a l 1s ,a l 1s&
hl1(

j 51

s
2^a i ,a j&

^a j ,a j&
mj<0, for i 5s11, . . . ,r . ~4.3!

We conjecture the following.
Conjecture 4.2: For a givenm there are monopoles with any collection of non-negat

magnetic charges(m1 , . . . ,ms). Given a choice of magnetic charges there are monopoles
any collection of holomorphic charges(h1 , . . . ,hr 2s) satisfying (4.3).

It should be possible to prove this result using rational maps but it has eluded us. W
prove, however, the following.

Proposition 4.3: For a givenm and choice of magnetic charges there are at most a fin
number of possible holomorphic charges satisfying (4.3).

We defer the proof to the next section but note that this gives the following.
Corollary 4.4: There are only a finite number of strata and in particular there must be an o

stratum.
Note that this approach gives a nice picture in terms of Dynkin diagrams. For max

symmetry-breaking, all charges are magnetic~i.e., topological! and the heuristic is that there ar
mi fundamental monopoles of typei for eachi a node on the Dynkin diagram. For nonmaxim
symmetry breaking mark each nodei with a i(m)50. Now each Dynkin node still has associat
to it the non-negative integerl i( k̃). This number is a magnetic chargemi if i is unmarked, and
again the heuristic is that there aremi fundamental monopoles of typei . If i is a marked node,
thenl i( k̃) is a holomorphic charge. This labels the strata and can jump under continuous
mation of the monopole. The possible holomorphic charges are constrained by inequalities
can be deduced from the Dynkin diagram and~4.3!.

A. Proof of Proposition 4.1

Let Wm be the subgroup of the Weyl group fixingm and note that it acts transitively on the s
of all fundamental Weyl chambers withm in their closure.10

To prove first that ak̃ exists we follow Jarvis13 and consider the conditiona(m2tk8).0 for
large enought and anyk8PtùC(m)k. As there are only a finite number of roots we can find
e.0 such that for alltP(0,e# we have thata(m2tk8)50 if and only if a(m)50 anda(k8)
50 anda(m2tk8).0 implies a(k8)50 anda(k8),0. For any sucht choose a fundamenta
Weyl chamber withm2tk8 in its closure. Ast→0 we see that this hasm in its closure as well. If
this is not the fundamental Weyl chamber we first thought of we can move it bysPWm until it is
and then letk̃5s(k8). Thenm2t k̃ is in the closure of our fundamental Weyl chamber so t
a i(m).0 for i 51, . . . ,s anda j (m)50 anda j ( k̃)<0 for j 5s11, . . . ,r .

We will see in a moment thatk̃ is unique but for now we show thatl i( k̃)>0 for all i
51, . . . ,r .

Consideration of the twistor construction for monopoles shows thatf and f satisfy the fol-
lowing non-negativity constraint for any directionu. Choose any maximal torusT so that
f(u), f (u)Pt. Choose a fundamental Weyl chamber whose closure containsf(u) and let
a1 , . . . ,a r be the corresponding simple roots. Define the fundamental weightsl1 , . . . ,l r by
~4.1!. Then

l i~ f ~z!!>0 for all i 51, . . . ,r
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independent of all the choices made. Note thatk̃ is a conjugate ofk under an element ofC(m) and
hence corresponds to thek for some different monopole which also satisfies the positivity c
straint. Hence we must havel i( k̃)>0 for all i 51, . . . ,r .

Consider lastly the uniqueness ofk̃. So assume we havek̃ ands( k̃) for sPWf anda j ( k̃)
<0 anda j (s( k̃))<0 for everyi 5s11, . . . ,r . Let V be the span of the rootsas11 , . . . ,a r . This
is a root system with Weyl groupWm . Let Ci j be the inverse of the matrixDi j 5^a i ,a j&. Then
both C andD are symmetric. Define

x:t→V

by

x~h!5 (
j ,k5s11

r

a j~h!Cjkak .

Let s l be a simple root reflection fors11< l<r . Then

x~s l~h!!5 (
j ,k5s11

r

s l~a j !~h!Cjkak

5x~h!2 (
j ,k5s11

r
2^a j ,a l&

^a l ,a l&
Cjkak~h!

5x~h!2
2a l~h!

^a l ,a l&
a l .

Moreover,

s l~x~h!!5x~h!2
2^x~h!,a l&

^a l ,a l&

5x~h!2 (
j ,k5s11

r

a j~h!Cjk

2^ak ,a l&

^a l ,a l&

5x~h!2
2a l~h!

^a l ,a l&
a l

5x~s l~h!!.

It follows that if sPWm , thenx(s( k̃))5s(x( k̃)). We also havêa l ,x(h)&5a l(h) so thatx( k̃)
and x(s( k̃)) are in the closure of the same Weyl chamber inV. Applying Humphreys’ 10.3
Lemma B10 we see thatx(s( k̃))5s(x( k̃))5x( k̃) and hencea i( k̃2s( k̃))50 for i 5s

11, . . . ,r . We have previously seen thatl i( k̃2s( k̃))50 for i 51, . . . ,s. Moreover, the span o
the l1 , . . . ,ls is orthogonal to the span of theas11 , . . . ,a r , so together they must spant* and
hencek̃5s( k̃).

B. Proof of Proposition 4.3

Let e be the sum of all the positive roots which are in the span of the simple r
as11 , . . . ,a r . Notice thate( k̃)<0. Recall10 that a simple root reflections i permutes all the
positive roots excepta i which it sends to2a i . So if s11< i<r , we haves i(e)5e22a i so that
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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2
^e,a i&

^a i ,a i&
52.

So we have

e5(
j 51

r

2
^e,a i&

^a i ,a i&
l i5(

j 51

s

2
^e,a i&

^a i ,a i&
l i1 (

i 5s11

r

2l i5(
j 51

s

2pjl j1 (
i 5s11

r

2l i ,

wherepj>0 because if 1< j <s we have^e,a j&<0. Applying e to k̃ gives

0<(
i 51

r 2s

hi<(
j 51

s

pjmj

and, as eachhj is non-negative, this means there can only be a finite number of possibilitie

V. EXAMPLES

Let G5SU(N) and m be a diagonal matrix with eigenvaluesim1 ,im2 , . . . ,imq with multi-
plicities n1 , . . . ,nq and assume thatm1.m2.•••.mq . Choose the usual fundamental We
chamber. That is, ifd is any diagonal matrix with entriesid1 , . . . ,idN , then it is in the funda-
mental Weyl chamber ifd1.d2.•••.dN . Clearly this hasm in its closure. Definexj (d)5dj .
Then the simple roots area i5xi 112xi for i 51, . . . ,N21. The fundamental weights satisfy

l j~d!5d11¯ 1dj

and a weight is magnetic ifj 5n1 ,n2 , . . . ,nq21 and holomorphic otherwise.
Let CN5Cn1%¯% Cnq be the corresponding eigenvalue decomposition ofCN. Assume that on

Cnj the eigenvalues ofk are

kn11¯1nj 2111<kn11¯1nj 2112<•••<kn11¯1nj
.

Then k̃ is the diagonal matrix with entriesik1 , . . . ,ikN .
Let Mj be the stratum containingM(u,m,k). It was shown in Ref. 19 that

dim Mj54(
i 51

N

~k11¯1ki !1dim C~m!k,

and hence from the definition of the strata in the Introduction,

dim ~M~u,m,k!!54(
i 51

N

~k11¯1ki !,

so the dimension is divisible by four as required for a hyper-Ka¨hler manifold. In Proposition 6.2
we shall show that this result is always true.

Notice that we could find a deformationm t of m by choosingm t to be diagonal with entries
im j (t) such that

m1~ t !.m2~ t !.m3~ t !.¯.mN~ t !,

and, of course, withm(0)5m. It follows from known results on the moduli spaces12,20 that
dimM(u,m t ,k)5dimM(u,m,k). In fact, the method used in Ref. 19 to calculate the dimens
formula shows thatM(u,m(t),k)) and M(u,m,k) are diffeomorphic spaces of holomorph
maps. This result was generalized to arbitraryG by Jarvis.13
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VI. DIMENSIONS

In this section we compute the dimension of the moduli spaceM(u,m,m) by computing the

dimension ofR̃(Om ,m). We shall also compute the dimensions of the strata and the moduli s

M(u,m,k) of monopoles of type (m,k), by computing the dimension ofR̃(Omk ,m).
Fix a maximal torusT, a fundamental Weyl chamber and a set of simple rootsa1 , . . . ,a r .

For a roota let ga be thea root space. Denote byB the standard Borel determined by this choi
of simple roots. That is the Lie algebra ofB contains the root space of every simple root. T
parabolicP is determined by the fact that its Lie algebrap contains the root spaces for the negati
rootsas11 , . . . ,a r .

If f :S2→Gc/P is a holomorphic map, then we can use it to pull back the tangent bund
Gc/P and the Riemann–Roch theorem tell us that

dim~H0~S2, f 21~TGc/P!!!2dim~H1~S2, f 21~TGc/P!!!5dim~Gc/P!1c1~det~ f 21TGc/P!!,

where det(TGc/P) is the determinant line bundle off 21TGc/P andc1 denotes the first Chern clas
Because the groupG acts holomorphically onGc/P every element ofg defines a holomorphic
vector field onGc/P so we have a surjection of holomorphic vector bundles overS2

g3S2→ f 21TGc/P→0

and it follows from the short exact sequence in cohomology that

dim~H1~S2, f 21~TGc/P!!!50.

The tangent space toR̃(Gc/P,m) at the function f is just the subset of sections i
H0(S2, f 21(TGc/P)) which vanish at the base point, sayPPGc/P. This hasreal dimension

dimR~Gc/P,m!52~dim~H0~S2, f 21~TGc/P!!!2dim~Gc/P!!52c1~det~ f 21TGc/P!!.

Each of the fundamental weightsl1 , . . . ,ls extend to one-dimensional representations oP
and hence define homogeneous line bundlesL(l i) over Gc/P. The magnetic charges of
holomorphic map f are mi52c1( f 21(L(l i))). Choose k̃ so that mi5l i( k̃). Then
c1( f 21(L(2l)))5l( k̃) for any weightl.

Let e be the weight defined by the adjoint representation ofP on p. Then the weight defined
by the adjoint representation ofP on g/p is 2e. The bundle det(T(Gc/P) is then a homogeneou
bundle overGc/P induced by the character2e so that

c1~ f 21~det~TGc/P!!!5c1~ f 21~L~2e!!!5e~ k̃!.

Hence

dimR̃~Gc/P,m!52e~ k̃!.

In the case of maximal symmetry breaking where the parabolicP is a BorelB

e5 (
a.0

a52(
i 51

r

l i ,

so that

dimR̃~G/B,m!54(
i 51

r

mi .
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In the nonmaximal symmetry breaking case we can proceed further. Becausee is a weight we
know that e5( i 51

r 2nil i for some integersni . We also know thate is a character ofP so
invariant under the simple root reflectionss i for i 5s11, . . . ,r . But s j (e)5e1nja j so that we
must have

e5(
i 51

s

2nil i

and hence

dimR̃~Gc/P,m!52(
i 51

s

nimi .

We can obtain some further information about theni . First we note that

ni522
^e,a i&

^a i ,a i&
.

Also, if r is one-half the sum of the positive roots andrp is one-half the sum of the positive roo
a for which g2a,p, then we have thate522r12rp and hence

ni52
^2r22rp ,a i&

^a i ,a i&
52S 122

^rp ,a i&

^a i ,a i&
Dl i

using the standard fact thatr5( i 51
r l i . Hence

dim~R̃~Gc/P,m!!54(
i 51

s S 122
^rp ,a i&

^a i ,a i&
Dmi ,

which agrees with the result in Ref. 20. So we have the following proposition.
Proposition 6.1: The dimension of the moduli spaceM(u,m,m) is

4(
i 51

s S 122
^rp ,a i&

^a i ,a i&
Dmi .

Notice that while the Lie theory guaranteesr is a weight, the same may not be true ofrp and
hence expressions such as

2
^rp ,a i&

^a i ,a i&

may not be integers. This is consistent with the fact that for nonmaximal symmetry breakin
moduli space may not be hyper-Ka¨hler for the simple reason that its dimension is not a multi
of four.

Next we calculate dimR̃(Omk ,m) where Pmk is the parabolic subgroup containing all th
positive roots and the negative rootsa wherea(m)5a( k̃)50 and we letOmk5Gc/Pmk . This is
the parabolic subgroup occurring in~2.3!.

Thene is the sum of all these roots so that

e~ k̃!5 (
a.0

a~ k̃!

and we have
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dimR̃~Gc/Pmk ,k!54S (
i 51

s

mi1(
j 51

r 2s

hj D .

Hence we deduce the following.
Proposition 6.2: The dimension of the moduli spaceM(u,m,k) is

4S (
i 51

s

mi1(
j 51

r 2s

hj D .

In particular it is divisible by four.
Similarly for the strata, we have the following Corollary.
Corollary 6.3: The dimension of the stratumMj containingM(u,m,k) is

4S (
i 51

s

mi1(
j 51

r 2s

hj D 1dimC~m!2dimC~m!ùC~k!.
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