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On the continuum limit of fermionic topological charge
in lattice gauge theory
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It is proved that the fermionic topological charge of Bl lattice gauge fields on

the four-torus, given in terms of a spectral flow of the Hermitian Wilson—Dirac
operator or, equivalently, as the index of the overlap Dirac operator, reduces to the
continuum topological charge in the classical continuum limit when the parameter
mg is in the physical region @€@my<2. © 2001 American Institute of Physics.
[DOI: 10.1063/1.1415087

[. INTRODUCTION

Let T* denote the Euclidean four-torus with fixed edge lengtland fundamental domain
[0L]*CR* A gauge potential on an SN) bundle overT* can be viewed as an @)-valued
gauge fieldA ,(x) on R* satisfying

A, (x+Le,)=Q(X,»)A, (X)X v) +Q(X,v)d,0(x,v) "1, (1.1

wheree, is the unit vector in the positive-direction andQ)(x,v), »=1,2,3,4, are the SW)-
valued monodromy fields which specify the principal SWbundle overT4. These also satisfy a
cocycle condition which ensures thaf(x+Le,+Le,) is unambiguous and that E@.4) in this
work is consistent. It is always possible to make a gauge transformation s (Rat) =1 for
v=1,2,3 andQ(x,4) is periodic inXy,X,,X3. Then for fixedx, Q(x,4) determines a map°
— SU(N). The degree of this mgpvhich is independent of, since()(x,4) depends smoothly on
X4] equals the Pontryargin number of the 8l bundle overT*. The Pontryargin number of the
bundle is encoded in the gauge field as its topological charge:

-1 -1 ,
Q:WLAtr(F/\F)=Ezf Ad*Xe 1o tN(F () F (X)) (1.2)

The sections/(x) in the standard spinor bundle ovéf twisted by the SUN) bundle can be
viewed as spinor fields oR* satisfying

P(x+Le,)=Q(X,v)h(X). 1.3
The Dirac operatop”= y*(d,+A,) acts on these, and the Index Theotagives
Q=index". (1.9

The index” is equal to the spectral flow of the Hermitian operatoys(i #*—m) asm increases
from any negative to any positive valjiaote that eigenvalues can only cross the originmat
=0 since g(id—m))2=42+m?.]

The spectral flow description @ motivates a fermionic definition of topological char@e,
in lattice gauge theor§;* which has been extensively studied numerically in its various guises;
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see, e.g., Refs. 2 and 4—11. The purpose of this article is to analytically prou@ thetduces to
Q in the classical continuum limi{This result was announced in Ref. 12 although the argument
we give here is simpler and more direct than the one sketched)there.

II. STATEMENT OF THE MAIN RESULT

Put a hyper-cubic lattice oR* with sitesaZ*. We consider only the lattice spacingsfor
which L/a is a whole number. Furthermore, we restrict to lattice spacings with the property
a,Z%Ca,z* for a,<a,. This implies that ifxe R* is a lattice site in the lattice with spacirg
then it is also a lattice site in all the other lattices with spacigia. In the following, in
statements concernir— 0 limits (in particular Proposition 2 to followthe variablex always
denotes such a point iR*; it is fixed in R* and does not change as we go from one lattice to
another.

The lattice transcript oA,

U#(x)zTexp( folaA#(xHaeM)dt) (2.1

(T=t—ordering), satisfies
U, (x+Le,)=Q(x,»U,(x)Q(x+ae,,») L (2.2

Given such a lattice, lef denote the infinite-dimensional complex vectorspace of lattice spinor
fields ¥(x) (i.e., functions on the lattice sites taking valuesGfA®CN) and define the inner
product

(P, =a% 2 () (), (2.3
>(€aZ4

where a contraction of spinor and color indices is implied. Het C denote the Hilbert space of
spinor fields with||/||<e and letC,_ CC denote the finite-dimensional subspace of spinor fields
satisfying the lattice version dfl.3):

Y(x+Le,)=Q(x,v)y(x), VxeaZ® (2.9

The fields¢ e C_ are determined by their restriction 18, := the set of lattice sites contained in
[0,L)*CR* We define an inner product if} by

(r,g2h=a" 2, §a(x)* gl (2.5

The covariant forwardbackward finite difference operators (aXVlt((l/a) V) are defined o
by

V, () =U,(x)¢(x+ae,) = §(x), (2.6

V, (X)=(x)— U, (x—ae,) 'y(x—ae,). (2.7

These are boundedWiHsZ) and therefore map( to H. They also preservé?.4) and therefore
map(C, to C, . Note that

(V)*=-V] (2.9

"

onH andC, . The lattice version of#” is the Wilson—Dirac operator:
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1
?A)’ r>0, (2.9

1 r
DWZIEW'F Ea

where (14)V=3,y*3(V,+V,) is the naive lattice Dirac operator and #iyA
=(1a®)2,(V,+V,))=(1/a®)2,(V,)*V, =(1/a®) =,(V,)*V,, is the lattice Laplace opera-
tor. We are following the mathmatical convention where #té& are anti-Hermitiarithis explains
the factori ini(1/a) ¥ in (2.9 which is not usually present in the physics literature whereytte
are Hermitian. ThenV is Hermitian due td2.8) and A is Hermitian and positive.The Wilson
term, i.e., the second term {8.9), which formally vanishes in tha— 0 limit, is included to avoid
the fermion doubling problem: a degeneracy of the nullspac® afhich is a lattice artifact
unrelated to the continuum thedry*“] The lattice version ofys(i #— m) is the Hermitian operator

(/a)H,,:
1 rm
aHm: Vs DW_? ) (2.10
Hn=ys(iV+r(zA—m)). (2.10)

It can be shown that the spectrumlaf, is symmetric and without zero for ath<0. Hence the
spectral flow of—H,, asm increases from any negative value to some positive vialgies equal
to half the spectral asymmetry emeo.3'4 This suggests the following fermionic definition of the

topological charge of the lattice gauge figld,(x):
Hmo

m , (2.12

1
Qlat= Qmo’: - ETr

whereHmO is acting onC, . The spectral flow oH,, was first studied numerically in Ref. 2. The

definition (2.12 arose in the overlap formulation of chiral gauge theory on the Ieﬁﬁ@mo also

arises as an indexQp, =index© ) =Tr(¥s|kep, ) Where D= (1/a) (1+ ys (H/[H])) is the
Mo

overlap Dirac operatdr

Unlike in the continuum case, the spectral flow-oH,,, depends on the final valug,>0 of
m. Numerical studies have shown that for reasonably smooth lattice gauge fields, e.g., when
U, (x) is the lattice transcript of a smooth continuum gauge field and the lattice is reasonably fine,
the eigenvalue crossings efH,, are localized aroundn=0,2,4,6,88 Furthermore, when the
lattice gauge field is the lattice transcript of a continuum field the spectral flow due to crossings
close tom=0 was found to reproduce the continuum topological chapgdn this article we
complement the previous numerical studies with the following analytical result:

Theorem: In the above setting, wherdJ , (x) is the lattice transcript(2.1) and
my e {0,2,4,6,8, there exists amy>0 [depending orA ,(x) andmg] such that

Qm0=l(m0)Q for all lattice spacingsa<ay, (2.13
where
0<my<2 2<me<4d|[d<mp<6|6<myg<8|mgél0,§]
woel | = | 2 | o | o
(2.19

Remarks:(i) The dependence om, in (2.13 and (2.14 coincides with that found in the
above-mentioned numerical studies with smooth lattice gauge fiéldsTlie definition(2.12 of
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Qnm, is only meaningful wherh-lmO does not have zero-modes. In the present case this is guaran-

teed whenmy«¢{0,2,4,6,§ and a is sufficiently small. Indeed, it is known that whei
—U(p)||<e for all lattice plaquettep, whereU(p) is the product of the link variables ,(x)
aroundp, then there is a lower bour‘rdﬁqo> b, depending only ore andmg, such that for fixed

my¢{0,2,4,6,8b>0 when e is sufficiently small. This bound was established in Ref.(a6d
improved in Ref. 1Y for the case where 4my<2 and can be generalized to arbitrary
mo&{0,2,4,6,8.28 In the present case, whekg, (x) is the lattice transcrip2.1), we have

1= U(py,up) =2°F ,,(X) + O(2%)(X) (2.19
leading to
I1=U(p)[~0(a?. (2.16

Hence the above-mentioned lower bou-rhﬁ;lo> b>0 holds for all sufficiently smalk. Here and

in the following O(aP)(x) denotes a function on the lattice siteg 5, such that the operator
norm of O(aP)(x), considered as a multiplication operator @nsatisfied|O(aP)(x)||<aPK for
all xe 7 whereK is a constant independent afandx. [In (2.15 O(aP)(x) takes values in the
space of linear maps dd"; sometimegO(aP)(x) will just be aC-valued function ok, in which
case we havgO(aP)(x)|<aPK.] We discuss the derivation ¢2.15 and(2.16), and other bounds
used in the following, in the appendix. In general, to concl{@d6 from (2.15 we need the
O(a®)(x) term to satisfy|O(a®)(x)|<a’K for all xe az*. For general gauge fieldl,(x) on R*
this holds wher{A ,(x)|| and]|d,,A,(x)|| are bounded oR* (cf. the Appendix. In the present case
the condition(1.1) generally results in divergence Af,(x) at infinity (for topologically nontrivial
field). Nevertheless we still havé2.16 in this case: it is a consequence @&.2) [note that
JU,(x)=1 sinceU ,(x) is unitary] and the fact that th©(a®)(x) term satisfie O(a®)(x)|
<a®K whenx is restricted to be in the fundamental domain.

lll. PROOF OF THE THEOREM

The strategy for proving the theorem is to exprQ%so as the sum of a density,

Qm0=a4XEEFL qu(x), (3.0
and show that
qL(x)=1(me)g (x)+0(a)(x) (xeF), (3.2
where
qA(x) = #ewpgm:w(x)l:po(x). (3.3

Then lim,_,oQm =1(Mp)Q, and sinceQy, is integer it follows thatQy must coincide with
I (mg)Q for small nonzera as stated in the theorem.

To specify the densityg, (x) in (3.1) we introduce the following definitions. We decompose
C=C%%0(C*aCN), H=H®(C*®CN) where Cs¢, HS¢ denote the corresponding spaces of
scalar lattice fieldsH ¢ has the orthonormal bas{ss, /a?}, . .7+ Where 8,(y) = dyy - For linear
operator©Q,, on H we define0s(x,y) = (1/a?) ((5,/a%) ,0x(8,/a%)); this is a linear operator on
C*®CN satisfying

Opp(x)=a* 2 Op(xy)i(y) VieH. (34

yeaZ
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There is also an obvious decompositi@n=C;°® (C*® CN) with C}° having the basi$¢>X}X€jcL
where ¢, (y) = (1/a%) oy for ye 7 and is extended taZ* in accordance witt(2.4):

¢>X(y+Ln)=%Q(”)(x)5xy, oM =[] Qx,»™, nez (3.5

For linear operato¥, on C, we defineO,(x,y) = (1/a%) (¢x,OLpy) for x,ye F ; this is a
linear operator orC*® CN satisfying

Owa):a“y;f OLXY)(y) Y ¢eC, xeF. (3.6

The Cauchy—Schwarz inequality gives||Oy(x,y)|< (1/a%) |04 and [O.(x,y)]
< (1) |0, .
The definition(2.12 of Qm0 can now be rewritten a3.1) with

(X) 1t( fH ) (X,X) (3.7
qL(X)=— S| — X, X), .
L 2 H2 )

whereH = Hmo and the trace is over spinor and color indi¢es., overC*® CN). The strategy for

deriving (3.2 and (3.3) is now to relateq, (x) to qx(x), defined by replacing H/\H?), by
(H/\/HZ)H in (3.7). (The latter is defined via the spectral theory for bounded operators on Hilbert
space. This approach was suggested to me by Martisdher!® The point is tha(3.2) and(3.3)
are relatively easy to derive fay,(x); in fact, this has essentially already been done in previous
works2°-23One potentially problematic aspect with regards to these previous calculations is that
in the present casg,(x) can diverge fofx|—o. However, we will get around this by exploiting
the locality property of //H?),,,*® which will allow us to replacé ,(x) by a gauge field which
vanishes outside a bounded regionRSt

The relation between, (x) andg(x) is as follows:

Proposition 1:

(xy+LmQM(y) (xyer), (3.8
H

L) S (L
R AN

whereQ(M(x) is defined in(3.5). In particular, setting/=x and substituting in3.7) we get

H

NG

1
WO=0u(x)=5 2 tr

) (x,x+Ln) QM(x). (3.9
nez*-{0} M

Proof: We begin by deriving a relation betweéh (x,y) andO4(x,y) for bounded operators
O on C which leaveC, invariant. The proposition will then follow by exploiting the fact that
(H/\H?),_ and (H/\/WZ)H can be simultaneously approximated by such operators. The approxi-
mation part is necessary sin¢#/\H? is not a well-defined operator on the whole @f the
technicalities are related to the fact tligtZz H, i.e., elements i€ can have infinite norm.

Let O be a bounded operator @ghwhich mapsC, to itself. Then it follows from the above
definitions and3.5) that, forx,y e F ,
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1
OL(xy)= ?(‘ﬁwod’y)L

= > (2)(0d))(2)

ze F

1
= 2(0d)(0=a2 X 0n(x2)¢,(2)

zeaZ

= 24 Op(x,y+Ln) QM (y). (3.10

nezZ

We now exploit the fadf that 1A/H? has a power series expansimifzotkPk(Hz) norm-
convergent to (YH?), and (1A/H?);, onC, and’H, respectivelyP,(-) is a Legendre polynomial
of orderk; |P(H?)|<1; t=e 7 and the constants, #>0 depend only on théstrictly positive
lower and upper bounds dn?.1® [We are assuming that is sufficiently small so that? has a
lower boundb>0 cf. remark(ii) aboveg. Set

P(N):=H

N
kY, t“P(H?)
k=0

For arbitrary finiteN this is a bounded operator ¢hwhich map<; to itself. In light of (3.10, to
prove the proposition it suffices to show thatH/G/H?) (x,y)—PM(x,y) and
Snezal (HIVHZ) (6, y+Ln)— P (x,y+Ln)]QM(y) both vanish in theN—o limit. The
former is obvious. To show the latter it suffices to show tBat z43;_ . 1t4|Pe(X,y+Ln)]
vanishes in thé&\—0 limit. (We have seP,(x,z) =[Px(H?)](x,2).) For simplicity we show this
for y=x [the relevant case fo(3.9]; the argument in the general case is a straightforward
generalization. Sinc®,(H?) is of orderk in H?, andH couples only nearest neighbor sites, we
have Py(x,x+Ln)=0 when (/a) = ,|n,|>2k. Since||Py(x,2)|=< (1/a%) [P (H?)|<a* it fol-

lows that

nez4L/2as Jn,|<N k=1

> > tPUxx+Ln)<

nez4 k=N+1

)

o]

1 (L7222 I, ) tk)_ (3.11
k=1

T2
'\ hez41/2a =, In, />N

The first sum oven vanishes adN*t"N for N—o, while the second clearly vanishes fidr—
since it is convergent for finit&l. This completes the proof of the proposition.

We now derive a smala bound on the second term 8.9). The facts thatP, (x,x+Ln)
=0 for (L/a)3,|n,|>2k and |P(H?)|[<1 imply the following locality property of

(LHZ)y "
L x,x+Ln)|l<|xk D t*Py(X,Y)
\/Hz H ' k= (L/2)2 ,|n | '
o1 1 L
< e t((LR2)T In,]) K= —m g
skt L got = Ka4eX[{ 025\% |nM|>, (3.12

wherex:=«/(1—e™%). For sufficiently smalla this gives
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>

1 K L
— < — 1l exg —6—|n
MZ“{O}(W)H 2 4H F( 2a| ,u|)

(X,x+Ln)

o] ond -
_KI ex —?.
(3.13

The second inequality follows from the fact thff,exp(— (6L/2a)t) dt = exp(— (6L/2a)) for
sufficiently smalla. It now follows from (3.9) that g, (x)=q(x) +O(e /@) for sufficiently
smalla. (This had already been noted by M.daher in the Abelian case in Ref. 24 although the
derivation was not provided theje.

To prove the theorem it now suffices to sh@v2) and(3.3) for q,(x) instead ofg, (x), i.e.,
to show

gr(X)=1(mg)g*(x)+O(a)(x) for xe F . (3.19

To simplify the derivation we exploit the fact thas,(x) is local in the gauge fieltf Because of
this it suffices to show3.14) in the case wherd ,(x) is replaced by another §N) gauge field
A, (x) onR* with A ,(x)=A,,(x) in a neighborhood of0,L]* andA ,(x)=0 outside a bounded
region of R*. Specifically, we can takéﬂ(x)z)\(x)AM(x) where\(x) is a smooth function on
R*equal to 1 orf —d,L+d]* (d>0) and vanishing outside a bounded region. To see thi#] let
andH denote the operators defined ®&:11) with lattice gauge field&) andU being the lattice
transcriptgdefined by(2.1)] of A andA, respectively. Then, for smad, just as forH? we have
H2>b>0 and an expansion (;]/F?)H=K2°kczotkl3k whereP, =P, (H?). SinceH andH only
couple nearest neighbor siteB,(H?) and P, (H?) can only couple a lattice site if0,L]* to
another lattice site if0L]* via a site outside of —d,L+d]* if k=2(d/2a). Therefore,

Pu(x,y)=P(x,y) for x,y e /| whenk<d/a, and we find by an analogous argument to the one
leading to(3.12 that, forx,y e F ,

1 1 ” N 2%
\/? (x,y)— T (x,y) gkk;d:/ tIPe(x,y) = Pu(x,y)||< ;efad/a- (3.19
H H H -

This together with the ultra-locality dfi andH implies

(X)) =Tqu(X)+0

1
yef”a>(x) for xe F, (3.16

In light of this, the theorem now follows frorta special case pthe following:

Proposition 2:Let A ,(x) be a general smooth $N) gauge field orR* with the property that
1AL, lo,AL(X)l, and][d,a,A,(x)| are all bounded. Leitt =H,, be defined as ii2.11) with
the lattice gauge field being the lattice transcrige.l) of A,(x). Then q(x)
=—Ltr(H/VH?)5(x,x) satisfies g (x)=1(my)g*(x)+O(a)(x) for all xeaz* where
[O(a)(x)|<aK for some constari independent ok and smalla.

Clearly the gauge fiekf\ﬂ(x) introduced above satisfies the conditions of the proposition
(since it vanishes outside a bounded regid@ombining the proposition witli3.16) then gives
(3.14), proving the theorem.

To prove Proposition 2 we use an integral representation to expdhid &s a power series
following Refs. 12 and 21(This gives a more explicit power series expansion than the expansion
in Legendre polynomiat§ discussed earligrHenceforth all operators are assumed to be acting on
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'H and we drop the subscript}” in the notation. Also, from now orD(aP)(x) denotes a term
with |O(aP)(x)||<aPK for all xe aZ* (not just forx e F,). We first decompose

H2=L-V, (3.17
where
L=—V2+r3(3A—mp)?, (3.18
V==ir %Y/.LV}L_ %[YMIVV]VMVI (319
with
1 + - - +
V=5 (VM+VM),2V (V, =Vl (3.20
V=il(Vi+V,).(V, +V )] (3.2

As pointed out in Ref. 16, the norms of the commutators OfVli—éS are bounded by m@H(l
—U(p)|l. The bound(2.16 on |1—U(p)|| is valid when the conditions of Proposition 2 are
satisfied(cf. the Appendix, hence

[Vl~0(a?). (3.22

It follows that for smalla we have| V|| <b/2 whereb is the lower bound oiti?> mentioned earlier
in remark (ii). This in turn implies the lower bountd>b/2>0 for the positive operatoL in
(3.18. Thus for sufficiently smalk the operatot. is invertible,|L ~2||- | V]| <1, and we can make
the expansion

1
L+ g?

» do "
=f — 2 H(G,V)'G,,
— T k=0
(3.23
whereG,:=(L+ ¢?) 1. Note that they-matrices in(3.17 are all contained itV. Since the trace
of v times a product of less than fogrmatrices vanishes, the=0 andk=1 terms in(3.23 give

vanishing contribution tay;(x). On the other hand, the terms wikiz=3 satisfy the following
bound:

H _fo do 1 _HJOC do 1
A2 e wm B2 T L (1-(L+ed) T

1 » do
= — . k+1 k
lH [ 223 e et

o

>

k=0

H f " 975 MG,V G, 1(x,x)
—o T k=3

= do 1 K

gasznH”[ Lc7 (0/2+ o2

2
“42
baK

(3.29

where we have useB.22 and the boundss,<(b/2+ ¢?) " 1<2/b. This is O(a?) since the
integral and sum are finite and remain so in ¢he 0 limit. Hence only thek=2 term in(3.23
contributes in thea—0 limit:

ax(X) =02 (x)+0(a?)(x), (3.25

where
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QPx)=—> F %tr[HGUVGUVGU](x,X). (3.26

— o

For lattice operator® which are polynomials irV,f we denote by (9) the operator obtained
by settingU=1 in (2.6) and (2.7). Standard arguments givef. the Appendix |H—H©)|
~0O(a) and [L-L©)|~0O(a). The Iatter |mpI|es||G —GY)|~0(a); this follows from G,

G(O) G(O)(L(O) L)G, sinceG, andG ) are bounded from above bylivhena is suffl-
C|ently small. This allows us to replad:da and G, by H©® and Gf,o) in (3.26 at the expense of an
O(a)(x) term. Furthermore, we haviiL(®,V]|~0O(a® (cf. the Appendix This leads to
I[G® v]|~0(a®) as follows: The bound|V,[|<2 and triangle inequalities lead to an
a-independent upper bourid<c which allows us to expand

G :( - 2 - 2 2 '
7 \c+o°/\1-(c—L)/(c+ o) T Ccto c+o?
Now, since
IL(c=LO)™V]|=m[[L°V]|-[e—L|™ *<m(a’K)(c—b/2)™"*,
we get

Md”vm<——2< m+1)

cb/)

and this is~O(a?) since the sum convergésince 0<b/2<c). Taking this into account if3.26),
it follows from (3.25 that

= d
qmm=—%jﬂ;?wH”N%Gwﬁyxm+owxm

(X,x)+0(a)(x)

B 1t H(O)szw do 1
-2 .7 (LO+g2)3
-3
= Etr[H(O)VZ(L(O))’E”Z](X,X)+O(a)(x). (3.27
Evaluating the trace over spinor indices we f{mdth V,L:%(V;Jrv;)]

(X,X)

1
EA(O)_ Mo V,uvvp(r) (L(O))75/2

3r )
qH(X):FEMVpUtr _VM (VVVPU+VVPVU)+
+0(a)(x), (3.28
whereV, andV ,, are given by(3.20 and(3.21). Calculations givecf. the Appendix
[V, .V, 14(0)=(a%F ,,(x)+0(a%(x)) ¢(x+ae, *ae,), (3.29
[V, .V, 14()=(a%F,,(x)+0(a% (X)) ¢(x+ae,Fae,). (3.30
These determine the relevant contributions/gfandV,,, in (3.28.

We now exploit the fact that there is a Fourier transformatiorfo1i (=the space of scalar
lattice fields with|| ¢||>==, . az4| #(x)|2<); in particular, 5, has the Fourier expansion
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4
S.= fﬂ dk e_ikX/ad) (3 3])
X —7T(27T)4 ko '

where ¢, (y):=€'*Y'3. For a general operatd? this leads to

1/8 8\ 1 (= d% 1
OH(X,X):g 52,052' = f_w(zw)4e g(éx:od’k)

a*
O AL A
-] e 0. (3.32
In the case where
0= €,1po( = VOV, V0 +V,, V) + (GAO —mo)V,,V,,) (L) 52, (3.33

a calculation using3.20 and(3.21) with (3.29 and(3.30 gives
(O (x)=32m%a* A(k;r,mo) (47(x) + O(a) (X)) pi(X), (3.39
where

I, cosk,(—my+= ,(1—cosk,) =3 ,(sir?k, /cosk,))

Mkir,mo) = [2,sik,+r%(—my+= ,(1—-cosk,))?]>"? (3.39
It follows from (3.28 and(3.32 that
Gr(X) =1(r,mg)g*(x) + O(a)(x), (3.39
where
I(r,mg)= %Jld“kx(k;r,mo). (3.37

This integral was evaluated earlier in Refs. 21 and 23. It was found to be independen® @ind
a locally constant function ofm, with values given by(2.14). This completes the proof of
Proposition 2.

Remark:lt is straightforward to generalize the results of this paper t¢Nglgauge fields on
the 2n-torus for arbitraryn=2 and to U(1) gauge fields on the two-torus.

Finally, following the suggestion of a referee, we emphasize that a key point in this work is
that it is the topological charge.e., the integrated Chern charagtesther than the topological
density that is shown to have the correct continuum limit. In this respect the treatment differs from
all earlier treatments which are essentially limited to srtaéince topologically trivialfields.
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APPENDIX

In this Appendix we recall, for completeness, certain standard facts concerning the lattice
transcript of a smooth continuum gauge field®hwhich lead to the bounds used in this article.
The lattice transcrip€2.1) can be written as
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U’u(X):nZO a" dty--dty AL (X 1) AL (X ty), (A1)

Ostys---s<ty=<1

whereA ,(x,t)=A  (x+(1—-t)ae,). WhenA is bounded, i.eJ|A,(x)|<K for all x,u, we have

oo
> a"
n=p

- 1
dty -ty AL (Xt AL (X ) <> ann_lKngaPKPeaKN o(aP).
n=p .
(A2)

o<ty=<---<t,<1

n

Therefore, to derive th®(aP) andO(aP)(x) bounds used in the text it suffices to consider only
a finite number of terms in the expansiohl) (typically just the first few term)s An immediate
consequence ofA2) with p=1 is the following: If A is bounded, then for any operatér
= P(Vi) which is a polynomial in the covariant finite difference operat@ré) and(2.7) we have

IP—P©~0(a).

The boundg/H—H©)||~0(a) and|L—L©|~0O(a) are particular examples of this. If we fur-
thermore assume that the first order partial derivative& afe bounded, i.elld,A,(x)||<K for
all x,u,v, we have

\I[V,f(o),uv]||~0(a)- (A3)
To see this, note that

[V:©.U,lp(0)=(U,(x+ae,)—U,(x) ¢(x+ae,)
=(af dt(A,(x+ae, ,t)—A,(x,t)) +0(a%) | ¢(x+ae,). (Ad)
o=st<1

By the middle-value theorem,
A, (x+ae, ,t)—A,(xt)=d,A,(Xx+sag,,t)

for somese[0,1]. Sincel|d,A,| is boundedA3) now follows from(A4). The boundA3) has the
following easy generalization: L&= P(Vi) be a polynomial of degrelein thevi’s; then, if all
the partial derivatives ofA of order <k are bounded, we have

ILP,U,][I~0(a). (A5)

Moreover, with the same boundedness assumption& gr) andd,A,(x), straightforward cal-
culations using the middle-value theorem give

1=U(py, ) =2%F ,,(x)+0(a%)(x). (A6)
Noting that®
[V, Vo 1(x)=(1-U(py,,.,)U.(0U,(x+ae,) ¢(x+ae,+ae,) (A7)

and similar formulas for the other commutators, a straightforward refinement of the arguments
leading to(A5) and (A6) shows

I[PV, ViNI~0@),  [[POIV, v T1I~0(@). (A8)

The requirement for this is th& and all its partial derivatives up to orderbe bounded, where
r=min{k,2}. SinceV is a linear combination of commutators of tﬁgf 's we have, in particular,
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I[L@ V]|~0(a®) whenA and its partial derivatives up to order 2 are bounded. Finally, we
remark that(3.29 and(3.30 follow from combining(A7) and the corresponding formulas for the
other commutators witliA6).

IM. F. Atiyah and I. M. Singer, Ann. Matt87, 546 (1968.

23, Itoh, Y. Iwasaki, and T. Yoshjé>hys. Rev. D86, 527 (1987).

3R. Narayanan and H. Neuberger, Phys. Let8@, 62 (1993; Phys. Rev. Lett71, 3251(1993; Nucl. Phys. B412, 574
(1994).

4R. Narayanan and H. Neuberger, Nucl. Physi43 305 (1995.

5J. Smit and J. Vink, Nucl. Phys. B86, 485(1987.

8F. Karsch, E. Seiler, and I. O. Stamatescu, Nucl. Phy87B 349 (1986.

’R. Narayanan and P. Vranas, Nucl. Physs@, 373 (1997).

8R. G. Edwards, U. M. Heller, and R. Narayanan Nucl. Phy$28 285 (1998.

9C. R. Gattringer and I. Hip, Nucl. Phys. B36, 363 (1998.

0p Hernadez, Nucl. Phys. 536, 345(1998.

HUT..W. Chiu, Phys. Rev. [58, 074511(1998; 60, 114510(1999.

2D, H. Adams in Proceedings of Chiral '99, Chin. J. Ph§8, 633 (2000, hep-lat/0001014.

18K, G. Wilson, Phys. Rev. [10, 2445(1974).

1H. B. Nielsen and M. Ninomiya, Nucl. Phys. B85, 20 (1981).

15H. Neuberger, Phys. Lett. B17, 141(1998; 427, 353(1998.

16p. Hernadez, K. Jansen, and M. kaher, Nucl. Phys. 552, 363(1999.

1H. Neuberger, Phys. Rev. B1, 085015(2000.

D, H. Adams,“Analytic aspects of the Wilson—Dirac operator,” revised version of hep-lat/9907005, in preparation.

19M. Lischer, private communication.

20y, Kikukawa, and A. Yamada, Phys. Lett. 88 265 (1999.

21D, H. Adams, Ann. Phys(to appeay, hep-lat/9812003.

22K, Fujikawa, Nucl. Phys. B546, 480 (1999.

23H. Suzuki, Prog. Theor. Phy§02, 141 (1999.

24M. Luscher, Nucl. Phys. 549, 295(1999.

Downloaded 06 Apr 2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



	AIP Rights template .pdf
	JMathPhys_42_5522[1].pdf

