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On the continuum limit of fermionic topological charge
in lattice gauge theory
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It is proved that the fermionic topological charge of SU~N! lattice gauge fields on
the four-torus, given in terms of a spectral flow of the Hermitian Wilson–Dirac
operator or, equivalently, as the index of the overlap Dirac operator, reduces to the
continuum topological charge in the classical continuum limit when the parameter
m0 is in the physical region 0,m0,2. © 2001 American Institute of Physics.
@DOI: 10.1063/1.1415087#

I. INTRODUCTION

Let T4 denote the Euclidean four-torus with fixed edge lengthL and fundamental domain
@0,L#4,R4. A gauge potential on an SU~N! bundle overT4 can be viewed as an su~N!-valued
gauge fieldAm(x) on R4 satisfying

Am~x1Len!5V~x,n!Am~x!V~x,n!211V~x,n!]mV~x,n!21, ~1.1!

whereen is the unit vector in the positiven-direction andV(x,n), n51,2,3,4, are the SU~N!-
valued monodromy fields which specify the principal SU~N! bundle overT4. These also satisfy a
cocycle condition which ensures thatAm(x1Len1Ler) is unambiguous and that Eq.~2.4! in this
work is consistent. It is always possible to make a gauge transformation so thatV(x,n)51 for
n51,2,3 andV(x,4) is periodic inx1 ,x2 ,x3 . Then for fixedx4 V(x,4) determines a mapT3

→SU~N!. The degree of this map@which is independent ofx4 sinceV(x,4) depends smoothly on
x4# equals the Pontryargin number of the SU~N! bundle overT4. The Pontryargin number of the
bundle is encoded in the gauge field as its topological charge:

Q5
21

8p2 E
T4

tr~F`F !5
21

32p2 E d4xemnrstr~Fmn~x!Frs~x!!. ~1.2!

The sectionsc(x) in the standard spinor bundle overT4 twisted by the SU~N! bundle can be
viewed as spinor fields onR4 satisfying

c~x1Len!5V~x,n!c~x!. ~1.3!

The Dirac operator]”A5gm(]m1Am) acts on these, and the Index Theorem1 gives

Q5 index]”A. ~1.4!

The index]”A is equal to the spectral flow of the Hermitian operator2g5( i ]”A2m) asm increases
from any negative to any positive value@note that eigenvalues can only cross the origin atm
50 since (g5( i ]”2m))25]” 21m2.#

The spectral flow description ofQ motivates a fermionic definition of topological chargeQlat

in lattice gauge theory,2–4 which has been extensively studied numerically in its various gui

a!Electronic mail: dadams@staff.maths.adelaide.edu.au
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see, e.g., Refs. 2 and 4–11. The purpose of this article is to analytically prove thatQlat reduces to
Q in the classical continuum limit.~This result was announced in Ref. 12 although the argum
we give here is simpler and more direct than the one sketched there.!

II. STATEMENT OF THE MAIN RESULT

Put a hyper-cubic lattice onR4 with sitesaZ4. We consider only the lattice spacingsa for
which L/a is a whole number. Furthermore, we restrict to lattice spacings with the prop
a1Z4,a2Z4 for a2,a1 . This implies that ifxPR4 is a lattice site in the lattice with spacinga,
then it is also a lattice site in all the other lattices with spacinga8,a. In the following, in
statements concerninga→0 limits ~in particular Proposition 2 to follow! the variablex always
denotes such a point inR4; it is fixed in R4 and does not change as we go from one lattice
another.

The lattice transcript ofA,

Um~x!5T expS E
0

1

aAm~x1taem!dtD ~2.1!

(T5t2ordering), satisfies

Um~x1Len!5V~x,n!Um~x!V~x1aem ,n!21. ~2.2!

Given such a lattice, letC denote the infinite-dimensional complex vectorspace of lattice sp
fields c(x) ~i.e., functions on the lattice sites taking values inC4

^ CN) and define the inner
product

^c1 ,c2&5a4 (
xPaZ4

c1~x!* c2~x!, ~2.3!

where a contraction of spinor and color indices is implied. LetH,C denote the Hilbert space o
spinor fields withici,` and letCL,C denote the finite-dimensional subspace of spinor fie
satisfying the lattice version of~1.3!:

c~x1Len!5V~x,n!c~x!, ;xPaZ4. ~2.4!

The fieldscPCL are determined by their restriction toFLª the set of lattice sites contained i
@0,L)4,R4. We define an inner product inCL by

^c1 ,c2&L5a4 (
xPFL

c1~x!* c2~x!. ~2.5!

The covariant forward~backward! finite difference operators (1/a) ¹m
1((1/a) ¹m

2) are defined onC
by

¹m
1c~x!5Um~x!c~x1aem!2c~x!, ~2.6!

¹m
2c~x!5c~x!2Um~x2aem!21c~x2aem!. ~2.7!

These are bounded (i¹m
6i<2) and therefore mapH to H. They also preserve~2.4! and therefore

mapCL to CL . Note that

~¹m
6!* 52¹m

7 ~2.8!

on H andCL . The lattice version ofi ]”A is the Wilson–Dirac operator:
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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Dw5 i
1

a
¹” 1

r

2
aS 1

a2 D D , r .0, ~2.9!

where (1/a) ¹” 5(mgm 1
2(¹m

11¹m
2) is the naive lattice Dirac operator and (1/a2) D

5 (1/a2) (m(¹m
21¹m

1)5 (1/a2) (m(¹m
1)* ¹m

15(1/a2) (m(¹m
2)* ¹m

2 is the lattice Laplace opera
tor. We are following the mathmatical convention where thegm’s are anti-Hermitian@this explains
the factori in i (1/a) ¹” in ~2.9! which is not usually present in the physics literature where thegm’s
are Hermitian#. Then¹” is Hermitian due to~2.8! andD is Hermitian and positive.@The Wilson
term, i.e., the second term in~2.9!, which formally vanishes in thea→0 limit, is included to avoid
the fermion doubling problem: a degeneracy of the nullspace of¹” which is a lattice artifact
unrelated to the continuum theory.13,14# The lattice version ofg5( i ]”2m) is the Hermitian operator
(1/a) Hm :

1

a
Hm5g5S Dw2

rm

a D , ~2.10!

Hm5g5~ i¹” 1r ~ 1
2 D2m!!. ~2.11!

It can be shown that the spectrum ofHm is symmetric and without zero for allm,0. Hence the
spectral flow of2Hm asm increases from any negative value to some positive valuem0 is equal
to half the spectral asymmetry of2Hm0

.3,4 This suggests the following fermionic definition of th
topological charge of the lattice gauge fieldUm(x):

Qlat5Qm0
ª2

1

2
TrS Hm0

uHm0
u D , ~2.12!

whereHm0
is acting onCL . The spectral flow ofHm was first studied numerically in Ref. 2. Th

definition ~2.12! arose in the overlap formulation of chiral gauge theory on the lattice.3,4 Qm0
also

arises as an index:Qm0
5 index(Dm0

)ªTr(g5ukerDm0
) where D5 (1/a) (11g5 (H/uHu)) is the

overlap Dirac operator.15

Unlike in the continuum case, the spectral flow of2Hm depends on the final valuem0.0 of
m. Numerical studies have shown that for reasonably smooth lattice gauge fields, e.g.,
Um(x) is the lattice transcript of a smooth continuum gauge field and the lattice is reasonabl
the eigenvalue crossings of2Hm are localized aroundm50,2,4,6,8.2,8 Furthermore, when the
lattice gauge field is the lattice transcript of a continuum field the spectral flow due to cros
close tom50 was found to reproduce the continuum topological chargeQ. In this article we
complement the previous numerical studies with the following analytical result:

Theorem: In the above setting, whereUm(x) is the lattice transcript~2.1! and
m0¹$0,2,4,6,8%, there exists ana0.0 @depending onAm(x) andm0# such that

Qm0
5I ~m0!Q for all lattice spacingsa,a0 , ~2.13!

where

~2.14!

Remarks:( i ) The dependence onm0 in ~2.13! and ~2.14! coincides with that found in the
above-mentioned numerical studies with smooth lattice gauge fields. (i i ) The definition~2.12! of
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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Qm0
is only meaningful whenHm0

does not have zero-modes. In the present case this is gu
teed whenm0¹$0,2,4,6,8% and a is sufficiently small. Indeed, it is known that wheni1
2U(p)i,e for all lattice plaquettesp, whereU(p) is the product of the link variablesUm(x)
aroundp, then there is a lower boundHm0

2 .b, depending only one andm0 , such that for fixed

m0¹$0,2,4,6,8%b.0 whene is sufficiently small. This bound was established in Ref. 16~and
improved in Ref. 17! for the case where 0,m0,2 and can be generalized to arbitra
m0¹$0,2,4,6,8%.18 In the present case, whereUm(x) is the lattice transcript~2.1!, we have

12U~px,mn!5a2Fmn~x!1O~a3!~x! ~2.15!

leading to

i12U~p!i;O~a2!. ~2.16!

Hence the above-mentioned lower boundHm0

2 .b.0 holds for all sufficiently smalla. Here and

in the following O(ap)(x) denotes a function on the lattice sitesxPFL such that the operato
norm of O(ap)(x), considered as a multiplication operator onC, satisfiesiO(ap)(x)i<apK for
all xPFL whereK is a constant independent ofa andx. @In ~2.15! O(ap)(x) takes values in the
space of linear maps onCN; sometimesO(ap)(x) will just be aC-valued function ofx, in which
case we haveuO(ap)(x)u<apK.# We discuss the derivation of~2.15! and~2.16!, and other bounds
used in the following, in the appendix. In general, to conclude~2.16! from ~2.15! we need the
O(a3)(x) term to satisfyiO(a3)(x)i<a3K for all xPaZ4. For general gauge fieldAm(x) on R4

this holds wheniAm(x)i andi]mAn(x)i are bounded onR4 ~cf. the Appendix!. In the present case
the condition~1.1! generally results in divergence ofAm(x) at infinity ~for topologically nontrivial
field!. Nevertheless we still have~2.16! in this case: it is a consequence of~2.2! @note that
iUm(x)i51 sinceUm(x) is unitary# and the fact that theO(a3)(x) term satisfiesiO(a3)(x)i
<a3K whenx is restricted to be in the fundamental domainFL .

III. PROOF OF THE THEOREM

The strategy for proving the theorem is to expressQm0
as the sum of a density,

Qm0
5a4 (

xPFL

qL~x!, ~3.1!

and show that

qL~x!5I ~m0!qA~x!1O~a!~x! ~xPFL!, ~3.2!

where

qA~x!5
21

32p2 emnrstrFmn~x!Frs~x!. ~3.3!

Then lima→0Qm0
5I (m0)Q, and sinceQm0

is integer it follows thatQm0
must coincide with

I (m0)Q for small nonzeroa as stated in the theorem.
To specify the densityqL(x) in ~3.1! we introduce the following definitions. We decompo

C5C sc
^ (C4

^ CN), H5H sc
^ (C4

^ CN) where C sc, H sc denote the corresponding spaces
scalar lattice fields.H sc has the orthonormal basis$ dx /a2 %xPaZ4 wheredx(y)5dxy . For linear
operatorOH on H we defineOH(x,y)5 (1/a4) ^(dx /a2) ,OH(dy /a2)&; this is a linear operator on
C4

^ CN satisfying

OHc~x!5a4 (
yPaZ4

OH~x,y!c~y! ;cPH. ~3.4!
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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There is also an obvious decompositionCL5C L
sc

^ (C4
^ CN) with C L

sc having the basis$fx%xPFL

wherefx(y)5 (1/a2) dxy for yPFL and is extended toaZ4 in accordance with~2.4!:

fx~y1Ln!5
1

a2 V (n)~x!dxy , V (n)~x!5)
n

V~x,n!nn, nPZ4. ~3.5!

For linear operatorOL on CL we defineOL(x,y)5 (1/a4) ^fx ,OLfy&L for x,yPFL ; this is a
linear operator onC4

^ CN satisfying

OLc~x!5a4 (
yPFL

OL~x,y!c~y! ; cPCL , xPFL . ~3.6!

The Cauchy–Schwarz inequality givesiOH(x,y)i< (1/a4) iOHi and iOL(x,y)i
< (1/a4) iOLiL .

The definition~2.12! of Qm0
can now be rewritten as~3.1! with

qL~x!52
1

2
trS H

AH2D
L

~x,x!, ~3.7!

whereH5Hm0
and the trace is over spinor and color indices~i.e., overC4

^ CN). The strategy for

deriving ~3.2! and ~3.3! is now to relateqL(x) to qH(x), defined by replacing (H/AH2)L by
(H/AH2)H in ~3.7!. ~The latter is defined via the spectral theory for bounded operators on Hi
space.! This approach was suggested to me by Martin Lu¨scher.19 The point is that~3.2! and~3.3!
are relatively easy to derive forqH(x); in fact, this has essentially already been done in previ
works.20–23 One potentially problematic aspect with regards to these previous calculations i
in the present caseAm(x) can diverge foruxu→`. However, we will get around this by exploitin
the locality property of (H/AH2)H ,16 which will allow us to replaceAm(x) by a gauge field which
vanishes outside a bounded region ofR4.

The relation betweenqL(x) andqH(x) is as follows:
Proposition 1:

S H

AH2D
L

~x,y!5 (
nPZ4

S H

AH2D
H

~x,y1Ln!V (n)~y! ~x,yPFL!, ~3.8!

whereV (n)(x) is defined in~3.5!. In particular, settingy5x and substituting in~3.7! we get

qL~x!5qH~x!2
1

2 (
nPZ42$0%

trS H

AH2D
H

~x,x1Ln! V (n)~x!. ~3.9!

Proof: We begin by deriving a relation betweenOL(x,y) andOH(x,y) for bounded operators
O on C which leaveCL invariant. The proposition will then follow by exploiting the fact th
(H/AH2)L and (H/AH2)H can be simultaneously approximated by such operators. The app
mation part is necessary sinceH/AH2 is not a well-defined operator on the whole ofC; the
technicalities are related to the fact thatCL,” H, i.e., elements inCL can have infinite norm.

Let O be a bounded operator onC which mapsCL to itself. Then it follows from the above
definitions and~3.5! that, forx,yPFL ,
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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OL~x,y!5
1

a4 ^fx ,Ofy&L

5 (
zPFL

fx~z!~Ofy!~z!

5
1

a2 ~Ofy!~x!5a2 (
zPaZ4

OH~x,z!fy~z!

5 (
nPZ4

OH~x,y1Ln! V (n)~y!. ~3.10!

We now exploit the fact16 that 1/AH2 has a power series expansionk(k50
` tkPk(H

2) norm-
convergent to (1/AH2)L and (1/AH2)H onCL andH, respectively.Pk(•) is a Legendre polynomia
of orderk; iPk(H

2)i<1; t5e2u; and the constantsk,u.0 depend only on the~strictly positive!
lower and upper bounds onH2.16 @We are assuming thata is sufficiently small so thatH2 has a
lower boundb.0 cf. remark~ii ! above#. Set

P(N)
ªHS k(

k50

N

tkPk~H2!D .

For arbitrary finiteN this is a bounded operator onC which mapsCL to itself. In light of ~3.10!, to
prove the proposition it suffices to show that (H/AH2)L(x,y)2PL

(N)(x,y) and
(nPZ4@(H/AH2)H(x,y1Ln)2PH

(N)(x,y1Ln)#V (n)(y) both vanish in theN→` limit. The
former is obvious. To show the latter it suffices to show that(nPZ4(k5N11

` tkiPk(x,y1Ln)i
vanishes in theN→0 limit. ~We have setPk(x,z)5@Pk(H

2)#(x,z).! For simplicity we show this
for y5x @the relevant case for~3.9!#; the argument in the general case is a straightforw
generalization. SincePk(H

2) is of orderk in H2, andH couples only nearest neighbor sites, w
have Pk(x,x1Ln)50 when (L/a) (munmu.2k. Since iPk(x,z)i< (1/a4) iPk(H

2)i<a4 it fol-
lows that

(
nPZ4

(
k5N11

`

tkiPk~x,x1Ln!i<
1

a4 tNS (
nPZ4,L/2a (munmu<N

(
k51

`

tkD
1

1

a4 S (
nPZ4,1/2a (munmu.N

t ~~L/2a! (munmu!(
k51

`

tkD . ~3.11!

The first sum overn vanishes asN4tN for N→`, while the second clearly vanishes forN→`
since it is convergent for finiteN. This completes the proof of the proposition.

We now derive a smalla bound on the second term in~3.9!. The facts thatPk(x,x1Ln)
50 for (L/a) (munmu.2k and iPk(H

2)i<1 imply the following locality property of
(1/AH2)H :16

I S 1

AH2D
H

~x,x1Ln!I< Ik (
k> ~L/2a!(munmu

tkPk~x,y!I
<k t (~L/2a!(munmu)(

k50

`

tk
1

a4 5k̃
1

a4 expS 2u
L

2a (
m

unmu D , ~3.12!

wherek̃ªk/(12e2u). For sufficiently smalla this gives
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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I (
nPZ42$0%

S 1

AH2D
H

~x,x1Ln!I< (
nPZ42$0%

k̃

a4 )
m

expS 2u
L

2a
unmu D

<
k̃

a4 )
m

F2E
1/2

`

expS 2u
L

2a
tmD dtmG5k̃S 4

uL D 4

expS 2
uL

a D .

~3.13!

The second inequality follows from the fact that*1/2
` exp(2 (uL/2a) t) dt > exp(2 (uL/2a)) for

sufficiently smalla. It now follows from ~3.9! that qL(x)5qH(x)1O(e2r/a) for sufficiently
small a. ~This had already been noted by M. Lu¨scher in the Abelian case in Ref. 24 although t
derivation was not provided there.!

To prove the theorem it now suffices to show~3.2! and~3.3! for qH(x) instead ofqL(x), i.e.,
to show

qH~x!5I ~m0!qA~x!1O~a!~x! for xPFL . ~3.14!

To simplify the derivation we exploit the fact thatqH(x) is local in the gauge field.16 Because of
this it suffices to show~3.14! in the case whereAm(x) is replaced by another SU~N! gauge field
Ãm(x) on R4 with Ãm(x)5Am(x) in a neighborhood of@0,L#4 and Ãm(x)50 outside a bounded
region ofR4. Specifically, we can takeÃm(x)5l(x)Am(x) wherel(x) is a smooth function on
R4 equal to 1 on@2d,L1d#4 (d.0) and vanishing outside a bounded region. To see this, leH

and H̃ denote the operators defined by~2.11! with lattice gauge fieldsU and Ũ being the lattice
transcripts@defined by~2.1!# of A andÃ, respectively. Then, for smalla, just as forH2 we have

H̃2.b.0 and an expansion (1/AH̃2)H5k(k50
` tkP̃k where P̃k5Pk(H̃

2). SinceH and H̃ only
couple nearest neighbor sites,Pk(H

2) and Pk(H̃
2) can only couple a lattice site in@0,L#4 to

another lattice site in@0,L#4 via a site outside of@2d,L1d#4 if k>2(d/2a). Therefore,
Pk(x,y)5 P̃k(x,y) for x,yPFL whenk,d/a, and we find by an analogous argument to the o
leading to~3.12! that, forx,yPFL ,

I S 1

AH2D
H

~x,y!2S 1

AH̃2
D

H

~x,y!I<k (
k>d/a

`

tkiPk~x,y!2 P̃k~x,y!i<
2k̃

a4
e2ud/a. ~3.15!

This together with the ultra-locality ofH and H̃ implies

qH~x!5q̃H~x!1OS 1

a4 e2r/aD ~x! for xPFL ~3.16!

In light of this, the theorem now follows from~a special case of! the following:
Proposition 2:Let Am(x) be a general smooth SU~N! gauge field onR4 with the property that

iAm(x)i , i]nAm(x)i , andi]s]nAm(x)i are all bounded. LetH5Hm0
be defined as in~2.11! with

the lattice gauge field being the lattice transcript~2.1! of Am(x). Then qH(x)
52 1

2 tr(H/AH2)H(x,x) satisfies qH(x)5I (m0)qA(x)1O(a)(x) for all xPaZ4, where
iO(a)(x)i<aK for some constantK independent ofx and smalla.

Clearly the gauge fieldÃm(x) introduced above satisfies the conditions of the proposi
~since it vanishes outside a bounded region!. Combining the proposition with~3.16! then gives
~3.14!, proving the theorem.

To prove Proposition 2 we use an integral representation to expand 1AH2 as a power series
following Refs. 12 and 21.~This gives a more explicit power series expansion than the expan
in Legendre polynomials16 discussed earlier.! Henceforth all operators are assumed to be acting
2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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H and we drop the subscript ‘‘H’’ in the notation. Also, from now onO(ap)(x) denotes a term
with iO(ap)(x)i<apK for all xPaZ4 ~not just forxPFL). We first decompose

H25L2V, ~3.17!

where

L52¹21r 2~ 1
2 D2m0!2, ~3.18!

V55 ir 1
2 gmVm2 1

4 @gm ,gn#Vmn , ~3.19!

with

Vm5
1

2 F ~¹m
11¹m

2!,(
n

~¹n
22¹n

1!G , ~3.20!

Vmn5 1
4 @~¹m

11¹m
2!,~¹n

11¹n
2!#. ~3.21!

As pointed out in Ref. 16, the norms of the commutators of the¹m
6’s are bounded by maxpi1

2U(p)i. The bound~2.16! on i12U(p)i is valid when the conditions of Proposition 2 a
satisfied~cf. the Appendix!, hence

iVi;O~a2!. ~3.22!

It follows that for smalla we haveiVi,b/2 whereb is the lower bound onH2 mentioned earlier
in remark ~ii !. This in turn implies the lower boundL.b/2.0 for the positive operatorL in
~3.18!. Thus for sufficiently smalla the operatorL is invertible,iL21i•iVi,1, and we can make
the expansion

H

AH2
5HE

2`

` ds

p

1

H21s2 5HE
2`

` ds

p S 1

12~L1s2!21VD S 1

L1s2D5E
2`

` ds

p (
k50

`

H~GsV!kGs ,

~3.23!

whereGsª(L1s2)21. Note that theg-matrices in~3.17! are all contained inV. Since the trace
of g5 times a product of less than fourg-matrices vanishes, thek50 andk51 terms in~3.23! give
vanishing contribution toqH(x). On the other hand, the terms withk>3 satisfy the following
bound:

I E
2`

` ds

p (
k53

`

@H~GsV!kGs#~x,x!I<
1

a4 iHi E
2`

` ds

p (
k53

`

iGsik11iVik

<a2K3iHiF E
2`

` ds

p

1

~b/21s2!4G (
k50

` S 2

b
a2K D k

,

~3.24!

where we have used~3.22! and the boundsGs,(b/21s2)21<2/b. This is O(a2) since the
integral and sum are finite and remain so in thea→0 limit. Hence only thek52 term in ~3.23!
contributes in thea→0 limit:

qH~x!5qH
(2)~x!1O~a2!~x!, ~3.25!

where
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qH
(2)~x!52

1

2 E2`

` ds

p
tr@HGsVGsVGs#~x,x!. ~3.26!

For lattice operatorsO which are polynomials in¹m
6 we denote byO (0) the operator obtained

by setting U51 in ~2.6! and ~2.7!. Standard arguments give~cf. the Appendix! iH2H (0)i
;O(a) and iL2L (0)i;O(a). The latter impliesiGs2Gs

(0)i;O(a); this follows from Gs

2Gs
(0)5Gs

(0)(L (0)2L)Gs sinceGs and Gs
(0) are bounded from above by 2/b when a is suffi-

ciently small. This allows us to replaceH andGs by H (0) andGs
(0) in ~3.26! at the expense of an

O(a)(x) term. Furthermore, we havei@L (0),V#i;O(a3) ~cf. the Appendix!. This leads to
i@Gs

(0) ,V#i;O(a3) as follows: The boundi¹m
6i<2 and triangle inequalities lead to a

a-independent upper boundL,c which allows us to expand

Gs5S 1

c1s2D S 1

12 ~c2L !/~c1s! D5
1

c1s2 (
m50

` S c2L

c1s2D m

.

Now, since

i@~c2L (0)!m,V#i<mi@L0,V#i•ic2Lim21<m~a3K !~c2b/2!m21,

we get

i@Gs
(0) ,V#i<

a3K

c2 (
m50

`

~m11!S c2b/2

c D m

,

and this is;O(a3) since the sum converges~since 0,b/2,c). Taking this into account in~3.26!,
it follows from ~3.25! that

qH~x!52
1

2 E2`

` ds

p
tr@H (0)V2~Gs

(0)!3#~x,x!1O~a!~x!

52
1

2
trFH (0)V2E

2`

` ds

p

1

~L (0)1s2!3G~x,x!1O~a!~x!

5
23

16
tr@H (0)V2~L (0)!25/2#~x,x!1O~a!~x!. ~3.27!

Evaluating the trace over spinor indices we find@with ¹m5 1
2(¹m

11¹m
2)]

qH~x!5
23r

16
emnrstrF S 2¹m

(0)~VnVrs1VnrVs!1S 1

2
D (0)2m0DVmnVrsD ~L (0)!25/2G~x,x!

1O~a!~x!, ~3.28!

whereVm andVmn are given by~3.20! and ~3.21!. Calculations give~cf. the Appendix!

@¹m
6 ,¹n

6#c~x!5~a2Fmn~x!1O~a3!~x!!c~x6aem6aen!, ~3.29!

@¹m
6 ,¹n

7#c~x!5~a2Fmn~x!1O~a3!~x!!c~x6aem7aen!. ~3.30!

These determine the relevant contributions ofVm andVmn in ~3.28!.
We now exploit the fact that there is a Fourier transformation onH sc ~5the space of scala

lattice fields withifi25(xPaZ4uf(x)u2,`); in particular,dx has the Fourier expansion
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dx5E
2p

p d4k

~2p!4 e2 ikx/afk , ~3.31!

wherefk(y)ªeiky/a. For a general operatorO this leads to

OH~x,x!5
1

a4 K dx

a2 ,O dx

a2L 5
1

a4 E
2p

p d4k

~2p!4 e2 ikx/a
1

a4 ^dx ,Ofk&

5
1

a4 E
2p

p d4k

~2p!4 e2 ikx/a~Ofk!~x!. ~3.32!

In the case where

O5emnrs~2¹m
(0)~VnVrs1VnrVs!1~ 1

2 D (0)2m0!VmnVrs!~L (0)!25/2, ~3.33!

a calculation using~3.20! and ~3.21! with ~3.29! and ~3.30! gives

~Ofk!~x!532p2 a4 l~k;r ,m0!~qA~x!1O~a!~x!!fk~x!, ~3.34!

where

l~k;r ,m0!5
)n coskn~2m01(m~12coskm!2(m~sin2 km /coskm!!

@(m sin2 km1r 2~2m01(m~12coskm!!2#5/2 . ~3.35!

It follows from ~3.28! and ~3.32! that

qH~x!5I ~r ,m0!qA~x!1O~a!~x!, ~3.36!

where

I ~r ,m0!5
23r

8p2 E
2p

p

d4k l~k;r ,m0!. ~3.37!

This integral was evaluated earlier in Refs. 21 and 23. It was found to be independent ofr .0 and
a locally constant function ofm0 with values given by~2.14!. This completes the proof o
Proposition 2.

Remark:It is straightforward to generalize the results of this paper to SU~N! gauge fields on
the 2n-torus for arbitraryn>2 and to U(1) gauge fields on the two-torus.

Finally, following the suggestion of a referee, we emphasize that a key point in this wo
that it is the topological charge~i.e., the integrated Chern character! rather than the topologica
density that is shown to have the correct continuum limit. In this respect the treatment differs
all earlier treatments which are essentially limited to small~hence topologically trivial! fields.
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APPENDIX

In this Appendix we recall, for completeness, certain standard facts concerning the
transcript of a smooth continuum gauge field onR4 which lead to the bounds used in this articl
The lattice transcript~2.1! can be written as
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Um~x!5 (
n50

`

anE
0<t1<¯<tn<1

dtn¯dt1 Am~x,tn!¯Am~x,t1!, ~A1!

whereAm(x,t)5Am(x1(12t)aem). WhenA is bounded, i.e.,iAm(x)i<K for all x,m, we have

i (
n5p

`

anE
0<t1<¯<tn<1

dtn¯dt1 Am~x,tn!¯Am~x,t1! i< (
n5p

`

an
1

n!
Kn<apKpeaK ; O~ap!.

~A2!

Therefore, to derive theO(ap) andO(ap)(x) bounds used in the text it suffices to consider on
a finite number of terms in the expansion~A1! ~typically just the first few terms!. An immediate
consequence of~A2! with p51 is the following: If A is bounded, then for any operatorP
5P(¹m

6) which is a polynomial in the covariant finite difference operators~2.6! and~2.7! we have

iP2P(0)i;O~a!.

The boundsiH2H (0)i;O(a) and iL2L (0)i;O(a) are particular examples of this. If we fur
thermore assume that the first order partial derivatives ofA are bounded, i.e.,i]mAn(x)i<K for
all x,m,n, we have

i@¹m
6(0) ,Un#i;O~a!. ~A3!

To see this, note that

@¹m
1(0) ,Un#c~x!5~Un~x1aem!2Un~x!!c~x1aem!

5S aE
0<t<1

dt~An~x1aem ,t !2An~x,t !!1O~a2! Dc~x1aem!. ~A4!

By the middle-value theorem,

An~x1aem ,t !2An~x,t !5]mAn~x1saem ,t !

for somesP@0,1#. Sincei]mAni is bounded~A3! now follows from~A4!. The bound~A3! has the
following easy generalization: LetP5P(¹m

6) be a polynomial of degreek in the¹m
6’s; then, if all

the partial derivatives ofA of order<k are bounded, we have

i@P(0),Un#i;O~a!. ~A5!

Moreover, with the same boundedness assumptions onAm(x) and]mAn(x), straightforward cal-
culations using the middle-value theorem give

12U~px,m,n!5a2Fmn~x!1O~a3!~x!. ~A6!

Noting that16

@¹m
1 ,¹n

1#c~x!5~12U~px,mn!!Um~x!Un~x1aem!c~x1aem1aen! ~A7!

and similar formulas for the other commutators, a straightforward refinement of the argu
leading to~A5! and ~A6! shows

i@P(0),@¹m
6 ,¹n

6##i;O~a3!, i@P(0),@¹m
6 ,¹n

7##i;O~a3!. ~A8!

The requirement for this is thatA and all its partial derivatives up to orderr be bounded, where
r 5min$k,2%. SinceV is a linear combination of commutators of the¹m

6’s we have, in particular,
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i@L (0),V#i;O(a3) when A and its partial derivatives up to order 2 are bounded. Finally,
remark that~3.29! and~3.30! follow from combining~A7! and the corresponding formulas for th
other commutators with~A6!.
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