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Representations of super Yangian 

R. B. Zhang 
Department of Pure Mathematics, University of Adelaide, Adelaide, S.A., Australia 

(Received 13 December 1994; accepted for publication 17 March 1995) 

The classification of the finite-dimensional irreducible representations of the super 

Yangian associated with the Lie superalgebra gl( 111) is presented in detail. 0 1995 
American Institute of Physics. 

I. INTRODUCTION 

Many new algebraic structures were discovered in the study of soluble models in statistical 

mechanics and quantum field theory. Amongst them the quantum groups’q2 and Yangians3 are 

particularly interesting. The former have the structures of quasi-triangular Hopf algebras, admit- 

ting universal R matrices which play important roles in many fields in both mathematical physics 

and pure mathematics. The Yangians have structures closely related to but distinct from that of the 

quantum groups. Their representation theory forms the basis of the quantum inverse scattering 

method. Recent research has also revealed that the Yangian structure is the underlying symmetry 

of many types of integrable models. 

For practical applications, e.g., using the algebraic Bethe Ansatz to diagonalize Hamiltonians 

of spin chains, one is primarily interested in the finite-dimensional representations of Yangians. 

The systematic study of representations of the Yangians associated with ordinary Lie algebras was 

undertaken by Drinfeld,4 who, using techniques developed in Tarasov’s work5 on the gl(2) Yan- 

gian, obtained the necessary and sufficient conditions for irreps to be finite dimensional. The 

structures of the finite-dimensional irreps of the gl(m) Yangian were extensively studied;6-8 

representations of so(n) and sp(2n) Yangians and the twisted Yangians were studied in Refs. 9 

and 10; and the fundamental irreps of all the Yangians were investigated by Chari and Pressley.” 

It is also possible to introduce Yangians12 and their quantum analogues13 associated with the 

simple Lie superalgebras, which we will call super Yangians in this paper. Their structures, and 

their connections with the Lie superalgebras and the related quantum supergroups in particular, 

were studied by Nazarovt2 and also in Ref. 13. However, no attempt has yet been made to develop 

their representation theory in a systematic fashion. As a first step towards developing the repre- 

sentation theory of super Yangians, we investigate the finite-dimensional irreducible representa- 

tions of the Yangian Y(gl( 111)) associated with the Lie superalgebra gl( l/l) in detail. In Sec. II, we 

construct a BPW type of basis for Y(gl( 111)). In Sec. III, we prove that every finite-dimensional 

it-rep of Y(gl(ll1)) is of highest weight type, and is uniquely characterized by the highest weight. 

We give the necessary and sufficient condition for an irrep to be finite dimensional. In Sec. IV, we 

construct an explicit basis for each finite-dimensional irrep. 

It is relatively well known that the representation theory of Lie superalgebras and the associ- 

ated quantum supergroups differs markedly from that of the ordinary Lie algebras and the corre- 

sponding quantum groups. This is also the case for Yangians and super Yangians, as we will see in 

the remainder of this paper. 

Probably gl(ll1) is the most extensively studied Lie superalgebra, because of its connection 

with BRST and supersymmetry. Its representations are also rather easy to study, as only one- and 

two-dimensional irreps exist. However, we are not so lucky with the super Yangian Y(gl( 111)). As 

we will see, the study of its representations is a rather complex problem, The complication arises 

primarily from the fact that Y (gl( 111)) as an associative algebra is generated by an infinite number 

of generators. In fact, it is a deformation’4 of the universal enveloping algebra of a subalgebra of 
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R. B. Zhang: Representations of super Yangian 3855 

the Kac-Moody superalgebra a( 11 l)(t), which is spanned by the infinite number of nonnegative 

modes. 

II. BPW THEOREM 

In order to define the super Yangian Y((lll)), we first explain some properties of the Lie 

superalgebra gl( 1 I 1). Let {Eg I a, b = 1,2} be a homogeneous basis for a Z,-graded vector space over 

C such that Eg is even if a = b, and odd otherwise. The Lie superalgebra gl( l/l) is this Z,-graded 

vector space endowed with the following graded commutator: 

[E;,E;}=SC,E;-(-1)(a+b)(c+d)E;6a,. (1) 

The vector module of gl( 111) is a two-dimensional Z2-graded vector space V, which has a homo- 

geneous basis {u ‘,u2} with u ’ being even while u2 being odd. The action of gl(ll1) on V is 

defined by EguC= 6~“. We denote the associated vector representation of gl(ll1) by 7~. Then in 

this basis 7~(Ez) = et, where eg EEnd( V) are the standard matrix units. 

Define the permutation operator P: V @  V-+ V @  V by 

Then explicitly, we have 

P= C eE@ei(- l)b+‘. 
a,b= 1.2 

It is well known that the following R matrix, 

R(u)=l+P/u, UEC, (2) 

satisfies the graded Yang-Baxter equation. 
The super Yangian Y(gl(ll1)) is a Z,-graded associative algebra generated by tg[n], 

O<nsZ+, with some quadratic relations defined in the following way. Let 

L(u)=3 (-l)b+lt~(~)@ef:, 

m  

tz(u)=(- l)‘+‘G+ C tz[n]u-“. 
It=1 

Then the defining relations of Y (gl( l/l)) are 

~I(~)~~(~)R~~(u-u)=R~~(u-~)~~(u)~~(~). (3) 

Here the grading of the algebra requires some explanation. The element tz[n] is even if a = b, and 

odd otherwise. L(U) belongs to the Z,-graded vector space Y(gl(ll l))@End( V) and is even. 

Equation (3) lives in Y(gl(lll))@End( V) @End( V); and the multiplication of the factors on both 
sides is defined with respect to the grading of this triple tensor product. More explicitly, we have 

[t;p),t;;(u)}= (- l)~~;-bz) [t~:(u)t~:(u)-tasty:], 
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or in terms of the generators tz[ n] , 

Min(m,n) - 1 

m+n- 1 -r]-ti:[m+n- 1 -r]tf$r]] 

x (- l)v(q .bl ;a~&) (4) 

A feature of Y(gl( II 1)) which is not shared by the Yangians associated with ordinary Lie 
algebras is that t:(u), a # b, at different u values neither commute nor anticommute. Rather, 

(u-u-l)t:(u)t:(u)=-(u-u+l)t;(u)t;(u), 

(u-uf l)t;(u)t;(u)= -(u-u- l)tf(u)t;(u). 

A curious observation is that when the spectral parameters are assumed to be purely imaginary, 

t$(u)tg(u> and tt(u)tg(u)(a#b) only differ by a phase. 
Y (gl( 1 I 1)) also admits coalgebraic structures compatible with the associative multiplication. 

We have the counit EY(gl(l]l))+C, tg[k]-Sokt$( - l)=+t, the comultiplication 

A:Y(gl(lll))--ty(gl(lll))~Y(gl(lll)), L(u)-L(u)@L(u), and also the 

S:Y(gl(l~l))--+Y(gl(l~l)), L(u)*L-‘(u). Thus Y(gl(l]l)) is a Z,-graded Hopf algebra. 

antipode 

For the purpose of constructing representations of Y(gl( Ill)), the following generalized tensor 
product structure is more useful: 

A:-“:Y(gl(lll))+~(gl(lll))@~, 

(5) 

L(u)HL(u+a,)~L(u+a*)~...~~(u+ak), 

where CY~=O, and pi) i=2,3 , . . . , k, are a set of arbitrary complex parameters. Explicitly, we have 

A’,k-“(t;(u))= c (- l)$::[ 
al . . ..Gk-. 

a~+1+~aO+ai~~ai+~~+~~l~~l(u)~~~~(u+a2)~... 

@Ck-,(u+ 4, 

where ao=b, and uk=u. A further useful fact is the existence of an automorphism 

~~:y(gl(ll1))~y(gl(ll1)) corresponding to each power series f(x) = 1 +f,x-‘+f,~-~+... , 

which is defined by 

As can be easily seen, the ?E satisfy exactly the same relations as the tg themselves. For later use, 
we define 

Let us introduce a filtration on Y(gl( Ill)). D fi e ne the degree of a generator tg[n] by 

deg(tz[n])=n, and require that the degree of a monomial t~:[n,]t~:[n2]***t~$nJ is Cf=,n,. Let 

Y, be the vector space over C spanned by monomials of degree not greater than p. Then 

J. Math. Phys., Vol. 36, No. 7, July 1995 

Downloaded 07 Apr 2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



R. B. Zhang: Representations of super Yangian 3857 

**->Y,>Y,-,I-**>Y,, 

y,y,c yp+*. 

Let z1 ,z2 ,.+.rzk be some tg[n]‘s. Assume that Z=zlz2... zk has deg(Z)=p, then it directly 

follows from (4) that for any permutation u of (1,2,...,k), 

ZlZ2 “‘Zk-E(~)Z~(1)Z,(2)“‘Z,(k) 

belongs to Y,- , , where e(a) is - 1 if (T permutes the odd elements in z t ,z2,. . . ,i& an odd number 
of times, and + 1 otherwise. In particular, if tg[n] is odd, then (tz[f~])~ E Y2,,-*. Therefore, given 

any ordering of the generators tg[n], Ocn E Z, , a, b = 1,2, their ordered products of degrees less 

or equal to p span YP , where the products do not contain factors (t$[n])2 if tg[n] is odd. 

Consider the following ordered products: 

(fTh1) (4b21) 4 e’...(t~[n,])er(t~[iIl)kl(~~[j2])k’...(r~[j~])ks 

x(t~[j,l>‘l(t22[j,l)~z... 
8 

(t~C~,l>‘~(~:[~11>S’(f:~~21)S2...(~~[~,l) 4, (7) 

where nl<n2<***<nr, similarly for i,,j,, and m,, and k,, I,EZ+, 0,, &~{0,1}. 

Theorem 1: The elements (7) form a basis of Y(gl(l] 1)). 

Proof Since the elements of (7) span Y(gl(lll)), we only need to show that they are also 

linearly independent. Define UP = Y,/ YP _ i, then the multiplication of Y (gl( Ill)) defines a bilinear 

map UP@3 UQ--+UP+Q. This map extends to U @  U-t U, U = cB~=~U~, turning U to an associative 

algebra. 
Introduce the ordinary indeterminates xa[n], a = 1,2, n = 1,2,..., and the Grassmanian variables 

&qn], n=1,2 ,... . Construct the polynomial algebra G[x, 51 in these variables, where for the &, 
we have (5’[~])~=0. Now U and G are isomorphic as associative algebras. This proves that the 

elements (7) are linearly independent. 
We denote by N+ the vector space spanned by the elements of (7) of the form 

(t$mll)sT 

(r$n,Dei 

-*-(t!Jmq])‘*, 6,=0,1. Similarly, we denote by N- the vector space spanned by all the 

***(t:[nr1J8r, and Y0 that spanned by all the 

(t,[il])kl*-* (r~[i,l)ks(t~[jll)l,... (t?Jj,])“. It should be pointed out that N’ and Y” are not sub- 

algebras of Y(gl( 111)). 

III. CLASSIFICATION OF IRREPS 

A. Highest weight irreps 

Consider a finite-dimensional irreducible Y(gl( 11 I))-module V. A nonvanishing vector 
LJ: E V. is called maximal if 

ti[n]v$=O, tz[n]v$=i,[n]v+ tln>O, a= 1,2, 03) 

where X,[n] E C. An irreducible module is called a highest weight module if it admits a maximal 

vector. We define 

and call A(x) a highest weight of V. We wish to show the following. 
Theorem 2: Every finite-dimensional irreducible Y(gl(lll))-module V contains a unique (up 

to scalar multiples) maximal vector u^, . 
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Define a subspace Vo={u~V~t~[n]u=O,tln}. The bulk of the proof of the Theorem is 
contained in the following Lemma. 

Lemma Z:(l) V,#O; 
(2) Y” stabilizes V,; 

(3) for all u E Vo, 

[ff[ml, ~~[~llv=O, a,b= 1,2, m,n>O. 

Proof The proof is rather straightforward, we nevertheless present if here as the results are of 
crucial importance for developing the representation theory. 

(1) Since t ;[ l] and tg[ l] form an Abelian Lie algebra, there exists at least one nonvanishing 
u E V which is a common eigenvector of t :[ l] and tz[ I], that is, 

t;[llU=p,U, &llu=pUZv Pl*PZE~=. 

Now any nonvanishing tk[n I]ti[n2] .** ti[nk]b, k>O, is a common eigenvector of tt[ 1] and tz[ I] 

with respective eigenvalues ,q+k and k-k. Obviously such vectors are linearly independent. 
Since V is finite dimensional, k cannot increase indefinitely. Thus by repeatedly applying ti[ ml’s 
to u we will arrive at a O#uo= V such that 

ti[n]uo=O, \dn>l, 

I;[ I]uo=X,[ l]ua, tg l]uc=Xz[ l]u(). 

This proves that V. contains at least one nonzero element. 

(2) Let u be a vector of Vo. we want to prove that all t~:[nk]t~2I:[nk-~]“‘t~~[nllv, ui=1,2, 

ni>O, k>O are annihilated by ti[m], m>O. The k=O case requires no proof. Assume that all the 

vectors uI = tt:[n,] . ..tz.[nl]u, l<k, are in V,, then 

min(m,n~)- 1 

r=O 

(ti[r]ti[m+nk-l-r] 

min(m,nk) - 1 

t:[mlt:[nkluk-,=-[t~[nkl, ti[m]lvk-l=- c 
r=O 

(ti[r]ti[m+nk- l-r] 

(3) The following defining relations of Y(gl(l]l)), 

min(m,n)- 1 

[&ml, t[[nll= - rzO (t:[r]t:[m+n- 1 -r]-ff:[m+n- 1 -r]ti[r]), 

and part (2) of the Lemma directly lead to part (3). 

Proof of the Theorem: By part (3) of the Lemma, the action of the tz[n] on V. coincides with 
an Abelian subalgebra of gl(V,). Therefore, Lie’s theorem can be applied, and we conclude that 

there exists at least one common eigenvector of all tz[n] in V,. This proves the existence of the 
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highest weight vector. Assume u+ and ui are two highest weight vectors of V, which are not 

proportional to each other. Applying Y (gl( 111)) to them generates two nonzero submodules of V, 

which are not equal. This contradicts the irreducibility of V. 

B. Construction of highest weight irreps 

To construct irreducible Y(gl( 111)) modules, we consider a one-dimensional vector space 

CL& We define a linear action of Y+ = Y”N+ on it by 

N+u”=O + 3 

tf[nlyou$ = &[nly0v2 , VYO E Y”. (9) 

As we pointed out before, Y+ does not form an associate algebra, thus it does not make sense 

to ask whether Cut is a Yf module. However, from the proof of the Lemma we can see that the 

definition (9) is consistent with the commutation relations of Y(gl(ll1)). Now we define the 

following vector space: 

V(A)= Y(gI( 11 l))&+u$ 1 

Then V(A) is a Y(gl( 111)) module, which is obviously isomorphic to N- @u 3. 

To gain some concrete feel about this module, we explicitly spell out the action of Y (gl( Ill)). 

Every vector of V(h) can be expressed as y @u$ for some y EN-. For simplicity, we write it as 

yu$. Given any u E Y(gl(lll)), u y can be expressed as a linear sum of the basis elements (7). We 

write 

UY=C b, ,, ,y’l*‘yb”‘y!“’ , , . 

y'"' y$+N-, , yff),y&Y’, y$%N+. 

Then 

u(y& = c a,*pyYYpu’: . 

The Y(gl( 111)) module V(A) is infinite dimensional. Standard arguments show that it is inde- 

composable, and contains a unique maximal proper submodule M(A). Construct 

V(A)=V(A)lM(A). 

Then V(h) is an irreducible highest weight Y(gl( 111)) module. 

Let V,(h) and V,(A) be two irreducible Y(gl( 111)) modules with the same highest weight 

A(x). Denote by ut+ and ut+ their maximal vectors, respectively. Set W  = VI (A) @  V,(A). Then 
A- 

+:+ ,u 2” +) is maximal, and repeated applications of Y (gl( 1 II)) to u ̂ , generate a Y(gl( 111)) 

IGbmoduIe V(k) of W. Define the module homomorphisms Pi : V(A)--+ V,(A) by 

p,(ul,u2)=(ul,o), 

Since 

P2(~ir~2)=(0,~2), UI E V,(A), u2~ V,(A). 
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P‘bf-,+ J,^,+>=<ui’+ 90), 
mf,+ JG,+)=toJd,+)~ 

it follows the irreducibility of V,(A) and V,(A) that Im Pi= Vi(A). NOW Ker PI is a submodule of 
V,(A). The irreducibility of V,(A) forces either Ker P, =O or Ker P, = V,(A). But the latter case 
is not possible, as (O,ut,+) $ W. Similarly we can show that Ker P,=O. Hence, Pi are Y(gl(l]l)) 

module isomorphisms. 

To summarize the preceding discussions, we have the following. 

Theorem 3: Let A(x) be a pair of Laurent polynomials. Then there exists a unique irreducible 
highest weight Y (gl( 111)) module V(A) with highest weight A(x). 

C. Finite dimensionality conditions 

Let V(A) be an irreducible highest weight Y(gl(l]l)) module with highest weight A(x). 

Denote its maximal vector by u^, . The vectors tf[n] u$, n = 1,2,..., span a vector space, which we 
denote by a(A). As an intermediate step towards the classification of the finite-dimensional 
irreducible representations of Y(gl( 1 I I)), we determine the necessary and sufficient conditions for 
n(A) to be finite dimensional. The method used here is adopted from Tarasov’s work,5 but is more 

algebraic. 

First note that if for some n, tT[n + 1 ]u^, can be expressed as a linear combination of the 
elements of B,={tT[i]u$l isn}, then for all kZ=O, tf[n+ I+ k]u$ can be expressed in terms of 
the elements of B,. This fact can be easily proven using induction on k with the help of the 
following obvious relation: 

t~[n+1+k]u~=XI[n+k]t~[l]u~+(X,[2]-Xl[l])t~[n+k]u~-t~[2]t~[n+k]u~. 

Therefore, if dim n(A)=N is finite, then B, forms a basis of a(A), and we have 

N 

(10) 

In (lo), the pi are power series in x-‘, 

(11) 

and the Ui[ k] are defined by 

N 

tT[N+ 1 +k]u:=~~~ ai[k]tT[i]ui2,. 

In order to determine the functional form of the pi, we apply t $21 to both sides of this 
equation. By utilizing the defining relations of Y(gl(l]l)), we arrive at the following recursion 
relation for the ui[ k] : 

N 

(Ti[k+1I-(+i-1CkI-~NCkIc+i[OI=Sil X,[N+k+ ‘I-,& ~j[k]A,[j] 9 
I 

(12) 

where, by definition, ao[k]=O. Set 
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cq(k)= 1 +xi-‘+l,i(X). 

Then Eq. (12) can be easily solved, yielding 

si(x)=sN(x) l-j=$+l 
i 

aj[O]Xi-ly-l , i=1,2,...,N. 
1 

(13) 

Now the pi cyan be expressed in terms of the 9 : 

pi(X)=X-'Si(X), i= 1,2,...,N. (14) 

This particular form of the pi(X) imposes stringent constraints on the highest weight A(x). 
Observe that the tz[n] stabilize the vector space a(h). Thus 

where X,(x)=(- l)‘+‘+o(x-‘) is an NXN matrix in C[[x-‘I]. Defining relations of Y(gl(ll1)) 
lead to 

which in turn yields 

It is always possible to choose a set of constants x0 and zi , i= 1,2,.. .,N, such that CE Izipi(Xo) 
does not vanish. Set x=x,, in (15). Multiply both sides of the resultant equation by zi then sum 

over i. Some further simple manipulations lead to the following functional form for X1 : 

where ai and bi are complex numbers. Similar calculations yield 

Using Eqs. (14) and (13), we obtain 

L(x)= &(x)~abL 

(16) 

P,(x)=(- 1) Pa[kl E c. 

Therefore, a necessary condition for n to be finite dimensional is that X,(x)/X,(x) equals the ratio 

of two polynomials in x-l, which respectively have 2 1 as their constant terms. 
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Let A(x)=(Xt(x),X,(x)) satisfy the relation (16), with one of the P,(x) of order N, and the 
other of order not greater than N. We further assume that the P, are co-prime, i.e., they do not 

have common factors. Construct an irreducible Y(gl( 111)) module V(A) with highest weight A(x). 
Let u $ E V(A) be its maximal vector, and a(A) be the subspace of V(A) as defined before. Using 
the automorphism (6) with f(x) = &l(x), we have 

It is obvious but rather crucial to observe that Pz(x)P1(y) - PI(x)Pz(y) is divisible by 
x-‘--y-‘. We have 

N-l 

~;(X)~(Y)u:=Y-‘k& &)Y+u’: 9 

where qk(x) are some polynomials in x-t. This equation immediately leads to 

f;(x)z[k]u$=O Vk>N, 

which is equivalent to 

q[k]u$=O Vk>N. (17) 

It follows from Eq. (17) and the BPW theorem (for the generators ?g[k]) that the module V(A) 
is spanned by a subset of the following set of vectors 

&A)={u: ;~[nl]~[nz]...~[n,lu211~~~<~~<...<~~~N,~= 1,2,...,N}. 0% 

Thus the dimension of V(A) is bounded by 2N. To summarize, we have proved the first part of the 
following theorem. 

Theorem 4: (1). The irreducible Y(gl( l/l)) module V(A) is finite dimensional if and only if its 

highest weight A(x) = (A i(x), X,(x)) satisfies the following conditions: 

XI(X) P,(x) -=- 
b(x) Pdx) ’ 

(19) 

where the P,(x) are polynomials in x-l, which are co-prime, and P,(x)=(- l)af’+o(x-l). 
(2). Let N, called the order of A(x), be the largest of the orders of the polynomials P,(x), 

then (18) forms a basis of V(A). 
The proof of the second part of this Theorem will be given in Sec. IV. 

IV. STRUCTURE OF IRREPS 

We investigate the structure of the finite-dimensional irreps of Y(gl(ll1)) in this section. In 
particular, we will examine the tensor products of finite-dimensional irreps. We will also prove the 

second part of Theorem 4, thus to obtain an explicit basis for any finite-dimensional irreducible 

Y(gl( 111)) module. 

Let V(A) be a finite-dimensional irreducible Y (gl( 111)) module with highest weight A(x). 

Because of the automorphisms +f, we can assume that A(x) is of the form 

X,(x)=P,(x), u= 1,2, 
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where the P,(x) are polynomials in x-l, which do not have common factors. Also, 

P,(x)=(- 1y+’ +0(x-‘). Let N be the order of A(x). We have the following. 

Lemma 2: The vanishing of any linear combination of the vectors 

iv ̂, ;~:C~&:hl~** t:[nl]u311~nl<n2<...<~~~N,r= 1,2,...,N} 

would lead to 

Proof: This follows directly from the filtration of Y(gl(l]l)) introduced in Sec. II, and the 

BPW theorem. To be more explicit, we note that any vector of V(A) can be expressed as 

r=O let,<...<n,GN 
c,r~[~l]rf[~~]...r~[n,lu’:. 

Since terms with different r’s have different tf[ l] eigenvalues, we only need to consider vectors of 

the form 

u= c 
l=Zn,<...<n,SN 

The u must contain a term tT[ml]tf[m,]**. tf[m,lu$ such that deg(t:[m,]t:[m,]...t:[m,]) is 
the largest compared with all the other terms. We will call this term distinguished. For our 

purpose, we can assume that cl,, ,,,_, m,) =l. Multiply u by ET[kl]lT[k2]...t~[kN-~], where 

1 sk,<k,< me*<kN-,GN, and ki#m, for all i=l,..., N-r, s=l,..., r. Denote the resultant 
vector by 6. We now apply the BPW theorem to rewrite V into 

G=(-l)%-+ c 
lGp,C...<pNcN 

E,r:[pllr:[P21”‘~~[PNIUI:, 

where the u - term arises from the distinguished term of u, and 8 may be 0 or 1. It is crucial to 
observe that all the other terms in V must have 

But this is impossible, unless they all vanish identically. Hence V = ( - I ) ‘u _ . Therefore, if u was 

vanishing, so was u - . 
Let V,(A) be. an irreducible Y(gl( I] 1)) module of dimension 2N with an order N highest 

weight A(x)=(X,(x),X,(x)), where X,(x) are polynomials in x-l. Let W(p) be a two- 
dimensional irreducible Y (gl( 111)) mo u d 1 e with highest weight p(x) = ( 1 + ,uiIx, - 1 + &x). In- 
troduce a parameter cy such that 1 + (pi + &x does not divide X,(x), and - 1 + (h- cz)/x does not 

divide A,(x). We have 
Proposition I: The tensor product Y(gl(l]l)) module V(A) 8 W( CL) is irreducible with respect 

to the comultiplication A, defined by (5). 

Proof: Denote by u+ the maximal vector of V,(A). Set u-=rf[l]***r:[N]u+, which is the 

unique vector (up to scalar multiples) satisfying r:[n]u - =0, for all n. Let w + be the maximal 
vector of W  and define w - = rT[ I ] w + . It is clearly true that 

V(A)@w-=N-(u+@w-). 

Consider 
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Aa(~~tx>)b+@w+)= --f:Wu+@( - lf -$-)w++Al(x)u+~ --& w-. 

If k#O, we set x to x0=-h-a in the above equation to arrive at 

~+~w-=~2(~ltxo))-1Aha(~~tx))t~+~w+)~N-1t~+~w+), 

where X1(x0) is always nonvanishing. If k=O, terms of orders higher than N in X-’ of Eq. (20) 
again lead to 

u+@w- EN-(u+@w+). 

Hence V,(A)@w- EN-(u+@w+), and it follows that V,(A)@w+ EN-(u+@Iw+). Therefore 

Vt(A)@W(p)=N-(u+@w+). (21) 

By considering the equation 

in a similar way we can see that 

u-@w+ EN+(u-@w-). 

Since Vl(A)@w+=Nf(u-@w+), we conclude that 

V,(A)@W(~)=N+(u-@w-). (22) 

Equations (21) and (22) and Lemma 2 together imply that V,(R)@ W(p) is irreducible with 
respect to the tensor product Aa. 

Let W(pci)), i= 1,2 , . . . ,N, be two-dimensional irreducible Y(gl( 1 II)) modules, respectively, 
having highest weights 

i 

&) /$) 
p(‘)(x)= If- -1+- 

x ’ i x ’ 

Let a;, i= 1,2 ,. . .,N, be a set of complex parameters such that c~t=O, and the polynomials in x-t 
defined by 

a,cx,=-fil (l-e), 
do not have common factors. Then we have 

Theorem 5: The tensor product Y(gl(l/l)) module W(pL(l))@ W(,uc2’)@. * * W(pcN)) is irre- 
ducible with respect to the comultiplication (5), and its highest weight A(x)=(A,(x),A,(x)) 

satisfies 
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x,(x>= Q,(x) 

X,(x> Qzb) ’ 

Proof: Define 

p(x)= l+c”l[ll ~lC21 

i X 

, 2 I.P21:ll+cL2[21 

x ’ -----x2 X  i 

4 ( l+$!)( l+4y),-( lA)( I-“y2))* 

Obviously p(x) is of order 2. Construct the irreducible Y(gl(ll1)) module u(p) with highest 

weight p(x). Let u+ E V(p) be the highest weight vector. We claim that u+ , r:[ l]u+ , r:[2]u+ , 

t:[ 1 ]r:[2]u+ , form a basis of U(p). To prove our statement, we only need to show that these 

vectors are linearly independent. The independence of r:[ l]u+ and r:[2]u+ follows from he 

given condition that p(x) is of order 2. If rf[ l]r:[2]u+ vanished, we would have 

which implies 

This would force the order of p(x) to be 0, contradicting the given conditions. Therefore our claim 

is indeed correct. 

Now we use induction to prove the theorem. Consider the case N=2 first. By comparing the 

dimensions of W( p(I)) 63 W(pc2’) with V&u), we can see that these two modules coincide up to an 

appropriate q!~~ automorphism of Y(gl(l] 1)). A ssume that the Theorem is valid for N = k - 1, then 

it immediately follows the Proposition that the Theorem is correct for N= k as well. 

Proof of rhr second purr of Theorem 4: It follows from Theorem 5 as a corollary. 
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