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Abstract— In this paper, we propose a mobile agent-based
routing algorithm in which the traffic cost is considered. We
define a traffic cost function for each link based on known
traffic information and find the probability distribution that
mobile agents may select a neighboring node and move to. We
theoretically analyze the probability distribution and provide
the optimal probability distribution that makes inference on
the known traffic information and approximates to a unbiased
distribution.
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I. INTRODUCTION

With the rapid growth of the Internet and dramatic ad-
vances in computer technology, computers are no longer
isolated computational machines. People communicate with
the outer world through wireless networks, LANs, and the
Internet. The widespread popularity of the WWW (World
Wide Web) demands new paradigms for building computer
systems. The deployment of mobile agents, which are small
decision-making programs capable of migrating autonomously
from node to node in a computer network, is an important
representative of these new paradigms and is an effective way
to reduce network load and latency [14].

In [7], Milojicic described that mobile agents are au-
tonomous, adaptive, reactive, mobile, cooperative, interactive,
and delegated software entities. The key idea underlying
mobile agents is to bring the computation to the data rather
than the data to the computation [18]. The application of
mobile agents in network routing has attracted significant
attention [6], [17], [21]. Successful examples of mobile agent
applications can be found in [12], [13]. The use of mobile
agents in applications ranging from electronic commerce to
distributed computation has also been studied extensively.

Routing is a key factor for network performance. It is the
process of moving a packet of data from source to destination.
Once request for sending a packet is received, the router should
recommend the optimal path (or the shortest path) for sending
this packet over the network. As searching for the optimal
path in a stationary network is already a difficult problem,
the searching for the optimal path in a dynamical network or
mobile network will be much more difficult. Mobile agent-

based routing algorithm is a promising option for use in these
environments [4]. In a mobile agent-based routing algorithm,
a group of mobile agents build paths between pair of nodes,
exploring the network concurrently and exchanging data to
update routing tables [8], [10]. Once a request for sending a
packet is received from a server, a number of mobile agents are
generated and dispatched to the network. These agents roam
around the network and gather relevant information. Once an
agent accomplishes its task, the collected information is sent
back to the server. When a certain number of those agents
have come back, the server selects the optimal path by certain
criterion and sends the packet to the destination along the new
path. At the same time, the server updates its routing table by
the information of the new path.

It can be seen that in a large communication network such as
Internet, agents have to be generated frequently and dispatched
to the network. Thus, they will certainly consume a certain
amount of bandwidth of each link in the network. If there
are too many agents migrating through one or several links
at the same time, they will introduce too much transferring
overhead to the links. Eventually, these links will be busy and
indirectly block the network traffic. Therefore, there is a need
of developing routing algorithms that consider about the traffic
load. Since the state of different links may change dynamically
over time, the agents have to dynamically adapt themselves
to the environment, which increases the difficulty for both
algorithm design and theoretical analysis. In [3], the network
state is monitored by launching an agent at regular intervals
from a source to a certain destination. In [5], the agent was
enabled to estimate queuing delay without waiting inside data
packet queues. In [15], the authors showed that the information
needed in [3], [5] for each destination is difficult to obtain in
real networks. In [1], a mechanism of handling routing table
entries at the neighbors of crashed routers was proposed which
significantly improved the algorithm proposed in [3], [5]. In
[2], the authors formulated a method of mobile agent planning,
which is analogous to the travelling salesman problem [9] to
decide the sequence of nodes to be visited by minimizing the
total execution time until the desired information is found.

In this paper, we propose an agent-based routing algorithm
in which the traffic cost for each link is considered. To balance
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the traffic load on each link, we introduce the maximum
entropy theory into our algorithm to find an optimal proba-
bility distribution that makes inference on the known traffic
information and balances the traffic load. Theoretical analysis
shows that our derived probability distribution that an agent
on an intermediate node may select a neighboring node and
move to satisfies these two requirements. The remainder of
this paper is structured as follows. Section II presents our
algorithm. Section III introduces the maximum entropy theory.
Section IV provides theoretical analysis, and Section V gives
our conclusions.

II. THE MOBILE AGENT-BASED ROUTING ALGORITHM

For a large agent-driven network, suppose that agents can
be generated from every node in the network, and each
node in the network provides to mobile agents an execution
environment. A node from which mobile agents are generated
is called the server of these agents. At any time, requests may
be keyed in the network. Once a request for sending a packet
to a destination (point-to-point) or to multiple destinations
(multicast) is received from a server, the server will generate a
number of mobile agents. Each agent carries the addresses of
its server, its destination, the previous node it jumped from,
and some control information for routings such as life-span
limit and hop counter. All these data can be contained in
several lines of Java code; thus, the size of a mobile agent is
very small, resulting in great reduction on network load and
latency. After being generated, these agents move out from
the server and roam in the network. When an agent reaches
a node, it checks whether the host node is its destination. If
the current host node of an agent is not the destination, the
agent performs a random walk based on the traffic situation of
links to the neighboring nodes. That is, it selects a neighboring
node according to the costs of the neighboring links and the
number of users of each link. A link with lower cost and fewer
user will be selected with priority. Once an agent has reached
the destination, it will go back to the server along the path
searched, update the routing tables on the nodes along the path,
and submit its report about the searched path to the server.
When a certain number of those agents have come back, the
server selects the optimal path by certain criterion and sends
the packet to the destination along the new path. At the same
time, the server updates its routing table by the information
of the new path. To eliminate unnecessary searching in the
network, a life-span limit is assigned to each agent. An agent
will die if it cannot find its destination in its life-span limit.
Moreover, if an agent cannot return to its server in two times
the life-span limit (e.g., its return route is interrupted due to
a link/node failure), the agent also will die.

Let G = {V,E} be a graph corresponding to a fixed
network, where V = {ν1, ν2, · · ·} is the set of vertices (hosts)
and E is the set of edges. In this paper, we assume that the
topology of a network is a connected graph in order to ensure
that communication are able to be made between any two host
machines. NB(i) is the set of neighboring nodes of node νi

and |NB(i)| is the number of nodes in NB(i). Originally,

each node has no information about its neighboring nodes and
links, and no agent passed it on the return trip. Therefore,
each vertex in set NB(i) has the same probability to be
selected, i.e., 1/|NB(i)|. This uniform probability distribution
of agents’ neighboring node-selection will be updated with
time going. The new probability distribution should satisfies
two constrains:

1) It makes inference on all the known traffic information.
2) It is unbiased. That is, the probability should mostly

balance the traffic cost on each link.

To find a probability distribution that both makes inference on
the known information and approximates to the unbiased (uni-
form) distribution, We mathematically model the constrains
as follows. The effect of the known traffic information on the
agent’s migrating decision making can be expressed by a min-
max problem as follows:

min
x∈Rn

f (j)
max(x), (1)

where x is a random variable with n entries, which denotes
n items to be considered to the cost of a link. The objective
function f

(j)
max(x) is the traffic cost function defined as follows:

f (j)
max(x) ≡ max

i∈NB(j)
{fji(x)}. (2)

Here, fji(x) is the traffic cost function from node νj to
νi. Without losing generalization, we assume that functions
fji(i ∈ NB(j)) are differentiable. Obviously, the maximum
value function f

(j)
max(x) is an undifferentiable function.

At the same time, the unbiased requirement is expressed by
the maximum entropy function (as shown in the next section).
Solving the combinatorial optimization problem results in a
probability distribution that can be expressed as follows:

pji =
exp{θfji(x)}∑

l∈NB(j) exp{θfjl(x)} , j = 1, 2, · · · ; i ∈ NB(j),

(3)
where pji is the probability that an agent on node νj migrates
to node νi, θ ≥ 0 is a weight coefficient defined according to
the effect of the known traffic state of the network.

In Section III, we will detail the reduction and show the
rationality of this probability distribution.

III. THE MAXIMUM ENTROPY THEORY

In [19], Shannon first introduced the concept of entropy
into informatics as a measurement of uncertainty. Suppose
that there are a set of possible events whose probabilities of
occurrence are λ1, λ2, · · · , λn. These probabilities are known
but that is all we know concerning which event will occur.
Can we find a measure of how much “choice” is involved in
the selection of the event or of how uncertain we are of the
outcome? Shannon pointed that if there is such a measure, say
H(λ1, λ2, · · · , λn), it should have the following properties:

1) H should be continuous on λi.
2) If all λi are equal, i.e., λi = 1/n, then H should be a

monotonically increasing function of n.
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3) If a choice is broken down into two successive choices,
the original H should be the weighted sum of the
individual values of H .

In [19], it is proved that the entropy function H =
−k

∑n
i=1 λi lnλi is the only function that can satisfies all

the requirements, where k is a positive constant decided by
measurement units. Usually, k is set to be 1. The Shannon
entropy has the following properties:

1) Hn(λ1, λ2, · · · , λn) ≥ 0;
2) If λk = 1 and λi = 0 (i = 1, 2, · · · , n; i �= k), then

Hn(λ1, λ2, · · · , λn) = 0;
3) Hn+1(λ1, λ2, · · · , λn, λn+1 = 0) =

Hn(λ1, λ2, · · · , λn);
4) Hn(λ1, λ2, · · · , λn) ≤ Hn(1/n, 1/n, · · · , 1/n) = lnn;
5) Hn(λ1, λ2, · · · , λn) is a symmetrical concave function

on all variables.

where H = −∑n
i=1 λi ln λi.

E. T. Jaynes found that in many probabilistic executions,
the resulting probability distribution cannot foreknown; thus,
the entropy cannot be calculated. But he also claimed that the
probability distribution could be induced by the accumulated
test data such as the mean and the variance. In [11], E.T.Jaynes
proposed the maximum entropy theory: “in making inference
on the basis of partial information we must use that probability
distribution which has maximum entropy subject to whatever
is known. This is the only unbiased assignment we can make;
to use any other would amount to arbitrary assumption of
information which by hypothesis we do not have”. Notice that
“entropy” is a measurement of the degree of uncertainty and
the great the entropy’s value, the less known information, the
maximum entropy theory can be mathematically expressed as
follows:




max H = −
N∑

i=1

λi ln λi

s.t.

N∑
i=1

λi = 1;

N∑
i=1

λigj(xi) = E [gj ] , j = 1, 2, · · · , m;

λi ≥ 0, i = 1, 2, · · · , N,

(4)

where λ = (λ1, λ2, · · · , λn), gj(j = 1, 2, · · · ,m) is some
predefined constrained function, and E[·] is the mean of these
constrained function.

Templeman et al. [20] first applied maximum entropy theory
to solve optimization problems in which the objective function
is unanimously approximated by a smooth one. By solving
the resulting problem, an approximate solution of the original
problem can be obtained. The purpose of deploying maximum
entropy theory in agents’ searching process is to find a
probability distribution that both satisfies the known routing
information and mostly approximate to the unbiased (uniform)
distribution.

IV. THEORETICAL ANALYSIS

Let’s look at the following Lagrange function:

�j(x, pj) =
∑

i∈NB(j)

pjifji(x) ∀x ∈ Rn, pj ∈ ∆j , (5)

where pj = (pj1, pj2, · · · , pj,|NB(j)|)T is the vector of La-
grange multiplier, ∆j is a simplex set defined as follows:

∆j ≡

pj ∈ R|NB(j)|

∣∣∣∣∣∣
∑

i∈NB(j)

pji = 1, pji ≥ 0


 . (6)

It is easy to see that no matter which value the multiplier vector
pj is chosen, the value of the Lagrange function �j(x, pj) is
less than or equal to the maximum value function f

(j)
max(x),

i.e.,
�j(x, pj) ≤ f (j)

max(x). (7)

From the definition of Lagrange function �j(x, pj), we have
the following lemma:

Lemma 1: The maximum value function f
(j)
max(x), defined

in (2), can be expressed as follows:

f (j)
max(x) = sup

pj∈∆j

�j(x, pj) = max
pj∈∆j

�j(x, pj). (8)

Proof: For ∀x ∈ Rn and ∀pj ∈ ∆j , it is easy to see that∑
i∈NB(j)

pjifji(x) ≤ f (j)
max(x). (9)

Therefore,
sup

pj∈∆j

�j(x, pj) ≤ f (j)
max(x). (10)

Let I
(j)
max(x) be the indicator set of element functions

fji(x)(i ∈ NB(j)) that equal to the maximum value function
f

(j)
max at point x, i.e.,

I(j)
max(x) := {k|fjk(x) = f (j)

max(x)}. (11)

If k ∈ I
(j)
max(x), then for arbitrary x ∈ Rn and pj ∈ ∆j , we

have

sup
pj∈∆j

�j(x, pj) ≥
∑

i∈NB(j)

p̄jifji(x) = f (j)
max(x)b (12)

where

p̄ji =
{

1, i = k;
0, i �= k.

(13)

From (10) and (12), the first equality in (8) is hold. Consider
that ∆j is a tight set and �j(x, pj) is a continuous function
on pj , the second equality in (8) is also hold.

From Lemma 1, it can be seen that since the Lagrange
function �j(x, pj) is a linear function on variable pj , (8) has
multi-solutions. Therefore, function f

(j)
max(x) defined in (2) is

an undifferentiable function.
From Lemma 1, it can also be seen see that since the

multiplier vector pj is limited inside the simplex ∆j , the
Lagrange function �j(x, pj) can be interpreted as a convex
combination of all element functions fji(x) (i ∈ NB(j))
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and multipliers pji are the combination coefficients. Therefore,
Problem (1) can be solved by solving an equivalent problem
of finding a set of value of pji, (i ∈ NB(j)) such that the
Lagrange function �j(x, pj) approximates to the maximum
value function, i.e., to find the optimal combination p̂j from
all combinations that satisfies (6) such that (7) becomes the
following equality:

�j(x, p̂j) =
∑

i∈NB(j)

p̂jifji(x) = f (j)
max(x). (14)

On the other hand, if the Lagrange multipliers pji (i ∈
NB(j)), also called the combination coefficients, is endued
with a probability sense, i.e., describing them as the corre-
sponding probabilities such that the element function fji(x)
becomes the maximum value function f

(j)
max(x), then from

the concept of probability, Problem (1) can be transferred
into a maximized problem of finding the optimal probability
distribution that satisfies:




max
pj∈R|NB(j)|

�j(x, pj)

s.t.
∑

i∈NB(j)

pji = 1;

pji ≥ 0, i ∈ NB(j).

(15)

Now, we begin to find a smooth function to approximate to
the maximum value function. According to the analysis above,
there are two object functions to be maximized:

1) To maximize the Lagrange function through selecting
the optimal multiplier vector;

2) To maximize the entropy function by finding an unbiased
probability distribution.

Consider the maximum entropy theory that introduced in the
previous section, the optimal probability distribution should
also satisfies:




max
pj∈R|NB(j)|

H(pj) = −
∑

i∈NB(j)

pji ln pji

s.t.
∑

i∈NB(j)

pji = 1;

pji ≥ 0, i ∈ NB(j).

(16)

Therefore, the problem to be solved is a multi-objective
problem as follows:




max
pj∈R|NB(j)|

{�j(x, pj),H(pj)}
s.t.

∑
i∈NB(j)

pji = 1;

pji ≥ 0, i ∈ NB(j).

(17)

By the weighting coefficient method, the multi-object prob-
lem (17) can be transformed into a single-object problem as

follows:


max
pj

L
(j)
θ (x, pj) =

∑
i∈NB(j)

pjifji(x)

−1
θ

∑
i∈NB(j)

pji ln pji;

s.t.
∑

i∈NB(j)

pji = 1;

pji ≥ 0, i ∈ NB(j),

(18)

where θ ≥ 0 is a weighting coefficient. Obviously, when θ

is small, the second item of the object function L
(j)
θ (x, pj) is

dominative. Then the gained probability distribution mainly
reflects the requirement of unbiased distribution. With the
increase of θ’s value, the effect of the first item increases;
thus, the object of maximizing the Lagrange function becomes
dominative.

To solve Problem (18), we first consider the following
problem:

sup
pj∈∆j


L

(j)
θ (x, pj) := �j(x, pj) − θ−1

∑
i∈NB(j)

pji ln pji


 .

(19)
Based on the knowledge of convex analysis and the property
of entropy function, we can prove that the function defined by
(19) has the following property:

Theorem 1: The function F
(j)
θ (x) defined by (19) is differ-

entiable and uniformly approximate to function f
(j)
max(x) on

the whole space Rn.
Proof: From the definition of indicator function, Problem

(19) can be reduced as

sup
pj∈R|NB(j)|




∑
i∈NB(j)

pjifji(x)

−θ−1
∑

i∈NB(j)

pji ln pji − δ(pj |∆j)


 ,

(20)

where δ(pj |∆j) is an indicator function on the closed convex
set ∆j . From the strictly convex property of entropy function∑

i∈NB(j) pji ln pji, it can be seen that for arbitrary fixed
x ∈ Rn, the object function of the maximum problem (20)
is a closed normal strictly concave function on variable pj

and the effective region is the tight set ∆j . Therefore, from
the Weiertrass theory, the maximum problem exists an unique
solution p∗j (x, θ) and reaches its finite optimal value on the
unique solution. That is, Problem (19) defines a real value
function on Rn as follows:

F
(j)
θ (x) :=

∑
pj∈∆j

L
(j)
θ (x, pj) = L

(j)
θ

[
x, p∗j (x, θ)

]
. (21)

Consider that function −∑
i∈NB(j) pji ln pji is unnegative on

the bounded closed convex set ∆j and has an upper bound
(lnm)/θ, that is

1 ≤ −
∑

i∈NB(j)

pji ln pji ≤ lnm

θ
,∀pj ∈ ∆j , (22)
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we have

sup
pj∈∆j

�j(x, pj) ≤ sup
pj∈∆j

L
(j)
θ (x, pj)

≤ sup
pj∈∆j

�j(x, pj) +
ln m

θ
.

(23)

Thus, from (8) and (21), we have

f (j)
max(x) ≤ F

(j)
θ (x) ≤ f (j)

max(x) +
ln m

θ
. (24)

This indicates that the function F
(j)
θ (x), defined by the max-

imum problem (19), is uniformly approximate to f
(j)
max(x) on

the whole space Rn.
At the same time, if function K(pj) is defined as follows:

K(pj) :=




∑
i∈NB(j)

pji ln pji pji ≥ 0;

+∞ pji < 0,

(25)

then it is a closed normal strictly convex function on R|NB(j)|

and ri(domK) ∩ ri(∆j) �= φ. Therefore, from (20) and the
definition of convex conjugate function, we have

F
(j)
θ (x) = θ−1 · (K + δ)∗(θFj(x))

= θ−1 · (K∗ 	 δ∗)(θFj(x))),
(26)

where Fj(x) := (fji(x))T
i∈NB(j) is a vector function and

K∗ is the convex conjugate function of K. Since K ∈
Leg(Rm

+ ), i.e., K(pj) is a Legendre convex function, K∗ ∈
Leg(int(domK∗)) and (K∗ 	 δ∗)(·) is essentially smooth.
Thus, from (26) and the property that F

(j)
θ (x) is a real value

function on Rn, we have dom(K∗ 	 δ∗) = R|NB(j)|. Due to
the continuous differentiable property of Fj(x), F

(j)
θ (x) is a

smooth function.
Combine the above two aspects, the theorem is proven.
In the following, we will prove some properties of function

F
(j)
θ (x).
Theorem 2: For ∀x ∈ Rn, function F

(j)
θ (x) has the follow-

ing properties:

1) f
(j)
max(x) ≤ F

(j)
θ (x) ≤ f

(j)
max(x) + (ln m)/θ.

2) limθ→∞ F
(j)
θ (x) = f

(j)
max(x).

3) If all the functions fji (i = 1, 2, · · · ,m) in the original
problem (1) are convex, F

(j)
θ (x) is a convex function

too.
4) ∇xF

(j)
θ (x) =

∑
i∈NB(j) p̂ji(x)∇xfji(x).

5) −(ln m)/θ2 ≤ ∂F
(j)
θ (x)/∂θ ≤ 0.

6) F
(j)
θ (x) ≤ F

(j)
ϑ (x), ∀θ ≤ ϑ.

Proof: 1. Here, we provide a different proof from
Theorem 1. From the expression of F

(j)
θ (x) in (39), we have

F
(j)
θ (x) = f (j)

max(x)

+
1
θ

ln




∑
i∈NB(j)

exp
[
θ
(
fji(x) − f (j)

max(x)
)]

 .
(27)

From the definition of maximum value function f
(j)
max(x) in

(2), we have

1 ≤
∑

i∈NB(j)

exp
[
θ
(
fji(x) − f (j)

max(x)
)]

≤ m. (28)

Substitute this inequality into (27), we have

f (j)
max(x) +

1
θ

ln 1 ≤ F
(j)
θ (x) ≤ f (j)

max(x) +
1
θ

lnm. (29)

2. Take limitation on both side of (29), this property is proven.
3. For any x, y ∈ Rn and α ∈ (0, 1), since all the functions
fji (i ∈ NB(j)) are convex, we have

F
(j)
θ (αx + (1 − α)y)

=
1
θ

ln




∑
i∈NB(j)

exp [θfji (αx + (1 − α)y)]




≤ 1
θ

ln




∑
i∈NB(j)

exp [θ (αfji(x) + (1 − α)fji(y))]




=
1
θ

ln




∑
i∈NB(j)

(exp [θfji(x)])α (exp [θfji(y)])1−α


 .

Applying to the Hölder inequality, we have

∑
i∈NB(j)

(exp [θfji(x)])α (exp [θfji(y)])1−α

≤



∑
i∈NB(j)

exp [θfji(x)]




α

·



∑
i∈NB(j)

exp [θfji(y)]




1−α

.

Combined the above two relationships, we have

F
(j)
θ (αx + (1 − α)y)

≤ α

θ
ln




∑
i∈NB(j)

exp [θfji(x)]




+
1 − α

θ
ln




∑
i∈NB(i)

exp [θfji(y)]




= αF
(j)
θ (x) + (1 − α)F (j)

θ (y).

(30)

Hence, function F
(j)
θ (x) is a convex function.

4. Take derivation about x on both side of (27), we have

∇xF
(j)
θ (x) = ∇xf (j)

max(x)

+
1
θ
∇x ln




∑
i∈NB(j)

exp
[
θ
(
fji(x) − f (j)

max(x)
)]

 .
(31)
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Since

∇x ln




∑
i∈NB(j)

exp
[
θ
(
fji(x) − f (j)

max(x)
)]



=

∑
i∈NB(j) ∇x exp

[
θ
(
fji(x) − f

(j)
max(x)

)]
∑

i∈NB(j) exp
[
θ
(
fji(x) − f

(j)
max(x)

)]

=
∑

i∈NB(j)

exp
[
θ
(
fji(x) − f

(j)
max(x)

)]
∑

i∈NB(j) exp
[
θ
(
fji(x) − f

(j)
max(x)

)]
·∇x

[
θ
(
fji(x) − f (j)

max(x)
)]

= θ
∑

i∈NB(j)

p̂ji(x)∇xfji(x) −∇xf (j)
max(x),

(32)

where p̂jix is defined as (38). Substitute this results into (31),
this property is proven.
5. From the expression of function F

(j)
θ (x) in (39) and the

definition of p̂ji(x) in (38), we have

∂F
(j)
θ (x)
∂θ

= −F
(j)
θ (x)

θ
+

∑
i∈NB(j) exp (θfji(x)) fji(x)

θ
∑

i∈NB(j) exp [θfji(x)]

= θ−1


 ∑

i∈NB(j)

p̂ji(x)fji(x) − F
(j)
θ (x)


 .

(33)

According to (18) and (39), we have

F
(j)
θ (x) =

∑
i∈NB(j)

pji(x)fji(x)

−θ−1
∑

i∈NB(j)

pji(x) ln [pji(x)] .
(34)

Therefore,

∂F
(j)
θ (x)/∂θ = θ−2

∑
i∈NB(j)

pji(x) ln [pji(x)] . (35)

Thus, from the following inequality:

− lnm

θ
≤ θ−2

m∑
i=1

pji(x) ln [pji(x)] ≤ 0, ∀x ∈ Rn, (36)

this property is proven.
6. From property 5, we can see that function F

(j)
θ (x) is a

decreasing function on θ, thus, this property is straight forward
for property 5.

Item 1 in Theorem 2 provides error bounds of function
F

(j)
θ (x), and item 2 shows that function F

(j)
θ (x) uniformly

approximates to function f
(j)
max(x). Item 3 shows the convex

property of function F
(j)
θ (x), and item 4 is for the continuity

and the differentiability of function F
(j)
θ (x). Item 5 provides

both upper bound and lower bound of the derivation of
function F

(j)
θ (x) on p, and item 6 shows that function F

(j)
θ (x)

is a monotonously decrease function on θ.

Since function F
(j)
θ (x) uniformly converges to the objective

function f
(j)
max(x), solving the original problem (1) is equiva-

lent to solving the following problem:

min
x∈Rn

F
(j)
θ (x). (37)

As function F
(j)
θ (x) is differentiable, the optimal solution,

p̂j(x), of Ea. (18) can be easily derived from applying the
K − T condition as follows:

p̂ji(x) =
exp{θfji(x)}∑

l∈NB(j) exp{θfjl(x)} , i ∈ NB(j). (38)

Substitute the analytical solution p̂j(x) of the multiplier pj in
the objective function of (18), we have

F
(j)
θ (x) = L

(j)
θ (x, p̂j(x))

=
1
θ

ln




∑
i∈NB(j)

exp [θfji(x)]


 .

(39)

V. CONCLUSION

Routing is a key factor for network routing, and mobile
agent-based routing is newly proposed for use in large dynamic
network. In this paper, we proposed a new mobile agent-
based routing algorithm in which the balance of traffic cost
is considered. On each node, there is a probability distribution
for an agent to select one of the neighboring nodes and move
to. We macroscopically define a traffic cost function for each
link according to the known traffic information and found a
probability distribution that not only makes inference on the
known information but also balances the traffic costs. Theo-
retical analysis provided some properties of the approximating
function (including the convergence property) and showed the
rationality of our probability distribution.
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