
Sorting on Single-Channel Wireless Sensor Networks �

Jacir L. Bordim, Koji Nakano, and Hong Shen

School of Information Science

Japan Advanced Institute of Science and T ec hnology

1-1, Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan

Abstract

A wireless sensor network is a distribute dsystem
which consists of a base station and a number of wire-
less sensors nodes endowed with radio transceivers.
The main contribution of this work is to present
a sorting protocol for multi-hop wireless sensor net-
works. Our protocol sorts n elements which are ini-
tially lo ade din n sensor nodes that are organize din a
two-dimensional plane of size

p
n � pn. The sorting

protocol proposed here sorts the n elements in O(r
p
n)

time slots when
p
n > r, where r is the transmission

range of the sensor nodes.

keywords: wir eless sensor networks, sorting,
bitonic sorting, sensing devices

1 Introduction

A Wireless Sensor Network (WSN, for short) is a
distributed system consisting of a base station and a
number of tiny wireless sensing devices that integrate
microsensing and short-range communication capabili-
ties. When deployed in large numbers, these devices
can measure aspects of the ph ysical environment in
great detail. The data being sensed by the sensor nodes
in the netw ork is even tually transferred to a base sta-
tion, where the information can be accessed.

In a single-hop WSN, a sensor node can directly
communicate with any other sensor node, whereas in
a multi-hop WSN, the communication between tw o
sensor nodes may involve a sequence of hops through
a chain of pairwise adjacent sensor nodes. There is
a single-hop communication betw eenthe base station
and the sensor nodes, while the communication among
the sensor nodes can be either single or multi-hop.

�Work partially supported by The Hori Information Science

Promotion Foundation.

There are several possible models for WSN's, in this
w ork we consider WSN's where all the sensor nodes in
the netw ork are �xed, short-ranged and homogeneous.
We assume that the base station and all the sensor
nodes have a local clock that keeps synchronous time,
perhaps by interfacing with the base station or with a
GPS system [13]. All sensor nodes run the same pro-
tocol and can perform computations on the data being
sensed. As customary, time is assumed to be slotted
and all transmissions take place at slotted boundaries
[6, 8]. We employ the commonly-accepted assumption
that when tw o or more sensor nodes which are in the
transmission range of each other transmit in the same
time slot, the corresponding pac ketscollide and are
garbled beyond recognition.

In this work we address the sorting problem, where
n elements are stored in n sensor nodes which are
arranged in a tw o-dimensional square plane of sizep
n � pn. Sorting is a fundamental problem with an

extensive theory and a wide range of practical appli-
cations. It is kno wn that a sequential algorithm takes
at least
(n logn) time to sort a sequence of n ele-
ments and that optimal algorithms exist which achieve
O(n logn) time [3]. Also, many optimal parallel sorting
algorithms have been reported in the literature for dif-
feren t parallel architectures, such as the Parallel Ran-
dom Access Machine (PRAM) and the Recon�gurable
Mesh (RM) [4, 14].

The sorting protocol proposedin this work follows
from the work of Nassimi and Sahni [15], which is an
adaptation of the bitonic sort. It was sho wn in [15] that
n2 elements can be sorted in O(n) time on a Mesh-
Connected P arallel Computer. Our sorting protocol
sorts n elements which are initially stored in n sen-
sor nodes in O(r

p
n) time slots, for r <

p
n, where

r is the transmission range of the sensor nodes. F or
short-transmission ranges (i.e., small values of r), our
sorting algorithm matches the time complexity of the
algorithm proposed by Nassimi and Sahni [15], which

1

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

is optimal. How ev er, our protocol can take as much as
O(r2) time slots if r � pn. This is due to the fact that
with a large transmission range, the number of sensor
nodes that can transmit concurrently decreases, since
they ha veto lay well apart from each other to avoid
in terference. As a consequence, the performance of our
protocol decreases. Nevertheless, the assumption that
the sensor nodes employ short-range wireless commu-
nications, less than 100 meters, is customary [5, 12]
since it allo ws the use of tiny and low-powered radio
transceivers. In addition, short-range transmissions al-
lows greater radio channel reuse, thus increasing the
aggregate bandwidth available. The Piconet [7] project
is dev eloping a prototype embedded netw ork that uses
short-range (5 meters) radio communications. The sen-
sor nodes in the WSN can use Piconet to enable wire-
less connectivity. Therefore, one can argue that WSN's
will employ short-range radio transmissions to allow
communication among the sensor nodes.

2 Model and Problem De�nition

The base station is assumed to be equipped with a
large antenna which covers a wide area, so that it can
monitor all the sensor nodes under its coverage area.
The computation among the sensors is performed in
coordination with the base station. A sensor node in a
single-hop WSN can tune to a channel to send/receive
a packet. A t the end of a timeslot, the status of the
channel can be: (i) NULL, no packet has been driven
into the channel in the current time slot; (ii) SIN-
GLE,exactly one packet has been driven into the chan-
nel in the current time slot; or (iii)COLLISION,two or
more packets ha ve been driven in to the c hannel in the
current time slot.

When a sensor node transmits a packet with pow er
r, the signal will be strong enough for other sensors to
hear it within the Euclidean distance r from the sen-
sor node that originates the packet. Let us observe the
channel status of a sensor node. F or this purpose, let
A be a sensor node in a WSN and let S be the unique
sensor node broadcasting in a giv en time slot. The
channel status of A is NULL only if A is outside the
transmission range of S. Otherwise, if A is within the
radio transmission of S, its channel status is SINGLE.
Now, let us consider the case in which two or more sen-
sor nodes are broadcasting at the same time. Clearly,
if their transmissions do not interfere (i.e., do not over-
lap), the channel status of A is as discussed above. In
case of overlapping transmissions, the channel status
is as follo ws. The channel status of sensor node A is
COLLISION if it is within radio transmission of tw o
or more sensors. Therefore, a sensor node is ensured

to receive a pac ket,only if it lies in the transmission
range of the source node and there is no in terference
from other broadcasts.

In this w ork,w eassume that the sensor nodes in
the WSN are organized as a tw odimensional square
plane of size

p
n � pn with coordinates (x; y), (1 �

x; y � pn). The plane can be viewed as n cells of unit
size 1� 1. Let C(x; y), (1 � x; y � pn), denote a cell
consisting of all points (x0; y0), (x � x0 < x + 1; y �
y0 < y + 1). Suppose that each cell C(x; y) has a sen-
sor denoted by Sx;y. Throughout this work we assume
that each sensor node Si;j , (1 � i; j � pn), kno ws
its cell location within the grid. Clearly, for any tw o
sensors located in adjacent cells, the farthest distance
between them is

p
5. Hence, to ensure the commu-

nication betw eenadjacent sensors, a pac ketmust be
transmitted with pow erof at least

p
5 to cover a re-

gion of
p
5 � 2:24. Similarly, sensors in diagonally

adjacent cells ha ve distanceof at most 2
p
2. Thus, a

sensor has to transmit with enough pow er to co ver an
area of at least 2

p
2 � 2:83 to ensure communication

with its neighbors. If the sensors on a WSN of sizep
n�pn can broadcast with suÆcient power to cover

an area of
p
2n, then, any pair of sensors can directly

communicate, that is, the WSN essen tially allows a
single-hop communication. In other words, if the sen-
sors with transmission range r are allocated on a WSN

of size
p
2r
2 �

p
2r
2 (� 0:71r � 0:71r), then a single-hop

communication is ensured.

Assume that n elements are stored in n sensor nodes,
where each sensor holds exactly one element. Also,
let Si be the sensor node with index i, (1 � i � n).
The sorting problem is de�ned to be the problem of
moving the ith smallest element to the sensor Si, for
all i = 1; 2; : : : ; n. Our sorting protocol is based upon
the w ork ofNassimi and Sahni [15], which in turn is
an adaptation of the Batcher's bitonic sort algorithm
[9]. The bitonic sort algorithm sorts a bitonic sequence
in to nondecreasing order. A sequence fa1; a2; : : : ; a2ng
is said to be bitonic if either (i) there is an integer j
such that a1 � a2 � : : : � aj � : : : � a2n, or (ii)
the sequence does not satisfy condition (i) but can be
shifted cyclically until condition (i) is satis�ed [4, 9].

An interesting propriety of the sorting algorithm
proposed in [15], is that operations like comparing and
exc hanging need only to be performed among the ele-
ments that belong to the same row or column. Thus,
before presenting the details of our protocols, let us
�rst consider an array of size 1� n consisting of n ad-
jacent cells. Suppose that the transmission range r of
each sensor node equals to n. Obviously, the maximum
distance betw een the sensor nodes that are located at
the extreme positions of the array (i.e., S1 and Sn) is

2

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

p
n2 + 1. In suc h a case, a single-hop communication

cannot be ensured between S1 and Sn, since the maxi-
mum distance betw een the tw o exceedsr. On the other
hand, a single-hop communication can be ensured be-
tw eenS1 and Sn�1 (and also with an y other sensor
node that lies between them), since the farthest dis-
tance betw een themis less than r. It should be clear
from the above that if collision is to be avoided atSn�1,
any other sensor node that broadcasts along with S1
must be apart from Sn�1 of a distance greater than r.

3 Sorting on Single-hop WSN's

In this section w e present a sorting protocol for
single-hop WSN's. Suppose that a WSN has m sensor
nodes, where all of them lie in the transmission range
of eac h other, and each sensor has a unique ID in the
range [1;m]. Let Si denote the sensor node with ID i
(1 � i � m), that holds an element xi. Them elements
can be sorted in 2m time slots as follows. F or eac h time
slot i, (1 � i � m), the sensor node Si broadcasts xi
on the channel and each sensor node Sj , (1 � j � m),
monitors the channel to receiv exi. By comparing xj
to xi, each sensor node Sj can compute the rank of its
element. Once the ranking of each element has been
computed, the elements are routed to their �nal desti-
nation, which incurs in additional m time slots. The
follo wing lemma summarizes the above discussion:

Lemma 1 The elements on a single-hop WSN consist-
ing of m sensor no des, where each sensor no de holds
one element, can b e sorted in 2m time slots.

Clearly, the above result is optimal considering that
at any given time slot, only one sensor node can trans-
mit on the channel. Otherwise, a collision occurs and
the pac ketsare lost. If the m sensor nodes are ar-
ranged in a

p
m � pm array, w ecan rank and sort

the elements in a column/row into either increasing or
decreasing column/row order in 2

p
m time slots.

Corollary 1 When m sensor nodes are arr anged in ap
m � pm single-hop WSN, a single column/row can

be sorted in 2
p
m time slots.

4 Sorting on Multi-hop WSN's

This section presents a sorting protocol for multi-
hop WSN's. T obegin with, the

p
n � pn array is

partitioned into
p
n

2r �
p
n

2r groups of size 2r� 2r, which
are further divided into 16 blocks of size r

2 � r
2 . Note

that there is a single-hop communication among the
sensor nodes located within each block. F urthermore,

a sensor node within a block can communicate with a
sensor node in a neighboring adjacent block that occu-
pies the same relative position within that block. We
assume that n and r are power of two and that

p
n > r.

The elements in a row or in a column can be sorted ei-
ther in increasing or decreasing order. We say that an
element is rejected if it is against the order in which
the array is being sorted. The order in which the array
is to be sorted is de�ned at a later stage in the main
protocol. Our sorting protocol comprehends a number
of sub-protocols whose details are discussed below.

4.1 Row and Column Sorting

We begin with a protocol that sorts a bitonic
sequence of size �, where the � elements are stored in
� adjacent sensor nodes. The details of the protocol
are spelled out as follows:

Protocol Row-Merge(�)

1. Let Si, (1 � i � �), be the sensor node that stores
the element xi. Also, let P1 = fS1; � � � ; S�=2g, and
P2 = fS�=2+1; � � � ; S�g;

2. if � = 2r then return;
3. Shift the elements from P2 to P1;
4. P erform a comparison-interchange on P1;
5. Shift the rejected elements from P1 to P2;
6. In parallel, invok eRow-Merge(�=2) for P1 and P2;

In eac h iteration of the above protocol, a sequence
of size �=2 has to travel� positions, �=2 positions to
the left and �=2 positions to the right. Note that an
element is ensured to be correctly receiv edby a sen-
sor node that is located r=2 positions from the sender,
since the maximum distance betw eenthem does not
exceed r. In order to avoid collision with other sen-
sor nodes that are broadcasting at the same time, for
each sequence of size 2r, only one element is allow ed
to transmit in each time slot. Thus, (�=2)=2r = �=4r
elements, can travel simultaneously without interfering
with each others' broadcast. Hence, a sequence of size
2r tak es (2r�)=(r=2) = 4� time slots to travel � posi-
tions. Since we can move the elements of each sequence
in parallel, it takes 4� time slots to move�=2 elements
� positions.

We now turn to number of iterations taken b y Pro-
tocol Row-Merge(�) to complete its execution. The
protocol returns when � = 2r, that is, the protocol will
be executed for log�� (log r+2) iterations. Thus, the
total n umber of time slots can be computed by:

log �X
i=log r+2

4�

2(log �)�i
= 4� �

�
2� 1

2log ��log r�2

�

3

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

= 4� � 2� 4r

�
= 8�� 16r

A t this point, we have �
2r groups of sequences of size

2r that still need to be sorted. F or this purpose, Proto-
col Row-Merge(�) is sligh tly modi�ed such that it can
sort a row of elements of size 2r. The main di�erence
is that within each sequence of size 2r only one sensor
is allo w edto broadcast at a time. Consequently, w e
cannot perform Step 6 in parallel. On the other hand,
Step 6 can be executed in parallel for neighboring se-
quences. Thus, when the size of the input sequence is
reduced to 2r, we can sort the sequence for each group
sequentially until the size of the sequence is reduced to
r=2, we then apply Corollary 1 to sort the remaining
sequence. The following tw o steps need to be modi�ed
in Protocol Row-Merge(�) to sort a bitonic sequence of
size 2r.

2. if � = r=2 then return;

6. Invoke Row-Merge(�=2) for P1 and P2 sequentially;

Note that tw o iterations are suÆcient to reduce the
size of the sequence to r=2. In the �rst iteration, a
sequence of size r is shifted 4 hops (tw oto the left,
compare-interchange and shift back). In the second it-
eration, a sequence of size r=2 is shifted 2 hops, which
takes 2r time slots since we have 2 of such sequences.
Then, since asingle-hop comm unication is ensured, a
sequence of size r=2 can be sorted in r time slots ac-
cording to Corollary 1. Thus, it tak es 6r + 4r = 10r
time slots to sort a bitonic sequence of size 2r. Alto-
gether, it takes 8��6r < 8� time slots to sort a bitonic
sequence of size �. The follo wing lemma summarizes
the above discussion:

Lemma 2 The � elements stored in � adjac ent sensor
no des on a row on the

p
n � pn array can be sorte d

into either increasing or decreasing r ow-major order in
less than 8� time slots.

The Protocol Column-Merge(�) is de�ned in a sim-
ilar way, except that it sorts a bitonic sequence of size
� that is stored in � adjacent sensors in a column of
the
p
n�pn array.

Lemma 3 The � elements stored in � adjac ent sensor
nodes on a column of the

p
n�pn array can be sorte d

into either incr easingor decreasingcolumn-major or-
der in less than 8� time slots.

4.2 Vertical Merge Sort

The Protocol V ertical-Merge(�; �) sorts in to either
increasing or decreasing row-major order an arra y of
size � � � which is composed of two vertically aligned
arrays of size �=2� �, where one is in increasing row-
major order and the other is in decreasing row-major
order. It has been sho wn in [15] that tw overtically
aligned arrays can be sorted by column-merge follow ed
by row-merge sinceall columns are bitonic, and after
executing column-merge, all rows are bitonic. For fur-
ther details, we refer the reader to [15].

Protocol Vertical-Merge(�; �)

1. for all columns in parallel do Column-Merge(�);
2. for all rows in parallel do Row-Merge(�);

The total number of time slots of the Protocol
V ertical-Merge(�; �), accordingly to Lemma 3 and
Lemma 4, is Vertical-Merge(�; �) = 8(�+�) time slots.
Since we can only process one of the 2r lines/columns
at a time, the total number of time slots is less than
16r(� + �). The above results are summarized in the
follo wing lemma.

Lemma 4 Two vertically aligned arrays of size �=2�
�, where one is in increasing r ow-major order and the
other is in decreasing row-major order can be sorted in
less than 16r(�+ �) time slots.

4.3 Horizontal Merge Sort

The Protocol Horizontal-Merge(�; �) sorts an array
of size � � � which consists of tw o horizontally aligned
adjacent arrays of size � � �=2. One of these arrays is
sorted in to increasing row-major order and the other
in to decreasing row-major order. Before showing the
details of the Protocol Horizontal-Merge, we �rst intro-
duce the Protocol TC-Merge(�) (Two-Column-Merge),
which sorts a bitonic sequence of 2� elements stored in
a column of � adjacent sensors. The bitonic sequence
(x1; � � � ; x2�) is stored in sensor Si (1 � i � �) suc h
that each sensor holds tw oelements, xi and xi+� , of
the bitonic sequence. After sorting, each sensor Si will
contain the elements x2i�1 and x2i. The details of the
protocol are listed below:

Protocol TC-Merge(�)

1. Let Si, (i � 1 � �), be the sensor node that
store the elements xi and xi+� . Also, let P1 =
fS1; � � � ; S�=2g, and P2 = fS�=2+1; � � � ; S�g;

2. Compare-interchange the elements in each sensor;

3. if � = 2r then return;

4

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

4. Exchange the rejected elements of P1 with the ac-
cepted elements of P2;

5. In parallel, invok eTC-Merge(�=2) for P1 and P2;

The proof of correctness of the abo ve protocol can
be found in [15]. The analysis of Protocol TC-Merge(�)
is similar to the Protocol Row-Merge, except that here
the elements are exc hanged instead of being shifted to
the left and then to the right. Thus the total number
of time slots for the Protocol TC-Merge(�) is 8� �16r.
Proceeding as we did before, another 6r time slots are
necessary to reduce the size of the sequence from 2r
to r=2. Recall that eac h sensor node now holds tw o
elements. Hence sorting each column of size r=2 takes
2r time slots according to Corollary 1. Thus, Protocol
TC-Merge(�) takes, altogether, 8��2r < 8� time slots.

Lemma 5 The � elements stored in � adjac ent sensor
nodes on a column of the

p
n�pn array can be sorte d

into either incr easingor decreasing order in less than
8� time slots.

We no w have all the necessary tools to present the
protocol Horizontal Merge. The details of the protocol
are as follows:

Protocol Horizontal-Merge(�; �)

1. Let C1; C2; � � � ; C� represent the � columns and
also let P1 = fC1; � � � ; C�=2g, and P2 =
fC�=2+1; � � � ; C�g

2. Move the elements in P2 to the corresponding sen-
sors in P1;

3. For each column C1; � � � ; Ck=2 perform TC-Merge

(�);
4. Move the rejected elements in P1 to the corre-

sponding sensors in P2;
5. In parallel, invoke Row-Merge(�=2) for each of the

2� rows, each con taining �=2 adjacent sensors.
The 2� rows are obtained by splitting each original
� into two.

Recall that routing the elements � positions, �=2 to
the left in step 2 and �=2 to the right in step 4, take 4�
time slots. The total number of time slots of Protocol
Horizontal-Merge(�; �) is giv en b y:

HM(�; �) = TC(�) +RM(�=2) + 4�

= 8(� + �);

where HM , TC, and RM , stand for Horizontal-
Merge, TC-Merge and Row-Merge, respectively. The
follo wing lemma summarizes the above results:

Lemma 6 Two horizontally aligned arrays of size � �
�=2, where one is in increasing row-major order and
the other is in decreasing row-major order, can be
sorte d in less than16r(�+ �) time slots.

4.4 WSN-Sort

We are now in a position to show the sorting pro-
tocol that sorts n elements stored in n sensor nodes
which are arranged in a tw o-dimensional array of sizep
n�pn.

Protocol WSN-Sort(
p
n;
p
n)

1. � 2r;
2. Sort all groups of size 2r � 2r;
3. while � <

p
n do

4. Execute Horizontal-Merge(�; 2�) in parallel
for each array of size k � 2k;

5. Execute Vertical-Merge(2�; 2�) in parallel
for each array of size 2�� 2�;

6. � 2 � �;
7. end while

For the protocols Horizontal-Merge and Vertical-
Merge to work properly, it is necessary to satisfy their
initial conditions, that is, some subarrays must be
sorted into increasing order and others into decreasing
order. The order into which the array has to be sorted
in steps 2 and 5 is de�ned by b j�1� c, and by b i�1� c
for step 4, where i and j; (1 � i; j;� pn), represent
the sensor's row and column indexes, respectively. If
the result is even for all sensors on which comparison-
in terchanges are being executed, then the subarray is
sorted into increasing row-major order, otherwise, it is
sorted into decreasing row-major order. We now turn
to analysis of the number of time slots taken b y proto-
col Sorting. Clearly, step 2 can be computed in O(r2)
time slots. The number of time slots for while-loop is
is given b y:

S(
p
n;
p
n) = S(

p
n

2
;

p
n

2
) + HM(

p
n

2
;
p
n)

+ VM(
p
n;
p
n)

= S(

p
n

2
;

p
n

2
) + 56r

p
n

� 112r
p
n

= O(r
p
n);

where S, VM , and HM , stand for WSN-Sort,
V ertical-Merge, and Horizontal-Merge, respectively.

5

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

Thus, for r <
p
n, the total number of time slots to

sort an array of
p
n � pn elements, where eac h ele-

ment is stored in a sensor node, is O(r
p
n) time slots.

Lemma 7 L et a WSN consist of n elements stored
in n sensor no des, which are arrange din a two-
dimensional array of size

p
n � pn. When

p
n > r,

the n elements can b e sorted in O(r
p
n) time slots.

When r � pn, the tw o-dimensionalarra y will be
already sorted after step 2, and hence, it takes O(r2)
time slots to sort the arra y. The follo wing corollary
summarizes this discussion.

Corollary 2 Let a WSN consist of n elements stored
in n sensor no des, which are arrange din a two-
dimensional array of size

p
n � pn. When r � pn,

the n elements can b e sorted in O(r2) time slots.

5 Conclusions

In this work we presented a sorting protocol for wire-
less sensor netw orks.The sorting protocol discussed in
here is an adaptation of the parallel sorting algorithm
proposed by Nassimi and Sahni [15], which is based on
Batcher's bitonic sort algorithm [9]. Our protocol sorts
n elements which are initially loaded in n sensor nodes
arranged in a tw o-dimensional plane of size

p
n �pn

in O(r
p
n) time slots without the need of involving the

base station. We ha vealso shown that future appli-
cations of wireless sensor net w orksare very likely to
employ short-range radio communications (i.e., small
r). If this is the case, our protocol matches the time
complexity of the optimal sorting algorithm proposed
in [15]. We ha ve also shown an optimal sortingalgo-
rithm for single-hop WSN's. How ev er,it remains to
be shown whether or not our results are optimal when
1� r � pn.

References

[1] Abramson, N., Multiple A ccessCommunications:
F oundations for Emerging T echnologies, IEEE
Press, New York, 1993.

[2] Abramson, N., Multiple access in wir eless digital
networks, Proceedings of the IEEE, 82, (1994),
1360{1370.

[3] Aho, A. V., Hopcroft, J. E., and Ullman, J. D.,
The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974.

[4] Akl, S. G., Parallel Sorting Algorithms, Academic
Press, Inc.,1985.

[5] Asada, G., Dong, M., Lin, T.S., Newberg, F., Pot-
tie, Kaiser, W.J., and Marcy, H.O., Wireless In-
tegrated Network Sensors: L ow Power Systems on
a Chip, Proceedings of the 1998 European Solid
State Circuits Conference.

[6] Bar-Yehuda, R., Goldreich, O., and Itai, A., Ef-
�cient emulation of single-hop radio network with
collision detection on multi-hop radio network with
no collision dete ction, Distributed Computing, 5,
(1991), 67{71.

[7] Bennett, F., Clarke, D., Evans, J. B., Hopper, A.,
Jones, A., Leask, D., Pic onet- Embedde dMobile
Networking, IEEE Personal Communications, Vol
4 No 5, October 1997, pp 8-15.

[8] Bertzekas, D., and Gallager, R., Data Networks,
Second Edition, Prentice-Hall, 1992.

[9] Betcher, K. E., Sorting Networks and Their Ap-
plications, in Proc. AFIPS 1968 SJCC, vol. 32,
Montvale, NJ:AFIPS Press, pp. 307-314.

[10] Bhuvaneswaran, R. S., Bordim, Jacir L., Cui,
J., and Nakano, K.,F undamental Pr oto colsfor
Wireless Sensor Networks, International P arallel
and Distributed Processing Symposium (IPDPS),
April 2001.

[11] Estrin, D., Govindan, R., Heidemann, J., and Ku-
mar, S.,Next Century Challenges: Scalable Co or-
dination in Sensor Networks. In Proceedings of
the Fifth Annual International Conference on Mo-
bile Computing and Net works (MobiCOM '99),
Seattle, Washington, August 1999.

[12] John Heidemann and Nirupama Bulusu, Using
Geosp atial Information in Sensor Networks, In
Proceedings of the Workshop on Intersections be-
tw een Geospatial Information and Information
T echnology, Arlington, V A, USA, National Re-
searc h Council. October, 2001.

[13] Kaplan, E. D., Understanding GPS: principles
and applications, Artech House, Greenwich, 1998.

[14] Miller, R., and Stout, Q. F., Parallel Algorithms
for R egular Archite ctures: Meshes and Pyr amids,
The MIT Press, 1996.

[15] Nassimi, D. and Sahni, S., Bitonic Sort on Mesh-
Connected Computer, IEEE Transactions on Com-
puters, vol. c-27, NO. 1, January 1979.

[16] Thompson, C. D., and Kung, H. T., Sorting on a
Mesh-Connected Parallel Computer, Communica-
tions of the ACM, vol 20, NO. 4, April 1977.

6

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

