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Abstract

A picture of a scene is a 2-dimensional representation of a 3-dimensional world.
In the process of projecting the scene onto the 2-dimensional image plane, some
of the information about the 3-dimensional scene is inevitably lost. Given a series
of images of a scene, typically taken by a video camera, it is sometimes possible to
recover some of this lost 3-dimensional information. Within the computer vision
literature this process is described as that of recovering structure from motion. If
some of the information about the internal geometry of the camera is unknown,
then the problem is described as that of recovering structure from motion in
the uncalibrated case. It is this uncalibrated version of the problem that is the
concern of this thesis.

Optical flow represents the movement of points across the image plane over
time. Previous work in the area of structure from motion has given rise to a
so-called differential epipolar equation which describes the relationship between
optical flow and the motion and internal parameters of the camera. This equation
allows the calibration of a camera undergoing unknown motion and having an
unknown, and possibly varying, focal length. Obtaining accurate estimates of
the camera motion and internal parameters in the presence of noisy optical flow
data is critical to the structure recovery process.

We present and compare a variety of methods for estimating the coefficients of
the differential epipolar equation. The goal of this process is to derive a tractable
total least squares estimator of structure from motion robust to the presence of
inaccuracies in the data. Methods are also presented for rectifying optical flow to
a particular motion estimate, eliminating outliers from the data, and calculating
the relative motion of a camera over an image sequence. The thesis thus explores
the application of numerical and statistical techniques for estimation of structure
from motion in the uncalibrated case.
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Chapter 1

Introduction

This chapter introduces the problem of determining structure from motion, in-
cluding some background information and a brief survey of the relevant literature.
We then provide an outline of the structure of the remainder of the thesis.

1.1 Goal: Robust estimation of structure
from motion

The problem of determining structure from motion is that of recovering 3-
dimensional information about a scene from an image sequence. Figure 1.1 shows
a series of images of the Yosemite Valley from a sequence synthetically generated
by Lynn Quam at SRI. Viewing such a sequence as a static group of images
makes detecting changes between frames difficult. When viewed in succession as
an image stream, however, these differences give rise to a compelling sense of the
shape of the object viewed. In the case of Figure 1.1 the nature of the static
images gives a clue as to the shape of the valley. The movement from image to
image, however, provides independent information about the shape of the scene.
From this we infer that the motion of points across the image plane of a moving
camera is related to the shape of the object viewed. It is this observation that
underlies the determination of structure from motion.

There are many methods for determining structure from motion, some of
which are described in Section 1.4. This thesis concentrates on a method
developed by Viéville and Faugeras [135], and Brooks et al. [16—-18] based on
a differential version of the epipolar equation for uncalibrated cameras. For a
detailed description of the method, see Chapter 2.

Any method of estimating scene structure from the motion of points through
an image sequence is necessarily limited by the accuracy of measurement of
this motion. Unfortunately, inaccuracies in this measurement process are
unavoidable, meaning that calculating structure from motion becomes a question
of statistical estimation. The majority of this thesis is concerned with improving
the robustness of the statistical estimation of structure. Some new auxiliary
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Figure 1.1: Images from the Yosemite Valley sequence

results are also generated relating to the reconstruction of viewed scenes, and the
trajectory taken by the camera over a time interval.

1.2 Notation

Before proceeding any further we introduce some notation. In this thesis the
following conventions will be adopted:

scalars are represented by lower case italic letters, e.g. a,
the absolute value of a scalar a is denoted by |a/,
vectors will be denoted by boldface lower case letters, e.g. a,

vector elements will be represented in lower case italic font, as in @ =
[ala az, 0’3]T7
1
the norm of a vector a will be denoted ||al|, i.e., ||a|| = (3, a?)?,
points in space will, in general, be represented as vectors, but points in

3-dimensional ‘scene’ space may be represented as upper case letters, such
as A, to distinguish them from image points,

matrices will be denoted by boldface upper case letters, e.g. A, with their
elements in lower case italic: a;;,

the determinant of a matrix A will be denoted |A],

1
2
17 1

the norm of a matrix A is represented by ||A]|, i.e., ||A|| = (Z a2)
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If a =[a,...,a,)" and b= [by,...,b,]", then let ab = >, a;b; denote the
inner product of @ and b. We now define the cross product a x b to be a vector

c of n elements such that ¢; = a;b;. The norm ||al| of a vector a of n elements is
1

given by (a? + --- + ai)%, the norm || A|| of an n x m matrix A by (Z?]TL a?j) "

1.3 Camera model

A model of the camera used to capture an image sequence is essential to the
process of recovering the structure of the scene viewed. In this work the model
used is that of the ubiquitous pinhole camera (see Figure 1.2). Within this model
light is projected through a small aperture located at the optical centre of the
camera (point C' in the figure) onto the image plane. The image plane is located
at a distance f from the optical centre. The distance f is labelled the focal length

Sz b

Lzrsge, e

Figure 1.2: The pinhole camera model

of the camera. Associated with the camera is a coordinate frame I';, with the x
and y axes in a plane parallel to the image plane, and the z axis perpendicular to
it. The origin of this coordinate frame is the optical centre of the camera. The
point on the image plane closest to the optical centre has coordinates [0, 0, — f]7,
this being the principal point of the camera, labelled D in Figure 1.2. The frame
['. provides the basis for all image-based measurements. The pinhole model
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may seem simplistic, given the complex nature of modern cameras and more
particularly lenses, but it provides a good abstraction and a reasonably accurate
representation of the imaging process for many cameras. A detailed exposition
of the pinhole model, including an explanation of the terminology, can be found
in Ref. [47, Section 3].

1.4 Background

Much of the relevant literature is discussed, in context, throughout the remainder
of this thesis. We present at this stage, however, a brief background to the process
of estimating structure from image sequences, and the statistical estimation
techniques applicable. We begin with a description of the related process of
recovering 3-dimensional information about a scene from images taken by two
cameras at the same instant. This is the problem tackled in stereo vision.

The process of reconstructing 3-dimensional shape from a pair of images is
based on triangulation, whereby the intersection of two lines issuing from two
cameras is computed (see Section 2.1). This triangulation requires that each
image feature should provide a vector along which the corresponding scene point
must lie. Calculation of the intersection of these lines is only possible if we
know the situation in which the images were taken. It is useful to break up
the parameters describing a particular imaging situation into those internal to
the cameras and those describing the relative positions of the cameras. The
parameters internal to a camera, such as the focal length and the location of the
principal point, are labelled the intrinsic parameters. The extrinsic parameters,
in contrast, describe the relationship between two cameras. These two parameter
sets have been termed collectively the key parameters [84].

Cameras for which the intrinsic parameters are known are termed calibrated
cameras. In contrast, for uncalibrated cameras, some, or all, of this information
is unknown. If we assume that the intrinsic parameters of a pair of cameras are
known, then all that remains, in order to enable reconstruction, is to determine
the extrinsic parameters. This information, relating the positions of two cameras,
is embedded within the epipolar equation for calibrated cameras, which is covered
in more detail in Section 2.1.1.

The epipolar equation for calibrated cameras was introduced by Longuet-
Higgins [77] as an extension of the work of Kruppa [38, 75] at the beginning
of this century. The epipolar equation for calibrated cameras encompasses the
extrinsic parameters of the cameras within the essential matrix [89]. A number
of methods for determining the essential matrix have been developed [77,130].
Regardless of the method used, reconstruction cannot be carried out until all
five extrinsic parameters have been recovered from the matrix [47]. Only the
direction component of the translation between the cameras is recoverable by this
method due to an ambiguity inherent in the imaging geometry, the magnitude
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of the translation is not recoverable. This causes a scale indeterminacy in the
subsequent reconstruction.

The epipolar equation for uncalibrated cameras is of the same form as that
for calibrated cameras, except that the essential matrix is replaced by the
fundamental matrix. This change reflects the fact that the intrinsic parameters
of the cameras must now be represented. The form of this equation is given
in section 2.1.2. Recovering the key parameters from the fundamental matrix
is considerably more complex than recovering the extrinsic parameters from the
essential matrix. This is partly because there may be more key parameters than
degrees of freedom in the fundamental matrix. In addition to this, the convoluted
way in which the parameters are combined in the fundamental matrix complicates
the extraction process. An iterative method for recovering these parameters from
the fundamental matrix has been developed by Horn [61,62]. Unfortunately not
all stereo imaging situations allow recovery of the key parameters. There has
been significant work carried out in the area of determining degeneracies in the
stereo imaging process [56,78,79,132,133], particularly in relation to scene shapes
that lead to multiple valid image interpretations.

Both the calibrated and uncalibrated epipolar equations assume a perspective
projection camera model such as the pinhole camera described in Section 1.3.
This perspective projection camera model is described in more detail in Refs. [42,
83,138], but other camera models exist such as those based on affine [74,146] and
orthographic [126] projection. For a good introduction to projective geometry in
computer vision, see Ref. [103].

If, rather than considering two static cameras, we contemplate the case of one
camera in motion taking a sequence of images over time, it turns out to be useful
to alter the representation of the key parameters to reflect this change. The
extrinsic parameters would therefore no longer describe the relative position of
two cameras, but the relative motion of one. Similarly, the intrinsic parameters
would describe not only the internal state of the camera, but also the rate of
change of some aspects of this state. The endeavour of recovering 3-dimensional
information about the world from images taken by a camera in motion is described
as the structure from motion problem. This process of determining structure from
motion is based on the same principles as stereo vision, but relates to the case in
which images are taken sequentially, rather than simultaneously [82,90].

The use of image sequences rather than pairs provides the possibility of
increasing robustness by tracking the location of image features over longer
sequences of images [45]. This work has typically involved extension of the
epipolar equation to multiple images as initiated by Shashua [111,112], and
followed by many [41,44,46,53,58,113,131,141]. Tomasi and Kanade [125,126]
developed a method of determining structure and motion under orthographic
projection based on the factorisation technique developed by Debrunner and
Ahuja [35,36]. This method has been extended to incorporate least squares
techniques by Szeliski and Kang [122], and again to cope with non-rigid scenes by
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Debrunner and Ahuja [37]. For an overview of structure from motion techniques,
see Refs. [47,63,103].

In the case of video sequences taken by a moving camera, the difference
in camera position between subsequent images is typically quite small. This
results in a similarity of subsequent image pairs which renders determination of
corresponding points more tractable. The reconstruction process, however, relies
upon significant translation of the camera between image pairs for accurate 3-
dimensional reconstruction. So, although points may be tracked more accurately
than in the stereo case, the underlying geometry makes reconstruction more
sensitive to errors. One method used to overcome this problem has been to track
image points over a sequence of images. This enables calculation of the velocity
of the point through an image, rather than its movement between images. The
collection of these image point velocities is called optical flow. A more detailed
description of optical flow is provided in Section 1.6. The structure from motion
problem suffers from the same types of degeneracies as does general stereo. This
degeneracy is represented in particular camera motions and scene shapes, and
therefore certain kinds of optical flow fields (see Refs. [80,81,91]).

Recovery of structure from motion should not be confused with the problem
of recovering scene shape from a moving stereo head, although the problems are
related. For techniques that address this problem, see [145] and [23].

The majority of this thesis is based on a means of describing the changing
state of a moving camera on the basis of an optical flow field developed by Brooks
et al. [16-18]. One of the advantages of the method proposed by these authors is
the availability of closed form solutions for the key parameters, thus alleviating
the need for an iterative determination as in the general stereo case.

It has been suggested by Soatto et al. [115,116,118] and Heeger and Jepson [57]
that motion and structure should be computed separately, and, more particularly,
that 3-dimensional structure is not necessary to compute motion estimates. In
contrast to this, a number of authors including McLauchlan and Murray [93]
have stated that structure and motion are so inter-related that the separation is
artificial and leads to a compounding of errors [76,122]. The method of Brooks
et al. follows this latter line of thinking in that it recovers structure and motion
simultaneously.

Alongside the recent progress in the understanding of the underlying mathe-
matics of computer vision, there has also developed an increasing awareness of the
importance of statistical methods to improve estimation techniques. For example,
the 8-point method of Longuet-Higgins for estimating the essential matrix,
although improved by data normalisation techniques [54], has been largely
superseded by techniques based on statistical methods capable of incorporating
more data (see Refs. [84,85,128] for reviews of statistical methods for estimating
the fundamental matrix). So far, within the computer vision literature, there has
been little work in the area of statistical estimation of structure from motion in
the uncalibrated case using a projective camera model. It is this area which is
the concern of this thesis.
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Optical flow information may be utilised for a number of purposes other than
determining structure from motion. There have been a number of methods
developed, some of which are capable of using optical flow contaminated by
noise [2,8,123,124]. Ohta and Kanatani [101] have applied statistical techniques
to the structure from motion problem, but their work is concerned with the
calibrated case and hence is not immediately applicable to optical flow generated
by an uncalibrated camera. The work of Ohta and Kanatani also assumes
that only the velocity component of the optical flow is perturbed by noise,
which simplifies the problem [68, Chap. 12]. This is similar to the approach of
Miihlich and Mester [95] to the stereo problem in which they applied least squares
techniques assuming that all error occurs in one image. For more examples of
work dealing with the ego-motion of a calibrated camera see Refs. [52,57]. A
contrasting approach is given by Beardsley et al. [13], involving the computation
of projective and affine (rather than Euclidean) structure from motion. Other
related papers include Refs. [3-5,10,86,105,117,136,137].

In some cases it is possible to estimate the covariance of particular optical flow
measurements, so, as part of the measurement process, we would obtain not only
the optical flow, but also an indication of its reliability. Some analysis of the use of
covariance estimates (describing the uncertainty of the data) in the estimation of
structure from motion has been carried out; see for example Refs. [19,20,68,101].
For the purposes of this thesis we will assume that, as is commonly the case, no
covariance information is available.

1.5 The nature of the differential epipolar
equation

The differential epipolar equation is an algebraic relationship between the location
and velocity of an image point and two matrices representing the motion and
internal parameters of the camera. The motion across an image of a point m
is denoted by the vector m. The relationship between m and m is shown in
Figure 1.3.

The vectors m and m are represented in homogeneous form, thus

m = [ml, mao, 1]T and m = [ml, mg, O]T (11)

Homogeneity refers to the property by which these 2-dimensional entities are
represented as vectors with three entries. This representation simplifies the
mathematics by allowing particular nonlinear operations to be specified by linear
relations [103]. The homogeneous form and the values given to the last elements
of the vectors m and 7n are explained in Section 1.6. If, as we have suggested,
the flow vector itself is represented by m, and its position in the image by the
vector m, then by a particular encoding of the key parameters in two matrices
C and W we have that
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m"Cm +m" W =0, (1.2)

This is the differential epipolar equation defined by Brooks et al. [17,18].
[ ]
m
EN
|

| m |

Figure 1.3: An optical flow vector

In order to fully understand the differential epipolar equation we first need to
describe in more detail both the optical flow and the means of encoding the key
parameters of the moving camera.

1.6 Optical flow

The term optical flow refers to the motion of points across the image plane due
to the relative motion between camera and scene. If we assume that the imaging
process is instantaneous then an image is a static representation of the viewed
scene at a particular time. If there is any movement in the scene, or if the camera
itself is in motion with respect to the scene, this may be visible by comparing
successive images. Optical flow is a representation of this motion. It is quite
possible to imagine a situation in which no difference will be discernible between
successive images by judicious selection of camera motion, scene shape and object
texture. In general, however, relative motion between camera and scene will result
in variation over successive images.

An optical flow field is a set of optical flow vectors representing the velocity
of points across an image at some instant. The location of a point m in an image
is specified by its z and y coordinates labelled m; and my respectively. This
image point represents the intersection with the image plane of a ray from the
scene point passing through the optical centre of the camera (see figure 1.2). In
fact, it is these rays that we are interested in. The exact location of the image
plane determines only the size of the image, the relationship between the rays
being unaltered. As has been pointed out above, it is useful to represent image
points in homogeneous coordinates, by the addition of a third component to the
position vector. The position of our image point m in homogeneous coordinates
is
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my
m= | my
ms3

The image plane is most simply regarded as a 2-dimensional space of reals R2.
Some of the mathematics involved in image formation becomes simpler, however,
if the image plane is represented as part of the 2-D projective space P2. A point
in R? is represented by a 2-vector = [ry,75]”. A point in P? is represented by
an equivalence class of 3-vectors p = [py,po,ps]”, with ||p|| # 0. The vectors
p and q are members of the same class if there exists a non-zero scalar A such
that p = Ag. Our image points in R? may thus be represented as part of P? by
the conversion to homogeneous coordinates, which requires only the addition of
a third element to the vector. This additional element may be chosen freely, but
must not be 0 and must be consistent across the image plane. For simplicity, we
select 1, thus representing the vector r as [ri, o, 1]7. Those parts of P? which
are not part of R? (that is P? \ R?) coincide with the set of vectors of the form
[’f’ 1,72, O]T

Having made this change to homogeneous coordinates we are no longer
interested only in the values of m; and my but in the ratio m; : mo : m3. This
property of the homogeneous representation simplifies the representation of the
projection of scene points onto the image plane which occurs within our pinhole
camera model. If the coordinates of a particular scene point @ are [z, y, 2|7 with
respect to the camera based coordinate system, then the projection onto the
image plane will generate an image point = given by

=[]

where f represents the distance between the image plane and the optical centre,
or the focal length of the camera. This projection is represented in 2-dimensional
form in Figure 1.4.

Projection onto the image plane cannot be represented as a linear equation
in terms of the vectors ) and r as they stand. If the vectors are represented
in homogeneous coordinates, however, the projection may be represented by an
equation of the form

m —f 0 007"

me | =] 0 —f 00 Z

ms 0 0 10 1
if we let m m
T1=—1andr2:—2.
ms ms

Representing (), and more particularly =, in homogeneous coordinates thus
enables linear representation of a non-linear relationship. On the basis of the
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Figure 1.4: Projection of image points

above we represent the location of an image feature with z and y coordinates of
my and my respectively as m = [mq, mo, 1]T. For a more detailed description of
the advantages of homogeneous representation, see Refs. [47,103].

An optical flow vector represents the motion of a point across an image and
thus the derivative of point such as m above. We see from our representation
of m that only the first two elements may vary, the third element being 1. This
clearly reflects the fact that image points are constrained to the image plane.
We thus represent an optical flow vector with 2 and y dimensions of m; and 7,
respectively as rin = [1hy, 1y, 0]7.

An optical flow vector is thus described by two vectors of length 3 such as m
and 7. If we denote a particular optical flow vector by {m;, rn;}, the field of n
such pairs may be represented as the set S = {{m;,m;}|i=1...n}.

1.6.1 The motion field

It proves useful, at this point, to consider what B.K.P. Horn in Robot Vision [60]
defines a motion field. The motion field corresponding to a camera moving with
respect to the viewed scene is made up of velocity vectors describing the velocity
of each visible point across the image plane (see also Ref. [134]). A motion field
thus represents the projection of the scene motion relative to the camera onto the
image plane for every visible scene point. The motion field is thus not defined in
terms of the properties of the image created within a particular camera, but in
terms of the relative motion between camera and scene. Optical flow, being an
image based measurement, may thus, at times, diverge from the motion field.

If we consider the location of a particular world point relative to the camera
as a function of time, denoted by P(t), then the position of its projection onto
the image plane may be regarded similarly as a function of time. We label



CHAPTER 1. INTRODUCTION 11

P(t) P(1,+61)

Figure 1.5: Motion projection

this point m(t). Figure 1.5 shows the nature of this projection onto the image
plane. In the interval from ¢y to t, + dt that part of the scene at point P(ty)
moves to P(ty + dt). Correspondingly, the image of point P(t;) moves from
m(to) to m(to + 0t). Following this process for all points in the scene visible at
time ¢, we arrive at a full description of the motion of every point in the image
over the interval 6t. By dividing the length of each vector by 6t we arrive at a
representation of the velocity of every point across the image plane

m(ty + 0t) — m(ty)
at

. (1.3)

In the limit as d¢ approaches 0, the set of these velocity vectors approaches the
motion field at time to. The differential epipolar equation holds for every vector
in such a motion field.

The motion field is thus a vector field corresponding to the projection of
the vectors representing scene motion relative to the camera onto the image
plane. It is generally not possible to compute the motion field from a sequence
of images. It may, however, be possible to determine the optical flow field which
often constitutes a good approximation to the motion field. We now look at two
methods of measuring optical flow fields.

1.6.2 Intensity based optical flow

The notion of optical flow was introduced by J. J. Gibson in The Perception of the
Visual World [51], and has traditionally been calculated using methods based on
image intensity derivatives. In order to show why image intensity gradient based
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optical flow measurements do not, in general, satisfy the differential epipolar
equation we now give an outline of the means of their calculation.

The basis for the measurement of optical flow by image intensity gradients is
the optical flow constraint equation [59]. This equation is based on the idea that if
we represent the intensity of a point p = [z,y]” in an image at time ¢ by I(z,y, t),
then at time ¢+ dt the intensity I(x+ 0z, y + dy, t+ dt) at some neighboring point
p' = [z + dx,y + dy|T satisfies I(x + dx,y + dy,t + 6t) = I(x,y,t). Taking into
account that

ol ol oI 9
Iz +dz,y + 0y, t + 0t) = I(z,y,t) + a—x5x+ 8_y6y+ E(St+0(5 ),
we see that
1 1 1
oL s, + 8—5@/ + o 5 +0(6%) = 0. (1.4)

ox oy ot

If we rearrange (1.4) and divide by 0t then, in the limit as §¢ approaches 0, the
0O(6?) terms disappear and

oros  oroy _ o1
ox 0t Oyot ot

The derivatives 0I/0r and 0I/0y represent the spatial derivatives in each
direction across the image and 0I/0t is the intensity change in a pixel over
time. We thus have one equation in two unknowns. These two unknowns 0z/0t
and Oy/0t represent the movement across the image plane, or optical flow. In
order to solve this under-determined system a constraint based on the assumption
that velocity changes smoothly across the image is usually used, although other
constraints have been suggested [31,39,114,121]. For a more detailed introduction
to gradient based optical flow, see Refs. [59,70-72,119], and for a survey of other
optical flow measurement techniques, and particularly methods robust to the
presence of noise in the data, see Refs. [6,7,11,14].

The advantages of gradient based optical flow are that it is relatively easily
obtained and that it provides an estimate of the motion field at every point in
the image. The disadvantage is that there are a number of situations in which it
is not necessarily a very good estimate [43,96]. Any method of calculating the
optical flow will suffer from certain conditions under which the estimated image
motion do not correspond to the motion field. In the case of gradient based optical
flow estimation there are three main situations which can cause problems: when
there is a lack of scene texture, when there are surface discontinuities, and under
particular lighting conditions.

If an object in an image has no surface texture and moves with no visible
change in its boundary, then no gradient based optical flow will be measured.
This is the case for a rotating smooth sphere for example [59]. The motion
field would reflect the rotation of the sphere, but images of the sphere at time
to and time t, + 6t would be identical, so I/0t = 0 and no intensity gradient
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based optical flow would be registered. A similar problem occurs when a change
in the position of an object occurs, but the visible motion does not reflect the
object motion. This is called the aperture problem. The simplest example of the
aperture problem comes about when the image of the edge of an object moves
in such a way that neither end of the edge is visible. This situation is illustrated
in Figure 1.6. Only the component of object motion perpendicular to the visible

Actual
Movemen

Perceived

Movement

—»

\

Viewing
Aperture

Time t, Time t, + 6t

Figure 1.6: The aperture problem

edge is observable through the viewing aperture.

Surface discontinuities in a scene pose a problem for intensity based optical
flow due to the common assumption within the methods that image point velocity
changes smoothly across an image. Surface discontinuities in the scene usually
cause image point velocity discontinuities, thus violating this assumption. For
possible solutions to this problem see Refs. [94,97-100].

The final problem with intensity gradient based optical flow estimation is
that of lighting. If altering the lighting of a scene produces visible changes in
its image, the gradient based method will register optical flow despite the fact
that no movement has taken place. More complex than this, however, is the
problem of violating the assumption fundamental to the method that an object
has the same apparent intensity over time. The apparent intensity of a matte
surface is dependent only on the orientation and proximity of the surface to the
light source. Neither of these factors need change as the camera moves through
a rigid scene. Unfortunately most real surfaces are not perfectly matte, meaning
that the apparent intensity may change with viewing angle, thus violating the
assumption. For these reasons intensity gradient based optical flow may not
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provide a good representation of the required motion field, and thus may not
satisfy the differential epipolar equation.

1.6.3 Feature based optical flow

Feature based optical flow is based upon detection and matching of specific
features in successive images from a sequence. If this is carried out effectively
then the result will be a good estimate of the motion field at the matched
feature points. These feature points will, however, be sparsely spread across
the images, as opposed to the dense field obtained from gradient based methods.
In order to obtain a good estimate of the motion field it is necessary to design
a detector of features that allows accurate determination of location that is
orientation independent. The usual choice is to detect corners in the image for
this reason. Edges or lines, for example, allow good spatial location perpendicular
to their direction [29,88], but not parallel to their direction. Use of such features,
therefore, requires the use of additional assumptions about the nature of the
flow [26,27,30]. It is possible to track edge end points, but this is not a popular
approach as end points are hard to detect reliably, and, if generated by occlusion,
may change with viewpoint. It is the definition of what constitutes a feature
that determines the density of the measured optical flow field. One means of
increasing the density of the field is to describe every point in the image and
match the resulting descriptors. This method has been developed with some
success in the stereo case in Ref. [87] (using wavelets) although it has yet to be
determined whether the results are accurate enough for self-calibration purposes.

Detecting which features in two images represent the same scene point has
been termed the correspondence problem. The correspondence problem in the
case of video sequences is typically simpler than in conventional stereo due to
the small time difference, and therefore smaller displacement in feature position,
between image pairs.

By tracking features through an image sequence we attain a discrete
approximation to the motion field. The formulation of the gradient based scheme
is differential in nature, and therefore may be said to be closer in essence to the
differential epipolar equation. Ultimately, however, we are bound by the nature
of image sequences to estimate discrete displacements whichever method is used.

1.7 Representing the camera parameters
Recall the differential epipolar equation
m'Cm +m Wi =0,

within which the key parameters are encoded in the motion matrices C' and W.
The exact nature of these matrices is described in Section 2.1.7. The motion field
generated by a camera in motion will satisfy the differential epipolar equation
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Figure 1.7: An optical flow field

for the corresponding motion matrices. The matrix C is symmetric and W
antisymmetric, so they have 6 and 3 free parameters respectively:

C11 Ci2 Ci13

C=]co cy c3
| C13 C23  C33
[ 0 — W3 Wao -|
W = w3 0 — W1 .
| —W2 w1 0 J

The differential epipolar equation holds if both sides are multiplied through by a
scalar, thus the motion matrices are defined only up to a scale factor. The effect
of this scale indeterminacy is to reduce the degrees of freedom exhibited by the
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motion matrices by 1. Section 2.1.7 introduces an additional constraint on the
forms of C' and W thus reducing the system to 7 degrees of freedom.

Each flow vector pair {m, 7} when substituted into the differential epipolar
equation provides one constraint, which is linear in the elements of C and W.
By considering these constraints it is possible to recover the motion matrices (up
to a common scale factor) and therefore some of the imaging parameters. The
implication of the number of degrees of freedom of the system is that at least 7
optical flow vectors are necessary to recover the motion matrices. The process of
recovering estimates of the motion matrices from optical flow fields is covered in
detail in Sections 4 and 5.

The key parameters, describing a particular imaging situation, can be divided
into two categories: those internal to the camera—the intrinsic parameters—and
those describing the motion of the camera—the extrinsic parameters. In the case
of general stereo vision these parameters represent the state of the cameras, and
the geometric relationship between them. In the case of the differential epipolar
equation these parameters represent the state and motion of the camera, and the
change in the state and motion of the camera.

The motion matrices exhibit 7 degrees of freedom, thus we can recover at most
7 parameters, whether intrinsic or extrinsic. This recovery process is predicated
on knowing the values of the remaining parameters. It is, however, not possible
to recover all possible combinations of 7 parameters given those remaining.
Section 2.5, however, describes a method for recovering the translation, rotation,
focal length and rate of change in focal length of the camera. The rotation is
described by 3 parameters, the translation by 2, and the focal length and its rate
of change by 1 each giving a total of 7.

One measurement that cannot be recovered from the motion matrices is the
rate of translation (i.e. the speed) of the camera. This is reflected in the fact that
the translation recovered from the motion matrices is described by 2 parameters
rather than 3, giving the direction, but not the magnitude of the vector. This
inability to recover translational velocity is due to an inherent ambiguity in the
problem. It is impossible to tell from a video sequence whether a camera is
moving quickly towards a large object, or slowly towards a closer, but smaller
object that is otherwise identical. For instance, footage generated by a camera
moving towards a sphere gives no clue as to whether the sphere is planet sized, or
football sized. The sequence could thus have been generated by a camera moving
slowly towards a small sphere, or rapidly towards a larger one. The determination
of the speed translation requires a priori information about the size of the objects
in the scene, and is therefore indeterminable from such an image sequence alone.
This corresponds to the baseline length indeterminacy in general stereo.
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1.8 OQOutline

Chapter 1 describes the structure from motion problem and gives some back-
ground information. In Chapter 2 we derive the differential epipolar equation
and show a method of self-calibration based on the equation. Chapter 3 describes
a means of reconstructing the viewed scene from ego-motion information and
optical flow. Methods for determining the trajectory of the camera over time are
also presented. In Chapter 4 a number of methods of estimating the coefficients
of the differential epipolar equation are presented and the merits of the various
schemes discussed. Chapter 5 continues by deriving more tractable means of
estimating the coefficients and considering the value of the gradient weighted
least squares approach to the problem. Two means of filtering optical flow fields
are presented in Chapter 6, one based on removing optical flow vectors and the
other on improving their quality individually. Chapter 7 describes a number
of experiments on real and synthetic image sequences. Our conclusions and
suggestions for future research directions are presented in Chapter 8.

1.9 Contribution

A detailed analysis of the differential epipolar equation and its place in the
literature is presented. This is followed by the development and testing of a
means of reconstructing depth from optical flow and ego-motion information.
Formulae are presented enabling the calculation of the change in camera position
over an interval for both general camera motions and for a camera undergoing
constant rotation. A number of methods for estimating the coefficients of the
differential epipolar equation from optical flow are presented. The first methods
rely on algebraic solution of systems of equations, following which a number
of least squares methods are presented. A method based on ordinary least
squares estimation, and therefore algebraic distance measures, is described first.
Subsequently a number of methods based on orthogonal distances and total least
squares principles are developed. As a part of this process two cost functions are
derived and their accuracy tested. Direct minimisation of these full cost functions
is shown to be impractical and more tractable approximations are developed.
One of these algebraic approximations is shown to be equally justifiable in terms
of the gradient weighted least squares approach. A method of minimising the
approximated cost functions is developed based on Sampson’s approach to finding
the best fitting ellipse to a set of points. The statistical bias of Sampson’s
method is subsequently shown, and an alternative Newton-like method derived.
The least median of squares approach is applied to the problem of estimating
the coefficients of the differential epipolar equation. This leads to a method of
eliminating gross errors from an optical flow field. A method of altering particular
optical flow vectors such that they are better aligned with the ego-motion of a



CHAPTER 1. INTRODUCTION 18

camera is presented. This method is shown to reduce the noise contamination in
an observed optical flow field.



Chapter 2

The differential epipolar equation

This chapter provides two alternative derivations of the differential epipolar
equation of Brooks et al. [17,18]. The first exploits the epipolar equation from
stereo vision, the second provides a derivation from first principles.

2.1 Differentiating the epipolar equation

A principle aim in general stereo vision is to recover 3-dimensional shape of an
object or scene from two images. One method of achieving this manipulates the
epipolar equation which we now describe.

2.1.1 The epipolar equation for calibrated cameras

Figure 2.1 shows that if we know the positions of the optical centres C' and
C', and of the image points p and p’, we can recover the position of the
scene point P as the intersection of the vectors from p through C and from
p' through C'. The epipolar equation is simply an algebraic relationship between
the location of a point in one image and that of the corresponding point in the
other image. Encoded in this relationship, however, is the information necessary
for reconstruction. Given enough point correspondences we can estimate this
information in the form of the coefficients of the equation.

The epipolar equation for calibrated cameras, as derived by Longuet-Higgins
in Ref. [77], relates the position of a point p in one image to the corresponding
point p’ in another via the equation

p"Ep =0, (2.1)

where E is the 3 x 3 essential matriz, and p and p’ are the image points in
homogeneous coordinates (having third elements of unity). The essential matrix
is decomposable into two matrices R and T which represent the rotation and
translation of the right camera relative to the left

E=TR. (2.2)

19
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Figure 2.1: Epipolar geometry

If we define the baseline vector t, connecting the optical centres of the two cameras
(C to C") such that

t = [ty,ta,t3]"

bl

then the associated translation matrix, T, is then given by

[0 —t3 tg]
T=1|t; 0 —t

w0 ]

Note that T is antisymmetric and that ¢ x @ = T'x for any vector x.
The rotation matrix R describes the rotation of the right camera relative to
the left and takes the form

1 0 0 cos 0 sinﬂ-| [0057 —sinvy O-I
R=|0 cosa —sina 0 1 0 siny cosy 0 |,
0 sina cosa —sinf 0 cospf J [ 0 0 1 J

where «,  and 7y represent the rotations about the z, y and z axes respectively,
using the right hand rule to determine direction. The matrix R is, by definition,
orthogonal, and of determinant 1; that is,

RR"=Tand R|=1.

The matrices R and T describe only the relative orientation of the two
cameras. For the purposes of this analysis it is assumed that the internal geometry
of the cameras is known, and therefore that measurements taken in the image
plane may be used to determine the direction of rays through the optical centre
of the camera.
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Returning to Figure 2.1, the epipoles (e and €') of a pair of cameras are the
points at which the ray passing through the two optical centres intersect the
image planes. For any scene point P, the plane that passes through P, C' and
C' must pass through these two epipoles. We can define this plane knowing only
p, C and C'. The intersection of this plane with the image plane of the right
camera defines a line on which the point p’ must lie. On this basis, for any point
in the left image p, we can specify a line in the right image, passing through
€', on which p’ must fall. Lines of this form are called epipolar lines. There is
of course no theoretical distinction between the left and right cameras so it is
equally possible, given p’, to define a line in the left image plane on which p must
lie.

The above relies on the fact that the cameras are calibrated, so it is possible
to interpret p and p’ as vectors through C and C’. We know therefore that the
vectors p and p’ and the baseline vector t lie in the same plane. By definition
the cross product of two vectors returns a vector perpendicular to both, and the
inner product of two perpendicular vectors is 0. Three vectors are therefore in
the same plane if the inner product of the first vector and the cross product of
the second and third is 0. That is, coplanarity is proven if

a-(bxe)=a"(bxc)=0

where a,b and ¢ are the three vectors in question. The vectors p and p’ are
defined in terms of the two camera based coordinate frames. Any comparison of
the two requires that we represent them both in one frame, and we choose that
of the left camera. The transition from the frame of the right camera to that of
the left requires only that we multiply the vector by R. The vectors p, Rp' and
t must therefore be coplanar so

p’(t x Rp') = 0.
By the definition of T we have t x Rp’ = T Rp' and so
p" (T Rp) =0.
We see, therefore, from the definition of E in equation (2.2), that

p'Ep =0.

2.1.2 The epipolar equation for uncalibrated cameras

Camera calibration is the process of measuring the internal geometry of a camera
by taking images of scene points with known locations, and comparing these
to the corresponding image point locations. To fully calibrate a camera thus
requires both effort and apparatus. Once this calibration has taken place for
both cameras it is possible to represent image points in a way that is camera
independent. It is for points represented in this manner that the calibrated
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epipolar equation (2.1) holds. The epipolar equation for uncalibrated cameras
is of the same form as (2.1); however, the essential matrix is replaced by the
fundamental matriz F, so

m " Fm' =0, (2.3)

where m and m’ (again in homogeneous coordinates) represent corresponding
points in the images obtained by left and right cameras, respectively. The
difference between the two epipolar equations is that the fundamental matrix,
F'| embodies both extrinsic and intrinsic parameters. This means that m and
m/' in equation (2.3) refer to the uncalibrated rather than the calibrated image
feature positions, which allows the use of uncalibrated, rather than calibrated
cameras.

Given that our measurements are image based, it is useful to adopt an image-
related coordinate frame T'j, with origin O and basis of vectors {ei, €2}, in the
image plane. It is natural to align the €; along the sides of pixels and take one
of the four corners of the rectangular image boundary for O. Suppose that a
point in the image plane has coordinates p = [p1, po, —f]T and [my, my|T relative
to the camera and image based frames I'. and T respectively. If [mq, my]T is
represented in homogeneous coordinates as m = [my, mo, 1]7, then the relation
between p and m can be conveniently written as

p=Am, (2.4)

where A is a 3 x 3 invertible matrix called the intrinsic-parameter matriz. If
we assume, for simplicity, that the camera has square pixels, that €; and €, are
also used as basis vectors in the camera frame, and that [i1,45])7 is the I'; based
coordinate representation of the principal point D, then A takes the form

10 —i
A=[0 1 —i
00 —f

The matrix A takes a more complicated form if we relax the restrictions on I,
and I; (see Ref. [47] for a more detailed description).

The fundamental matrix represents both the intrinsic and extrinsic character-
istics of the particular stereo camera setup. With the intrinsic parameter matrix
A as described above, the fundamental matrix may be represented as

F=ATEA (2.5)
=ATTRA

It follows from equations (2.3) and (2.5) that
mATTRA'm' =0

and, given (2.4), that
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p ! TRp =0.

The relationship between the two camera coordinate frames is supplemented
by the presence of the matrix A making it complicated to represent m and m' as
vectors from their respective optical centres. This in turn makes the explanation
of epipolar geometry carried out for the calibrated case less practical for the
uncalibrated case. It is, however, useful to note that if a point m falls on the line
I then m”l = 0. So if we see F as describing the projective linear transformation
from point m’ in the right image to line [ in the left then

l=Fm'.
We already know that m lies on I so
mIFm' =0.

In Section 1.4 we defined the key parameters which describe the internal state
of the cameras and the geometric relationship between them. Given sufficiently
many, non-degenerate corresponding points, it is sometimes possible, via a process
of self-calibration, to determine various combinations of the key parameters [48,
92]. Using corresponding points extracted from a single image pair, at most 7 key
parameters may be determined. These might, for example, comprise 5 relative
orientation parameters and two focal lengths (see Refs. [55,102]).

2.1.3 The time dependent epipolar equation

Our interest is in determining structure from motion, and therefore in repre-
senting the motion of one camera rather than the relationship between two.
Towards this goal we now introduce into the epipolar equation for uncalibrated
cameras (equation (2.3)) a dependency on time in order to develop equations
based on differential forms. Our aim is to develop closed-form expressions for the
changes in key parameters as a function of optical flow. This section presents
the work of Brooks et al in Ref. [17] and Ref. [18], which, in turn, can be seen
as a recasting of the research of Viéville and Faugeras [135] into an analytical
framework.

If we allow , m' and F' to vary over time, we need to add a dependency upon
time to (2.3), which leads to the time dependent epipolar equation for uncalibrated
stereo cameras

mT () F(t)m/(t) = 0. (2.7)

This equation is simply an instance of the epipolar equation (2.3) at a particular
time. We thus describe the key parameters of the stereo setup as they change
over time. Note that consideration of time will be of no benefit if we have a pair of
cameras in a fixed relationship, with unchanged relative orientation and intrinsic
parameters. This applies even if the stereo cameras are in motion relative to



CHAPTER 2. THE DIFFERENTIAL EPIPOLAR EQUATION 24

some global frame, as each camera remains stationary relative to the other. In
this situation the key parameters, and thus F', will not change over time.

If we assume that the cameras are not in a fixed relationship, but that
they are free to move independently, equation (2.7) then offers the possibility
of recovering some of the key parameters as a function of time. Note, therefore,
that this implicitly conveys information about the motion of one camera relative
to another. Again, however, no information is available about the motion of
either camera relative to a fixed frame of reference.

We now consider the nature of the epipolar equation arising from images taken
by a single camera at successive time instants. The limiting case, where the time
interval between the acquisition of the images tends to zero, might then permit
computation of both the ego-motion and the intrinsic parameters of the camera.
Note that results pertaining to camera ego-motion and a stationary scene are
equally applicable to a stationary camera and a moving, rigid scene.

In contemplating the limiting case in which the time difference between images
tending to zero (as in Ref. [135]) we see immediately, that the following equation
holds little value:

m” (t)F(t) m(t) = 0. (2.8)

This deals merely with identical left and right images and points. In this situation,
we will clearly have F'(t) = 0. In contrast we seek a fundamental matrix relating
a pair of images captured at different times.

We now consider an alternative formulation of the time-dependent epipolar
equation

mT(tl) F(tl, tz) m(tz) =0. (29)

This equation makes explicit the dependencies of the fundamental matrix F'. It
is important to note here that the fundamental matrix associated with images
obtained from a single camera (in contrast with that associated with a pair of
cameras) is dependent upon two times. It is this that enables the derivative of
F with respect to time to be defined. This equation has been termed the time-
dependent epipolar equation for an uncalibrated camera. It is this equation which
forms the basis for the subsequent analysis.

2.1.4 Differential forms of the time-dependent epipolar
equation

We now confine our attention to (2.9), seeking differential forms that enable
instantaneous changes in the key parameters to be related to instantaneous
changes in positions of corresponding points.

Assume that a camera undergoes some arbitrary motion over a period of
time, thereby generating an image stream. At two different times ¢; and {s,
equation (2.9) will constrain the relationship between the coordinates of the



CHAPTER 2. THE DIFFERENTIAL EPIPOLAR EQUATION 25

corresponding points and the image formation parameters bound up in F'. As t;
and ty vary, we therefore expect that F'(t1, 1) will also vary.

Observe that as t, — t;, then F(t;,t5) — 0. Nevertheless, the derivative of
F(t1,t;) will at all times be defined, including at time ¢; = t,. Of particular
interest to us here is to determine the time-derivatives of F(¢,t), for these will
be central to the consideration of ego-motion of a single, moving camera.

We now introduce notation to simplify the representation of the derivative
of the epipolar equation. The first and second derivatives of a single parameter
function f(t) with respect to t are represented as f(¢) and f(¢) respectively. Given
a function g of two times, we let

g(t) = g(t,1),
o 0
9(t) = 5, (t1,12)
b2 (t1,2)=(t:)
o0 D?g
g(t) = @(tlﬂh)
2 (tlatQ):(tat)
With this notation
T =0, (2.10)
R(t) =1, '
which immediately implies that
F(t)=0. (2.11)
We now differentiate (2.9) with respect to to,
7. OF T .
m (tl) W(tl’ tz) m(tz) +m (tl) F(tl, tg) m(tg) = O,
2

whence, on letting t; =ty = t, we have

m? (1) F(t) m(t) + mT(t) F(t) i (t) = 0.

Omitting the notational dependency on time, and using (2.11), we may rewrite
this equation as

m?” Fm =0. (2.12)
This is the first differential form of the epipolar equation, as it has arisen by once
differentiating (2.9).
We may now follow a similar path to obtain the second form. Differentiating
equation (2.9) twice with respect to t5, we obtain
0’F

mT(tl) a—t% (t1,t2) m(tz)

+2m’(t)) 271:(151, ty) m(ty) + m” (t)) F(ty, ta) m(ty) = 0,
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thus, on letting ¢; =t = ¢, we have
m” () F(t) m(t) + 2m” (t) F(t) ia(t) + m”(¢) F(t) n(t) = 0,
and accordingly
m' Fm+2m" Fr=0. (2.13)

This is the second differential form of the epipolar equation. Note that this
equation contains both location and velocity of an image point, but not its
acceleration, m having fallen away in the derivation.

2.1.5 The matrices of relative orientation

If the matrices R and T are constructed as in Section 2.1.1 we observe that

° 3T0 aTO 6To

R(1) = %R°(> + 5380+ S0,

where the derivatives tol (t), t t, o(t), t O( t), a(t), B(t) and ¥(t) are defined in terms
of tl(tl,tg), tz(tl,tg), tg(tl,tg), Oz(tl,tg), ,B(tl, 2) and (tl,tg) as described in
Section 2.1.4. Noting that ¢;(t) = t2(t) = t3(t) = a(t) = B(t) = v(t) = 0, we are
left with the simple forms

0 —t(t) talt)
T(t)=| t;6) 0 —ti(t) (2.14)
L) ) 0
o 0 5w A
W0 —a() (2.15)
-B(t) ot) 0

We observe that both T and R are anti-symmetric. Additionally, matrix T is
readily shown to be anti-symmetric.

2.1.6 Elaborating the Second Differential Form

We now seek to determine F'(t) and F'(¢) in terms of the component matrices of
F. The fundamental matrix for a single camera F'(t;,%2) may be expressed as

F(ty,ty) = AT (t) E(t1, t5) A(ty). (2.16)

Differentiating this equation, and taking into account that
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E(t) =0, (2.17)
we obtain . .
F(t) = AT(t)T(t)A(t), (2.18)

due to the nature of the matrix E. We observe, therefore, that F(t) is dependent
only upon the values of the intrinsic parameters and the derivatives of the
translation parameters. The rotation parameters and their derivatives are not
represented.

Differentiating once more, and dropping henceforth the dependency on ¢, we
obtain

F = AT(T +2TR)A+2A"TA, (2.19)
and therefore that
mTi;‘m = mTATfolgAm
+2mTATTRAm (2.20)
+ QmTATIO’Am.

00

Since T is antisymmetric, it follows that
mTATfolg'Am =0.
Therefore (2.20) can be rewritten in the form
mT?’m = QmTATIO’IO-?,Am + 2mTAT10“Am. (2.21)

Equation (2.13) thus becomes

mTATIO’IOEAm—l—mTATf;’Am—FmTATIO’Am:O. (2.22)
Even though this equation incorporates the first and second derivatives of the
fundamental matrix, we observe that no second derivatives of its component

matrices survive the elaboration. We also note that, in the event that the intrinsic
parameters are fixed, this equation reduces to

m” ATT R Am + m” AT T Ari = 0. (2.23)

2.1.7 An Alternative Second Differential Form

We now derive an alternative form of (2.22) that is more amenable to numerical
solution.
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If we let )
B=AA""! (2.24)

then (2.22) can rewritten as
mT ATT(R + B)Am + m” ATT Ari = 0. (2.25)

Given a matrix X, denote by Xgym and X ,qym the symmetric and antisymmetric
parts of X defined, respectively, by

1
XSYm = §(X + XT)? (2'26)
and 1
X asym = (X = x7. (2.27)
By definition we see that
m” X mm = m” Xm, and (2.28)
and
m” X y5mm = 0. (2.29)

Since R and T are antisymmetric, we get

[ee} o O o O

(TR)sym = 5(TR+ RT), (2.30)

and

o

(TB)gym = %(IO“B _ BTT). (2.31)
If we denote the symmetric part of ATJO"'(;% + B)A by C, then, we see that

C = %AT(Hz + RT +TB - B'T)A. (2.32)
Let

W = ATTA. (2.33)
On account of (2.25), (2.28) and (2.32), we can write

m'Cm +m' W =0, (2.34)

A constraint similar to that of (2.34), termed the first-order expansion of the
fundamental motion equation, is derived by Viéville and Faugeras in Ref. [135]. In
contrast with the above, however, it is derived using Taylor series expansions and
approximations. The reader is also referred to Ref. [66], where a similar derivation
(though not involving any special differentiation procedure) is presented in the
context of images formed on a sphere.
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It is important to realise that by applying equation (2.34), the matrices C
and W can be determined, to within a common scalar factor, directly from image
data. So if, at any given instant ¢, we supply sufficiently many independent m;
and m;, then C and W can be determined, up to a common scalar factor, from
the following system of equations:

m!Cm; +m; Wi,; =0 (i=1...n). (2.35)

These equations are linear in C and W.

2.2 Derivation from first principles

Having shown the relationship between the differential epipolar equation and
the epipolar equation for uncalibrated cameras, we now give a derivation of the
differential epipolar equation based more directly on the nature of the projection
of scene motion onto the image plane. This alternate derivation provides a
perspective which is useful in understanding the relationships between the various
coordinate frames used, and ultimately an avenue for reconstructing the viewed
scene.

2.2.1 Scene motion in the camera frame

To describe the position, orientation and internal geometry of the camera as well
as the image formation process, it is convenient to introduce two coordinate
frames. We define a Cartesian (“world”) coordinate frame I'y, whose scene
configuration will be fixed throughout. We also define an independent Cartesian
coordinate frame I'; associated with the camera. This frame has origin C' and
basis {ej, es} of unit orthogonal vectors, so that C coincides with the optical
centre, e; and ey span the image plane, and ej lies along the optical axis (see
Figure 1.2). By ensuring that I'. and 'y, are equi-oriented we guarantee that
the value of the cross product of two vectors is independent of whether the basis
of unit orthogonal vectors associated with I'y, or that associated with I'; is used
for calculation. For reasons of tractability, C' will be identified with the point in
R? formed by the coordinates of the optical centre of the camera relative to I',.
Similarly, for each i € {1,2, 3}, e; will be identified with the point in R® formed
by the components of e; relative to the vector basis of I',.

Suppose that the camera undergoes smooth motion with respect to I'y,. At
each time instant ¢, the location of the camera relative to I'y, is given by

(C(t),ei(t),ext),es(t)) € R* x R* x R* x R”.
The motion of the camera is then described by the differentiable function

ts (O(t), er(t), ea(t), es(t)).
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The derivative C(t) captures the instantaneous translational velocity of the
camera relative to I'y, at t. Expanding this derivative with respect to the basis

{ei(t) }i<ics

C(t) = Zti(t)ei(t) (2.36)

defines v(t) = [t1(t),t2(t),t3(¢t)]". This vector represents the instantaneous
translational velocity of the camera relative to I'. at t. Each of the derivatives
é;(t) can be expanded in a similar fashion yielding

&i(t) = Y wilt)e; (). (2.37)

Let P be a point in space. The location of P relative to I'. can be expressed
in terms of a coordinate vector z = [z1, 29, z3]7 determined from the equation

P=Y ze+C. (2.38)

Suppose that P is static with respect to I'y,. As the camera moves, the position
of P relative to I'. will change accordingly and will be recorded in the function
t — z(t). This function satisfies an equation reflecting the kinematics of the
moving camera. We derive this equation next.

Differentiating (2.38) and taking into account that P =0, we obtain

Z(zzez + zlez) —+ C =0.

7

From this and equations (2.36) and (2.37) we see that
Z+wxz+v=0. (2.39)

We define an operator such that, for some vector @ = [ay, ay, as]”,

0 —as a9
a= as 0 —ai . (240)
—Qa2 aq 0

Using this definition we write equation (2.39) as

z+wz+v=0. (2.41)

2.2.2 Differential epipolar equation: the second form

Under our camera model the image is formed by projection of light from the
viewed scene, through an aperture at C, onto the image plane (again, see
Figure 1.2). In coordinates relative to the camera based frame I'. the image
plane is described by all points with depth —f (so {z € R®: 23 = —f}), where f
is the focal length.
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Let the vector z describe the coordinates of a particular scene point P relative
to ['.. The location of the image of P is given by a vector p as defined in
equation (2.4)

z

Suppose again that P is static and the camera moves with respect to I'y,. The
evolution of the image of P will then be described by the function ¢ — p(t). This
function is subject to a constraint deriving from equation (2.41). We proceed to
determine this constraint.

First, note that (2.42) can be equivalently rewritten as

z3P
z=-22 (2.43)
f
which immediately leads to
5= Z3Jé—?33fp_ﬁﬁ
f? f
Next, applying the matrix ¥ to both sides of (2.41) and noting that vv = 0, we
get

(2.44)

vz +vwz = 0.
Now, in view of (2.43) and (2.44),
B3~ o BB

zf — if
- "~ ¥vp— —vp— —vwp = 0. (2.45)
f? f f
In view of the antisymmetry of ¥, we have p’op = 0. Applying p’ to both sides
of equation (2.45) we obtain

pTop + p' B@p = 0. (2.46)

This is the sought-after differential epipolar equation.

The differential epipolar equation is not the only constraint that can be
imposed on functions of the form ¢ — p(t). As shown by Astrém and Heyden [4],
for every n > 2, such functions satisfy an nth order differential equation that
reduces to the differential epipolar equation when n = 2. The nth equation in
the series is the infinitesimal version of the analogue of the standard epipolar
equation satisfied by a set of corresponding points, identified within a sequence
of n images, depicting a common scene point. This work rests solely on the
differential epipolar equation which is the simplest of these equations.

2.2.3 Relating the two forms of the differential epipolar
equation
The two derivations above have provided two different forms of the differential

epipolar equation. We now show the relationship between them by making the
transition from equation (2.46) to equation (2.21)
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By their definitions in equations (2.40), (2.14) and (2.14) we see that

5=T and &=R. (2.47)

It follows from our definition of p in terms of m in equation (2.4) that the

derivative of p is .
p=Am+ Am. (2.48)

By equations (2.47) and (2.48)
p"op = mT ATT Am + mT ATT Arn
p oop = mTATIO’IOlAm,
so (2.46) can be rewritten as
mT AT At + m" (A"TRA + AT A)m =0,

which is equation (2.21).

2.3 A projective form of the motion matrices

In view of its definition in (2.33) and the antisymmetry of T, we see that W
is antisymmetric, and so W = @ for some vector w = [wy, wo, ws]” (that is
w as opposed to w). C is symmetric, and hence it is uniquely determined by
the entries cq1, €10, €13, C9, C23,¢c33. Let C' : W be the joint projective form of
C and W, that is, the point in the 8-dimensional real projective space P® with
homogeneous coordinates given by the composite ratio

CIW:(CH20122013202226232033211]12’[1)22’11)3).

Clearly, AC : \W = C : W for any non-zero scalar A. Thus knowing C' : W
amounts to knowing C and W to within a common scalar factor. We see from
this that a normalising condition is necessary to compare different C : W pairs,
but that the exact form of the normalising condition is somewhat arbitrary.

2.4 A cubic constraint on the motion matrices

We now show that C : W lies on a hypersurface of P®, so rather than being able
to take any value from this space, C' : W is confined to a 7-dimensional manifold.
We thus define a constraint on the possible forms of the motion matrices.

By the definitions of the motion matrices in equations (2.32) and (2.33), we
know that

[e}

C=_[WA(R+B)A+A"(R - B")(A")"'W]. (2.49)

| =
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Taking into account that w? W = 0 and Ww = 0, we see that
w ' Cw = 0. (2.50)

The left-hand side is a homogeneous polynomial of degree 3 in the entries of C
and W, and so the equation defines a hypersurface in P®. Clearly, C : W is a
member of this hypersurface. Thus C : W is not an arbitrary point in P® but is
constrained to a 7-dimensional submanifold of P®, a fact noted in Ref. [135].

2.4.1 Enforcing the cubic constraint

A number of methods of estimating the motion matrices are provided in Sections 4
and 5, but there is no guarantee that an estimate {C, W'} produced by such a
procedure will satisfy equation (2.50). A rectification procedure for modifying
estimates to accommodate this constraint is therefore needed.

Given a pair of motion matrices {C, W'}, let

c C - PCP
"I - PCP|P+ W[’
w

W, = :
"¢ - PCP|P+|W|?

where
P=T+|a| W

It is easily verified that if {C, W} satisfies (2.50), then PCP = 0. Hence
W = W, whenever (2.50) holds for {C, W}. Since P = @ and @' P = @’
it follows that @" C,@ = 0, which in turn immediately implies that @,”C ,w, =
0. Thus passing from {C,W} to {C,, W ,} gives the required modification
procedure.

2.5 Self-calibration with free focal length

As we have outlined in Section 2.1.2 only 5 ego-motion parameters can be
determined from image data, as one parameter is lost due to scale indeterminacy.
Given that C : W is a member of a 7-dimensional hypersurface in P®, the total
number of key parameters that can be recovered by exploiting C' : W cannot
exceed 7. If we want to recover all 5 computable ego-motion parameters, we
have to accept that not all intrinsic parameters can be retrieved. Accordingly, we
have to adopt a particular form of A, deciding which intrinsic parameters will be
known and which will be unknown, and also which will be fixed and which will
be free. A free parameter is defined in [17] to be one that may vary continuously
with time.
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We assume that the focal length of the camera is unknown and free, and that
pixels are square with unit length (in terms of I';). We further assume that the
principal point is fixed and known, and that the data is represented with respect
to this fixed principle point. In this situation, for each time instant ¢, A(t) is
given by

[ 10 0 ]
At)=10 1 0 , (2.51)

Lo o~ |
where f(t) is the unknown focal length at time ¢. From now on we shall omit
in notation the dependence upon time. Let m(v) be the projective form of v,

that is, the point in the 2-dimensional real projective space P? with homogeneous
coordinates given by the composite ratio

m(v) = (v1 : vy : v3).

As is clear, m(v) captures the direction of v. It emerges that, with the adoption of
the above form of A, one can conduct self-calibration by explicitly expressing the
entities w, m(v), f and f in terms of C : W. Of these entities, w and 7 (v) account
for 5 ego-motion parameters (w accounting for 3 parameters and 7(v) accounting
for 2 parameters), and f and f account for 2 intrinsic parameters. Note that v
is not wholly recoverable, the length of v being indeterminate. Retrieving w,
m(v), f and f from C : W has as its counterpart in stereo vision Hartley’s
procedure [55] to determine 5 relative orientation parameters and 2 focal lengths
from a fundamental matrix whose intrinsic-parameter parts have a form analogous
to that given in equation (2.51).
Let S be the matrix defined as

S=A"R+ B)A.
A straightforward calculation shows that
0 —w3  —fwe
S — ws 0 fur |- (2.52)
wo/f —wn/f  f/f

With the use of S, equation (2.49) can be rewritten as
1
C= (WS- STw). (2.53)

Regarding C' and W as being known and S as being unknown, and taking into
account the fact that C—a 3 x 3 symmetric matrix—has only six independent
entries, equation (2.53) can be seen as a system of six inhomogeneous linear
equations in the entries of §. Of these only five equations are independent, as C
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and W are interrelated. Solving for the entries of S one can express w, f and f
in terms of C : W. Once f and hence A is represented as a function of C : W,

the matrix T can be found from
T = (A7) 'WA™, (2.54)

which immediately follows from (2.33). Note that W is known only up to a

scalar factor, and so T (and hence v), cannot be fully determined. However, as

[e)

W depends linearly on T, it is clear that 7(v) can be regarded as being a function
of C : W. In this way, all the parameters w, m(v), f, and f are determined from
c:w. '

We now give explicit formulae for w, 7(v), f, and f. Set

m = —%, N2 = —%, m=—ws,  m=f, = § (2.55)
In view of equations (2.52) and (2.53), we have
C11 = —WaTp + W33,
2¢12 = wom + wany,
Co2 = —W1M1 + W3T3.
Hence
m = 2c10w9 —2(022 ; Cll)wl’
wi + wy
Ny = 2¢c10wy :;%(fiug 011)w2, (2.56)
= c11w? + 2ciowiwy + Copw?

ws(w} + w3)

The expressions on the right-hand side are homogeneous of degree 0 in the entries
of C and W that is, they do not change if C and W are multiplied by a common
scalar factor. Therefore the above equations can be regarded as formulae for 7,
M2, and n3 in terms of C' : W. Assuming—as we now may—that 7, 7y, n3 are
known, we again use (2.52) and (2.53) to derive the following formulae for 7, and

UbB
2c13 = wWymMNy + WaNs — W1Ns,
2093 = W3MeNs — W1iT)s — Walls, (2.57)
33 = — (Wi + wan2) N

These three equations in 7, and 75 are not linearly independent. To determine
ns and 75 we proceed as follows. Let & = [n,n5]", let 2 = [dy, dy, d3]” be such
that
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dy = 2¢13 + wins, dy = 2c93 + wans, d3 = ¢33,

and let
w3 Wa
D= w32 —wy

—win —ware 0O

With this notation, (2.57) can be rewritten as
Dé§ =E,

Now 4 is given by
= (D'D)'D'E.

More explicitly, we have the following formulae:

M= = (w1w3d1 + w2w3d2 - (wf + ’wg)dg) s

s T T

s = ((11]1’11]2771 + (wg + wg)ng)dl — ((w% + wg)nl + w1w2772)d2 (258)

+ (wawsm — wiwsnp)ds),

where I' = (w? 4+ w32 + w32) (w1n; + wan2). Again the expressions on the right-hand

side are homogeneous of degree 0 in the entries of C' and W, and so the above

equations can be regarded as formulae for 7, and 75 in terms of C : W.
Combining (2.55), (2.56) and (2.58), we obtain

w1 = —771\/%, W = —sz/m, w3z = —13, f= \/% f = 775\/5-

Rewriting (2.54) as

t3 = ws, (259)

and taking into account that f has already been specified, we find that
w(v) = (—wy : —ws : fws).

In this way, all the parameters w, m(v), f and f are determined from C : W.

2.6 Degeneracies

There has been significant work in the area of determining degeneracies in the
stereo imaging process [23,56,78,79,132,133]. The differential epipolar equation
suffers correspondingly, as the same epipolar geometry underlies both schemes.
We consider here the degeneracies in the process of self-calibration outlined in
the previous section.
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Inspecting (2.56) we see the need to assume that ¢35 # 0 and also that either
t1 # 0 or to # 0. Furthermore, I' appearing in (2.58) also has to be non-zero. If
we assume that ¢3 # 0 and also that either ¢; # 0 or ¢, # 0, we see that ' # 0
if and only if wyn; + weny # 0. Taking into account the first two equations of
(2.55) and the first two equations of (2.59), we see that the latter condition is
equivalent to tiw; + tows # 0. Altogether we have then to assume that t3 # 0,
that either t; # 0 or ¢, # 0, and, furthermore, that ¢;w; + taws # 0.

Fundamentally this restriction means that, in order to calculate structure
from motion via this method, the camera must exhibit some movement along its
optical axis, and that the vector describing the translation of the camera and
the optical axis must not lie on the same plane. This corresponds to the self-
calibration degeneracy in general stereo that occurs when the optical axes of the
cameras are coplanar.

2.7 Conclusion

We have related above two derivations of the differential epipolar equation
originally provided by Brooks et al. [17,18]. Additionally we have shown a
method for enforcing the cubic constraint on the motion matrices and derived
simple degeneracy conditions.

We are now in a position to consider reconstruction from optical flow and
subsequently statistical estimation of the motion matrices.



Chapter 3

Reconstruction and relative
position

Within this chapter we determine a means of reconstructing a viewed scene given
the matrices C and W and an optical flow field, we also provide a method
for estimating the relative position of a camera from one instant to another.
Determining the movement of a camera from one time instant to another is
essential if reconstructions calculated at these times are to be compared or
merged. Finally, we relate motion measured from a world-centred coordinate
system to the ego-motion measured from a camera-centered coordinate system.

3.1 Scene reconstruction

Reconstruction of a viewed scene is the process of calculating (an estimate of)
the coordinates of the point in space corresponding to a particular image point.
Reconstruction thus requires that we relate an object’s position in the scene to
the associated optical flow vector and the motion of the camera. This relationship
necessarily relies on the nature of the projection of points onto the image plane
as described in Section 2.2.2.

From equation (2.44) we know that

Z:Z3f_23fp—ﬁ'
f? f

It follows from (2.41) that 2 = —v + Rz, therefore

Z3J5—23f %3 . :
————p— —-p— Rz=0.
f? f

Substituting the expression given in equation (2.43) for z we obtain

v+

Z3ff_223fp—?15+ﬁ1.2p=0.

v+ 7

38



CHAPTER 3. RECONSTRUCTION AND RELATIVE POSITION 39

This leads to a system of three equations in two unknowns:

zsf — 2 23, 23 »

v = —?’ff723fp+ 731) - 73Rp. (3.1)

Clearly, f, f,m and rh are known, v is partially known (up to a scale factor),

and z3 and Z3 are unknown. Assume temporarily that v is known. Then (3.1)

can immediately be employed to find z3 and Z3. Bearing in mind that m, m, v,

and R are column vectors with three entries, one can regard (3.1) as being a

system of three linear equations in z3 and Z3. Upon solving this system for z3

and %3, we use (2.43) and (2.44) to determine z and 2. With z thus specified,

scene reconstruction is complete.

Note that this method breaks down when (p — Rp) and p are linearly

dependent, or equivalently, in view of (2.43) and (2.44), if

zx (24 Rz)=0.

This, by (2.41), is equivalent to z X v = 0. We need therefore to assume that
zxv # 0, or equivalently that z and v are linearly independent, whenever z3 # 0.
In particular, this means that v # 0 holds. We have assumed above that we
know the scale of v. In fact, we see from equation (3.1) that the scale of v affects
only the scale of the reconstructed object. The shape of the reconstruction is
unaltered. The scale indeterminacy of the recovered translation vector described
in Section 1.7 thus leads to a scale indeterminacy in the recovered reconstruction.
This phenomenon parallels the well known result from stereo analysis to the effect
that it is impossible to recover the scale of a reconstructed object without prior
knowledge of the separation of the cameras.

3.1.1 Testing the reconstruction formulae

In order to test the reconstruction formulae, a realistic model of a camera
and its motion were generated, and then the implied motion matrices and a
corresponding set, of optical flow were calculated. The optical flow was generated
so as to correspond to points on three surfaces of a cube. The calculated optical
flow and motion parameters determined from the motion matrices were then
used to generate a reconstruction by the method described above. The results
are illustrated in Figure 3.1. The reconstruction calculated matches the original
data precisely once the scale indeterminacy has been taken into account. This
is as would be expected given that the exact motion matrices have been used to
calculate the key parameters implying that no noise has been introduced into the
system.

3.2 Calculating relative position

Determining the change in position of an object over a given time period when
only velocity information is available naturally requires integration. The differ-
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Figure 3.1: Cube reconstruction

ential epipolar equation provides information about the velocity of the camera
(via the motion matrices), but only for a specific time instant. Determining the
change in position over time thus requires integration on the basis of successive
motion estimates.

In order to integrate over a time period the velocity of the camera must be fully
described at each intervening instant. Unfortunately in the course of estimating
motion matrices and subsequent reconstruction of the scene from instantaneous
optical flow, the speed of translation ||v|| remains undetermined and can take
any positive value. This reflects the aforementioned scale indeterminacy of the
reconstruction problem; namely, that it is impossible to tell from an image
sequence whether the camera is moving very quickly past a large object, or
slowly past a small one, without reference to prior knowledge about the scene.
Rotational velocity on the other hand is fully recoverable from the motion
matrices. Given that it is not possible to recover absolute translational velocity
from C and W we now provide a means of determining relative translational
velocity.

3.2.1 Determining relative translational velocity

Suppose that we are given an optical flow field that evolves over a period of time,
from which we calculate estimates of the motion matrices at a number of instants.
When calculating camera translation as described above, it is quite conceivable
that the scale factor corresponding to ||v|| may change in an uncontrollable way
from one time instant to another [4]. This indeterminacy can be significantly
reduced, however, if we are able to track a single feature over a period of time.
Given two time instants s and ¢ with s < ¢, suppose that we are given a
function [s,t] © o — {m(o),m(o)} that represents a moving feature. The
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relative translational velocity ||v(o)||/||v(s)|| may be uniquely determined for all
o € [s,t], once the initial velocity ||v(s)| is fixed. That is, the velocity ||v(o)||
becomes uniquely determined for all o € [s, t].

Using (2.4) and (2.48), we first determine p(c) and p(co) for each o € [s,t].
Omitting in notation the dependence upon o, let

k=74(fp— f(p+&p)),
l = fop.

Applying v to both sides of (3.1) and taking into account that vv = 0, we see
that

Z3k — Zgl =0.
So ,
23 'k
— = —. 3.2
% P (3.2)

Here we tacitly assume that z3 # 0 and I # 0. In fact, it suffices to assume only
that z3 # 0; when this assumption holds, then the inequality I # 0 follows from
our standing assumption that v # 0, the definition of I, and equation (2.43).
Note that the right-hand side of equation (3.2) does not change if v is multiplied
by a non-zero scalar. It can therefore be regarded as being a function of 7(v), w,
f, f, p and p, and can be treated as known. Similarly, g defined by

L (UK : P
q=f2Gmp@—fp+ﬂp+wM) (3:3)
can be regarded as known. In view of (3.1) and (3.2), we have
U =239
and further
[o]] = |25 llql|- (3.4)
To simplify the notation, let
v= o] 5
q=llqll-

Taking the logarithmic derivative of both sides of (3.4) and using (3.2), we see

that .
v z3 q 'k q
—=2421-- 247 3.6
v % g TP (3.6)
Let
Uk ¢

9=+
1 g
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The scalars ¢ and ¢ are derivable from equations (3.3) and (3.5) respectively, and
I"k/ ||1]|” is made up of known objects, so, in light of equation (3.2.1), g can be
regarded as known. In view of (3.6), we finally find that

°00) _ o ( / o) du) , (3.7)

which is the desired formula for the relative translational velocity. The fact
that we can calculate relative translational velocity enables the resizing of
reconstructions calculated at different time instants such that they share a
common scale factor to the original scene. This result, therefore, does not give us
the absolute scale of such reconstructions, but allows the relative scaling between
them to be calculated. Section 3.4.2 describes a method for calculating the
trajectory of a camera based on this result.

3.2.2 Testing the accuracy of relative velocity determina-
tion

In order to test the accuracy of the formula for the determination of relative
translational velocity, a time interval (10 seconds) over which to integrate was
selected. From this interval were selected 150 equally-spaced instants, each
representing the time at which a particular image was taken. These settings
matched the 15 images per second frame rate of the Pulnix TM9701 progressive
scan camera. We then generated motion matrices as a function of time over this
interval to represent a camera undergoing changing motion. The projection of a
fixed scene point in every image was then calculated at every instant.

Figure 3.2 depicts the magnitude of the true and estimated translational
velocities over this time period. We could calculate relative velocity over any
interval, but for simplicity we choose the interval starting at time 0. In order to
enable comparison, the correct value for v(0) (the velocity at time 0) was used to
generate subsequent estimates from (3.7). As is generally the case with numerical
integration, increasing the number of steps over a given interval increased the
accuracy of the result. Figure 3.2 shows that the integration method of calculating
relative translational velocity performs well; in fact it performs so well that the
lines are barely distinguishable. As expected, however, it does diverge from the
true solution over time. Tests on real optical flow data have not been carried out
because the imaging equipment used for real data capture does not allow accurate
measurement of the true relative translational velocity. Without this information
no meaningful comparison is possible. Adding noise to the data leads to decreased
accuracy of the relative velocity estimate, as would be expected. This effect may
be mitigated by generating estimates based on a number of scene points and
calculating their average.
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Figure 3.2: Relative velocity estimation

3.3 Ego-motion from change in position

In real imaging situations, we often define the motion of the camera relative to the
scene based coordinate system. The motion matrices, however, describe motion
in terms of the frame attached to the camera itself. It is thus useful to be able
to represent motion in one frame that has been measured in another.

Firstly we consider the problem of representing motion measured in I'y, the
frame fixed to the viewed scene in terms of I'; the frame attached to the camera.
If the rotation and translation of the camera relative to the fixed scene frame is
denoted by R and v respectively, then, by definition, the instantaneous rotation

R in the camera frame is given by
R=R 'R, (3.8)
and the corresponding translation T' by

T =R (o —v). (3.9)

We are particularly interested in the instantaneous speed of rotation and
translation of the camera because it is this information that may be recovered
directly from the differential epipolar equation.

3.4 Relative motion from ego-motion

We seek to recover the position of the camera in the frame attached to the scene
at some time ¢, given its ego-motion (described in camera centered coordinates).
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This requires solving the differential equations (3.8) and (3.9) given that we

know only R and T. We thus seek to perform the reverse of the transformation
described in the previous section.

3.4.1 Recovering rotation

Rather than solve equations (3.8) and (3.9) directly, we initially consider the
problem of recovering f(¢) from the linear system c(¢) f(¢) = f(¢) when only f(t)
is known. We solve this system using the method of variation of a constant.

If we express the equation in question as

d
=1
we can then rewrite it as of
c(t)dt = 10}
Since
dinf()) _df 1
dt dt f(t)’
it follows that of
d(In f(?)) = 0]

and hence
c(t)dt = d(In f(t)).

By the fundamental theorem of calculus

/t dg = g(t) — g(to)

to

SO

/t c(s)ds =1n f(t) — In f(to)

0 /()
f(to)

Taking the exponential of both sides we find that
t
ft)
exp / c(s ds) = .
( to ( ) f(t())

F(8) = F(to) exp ( /t: c(s)ds) . (3.10)

If we assume that c(s) is constant, i.e. that ¢(s) = ¢, then

=In

and thus that
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f(t) = f(to) exp((t — to)c). (3.11)

This result, although derived using scalar functions, applies equally to the
case where c(t), f(t) and d(t) represent matrix and vector valued functions of
appropriate dimensions. On this basis we find that we may determine R from
equation (3.8) using the form of equation (3.10)

R(t) = R(to) exp ( /t : &(s)d8> | (3.12)

3.4.1.1 Recovering rotation from constant ego-rotation

If the rotation component of the ego-motion of the camera, or ego-rotation, is
constant, we can solve equation (3.12) for R(t) without the need for integration.

Constant ego-rotation implies that R is constant. If we set our reference point
as the orientation of the camera at time ¢ = 0, then R(0) = I. We thus know,
from equation (3.11), that the solution R(t) is given by

R(t) = exp(tR) (3.13)

where the exponential of a matrix X is defined such that

o0 Xn
n=0

Given that R is antisymmetric by definition, we know from the theory of matrix
exponentials [107] that

o infeo 1—cosf o’
exp(R)zI—i—Slz R+ 0‘;08 R

where § = y/w? + w2 + w3, and w; are the non-zero elements of the antisymmetric
matrix R. From this and equation (3.13) we see that, given a constant rotation

R, we can recover the rotation of the camera relative to its position at time 0 by
the equation ,
sinfe  ,1—cosf @

7 R+t 02 R . (3.14)
This method of calculating the rotation of the camera relative to the scene over an
interval has been tested synthetically by simulating a camera undergoing constant
motion through a rigid scene. The rotation calculated using equation (3.14) on
the basis of the true motion matrices matched the true rotation to the accuracy
of the calculations.

The above thus provides a method of recovering the rotation of a camera
relative to the scene viewed over an interval. The simplification that leads

R(t)=T1+t
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to equation (3.13) and therefore equation (3.14), however, is valid only for a
camera undergoing rotation of constant direction and magnitude. This may
occur in certain circumstances, but in general, the motion of the camera will
not be so constrained. If the rotation of the camera is not constant we revert to
equation (3.12) and therefore to numerical integration over the rotation estimates
recovered from the differential epipolar equation.

3.4.1.2 Estimating rotation by integration

If the ego-rotation of the camera is not constant over time our only means of
recovering rotation relative to the scene over time is to integrate. We therefore
carry out the integral from equation (3.12). In order to determine the errors
arising from integration rather than those from the estimation process we show
results generated using the true values for the motion matrices. The rotation of
the camera over time is difficult to visualise, thus Figure 3.3 shows the error in
the rotation estimate. The error measure used is based on the difference between
the true and estimated camera based coordinate frames. The angle between the
true and estimated direction of each axis of the frames is summed to arrive at this
indicator of estimate accuracy. Figure 3.3 shows that the error in the estimate of

0.2 r

0.15 -

Rotation error (radians)
o
-
T

0.05

Time

Figure 3.3: Rotation estimation by integration

the rotation of the camera is small, but that it increases over time.

The ability to recover the rotation of the camera over an interval means that
we are now in a position to be able to relate reconstructions from differing camera
positions. This ability is essential to the process of joining reconstructions from
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multiple images in a sequence, but also allows us to integrate over velocity and
thus to calculate the trajectory of the camera.

3.4.2 Calculating translation

We have shown in Section 3.2.1 that by tracking one point across a series of images
we can calculate relative translational speed thus partially solving the scale
indeterminacy problem. Subsequently, in Section 3.4.1 we provided a method
for recovering the rotation of a camera over an interval. It is the confluence
of these capacities which now allows us to tackle the problem of determining
translation over an interval.

Recovering the translation of the camera relative to its original position is
complicated by the fact that equation (3.9), which is that

T=R'(v—v),

diverges from the purely exponential form of equation (3.8). Expanding on the
method used to solve equation (3.8), we guess that the translation of the camera
may be recovered by setting

v(t) = exp(t)u(t)
for some function u(t). Differentiating this formulation for v we find that
v(t) = exp(t)u(t) + exp(t)u(t)
= v(t) + exp(t)u(t)
and thus that
v(t) — v(t) = exp(t) u(t).

Rearranging equation (3.9), we get
v—v=RT

SO

and therefore .
u(t) = R(t)T exp(—t).

Unfortunately, the simplification leading to equation (3.13) in the rotation case is
not possible here. The translation of the camera at time ¢ relative to its position
at time t; is therefore given by

v(t) = exp(?) R(s)f;1 exp(—s)ds.

to
This formulation of the translation over an interval requires that we know the

magnitude of T and thus relies on the relative velocity result from Section 3.2.1.
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We have thus derived an equation allowing us to calculate the translation
of the camera over time by integration. Using this, and the rotation recovery
mechanism from Section 3.4.1.2, we can now recover the trajectory of the camera
over an interval. Unfortunately, and unavoidably, this trajectory will suffer from
the scale indeterminacy inherent in the translation recovery process. Solving this
problem requires prior knowledge about the scene or the initial motion of the
camera.

3.4.3 Testing the recovered trajectory

In order to enable comparison of recovered and true camera trajectories we have
used the correct initial velocity to seed the estimation process. As stated, the
result of this integration will depend on the choice of v(tp), the velocity at time
to. In testing we have used the true value of v(fy) to calculate the scale of the
trajectory so as to facilitate comparison with the true camera trajectory. The
selection of a particular value for v(ty) determines only the scale of the recovered
translation of the camera and therefore the scale of the recovered trajectory.

Figure 3.4: Estimating the camera trajectory

Figure 3.4 shows both the correct and estimated trajectories for the 10 seconds
for which relative translational velocity was estimated in Section 3.2.2. The
correct trajectory is shown in red, the estimate in blue. The two trajectories are
so close together as to make their distinction almost impossible. Figure 3.5 depicts
the results of the same tests, but shows only the error in position determination
over the interval. The shape of the curve is somewhat counterintuitive, but is
due to the fact that the translation direction changes over the interval. The error
in any numerical integration process is affected by the shape of the integrated
curve. In this case the particular velocity of the camera produces a curve of such
shape that the errors generated between 4 and 8 seconds almost cancel those of
the previous 4 seconds.
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Figure 3.5: Error in estimated trajectory

3.5 Trajectory calculation without integration

Due to the cumulative nature of the error in relative translation estimation the
estimated and actual positions of the camera will diverge over time. It is possible,
using the reconstruction formulae from Section 3.1 and the relative translational
velocity estimation procedure from Section 3.2.1, to calculate the position of a
scene point relative to the camera at any two instants. Using this result and the
fact that we can calculate the relative rotation from one time instant to another
using the result from Section 3.4.1.2, we can calculate relative translation without
integration. The integration necessary to calculate relative rotation and relative
translational speed is unavoidable for a camera with varying ego-motion. Having
determined these two quantities, however, we can use the reconstructed position
of a scene point at two time instants to calculate the translation occurring between
them.

Recovering translation from two reconstructions requires only that we sub-
tract the vector representing a particular scene point’s position at the first
instant from that at the second instant. The vector representing the position
of the scene point at the second time instant needs to be represented in the
frame corresponding to the camera at the first time instant. This transformation
requires only that we multiply the vector by the rotation matrix resulting from
the integration process set out in Section 3.4.1.2.

Figure 3.6 shows the errors occurring in the process of relative position
determination by reconstruction. The method is much more accurate than the
integration-based method presented in Section 3.4.2.
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Figure 3.6: Estimating translation without integration

3.6 Conclusion

We have derived reconstruction formulae in Section 3.1, and shown that the
reconstructions are accurate. We have also provided a means of estimating the
trajectory of the camera over time from the motion matrices. This is significant
as the extrinsic parameters therein encode only velocity information. The ability
to recover a trajectory is important in that it allows reconstructions generated
at different instants to be compared and combined, thus improving the quality
of reconstructions from image sequences.



Chapter 4
Solving for C and W

In the previous chapters, we have described the differential epipolar equation
and given methods for reconstructing the viewed scene and calculating the
camera trajectory. Both scene reconstruction and trajectory calculation require
knowledge of the motion matrices. This chapter presents various techniques for
estimating these matrices, the goal being to determine methods robust to the
presence of noise in the optical flow data.

4.1 Exact methods

Initially we consider two methods based on solving a system of equations. These
methods are directly applicable on their own, but also form the basis for the
statistical techniques presented in subsequent sections.

4.1.1 Eight-point estimator

Let S be the set of optical flow vectors corresponding to a particular image. The
differential epipolar equation provides a constraint on the values of the elements
of C and W for each optical flow vector, and therefore for each element of S.
The differential epipolar equation expands to

2 2
miCi1 + 2m1m2012 + 2m1013 +m (&) + 2m2623
1 2

“+cC33 + mg’Ul — mwg + Ug(mlmQ — mgml) = 0. (41)

For a set S of n optical flow vectors there are n such equations, each of which
is linear in the elements of C and W. We have seen above (Section 2.4) that
the elements of the matrices C and W are constrained such that the system has
seven degrees of freedom. One of these constraints is non-linear in the elements of
the matrices, namely the requirement that w?” Cw = 0. Ignoring this non-linear
complication increases the number of degrees of freedom of the system to eight but
allows estimation of {C, W} by solving the set of differential epipolar equations
algebraically. In this simplified case eight optical flow vectors are required to

ol
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form a solution. This method is the fastest of those presented but suffers not
only from the instability inherent in any method based on such a small sample,
but from the obvious auxiliary disadvantage that there is no guarantee that the
constraint w? Cw = 0 is satisfied.

4.1.2 Seven-point estimator

By including the cubic constraint, an estimate of C' : W may be obtained from
seven points by solving the system

mIWm;+m]Cm; =0 i=1...7, (4.2a)
w Cw = 0. (4.2b)

Equations (4.2a) are homogeneous in the entries of C and W, and effectively
provide seven constraints for the ratio C : W. If we identify C : W with the
vector

_ T
e = [011,612,613,022,023,033,w32,w13,w21] )

then the space of solutions to system (4.2a) is spanned by two normalised linearly
independent vectors @)a and @5. These vectors may be calculated by singular
value decomposition using the method employed in Section 4.5. An un-normalised
solution 7} to the full system of equations can therefore be represented as a
weighted sum of these vectors

N=X0,+(1—- 1O (4.3)

for some scalar parameter A. Substituting (4.3) into equation (4.2b) leads to a
cubic constraint on A. This equation has either one or three real solutions J;,
which in turn give rise to one or three normalised estimates

17l

If three real estimates are obtained, we select the estimate @Z satisfying the
differential epipolar equation for all seven optical flow vectors, otherwise the
solution corresponds to the single real estimate.

4.2 Least squares methods

We have seen that we can select a {C, W} pair that will satisfy the differential
epipolar equation for any set of seven or eight optical flow vectors. Naturally,
if there is no noise in the measurement process, it would be quite possible to
select a {C, W} pair that will satisfy the differential epipolar equation for any
number of flow vectors. Unfortunately, measuring optical flow from real image
sequences introduces significant noise into the data, and consequently, if there
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are more than eight vectors, it is unlikely that there exist motion matrices such
that the differential epipolar equation is satisfied for all of them. One method we
can utilise in this situation is to select seven or eight optical flow vectors from
the optical flow field, and calculate the motion matrices from these points alone.
This proposition has been supported by Hartley [54] as a means of estimating
the fundamental matrix. The problem with this approach, however, is that,
because it does not utilise all of the data available to us (and therefore all of
the information available to us), our estimates may not coincide with those that
are in some sense ‘most likely’ given the data. We now tackle the problem of
selecting the motion matrices which are most likely given the data.

4.2.1 Maximum likelihood estimation

Maximum likelihood estimation, like any estimation method, is concerned with
selecting the model which best fits a given set of data. A classical example of a
model fitting problem is that of fitting a line through a set of scattered points.
The model describes a particular form the data may take, but, in doing so,
may also represent some information about the process by which the data was
generated. The set of all possible models from which the selection is made, is
usually constrained to some class of functions, or distributions. In the line fitting
example, this is the set of all lines. The set of all possible models is parameterised
in order that each model may be identified individually. Maximum likelihood
estimation differs from other estimation methods in that it requires that we seek
the model for which the probability of the data having been generated is greatest.

The probability that a continuous random variable o will have any particular
value £ is always zero by definition. If we denote the probability that « falls
within the interval between & and & + A€ by P(§ < a < £ + Af), then P(£ <
a < &4+ Af) > 0. In fact, in the limit, as A€ approaches 0, the expression

P(¢ < a< &+ A
Ag

approaches some value, which is not necessarily 0. In the following it is this limit
which is taken as the value of the probability density function p().

If a continuous random variable a has a Gaussian distribution of mean & and
variance o, then the probability that it takes a particular value £ is given by

p(E) = e
2mo

If the continuous random variable is vector valued then the probability that oc = &

1S
1

(2m)Zom
where @ = (a1, 9,...,a,) and £ = (&,&,...,&,). The mean of each «; is
assumed to be & and the variance o.

p(&) = 6*22;1(51'*55)2/202’ (44)
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In terms of optical flow, each measured data point is represented by a vector,
which we label x;. The set of these measured data points is thus S = {x;|i =
1...n}. We regard this set S as a sample taken from an aggregate of vector-
valued random variables {x;...x,}. These vector-valued random variables are
assumed to be stochastically independent, and the elements of each such vector
are taken to be of variance o. Any particular vector x; is assumed to be of mean
Z;, which represents the true value of the vector x;, so

and
E(xi — &) (x; — &) =% (4.6)

where X' = diag(o, 0,0, 0,0,0).

If we parameterise the set of all possible models by the vector ®, then
maximum likelihood estimation becomes the problem of selecting the model ©
under which the observed data set S is most likely to occur. The probability that
our observed data S will occur given a particular model © is represented by the
conditional probability p(S|©). We thus seek

O = arg mgxp(S\G)).

The probability p(S|®) is the product of the probabilities p(z;|®) of each of the
points arising so, given equation (4.4),

p(S]O®) ,li {exp [—% ((a:i —z(0),)" X (@; - w(G)i))Q} }

where X~ = diag(c™",071,0,07,071,0) and x(©); is the expected location of
x; based on the model ®. Maximising this probability is equivalent to minimising
its logarithm, so, since o and n are not dependent on ®, our maximum likelihood
estimate is given by

6 = argmin 3" (2 — () & (i - gc(@),-))2 | (4.7)

The maximum likelihood estimate is statistically optimal when the variance of
each x; is the same, and the errors in the x; are uncorrelated. The term

(z; — 2(©);)" & (z; — 2(O);)

represents a measure of the distance between the observed data point x; and its
expected value (0);. In this sense the maximum likelihood estimate corresponds
to the model which minimises the sum of the squares of the distances between the
data and their expected values. For a more detailed introduction to probability
and maximum likelihood estimates, see Refs. [9,50,106,120].
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In terms of the current estimation problem the motion matrices C and W
represent the model ®. We wish to maximise p(S|{C,W}), the probability
that the measured optical flow & would occur given a moving camera with key
parameters described by {C, W}. We therefore minimise the sum of the squares
of the distances between the elements of & and their expected values given a
particular {C, W'} pair. Representing this sum of squares measure as a function
J of C, W and S, we seek the motion matrices for which J(C, W'; §) is minimal.
Given that it is J(C, W; S) which is minimised, we label this the cost function.
We now consider the selection and application of an appropriate cost function.

4.3 The manifold of consistent optical flow

We have seen in Section 2.5 that the ratios of the elements of the motion matrices
C : W describe the instantaneous state and motion of a camera. We now define
the manifold F¢ w of all optical flow vectors which satisfy the differential epipolar
equation for these matrices. If

fe,w({m,m}) =m"Cm + m" W

then the manifold Fo w can be defined as the set of all flow vectors & = {m, m}
consistent with {C, W'}. That is, the manifold describes the set of all vectors x
for which fe w(x) = 0. By this definition

Fe,w ={x: fc,w(x) = 0}. (4.8)

We term an optical flow field consistent if there exist motion matrices {C, W'}
such that the differential epipolar equation is satisfied for every vector. An optical
flow field is thus consistent if it forms part of a manifold of the form described
above. We define also, at this point, the associated manifold F¢ w j such that
Fe,wi =1z fo,w(x) = k}.

From the expansion of fo w({m,m}) in (4.1) and from (4.8) notice that
the equation feo w({m,mm}) = 0 is quadratic in the elements of m and linear
in the elements of rin. In fact, due to the nature of (4.1), the differential
epipolar equation, and therefore the manifold ¢ w, can be seen as representing
a generalised conic section in the 6-dimensional space of .

In Section 4.1.1 it was shown that, given any eight optical flow vectors, we
can find motion matrices such that the differential epipolar equation is satisfied
for every vector, provided that the cubic constraint w?’Cw = 0 is ignored.
Consequently, it is possible to construct a manifold F¢ w which passes through
any set of eight optical flow vectors by a judicious selection of the matrices C
and W. Whether or not these matrices satisfy the cubic constraint is another
matter.
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4.4 The problem statement

We now restate the problem of the estimation of motion matrices from optical
flow in a manner more suitable to visualisation in terms of distance measures.

Firstly, we assume that there is some underlying ‘true’ optical flow field
that represents the true motion of the image points across the image plane.
Measurement of optical flow necessarily introduces noise into the data. It is
this noise that the following robust estimation techniques seek to overcome.

If we represent a component of the true optical flow field for an image as & then
the corresponding observed optical flow vector  can be written as € = & + AZ
where AZ is the error in the estimate. Letting C and W represent the true
motion matrices, we have

fe.w(@) =0,
but in general

fe,w(x) #0.

This is due to the fact that the observed optical flow vector x, having been
contaminated by noise (represented by AZ), does not, in general, lie on the
manifold Fe w .

It is not possible to recover the true motion flow vector & from its measurement
x because AZ is unknown. It is, however, possible to recover an estimate of the
true value. We label this estimate Z. The true motion matrices are similarly
unrecoverable, but it is possible to recover estimates of these matrices from a
set S of n optical flow vectors S = {x; : i = 1...n} where n > 7. Label these
estimates C and W.

The motion matrices are defined only up to a scale factor so, as described in
Section 2.3, it is the ratio of the elements of C' : W that is important rather
than their particular values. It is important to note that the ratio C : W can be
identified with the pair {C, W} by the specification of a particular normalisation
condition, so that estimates of C : W can always be expressed in terms of
normalised pairs {C, W'}. The choice of normalisation condition does not affect
the ratio C : W and is therefore somewhat arbitrary.

The manifold Feo, w describes the set of all optical flow corresponding to the
motion matrices C and W. The manifold therefore represents the expected value
of the optical flow given the motion matrices. We have shown in Section 4.2.1
that the maximum likelihood estimate corresponds to the model minimising the
sum of the squares of the distance between the observed data and their expected
values given the model. We therefore define a manifold to be the best fit to the
data when the sum of the squares of distances between the data and the manifold
is minimal (see Figure 4.1). There is no limit to the number of distance measures
that may be constructed. All that is required is that they provide some measure
of the degree to which a particular data element fails to fit the model in question.
Unfortunately all distance measures are not equally appropriate. The problem
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of selecting the best estimate of the motion matrices thus becomes that of the
selection and application of an appropriate distance measure.

The process of determining the maximum likelihood estimate of C' and W
can be restated as that of finding the manifold F¢ w which best fits the observed
optical flow data.

We stated in Section 4.3 that the manifold F¢, w is a generalised conic section.
We see now that the problem of estimating the motion matrices from optical flow
is thus a generalisation of the problem of fitting conic sections to a set of points.

X,

X

Figure 4.1: The manifold Fc w

4.5 The ordinary least squares solution

Substituting each vector in an optical flow field of size n into the differential
epipolar equation generates a system of linear homogeneous equations

m] Wi, +m]Cm; =0, i=1...n.

If n > 8 this system provides n — 1 > 7 constraints for C : W as only the
ratio of the elements is important. Unfortunately, in the presence of noise, it
is unlikely that there exist normalised motion matrices C' and W such that
fe,w(x;)) =0fori=1...n when n > 8. We have stated the need for a measure
of the degree to which a data element does not conform to a particular model-
a distance measure. A simple expression for the distance between a particular
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optical flow vector x; and its expected value as defined by F¢ w would therefore
be fec w(x;), the residual of the differential epipolar equation at x;. We label
this distance measure §; where

H(C,W;x;) =6(C,W;{m,;,m,;}) = rn,;‘erZ + m,ZTC’m,Z

The corresponding cost function 7 is

i=1

Minimising J; thus serves as a basis for estimating C' : W but does not guarantee
that the solution will satisfy the cubic constraint (2.50).

The distance 01 is linear in the entries of C and W, so it is possible to separate
the data from the model. Let

mzz,l
2m;1m; o
2m;1m; 3
ng,2
u; = 2m; om; 3
m?,?,
mz’,3mi,2 - mi,2mi,3
mi,lmi,i’) - mi,?)mi,l
| M — Mo |

Using the definition of ® from Section 4.1.2 it is possible to rephrase 4, as
61(0;u;) = uj ©

and J; as

Constructing the matrix
U= [’U,1, U, ..., ’U,n]T,

J1 becomes
Ji(©:8) = (Ue)'(Ue). (4.10)

We seek the normalised {C, W} for which J; is minimal. As stated above,
we are at liberty to choose any particular normalisation condition. In order to
simplify the mathematics, we select the condition that 1 H®H2 = 1. We then use
the Lagrange multiplier technique to find the © satlsfylng the constraint that
H@H = 1 for which J,(©;S) is minimal. We label this estimate o.
The Lagrange multiplier method is a commonly used technique for finding
the extrema of an objective function within a region described by a constraint
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equation. The method is based on the knowledge that the extrema of the
system in question occur at points at which gradient of the objective function
is perpendicular to the surface represented by the constraint equation. At these
points the derivatives of the objective function and the constraint equation are
parallel but may not be of the same magnitude. In seeking out these points we set
the derivative of the cost function equal to the normal of the constraint equation
multiplied by some unknown constant A. In this case this yields

U'U® = )\6.
Note that © is therefore an eigenvector of UTU, and A the corresponding

eigenvalue, so from (4.10)

2

J1(©:;8) = OUTUB = 820 = ) H(?) — 2\,

The estimate ® which minimises the cost function Ji1(©;S8) is thus the
eigenvector corresponding to the least eigenvalue of UTU. This eigenvector can
be efficiently calculated by employing the method of singular value decomposition
on the matrix U. It is important in determining this eigenvector to avoid
calculating U'U since the condition number of this matrix is the square of that
of U. This higher condition number significantly decreases the accuracy possible
in the determination of ©.

The vector ® thus corresponds to the ordinary least squares estimate of ©,
representing the true motion matrices. Unfortunately there is no guarantee that
the estimate will satisfy the constraint that w’ Cw = 0.

4.5.1 The problem with algebraic distances

Section 4.5 describes the ordinary least squares method of estimating C : W,
that is, it provides a means of finding ®, which minimises

n

J1(©;8) =Y (ul'e)”.

i=1

The process of measuring optical flow is imperfect and thus necessarily introduces
some error, or noise, into the data. Optical flow exists in the image plane and
thus is measured with reference to the image based coordinate frame. Any
associated noise is therefore most easily characterised with reference to this
frame. Unfortunately, the residual §;(©;u;) = u] © has no obvious geometric
significance in this frame because the relationship between the elements of u; and
those of {mm, rh} is non-linear.

Fundamentally, a residual, or distance measure, represents the degree to which
a specific data element does not conform to a particular model. Due to its lack of
geometric significance in the image based coordinate system, we label 6, (©;u;)
as an algebraic residual, or equivalently an algebraic distance measure. All useful



CHAPTER 4. SOLVING FOR C AND W 60

distance measures are of course algebraic in nature. We label this one as such
only to signify its lack of geometric significance.
Interestingly, in the 9-dimensional space spanned by the vector w, the distance

61(0; ;) = u ©

can be represented geometrically. The residual represents the perpendicular
distance from the point u; to the hyperplane perpendicular to the vector ©.
Figure 4.2 depicts the hyperplane Fg, its normal vector ® and a number of

Figure 4.2: Perpendicular distance to the hyperplane in 9 dimensions

data points u;. The perpendicular distance from a point to the hyper-plane
corresponds to the inner product of the normal vector ® and the location of the
point w. This is predicated on the fact that the hyper-plane passes through the
origin O of the coordinate frame in which w is represented. This representation
is put forward in the stereo case by Torr and Murray [128]. Unfortunately, as is
stated above, the mapping between optical flow vectors in the image space and
the points u; in this 9-dimensional space is non-linear. One of the consequences
of this is that a simple model of the noise associated with the location of points
in an image will take on this non-linearity when transfered to the 9-dimensional
data space.

Total least squares minimisation requires that we know the orthogonal
distance from each data point to the manifold representing the model. Having
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determined that d; is an algebraic distance measure in the frame in which the data
is measured we term the process outlined in Section 4.5 an ordinary least squares
method for estimating the motion matrices from optical flow. This is despite the
fact that in the coordinate frame spanned by the vector u, the residual d; is an
orthogonal distance measure which underlies total least squares schemes.

There have been many reports of the advantages of using geometric rather
than algebraic distance measures in the computer vision literature, see for
example Refs. [84,95,128,129,144]. Some of these results have been based on
the results of Pearson’s [104] work on fitting lines and planes suggesting that
orthogonal distance measures are essential when noise affects every element of a
set of measurements. Within this literature there are two major problems that
have been identified with algebraic distance measures. First, that they are not
necessarily invariant to Euclidean transformations, and, second, that they have
no obvious geometric significance [68,127,128,143].

We have discussed the issue of lack of geometric significance in the previous
section. We now consider invariance to Euclidean transformations. A residual
which is invariant to Euclidean transformations returns the same result before
and after the application of a Euclidean transformation to data and the proposed
model. Such a residual is thus sensitive only to the relative orientation of model
and data. If an estimator is invariant to Euclidean transformations the only effect
of rotating the data and moving it sideways will be that the estimate produced
will be similarly transformed. If the method is not so invariant then the estimate
based on the transformed data will not be such a simple representation of that
produced from the original data. The distinction between relative and absolute
orientation is made in the space in which the data is measured, so, the fact that
01 is not easily representable in this space implies that it is unlikely to exhibit
the required invariance.

A subsidiary problem with algebraic distances also described in the computer
vision literature is that induced by the varying curvature of the manifold to be
fitted. In Section 4.4 we showed that recovering motion matrices from optical flow
is a generalisation of one of the fundamental problems in the field of computer
vision, namely that of fitting conic sections to scattered data. It was shown
by Bookstein [15] that the method of fitting conic sections using the algebraic
residual is more sensitive to points close to low curvature areas of the conic.
Bookstein showed that the algebraic distance of a point to a conic section is
proportional to d%/d3—1, where d; is the distance of the point to the conic’s centre
O, and dy is the distance to the conic along the line towards O (see Figure 4.3).
From this it may be seen that points which are the same distance from the conic
will register greater algebraic distances as they approach its minor axis. The
algebraic distance used in that case is just the equation of the conic section,
which is much the same as the use of the differential epipolar equation in the
ordinary least squares method given above. The conclusions reached by Bookstein
therefore transfer directly to the current problem implying that optical flow data
close to low curvature areas of the manifold ¢ w have a greater impact on the
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}

d,

Figure 4.3: The Bookstein distances

final solution than data close to areas exhibiting greater surface curvature. See
Section 5.2 for a more detailed explanation of this effect. Differential weighting of
data on the basis of proximity to low curvature parts of the manifold is obviously
an undesirable property in an estimator.

4.6 Total least squares

We have seen that the ordinary least squares approach minimises the sum of the
squares of an algebraic distance measure. It is well known, however, that the
maximum likelihood estimate in the quadratic curve fitting problem is the one
that minimises the sum of squares of geometric distances to the data points [73].
The total least squares approach thus seeks to minimise the sum of the squares
of the geometric distances. On this basis we now derive a geometric distance
measure.

4.6.1 A geometric distance measure

In Section 4.3 we defined F¢,w to be the manifold of all optical flow conforming
to the model represented by the motion matrices C and W. In Section 4.5 we
“flattened” the matrices C' and W to the vector ®. The two representations
are equivalent, so we let F¢ = Fc w. The true motion matrices representing
the actual key parameters may thus be represented as ® and the associated
manifold containing the true optical flow field Fg. This manifold encompasses
not only the true optical flow field but every optical flow vector satisfying the
differential epipolar equation based on the true motion matrices. Define &; to be
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the point on this manifold closest to an optical flow vector x; (see Figure 4.4).
The Euclidean distance between &; and the manifold is therefore ||x; — &;||. We

Y S

Figure 4.4: The closest point on the manifold

label this distance as
62(@; ;) = |[z; — T4

On this basis we define J5(©,S) to be the sum of the squares of all Euclidean
distances between the manifold defined by ©, and the set of points § = {x;|i =
1...n}, so

5(©,8) =) 6:(0;2:) =Y ||z — &i|°
i=1 =1

n
= (@i — &) (wi — &) = ) (@i — &)
i=1 i=1
The total least squares solution is thus © such that

~

© = arg m(gn J=(0,S)

for a given set of vectors S, subject to the constraints that fe(&;) = 0 for
i =1...n and ||®|° = 2. Once again there is no guarantee that this solution
will satisfy the cubic constraint from equation (2.50).
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4.6.2 An image based residual

We described the process of measuring optical flow in Section 1.6.3, and we noted
that it is this process which introduces the error into our flow data. Rather than
minimise the sum of the squares of the distances to the manifold we now estimate
the motion matrices by trying to compensate for this noise in the data.

If the optical flow measurement procedure is reasonably accurate then we
know that our n-element observed flow field will be close to the true one. We also
know that the true optical flow field satisfies the differential epipolar equation.
On this basis we create the set of all n-element optical flow fields which satisfy the
differential epipolar equation for any C' and W. We then select the member of
this set which is closest to our observed field in the hope that this is either the true
optical flow field or very close to it. This optical flow field will be consistent for
some pair of motion matrices. It is these matrices that we select as our estimate.

We thus, by the method above, calculate the minimal change we would have
to make to the observed optical flow field in order that it satisfy the differential
epipolar equation. It is important to note that this change is an estimate of the
error in the optical flow estimation process and thus must be limited to the image
plane. The vectors m; and 7n; have three elements, but only the first two are
represented in the image plane. We therefore restrict the change to the first two
elements in both cases. So, finally, we seek the optical flow field closest to our
data (but still in the image plane) and which satisfies the differential epipolar
equation for some C and W. We label the elements of this closest optical flow

field {Th, ﬁl} noting that the third elements of 72 and m are fixed at 1 and 0

respectively. 3
We define Am,; and Am; such that

(4.11)

The vectors 7in and m are defined such that they satisfy the differential epipolar
equation so there exist C' and W such that

mIWm; +m! Crm,; = 0,Vi.

There is an infinity of {C, W} pairs and for each pair an infinity of sets of n
optical flow vectors which satisfy the differential epipolar equation. Each of these
flow fields is specified with reference to our observed optical flow by selecting
different sets of Am,; and Am; vectors. The magnitude of the change to each
vector in the field is

&y ({7, i} ) =/l A+ (| A

and, therefore, due to (4.11)
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s ({1 }) = e — sl + [foing — i
If we let &; — {mm} and AF; = {Am,-, Aﬁai} then

do(&;) = 1/ ||AZ;| )"

=/ — &|*

= 62(0; ;).

So the measure of the magnitude of change is the same as for the total least
squares case in Section 4.6.1. This does not mean that by minimising J5(©;S)
we find the required estimate. In Section 4.6.1 the vectors &; were not constrained
to lie in the image plane, and could vary freely over the 6 dimensions in which the
manifold Fg was defined. In the case of this image based residual we consider
only movement in the image plane, so only the first two elements of Arn; and
Am; are of interest. These elements of Am; and Am; correspond to elements
1,2,4 and 5 of Az;. We thus define a new norm such that

llalll = y/at + a3

for a vector @ = [ay, as, a3]’ and

llalll = \/a? + a3 + o} + a2

for a vector @ = [ay, as, as, a4, as,as]” . Using this notation the required distance
measure is

54(©; @;) = \/H|Ami||\2 + ||| A

= 1112
=/l = @:l|[".

The optical flow field representing the smallest deviation, in the image plane,
from our observed flow is thus the field for which the sum of the squares of the

‘ 2

65(©; ;) is minimal. So we seek the set S of points {&; = {ﬁzi, I;.li} li=1...n},

which minimises

J3(©;8) = 53(0;x;)°
subject to the condition that
fo(Z:) =0, V& €S, (4.12)

The resulting estimate of the motion matrices is the © for which equation (4.12)
holds.
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4.7 Total least squares minimisation

We have constructed two residuals based on the Euclidean, and therefore
geometric, distance between a data point and a manifold. We now consider
methods for finding the motion matrices which minimise the associated cost
functions J»(0;S) and J3(©;S). The methods apply equally to both cost
functions. In order to indicate this fact the generic form J(©;S) is minimised.

4.7.1 Finding the set of closest points

An obvious approach to solving a problem of this form would be to find the set
S ={&; : i =1...n} which minimises J(©;S) subject to the constraint that
fo(&;) =0 for i = 1...n. The estimate of the motion matrices, represented by
@, is that ® implied by the particular set S selected. In algorithmic terms the
method is as follows:

1. Generate the set of all possible normalised 9-vectors ©
2. For every element ©; of this set;

2.1 Generate the set of all possible n element optical flow fields consistent
with G‘)i,
2.2 For every such flow field calculate J(©;;S),

3. Select as our estimate the ®; with the smallest value for J(©;;S) .

The problem with this approach is that it requires generating every possible ©®
and then for each ® generating every possible n element set of data. Generating
every possible set of data for each ® is necessary because we have no way of
telling which point on the manifold Fg is closest to a particular data point ;.
Unfortunately generating every possible n element set of data is impractical, if
not impossible.

In order to alleviate this problem, we now devise a means of determining the
closest point &;, on the manifold Fg to x;. The location of this closest point
then leads to a measure of the distance between x; and the manifold. We then
devise a method of alleviating the necessity of generating every possible ©.

4.7.2 The distance to the manifold

Our current formulae for the distance from a point @ to a manifold Fg are

5(0; ) = /|| — Z| 2
53(0;2) = /|| — Z[||”,

where & is the closest point on the manifold to . Rather than apply these
formulae to every point on a manifold to determine the closest one, we seek a
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method of determining &, and therefore 6(Z), directly. For simplicity we select
J2(O; x) as the distance formula to be minimised, but the method applies equally
to 03(®; x).
The point & is defined such that fe(Z) = 0 and 05(®; ) is minimal. In
order to simplify the mathematics we choose to minimise ;(z — &)? rather than
H:c — 53H2 This change of objective function obviously has no effect on the
result. Introducing the Lagrange multiplier A we have

Ofc,w(@)

(x—&)+ A 5%

=0. (4.13)
Substituting into our constraint

few(x) =0

to eliminate & we arrive at an expression that is polynomial in \. If we restrict
7 and m to the image plane as suggested in Section 4.6.2, this polynomial is of
order eight, otherwise it is of order 10. These polynomials are not presented here
due to the complicated nature of the coefficients. Obviously, we cannot find the
roots of such polynomials algebraically. We must rely on a numerical polynomial
solver. Such a solver will calculate either eight or ten roots as appropriate, each
real root corresponding to a possible . We then select the value for & which is
closest to our data point & as our estimate which allows us to calculate d2(®; x)
or 02(®; x) as required.

4.7.3 A total least squares algorithm

Having determined a means of calculating the distance of a point to the manifold
we need to clarify how we will utilise it. Recall that we wish to select the motion
matrices minimising the sum of the squares of the distances from data to the
corresponding manifold. Ideally we would like the distance measure to be of such
a form as to enable algebraic determination not only of each distance, but also
of the minimal sum of squares of distances given the data. Obviously this is not
possible when our distance measure is solvable only by numerical algorithms. We
thus require some other method of determining the motion matrices for which
the sum of squares of distances is minimal. One possible approach would be to
determine this sum for all values of ®:

1. Generate the set of all possible normalised 9-vectors ©
2. For every element ©; of this set

2.1 For every data point x;
2.1.1 Calculate §(©;; ;) the distance to manifold Fe,

2.2 Calculate sum of squares of distances
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3. Select ©; corresponding to smallest sum of squares of distances

Obviously the time required to cycle through every possible © is infinite. We
can reduce this to a finite interval by using numerical minimisation in place of
steps 1 and 2. We are already committed to using a numerical polynomial solver
to determine the distance to the manifold in step 2.1.1. In the course of the
numerical minimisation step to replace steps 1 and 2 we may have to calculate
the distance 0(®;x;) many times. Unfortunately this renders the numerical
minimisation so slow as to prohibit any detailed testing.

The fact that it is not possible to estimate the motion matrices using either
J2(©;8) or J3(0;S) renders meaningful comparison of their merits as cost
functions difficult. This comparison is carried out in Chapter 5 on the basis
of algebraic approximations to d2(®; x) or d3(O; x).

4.7.4 An end to direct minimisation

The direct approach to geometric distance minimisation may have failed to
provide a feasible means of estimating the motion matrices, but this does not
mean that the process has been in vain. The method suggested in Section 4.7.3
has successfully reduced the search space to the 8-dimensional space of all C and
W pairs. Using the constraint that w? Cw = 0, this may be further reduced to
a 7-dimensional space. This is to be contrasted with the dimensionality of the
domain of the method from Section 4.7.2 which was at least four times the number
of optical flow vectors. Section 5.1 follows on from this in the formulation of an
algebraic approximation to the geometric distance which does not suffer from
the problems associated with the polynomial formulation. The accuracy of the
polynomial formulation of the distance to the manifold which has so far been
assumed is demonstrated in Section 4.8.1.

4.8 A geometric measure of performance

Kendall and Stuart [73], amongst others, have shown that, in the case of fitting
conic sections, the conic which minimises the sum of the squares of the orthogonal
distances to the data is the maximum likelihood estimate. The sum of squares
of geometric distances, therefore, constitutes a good measure of the quality of
a particular solution. Despite the fact that using the sum of the squares of the
geometric distances as a means of estimating the motion matrices has failed, we
can use it as a measure of the success of subsequent algorithms. We show in
Section 5.7 that the best results are achieved when the distance between a point
and a manifold is measured only in the image plane. For this reason we select
03(©; x) as our preferred performance measure rather than d,(Q; x).

One disadvantage of using the sum of squares of geometric distances as a
measure of accuracy of fit is that it has an indirect relationship to our desired
result, the key parameters of the camera or the structure of the scene viewed. The



CHAPTER 4. SOLVING FOR C AND W 69

effect of this is that it is difficult to tell whether a particular value of the distance
represents a small or large error in estimation. These problems are addressed in
more detail below, but, for the moment, the advantages of the geometric measure
of performance outweigh the disadvantages.

4.8.1 Confirming the accuracy of the geometric distance
measure

The accuracy of the polynomial method of determining the geometric distance
to a manifold was tested as follows: first 125 manifolds were generated from sets
of eight randomly determined optical flow vectors. Each of these original flow
vectors was then perturbed by k£ or —k pixels in the direction of the normal
to the manifold. This perturbation was carried out in only the four directions
corresponding to movement within the image plane as described in Section 4.6.2.
Whether the movement was k£ or —k pixels was selected randomly, the reason
being to ensure that some of the perturbed points fell on both sides of the
manifold. The value of k was varied from 0.01 to 100 (this value being represented
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Figure 4.5: Error in the polynomial estimate of the geometric distance measure

along the z-axis in Figures 4.5 and 4.6). The distance back to the manifold was
then measured for each point, using the polynomial method above, and compared
to the known distance k. The average error in the distance estimates for these
1000 points is depicted in Figure 4.5, the variance in Figure 4.6. The graphs show
that the polynomial representation of the distance to the manifold is accurate and
that solving the polynomial numerically produces acceptable results.
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Figure 4.6: Variance of the polynomial estimate of the geometric distance measure

The original optical flow was generated so as to reflect the properties of
a real camera, in this case a Pulnix 9701 with a telephoto lens, undergoing
reasonable motion. This is important because it limits the shape of the manifold
corresponding to the true motion matrices Fe yyy. Figures 4.7 and 4.8 represent
a 100-fold magnification of the space around particular optical flow vectors.
The lines in each image represent the projection of the manifold fé,vf‘; onto
the 2-dimensional image plane achieved by freezing rn at its true value. The
background shading represents the value of the algebraic residual at that point
in the image. Once again, this is based on the true value of 7n. The darker
background colour indicates points with lower residuals.

A priori we would expect that, in some cases, after perturbing an optical flow
vector, it would be moved closer to a part of the manifold other than that from
which it came (see Figure 4.8). That is, we would expect that, if the point is
perturbed far enough, the closest point on the manifold would not be the point’s
original position. In fact, when the optical flow was generated as specified above,
the closest point on the manifold to the perturbed point was always its original
position.

Figure 4.8 shows the results of polynomial determination of the closest point
on the manifold when the underlying optical flow is generated from general motion
matrices. The process that led to Figure 4.7 differed only in the motion matrices
from which optical flow was generated. The test represented in Figure 4.7 used
camera-based rather than general motion matrices. The differences between these
two methods of determining motion matrices are detailed in Appendix A.

During the many thousands of tests carried out, the situation corresponding
to Figure 4.8 never occurred when using camera-based motion matrices. For
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Perturbed point

A ___ Original point

Figure 4.7: A typical perturbation

Original point

Perturbed point

Closest point

Figure 4.8: An awkward perturbation
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general matrices it occurred not often, but repeatably. This would seem to imply
that the camera-based motion matrices lead to flatter manifolds than do general
motion matrices. The implications of this are discussed in Section 5.11.

4.9 Conclusion

We have defined two methods of estimating the motion matrices based on
algebraic techniques applicable when little data is available, or when the data is
not corrupted by noise. We have also defined two cost functions, the minimisation
of which may provide a means of estimating the motion matrices if the data is
corrupted by noise. Unfortunately the brute force method of generating estimates
from these cost functions has failed to produce practical estimation methods. We
have, however, developed a means of comparing the performance of estimation
methods that will later prove useful.



Chapter 5

Approximating the geometric
distance

In Section 4.5.1 we showed that, in general, there are advantages in using a
geometric rather than an algebraic measure of the distance of a point to a manifold
in model fitting problems. In Section 4.7 we provided a total least squares
estimation scheme for the motion matrices based on a geometric distance measure.
The limitation of this scheme is the fact that calculation of the expression given for
the geometric distance requires the use of a numerical polynomial solver. We now
seek a measure of the geometric distance for which such a solver is not required.
In the course of finding this algebraic representation of the geometric distance
from a point to the manifold, we determine a means of comparing J»(©;S) and
J3(0;S).

5.1 An algebraic formulation

We have defined the point & to be the closest point on the manifold F¢ w to
x. We now seek an algebraic expression of the distance from the point & to &
which does not require the use of a numerical polynomial solver. Our final goal is
a method of calculating the motion matrices for which the sum of the squares of
these distances is minimal. It would be advantageous, therefore, if the algebraic
form of the geometric distance were such that it would be possible to calculate
these matrices directly. One means of achieving this goal would be to arrive at a
formulation within which we may separate our model parameters from our data.
Our approach is based on linearising the differential epipolar equation in order
to avoid the formation of the polynomial described above, in the hope that this
will facilitate direct determination of the distance.

The Taylor series expansion of fc w(x) about the point & can be written as

fow(®) = fow (@) + Afe.w(@)(x — ) + O((x — )°). (5.1)

We have defined & to lie on the manifold Fc w so we know that fo w (&) = 0.
If the observed flow is sufficiently close to the true flow, we can assume that the

73
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0? term is negligible, and thus, to a good approximation that
few(x) = Afe,w(@)(x— ). (5.2)

We know that the vector corresponding to the shortest Euclidean distance
between a point and a surface strikes the surface at right angles. The vector
from x to & is, therefore, perpendicular to the surface fo w(x) = 0 at £ and
parallel to its gradient A fo w (&), so

1A fe.w(@)(x - )| = ||[Afe,w(@)| |[(z—2). (5.3)

On combining 5.2 and 5.3, we see that

i few(@)]
= =2 = A fe w@)

which is the required Euclidean distance. More generally, if F is a hypersurface
in R* defined by F = {# € R* | f(z) = 0} and z € R"* is a point
close to F, then the Euclidean distance between z and F is, to a first-order
approximation, equal to |f(2)|/||V f(z)||. This fact was first exploited in vision-
related statistical formulations by Sampson [109] and later by a number of authors
(see for example Refs. [68,85,128,139]).

Unfortunately we do not, a priori, know ||[Afec w(Z)|| but we do know
l|Afe, w(x)||, since it may be expressed as

(5.4)

|| 0fe,w(x) afC w(
|Afewla)]| = (Pt )H
= H(?mTC’ mTW mTW (5.5)

=/ |pmTC — i"W||” + ||mTW|\2

because € = {m,m}. If, as we have assumed, x is sufficiently close to & then it
is reasonable to assume that

A fe,w(@)|| = [|Afe,w (@), (5.6)
so we can approximate the distance 6o(C, W; x) by
ImTCm + m"Wri|

Vlzmre — i W + [[mrw >

5,(C,W,z) = (5.7)

This is a direct algebraic distance measure, based on known quantities, which
serves as an approximation to do(C, W; x). We have thus determined a geometric
residual, the calculation of which does not require a numerical polynomial solver.
The new distance measure d4(C, W; x) is, of course, only an approximation to
our desired distance 6o(C, W x), but it is an approximation which may be easily
calculated. The accuracy of the approximation is shown in Section 5.4.
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Given 6,(C, W;x) we construct J3(C, W;S) which is an approximation to
the sum of squares of distances J2(C, W;S)

(mZTsz + m?sz)z
Ji(C, W3 8) = '
WOW) = Y ot — W+ [l W

(5.8)

The process of linearising fe w(x) for every optical flow vector has therefore
led to a replacement for Jo(C, W'; S) with no reference to the points &, and thus
no longer requiring the use of a numerical polynomial solver. This is significant
in that it leads to the possibility of a practical means of estimating the motion
matrices based on geometric rather than algebraic distances.

5.1.1 An algebraic approximation to the image based
residual

We have made no assumptions about the form of & in the above, but if this
closest optical flow vector is constrained to lie in the image plane, as we have
suggested, we must set

=0.

3fC,W(€C) _ 8fC,W($B)
8m3 N 8m3

This is equivalent to projecting the 6-dimensional gradient vector A fo, w () onto
the 4-dimensional space corresponding to the first two elements of the vectors m
and 7n. This projection can be carried out by multiplying the components of the
gradient corresponding to the derivatives with respect to m and r (from (5.5))
by a matrix P where

[1001

P=}{010].
[0 0 OJ

Recall the notation from Section 4.6.2 whereby

llall] = y/at + a3

for a vector @ = [ay, as, a3]’ and

llalll = \/a? + a3 + a3 + a2
for a vector a = [ay, as, as, as, as, ag)’. We see therefore that
2
aPa = |||a|]]

if a is a vector of length 3. Applying this projection to our gradient vector
from (5.5) we have



CHAPTER 5. APPROXIMATING THE GEOMETRIC DISTANCE 76

_ dfc,w(z) afC W
18 fewi@)]| = | |( Yotz ezl
G0 i et 9

= /||[2mTC — W |||* + |||mTW |
This leads to an approximation to d3 of the form
|mICm; + mIWrh,|

Vl2mrc —mlwl||” + |mIw|?

On the basis of d5 we construct J5 which is an approximation to the sum of the
squares of the image based geometric residuals 73,

Z (mICm; + mf W)’

Js(C, W S) = .
(O W)= 2 oG — s W P+ [l W

(5.11)

5.2 Gradient weighted least squares

The ordinary least squares procedure outlined in Section 4.5 minimises the sum of
the squares of the algebraic residuals. We showed in Section 4.2.1 that minimising
the sum of squares of distances produces the maximum likelihood solution if
all data elements have the same variance and are uncorrelated. Unfortunately,
assuming equal variance in optical flow elements does not guarantee equal
variance in algebraic residuals. We now illustrate this point, in the process
providing an alternative derivation for J,(C, W;S8) and J5(C, W;S).
The Taylor expansion of few () about a point & on the manifold Fe, w is

few(®) = fo,w (@) + View®@)(x—2)+0((z—2)%). (5.12)

We know, by the definition of &, that fo w (&) = 0, so, if we assume that the
O((z — #)?) term is negligible, we expand (5.12) to get

If we represent the variance of the elements of an optical flow vector by o2, then
the variance o7 of the algebraic residual §,(C, W;x) = fe,w(x) is

o7 = E(fe,w(x) — fo,w(X))?

= Z <6§(Zw) E(x; — %;)”
) (Z <8fﬂ> ) ) (5.13)
i Oxi ”

= ||fe.w®)|| o2,
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where E(x) denotes the expected value of a random variable x. See Zhang [144]
for a similar method applied to the general stereo case.

The differential epipolar equation is quadratic in the elements of m so the
derivative of fo w (&) is dependent on the value of . Given equation (5.13),
this means that the variance of the residual §,(®;x) is dependent on the
value of . Residuals with variance dependent on the value of the associated
data point are called heteroscedastic. Thus fo w (&) is heteroscedastic. This
corresponds to the finding of Sampson [109] that the variance of the algebraic
residual of a conic section at a particular point is dependent on the location
of that point. The least squares solution is only optimal when residuals are
homoscedastic, that is, when the residuals exhibit constant and equal variance.
This is obviously not the case when the variance of the residual is a function of
the data. We see from equation (5.13) that the non-linear representation of the
data in the differential epipolar equation leads to heteroscedastic residuals. This
non-linearity is represented in the form of the data vector w in Section 4.5.

In Section 4.5.1 we showed that the algebraic residual §; could be seen as
measuring the perpendicular distance to the manifold defined by ® in the 9-
dimensional space of the elements of u. Despite this, the associated minimisation
method was termed an ordinary, rather than total, least squares method. We have
now shown that, in the space in which ¢; is an orthogonal distance measure, the
variance of the data representation, w, is heteroscedastic and thus violates the
assumptions on which the least squares methods are based. We must determine
whether or not a distance measure is geometric in nature in the frame of the
original data. It is in this sense that minimising J; is an ordinary least squares
method.

Given equation (5.13), we see that a first-order approximation to the required
correction can be achieved by dividing each residual by its gradient. Once again
the derivative of fo, w () at & is unknown so we construct an approximation to
the solution by dividing each residual by the gradient of fo w(x) at :

|fe,w(z))|
A fe,w(®)|]

This is the gradient weighted least squares method as applied to the stereo case
by Weng [140]; it corresponds to the residual d, in (5.7) and therefore to the cost
function J,(C, W;S) in (5.8). Given that the variances of the third elements of
the vectors m and 7 are 0, we apply the projection from (5.9) arriving at Js
from (5.10), and J5(C, W; S) from (5.11)

5= (5.14)

5.3 Geometric interpretation

Figure 5.1 gives a geometric interpretation of the approximation to the geometric
distance presented in Sections 5.1 and 5.2. For the purposes of visualisation, we
have mapped the higher dimensional space of flow tuples into three dimensions.
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Recall that we are trying to find a formulation for the distance between the
point & and the manifold ¢ w defined by the matrices C and W. Our true
flow tuple & lies on the unknown manifold Fo w as does our desired closest
point . The observed optical flow tuple x has a residual with respect to C

X

Jewl2) = feml(X)

& gc,w
Few

Jew(2) =0

=1
|

Figure 5.1: Gradient weighted least squares

and W of fo w(x) = k, and lies on the manifold Fo w of all points with
that residual. In equation (5.1) we construct a linearisation of fo w(x) about «,
which corresponds to finding the equation of the plane tangent to the manifold
Fc,w i at this point. We label the linearised fc w as gc,w. As we have noted,
trying to calculate the distance to the manifold Fe w for which fe w(z) = 0
is too difficult, but we can find, as an approximation, the distance to the planar
manifold Go,w for which go,w(z) = 0. The approximation in equation (5.6)
that ||V fe,w(x)|| = ||V fe,w(&)|| is equivalent to assuming that the normal to
the plane G¢ w is also normal to the manifold F¢ w at &.

5.4 Testing the approximated geometric
distance

Figures 5.2 and 5.3 were generated in the same manner as those in Section 4.8.1 in
that they show the results of perturbing 1000 points by a known distance k£ from
the manifold F¢ w. This perturbation occurred only within the image plane.
The distance 65(C, W;x) was then compared to the known distance k. The
graphs show that the average error in the estimate increases with the distance
from the manifold, but that even at 100 pixels from the manifold the distance
estimate is accurate to 3 significant figures. Similar results have been measured
for 6,(C,W;z). Comparing the accuracy of the distance approximation as
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represented in Figures 5.2 and 5.3 with that of the polynomial method represented
in Figures 4.5 and 4.6 leads to a surprising result: the approximation is in fact
more accurate that the polynomial method for small perturbations. This seems
to be an artifact of the numerical process used to determine the roots of the
polynomial described in Section 4.8.1.

10" ~

107 -

107 -

Mean error in estimate (pixels)

-10

12

100 —

10° 10 10
True distance (pixels)

Figure 5.2: Accuracy of the approximation to the geometric distance measure

5.5 Numerical minimisation

We have demonstrated the accuracy of d, and 5, the algebraic approximations
to the geometric distances d and 3, in Section 5.4. The relative performance
of these measures is discussed in Section 5.7 after the derivation of a means of
comparison is developed. The result of this comparison is that the distance d5 is
more appropriate than d,. For this reason we henceforth concentrate on this image
based residual, but the results are equally applicable to either distance measure.
The comparison of distance measures must wait until Section 5.7 because, at
present, we have no practical means of using them to generate an estimate, and
no independent means of comparing the results such a procedure would produce.

The distance measure J5 can now be substituted into the algorithm for
estimating the motion matrices developed in Section 4.7.3. This algorithm
performs numerical minimisation of a cost function over the range of ©, so it
calculates an estimate ® such that
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Figure 5.3: Variance of the approximation to the geometric distance measure

~

e = argm(gn J(©;S).

The numerical minimisation of J5(®; S) was so slow as to be impractical because
calculation of J3(@;S8) requires repeated use of a numerical polynomial solver.
Calculating J5(©;S), in contrast, requires only a simple algebraic operation.
Figure 5.4 shows the results of numerical minimisation of J5(©;S), the
sum of the squares of this approximated distance measure. The tests were
carried out using the procedure outlined in Appendix A.3, and the error measure
used is J3(0;S8) as suggested by the reading of Section 4.8 in conjunction
with Section 5.7. Numerical minimisation of J5(®;S) was carried out using
the multidimensional direction set method of Powell [106, Chapter10] with the
stopping condition being that the residual does not decrease by more than 108
in any direction. The sum of the squares of the distances to the manifold
corresponding to each estimate was then calculated by the method described
in Section 4.7.2 as a measure of the accuracy of the estimation process. It is
the average of this measure over 50 tests at each noise level that is represented
on the y-axis. The ordinary least squares solution from Section 4.5 is presented
for comparison. The variance of the added noise is represented along the z-axis,
but the absolute magnitude should not be considered indicative. It is one of the
consequences of using general, rather than camera-based, motion matrices that no
comparison can be made to real cameras and therefore real pixels. Tests involving
motion matrices representing more realistic cameras are presented below.
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Figure 5.4: Minimising the approximated distance

Figure 5.4 shows the advantages of minimising the geometric distance, but
only in terms of geometric distances. It is to be expected that a total least squares
approach would result in a lower geometric distance measure. To some extent
Figure 5.4, therefore, depicts a self-fulfilling prophecy by virtue of the choice of
the measure of the accuracy of the estimates. Figure 5.5 depicts the results of the
same tests, but the comparison is made using an alternative accuracy measure,
namely, the inner product measure described in Section 5.6. This measure is
used to determine the difference between the estimated and the true values of
the motion matrices, whereas the measure based on geometric distances refers
only to the data and the solution determined. Figure 5.5 shows that minimising
the sum of the squares of the geometric distances produces an estimate of the
motion matrices which is closer (in terms of the inner product measure) to the
true matrices than the ordinary least squares estimate. From Figures 5.4 and 5.5
we conclude not only that J5(C, W;S8) is a good estimate of J3(C, W'; S), but
also that the total least squares approach holds some promise.

5.6 Comparing estimates with the inner
product

In Section 4.7.2 we proposed the sum of the squares of the geometric distances
as a means of comparing the accuracy of different methods of estimating the
motion matrices. This is based on the fact that the sum of the squares of the
geometric distances is minimised for the maximum likelihood solution, which is
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Figure 5.5: Total least squares and the inner product

a definite advantage. Our ultimate goal, however, must always be to recover the
estimate of the motion matrices which is closest to the true value. The fact that
the geometric distance measure bears no reference to the true solution is both
its triumph and its downfall. It can be applied with no knowledge of the true
solution, which is essential for tests on real imagery where no ground truth is
available. In the case of synthetic testing, however, the true solution is readily
available. Provided below is a method of comparing estimated motion matrices
with their known true values.

The motion matrices are only defined up to a scale factor, thus when
comparing {C, W} pairs it is only the ratio C : W which is useful. There
are many possible methods of comparing two entities defined only up to a scale
factor, some of which are based around the inner product. If we represent each
C : W as the vector from the origin to a point on the unit sphere, the inner
product of the two vectors represents the cosine of the angle between them. The
scale indeterminacy means that we are only interested in the absolute value of the
cosine, but even the absolute value of the cosine bears a non-linear relationship
to the angle between the two vectors. It is for this reason that we select the arc
cosine of the absolute value of the inner product of the two normalised vectors
as our error measure.

5.6.1 The scale of the inner product

In order for an error measure to be useful we need a sense of scale; that is, some
way of knowing whether a particular value represents a good or a bad result. One
useful indicator is the average value of the measure when applied to a randomly
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selected series of estimates. By calculating this average we generate the value
we would expect of the error measure if our estimation process were based on
random selection. Naturally, if an estimation method achieves results worse than
this value, it is of little use. We now determine the value we would expect to get
by applying this inner product error measure to a random guess at the motion
matrices.

The expected value of a random variable may be calculated by integrating
over the product of the value of the variable and its probability, for all values of
the variable. The expected value E(¢) of a random variable ¢ is thus

0= [ ¢p(0) ds

In order to carry out this calculation we need to know the range of ¢ and the
probability of each particular value occurring.

If we repeatedly produce pairs of 2-dimensional random vectors on the unit
circle, we expect that the smallest angle between them will vary between 0 and
7. If we define these vectors to be invariant of scale, and therefore sign, then the
range of values becomes [0, 7/2]. The smallest angle between two scale invariant
vectors as described is thus a random variable occurring in the range [0,7/2].
The average value of such a random variable over a large number of trials is its
expected value. Intuitively, the expected value of the smallest angle between two
scale invariant vectors is 7 /4.

Representing the smallest angle between the 2-dimensional vectors specified
above as ¢, we now calculate its expected value. We have defined ¢ to lie in
the range [0, 7/2] so we need now only calculate the relative probabilities of each
angle occurring. The probabilities p(¢) must sum to 1 by definition, so

us

/jp(@ dp =1

We know that all angles in the range are equally likely to occur so the probability
of any particular ¢ occurring is 2/7. The expected value of a randomly generated
angle ¢ in this range would thus be

B6) = [0 a0

Z.

Recall that our inner product error measure is based on the angle between two
vectors and so may equally be applied to 2-dimensional vectors. We have shown
that the expected value of this error measure when applied to 2 randomly selected

2-dimensional vectors is 7/4. We now extend this result to the 9-dimensional
space of the motion matrices.
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Specifying the relative position of two vectors in a 9-dimensional sphere
requires 8 angles. If we label these angles as ¢; for 7 = 1...8, and the smallest
angle between the vectors as v, then

Y(p1 ... ¢g) = arccos(cos ¢y ... cos ¢g).

We may determine the expected value of (¢ ... ¢g) by calculating

$1=% $e=%
B@w) = [ s /¢FO (61 08) p(n) ... p(ds) dor ... doy
¢1—§ ¢8—§

~ =2 8
:/451:0 .“~/¢s=0 arc cos(cos @1 . ... cos o) (%) doy ... deds.

This integral is complicated to solve algebraically but using numerical integration
techniques we find that E(¢) = 1.54362. This result has been confirmed by
repeatedly generating random vectors and measuring the smallest angle between
them.

The conclusion drawn from the above is that, when evaluating the merit of
a particular estimate of the motion matrices, an inner product error measure
greater than 1.54362 is unacceptable. An inner product error measure less than
this number does not mean that we have an accurate estimate, but accuracy does
increase with decreasing error values.

5.7 Comparing distance-based residuals

In Sections 4.6.1 and 4.6.2 we developed the distance measures 0,(®;x)
and J3(0; x) leading to the cost functions J5(©,S) and J3(0,S). We could
not estimate the motion matrices from these cost functions because a numerical
polynomial solver was required to calculate every §(®; ;). In Sections 5.1 and 5.2
we derived approximations to these distance measures 0,(@, ) and 05(0®, x)
which do not require the use of a numerical polynomial solver. On the basis
of these approximated distances we generated new cost functions J4(©,S) and
J5(©,8) finally allowing us, in Section 5.5, to derive a method of estimating
the motion matrices. Until our derivation of the inner product error measure in
Section 5.6 we had no method for measuring the performance of such estimation
methods other than the cost functions themselves. The problem with using the
cost functions as an error measure is that it provides no means of comparing
between cost functions. The inner product error measure now makes this
comparison possible.

Figure 5.5 shows that numerical minimisation of J5(©, S) provides estimates
of the motion matrices with a smaller inner product error measure than the
ordinary least squares estimate. Importantly this figure also shows that the error
measure tends towards 0 as the noise in the data diminishes. Figure 5.6 shows
the results of tests carried out using the same methods but over a smaller range
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of noise magnitudes and for both J5(®,S) and J4(©,S). It can be seen from
Figure 5.6 that numerical minimisation of the image based cost function J5(©, S)
generally produces better results than does numerical minimisation of the full
geometric cost function J3(©,S). The smaller range of noise magnitudes in
Figure 5.6 as compared to Figure 5.5 is due to the fact that the results of the
three minimisation processes converge as noise diminishes. Every test produces
slightly different output but, in general, it is the results in the range depicted
that most distinguish the methods.

On the basis of the above, and the fact that d3(©; ) more closely corresponds
to the process under which the noise in the data is generated, we henceforth
use J5(©,8) as our preferred cost function. The results to follow, however,
generally apply to both cost functions. We have shown that the process of
numerical minimisation of our selected cost function produces estimates of the
motion matrices which are closer to the true value than the ordinary least squares
estimates. What has not been shown is that the ordinary least squares method
is significantly faster than the numerical minimisation process. In fact the
results depicted in Figure 5.6 required 3 days of processing to generate on an
AlphaStation 5/266. Creating the same data and calculating only the ordinary
least squares estimate requires less than 30 seconds. In Section 5.9.1 we develop
a more efficient method of minimising J5(©, S).

5.8 Rectifying motion matrices

Having developed the inner product as a method of measuring the distance
between sets of motion matrices we are able to measure the effects of the
rectification procedure given in Section 2.4.1. The method modifies motion
matrices so that they satisfy w?”Cw = 0, but does not guarantee to select the
matrices satisfying the constraint that are closest to the originals. The effect
of rectification on motion matrices was analysed by performing a series of trials
using the same methodology as that described in Appendix A.3. Figures 5.7
and 5.8 show the effect of rectification as reported by the geometric distance
based measure (from Section 4.8) and the inner product measure respectively.
Figure 5.7 shows the results of ordinary least squares estimation of C' and W
over many tests at a range of noise levels. In each test the ordinary least squares
estimate was calculated on the basis of a new set of synthetically generated data,
and the value of the geometric accuracy measure recorded. This process was
repeated 50 times for each noise level. The average of these accuracy measures
is represented in Figure 5.7. This average was simultaneously calculated for
the rectified ordinary least squares estimate. As can be seen, the rectification
procedure causes an increase in this distance measure, although the magnitude
of the increase is small. Figure 5.8 shows the results of the same process, but as
measured by the inner product rather than the geometric error measure. This
graph thus depicts the average difference between the estimated and the true
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Figure 5.6: Distance based cost functions and the inner product
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Figure 5.8: Rectified ordinary least squares - inner product error measure

motion matrices over a number of trials. Despite the fact that Figures 5.7 and 5.8
appear on different scales (as necessitated by their ranges) it can be seen that
the rectification procedure has little effect on the inner product measure. The
implication of this result is that the rectification procedure is having neither
significant positive nor negative effects on the quality of estimates produced in
terms of the inner product measure.

5.9 Sampson’s method

We have shown in Section 5.4 that d5(®; ) is a good approximation to d3(®; x)
and therefore that J5(C,W;S) is a good approximation to J3(C,W;S).
The advantage of calculating the sum of the squares of the distances with
Js(C, W;S) is that it is an algebraic process, rather than one involving numerical
routines. Our overriding aim, however, is to speed the process of determining the
motion matrices for which this sum is minimal. Optimally we would be able
to determine a formulation for the geometric distance which allows not only
algebraic determination of the sum of squares of distances, but also algebraic
determination of the ratio C' : W corresponding to the minimal sum of squares
of distances. This would be feasible if it were possible to separate the model
from the data as in the ordinary least squares solution given in Section 4.5. This
may be possible of J5(C, W;S), but, unfortunately, the way ahead is far from
clear. Rather than follow this path we therefore seek to eliminate the use of
Powell’s method thus creating a minimisation scheme capable of delivering the
same results but using far less processing time.
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5.9.1 Iteratively re-weighted least squares estimator

The process of numerical minimisation of J5(C,W;S) is faster than that of
numerical minimisation of J3(C,W;S), because each distance calculation is
algebraic rather than involving numerical solution of a polynomial. Despite this
the minimisation remains a slow process. Rather than embark upon a brute force
minimisation technique such as that used in Section 5.5 we present the following
as a technique of incrementally updating our estimate of C and W.

Assuming that we already have estimates of the motion matrices {C, W'}, let

i=1

where
'm" Wi + m"Cm)|

VI2Cm + Wan||[* + || Wm] |

The denominator of the right hand side does not depend on (C, W), and so
minimisation of J5(C, W; 8) subject to the constraint ||C||?+||W||? = 1 falls into
the category of weighted least squares techniques. Using the Lagrange multiplier
technique, as in Section 4.5, we see that the least-square estimate based on
J5(C, W;S) can be identified with the eigenvector of U Hg,wU corresponding
to the smallest eigenvalue. Here, we define the weight matrix H¢ w as

55(0, W;m,ﬁz) =

0 ... hy (5.15)
. —1
hi = (|[2Cm; + Waini|||” + [|[Wm,]|*)

and the data matrix U is as in Section 4.5. We now propose the following
iteratively re-weighted least squares procedure that simultaneously seeks to
minimise J5(C, W;8) and to accommodate the cubic constraint that w? Cw =
0. The method proceeds by repeatedly calculating the motion matrices which
minimise J5(C, W;S) and substituting them back into the matrix H. The
cubic constraint is enforced by application of the rectification method outlined
in Section 2.4.1. The iteratively re-weighted least squares procedure is thus as
follows:

1. Set (Cy, W) to the rectified ordinary least squares solution for our data
S and set k = 0.

2. Compute the weight matrix H ¢, w, on the basis of Cy, W and S.

3. Compute the eigenvector of UT H c.,w,U corresponding to the smallest
eigenvalue.
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4. Using the eigenvector and the rectification procedure, calculate
(Cri1, W),

5. If (Cgy1, Wiy1) is sufficiently close to (Cy, W), then terminate the
procedure; otherwise increment k& and return to Step 2.

This method represents a slight modification of that applied to the problem of
fitting conic sections by Sampson [109]. The differences between this method
and Sampson’s are the domain, and the rectification at each step. The domain
of Sampson’s original method was a set of 2-dimensional points, to which a
conic section was to be fitted. The addition of rectification at every iteration
(in steps 1 and 4) guides the method towards motion matrices which satisfy the
cubic constraint. It is possible that this method will not converge, and that
(Cri1, Wiy1) will never be sufficiently close to (C, Wy). In order to prevent
this we limit the number of possible iterations, and, when that limit is reached, we
compare J5(Co, Wy, S) and J5(Cji1, Wiy1,S) returning the motion matrices
corresponding to the lower value.

5.9.2 Testing Sampson’s method

Figures 5.9 and 5.10 show the results of tests comparing two versions of Sampson’s
method to the numerical minimisation technique from Section 5.5 and the
ordinary least squares technique from Section 4.5. The repeated application
of the rectification procedure in the method outlined above ensures that any
solution will satisfy w?Cw = 0. In order to show the effects of rectification on
the minimisation procedure, we have included in the figures the results generated
with no rectification applied. We have used the label unconstrained weighted
least squares to distinguish this method from that utilising the rectification
procedure. The tests were performed using the methodology presented in
appendix A.3. The stopping condition for Powell’s numerical minimisation
method is that the residual does not decrease by more than a particular value over
an iteration. The stopping condition for Sampson’s method however relates to the
difference between the sum of the squares of the elements of the motion matrices
corresponding to two successive estimates. The performance of each scheme
will be affected by the value of the thresholds chosen, but testing suggests that
improvements gained by reducing the value below 107% and 1079, respectively,
are minimal.

The difference between Figure 5.9 and 5.10 is the error measure used. In
Figure 5.9 the comparison is made on the basis of the error measure presented in
Section 4.8; that is, how well it minimises the sum of the squares of the distances
of the data to the manifold. It can be seen that neither version of the iteratively
re-weighted estimation scheme reduces J3(C, W; S) as well as does the numerical
minimisation procedure for higher noise levels.

Figure 5.9 shows the performance of the three estimation schemes according
to the inner product error measure. This comparison shows that the results of
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Sampson’s method are closer to the original motion matrices than are those of
the numerical minimisation scheme. Thus, although the constrained version of
Sampson’s method does not appear to minimise J5(C,W;S)) (and therefore
J3(C,W;S8)) as well as the other methods, it produces better estimates of the
true motion matrices. It might be thought that this is due to the fact that the
estimates are guaranteed to satisfy the cubic constraint that w?Cw = 0. This
explanation is, however, contradicted by the fact that the unconstrained version
of Sampson’s method also out-performs the numerical minimisation scheme. The
advantage of Sampson’s method disappears as the noise level increases, which
suggests that Powell’s method may not be suitable for minimising such small
residuals. The advantage of the iteratively weighted scheme not shown by either
graph is that it requires significantly less execution time than does the numerical
minimisation technique.

5.9.3 The problem with Sampson’s method

It has been shown by Kanatani [67] and Zhang [144] amongst others that the
process of repeatedly fixing the denominator when minimising an expression of
the same form as J5(C, W;S) leads to statistical bias. Suppose we were to
repeatedly generate noisy data according to some fixed model and apply some
process to the data in order to recover an estimate of the model. We would
expect that, over a large number of trials, the average of the model estimates
would converge to the value of the true model. Statistical bias in an estimator
describes the situation in which the average of the estimates converges to some
other model. An estimation process exhibiting bias is obviously not statistically
optimal. The fact that Sampson’s method is biased implies that the estimate
generated does not necessarily lead to the C and W for which J5(C,W;S) is
minimal. This is to be expected as step 3 operates on J5(C, W; S) which has a
fixed denominator. The variation in the denominator of the cost function is of
influence only as steps 2 through 5 are repeated.

The results shown in Figures 5.9 and 5.10 are not affected by this bias because
they represent the average over a number of trials, each using a different model.
Statistical bias affects every estimate produced under a biased estimator but
the magnitude of the bias is dependent on the data present and thus the model
under which it is generated. If repeated tests use the same model this bias will be
evidenced in the deviation of the average estimate from the true value. If repeated
tests use different models then the magnitude will be different in each test, thus
canceling out any cumulative effect. The use of multiple models, however, enables
analysis of the performance of a method over a range of data models. The process
of testing using repeated trials with the same model is susceptible to delivering
model dependent results, as some methods exhibit different performance levels
on different model types. This is particularly true when the selected model is
close to being degenerate.
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5.10 A Newton-like method

We now seek an estimation process better able to find the minimum of Js.
Eventually we wish to differentiate J5(C, W;S8) so our first step is to express
l[12Cm + Wn|||” + |||[Wm/||* as a product of matrices. Towards this goal we
let

100000000

& =1010000000],
001000000
01 000000 0]

& =|(000100000]|,
(000010000
000 00O0O0GO0 0]

& =(0000000O0TO0TO0]|,
| 00000000 O]
00 00O0O0O0GO0 0]

T, =1000000T100],
000000010
[0 0 00O O —1 00

,=|10 00000 0 0 0] and
(000000 0 01
[0 0 000O0O0O0O

T,=(00000O0O0O0O
|00 00000O0O0DO

A fundamental property of these matrices is that, for each « € {1, 2, 3},
4’oz(") = [Cala Ca2; ca3]T and ‘I,a@ = [walawaZa waS]T-

and therefore that

3
m"CT"P'PCm = Z MpCaaPaaPlPaaCayTMy
a,f=1
3

= Z CRaPaaMpMyPoaCary
a,B,7=1

3
=) 0"%;"mm"®;0
5=1
where ¢;;, w;; and p;; represent the elements of the matrices C, W and P

respectively. The matrix P is as described in Section 5.1.1. By the same process
we see that
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3
m C"PWi =) 0"®, " mm"¥;0,
=1

3
m W PWm =) "%, mm’¥,;0,
6=1
3
m W' PWm =) 0"¥%' mm"¥;0.
6=1
Combining these four identities with the fact that
[[12Cm + Wrn|||* + |||[Wm]||* = 4mTCTPCm + 4m"CT" PWrhn
+ T WIPWin+m" W PWm,

we see that
12Cm + Wm|||* + |||[Wm]||” = @TN,0, (5.16)

where

3 3
Ni=4Y & "mml®;+4Y & manl ¥;

=1 =1
3 3

- E \I’(;T’I’hi’rh?‘l’g— E \Il(;TmimiT\IJ(;.
=1 =1

For each data point {m;, mh;} we define the matrix M; such that
Mi = ’U,Z"U,Z'T

where wu; is as defined in Section 4.5.
Now, in view of equation (5.16),

©"'M,;0
05(©; my, ™ P
s(@ms )" =GN 6
implying that
. 0"M,©
CHE . 5.17
Hence, immediately,
[VoJ5(0;S)]F =2Xe0, (5.18)
where .
" M, ", 0'M,0
Xe = o ————N;. 5.19
© ;@TNZG ; (0" N,0)? (5:19)

Again the minimiser © satisfies
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[Vos(8;8)]" =216

for some Lagrange multiplier A and our selected normalising condition
~ 112
8] =1 (520

Combining this with (5.18), we conclude that © is an eigenvector of X g with A
as the associated eigenvalue, so

~T ~T

© X;06=20 6=\

On the other hand, recourse to (5.19) reveals that @TX@@ = 0. Therefore A = 0
and, consequently, R
X506 =0. (5.21)

We see by comparing equations (5.21) and (5.18) that in fact the normalising
condition of equation (5.20) has no effect on the result. The solution to the
constrained minimisation problem is the same as that for the unconstrained
problem. This is explained by the fact that J5(®;S) is immune to scale changes
in © as evidenced by its form in (5.17).

Equation (5.21) is a non-linear constraint on © which one might hope to
resolve by employing a method of successive approximations of some kind. The
following scheme is based on Newton’s method:

1. Compute O using least-square fitting based on J5(©;S).
2. Assuming that ©;_; is known, compute the matrix Xg,_,.

3. Compute a normalised eigenvector of X g, , corresponding to the smallest
eigenvalue and take this eigenvector for ®y.

4. If Oy is sufficiently close to ®,_1, then terminate the procedure; otherwise
increment £ and return to Step 2.

Observe that, on account of (5.15) and (5.19),
Xo=UgHoUp — Ee,

where

. o'M;®
Eo = Z:ZI mm.

Therefore X g can be viewed as a modification of UgH oUe. Accordingly, the
estimator embodied by the above algorithm can be viewed as a modification of
the iteratively re-weighted least squares estimator from Section 5.9.1.
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Unfortunately, when general motion matrices are used rather than those based
on a realistic camera model, this algorithm sometimes fails to converge. One of
the methods we have used to remedy this is simply to retain the best estimate
produced (in terms of J5(©;S)) rather than the final one in cases where it fails
to converge. It is this algorithm which was used to generate the data depicted in
Figures 5.11 and 5.12. The results of this modified algorithm when camera-based
motion matrices are used are given in Section 5.11. More refined schemes for
solving (5.21) may readily be developed. One possibility is a fixed point method
obtained by linearising the left-hand side of (5.21) to incorporate the matrix-
valued derivative of the mapping ® — Xge@. This work has yet to be carried
out.

While in some aspects this Newton-like method resembles Kanatani’s tech-
nique of renormalisation [68], it differs in that it is formulated in a purely
deterministic, probability-free fashion, and that it utilises standard, rather than
generalised, eigenvalue analysis. This Newton-like method is also more simply
derived and implemented. For a more detailed comparison of Kanatani’s method
and this Newton-like method see Ref. [33].
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Figure 5.11: Newton-like method - distance-based error measure

Figures 5.11 and 5.12 show the results of applying the ordinary least squares
procedure, the weighted least squares procedure and the Newton-like method to
the same data. Figure 5.11 uses the J3(©;S) based error measure and Figure 5.12
the inner product based error measure. The tests were carried out using the
methodology described in Appendix A.3.
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Figure 5.11 shows that the Newton-like method minimises J5(©;S) more
effectively than the ordinary least squares procedure but, due to the fact that it
often fails to converge, it does not perform as well as the weighted least squares
method. Figure 5.12 shows similarly that, in terms of the inner product based
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Figure 5.12: Newton-like method - inner product error measure

error measure, the Newton-like method performs better than the ordinary least
squares procedure, although not as well as the weighted least squares method.
Numerical solution of (5.21) has been tested and converges more quickly than
does numerical minimisation of J5(©;S). This increase in speed of convergence
was not significant enough to render this numerical method faster than the
weighted least squares iterative scheme.

It is possible to extend this Newton-like method by applying the procedure
for the rectification of motion matrices at every step. This is equivalent to the
extension to Sampson’s method given in Section 5.9.1. The detrimental effects of
this constraint on the Newton-like method at low noise levels were greater than
those on Sampson’s method. This result is depicted in Figure 5.13.

5.11 The applicability of total least squares

The figures above have shown the advantages of using geometric distance
measures when calculating motion matrix estimates. These tests have, however,
been carried out using data generated under a slightly unrealistic model. The
figures represent tests carried out using general motion matrices generated
according to the process described in Section A.1.1. There can be no guarantee
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Figure 5.13: Rectification and the Newton-like method

that motion matrices generated in this manner will bear any relationship to any
realistic camera. The only test applied after generating such motion matrices
is that the associated focal length is real rather than imaginary. The reasons
for using general, rather than camera-specific, motion matrices were to ensure
that the selection of a particular camera model did not affect the results, and
because the results for the general matrices enable better discrimination between
estimation methods. Figures 5.14 and 5.15 represent the results of testing the
methods outlined above using motion matrices based on the Pulnix 9701 with
zoom lens as described in Appendix A.1.2.  Figures 5.16 and 5.17 similarly
represent the results of the same tests using motion matrices based on a Pulnix
TM-6CN with a lens of focal length 8mm. The differences between the two camera
models are the CCD sizes, which are 752 x 582 for the TM-6CN and 1024 x 1024
for the 9701, and the focal length of the lens, namely 8mm for the TM-6CN and
between 8.5 and 51 for the 9701. The CCD size of the 9701 is larger than usual
for that model due to a factory installed modification.

The figures in previous sections have shown that significant gains in the
accuracy of the estimates of general motion matrices can be achieved using the
methods provided. Unfortunately, Figures 5.14, 5.15, 5.16 and 5.17 show that this
is not the case when more realistic motion matrices are used. In this situation,
gains provided by these procedures are barely enough to justify the increase in
complexity and execution time. Figures 5.15 and 5.17 also show that the Newton-
like method sometime diverges from its course, thus producing quite erroneous
estimates.
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5.11.1 How flat is the manifold?

We have seen in Section 5.11 that the results for methods based on geometric
distances are practically identical to those for the ordinary least squares method
when motion matrices based on real camera models are used. We now show
that this is due to the fact that, for realistic camera models, the manifold of all
consistent optical flow is relatively flat.

We have shown in Section 5.1 that the geometric distance to a manifold can
be approximated by the algebraic distance divided by the norm of the gradient of
the manifold at the closest point. Specifically the approximation to the distance
of a point & to the manifold is given by

55(C, W) = —Jew (@) (5.22)

~ l[afe,w (@)

where & is the closest point on the manifold. The role of the denominator in
this expression is to compensate for the differences between the algebraic and
geometric distances due to the curvature of the manifold. In fact, for tests
using realistic motion matrices, this denominator does not vary significantly
enough between optical flow vectors to affect the outcome of the minimisation
process. Table 5.1 presents the norms of the gradient vectors (the denominator
of J5(©;8)) for five optical flow fields. Each field contains 20 optical flow
vectors randomly generated from camera-based motion matrices according to the
procedure set out in Appendix A. The table shows that, within the same test,
the norms are identical to 1 or 2 significant figures. That is, for a particular pair
of motion matrices, the curvature of the manifold does not change significantly
over the range of the data. Table 5.2 presents the same results for general motion
matrices, as a result of which it shows a far greater range of values for each pair
of motion matrices.

The advantage of the total least squares method over the ordinary least
squares method is that it is unaffected by Euclidean transformations of the data.
This is due to its reliance on the geometric, rather than the algebraic distance
to the manifold. We see from Table 5.1 and the nature of the approximation
in equation (5.22) that the geometric distance is just a multiple of the algebraic
distance, the multiplication factor being determined by the parameters of the
camera used to generate the data. The motion matrices that minimise the sum
of the squares of the residuals will thus be the same for ordinary and total least
squares methods when data is generated according to a realistic camera model.
The variation in the norm of the gradient seen in the columns of Table 5.2 explains
why the total least squares approach proves superior for data generated according
to general motion matrices.
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Trial

1

2

3

4

5

0.0136538
0.0135596
0.0135738
0.0135843
0.0135609
0.0135990
0.0135919
0.0135859
0.0136230
0.0135424
0.0135618
0.0136047
0.0135737
0.0135451
0.0136475
0.0136100
0.0135651
0.0135811
0.0135448
0.0135179

0.00480119
0.00480689
0.00477333
0.00479188
0.00480352
0.00480188
0.00480881
0.00479356
0.00479612
0.00482369
0.00482368
0.00481028
0.00478577
0.00480763
0.00483650
0.00478920
0.00480153
0.00480822
0.00477644
0.00478305

0.00144263
0.00144121
0.00144201
0.00144203
0.00144347
0.00144283
0.00144215
0.00144327
0.00144339
0.00144215
0.00144218
0.00144161
0.00144213
0.00144173
0.00144164
0.00144249
0.00144280
0.00144330
0.00144363
0.00144295

0.00322330
0.00323210
0.00319464
0.00321045
0.00323202
0.00320743
0.00324183
0.00319444
0.00321914
0.00320256
0.00323732
0.00319905
0.00320626
0.00322777
0.00321713
0.00318398
0.00322075
0.00320687
0.00318938
0.00318569

0.00895554
0.00978067
0.00846607
0.00998705
0.00854463
0.00939436
0.00981198
0.00938259
0.00993624
0.00833310
0.00981202
0.00900025
0.00943115
0.00926702
0.00974576
0.00974753
0.00896593
0.00962225
0.00922709
0.00868575
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Table 5.1: Comparing derivatives - camera-based motion matrices

5.12 Conclusion

We have shown a method for constructing an approximation to the geometric
distance based on linearising the manifold and that the approximation is accurate.
We have also shown that the approach is worthwhile when the curvature of the
manifold varies significantly over the data space. Unfortunately, in the case of
the problem at hand, the gains made in using geometric distance measures are
not significant enough to justify the extra computational effort required.

One situation in which distance measures of this form may provide more
significant advantages is where the variances or covariances of the individual
data elements are known. In equation (5.13) we assumed that the variance of the
data elements was identical. If the variances are not identical, and we have some
information about the nature of the variances, then we can incorporate this into
equation (5.13). Some work in this direction has been carried out in Ref. [33],
and shows promising results.



CHAPTER 5. APPROXIMATING THE GEOMETRIC DISTANCE

Trial

1

2

3

4

3

0.0104021
0.0736075
0.0744701
0.1275970
0.1478640
0.0345513
0.0231267
0.0117736
0.0090052
0.0294153
0.1334450
0.0566409
0.0931793
0.0250815
0.0291315
0.0175879
0.0352154
0.3220600
0.0243351
0.0303701

0.0039190
0.0459063
0.0754716
0.0181690
0.0677369
0.0359932
0.0216485
0.0074273
0.0006961
0.0272826
0.0266337
0.0302338
0.0376214
0.0225418
0.0219863
0.0082110
0.0322963
0.2641270
0.0225654
0.0270414

0.0131172
0.0207778
0.0950387
0.0287859
0.0658131
0.1279310
0.0194550
0.0274975
0.0354355
0.0654270
0.0095053
0.0146664
0.0132076
2.9871200
0.1441900
0.0626285
0.0463474
0.0721973
0.0360002
0.0200172

0.0126732
0.0214896
0.0669086
0.0196260
0.0394017
0.0754019
0.0382806
0.0276933
0.0550518
0.0513257
0.0231625
0.0147253
0.0195027
2.9718000
0.0794377
0.0355358
0.0258569
0.0474931
0.0270858
0.0142241

0.0064201
0.0648416
0.0276325
0.2252070
0.0057206
0.0046749
0.0098342
0.0295883
278.70300
0.0123012
0.0154115
0.0050022
0.0410249
0.0064256
0.0533637
0.0266798
0.0084419
0.0453012
0.0151616
0.0042912

Table 5.2: Comparing derivatives - general motion matrices
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Chapter 6

Filtering optical flow fields

We now consider two methods for altering optical flow fields on the basis of the
degree to which their elements satisfy the differential epipolar equation.

6.1 Projecting optical flow onto a manifold

Regardless of the means used to estimate the motion matrices, or the curvature
of the corresponding manifold, we will eventually arrive at a {C, W} pair
representing the key parameters of a moving camera. As has been shown in
Section 4.3, the estimation process can be seen as determining the consistent
optical flow field closest to the original data. Consistency refers to the property of
an optical flow field whereby there exist motion matrices such that the differential
epipolar equation is satisfied for all optical flow vectors therein. Having estimated
the motion matrices on the basis of this closest consistent field of optical flow
vectors, we are naturally led to the idea of reconstructing on the same basis.
This method assumes that the consistent optical flow vectors should be a better
representation of the true data than is provided by our observed data. There
are many possible projections onto the manifold. We seek the projection that
requires the smallest change in the data.

6.1.1 The closest point on a manifold

We require a method of projecting an optical flow vector  onto a manifold defined
by C and W. The projection that maps x to its closest point on F¢ w is achieved
by linearising the manifold in much the same way as in Section 5.1. That section,
however, proceeded with the aim of removing @ from the calculation in order to
facilitate estimation of the motion matrices. Now that such an estimate has been
calculated, we seek @ for other purposes.

In Section 5.1 we derived equation (5.4)

\fe,w(x)

o |
= =2l = A fe w @)
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for the (approximate) Euclidean distance between a point & and the closest point
on the manifold &. If we let v = sign (fe,w(x)) then

~ fc W(w)
e —&f| = vy——F— - (6.1)
1Afe,w(@)]|
We know that ~
T—x
T—z=|lz—z|| —r, 6.2
o~ 2l ey (62)
and that Af (&) ~
cwl(@ T—T
= — (6.3)
1Afe,w (@) lz— 2]

and so, substituting (6.2) into (6.3), we get

r— 5= H:E—i”’)/AfC’—VV(CE:).
|Afe,w(@)l|
Using this and (6.1), we see that
z— &=~ |fe,w ()] y Afc w(®)
Afe,w (@) " |[Afe,w(@)]]
_ fC,W(iB) A -
Biow@IF o™
and therefore that
- few(=) A s
P ow@E e @

As in Section 5.1, we do not know Afe w(Z) but if & is sufficiently close to &
then we can assume that Afe w(x) ~ Afe,w(&). We can therefore generate an

estimate Z of Z:
fo,w(z)

RN

So for a particular C and W we now have a means of generating Z, an
approximation to the closest point on the manifold F¢ w to our original data
x. The fact that we have used a linear approximation of the function fo w(x)
in equation (5.2) means that & is close to, but not necessarily on, the manifold
Fc,w- We therefore define an iterative scheme whereby x, = x,

T=x

||2AfC,W(a:). (6.4)

fe,w(xy)
A fe,w ()|

Tpy1 = Tp — s Afe,w(xy), (6.5)

and hmk_,oo LT = EB\
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The vector Afe w(xy) has six elements. Only four of these elements
correspond to directions in the image plane. If we use only these directions
the iteration above becomes

fe,w (k)
Ty = Tp — : sAfo,w(xy). (6.6)
1A fe,w (@)l
This corresponds to the projection applied in calculating the final estimate of the
residual in Section 5.1.

6.1.2 The effect of the projection

In order to test the effects of projecting optical flow onto a manifold we randomly
selected camera based motion matrices C and W as described in Appendix A.1.2.
We then generated n = 20 optical flow vectors

S:{iz : fC’W(iZ):O,Zzln}

to represent the true underlying data. Random noise of standard deviation 1
pixel was then added to the first two elements of the vectors m,; and m; (where
I; = {m,,ﬁlz}) to create the set S = {x; : i =1...n}. The projection onto the
manifold F¢g y, was then performed for each @; to create the vector Z;.

In order to determine the effect of the projection, we need to provide a measure
of the difference between the true optical flow vectors and the estimates. The
difference between an original “true” optical flow vector &; and the estimate Z;
can be calculated by the square root of the sum of the squares of the differences
between their elements. The average of these differences across the field is then

simply
IS e -
~> @ -zl (6.7)

Table 6.1 shows the results of this process, each row representing the values
of (6.7) for 1 of 10 tests.

No stopping condition is given in (6.6) so two candidates have been tested.
The first stopping condition used was merely that only one iteration was
performed. The justification for this is that the manifold has been shown to be
relatively flat in Section 5.11.1, and so the linearisation in equation (5.2) should
have little effect on its local shape. If this is true of the initial linearisation there
would be little to be gained by repeating the process because the projected optical
flow vector would already be very close to the manifold.

The second stopping condition is based on the magnitude of the effect of
projection on each optical flow vector. The magnitude of the change to x is

fe,w(zg) _ fow() R
H 12 fo.w@l? f"’W(‘”’“)‘ I fewlaoP | Hew el
‘fC,W(wk)‘

~ A fe,w (@]
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where the norm |||z||| of a vector z is as defined in Section 4.6.2. We stop the
iterative process when
[fo,w (k)
|Afe,w ()]

for some €. The fraction in (6.8) corresponds to the algebraic approximation to
the geometric distance to the manifold for the point ;. By experimentation we
have found that multiple iterations of this projection process provide improved
results, but that reducing the value of € below 1072 is of little benefit irrespective
of the data.

<€ (6.8)

original | 1step |e=10"3
0.460992 | 0.40273 | 0.391154
0.456702 | 0.420822 | 0.410976
0.484189 | 0.437897 | 0.440952
0.454711 | 0.420504 | 0.41422
0.448227 | 0.371859 | 0.353968
0.473782 | 0.4245 | 0.422104
0.415976 | 0.406389 | 0.411816
0.45242 | 0.375349 | 0.374864
0.429816 | 0.396757 | 0.379033
0.439965 | 0.368901 | 0.345763

Table 6.1: Average error in projected optical flow over 10 tests

The results in Table 6.1 are based on the projection back onto the manifold
corresponding to the original true motion matrices. Unfortunately, these matrices
are not generally available, so we must estimate the motion matrices before we
can do the projection.

Table 6.2 shows the results of projecting onto the manifold corresponding to
motion matrices estimated from the data. The weighted least squares procedure
was used to generate the estimated motion matrices. The reason for this is given
in the next Section. Results are shown only for the second stopping condition.
From Table 6.2 we see that projection onto a manifold corresponding to estimate
motion matrices is beneficial in most cases. The improvement in accuracy is
small, but worthwhile.

6.1.3 Recursive weighted least squares

Section 5.9.1 provides a method for estimating the motion matrices by linearising
fe,w(x). Section 6.1.1 provides a method of updating optical flow on the basis
of this estimate. An obvious step would be to combine the two into a recursive
procedure for estimating the motion matrices and true optical flow in tandem.

In fact, a fully recursive procedure requires a more complex approach, but
gains can be achieved by the following three step method:
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original | e =103
0.405179 | 0.393833
0.426152 | 0.418075
0.422579 | 0.40462
0.37691 | 0.403343
0.43827 | 0.400847

0.4502 | 0.445082
0.435966 | 0.418036
0.417274 | 0.398374
0.436871 | 0.41717

0.457 | 0.447132

Table 6.2: Projecting using estimated motion matrices

1. Construct an estimate {C, W} of the motion matrices using the weighted
least squares procedure.

2. Project the measured optical flow onto the manifold defined by C and W'.

3. Repeat the weighted least squares estimation process on the basis of this
new, projected, optical flow to generate a final {C, W }.

It could be argued that, since the projection in step 2 takes the optical flow to
the manifold defined in step 1, the estimate provided by step 3 would be the
same as that from step 1. This is not the case because the projection in step 2
uses a linearisation of the manifold F¢ w rather than the manifold itself. The
result of this linearisation is that the position of the optical flow vector after the
projection is somewhere between its original position and the manifold. That
is, the projection is not perfect. If the linearised version of the manifold differs
significantly from the underlying manifold, the projection will be far from the
surface of this underlying manifold. There are two cases in which the linearised
version of the manifold will differ markedly from the original: firstly, if the
underlying manifold has high curvature in the area of the linearisation point;
and secondly, if the gradient of the differential epipolar equation at the data
point is significantly different to the normal of the manifold at the closest point
(see assumption leading to equation (6.4)). In either case the reapplication of the
estimation procedure will provide a better estimate.

We have used weighted least squares estimation here rather than ordinary
least squares because it uses the same technique involving the linearisation of the
manifold in calculating estimates of motion matrices. An auxiliary advantage is
that it is easily extended to the case of more than two applications as detailed
below. Figure 6.1 depicts the results of tests carried out using the recursive
weighted least squares procedure as measured by the inner product error measure
from Section 5.6. The testing procedure is as described in Appendix A.3.
Figure 6.1 shows that the recursive procedure produces better estimates than
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Figure 6.1: Recursive weighted least squares

the weighted least squares procedure would by itself, but that the improvement
is marginal.

6.1.4 A fully recursive method

Having benefited from updating optical flow once, we now investigate the
possibility of repeating the process. We have described above a three-step process
involving estimation of the motion matrices C and W, and projecting optical
flow onto the manifold Fo w. If we wish to extend this type of procedure to
more steps, we have a problem updating the optical flow a second time.

When we project an optical flow vector onto the manifold F¢ w, we seek the
point on that manifold closest to our original data, not the point closest to the
last projection of the data. For the first data projection (step 2 above) the data
point and the last projected point are the same. For further projections the data
point remains the same but the projected point is updated every time.

In terms of the algebra, the linearisation in (5.2) is about the point Z,
but the substitution of Afe w(x) for Afe, w(Z) in (6.4) is no longer the best
possible. Figure 6.2 highlights this difference, showing that the linearisation point
2« and the data point @ are not necessarily the same points. At every iteration
we improve the estimation of the manifold, but still require the point on that
manifold closest to our original datum.

It is possible to provide a new optical flow projection routine based on
minimising the distance to the data rather than to the last projection. This
work is being carried out, but preliminary results show that the improvement
in results does not justify the increase in complexity unless information about
the covariance of the data is included. Kanatani [68] has shown that a similar
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1<

gewl(z) = fC.w@) \

gew(2) =0

Figure 6.2: A fully recursive scheme

method applied to a similar problem produced an improved estimate in the case
where the covariances of the data were available.

6.2 Least median of squares filtering

In this section we present a median filtering scheme for removal of outliers in the
data and some results from real image sequences.

Typically, a real data set comprises two subsets: a large, dominant subset of
valid data or inliers, and a relatively small subset of outliers or contaminants.
Least squares minimisation is global in nature and hence vulnerable to distortion
by outliers. To obtain robust estimates, outliers have to be detected and
rejected. To identify the outliers, we use the method of least median of squares
(LMedS) [108]. Once an LMedS fit is generated, the outliers can then be identified
(if necessary) as those data which are inconsistent with the fit. The remaining
inliers can then be processed with the use of a least squares technique, which
results in a final, relatively robust, estimate [49].

The LMedS process requires repeated sampling of the data set, the calculation
of a statistic from each sample, and a selection mechanism to determine the most
appropriate estimate. The robustness of this method stems from the fact that at
any one time only a subset of the data set is considered, and the fact that there
is a high probability that one such set will contain only inliers.

In order to maximise the probability of selecting a set containing only inliers,
we need to keep the set size as small as possible. The smallest set from which
it is possible to calculate C : W contains seven elements. Ideally, the estimator
should consider the set of all seven-element samples. In practice, to make the
search computationally feasible, the sample space is reduced to a family of m
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randomly chosen samples. The number m is determined as follows. If we label
the set of observed optical flow data &, we assume that the proportion of outliers
in § does not exceed ¢, where 0 < ¢ < 1. Then the probability P that a family
of m samples contains at least one element that is outlier-free is approximatively
given by

P=1-(1-(1-¢"H™

Consequently,

B log(1 — P)
- [log(l —1=en]
where [z] denotes the integral part of x [108].

If we set € = 0.2 and P = 0.95 then, using our seven-point method from
Section 4.1.2, we require 12 samples, whereas if we use our eight point method
16 samples would be required. These values must be set to represent the data
available; overestimating is always safer, but implies more samples and therefore
more processing time.

Once m is fixed by selecting € and P, the LMedS estimate of C : W is
obtained in the following steps:

1. Select a family Sy consisting of m subsets of S, each subset containing seven
elements which are evenly spaced around the image.

2. For each s € S;, compute three estimates (és,k, Ws,k) (k € {1,2,3}) by
using the seven-point algorithm (see Section 4.1.2).

3. For each (s, k) € Sy x {1,2,3}, determine the median
M, y, = med{§(my, 1iv;, Copp, W p)? | i = 1,...,0}.

4. Letting (Sm, km) € So X {1, 2,3} be such that

M, =min{M,; | (s,k) € So x {1,2,3}},

m km

~

take (Cs,, ko ﬁ\fsm,km) for the LMedS estimate of C : W.

It is important in generating the subsets of S in step 1 to provide a means
of ensuring that the vectors selected are evenly spaced around the image. If
this is not the case the estimates calculated in step 2 are less likely to reflect
the true motion matrices because of the instabilities introduced. With the
LMedsS estimate at hand, we proceed to identify outliers by applying the following
procedure:

1. Take

5
& =1.4826 (1 + n—_7> VMs, ki

for the robust standard deviation of the distance measurements [108].
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2. Declare [m], 72, |7 to be an outlier if and only if

5(m, 'rh, asm’km, ﬁ\/sm,km) > 2.50.

Once the outliers have been detected and removed, we can apply one of the
least-squares techniques proposed earlier to the remaining elements of & and
thereby obtain a robust estimate of C : W.



Chapter 7

Experimental results

We have, in previous sections, shown that it is possible to estimate the motion
matrices from data contaminated with noise. We have also shown that, from a
sufficiently accurate estimate of the motion matrices, it is possible to reconstruct
the scene viewed. In this section we estimate the motion matrices from real image
sequences, and calculate the corresponding reconstructions.

7.1 Experimental results on synthetic image
sequences

Figure 3.1 in Section 3.1.1 shows a reconstruction of three surfaces of a cube.
This reconstruction was generated by selecting a pair of motion matrices and
specifying the three-dimensional shape of the points in the scene. An optical flow
field was then calculated on this basis. The reconstruction process described in
Section 3.1 was then carried out using the true optical flow and the true motion
matrices. This verifies that the reconstruction formulae work for perfect inputs.
In order to provide a more realistic test, we now give an example using exact,
synthetically generated data, but estimated motion matrices.

7.1.1 Yosemite Valley image sequence

The Yosemite Valley image sequence has been generated synthetically, and
generously distributed by Lynn Quam at SRI. Six images from the sequence
are shown in Figure 1.1, several of which reappear in Figure 7.1.

As the sequence was synthetically generated the true optical flow is known,
although only that corresponding to the ninth image is available. This flow field
is depicted in Figure 7.2.

Within the files distributed by SRI, the optical flow vectors are encoded in
eight bits per dimension, so 7, and 9 are represented as one byte each. The
location information, m, is know precisely because the flow is sampled on a
regular grid. The points above the horizon represent the optical flow of the
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Figure 7.2: The Yosemite Valley sequence optical flow field

clouds visible in the image sequence. The clouds are not part of the rigid scene,
so the corresponding vectors must be removed from the flow field. An optical
flow vector is available for each pixel in the image. This represents more data
than is necessary, or even practical. The field is thus randomly sampled in order
to select a smaller number of flow vectors. This subset of the optical flow field
is used to estimate the motion matrices for the ninth image in the sequence.
The method used is the gradient weighted least squares procedure outlined in
Section 5.2. Using the true optical flow and the estimated motion matrices, the
reconstruction presented in Figure 7.4 was generated.
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Figure 7.3: Yosemite Valley reconstructed points
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The point clouds in Figure 7.4 give an impression of the shape of the valley,
and of the distribution of image points across the surface. In order to make
the shape of the valley more easily identifiable we have repeated the estimation
and reconstruction process for a smaller number of optical flow vectors and
triangulated a surface across the resulting points. The surface was calculated
using the Delaunay triangulation package created by Ian Curington of Advanced
Visual Systems. Figure 7.4 shows the results of this process with the ninth image
of the sequence projected onto the reconstructed surface.

Unfortunately the true shape of the valley has not been made available, so
we cannot compare the reconstruction with the original. The true motion of the
camera has been provided by Lynn Quam, and matches the estimated motion to 2
significant figures. The most convincing argument in favour of the reconstructed
shape of the Yosemite Valley, however, is that, when viewed and manipulated in
3-dimensions it looks as you would expect it to given the image sequence.

7.2 Experimental results on real images

We now present the results of estimation and reconstruction from a number of
real image sequences.

7.2.1 Calibration object sequence

Figure 7.5 shows three images of a calibration object. The sequence was taken
using a Kodak DCS420, which is a digital camera based on a Nikon single lens
reflex camera. The calibration object sequence has the advantage of showing
clear corners amenable to sub-pixel accuracy measurement. The method used
to determine corner locations was based on computing the intersections of lines
found in the image. The optical flow generated by this process is depicted in
Figure 7.2.1.

The motion matrices were estimated using the recursive weighted least squares
procedure given in section 6.1.3. The recursive weighted least squares procedure
updates the optical flow field in the course of estimating the motion matrices. It
is this updated optical flow field which was used to generate the reconstruction.
No information about the shape or appearance of the calibration object, or of
features on the grid, has been used in estimating the optical flow or the motion
matrices. The process does not rely on the fact that the images are of a calibration
object at all.

In order to aid visualisation, lines connecting the points at the corners of
the squares on the grid have been added. Two views of the reconstruction of
the calibration object are shown in Figure 7.2.1. The angle between the faces
of the calibration object when the images were taken was 90 degrees, and the
markings on the faces of the object are obviously coplanar. The overhead view
of the reconstruction, in Figure 7.7, shows that the points on the faces of the
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Figure 7.4: Yosemite Valley rendered reconstruction
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Figure 7.5: Images from the calibration object sequence
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Figure 7.6: Optical flow from the calibration object sequence

calibration object are relatively coplanar and that the angle between the faces of
the object is close to ninety degrees.
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Figure 7.7: Calibration grid reconstructions

7.2.2 Office sequence

The office sequence, two images of which are shown in Figure 7.9, was taken using
the Pulnix 9701 described in Section 5.11. This was one of the cameras which
formed the basis of the camera-based motion matrices used in synthetic testing in
previous chapters (as described in Appendix A.1.2). Feature location was carried
out using the intersection of lines method described above. Estimation of the
motion matrices was performed using the recursive weighted least squares method
on the points selected as inliers using the least median of squares approach.
Reconstruction was thus performed on this set of inliers, as updated by the
recursive weighted least squares scheme.

Figures 7.10 and 7.11 show the reconstruction of the office scene. As
in the calibration grid example, lines have been added joining points in the
reconstructions of the office scene in order to enhance the representation. In
Figure 7.9 we see a number of sheets of paper on the wall and on the column.
Figure 7.11 shows that the corners of these rectangles are well reconstructed. The
sheets on the column are roughly perpendicular, and the side of the column is
roughly parallel to the wall.

7.2.3 Soccer ball sequence

The soccer ball image sequence shown in Figure 7.12 was taken using the
Pulnix 9701 camera. The feature detector used calculates the intersections of
interpolated lines as described above, and the calculated optical flow was again
filtered using the least median of squares technique from Section 6.2. The motion
matrices were calculated using the recursive weighted least squares technique and
the corresponding reconstruction generated from the updated optical flow field.

Having reconstructed the point locations, a surface was interpolated using
the Delaunay triangulation method described in Section 7.1.1 for the Yosemite
Valley sequence. The reconstruction is shown in Figure 7.13.
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Figure 7.8: Calibration grid reconstruction, overhead view

7.3 Conclusion

We have shown a number of reconstructions above, all of which represent the
shape of the viewed scene reasonably accurately. In section 1.4 we noted that
reconstructing a scene from neighboring images of a video stream is difficult
because the camera will not have moved far in the period between frames. This
means that there is generally little spatial separation between the positions of
the optical centre of the camera for one image and that for the next. This lack of
separation increases the sensitivity of the triangulation process fundamental to
reconstruction. On the other hand it leads to very similar images which renders
the correspondence problem easier to solve. The sensitivity of the process of
reconstruction from optical flow may indicate that it is not the most appropriate
use to which estimated motion matrices may be put. The least median of squares
procedure from Section 6.2 for example can be used to filter optical flow that is
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Figure 7.10: Office scene reconstructions

to be used for other purposes. The remaining inliers could be used for purposes
such as collision avoidance or motion segmentation.
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Figure 7.11: Office scene reconstruction, overhead view
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Figure 7.12: Images from the soccer ball sequence

Figure 7.13: The reconstructed soccer ball



Chapter 8

Conclusion

We have carried out an investigation into the problem of determining structure
from optical flow. This has involved a comparison of a number of different
means of estimating the coefficients of the differential epipolar equation. The
methods used are based on maximum likelihood estimation techniques and, more
specifically, minimising the sum of the squares of certain residuals. Residuals,
based on geometric distances, were derived, leading to the determination of
certain cost functions. The form of these total least squares cost functions,
however, rendered direct minimisation intractable. To alleviate this problem
algebraic approximations to the cost functions were derived. A comparison of
methods for minimising these algebraic cost functions was then carried out. This
comparison lead to an analysis of the applicability of gradient weighted least
squares approaches to the problem of estimating the coefficients of the differential
epipolar equation. The conclusion of this analysis was that maximum likelihood
based estimation procedures produced results that were marginally better than
the ordinary least squares procedure presented. The similarity in the results was
found to be due to the fact that the range of the gradients of the residuals over
the data space was small.

Deriving the algebraic approximation to the total least squares cost functions
necessitated estimating the closest point on a manifold to a measured optical flow
vector. This estimation procedure led to a method of updating an optical flow
vector such that it better matched the estimated motion matrices. This method,
applied to each vector, allows the removal of some of the noise in the measured
optical flow field. A rectification procedure for enforcing the cubic constraint on
the motion matrices was presented and its performance measured. The effect of
the procedure on the quality of estimates produced by various means was also
measured.

Reconstruction formulae, based on the differential epipolar equation, were
given, and the problem of estimating the trajectory of the camera over time
investigated. The differential epipolar equation provides a means of estimating
the motion of the camera, but the translation information is determinable only
up to a scale factor. It is thus not possible to estimate the trajectory of the
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camera by simply integrating over its velocity. A means of registering the scale
of the velocity of the camera was developed based on a reference to a single scene
point. This method does not allow the scale of the translation to be recovered but
does provide a means of ensuring a consistent scale amongst a set of estimated
translation vectors. The consistent scaling of the estimated translation vectors
enabled the development of two methods for calculating the trajectory of the
camera, applicable to different classes of motions.

8.1 Future directions

An interesting extension to this work would be to compare the processes described
in this thesis with the bootstrap method described in Refs. [28,32,142]. This
bootstrap method is particularly interesting as confidence intervals for the
estimates are produced as part of the process. Similarly, testing of the Hough
transform methods of Kiryati [65] should be investigated.

An extension of the methods to the case where covariance information
describing the uncertainty of individual data elements has been partly carried out
(see [20,33,34,69]). An extension of this work involving estimating the covariances
associated with real data should be investigated. A comparison of covariance
estimation methods would enable an assessment of the accuracy with which the
covariances of real data may be measured. This information is required in order
to determine the value of including covariances in real estimation problems.

In Section 2.4.1 we presented a method for enforcing the cubic constraint
on the motion matrices. This method took the form of a post process, and
thus made no reference to the cost function. The change made to the motion
matrices in order that they might satisfy the constraint was thus somewhat
arbitrary. A means of incorporating the constraint into the estimation method
would be more appropriate. A preliminary investigation has been carried out
into reparameterisation of the motion matrices in order to accommodate the
cubic constraint. The results of this investigation are not reported in this
thesis. This procedure requires further investigation, along with the possibility
of reparameterising for the case in which the focal length of the camera is fixed.
It is envisaged that this will aid the estimation process as, in reality, the focal
length of a camera taking a video sequence generally changes slowly. There are
of course some situations in which this is not the case.

In Section 6.1.3 we suggested the possibility of a fully recursive scheme based
on repeatedly estimating the motion matrices and updating the optical flow
field. Some of this work has been carried out, and shows promise, but requires
significant further investigation.



Appendix A

Modelling a moving camera

Evaluating the benefits of different estimation techniques requires the ability to
generate synthetic data. In the case of the differential epipolar equation this data
is optical flow. Data generation must take place according to a model, here the
model being a camera moving through a static scene. Our model is described by
the motion matrices, so, as a first step, we must generate the matrices C and W.

A.1 Randomly generating motion matrices

Different methods of estimating the motion matrices have shown sensitivities
to different sets of key parameters. Performing all tests with data generated
according to a set of parameters may advantage one method over others. A
means of randomly generating motion matrices is thus essential so that tests can
be carried out over multiple sets of key parameters.

The disadvantage of generating new key parameters for every test is that
comparisons of bias and variance of estimators become more difficult. Such tests
can really only be carried out with fixed motion matrices and fixed data with
random noise added.

A.1.1 General motion matrices

The matrices C and W are symmetric and antisymmetric respectively, so they
have nine independent elements. The matrices are, however, defined only up to
a scale factor, and subject to the constraint that w? Cw = 0. The most general
method of generating motion matrices is to randomly generate values for each
free element of the matrices, and normalise the result. In order to avoid bias in
the set of motion matrices produced, we want the probability of each possible
pair of motion matrices occurring to be the same. To this end, we generate nine
instances of a uniformly distributed random variable, from which we construct
the vector ®. From the vector ® we can generate C' and W. The range of
the random variable used to generate the elements of ® is somewhat arbitrary
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as it is only the ratio between elements that is significant (see Section 2.3). For
simplicity we select here the range —a to «.

The vector © is defined only up to a scale factor, so an appropriate normalising
condition must be selected as described in Section 2.3. If we select the normalising
condition that ||@||* = 1 then particular vectors ® may be represented as points
on a 9-dimensional sphere. This normalisation condition corresponds to the
projection from R? onto the surface of the sphere. Randomly generating points in
a 9-dimensional cube and projecting onto the sphere as suggested above creates a
biased distribution of points on the sphere. It is for this reason that points lying
outside the sphere are discarded.

To constitute a valid set of motion matrices, C and W must satisfy the cubic
constraint that w” Cw = 0. Applying the method from Section 2.4.1 will distort
the distribution of points on the 9-dimensional sphere. The hope is, however, that
the distortion is not significant. One final constraint applied to the generated
matrices is that the focal length at the time at which tests are carried out is real
rather than imaginary. If this constraint is not met, then the candidate matrices
are discarded and a new pair generated.

A.1.2 Camera-based motion matrices

An alternative to randomly selecting the elements of the matrices is to generate
a set of key parameters from which C and W may be determined. In this vein
we randomly select the internal and external parameters of a camera in motion
according to two possible templates. These templates have been determined by
analysis of two cameras: the Pulnix 9701 with telephoto lens, and the Pulnix
601C with 8mm fixed lens. Data generated under these models provide a more
realistic test of the capabilities of the estimation methods because they correspond
to optical flow by a realistic camera undergoing realistic motion. Generating
motion matrices in this manner represents the reverse of the process described in
section 2.5 for determining parameters from motion matrices. The nature of this
process ensures that the motion matrices generated satisfy the constraint that
w ' Cw = 0.

A.2 Generating noisy optical flow

Having determined the motion matrices it remains to calculate the corresponding
optical flow. This is carried out by randomly generating a set of points in space.
We then calculate the optical flow that such a set of points would generate on
the image plane of a camera undergoing the motion described by the selected
motion matrices using the equations from Chapter 2. These synthetic optical
flow tuples are then perturbed in the elements corresponding to my, ms,m; and
g, by normally distributed random variables of mean 0 and variance as required.
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A.3 Testing estimation methods

In testing the performance of each of the methods for estimating the motion
matrices we have used the following procedure:

1. For each of 10 noise levels:

1.1 For each of 50 trials:
1.1.1 Randomly generate motion matrices using one of the methods
above

1.1.2 Randomly generate 50 optical flow vectors corresponding to the
motion matrices

1.1.3 Add noise to each optical flow vector according to the noise level
selected

1.1.4 Apply each of the methods to be tested to the noisy optical flow
1.1.5 Calculate error in each estimate according to each metric.

1.2 Calculate average error over the 50 trials for each of the methods using
each of the error metrics

2. Report results.

Each test, therefore, has independent motion matrices, optical flow and noise.
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