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Abstract

A picture of a scene is a 2-dimensional representation of a 3-dimensional world.
In the process of projecting the scene onto the 2-dimensional image plane, some
of the information about the 3-dimensional scene is inevitably lost. Given a series
of images of a scene, typically taken by a video camera, it is sometimes possible to
recover some of this lost 3-dimensional information. Within the computer vision
literature this process is described as that of recovering structure from motion. If
some of the information about the internal geometry of the camera is unknown,
then the problem is described as that of recovering structure from motion in
the uncalibrated case. It is this uncalibrated version of the problem that is the
concern of this thesis.

Optical flow represents the movement of points across the image plane over
time. Previous work in the area of structure from motion has given rise to a
so-called differential epipolar equation which describes the relationship between
optical flow and the motion and internal parameters of the camera. This equation
allows the calibration of a camera undergoing unknown motion and having an
unknown, and possibly varying, focal length. Obtaining accurate estimates of
the camera motion and internal parameters in the presence of noisy optical flow
data is critical to the structure recovery process.

We present and compare a variety of methods for estimating the coefficients of
the differential epipolar equation. The goal of this process is to derive a tractable
total least squares estimator of structure from motion robust to the presence of
inaccuracies in the data. Methods are also presented for rectifying optical flow to
a particular motion estimate, eliminating outliers from the data, and calculating
the relative motion of a camera over an image sequence. The thesis thus explores
the application of numerical and statistical techniques for estimation of structure
from motion in the uncalibrated case.
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