

Development of Small-Molecule Ligands for SH3 Protein Domains

by Steven Robert Inglis B.Sc. (Hons)

A thesis submitted for the degree of Doctor of Philosophy

December 2004

A joint venture between the School of Molecular & Biomedical Science (Discipline of Biochemistry) and the School of Chemistry & Physics (Discipline of Chemistry) at the University of Adelaide, South Australia

Contents

Summary	VIII
Statement	IX
Acknowledgements	X
Abbreviations	XII

Chapter 1 Introduction

1.1	Sig	gnificance	1
1.2	The	e SH3 Domains	2
1	.2.1	SH3 domain structure	2
1	.2.2	SH3 domain ligands: early discoveries	2
1	.2.3	Recent developments with SH3 ligands	5
	1.2.3.	1 Proline-rich peptides containing non-peptide binding elements	5
	1.2.3.	2 Peptoid ligands: use of non-natural amino acids	6
	1.2.3.	3 UCS15A: a non-peptide SH3/proline-rich peptide inhibitor	8
1	.2.4	Biology of the SH3 domains	9
	1.2.4.	1 The Tec family of non-transmembrane Protein Tyrosine Kinases (PTKs)	9
	1.2.4.	2 The Grb2 adaptor protein	11
	1.2.4.	3 SH3 domains as targets for therapeutic development	11
1.3	Str	rategies in drug discovery	12
1	.3.1	Computational methods in drug design	14
1	.3.2	NMR methods in drug development	15
1.4	2-A	Aminoquinoline as a Tec SH3 domain small-molecule ligand	15
1.5	Ain	ns and approach for PhD project	20

Chapter 2AdditionalCharacterisationofthe2-Aminoquinoline/Tec SH3 Domain Binding Event

2.1	ntroduction2	2
2.2	Synthesis of some simple 2-aminoquinoline derivatives2	3
2.2.2	Synthesis of (<i>N</i> -methyl)quinolin-2-ylamine2	4
2.2.2	Synthesis of <i>N</i> -(quinolin-2-yl)acetamide2	5
2.2.3	Synthesis of 2-amino-5,6,7,8-tetrahydroquinoline2	6
2.3	Additional investigation into the Fluorescence Polarisation (FP) method for testing	
	of compounds for SH3 domain binding2	8
2.3.2	SH3 vs GST-SH3 proteins in the FP assay: A comparison of results2	9

2.3.2	Use of DMSO with the FP method	31
2.3.3	Comparison between FP and NMR methods for testing of compounds	
	for SH3 binding	33
2.3.3.	1 Advantages and disadvantages of the two methods	33
2.3.3.	2 Comparison of binding constants derived from FP and NMR methods	34
2.4 Bir	nding studies of another set of compounds with the Tec SH3 domain:	
ob	taining new SAR information	35
2.4.1	Ligand binding studies	36
2.4.2	Investigation into influence of pH on binding of 2-aminoquinoline to the Tec	
	SH3 domain	38
2.4.3	Interpretation of SAR information	39
2.4.4	Refinement of 2-aminoquinoline/Tec SH3 domain binding model	46
2.5 Su	mmary: Chapter 2	47

Chapter 3 Exploring Methods to Improve 2-Aminoquinoline Binding Affinity 1: Synthesis and Binding Studies of *N*-Benzylated-2-Aminoquinoline Derivatives

3.1	Introdu	ction	48
3.2	Synthe	sis of 2-(benzylamino)quinoline derivatives	50
3.2	.1 Inv	estigation into reductive amination using sodium triacetoxyborohydride	50
3.2	.2 Syr	hthesis of N-benzylated-2-aminoquinolines by Lewis acid assisted	
	red	uctive amination	51
3.3	Ligand	binding studies of N-benzylated-2-aminoquinoline derivatives with the	
	Tec SH	13 Domain	58
3.3	.1 NM	R chemical shift perturbation experiments	58
З	.3.1.1	Ligand binding assays	58
3	.3.1.2	Chemical shift mapping of ligand binding events	60
3.3	.2 Dis	cussion of SAR information	61
3.4	Summa	ary: Chapter 3	62

Chapter 4 Exploring Methods to Improve 2-Aminoquinoline Binding Affinity 2: Synthesis and Binding Studies of 6-Substituted-2-Aminoquinolines

4	4	lintro di	untion	64
4.		Introd		64
4.	2 3	Synthe	esis of simple ring-substituted-2-aminoquinolines	65
	4.2.1	Sy	nthesis of simple 6-substituted-2-aminoquinolines	66
	4.2.2	Sy	nthesis of simple 5- and 7-substituted-2-aminoquinolines	71
4.	3 3	Synth	esis of 6-substituted-2-aminoquinolines with more complex functionality 1	73
	4.3.1	Inv	vestigation into benzylic oxidation of 2-chloro-6-methylquinoline	73
	4.3.2	Inv	vestigation into aldehyde protecting groups	76
	4.3.3	Inv	vestigation into methods for de-protection of cyclic acetals	79
	4.3	.3.1	Use of pyridinium tosylate as a catalyst for the de-protection of	
			cyclic acetals	79
	4.3	.3.2	Investigation into de-protection of cyclic acetals using aqueous acids	81
	4.3	.3.3	Use of zirconium tetrachloride/sodium borohydride for the de-protection	
			of cyclic acetals	82
	4.3	.3.4	Use of <i>p</i> -toluenesulfonic acid for the de-protection of cyclic acetals	84
	4.3	.3.5	Summary	84
4.	4 -	Tec S	H3 domain/6-substituted-2-aminoquinolines binding studies 1	85
	4.4.1	Flu	uorescence Polarisation peptide competition assays	85
	4.4.2	N	/IR chemical shift perturbation assays	86
	4.4	.2.1	Exchange processes and determination of ligand binding constants	87
	4.4	.2.3	Chemical shift mapping of ligand binding events	89
	4.4.3	Int	erpretation of SAR information	89
	4.4.4	Inv	vestigation into stability of acetals during ligand binding experiments	91
	4.4.5	Sı	immary	92
4.	5	Synthe	esis of 6-substituted-2-aminoquinolines with more complex functionality 2:	
	I	Uncov	ering the limitations of the Kóródi method	92
	4.5.1	C٧	clic acetals as precursors for acyclic alcohols	93
	4.5	.1.1	A preliminary investigation	93
	4.5	.1.2	Investigation into optimising the reaction	
	452	Ac	exclic alcohols as precursors for synthesis of new 2-aminoquinolines with	
		div	verse functionality	96
	45	21	Adding new functionality to 2-chloroguinolines	
	4.5	22	Investigation into compatibility of the amination method of Kóródi with	
	- .J		a range of 2 chloroquineline derivatives	100
				. 100

	4.5.2.3	Investiga	ation into methods for protection of aliphatic alcohol derivatives	
		of 2-chlc	roquinoline	105
4	.5.3	Summary		110
4.6	Syr	thesis of 6-s	substituted-2-aminoquinolines with more complex functionality 3:	
	Inv	stigation int	o alternative amination methods	110
4	.6.1	Investigatior	n into conversion of simple 2-chloroquinolines into	
		2-(benzylam	ino)quinolines using benzylamines as nucleophiles	111
	4.6.1.	Prelimina	ary investigation	111
	4.6.1.2	Modifica	tion of approach for convenient de-protection	113
4	.6.2	Investigatior	n into conversion of more complex 2-chloroquinolines to	
		2-(4-methox	ybenzylamino)quinolines, and their subsequent de-benzylations	115
	4.6.2.	Investiga	ation into suitability of aliphatic alcohol derivatives of	
		2-chloro	quinoline	115
	4.6.2.2	Investiga	ation into suitability of the phthalimido derivative of	
		2-chloro	quinoline	119
4	.6.3	Summary		122
4.7	Syr	thesis of 6-s	substituted-2-aminoquinolines with more complex functionality 4:	
	Τo	ards convei	gent synthesis	123
4	.7.1	Synthesis of	a 'key intermediate' for use in convergent synthetic strategy	125
	4.7.1.	Synthes	is of <i>N</i> -(6-methylquinolin-2-yl)acetamide	125
	4.7.1.	Synthes	is of <i>N</i> -[6-(bromomethyl)quinolin-2-yl]acetamide	129
4	.7.2	Testing suita	ability of 'key intermediate' for use in convergent synthetic	
		strategy 1: A	Attempted coupling with primary alcohols	130
	4.7.2.	Testing	the coupling reaction through substitution via alkoxide formation	131
	4.7.2.2	Testing	the coupling reaction through silver oxide catalysis	134
	4.7.2.3	Brief inv	estigation into 'key intermediate' with alternative protecting group	
		for amin	o functionality	136
4	.7.3	Testing suita	ability of 'key intermediate' for use in convergent synthetic	
		strategy 2: S	Substitution reactions under milder conditions	137
	4.7.3.	Substitu	tion with 'key intermediate' and phthalimide: A simple synthesis	
		of 6-ami	nomethylquinolin-2-ylamine	138
	4.7.3.2	Substitu	tion with 'key intermediate' and acetate: A simple synthesis of	
		6-hydrox	symethylquinolin-2-ylamine, and potential utility in a modified	
		converge	ent synthetic strategy	140
	4.7.3.3	Substitu	tion with original 'key intermediate' and phenoxide: A brief yet	
		promisin	g investigation	147
4	.7.4	Summary		150

4.8	B Te	c SH3 domain/6-substituted-2-aminoquinolines binding studies 2	152
	4.8.1	Fluorescence Polarisation peptide competition assays	153
	4.8.1.	1 Testing of compounds 59, 60, 76, and 81	153
	4.8.1.	2 Testing of compound 87: a description of important considerations in	
		non-linear regression analysis	154
4	4.8.2	NMR chemical shift perturbation assays	158
	4.8.2.	1 Testing of compounds 76, 80, 93, and 116	158
	4.8.2.	2 Chemical shift mapping of ligand binding events	160
	4.8.3	Interpretation of SAR information	162
	4.8.4	Summary	167
4.9	9 Fin	al Summary: Chapter 4	168
	4.9.1	Synthesis of a range of 6-substituted-2-aminoquinolines	168
	4.9.2	Ligand binding studies	169
	4.9.3	5- and 7-substituted-2-aminoquinolines	170

Chapter 5 Specificity Studies of 2-Aminoquinoline and Derivatives with other SH3 Domains

5.1	Introduction1	71
5.2	Specificity of 2-aminoquinoline1	73
5.2.1	FP competition assays with 2-aminoquinoline and the Nck, Hck, and Fyn	
	SH3 domains1	73
5.2.2	2 Discussion of SAR information1	74
5.3	Specificity of 6-substituted-2-aminoquinolines with the Nck SH3 domain1	76
5.3.1	FP competition assays with Nck SH3 domain and 2-aminoquinolines 33, 64	
	and 691	76
5.3.2	2 Discussion of SAR information1	77
5.4	Summary: Chapter 51	78

Chapter 6 Conclusions, Future Work and Final Discussion

6.1 C	concl	usions and Future Work	.179
6.1.1	Ai	m 1: Additional characterisation of the 2-amino-quinoline/SH3 domain	
	bir	nding event (Chapter 2)	. 179
6.1.2	Ai	m 2: Development of 2-aminoquinoline derivatives with improved affinity	
	foi	r the Tec SH3 domain (Chapters 3 and 4)	. 180
6.1.2	2.1	Synthesis and binding studies of <i>N</i> -benzylated-2-aminoquinoline	
		derivatives (Chapter 3)	. 180

6.	1.2.2	2 Synthesis and binding studies of 6-substituted-2-aminoquinoline	
		derivatives (Chapter 4)	. 181
6.1.3	3	Aim 3: Identification of a ligand suited to structure determination of its	
		complex with the SH3 domain by NMR methods (Chapter 4)	. 183
6.1.4	4	Aim 4: Investigation into specificity of 2-aminoquinoline and derivatives with	
		other SH3 domains (Chapter 5)	. 185
6.2	Fina	al Discussion	. 185

Chapter 7 Experimental

7.1	Chem	istry General	188
7.2	Sourc	es of ligands not included in the experimental chapter	189
7.3	Synth	esis of compounds presented in Chapter 2	189
7.4	Synth	esis of compounds presented in Chapter 3	193
7.5	Synth	esis of compounds presented in Chapter 4	199
7.5	5.1 Sy	Inthesis of compounds presented in Sections 4.2 and 4.3	199
7.5	5.2 Sy	Inthesis of compounds presented in Section 4.5	214
7.5	5.3 Sy	nthesis of compounds presented in Section 4.6	224
7.5	5.4 Sy	Inthesis of compounds presented in Section 4.7	230
7.6	Protei	n Methods 1: Expression and Purification	241
7.6	6.1 Ge	eneral protein methods	241
	7.6.1.1	Common buffers and abbreviations	241
	7.6.1.2	Purification of Glutathione-S-Transferase-SH3 fusion proteins using	
		agarose/glutathione chromatography	242
	7.6.1.3	Determination of protein concentration using Bradford dye	
		binding assay	243
	7.6.1.4	Thrombin digestion	243
	7.6.1.5	Size exclusion chromatography	243
	7.6.1.6	PD10 buffer exchange chromatography	244
	7.6.1.7	SDS-PAGE - sodium dodecyl sulfate-polyacrylamide	
		gel electrophoresis	244
7.6	6.2 Pr	otein preparation methods	245
	7.6.2.1	Bacterial growth media	245
	7.6.2.2	Procedure for preparation of uniformly ¹⁵ N labelled Tec SH3 protein for	
		NMR spectroscopy	245
	7.6.2.3	Procedure for preparation of protein samples for FP studies	248

Contents

7.7 Protei	in Methods 2: Ligand Binding Assays	249
7.7.1 Te	esting of compounds for binding to the Tec SH3 Domain using NMR	
Sp	pectroscopy	249
7.7.2 Fl	uorescence Polarisation (FP) Assays	250
7.7.2.1	FP peptide binding experiments	251
7.7.2.2	FP peptide competition assays	251
Reference	es	253
Appendic	es	263
Appendix 1:	Derivation of the Equilibrium Binding Dissociation Constant, K_d	A-1
Appendix 2:	Data analysis process for NMR chemical shift perturbation assay	A-2
Appendix 3:	Data analysis process for Fluorescence Polarisation peptide	
	displacement assay	A-5
Appendix 4:	Published article;	
	Inglis et al., <i>J. Med. Chem.</i> 2004 , <i>4</i> 7, 5405-5417	A-8

Summary

Src Homology 3 (SH3) domains are small protein-protein interaction domains that bind to proline-rich peptides, mediating a range of important biological processes. Because the deregulation of events involving SH3 domains forms the basis of many human diseases, the SH3 domains are appealing targets for the development of potential therapeutics. Previously in the field, no examples of entirely small-molecule ligands for the SH3 domains have been identified. However, in our research group, we have discovered a class of heterocyclic compounds that bind to the Tec SH3 domain at conserved residues in the proline-rich peptide binding site, with weak to moderate affinity. The highest affinity of these was 2-aminoquinoline ($K_d = 125 \,\mu$ M).

In this thesis, a range of approaches are described, that were intended to contribute towards development of higher affinity small-molecule ligands for the Tec SH3 domain. Preliminary experiments, involving testing a variety of compounds structurally related to 2-aminoquinoline, provided new structure activity information, and led to a better understanding of the 2-aminoquinoline/SH3 domain binding event. The major component of this thesis is a thorough investigation into the synthesis of a range of 2-aminoquinoline derivatives. *N*-Substituted-2-aminoquinolines were synthesised, however these compounds bound the SH3 domain with slightly lower affinity than 2-aminoquinoline. 6-Substituted-2-aminoquinolines were subsequently prepared, and ligands were identified with up to six-fold improved affinity relative to 2-aminoquinoline, and enhanced selectivity for the Tec SH3 domain.

The techniques used for the ligand binding studies were Nuclear Magnetic Resonance (NMR) chemical shift perturbation and Fluorescence Polarisation (FP) peptide displacement assays. As part of the ligand binding studies, it was intended that the 3D structure of a 2-aminoquinoline ligand/SH3 complex would be obtained using NMR methods, provided that a ligand was identified that bound the SH3 domain in slow exchange on the NMR timescale. However, this goal was not fulfilled. Despite this, the work presented in this thesis provides a solid foundation for the development of potent 2-aminoquinoline ligands for SH3 domains, with engineered specificity.

Statement

This thesis contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution. To the best of my knowledge and belief, it contains no material previously published or written by another person, except where due reference has been made in the text. In addition, no work performed by another person has been presented, without due reference in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Steven R Inglis, December 2004.

The completion of this PhD has been a long, and challenging journey. Therefore, I must now acknowledge many people who have assisted with making the journey a most satisfying one.

Firstly, I must offer sincere thanks to my principal supervisor Dr. Grant Booker, for giving me the opportunity to undertake a PhD, in a field of research that I have grown to enjoy greatly. Without your contribution to ensuring I could receive a scholarship, who knows where I would be now! Many thanks also for your belief in me, your support and enthusiasm, kind nature, and open door policy. All of these little things have helped greatly to make the PhD experience more enjoyable.

I would like to also offer equally sincere thanks to my co-supervisor (or perhaps not so co-!!) Dr. Simon Pyke. You too have routinely given up significant amounts of your time to assist me with various problems. You have also made a great contribution to my scientific development and understanding of Chemistry. Your level of enthusiasm for the project, and support for me has been outstanding and I am most greatful.

Thanks to all members of the Booker group. Special mention should go to, Cvetan Stojkoski for your assistance with protein work, IT support, and for being a good mate to have a beer with. Thanks also to Kasper Kowalski for assistance with protein NMR experiments, and Anita Merkel, simply for providing a happy face around the place, and making the Booker lab a most pleasant place to work. Thanks to other Booker group members past and present, who have helped with various things or been good lab mates: eg. Kim Branson, Sharon Pursglove, Sue Fowler, Bec Bilton, Innes Atmosukarto, Carlie Delaine, Filomena Occhiodoro, Eric Bonython, lain Murchland, Lucky Tran and Lisa Biggs.

Many thanks to all members of the Pyke group. Special thanks to Dr. David Armitt. Dave, you have been a great asset to our lab, and have always happy to help with chemical problems, however large or small. Your knowledge of organic synthesis is far and wide, and this was very helpful, on many occasions. Thanks to Lab 3 and other chemistry department members, past and present who have helped with various things, or who have simply been good people to work with: eg. Ben Greatrex, Sally Plush, Marcus Cole, John Carver, Jacquie Cawthray, Rhiannon Jones, Daniel Fritz, Penny Kerr, Daniel Bilusich, Suresh Dua, Sam Peppe, Monique Jensen, Sean Alexander and Emma Wiadrowski. Special thanks also to John Cameron, for doing such a fine job running the chemistry store, and to Phil Clements for

Acknowledgments

maintenance of the NMR spectrometers. These two features are critical for the effective running of a chemistry department.

I must also give a HUGE thankyou to my family, particularly my parents, Nicole and Norm for tremendous love and support throughout the PhD journey. Mum and Dad, I feel greatly indebted to you both for (still) providing me with a good home, and all of the creature comforts that help so much when you take on a huge job, like a PhD. Hopefully I can repay you, in someway one of these days. Thanks also to my sister Michèle and brother in law Nige, for your love and support over the years. Thanks too Nige for all the tennis games, and I am hoping we can start to play regularly again soon. (I am also planning to win for once.) Thanks also to my brother Paul and partner Nicole, for additional love and support, and for allowing me to come and stay with you in Melbourne at call.

Last, but definitely not least, thanks to my loving girl friend, and best friend, Rebecca. You have been very patient, caring, and understanding of my needs throughout my PhD, and you were always keen to listen during testing times. Thankyou for all you have done for me. I love you very much. May we share some more relaxing times together, beyond this thesis!!

Abbreviations

DMAP	N,N-dimethylaminopyridine
DMF	N,N-dimethylformamide
DMSO	dimethyl sulfoxide
FP	Fluorescence Polarisation
GST	glutathione-S-transferase
HSQC	Heteronuclear Single Quantum Coherence
mP	millipolarisation (units)
NBS	N-bromosuccinimide
SAR	structure activity relationship
SH2	Src Homology 2
SH3	Src Homology 3
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography