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Abstract

This thesis considers location and scale parameter modelling of the heteroscedastic t-

distribution. This new distribution is an extension of the heteroscedastic Gaussian and

provides robust analysis in the presence of outliers as well accommodates possible het-

eroscedasticity by flexibly modelling the scale parameter using covariates existing in the

data.

To motivate components of work in this thesis the Gaussian linear mixed model is re-

viewed. The mixed model equations are derived for the location fixed and random effects

and this model is then used to introduce Restricted Maximum Likelihood (REML). From

this an algorithmic scheme to estimate the scale parameters is developed.

A review of location and scale parameter modelling of the heteroscedastic Gaussian distri-

bution is presented. In this thesis, the scale parameters are a restricted to be a function of

covariates existing in the data. Maximum Likelihood (ML) and REML estimation of the

location and scale parameters is derived as well as an efficient computational algorithm

and software are presented.

The Gaussian model is then extended by considering the heteroscedastic t distribution.

Initially, the heteroscedastic t is restricted to known degrees of freedom. Scoring equa-

tions for the location and scale parameters are derived and their intimate connection to

the prediction of the random scale effects is discussed. Tools for detecting and testing

heteroscedasticity are also derived and a computational algorithm is presented. A mini

software package ”hett” using this algorithm is also discussed.

To derive a REML equivalent for the heteroscedastic t asymptotic likelihood theory is dis-

cussed. In this thesis an integral approximation, the Laplace approximation, is presented

and two examples, with the inclusion of ML for the heteroscedastic t, are discussed. A new

approximate integral technique called Partial Laplace is also discussed and is exemplified

with linear mixed models. Approximate marginal likelihood techniques using Modified

Profile Likelihood (MPL), Conditional Profile Likelihood (CPL) and Stably Adjusted

Profile Likelihood (SAPL) are also presented and offer an alternative to the approximate

integration techniques.

The asymptotic techniques are then applied to the heteroscedastic t when the degrees

of freedom is known to form two distinct REMLs for the scale parameters. The first

approximation uses the Partial Laplace approximation to form a REML for the scale pa-

rameters, whereas, the second uses the approximate marginal likelihood technique MPL.

viii



For each, the estimation of the location and scale parameters is discussed and computa-

tional algorithms are presented. For comparison, the heteroscedastic t for known degrees

of freedom using ML and the two new REML equivalents are illustrated with an example

and a comparative simulation study.

The model is then extended to incorporate the estimation of the degrees of freedom pa-

rameter. The estimating equations for the location and scale parameters under ML are

preserved and the estimation of the degrees of freedom parameter is integrated into the

algorithm. The approximate REML techniques are also extended. For the Partial Laplace

approximation the estimation of the degrees of freedom parameter is simultaneously es-

timated with the scale parameters and therefore the algorithm differs only slightly. The

second approximation uses SAPL to estimate the parameters and produces approximate

marginal likelihoods for the location, scale and degrees of freedom parameters. Com-

putational algorithms for each of the techniques are also presented. Several extensive

examples, as well as a comparative simulation study, are used to illustrate ML and the

two REML equivalents for the heteroscedastic t with unknown degrees of freedom.

The thesis is concluded with a discussion of the new techniques derived for the het-

eroscedastic t distribution along with their advantages and disadvantages. Topics of

further research are also discussed.
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Chapter 1

Introduction

1.1 Background

Homoscedasticity of the scale parameter is a common assumption in linear and non-linear

models. When the assumption of constant scale is violated the scale parameter is said

to be heterogeneous. One approach to rectify this violation is to transform the response

variable. For example, if the response is non-normally distributed a transformation can

sometimes be chosen to ensure a Gaussian assumption of the residuals. Examples of

this include the square root stabilizing transformation for a Poisson distributed response

and an arcsine transformation of a response that is Binomially distributed. More general

families of transformations that allow a degree of flexibility also exist (see Box & Meyer,

1986). A more comprehensive overview and discussion of methods to select the appropri-

ate transformation can be found in Cook & Weisberg (1982). The applicability of these

transformations, however, may be questionable if the location component of the model

still depends on the scale. Furthermore, the normality and additivity of the model may

be modified increasing the complexity of the analysis and interpretation.

Another type of heterogeneity, closely connected to this thesis, is when the variance is

modelled as a function of the location component of the model. This assumption is a

requirement for the class of Generalized Linear Models (see McCullagh & Nelder, 1989)

used to parametrically model selected types of non-normal data. These models are not

considered here.

In some cases modelling of the variance or scale parameter may be of some interest. In

this thesis a flexible approach to account for the heterogeneity is considered where the

scale parameter is modelled using covariates existing in the data. Previous research in this

area has been confined to exponential families (see Smyth, 1989) and, in particular, much

research has focussed on heteroscedastic regression using the Gaussian distribution (see

1
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Figure 1.1: Pairs plot of the cube root of Volume with two explanatory variables, Diameter

and Height

Aitkin, 1987; Verbyla, 1993; Smyth et al., 2001 and Smyth, 2002). This model, although

flexible, may still be deficient in some cases. For example, outliers may be present in

the data that cannot be accommodated by the heterogeneous scale parameter model.

For the heteroscedastic Gaussian, Verbyla (1993) presents a comprehensive overview of

diagnostics for determination of both location and scale parameter outliers. In some

cases the outliers may be genuine and then their accommodation, rather than deletion,

is important and a more robust modelling approach is required.

This thesis discusses a robust extension to the heteroscedastic Gaussian by considering

scale parameter modelling of the t-distribution. Identical to the Gaussian equivalent, the

location and scale parameters are modelled using covariates existing in the data providing

a flexible and computationally efficient methodology for handling robust data as well as

accommodating possible heteroscedasticity.

1.2 Motivation

1.2.1 Cherry Trees

The cherry tree data, Ryan et al. (1985), consists of volume measurements of harvestable

timber from 31 cherry trees. The explanatory variables are the measured diameter and

2
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Figure 1.2: Scatter plot of the log of the squared residuals against the fitted values after

fitting an additive location model. The dotted line is a local smoother to describe trend.

height of the trees. Early analysis (see Cook & Weisberg, 1982) suggests the cube root

of volume is an appropriate transformation of the response. Figure 1.1 shows the trans-

formed response with the two explanatory variables, Diameter and Height. As expected,

the diameter and height are positively related to the cube root of the volume. Therefore

an additive location model in Diameter and Height may be appropriate.

After fitting this simple location model the residuals can be explored. Figure 1.2 shows

the log of the squared residuals against the fitted values from the additive location model.

The dotted line is a local smoother to describe trend. The transformed residuals appear

to be quadratically related to the location component of the model suggesting possible

heterogeneity. The plot also displays potential outliers suggesting a robust approach to

modelling of the location and scale parameters. These models are explored further in

Chapter 7.

1.2.2 Rent for Land Planted With Alfalfa

In this example the relationship between the rent for agricultural land planted with alfalfa

crops and density of cows from 67 counties of Minnesota in the year 1977 (see Weisberg,

1985) is investigated. The data set contains the average rent per acre for the land planted

with alfalfa, average rent for all agricultural uses, density of cows per square mile (SC),

proportion of pastoral land and whether liming was required on the land (LI). As alfalfa is

a possible feed for dairy cows it is proposed that the rent for the land planted with alfalfa

3
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Figure 1.3: Scatter plot of the log relative rent of the land planted with alfalfa against

the square root of the dairy cow density per square mile.

relative to the rent for the other agricultural uses would be higher in high density dairy

cow areas. It is also proposed that this relative rent would also be lower in areas where

liming for alfalfa has occurred due to the additional expenses incurred. The natural log

of the relative rent against the square root of the density of cows is displayed in Figure

1.3.

A positive relationship is evident as well as heteroscedasticity that changes for each Liming

type. One approach to model the location component would be to consider an interaction

model for the square root density of the cows and each Liming type. The expected high

correlation between the proportion of pastoral land and the density of the cow population

allows the exclusion of pastoral land as a possible influencing covariate in the location

parameter model. After fitting this model the residuals are presented in Figure 1.4.

The skewness of the distributions suggests possible linear or non-linear heteroscedastic

components in the scale component of the model. These models are explored further in

Chapter 9.

1.2.3 Stack Loss data

The Brownlee (1965) stack loss data has been examined many times using various robust

methods. The data consists of oxidation rates of ammonia from plants measured over

a 21 day period. Possible influential explanatory variables, Water Temperature (WT),

Air Flow (AF) and Acid Concentration (AC) of the ammonia were also measured to help

4
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explain the variation in the oxidation rate. A pairs plot of the stack loss against the

three explanatory variables is given in Figure 1.5. The plot shows there is a positive

relationship between the oxidation rate of the plant and the three measured explanatory

variables. The variables also exhibit noticeable correlations between each other.

Previous methods of modelling the stack loss data include M-estimation by Andrews

(1974) and Huber (1981) as well as trimmed least squares utilised by Ruppert & Carroll

(1980). Nelder (2000) proposes a non-robust method by adopting a generalized linear

model that indicates there are no outliers in the data. In an illuminating paper, Lange

et al. (1989) suggests that the response may be t-distributed and analyse the data over

a range of degrees of freedom. For this example, the t-regression model of Lange et al.

(1989) is extended to show that the scale parameter is heteroscedastic in at least one of

the explanatory variables.

1.2.4 Martin Marietta Data

The relationship of the excess rate of returns of the Marietta company and an index

for the excess rate of return for the New York Exchange (CRSP) is the subject of this

motivating example. Both the rate of returns for the company and the CRSP index were

measured monthly over a period of five years and a scatterplot is provided in Figure

1.6. The plot suggests that there is a positive linear increase in the excess returns of
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the company when the CRSP index is higher. At the highest CRSP index the company

excess returns were more than twice the returns of any other period over the five years.

This outlier cannot be rejected and therefore a robust approach to analysis is required.

After a least squares or homoscedastic Gaussian fit to the data the residuals are inspected

and displayed in Figure 1.7. With the influence of an outlier the distribution of the

residuals display heavy tails and skewness to the right. To allow for this several modelling

approaches are possible. Jones (2001) and Azzalini & Capitanio (2003) have suggested a

skew t-distribution, an extension of the skew normal distribution researched by Azzalini

& Capitanio (1999). This approach is flexible when the residuals have a genuine pattern

of skewness. In this thesis an alternative flexible approach is discussed where the skewness

pattern of the residuals is modelled parametrically through the scale parameter of the

t-distribution.

1.3 Literature Review

Modelling the scale parameter using covariates available in the data has been discussed

in many areas of applied statistics. In the econometric literature, Park (1966) proposes a

log-linear model for the scale parameter and describes the Gaussian model using a two-

stage process to estimate the parameters. Harvey (1976) discusses Maximum Likelihood
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Figure 1.6: Scatter plot of the Martin Marietta company excess returns against the CRSP

index for the whole market.
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Figure 1.7: Histogram of the residuals from a Least Squares fit of Martin Marietta com-

pany excess returns against the CRSP index for the whole market.

(ML) estimation of the location and scale parameters and the subsequent likelihood ratio

test under general conditions. Aitkin (1987) provides ML estimation for a joint location

and scale model and applies it to the cherry tree data of Section 1.2.1. More recently scale

parameter models have been utilised in industrial statistics for unreplicated experiments

and process control (see Carroll & Ruppert, 1988; Nelder & Lee, 1991; Engel & Huele,
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1996 and Lee & Nelder, 1998).

The Gaussian location and scale model can be extended in a number of ways. Verbyla

(1993) estimates the parameters using Restricted Maximum Likelihood (REML) and

provides leverage and influence diagnostics for ML and REML. This extension provides

estimates of the scale parameters with reduced bias and allows the standard errors of both

the location and scale effects to be determined more accurately. This is a current area

of research and key references include Huele (1998), Huele & Engel (1998), Smyth et al.

(2001) and Smyth (2002). In the latter two of these papers a more general form for the

scale parameter is assumed. In particular, Smyth (2002) introduces a stepwise procedure

for the efficient calculation of the components of the scoring algorithm to estimate the

scale parameters. More general distributions from the family of generalized linear models

are considered by Smyth (1989), Nelder & Lee (1991) and Smyth & Verbyla (1999). In

these papers the location and scale parameters of the distribution are estimated using

double generalized linear models. A more flexible approach is considered by Rigby &

Stasinopoulos (1996a) and Rigby & Stasinopoulos (1996b) where the heterogeneity is

modelled semi-parametrically using smoothing splines.

It is common for the observables to contain outliers. If present, the Normality assumption

of the error distribution for the model is questionable and estimates of the parameters may

be misleading. Robust approaches to regression and outlier detection have an extensive

literature (see Huber, 1981; Cook & Weisberg, 1982; Atkinson, 1985 and Atkinson & Ri-

ani, 2000). If the outliers are considered to be genuine then their accommodation, rather

than deletion, is important and can sometimes be achieved with a t-distribution. Using

the t specification to model the observables has widely been considered a useful tool for ro-

bustifying an analysis. Fraser (1976), Fraser (1979) and West (1984) describe examples of

its use with simple general univariate linear models. For the multivariate t, Rubin (1983)

and Lange et al. (1989) discuss and exemplify the possibility of allowing for correlation

between observations. These important contributions discuss the estimation process for

a simple location and homogeneous scale parameter using the Expectation-Maximisation

(EM) algorithm. Little (1988) extends this multivariate approach by allowing for missing

values present in the response. These missing values can then be imputed by nesting them

in a modified version of the EM algorithm. Liu & Rubin (1994), Liu & Rubin (1995)

and Liu (1995) extend the EM algorithm further using the multivariate t-distribution as

basis for their derivations. Liu (1997) and Meng & van Dyk (1997) also exemplify its

use to coalesce the many modifications of the EM algorithm. Meng & van Dyk (1997)

describe a technique of expanding the parameter space whilst using the EM algorithm

(PX-EM) and apply this extension to the t-distribution. The PX-EM algorithm was then

formalised by Liu et al. (1998) and its efficiency gains recognised for the multivariate t.

Extensions of the t-distribution are also available. James et al. (1993) discusses t-REML,

a Restricted Maximum Likelihood approach to estimation of the parameters of the t-
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distribution. In this paper the location parameters are approximately conditioned out

of the marginal likelihood. It is found that this approach is equivalent to conditional

profile likelihood (see Cox & Reid, 1987). Welsh & Richardson (1997) discusses various

approaches of robust estimation using the t-distribution with the inclusion of random

effects in the location component of the model. These models are also presented in

Pinheiro et al. (2001), where the random effects are also distributed as t and therefore the

potential presence of outliers in both the random effects and the errors is accommodated

by a marginal t-distribution. The estimation of parameters is restricted to ML.

More recent advances include modelling using the multivariate skew t-distribution (see

Jones, 2001). Key references in this area include Azzalini & Capitanio (1999), Jones &

Faddy (2003) and Azzalini & Capitanio (2003).

In this thesis the t-distribution is extended by the inclusion of heteroscedasticity in the

scale parameter. The ML estimation and inference of the heteroscedastic t-distribution

is similar to Verbyla (1993). In particular, when the degrees of freedom is known, the

heteroscedastic t models and the simpler heteroscedastic Gaussian models from Verbyla

(1993) are derived from the location-scale family. The models diverge when the degrees

of freedom is unknown. Similar models may also be derived using generalized additive

models discussed in Rigby & Stasinopoulos (2005). A comprehensive overview of ML

estimation of the parameters of the heteroscedastic t-distribution can be found in Taylor

& Verbyla (2004).

To extend the t-distribution further two new approaches of obtaining an approximate

t-REML when the scale parameter is heteroscedastic are presented. Firstly, the Laplace

approximation is used to obtain an approximate marginal likelihood for the heteroscedas-

tic t-distribution. This type of approximation was derived originally by Erdelyi (1956)

and De Bruijn (1961) for numerical analysis. In the statistical literature, the Laplace

approximation was found useful in many areas. In Bayesian statistics Lindley (1980),

Tierney & Kadane (1986) and Tierney et al. (1989) discuss its use in evaluating pos-

terior means and variances of parameters of interest. Solomon & Cox (1992), Wolfinger

(1993), Breslow & Clayton (1993), McGilchrist (1994) and Engel & Keen (1994) use

this method to approximate the marginal likelihood for non-linear and generalized linear

mixed models. In these papers the location random effects are considered to be nuisance

parameters that require integrating out of a pseudo joint likelihood. This area of research

has flourished recently. Breslow & Lin (1995) and Lin & Breslow (1996) extend the work

of Breslow & Clayton (1993) by refining the estimates obtained from the approximate

marginal likelihood. Shun & McCallaugh (1995) and Shun (1997) obtain a more accurate

representation of the Laplace approximation to the marginal likelihood for generalised

linear mixed models by considering higher order terms. This has also been considered

by Raudenbush et al. (2000) for a logistic mixed model but is easily generalised to other

distributions of the exponential family. To obtain an approximate REML for the scale
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parameters of the heteroscedastic t-distribution an extension of Laplace’s method called

Partial Laplace is used. This new technique exploits the component form of the integrand

and allows the approximate marginal likelihood to be partitioned for separate estimation

of the location and scale parameters.

Secondly, adjusted likelihood techniques are used to modify the marginal likelihood due

to estimation of the nuisance parameters. An extensive overview of these techniques

can be found in Barndorff-Nielsen & Cox (1989) and Barndorff-Nielsen & Cox (1994).

The techniques considered here include Modified Profile Likelihood derived by Barndorff-

Nielsen (1980) and Barndorff-Nielsen (1983). Connected to this is Conditional Profile

Likelihood considered by Cox & Reid (1987). Both of these approaches require an an-

cillary statistic to be available to derive the modification terms. The latter of these two

approaches assume an orthogonalization of the nuisance parameter and the parameter

of interest to reduce the adjustment terms required (see the discussion of Cox & Reid,

1987). Comparisons of the two approximate marginal likelihood approaches has been

discussed in Cox & Reid (1987), Cox & Reid (1992) and Barndorff-Nielsen & McCullagh

(1993). Approximations to the Modified Profile Likelihood have also been derived by

Severini (1998). An extension of Modified Profile Likelihood considered in this thesis

is Stably Adjusted Profile Likelihood. This technique assumes no ancillary statistic is

available and therefore allows more complex distributions to be modified in the presence

of nuisance parameters. Important references in this area of research include Barndorff-

Nielsen (1994), Barndorff-Nielsen & Chamberlain (1994) and Barndorff-Nielsen & Cox

(1994). Stern (1997) discusses a more accurate extension of the Stable Adjusted Profile

Likelihood by considering a higher order expansion of the modification term.

1.4 Outline

To motivate proceeding chapters of this thesis, Chapter two reviews simple Gaussian

linear mixed models. The formulation of the marginal likelihood is discussed and the

Mixed Model Equations (MME) are derived for the location fixed and random effects.

To obtain an independent objective function for the variance (scale) parameters, the

marginal likelihood is partitioned to form a Restricted Maximum Likelihood (REML).

From this an iterative algorithm is derived to estimate the scale parameters.

Chapter three presents review theory on joint modelling of the location and scale pa-

rameters of the Gaussian distribution. Under a very general scale parameter model, ML

and REML techniques are used to obtain an algorithm with which to jointly estimate

the parameters. An asymptotic hypothesis test for heteroscedasticity is derived and a

computational algorithm to efficiently estimate the parameters using ML and REML is

supplied.
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Joint modelling of the location and scale parameters of the heteroscedastic t-distribution

when the degrees of freedom is known is the subject of the fourth chapter. This chapter

is restricted ML estimation of the location and scale parameters. Firstly, an overview of

the t-distribution and its connection to other distributions is provided. Scoring equations

for the location and scale parameters are determined for the heterogeneous case when

the degrees of freedom is known. An extension of the scoring algorithm is derived to

incorporate a mechanism to estimate the degrees of freedom parameter and its conver-

gence properties discussed. The prediction of the random scale effects is presented and

parameter inference is discussed. Asymptotic properties and tests are derived for the

location and scale parameters and a tool for determining heteroscdasticity is presented.

The chapter is concluded with a computational algorithm to estimate the parameters and

a description of the associated software.

Chapter five provides and overview of current asymptotic likelihood techniques required

in proceeding chapters of this thesis. In particular, the Laplace approximation to an

intractable integral is described for single and multidimensional nuisance parameters along

with an example of its use for linear mixed models and the heteroscedastic t-distribution.

An extension of the integral approximation that exploits the possible component form of

the integrand, called the Partial Laplace approximation, is also derived. The likelihoods

associated with the linear mixed model under REML are derived to exemplify its use.

Modified profile likelihood (MPL) and its extensions are discussed. In particular, the

Conditional Profile Likelihood (CPL) and Stably Adjusted Profile Likelihood (SAPL)

are described along with their connection to MPL.

The sixth chapter uses the approximate likelihood techniques of the previous chapter

to derive two alternate REML equivalents for the heteroscedastic t-distribution when

the degrees of freedom is known. Firstly, the Partial Laplace approximation is used to

obtain an approximate marginal likelihood which may be partitioned to estimate the

location and scale parameters separately. Prediction of the random scale effects and

an estimating equation for the location parameters is derived. A second approximate

t-REML is derived using MPL. The connection of the t with known degrees of freedom

to the location-scale family of distributions allows simplifications to occur and a simple

computational algorithm is discussed.

The seventh chapter contains an example and simulations using the heteroscedastic t-

distribution under ML and the approximate t-REML methods derived in chapter four and

six respectively. The example compares the heteroscedastic Gaussian and t under ML for

a variety of scale parameter models. Similarly, comparisons of heteroscedastic Gaussian

and t under REML are performed and compared to their ML equivalents. Simulations

are also performed to understand the properties of the location and scale estimators using

ML and t-REML. Empirical means and standard errors for the parameters are provided

and, for the latter case, compared to theoretical standard errors. Performance plots from
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the simulations are also presented to display the bias adjustment to the scale parameter

estimates obtained from the approximate t-REML methods.

The eighth chapter focuses on joint modelling of the location and scale parameters of the

heteroscedastic t-distribution when the degrees of freedom is unknown. This extends the

results of chapter four and six. Under ML, a parameter orthogonalization is derived to

ensure the computational algorithm to estimate the location and scale parameters derived

in chapter four can be maintained. Estimation of the degrees of freedom parameter is

then appended to this algorithm. The Partial Laplace approximation to obtain a t-REML

equivalent is discussed and requires only a small adjustment to the approximate t-REML

derived by Partial Laplace in chapter six. A second t-REML is also derived using Stably

Adjusted Profile Likelihood (SAPL). For each parameter of interest the marginal profile

likelihood is adjusted for the nuisance parameters to form a set of Stably Adjusted Profile

Likelihoods.

To illustrate the extensions derived in the previous chapter, chapter nine presents the

analysis of several examples data sets. Comparisons between the ML and t-REML mod-

els are presented where possible and, for one example, profiling of the scale and degrees

of freedom parameters is shown for the more complex t-REML methods derived in this

thesis. A simulation study is also conducted to understand the properties of the parame-

ters for the ML and approximate t-REML approaches of the previous chapter. Identical

to chapter seven, empirical means and standard errors are presented for all methods and,

for the latter, compared to the ML theoretical standard errors. Performance plots are

presented for both approximate t-REML methods to determine the bias adjustment to

the estimated scale parameters obtained from using a REML construct.

The thesis concludes with a summary and discussion of the advantages and disadvan-

tages of the ML and approximate REML approaches derived for the heteroscedastic

t-distribution as well as topics for further research.
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Chapter 2

Linear Mixed Effects Models

This chapter describes a class of statistical models called linear mixed models. In ordinary

linear models the explanatory variables are considered to be fixed, whereas, in mixed

models some variables can be considered to have been sampled from a larger population

with an assumed known distribution. Typically, these new variables are called random

effects.

The mixed models considered in this chapter are used to motivate the forthcoming chap-

ters of this thesis. In particular, Section 2.3 discusses Restricted Maximum Likelihood

(REML). This methodology is used estimate the scale parameters associated with the

random effects or error component of the linear mixed model whilst allowing for the loss

of degrees of freedom when estimating the location parameters. In the forthcoming chap-

ters this technique is applied to various models including the heteroscedastic Gaussian

and the heteroscedastic t-distribution. This chapter also motivates two theoretical ex-

amples presented in Chapter 5 Section 5.1. These examples discuss the derivation of the

marginal likelihood for the linear mixed models using an integration technique called the

Laplace approximation. These derivations are shown to be equivalent to the derivations

considered in this chapter.

2.1 Introduction and Notation

Let y = (y1, . . . , yn) be a vector of responses and consider the general linear model defined

by

y = Xβ +Zu+ e (2.1.1)
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where X and Z to be n×p and n× r matrices of explanatory variables respectively, β is

vector of length p of unknown parameters and the joint distribution of (u, e) is given by
[

u

e

]

∼ N

([

0

0

]

,

[

G(ϕ) 0

0 R(γ)

])

(2.1.2)

where ϕ and γ are scale parameters associated with u and e respectively. Generally,

the random effects are of the form u = (u1, . . . ,uq) where ui is a vector of length

ri × 1 representing the ith random effect. The associated design matrices are then of

the form Z = (Z1, . . . ,Zq). Following this, Var[ui] = Gi for i = 1, . . . , q and, generally,

Cov(ui,uj) = 0 for all i 6= j, i, j = 1, . . . , q suggesting that G is block diagonal with ith

matrix Gi.

The form of the matrix R varies according to the dependence between the observations.

For example, in a multi-site spatial analysis of a field trial, similar to the variance matrix

for the random effects, Var[e] = diag(Rj), j = 1, . . . , s where s is the number of defined

sites used in the experiment.

In this thesis a simplified model is used where q = 1 and s = 1.

2.1.1 Marginalising the Likelihood

Under the assumptions of the previous section the conditional distribution of y|u and

marginal distribution of u can be expressed as

y|u ∼ N(Xβ +Zu,R)

u ∼ N(0,G)

Let θ = (γ,ϕ) be the vector of scale parameters from the matrices R and G respectively.

The marginal likelihood can be expressed as the product of the conditional probability

density function of yi|u, i = 1, . . . , n and the probability distribution function of u

integrated over the range of the unobserved random effects, namely

L(β, θ;y) =

∫

Rr

p(y|u;β, θ)p(u;ϕ)du

where Rr is an r-dimensional subspace of R and

p(y|u;β, θ) = (2π)−n/2|R|−1/2 exp
{

−1
2
(y −Xβ −Zu)TR−1(y −Xβ −Zu)

}

p(u;ϕ) = (2π)−r/2|G|−1/2 exp
{

−1
2
uTG−1u

} (2.1.3)

The marginal likelihood can then be expressed as

L(β, θ;y) = (2π)−(n+r)/2|R|−1/2|G|−1/2

×

∫

Rr

exp
{

− 1
2
(y −Xβ −Zu)TR−1(y −Xβ −Zu) − 1

2
uTG−1u

}

du (2.1.4)
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Let

y∗ = (ZTR−1Z +G−1)−1ZTR−1y

X∗ = (ZTR−1Z +G−1)−1ZTR−1X

be transformations of the response vector and the explanatory design matrix for the

location effects respectively. Then the marginal likelihood can be written as

L(β, θ;y) = (2π)−(n+r)/2|R|−1/2|G|−1/2

× exp
{

−1
2
(y −Xβ)T (R−1 −R−1Z(ZTR−1Z +G−1)−1ZTR−1)(y −Xβ)

}

×

∫

Rr

exp
{

−1
2
(u− (y∗ −X∗β))T (ZTR−1Z +G−1)(u− (y∗ −X∗β))

}

du

The term in the exponent of the integrand is the standard quadratic form for u with

expectation y∗−X∗β and variance (ZTR−1Z+G−1). Integrating over these effects and

using Result A.3.1 allows the marginal likelihood given in (2.1.4) to be reduced to

L(β, θ;y) = (2π)−n/2|G|−1/2|R|−1/2|ZTR−1Z +G−1|−1/2

× exp
{

−1
2
(y −Xβ)TH−1(y −Xβ)

}

where H = (ZGZT +R). This can be simplified again by amalgamating the determi-

nants

|G|−1/2|R|−1/2|ZTR−1Z +G−1|−1/2

= |R|−1/2|ZTR−1ZG+ Ir|
−1/2

= |R|−1/2|R−1ZGZT + In|
−1/2 (using Result A.2.2)

= |ZGZT +R|−1/2

The final form for the marginal log-likelihood can be expressed as

ℓ(β, θ;y) = −
n

2
log 2π −

1

2
log |H| −

1

2
(y −Xβ)TH−1(y −Xβ) (2.1.5)

so that y ∼ N(Xβ,H). A comparative approach using the Laplace approximation is

presented in Section 5.1.2.

2.2 Prediction and Estimation

Suppose for given a1 and a2 we wish to predict aT
1 β + aT

2u using a linear function of

the data y, that is by αTy for some α. The α is chosen such that the predictor has

minimum mean square error (MMSE) among a class of unbiased linear predictors.
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The unbiasedness constraint can be expressed as

E[αTy] = E[aT
1 β + aT

2u]

⇒ αTXβ = aT
1 β

⇒ XTα = a1 (2.2.1)

The mean square error (MSE) is defined as

MSE = E[(αTy − aT
1 β − aT

2u)2]

= E[(αTy − aT
2u)2] + E[(aT

1 β)2] − 2E[αTy − aT
2u]E[aT

1 β]

= Var[αTy − aT
2u] + (E[αTy − aT

2u])2 + E[(aT
1 β)2] − 2E[αTy − aT

2u]E[aT
1 β]

= Var[αTy − aT
2u] + (aT

1Xβ − aT
1 β)2

= Var[αTy − aT
2u] (using (2.2.1))

Noting that Cov[y,u] = ZG the MSE can be expressed as

MSE = αTHα− 2αTZGa2 + aT
2Ga2

Under the constraint of unbiasedness the function that requires minimisation uses La-

grange Multipliers and can be expressed as

CM = αTHα− 2αTZGa2 + aT
2Ga2 + 2λT (a1 −X

Tα),

where λ is a n × 1 vector of Lagrange Multipliers. To minimise this Lagrange equation

the derivatives with respect to α and the Langragian multipliers, λ are required, namely

∂CM

∂α
=2
(

Hα−ZGa2 −Xλ
)

∂CM

∂λ
=2
(

a1 −X
Tα
)

Equating these equations to zero and solving for α and a gives

α = H−1(ZGa2 +Xλ) (2.2.2)

a1 = Xα (2.2.3)

Substituting (2.2.2) into the unbiasedness constraint, (2.2.3), the Lagrange Multiplier can

be expressed as

λ = (XTH−1X)−1(a1 −X
TH−1ZGa2)

Replacing λ in (2.2.2) gives

α = H−1X(XTH−1X)−1a1 + (H−1 −H−1X(XTH−1X)−1XTH−1)ZGa2.
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Therefore the linear estimator can be written in the form

αTy = aT
1 (XTH−1X)−1XTH−1y + aT

2GZ
TPy

= aT
1 β̂ + aT

2 ũ

where P = H−1 −H−1X(XTH−1X)−1XTH−1. Here, β̂ is known as the best linear

unbiased estimator (BLUE) of the location effects parameter, β and ũ is the best linear

unbiased predictor (BLUP) for the random effect variable, u. A comprehensive review

of BLUP can be found in Robinson (1991).

2.2.1 Mixed Model Equations

Consider the BLUP for the random effects, ũ, from the previous section. This may be

expressed as

ũ = GZTPy (2.2.4)

= GZTH−1(I −X(XTH−1X)−1XTH−1)y

= GZT (ZGZT +R)−1(y −Xβ̂)

= (ZTR−1Z +G−1)−1ZTR−1(y −Xβ̂) (using Result A.3.2) (2.2.5)

Similarly the location parameter estimator may be rearranged to give

β̂ = (XTH−1X)−1XTH−1y (2.2.6)

= (XT (R−1 −R−1Z(ZTR−1Z +G−1)−1ZTR−1)X)−1

× XT (R−1 −R−1Z(ZTR−1Z +G−1)−1ZTR−1)y (using Result A.3.1)

= (XTR−1X)−1XTR−1(y −Zũ) (using (2.2.5)) (2.2.7)

Using (2.2.5) and (2.2.7) gives the mixed model equations (MME) as

[

XTR−1X XTR−1Z

ZTR−1X ZTR−1Z +G−1

][

β̂

ũ

]

=

[

XTR−1y

ZTR−1y

]

(2.2.8)

These equations were originally derived by Henderson (1953) and have been widely used

to understand mixed models. Henderson also derived a secondary justification for the

estimates, β̂ and ũ, from the joint distribution of y and u. A maximising objective

function for (y,u) can be expressed as

L(β, θ;y,u) = L(β, θ;y|u)L(ϕ;u)

where L(·;y|u) and L(·;u) are defined by (2.1.3). Note, as u is unobserved, L(·;y|u) is

not a true likelihood for the conditional distribution of y given u and therefore neither
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is L(·;y,u). Omitting constants and using (2.1.3) this pseudo joint log-likelihood can be

expressed as

ℓ(β, θ;y,u) = −
1

2

{

log|R| + (y −Xβ −Zu)TR−1(y −Xβ −Zu)
}

−
1

2

{

log|G| + uTG−1u
}

Taking derivatives with respect to β and u gives

∂ℓ(β, θ;y,u)

∂β
= XTR−1(y −Xβ −Zu)

∂ℓ(β, θ;y,u)

∂u
= ZTR−1(y −Xβ) − (ZTR−1Z +G−1)u

Equating the derivatives to zero provides a solution equivalent to the mixed model equa-

tions given by (2.2.8).

The residuals for the linear mixed effects model considered in (2.1.1) can be written as

ẽ = y −Xβ̂ −Zũ

= y −X(XTH−1X)−1XTH−1y −ZGZTPy

= H(H−1 −H−1X(XTH−1X)−1XTH−1)y − (H −R)Py

= RPy

2.3 Scale Parameter Estimation

Depending on the data the scale parameters may be estimated efficiently in several ways.

If the data is balanced and the scale parameter structures are simplistic, ANOVA tables

can be used to provide estimates for the scale parameters. When the data are unbalanced

or the scale parameter structures are complex Maximum Likelihood (ML) can be used

to estimate the parameters. It is well known that ML produces biased scale parameter

estimates when the data are unbalanced. An alternative method of estimating the location

and scale parameters is to use Residual/Restricted Maximum Likelihood (REML) (see

Patterson & Thompson, 1971). REML allows for the loss of degrees of freedom when

estimating the location parameters and therefore produces less biased scale parameter

estimates than ML.

2.3.1 Restricted Maximum Likelihood

Several derivations of REML for mixed models are available. A convenient conditional

derivation was presented by Verbyla (1990) and is presented in this section.
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Verbyla (1990) considers a non-singular matrix L =
[

L1,L2

]T
where L1 and L2 are

n× p and n× (n− p) matrices respectively. These matrices are chosen to satisfy specific

conditions, namely,

LT
1X = Ip and LT

2X = 0 (2.3.1)

Transforming y the joint distribution of (y,u) can be expressed as







LT
1 y

LT
2 y

u






=







y1

y2

u






∼ N













β

0

0






, σ2







LT
1RL1 LT

1RL2 LT
1ZG

LT
2RL1 LT

2RL2 LT
2ZG

GZTL1 GZTL2 ZGZT













Integrating out the random effects the marginal distribution can be immediately written

as
[

LT
1 y

LT
2 y

]

=

[

y1

y2

]

∼ N

([

β

0

]

, σ2

[

LT
1HL1 LT

1HL2

LT
2HL1 LT

2HL2

])

(2.3.2)

where H is defined in the previous section and is a function of the scale parameters,

θ = (γ,ϕ). This new partitioned response vector also has a Gaussian distribution and

assumes a joint likelihood of the form,

L(β, θ;y1,y2) = L(β, θ;y1|y2)L(θ;y2) (2.3.3)

where, using Result A.4.2, the conditional distribution of y1 given y2 has the form

y1

∣

∣y2 ∼ N
(

β +LT
1HL2(L

T
2HL2)

−1y2,L
T
1HL1 −L

T
1HL2(L

T
2HL2)

−1LT
2HL1

)

(2.3.4)

and the marginal distribution of y2 is

y2 ∼ N(0,LT
2HL2) (2.3.5)

Noting (2.3.1) and Result A.5.1 the conditional distribution can be simplified to

y1

∣

∣y2 ∼ N
(

β + y∗
2, (X

TH−1X)−1
)

.

where y∗
2 = LT

1HL2(L
T
2HL2)

−1y2. The log-likelihood, of this distribution omitting

constant terms, is

ℓ(β, θ;y1|y2) = 1
2

{

log |XTH−1X| − (y1 − β − y∗
2)

TXTH−1X(y1 − β − y∗
2)
}

(2.3.6)

To estimate the fixed location parameters, the derivative of this conditional likelihood is

required,

∂ℓ(β, θ;y1|y2)

∂β
= XTH−1X(y1 − β − y∗

2).
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Equating this equation to zero the location parameters can be expressed as

β̂ = LT
1 (I −HL2(L

T
2HL2)

−1LT
2 )y

= LT
1 {I −H(H−1 −H−1X(XTH−1X)−1XTH−1)}y (using Result A.5.1)

= (XTH−1X)−1XTH−1y (using (2.3.1))

This estimate for β is identical to the location parameter estimate derived in Section

2.2. This crucial step in the estimation of the location parameters describes Restricted

Maximum Likelihood as more than a marginal likelihood approach to parameter maximi-

sation.

In particular, the columns of the transformation matrix L1 define a set of location pa-

rameter contrast vectors, li, i = 1, . . . , p to estimate the location fixed effects. Therefore

p degrees of freedom have been utilised. Furthermore, under this transformation, the

residuals from the conditional likelihood, y1 − β̂ − y∗
2 = 0P . Therefore the conditional

likelihood cannot be used to estimate the remaining scale parameters θ as the maximal

set of contrasts have been applied.

Estimates of the scale parameters are found using the marginal likelihood, ℓ(θ;y2). Thus,

the columns of L2 define a set of n− p error or residual contrasts with expectation zero.

Using (2.3.5) the marginal log-likelihood can be written as, omitting constant terms,

ℓ(θ;y2) = −1
2

{

log
∣

∣LT
2HL2

∣

∣ + yTL2(L
T
2HL2)

−1LT
2 y
}

Using the determinants from the conditional and the marginal likelihood it can be seen

that

log |LTHL| = log |LT
2HL| − log

∣

∣XTH−1X
∣

∣

⇒ log |LT
2HL2| = log |LTL| + log |H| + log |XTH−1X|

If P = H−1 −H−1X(XTH−1X)−1XTH−1, then using Result A.5.1 the marginal log-

likelihood, ignoring constants, can be rewritten as

ℓ(θ;y) = −1
2

{

log |H| + log |XTH−1X| + yTPy
}

(2.3.7)

Noting that

HPy = y −X(XTH−1X)−1XTH−1y

= y −Xβ̂

the quadratic form of the Restricted Maximum Likelihood for y2 given in (2.3.7) can also

be expressed as

yTPy = yTPHPy (using Result A.5.2)

= yTPHH−1HPy

= (y −Xβ̂)TH−1(y −Xβ̂)

This result will be used in the forthcoming chapters.
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2.3.2 Estimation of the Scale Parameters

Estimates of the scale parameters under Restricted Maximum Likelihood are found by

solving the REML score equations given by

∂ℓ(θ;y)

∂θi
= U(θi) = 0 (2.3.8)

for i = 1, . . . , s where s is the number of scale parameters.

Let Ḣ i be the derivative of scale parameter matrixH with respect to θi. Then the partial

derivatives of the determinant terms of (2.3.7) with respect to θi gives

∂

∂θi

(

log|H| + log|XTH−1X|
)

= tr(H−1Ḣ i) − tr((XTH−1X)−1XH−1Ḣ iH
−1X)

= tr(H−1Ḣ i) − tr(H−1X(XTH−1X)−1XH−1Ḣ i)

= tr(PḢ i)

The partial derivative of the quadratic form of (2.3.7) with respect to θi is

∂

∂θi

(

yTPy
)

= −yTPḢ iPy (using Result A.5.3)

The REML score equations can then be expressed as

U(θi) = −
1

2
tr(PḢ i) +

1

2
yTPḢ iPy (2.3.9)

for i = 1, . . . , n. This system of equations is generally not explicitly solvable due to

the non-linearity of the scale parameters in U(·). Commonly, a linearisation of the score

function is used to derive an iterative approach. The first term of a Taylor series expansion

around the mth iterate, θ(m) becomes

U(θ) = U(θ(m)) +
∂U (θ)

∂θ

∣

∣

∣

∣

θ=θ(m)

(θ − θ(m))

(2.3.10)

The score equation is then solved by equating the RHS to zero giving

θ = θ(m) +
(

Io(θ
(m), θ(m))

)−1
U(θ(m)) (2.3.11)

where Io(θ, θ) = −∂U (θ)/∂θ is the observed information for θ. This iterative process

is known as the Newton-Raphson algorithm. Therefore given the mth iterate, θ(m), θ is

using the RHS of (2.3.11) to obtain θ(m+1). This process is repeated until |θ(m+1)−θ(m)| <

ǫ, where ǫ is some predefined tolerance.

The elements of the observed information can be derived by taking the derivative of the

score function derived in (2.3.9). The derivative of its trace term with respect to θj is

∂

∂θj

(

tr(PḢ i)
)

= tr(PḢ ij) − tr(PḢjPḢ i) (using Result A.5.3)
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The derivative of the quadratic form remaining in (2.3.9) with respect to θj is

∂

∂θj

(

yTPḢ iPy
)

= yTPḢ ijPy − 2yTPḢjPḢ iPy (using Result A.5.3)

Therefore the ijth element of the observed information can be written as

Io(θi, θj) =
1

2
tr(PḢ ij) −

1

2
tr(PḢjPḢ i) −

1

2
yTPḢ ijPy + yTPḢjPḢ iPy (2.3.12)

An alternative algorithmic process known as Fisher scoring is also often used to solve

the REML score equations. This requires the elements of the observed information in

(2.3.11) to be replaced with the elements of the expected information, where the expected

information is defined by

Ie(θi, θj) = E
[

−
∂2ℓ(θ,y)

∂θi∂θj

]

= E
[

Io(θi, θj)
]

for i, j = 1, . . . , n. Taking expectations of the ijth element of the observed information

the ijth element of the expected information becomes

Ie(θi, θj) =
1

2
tr(PḢ ij) −

1

2
tr(PḢjPḢ i) −

1

2
tr(HPḢ ijP ) −

1

2
βTXTPḢ ijPXβ

+ tr(HPḢjPḢ iP ) + βTXTPḢjPḢ iPXβ (using Result A.4.1)

=
1

2
tr(PḢ ij) −

1

2
tr(PḢjPḢ i) −

1

2
tr(PHPḢ ij) + tr(PHPḢjPḢ i)

=
1

2
tr(PḢjPḢ i) (using Result A.5.2)
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Chapter 3

Location and Scale Parameter

Modelling of the heteroscedastic

Gaussian Distribution

The general framework of the linear mixed model formulation of the previous chapter

allows for variance or correlation structures to determine the dependence between the

observations. In some instances the variance of the observations may change in magnitude

according to covariates existing in the data. This type of heterogeneity can be flexibly

modelled without any alteration to the distribution assumed for the response.

This chapter reviews location and scale parameter modelling of the Gaussian distribution

using a very general scale parameter model. The models considered here are similar to the

ones investigated in Smyth et al. (2001) and Smyth (2002). In particular, methodology

for ML and REML estimation of the location and scale parameters is discussed and

techniques for efficient calculation of their components is investigated.

As the heteroscedastic Gaussian and the heteroscedastic t with known degrees of free-

dom are members of the location-scale family this chapter motivates the research of the

heteroscedastic t in the forthcoming chapters.

3.1 Introduction and Notation

Consider the linear model expressed by,

y = Xβ + ǫ, (3.1.1)

where yi is the ith observed response, i = 1, . . . , n, X is an n× p matrix of explanatory

variables and ǫi ∼ N(0, σ2
i ).
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Consider a new form for the scale parameter of the ith response.

σ2
i = σ2(zi;λ) (3.1.2)

where zi is a 1 × q vector of explanatory variables that may have common components

to xi from the mean component of the model given in (3.1.1). This generality allows λ

to be modelled non-linearly if required.

A common simplification for (3.1.2) is to use the natural log as a functional link to a

linear predictor, namely

log σ2
i = zT

i λ, or σ2
i = exp(zT

i λ) (3.1.3)

to provide positive definiteness to the diagonal scale matrix, Σ. Common references for

such models are Aitkin (1987), Verbyla (1993) and Smyth (2002).

3.2 Maximum Likelihood

The likelihood for (3.1.1) can be immediately written as

L(β,λ;y) = (2π)−n/2|Σ|−1/2 exp
{

−1
2
(y −Xβ)TΣ−1(y −Xβ)

}

(3.2.1)

As the scale matrix is diagonal the log-likelihood, omitting constants, is

ℓ(β,λ;y) = −
1

2
log

n
∏

i=1

σ2(zi;λ) −
1

2

n
∑

i=1

(yi − x
T
i β)2

σ2
i (zi;λ)

= −
1

2

{

n
∑

i=1

log σ2
i +

n
∑

i=1

di

σ2
i

}

(3.2.2)

where di = (yi −x
T
i β)2 and σ2

i = σ2(zi;λ). This likelihood can be viewed in two distinct

ways. Firstly, it represents a likelihood for a simple linear model where, for the ith

response, yi, it has location xT
i β and scale parameter σ2

i . Secondly it can be viewed as a

likelihood for a Gamma generalized linear model with ith response di, location σ2
i and a

common scale parameter equal to 2.

3.2.1 Score Equations

Let θ = (β,λ). The scale parameters appear non-linearly in the proposed likelihood

given in (3.2.2). This suggests that an iterative approach to estimate the location and

scale parameters is required. Using Section (2.3.2) estimates can be obtained by solving

a system of score equations given as

U(θ) =

[

U(β)

U(λ)

]

=

[

∂ℓ(β,λ;y)/∂β

∂ℓ(β,λ;y)/∂λ

]

=

[

0

0

]
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Partially differentiating (3.2.2) with respect to the lth location parameter βl and the jth

scale parameter λj gives

∂ℓ(β,λ;y)

∂βl

=
n
∑

i=1

(yi − x
T
i β)

σ2
i

xil (3.2.3)

∂ℓ(β,λ;y)

∂λj
=

1

2

n
∑

i=1

{

di

(σ2
i )

2

∂σ2
i

∂λj
−

1

σ2
i

∂σ2
i

∂λj

}

=
1

2

n
∑

i=1

{

ṡij

σ2
i

(

di

σ2
i

− 1

)}

(3.2.4)

where ṡij = ∂σ2
i /∂λj . Let Ṡ be a n× q matrix of partial derivatives with ijth element ṡij

and d be a vector of length n with ith element di = (yi −x
T
i β)2 then the score equations

can be written as

U (θ) =

[

U (β)

U(λ)

]

=

[

XT Σ−1(y −Xβ)
1
2
Ṡ

T
Σ−1(Σ−1d− 1n)

]

(3.2.5)

As E[y] = Xβ and E[d] = Σ1n the score equations are unbiased.

3.2.2 Solving the Score Equations

Section 2.3.2 proposed a linearisation of the score functions to obtain an iterative solution

known as the Newton-Raphson algorithm defined by where at the mth iterate, is defined

by

θ(m+1) = θm) +
(

Io(θm, θm)
)−1
U(θm) (3.2.6)

where Io(θ, θ) is the observed information,

Io(θ, θ) =

[

Io(β,β) Io(β,λ)

Io(λ,β) Io(λ,λ)

]

To obtain this the elements of the score functions (3.2.3) and (3.2.4) are partially dif-

ferentiated with respect to βm and λk. Let ṡi(jk) = ∂sij/∂λk. The observed information

elements can then be expressed as

Io(βl, βm) = −∂U (βl)/∂βm =

n
∑

i=1

xilxim

σ2
i

Io(λj, βm) = −∂U (λl)/∂βm =
1

2

n
∑

i=1

(yi − x
T
i β)

(σ2
i )

2
ximṡij

Io(λj, λk) = −∂U (λj)/∂λk =
1

2

n
∑

i=1

{

2di

(σ2
i )

3
ṡij ṡik −

di

(σ2
i )

2
ṡi(jk) −

1

(σ2
i )

2
ṡij ṡik +

1

σ2
i

ṡi(jk)

}

=
1

2

n
∑

i=1

{

ṡij

σ2
i

(

2di

σ2
i

− 1

)

ṡik

σ2
i

−
ṡi(jk)

σ2
i

(

di

σ2
i

− 1

)}
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In matrix notation the observed information can be written as

Io(θ, θ) =

[

XTΣ−1X XTΣ−1D1/2Σ−1Ṡ

XTΣ−1D1/2Σ−1Ṡ (Ṡ
T
Σ−1(2Σ−1D − I)Σ−1Ṡ +K)/2

]

where D is a diagonal matrix with ith diagonal element (y − xT
i β)2 and

K = [Kjk] =
n
∑

i=1

ṡi(jk)

σ2
i

(

di

σ2
i

− 1

)

As noted in Section 2.3.2 the observed information can be replaced with the expected

information in (3.2.6) to obtain a Fisher scoring algorithm. Noting that E[D] = Σ and

E[D1/2] = 0 and taking expectations of the observed information the expected informa-

tion for (β,λ) can be immediately written as

Ie(θ, θ) =

[

XTΣ−1X 0

0 Ṡ
T
Σ−2Ṡ/2

]

.

Therefore the location and scale parameters are mutually orthogonal. The expected

information, and this property of orthogonality, can also be derived by taking the variance

of the score function defined in (3.2.5). The variance of the score function for β is then

Var
[

U(β)
]

= XTΣ−1Var [y]Σ−1X

= XTΣ−1X = Ie(β,β)

Recognising higher moments of the multivariate normal distribution, the variance of the

score function for λ is

Var [U(λ)] =
1

4
ṠΣ−1Σ−1Var [d]Σ−1Σ−1Ṡ

=
1

4
ṠΣ−2

{

E
[

ddT
]

− E [d] E
[

dT
]}

Σ−2Ṡ

=
1

4
ṠΣ−2

{

3Σ2 −Σ2
}

Σ−2Ṡ

=
1

2
ṠΣ−2Ṡ = Ie(λ,λ)

The orthogonality of the parameters (β,λ) can be shown by taking the covariance of the

score functions, namely

Cov [U (β),U(λ)] = E
[

U (β)U(λ)T
]

=
1

2
XTΣ−1E

[

(y −Xβ)(1n − Σ−1d)T
]

Σ−1Ṡ

=
1

2
XTΣ−1

{

E
[

(y −Xβ)1T
n

]

− E
[

(y −Xβ)dTΣ−1
]}

Σ−1Ṡ

= 0 = Ie(β,λ)
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Due to the orthogonality of the location and scale parameters the Fisher scoring algorithm

can proceed independently for each parameter. Using (3.2.6), the scoring equations for

the mth iteration can be written as

β(m+1) = fg(βm,λ) = (XTΣ−1
m X)−1XTΣ−1

m y (3.2.7)

λ(m+1) = λm + (Ṡ
T

mΣ−2
m Ṡm)−1Ṡ

T

mΣ−1
m (Σ−1

m d− 1n)

= gg(β,λm) = (Ṡ
T

mΣ−2
m Ṡ)−1Ṡ

T

mΣ−2
m dm (3.2.8)

where

dm = d−Σm1n + Ṡmλm

Thus, for given λ, (3.2.7) is a weighted regression to estimate β with weights (σ2
i )

−1. For

given β, (3.2.8) is an iteratively reweighted least squares procedure with weights (σ2
i )

−2

and working variate dm generated from a Gamma generalised linear model (see Verbyla,

1993; Smyth, 2002).

If λ is present in the scale parameter log-linearly then (3.1.2) can be expressed as (3.1.3).

Under this simplified scale parameter model,

∂σ2
i

∂λj
= σ2

i zij = ṡij

and therefore Ṡ = ΣZ and the scoring equation for the (m+ 1)th iteration of the scale

parameter model is reduced to

λ(m+1) = (ZTZ)−1ZT (Σ−1
m d− 1n +Zλm) (3.2.9)

noted by Verbyla (1993).

3.3 Restricted Maximum Likelihood

The ML method described in the previous section requires iterative estimation of the

scale parameters jointly with the location parameters. As discussed in Section 2.3, this

method produces biased estimates of the scale parameters. This bias may be alleviated

by estimation of the parameters using Restricted Maximum Likelihood (REML).

Consider the linear model, (3.1.1) where the scale parameter model is defined by (3.1.2).

Using (2.3.7) from Section 2.3 the marginal log-likelihood for λ, omitting constants, can

be immediately written as

ℓ(λ;y) = −
1

2

{

log|XTΣ−1X| +

n
∑

i=1

logσ2(zi;λ) +

n
∑

i=1

(yi − x
T
i β̂)2

σ2
i (zi;λ)

}

= −
1

2

{

log|XTΣ−1X| +
n
∑

i=1

logσ2
i + yTPy

}
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where P = Σ−1 −Σ−1X(XTΣ−1X)−1XTΣ−1 and β̂ is the REML estimate for β found

by maximising the conditional log-likelihood, ℓ(β,λ;y1|y2) given by

ℓ(β,λ;y1|y2) = 1
2

{

|XTΣ−1X | − (y1 − β − y∗
2)

TXTΣ−1X(y1 − β − y∗
2)
}

Following from Section 2.3 the REML estimate for β is equivalent to the ML estimate

given by (3.2.7).

3.3.1 REML Scoring Equation

To obtain an estimate for λ the REML scoring equations defined by (2.3.8) require solving.

As the scale parameters for the location scale model in this chapter are functions of the

scale matrix Σ the derivations of Section 2.3.2 may be used. Therefore, using (2.3.9), the

score function for the jth scale parameter can be immediately written as

U r(λj) = −
1

2
tr(P Σ̇j) +

1

2
yTP Σ̇jPy

where Σ̇j is a diagonal matrix with ith diagonal element ∂σ2
i /∂λj . Expanding this the

score function can be written as

U r(λj) = −
1

2

{

tr(Σ−1Σ̇j) − tr(Σ−1X(XTΣ−1X)−1XTΣ−1Σ̇j)
}

+
1

2
(y −Xβ̂)TΣ−1Σ̇jΣ

−1(y −Xβ̂)

Let H = H(λ) = Σ−1/2X(XTΣ−1X)−1XTΣ−1/2 be the ”hat matrix” (see Cook &

Weisberg, 1982 and Cook & Weisberg, 1983) and hii = (σ2
i )

−1xT
i (XT Σ−1X)−1xi be its

ith diagonal element. Then as the scale matrix is diagonal the score equation can be

reduced to

U r(λj) = −
1

2

n
∑

i=1

1

σ2
i

∂σ2
i

∂λj
+

1

2

n
∑

i=1

hii

σ2
i

∂σ2
i

∂λj
+

1

2

n
∑

i=1

d̂i

(σ2
i )

2

∂σ2
i

∂λj
(3.3.1)

= −
1

2

n
∑

i=1

1

σ2
i

ṡij +
1

2

n
∑

i=1

hii

σ2
i

ṡij +
1

2

n
∑

i=1

d̂i

(σ2
i )

2
ṡij

where ṡij = ∂σ2
i /∂λj , d̂i = (yi − x

T
i β̂)2, and hii is the ith diagonal element of H . Let ṡi

be the ith row of the matrix Ṡ defined in the previous section. The score for the vector

of scale parameters can then be expressed as

U r(λ) =
1

2

n
∑

i=1

ṡi

σ2
i

( d̂i

σ2
i

+ hii − 1
)

=
1

2
Ṡ

T
Σ−1

(

Σ−1d̂− 1n + h
)

(3.3.2)

where d̂ has ith element d̂i and h = (h11, . . . , hnn).
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3.3.2 Adjusted Profile Score

McCullagh & Tibshirani (1990) show that the REML score equation (3.3.2) can be derived

by adjusting the profile score equation for λ. Replacing β with β̂ in the lower partition

of (3.2.5) gives the profile score equation as

U p(λ) =
1

2

n
∑

i=1

ṡi

σ2
i

{(yi − x
T
i β̂)2

σ2
i

− 1
}

(3.3.3)

This equation lacks the fundamental property of the Maximum Likelihood score, i.e

E[U (λ)] = 0q. To correct this the expectation of (3.3.3) is required. The expectation of

(yi − x
T
i β̂)2, i = 1, . . . , n requires the diagonal elements of

E
[

(y −XT β̂)(y −XT β̂)T
]

= Var[y −Xβ̂]

and

Var[y −Xβ̂] = (I −X(XTΣ−1X)−1XTΣ−1)Var[y](I −X(XTΣ−1X)−1XTΣ−1)T

= Σ −X(XTΣ−1X)−1XT

= Σ1/2(I − Σ−1/2X(XTΣ−1X)−1XTΣ−1/2)Σ1/2

= Σ1/2(I −H)Σ1/2 (3.3.4)

The ith diagonal element can be expressed as

E
[

(yi − x
T
i β̂)2

]

= σ2
i (1 − hii)

and the adjusted profile score can be written as

U a(λ) =
1

2
Ṡ

T
Σ−1

(

Σ−1d̂− 1n + h
)

This score, now adjusted for the estimation of the location parameters, is identical to the

REML score given in (3.3.2).

3.3.3 Solving the REML Equations

Applying the techniques of Section 2.3 the scoring equations for λ can be iteratively

solved. At the mth iteration a Newton-Raphson algorithm can be written

λ(m+1) = λm + (Io(λm,λm))−1U(λm)

where Io(·, ·) is the observed information for λ. Again, to obtain a Fisher scoring algo-

rithm the observed information may be replaced with the expected information.
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To obtain the observed information components the the derivative of the REML score

equation, (3.3.1), is required. The components of the score, hii and d̂i are functions of

the scale parameters, λ, and therefore careful differentiation is required. Differentiating

the first component of this score with respect to λk gives

∂

∂λk

{

n
∑

i=1

1

σ2
i

∂σ2
i

∂λj

}

= −

n
∑

i=1

{

1

(σ2
i )

2

∂σ2
i

∂λj

∂σ2
i

∂λk
−

1

σ2
i

∂2σ2
i

∂λj∂λk

}

= −
n
∑

i=1

{

ṡij ṡik

(σ2
i )

2
−
ṡi(jk)

σ2
i

}

(3.3.5)

The differentiation of the second component of the score with respect to λk becomes

∂

∂λk

{

n
∑

i=1

hii

σ2
i

∂σ2
i

∂λj

}

=
n
∑

i=1

{

∂hii

∂λk

1

σ2
i

∂σ2
i

∂λj
−

hii

(σ2
i )

2

∂σ2
i

∂λj

∂σ2
i

∂λk
+
hii

σ2
i

∂2σ2
i

∂λj∂λk

}

where

∂hii

∂λk

=
∂

∂λk

{

xT
i (XTΣ−1X)−1xi

σ2
i

}

= −
hii

σ2
i

∂σ2
i

∂λk
+ (σ2

i )
−1xT

i (XTΣ−1X)−1XTΣ−1Σ̇kΣ
−1X(XTΣ−1X)−1xi

=

n
∑

m=1

himṡmkhmi

σ2
m

−
ṡikhii

σ2
i

Recombining this the derivative of the second component is

∂

∂λk

{

n
∑

i=1

hii

σ2
i

∂σ2
i

∂λj

}

=
n
∑

i=1

{

n
∑

m=1

(

himṡmkhmi

σ2
m

)

ṡij

σ2
i

− 2
ṡij ṡik

(σ2
i )

2
hii +

ṡi(jk)

σ2
i

hii

}

(3.3.6)

The derivative of the third component of the score with respect to λk is

∂

∂λk

{

n
∑

i=1

d̂i

(σ2
i )

2

∂σ2
i

∂λj

}

=

n
∑

i=1

{

∂d̂i

∂λk

1

(σ2
i )

2

∂σ2
i

∂λj
− 2

d̂i

(σ2
i )

3

∂σ2
i

∂λj

∂σ2
i

∂λk
+

d̂i

(σ2
i )

2

∂2σ2
i

∂λj∂λk

}

where

∂d̂i

∂λk
= −2(yi − x

T
i β̂)xT

i

∂β̂

∂λk

and

∂β̂

∂λk

= −(XTΣ−1X)−1XTΣ−1Σ̇kΣ
−1(y −Xβ̂)

so that

∂d̂i

∂λk
= 2σiri

n
∑

m=1

ṡmk
him

σ3
m

rm
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where ri = yi − x
T
i β̂ is the ith residual. Recombining this the derivative of the third

component becomes

∂

∂λk

{

n
∑

i=1

d̂i

(σ2
i )

2

∂σ2
i

∂λj

}

=

n
∑

i=1

{

n
∑

m=1

2

(

ṡmk

σ3
m

rmhim

)

ṡij

σ3
i

ri − 2
ṡij ṡik

(σ2
i )

3
di +

ṡi(jk)

(σ2
i )

2
d̂i

}

(3.3.7)

Combining (3.3.5), (3.3.6) and (3.3.7) the jkth element of the observed information can

be expressed as

Io(λj , λk) =
1

2

n
∑

i=1

ṡij ṡik

(σ2
i )

2

{

2di

σ2
i

+ 2hii − 1

}

−
n
∑

i=1

n
∑

m=1

ri

σ3
i

ṡijhimṡmk
rm

σ3
m

−
1

2

n
∑

i=1

n
∑

m=1

ṡij

σ2
i

ṡmk

σ2
m

h2
im −

1

2

n
∑

i=1

ṡi(jk)

σ2
i

{

di

σ2
i

+ hii − 1

}

Taking expectations ensures the final term is zero and using (3.3.4) the jkth element of

the expected information can be written as

Ie(λj, λk) =























1

2

n
∑

i=1

ṡij ṡik

(σ2
i )

2
(1 − 2hii + h2

ii) (i = m)

1

2

n
∑

i=1

n
∑

m=1

ṡij ṡmk

σ2
i σ

2
m

h2
im (i 6= m)

Combining these two terms the expected information for λ becomes

Ie(λ,λ) =
1

2
Ṡ

T
Σ−1V Σ−1Ṡ (3.3.8)

where V has diagonal elements (1 − hii)
2 and off-diagonal elements h2

ij.

Identical to the previous section this result may also be derived by considering the variance

of the score.

Var [Ur(λ)] =
1

4
ṠΣ−1Σ−1Var

[

d̂
]

Σ−1Σ−1Ṡ

=
1

4
ṠΣ−2

{

E
[

d̂d̂
T ]

− E
[

d̂
]

E
[

d̂
T ]
}

Σ−2Ṡ

=
1

4
ṠΣ−2

{

3Σ(I −H)2Σ − Σ(I −H)2Σ
}

Σ−2Ṡ (using 3.3.4)

=
1

2
ṠΣ−1(I −H)2Σ−1Ṡ = Ie(λ,λ)

The scoring algorithm to estimate λ can be expressed as

λ(m+1) = λm + (Ṡ
T
V ∗

mṠ)−1Ṡ
T
Σ−1

m (Σ−1
m d̂m − 1n + hm)

= g∗g(β,λm) = (Ṡ
T
V ∗

mṠ)−1Ṡ
T
V ∗

md
∗
m (3.3.9)
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where V ∗ is a q × q matrix with diagonal entries
(

(1− hii)/σ
2
i

)2
and off-diagonal entries

(hij/σiσj)
2 and

d∗
m = V ∗−1

m Σ−1
m

(

Σ−1
m d̂m − 1n + hm

)

+ Ṡλm

The V ∗ is a dense n×n matrix suggesting that (3.3.9) cannot be viewed as a simple least

squares but a general non-linear iteration.

Under a simplified log-linear scale parameter model defined by (3.1.3) the scoring algo-

rithm for λ can be reduced to

λ(m+1) = (ZTV mZ)−1ZTV m

{

V −1
m

(

Σ−1
m d̂m − 1n + hm

)

+Zλm

}

This result was also noted in Verbyla (1993).

3.3.4 Efficient Calculation of the REML Information

The scoring algorithm defined by (3.3.9) requires the calculation of the dense n×n matrix,

V . For large data sets this computation is restrictive. In the past authors have avoided

its computation by approximations such as V d = diag{V } (see Verbyla, 1993 and Huele,

1998). Smyth (2002) shows that, although the elements of the off diagonals of V will be

of smaller order, Ṡ
T
Σ−1V dΣ

−1Ṡ does not converge to Ṡ
T
Σ−1V Σ−1Ṡ as n → ∞. This

difference reduces the efficiency of the scoring algorithm, (3.3.9), and introduces relative

errors to the computed standard errors of λ.

Smyth (2002) also shows that the information matrix for λ can be calculated efficiently

using the properties of the hat matrix, H . The matrix V inside the information can also

be written as

V = I − 2H∗ +H2

where H∗ is a diagonal matrix with ith element hii and H2 has ijth element h2
ij . As

the first term is diagonal the computational burden is with the calculation of H2. A

decomposition of this matrix is available and is derived below (for more details see Smyth,

2002).

Let Σ−1/2X = QR whereQ is n×p matrix such thatQTQ = I andR is an p×p is a non-

singular upper triangular matrix. This partitioning is known as the QR decomposition.
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Then

H = QR(RTQTQR)−1RTQ

= QR(RTR)−1RTQ

= QRR−1(RT )−1RTQT (3.3.10)

= QQT

=

p
∑

k=1

qkq
T
k

and therefore the ijth element of H may be written as

hij =

p
∑

k=1

qkiqkj (3.3.11)

Moreover, the columns q1, . . . , qp are an independent set of eigenvectors with eigenvalues

equal to one forming an orthonormal basis over the range space of H . Therefore H has

rank p equal to the column rank of the matrix X . Using (3.3.11) the ijth element of H2

can be expressed as

h2
ij = (q1iq1j + · · ·+ qpiqpj)

2

=

p
∑

k=1

q2
kiq

2
kj + 2

∑

1≤k≤l≤p

qkiqkjqliqlj

Therefore the matrix H2 may be written as

H2 =

p
∑

m=1

sms
T
m + 2

p(p−1)/2
∑

m=1

tmt
T
m

where sm has ith element q2
mi and tm has ith element qkiqli. This suggests that H2 can

be constructed using a set of p + p(p − 1)/2 rank one matrices and therefore is at most

rank p(p+ 1)/2.

Let S be a n× p matrix with mth row sm and T a n× p(p− 1)/2 matrix with mth row

tm then the REML information matrix for λ can then be written as

Ie(λ,λ) =
1

2
Ṡ

T
Σ−1

{

I − 2H∗ + STS + 4T TT
}

Σ−1Ṡ

=
1

2
Ṡ

T
Σ−1 {I − 2H∗}Σ−1Ṡ +

1

2
Ṡ

T
Σ−1W TWΣ−1Ṡ

where W = [S 2T ]T . Smyth (2002) recognised that the extra burden to compute the

last term of this information will only grow linearly as the data size increases.
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3.4 Inference on Parameters

It is of interest to obtain measures of precision and test hypotheses for the location and

scale parameter models.

An obvious choice for the precision of the chosen estimates is to use the prediction errors

defined as

Var

[

β̂ − β

λ̂− λ

]

= Var

[

β̂

λ̂

]

For given λ the estimate of β is identical to (2.2.6) and therefore

Var
[

β̂
]

= (XT Σ−1X)−1

This result is identical for ML and REML estimation of β discussed in this chapter.

The scale parameters, λ, appear non-linearly in the ML and REML scoring equations

given by (3.2.8) and (3.3.9) respectively. The distribution of these estimators is unknown.

Commonly, for non-linear models such as GLMs, large sample inference is used to ascer-

tain approximate properties of the estimators (see Cox & Hinkley, 1974). Under large

sample theory the estimated scale parameters are said to converge to the distribution

λ̂ ∼ N
(

λ, (Ie(λ,λ)−1
)

For the models considered in this chapter the variance for the ML estimate of λ can be

immediately written as

Var
[

λ̂
]

= 2(Ṡ
T
Σ−2Ṡ)−1

and for REML

Var
[

λ̂
]

= 2(Ṡ
T
Σ−1V Σ−1Ṡ)−1

3.4.1 Tests of Hypothesis

For given β, the non-linearity of the ML and REML scoring equations for the scale

parameters suggests the use of an asymptotic hypothesis test. A common asymptotic

test used for scale parameter models considered in this chapter is the score test (see Cox

& Hinkley, 1974).

The test is constructed generally by considering a null hypothesis H0 : θ = θ0 where

{θ, θ0} ∈ Θ. Let U (θ) and Io(θ, θ) be the score and observed information for θ. Then
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for a response y = (y1, . . . , yn), the log-likelihood ratio statistic can be expanded in a

Taylor series around θ0

S = 2
(

ℓ(θ̂;y) − ℓ(θ̂;y) + (θ̂ − θ0)
TU (θ̂) +

1

2
(θ̂ − θ0)

TIo(θ0, θ0)(θ̂ − θ0)
)

(3.4.1)

where θ̂ is the maximum likelihood estimate achieved by allowing ∂ℓ(θ;y)/∂θ = U(θ̂) =

0 and solving for θ. Using (2.3.11) and replacing the observed information with the

expected information, a first order linearisation of the score equation around its true

value θ0 gives

θ̂ − θ0 = (Ie(θ0, θ0))
−1U(θ0)

Substituting this into (3.4.1), and replacing the observed information with the expected,

the final asymptotic score statistic can be written as

S = U(θ0)
TIe(θ0, θ0)

−1U (θ0) (3.4.2)

From Cox & Hinkley (1974) this statistic has a limiting chi-square distribution with

degrees of freedom equal to dim(θ̂) − dim(θ0), the difference between the number of

estimated parameters and the number of parameters contained in the null hypothesis.

Further details are available in Cox & Hinkley (1974).

Following Breusch & Pagan (1979) and Cook & Weisberg (1983) a score test for homo-

geneity of the scale parameter in the Gaussian case is constructed as follows. Let the null

hypothesis be H0; λj = 0, j = 1, . . . , q−1. Thus, under H0, σ
2(zi;λ) = σ2

0, i = 1, . . . , n.

Let di = (yi − x
T
i β̂)2 where β̂ = (XTΣ−1

0 X)−1XTΣ−1
0 y and Σ−1

0 has ith diagonal el-

ement 1/σ̂2
0. Here, σ̂2

0 = n−1(y −Xβ̂)T (y −Xβ̂). The score test statistic for testing

homogeneity of the scale model under ML is

S =
1

2σ̂2
0

aT Ṡ(Ṡ
T
Ṡ)−1Ṡ

T
a (3.4.3)

where a is a vector of length n with ith component di/σ̂
2
0−1. Following Cook & Weisberg

(1983), S can be viewed as one-half of the regression sum of squares of d̄/σ̂2
0 − 1n on Ṡ

and has an asymptotic χ2 distribution with q − 1 degrees of freedom.

Similarly, the score test statistic for testing homogeneity under REML is

Sr =
1

2σ̂2
0

a∗T Ṡ(Ṡ
T
V 0Ṡ)−1Ṡ

T
a∗ (3.4.4)

where a∗ has ith component di/σ̂
2
0 − 1 + h0ii. Here, σ̂2

0 = (y −Xβ̂)T (y −Xβ̂)/(n− p),

the unbiased estimator of σ2 and V 0 has diagonals (1−h0ii)
2 and off diagonals h0ij where

h0ij = xT
i (XTX)−1xj. The score statistics (3.4.3) and (3.4.4) generalize the statistics

derived by Verbyla (1993).
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3.5 Computation and Software

The process for computing the estimates of the parameters for ML and REML is iterative.

At the mth iteration

• For given λ = λ(m) update β using β(m+1) = fg(β
(m),λ(m)) where fg(·) is given by

(3.2.7).

• ML : For given β = β(m+1) update λ using λ(m+1) = gg(β
(m+1),λ(m)) where gg(·)

is given by (3.2.8).

OR

• REML : For given β = β(m+1) update λ using λ(m+1) = g∗g(β
(m+1),λ(m)) where

g∗g(·) is given by (3.3.9).

Software implementing this particular algorithm for ML and REML has been developed

by Gordon Smyth and can be found at

http://www.stasci.org/s/dglm.html

The software contains functions to estimate the location and scale parameters of the het-

eroscedastic Gaussian using ML or REML. A variety of other location and scale parameter

models can also be fitted (see documentation for dglm()). Summary functions provide

appropriate standard errors for both location and scale parameters and testing between

nested models is also available. Documentation for the major function dglm() can be

found online at the same location as above. This software is only available in S-Plus but,

at the time of writing this thesis, is being ported to R (see Ihaka & Gentleman, 1996).
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Chapter 4

Heteroscedastic t-ML with known

degrees of freedom

If outliers are present in the data then the parameter estimates obtained from the het-

eroscedastic Gaussian model presented in the previous chapter may be misleading. To

provide a more robust approach to estimation of the location and scale parameters in

the presence of heteroscedasticity a new formulation of the t-distribution is considered

where, in a similar manner to the previous chapter, the scale parameter is modelled using

covariates in the data.

Scale parameter modelling using the heteroscedastic t-distribution is a new area of re-

search and in this chapter methods for ML estimation of the location and scale parame-

ters will be derived for known degrees of freedom. Methodology to estimate the location,

scale and degrees of freedom parameters using ML in the presence of heteroscdasticity

are explored in Section 8.1 of this thesis. The chapter also presents an extension of the

asymptotic tests considered in Section 3.4.1 to include tests of hypotheses of the location

and scale parameters for the heteroscedastic t. A further extension to allow the detection

of heteroscedasticity when the response is t distributed is also developed.

Fixing the degrees of freedom of the t-distribution has been a common approach in robust

regression. Lange et al. (1989) exploit this technique to profile the log-likelihood for a

given ν. The authors also suggest that for small data sets the degrees of freedom should

be fixed to avoid estimation problems (see Section 8.1.1). This tactic is utilised by James

et al. (1993) by setting ν = 3, which thereby provides a degree of robustness. Fixing

the degrees of freedom also ensures that the t-distribution is a member of the location-

scale family and therefore has attractive properties (see Barndorff-Nielsen, 1994). These

properties are maintained under the heteroscedastic model examined in this thesis.
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4.1 Properties of the t distribution

The univariate t-distribution was first discussed by ”Student” (1908). Fisher (1925) con-

siders the random variable defined by the form

tν = U
(

χ2
ν/ν
)−1/2

where U is a unit standard normal and independent of χ2
ν . The distribution of this random

variable is called the t-distribution. This t-distribution which is denoted by t(0, 1, ν) can

be extended as follows. If y|ω ∼ N(µ, σ2/ω) and ω ∼ χ2
ν/v then y ∼ t(µ, σ2, ν). This

t-distribution includes a location parameter, µ and a scale parameter, σ2. The following

properties of t(µ, σ2, ν) are used in the development of this and future chapters.

Property 1 The probability density function for y is

Γ((ν + 1)/2)

(Γ(1/2))Γ(ν/2)(σ2ν)1/2

(

1 + d/σ2ν
)−( ν+1

2
)

where d = (y − µ)2.

Property 2

d

σ2
∼ F1,ν .

where d is defined in Property 1.

Property 3

d

σ2ν
∼ B2

(1

2
,
ν

2

)

where B2(·, ·) is a Beta distribution of the second kind.

Property 4 Using Property 2

d/σ2ν

1 + d/σ2ν
∼ B1

(1

2
,
ν

2

)

(4.1.1)

where B1(·, ·) is a Beta distribution of the first kind.

Property 5 ω|y ∼ χ2
ν+1/(ν + d/σ2ν)

Property 6 E(y) = µ (ν > 1), Var(y) = νσ2/(ν − 2) (ν > 2)

Property 7 If ν → ∞ then

t(µ, σ2, ν) → N(µ, σ2) (4.1.2)

For a more comprehensive overview see Johnson et al. (1995). These properties will be

used in the proceeding sections to estimate the location and scale parameters as well as

to predict the scale random effects, ω associated with the t-distribution.
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4.2 Notation

Consider an extension relevant to a sample from independent t-distributions

yi|ωi ∼ N
(

xT
i β, σ

2
i /ωi

)

, i = 1, . . . , n (4.2.1)

where yi is the ith observed response, xi is a p× 1 vector of explanatory variables, β is a

set of unknown parameters and ωi, i = 1, . . . , n represents a set of random variables with

distributional form

ωi ∼ Gamma
(ν

2
,
ν

2

)

, i = 1, . . . , n (4.2.2)

where ν is an unknown parameter, alternatively

ωi ∼ χ2
ν/ν, i = 1, . . . , n

As in the Gaussian case of Chapter 3 the scale parameters are assumed to be of the form

ϕi = σ2
i /ωi = σ2(zi;λ)/ωi, 1 = 1, . . . , n (4.2.3)

where zi is a q × 1 vector of explanatory variables (with possibly some components in

common with xi) and λ is a set of unknown parameters.

Under such a hierarchy the marginal likelihood can be expressed as

L(β,λ, ν;y) =

∫

Rn

n
∏

i=1

p(yi|ωi;β,λ)p(ωi; ν)dω (4.2.4)

where

n
∏

i=1

p(yi|ωi;β,λ) = (2π)−n/2|Ψ|−1/2 exp
{

−1
2
(y −Xβ)TΨ−1(y −Xβ)

}

(4.2.5)

n
∏

i=1

p(ωi; ν) =
(ν/2)nν/2

(Γ(ν/2))n
exp
{

−ν
2

n
∑

i=1

ωi

}

n
∏

i=1

ω
ν/2−1
i (4.2.6)

and Ψ is a diagonal matrix with ith diagonal element σ2
i /ωi.

In this special case the multi-dimensional integral is tractable and clearly, marginally,

yi ∼ t(xT
i β, σ

2
i , ν) i = 1, . . . , n (4.2.7)

the t-distribution with ν degrees of freedom, mean µi = xT
i β, (ν > 1), variance νσ2

i /(ν−

2), (ν > 2). Let the ith diagonal element of Σ be σ2
i then (4.2.4) becomes

L(β,λ, ν;y) = |Σ|−1/2

{

Γ((ν + 1)/2)

(Γ(1/2))Γ(ν/2)ν1/2

}n n
∏

i=n

{

1 +
di

σ2
i ν

}−( ν+1
2

)

(4.2.8)
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where

di = (yi − x
T
i β)2

Note that as ν → ∞ the random variable, yi tends to a Gaussian distribution with

location µi = xT
i β and scale parameters σ2

i , i = 1, . . . , n. The log-likelihood of (4.2.8) is

ℓ(β,λ, ν;y) = n log
(

Γ((ν + 1)/2)
)

− n log
(

Γ(1/2)
)

− n log
(

Γ(ν/2)
)

−
n

2
log ν −

1

2

n
∑

i=1

log σ2
i −

ν + 1

2

n
∑

i=1

log

{

1 +
di

σ2
i ν

}

(4.2.9)

4.3 Estimation of Parameters

4.3.1 Score Equations

If the degrees of freedom, ν, is known only the last two terms of (4.2.9) are of interest

and these terms form the kernel of the log-likelihood used in estimating the location and

scale parameters θ = (β,λ). Thus consider

ℓ(β,λ;y) = −
1

2

n
∑

i=1

log σ2(zi;λ) −
ν + 1

2

n
∑

i=1

log
{

1 + di/σ
2(zi;λ)ν

}

(4.3.1)

Differentiating (4.3.1) with respect to the lth location parameter βl gives

∂ℓ(β,λ;y)

∂βl
=

n
∑

i=1

(

ν + 1

1 + di/σ2ν

)

(yi − x
T
i β)

σ2
i ν

xil

=
n
∑

i=1

ω̄i

σ2
i

(yi − x
T
i β)xil

where

ω̄i =
ν + 1

ν + di/σ2
i

(4.3.2)

Differentiating (4.3.1) with respect to the jth scale parameter λj gives

∂ℓ(β,λ;y)

∂λj
=

1

2

n
∑

i=1

{(

ν + 1

1 + di/σ2ν

)

di

(σ2
i )

2ν

∂σ2
i

∂λj
−

1

σ2
i

∂σ2
i

∂λj

}

=
1

2

n
∑

i=1

{

ṡij

σ2
i

(

ω̄idi

σ2
i

− 1

)}

where ṡij = ∂σ2
i /∂λj .
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As in Section 3.2.1, let Ṡ be a matrix of partial derivatives with ijth element ṡij and Ω̄

be an n× n diagonal matrix with ith diagonal element ω̄i. The score equations are then

U(θ) =

[

U(β)

U(λ)

]

=

[

XTΣ−1Ω̄(y −Xβ)
1
2
Ṡ

T
Σ−1(Σ−1Ω̄d− 1n)

]

(4.3.3)

Note that the score equations for β and λ defined by (4.3.3) may also be written as

U(β) = (ν + 1)

n
∑

i=1

xi

σ2
i ν

(1 −Bi)(yi − x
T
i β) (4.3.4)

U(λ) =
1

2

n
∑

i=1

ṡi

σ2
i

{(ν + 1)Bi − 1} (4.3.5)

where

Bi =
di/σ

2
i ν

1 + di/σ2
i ν

(4.3.6)

Using Property (4) the distribution of this ith term is then

Bi ∼ B1

(1

2
,
ν

2

)

where B1(·, ·) describes a Beta distribution of the first kind. Its first two moments can

be immediately expressed as

E
[

Bi

]

=
1

ν + 1
(4.3.7)

E
[

B2
i

]

=
3

(ν + 1)(ν + 3)
(4.3.8)

The expectation of the score for β can then be written as

E[U(β)] = (ν + 1)

n
∑

i=1

xi

σ2
i ν

E
[

(1 − Bi)(yi − x
T
i β)

]

= (ν + 1)

n
∑

i=1

xi

σ2
i ν

{

E
[

(yi − x
T
i β)

]

+ E
[

Bi(yi − x
T
i β)

]}

= 0

The function in the second expectation term is an odd function of yi and therefore, around

a symmetric interval, such as the t-distribution, will have expectation zero. Similarly, the

expectation of the score for λ is

E[U(λ)] =
1

2

n
∑

i=1

ṡi

σ2
i

{

(ν + 1)E
[

Bi

]

− 1
}

= 0

41



4.3.2 Solving the Score Equations

As in Section 3.2.2 the score equations given by (4.3.3) must be solved by an iterative

scheme (3.2.6). The observed information,

Io(θ, θ) =

[

Io(β,β) Io(β,λ)

Io(λ,β) Io(λ,λ)

]

is required. To obtain this (4.3.4) and (4.3.5) are partially differentiated with respect to

βm and λk. The lmth observed information element for β can be then expressed as

Io(βl, βm) = (ν + 1)

n
∑

i=1

xilxim

σ2
i ν

{(

1

1 + di/σ2
i ν

)

−

(

2

1 + di/σ2
i ν

)(

di/σ
2
i ν

1 + di/σ2
i ν

)}

= (ν + 1)

n
∑

i=1

xilxim

σ2
i ν

{(1 − Bi) − 2(1 − Bi)Bi}

= (ν + 1)
n
∑

i=1

xilxim

σ2
i ν

{(1 − Bi)(1 − 2Bi)} (4.3.9)

Let ṡi(jk) = ∂ṡij/∂λk. The jkth observed information component for λ can be expressed

as

Io(λj , λk) =
1

2

n
∑

i=1

{(

ṡij ṡik

(σ2
i )

2
−
ṡi(jk)

σ2
i

)

((ν + 1)Bi − 1) −
ṡij

σ2
i

(ν + 1)
∂Bi

∂λk

}

(4.3.10)

where

∂Bi

∂λk
=

(

di/σ
2
i ν

(1 + di/σ2
i ν)

2

)

di

(σ2
i )

2ν
ṡik −

(

di/(σ
2
i )

2ν

1 + di/σ2
i ν

)

ṡik

=

(

di/σ
2
i ν

1 + di/σ
2
i ν

)2
ṡik

σ2
i

−

(

di/σ
2
i ν

1 + di/σ
2
i ν

)

ṡik

σ2
i

= Bi(Bi − 1)
ṡik

σ2
i

Substituting this into (4.3.10) the jkth observed information component for λ is

Io(λj , λk) =
1

2

n
∑

i=1

{

ṡi(jk)

σ2
i

((ν + 1)Bi − 1) +
ṡij ṡik

(σ2
i )

2

(

(ν + 1)(2Bi − B2
i ) − 1

)

}

(4.3.11)

42



The lkth co-information is obtained by considering the partial derivative of (4.3.4) with

respect to λk. This gives

Io(βl, λk) = (ν + 1)
n
∑

i=1

{(

1

1 + di/σ
2
i ν

)

xilṡik

(σ2
i )

2ν
(yi − x

T
i β)

−

(

1

1 + di/σ
2
i ν

)(

di/σ
2
i ν

1 + di/σ
2
i ν

)

xilṡik

(σ2
i )

2ν
(yi − x

T
i β)

}

= (ν + 1)
n
∑

i=1

xilṡik

(σ2
i )

2ν
{1 − Bi − (1 −Bi)Bi} (yi − x

T
i β)

= (ν + 1)

n
∑

i=1

xilṡik

(σ2
i )

2ν
{(1 − Bi)(1 − Bi)} (yi − x

T
i β) (4.3.12)

To obtain a Fisher scoring algorithm the expected information must be found. Noting

(4.3.7) and (4.3.8) and taking the expectation of (4.3.9) the lmth element of the expected

information for β can be expressed as

Ie(βl, βm) = (ν + 1)

n
∑

i=1

xilxim

σ2
i ν

{

(1 −
3

ν + 1
+

6

(ν + 1)(ν + 3)

}

=
n
∑

i=1

xilxim

σ2
i ν

{

ν − 2 +
6

ν + 3

}

=

n
∑

i=1

xilxim

σ2
i

{

ν + 1

ν + 3

}

(4.3.13)

Similarly, taking the expectation of (4.3.11) the jkth element of the expected information

for λ can be expressed as

Ie(λj, λk) =
1

2

n
∑

i=1

ṡij ṡik

(σ2
i )

2

{

(ν + 1)

(

2

ν + 1
−

3

(ν + 1)(ν + 3)

)

− 1

}

=
1

2

n
∑

i=1

ṡij ṡik

(σ2
i )

2

{

1 −
3

ν + 3

}

=
1

2

n
∑

i=1

ṡij ṡik

(σ2
i )

2

{

ν

ν + 3

}

Lastly the lkth element of the expected co-information for (β,λ) can be expressed as

Ie(βl, λk) = (ν + 1)

n
∑

i=1

xilṡik

(σ2
i )

2ν
E
[{

B2
i − 2Bi

}

(yi − x
T
i β)

]

The terms remaining in the expectation are odd functions of yi and therefore, around

a symmetrical interval, will have zero expectation. In matrix notation the expected
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information for θ = (β,λ) can be written as

Ie(θ, θ) =

[

Ie(β,β) Ie(β,λ)

Ie(λ,β) Ie(λ,λ)

]

(4.3.14)

=

[

ν+1
ν+3
XTΣ−1X 0

0 ν
2(ν+3)

Ṡ
T
Σ−2Ṡ

]

(4.3.15)

The expected information can also be derived from taking the variance of the score

function, U (θ). Noting that

Var
[

Bi

]

= E
[

B2
i

]

− E
[

Bi

]

E
[

Bi

]

=
3

(ν + 1)(ν + 3)
−

(

1

ν + 1

)2

=
2ν

(ν + 1)2(ν + 3)

the variance of the score for β can be expressed as

Var
[

U(β)
]

= (ν + 1)2

n
∑

i=1

xix
T
i

σ2
i ν

E

{

di/σ
2
i ν

(1 + di/σ2ν)2

}

= (ν + 1)2
n
∑

i=1

xix
T
i

σ2
i ν

E
{

Bi − B2
i

}

= (ν + 1)2
n
∑

i=1

xix
T
i

σ2
i ν

{

1

ν + 1
−

3

(ν + 1)(ν + 3)

}

= (ν + 1)

n
∑

i=1

xix
T
i

σ2
i ν

{

1 −
3

ν + 3

}

=
n
∑

i=1

xix
T
i

σ2
i

{

ν + 1

ν + 3

}

= Ie(β,β)

Similarly taking the variance of the score for λ gives

Var
[

U(λ)
]

=
(ν + 1)2

4

n
∑

i=1

ṡiṡ
T
i

(σ2
i )

2
Var {Bi}

=
(ν + 1)2

4

n
∑

i=1

ṡiṡ
T
i

(σ2
i )

2

{

2ν

(ν + 1)2(ν + 3)

}

=
1

2

n
∑

i=1

ṡiṡ
T
i

(σ2
i )

2

{

ν

ν + 3

}

= Ie(λ,λ)

The orthogonality of the parameters (β,λ) can be shown by taking the covariance of the
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score functions, namely

Cov [U(β),U(λ)] = E
[

U(β)U(λ)T
]

=
ν + 1

2

n
∑

i=1

xis
T
i

(σ2
i )

2ν

{

E
[

((ν + 1)Bi − 1)(1 − Bi)(yi − x
T
i β)

]}

= 0

The orthogonality of the location and scale parameters suggests that each parameter

may be scored independently. Using (3.2.6) the (m + 1)th iterate of the Fisher scoring

algorithm for the location parameter can be written as

β(m+1) = βm + ν+3
ν+1

(XTΣ−1
m X)−1XTΣ−1

m Ω̄m(y −Xβm)

Subsuming βm, the implicit equation for the location parameters can be reduced to

β(m+1) = ft(βm,λ, ν) = (XTΣ−1
m X)−1XTΣ−1

m y
∗
m (4.3.16)

where

y∗
m = ν+3

ν+1
Ω̄m(y −Xβm) +Xβm

Similar to Section 3.2.2, for given (λ, ν), (4.3.16) can be viewed as an iterative reweighted

least squares (IRLS) algorithm with 1/σ2
i as its ith diagonal weight and working vector

y∗.

Solving the score equation for β given in (4.3.3) directly allows a second estimating

equation to be immediately written as

β(m+1) = (XT Ψ̄
−1
m X)−1XT Ψ̄

−1
m y (4.3.17)

where Ψ̄ is a diagonal matrix with ith diagonal element ϕ̄i = ω̄i/σ
2
i . This is also an

iteratively reweighted least squares algorithm with ith weight ϕ̄i. Notice as (4.3.16) and

(4.3.17) are derived from the same score equation they are theoretically equivalent.

The (m+ 1)th iterate of the Fisher scoring algorithm for the fixed scale parameters can

be written as

λ(m+1) = λm + (Ṡ
T
Σ−2

m Ṡ)−1Ṡ
T
Σ−1

m (Σ−1
m Ω̄md− 1n)

Subsuming λm the implicit scoring equation for the scale parameters can be expressed as

λ(m+1) = gt(β,λm, ν) = (Ṡ
T
Σ−2

m Ṡ)−1Ṡ
T
Σ−2

m d
∗
m, (4.3.18)

where

d∗
m =

ν + 3

ν
(Ω̄md− Σm1n + Ṡλm) (4.3.19)
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Therefore, for given (β, ν), (4.3.18) can be viewed as an iterative reweighted least squares

procedure with equal weights 1/(σ2
i )

2 and working vector d∗.

In particular if a simplified log-linear scale parameter model defined by (3.1.3) is assumed

then the scoring algorithm for λ reduces to

λ(m+1) =
ν + 3

ν
(ZTZ)−1ZT (Ω̄

−1
m d− 1n +Zλm)

4.4 Prediction

The random effects ωi, i = 1, . . . , n are not present in the marginal distribution for y and

therefore must be predicted using an alternate distribution. Standard prediction theory,

Searle et al. (1992), suggests choosing the mean of the conditional distribution, wi|yi to

obtain the best unbiased predictor (BUP) of ωi. For the ith component of the conditional

distribution the density can expressed as

p(ωi|yi;β, σ
2
i , ν) =

p(yi|ωi;β, σ
2
i )p(ωi; ν)

∫

p(yi|ωi;β, σ2
i )p(ωi; ν)dωi

(4.4.1)

where

p(yi|ωi;β, σ
2
i ) = (2πσ2

i )
−1/2ω

1/2
i exp(−ωidi/2σ

2
i )

p(ωi; ν) =
(ν/2)ν/2

Γ(ν/2)
ω

ν/2−1
i exp(−νωi/2)

The denominator of the RHS is is the marginal density for the ith response of the het-

eroscedastic t-distribution. Using Property (1) of Section 4.1 the denominator can be

expressed as

p(yi;β, σ
2
i , ν) =

Γ((ν + 1)/2)

Γ(ν/2)Γ(1/2)
(σ2

i ν)
−1/2(ν + di/σ

2
i )

−(ν+1)/2

Combining these (4.4.1) can be written as

p(ωi|yi;β, σ
2
i , ν) =

(2π)−1/2Γ(1/2)ω(ν−1)/2 exp (−ωiν/2 − ωidi/σ
2
i /2)

Γ((ν + 1)/2)
(

ν + di/σ2
i )

−(ν+1)/2

and the density can be expressed

p(ωi|yi;β, σ
2
i , ν) =

(ν + di/σ
2
i )

(ν+1)/2

Γ((ν + 1)/2)
ω

(ν+1)/2−1
i exp

(

−ωi(ν + ωidi/σ
2
i )/2

)

Therefore the conditional distribution of ωi|yi can be expressed as

ωi|yi ∼ Gamma

(

ν + 1

2
,
ν + di/σ

2
i

2

)

(4.4.2)
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This derivation is equivalent to Property (5) from Section 4.1. The mean of this distribu-

tion is equivalent to its first moment and therefore the BUP for the random scale effects

is

E(ωi|yi) = ω̃i =
ν + 1

ν + di/σ2
i

(4.4.3)

Using (4.3.7), the unbiasedness of the prediction can be shown by taking expectations of

both sides,

E(ω̃i) =
ν + 1

ν
E(1 −Bi) = 1

and therefore E[ω̃i] = Eyi
(E[ωi|yi]) = 1 = E[ωi]. As ω̃i = ω̄i, it is clear these predicted

random effects are intimately connected to the scoring equations for the location and

scale parameters given in (4.3.16) and (4.3.18) and hence prediction is a byproduct of the

scoring algorithm.

4.5 Parameter Inference

It is of interest to obtain measures of precision for the estimates of (β,λ) for the het-

eroscedastic t-distribution.

The scoring equations (4.3.16) and (4.3.18) to estimate the parameters are iteratively

reweighted least squares. Under such an estimation process the distribution of the es-

timators are unknown and therefore large sample inference is required. The asymptotic

distribution of the estimators can be immediately written as

β̂ ∼ N(β, Ie(β,β)−1)

λ̂ ∼ N(λ, Ie(λ,λ)−1)

where

Ie(β,β) = ν+1
ν+3
XTΣ−1X

Ie(λ,λ) = ν
2(ν+3)

Ṡ
T
Σ−2Ṡ

4.5.1 Asymptotic Properties of the Estimators

Property 6 from section 4.1 shows that as the degrees of freedom increase for the t-

distribution the distribution tends to a Gaussian distribution. Rewriting ω̄i as

ω̄i =
1

1 − 1/(ν + 1) + di/σ2
i (ν + 1)

(4.5.1)
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and allowing ν → ∞ then ω̄i → 1. Using this property it can be seen that the score and

expected information for β have the asymptotic property

lim
ν→∞

XTΣ−1Ω̄(y −Xβ) = XTΣ−1(y −Xβ)

lim
ν→∞

(

1 −
2

ν + 3

)

XTΣ−1X = XTΣ−1X

Therefore (4.3.16) and (4.3.17) reduce to the ordinary Gaussian ML estimator for the

location parameter β given by (3.2.7).

Similarly the score and expected information for the scale parameter have the property

lim
ν→∞

1

2
Ṡ

T
Σ−1(Σ−1Ω̄d− 1n) =

1

2
Ṡ

T
Σ−1(Σ−1d− 1n)

lim
ν→∞

(

1 −
3

ν + 3

)

1

2
Ṡ

T
Σ−2Ṡ =

1

2
Ṡ

T
Σ−2Ṡ

Therefore (4.3.18) reduces to the ordinary Gaussian ML estimator for the scale parameter

λ given by (3.2.8).

4.5.2 Tests of Hypotheses

The non-normality of the t-distribution suggests that asymptotic tests are required for

both location and scale parameters. Following from Section 3.4.1 the asymptotic test

discussed here is the score test. For the location parameter, given the maximum likeli-

hood estimates for the variance parameters, σ̂2
i = σ2(zi; λ̂), i = 1, . . . , n obtained from

the scoring equation given in (4.3.18), consider the conformal partitions (X1,X2) and

(β1,β2) of X and β respectively. Under the null hypothesis, H0 : β2 = 0, the location

model is fitted using the scoring algorithm (4.3.16) with β1 only. To form the score test

the asymptotic variance of β̂2|β̂1 is required. The asymptotic variance matrix for the

partitioned estimates can be expressed as

Var

[

β̂1

β̂2

]

=
ν + 3

ν + 1

[

XT
1 Σ̂

−1
X1 XT

1 Σ̂
−1
X2

XT
2 Σ̂

−1
X1 XT

2 Σ̂
−1
X2

]−1

Using Result A.3.3 the asymptotic variance matrix for β̂2|β̂1 is then

Var
[

β̂2|β̂1] = XT
2 Σ̂

−1
X2 −X

T
2 Σ̂

−1
X1(X

T
1 Σ̂

−1
X1)

−1XT
1 Σ̂

−1
X2

Then if Ω−1
0 = diag{ωi,0/σ̂

2
i } where ωi,0 = (ν + 1)/(ν + di1/σ̂

2
i ) and di1 = (yi − x

T
i β̂1),

the score statistic for the null hypothesis is given as

ν + 3

ν + 1
(y −Xβ̂1)Ω

−1
0 X2C

−1XT
2 Ω−1

0 (y −Xβ̂1) ∼ χ2(p1)
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where

C = XT
2P 1X2 and P 1 = Σ̂

−1
− Σ̂

−1
X1(X

T
1 Σ̂

−1
X1)

−1XT
1 Σ̂

−1

Following Breusch & Pagan (1979) and Cook & Weisberg (1983) this statistic can be

viewed as the half the sum of squares regression of Ω−1
0 (y −Xβ̂1) on X2.

Similarly the scale parameter sub-model can be tested using the score and information

components of the scoring algorithm given in (4.3.18). Let di = (yi − xT
i β̂)2 where

β̂ = (XTΩ−1
0 X)−1XTΩ−1

0 y and Ω−1
0 has ith diagonal element wi,0 = (ν+1)/(ν+di/σ̂

2
0).

Here, σ̂2
0 = n−1(y −Xβ̂)TΩ−1

0 (y −Xβ̂) is obtained iteratively. The score test statistic

for testing homogeneity of the scale model for the t-distribution is then

ν + 3

2νσ̂2
0

a∗T Ṡ(Ṡ
T
Ṡ)−1Ṡ

T
a∗ ∼ χ2(q − 1)

where a∗ is a vector of length n with ith component diωi,0/σ̂
2
0 − 1. This extends the

work of Section 3.4.1 to an asymptotic test for the location and scale parameters for the

heteroscedastic t-distribution.

4.6 Detecting Heteroscedasticity

It is useful to informally investigate dependence of covariates on the scale parameter

for the t-distribution. Following Cook & Weisberg (1983) and Verbyla (1993), let d̄i =

(yi −x
T
i β̂)2 where β̂ = (XTX)−1XTy is the ordinary least squares estimator for β. For

the t-distribution, the estimation of β requires iterative reweighting. The distribution of

the latter estimator is, exactly and asymptotically, unknown, whereas conditionally, the

least squares estimator has a known distribution and facilitates the exact theory presented

below.

For the t-distribution, using Property 2 and Property 6 of Section 4.1 d̄i ∼ φ2
iFi ,ν , where

φ2
i =

ν

ν − 2

{

(1 − hii)
2σ2

i +
∑

j 6=i

h2
ijσ

2
j

}

(4.6.1)

and hij are elements of the hat matrix X(XTX)−1XT . If the scale parameter model is

log-linear and assuming hij is small for all i, j, i 6= j, then

log
(

di/(1 − hii)
2
)

− logν + log(ν − 2) = logσ2
i

Following Harvey (1976), Smyth (1989) and Verbyla (1993) this requires an approximate

stabilizing transformation of the squared residuals. For ri = log(di/φ
2
i ) the moment

generating function is

Mri
(t) = E

[

exp{log(di/φ
2
i )t}

]

= E
[

(di/φ
2
i )

t
]
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Therefore the transformation requires the first two uncentred moments of the F1, ν dis-

tribution. The moment generating function is

Mri
(t) = exp(t log ν)

Γ(1/2 + t)Γ(ν2/2 − t)

Γ(1/2)Γ(ν2/2)

Taking derivatives with respect to t and evaluating them at t = 0 provides the first and

second moments of the distribution, namely

E(ri) = logν
2
− log1

2
+ ψ(1

2
) − ψ(ν

2
)

E(r2
i ) =

(

logν
2

+ ψ(1
2
) − ψ(ν

2
)
)2

+ ψ̇(1
2
) + ψ̇(ν

2
)

where ψ(·) is the digamma function and ψ̇(·) is the trigamma function. This allows the

approximate stabilizing transformation to be expressed as

E
{

log
(

di/(1 − hii)
2
)

+ log 1
2
− ψ(1

2
) + s(ν)

}

= zT
i λ

var
{

log
(

di/(1 − hii)
2
)

+ log 1
2
− ψ(1

2
) − logν

2
+ ψ(ν

2
)
}

= ψ̇(1
2
) + ψ̇(ν

2
)

(4.6.2)

where s(ν) = ψ(ν
2
) − logν

2
− log ν + log(ν − 2). Therefore the component inside the

expectation has constant scale and a mean that is linear in the covariates of the scale

parameter model. The terms s(ν) and ψ̇(ν
2
) therefore provide an adjustment to the

equations (5) in Verbyla (1993). Asymptotic theory also suggests that as ν → ∞, ψ(v
2
) →

logν
2

and ψ̇(v
2
) → 0, ensuring (4.6.2) will be identical to the approximate transformation

presented in Verbyla (1993).

As in Verbyla (1993), the adjusted residuals given in (4.6.2) may be used as an exploratory

tool for graphical investigation of an initial scale model. Examples of its use in this

context can be found in Chapters 7 and 9. In addition, similar to Smyth (1989), (4.6.2)

can be used to obtain starting values for the computational algorithm given in Section

4.7. Furthermore, for known degrees of freedom, the adjustments given in (4.6.2) are

constant suggesting that the simpler Gaussian equations from Verbyla (1993) can also be

utilised when the response is t-distributed. This useful when ν ≤ 2, as in this case the

variance for the t-distribution and the the adjustment derived here are not defined.

4.7 Computation and Software

The process for computing the random effects, ω and estimating the parameters θ =

(β,λ) can be simplified by using a modified scoring algorithm. For the (m+ 1)th iterate

of the algorithm the BUP for the random effects can be expressed as

ω
(m+1)
i = E(wi|yi, θ

(m)) =
ν(m) + 1

ν(m) + d
(m)
i /σ

2(m)
i

(4.7.1)
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The location and scale parameters, β and λ, are updated using the scoring equations

(4.3.16) and (4.3.18) respectively. With a two parameter location and scale model, Smyth

(1989) discusses the computational requirements for different iterative processes for non-

normal models, concluding that only alternating iterations between the location and scale

estimating equations are required for maximum efficiency. Thus, θ can be updated using

• Score Step 1: For given ω
(m+1)
i , 1 = 1, . . . , n, λ = λ(m) and ν update β using

β(m+1) = ft(β
(m),λ(m), ν), where ft(·) is given in (4.3.16).

• Score Step 2: For given ω
(m+1)
i , 1 = 1, . . . , n, β = β(m+1) and ν update λ using

λ(m+1) = gt(β
(m+1),λ(m), ν), where gt(·) is given in (4.3.18).

Further enhancements to the efficiency of the algorithm can be achieved by using the

information from score steps 1 and 2 as soon as it is available. For example, the random

effects are then updated in an intermediate step using the prediction (4.7.1) with (β,λ)

fixed at (β(m+1),λ(m)).

The prediction of the random effects given in (4.7.1) is identical to evaluating the E-

step of the Expectation-Maximisation (EM) algorithm for the t-distribution with known

or unknown degrees of freedom (see Rubin, 1983; Lange et al., 1989; Meng & van Dyk,

1997; Liu et al., 1998 and Pinheiro et al., 2001). However the non-linearity of the location

and scale parameters in the estimating equations suggests that Fisher scoring steps are

computationally preferable for each iteration.

A software library “hett” implementing this particular scoring algorithm has been devel-

oped by the author for general use in the R package (see Ihaka & Gentleman, 1996).

It contains functions for the estimation and summary of the parameters as well as sim-

ple score tests for hypothesis testing. Documentation is also available for the important

functions in this package (see Appendix B). The library is available online at

http://www.biometricssa.adelaide.edu.au/staff/staff_jtaylor.shtml/hett

or it can be downloaded directly from CRAN (Comprehensive R Archive Network) and

installed using install.packages("hett").
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Chapter 5

Approximate Likelihood Techniques

The derivation of REML for the Gaussian linear mixed model presented in Section 2.3

requires the conditional distribution of y1|y2 to be available to provide neat factorisation

of the marginal likelihood. The REML component of the factorisation, L(·;y2), can

then be used for inference about the remaining scale parameters in the model. For the

heteroscedastic t-distribution this conditional distribution cannot be derived explicitly.

Therefore obtaining a REML equivalent is non-trivial and approximate techniques are

required. In this thesis, two approximate approaches have been researched.

The hierarchical nature of the heteroscedastic t allows the marginal likelihood to be ex-

pressed as an integral given by (4.2.4) where, over n dimensional space, the random scale

effects require integrating out. This suggests that approximate integration techniques

may be used to obtain an approximate marginal likelihood. The first approximate tech-

nique discussed in Section 5.1 derives an approximation to an integral regardless of its

intractability. This is called the Laplace approximation. To illustrate its use two theo-

retical examples are presented. For the linear mixed model presented in Chapter 2, the

marginal likelihood is derived by integrating the location random effects out using the

Laplace approximation. This is found to be analogous to the methodology presented

in Section 2.1.1. A second extensive example using the hierarchical structure of the

heteroscedastic t-distribution is also discussed. Here, the random scale effects are con-

sidered to be nuisance parameters and integrated out to obtain an approximate marginal

likelihood. This marginal likelihood can then be used for inference on the location and

scale parameters. Notice that this constitutes an approximate likelihood of the maximum

likelihood form. It is not REML.

To obtain an approximate REML for the heteroscedastic t an extension of the Laplace

approximation is required. This extension is called the Partial Laplace approximation and

is presented in Section 5.1.3. This approximation requires that the integrand consist of at

least two disjoint functions. The word“partial” is then used to explain the requirement to
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maximise only partially over the integrand to obtain the appropriate approximation. Its

use is illustrated with the linear mixed model and is shown to lead to REML as presented

in Section 2.3. More formally, in Chapter 6, the new integral approximation is used to

obtain an approximate REML for the heteroscedastic t.

The second comparative approximate approach presented in 5.2 uses adjustments to the

exact marginal likelihood in the presence of nuisance parameters. In particular, the ap-

proximations are based on modifications to the profile likelihood and provide a flexible

framework for approximating the marginal likelihood for the parameter of interest. The

adjusted likelihood techniques derived in this chapter are motivated by the forms of the

heteroscedastic t. When the degrees of freedom is known, the heteroscedastic t is a mem-

ber of the location-scale family and ancillary and sufficient statistics are available. This

motivates the theoretical derivation of Modified Profile Likelihood (MPL) for a parameter

of interest in Section 5.2.1. If the degrees of freedom is not known the attractive prop-

erties of sufficiency and ancillarity are lost. Stably adjusted Profile Likelihood (SAPL)

circumvents this as it does not require these statistics to be available. Its derivation is

outside the scope of this thesis but an overview is provided in Section 5.2.4. In following

chapters both of these techniques are applied to the heteroscedastic t to obtain different

approximate restricted likelihoods for the scale parameters.

5.1 The Laplace Approximation

Let (θ1, . . . , θp, φ1, . . . , φr) = (θ,φ) be a vector of variables of length p and r respectively

contained in the space Θ. If the variable of interest is θ, then φ are nuisance variables

that may be integrated out. The integral for consideration is of the form

M(θ) =

∫

Rr

exp
(

h(θ,φ)
)

dφ, (5.1.1)

where h(·) is an arbitrary function and Rp describes a multidimensional subspace in Θ

over which the function must be integrated. This is a similar integral considered by

Erdelyi (1956) and De Bruijn (1961) who propose the Laplace approximation.

5.1.1 Uniparameter

Let φ and θ be scalar variables. Let hk(θ, φ) be the kth partial derivative of h(θ, φ) with

respect to φ. Expanding the functional component of the exponent inside the integrand
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of (5.1.1) in a Taylor series around some maximum φ̂ gives

M(θ) =

∫

exp(h(θ, φ))dφ ≈

∫

exp

(

h(θ, φ̂) + (φ− φ̂)h1(θ, φ)
∣

∣

∣

φ=φ̂

+
1

2
(φ− φ̂)2h2(θ, φ)

∣

∣

∣

φ=φ̂
+

1

6
(φ− φ̂)3h3(θ, φ)

∣

∣

∣

φ=φ̂
+ · · ·

)

Let φ̂ be the maximum of the function h(·) so that h1(θ, φ̂) = 0. This reduces to

M(θ) ≈ exp(h(φ̂, θ))

∫

exp
(

−
1

2
(φ− φ̂)2(−h2(θ, φ̂))

)

exp(G(θ, φ))dφ

where

G(θ, φ) =

∞
∑

k=3

1

k!
(φ− φ̂)khk(θ, φ̂)

The first exponential term of the integrand mimics the quadratic form for a Gaussian

distribution with expected value 0 and variance (−h2(θ, φ̂))−1. Replacing the missing

components of this distribution in the integrand gives

M(θ) ≈ (2π)1/2(−h2(θ, φ̂))−1/2 exp(h(θ, φ̂))

×

∫

(2π)−1/2(−h2(φ̂, θ))1/2 exp
(

−
1

2
(φ− φ̂)2(−h2(θ, φ̂))

)

exp(G(φ, θ))dφ (5.1.2)

Disregarding the higher order terms in the last exponent term of the integrand the first

order Laplace approximation is

M(θ) ≈ (2π)1/2(−h2(φ̂, θ))−1/2 exp(h(θ, φ̂)) (5.1.3)

5.1.2 Multiparameter

Let the integral of interest be described by (5.1.1) where φ are considered to be nuisance

variables and θ the variable of interest. Let h(θ,φ) be the vector of partial derivatives of

h(·) with ith element ∂h(θ,φ)/∂φi and H(θ,φ) be the matrix of partial second derivatives

with ijth element ∂2h(θ,φ)/∂φi∂φj then expanding the functional component of the

exponent in the integrand using a Taylor series to the second order around some maximum

φ̂ gives

M(θ) ≈ exp(h(θ, φ̂))

∫

Rr

exp
(

(φ− φ̂)Th(θ, φ̂)

−
1

2
(φ− φ̂)T (−H(θ, φ̂))(φ− φ̂)

)

dφ

If φ̂ is the maximiser of h(φ, θ) then, equivalent to the single parameter case, h(φ̂, θ) = 0

and the integrand is reduced to

M(θ) ≈ exp(h(θ, φ̂))

∫

Rp

exp

(

−
1

2
(φ− φ̂)T (−H(θ, φ̂))(φ− φ̂)

)

dφ
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The remaining exponent in the integrand is the multivariate Gaussian distribution with

with expected value 0 and variance (−H(θ, φ̂))−1. Following from the previous section

this can be immediately reduced to

M(θ) ≈ (2π)p/2 exp(h(θ, φ̂))| − H(θ, φ̂)|−1/2, (5.1.4)

where |−H(·)| is the determinant of the negative partial second derivatives of the original

function, h(θ,φ) with respect to φ evaluated at φ̂. An identical result is derived by

Leonard (1982), Tierney & Kadane (1986) and Tierney et al. (1989).

Identical to the previous section a more accurate approximation can be found by con-

sidering higher terms of the Taylor series expansion. For brevity this has been omitted

from this thesis. Details of this approximation can be found in Barndorff-Nielsen & Cox

(1989) and for a more detailed derivation see Raudenbush et al. (2000).

Example: Laplace and Linear Mixed Models

The marginal likelihood derived in Section 2.1.1 can also be derived using the Laplace

approximation from Section 5.1.2. To perform this approximation the random effects, u,

are treated as nuisance variables that require integrating out.

Let

h(β, θ,u) = log p(y|u;β, θ) + log p(u;ϕ) (5.1.5)

where

log p(y|u;β, θ) = −1
2

{

nlog(2π) + log|R| + (y −Xβ −Zu)TR−1(y −Xβ −Zu)
}

log p(u;ϕ) = −1
2

{

rlog(2π) + log|G| + uTG−1u
}

Then the marginal likelihood for y can be expressed as

L(β, θ;y) =

∫

Rr

exp
(

h(β, θ,u)
)

du

Let h(β, θ,u) be a r length vector of partial derivatives with ith element ∂h(·)/∂ui and

H(β, θ,u) be a r×r matrix of partial second derivatives with ijth element ∂2h(·)/∂ui∂uj .

Let ũ be a maximum of u obtained by solving h(·) = 0. Using (5.1.4) the Laplace

approximation to the marginal likelihood can be immediately written as

L(β, θ;y) ≈ (2π)r/2| − H(β, θ, ũ)| exp(h(β, θ, ũ)) (5.1.6)

To obtain the terms of the approximate marginal likelihood the first two derivatives of

(5.1.5) are required, namely

h(β, θ,u) =
∂h(β, θ,u)

∂u
= ZTR−1(y −Xβ −Zu) −G−1u

H(β, θ,u) =
∂2h(β, θ,u)

∂u∂uT
= −ZTR−1Z −G−1
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Setting the first derivative to zero and solving gives the maximised random effects as ũ

as

ũ = (ZTR−1R+G−1)−1ZTR−1(y −Xβ)

= GZTH−1(y −Xβ) (using Result (A.3.2))

Using (5.1.4), the Laplace approximation to the marginal likelihood can be immediately

expressed as

L(β, θ;y) = (2π)−n/2|G|−1/2|R|−1/2|ZTR−1Z +G−1|−1/2 exp (h∗(β, θ, ũ))

where, upon substitution of ũ

h∗(β, θ, ũ) = −1
2

[

(I −ZGZTH−1)(y −Xβ)
]T
R−1

[

(I −ZGZTH−1)(y −Xβ)
]

− 1
2
(y −Xβ)TH−1ZGG−1GZTH−1(y −Xβ)

= −1
2

[

RH−1(y −Xβ)
]T
R−1

[

RH−1(y −Xβ)
]

− 1
2
(y −Xβ)TH−1(H −R)H−1(y −Xβ)

= −1
2
(y −Xβ)TH−1(y −Xβ)

Following Section (2.1.1) the determinants can be amalgamated by using Result A.2.2.

The approximate marginal likelihood can then be expressed as

L(β, θ;y) = (2π)−n/2|H|−1/2 exp
(

−1
2
(y −Xβ)TH−1(y −Xβ)

)

This is identical to the marginal likelihood (2.1.5) derived in Section 2.1.1. This equiv-

alence is due to the quadratic nature of the exponential component of the pseudo-joint

likelihood required for expansion.

Heteroscedastic t-ML

Consider the model defined by (3.1.1) where conditional on the random scale effects,

ωi, i = 1, . . . , n the response is distributed by (4.2.1) and the random scale effects have

the distribution defined by (4.2.2).

For this section a conditional scale parameter model defined by (4.2.3) is assumed. The

heteroscedastic t-distribution has a marginal likelihood that is defined by (4.2.4). Section

5.1.2 suggests that this marginal likelihood can be approximated using the Laplace ap-

proximation. In this particular case the random scale effects, ωi, 1, . . . , n are considered

to be nuisance variables that require integrating out of the integrand of (4.2.4). Here the

unknown parameters, (β,λ, ν), are the parameters of interest.

Let

h(β,λ, ν,ω) = log p(y|ω;β,λ, ν) + log p(ω; ν) = log

{ n
∏

i=1

p(yi|ωi;β,λ)p(ωi; ν)

}

(5.1.7)
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where

log p(y|ω;β,λ, ν) = − 1
2

{

nlog(2π) + log|Ψ| + (y −Xβ)TΨ−1(y −Xβ)
}

(5.1.8)

log p(ω; ν) =
nν

2
log(ν/2) − n log(Γ(ν/2)) +

n
∑

i=1

{(ν

2
− 1
)

logωi −
ν

2
ωi

}

(5.1.9)

The marginal likelihood for the heteroscedastic t is

L(β,λ, ν;y) =

∫

Rn

exp(h(β,λ, ν,ω))dω (5.1.10)

Let h(β,λ, ν,ω) be a n length vector of partial derivatives with ith element ∂h(·)/∂ωi

and let H(β,λ, ν,ω) be an n× n matrix of partial second derivatives with ijth element

∂2h(·)/∂ωi∂ωj . To integrate out the random scale effects, ωi , 1, . . . , n the function in the

exponent of the integrand is expanded in a Taylor series about ω̃, a maximum value of ω

found by solving h(·) = 0, and the Laplace approximation is applied. Using (5.1.4) the

Laplace approximation to the marginal likelihood is

L(β,λ, ν;y) ≈ (2π)n/2| − H(β,λ, ν, ω̃)| exp(h(β,λ, ν, ω̃)) (5.1.11)

The derivatives required for the approximation can be derived as follows. Taking the first

derivative of h(·) with respect to ωi gives

∂h(·)

∂ωi

= −
1

2

{

tr(Ψ−1Ψ̇i) − (y −Xβ)TΨ−1Ψ̇iΨ
−1(y −Xβ)

}

+
(ν

2
− 1
) 1

ωi

−
ν

2
(5.1.12)

where Ψ̇i = ∂Ψ/∂ωi Taking the derivative of (5.1.12) with respect to ωi gives

∂2h(·)

(∂ωi)2
= −

1

2
tr(Ψ−1Ψ̇ii) − (y −Xβ)TΨ−1Ψ̇iΨ

−1Ψ̇iΨ
−1(y −Xβ)

+
1

2
tr(Ψ−1Ψ̇iΨ

−1Ψ̇i) +
1

2
(y −Xβ)TΨ−1Ψ̇iiΨ

−1(y −Xβ) −
(ν

2
− 1
) 1

ω2
i

(5.1.13)

where Ψ̇ij = ∂2Ψ/(∂ωi)
2. Taking the derivative of (5.1.12) with respect to ωj gives

∂2h(·)

∂ωi∂ωj
= −

1

2
tr(Ψ−1Ψ̇ij) − (y −Xβ)TΨ−1Ψ̇iΨ

−1Ψ̇jΨ
−1(y −Xβ)

+
1

2
tr(Ψ−1Ψ̇iΨ

−1Ψ̇j) +
1

2
(y −Xβ)TΨ−1Ψ̇ijΨ

−1(y −Xβ)

where Ψ̇ij = ∂2Ψ/∂ωi∂ωj . As Ψ is a diagonal matrix the first and second derivatives of

its ith element with respect to ωi can be expressed as

∂ϕi

∂ωi
= −

ϕi

ωi
= −

σ2
i

ω2
i

,
∂2ϕi

(∂ωi)2
=

2ϕi

ω2
i

=
2σ2

i

ω3
i

(5.1.14)
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The diagonality of the scale matrix, Ψ, also ensures that

∂2ϕi

∂ωi∂ωj

= 0, i 6= j, i = 1, . . . , n; j = 1, . . . , n (5.1.15)

and therefore Ψ̇ij = 0. This ensures, for this particular case, that the second deriva-

tive ∂2h(·)/∂ωi∂ωj = 0 and H(·) is a n × n diagonal matrix with ith diagonal element

∂h(·)/(∂ωi)
2 and off diagonals equal to zero. Considering the trace terms of (5.1.13) and

using (5.1.14)

tr(Ψ−1Ψ̇ii) =
2

ω2
i

tr(Ψ−1Ψ̇iΨ
−1Ψ̇i) =

1

ω2
i

The quadratic terms of (5.1.13) can also be reduced to

(y −Xβ)TΨ−1Ψ̇iiΨ
−1(y −Xβ) =

2di

σ2
i ωi

(y −Xβ)TΨ−1Ψ̇iΨ
−1Ψ̇iΨ

−1(y −Xβ) =
di

σ2
i ωi

(5.1.16)

Combining these with the last term of (5.1.13) the second derivative can be expressed as

∂2h(·)

(∂ωi)2
= −

1

2ω2
i

−
(ν

2
− 1
) 1

ω2
i

= −
ν − 1

2ω2
i

(5.1.17)

Therefore the Laplace approximation given by (5.1.11) is

L(β,λ, ν;y) = |Ω̃||Ψ̃|−1/2 exp
{

−1
2
(y −Xβ)T Ψ̃

−1
(y −Xβ)

}

× ((ν − 1)/2)−n/2 (ν/2)nν/2

(Γ(ν/2))n
exp
{

−ν
2

n
∑

i=1

ω̃i

}

n
∏

i=1

ω̃
ν/2−1
i (5.1.18)

where Ω is a diagonal matrix with ith diagonal element ωi. Terms that have a ˜ represent

the respective term evaluated at ω̃.

The approximate marginal likelihood given by (5.1.18) can be reduced further by con-

sidering ω̃i, i = 1, . . . , n, the maximum of the random scale effects required for the

approximation. The ith random scale effect, ω̃i, is evaluated by considering the first

derivative of h(·) with respect to ωi given by (5.1.12). Using (5.1.14) this can be reduced

to

∂h(·)

∂ωi
=

1

2ωi
−

1

2

di

σ2
i

+
(ν

2
− 1
) 1

ωi
−
ν

2
(5.1.19)
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Setting this to zero and solving for ωi gives

ω̃i =
ν − 1

ν + di/σ
2
i

(5.1.20)

Note this is not equivalent to the predicted random scale effects (4.4.3) derived from the

conditional distribution of ωi|yi.

Taking natural logs of (5.1.18) the approximate marginal log-likelihood is

ℓ(β,λ, ν;y) =
nν

2
log(ν/2) − n log Γ(ν/2) −

n

2
log((ν − 1)/2)

−
1

2

n
∑

i=1

{

log σ2
i +

diω̃i

σ2
i

− (ν + 1) log ω̃i + νω̃i

}

Substituting (5.1.20) and using the relation, ν−1 = νω̃i+diω̃i/σ
2
i , from the same equation

the approximate marginal log-likelihood becomes

ℓ(β,λ, ν;y) =
nν

2
log(ν/2) − n log Γ(ν/2) −

n

2
log((ν − 1)/2) −

n

2
(ν − 1)

−
1

2

n
∑

i=1

{

log σ2
i + (ν + 1) log

(ν + di/σ
2
i

ν − 1

)}

=
nν

2
log((ν − 1)/2) − n log Γ(ν/2) −

n

2
log(ν/2) −

n

2
(ν − 1)

−
1

2

n
∑

i=1

{

log σ2
i + (ν + 1) log

(

1 +
di

σ2
i ν

)}

Therefore when the degrees of freedom is known the Laplace approximation reproduces

the kernel of the heteroscedastic t-distribution for the location and scale parameters

(β,λ).

The estimated random scale effects, ω̃i, i = 1, . . . , n, required to form the Laplace approx-

imation are obtained by maximising the integrand of (5.1.20). This integrand represents a

pseudo joint likelihood for (y,ω) and therefore this maximisation is equivalent to a Hier-

archical Generalised Linear Modelling (HGLM) (see Lee & Nelder, 1996 and Lee & Nelder,

2001) approach to random effect estimation. A potential problem with this method is

the non-invariance of the estimated random effects from HGLM when the scale of the

random effects distribution is transformed. Although the heteroscedastic t-distribution

is not a member of the exponential family it is used to highlight this problem.

Under a heteroscedastic Gaussian distribution the kernel for the scale parameters is rep-

resented by a Gamma generalized linear model (see Section 3.2 or Smyth, 1989 and Ver-

byla, 1993) with log link for the location parameters, σ2
i . Similarly, the heteroscedastic

t-distribution contains the conditional Gaussian (5.1.8) as a component of the integrand.

Under the log link the random scale effects contained in this component are naturally

logged and occur linearly in the predictor. Lee & Nelder (1996) and Lee & Nelder (2001)
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allude that the use of the correct scale, the scale on which the random effects occur lin-

early, ensures the estimated random effects obtained from HGLM will be equivalent to

the predicted random effects obtained from the conditional distribution of ωi|yi. For this

reason a transformation of the form ω∗
i = log ωi is used.

The new well known log Gamma distribution has a log-likelihood of the form

ℓ(ω∗; ν) =
nν

2
log(ν/2) − nlogΓ(ν/2) +

n
∑

i=1

{ν

2
ω∗

i −
ν

2
exp ω∗

i

}

(5.1.21)

Substituting this into the integrand of (5.1.10) the integral is approximated again by the

Laplace approximation given in (5.1.11). Following identically to the previous section the

approximation requires the derivatives of q(·). Noting that

∂ϕi

∂ω∗
i

= −
σ2

i

expω∗
i

,
∂2ϕi

(∂ω∗
i )

2
=

σ2
i

expω∗
i

(5.1.22)

The first and second derivative with respect to ω∗
i can be immediately written as

∂h(·)

∂ω∗
i

=
1

2
−

1

2

di expω∗
i

σ2
i

+
ν

2
−
ν

2
expω∗

i

∂2h(·)

(∂ω∗
i )

2
= −

1

2

di expω∗
i

σ2
i

−
ν

2
expω∗

i (5.1.23)

To obtain the maximised random scale effects the first derivative is set to zero and solved

for ωi = expω∗
i giving

ω̃i =
ν + 1

ν + di/σ
2
i

Note this maximisation is equivalent to the predicted random scale effects (4.4.3) obtained

from the conditional distribution ωi|yi and differs from the maximised random scale effects

(5.1.20) obtained from using the ordinary Gamma kernel (5.1.9) in the integrand of the

Laplace approximation. This suggests that changing the scale of the random effects

distribution alters the invariance of the random effects under HGLM.

Substitution of these new maximised effects allows the second derivative to be reduced

to

∂2h(·)

(∂ω∗
i )

2
= −

ν + 1

2

The final approximate marginal log-likelihood is

ℓ(β,λ, ν;y) =
nν

2
log(ν/2) − n log Γ(ν/2) −

n

2
log((ν + 1)/2) −

n

2
(ν + 1)

−
1

2

n
∑

i=1

{

log σ2
i + (ν + 1) log

(ν + di/σ
2
i

ν + 1

)}

=
nν

2
log((ν + 1)/2) − n log Γ(ν/2) −

n

2
log(ν/2) −

n

2
(ν + 1)

−
1

2

n
∑

i=1

{

log σ2
i + (ν + 1) log

(

1 +
di

σ2
i ν

)}
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Again, this is equivalent to the kernel of the heteroscedastic t-distribution for the location

and scale parameters (β,λ). In this particular case, the approximate marginal likelihood

obtained by the Laplace approximation is parameter invariant under transformation of

the random scale effects distribution in the integrand.

5.1.3 Partial Laplace Approximation

Consider (θ,ψ,φ) from Section 5.1.2 to be a p, q and r length vectors of variables

respectively where, again, φ is the nuisance variable and (θ,ψ) are the variables of

interest. Let h1(θ,ψ,φ) and h2(ψ,φ) be a arbitrary functions of the three variables and

two variables respectively. The proposed integral is then

P (θ,ψ) =

∫

Rr

exp
(

h1(θ,ψ,φ) + h2(ψ,φ)
)

dφ (5.1.24)

Let h2(ψ,φ) be an r length vector of partial derivatives with ith element ∂h2(·)/∂φi

and let H2(ψ,φ) be an r × r matrix of partial second derivatives with ijth element

∂2h2(·)/∂φi∂φj . Furthermore, let h1(θ,ψ,φ) be an r length vector of partial derivatives

with ith element ∂h1(·)/∂φi and let H1(θ,ψ,φ) be an r×r matrix of partial second deriva-

tives with ijth element ∂2h1(·)/∂φi∂φj . If φ̂ is a maximum of φ such that h2(ψ, φ̂) = 0

then expanding the integrand of (5.1.24) to the second order using an ordinary Taylor

series around the maximum φ̂ gives

P (θ,ψ) ≈ exp
(

h1(θ,ψ, φ̂) + h2(ψ, φ̂)
)

∫

Rr

exp
{

(φ− φ̂)T (h1(θ,ψ, φ̂))

−
1

2
(φ− φ̂)T (−H1(θ,ψ, φ̂))(φ− φ̂) −

1

2
(φ− φ̂)T (−H2(ψ, φ̂))(φ− φ̂)

}

dφ

The integrand can then be reduced by completing the square of the components

P (θ,ψ) ≈ exp
(

h1(θ,ψ, φ̂) + h2(ψ, φ̂)
)

× exp
{1

2
h1(θ,ψ, φ̂)T

(

M(θ,ψ, φ̂)
)−1
h1(θ,ψ, φ̂)

}

×

∫

Rr

exp
{

−
1

2
a(θ,ψ,φ)T

M(θ,ψ, φ̂)a(θ,ψ,φ)
}

dφ (5.1.25)

where

a(θ,ψ,φ) = (φ− φ̂) −
(

M(θ,ψ, φ̂)
)−1
h1(θ,ψ, φ̂)

M(θ,ψ, φ̂) = −H1(θ,ψ, φ̂) − H2(ψ, φ̂)

The integral given by (5.1.25) is in standard form and therefore the Partial Laplacian

approximation to (5.1.24) is

P (θ,ψ) ≈ (2π)r/2|M(θ,ψ, φ̂)|−1/2 exp
(

h1(θ,ψ, φ̂) + h2(ψ, φ̂)
)

× exp
{1

2
h1(θ,ψ, φ̂)T

(

M(θ,ψ, φ̂)
)−1
h1(θ,ψ, φ̂)

}

(5.1.26)
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If φ̂ is in the neighbourhood of the maximiser for h1(·) + h2(·) then the second expo-

nent term approaches zero and the Laplace approximation reverts to the ordinary first

order approximation (see Section 5.1.2). This approximation can also be partitioned into

two approximately disjoint functions. The Partial Laplace approximation can then be

expressed as

P (θ,ψ) = (2π)r/2h∗1(θ,ψ, φ̂)h∗2(ψ, φ̂) (5.1.27)

where

h∗1(θ,ψ, φ̂) = |I + (−H2(ψ, φ̂))−1(−H1(θ,ψ, φ̂))|−1/2 exp
(

h1(θ,ψ, φ̂)
)

× exp
{1

2
h1(θ,ψ,φ)T

(

M(θ,ψ, φ̂)
)−1
h1(θ,ψ,φ)

}

h∗2(ψ, φ̂) = | − H2(ψ, φ̂)|−1/2 exp
(

h2(ψ, φ̂)
)

An example of this is given in the next section.

Example: REML for Linear Mixed Models

The REML for linear mixed models can also be derived using the Partial Laplace approx-

imation. For this example the notation of Section (2.3) is used. Consider the conditional

transformed response vector given the location random effects, namely

[

LT
1 y

LT
2 y

]

=

[

y1

y2

]

∣

∣

∣
u ∼ N

([

β +LT
1Zu

LT
2Zu

]

,

[

LT
1RL1 LT

1RL2

LT
2RL1 LT

2RL2

])

Using Result A.4.2 the conditional distributions can be expressed as

y1|(y2,u) ∼ N
(

β +LT
1Zu+LT

1RL2(L
T
2RL2)

−1(y2 −L
T
2Zu) ,

LT
1RL1 −L

T
1RL2(L

T
2RL2)

−1LT
2RL1

)

(5.1.28)

y2|u ∼ N(0 +LT
2Zu,L

T
2RL2) (5.1.29)

u ∼ N(0,G) (5.1.30)

The marginal likelihood has the form

L(β, θ;y) =

∫

Rr

p(y1|y2,u;β, θ)p(y2|u; θ)p(u;ϕ)du (5.1.31)

The integrand in (5.1.31) is analogous to the separation of components proposed in Section

2.3. Therefore, given an observed vector, y and the random effects p(y1|y2|u; ·) represents

a conditional probability density function for β that contains no information about the

scale parameters. Similarly, p(y2|u; ·) and p(u; ·) are probability density functions for θ

and contain no information about β.
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Using Result A.5.1,

L2(L
T
2RL

T
2 )−1LT

2 = R−1 −R−1X(XTRX)−1XTR−1 = S

and this result with (2.3.6) allows the probability density function for (5.1.28) to be

expressed as

p(y1|y2,u;β, θ) = (2π)−p/2|XTR−1X|1/2

× exp
{

−1
2
(y1 − β − y∗

2)
TXTR−1X(y1 − β − y∗

2)
}

where y∗2 = LT
1 (Zu +RS(y − Zu)). Using (2.3.7) the probability density function for

(5.1.29) can be expressed as

p(y2|u; θ) = (2π)−(n−p)/2|R|−1/2|XTR−1X|−1/2 exp
{

−1
2
(y −Zu)TS(y −Zu)

}

and the probability density function for (5.1.30) can be expressed as

p(u;ϕ) = (2π)−r/2|G|−1/2 exp
{

−1
2
uTG−1u

}

Let

h1(β,u, θ) = log p(y1|y2,u;β, θ)

h2(u, θ) = log p(y2|u; θ) + log p(u;ϕ)

then the marginal likelihood, (5.1.31) can be expressed as

L(β, θ;y) =

∫

Rr

exp (h1(β,u, θ) + h2(u, θ)) du (5.1.32)

As h1(·) contains no information about the scale parameters, the integration of the random

effects requires that the integrand be expanded in a Taylor series around some maximum

value of u, say ũ of h2(·) only. Following this, the Partial Laplace approximation from

section 5.1.3 can be used. Let h1(β,u, θ) be an r length vector of partial derivatives with

ith element ∂h1(·)/∂ui and let H1(β,u, θ) be a r× r matrix of partial second derivatives

with ijth element ∂2h1(·)/∂ui∂uj . Furthermore, let h2(u, θ) be a r length vector of partial

derivatives with ith element ∂h2(·)/∂ui and let H2(u, θ) be a r×r matrix of partial second

derivatives with ijth element ∂2h2(·)/∂ui∂uj . Noting (5.1.27), the marginal likelihood,

(5.1.32), can be immediately approximated by the Partial Laplace approximation

L(β, θ;y) = (2π)r/2L1(β, θ;y)L2(θ;y) (5.1.33)

where

L1(β, θ;y) = |I + (−H2(ũ, θ))
−1(−H1(β, ũ, θ))|

−1/2 exp
(

h1(β, ũ, θ)
)

× exp
{

1
2
h1(β, ũ, θ)

T
(

−H1(β, ũ, θ) − H2(ũ, θ)
)−1
h1(β, ũ, θ)

}

L2(θ;y) = exp
(

h2(ũ, θ)
)

| − H2(ũ, θ)|
−1/2
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where, noting that LT
1X = I and SX = 0,

h1(β,u, θ) =
∂h1(β,u, θ)

∂u
= ZTR−1X(y1 − β − y∗

2)

H1(β,u, θ) =
∂2h1(β,u, θ)

∂u∂uT
= −ZTR−1X(XTR−1X)−1XTR−1Z (5.1.34)

and

h2(u, θ) =
∂h2(u, θ)

∂u
= ZTS(y −Zu) −G−1u

H2(u, θ) =
∂2h2(u, θ)

∂u∂uT
= −ZTSZ −G−1 (5.1.35)

For completeness, combining (5.1.34) and (5.1.35) gives

H1(β,u, θ) + H2(u, θ) = −ZTR−1Z −G−1

The terms of the approximate marginal likelihood, (5.1.33) can be written as

L1(β, θ;y) = (2π)−p/2|I +ZTR−1X(XTR−1X)−1XTR−1Z(ZTSZ +G−1)−1|−1/2

× |XTR−1X|1/2 exp
{

−1
2
(y1 − β − ỹ∗

2)
TXTR−1X(y1 − β − ỹ∗

2)
}

× exp
{

1
2
(y1 − β − ỹ∗

2)
TXTR−1Z(ZTR−1Z +G−1)−1ZTR−1X(y1 − β − ỹ∗

2)
}

(5.1.36)

L2(θ;y) = (2π)−(n−p)/2|ZTSZ +G−1|−1/2|XTR−1X|−1/2|G|−1/2|R|−1/2

× exp
{

−1
2
(y −Zũ)TS(y −Zũ) − 1

2
ũTG−1ũ

}

(5.1.37)

where ỹ∗
2 is y∗

2 evaluated at ũ. L1(·) is viewed as an approximate objective function

analogous to a conditional likelihood which is free of the random effects and is used to

estimate the location parameters β. As L2(·) does not contain β it is viewed as an

approximate Restricted Likelihood used to estimate the remaining scale parameters, γ

and ϕ.

The estimated random effects required for the approximation, ũ, are found by maximising

h2(u, θ) with respect to u. Setting h2(u, θ) = 0 and solving for u gives

0 = ZTS(y −Zũ) −G−1ũ

ũ = (ZTSZ +G−1)−1ZTSy (5.1.38)

These estimated random effects can also be written as

ũ = G(G−1 +ZTSZ −ZTSZ)(ZTSZ +G−1)−1ZTSy

= G(I −ZTSZ(ZTSZ +G−1)−1)ZTSy

= GZT (S − SZ(ZTSZ)−1ZTS)y

= GZTPy (using Result A.5.4)
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where P is defined in section 2.3. Notice these random effects are identical to the predicted

random effects (2.2.4) derived in Section 2.2. Using (5.1.38) and (5.1.39), ỹ∗
2 can be

simplified

ỹ∗
2 = LT

1 (Zũ+RS(y −Zũ))

= LT
1

{

ZGZTPy +RS(y −Z(ZTSZ +G−1)−1ZTSy)
}

= LT
1

{

(H −R)Py +R(S − SZ(ZTSZ +G−1)−1ZTS)y
}

= LT
1 {(H −R)Py +RPy} (using Result A.5.4)

= LT
1HPy

The exponent term of (5.1.36) can be expressed as

−
1

2
(y1 − β − y∗

2)
TXT (R−1 −R−1Z(ZTR−1Z +G−1)−1ZTR−1)X(y1 − β − y∗

2)

= −
1

2
(y1 − β − y∗

2)
TXTH−1X(y1 − β − y∗

2) (using Result A.3.1)

The determinant terms of (5.1.36) can be written as

|XTR−1X|1/2|I +ZTR−1X(XTR−1X)−1XTR−1Z(ZTSZ +G−1)−1|−1/2

= |XTR−1X|1/2|ZTR−1Z +G−1|−1/2|ZTSZ +G−1|1/2

= |C|1/2|ZTR−1Z +G−1|−1/2 (using Result A.5.5)

= |C|1/2|R|1/2|G|1/2|ZTR−1Z +G−1|−1/2|R|−1/2|G|−1/2

= |H|1/2|XTH−1X|1/2|H|−1/2 (using Result A.5.5 and A.2.2)

= |XTH−1X|1/2

Therefore (5.1.36) is equivalent to the conditional likelihood (2.3.6) derived in Section

2.3.

Substituting the random effects into the components of the exponent term of (5.1.37)

allows it to be expressed as

−
1

2
(y −Z(ZTSZ +G−1)−1ZTSy)TS(y −Z(ZTSZ +G−1)−1ZTSy)

−
1

2
yTPZGG−1GZTPy

= −
1

2
yPS−1Py −

1

2
yP (H −R)Py (using Result A.5.4)

= −
1

2
yTPRPy −

1

2
yTP (H −R)Py (PX = 0)

= −
1

2
yTPy (using Result A.5.2)
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The determinants of (5.1.37) can be expressed as

|ZTSZ +G−1|−1/2|XTR−1X|−1/2|G|−1/2|R|−1/2

= |C|−1/2|G|−1/2|R|−1/2 (using Result A.5.5)

= |XTH−1X|−1/2|H|−1/2 (using Result A.2.2)

Therefore (5.1.37) is equivalent to the REML, (2.3.7), derived in Section 2.3.

5.2 Adjusted Likelihood Techniques

Profile Likelihoods have been widely used in the statistical literature for inference on

parameters of interest. Let θ and φ be p and q length parameter vectors. For given

y = (y1, . . . , yn) the profile likelihood for θ is defined as

LP (θ) = exp(ℓ(θ, φ̂θ;y)) (5.2.1)

where φ̂θ is the ML estimate of φ for a given θ. A common use of this profile likelihood

is to calculate confidence limits for the parameter of interest (see Venzon & Mollgavkar,

1988). However, the profile likelihood is not a true likelihood. In particular, the mo-

ment properties of the profile score statistic ∂LP (θ)/∂θ do not share the same moment

properties as the usual score statistic. An approach that accounts for the presence of nui-

sance parameters more appropriately is to consider adjustments to the profile likelihood

function.

Inferential adjustments to a profile likelihood in the presence of nuisance parameters

has been a long standing area of research. An overview of many techniques and their

applications are described by Barndorff-Nielsen & Cox (1994). In particular, these authors

build on previous work by Barndorff-Nielsen (1980) and Barndorff-Nielsen (1983) which

extends the seminal work of Fisher (1934). Approximate techniques that are discussed

in this section include Modified Profile Likelihood (MPL), Conditional Profile Likelihood

(CPL) and Stably Adjusted Profile Likelihood (SAPL). An essential reference for all these

approaches are found in Barndorff-Nielsen & Cox (1994).

5.2.1 Modified Profile Likelihood

The underlying principles for the discussion of MPL can be found in Fisher (1934) and is

revised in Barndorff-Nielsen (1980). The latter of these authors considers the joint dis-

tribution of the parameter estimates ψ̂ = (θ̂, φ̂), given an ancillary statistic a, factorised

in the following form

p(θ̂, φ̂; θ,φ|a) = p(θ̂; θ|a)p(φ̂; θ,φ|θ̂,a) (5.2.2)
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For the parameter of interest, θ, the MPL is determined from the marginal distribu-

tion, p(θ̂; θ|a), as it is the most likely candidate for inference about θ. Consider the

transformation φ̂→ φ̂θ. Applying this to the second term of the RHS of (5.2.2) gives

p(φ̂; θ,φ|θ̂,a) = p(φ̂θ; θ,φ|θ̂,a)

∣

∣

∣

∣

∂φ̂θ

∂φ̂
T

∣

∣

∣

∣

(5.2.3)

where the determinant term is the Jacobian required from the transformation. Applying

the p∗ − formula (see Barndorff-Nielsen, 1980; Barndorff-Nielsen, 1983 and Barndorff-

Nielsen & Cox, 1994, Section 6.2) to the first term of the RHS of (5.2.3) and the LHS of

(5.2.2) gives

p∗(θ̂, φ̂; θ,φ|a) ≈ c(θ,φ,a)|Io(ψ̂, ψ̂)|1/2 exp
(

ℓ(θ,φ;y) − ℓ(θ̂, φ̂;y)
)

p∗(φ̂θ; θ,φ|θ̂,a) ≈ c(φ|θ, θ̂,a)|Io(φ̂θ, φ̂φ)|1/2 exp
(

ℓ(θ,φ;y) − ℓ(θ, φ̂θ;y)
)

Barndorff-Nielsen & Cox (1994) note the validity of the second equation is contingent on

the assumption that the marginal distribution of θ̂ does not depend on φ. The implication

is that for fixed θ, (φ̂θ, θ̂,a) remains sufficient and (θ̂,a) can be considered to be ancillary,

thus allowing the p∗ − formula to be applied appropriately (see Barndorff-Nielsen, 1983

and Barndorff-Nielsen & Cox, 1994, Section 8.2, pg. 266 for further details). Discarding

norming constants, the conditional distribution of θ̂ given a can then be written as

p(θ̂; θ|a) ≈
|Io(ψ̂, ψ̂)|1/2

|Io(φ̂θ, φ̂θ)|
1/2

∣

∣

∣

∣

∂φ̂θ

∂φ̂
T

∣

∣

∣

∣

−1

exp
(

ℓ(θ, φ̂θ;y) − ℓ(θ̂, φ̂;y)
)

(5.2.4)

By discarding terms that are functions of the data only this may be simplified to provide

an MPL for θ, namely

LMP (θ) = |Io(φ̂θ, φ̂θ)|
−1/2

∣

∣

∣

∣

∂φ̂θ

∂φ̂
T

∣

∣

∣

∣

−1

exp
(

ℓ(θ, φ̂θ;y)
)

(5.2.5)

An alternative expression for MPL can be derived. Let ℓφ(·) be the derivative of the full

likelihood with respect to φ. Evaluating this score equation at φ̂θ and setting it to zero

gives

ℓφ(θ, φ̂θ;y) = 0

Taking the second derivative of this identity with respect to φ̂ gives

ℓφ;φ(θ, φ̂θ;y)
∂φ̂θ

∂φ̂
T

+ ℓφ;φ̂(θ, φ̂θ;y) = 0

where ℓφ;φ̂(·) represents the matrix of second derivatives of the log-likelihood function

with respect to the parameters φ and φ̂ respectively. Rearranging

∂φ̂θ

∂φ̂
T

=
ℓφ;φ̂(θ, φ̂θ;y)

Io(φ̂θ, φ̂θ)
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Substituting this into (5.2.5) the MPL is found to be

LMP (θ) =
|Io(φ̂θ, φ̂θ)|

1/2

|ℓφ;φ̂(θ, φ̂θ;y)|
exp
(

ℓ(θ, φ̂θ;y)
)

(5.2.6)

A consequence of the term, |∂φ̂θ/∂φ̂
T
| on the RHS of (5.2.3), generated by the Jacobian

from the transformation is that if φ̂θ is independent of θ then it becomes unity and MPL

can be reduced to

Lo
MP (θ) = |Io(φ̂θ, φ̂θ)|

−1/2 exp
(

ℓ(θ, φ̂θ;y)
)

(5.2.7)

Following Barndorff-Nielsen & Cox (1994) the MPLs (5.2.6) and (5.2.7) have the ad-

vantageous property of invariance under interest respecting parameter transformations.

Furthermore, the accuracy of each approximation is O(n−3/2). Barndorff-Nielsen (1983)

also states that the parameter invariance is maintained if the observed information for φ

is replaced by its expected information producing the MPL

Le
MP (θ) = |Ie(φ̂θ, φ̂θ)|

−1/2 exp
(

ℓ(θ, φ̂θ;y)
)

(5.2.8)

5.2.2 Parameter Orthogonality and Conditional Profile Likeli-

hood

To ensure simplicity of inference and estimation techniques it is sometimes useful to

orthogonalise parameters. Following Cox & Reid (1987) let ψ = (ψ1, . . . , ψp) be a set of

nuisance parameters orthogonal to θ, a scalar parameter of interest. Thus the original p

parameters are defined (φ1(θ,ψ), . . . , φp(θ,ψ)). For given data y, the likelihood for the

parameterization can be defined by

ℓ(θ,ψ;y) = ℓo(θ, φ1(θ,ψ), . . . , φp(θ,ψ);y)

Taking derivatives of both sides of this equation with respect to θ gives

∂ℓ

∂θ
=
∂ℓo
∂θ

+

p
∑

i=1

∂ℓo
∂φi

∂φi

∂θ

To obtain the co-information between the parameter of interest and the new orthogonal

parameters the next derivative is taken with respect to the kth orthogonal parameter ψk,

namely

∂2ℓ

∂θ∂ψk
=

p
∑

j=1

∂2ℓo
∂θ∂φj

∂φj

∂ψk
+

p
∑

j=1

p
∑

i=1

∂2ℓo
∂φi∂φj

∂φi

∂θ

∂φj

∂ψk
+

p
∑

i=1

∂ℓo
∂φi

∂2φi

∂θ∂ψk

=

p
∑

j=1

{

∂2ℓo
∂θ∂φj

+

p
∑

i=1

∂2ℓo
∂φi∂φj

∂φi

∂θ

}

∂φj

∂ψk

+

p
∑

i=1

∂ℓo
∂φi

∂2φi

∂θ∂ψk
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E(∂ℓo/∂φi) = 0, i = 1, . . . , n due to the unbiasedness of the likelihood score function and

therefore taking expectations of both sides gives

Ie(θ, ψk) =

p
∑

i=j

{

Ie(θ, φj) +

p
∑

i=1

Ie(φi, φj)
∂φi

∂θ

}

∂φj

∂ψk

, k = 1, . . . , p

Assuming orthogonality between θ and ψk, k = 1, . . . , p the LHS becomes zero. The

Jacobian of the transformation ∂φi/∂ψk, i, j = 1, . . . , p is non-zero and therefore the

orthogonality equations can be reduced to

p
∑

j=1

p
∑

i=1

Ie(φi, φj)
∂φi

∂θ
= −

p
∑

j=1

Ie(θ, φj)

and in matrix notation

Ie(φ,φ)
∂φ

∂θ
= −Ie(θ,φ) (5.2.9)

It is clear that this equation does not depend on the new orthogonal parameters but

provides a mechanism for evaluation of the dependence between θ and φ. Therefore

the choice of the functional relationship between φ and ψ is somewhat arbitrary (see

Cox & Reid, 1987 for details). It also must be noted that the orthogonality equations

(5.2.9) only hold when the parameter of interest, θ, is scalar (see Cox & Reid, 1987 or

Barndorff-Nielsen & Cox, 1994, Section 2.7, pg. 50).

If ψ and θ are orthogonal parameters then from (iv) in Section 2.2 of Cox & Reid (1987)

the maximum likelihood estimate of ψ when θ is given, ψ̂θ, varies slowly with θ (see Cox

& Reid, 1987 or Barndorff-Nielsen & Cox, 1994, Section 2.7 for details). Therefore, using

(5.2.5) and forming the modified profile likelihood for θ, the determinant term containing

the Jacobian of the transformation can be ignored and the CPL of θ can be expressed as

LCP (θ) = |Io(ψ̂θ, ψ̂θ)|
−1/2 exp

(

ℓ(θ, ψ̂θ;y)
)

(5.2.10)

In the discussion of Cox & Reid (1987) and Barndorff-Nielsen & Cox (1994) and in more

detail by Cox & Reid (1992) and Barndorff-Nielsen & McCullagh (1993) it is found that

this approximate likelihood approach unfortunately lacks the parameter invariance of

MPL, (5.2.7), derived in the previous section. Furthermore, due to the omission of the

Jacobian, its accuracy is O(n−1) in comparison to (5.2.7) which is of O(n−3/2).

5.2.3 Laplace’s method, MPL and CPL

The adjustments to the profile likelihood in Section 5.2.1 and 5.2.2 were derived under

specialised conditional distribution theory. In particular, the ancillary statistic, a, has to

be available to provide neat factorisation of the joint distribution of ψ̂ = (θ̂, φ̂) in (5.2.2).
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The Laplace approximation techniques of Section 5.1.2 do not require an available ancil-

lary statistic for inference to proceed. This section illustrates the connection of Laplace’s

method and the derived modified and conditional profile likelihoods of the previous sec-

tions.

Let θ be the parameter of interest and φ the nuisance parameter then if the log-likelihood

has the form ℓ(θ,φ;y) then using section 5.1.2 the marginal likelihood can be expressed

as

LLA(θ) =

∫

Rr

exp(ℓ(θ,φ;y))π(φ)dφ

where π(φ) is the prior density of the nuisance parameter. Following Section 5.1.2 by

expanding the integrand in a Taylor series at some maximum of φ = φ̂θ and using (5.1.4),

the Laplace approximation to the marginal likelihood can be expressed as

LLA(θ) = (2π)q/2|Io(φ̂θ, φ̂θ)|
−1/2π(φ̂θ) exp(ℓ(θ, φ̂θ;y))

If the range of interest for θ varies within O(n−1/2) then φ̂θ − φ varies within O(n−1).

From this the prior density for φ evaluated at φ̂θ, π(φ̂θ), is also O(n−1) and can be

ignored. Omitting constants, the Laplace approximation can then be expressed as

LLA(θ) = |Io(φ̂θ, φ̂θ)|
−1/2 exp(ℓ(θ, φ̂θ;y)) (5.2.11)

with accuracy O(n−1). From (5.2.10) it can be seen that the LCP (·) = LLA(·) to O(n−1)

and identical to CPL the Laplacian approximation also suffers from a lack of parameter

invariance when θ is not independent of φ.

For clarity, the equivalence relationship between the asymptotic approximations derived

here can be presented as follows. When θ and φ are independent the following relationship

holds to the accuracy O(n−1),

Lo
MP (θ, φ̂;y)

.
= LCP (θ, φ̂;y)

.
= LLA(θ, φ̂;y)

Furthermore, Lo
MP (θ, φ̂;y) and LCP (θ, φ̂;y) are equivalent to O(n−3/2). The indepen-

dence between the parameters, in this particular case, also ensures that exact parameter

invariance is maintained in all three approximations.

5.2.4 Extending the Modified Profile likelihood

This section discusses an alternative adjusted profile likelihood that retains the nice prop-

erties of MPL without the requirement of an explicit ancillary statistic. In particular,

the Stably Adjusted Profile Likelihood (SAPL) is invariant under transformation of the

parameter of interest and is accurate to the order O(n−1). The technical derivation of this
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approximate likelihood is given in Barndorff-Nielsen (1994), Barndorff-Nielsen & Cham-

berlain (1994) and Barndorff-Nielsen & Cox (1994), Section 8.3 and the theory presented

below follows this very closely.

The MPL given by (5.2.6) can be also be expressed as

LMP (θ) = K(θ)
{

|Ie(φ̂θ, φ̂θ)|/|Io(φ̂θ, φ̂θ)|
}1/2

exp(ℓ(θ, φ̂θ;y)) (5.2.12)

where

K(θ) = |Io(φ̂θ, φ̂θ)|/
{

|ℓφ;φ̂(θ, φ̂θ;y)||Ie(φ̂θ, φ̂θ)|
}1/2

If an ancillary statistic is not available then, in general, it is very difficult to determine the

appropriate differentiation for the component ℓφ;φ̂(·). To circumvent this a linearisation of

the parameter of interest is performed on logK(θ) = k(θ) around the maximum likelihood

estimate θ̂. Let I
(θj)
e (·, ·) be the derivative of a given expected information with respect

to θj . The linearisation can then be expressed as

k∗(θ) = k(θ) − k(θ̂) = (θ − θ̂)Tk′(θ̂, φ̂) (5.2.13)

where

k′(θ̂, φ̂) = (tr(A1), . . . , tr(Ap))
T

and

Aj = (Ie(φ,φ))−1
{

I(φ)
e (φ, θj) − I(φ)

e (φ,φ)(Ie(φ,φ))−1Ie(φ, θj) −
1

2
Bj

}∣

∣

∣

θj=θ̂j ;φ=φ̂

with

Bj = I(θj)
e (φ,φ) − I(φ)

e (φ,φ)Ie(φ,φ)Ie(φ, θj)

The technical derivation of this result is outside the scope of this thesis and therefore has

been omitted (see Barndorff-Nielsen, 1994 or Barndorff-Nielsen & Cox, 1994, Section 8.3

for the derivation and details). Following Barndorff-Nielsen & Cox (1994), Section 8.3,

pg. 270-271, the first position where I
(φ)
e (φ,φ) occurs the matrix multiplication is with

respect to the second φ and the second position it occurs the matrix multiplication is

with respect to the third φ.

Under parameter orthogonality, Ie(φ, θ) = 0, and therefore

Aj = −
1

2
(Ie(φ̂θ, φ̂θ))

−1I(θj)
e (φ̂θ, φ̂θ)

∣

∣

∣

θj=θ̂j

allowing for considerable simplification. It is then argued in Barndorff-Nielsen (1994) and

Barndorff-Nielsen & Cox (1994) that under transformations of the parameter of interest,

θ, k∗(θ) is invariant. Therefore the SAPL proposed can be expressed as

LS(θ) = exp(k∗(θ))
{

|Ie(φ̂θ, φ̂θ)|/|Io(φ̂θ, φ̂θ)|
}1/2

exp(ℓ(θ, φ̂θ;y)) (5.2.14)

and is parameter invariant under transformation of θ.
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Chapter 6

Heteroscedastic t-REML with

known degrees of freedom

Chapter 4 focussed on ML estimation of the heteroscedastic t-distribution when the de-

grees of freedom is known. This chapter extends these results by deriving an approximate

REML for the heteroscedastic t-distribution using approximate likelihood techniques of

the previous chapter.

The first of these approximations requires the use of the Partial Laplace approximation

(see Section 5.1.3) to the heteroscedastic t-distribution when the degrees of freedom is

known. This technique exploits the component form of the integrand given by (4.2.4).

The methodology of REML derived in Section 2.3 is applied to the conditional Gaussian

component of the integrand before the random scale effects are integrated out. The

approximate marginal likelihood derived can then be partitioned to obtain approximate

REML equivalents for the location and scale parameters separately.

As the heteroscedastic t with known degrees of freedom is from the location-scale family

the second approximation uses the adjusted likelihood technique MPL (see Section 5.2.1)

to obtain an approximate REML equivalent. The derivation supplied shows that this is

equivalent to the approximate likelihood derived in James et al. (1993) and similar to

the Gaussian REML derived in Chapter 2.

6.1 Heteroscedastic t-REML using the Partial Laplace

approximation

Consider the model defined by (3.1.1) where conditional on the random scale effects,

ωi, i = 1, . . . , n the response is distributed as given by (4.2.1) and the random scale
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effects have distribution defined by (4.2.2). In this section the scale parameter model is

defined by (3.1.2).

6.1.1 Notation

Again, the marginal likelihood for the heteroscedastic t-distribution is defined by (4.2.4)

where the components of the integrand are the likelihood for the conditional response

given by (4.2.5) and the likelihood for the random scale effects given by (4.2.6). Given

matrices L = [L1,L2]
T that satisfy the conditions (2.3.1) allows the conditional response

to be transformed to y = (LT
1 y,L

T
2 y)T = (y1,y2)

T . Using (2.3.2) the conditional distri-

bution of this transformed response becomes
[

LT
1 y

LT
2 y

]

=

[

y1

y2

]

∣

∣

∣
ω ∼ N

([

β

0

]

,

[

LT
1 ΨL1 LT

1 ΨL2

LT
2 ΨL1 LT

2 ΨL2

])

(6.1.1)

From this the appropriate conditional REML likelihood can be expressed as

L(β,λ;y|ω) = L(β,λ;y1|y2,ω)L(β,λ;y2|ω)

where from (2.3.6) and (2.3.7),

L(β,λ;y1|y2,ω) = (2π)−p/2|XTΨ−1X |1/2

× exp
{

−1
2
(y1 − β − y∗

2)
TXTΨ−1X(y1 − β − y∗

2)
}

(6.1.2)

L(λ;y2|ω) = (2π)−(n−p)/2|Ψ|−1/2|XTΨ−1X |−1/2 exp
{

−1
2
yTSy

}

(6.1.3)

where

S = L2(L
T
2 ΨL2)

−1LT
2 = Ψ−1 −Ψ−1X(XTΨ−1X)−1XTΨ−1 (6.1.4)

y∗
2 = LT

1 ΨSy

Identical to Section 2.3, the columns of the transformation matrix L1 define a p set of

location contrasts associated with the location parameters. Therefore, conditionally on

the random scale effects, ωi, i = 1, . . . , n, (6.1.2) can only be used to estimate the location

parameters, β. Thus the columns of L2 define an n − p set of contrasts and therefore

(6.1.3) is used to conditionally estimate the scale parameters, λ. Based on results from

Section 2.3 the conditional likelihood for the location fixed effects, (6.1.2) can also be

expressed as

L(β,λ;y1|y2,ω) =(2π)−p/2|XTΨ−1X|1/2

× exp
{

−1
2
(y −Xβ)TΨ−1(y −Xβ) + 1

2
yTSy

}

It is clear that multiplying with (6.1.3) the likelihood reverts to the standard conditional

likelihood given in (4.2.5).
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6.1.2 Laplace Approximation

The marginal likelihood can be written as the multidimensional integral

L(β,λ, ν;y) =

∫

Rn

p(y1|y2,ω;β,λ)p(y2|ω;λ)p(ω; ν)dω (6.1.5)

Identical to Section 5.1.2 the random scale effects are treated as nuisance parameters and

therefore must be integrated out. Let

h1(β,λ,ω) = log p(y1|y2,ω;β,λ)

h2(λ,ω, ν) = log p(y2|ω;λ) + log p(ω; ν)

where

log p(y1|y2,ω;β,λ) = −1
2

{

(n− p) log(2π) − log |XT Ψ−1X|

+ (y −Xβ)TΨ−1(y −Xβ) − yTSy
}

log p(y2|ω;λ) = −1
2

{

p log(2π) + log |Ψ| + log |XTΨ−1X| + yTSy
}

and p(ω; ν) is defined by (4.2.6). The marginal likelihood given in (6.1.5) can now be

written as

L(β,λ, ν;y) =

∫

Rn

exp {h1(β,λ,ω) + h2(λ,ω, ν)} dω (6.1.6)

As h1(·) contains no information about the scale parameters it seems reasonable that

to integrate out the random scale effects the integrand is expanded in a Taylor series

around some maximum value of ω, say ω̃ of h2(·) only. This allows the Partial Laplace

approximation of Section 5.1.3 to be used. Let h1(β,λ,ω) and H1(β,λ,ω) be the first

and second derivative of h1(·) with respect to ω and let h2(λ,ω, ν) and H2(λ,ω, ν) be

the first and second derivative of h2(·) with respect to ω. Using (5.1.27) the Partial

Laplace approximation to (6.1.6) can be expressed as

L(β,λ, ν;y) = (2π)n/2L1(β,λ, ν;y)L2(λ, ν;y)

where

L1(β,λ, ν;y) =
∣

∣I + (−H1(β,λ, ω̃))(−H2(λ, ω̃, ν)
−1)
∣

∣

−1/2
exp(h1(β,λ, ω̃))

× exp
{1

2
h1(β,λ, ω̃)T

(

−H1(β,λ, ω̃) − H2(λ, ω̃, ν)
)−1
h1(β,λ, ω̃)

}

(6.1.7)

L2(λ, ν;y) = exp
(

h2(λ, ω̃, ν)
)∣

∣−H2(λ, ω̃, ν)
∣

∣

−1/2
(6.1.8)

The derivatives required for the approximation can be found using Section 2.3. Taking

the first derivative of h2(·) with respect to ωi gives

∂h2(·)

∂ωi
= −

1

2
tr(SΨ̇i) +

1

2
yTSΨ̇iSy +

(

ν

2
− 1

)

1

ωi
−
ν

2
(6.1.9)
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where Ψ̇i = ∂Ψ/∂ωi. Taking the derivative of (6.1.9) with respect to ωi gives

∂2h2(·)

∂ωi∂ωi
= −

1

2
tr(SΨ̇ii) +

1

2
tr(SΨ̇iSΨ̇i) +

1

2
yTSΨ̇iiSy

−yTSΨ̇iSΨ̇iSy −

(

ν

2
− 1

)

1

ω2
i

(6.1.10)

where Ψ̇ii = ∂2Ψ/(∂ωi)
2. Taking the derivative of (6.1.9) with respect to ωj gives

∂2h2(·)

∂ωi∂ωj
= −

1

2
tr(SΨ̇ij) +

1

2
tr(SΨ̇iSΨ̇j) +

1

2
yTSΨ̇ijSy − yTSΨ̇iSΨ̇jSy (6.1.11)

where Ψ̇ij = ∂2Ψ/∂ωi∂ωj . Using (6.1.9) and (6.1.11) the first and second derivatives of

h1(·) can be immediately written as

∂h1(·)

∂ωi

=
1

2
tr(SΨ̇i) −

1

2
tr(Ψ−1Ψ̇i) −

1

2
yTSΨ̇iSy

+
1

2
(y −Xβ)TΨ−1Ψ̇iΨ

−1(y −Xβ) (6.1.12)

∂2h1(·)

∂ωi∂ωj

=
1

2
tr(SΨ̇ij) −

1

2
tr(SΨ̇iSΨ̇j) −

1

2
tr(Ψ−1Ψ̇ij) +

1

2
tr(Ψ−1Ψ̇iΨ

−1Ψ̇j)

−
1

2
yTSΨ̇ijSy +

1

2
(y −Xβ)TΨ−1Ψ̇ijΨ

−1(y −Xβ)

+ yTSΨ̇iSΨ̇jSy − (y −Xβ)TΨ−1Ψ̇iΨ
−1Ψ̇jΨ

−1(y −Xβ) (6.1.13)

Consider the iith diagonal element of the second derivative of h2(·). Let hii be the ith

diagonal element of the hat matrix H = Ψ−1/2X(XTΨ−1X)−1XTΨ−1/2 Using (5.1.14)

and (5.1.15) and considering the trace terms of (6.1.10) separately

tr(SΨ̇ii) = tr(Ψ−1Ψ̇ii) − tr(Ψ−1X(XTΨ−1X)−1XTΨ−1Ψ̇ii)

= tr(Ψ−1Ψ̇ii) − tr(HΨ−1Ψ̇ii)

=
2

ω2
i

−
2hii

ω2
i

and

tr(SΨ̇iSΨ̇i) = tr(Ψ−1/2(I −H)Ψ−1/2Ψ̇iΨ
−1/2(I −H)Ψ−1/2)

= tr(Ψ−1Ψ̇iΨ
−1Ψ̇i) − 2tr(HΨ−1Ψ̇iΨ

−1Ψ̇i) + tr(HΨ−1Ψ̇iHΨ−1Ψ̇i)

=
1

ω2
i

−
2hii

ω2
i

+
h2

ii

ω2
i

Let β̂c = (XTΨ−1X)−1XTΨ−1y be a conditional estimator for the location parameters

and di,c = (yi − x
T
i β̂c)

2. The non-trace terms of (6.1.10) can be expressed as

yTSΨ̇iiSy = (y −Xβ̂c)
TΨ−1Ψ̇iiΨ

−1(y −Xβ̂c)

=
2(yi − x

T
i β̂c)

2

σ2
i ωi

=
di,c

σ2
i ωi
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and

yTSΨ̇iSΨ̇iSy = (y −Xβ̂c)
TΨ−1Ψ̇iSΨ̇iΨ

−1(y −Xβ̂c)

= (y −Xβ̂c)
TΨ−1Ψ̇iΨ

−1/2(I −H)Ψ−1/2Ψ̇iΨ
−1(y −Xβ̂c)

= (y −Xβ̂)TΨ−1Ψ̇iΨ
−1Ψ̇iΨ

−1(y −Xβ̂)

− (y −Xβ̂)TΨ−1Ψ̇iΨ
−1/2HΨ−1/2Ψ̇iΨ

−1(y −Xβ̂)

=
(yi − x

T
i β̂c)

2

σ2
i ωi

−
(yi − x

T
i β̂c)

2hii

σ2
i ωi

=
di,c

σ2
i ωi

−
di,chii

σ2
i ωi

The off diagonal ijth element of the second derivative of h2(·) contains two terms. From

the trace terms

tr(SΨ̇iSΨ̇j) = tr(Ψ−1Ψ̇iΨ
−1Ψ̇j) − 2tr(HΨ−1Ψ̇iΨ

−1Ψ̇j) + tr(HΨ−1Ψ̇iHΨ−1Ψ̇j)

= tr(HΨ−1Ψ̇iHΨ−1Ψ̇j)

=
h2

ij

ωiωj

(6.1.14)

and

yTSΨiSΨjSy = (y −Xβ̂)TΨ−1Ψ̇iΨ
−1Ψ̇iΨ

−1(y −Xβ̂)

− (y −Xβ̂c)
TΨ−1Ψ̇iΨ

−1/2HΨ−1/2Ψ̇jΨ
−1(y −Xβ̂c)

= −
(yi − x

T
i β̂c)hij(yj − x

T
j β̂c)

σiσj(ωiωj)1/2

= −
ri,c

σi(ωi)1/2
hij

rj,c

σj(ωj)1/2
(6.1.15)

where ri,c = (di,c)
1/2 is the ith residual. Combining all the terms the iith diagonal element

of the second derivative of h2(·) evaluated at ω̃ becomes,

∂2h2(·)

(∂ωi)2

∣

∣

∣

∣

ω=ω̃

=
1

2ω̃2
i

(

1 − ν + h̃2
ii + 2

d̃i,c h̃ii ω̃i

σ2
i

)

where h̃ii is the iith diagonal element of the hat matrix evaluated at ω̃. Similarly the

ijth element of the the second derivative of h2(·) evaluated at ω̃ is

∂2h2(·)

∂ωi∂ωj

∣

∣

∣

∣

ω=ω̃

=
1

2ω̃i

(

h̃ij + 2
r̃i,c h̃ij r̃j,c(ω̃iω̃j)

1/2

σiσj

)

1

ω̃j

(6.1.16)

where r̃i,c is the ith conditional residual evaluated at ω̃. In matrix notation

H2(λ, ω̃, ν) = −
1

2
Ω̃

−1
(V − H̃

2
− 2D̃

1/2

c H̃D̃
1/2

c )Ω̃
−1
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where

D̃c = diag
{ ω̃id̃i,c

σ2
i

}

, V = (ν − 1)I

H̃
2

contains the squared elements of the hat matrix, H̃ and Ω̃ is a diagonal matrix with

ith element ω̃i.

Noting (5.1.16) suggests that the two terms containing the location parameters, β, in

(6.1.13) are equal and the second derivative of h1(·) can be immediately written as

H1(β,λ, ω̃) = −
1

2
Ω̃

−1
(H̃

2
+ 2D̃

1/2

c H̃D̃
1/2

c )Ω̃
−1

Therefore

H1(β,λ, ω̃) + H2(λ, ω̃, ν) = −
ν − 1

2
Ω̃

−2

The first derivative of h1(·) can be written as

h1(β,λ, ω̃) =
1

2
Ω̃

−1
(H̃

∗
− D̃ + D̃c)1n

where

D̃ = diag

{

diω̃i

σ2
i

}

and H̃
∗

is a diagonal matrix with ith element, h̃ii. Using (6.1.7) the approximate condi-

tional likelihood is

L1(β,λ, ν;y) = |I + (V − H̃
2
− 2D̃

1/2

c H̃D̃
1/2

c )−1(H̃
2
+ 2D̃

1/2

c H̃D̃
1/2

c )|−1/2

× (2π)−p/2|XT Ψ̃
−1
X|1/2 × exp

{

−1
2
(y −Xβ)Ψ̃

−1
(y −Xβ) + 1

2
yT S̃y

}

× exp
{

− 1
4(ν−1)

(

(H̃
∗
− D̃ + D̃c)1n

)T(

(H̃
∗
− D̃ + D̃c)1n

)}

(6.1.17)

where Ψ̃ is the diagonal scale matrix with ith diagonal element σ2
i /ω̃i and S̃ is the projec-

tion matrix defined by (6.1.4) evaluated at ω̃. Using (6.1.8) the approximate Restricted

Maximum Likelihood or t-REML becomes

L2(λ, ν;y) = |Ψ̃|−1/2|XT Ψ̃
−1
X|−1/2|Ω̃||1

2
(V − H̃

2
− 2D̃

1/2

c H̃D̃
1/2

c )|−1/2

× (2π)−(n−p)/2 exp
{

−1
2
yT S̃y

} (ν/2)nν/2

(Γ(ν/2))n
exp
{

−ν
2

n
∑

i=1

ω̃i

}

n
∏

i=1

ω̃
ν/2−1
i

(6.1.18)
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6.1.3 Random scale effects

For the approximation to proceed the random scale effects, ω, are maximised by consid-

ering the first derivative of h2(·) given by, (6.1.9),

∂h2(λ,ω, ν)

∂ωi
= −

1

2
tr(Ψ−1Ψi) +

1

2
tr(HΨ−1Ψi) +

(ν

2
− 1
) 1

ωi
−
ν

2

+
1

2
(y −Xβ̂c)

TΨ−1ΨiΨ
−1(y −Xβ̂c)

=
1

2ωi
−
hii

2ωi
−
di,c

2σ2
i

+
ν − 2

2ωi
−
ν

2
.

Setting this to zero and evaluating at ω = ω̃ the ith maximised random effect can be

written as an implicit equation given by

ω̃i =
ν − 1 − h̃ii

ν + d̃i,c/σ2
i

. (6.1.19)

Note that on the RHS of this equation h̃ii and d̃i,c are a function of the random effects

ω̃i, i = 1, . . . , n.

This equation has several disadvantages. Firstly each of the terms given in the approx-

imate REML, (6.1.18), are evaluated at ωi = ω̃i, i = 1, . . . , n and therefore increases

the complexity of estimating the remaining scale parameters, λ, from the approximate

REML given by (6.1.18). Secondly, for low degrees of freedom, ν < 2 it is possible that

(6.1.19) may produce negative values. The approximate REML requires positivity of

the estimated random scale effects due to the presence of the Gamma kernel. The next

section discusses a change of scale for the random effects which ensures the maximised

random scale effects will be less likely to have these problems.

For given (λ, ν) the mth iterate for the random scale effects can be written as

ω̃
(m+1)
i = k(ω(m),λ, ν) =

ν − 1 − h̃
(m)
ii

ν + d̃
(m)
i,c /σ

2
i

. (6.1.20)

6.1.4 Changing the scale of the random effects

In Section 5.1.2 it was shown that changing the scale of the random scale effects distri-

bution in the integrand of (4.2.4) produced different estimates for the maximised random

scale effects. In particular, under ML, transforming the random effects using the natu-

ral log, ω∗
i = logωi, i = 1, . . . , n produced estimates equivalent to the predicted values

obtained from the conditional distribution of ωi|yi, i = 1, . . . , n

Applying this same methodology the log Gamma likelihood (5.1.21) is substituted into

(6.1.5) and the Partial Laplace approximation is then reapplied. Following identically to

78



Section 6.1 the derivatives of h1(·) and h2(·) are required. The derivatives of h2(·) with

respect to ω∗
i are given by

∂h2(·)

∂ω∗
i

= −
1

2
tr(SΨ̇i) +

1

2
yTSΨ̇iSy +

ν

2
−
ν

2
exp ω∗

i (6.1.21)

∂2h2(·)

(∂ω∗
i )

2
= −

1

2
tr(SΨ̇ii) +

1

2
tr(SΨ̇iSΨ̇i) +

1

2
yTSΨ̇iiSy

−yTSΨ̇iSΨ̇iSy −
ν

2
exp ω∗

i (6.1.22)

where, here, Ψ̇i = ∂Ψ/∂ω∗
i . The derivative of (6.1.21) with respect to ω∗

j is given by

(6.1.11). The first and second derivative of h1(·) are given by (6.1.12) and (6.1.13) re-

spectively. Using (5.1.22) the terms of (6.1.22) can be reduced to

tr(SΨ̇ii) = tr(Ψ−1Ψ̇ii) − tr(HΨ−1Ψ̇ii)

= 1 − hii

tr(SΨ̇iSΨ̇i) = tr(Ψ−1Ψ̇iΨ
−1Ψ̇i) − 2tr(HΨ−1Ψ̇iΨ

−1Ψ̇i) + tr(HΨ−1Ψ̇iHΨ−1Ψ̇i)

= 1 − 2hii + h2
ii

yTSΨ̇iiSy = (y −Xβ̂c)
TΨ−1Ψ̇iiΨ

−1(y −Xβ̂c)

=
di,cexp ω∗

i

σ2
i

yTSΨ̇iSΨ̇iSy = (y −Xβ̂)TΨ−1Ψ̇iΨ
−1Ψ̇iΨ

−1(y −Xβ̂)

− (y −Xβ̂)TΨ−1Ψ̇iΨ
−1/2HΨ−1/2Ψ̇iΨ

−1(y −Xβ̂)

=
di,cexp ω∗

i

σ2
i

−
di,cexp ω∗

i hii

σ2
i

The terms of (6.1.11) can also be reduced

tr(SΨ̇iSΨ̇j) = tr(HΨ−1Ψ̇iHΨ−1Ψ̇j)

= h2
ij

yTSΨiSΨjSy = (y −Xβ̂)TΨ−1Ψ̇iΨ
−1Ψ̇iΨ

−1(y −Xβ̂)

− (y −Xβ̂c)
TΨ−1Ψ̇iΨ

−1/2HΨ−1/2Ψ̇jΨ
−1(y −Xβ̂c)

= −
ri,c(exp ω∗

i )
1/2

σi
hij

rj,c(exp ω∗
j )

1/2

σi

Combining all terms and after some algebra the second derivative of h2(·) evaluated at

ω̃i = exp ω̃∗
i is given by

H2(λ, ω̃, ν) = −
1

2
(V ∗ − H̃

2
− 2D̃

1/2

c H̃D̃
1/2

c ) (6.1.23)

where V ∗ = (ν + 1)I. Using (5.1.23) the second derivative of h1(·) evaluated at ω̃i =

exp ω̃∗
i can be immediately written as

H1(β,λ, ω̃) = −
1

2
(H̃

2
+ D̃ + 2D̃

1/2

c H̃D̃
1/2

c )
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and therefore

H1(β,λ, ω̃) + H2(λ, ω̃, ν) = −
ν

2
Ω̃ −

1

2
D̃

The first derivative of h1(·) can also be immediately written as

h1(β,λ, ω̃) =
1

2
(H̃

∗
− D̃ + D̃c)1n

Using (6.1.17) the approximate conditional likelihood for the location parameters is

L1(β,λ, ν;y) = |I + (V ∗ − H̃
2
− 2D̃

1/2

c H̃D̃
1/2

c )−1(H̃
2
+ 2D̃

1/2

c H̃D̃
1/2

c )|−1/2

× (2π)−p/2|XT Ψ̃
−1
X|1/2 exp

{

−1
2
(y −Xβ)Ψ̃

−1
(y −Xβ) + 1

2
yT S̃y

}

× exp
{

−1
4

(

(H̃
∗
− D̃ + D̃c)1n

)T

(V ∗ − H̃
∗
)
(

(H̃
∗
− D̃ + D̃c)1n

)}

(6.1.24)

Using (6.1.18) the approximate REML for the remaining scale parameters is

L2(λ, ν;y) = |Ψ̃|−1/2|XT Ψ̃
−1
X|−1/2|1

2
(V ∗ − H̃

2
− 2D̃

1/2

c H̃D̃
1/2

c )|−1/2

× (2π)−(n−p)/2 exp
{

−1
2
yT S̃y

} (ν/2)nν/2

(Γ(ν/2))n
exp
{

−ν
2

n
∑

i=1

ω̃i

}

n
∏

i=1

ω̃
ν/2
i (6.1.25)

The random scale effects are maximised by setting this first derivative of h2(·) to zero

and solving for ωi = exp ω∗
i , namely

ω̃i =
ν + 1 − h̃ii

ν + d̃i,c/σ2
i

Note this estimate is not equivalent to the estimates given by (6.1.19). The location

parameters, β are not present in the maximised random scale effects but as the last

exponent term of (6.1.24) is inherently different than the last exponent term of (6.1.17)

the approximate conditional likelihood is not invariant for the location parameters if the

scale of the random effects is altered. Similarly, as the scale parameters are present in the

estimated random scale effects and the extra determinant term in (6.1.25) is inherently

different from the extra determinant term in (6.1.18) the approximate REML is not

invariant for the scale parameters when the scale of the random effects is changed.

For examples and simulations in this thesis, (6.1.17) and (6.1.18) are used as objective

functions to estimate the location and scale parameters respectively.

6.1.5 Estimating the Location Parameter

The approximate t-REML given by (6.1.18) is free of the location parameter β. Therefore

an objective function to estimate β is given by the approximate conditional likelihood in
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(6.1.17). As the estimated random effects, (6.1.19) are free of β the initial determinant

terms of (6.1.17) containing the second derivatives H1(β,λ, ω̃) and H2(λ, ω̃, ν) are also

free of the location parameters. Therefore only the multiplicative exponential terms of

(6.1.17) contain β. Omitting constants this approximate conditional log-likelihood used

to estimate the location parameters can be reduced to

ℓ1(β,λ, ν;y) = −
1

2
(y −Xβ)T Ψ̃

−1
(y −Xβ)

−
1

4(ν − 1)
{(H̃

∗
− D̃ + D̃c)1n}

T{(H̃
∗
− D̃ + D̃c)1n} (6.1.26)

The second quadratic form in the exponential can be written as

n
∑

i=1

{

hii −
diω̃i

σ2
i

+
d̃i,cω̃i

σ2
i

}2

(6.1.27)

Noting that (6.1.19) can be rearranged to be

d̃i,cω̃i

σ2
i

+ hii = ν − 1 − νω̃i

Subtituting this into (6.1.27) gives

n
∑

i=1

{

(ν − 1) − νω̃i −
diω̃i

σ2
i

}2

=
n
∑

i=1

{

(

(ν − 1) − νω̃i

)2
− 2
(

(ν − 1) − νω̃i

)diω̃i

σ2
i

+

(

diω̃i

σ2
i

)2}

To obtain the score equation for the location parameters the approximate conditional

log-likelihood (6.1.26) is differentiated with respect to β giving

∂ℓ1(β,λ, ν;y)

∂β
=

n
∑

i=1

ω̃i

σ2
i

{

1 −
1

ν − 1

(

(ν − 1) − νω̃i −
diω̃i

σ2
i

)}

(yi − x
T
i β)xi

=
1

ν − 1

n
∑

i=1

ω̃i

σ2
i

{

ω̃i

(

ν +
di

σ2
i

)}

(yi − x
T
i β)xi

=
ν + 1

ν − 1

n
∑

i=1

ω̃2
i

σ2
i ω̄i

(yi − x
T
i β)xi

where ω̄i is the ith estimated random scale effect (4.4.3) obtained from ML. Setting this

score to zero and solving implicitly for β an algorithm for the REML estimation of the

location parameters can be derived. The (m+ 1)th iterate is

β̂m+1 = f ∗
t (βm,λ, ν) = (XT Ψ̃

−1
W̃mX)−1XT Ψ̃

−1
W̃my (6.1.28)

where W̃ is a diagonal matrix with ith element (ν + 1)ω̃i/(ν − 1)ω̄i. Given the scale

parameters, (λ, ν), (6.1.28) is an iteratively reweighted least squares procedure with which

to obtain an approximate REML estimate for the location parameters, β.
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6.1.6 Estimating the Scale Parameters

The approximate conditional likelihood (6.1.17) is used as an objective function to esti-

mate the location parameters and therefore approximately contains no information about

the scale parameters λ. Therefore the second component of the approximate marginal

likelihood given by (6.1.18) is used as an objective function to estimate the scale parame-

ters. This approximate Restricted Maximum log-likelihood can be simplified further. Un-

der a simplified scale parameter model (3.1.3) and omitting constants the log-likelihood

can be reduced to

ℓ2(λ, ν;y) = −
1

2
log |Q̃| −

1

2
log |XT Ψ̃

−1
X|

−
1

2

n
∑

i=1

{

logσ2
i −

d̃i,cω̃i

σ2
i

}

+

n
∑

i=1

{(

ν + 1

2

)

log ω̃i −
ν

2
ω̃i

}

(6.1.29)

where

Q̃ = 1
2
(V − H̃

2
− 2D̃

1/2

c H̃D̃
1/2

c ) (6.1.30)

The estimated random effects, ω̃i, 1, . . . , n are a complex function of the remaining scale

parameters. Furthermore, Q̃ is also complex function of the remaining parameters and

the predicted random effects. For this reason the maximisation of (6.1.29) is handled

numerically.

The numerical maximisation requires the calculation of the determinant of Q̃. This

matrix is a function of the observed responses and therefore may be semi-negative definite.

To circumvent this problem and ensure positive definiteness, the observed components

contained in Q̃ are eliminated by considering its expected value. Let ω̄ = ω̃ be fixed,

then the conditional expectation

E
[

1
2
(V −H2 − 2D1/2

c HD1/2
c )|ω̄

]

The expected value of this term is found by taking the expectations of the last term only

and for its ijth element becomes

E [ri,crj,c]
ω̄

1/2
i hijω̄

1/2
j

σiσj
=

{

(1 − hii)hii i = j

−h2
ij i 6= j

Substituting this back into Q the approximation becomes

Q̃
∗

= 1
2
(V + H̃

2
− 2H̃

∗
) (6.1.31)

This is then substituted into (6.1.29) as the replacement for Q̃.
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6.1.7 Asymptotics

The asymptotic properties of the approximate Restricted Maximum likelihood (6.1.29)

can be checked. Of particular interest is the form of the marginal likelihood for the scale

parameters, λ, as ν → ∞. Noting that Q̃ can be expressed as

Q̃ =
ν

2

{

(1 − 1/ν)I − H̃
2
/ν − 2D̃rH̃D̃r/ν

}

and, similar to the ML case, the estimated random effects can be written as

ω̃∗
i =

1 − (1 − h̃ii)/ν

1 + d̃i,c/σ2
i ν

Therefore as ν → ∞, ω̃i → 1, Q̃ → I and, similarly, Q̃∗ → I. Omitting constants, the

marginal likelihood can be expressed as

ℓ2(λ, ν;y) = −
1

2
log |XTΣ−1X| −

1

2

n
∑

i=1

{

log σ2
i +

di,c

σ2
i

}

This is equivalent to the Gaussian REML under a simplified scale parameter model defined

by (3.1.3). Therefore in the limit (ν → ∞) the heteroscedastic Gaussian REML is nested

in the approximate heteroscedastic t-REML approach defined here.

Similarly, as ν → ∞ then W̃ → I and therefore the approximate REML estimator given

by (6.1.19) for the location fixed effects also tends to the ordinary REML or ML estimator

for the Gaussian case.

6.1.8 Computations

The Partial Laplace approximation to the marginal likelihood of the heteroscedastic t-

distribution gives two approximately disjoint likelihoods given by (6.1.17) and (6.1.18).

The subsequent estimation of the parameters (β,λ) can therefore be viewed as a sequen-

tial computational algorithm.

• Estimation of λ: The approximate t-REML estimates for λ are obtained itera-

tively. At the mth iteration

– For given λ = λ(m) and ν update ωi, 1, . . . , n using ω
(m+1)
i = k(ω(m),λ(m), ν),

where k(·) is given in (6.1.20).

– For given ω
(m+1)
i , i = 1, . . . , n update λ using approximate t-REML defined

by (6.1.18), namely

λ(m+1) = max
{

λ;L2(λ
(m), ν;y)

}
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• Estimation of β: The approximate t-REML estimate for β can be obtained

iteratively. At the mth iteration

– For given λ = λ̂ and ωi = ωi(λ̂, ν), 1, . . . , n, the approximate t-REML es-

timates for the scale parameters, λ obtained from Step 1 of the algorithm,

update β using β = f ∗
t (β(m), λ̂, ν), where f ∗

t (·) is given in (6.1.28).

As the approximate REML for the scale parameters is free of the location parameters

there is no requirement for the recalculation of β in Step 1 of the algorithm. This ensures

that Step 1 may be reiterated until the approximate REML estimates, λ̂ are obtained.

These estimates are then the logical choice to be substituted into the iterative procedure

to obtain an approximate REML estimate for the location parameters.

For the purpose of brevity for proceeding chapters of this thesis, this algorithm and the

estimators obtained from it will be defined as t-REML I with known degrees of freedom.

6.2 Heteroscedastic t-REML using Modified Profile

Likelihood

In this section the MPL techniques from Section 5.2.1 are used as a basis for deriving an

approximate REML for the heteroscedastic t-distribution with known degrees of freedom.

Consider the model defined by (3.1.1) where the distribution of the response is defined

by (4.2.7). For this particular section let the scale parameter model be defined by (3.1.2).

For known degrees of freedom the heteroscedastic t-distribution only requires the estima-

tion of the location and scale parameters (β,λ). Therefore a profile likelihood for the

scale parameters, σ2(zi;λ), i = 1, . . . , n, given some maximal estimate of β,

Lp(β̂λ,λ;y) =

{

Γ((ν + 1)/2)

(Γ(1/2))Γ(ν/2)ν1/2

}n

|Σ|−1/2

n
∏

i=n

{

1 +
r2
i

σ2
i ν

}−( ν+1
2

)

(6.2.1)

where ri = (yi − x
T
i β̂λ) and β̂λ is the maximum likelihood estimate of β obtained by

maximising (4.2.9) for given λ using equation (4.3.16) from Section 4.3.2. This profile

likelihood is not adjusted for the estimation of the location parameters.
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6.2.1 Modifying the Profile Likelihood

Section 5.2.1 suggests that to adjust (6.2.1) a modified profile likelihood approach is

required. Using (5.2.5) an MPL function can be immediately written as

LMP (λ;y) =
∣

∣

∣

∂β̂

∂β̂λ

∣

∣

∣
|Io(β̂λ, β̂λ)|−1/2 exp(ℓ(β̂λ,λ;y)) (6.2.2)

where ℓ(·) is the the natural logarithm of (6.2.1) and Io(β̂λ, β̂λ) is the observed infor-

mation for β defined by (4.3.9) evaluated at the maximum likelihood estimate β̂λ. The

first determinant term on the RHS is the Jacobian due to the transformation of β̂ → β̂λ.

Using (5.2.6) from the same section this can also be expressed as

LMP (λ;y) =
|Io(β̂λ, β̂λ)|1/2

|ℓβ;β̂(β̂λ,λ;y)|
exp(ℓ(β̂λ,λ;y)) (6.2.3)

where ℓβ;β̂(·) is the first derivative of the log-likelihood function (4.2.9) with respect to

β and its second derivative with respect to the maximum likelihood estimator of the

location parameters, β̂.

As the heteroscedastic t is a member of the location-scale family when the degrees of

freedom is known the specification of an ancillary statistic is possible. Consider the

denominator of the first term of (6.2.3) and let

di = r2
i + 2rix

T
i (β̂ − β) + (xT

i (β̂ − β))2

where ri = (yi − x
T
i β̂). Then for known degrees of freedom consider kernel of the log-

likelihood for β derived from (4.2.9) is

−
(ν + 1

2

)

n
∑

i=1

log

{

1 +
(σ̂2

i )
2

σ2
i ν

(

a2
i +

2aix
T
i (β̂ − β)

σ̂2
i

+
(xT

i (β̂ − β))2

(σ̂2
i )

2

)

}

where a is a vector of ancillary statistics with ith element ai = ri/σ̂
2
i and σ̂2

i = σ2(zi; λ̂).

Taking the first derivative of this function with respect to β gives

∂ℓ(β,λ;y)

∂β
=

(

ν + 1

2

) n
∑

i=1

xi(σ̂
2
i )

2

σ2
i ν

(

1

1 + di/σ2
i ν

)

{

2ai

σ̂2
i

+
2xT

i (β̂ − β)

(σ̂2
i )

2

}

Taking the second derivative of this function with respect to β̂ gives

ℓβ;β̂(β,λ;y) =
∂2ℓ(β,λ;y)

∂β∂β̂
=

(

ν + 1

2

) n
∑

i=1

xix
T
i (σ̂2

i )
2

σ2
i ν

(

1

1 + di/σ2
i ν

){

2

(σ̂2
i )

2

}

−

(

ν + 1

2

) n
∑

i=1

xix
T
i (σ̂2

i )
4

(σ2
i ν)

2

(

1

1 + di/σ
2
i ν

)2
{

2ai

σ̂2
i

+
2xT

i (β̂ − β)

(σ̂2
i )

2

}2
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Noting that

{

ai

σ̂2
i

+
xT

i (β̂ − β)

(σ̂2
i )

2

}2

=
a2

i

(σ̂2
i )

2
+

2aix
T
i (β̂ − β)

(σ̂2
i )

3
+

(xT
i (β̂ − β))2

(σ̂2
i )

4

=
r2
i

(σ̂2
i )

4
+

2rix
T
i (β̂ − β)

(σ̂2
i )

4
+

(xT
i (β̂ − β))2

(σ̂2
i )

4

=
di

(σ̂2
i )

4

and using (4.3.6) this may be reduced to

ℓβ;β̂(β,λ;y) = (ν + 1)

n
∑

i=1

xix
T
i

σ2
i ν

{(

1

1 + di/σ2
i ν

)

−

(

di/σ
2
i ν

1 + di/σ2
i ν

)(

2

1 + di/σ2
i ν

)}

= (ν + 1)
n
∑

i=1

xix
T
i

σ2
i ν

{(1 − Bi) − 2(1 − Bi)Bi}

Using (4.3.9) the adjustment terms of (6.2.3) are related by ℓβ;β̂(β,λ;y) = Io(β,β).

Then evaluating at the maximum likelihood estimate for the location parameters, β̂λ the

t-REML MPL for σ2(zi;λ), i = 1, . . . , n can be reduced to

Lo
MP (λ;y) = |Io(β̂λ, β̂λ)|−1/2 exp(ℓ(β̂λ,λ;y)) (6.2.4)

Using the results from section 5.2.3, and noting that (β,λ) are orthogonal, the leading

term of (6.2.2) is unity and an equivalent result is obtained. Thus, in this particular

case, LMP (λ;y) = LCP (λ;y) to the accuracy O(n−3/2). Barndorff-Nielsen (1983) and

Barndorff-Nielsen & Cox (1994) recognise these results as a special case due to its con-

nection to the location-scale family.

The observed information Io(β̂λ, β̂λ) in the determinant term of (6.2.4) contains the

observation vector and therefore may be semi negative-definite. This will produce negative

eigenvalues and the determinant will not be calculable. To ensure positive definiteness

an approximation to the observed information is used. The observed information for β

can also be expressed as

Io(β,β) =
n
∑

i=1

ω̄i

σ2
i

xix
T
i

{

1 −
( 1

ν + 1

)2diω̄i

σ2
i

}

If ω̄i is assumed to be fixed then noting, E[di|ω̄i] = σ2
i /ω̄i and taking expectations of this

matrix given ω̄i is

Io(β,β) =
∑

i=1

ω̄i

σ2
i

xix
T
i

{ν − 1

ν + 1

}
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This allows the modified profile likelihood for the scale parameters of the heteroscedastic

t-distribution for known degrees of freedom to be written as

Lo
MP (λ;y) =

(ν − 1

ν + 1

)−p/2

|XT Ψ̄
−1
X|−1/2|Σ|−1/2

n
∏

i=n

{

1 +
r2
i

σ2
i ν

}−( ν+1
2

)

(6.2.5)

where Ψ̄ is a diagonal matrix with ith diagonal element σ2
i /ω̄i. As the degrees of freedom

is known apriori the first term of the RHS is also a constant.

Barndorff-Nielsen (1983) also suggests that the expected information can be used a re-

placement for the observed information. Using (4.3.13) and omitting constants the MPL

can be immediately written as

Le
MP (λ;y) =

(ν + 1

ν + 3

)−p/2

|XTΣ−1X|−1/2|Σ|−1/2

n
∏

i=n

{

1 +
r2
i

σ2
i ν

}−( ν+1
2

)

(6.2.6)

Again the first term of RHS is a constant and therefore this version of the modified profile

likelihood only contains an adjustment term identical to the term required for Gaussian

REML.

The asymptotic nature of (6.2.5) and (6.2.6) can be checked. As ν → ∞, ω̄i → 1, Ψ̄ → Σ

and the leading constant terms become unity. Therefore due to Property (7), (6.2.5)

and (6.2.6) approach the heteroscedastic Gaussian REML. Thus, in the limit (ν → ∞),

the simpler heteroscedastic Gaussian model is nested in the approximate heteroscedastic

t-REML approaches defined here. For the examples and simulations in this thesis (6.2.5)

is used.

6.2.2 Computations

When the degrees of freedom is fixed the estimation of the location and scale parameters

can be achieved iteratively using the following algorithm.

• Estimation of (β,λ): For the mth iteration the parameters are updated using

– For given λ = λ(m) and ν update β using β(m+1) = ft(β
(m),λ(m), ν), where

ft(·) is given in (4.3.16).

– For given β = β(m+1) and ν update λ using t-REML defined by (6.2.5), namely,

λ(m+1) = max{λ;L(β(m+1)(λ(m), ν),λ(m);y)}

For the purpose of brevity for proceeding chapters of this thesis this algorithm and the

estimators obtained from it will be defined as t-REML II with known degrees of freedom.
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Chapter 7

Examples and Simulations

To illustrate the ML techniques from Chapter 4 and the approximate REML techniques

from Chapter 6 the Cherry Tree data set is considered in the next section. Complex scale

parameter models similar to models considered in Aitkin (1987) and Verbyla (1993) are

investigated under ML, t-REML I and t-REML II with homogeneity tests where possible.

To understand the properties of the estimators for the heteroscedastic t for known de-

grees of freedom under ML, and the two approximate t-REML techniques, a comparative

simulation study is conducted in Section 7.2.

7.1 Examples

7.1.1 Cherry Trees

The cherry tree data was introduced in Section 1.2.1 as a potential candidate for robust

modelling of the scale parameter. After fitting an additive model in the two explanatory

variables, Diameter and Height, for the location, Cook & Weisberg (1983) proposed a

simple scale parameter model. Aitkin (1987) and Verbyla (1993) model the data more

extensively proposing a quadratic model in diameter for the Gaussian scale parameter.

The latter author investigates various scale parameter models, estimating the location

and scale parameters using Gaussian ML and REML.

The outliers in Figure 1.2 suggest the possible use of the heteroscedastic t to model the

location and scale parameters. For all models proposed here the scale parameter is defined

by (3.1.3) and, for this particular example, the degrees of freedom parameter is fixed at

ν = 3. This ensures that the variance for the t is defined and a highly robust fit is achieved.

To explore the heteroscedasticity graphically, an initial homoscedastic t regression is fitted

and (4.6.2) from Section 4.6 is used. Figure 7.1 shows the added variable plots (see
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Figure 7.1: Added variable plots for the Cherry Tree data under the Gaussian and t-

distribution (a) added variable plot for diameter under Gaussian; (b) added variable plot

for height under Gaussian; (c) added variable plot for diameter under t; (d) added variable

plot for height under t

Cook & Weisberg, 1982) for the adjusted residuals from the left hand side (4.6.2), that

is log{d̄i/(1 − hii)
2} − log1

2
+ ψ(1

2
) − 1.4675 against Diameter and Height. The added

variable plots for the Gaussian model, given in Verbyla (1993), are also displayed for

comparison. The Gaussian and t added variable plots show similar patterns for each

of the explanatory variables suggesting that either may be used as a tool to determine

possible heteroscedasticity. In comparison to the adjusted residuals under the Gaussian,

the adjusted residuals for the added variable plots of the t are larger due to the longer

tails of the t3 distribution. For both models, a positive linear component for the Height

is evident as well as a possible quadratic trend in Diameter. An initial additive scale

parameter model with these components is adopted here.

Table 7.1 presents the various scale parameter models considered for analyses along with

their associated score statistics and log-likelihood values under ML. The Gaussian and

t models with fixed degrees of freedom have the same number of parameters and there-

fore precludes hypothesis testing between alternate models. However, in comparison to

the log-likelihood values for scale parameter models under the t specification, the log-
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Homogeneity Test

Score 2LogL

Model Gaussian t-ML Gaussian t-ML

1 - - 69.62 65.48

H 3.24 5.09 74.73 72.24

D 0.47 1.43 70.52 67.26

H , D 3.32 5.09 74.80 72.31

D, D2 3.70 5.60 85.49 82.05

H , D, D2 6.14 8.73 87.63 82.79

H , D, D2, HD 8.26 10.71 88.00 84.61

Table 7.1: Homogeneity Test for the Cherry Tree data under ML

likelihood values are larger for all Gaussian scale parameter models. This suggests that

the simpler Gaussian model is preferred over the t specification for all heteroscedastic

models presented here. Verbyla (1993) and 7.1 suggests that the Gaussian model with

the squared diameter is sufficient for the scale parameter. The heteroscedastic t model

proposed here is identical with slight changes in the numerical estimates. For this final

model, in comparison to the scale parameter model under the t-specification, the larger

log-likelihood value of the ML heteroscedastic Gaussian suggests that the Gaussian is

preferred after accounting for the scale parameter heterogeneity.

Table 7.2 presents log-likelihood values for the identical models considered in Table 7.1

using Gaussian REML, t-REML I and t-REML II fits to the data. Section 6.1.7 and 6.2.1

show that as ν → ∞ the approximate REML obtained under t-REML I and t-REML

II, asymptotically approaches the Gaussian REML. However, as the degrees of freedom

is fixed hypothesis testing is not available between alternate models. Table 7.2 confirms

the squared diameter as the scale parameter model required for all REML methods used

here. Furthermore, similar to the final model under ML, the simpler Gaussian REML

is preferred over the two approximate REML approaches under the heteroscedastic t-

specification.

For comparison, the heteroscedastic Gaussian ML, REML, heteroscedastic t-ML, t-REML

I and t-REML II estimates for the location and scale parameters are given, with stan-

dard errors, in Table 7.3. The estimates of the location parameters for all the methods

presented here are very similar suggesting excellent stability in the location model. The

ML estimates of the scale parameters for the Gaussian and t also show similarity. For the

REML methods presented here the scale parameter estimates differ slightly. As ν = 3
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Homogeneity Test: 2LogL

Model Gaussian t-REML I t-REML II

1 38.608 35.805 35.265

H 42.678 40.537 40.087

D 39.399 37.210 36.731

H , D 42.735 40.626 40.173

D, D2 47.751 44.262 43.976

H , D, D2 50.350 46.242 45.869

H , D, D2, HD 50.861 47.198 46.557

Table 7.2: Homogeneity Test for the Cherry Tree data under REML

the standard errors for the ML scale parameter estimates for the t, in comparison to ML

under Gaussian, are larger. However, the standard errors for the ML location parameter

estimates are smaller for the t. This is most likely due to the outliers in the data being

accommodated more efficiently by the scale parameter model under the t-specification.

The t-REML I method produced slightly larger standard errors for the scale parameters

than its Gaussian equivalent, whereas, t-REML II were slightly less.

Scale Parameter Estimates Location Parameter Estimates

Method 1 D D2 1 D H

Gaussian ML -41.386 5.1705 -0.1768 0.0954 0.1527 0.0117

(4.7590) (0.6986) (0.0247) (0.0531) (0.0017) (0.0010)

Gaussian REML -29.427 3.4196 -0.1151 0.0302 0.1513 0.0128

(7.9516) (1.1653) (0.0414) (0.0889) (0.0030) (0.0016)

t-ML -44.771 5.5821 -0.1903 0.0962 0.1529 0.0116

(6.7308) (0.9880) (0.0349) (0.0439) (0.0014) (0.0008)

t-REML I -30.179 3.4411 -0.1143 0.0543 0.1522 0.0123

(8.3883) (1.2202) (0.0431) (0.0783) (0.0030) (0.0014)

t-REML II -30.890 3.5487 -0.1182 0.0780 0.1525 0.0119

(7.6961) (1.1245) (0.0398) (0.0824) (0.0030) (0.0015)

Table 7.3: Parameter estimates of Cherry Tree data for the heteroscedastic Gaussian and

heteroscedastic t models. Standard errors are in parentheses.

Figure 7.2 shows the log of the squared residuals from the homogeneous scale parameter

91



o

o

o
o

oo

oo

o

o

o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o

o

o

o
o

o

8 10 12 14 16 18 20

−
1

4
−

1
2

−
1

0
−

8
−

6
−

4

Diameter

L
o

g
 o

f 
th

e
 S

q
u

a
re

d
 R

e
si

d
u

a
ls

t−ML
t−REML I
t−REML II

Figure 7.2: Log of the squared residuals from the additive location model with constant

scale and ν = 3 against Diameter; t-ML, t-REML I and t-REML II fitted lines for the

quadratic scale parameter model are also displayed.

model. The fitted quadratic lines for the final scale parameter models under t-ML, t-

REML I and t-REML II are overlayed. The two scale parameter models from approximate

REML techniques are less convex than the fitted ML scale parameter model and provide

almost coincidental lines.

7.2 Simulations

The examples of the previous section show marked differences in the estimates of the pa-

rameters of the heteroscedastic t using ML and the two approximate REML methods. In

this section a simulation study is conducted to understand the properties of the estima-

tors of the heteroscedastic t-distribution known degrees of freedom obtained from ML),

REML using the Partial Laplace approximation (t-REML I) and Restricted Maximum

Likelihood using Modified Profile Likelihood (t-REML II).

For all simulations in this chapter the covariates used to describe the location and scale

components are defined by

xi1 = zi1 = 1, i = 1, . . . , n

xi2 = zi2 = 0.1 + 9.9(i− 1)/(n− 1), i = 1, . . . , n
(7.2.1)

The scale covariate, z2, was centered around its mean. The model (4.2.7) was used where

the location parameters follow a linear form and the scale parameters follow a log-linear
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t-model (ν = 3) t-model (ν = 8) t-model (ν = 15)

t-ML t-RL I t-RL II t-ML t-RL I t-RL II t-ML t-RL I t-RL II

20 β̂0 -0.509 -0.510 -0.509 -0.506 -0.505 -0.505 -0.515 -0.514 -0.515

β̂1 2.012 2.011 2.011 1.996 1.996 1.995 2.009 2.009 2.009

λ̂0 0.278 0.465 0.464 0.258 0.392 0.391 0.295 0.416 0.416

λ̂1 0.525 0.479 0.481 0.546 0.511 0.511 0.532 0.501 0.501

50 β̂0 -0.492 -0.492 -0.492 -0.506 -0.506 -0.506 -0.501 -0.500 -0.500

β̂0 2.001 2.001 2.001 2.002 2.002 2.002 2.004 2.003 2.003

λ̂0 0.449 0.519 0.519 0.430 0.481 0.481 0.407 0.453 0.453

λ̂1 0.503 0.488 0.488 0.510 0.498 0.498 0.500 0.490 0.490

100 β̂0 -0.495 -0.495 -0.495 -0.502 -0.502 -0.502 -0.507 -0.507 -0.507

β̂1 1.997 1.997 1.997 2.000 2.000 2.000 2.000 2.000 2.000

λ̂0 0.460 0.494 0.494 0.482 0.508 0.508 0.466 0.489 0.489

λ̂1 0.507 0.500 0.500 0.502 0.497 0.497 0.506 0.501 0.501

200 β̂0 -0.506 -0.506 -0.506 -0.497 -0.497 -0.497 -0.498 -0.498 -0.498

β̂1 2.001 2.001 2.001 2.001 2.001 2.001 1.999 1.999 1.999

λ̂0 0.481 0.498 0.498 0.488 0.500 0.500 0.486 0.498 0.498

λ̂1 0.503 0.499 0.499 0.502 0.500 0.500 0.501 0.499 0.499

Table 7.4: Mean estimates for θT = (βT ,λT ) under simulated distribution yi ∼

t(xT
i β, exp(zT

i λ), ν), i = 1, . . . , n using ML, t-REML I and t-REML II and fixed de-

grees of freedom ν = (3, 8, 15) and n = (20, 50, 100, 200).

form, namely

µi = xT
i β = β0 + β1xi2, i = 1, . . . , n

log σ2
i = zT

i λ = λ0 + λ1zi2 i = 1, . . . , n
(7.2.2)

and

βT = (β0, β1) = (−0.5, 2.0)

λT = (λ0, λ1) = (0.5, 0.5)
(7.2.3)

are the target values for the fixed effects of the location and scale parameter models.

The estimates of the location and scale parameters, (β,λ), are obtained from ML, t-

REML I and t-REML II using the computational algorithms from Sections 4.7, 6.1.8 and

6.2.2 respectively.

To ensure defined first and second moments (ν > 2) of the true t-distribution under

heteroscedasticity, the known values for the degrees of freedom used in this particular
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Figure 7.3: The t-REML I estimates of the scale parameters (λ̂0, λ̂1) vs the ML equivalents

for 500 simulations under the distribution yi ∼ t(xT
i β, exp(zT

i λ), ν), i = 1, . . . , n for

ν = (3, 8, 15) and n = 20.

study were ν = (3, 8, 15). The simulation was run with sample sizes n = (20, 50, 100, 200)

to gauge the effect on the properties of the parameter estimates for an increasing number

of observations. A total of 500 replications of each combination of (ν, n) was simulated for

the three approaches. The convergence criterion in each case was |ℓ(θ(m+1))− ℓ(θm)| < ǫ

where θ is the parameter of interest and ǫ = 10−8.

Table 7.4 presents the means of the estimates for the fixed location and scale parameters

over the 500 simulations for all sample sizes and degrees of freedom combinations. For

each of the three methods used in this simulation study, the intercept parameter for

the location model is consistently estimated for all sample sizes and degrees of freedom

values. The location slope parameter estimates have also been efficiently estimated for

all sample size, degrees of freedom and method of estimation combinations suggesting

excellent stability in the location component of the model.

It is well known that the variance is biased under ML for standard Gaussian models.

Similarly, using ML under the t specification produces biased estimates for the intercept

parameters of the scale model. Table 7.4 suggests that this bias increases as the sample

94



ν SS β̂0 β̂1 λ̂0 λ̂1 SS β̂0 β̂1 λ̂0 λ̂1

3 20 0.295 0.118 0.447 0.147 50 0.199 0.077 0.283 0.096

8 0.266 0.106 0.371 0.122 0.180 0.069 0.235 0.080

15 0.256 0.102 0.346 0.114 0.173 0.067 0.219 0.074

3 100 0.144 0.055 0.200 0.069 200 0.103 0.039 0.141 0.049

8 0.130 0.050 0.166 0.057 0.093 0.035 0.117 0.040

15 0.125 0.048 0.155 0.053 0.089 0.034 0.110 0.038

Table 7.5: Table of theoretical standard errors for θT = (βT ,λT ) for the true simulated

distribution yi ∼ t(xT
i β, exp(zT

i λ), ν), i = 1, . . . , n, under ML.

size decreases. The approximate t-REML I and t-REML II likelihoods derived in this

thesis suggest that this bias may be reduced. This reduction can be seen in Table 7.4

for the lowest sample size and degrees of freedom combination (n = 20, ν = 3). The

bias reduction of the intercept scale parameter decreases for higher degrees of freedom

values and low sample sizes but this diminishes as the sample size is increased. For

this particular simulation study, the t-REML I and t-REML II methods produce almost

identical scale parameter estimates for all degrees of freedom values and sample sizes.

Under ML, the slope parameter for the scale model is also biased for low sample sizes and

all degrees of freedom values. This bias decreases as the sample size is increased. The

estimates of the slope for the scale parameter model under the two t-REML constructs

reduce this bias. This reduction becomes negligible as the sample size increases.

It is of interest to understand the bias reduction of the estimated scale parameters ob-

tained from the approximate REML constructs derived in this thesis in comparison to

ML when the degrees of freedom is known. Figure 7.3 shows the 500 simulated empirical

t-REML I estimates for the scale parameters against the ML equivalents for ν = (3, 8, 15)

and n = 20. It can be seen for all fixed degrees of freedom t-REML I estimates of the scale

parameter exhibit less bias than ML below the target value λ0 = 0.5. Conversely, for ML

estimates above the required value t-REML I increases the bias further. For estimated

values of the scale slope parameter above the target value, t-REML I reduces the bias

in comparison to ML. For estimated values below λ1 = 0.5, the bias is not reduced and

ML performs slightly better than the t-REML I equivalents. As the graphical results of

the scale parameter estimates for t-REML II in comparison to ML are similar to those

presented in Figure 7.3 they have been omitted for brevity.

The asymptotic score hypothesis tests derived in Section 4.5.2 require the use of the vari-

ance matrix for the location and scale parameter estimates. The approximate theoretical

asymptotic variability of the location and scale parameter under Maximum Likelihood

95



t-model (ν = 3) t-model (ν = 8) t-model (ν = 15)

t-ML t-RL I t-RL II t-ML t-RL I t-RL II t-ML t-RL I t-RL II

20 β̂0 0.344 0.346 0.343 0.304 0.305 0.304 0.273 0.273 0.273

β̂1 0.132 0.130 0.131 0.115 0.114 0.114 0.103 0.103 0.103

λ̂0 0.479 0.475 0.476 0.429 0.428 0.428 0.384 0.383 0.383

λ̂1 0.174 0.158 0.159 0.161 0.150 0.151 0.135 0.126 0.126

50 β̂0 0.225 0.225 0.225 0.191 0.191 0.191 0.176 0.176 0.176

β̂1 0.078 0.078 0.078 0.071 0.071 0.071 0.068 0.068 0.068

λ̂0 0.282 0.281 0.281 0.232 0.233 0.233 0.235 0.235 0.235

λ̂1 0.100 0.097 0.097 0.089 0.087 0.087 0.082 0.080 0.080

100 β̂0 0.146 0.146 0.146 0.141 0.141 0.141 0.132 0.132 0.132

β̂1 0.056 0.056 0.056 0.047 0.047 0.047 0.049 0.049 0.049

λ̂0 0.202 0.202 0.202 0.169 0.169 0.169 0.158 0.158 0.158

λ̂1 0.072 0.071 0.071 0.057 0.057 0.057 0.054 0.054 0.054

200 β̂0 0.112 0.112 0.112 0.097 0.097 0.097 0.088 0.088 0.088

β̂1 0.041 0.041 0.041 0.036 0.036 0.036 0.031 0.031 0.031

λ̂0 0.134 0.134 0.134 0.117 0.117 0.117 0.110 0.110 0.110

λ̂1 0.047 0.047 0.047 0.043 0.042 0.042 0.038 0.038 0.038

Table 7.6: Empirical standard errors of the estimates θT = (βT ,λT ) under simulated

distribution yi ∼ t(xT
i β, exp(zT

i λ), ν), i = 1, . . . , n using ML, t-REML I and t-REML II

and fixed degrees of freedom ν = (3, 8, 15) and n = (20, 50, 100, 200).

estimation was derived in Section 4.5.1, namely

Var

[

β̂

λ̂

]

=

[

ν+3
ν+1
XTΣ−1X 0

0
2(ν+3)

ν
ZTZ

]

These variances suggest that as the degrees of freedom parameter value increases the

variability in the estimates should decrease. Moreover, if ν = 3, then Var(λ̂) = 4ZTZ,

which is twice the normal variability when λ̂ is Gaussian. For all sample sizes, this

decrease in the theoretical standard errors, can be seen in Table 7.5. For all fixed degrees

of freedom values used in this simulation study the theoretical standard errors decreased

as the sample size increased.

For comparison, the empirical standard errors for the simulated distribution of the esti-

mates, θ̂ = (β̂, λ̂), for all known degrees of freedom values and sample sizes is presented

in Table 7.6. Similar to the theoretical standard errors derived under ML, the empirical

standard errors under ML, t-REML I, and t-REML II decrease as the fixed degrees of

freedom and the sample size increases. For all parameters the theoretical standard errors
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are marginally less than their empirical equivalents and this difference increases as the

sample size decreases suggesting that the empirical standard errors should be used with

caution. Furthermore, in comparison to ML, t-REML I and t-REML II empirical stan-

dard errors for the slope of the scale parameter model are slightly less for small degrees of

freedom and small sample sizes. This difference diminishes as the sample size and degrees

of freedom increase. This suggests that t-REML I and t-REML II are more efficient than

ML in obtaining the target values for the slope parameter of the scale model when the

sample size is low and the the degrees of freedom is fixed at a small value in advance.
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Chapter 8

Heteroscedastic t-distribution with

unknown degrees of freedom

In previous chapters the degrees of freedom for the heteroscedastic t-distribution was

fixed or known in advance. In this chapter ν is allowed to vary according to the data and

techniques for its estimation are discussed.

The ML techniques of Chapter 4 are extended by incorporating a mechanism for the

estimation of the degrees of freedom parameter. To ensure the estimating equations for

the location and scale parameters remain identical an orthogonal transformation of the

scale parameter is performed. As the new orthogonal parameter is a function of the

degrees of freedom appropriate adjustments are derived. To increase the flexibility of the

model further in this chapter the approximate t-REML I technique discussed in Chapter

6 Section 6.1 is extended to simultaneously estimate the parameters (λ, ν). Furthermore,

similar to the t-REML II technique discussed in Chapter 6 Section 6.2, a flexible extension

of Modified Profile Likelihood called Stably Adjusted Profile Likelihood is considered that

allows the separate estimation of the parameters of the heteroscedastic t in the presence

of multiple nuisance parameters.

8.1 Heteroscedastic t-ML

Consider the linear model (3.1.1) where the distribution of the response is defined by

(4.2.7). For this particular section let the scale parameter model be defined by (3.1.2).
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8.1.1 Estimating the Degrees of Freedom

Estimating the degrees of freedom of the univariate and multivariate t-distribution under

maximum likelihood has been attempted by many authors. Lange et al. (1989), Liu &

Rubin (1994), Liu & Rubin (1995) and Pinheiro et al. (2001) include the estimation of

ν in an Expectation-Maximisation framework. In particular, Liu & Rubin (1994), Liu

& Rubin (1995) and Pinheiro et al. (2001) discuss an extension of the EM which allows

the degrees of freedom parameter to be estimated from the marginal likelihood derived

from the t-distribution constrained at estimates (β, σ2(zi;λ)) = (β̂, σ2(zi; λ̂)). Method

of moments estimators have also been utilised by Sutradhar & Ali (1986) and Singh

(1988) to overcome potential problems with maximum likelihood estimation of ν for the

multivariate t-distribution (see Breusch et al., 1997 for more details).

A simple score function for ν can be derived by taking the first derivative of (4.2.9) with

respect to ν, namely

U(ν) =
n

2
ψ
(ν + 1

2

)

−
n

2
ψ
(ν

2

)

−
n

2ν
−

1

2

n
∑

i=1

log
(

1 + di/σ
2
i ν
)

+
ν + 1

2ν

n
∑

i=1

Bi

where ψ(θ) = ∂logΓ(θ)/∂θ is the digamma function and Bi is defined by (4.3.6).

To estimate ν from this score equation and maintain the reweighted least squares approach

to estimation of (β,λ) requires independence of the parameters. This dependence can be

checked by obtaining the co-information components from the full information matrix.

Let θ∗ = (β,λ, ν) then the full observed information can be expressed as

Io(θ
∗, θ∗) =







Io(β,β) Io(β,λ) Io(β, ν)

Io(λ,β) Io(λ,λ) Io(λ, ν)

Io(ν,β) Io(ν,λ) Io(ν, ν)







Differentiating (4.3.4) with respect to ν allows the lth co-information element for (β, ν)

to be expressed as

Io(βl, ν) =

n
∑

i=1

xil

σ2
i

{(

ν + 1

ν2
−

1

ν

)

(1 − Bi) +
ν + 1

ν

∂Bi

∂ν

}

(yi − x
T
i β) (8.1.1)

(8.1.2)

where

∂Bi

∂ν
=

(

di/σ
2
i ν

(1 + di/σ2
i ν)

2

)

di

σ2
i (ν)

2
−

(

di/σ
2
i (ν)

2

1 + di/σ2
i ν

)

=

(

di/σ
2
i ν

1 + di/σ2
i ν

)2
1

ν
−

(

di/σ
2
i ν

1 + di/σ2
i ν

)

1

ν

= (B2
i − Bi)

1

ν
(8.1.3)
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Substitution of this into (8.1.1) gives

Io(βl, ν) =
n
∑

i=1

xil

σ2
i

{

ν + 1

ν2
(B2

i − Bi) −
1

ν2
(1 −Bi)

}

(yi − x
T
i β)

=

n
∑

i=1

xil

σ2
i ν

2

{

(ν + 1)B2
i − νBi − 1

}

(yi − x
T
i β) (8.1.4)

Differentiating (4.3.5) with respect to ν allows the jth co-information element (λ, ν) to

be expressed as

Io(λj, ν) =
1

2

n
∑

i=1

sij

σ2
i

{

−Bi − (ν + 1)
∂Bi

∂ν

}

=
1

2

n
∑

i=1

sij

σ2
i

{(

ν + 1

ν
− 1

)

Bi −
ν + 1

ν
B2

i

}

=
1

2

n
∑

i=1

sij

σ2
i ν

{

Bi − (ν + 1)B2
i

}

(8.1.5)

The observed information element for ν is

Io(ν, ν) =
n

4
ψ̇
(ν

2

)

−
n

4
ψ̇
(ν + 1

2

)

−
n

2ν2
−

1

2ν

n
∑

i=1

Bi

−

{

1

2ν
−
ν + 1

2ν2

} n
∑

i=1

Bi −
ν + 1

2ν

∑

i=1

∂Bi

∂ν
(8.1.6)

where ψ̇(θ) = ∂2logΓ(θ)/(∂θ)2 is the trigamma function. Substituting (8.1.3) the observed

information element for ν becomes

Io(ν, ν) =
n

4
ψ̇
(ν

2

)

−
n

4
ψ̇
(ν + 1

2

)

−
n

2ν2
−

1

2ν2

n
∑

i=1

{

(ν + 1)B2
i − 2Bi

}

(8.1.7)

The full expected information matrix can be expressed as

Ie(θ
∗, θ∗) =







Ie(β,β) Ie(β,λ) Ie(β, ν)

Ie(λ,β) Ie(λ,λ) Ie(λ, ν)

Ie(ν,β) Ie(ν,λ) Ie(ν, ν)







Taking expectations of (8.1.4), the lth element of the expected co-information for (β, ν)

becomes

Ie(βl, ν) =

n
∑

i=1

xil

σ2
i ν

2
E
{

(ν + 1)B2
i (yi − x

T
i β) − νBi(yi − x

T
i β)

}

Again, the two terms in parentheses are odd functions of yi and therefore, under expec-

tation, are zero. Noting (4.3.7) and (4.3.8) and taking expectations of (8.1.5) the jth
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element of the expected information for (λ, ν) becomes

Ie(λj , ν) =
1

2

n
∑

i=1

sij

σ2
i ν

{

1

ν + 1
−

3

ν + 3

}

= −
n
∑

i=1

sij

σ2
i

{

1

(ν + 1)(ν + 3)

}

Taking expectations of (8.1.7) the expected information element for ν becomes

Ie(ν, ν) =
n

4
ψ̇
(ν

2

)

−
n

4
ψ̇
(ν + 1

2

)

−
n

2ν2
−

1

2ν2

n
∑

i=1

{

3

ν + 3
−

2

ν + 1

}

=
n

4
ψ̇
(ν

2

)

−
n

4
ψ̇
(ν + 1

2

)

−
n

2ν2

{

3

ν + 3
−

2

ν + 1
+ 1

}

=
n

4
ψ̇
(ν

2

)

−
n

4
ψ̇
(ν + 1

2

)

−
n

2ν

(ν + 5)

(ν + 1)(ν + 3)

In matrix notation the 2 × 2 sub block of the expected information gives

[

Ie(λ,λ) Ie(λ, ν)

Ie(ν,λ) Ie(ν, ν)

]

=

[

ν
2(ν+3)

Ṡ
T
Σ−2Ṡ − 1

(ν+1)(ν+3)
Ṡ

T
Σ−11n

− 1
(ν+1)(ν+3)

1T
nΣ−1S n

4
ψ̇(ν

2
) − n

4
ψ̇(ν+1

2
) − n

2ν
(ν+5)

(ν+1)(ν+3)

]

The non-zero components of the co-information reveal the dependency of ν and λ. Fur-

thermore it is clear that the information for ν accumulates without bound as n → ∞

(see Breusch et al., 1997 for more details). Therefore the univariate maximum likelihood

estimation procedure provides a framework for consistent estimation of the degrees of

freedom parameter.

8.1.2 Orthogonal Transformation

To obtain independence between the co-dependent parameters an orthogonal transfor-

mation is required. Let δ = (δ1, δ2) be an unknown vector of parameters of length

p+ q orthogonal to ν. For simplification let the scale parameter sub-model be defined by

(3.1.3). From Cox & Reid (1987) and Section 5.2.2 the new orthogonal parameters are

derived using the partial differential equations

I(θ, θ)
∂θ

∂ν
= −I(θ, ν) (8.1.8)

As β is orthogonal to ν, δ1 = β, whereas, to orthogonalize the scale parameters, the

following partial differential equation must be solved by integration

ν

2(ν + 3)
ZTZ

∂λ

∂ν
=

1

(ν + 1)(ν + 3)
ZT1n
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Choosing the constant of integration a(δ2) = δ2, gives

δ2 = λ− (ZTZ)−1ZT1n

{

2(logν − log(ν + 1))
}

as the orthogonal set of parameters. Note that in Taylor & Verbyla (2004) the orthogonal

transformation is incorrectly reported. It is clear that the second term of this new trans-

formation does not contain σ2
i , i = 1, . . . , n and therefore estimation of the scale param-

eters remains identical to the previous section. For a homogeneous model, σ2 = expλ0,

and the orthogonal parameter reduces to (σ(ν + 1)/ν)2. This result is similar to the

reparameterization discussed in Jones & Faddy (2003). For the heteroscedastic case and

functions of the scale parameters, σ2
i , i = 1, . . . , n, other than the reciprocal or natural

logarithm the partial differential equations given by (8.1.8) are not easily solvable.

Using (4.2.9) and for known (β, δ2), a maximising objective function for ν would be

ℓ(ν;y) = n log
(

Γ((ν + 1)/2)
)

− n log
(

Γ(1/2)
)

− n log
(

Γ(ν/2)
)

−
n

2
log ν

−
1

2

n
∑

i=1

zT
i (δ2 + (ZTZ)−1ZT1n

{

2(logν − log(ν + 1))
}

−
ν + 1

2

n
∑

i=1

log

{

1 +
di

σ2
i ν

}

(8.1.9)

As the parameters are now orthogonal a maximum likelihood estimate for ν can then

be found using a simple one dimensional search. For given (β,λ) the (m + 1)th iterate

becomes

νm+1 = ht(β,λ, νm) = νm +U ∗(νm)/I∗
e (νm, νm) (8.1.10)

where U ∗(·) and I∗
e (·, ·) are an adjusted score and expected information element respec-

tively derived from the likelihood (8.1.9) containing the orthogonally transformed param-

eters. Let z∗i = zT
i (ZTZ)−1ZT 1n. The the adjusted score, U ∗, is found by differentiating

(8.1.9) with respect to ν giving

U ∗(ν) = U(ν) −
1

ν(ν + 1)

n
∑

i=1

z∗i +
1

ν

n
∑

i=1

Biz
∗
i (8.1.11)

= U(ν) −
1

ν(ν + 1)

∑

i=1

{

1 −
diω̄i

σ2
i

}

z∗i

= U(ν) −
1

ν(ν + 1)
(1T

n − dT Ω̄Σ−1)P z1n

where P z = Z(ZTZ)−1ZT . Noting (8.1.3), the adjusted observed information can be

found by differentiating (8.1.11) with respect to ν giving

I∗
o (ν, ν) = Io(ν, ν) +A(ν)
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where

A(ν) = −
2ν + 1

ν2(ν + 1)2

n
∑

i=1

z∗i −
1

ν2

n
∑

i=1

{

2B2
i −

2ν + 3

ν + 1
Bi

}

z∗i −
2

ν2(ν + 1)

n
∑

i=1

(B2
i − Bi)z

∗2
i

Taking expectations of this gives

E
[

A(ν)] = −
n
∑

i=1

{

2ν + 1

ν2(ν + 1)2
z∗i +

1

ν2(ν + 1)

(

6(ν + 1)

ν + 3
− (2ν + 3)

)

z∗i

+
2

ν2(ν + 1)2

(

3

ν + 3
− 1

)

z∗2i

}

= −
n
∑

i=1

1

ν2(ν + 1)2(ν + 3)

{

(−2(ν + 3) + 6(ν + 1)) z∗i − 2νz∗2i

}

As
n
∑

i=1

z∗2i =

n
∑

i=1

1T
nZ(ZTZ)−1ziz

T
i (ZTZ)−1ZT1n

= 1T
nZ(ZTZ)−1

{

n
∑

i=1

ziz
T
i

}

(ZTZ)−1ZT1n

= 1T
nP zP z1n

= 1T
nP z1n =

n
∑

i=1

z∗i

the adjusted expected information for ν becomes

I∗
e (ν, ν) = Ie(ν, ν) −

2

ν(ν + 1)2(ν + 3)
1TP z1n

Notice for large degrees of freedom the contribution from this component will be negligible.

As discussed in Fernandez & Steel (1999), the estimate for ν obtained by iterating (8.1.10)

will only locally maximise (8.1.9). This is due to the likelihood becoming unbounded if ν

is allowed to vary over the whole parameter space. For the univariate case proposed here,

this occurs when ν = ν0 < s(β0)/(n− s(β0)) where s(β0) is the number of observations,

given β0 such that yi − x
T
i β0 = 0, i = 1, . . . , n. In general this threshold, ν0, is small

(generally less than one) and infers that areas of likelihood unboundedness are most likely

to occur as ν → 0 (see Fernandez & Steel, 1999; Azzalini & Capitanio, 2003 and Jones

& Faddy, 2003 for further details). For the simulations and examples in this thesis these

regions of the likelihood were avoided.

8.1.3 Computation and Software

The inclusion of the degrees of freedom parameter in the estimation process requires a

simple modification of the scoring algorithm given in Section 4.7. For the (m + 1)th

iterate the scoring algorithm becomes
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• Score Step 1: For given ω
(m+1)
i , 1 = 1, . . . , n, δ = δ(m) and ν = ν(m) update β

using β(m+1) = ft(β
(m), δ(m), ν(m)), where ft(·) is given in (4.3.16).

• Score Step 2: For given ω
(m+1)
i , 1 = 1, . . . , n, β = β(m+1) and ν = ν(m) update δ

using δ(m+1) = gt(β
(m+1), δ(m), ν(m)), where gt(·) is given in (4.3.18).

• Score Step 3: For given ω
(m+1)
i , 1 = 1, . . . , n, β = β(m+1) and δ = δ(m+1) update

ν using ν(m+1) = ht(β
(m+1), δ(m+1), ν(m)), where ht(·) is given in (8.1.10).

Note that the estimation of δ at score step 2 only requires the original estimation equation

used to update λ.

An implementation of this algorithm is available in the mini software library “hett”. In

particular, initial estimates for the degrees of freedom parameter can be given and an

estimate as well as its standard error are returned. See the documentation at

http://www.biometricssa.adelaide.edu.au/staff/hett/index.html

or Appendix B for more details.

8.2 Heteroscedastic t-REML using the Partial Laplace

approximation

In Section 6.1 an approximate marginal likelihood was derived that allowed a separate

approximate conditional likelihood for the location parameters to be derived as well as an

approximate heteroscedastic t-REML to estimate the scale parameters when the degrees

of freedom is known in advance.

When the degrees of freedom parameter is unknown the approximate conditional like-

lihood and t-REML likelihood remains identical to (6.1.17) and (6.1.18). Therefore es-

timation of the location parameters is achieved by the least squares process defined by

(6.1.28). The estimation of the scale parameters, (λ, ν), is achieved by maximising the

natural log of the integrand of (6.1.18), namely

ℓ2(λ, ν;y) =
nν

2
log(ν/2) − nΓ(ν/2) −

1

2
log |Q̃| −

1

2
log |XT Ψ̃

−1
X|

−
1

2

n
∑

i=1

{

logzT
i λ−

di,cω̃i

σ2
i

}

−
n
∑

i=1

{(

ν + 1

2

)

logωi −
ν

2
ωi

}

(8.2.1)

where Q̃ is defined by (6.1.30). Identical to Section 6.1.6 Q̃ is a complex function of

the remaining parameters, (λ, ν) and therefore the estimation is handled numerically. To

ensure positive definiteness Q̃ is replaced with the approximation Q̃
∗

defined by (6.1.31).
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8.2.1 Computations

For unknown degrees of freedom the estimation of the parameters (β,λ, ν) requires only

a modification of the computational algorithm provided in Section 6.1.8.

• Estimation of (λ, ν): The approximate REML estimates for (λ, ν) are simultane-

ously obtained using an iterative process. At the mth iteration

– For given λ = λ(m) and ν = ν(m) update ωi, 1, . . . , n using the prediction

ω
(m+1)
i = k(ω(m),λ(m), ν(m)), where k(·) is given in (6.1.20).

– For given ω
(m+1)
i , i = 1, . . . , n update (λ, ν) using approximate t-REML de-

fined by (8.2.1), namely

(λ(m+1), ν(m+1)) = max
{

(λ, ν);L2(λ
(m), ν(m);y)

}

• Estimation of β: The approximate REML estimate for β can be obtained using

– For given (λ, ν) = (λ̂, ν̂), the approximate REML estimates for the scale

parameters, (λ, ν) obtained from Step 1 of the algorithm, and ωi = ωi(λ̂, ν̂),

1, . . . , n, update β using β = f ∗
t (β(m), λ̂, ν̂), where f ∗

t (·) is given in (6.1.28).

For the purpose of brevity the computational algorithm and the estimators obtained from

it will be known as t-REML I with unknown degrees of freedom.

8.3 Heteroscedastic t-REML using Stably Adjusted

Profile Likelihood

It seems appropriate that to find an MPL for any one of the parameters of the het-

eroscedastic t-distribution when the degrees of freedom is unknown, the original marginal

likelihood needs adjusting for the estimation of the two other nuisance parameters. This

would suggest that three modified profile likelihoods are possible for each of the three

parameters (β,λ, ν) respectively.

However, the derivation of MPL given in Section 5.2.1 suggests that to form the ad-

justment requires the availability of ancillary statistics. When the degrees of freedom

parameter requires estimation the heteroscedastic t-distribution is not a member of the

simple location-scale family and therefore there is no ancillary statistic directly avail-

able. Furthermore, the implicit and non-linear nature of the maximum likelihood estima-

tion procedure for (β,λ, ν) given by (4.3.16), (4.3.18) and (8.1.10) respectively suggests

difficulty in obtaining the determinant term of (5.2.5) containing the Jacobian of the
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transformation to form the complete MPL. From the discussion by Barndorff-Nielsen

in Cox & Reid (1987) and Chapter 5 Section 5.2.2, excluding this term would imply

that MPL is not invariant under interest respecting parameter transformations. In this

case the heteroscedastic t-distribution contains a transformation of the scale parameters

σ2
i = σ2(zi;λ), i = 1, . . . , n and therefore maintaining invariance is preferable.

In Chapter 5 Section 5.2.4 methodology is discussed to obtain a parameter invariant

modified or Stably Adjusted Profile Likelihood (SAPL) without the explicit use of an-

cillary statistics. This is used in the following sections to obtain an alternative form for

the adjustment terms obtained from MPL and produce a set of SAPLs, one for each

parameter.

Consider the model defined by (3.1.1) where the distribution of the response is de-

fined by (4.2.7). Following from Section 5.2.4 the form of the stably adjusted profile

likelihood can be simplified if the parameters are orthogonal. If the scale parameter

model follows the simplified log-linear form given by (3.1.3) then following from Section

8.1.1 the scale parameters, λ, can be orthogonalized by the parameter transformation

δ = λ− (ZTZ)−1ZT1n

{

2(logν − log(ν + 1))
}

. This ensures that the expected informa-

tion for (β, δ, ν) can be expressed as a block diagonal matrix of the form






Ie(β,β) 0 0

0 Ie(δ, δ) 0

0 0 Ie(ν, ν)






(8.3.1)

where

Ie(β,β) =
ν + 1

ν + 3
XTΣ−1X (8.3.2)

Ie(δ, δ) =
ν

2(ν + 3)
ZTZ (8.3.3)

I∗
e (ν, ν) = −

n

4
ψ̇(ν

2
) +

n

4
ψ̇(ν+1

2
)−

n

2ν

(ν + 5)

(ν + 1)(ν + 3)
−

2

ν(ν + 1)2(ν + 3)
1TP z1n (8.3.4)

8.3.1 Adjusting for β and ν

Let θ∗ = (β, ν). Following Chapter 5 Section 5.2.4, and noting the parameter orthogo-

nalization, the SAPL for δ can be expressed as

LS(δ;y) = exp(k∗(δ))
{

|Ie(θ̂
∗

δ, θ̂
∗

δ)|/|Io(θ̂
∗

δ, θ̂
∗

δ)|
}1/2

exp(ℓ(δ, θ̂
∗

δ;y)) (8.3.5)

where θ̂
∗

δ = (β̂(δ, ν̂), ν̂(β̂, δ)) are the maximum likelihood estimates for β and ν derived

by iteratively solving (4.3.16) and (8.1.10) for given δ. The profile likelihood has the form

exp(ℓ(δ, θ̂
∗

δ;y)) =

{

Γ((ν̂ + 1)/2)

(Γ(1/2))Γ(ν̂/2)ν̂1/2

}n

|Σ|−1/2
n
∏

i=n

{

1 +
r2
i

σ2
i ν̂

}−(ν̂+1)/2
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where ri = (yi − x
T
i β̂δ). The two determinant terms are defined by

Ie(θ
∗, θ∗) =

[

Ie(β,β) 0

0 I∗
e (ν, ν)

]

(8.3.6)

Io(θ
∗, θ∗) =

[

Io(β,β) I∗
o (β, ν)

I∗
o (ν,β) I∗

o (ν, ν)

]

(8.3.7)

Here, Ie(β,β) and I∗
e (ν, ν) are defined by (8.3.2) and (8.3.4) respectively. As I∗

e (ν, ν)

does not depend on δ, Ie(θ
∗, θ∗) = Ie(β,β) providing a moderate simplification to the

SAPL (8.3.5).

Under the simplified scale parameter model the observed information for β, Io(β,β), and

adjusted observed information for ν, I∗
o (ν, ν), are given by (4.3.9) and (8.1.6) respectively.

Differentiating (4.3.4) with respect to ν and recognising the parameter orthogonality the

lth adjusted observed co-information term for (β, ν) can be written as

I∗
o (βl, ν) =

n
∑

i=1

(yi − x
T
i β)xil

σ2
i ν

{(

ν + 1

ν
+

2z∗i
ν

− 1

)(

1

1 + di/σ2
i ν

)

−

(

ν + 1

ν
+

2z∗i
ν

)

di/σ
2
i ν

(1 + di/σ2
i ν)

2

}

=
n
∑

i=1

(yi − x
T
i β)xil

σ2
i ν

{(

ν + 1

ν
+

2z∗i
ν

− 1

)

(1 −Bi)

−

(

ν + 1

ν
+

2z∗i
ν

)

Bi(1 − Bi)

}

=
n
∑

i=1

(yi − x
T
i β)xil

σ2
i ν

{(

ν + 1

ν
+

2z∗i
ν

)

(B2
i − 2Bi + 1) +Bi − 1

}

=

n
∑

i=1

(yi − x
T
i β)xil

σ2
i ν

{(

ν + 1

ν
+

2z∗i
ν

)

(Bi − 1)(Bi − 1) +Bi − 1

}

where z∗i = zT
i (ZTZ)−1ZT1n and Bi is defined by (4.3.6). Using Chapter 5 Section 5.2.4,

k∗(δ) in the extra exponent term of (8.3.5) can be expressed as

k∗(δ) = (δ − δ̂)Tk′(δ̂, θ̂
∗
)

where

k′(δ̂, θ̂
∗
) = (tr(A1), . . . , tr(Aq))

T

and

Aj = −
1

2
(Ie(θ̂

∗
, θ̂

∗
))−1I(δj)

e (θ̂
∗
, θ̂

∗
)

∣

∣

∣

∣

δ=δ̂
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Here, δ̂ and θ̂
∗

are the ML estimates derived by iteratively solving (4.3.18), (4.3.16) and

(8.1.10) using the computational algorithm defined in Section 8.1.3. The first term of this

expression is defined by (8.3.6) evaluated at the maximum likelihood estimates for δ and

θ∗. The second term can be derived by taking the derivative of (8.3.6) with respect to δj .

In this particular case the expected information component for the degrees of freedom

parameter does not contain δ and therefore only the derivative of the information for the

location parameters is required, namely

I(δj )
e (β,β) =

∂Ie(β,β)

∂δj
= −

ν + 1

ν + 3

n
∑

i=1

xix
T
i

σ2
i

zij

and therefore

tr(Aj) =
1

2

n
∑

i=1

hiizij

where hii is the iith diagonal of H = Σ−1/2X(XTΣ−1X)−1XTΣ−1/2, the hat matrix.

The final adjustment term can then be expressed as the exponent of

k∗(δ) =
1

2
(δ − δ̂)TZT ĥ

where ĥ = (h11(δ̂), . . . , ĥnn(δ̂))).

Typically, (8.3.5) defines a stably adjusted profile likelihood for δ, adjusted for the location

parameters, β, and the scale parameter, ν. This SAPL can be considered to be equivalent

to an extended t-REML likelihood for δ.

8.3.2 Adjusting for β and δ

Let θ+ = (β, δ). Proceeding identically to the previous section the SAPL for ν can be

expressed as

LS(ν;y) = exp(k∗(ν))
{

|Ie(θ̂
+

ν , θ̂
+

ν )|/Io(θ̂
+

ν , θ̂
+

ν )|
}1/2

exp(ℓ(ν, θ̂
+

ν ;y)) (8.3.8)

where θ̂
+

ν = (β̂(δ̂, ν), δ̂(β̂, ν)) are the maximum likelihood estimates of β and δ obtained

by iteratively solving (4.3.16) and (4.3.18) respectively, for given ν. Here, the profile

likelihood can be expressed as

exp(ℓ(ν, θ̂
+

ν ;y)) =

{

Γ(ν + 1)/2)

(Γ(1/2))Γ(ν/2)ν1/2

}n

|Σ̂|−1/2
n
∏

i=n

{

1 +
r2
i

σ̂2
i ν

}−(ν+1)/2
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and the determinant terms can be immediately written as

Ie(θ
+, θ+) =

[

Ie(β,β) 0

0 Ie(δ, δ)

]

(8.3.9)

Io(θ
+, θ+) =

[

Io(β,β) Io(β, δ)

Io(δ,β) Io(δ, δ)

]

(8.3.10)

The expected information components Ie(β,β) and Ie(δ, δ) are defined by (8.3.2) and

(8.3.3) respectively. Under the simplified scale model the observed information for β is

given by (4.3.9). Using (4.3.11) and (4.3.12) the remaining observed information compo-

nents can be expressed as

Io(δ, δ) =
ν + 1

2

n
∑

i=1

ziz
T
i

{

Bi − B2
i

}

Io(β, δ) = (ν + 1)
n
∑

i=1

xiz
T
i

σ2
i ν

{(1 − Bi)(1 − Bi)} (yi − x
T
i β)

Again, proceeding identically to the previous section, k∗(ν) in the extra exponent term

can be expressed as

k∗(ν) = (ν − ν̂)k′(ν̂, θ̂
+
)

where

k′(ν̂, θ̂
+
) = −

1

2
tr
(

(Ie(θ̂
+
, θ̂

+
))−1I(ν)

e (θ̂
+
, θ̂

+
)
) ∣

∣

∣

ν=ν̂
(8.3.11)

where ν̂ and θ̂
+

are the ML estimates found by iteratively solving (8.1.10), (4.3.16)

and (4.3.18) using the computational algorithm defined in Section 8.1.3. The second

component of the trace term requires the derivative of the expected information of θ+

with respect to ν, namely

I(ν)
e (θ+, θ+) =

[

I
(ν)
e (β,β) 0

0 I
(ν)
e (δ, δ)

]

where

I(ν)
e (β,β) =

∂Ie(β,β)

∂ν
=

n
∑

i=1

xix
T
i

σ2
i

{

2

(ν + 3)2
−

2z∗i
ν(ν + 3)

}

I(ν)
e (δ, δ) =

∂Ie(δ, δ)

∂ν
=

3

2(ν + 3)2
ZTZ

and z∗i = zT
i (ZTZ)−1ZT1n. Combining this with the first trace term in (8.3.11) and

evaluating at the maximum likelihood estimate (ν̂, θ̂) the adjustment can be expressed

as

k∗(ν) =
1

2
(ν − ν̂)

{

2

ν̂(ν̂ + 1)
ĥ

T
P z1n −

2

(ν̂ + 1)(ν̂ + 3)
tr(Ĥ) −

3

ν̂(ν̂ + 3)
tr(P z)

}
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where Ĥ is the hat matrix defined in the previous section, ĥ is a n × 1 vector with ith

element hii(δ̂), and P z = Z(ZTZ)−1ZT .

Typically, (8.3.8) defines a stably adjusted profile likelihood for ν adjusted for the location

parameters, β and the orthogonalized scale parameters, δ. This SAPL can be considered

to be equivalent to an extended t-REML likelihood for ν.

8.3.3 Adjusting for δ and ν

Let δ∗ = (δ, ν). The SAPL for β adjusted for δ∗ can be expressed as

LS(β;y) = exp(h∗(β))
{

|Ie(δ̂
∗

β, δ̂
∗

β)|/|Io(δ̂
∗

β, δ̂
∗

β)|
}1/2

exp(ℓ(β, δ̂
∗

β;y)) (8.3.12)

where δ̂
∗

β = (δ̂(β, ν̂), ν̂(β, δ̂)) are defined by iteratively solving the scoring equations

(4.3.18) and (8.1.10) for a given β. The expected information components for δ and ν

given by (8.3.3) and (8.3.4) respectively do not contain β and therefore their derivative

with respect to β, I
(β)
e (δ∗, δ∗) = 0. Then k∗(β) = 0 and the first exponent term is unity.

Considering only the terms that contain β the SAPL for β can be expressed as

L(β;y) = |Io(δ̂
∗

β, δ̂
∗

β)|−1/2 exp(ℓ(β, δ̂
∗

β;y)

Noting (5.2.8), the observed information can be replaced by the expected information,

which does not depend on β, and therefore (8.3.12) reduces to

LS(β;y) = exp(ℓ(β, δ̂
∗

β;y)) (8.3.13)

the ordinary profile likelihood for β given the maximum likelihood estimates δ̂
∗

β = (δ̂, ν̂).

The estimate for β from this is clearly just the maximum likelihood estimate obtained

from the ML computation (8.1.3).

8.3.4 Computations

If the degrees of freedom is unknown the SAPLs defined by (8.3.5), (8.3.8) and (8.3.13)

can be used as a sequential computational algorithm to determine an adjusted estimate

for each of the parameters, (β, δ, ν).

• Estimation of β: The estimate for β can be obtained iteratively using the ML

algorithm from Section 8.1.3. This algorithm also supplies the ML estimators for δ̂ and

ν̂ to be used in the subsequent steps.

• Estimation of δ: Let the two adjustment parameters be denoted by βδ and νδ.

The adjusted estimate for δ can be obtained iteratively where at the mth iteration the

parameters are updated using
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– For given δ = δ(m) and νδ = ν(m) update βδ using β(m+1) = ft(β
(m), δ(m), ν(m)), where

ft(·) is given in (4.3.16).

– For given βδ = β(m+1) and δ = δ(m) update νδ using ν(m+1) = ht(β
(m+1), δ(m), ν(m)),

where ht(·) is given in (8.1.10).

– For given βδ = β(m+1) and νδ = ν(m+1) update δ using extended t-REML defined by

(8.3.5), namely,

δ(m+1) = max
{

δ;L(β(m+1), δ(m), ν(m+1);y)
}

• Estimation of ν: Let the two adjustment parameters be denoted by βν and δν .

The adjusted estimate for ν can be obtained iteratively where at the mth iteration the

parameters are updated using

– For given δν = δ(m) and ν = ν(m) update βν using β(m+1) = ft(β
(m), δ(m), ν(m)), where

ft(·) is given in (4.3.16).

– For given βν = β(m+1) and ν = ν(m) update δν using δ(m+1) = gt(β
(m+1), δ(m), ν(m)),

where gt(·) is given in (4.3.18).

– For given βν = β(m+1) and δν = δ(m+1) update ν using extended t-REML defined by

(8.3.8), namely,

ν(m+1) = max
{

ν;L(β(m+1), δ(m+1), ν(m);y)
}

The sequential nature of the algorithm suggests that some or all of the steps may be

interchanged. The algorithm requires the unconstrained ML estimates of the parameters

and therefore the first step remains fixed, whereas, the estimation of δ and ν in the last

two steps may be interchanged.

It can be seen that the estimation algorithms for δ and ν require an iterative ML estima-

tion for the adjustment parameters. As (8.3.5) and (8.3.8) are numerically maximised,

this requires that the ML procedures are nested inside the numerical routine. The ML

procedure for the estimation of ν is also a numerical algorithm and therefore the estima-

tion of δ using (8.3.5) contains a nested numerical procedure. This complex non-linearity

is likely to increase the instability of the algorithm. Similarly, the estimation of ν using

(8.3.8) contains the iterative reweighted least squares procedures to obtain the ML esti-

mates for (β, δ). This is also likely to increase the instability of the numerical algorithm.

For the purpose of brevity the computational algorithm and the estimators obtained from

it will be known as t-REML II with unknown degrees of freedom.
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Chapter 9

Examples and Simulations

To illustrate the ML and approximate REML techniques derived in the previous chapter

several examples are considered. The first example considers complex scale parameter

models for the Alfalfa data. For this particular data, due to the inherent instability of the

t-REML I and t-REML II methods, the analysis was restricted to ML. The second exam-

ple presents the Stack Loss data and illustrates the difficulty with simple scale parameter

modelling under t-REML I and t-REML II for small data sets. For some scale param-

eter models considered in this example t-REML II did not converge and, in all cases,

t-REML I did not converge. Under ML, the final model is shown to be heteroscedastic

in one of the covariates used in the location model. The final example, the Martin Ma-

rietta Data, presents an extensive comparison of the the estimation techniques derived

for the heteroscedastic t with unknown degrees of freedom in this thesis. In particular,

ML, t-REML I and t-REML II estimators for the location, scale and degrees of freedom

parameters are compared, where possible, to the Gaussian equivalents. Due to the in-

stability of the t-REML I and t-REML II algorithms profile surfaces are constructed for

the scale parameters to ensure global parameter estimates were obtained. Furthermore,

for comparison, the estimators and model fit from the new skew t distribution derived by

Azzalini & Capitanio (2003) are compared to the ML estimators and model fit derived

from the heteroscedastic t.

To understand the properties of the estimators for the heteroscedastic t for unknown

degrees of freedom under ML, t-REML I and t-REML II a comparative simulation study

is conducted in Section 9.2.
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Figure 9.1: Scatter plots of the adjusted residuals against the square root of the density

of dairy cows for the two liming types.

9.1 Examples

9.1.1 Rent for land Planted to Alfalfa: An ML example

The alfalfa data was introduced in Section 1.2.2 as a possible candidate data set for robust

scale parameter modelling. To explore the scale parameter model the location parameter

model is constructed first while allowing the degrees of freedom to vary according to the

data. Section 1.2.2 and Figure 1.3 suggests that the increase in square root density of

cows is vastly different for the two liming types. In addition, the square root density of

the cows levels out for the land that is not limed. An appropriate location model would

require an interaction between the square root density of cows and the liming type. This

model is adopted here.

Assume a scale parameter model of the form (3.1.3). To understand whether the scale

parameter is heteroscedastic (4.6.2) is used from Section 4.6. Under a homogeneous

model, ν̂ = 5.37 and Figure 9.1 shows the adjusted residuals, d̄i/(1 − hii)
2 + 0.607, from

the fit of the saturated location model against the square root of the density of dairy cows

for the two Liming types. The plots suggest that the non-homogeneity is different across

the transformed cow densities for the two liming types. The plots also indicate that the

heterogeneity for each liming type is possibly non-linear.

Table 9.1 presents the various scale parameter models considered for analyses along with

their associated score test statistics and log-likelihood values. Hypothesis testing of t-

specified models against the simpler Gaussian equivalent is difficult as the exact null

distribution is a complex mixture of two chi-squared distributions. For the rest of this

thesis a conservative approach is used where the null distribution is considered to be χ2
1.

113



Homogeneity Test

Score 2LogL

Scale Parameter Model Gaussian t Gaussian t

1 - - 29.94 32.68 (5.38)

SC 2.46 2.61 32.42 35.32 (4.92)

LI 5.10 5.97 35.52 38.96 (5.49)

SC + LI 5.15 5.99 35.93 39.11 (5.80)

SC ∗ LI 7.68 8.76 43.51 44.17 (10.75)

SC ∗ LI + SC2 8.18 9.22 44.45 45.18 (9.11)

(SC + SC2) ∗ LI 8.55 9.63 44.87 45.65 (8.02)

(SC + SC2) ∗ LI + SC3 9.38 10.45 52.69 56.98 (2.86)

Table 9.1: Homogeneity Test for the Alfalfa data. Estimated degrees of freedom for each

t model are given in parentheses.

Thus assuming a constant scale parameter the model based on the t-distribution is not

significantly different from the Gaussian equivalent. The addition of Liming type in the

heteroscedastic t produces a log-likelihood ratio statistic of 6.28 on χ2
1 and is therefore

significant. A test under the Gaussian equivalent produces similar results. The score

test concurs for both models. With a log-likelihood ratio statistic of 5.06 on χ2
1 the

table confirms that the interaction of square root density of cows with Liming type is

significant for the heteroscedastic t and preferred over the simpler additive model. The

score test produces a statistic of 8.76 on χ2
3 and therefore also suggesting significance at

the 5% level. Contrastly, for the Gaussian model, the score test indicates only marginal

significance, whereas, the difference in log-likelihoods implies high significance. For this

particular model the heteroscedastic t is not significantly different from the simpler Gaus-

sian equivalent. The table also shows that the quadratic nature of the square root density

of cows does not change for different liming types. However, for both the heteroscedastic

Gaussian and t, the difference in log-likelihoods suggests retaining the quadratic form for

the square root density of the cows for the two liming types and adding an overall cubic

term to the scale model is highly significant. For this final model the heteroscedastic t is

significantly different to the simpler Gaussian equivalent.

9.1.2 Stack-Loss Data

The stack loss data was introduced in Section 1.2.3 as a data set that requires robust

analysis. Lange et al. (1989) shows, that under a t-distributed response, the distribution
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Figure 9.2: Pairs plot of the adjusted residuals from the homogeneous scale parameter

model with the three explanatory variables.

of the residuals from an additive location model is heavy-tailed suggesting a small estimate

for the degrees of freedom, ν̂ = 1.08. Under ML, the likelihood associated with this

particular homogeneous model demonstrated difficulty in obtaining convergence. One

possible reason for this difficulty is the low degrees of freedom estimate may be close

to a pole as discussed in Section 8.1.2 (also see Jones & Faddy, 2003 and Azzalini &

Capitanio, 2003 for more details). For the homogeneous model, Fernandez & Steel (1999)

show that this pole occurs at ν0 = 0.615, which is in close proximity to the estimated

value of ν̂ = 1.08.

To help identify possible heteroscedasticity in the scale parameter of the model the ad-

justed residuals defined by (4.6.2) are used from Section 4.6. As the estimate for the

degrees of freedom is ν̂ < 2, the estimated variance and the adjusted residuals are not

defined for the t. It was suggested in Section 4.6 that (4.6.2) be replaced with the Gaus-

sian derivation in Verbyla (1993). Fig. 9.2 presents a pairs plot of the Gaussian adjusted

residuals, that is d̄i/(1− hii)
2 + 1.27406, alongside the three regressors used additively in

the location model. All three show a positive linear or non-linear trend and therefore a

model that assumes heteroscedasticity would be preferable.
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Figure 9.3: Detection of heteroscedasticity in the stack loss data(a) added variable plot

for Acid; (b) added variable plot for Water; (c) added variable plot for Air.

Figure 9.3 shows the added variable plots for the three regressors. For Acid Concentration

and Water Temperature the adjusted squared residuals appear to be constantly dispersed

around zero, whereas Air Flow shows a positive trend in the adjusted squared residuals.

This positive linearity suggests a simple Air Flow component as an initial covariate in

the scale parameter model.

As the stack loss data contains only 21 observations the score test derived in Section 4.5.2

may be unreliable and is not used here. Table 9.2 presents the numerical likelihood for

various ML heteroscedastic t models given a saturated additive model. The estimates

for the degrees of freedom are given in parentheses. Under ML, the likelihood associated

with the additive scale parameter model containing Water Temperature and Acid Con-

centration did not converge and therefore has been omitted from the table. Furthermore,

for this particular model, the algorithm exhibited cyclicity as the estimated degrees of

freedom approached low values (ν < 2).

For comparison t-REML II log-likelihood values for the orthogonalized scale parameters

are also given. The degrees of freedom estimate for each of these models is presented in

parentheses. The congruence of the missing values for the additive Water Temperature
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Homogeneity Test

Variance Model -2LogL

Gaussian t-ML t-REML II

1 104.6 99.14 (1.08) 102.2 (2.07)

AF 90.59 87.88 (2.90) 88.43 (2.96)

WT 101.4 94.25 (1.19) 89.64 (1.51)

AC 94.42 94.42 (∞) 94.42 (∞)

AF , WT 89.72 86.96 (2.33) 87.38 (+)

AF , AC 89.86 87.59 (2.70) 86.17 (2.45)

WT , AC 93.96 * *

AF , WT , AC 89.26 86.75 (2.27) 86.77 (+)

AF , AF 2 80.69 80.69 (∞) 80.69 (∞)

Table 9.2: Homogeneity Test for the Stack Loss Data. Estimates for the degrees of

freedom are given in parentheses. *’s represent a likelihood that would not converge; +’s

represent a SAPL for ν that would not converge

and Acid Concentration scale parameter model is due to the inability to obtain ML

estimates to substitute into the t-REML II algorithm. The SAPL associated with the

degrees of freedom parameter from the t-REML II models that contained Air Flow and

Water Temperature additively in the scale parameter model did not converge. Figure 9.4

shows the SAPL or profile likelihoods for the two models. A distinct jump discontinuity

is present in the log-likelihood for low degrees of freedom values providing the cause for

the convergence problems. As the SAPL for each model is an adjustment to the marginal

profile likelihood in the presence of nuisance parameters associated with the location and

scale parameter components of the model, it is highly likely that these discontinuities are

related to the poles discussed in Section 8.1.2. t-REML I was also applied to the models

in Table 9.2 and failed to converge in all cases.

For the constant scale parameter model the increase in the likelihood by estimating ν

under ML is significant and therefore preferred over the simpler Gaussian location-scale

model. Under ML, the addition of Air Flow to the scale parameter as a log-linear covariate

produces a likelihood ratio statistic of 11.26 and therefore is very significant. Furthermore,

the likelihood is also increased by the inclusion of a quadratic Air Flow component to

the scale parameter model. The t-REML II model also concurs with this result. Table

9.2 also reveals that there is a possible linear Water Temperature component that may

be added to the scale parameter model. However, Fig. 9.2 shows that this trend is

correlated with Air Flow and this is verified by the added variable plot of the adjusted

117



0.5 1.0 1.5 2.0

−4
5

−4
4

−4
3

−4
2

−4
1

ν

Lo
g−

Li
ke

lih
oo

d

(a)

0.5 1.0 1.5 2.0

−4
6

−4
5

−4
4

−4
3

−4
2

−4
1

ν

Lo
g−

Li
ke

lih
oo

d

(b)

Figure 9.4: Stably Adjusted Profile Likelihoods of the degrees of freedom parameter for

the scale parameter models (a) AF +WT ; (b) AF +WT + AC

Water Temperature given in Fig. 9.3.

From Table 9.2 the addition of Air Flow at the linear and quadratic level is found to

be not significantly different to the Gaussian location-scale model. Therefore for this

particular data the Gaussian model is preferred over the t-ML and t-REML II models

after accounting for the heteroscedasticity. The final fitted model is given in Figure 9.5.

9.1.3 Martin Marietta Data

The Martin Marietta data was introduced in Section 1.2.4. It was shown that after fitting

a simple least squares process to the location component of the model the residuals are

skewed to the right due to an influential outlier (see Figure 1.7).

Maximum Likelihood

Table 9.3 shows the ML estimates from fitting least squares (homoscedastic Gaussian)

along with estimates from the heteroscedastic Gaussian, homoscedastic t and heteroscedas-

tic t fits to the data. The location intercept parameter for all models is comparable.

Conversely, the location slope parameter from least squares is greater than the compet-
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Figure 9.5: Log of the squared residuals from the Gaussian ML additive location model

with constant scale against Air Flow; the fitted line for the quadratic Gaussian ML model

is also displayed

ing models due to the influence of the outlier discussed earlier.

Assuming a constant scale parameter, the applicability of the homoscedastic t model

under ML is tested. The null hypothesis is the homoscedastic Gaussian with a likelihood

ratio statistic of 28.96 on χ2
1, suggesting that the addition of the degrees of freedom

parameter is warranted. It seems plausible that as the rate of the returns of the market

increase the excess rate of returns of the company may become more variable. If the

scale parameters are now defined by (3.1.3), then using (4.6.2) and the estimates from

the homoscedastic t model, the data can be explored for heteroscedasticity. Figure 9.6

is a plot of the adjusted residuals from the left hand side of (4.6.2), that is log{d̄i/(1 −

hii)
2} − log1

2
− ψ(1

2
) + 1.241, i = 1, . . . , n, against the corresponding CRSP indexes. A

local smoother was used as an exploratory tool to investigate the presence of a trend. A

weak positive trend is evident in Figure 9.6. The addition of the slope parameter in the

scale model yields a likelihood ratio test statistic of 3.11 on χ2 with one degree of freedom

(p-value = 0.0778) and is therefore marginally significant. To highlight the requirement

of the heteroscedastic t model the inclusion of the degrees of freedom parameter is tested.

In this case the heteroscedastic Gaussian (ν → ∞) model is the null hypothesis and the

likelihood ratio statistic is 4.69. Again, this statistic has an asymptotic null distribution

of χ2
1, so the use of the heteroscedastic t-distribution appears justified.
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Method 2logL β̂0 β̂1 λ̂0 λ̂1 ν̂ α̂

Homo G 114.990 0.001 1.803 -4.754 - - -

(0.012) (0.282) (0.183) - - -

Hetero G 142.049 -0.009 1.319 -5.367 18.46 - -

(0.009) (0.232) (0.187) (4.342) - -

Homo t 143.638 -0.007 1.264 -5.983 - 2.837 -

(0.008) (0.190) (0.262) - (0.907) -

Hetero t 146.740 -0.007 1.207 -5.960 13.12 3.759 -

(0.008) (0.206) (0.250) (5.823) (1.442) -

Skew t 146.166 -0.051 1.248 -5.450 - 3.320 1.246

(0.023) (0.190) (0.289) - (1.430) (0.653)

Table 9.3: ML estimates and their associated standard errors for the Martin Marietta data

using various models. α refers to the skew parameter defined in Azzalini and Capitanio

(2003).
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Figure 9.6: Heteroscedasticity plot for the adjusted residuals against the CRSP indexes.

Fitted line is a local smoother to describe trend.

For comparison with the ML heteroscedastic t model, Table 9.3 also contains the skew t

estimates from Azzalini & Capitanio (2003). Following Azzalini & Capitanio (2003), the

estimated adjusted intercept can be expressed as

β̂∗
0 = β̂0 + α̂

{

ν̂σ̂2

π(1 + α̂2)

}1/2 Γ
(

1
2
(ν̂ − 1)

)

Γ
(

1
2
ν̂
) = 0.0029
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Figure 9.7: Scatter plot of the Martin Marietta company excess returns against the

CRSP index for the whole market. Least squares line (dashed); skew t model fit (dotted);

heteroscedastic t model fit (solid)

The fitted line for the skew t, along with the least squares line and the ML heteroscedastic

t fit, are given in Figure 9.7. The fitted line for the heteroscedastic Gaussian is omitted due

to its similarity to the fitted lines presented. Although the models and their estimates are

not directly comparable, the concurrence of the skew t and heteroscedastic t fitted lines

suggests these models provide similar location components given alternate specifications

for the data.

Restricted Maximum Likelihood

Table 9.4 shows the REML estimates for the homoscedastic Gaussian, heteroscedastic

Gaussian, homoscedastic t-REML I, heteroscedastic t-REML II, homoscedastic t-REML

II and the heteroscedastic t-REML II fits to the data. Again, the location parameter

intercepts are comparable. The increased value for the location slope parameter in the

homoscedastic Gaussian model suggests that the outlier is still influential under REML.

The estimated degrees of freedom values for t-REML II are comparable to the equivalent

ML estimate, whereas, the t-REML I degrees of freedom estimate is significantly larger.

The numerical maximisation for heteroscedastic t-REML I and t-REML II showed insta-

bility while attempting to obtain estimates for (λ, ν) or (δ, ν). For this reason, the log-

likelihoods are investigated for possible anomalies. As the t-REML I likelihood, (8.2.1),
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Method 2LogL β̂0 β̂1 λ̂0 λ̂1 ν̂

Homo G 103.664 0.001 1.803 -4.721 - -

(0.012) (0.289) (0.189) - -

Hetero G 129.598 -0.001 1.310 -5.331 18.14 -

(0.009) (0.237) (0.194) (4.608) -

Homo t-REML I 127.791 -0.006 1.301 -5.716 - 4.794

(0.007) (0.182) (0.271) - (1.589)

Hetero t-REML I 133.941 -0.004 1.259 -5.561 16.73 12.01

(0.008) (0.211) (0.311) (5.362) (13.50)

Homo t-REML II 141.546δ -0.007 1.264 -5.964 - 2.836

143.579ν (0.008) (0.190) (0.231) - (1.037)

Hetero t-REML II 145.402δ -0.006 1.207 -5.905 14.64 3.582

147.021ν (0.008) (0.206) (0.223∗) (NA) (1.634)

Table 9.4: REML Estimates and their associated standard errors for the Martin Marietta

data using various models. Standard errors are in parentheses. *’s represent standard

errors of the associated orthogonal parameters, (δ1, δ2).

simultaneously maximises (λ, ν), to investigate the log-likelihood surface for the scale

parameters only the degrees of freedom is fixed at its maximum, ν̂ = 12.01. The scale

parameters are then profiled near the suggested maximum, (λ̂0, λ̂1) = (−5.561, 16.73).

Figure 9.8 shows a 3D perspective plot and contour plot of the surface of the log-likelihood

for (λ0, λ1). Both plots suggest that the log-likelihood is convex around the maximum

λ̂. For the slope scale parameter, λ1 the surface exhibits flatness relative to the inter-

cept parameter, λ0. As the numerical maximisation uses a gradient method to estimate

the parameters an incorrect step length across the flat surface may halt the algorithm

prematurely. Therefore, adjustments to the arguments of the algorithm were required to

ensure that a global maximum for λ had been obtained.

The t-REML II log-likelihood surface for the orthogonalized scale parameters is obtainable

by profiling (8.3.5) near the suggested maximum (δ1, δ2) = (−5.905, 14.64) and is given in

Figure 9.9. This surface also shows convexity around δ̂. Again, relative to the intercept

scale parameter, the profile of the log-likelihood surface for the slope scale parameter is

flat. Identical to t-REML I, adjustments to the arguments of the numerical maximisation

procedure were required to ensure a global maximum had be obtained.

The unexpected bias in the estimates of the degrees of freedom under heteroscedastic

t-REML I in comparison to the estimates obtained under ML and t-REML II, suggests a

requirement to understand the log-likelihood surface near the applicable maximum for ν.

For t-REML I the scale parameters are held at their maximum, (λ̂0, λ̂1) = (−5.561, 16.73)
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Figure 9.8: t-REML I log-Likelihood profile surface for the scale parameters (λ0, λ1) (a)

3D plot of the log-likelihood surface; (b) contour plot of the log-likelihood surface.

and the log-likelihood, (8.2.1) is profiled over a range of values for ν. For t-REML

II, (8.3.8) is used to obtain a profile log-likelihood near the suggested maximum ν̂ =

3.582. Figure 9.10 (a) and (b) shows the profile log-likelihood for heteroscedastic t-ML,

t-REML I and t-REML II. The profile likelihood for t-REML I is not comparable to

the two other profile likelihoods and therefore is displayed separately. The t-ML and

t-REML II profile log-likelihoods for ν are very similar and show convexity near their

associated maximum. The convexity of the profile log-likelihood for ν under t-REML

I is less pronounced. Therefore the profile log-likelihoods for ν and the intercept scale

parameter, λ0, both exhibit flatness relative to the remaining parameter. Under t-REML I

the approximate REML given by (8.2.1) simultaneously estimates the degrees of freedom

and scale parameters and therefore this flatness may be a contributing factor to the

instability of the non-linear algorithm for the heteroscedastic model considered here.

The standard errors of location parameter estimates for each of the approximate t-REML

methods are comparable. The process to obtain scale parameter and degrees of freedom

estimates using t-REML I and t-REML II is non-linear and therefore the standard errors

for the scale and degrees of freedom parameter estimates obtained from these algorithms

are obtained by inverting a numerical second derivative or hessian at the point where

the associated likelihood was maximised. As expected, the standard errors for the scale

parameter estimates for t-REML I and t-REML II, in comparison to Gaussian REML,

show inflated values due to the inclusion of the degrees of freedom. At the maximum of the
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Figure 9.9: t-REML II log-Likelihood profile surface for the orthogonalized scale parame-

ters (δ1, δ2) (a) 3D plot of the log-likelihood surface; (b) contour plot of the log-likelihood

surface.

objective function, (8.3.5), for the heteroscedastic t-REML II model the numerical second

derivative produced a negative value for δ1. Therefore, upon inversion, the standard error

for the slope scale parameter was not available. It is highly likely this is caused by the

flatness of the surface for the slope scale parameter discussed previously.

As ν → ∞, t-REML I and t-REML II with unknown degrees of freedom do not approach

the simpler heteroscedastic Gaussian REML Likelihood. Therefore testing of the inclusion

of the degrees of freedom parameter under REML is a non-nested hypothesis. Although,

the large log-likelihood ratio statistic in the ML case suggests that these tests are not

necessary. The heteroscedasticity of the scale parameter can be tested for t-REML I and

t-REML II. Under t-REML I the log-likelihood ratio statistic for the null hypothesis of

λ1 = 0 is 6.029 and therefore significant. Under t-REML II only the stably adjusted

likelihood for δ may be used. The log-likelihood ratio statistic for the null hypothesis of

δ1 = 0 is 3.856 and is therefore, similar to the ML case, marginally significant at the 5%

level.
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Figure 9.10: Profile log-likelihoods for ν (a) profile log-likelihood of ν for t-REML I; (b)

profile log-likelihood of ν for t-ML and t-REML II

9.2 Simulation Study

The simulation study in this chapter mimics the simulation study in Chapter 7 with

the exception that the degrees of freedom parameter of the heteroscedastic t-distribution

is required to be estimated. The covariates for the location and scale components are

defined by (7.2.1). The model (4.2.7) was used and the location and scale parameters

follow the form defined by (7.2.2). The target values for the parameters are given by

(7.2.3). In this particular set of simulations, for ML and t-REML II, the parameters

have been orthogonalized using the derivations of Section 8.1.1. Thus, the estimates for

the location, scale and degrees of freedom parameters, (β,λ, ν) are obtained from ML,

t-REML I and t-REML II using the computational algorithms from Sections 8.1.3, 8.2.1

and 8.3.4 respectively.

For this particular simulation study the target degrees freedom used were ν = (3, 5, 8).

The simulation was run with sample sizes n = (50, 100, 200) to gauge the effect on the

properties of the parameter estimates for an increasing number of observations. A total

of 500 replications of each combination of (ν, n) was obtained for the three approaches.

In this particular case, for ML, the iterative scoring method defined in Section 8.1.3 was

allowed an arbitrary maximum of 300 iterations to obtain convergence of the estimates.

The numerical maximisation process used the parameters from t-REML I and t-REML
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Figure 9.11: Histograms of the log estimated degrees of freedom parameter, ν, for 500

simulations under the distribution yi ∼ t(xT
i β, exp(zT

i λ), ν), i = 1, . . . , n where the

target degrees of freedom is ν = (3, 5, 8), estimated using ML, and n = (50, 100, 200).

II did not require a comparable mechanism. The convergence criterion in each case was

|ℓ(θ(m+1)) − ℓ(θm)| < ǫ where θ is the parameter of interest and ǫ = 10−8.

For the ML case it was found that as the sample size is decreased and the target degrees

of freedom increased the algorithm approaches maximum iterations more frequently. In

addition, although the change in likelihood was negligible, in most of these cases the

estimate for the degrees of freedom was tending to infinity. As an example of this bias,

Figure 9.11 shows the histograms of the log estimated degrees of freedom obtained from all

simulated combinations using ML. For a low target degrees of freedom and high sample

size the distribution of the log estimated degrees of freedom is close to Gaussian. When

the required degrees of freedom value is increased and the sample size is lowered the

distribution shows bimodality indicating that a substantial proportion of the estimates

are large values. Although t-REML I and t-REML II use numerical maximisation to

obtain its estimates the extreme bias of the degrees of freedom parameter estimates was

also visible. Figure 9.12 and Figure 9.13 show the histograms of the log estimated degrees

of freedom obtained from all simulation combinations using t-REML I and t-REML II

respectively. Under t-REML I, for the lowest target degrees of freedom and small sample

sizes, the distribution of the log estimated degrees of freedom shows bimodality. This

bimodality dissipates as the sample size is increased. For the higher degrees of freedom

and small sample sizes this extreme skewness of the distributions of the log estimated
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Figure 9.12: Histograms of the log estimated degrees of freedom parameter, ν, for 500 sim-

ulations under the distribution yi ∼ t(xT
i β, exp(zT

i λ), ν), i = 1, . . . , n where the target

degrees of freedom is ν = (3, 5, 8), estimated using t-REML I, and n = (50, 100, 200).

degrees suggests a large proportion of the simulations returned Gaussian estimates for

the t-REML I parameters. In fact, for the extreme case (ν, n) = (8, 50), more than 85%

of the simulations returned estimated degrees of freedom values > 16. This percentage

is reduced to 75% when the sample size is increased to 200. Under t-REML II the bias

of the estimated degrees of freedom parameter is also visible but less pronounced than

bias obtained under ML or t-REML I. In particular, the skewness of the distributions

is decreased for all sample sizes and degrees of freedom combinations suggesting that t-

REML II estimated much lower values for the degrees of freedom than its ML equivalent.

Due to the bias of the estimated degrees of freedom across all estimation methods the

median value was chosen as an appropriate estimator for ν for each set of simulations.

Table 9.5 presents the means of the estimates for the fixed location and scale parameters

and median estimates for degrees of freedom parameter over the 500 simulations for all

sample sizes and degrees of freedom combinations. The table confirms the extreme bias

of the degrees of freedom parameter exhibited in Figure 9.11, 9.12 and 9.13. Furthermore,

the median estimates for the degrees of freedom under t-REML II are much less biased

than the ML equivalents. Table 9.5 indicates that the location slope parameter for the

has been efficiently estimated for all heteroscedastic t models suggesting excellent sta-

bility even for a small number of responses. For simulated models containing the lowest

target degrees of freedom the intercept parameter for the location model is inconsistently
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Figure 9.13: Histograms of the log estimated degrees of freedom parameter, ν, for 500 sim-

ulations under the distribution yi ∼ t(xT
i β, exp(zT

i λ), ν), i = 1, . . . , n where the target

degrees of freedom is ν = (3, 5, 8), estimated using t-REML II, and n = (50, 100, 200).

estimated for all sample sizes.

The simulation study conducted in Section 7.2 produced downwards biased estimates

for the intercept parameter of the scale model under ML (see Table 7.4). Notably, the

bias for the intercept scale parameter encountered in Table 9.5 is not as extreme as the

bias encountered for the intercept scale parameter in Table 7.4. Also, in contrast to the

empirical values for the intercept scale parameter in Table 7.4, this bias also increases as

the degrees of freedom increases. This bias is alleviated as the sample size increases. The

t-REML I estimates for the intercept scale parameter display extreme upwards bias. This

bias decreases as the target degrees of freedom and the sample size is increased. Similar

to ML, the t-REML II estimates for the intercept scale parameter display upwards bias

for the smallest degrees of freedom and all sample sizes. This upwards bias dissipates

as the degrees of freedom increases but is sporadic in comparison to ML estimates. The

t-REML II estimates for the intercept scale parameter show upwards bias for all sample

sizes and degrees of freedom combinations. In contrast to ML, this bias decreases as

the degrees of freedom increases, but similar to ML, also decreases as the sample size

increases.

Under ML, the slope scale parameter estimates exhibit slight upwards bias for all sample

size and degrees of freedom combinations. In comparison, the t-REML I estimates for
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t-model (ν = 3) t-model (ν = 5) t-model (ν = 8)

SS 50 100 200 50 100 200 50 100 200

t-ML β̂0 -0.489 -0.510 -0.499 -0.509 -0.506 -0.507 -0.484 -0.498 -0.499

β̂1 1.992 2.003 2.00 2.002 2.001 2.002 1.996 2.000 2.000

λ̂0 0.495 0.506 0.515 0.464 0.502 0.498 0.436 0.491 0.496

λ̂1 0.512 0.507 0.503 0.513 0.500 0.504 0.505 0.504 0.500

ν̂ 3.356 3.217 3.216 7.511 5.692 5.209 27.94 10.29 8.796

t-REML I β̂0 -0.485 -0.513 -0.498 -0.509 -0.505 -0.507 -0.486 -0.498 -0.499

β̂1 1.991 2.004 1.999 2.002 2.001 2.001 1.997 2.001 2.000

λ̂0 0.903 0.869 0.839 0.755 0.757 0.748 0.638 0.673 0.68

λ̂0 0.495 0.500 0.500 0.501 0.494 0.502 0.493 0.499 0.498

ν̂ 9.579 7.138 6.830 149.9 24.55 14.31 207.7 118.4 97.33

t-REML II β̂0 -0.489 -0.510 -0.499 -0.509 -0.506 -0.507 -0.484 -0.498 -0.499

β̂1 1.992 2.003 2.000 2.002 2.001 2.002 1.996 2.000 2.000

λ̂0 0.591 0.545 0.531 0.545 0.537 0.513 0.502 0.521 0.512

λ̂1 0.498 0.501 0.500 0.503 0.495 0.502 0.494 0.501 0.498

ν̂ 3.187 3.135 3.176 6.273 5.400 5.078 16.12 9.050 8.313

Table 9.5: Mean estimates for θT = (βT ,λT ) and median estimates for ν under simulated

distribution yi ∼ t(xT
i β, exp(zT

i λ), ν), i = 1, . . . , n using ML, t-REML I and t-REML II

with unknown degrees of freedom with target values, ν = (3, 5, 8) and n = (50, 100, 200)

the slope scale parameter display negligible bias for all degrees of freedom and sample

size combinations. For this particular simulation study, t-REML II is the most efficient

at estimating the slope for the scale parameter model.

Identical to the simulation study conducted in Section 7.2 it is of interest to understand

the bias reduction or increase of the estimated scale parameters obtained from the ap-

proximate REML techniques derived in this thesis in comparison to ML when the degrees

is unknown. Figure 9.14 shows the 500 simulated empirical t-REML I estimates for the

scale parameters against the ML equivalents for target degrees of freedom ν = (3, 5, 8)

and n = 50. The extreme bias of the intercept scale parameter is prevalent for all target

degrees freedom values. For the lowest target degrees of freedom, ν = 3, nearly all the

estimated values under t-REML I are above the required intercept value, λ0 = 0.5. The

simulations for which the estimated values for the intercept scale parameter are almost

coincidental for the two methods ML and t-REML I, occurred when the degrees of free-

dom parameter was extremely upwards biased. Consequently, the number of coincidental

points increased as the target degrees of freedom increased. As expected the slope for
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Figure 9.14: The t-REML I estimates of the scale parameters (λ̂0, λ̂1) against the ML

equivalents for 500 simulations under the distribution yi ∼ t(xT
i β, exp(zT

i λ), ν), i =

1, . . . , n where the target degrees of freedom is ν = (3, 5, 8) and n = 50.

the scale parameter model under t-REML I, in comparison to ML, is more consistent.

Although, in a minor percentage of the simulations for each degrees of freedom combina-

tions the t-REML I estimate for the slope parameter is downwards biased in comparison

to ML.

Figure 9.15 displays the 500 simulated empirical t-REML II estimates against the ML

equivalents for target degrees of freedom ν = (3, 5, 8) and n = 50. For estimates of the

intercept scale parameter below the target value λ0 = 0.5, t-REML II produces less biased

estimates in comparison to ML. Similar to Figure 7.3, for ML estimates of the intercept

scale parameter above the target value t-REML II increases this bias further. This up-

wards bias also notably decreases as the degrees of freedom increases. For empirical ML

estimates of the slope scale parameter under the required value, λ1 = 0.5, t-REML II

slightly increases the downwards bias. For estimates over the target value, the majority

of the estimates lay on the right hand side of the target line suggesting t-REML II pro-

vides slightly less biased results than ML for all degrees of freedom combinations used

here.
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Figure 9.15: The t-REML II estimates of the scale parameters (λ̂0, λ̂1) against the ML

equivalents for 500 simulations under the distribution yi ∼ t(xT
i β, exp(zT

i λ), ν), i =

1, . . . , n where the target degrees of freedom is ν = (3, 5, 8) and n = 50.

As the target values for the fixed scale parameter and degrees of freedom parameter are

known, the theoretical standard errors for the location and scale parameters for ML were

calculated and presented in Table 9.7. For comparison, the empirical standard errors

of the location and scale parameter estimates using ML, t-REML I and t-REML II are

obtained from the simulations and presented in Table 9.6. The standard errors of the

estimated degrees of freedom parameter were omitted from both tables due to its extreme

bias. As expected, both tables exhibit a trend of smaller standard errors for increasing

degrees of freedom and sample sizes. In comparison to the empirical standard errors for

all three methods, the asymptotic theoretical standard errors for the location parameters

are slightly smaller. This difference is more prominent for low degrees of freedom and

small sample sizes but diminishes as each of these are increased. In comparison to the

empirical standard errors of the locations parameters from ML and t-REML II, for low

degrees of freedom and small sample sizes, the the empirical standard errors for the

location parameters under t-REML I are higher. As the sample size and degrees of

freedom are increased this is reduced considerably.
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t-model(ν = 3) t-model (ν = 5) t-model(ν = 8)

SS 50 100 200 50 100 200 50 100 200

t-ML β̂1 0.219 0.146 0.111 0.205 0.146 0.107 0.190 0.145 0.099

β̂1 0.082 0.057 0.039 0.077 0.054 0.038 0.071 0.054 0.036

λ̂0 0.405 0.284 0.185 0.363 0.246 0.177 0.339 0.232 0.172

λ̂1 0.104 0.075 0.052 0.098 0.064 0.045 0.084 0.06 0.041

t-REML I β̂0 0.230 0.154 0.115 0.209 0.149 0.111 0.190 0.145 0.101

β̂1 0.085 0.060 0.040 0.079 0.055 0.039 0.071 0.054 0.037

λ̂0 0.325 0.247 0.164 0.272 0.197 0.156 0.258 0.185 0.135

λ̂1 0.105 0.077 0.053 0.096 0.065 0.047 0.083 0.060 0.041

t-REML II β̂0 0.219 0.146 0.111 0.205 0.146 0.107 0.190 0.145 0.099

β̂1 0.082 0.057 0.039 0.077 0.054 0.038 0.071 0.054 0.036

λ̂0 0.396 0.284 0.185 0.345 0.243 0.178 0.316 0.228 0.171

λ̂1 0.105 0.075 0.052 0.099 0.065 0.046 0.085 0.061 0.041

Table 9.6: Empirical standard errors for θ̂
T

= (β̂
T
, λ̂

T
) under simulated distribution

yi ∼ t(xT
i β, exp(zT

i λ), ν) using ML, t-REML I and t-REML II with unknown degrees of

freedom and target values ν = (3, 5, 8) and n = (50, 100, 200).

t-model (ν = 3) t-model (ν = 5) t-model (ν = 8)

SS 50 100 200 50 100 200 50 100 200

β0 0.199 0.144 0.103 0.188 0.136 0.097 0.180 0.130 0.093

β1 0.077 0.055 0.039 0.072 0.052 0.037 0.069 0.050 0.035

λ0 0.283 0.200 0.141 0.253 0.179 0.126 0.235 0.166 0.117

λ1 0.096 0.069 0.049 0.086 0.061 0.044 0.080 0.057 0.040

Table 9.7: Theoretical asymptotic standard errors for θT = (βT ,λT ) for the true simu-

lated distribution yi ∼ t(xT
i β, exp(zT

i λ), ν), i = 1, . . . , n, under ML.

The theoretical standard errors for the intercept scale parameter are much less than its

empirical counterpart for all degrees of freedom and sample sizes under ML and t-REML

II. This difference is reduced if the degrees of freedom or the sample size are increased.

However, for the largest degrees of freedom used in this simulation study the difference

is appreciable. Although the estimates for the intercept scale parameter using t-REML I

are extremely biased, its empirical standard errors are comparative to its theoretical ML

equivalent. This suggests that the estimation of the intercept scale parameter obtained
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from t-REML I is problematic. In particular, the upwards bias may be caused by the

extreme bias of the estimated degrees of freedom parameter as well as the simultaneous

estimation of the degrees of freedom and scale parameters. The theoretical standard errors

for the scale slope parameter under ML are slightly less than the corresponding empirical

values for all three methods used here. For the simulations presented here the empirical

standard errors for the scale slope parameter using t-REML II are marginally less than

ML or t-REML I. The difference decreases as the sample size and the target degrees of

freedom increase. In addition, it is interesting to note that the empirical standard errors

for the location and scale parameters would increase further if the degrees of freedom

parameter was less biased. This suggests that the empirical standard errors for the

parameters of the heteroscedastic t-distribution with unknown degrees of freedom for all

estimation methods considered here should be used with caution.
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Chapter 10

Discussion and Conclusions

10.1 Discussion and Summary

10.1.1 Known degrees of freedom

When the degrees of freedom is known, the ML estimation method derived in Chapter

4 produces simplified scoring algorithms to estimate the location and scale parameters

of the heteroscedastic t-distribution. These algorithms are slightly more computation-

ally intensive than the Gaussian model and only require iterative weighted least squares

procedures that is available in most commercial statistical software. The theory to de-

tect heteroscedasticity and form asymptotic tests for the heteroscedastic t has also be

generalised from the heteroscedastic Gaussian model presented in Verbyla (1993).

The t-REML I methodology derived in Section 6.1 of exploits the hierarchy of the het-

eroscedastic t-distribution. In particular, it exploits the form of the conditional Gaussian

distribution required as a component of the integrand before the random scale effects

have been integrated out. The approximate conditional likelihood returned from this

method allows an implicit form for the location parameters, β, to be derived which only

requires an iterative reweighted least squares process. However, the remaining approxi-

mate REML used to estimate the scale parameters requires numerical maximisation due

to the complexity of the extra determinant term from the Laplace approximation. This

term also requires the calculation of a determinant of a n × n matrix and is therefore

computationally cumbersome for large sample sizes.

As the degrees of freedom is known, the MPL used to derive t-REML II in Section 6.2

is simplified due to the existence of sufficient and ancillary statistics of the heteroscedas-

tic t-distribution. The adjustment to the marginal profile likelihood is then similar to

the adjustment required for the REML formulation under the heteroscedastic Gaussian
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distribution.

Using a simplified log-linear scale parameter model the simulation study conducted in

Section 7.2 reveals that, under ML, the intercept scale parameters are downwards biased.

On average, both t-REML I and t-REML II estimators for the intercept scale parameters

alleviated most of this bias. Graphical results of the simulations in Figure 7.3 revealed

that when ML upwards biased an estimate for the intercept scale parameter t-REML I

and t-REML II increased the bias further. Conversely, in comparison to the intercept

scale parameter, the empirical estimates for the slope scale parameter are upwards biased

under ML. Again, for all sample sizes and degrees of freedom used in this thesis t-REML

I and t-REML II alleviated this bias. This alleviation can also be seen graphically in

Figure 7.3. All three methods produce almost identical results for the location parameter

estimates suggesting excellent stability for the location component of the model. The

empirical standard errors for each method produced similar results for all parameters but

larger than the ML theoretical counterpart.

10.1.2 Unknown degrees of freedom

When the degrees of freedom is unknown the ML procedure discussed in Section 8.1

requires the non-linear estimation of ν to be incorporated into the algorithmic process

to estimate the parameters. To maintain the least squares algorithm for the parame-

ters independence between the scale parameters and ν is required. This is achieved by

considering an orthogonal transformation. Under a simplified log-linear scale parameter

model, this orthogonal representation allows the estimation of the scale parameters to

remain identical to ML estimation when the degrees of freedom is known. Although the

new orthogonal parameters are a function of the degrees of freedom parameter, the score

and Fisher information components for ν can be explicitly derived. This allows a simple

scoring algorithm for ν to be achieved and independently incorporated into the estimation

process with the location and scale parameters.

The Partial Laplace approximation (t-REML I) to the marginal likelihood when the

degrees of freedom is unknown derived in Section 8.2 is similar to the approximation

derived in Section 6.1. To complete the approximation the missing components of the

Gamma kernel that contain ν are replaced. This does not affect the estimating equation

for the location parameters. However, the approximate REML used to jointly estimate

the parameters (λ, ν) increases in complexity. The simulations show that, this minor

increase in complexity has a substantial effect on its ability to efficiently estimate the

scale and degrees of freedom parameters.

As the heteroscedastic t does not come from the location-scale family when the degrees

of freedom is unknown it does not have explicit ancillary or sufficient statistics available.
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The Stably Adjusted Profile Likelihood uses a modification of MPL that does not require

ancillary statistics. This t-REML II method discussed in Section 8.3 requires three sep-

arate SAPLs to be maximised, one for each parameter adjusted for each set of nuisance

parameters, but with the simplification that the location parameters only require estima-

tion using ML. A further simplification occurs when the parameters are orthogonalized.

The complexity of the estimation of δ and ν from their respective SAPL is increased

by the nuisance parameters containing the parameter of interest. Each of these requires

non-linear maximisation that is readily available in statistical software.

The simulation study in Section 9.2 reveals that ML, t-REML I and t-REML II with

unknown degrees of freedom are unstable for low sample sizes and moderate degrees of

freedom. ML and t-REML II displayed similar but extreme bias in the estimates for ν.

When the target degrees of freedom was high, (ν = 8), many simulations tended to large

values suggesting that the model was a heteroscedastic Gaussian. This suggests that

the ML, t-REML I and t-REML II methods derived in this thesis could not numerically

distinguish between a heteroscedastic Gaussian or t distribution for the response when

the target degrees of freedom was high. This seems reasonable due to the negligible

difference between the distributions when the degrees of freedom is increased. t-REML

I also displayed bias in the degrees of freedom larger than ML or t-REML II. Under

ML, the downwards bias of the estimated intercept scale parameter is not as extreme

as the simulation study using the heteroscedastic t with known degrees of freedom and,

contrastly, increases as the degrees freedom increases. t-REML II also displays similar

values to ML but slightly upwards biased. t-REML I shows extreme upwards bias of the

intercept scale parameter which is also revealed graphically in Figure 9.14 suggesting that

this particular REML approximation to the heteroscedastic t-distribution should be used

with caution. The slope for the scale parameter model has been efficiently estimated for

all methods and combination of target degrees of freedom and sample sizes. As expected

the location parameters have also been efficiently estimated for all methods. Although t-

REML I produced the most bias in the estimated intercept scale parameters it produced

the smallest empirical standard errors, in comparison to the remaining two methods,

and the closest to the theoretical standard errors. This suggests that estimation of the

intercept scale parameter associated with the t-REML I is problematic. In particular,

the upwards bias asscoiated with thyis parameter may be caused by the simultaneous

estimation of the degrees of freedom and the scale parameters and an extremely upwards

biased estimate for ν. The empirical standard errors for the other parameters were similar

for the three methods discussed in this simulation study.
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10.2 Further Research

10.2.1 Link functions

The process to estimate the parameters of the heteroscedastic t-distribution when the

degrees of freedom is unknown in Section 8.1.3 assumes that the parameters are mutually

orthogonal. From Section 8.1.2 this orthogonal parameterization is only possible when

the link function for the scale parameters is the natural log or the reciprocal. For link

functions other than these (8.1.8) is not easily solvable. This may be overcome by jointly

estimating (λ, ν) using a non-linear maximiser. When the degrees of freedom is known β

and λ are mutually orthogonal and do not require reparameterizing. This ensures that

the estimating equations (4.3.16) and (4.3.18) hold regardless of the link function and

therefore allow for a very general scale parameter model. Furthermore, t-REML I and

t-REML II with known degrees of freedom researched in this thesis also hold for general

link functions of the scale parameter model.

10.2.2 Random scale effects

Assume a log-linear scale parameter model of the form (3.1.3). The random scale effects

are required to have a χ2
ν/ν distribution to ensure that the response is marginally dis-

tributed as a heteroscedastic t. As a component of this hierarchy the conditional Gaussian

distribution has a scale parameter model that assumes the form logϕi = zT
i λ− logωi, i =

1, . . . , n. Therefore the random scale effects are naturally logged and are restrictive in

some sense. A much broader approach would be to assume a more general class of ran-

dom effects models for the scale parameter. For example, assume the random scale effects

have a Gaussian distribution ωi ∼ N(0, φ), i = 1, . . . , n and are on the scale of the linear

predictor for the scale parameter model. The conditional scale parameter model is

logϕi = zT
i λ− ωi

and the marginal likelihood can be written as

L(β,λ, φ;y) =

∫

Rn

n
∏

i=1

p(yi|ωi;β,λ)p(ωi;φ)dω (10.2.1)

where

n
∏

i=1

p(ωi;φ) = (2πφ)−n/2 exp
{

−1
2

n
∑

i=1

ω2
i /φ
}

and
∏n

i=1 p(yi|ωi; ·) is defined by (4.2.5). From Section 3.2 the conditional Gaussian

component of the integrand (10.2.1) can also be viewed as a likelihood for a Gamma
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generalized linear model with response di = (yi − xT
i β)2, location σ2

i and fixed scale

parameter equal to 2. Therefore, although the Gamma component is restrictive, this

hierarchy is defined as a Generalized Linear Mixed Model (GLMM). It is well known

that the integral to obtain the marginal likelihood for these particular models is, in gen-

eral, intractable and therefore requires approximation. One approximate approach is the

Laplace approximation discussed in this thesis (see Wolfinger, 1993, Breslow & Clayton,

1993 and Breslow & Lin, 1995 or Chapter 5 Section 5.1). This connection between the

heteroscedastic t and GLMMs suggest that the approximate REML approaches derived in

this thesis may be applied to a class of Generalized Linear Mixed Models. In particular,

if the conditional component of the hierarchy given in (10.2.1) is distributed as a Gaus-

sian then partitioning of this component, identical to (6.1.5), is available regardless of

the form of the marginal distribution chosen for the random effects. The Partial Laplace

approximation can then be applied and an approximate conditional likelihood and an

approximate REML with which to estimate location and scale parameters respectively

can be derived. This is a subject for further research.

The random scale effects are predicted from the mean of the conditional distribution

ωi|yi, i = 1, . . . , n. This distribution has a natural form given by (4.4.1) and is discussed in

Section 4.4. The application of the Laplace approximation to the integral (4.2.4) requires

estimates of the random effects obtained by maximising the pseudo joint likelihood or

the components of the integrand. It was shown that choosing a different function of the

random scale effects changes this maximisation. For the heteroscedastic t, the natural log

scale, the scale on which the random effects appear linearly in the conditional component,

produces estimates equivalent to the ones obtained from the conditional distribution ω|y.

For known degrees of freedom, the Laplace approximation to the marginal likelihood

also reproduces the kernel for the location and scale parameters of the heteroscedastic

t distribution. The Partial Laplace methodology derived in Section 6.1 used to obtain

an approximate t-REML for the heteroscedastic t requires that only the component of

the integrand (6.1.5) that is free of the location parameters be maximised to obtain the

estimated random scale effects. It was shown in Section 6.1.4 that if the natural log scale

for the random scale effects is chosen the approximate conditional likelihood to estimate

the location parameters and the approximate t-REML to estimate the scale parameters

differs from the separable likelihoods that are obtained if the scale of the random effects

remains constant. This non-invariance will alter the estimates of the location and scale

parameters. Further research is required to determine the differences and appropriateness

of the approximate t-REMLs obtained in each case.
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10.2.3 Other Miscellaneous Extensions

The Laplace and Partial Laplace approximation to the heteroscedastic t considered in this

thesis is only first order. The Laplace approximation to the heteroscedastic t considered

in Section 5.1.2 reproduces the kernel of the t when the degrees of freedom is known

and therefore does not require higher order terms to be present. For the Partial Laplace

approximation of the heteroscedastic t considered in Section 6.1, the integrand may be

expanded using higher order terms and the accuracy of the approximation sharpened.

Consequently, the approximate REML obtained from this approximation will be more

accurate. This is a subject for further research.

When the degrees of freedom is unknown, the stably adjusted profile likelihoods derived

in Section 8.3 rely on the parameter orthogonalization of Section 8.1.2. Section 5.2.4 and

Barndorff-Nielsen & Cox (1994) discuss a first order linearisation to obtain the correction

component, k∗(θ), that does not require orthogonal parameters to be available. Exten-

sions of this are also available. Stern (1997) discusses a second order linearisation of an

identical term that does not require parameter orthogonalization. For the SAPLs derived

for the parameters δ and ν of the heteroscedastic t, these two issues are a subject for

further research.
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Appendix A

Matrix Results

A.1 Introduction

This appendix gives definitions and derivations of matrix results that are connected di-

rectly to the content of this thesis. Popular references for such results can be found in

Magnus & Neudecker (1988) and Lütkepohl (1996).

A.2 Determinant Results

Result A.2.1 If A,B,C and D, where A and B are non-singular,

∣

∣

∣

∣

∣

A C

D B

∣

∣

∣

∣

∣

= |A||B −DA−1C| = |B||A−CB−1D|

Result A.2.2 If A is p× p and B,C are n× p and p× n respectively then using

|A+BC| = |A||Ip +A−1BC| = |A||In +CA−1B|

A.3 Inverse Results

Result A.3.1 IfA is n×n, B is p×p and C,D are n×p and p×n matrices respectively

then

(A+CBD)−1 = A−1 −A−1C(B−1 +DA−1C)−1DA−1 (A.3.1)
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Proof: This can be verified by multiplying the LHS of (A.3.1) with the inverse of the

RHS and checking for the identity,

I =
(

A−1 −A−1C(B−1 +DA−1C)−1DA−1
)

(A+CBD)

= I +A−1C
(

B−1 +DA−1C
)−1(

(B−1 +DA−1C)BD −D −DA−1CBD).

Expanding the last term in parentheses ensures that the RHS is the identity. Other useful

identities can be formed from this result.

Result A.3.2 Using the same matrices as result A.3.1, then

BD(A+CBD)−1 = (B−1 +DA−1C)−1DA−1

Proof: Using result A.3.1 and pre-multiplying the LHS and the RHS by BD proves the

result.

Result A.3.3 Using the same matrices as A.3.1,

[

A C

D B

]−1

=

[

(A−CB−1D)−1 −A−1C(B −DA−1C)−1

−B−1D(A−CB−1D)−1 (B −DA−1C)−1

]

(A.3.2)

Proof: Post-multiplying the LHS of (A.3.2) by In+p and simultaneously solving produces

the desired result.

A.4 Distributional Matrix Results

Result A.4.1 If y ∼ N(µ,Σ) and for any non-singular matrix D,

E(yTDy) = tr(ΣD) + µTDµ

and

Var(yTDy) = tr
(

(ΣD)2
)

+ 4µTDµ

Result A.4.2 If y1 ∼ N(µ1,Σ11) and y2 ∼ N(µ2,Σ22) and Cov(y1,y2) = Σ12 then

y1|y2 ∼ N
(

µ1 + Σ12Σ
−1
22 (y2 − µ2),Σ11 − Σ12Σ

−1
22 Σ12

)

A.5 Miscellaneous Matrix Results

Result A.5.1 If H is non-singular and LT
2X = 0 then

H −HL2(L
T
2HL2)

−1LT
2H = X(XTH−1X)−1XT
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Proof: Using the inverse symmetric square root of H , X can be transformed to X∗ =

H−1/2X. As LT
2X = 0 the orthogonal complement to the column space of X∗, R(X∗)

is the column space of L∗ = H1/2L2. Simple orthogonal projections provide

L∗
2(L

∗T
2 L

∗
2)

−1L∗T
2 = I −X∗(X∗TX∗)−1X∗T

H1/2L2(L
T
2HL2)

−1LT
2H

1/2 = I −H−1/2X(XTH−1X)−1XTH−1/2

Post and pre-multiplication of both sides by H1/2 completes the proof.

Result A.5.2 If H is non-singular and P = H−1 −H−1X(XTH−1X)−1XTH−1 then

PHP = P .

Proof:

PHP = P (I −X(XTH−1X)−1XTH−1)

= P − PX(XTH−1X)−1XTH−1

= P (as PX = 0)

Result A.5.3 If H is non-singular and P = H−1 −H−1X(XTH−1X)−1XTH−1 then

∂P

∂θi
= −PḢ iP

Proof:

∂P

∂θi
= −H−1Ḣ iH

−1 +H−1Ḣ iH
−1X(XTH−1X)−1XTH−1

− H−1X(XTH−1X)−1XTH−1Ḣ iH
−1X(XTH−1X)−1XTH−1

+ H−1Ḣ iH
−1X(XTH−1X)−1XTH−1

= −(H−1 −H−1X(XTH−1X)−1XTH−1)

× Ḣ i(H
−1 −H−1X(XTH−1X)−1XTH−1)

= −PḢ iP

Result A.5.4 If H is non-singular and P = H−1 −H−1X(XTH−1X)−1XTH−1 then

P = S − SZ(ZTSZ +G)−1ZTS

where S = R−1 −R−1X(XTR−1X)−1XTR−1

Proof: If LTX = 0 then by Result A.5.1

P = L(LTHL)−1LT

= L(LT (R+ZGZT )L)−1LT

= L(LTRL+LTZG−1ZTL)−1LT

= L(LTRL)−1LT −L(LTRL)−1LTZ(ZTL(LTRL)−1LTZ +G−1)−1

×ZTL(LTRL)−1LT

= S − SZ(ZTSZ +G)−1ZTS
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as L(LTRL)−1LT = R−1 −R−1X(XTR−1X)−1XTR−1 = S.

Result A.5.5 If C is the coefficient matrix defined in (2.2.8) then its determinant can

be written as

|C| = |R|−1|G|−1|H||XTH−1X|

Proof: Using Result A.2.1

|C| = |ZTR−1Z +G−1||XTR−1X −XTR−1Z(ZTR−1Z +G−1)−1ZTR−1X|

= |ZTR−1Z +G−1||XTH−1X| (using Result A.3.1)

= |G|−1|R|−1|H||XTH−1X| (using Result A.2.2)

Note using Result A.2.1 the determinant can also be written as

|C| = |XTR−1X ||ZTSZ +G−1|

where S = R−1 −R−1X(XTR−1X)−1XTR−1
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Appendix B

Hett Documentation

dof.profile Internal profile likelihood function

Description

Internal profile log-likelihood function for tlm function

Usage

dof.profile(dof, n, sqResid, orthoI, X, Z)

Arguments

dof degrees freedom value

n number of values in the response vector

sqResid squared residuals

orthoI orthogonalized scale parameters

X design matrix of explanatory variables for the location model

Z design matrix of explanatory variables for the scale model
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Details

This function is not intended to be directly called by users.

Value

a profile log-likelihood value

mm Excess returns for Martin Marietta company

Description

Data from the Martin Marietta company collected over a period of 5 years on a

monthly basis

Usage

data(mm)

Format

A data frame with 60 observations on the following 4 variables.

date the month the data was collected

am.can a numeric vector

m.marietta excess returns from the Martin Marietta company

CRSP an index for the excess rate returns for the New York stock exchange

Source

Bulter et al (1990). Robust and partly adaptive estimation of regression models.

Review of Economic Statistics, 72, 321-327.
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Examples

data(mm, package = "hett")

attach(mm)

plot(CRSP, m.marietta)

lines(CRSP, fitted(lm(m.marietta ~ CRSP)), lty = 2)

rent Rent for Land PLanted to Alfalfa

Description

Dataset collected in 1977 from Minnesota to study the variation in land rented for

growing alfalfa

Usage

data(rent)

Format

A data frame with 67 observations on the following 5 variables.

Rent a numeric vector average rent per acre.

AllRent a numeric vector describing average rent paid for all tillable land.

Cows a numeric vector describing the density of dairy cows (number per square mile).

Pasture a numeric vector describing the proportion of farmland used as pasture.

Liming a factor with levels No if no liming is required to grow alfalfa and Yes if it

does.

Source

Weisberg, S (1985). Applied Linear Regression Wiley: New York
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Examples

library(lattice)

data(rent, package = "hett")

attach(rent)

xyplot(log(Rent/AllRent) ~ sqrt(Cows), groups = Liming,

panel = panel.superpose)

summary.tlm summary method for class ”tlm”

Description

Summarizes the heteroscedastic t regression object

Usage

## S3 method for class 'tlm':

summary(object, correlation = FALSE, ...)

## S3 method for class 'summary.tlm':

print(x, ...)

Arguments

object heteroscedastic t regression object called from tlm()

x an object of class ”summary.tlm” containing the values below

correlation should the calculation of the parameter correlation matrix be sup-

pressed. If the fit includes a location and a scale formula then both

correlation matrices are printed. The default is FALSE.

... arguments passed to or from other methods

Details

The table summary produced by this function should be used with caution. A more

appropriate test between nested models is to use the score statistic function tscore.
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Value

a list containing the following components:

loc.summary an object containing a list of objects that summarize the location

model
scale.summary

an object containing a list of objects that summarize the scale model

iter the number of iterations of the algorithm

dof value of the fixed or estimated degrees of freedom

dofse the standard error associated with the degrees of freedom if estimated

logLik the maximised log-likelihood

method the method used to maximize the likelihood

endTime the time taken for the algorithm to converge

See Also

tsum, tlm

Examples

data(mm, package = "hett")

attach(mm)

## fit a model with heteroscedasticity and estimating

## the degrees of freedom

tfit2 <- tlm(m.marietta ~ CRSP, ~ CRSP, data = mm, start = list(dof =

3), estDof = TRUE)

summary(tfit2)

tlm Maximum likelihood estimation for heteroscedastic t regression

Description

Fits a heteroscedastic t regression to given data for known and unknown degrees of

freedom.
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Usage

tlm(lform, sform = ~ 1, data = sys.parent(), subset = NULL,

contrasts = NULL, na.action = na.fail, start = NULL,

control = tlm.control(...), obs = FALSE, estDof = FALSE, ... )

## S3 method for class 'tlm':

print(x, ...)

Arguments

x an object of class ”tlm”

lform a formula of the type response ~ terms, where terms can be of the

form, for example, first + second or first*second(see lm for de-

tails)

sform a formula of the type ~ terms, where terms can be of the form, for

example, first + second or first*second(see lm for details).

data the data in the form of a data.frame where the column names can be

matched to the variable names supplied in lform and sform

subset numerical vector to subset the data argument

contrasts set of contrasts for the location model (see contrasts.arg for details)

na.action the action to proceed with in the event of NA’s in the response. Cur-

rently NA’s are not allowed and therefore na.fail is the sole argument.

start is a list of possibly four named components, (”beta”, ”lambda”, ”dof”,

”omega”), for the location, scale, degrees of freedom parameters and

random scale effects respectively. Each component must be of the

appropriate length.

control is an argument to a function that maintains the control of the algo-

rithm. The tlm.control()function contains the arguments, epsilon

to determine how small the relative difference of likelihoods should be

for convergence (default is 1e-06), maxit to determine the maximum

iterations required (default = 50), trace if the user requires printing

of estimates etc. as algorithm runs (default = FALSE), verboseLev to

determine the amount of verbose printing to the screen as the algo-

rithm runs (verboseLev = 1 displays location scale and dof estimates

and the likelihood, verboseLev = 2 displays all of 1 plus the random

scale effects)
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obs should the location parameters be calculated using the observed or

expected information(default = FALSE). (Note: using the observed

information does not calculate the appropriate standard errors, see

DETAILS)

estDof should the degrees of freedom parameter be estimated or not. If FALSE

then the value given for dof in the start argument will be the fixed

value used for the algorithm. If TRUE then the value given for dof in

the start argument supplies an initial value only.

... arguments passed to tlm.control() or to the print method

Details

When the degrees of freedom is unknown the code uses the non-linear optimiser nlm.

If the data is tending toward the Gaussian this optimisation will still converge but

with very high degrees of freedom.

To obtain the appropriate standard errors from summary the user must specify the

argument obs = F to ensure that the location parameter is calculated using the ex-

pected information component.

Value

a list containing the following components:

loc.fit an object containing the estimated location parameters and other el-

ements associated with the location parameter model

scale.fit an object containing the estimated scale parameters and other ele-

ments associated with the scale parameter model

random the random scale effects

dof fixed or estimated degrees of freedom

dofse the standard error associated with the degrees of freedom

iter the number of iterations of the algorithm

logLik the maximised log-likelihood

endTime the time taken for the algorithm to converge

Background

The theoretical background for this function can be found in Taylor and Verbyla

(2004)

150



References

Taylor, J. D. & Verbyla, A. P (2004). Joint modelling of the location and scale

parameters of the t-distribution. Statistical Modelling 4, 91-112.

See Also

summary.tlm

Examples

data(mm, package = "hett")

attach(mm)

## fit a model with no heteroscedasticity and fixed degrees of freedom

tfit <- tlm(m.marietta ~ CRSP, data = mm, start = list(dof = 3))

## fit a model with heteroscedasticity and fixed degrees of freedom

tfit1 <- tlm(m.marietta ~ CRSP, ~ CRSP, data = mm, start = list(dof = 3))

## fit a model with heteroscedasticity and estimating

## the degrees of freedom

tfit2 <- tlm(m.marietta ~ CRSP, ~ CRSP, data = mm,

start = list(dof = 3), estDof = TRUE)

tlm.control Auxiliary for Controlling tlm Fitting

Description

Auxiliary function for fitting tlm model. Generally only used when calling tlm

Usage

tlm.control(epsilon = 1e-07, maxit = 50, trace = FALSE,

verboseLev = 1)
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Arguments

epsilon positive convergence tolerance value. The iterations converge when

[newlik - oldlik] < epsilon/2

maxit integer giving the maximum iterations allowable for the routine

trace logical. If TRUE output is printed to the screen during each iteration

verboseLev integer. If 1 then print according to trace. If 2 then print random

scale effects also.

Details

Value

A list with the argument as values

See Also

tlm

Examples

data(mm, package = "hett")

attach(mm)

## change the maximum amount of iterations for the algorithm

fit1 <- tlm(m.marietta ~ CRSP, ~ 1, data = mm, start = list(dof = 3),

estDof = TRUE, control = tlm.control(maxit = 100))
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tscore Score test for heteroscedastic t models

Description

Provides a score test for the location and scale parameters of the heteroscedastic t

regression model.

Usage

tscore(..., data = NULL, scale = FALSE)

Arguments

... Any number of arguments containing nested model fits from tlm()

(see Details)

data the data used to fit the models involved

scale logical. If TRUE the scale model is tested

Details

The user must supply nested models that test, either, the scale or the location com-

ponent of the model. The model objects must be nested from left to right. Currently

there are no traps if the arguments are not given in this order.

The models must also have either, all fixed degrees of freedom or estimated degrees

of freedom.

Value

Output containing the hypothesis, the score statistic, degrees of freedom for the test

and the p-value are printed to the screen.

....

See Also

tlm
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Examples

data(mm, package = "hett")

attach(mm)

tfit1 <- tlm(m.marietta ~ CRSP, ~ 1, data = mm, start = list(dof = 3),

estDof = TRUE)

tfit2 <- tlm(m.marietta ~ CRSP, ~ CRSP, data = mm, start = list(dof =

3), estDof = TRUE)

tscore(tfit1, tfit2, data = mm, scale = TRUE)

tsum Summary function for the scale or location component of a

heteroscedastic t model

Description

Summarizes the location or scale components of a heteroscedastic t model

Usage

tsum(object, dispersion = NULL, correlation = FALSE,

symbolic.cor = FALSE, ...)

## S3 method for class 'tsum':

print(x, digits = max(3, getOption("digits") - 3), symbolic.cor =

x$symbolic.cor, signif.stars = getOption("show.signif.stars"),

scale = TRUE, ...)

Arguments

object either the location or scale object created by fitting a heteroscedastic

t object with tlm

x an object of class ”tsum”

dispersion 1 if summarizing the location model; 2 if summarizing the scale model

(see Details)
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correlation logical; if TRUE, the correlation matrix of the estimated parameters is

returned and printed.

digits the number of significant digits to be printed.

symbolic.cor

logical. If TRUE, print the correlations in a symbolic form (see ‘sym-

num’) rather than as numbers.

signif.stars

logical. if TRUE, ”significance stars” are printed for each coefficient.

scale logical. If TRUE then the dispersion is known in advance (2), and is

printed accordingly.

... further arguments passed to or from other methods.

Details

The argument supplied to dispersion must be either 1 (location model) or 2 (scale

model). The reason for this is because the fitting of the model has already scaled the

covariance matrix for the location coefficients. Hence the scaled and unscaled versions

of covariance matrix for the location model are identical.

This function will not be generally called by the user as it will only summarize the

location or scale model but not both. Instead the user should refer to summary.tlm

to print a summary of both models.

Value

tsum returns an object of class ”tsum”, a list with components

call the component from object

df.residual the component from object

coefficients

the matrix of coefficients, standard errors, z-values and p-values

dispersion the supplied dispersion argument

df a 2-vector of the rank of the model and the number of residual degrees

of freedom
cov.unscaled

the unscaled (dispersion = 1) estimated covariance matrix of the

estimated coefficients

cov.scaled ditto, scaled by dispersion
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correlation (only if correlation is true.) The estimated correlations of the esti-

mated coefficients
symbolic.cor

(only if correlation is true.) The value of the argument symbolic.cor

See Also

summary.tlm, tlm

Examples

data(mm, package = "hett")

attach(mm)

tfit <- tlm(m.marietta ~ CRSP, ~ CRSP, data = mm, start = list(dof = 3),

estDof = TRUE)

tsum(tfit$loc.fit, dispersion = 1)
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