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                          Abstract 

Uranium mill tailings from the Ranger mine, located in the Alligator Rivers Region of the 

Northern Territory, Australia, were examined to assess the effects of weathering and diagenesis 

on their long-term geochemical stability. Run of mill uranium tailings are a complex 

heterogeneous mixture of lithogenic (primary gangue minerals and weathering products) and 

secondary (components that form during milling) minerals, residual process chemicals and 

biogenic (products of biological activity) phases. Following transfer to the tailings storage 

facility, post depositional reactions alter the mineralogical and hydrochemical characteristics of 

the tailings solids and pore waters in accordance with weathering and diagenetic processes. 

In this thesis, a detailed examination of tailings cores and pore waters, kinetic column test work 

and geochemical modelling was combined with results from earlier studies to examine the key 

processes governing the geochemical stability of the Ranger tailings. Conclusions drawn from 

the work clearly demonstrates that the solid state speciation and mobility of metals and 

radionuclides in the tailings pile are governed by the processes of oxidative dissolution of 

sulfide minerals, weathering of phyllosilicates and organic matter diagenesis. The processes are 

spatially dependent, evolve over time and are influenced by the following key factors: 

• Tailings water content or degree of saturation; 

• The nature and content of organic matter in the tailings; 

• Redox potential of the tailings solid-pore water interface; and 

• The specific reactivity of precursor minerals (primary/secondary) from the milling 

process and pore water solutes. 

Combined, these processes lead to the formation of authigenic minerals, which control the 

solubility of pore water constituents. These mechanisms will also have a profound impact on 

the long-term geochemical stability of the tailings pile and, as such, will need to be taken into 

account in the design, management and closure of the final tailings repositories at the Ranger 

site. 

 



 
  

 
ix 

Declaration 

This work contains no material which has been accepted for the award of any other degree or 

diploma in any university or other tertiary institution and, to the best of my knowledge and 

belief, contains no material previously published or written by another person, except where 

due reference has been made in the text. 

I give consent to this copy of my thesis, when deposited in the University Library, being 

available for loan and photocopying. 

 

Greg Sinclair 

 

 

 

 

 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



 
  

 
x 

Acknowledgments 

This thesis is dedicated to my family, Wendy, Michael and Matthew, who have made a number 

of personal sacrifices in my pursuit of this PhD. Without their unconditional support I would 

not have been able to complete this project and for that I am eternally grateful. Wendy’s 

computer skills and keen eye for detail were also invaluable in formatting and proof reading the 

final document. 

Gaining new insights into Mother Nature and how her natural laws govern the geochemical 

stability of anthropogenic waste has been one of the most rewarding aspects of this project. 

This new found knowledge was only possible through the oversight and guidance of my 

supervisors and friends, Dr Graham Taylor and Dr Paul Brown. Their dedication and 

enthusiasm for the discipline of environmental geochemistry made this a truly pleasurable 

learning experience. 

Similarly I would also like to express my gratitude to the professional engineers and scientists 

at ERA, ANSTO and CSIRO for their assistance in both the field and laboratory aspects of the 

project. Their practical suggestions, based on years of experience, were value added and greatly 

appreciated. A special thanks goes to ERA for allowing me to conduct this research and for 

their significant contribution to the geosciences and development of best practice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


