
THE INFLUENCE OF SPATIAL VARIABILITY

ON THE GEOTECHNICAL DESIGN PROPERTIES

OF A STIFF, OVERCONSOLIDATED CLAY

Mark B. Jaksa

B.E.(Hons), M.I.E.(Aust), CPEng

THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

in

The University of Adelaide
(Faculty of Engineering)

December 1995



To my wife Marie,

and my parents Stan and Maria



i

Preface

The work described in this thesis was undertaken over the period of 7½ years, between
February 1988 and October 1995, within the Department of Civil and Environmental
Engineering, at the University of Adelaide.  Throughout the thesis, all materials, techniques,
concepts and conclusions obtained from other sources have been acknowledged in the text.
Listed below are those sections of the thesis for which, to the best of his knowledge, the
author claims originality, as well as papers which have been published as a direct result of
this study.

In Chapter 3:

• the design and development of the hardware of the micro-computer based data
acquisition system used for the cone penetration tests.  The hardware was designed in
collaboration with Mr. Bruce Lucas of the Department of Civil and Environmental
Engineering, The University of Adelaide;

 

• the complete design and development of the computer programs: CPTest; CPTView;
CPTPlot; and CPTPrint, associated with the CPT data acquisition system;

 

• the data transformation technique of depth rationalisation.

In Chapter 4:

• the measurement of closely-spaced CPT data, both vertically and laterally, to enable the
small-scale spatial variability of undrained shear strength to be examined;

 

• the design, development and implementation of the horizontal cone penetration test
performed at the Keswick site.  The design and testing was performed in collaboration
with undergraduate students Dirk van Holst Pellekaan and Julian Cathro.
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In Chapter 5:

• the complete design and development of the computer programs: SemiAuto; CPTSpace;
and Monte;

• the association between the correlation distance, the scale of fluctuation, δv ,  and
Bartlett’s limits, rB ,  as well as the development of relationships between a, rB  and δv ;

• recognition of the rebound phenomenon associated with sleeve friction measurements in
the Keswick Clay, as well as the use of the cross-correlation function to quantify the
shift distance associated with the CPT;

• development of a nested semivariogram model to represent the lateral spatial variation
of the undrained shear strength of the Keswick Clay;

• identification of factors which result in inaccuracies with respect to Baecher’s technique
for the evaluation of random measurement errors;

• the use of rescaled residuals in the random field theory estimation process;

• the use of random field theory to forecast and simulate geotechnical data;

• the use of geostatistics to estimate and forecast geotechnical data.

In Chapter 6:

• the complete development of KESWICK, the data base of geotechnical properties of the
Keswick and Hindmarsh Clays.

In Chapter 7:

• the development of the framework to provide preliminary estimates of the undrained
shear strength of the Keswick Clay.

In Chapter 8:

• the complete design and development of the computer program: LCPCSim;
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• the significance of the spatial variability of undrained shear strength in the design of piled
foundations;

• the use of geostatistical simulation techniques to generate data to enable the influence of
spatial variability of undrained shear strength on the design of piled foundations to be
examined.

A list of publications that have been prepared as a result of this research is presented below.
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Abstract

The research presented in this thesis focuses on the spatial variability of the Keswick and
Hindmarsh Clays within the Adelaide city area.  Keswick Clay is locally significant since
many of Adelaide’s multi-storey buildings are founded directly on it, and internationally
significant, since it has been shown by Cox (1970), that this clay exhibits remarkably similar
properties to those of the well-documented London Clay.

The assessment of the small-scale variability of the undrained shear strength of these clays is
based on measurements obtained using the electrical cone penetration test (CPT), and a
micro-computer based data acquisition system, designed specifically for this study.  A
significant feature of the data acquisition system is that it enables measurements to be
obtained at intervals of 5 mm, both reliably and efficiently.  The development of the data
acquisition system is discussed, and the accuracy of its measurements is examined.  The
small-scale variability of the undrained shear strength of the Keswick Clay is based on more
than 200 vertical CPTs, performed within an area of 50 × 50 metres at a site located in the
Adelaide city area.  The CPTs were spaced at lateral intervals varying between 0.5 and
5 metres, with each vertical CPT extending to a typical depth of 5 metres.  In addition, the
small-scale horizontal spatial variability of the Keswick Clay is examined using an electrical
cone penetrometer driven horizontally into the face of an embankment, again located within
the Adelaide city area.  The accuracy of the CPT measurements is examined, and discussion
is given of the shortcomings associated with a commonly used technique, by Baecher
(1982), for estimating the random measurement error associated with various test
procedures.

The assessment of the large-scale spatial variability of the undrained shear strength of the
Keswick and Hindmarsh Clays is founded on a data base of geotechnical engineering
properties, compiled from a number of consulting engineering practices and government
instrumentalities.  The data base, known as KESWICK, contains approximately 160 site
investigations, 380 boreholes, and 10,140 measurements obtained from a number of
different laboratory and in situ tests.  In addition, KESWICK is used to establish generalised
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trends and bounds, associated with the various geotechnical engineering design properties
contained within the data base.

The techniques of random field theory and geostatistics are used to quantify, model and
predict the spatial variability of the Keswick and Hindmarsh Clays.  These techniques are
compared with one another in order to assess the suitability and shortcomings of each, when
applied to the study of the spatial variability of geotechnical engineering materials.
Furthermore, a number of specifically-written computer programs, which were developed to
enable the various spatial variability analyses to be performed, are discussed.  It is
demonstrated that the lateral undrained shear strength of the Keswick Clay, within the
Adelaide city area, exhibits a nested structure; that is, one which is the compound effect of
several genetic sources of spatial variation.  In addition, it is shown that this nested
structure can be adequately modelled by means of a spherical semivariogram model.

The nested structure is used, together with the kriging estimation process, to provide
preliminary estimates of the undrained shear strength of the Keswick Clay, within the
Adelaide city area.  The analyses demonstrate that the nested model and the kriging process
provide a useful facility for generating preliminary estimates of the strength of the clay.

Finally, the significance of the spatial variability of the undrained shear strength of clay soils
is examined, with reference to the design of embankments and pile foundations.  It is
demonstrated that the correlation distance can greatly influence the design of each of these
geotechnical systems.
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Notation

Throughout the thesis, the following terms refer to the properties presented below.  Abbreviations and
additional descriptions are given in the Glossary.

Ab;  Acn ;  As area of the base of the cone, usually 1000 mm2 = πD2

4
; net area ratio

of the cone = d
D

o
2

2 ; surface area of the friction sleeve;

Ap area of the base of a pile;

a range of influence - the distance at which samples become
independent of one another;

ac radius of the electric cone penetrometer;

at random component, or shock, used in ARMA models with a mean of
zero and a variance equal to σa

2 ;

B backshift operator;

C a parameter, when added to C0, represents the sill of a transitive type
of semivariogram;

Cp circumference of the shaft of a pile;

CV coefficient of variation = 
σ
m

×100% ;

CXY covariance between data sets X and Y;

C0 nugget effect - arises from the regionalised variable being so erratic
over a short distance that the semivariogram goes from zero to the
level of the nugget in a distance less than the sampling interval;

C
C C

0

0+ relative nugget;
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c parameter used in Kendall’s τ test, where the probability of
concordance is c times as large as the probability of discordance;

ck ;  ck
* autocovariance at lag k; sample autocovariance at lag k;

c ck kXY XY
; * cross-covariance coefficient between time series X and Y at lag k;

sample cross-covariance coefficient at lag k;

cu ;  c' undrained and drained cohesion intercept;

cv coefficient of consolidation;

D diameter of the base of the cone, usually 35.7 mm;

Dp the width of a pile, or in the case of a circular cross-section pile, its
diameter;

D50 diameter of the grain for which 50% of the particles in the sample are
finer, by weight;

di distance from the estimation point to the ith neighbour (used in
inverse distance and inverse distance squared weightings);

do smallest diameter of the cone at the o-ring seal;

dv is the average distance between the intersections of the fluctuating

property, v(z), and its mean, v ;

E[...] expected value, or mean;

E; Eu ;  Eu(50) Young’s modulus of elasticity; undrained Young’s modulus of
elasticity; undrained Young’s modulus of elasticity given by the
secant modulus at 50% of the peak axial strain;

EQA
percentage error between the ‘true’ QA and that based on

measurements;

E+ ; E − Young’s modulus of elasticity at peak shear strength on the
increasing portion of the stress/strain curve and the decreasing
portion of the stress/strain curve;

e void ratio;

et random testing error term in an ARMA model as proposed by Wu
and El-Jandali (1985);
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Fc ;  Fs total force acting on the cone tip and the friction sleeve;

FR friction ratio = 
f
q

s

c

  × 100% ;

FoS factor of safety = 
Forces  instability
Forces  instability

resisting
causing

;

f initial shear stress ratio = 
σ σv h

us
0 0

2
−

;

fs sleeve friction, as measured by the cone penetration test;

G shear modulus;

Gs specific gravity of solids;

h the displacement between data pairs;

IP plasticity index = wL −  wP;

Ipt instability index;

Ir rigidity index = 
G
s

E
su

u

u

=
3

;

K the maximum number of lags, k, that rk and rkk should not be
calculated beyond;

K1(x) modified Bessel function of the second kind and first order;

K0 coefficient of earth pressure at rest; that is, at zero lateral strain;

k lag;

kc penetrometer bearing capacity factor;

Lp length of a pile;

m mean, or average value;

mvx
measurement of the parameter, vx ;

Nk ;  N k cone factor; average cone factor (note that k does not refer to lag);

n number of observations, or data, in a data set;
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n1;  n2;  n3 number of observations greater than the mean, less than the mean,
and equal to the mean, respectively, as used in the runs test;

np number of parameters that must be estimated in the model under
consideration, and which equals p −  q, where p, q are the number of
AR and MA terms, respectively;

OCR overconsolidation ratio;

Pf probability of failure;

PRE percentage random testing error as proposed by Wu and El-Jandali
(1985);

p mean normal stress;

Q Box-Pierce chi-square statistic;

QA ;  QA
* allowable axial capacity of a statically loaded pile; estimate of the

allowable axial capacity of a statically loaded pile based on
measurements;

QB ;  QS axial capacity of the base, and shaft, of a statically-loaded pile;

QU ultimate axial capacity of a statically loaded pile;

q lag number at which ρk is thought to be equal to zero;

qc ;  qc ; qt cone tip resistance, as measured by the cone penetration test; average

of the measured values of cone tip resistance over the length of the
triaxial specimen; cone tip resistance corrected for the influence
hydrostatic pressures acting on the notched section of the cone;

qca ;  qca' clipped average cone tip resistance and intermediate clipped average

cone tip resistance, at the level of the pile base (kPa);

qsi(max) limit unit skin friction of the ith soil layer;

R number of runs used in the runs test;

RAW An irrigation/soil science parameter which measures the water
reservoir of the soil between full point, − 8 kPa, and refill point,
− 60 kPa, and is expressed in mm (Brooker et al., 1995);

RD relative density of sands;
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Rt residuals used in the significance test on trends method for assessing
stationarity;

Rqc
residuals, or the difference between measurements of qc and the trend

function obtained by the method of OLS;

R0 the ACF nugget: the difference between unity and the value of the
autocorrelation coefficient at lag zero, r0,  obtained by extrapolating
the sample ACF back to lag zero;

r; r2 correlation coefficient; coefficient of determination;

rB Bartlett’s distance; that is, the distance at which the sample ACF
intersects the limit obtained from Bartlett’s formula;

rk ;  $rk sample autocorrelation at lag k; autocorrelation at lag k of residuals;

rkk sample partial autocorrelation coefficient at lag k;

rkXY
sample cross-correlation coefficient between time series X and Y at

lag k;

rp the radial distance of the plastic boundary from the axis of penetration
measured at a large enough distance above the cone penetrometer tip;

S the difference between the number of concordant pairs and the
number of disconcordant pairs (used in Kendall’s τ test);

Si the ith sample;

Sr degree of saturation;

SSD sum of the squared differences = ( )Y Yi i
i

n

−
=
∑ * 2

1

.  The lower the value

of SSD, the better the estimate;

su ;  su
* ; su undrained shear strength; estimated undrained shear strength; average

undrained shear strength;

sX sample standard deviation of time series X ;

ti thickness of the ith soil layer;

tt trend component of a random field;
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U a point, line, area, or block;

u total soil suction;

uk standardised random variable at location k, with properties of zero
mean, and standard deviation of unity;

ubt porewater pressure at the depth of qc measurements;

V a block or domain of some volume;

vk ;  vk
* soil property, v, at point k in a soil mass; measurement of soil

property, v, at point k in a soil mass;

vo correlation distance of some property, v;

$Wt ; 
( )$Wt
r one-step prediction errors, or residuals; rescaled residuals;

w moisture content;

wi weight applied to the ith sample;

wL;  wP liquid limit; plastic limit;

Xi the value of the property, X, at location, i;

Xt a time series, or a random field;

Yt;  $Yt a time series, or a random field; best linear mean-square predictor of

Yt based on the observations up to distance, t −  1;

z ;  zk depth of the electric cone penetrometer; depth of the soil property at
point k;

zp the distance between the cone tip and the plastic boundary measured
along the axis of the cone penetrometer;

zR ;  zτ a parameter used in the runs test and Kendall’s τ test, respectively,
which is normally distributed, with zero mean and unit variance;

α a constant used in the variance function, ACF, and semivariogram
models, and is known as the absolute dispersion in the de Wijsian
semivariogram model;
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αf;  αs roughness factor of the cone face = 
3

2
τ f

us
 and cone shaft = 

3
2

τs

us
;

Γ(n) variance reduction factor;

γ; γd ;  γsat bulk unit weight; dry unit weight; saturated unit weight;

γh ;  γh
* semivariogram function at separation distance h; experimental

semivariogram, at h, which is based on the sampled data set;

∆u change in total suction;

∆z0 sampling interval;

δH ;  δV scale of fluctuation in the horizontal, and vertical, directions;

δv scale of fluctuation of the soil property, v;

δV2
; δV3

scale of fluctuation obtained by fitting Vanmarcke’s simple

exponential, and squared exponential, model (given in Table 2.9),

respectively, to the sample ACF;

εv vertical strain;

εi;  εt error terms, or white noise components;

ζ P standardised normal variate associated with the probability, P; that is,
from a normal probability density function with zero mean and a
standard deviation of unity;

ζ x the random measurement error at x;

Θ angle of a slope, or embankment, from the horizontal;

θi constants used in a moving average process, where i = 1, 2, ...;

λ a parameter used in the Box-Cox variance transformation;

µ Lagrange multiplier;

ξx the random perturbation from the trend at x;

ρd ;  ρw dry density; density of water (usually taken as 1000 kg/m3);

ρk autocorrelation at lag k;
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ρkXY
cross-correlation coefficient between time series X and Y at lag k;

σ; σX standard deviation; standard deviation of data set X;

σ3 cell, or confining, pressure applied in a triaxial test;

σa
2 white noise variance of the fitted ARIMA model;

σe
2 variance of the random testing error;

σequip
2 variance of equipment effects;

σ'h ;  σ'v effective horizontal and vertical stress;

σh0;  σv0 total in situ horizontal and vertical overburden stress;

σk
2 ; σε

2 kriging variance; estimation variance;

σmeasure
2 total variance of measurement;

σ'p effective preconsolidation pressure;

σop proc/
2 variance of operator and procedural effects;

σrandom
2 variance of random testing effects;

σz
2 variance of the observed, or transformed, data;

τ test statistic used in Kendall’s τ test;

τf;  τs shear stress on the cone face and the sleeve face;

φ; φ';  φu ;  φd total internal angle of friction; effective internal angle of friction;
undrained and drained internal angle of friction;

φi constants used in an autoregressive, AR, process, where i = 1, 2, ...;

φkk partial autocorrelation at lag k;

ψ a constant used in the LCPC Method which allows for the nature of
the soil and the pile construction and placement methods;

( )z2
5χ the point on the scale of the chi-square distribution having z degrees

of freedom such that there is an area of 5% under the curve of this
distribution above this point;

∇ k difference operator of order k.
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Glossary

Note: A term with an asterisk (*) beside it, indicates that the definition was obtained from Olea (1991).
A term in italics implies a cross-reference to another glossary listed item.

ACF Autocorrelation function;

ACVF Autocovariance function;

A/D converter Analogue to digital converter;

AHD Australian height datum - a standard datum surface, effectively a
mean sea level, adopted by the National Mapping Council, to which
all vertical control for mapping is referred;

AMG Australian map grid - a standard map grid established by the National
Mapping Council of Australia and derived from a Transverse
Mercator projection of latitudes and longitudes, the coordinates of
which are in metres;

Analogue output Transducer output which is a continuous function of the measurand
(except as modified by the resolution of the transducer);

AR Autoregressive time series model;

ARIMA Integrated autoregressive-moving average time series model;

ARMA Autoregressive-moving average time series model;

ASCII American Standard Code for Information Interchange;

Autocorrelation, ρk The relationship between any two time series observations separated
by a lag of k units;

Bartlett’s distance The distance given by the intersection of the sample ACF with
Bartlett’s limits;
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Bartlett’s limits The limits obtained by substitution into Bartlett’s equation; that is,
±1.96 N ;

Bayesian kriging an enhancement of indicator kriging which is used when a small
number of observations is available, and when significant experience
and knowledge about the phenomenon should be accounted for in the
estimation process;

BLUE Best linear unbiased estimator;

CCF Cross-correlation function;

CGA Colour graphics adaptor;

CIRIA Construction Industry Research and Information Association (UK);

CIU Isotropically consolidated, undrained triaxial compression test;

CK0U Undrained triaxial test where the sample is reconsolidated to in situ
K0 conditions prior to shear;

Correlation The extent over which samples exhibit strong correlation.
distance Vanmarcke and Fuleihan (1975) defined it as the distance required

for the ACF to drop from 1 to e− 1 (0.3679);

CPT Cone penetration test;

Cross validation* A validation method in which observations are temporarily discarded,
one at a time, from a data set of size n, and n estimates are computed
using, at most, the remaining (n −  1) measurements;

CSMD Colorado School of Mines borehole dilatometer - an in situ test
device which measures the modulus of rigidity of rocks;

Data conversion Each mpb is multiplied by this to yield the digital equivalent of the
factor measured quantity;

DC Direct current;

Digital output Transducer output which is a stepped function of the measurand;

DMT Marchetti flate plate dilatometer;
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Drift* A mathematical description of the low frequency, large-scale
variation of a regionalised variable, (cf. trend); also the deviation,
from vertical or horizontal, of the CPT;

DST Direct shear test;

EPROM Erasable programmable read only memory;

Falling off A phenomenon associated with measurements of qc and fs that occurs
when further rods are added to the drill stem and is indicated by these
measurements dropping to zero or values significantly less than that
recorded immediately above it (cf. Figure 3.15);

FoS Factor of safety;

Friction reducer Narrow local protuberances outside the surface of the CPT push
rods, placed above the cone penetrometer tip, and provided to reduce
the total friction on the push rods;

Geostatistics A mathematical technique used to estimate properties which are
spatially dependent;

Gilgais Dome-type undulations of the upper surface of the Keswick Clay and
Hindmarsh Clay Formation;

GLS The regression analysis method of generalised least squares;

Heteroscedasticity Non-constant variance;

Hole effect* A semivariogram which is not monotonically increasing and which
may reflect periodicities in the random field;

Homogeneity The property of a spatial series when its characteristics are
independent of location.  Homogeneity is equivalent to stationarity;

Homoscedasticity Constant variance;

Indicator kriging* Simple kriging or ordinary kriging applied to indicator data (samples
which have been transformed into binary numbers) sharing the same
threshold;

Interrupt driven The MPU immediately processes these measurements as soon as an
measurements interrupt signal is received;
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ISOPT-1 First International Symposium on Penetration Testing, Orlando,
Florida, 1988;

kb kilobytes;

Kriging* A collection of generalised linear regression techniques for
minimising an estimation variance defined from a prior model.  In
contrast to classical linear regression, kriging takes into account
stochastic dependence among the data;

Kurt., kurtosis* The kurtosis is a measure of the peakedness of a data distribution
around the mode.  A kurtosis: equal to 3 suggests a normal, or
Gaussian, distribution; < 3 implies a lower concentration near the
mean than a normal distribution; and > 3 suggests that the distribution
has an excess of values near the mean;

Lag, k* The difference in the time of occurrence of two events in a time
series, or in relation to a spatial series, the lag is the distance
between the locations of two random variables in a random field;

LCD Liquid crystal display;

LCPC method A method for determining the axial capacity of a statically loaded pile
based on CPT data, and developed at the Laboratoire Central des
Ponts et Chaussées, France;

LNS The regression analysis method of least normal squares;

Load cell A device, usually consisting of electrical resistance strain gauges,
which generates an output signal proportional to the applied force or
weight;

MA Moving average time series model;

Markov process* A stochastic process in which a prediction is determined solely by the
closest n observations, and is stochastically independent from all
remaining, more distant observations;

Measurand The physical quantity, property, or condition that is to be measured;

Missing depth A rationalised depth which has no associated measurement of qc

and/or fs ;
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Modulus of sub- The elastic modulus of the subgrade which accounts for pavement
grade reaction deformation;

Monte Carlo* Any number of procedures that use simulated random samples to
methods make inferences about actual populations;

mpb Microprocessor bit - the digital unit that is multiplied by the data
conversion factor to yield the digital equivalent of the measured
quantity.  (e.g. 1 mpb of fs measurements is equivalent to 0.488 kPa);

MPU Microprocessor unit - the microchip that forms the core of the
microprocessor interface;

NATA National Association of Testing Authorities, Australia;

N/E Not encountered;

Nested structures* A regionalised variable whose spatial continuity is the compound
effect of several genetic sources of spatial variation;

Noise spikes A phenomenon associated with measurements of qc and fs that occurs
randomly, and as a result of electrical noise originating from
inadequate earthing of the CPT cable (cf. Figure 3.15);

Nugget effect When the semivariogram does not pass through the origin and arises
from the regionalised variable being so erratic over a short distance
that the semivariogram goes from zero to the level of the nugget in a
distance less than the sampling interval;

OLS The regression analysis method of ordinary least squares;

Ordinary kriging The general geostatistical estimation process often simply known as
kriging.  Unlike simple kriging, the mean is unknown;

Overshoot The amount of output measured beyond the final steady output value
in response to a step change in the measurand;

PACF Partial autocorrelation function;

PC Personal computer;

Permanent mark A rigid reference point whose AMG and AHD coordinates are known
accurately;

PLT Plate load test;
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RAM Random access memory;

Random field* A collection of random variables in an n-dimensional euclidean space;

Random field The application of time series analysis to the spatial variability of
theory geotechnical properties, and unlike time series analysis, random

field theory is not confined to one dimension;

Range of influence* The maximum distance separating pairs of random variables that have
any significant statistical dependence;

Rationalised depth A depth below the ground surface which refers to the CPT, and
which has been rounded to the nearest 5 mm;

RAW An irrigation/soil science parameter which measures the water
reservoir of the soil between full point, − 8 kPa, and refill point,
− 60 kPa, and is expressed in mm (Brooker et al., 1995);

Rebound A phenomenon observed in measurements of fs within the Keswick
phenomenon Clay at the depth at which the test is temporarily suspended and later

recommenced.  It is manifested by a sudden increase in
measurements of fs below the depth at which the test was suspended.
It is proposed that this phenomenon is a consequence of rebound of
the pseudo-overconsolidated Keswick Clay, and which would not
have occurred had the test not been suspended;

Regionalised A variable which has properties that are partly random and partly
variable spatial, and has continuity from point to point, but the changes are so

complex that it cannot be described by a tractable deterministic
function;

Relative nugget The ratio between the nugget effect, C0,  and the level of the sill,
C + C0;

Resolution The magnitude of discernable (detectable) output changes as the
measurand is continuously varied over the range;

RL Reduced level;

RMA The regression analysis method of reduced major axis;

SBPT Self-boring pressuremeter test;
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Scatterplot An x-y graph on which the x-coordinate corresponds to the value of
one variable and the y-coordinate corresponds to the value of the
other variable;

SDF Spectral density function;

Semivariogram, γh The expected value, or mean, of the squared difference between pairs
of points, Yx and Yx+h ,  separated by a displacement, h;

Shift distance The distance by which fs measurements are shifted, usually 75 mm, so
that measurements of qc and fs correspond to the same depth.  Such a
shift enables the calculation of FR to be performed correctly;

Sill* The limiting value of the semivariogram which is reached at some
finite distance known as the range of influence.  The sill is
numerically equal to the variance of the random function;

Simple kriging* The same as ordinary kriging, except that the mean is known, and
hence the final row is deleted from all matrices, as is the final column
of the square matrix;

Skew., skewness The skewness is a measure of the symmetry of a data distribution.  A
skewness of zero suggests a symmetrical distribution, a positive value
indicates a right-hand skew, and a negative value indicates a left-hand
skew;

Spatial series A sequence of discrete or continuous data measured at specific
locations - the spatial equivalent of a time series;

Spectral density The Fourier transform of the ACF; that is, in the frequency domain;
function

SPLT Screw plate load test;

Stationarity* A term used to denote different degrees of invariance in the
characteristics of random fields.  If the mean and autocovariance of
the series change with the lag, and not location, the series is said to
be weakly stationary.  If all higher moments depend on the lag, and
not position, the series is said to be stationary in the strict sense.
(cf. homogeneity);

Stiction The resistance to movement developed between the writing
mechanism and the paper of a chart recorder, resulting in a delayed
response to input signals;
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TCD# Consolidated drained triaxial test with # stages;

TCU# Consolidated undrained triaxial test with # stages;

Time series* A sequence of discrete or continuous data measured at specific
instances in time - also a 1D random field (cf. spatial series);

Time series A mathematical technique used to estimate properties which are
analysis temporally or spatially dependent.  When applied to geotechnical

engineering, time series analysis is usually referred to as random
field theory;

Transitive A semivariogram with a finite sill.  For example, the spherical,
semivariogram* exponential and Gaussian models are all types of transitive

semivariograms;

Trend* An abstract expression of the low frequency, large-scale systematic
variation of a regionalised variable.  The trend may also include bias
in the test method (cf. drift);

TUC Unconfined triaxial test, or, unconfined compression test;

TUU# Unconsolidated undrained triaxial test with # stages;

UC Universal column - a mild steel I beam primarily used as a
compression member;

UCS Unconfined compressive strength;

Universal kriging* Simple kriging of the residuals of a regionalised variable after
automatically removing optimal estimates of the drift, and is used for
non-stationary data, that is, when a deterministic trend exists in the
measured data;

USCS Unified soil classification system;

UU Unconsolidated undrained triaxial test;

VST Vane shear test.








