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Abstract

The stock market is a complex self-interacting system. characterized by intermittent
behaviour. Periods of high activity alternate with periods of relative calm. In the present work
we investigate empirically the possibility that the market is in a self-organized critical state
(SOQ). A wavelet transform method 1s used in order to separate high activity periods. related
to the avalanches found in sandpile models. from quiescent. A statistical analysis of the filtered
data shows a power law behaviour in the avalanche size, duration and laminar times. The
memory process. implied by the power law distribution of the laminar times, is not consistent
with classical conservative models for self-organized criticality. We argue that a ~“near-SOC™
state or a time dependence in the driver. which may be chaotic, can explain this behaviour.
{3 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Since the publication of the articles of Bak, Tang and Wiesenfeld (BTW) [1], the
concept of self-organized criticality (SOC) has been invoked to explain the
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dynamical behaviour of many complex systems, from physics to biology and the
social sciences [2.3]. The key concept of SOC is that complex systems, that is systems
constituted by many interacting elements, although obeying different microscopic’
physics, may exhibit similar dynamical behaviour. [n particular, the statistical
properties of these systems can be described by power laws, reflecting a lack of any
characteristic scale. These features are equivalent to those of physical systems during
a phase transition, that is at the critical point. It is worth emphasizing that the
original idea {I] was that the critical state was reached ““naturally”, without any
external tuning. This is the origin of the adjective self~organized. In reality a certain
degree of tuning is necessary: implicit tunings like local conservation laws and
specific boundary conditions seem to be important ingredients for the appearance of
power laws [2].

The classical example of a system exhibiting SOC behaviour is the 2D sandpile
model [1-3]. Here the cells of a grid are randomly filled, by an external random
driver, with “sand”. When the gradient between two adjacent cells exceeds a certain
threshold a redistribution of the sand occurs, leading to more instabilities and
further redistributions. The benchmark of this system, indeed of all systems
exhibiting SOC, is that the distribution of the avalanche sizes, their duration and the
energy released, obey power laws.

The framework of self-organized criticality has been claimed to play an important
role in solar flaring [4], space plasmas {5] and earthquakes [6] in the context of both
astrophysics and geophysics. In the biological sciences, SOC, has been related, for
example, with biodiversity and evolution/extinction [7]. Some work has also been
carried out in the social sciences. In particular, traffic flow and traffic jams [8], wars
[9] and stock-market [3.10-12] dynamics have been studied. A more detailed list
of subjects and references related to SOC can be found in the review paper of
Turcotte [3].

In the present work we will provide empirical evidence for connections between
self-organized criticality and the stock market, considered as a complex system
" constituted of many interacting individuals. We analyze the tick-by-tick behaviour of
the Nasdaq100 index, P(z), from 21/6/1999 to 19/6/2002 for a total of 2'% data. A
sample of this data is illustrated in Fig. 1(a). In particular, we study the logarithmic
returns of this index, which are defined as R(t) = In(P(z + 1)) — In(P(z)) and plotted
in Fig. 1(b).

To examine the extent to which our findings apply to other stock market indices
we also studied the S&P ASX350 (for the Australian stock market) at intervals of
30 min over the period 20/1/1998 to 1/5/2002, for a total of 2!* data points. Possible
differences between daily and high-frequency data have also been taken into
consideration though the analysis of the Dow Jones daily closures from 2/2/1939 to
13/4/2004. The results are presented in Section 3.

From a visual analysis of the time series of returns, Fig. 1(b), we observe long
periods of relative tranquility, characterized by small fluctuations, and periods in
which the index goes through very large fluctuations, equivalent to avalanches,
clustered in relatively short time intervals. These may be viewed as a consequence of
a build-up process leading the system to an extremely unstable state. Once this
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Fig. 1. Sample of the tick-by-tick time series of the Nasdaql00 (a), as well as the corresponding
returns (b).

critical point has been reached, any small fluctuation can, in principle, trigger a chain
reaction, similar to an avalanche, which is needed to stabilize the system again.

2. Wavelet method

With the recent development of the interdisciplinary area of complexity, many
physicists have started to study the dynamical properties of stock markets [13,14].
Empirical results have shown that the time series of financial returns show a
behaviour similar to hydrodynamic turbulence [15.16]—although differences have
also been pointed out [16]. Both the spatial velocity fluctuations in turbulent flows
and the stock market returns show an intermittent behaviour, characterized by
broad tails in the probability distribution function (PDF), and a non-linear
multifractal spectrum [15]. The PDF for the normalized logarithmic returns,

RO — (RO
r(r) = "—U(W s (N

where (...); i1s the average over the length of the sample, /, and ¢ the standard
deviation, is plotted in Fig. 2. The departure from a Gaussian behaviour is evident,
in particular, in the peak of the distribution and in the broad tails, which are related
to extreme events.

The empirical analogies between turbulence and the stock market may suggest the
existence of a temporal information cascade for the latter [15]. This is equivalent to
assuming that various traders require different information according to their
specific strategies. In this way different time scales become involved in the trading
process. In the present work we use a wavelet method in order to study multi-scale
market dynamics.
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(circles). with C = 2. The original time series is reduced to the level of noise. A Gaussian distribution is
plotted for comparison. The inset shows the fourth member of the Duaubechies wavelets used in the
filtering.

The wavelet transform is a relatively new tool for the study of intermittent and
multifractal signals [19]. The approach enables one to decompose the signal in terms
of scale and time units and so to separate its coherent parts—that is, the bursty
periods related to the tails of the PDF—from the noise-like background, thus
enabling an independent study of the intermittent and the quiescent intervals [20].

The continuous wavelet transform (CWT) is defined as the scalar product of the
analyzed signal, f(?), at scale A and time ¢, with a real or complex “mother wavelet™,

W(t):

W0 = (o) = [ b wds=—= [ rei () du. @
: V. A

The idea behind the wavelet transform is similar to that of windowed Fourier
analysis and it can be shown that the scale parameter is indeed inversely proportional
to the classic Fourier frequency. The main difference between the two techniques lies
in the resolution in the time-frequency domain. In the Fourier analysis the
resolution is scale independent, leading to aliasing of high- and low-frequency
components that do not fall into the frequency range of the window. However, in the
wavelet decomposition the resolution changes according to the scale (i.e., frequency).
At smaller scales the temporal resolution increases at the expense of frequency
localization, while for large scales we have the opposite. For this reason the wavelet
transform is considered a sort of mathemaitical “microscope”. While the Fourier
analysis is still an appropriate method for the study of harmonic signals, where the
information is equally distributed, the wavelet approach becomes fundamental when

the signal is intermittent and the information localized.
The CWT of Eq. (2) is a powerful tool to graphically identify coherent events, but
it contains a lot of redundancy in the coefficients. For a time-series analysis it is often
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preferable to use a discrete wavelet transform (DWT). The DWT can be seen as a
appropriate sub-sampling of Eq. (2) using dyadic scales. That is, one chooses A = 2/,
for j=0,...,L —1, where L is the number of scales involved, and the temporal
coefficients are separated by multiples of 4 for each dyadic scale, t = n2, with n being
the index of the coefficient at the jth scale. The DWT coefficients, W;,, can then be
expressed as

Wi = (f o) = 277 / P~ nydu, 3)

where ¢, is the discretely scaled and shifted version of the mother wavelet. The
wavelet coefficients are a measure of the correlation between the original signal, f(z),
and the mother wavelet, Y(r) at scale j and time ». In order to be a wavelet, the
function y(z) must satisfy some conditions. First, it has to be well localized in both
real and Fourier space and second the following relation:

+00 1.7 2

[e e}

must hold, where l/;(k) is the Fourier transform of y(¢). The requirement expressed
by Eq. (4) is called admissibility and it guarantees the existence of the inverse wavelet
transform. The previous conditions are generally satisfied if the mother wavelet is an
oscillatory function around zero, with a rapidly decaying envelope. Moreover, for
the DWT, if the set of the mother wavelet and its translated and scaled copies form
an orthonormal basis for all functions having a finite squared modulus, then the
energy of the starting signal is conserved in the wavelet coefficients. This property is,
of course, extremely important when analyzing physical time series {21]. More
comprehensive discussions on the wavelet properties and applications are given in
Refs. [22.19]. Among the many orthonormal bases known, in our analysis we use the
fourth member of the Daubechies wavelets [22], shown in the inset of Fig. 2. The
spiky form of this wavelet insures a strong correlation for the bursty events in the
time series. The following method of analysis has also been tested with other
wavelets and the results are qualitatively unchanged.

The importance of the wavelet transform in the study of turbulent signals lies in
the fact that the large amplitude wavelet coefficients are related to the extreme events
in the tails of the PDF, while the laminar or quiescent periods are related to the ones
with smaller amplitude [21]. In this way it is possible to define a criterion whereby
one can filter the time series of the coefficients depending on the specific needs. In our
case we adopt the method used in Ref. [21] and originally proposed by Katul et al.
[23]. In this method wavelet coefficients that exceed a fixed threshold are set to zero,
according to

jn o

~ Wr'.n if W: <C- (W:n)
= { J J (5)

0 otherwise ,

here (...), denotes the average over the time parameters at a certain scale and C'is
the threshold coefficient. In the next section we will see that the precise value of the
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parameter C is not critical for our analysis. However, it is possible to tune C such
that only Gaussian noise is filtered. Once we have filtered the wavelet coefficients
W/.n we perform an inverse wavelet transform, obtaining a smoothed version,
Fig. 3(b), of the original time series, Fig. 3(a). The residuals of the original time
series with the filtered one correspond to the bursty periods which we aim to study,
Fig. 3(c).

3. Data analysis

In the previous section we have introduced the wavelet method in order to
distinguish periods of high activity and periods of low or noise-like activity. The
results are shown in Fig. 3 for C = 2. In order to choose an appropriate cut-off for
the wavelet energy, that is to fix a proper C, we tune this parameter until the statistics
on the kurtosis and the skewness of the filtered time-series approach the noise levels,
namely 3 and 0, respectively. Once we have isolated the noise part of the time series
we are able to perform a reliable statistical analysis on the coherent events of the
residual time series, Fig. 3(c). In particular, we define coherent events as the periods
of the residual time series in which the volatility, t(z) = |R(¢)|, is above a small
threshold. & = 0. The smoothing procedure is emphasized by the change in the PDFs
before and after the filtering—as shown in Fig. 2. From this plot it is clear how the
broad tails, related to the high-energy events that we want to study, and the
associated central peak are cut-off by the fltering procedure. The filtered time series
is basically a Gaussian, related to a noise process.

% T T T T T i
= | ]
o ML ‘ 4
= 0
g r ‘ ‘ T
Z 0oL~ ‘ q
- N . 1 . 1 . I fa)

0 10000 20000 30000 0000 30000
2
w002 T . r i r T T T r +
3
— 0ol = =
E] - 4
3 o — .
700l - by o
= 4
2ot s ! : I . i . L .
2 L0600 20000 30000 000 S0000
=
H
k3
x

om A 1 . 1 . ! . l .
0 L0 20000 3000 20000 S0000
Ticks

Fig. 3. A sample of the original time series of logarithmic returns for the Nasdaq100 is shown in (a), same
as Fig. 1(b). The filtered version is shown in (b). The noise-like behaviour of this time series is evident. The
residual time series is shown in (¢). This corresponds to the high activity periods of the time series, related
to the broad wings of the PDF. The cut-off parameter in this case is C = 2.
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Fig. 4. Time series for the avalanche volumes, V. for the Nasdaql00. (a); duration, D,, of the avalanches.
(b). and laminar times, L, (c). The plots are obtained using C =2 as the filtering parameter.

A parallel between avalanches in the classical sandpile models (BTW models)
exhibiting SOC [1] and the previously defined coherent events in the stock market is
straightforward. In order to test the relation between the two, we make use of some
properties of the BTW models. In particular, we use the fact that the avalanche size
distribution and the avalanche duration are distributed according to power laws,
while the laminar, or waiting times between avalanches are exponentially distributed,
reflecting the lack of any temporal correlation between them [24.25]. This is
equivalent to stating that the triggering process has no memory.

Similar to the dissipated energy in a turbulent flow, we define an avalanche, V, in
the market context as the integrated value of the squared volatility, over each
coherent event of the residual time series. The duration, D,, is defined as the interval
of time between the beginning and the end of a coherent event, while the laminar
time, L,, is the time elapsing between the end of an event and the beginning of the
next one. The time series for V, D, and L, are plotted in Fig. 4 for C = 2.

The results for the statistical analysis for the Nasdaql00 index are shown in
Figs. 5, 6 and 7, respectively, for the avalanche size, duration and laminar times. The
robustness of our method has been tested against the energy threshold. we perform
the same analysis with different values of C.

A power law relation is clearly evident for all the quantities investigated, largely
independent of the specific value of C. At this point is important to stress the
difference in the distribution of laminar times between the BTW model and the data
analyzed. As explained previously, the BTW model shows an exponential
distribution for the latter, derived from a Poisson process with no memory [24,25].
The power law distribution found for the stock market instead implies the existence
" of temporal correlations between coherent events. This empirical result rules-out the
hypothesis that the stock market is in a SOC state, at least in relation to the classical
sandpile models.
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In order to extend the study of the avalanche behaviour to different markets, we
perform the same analysis over the 30 min returns for the S&P ASXS50. The results
are shown in Figs. 8-10. While the power law scaling for the laminar times is still
very clear, the power law for the other quantities is less precise, perhaps reflecting a
different underlying dynamics compared to the Nasdaq100. On the other hand, it is
also important to stress the difference in length of the two time series analyzed.
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While for the Nasdaql00 we used 2" data points, only 2'* were available for the
S&P ASX50, making the first study statistically more reliable.

We also investigate the possibility of differences between high-frequency data and
daily closures by considering a sample of 2'* daily closures of the Dow Jones index,
from 2/2/1939 to 13/4/2004. The power law behaviour is consistent with that found
for the high-frequency data, as shown in Figs. 11-13.

4. Discussion

Similar power law behaviour for V, D, and L, has been found in the context of
solar faring [24] and in geophysical time series [21]. In the case of solar faring,
Boffetta et al. [24] have shown that the characteristic distributions found empirically
are more similar to the dissipative behaviour of the shell model for turbulence [26,27]
than to SOC. On the other hand the intermittency in turbulent flows discussed in
Section 2 is believed to be the result of a non-linear energy cascade that generates
non-Gaussian events at small scales [17] where the shape of the PDF is extremely
leptokurtic. At larger scales the spatial correlation decreases and the PDF converges
toward a Gaussian. These features imply the absence of global self-similarity—
which, as we have noted, is an intrinsic component of SOC models [18].
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Freeman et al. [28] have argued that, although an exponential distribution holds
for classical sandpile models, there exist some non-conservative modifications of the
BTW models in which departures from an exponential behaviour for the L,
distribution [29-32] arc observed in the presence of scale-free dynamics for other
relevant parameters. The question remains whether or not these systems are still in a
SOC state [28]. If we assume that the power law scaling of the laminar times
corresponds to a breakdown of self-organized criticality, then we face the problem of
how to explain the observed scale-free behaviour of the non-conservative models.
This ambiguity can be resolved if we assume that the system is in a near-SOC state,
that is the scaling properties of the system are kept even il it is not exactly critical and
temporal correlations may be present [28,33]. Another possible scenario is related
with the existence of temporal correlations in the driver [34.35]. In this case the
power law behaviour of the waiting time distribution would be explained and the
realization of a SOC state preserved [34.33].

5. Conclusions

In the present work we have investigated empirically the possible relations
between the theory of self-organized criticality and the stock market. The existence
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Fig. 11. Probability distribution function for the avalanche sizes for the Dow Jones daily closures. from 2/
2/1939 to 13/4;2004.

of a SOC state for the market would be of great theoretical importance, as this would
impose some constraints on the dynamics of this complex system. A bounded
attractor in the state space would be implied. Moreover, we would have a better
understanding of business cycles.

From the wavelet analysis on a sample of high-frequency data for the Nasdaq100
index, we have found that the behaviour of high activity periods, or avalanches, is
characterized by power laws in the size. duration and laminar times. The power laws
in the avalanche size and duration are a characteristic feature of a critical underlying
dynamics in the system, but this is not enough to claim the self-organized critical
state. In fact, the power law behaviour in the laminar time distribution implies a
memory process in the triggering driver that is absent in the classical BTW models,
where an exponential behaviour is expected. This does not rule out completely the
hypothesis of underlying self-organized critical dynamics in the market. Non-
conservative systems, as for the case of the stock market, near the SOC state can still
show power law dynamics even in presence of temporal correlations of the
avalanches [28,33]. Another possible explanation is that the memory process,
possibly chaotic, is intrinsic in the driver. In this case the power law behaviour of the
waiting time distribution would be explained and the realization of a SOC state
preserved [34,33].
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These findings extend beyond the Nasdaql00 index analysis. A similar
quantitative behaviour has been observed in the S&P ASX50 high-frequency data
for the Australian market and the daily closures of the Dow Jones index for the
American market. At this point it is important to stress that this does not imply that
all the markets must display the same identical characteristics. In the case of a near-
SOC dynamics, for example, the power law shape of the distribution can be
influenced by the degree of dissipation of the system which may change from market
to market, implying a non-universal behaviour.

In conclusion, a definitive relation between SOC theory and the stock market has
not been found. Rather, we have shown that a memory process is related with
periods of high activity. The memory could result from some kind of dissipation of
information, similar to turbulence, or possibly a chaotic driver applied to the self-
organized critical system. Of course, a combination of the two processes can also be
possible. Our future work will be devoted to the study of new tests for self-organized
criticality and the implementation of numerical models [36].
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Abstract

In the present work we extend the Bak—Sneppen model for biological evolution by introducing local interactions
between species. This “environmental” perturbation modifies the intrinsic fitness of each element of the ecology, leading to
higher survival probability. even for the less fit. While the system still self-organizes toward a critical state, the distribution
of fitness broadens, losing the classical step-function shape. A possible application in economics is discussed, where firms
are represented as evolving species linked by mutual interests.

{ 2005 Elsevier B.V. All rights reserved.

Keywords: Complex systems: Evolution/extinction: Self-organized criticality: Econophysics

In the past two decades several studies have been devoted to the investigation of the ubiquitous presence of
power laws in natural and social systems. An important contribution to this field of research has been given by
Bak, Tang and Wiesenfeld (BTW) {1.2], who developed the concept of self-organized criticality (SOC). The
key idea behind SOC is that complex systems, that is systems constituted of many interacting elements,
although obeying different microscopic physics, may exhibit similar dynamical behaviour, statistically
described by the appearance of power laws in the distributions of their characteristic features. The lack of a
characteristic scale, indicated by the power laws, is equivalent to those of physical systems during a phase
transition—that is, at the critical point. It is worth emphasizing that the original idea [1.2] was that the critical
state is reached naturally”, without any external tuning. This is the origin of the adjective self~organized. In
reality a certain degree of tuning is necessary: implicit tunings like local conservation laws and specific
boundary conditions seem to be important ingredients for the appearance of power laws [3].

The classical example of a system exhibiting SOC behaviour is the two dimensional sandpile model [1-4].
Here the cells of a grid are randomly filled, by an external driver, with “sand”. When the gradient between two
adjacent cells exceeds a certain threshold a redistribution of the sand occurs, leading to more instabilities and
further redistributions. The avalanche dynamics that drives the system from one metastable state to another is

*Corresponding author. CSSM. Rm. 126, Lvl | Physics Building, University of Adelaide, SA 5005, Australia.
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the benchmark of all systems exhibiting SOC. In particular, the distribution of the avalanche sizes, their
duration and the energy released, all obey power laws.

The framework of self-organized criticality has been claimed to play an important role in solar flaring [5.6],
space plasmas [7,8] and earthquakes [9-13] in the context of both astrophysics and geophysics. In biology,
SOC has been linked to the punctuated equilibrium [12] in species evolution [14]. Some work has also been
carried out in the social sciences. In particular, traffic flow and traffic jams [15-18], wars [19], as well as stock-
market [4,20-22] dynamics, have been studied. A more detailed list of subjects and references related to SOC
can be found in the review paper of Turcotte [4].

In the present work, we extend the Bak-Sneppen (BS) model for evolution [14] by introducing explicit
coupling terms in the fitness of each species of the ecology. We find that the equilibrium configuration of the
model can be deeply influenced by the environmental forces, leading to a wider survival probability also for
species with a lower degree of adaptation. A possible application of our extension of the BS model to the
economic world is that the distribution of global-fitness can be related to the size distribution of firms in the
most developed markets. In this respect, the evolution of firms is seen as a punctuated equilibrium process in
which the convolution of mutual interest can justify the spreading in size of the firms themselves.

The toy model proposed in 1993 by Bak and Sneppen [14] is one of the most popular models for biological
evolution. The main idea behind this model is that each species can be uniquely characterized by a single
parameter called firness. The fitness of a species represents its degree of adaptation with respect to the external
environment. Highly adapted species will hardly undergo any successful, spontaneous mutations. At the
opposite end of the scale, if a species has a very low degree of fitness it needs to mutate in order to survive and
its mutation automatically influences the other species belonging to the same environment. These concepts can
be easily formulated as a simple one dimensional model. Suppose that the ecology can be represented by a
periodic array of & cells and each cell, i, is assigned a fitness, B(i), taken from a uniform distribution between 0
and 1. Once we have fixed the initial condition, for each discrete time-step, the dynamical evolution of the
system works as follows:

(a) locate the species with minimum fitness—that is, the one most likely to mutate, k,
(b) change the fitness of & and that of its neighbours (species related) according to

B(k— l) — Uy,
B(k) — u,
Bk + 1) — us, (n

where the new fitness value, u;, is a random number taken from a uniform distribution bounded between 0
and 1.

From numerical [14] and analytical [23] studies it has been shown that the values of the fitness evolve to a step
function, in the thermodynamic limit (V¥ — o0), characterized by a single value, B.. For B< B, the distribution
of fitness, P(B), is uniformly equal to zero while for B> B, we have P(B) = 1/(1 — B,), determined by the
normalization condition. An example is shown in Fig. 1(a) and (b).

In this model, it is also possible to define a burst-like avalanche dynamics. Suppose we fix a threshold for the
fitness, By and consider B,,(t) as the minimal fitness at time step ¢. If at a certain time step,. ¢, it happens that
B,.(ty) < By then we can measure the interval of time, T, needed for having again B,,(¢t; + T)> By. In this case
an avalanche of duration, or size, T has taken place in order to restore a minimal fitness in the system. If
By = B. then we have P(T)~T 7. the system is critical, see Fig. 1(c).

According to this model the great mass extinctions of species, like dinosaurs for example, can be explained
in terms of burst-like dynamics. A small perturbation in a critical self-connected system can trigger a chain
reaction that may influence a great part of the species in the ecosystem. Time series of fossils samples seem to
be in agreement with this avalanche dynamics in the extinction/evolution of species. A more detailed
discussion of the BS model goes beyond the scope of the present work. For a general review see Ref. [24].

Despite its simplicity, the BS model evolves according to a complex dynamics and it is able to explain some
empirical features of the biological evolution [14]. An implicit assumption in the model is that every species is
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Fig. 1. (a) Snapshot of the fitness. B. after 8 x 107 time steps in a stable configuration. All the values are above a critical threshold. except
for those around 1500, where an avalanche is clearly visible. (b) Probability distribution of the fitness. P(B), shown in (a). While the
distribution is equal to zero on the left hand side. a plateau is evident for B> B,~0.667. In the thermodynamic limit the plateau will
become exactly a constant. In this case the simulation has been carried out for N = 5000 species. (¢) Probability distribution, P(T). of
avalanche duration, 7. in the stationary regime for the Bak—Sneppen model. The avalanche time series has been recorded in the stationary
state of the system, after ~107 iterations for N = 2000 species. The power law exponent is »~1.

deeply connected to its environment. A mutation on a single element automatically triggers a mutation in its
neighbours.

But is this approximation always appropriate? Consider, for example, three species in a one dimensional
array and suppose that B; = B,,;, while B,_; = B;;, = 1. In the standard BS model the ith cell undergoes to
mutation that also triggers a change in B;_, and B;;,. From a biological point of view it means that two
extremely well-adapted species have to mutate in order to cope with the mutation of the ith species. This can
be interpreted as a very particular (pessimistic) case-—such as, for example, the case where the ith species is the
main source of food for both the other species.

In order to stress this idea, we use some examples from different areas in which a similar evolutionary
dynamics can be applied. Suppose that a new unfit or unskilled player joins a strong team. Will this player
trigger a regression in the team performance or will the team compensate for this lack of skills? This is a small
perturbation after all.

Another example comes from economics. In this case, it has been shown [25-27], that the dynamics of
different firms is correlated. In fact, it is not unusual for a company to own large amounts of stock of other
companies and so on. The result is an entangled environment, where the evolution of a firm is, in a way, linked
to the evolution of its network of interaction. Is it then possible, in this case, for an wealthy environment to
sustain an unfit element, or will its lack of “fitness™ bring to the brink of the financial collapse all the other
partners, as the BS model would suggest?

We provide an answer to these questions using a modified version of the BS model that takes into account
the feedback of the environment on the single element. We refer to this model incorporating local interactions
in the BS model as the LIBS model. For the sake of simplicity we do not consider the topology of the
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interaction, that may be very complex: rather, we use a simple one dimensional array. The influence of the
network structure on the dynamics of the model will be discussed in our future work.

As a first approximation we consider our species to be arranged on a one dimensional array with nearest
neighbour interactions. This means that the micro-environment is composed of three cells. The value of the
fitness, B, for each cell is taken, according to the BS model, from a uniform distribution between zero and one.
The fitness parameter, B;, of the ith cell represents the self-fitness of the species. Motivated by the
aforementioned examples, we add an environmental contribution to the self-fitness that leads to a global-
fitness, F;, according to

Fi= B+ A1 Bioy + Ay Bigy. 2)

where A;,_; and A;;, are the fractions of fitness that the ith cell shares with its neighbours. The matrix of As is
not symmetric, reflecting the fact that the contribution in one direction can be very different from the
contribution in the other. This is equivalent to considering a directed weighted graph with a trivial necklace
topology.

In the sport example, the global fitness corresponds to the fit players that contribute to sustaining the
unskilled team-mate. From the economic point of view, it represents the capability of a firm to gain benefits
from its partnerships with other firms. In this particular case, B; represents the wealth generated by the firm
itself, while the other two terms represent the contribution, in different forms, from the linked firms. In
general, we can consider the new terms in the definition of F; as short ranged random forces acting on the ith
cell.

At the beginning of the simulation, the sclf-fitness is drawn from a uniform distribution between zero and
one. The same is done for the link weights. A;. It is worth emphasizing that, in general, for two cells i and /,
A #Aj.

Assuming that the neighbours can cooperate in defining the fitness of a species (optimistic view), the
extremal dynamics is moved from B,,;, to F,;,. Once the site with minimum global fitness, k. is located, then
the self-fitness and the interactions of this species are redrawn according to the following rules:

Apge—1 = ur,
A1 — o,
B(k) - Uj,

Ag g1 = Ug,

Apy1h = us, 3

where the new values for the changed quantities are taken from a uniform distribution between zero and one,
as in the BS model. However, in contrast to the BS model, a change in the fitness of the kth species does not
automatically trigger a change in the neighbours. Only the interactions are changed.

In order to test the stability of the model, we monitor the average fitness and the gap function, G(¢), for both
B and F. The gap function is nothing but the tracking function of the minimum of Bys(2) (Or Frmin(2)). Att =10
we have G(0) = B,,;»(0) (or G(0) = F,,;»(0)). As the evolution proceeds eventually for a certain ¢t;, we will have
Bpin(t1)> Brin(0) (01 Fpn(ty) > Frin(0)) as the minimum values are converging toward the critical value. The
gap function is then updated as G(t1) = Bis(t1) (or G(t) = Fin(t1)) and so on. It is easy to see that in the
stationary state the gap function converges toward the critical value.'

'For simulations on finite BS systems, a perfectly stationary state can never be achieved during a finite number of mutations. This
drawback, discussed in Refs. [28-30], is due to spurious correlations in the dynamics of the avalanches induced by the finiteness of the
lattice as G(1) gets closer to the critical value and, therefore, their average duration is supposed to diverge. As soon as we get very close to
this point, an artefact regime sets in and the gap function starts to saturate toward B = 1. The phase in which G(1)~B, can be regarded as a
transition point for the physically meaningful state: the larger the system is, that is, the closer it is to the thermodynamic limit, the slower is
the drift from this point and the system can be regarded, to a good approximation. as stable. An accurate study of this phenomenon in
relation to the LIBS model, although very interesting, is not of fundamental importance in the context of the present work. Therefore, we
will consider the system to be stable as soon as the gap function and the average reach a plateau.
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Fig. 2. (a) Average value ({...)) and (b) gap (Gap) function for the global fitness F and different system sizes for simulations up to 10°
mutations, 7. Note that the gap function converges approximately to the value F.~2.22 that corresponds to the critical threshold for this
model. A simple rescaling of the time. t — ¢/N, collapses the curves onto a single curve as shown in (c).

In Fig. 2, the time series of average values and the gap function of F are plotted for different number of
species in the ecology. The time to reach the stable state depends strongly on the size: for N = 10%, the largest
system in our simulations. we need approximately t~10® mutations to achieve the equilibrium. Note also that
a simple rescaling, t — /N, leads to a collapse of these curves. The relaxation times in the BS model are,
approximately, one order of magnitude lower compared to the LIBS model of the same size (or in rescaled
time).

A snapshot of the grid in the stable configuration is shown in Fig. 3. We notice immediately that the local
fitness is no longer distributed like a step function (as for BS). Rather a long, exponential, tail of low fitness is
evident, as shown in Fig. 4 (left). The cells with a higher local fitness still have a greater probability to survive
but the global-fitness, or the presence of environmental partnerships, widens the possibility of survival, even
for some species with a lower degree of self-fitness.

If we examine the global-fitness, a single avalanche is present—as in the classical BS model. Moreover. the
probability distribution function for the avalanche duration, shown in Fig. 5 and computed with respect to F,
is power law distributed, in relation with the criticality of the model. The index of the distribution turns out to
be differcnt from that of BS: the change in the dynamics has also led to a change in the universality class of the
model.

The distribution of global-fitness, shown in Fig. 4 (right) differs significantly from the step-function of the
BS model. It displays a polynomial decay (fourth order fit in the plot) above a critical threshold, as a result of
the convolution of stochastic variables. A similar non-trivial distribution can also be found in the size
distribution of firms, suggesting a possible practical application of the LIBS model.

Axtell [31] analysed the size distribution of US companies, defined as the total number of employees, during
1997. He found that it could be well represented by a Zipf distribution, P(s)~s~%, with a~1 and s being the size
of the firm. Further investigation of this issue has been carried out by Gaffeo et al. [32], who analysed a
database of companies for the G7 countries from 1987 to 2000. To some extent, this analysis confirmed the
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Fig. 4. Left: probability distribution function. P(B), for fitness B. The step distribution of the standard BS model has been replaced with
an exponential distribution with a cut-off at B~0.55. Right: probability distribution, P(F), for the global-fitness, F. and fit with a fourth
order polynomial. In this cuse, a sharp threshold is visible, as in the staundard BS model. indicating that poor fitness environments undergo
mutation. As we consider larger N the transition, at F.~2.22, gets sharper and sharper as expected by a finite size analysis. The values of
the P(F) below this threshold are related to the recorded avalanches. The distributions shown in these plots are the results of an average
over 50 different configurations in the stable regime.

findings of Axtell, namely a power law distribution with z~1. However, a~1 was obtained only for a
particular definition of the firm size, and particular business periods. More generally, they found a robust
power law behaviour. However, the index was seen to change with the time window analysed and the
definition of firm size used.

The qualitative discrepancies between our P(F) and the distribution empirically found for the size
distribution of firms can be explained by allowing more complex topologies for interactions between species,
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or economical entities in this case. Different kinds of convolution can generate a different shape in the
distribution of the global-fitness. This can be easily deduced by writing Eq. (2) in a general form as

Fi= Z Ai;Bij, 4)

where A;; = 1 and the sum overj is extended to all the &; neighbours of the ith species. In Eq. (4), no particular
topology is specified.

For an isotropic model on a D-dimensional lattice, k; is equal for all the species and depends only on D and
the definition of neighbourhood: the theoretical boundaries for F are equal for all the species and we can talk
about a “democratic” model. However, recent studies have shown [33,34] that, in real biological and social
systems the number of links per elementary unit, &, is not constant, but characterized by a non-trivial
probability distribution function, P(k), as a result of the complex nature of the interactions between species or
individuals.> From Eq. (4), we can immediately see that, by adopting a complex network as the underlying
structure for the interaction between species, we move to a model in which each species may have a different
boundary value for the global-fitness, since 0 < F;<k;. This inequality has a straightforward interpretation:
species with a large number of connections will have a higher barrier against environmental changes because
they can rely on numerous resources.

A simple way to obtain a complex network structure is by considering an open system, where the number of
species is not fixed but grows in time, as for example, the firms in a dynamic economy. In this case, it will be
more likely for new economic entities to be connected with a well established firm that has already a large
number of connections (growth and preferential attachment are actually the two main ingredients for the
Albert-Barabasi model for scale-free networks [33]). According to our model these “hubs™, that is companies
such as General Motors or Coca Cola, have a higher chance of surviving a turbulent period compared to

*Two widely studied networks in literature are random and scale-free. for which the degrees are. respectively, Poisson and power law
distributed. Especially. the latter seem to describe quite well the topology of interactions in biological, social and technological systems.
For a modern review of network theory see Refs. [33,34].
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isolated nodes: they have a larger influence in the dynamics of the model.* This simple consideration. although
not exhaustive, shows how the underling topology of the interactions can play an important role in the final
distribution of the global fitness. Further analytical and numerical tests would be of great importance in order
to understand the dynamics of the LIBS model and to what extent it can be applied to real systems.

It is also worth pointing out that another parameter related to P(F) is the domain of values for B itself. In
the present case we take B to be uniform in the interval (0,1). In fact, a change in this distribution, while
preserving the dynamics of the model. would lead to a different shape in the final distribution of F.

In summary, the quantitative shape of the distribution of the global fitness parameter depends deeply on the
details of the self-fitness parameters and the network that defines their interactions. These important issues will
be addressed in our future work.

The results obtained with the LIBS model confirm the relevance of self-organized criticality in complex
systems and, in particular, economics. The concept of mutual cooperation, introduced via the global-fitness,
can explain the ubiquity of broad tails in the distribution of characteristic quantities of physical and social
systems in terms of a convolution of variables between elements of the network of interaction. In the economic
context, this asymptotic behaviour can be related to the empirical findings concerning the distribution of the
size of firms. The possible relevance of self-organized criticality in economics has already been suggested by
recent theoretical and empirical studies [20.21,36.37], while possible applications of the BS model in this field
can be found in Refs. [38—40]. The application of the SOC concept to social sciences can, in general, be
motivated by empirical observations of the “intermittent’™ activity in the human dynamics at every level, from
wars to revolutions and, in particular, intellectual production where moments of frenetic activity can alternate
with long breaks, with lengths which cannot be predicted.

This process is, in a way. similar to the discharge. via avalanches, needed in the classical sandpile model, to
restore the critical slope. In a real economic world a wide series of changes, similar to avalanches, can be
triggered by exogenous or endogenous shocks related to structural changes at macroeconomic level, for
example the creation and successive enlargement of the European community or the fall of the Soviet empire,
or at microeconomic level, the invention of a new technology [41]. Since the shocks leading to avalanches are
of different nature, we also expect the existence of different time scales involved in the self-organization
process. In SOC systems, in general, the existence of a sharp separation between time scales, energy storage
and relaxation, appears to be a strict prerequisite. In the BS model, as in the LIBS model, by mutating one unit
at a time, we implicitly assume that the time to extinction, ¢,, of a species depends exponentially on its global
fitness, that is f.(i) o e’i. The exponential separation of the extinction times is at the core of the
“punctuation”. In economic terms we can still assume this behaviour: changes of poorly fitted firms can be
simply related to small microeconomic fluctuations that can happen in time scales of the order of weeks or
months while much longer times are needed to change the fitness of a highly adapted company. In the latter
case, radical changes are needed, as for example a switch from one political regime to another, an event that
may take centuries to happen.

On a final note, we consider now a further extension of the LIBS model by including second nearest-
neighbour interactions in the simple one dimensional topology. The global-fitness of Eq. (2) becomes

Fi=B+A4;;\Bi_\ + Ajir 1 Bipt + AjiaBia + Aji12Biy, (5)

where the second order coefficients are not independent random numbers but are rather related via
Ajer = Ajr - Aizy 22 The reason behind this choice, that can be easily extended to the nth order neighbours,
is motivated by the assumption that the higher order interactions are damped by the ““distance” between the
two species and therefore A;;1> < A;;+;. By using this formulation, we attempt to mimic a hierarchical
dependence of the global fitness in the ecology: species become explicitly related to their second nearest
neighbours via the mediation of their first neighbours and so on. Using these constraints the mutation rules
remain the same as in Eq. (3) since a change in the first order coefficients triggers automatically a change in the
higher order ones.

*This situation of “freezing™ of the large hubs™ has some analogies with spin glass theory where some species freeze in a random
configuration leading to a rough landscape of energy levels at small temperatures [35].
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The dynamics that results from the numerical simulations is similar to the first-neighbour LIBS model.
After an extensive transient we reach a critical stationary state characterized by avalanches of mutations with
size, T, which are power law distributed. The distributions for B and F, in the stable regime, are shown in
Fig. 6 along with the distribution obtained by considering just the first neighbour interaction.

In the case of B, we can notice that by enlarging the neighbourhood, the distributions show a slower
decaying rate and they appear to be smoother. In this case, we have an exponential decay all the way down to
zero, without any clear cut-off for low B. Despite their fitness, all the species have a chance of survival if
sustained by a healthy environment. Regarding the global fitness, instead, a polynomial decay is still evident.
although the order is higher compared to the first neighbours case. It is also important to note that a relatively
large change in the theoretical range for F, for which the bounds are now 0<F;<5, does not lead to a
consequent rise in the threshold value. It just moves slightly from F.~2.22 to F.~2.37. This is equivalent to
saying that in the previous case, in order to be considered “fit”, a species had to exceed roughly 74% of the
possible range for F. Now just 48% is sufficient! In conclusion, a hierarchical extension of the cooperation
between species in the LIBS model leads to an easier adaptation and survival probability: the more compact
the ecosystem is, the higher will be the chances of survival of each single species as long as they cooperate for
their mutual interest.

In conclusion, we have extended the Bak—Sneppen model for biological evolution by introducing explicitly
local interactions between elements of the ecology. Numerical simulations have shown how the dynamics of
the model, while still leading to a self-organized critical state, can be largely effected by the environmental
forces. leading to smoother distributions in both the intrinsic fitness, B, and the global fitness, F. As already
pointed out by Grassberger [42] the BS model cannot be taken too seriously for describing the punctuated
equilibrium of biological evolution. Nevertheless, because of its simplicity, it can easily be used as paradigm
for other complex systems. In the present work, we suggest a possible application of our extension of the BS
model to the economic world. In particular, the distribution of global-fitness can be related to the size
distribution of firms in the most developed markets. In this respect. the evolution of firms is seen as a
punctuated equilibrium process in which the convolution of mutual interest can justify the spreading in size of
the firms themselves. We have emphasized that the actual shape of the distribution of global-fitness is related
to the topology of the interaction. Future work will be devoted to the application of the model proposed in
this paper to more complex topologies—as, for example, to scale-free networks [33.34], that better represent
the real interactions between economic entities.

This work was supported by the Australian Research Council.



508 M. Bartolozzi et al. | Physica 4 365 (2006) 499 -508
References

(1] P. Bak. C. Tang, K. Wiesenfeld. Self-organized criticality: an explanation of 1// noise. Phys. Rev. Lett. 39 (1987) 331.
[2] P. Bak, C. Tang. K. Wiesenfeld. Self-organized criticality. Phys. Rev. A 38 (1988) 364.
[3} H.J. Jensen, Selt-Orgunized Criticality: Emergent Complex Behavior in Physical and Biologicul Systems. Cambridge University Press,
Cambridge. [998.
[4] D.L. Turcotte, Self-organized criticality, Rep. Prog. Phys. 62 (1999) 1377.
(5] E.T. Lu. R.J. Hamilton, Avalanches and the distribution of solar flares, Astrophys. J. 380 (1991) L§9.
[6] E.T. Lu. R.J. Hamilton. J.M. McTieran. K.R. Bromund. Solar flares and avalanches in driven dissipative systems. Astrophys. J. 412
(1993) 841.
[7] T. Chang, et al., Advances in Space Environmental Research. vol. 1. Kluwer Academic Publisher. AH Dordrecht. The Netherlands.
2003.
[8] A. Valdiva, et al., Advances in Space Environmental Research, vol. I, Kluwer Academic Publisher, AH Dordrecht. The Netherlands.
2003.
[9] P. Bak. C. Tang. Earthquakes as a seif-organized criticul phenomenon. J. Geophys. Res. 94 (15) (1989) 635.
[10] A. Sornette, D. Sornette, Self-organized criticality and earthquakes, Europhys. Lett. 9 (1989) 197.
[11] D. Sornette, P. Davy. A. Sornette, Structuration of the lithosphere in plate tectonics as a self-organized critical phenomenon,
J. Geophys. Res. 95 (1990) 17353.
[12] S.J. Gould. N. Eldredge. Punctuated equilibrium comes of age, Nature 366 (1993) 223.
[13] J. Huang, H. Sauler, C. Sammis. D. Sornette, Precursors. aftershocks. criticality and self-organized criticality. Europhys. Lett. 41
(1998) 43.
[14] P. Bak. K. Sneppen. Punctuated equilibrium and criticality in a simple mode! of evolution. Phys. Rev. Lett. 71 (1993) 4083.
[15] K. Nagel. H.J. Herrmann, Deterministic models for traffic jams. Physica A 199 (1993) 254.
{16] K. Nagel, M. Paczuski. Emergent traffic jams, Phys. Rev. E 51 (1995) 2909.
[17] T. Nagatani. Self-organized criticality in |D traffic low model with inflow or outflow. J. Phys. A: Math. Gen. 28 (1995) Lt19.
[18] T. Nagatani, Self-organized criticality in 1D traftic low, Fractals 4 (1996) 279.
[19] D.C. Roberts, D.L. Turcotte, Fractality and self-organised criticality of wars, Fractals 6 (1998) 351.
[20] P. Bak. K. Chen. J. Scheinkman, M. Woodford. Aggregate fluctuations from independent sectoral shocks: self-organized criticality in
a model of production and inventory dynamics. Ric. Econ. 47 (1993) 3.
[21] P. Bak. M. Paczuski, M. Shubik. Price variations in a stock market with many agents, Physica A 246 (1997) 430.
22] J. Feigenbaum. Financial physics. Rep. Prog. Phys. 66 (2003) 1611.
[23} H. Flyvbjerg, P. Bak, K. Sneppen, Mean field theory for a simple model of evolution. Phys. Rev. Lett. 71 (1993) 4087.
[24] M. Paczuski, S. Maslov. P. Buk, Avulunche dynamics in evolution. growth and depinning models. Phys. Rev. E 33 (1996) 414.
[25] N. Vanderwalle, F. Brisbois, X. Tordoir. Non-random topology of stock markets, Quant. Finance | (2001) 372.
[26] G. Bonanno. G. Caldarelli. F. Lillo, R.N. Mantegna, Topology of correlation-based minimal spanning trees in real and model
markets, Phys. Rev. E 68 (2003) 46130.
[27] W. Soumu, Y. Fujiwara. H. Aoyama, Ninth Workshop on Economics and Heterogeneous Interacting Agents. WEHIA, 2004, Kyoto
University, Kyoto. Japan, May 27-29, 2004, preprint: physics/0502005.
[28] D. Head. Temperature scaling, glassiness and stationarity in the Bak—Sneppen model. Eur. Phys. J. B 17 (2000) 289.
[29] K. Tabelow. Gap function in finite Bak-Sneppen model, Phys. Rev. E 63 (2001) 047101.
{30] D.A. Head, Universal persistence exponents in an extremally driven system, Phys. Rev. E 65 (2002) 027104.
[31] R.L. Axtell, Zipf distribution of U.S. firm size. Nature 293 (2001) 1318.
[32} E. Gaffeo. M. Gallegati, A. Palestrini, On the size distribution of firms: additional evidence from the G7 countries, Physica A 324
- (2003) 117.
{33] R. Albert, A.-L. Barabasi. Statistical mechanics of complex networks, Rev. Mod. Phys. 74 (2002) 47.
{34] S.N. Dorogovtsev, J.F.F. Mendes, Evolution of networks, Adv. Phys. 51 (2001) 1079.
[35] M. Mezard. G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond, World Scientific. Singapore, 1987.
[36] A. Ponzi, Y. Aizawa. Criticality and punctuated equilibrium in spin system model of financial market, Chaos. Solitons Fractals 11
(2000) 1739.
[37] M. Bartolozzi, D.B. Leinweber. A.W. Thomas, Self-organized criticality and stock market dynamics: an empirical study. Physica A
350 (2005) 451.
[381 G. Cuniberti, A. Valleriani, J.L. Vega. Effects of regulation on a self-organized market, Quant. Finance 1 (2001) 332.
[39] T. Yamano, Regulation effects on market with Bak-Sneppen model in high dimensions. Int. J. Mod. Phys. C 9 (2001) 1329.
[40] M. Ausloos, M. Clippe, A. Pekalski, Evolution of economic entities under heterogeneous political/environmental conditions within a
Bak-Sneppen-like dynamics. Physica A 332 (2004) 394.
[41] R.H. Day, The Divergent Dynamics of Economic Growth, Cambridge University Press. Cambridge, 2004.
[42]) P. Grassberger, The Bak-Sneppen model for punctuated equilibrium, Phys. Lett. A 200 (1995) 277.



Spin glass behavior of the antiferromagnetic Ising model on a

scale-free network

M. Bartolozzi!,* T. Surungan?,! D. B. Leinweber!,} and A. G. Williams'S
! Special Research Center for the Subatomic Structure of Matter (CSSM),
The University of Adelaide, Adelaide, SA 5005, Australia
2Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
(Dated: May 6, 2006)

Abstract
Antiferromagnetic Ising spins on the scale-free Barabasi- Albert network are studied via the Monte
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I. INTRODUCTION

In the last few years, the study of complex networks has found relevance in various fields
including sociology, ecology, biology, economics and physics. In these networks, vertices do
not have homogeneous links or connectivities. A particularly relevant structure found in
several empirical studies is the so-called scale-free network (SFN), which is characterized by
the power law distribution of the degree of connectivities, P(k) ~ k=7, with k the number
of links for a node, and v the decay exponent of the distribution. A network with vy —=0
has nodes with a relatively homogeneous number of links (somewhat resembling the case
on regular lattices), while large « corresponds to the existence of “very famous” nodes (or
hubs), i.e., those having direct links to the majority of vertices.

Many networks realized in Nature show scale-free structure. Some examples studied
include food webs [1], power grids and neural networks [2, 3], cellular networks [4], sexual
contacts [5], Internet routers [6], the World Wide Web [7], actor collaborations [2, 3, 8, 9],
the citation network of scientists [10] and the stock market [11].

In addition to the scale-free behaviour, these networks are characterized by a high clus-
tering coefficient, C, in comparison with random graphs [12]. The clustering coefficient, C,
is computed as the average of local clustering, C;, for the i*" node, defined as

2y
- "
where z; is the total number of nodes linked to the site ¢ and #; is the total number of
links between those nodes. As a consequence both C; and C lie in the interval [0,1]. The
high level of clustering found supports the idea that a herding phenomenon is a common
feature in social and biological communities. The parameter C' also represents the density
of triangles, that is of elementary cells, associated with the network.

Numerical studies on SFNs have demonstrated how topology plays a fundamental role in
infection spreading [13], opinion formation in large communities [14] and tolerance against
random and preferential node removal {14, 15]. A detailed description of the progress in this
emerging field of statistical mechanics can be found in the recent reviews of Refs. [16-18].

The aforementioned empirical findings have inspired physicists to investigate the dynam-
ics of standard models in the new case where the interactions between elements are described

by complex interactions. These include the study of various magnetic models such as the



Ising model. An intriguing issue concerns how the unusual topology acts to influence the
cooperative behaviour of the spins. Studies of the ferromagnetic (FM) Ising model on a SFN,
using several theoretical techniques [19-22] including the Monte Carlo (MC) method [22],
have found the robustness of ferromagnetic ordering against thermal fluctuations for the
degree distribution exponent v < 3. This result is actually intuitive if we notice that, as
gets smaller, nodes at the edge of the network will generally have more connections. In this
situation, the system resembles the FM Ising model on a regular lattice which exceeds the
lower critical spatial dimension, d; = 2. There the ordered phase is very robust against ther-
mal fluctuations. However, for the antiferromagnetic (AF) case with a SFN, the situation is
different.

Two factors come to play a central role in the dynamics of the AF-SFN model; namely
the competition induced by the AF interaction in the elementary triangles of the network
and the randomness related to the non-regular connections. The abundance of elementary
triangles in the network leads to frustration, as, for example, only two of the three spins can
be anti-aligned. More generally, frustration refers to the inability of the system to remain
in a single lowest energy state (ground state). These ingredients lead the AF SFN to belong
to a class of randomly frustrated systems commonly referred to as spin glasses (SGs).

Most studies of SGs have been performed on regular lattices. These studies have shown
that frustration and randomness are the key ingredients for SG behavior, characterized by
a frozen random spin orientation at low temperatures [23]. Spin glasses on a SFN with
mixed AF and FM bonds have been investigated recently by Kim et al. [24]. They found,
for v < 3 and even distributions of the two kinds of interaction, that the system is always
in a SG state for any finite temperature. A study of the pure AF Ising model on a SFN is
of great theoretical interest since, despite the homogeneity of the bonds, it inherits all the
characteristics of a SG from the random frustration related to its geometry. General reviews
on SG systems can be found in Refs. [23].

In this paper we consider the AF Ising model on a SFN, more precisely the Barabési-
Albert (BA) network with tunable clustering [25]. Using the replica exchange algorithm [26]
of the Monte Carlo method, we calculate the order parameters of spin glass behaviour, the so-
called overlap parameter and its distribution. For an accurate determination of the critical
temperature, we also evaluate the Binder parameter. The paper is organized as follows:

Section II describes the model and the method. The results are discussed in Section III.



FIG. 1: (Color online). Example of a scale-free network. The number of nodes is 500 with clustering
probability 8 = 0.9 and mg = m = 2. The number of nodes has been kept small in order to preserve
the clarity of the plot. Note that, for such small networks, a large scale invariant range is obtained
only if one considers the ensemble average over several realizations. This plot has been realized

with the Pajek software [27].

Section IV is devoted to the concluding remarks.

II. MODEL AND SIMULATION METHOD
A. The model

In order to create the scale-free network topology we make use of the Barabdasi-Albert
model [9]. This is based on two main considerations: (i) linear growth and (ii) preferential
attachment. In practice the network is initialized with mq disconnected nodes. At each step
a new node with m edges is added to the pre-existing network. The probability that an edge
of the new node is linked with the ith node is expressed by II(k;) = ki/ &, k;. The iteration
of this preferential growing process yields a scale free network, where the probability of
having a node with k connections is P(k) ~ k™7 with v = 3. This is an interesting value.
In the thermodynamic limit, the second moment of the distribution diverges, (k?) = oo, for
v < 3. This leads to peculiar properties of theoretical models in this range of v values [18].

In the present work we focus on the case in which v = 3 and the divergence of (k?) is



logarithmic. An extensive investigation of the phase space for the AF model on SFN is left
for future work.

It is also worth noting that the Barabasi-Albert model cannot reproduce a high clustering
coefficient. In fact, the value of this coefficient depends on the total number of nodes, N, in
the network [16] and in the thermodynamic limit, N — oo, C' — 0.

In the AF Ising system the average cluster coefficient, C, plays a fundamental role in the
dynamics. In fact, it represents the average number of triangles per node and, as a result, it
is directly related to the degree of frustration in the network. In order to keep this parameter
constant, on average, with the size of the network, we introduce a further step in the growth
process, namely the triad formation proposed by Holme and Kim [25]. In this case, if the
new added node is linked with an older node, i, having other links, then with a certain
probability, #, the next link of the new node, if any remain, will be added to a randomly
selected neighbour of node i. This method of introducing friends to friends, while preserving
the scale-free nature of the networks with v ~ 3, generates high clustering coeflicients that
do not depend on N. The only tunable parameter that changes the value of the clustering
coefficient is the clustering probability . An example of a SF network generated with this
algorithm is shown in Fig. 1 for 500 nodes.

We simulate various sizes of the network with many different realizations and investigate
the scaling behaviour of the various physical quantities we are interested in. All the simula-
tions have been carried out fixing f = 0.9, corresponding to an average clustering coefficient
of C ~ 0.39, close to the value found in many real systems [16]. On each SFN constructed
at the beginning of the simulation, we assign to each vertex an Ising spin, and to each link

an AF interaction. The Hamiltonian can be written as follows
H:_ZJijSiSj- . (2)
(17)

Here the summation is performed over the connected spins s; and s; occupying sites ¢ and
J, respectively. The coupling interaction J;; = J = —1 is AF. As previously mentioned,
each vertex with the local cluster coefficient C; > 0 together with its neighbours, compose
elementary triangles. Due to the AF interactions the local system is frustrated.

It is worth pointing out that C is related to the degree of frustration of each network. Due
to the probabilistic algorithm used for their construction, the value of C' fluctuates around

a mean value from one network to the next and, therefore, provides a source of randomness



that, as we will see, gives rise to the spin glass properties of the model. This probabilistic
growth is not shared by other algorithms which use recursion formulas to generate scale-free
structures, such as, for example, the Apollonian networks [28]. In this case, once one fixes
the number of iterations of the algorithm, which is proportional to the number of nodes of
the final network, one also fixes its topology. The element of randomness is therefore missing
in the Apollonian procedure. ‘

As a random system, each realization of a network of size N will differ in the “structure”
of connectivities. Therefore, in order to have reliable statistics, we average over ina.ny re-
alizations of the SF network for each specified size. The system sizes that we simulate are
N = 1024, 2048, 4096, and 8192. In general, one takes into account more realizations for
small system sizes and less for large system sizes as the latter tend to self-average. However,
since the self-averaging of physical quantities for larger system sizes is interfered with by
the increase of ground state degeneracy, we do not take less realizations. Instead all phys-
ical quantities of interest for each system size are averaged over 1000 network realizations.
Moreover, for each realization of the network, we fix my = m = 5, corresponding to a coor-
dination number on a regular lattice of approximately 10. In the thermodynamic limit, the
average connectivity for the BA network is (k) = 2m = 10, emphasizing the fact that we
are implicitly dealing with a high dimensional system.

Another peculiarity of SF networks is the existence of a broad distribution of “hubs”,
that is nodes with a large number of connections, k. The energy difference in a spin flip
actually depends on the number of connections of the spin itself, AEF; = —2s; Zf‘:k s;. Thus
in the AF case for the ith

Another peculiarity of SF networks is the existence of a broad distribution of “hubs”,
that is nodes with a large number of connections, k. The energy difference in a spin flip
actually depends on the number of connections of the spin-itself, AE; = —2s; Z?; . 85. Thus
in the AF case for the ith spin with k; connections, the hubs are more likely to “freeze”
into a particular configuration compared to the nodes with just a few links. This property
resembles the spin glass behaviour of particular alloys where some elements freeze into a

particular orientation at a higher temperature than others.



B. Simulation method

The calculation of the thermal averages of the physical quantities of interest is performed
using the replica exchange MC method [26]. In this method the evolution of M replicas, each
in equilibrium with a heat bath of inverse temperature 3,, for the m*® replica, is simulated
in parallel. Given a set of inverse temperatures, {3}, the probability distribution of finding

the whole system in a state {X} = {X, Xo,..., X} is

{x.sh=11P P(Xoms Brm) (3)
with
P(Xm,Bm) = Z(Bm) " exp(—BmH (Xm)), (4)

and Z(3,) is the partition function at the m®" temperature. We can then define an exchange
matrix between the replicas in our Markov chain, W(X,,, 8| X, Br), that is the probability
to switch the configuration X, at the temperature 3,, with the configuration X,, at 3,. By
using the detailed balance condition, required to keep the entire system at equilibrium, on

the transition matrix

P(o. ., {Xm, B}y - AX0 B}y - ) W( X, Bl X, Bn)
=P(... . { X0, B }r oo {Xm, Bn}s - ) - W( X, B Xms Br)s (5)

along with Eq. (4), we have that

W (X, S| X, )
W n)

where A = (3, — 3n)(H(Xy) — H(X,)). With the above constrains we can choose the

= exp(-4), (6)

na‘ m ms ~

matrix coeflicients according to the standard Metropolis method and, therefore, we have

X, 5,) = 1 if A<DO0, 7
S exp(—A) if A>0.

W(Xm, B

In our simulation we restrict the exchange to temperatures next to each other; that is, we
consider only the terms W (X, 8| Xma1, Oms1). This choice is motivated by the fact that
the acceptance ratio decays exponentially with (3, — 8)-

The replica exchange method is extremely efficient for simulating systems such as spin
glasses, that can otherwise become frozen in some particular configuration at low temper-

atures when using a standard Metropolis algorithm for the configuration update. In this

7



case, as we lower the temperature, the system can become trapped into a local minimum of
the free-energy where the barriers are so high that the time required for the system to move
to another allowed region of the configuration space diverges to infinity as a function of the
system size. If the system is trapped in a local minimum then the ergodicity condition is not
fulfilled anymore and the measure that one makes become biased by the particular region
of the configuration space that is being sampled. By using the exchange replica method,
instead, we keep switching the temperatures between the M copies of the system and, as
long as the higher temperature is in a hot phase (where, the system can easily explore
all the configuration space), then we are in principle able to explore all the configuration
space also for the lower temperatures. Another advantage of this method is that the replica
exchange reduces drastically the temporal correlation in the system dynamics at each tem-
perature. This enables one to collect more independent measures for the thermal averages
of the physical quantities and, therefore, reduces the uncertainty.

It is important to stress that, before starting the actual simulations, some care is required
in selecting the set of inverse temperatures, {3}. In fact, the method is efficient only when
a fairly large transition probability is maintained in the range of interest. From Eq. 7, we
can see that, in the hot phase, temperatures can be more coarsely spaced while in the cold
phase the temperatures need to be closer to each other. An optimal set of temperatures can

be obtained by iterating, in preliminary runs, the following map [26]:
Bl = .317

Bm = ,f~m—1 + (Bm - ..Bm—l) : pm/C,

where p,, is the acceptance ratio for the switch between two configurations at the mth

(8)

temperature and ¢ = ¥ p,./(M — 1) is a normalization factor. The initial value for the

set {5} is uniform in the interval of interest and we ensure that 3; belongs to the hot phase.
For each iteration of the map, a run of a few thousand MC steps is carried out to calculate
the acceptance ratios, p,,, which are then plugged into Eq. (8) in order to obtain a new
set of inverse temperatures. After a few iterations, the map of Eq. (8) converges to a fixed
point, {3*}, which sets the values of the temperatures to be used in our simulations. For
each iteration of the map, a run of the system (a few thousand MC steps are enough) is
carried out to calculate the acceptance ratios, p,,.

In using this method, we define a “local” MC (LMC) update as a MC update for each

spin of each replica, either consecutively through all elements of the network or randomly.

8



Given that we can group the inverse temperatures in even and odd pairs, (3, Bm+1), after
each LMC update we alternate attempts to switch configurations from one temperature to
the next. According to this procedure, we define a Monte Carlo step (MCS) as a LMC plus
a half (m odd or even) exchange trial.

For each realization of the network we start from a random configuration of the spins and
then perform 10> LMC updates in order to reach thermal equilibrium. After this transient
period, we run the simulation for 3 x 10° MCSs while taking a total of 6 x 10* measures for
the thermal averages, that is one every 5 MCSs (temporal correlations are lost very quickly
by using the replica exchange method). We consider low temperatures in a search for the
possible existence of a phase transition. The thermal averages obtained for each network
are then averaged over the ensemble of networks. In the following, we indicate (...) as the
thermal average and [...],, as the ensemble average. The statistical errors in the plots, where

reported, are calculated via the bootstrap method.

ITI. RESULTS AND DISCUSSION
A. Spatial correlations and specific heat

As a first step we investigate the extent of spatial correlation of the spins in the SF
network by making use of the spatial autocorrelation function which is defined on a regular

lattice as

) = [ £ (soan)]_ ©)

where L, is the total number of pairs at distance r and depends just on the dimension
considered. In a SF network the situation is more complicated since there may be several
paths leading from a certain node to another. We then define r as the minimum path
between two nodes and the denominator of the Eq. (9) becomes dependent on r. The
results, averaged over 50 configurations, between the temperatures of 7= 5.0 and T = 2.1
are shown in Fig. 2 for N = 1024. All the temperatures in the present paper are expressed
in units of J/kg, where J is the coupling strength between spins and kg is the Boltzmann

constant.
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FIG. 2: (Color online). Spatial autocorrelation, £(r), for N = 1024 averaged over 50 network
configurations for temperatures between T' = 5.0 and T' = 2.1. The plot shows that next neighbour
spins tend to be anti-parallel as in standard AF Ising model. The AF interaction in the triangular
units of the system results in high frustration. Note that the number of nodes at large distances is
much smaller than the ones at smaller distances and so the average calculated for r =5 and r =6

includes just few samples. This is a consequence of the “small-world” effects in SF networks.
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—ao N=§192
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FIG. 3: Specific heat, C,, as a function of the temperature and system size. The plot has been
obtained by averaging over 50 network configurations for each N. Note that the specific heat does

not scale with the size of the system.
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In order to give a better interpretation of the plot in Fig. 2 we remind the reader about an
important propriety of SF networks; that is their “small world structure”. The “hubs”, in
fact, play a fundamental role in linking sites otherwise very distant. Moreover, the average
path length increases just logarithmically with the size of the network [16, 17]. In the plot
of Fig. 2, for N = 1024 nodes, an upper limit of r = 6 is encountered. While all the 50
configurations reach r = 6, only a few networks exceed this limit.

The plot emphasizes how neighboring spins, on average, tend to be anti-correlated, as
expected in the AF case. The autocorrelation decreases with the distance from the node
under consideration. The temperature dependence is also in accord with the expectations.
The absolute value of the correlation decreases with increasing temperature and vice versa.
Indeed, the highest and lowest temperatures form a perfect boundary for all the curves. This
is an expected result, since thermal effects always tend to reduce the correlation between
the spin interactions.

We also study the behaviour of the specific heat, C,, defined as follows

CAT) = 5B - (BP)] (10)

av

where kp is the Boltzmann constant. Although no singularity is expected for this quantity
in the spin-glass transition, it is interesting to compare its behaviour with other studies.
The dependence of the specific heat on temperature is reported in Fig. 3. The statistical
errors, in this case, are smaller than the size of the symbols and therefore are not reported. A
common Schottky peak of the specific heat for a finite system is observed at the temperature
of T ~ 2.0 independent of the system size. Below this point, we found that C, decreases
and goes to zero as T — 0.

This behaviour follows from simple entropy considerations. In fact, since we are dealing

with a finite Ising system, the entropy is bounded at each finite temperature as well,

S(T) = /OT ~C”%Lﬂ <2, (11)

and, necessarily, C, — 0 for T — 0.
The next section is dedicated to study of the SG behaviour and the phase transition of
the system. In order to achieve this task, we evaluate the corresponding order parameters,

the overlap parameter and the Binder parameter.
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B. Observing spin glass behaviour

With the presence of frustration and randomness in the AF-SFN model, we expect to
observe a spin glass transition, i.e., a transition from a temporal disordered to a temporal
ordered phase at low temperatures.

This feature is not shared by the so-called fully frustrated systems [29]. This type of
transition might be characterized by the order parameter such as that suggested by Edward

and Anderson [30], defined as follows

pa = L% Zij(s»?] B (12)

However, an ergodic Markov chain of a system having Zs symmetry will ensure the thermal

average of the ith spin vanishes. Therefore a finite value of this measure simply reflects the
non-ergodicity in the MC update.

A more appropriate quantity that is often used to characterize the SG state is the overlap

parameter, ¢, defined as [31, 32
1 o
=% zl: 75, (13)

where the superscripts « and 3 denote two copies of the same configuration of connectivity
at the same temperature. The actual value of ¢ is extracted from both the thermal and
disorder average, [{...)],, -

Using the replica exchange MC simulation, the two copieé, a and 3, are allocated at
each temperature of the parallel tempering. This means, if the measurement is performed
on M points of temperatures, there are M pairs of replicas. The Metropolis spin update
is performed on each node for every MC step. As a part of the equilibration steps of the
algorithm described in the previous section, we exchange two « (and 3) replicas of neigh-
boring temperatures, according to a certain probability. Then, for each temperature, the o
and 3 replicas are superimposed every 5 MCSs in order to measure the overlap parameters,
as defined in Eq.(13).

In particular, for the Ising system, due to the Zs symmetry, it is important to evaluate

the absolute value of the order parameter,

= (5 o) (14

av
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to overcome the implication of the Z, symmetry of the Hamiltonian, that is the config-
urations s; and —s; have equal Boltzmann weights. That is, if the system is at thermal
equilibrium and if we take quite long MCS then the usual ¢ should average to zero. The
existence of a spin glass phase is indicated by the convergence of |g| to a finite value as we in-
crease the network size. At the same time, a convergence of |g| to zero at high temperatures
is anticipated. In the latter case the system is in the paramagnetic phase.

The temperature dependence of |g|, resulting from the simulations, is shown in Fig. 4. The
existence of a SG phase is indicated by the finite value of |¢| in the low temperature region,
and the approach of |g| to zero at higher temperatures associated with the paramagnetic
phase. For high temperatures and large networks, |g| is approaching zero in accord with the
thermodynamic limit where |g| = 0 [33].

The existence of these two different phases can also be observed from the distribution of
g, as shown in Fig. 5. For higher temperatures we observe simple Brownian fluctuations of
the values of ¢, leading to a singly peaked Gaussian distribution characteristic of a param-
agnetic state. By decreasing the temperature, the distribution spreads out, reflecting the
increasing number of metastable disordered states associated with a substantial frustration.
At lower temperatures the distribution develops double peaks reflecting the Z, symmetry
and a finite value of |g|, representative of the SG phase. We note that the shape of the
observed distribution at low temperatures is different from that of the conventional Ising
system where the double peaks approach delta-like double peaks reflecting a simple doubly
degenerate ground state [34].

An accurate evaluation of critical temperature of the phase transition is achieved via the
Binder parameter defined as follows

_ l _ [<q4>]av
=3 (3 [<q2>1§v) | 15

Here (¢°) and (¢*) are respectively the second and the fourth cumulant moment of ¢. In

this calculation, in order to avoid systematic correlation errors that could bias the results if
we were evaluating this average over g; directly [35], the second and fourth order cumulants
are averaged prior to taking their ratio. The Binder parameter is constrained in the range
0 < gr < 1. At high temperature, where thermal fluctuations overcome all cooperative
interaction, the system is expected to exist in the paramagnetic phase where there is no

spatial autocorrelation. As a result, the distribution of ¢ should be Gaussian centered at
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FIG. 4: Temperature dependence of the overlap parameter, g, for different system sizes N. The
increasing value of ¢ at low temperatures indicates a SG phase. For a given network size, 1000

realizations of the SFN are averaged over.

g = 0. In this case the ratio of the cumulants, (¢*)/{q*)*> — 3, resulting in g, — 0. At low
temperatures, the cooperative interaction becomes dominant and the ratio of the cumulants
approaches unity so that gp — 1.

Fig. 6 (inset) displays the temperature dependence of the Binder parameter for a variety
of network sizes. A spin-glass state is observed for lower temperatures where the Binder
parameter deviates from zero, and increases with the system size while approaching to 1.
In the thermodynamic limit, we expect g — 1 just below the critical temperature. A
crossing point in the size dependence of g; indicates that the critical temperature for the
SG phase transition is T ~ 4.0. Fig. 6 indicates that for temperatures above T ~ 4.0 the
Binder parameter, while remaining always above zero, does indeed order in an opposite
manner indicative of a genuine crossing of the curves and in accord with a genuine spin
glass transition at finite temperature. This feature which is not observed for uniformly
distributed AF and FM bonds, as T, = oo in the thermodynamic limit [24]. However, the
value of the transition temperature is not determined with high accuracy by the crossing of
the Binder parameter. In fact, finite size effects seem to slightly distort the tendency for
very small networks, as in the case of N = 1024. At the same time, the statistical errors

in the paramagnetic phase for large networks, see N = 8192, appear to be significant and
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FIG. 5: (Color online). The distribution of ¢ at various temperatures for different system sizes,

including (a) N = 1024, (b) N = 2048, (c) N = 4096 and (d) N = 8192.

some points are scattered.

N

A more accurate estimate of the critical temperature, T, for finite size systems can be

obtained using scaling arguments. For a SG system, the Binder parameter depends on the

system size L as

91 = §i[(T — T.) L', (16)

being v > 0 the spin glass correlation length exponent, implying that at T, the Binder
cumulant does not depend on L. For the SEN; the system size scales logarithmically with
the number of nodes N [16-18, 24] and therefore we take L = log(/N). This slow increase
in the diameter of the system, as well as the average path length, is a manifestation of the
“small-world” property of this network, induced by the presence of a large number of highly
connected hubs which create shortcuts between the nodes. An important implication of

this feature is that we cannot embed the network in any finite dimensional lattice: we are
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FIG. 6: Scaling behaviour of the Binder cumulant, gz, for different system sizes. Each system size

is averaged over 1000 realizations of the network configuration.
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FIG. 7: Scaling plot of the data illustrated in Fig. 6, fitted to Eq. 16.

implicitly dealing with a high dimensional system. The correlation length, in this case, is
still well defined although its value gets close to the densely-connected, mean field limit as
we increase the average connectivity of the nodes, (k) = 2m.

The parameters 7, and v are determined by constraining the temperature dependence of

the Binder parameter for each network size to lie on a single curve. The curves following
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the scaling bahaviour of Eq. (16) are shown in Fig. 7. From this fit we estimate the critical
temperature 7, ~ 4.0(1) and the exponent of the SG correlation length v ~ 1.10(2). It is
important to underline that this kind of behaviour is not observed for an AF system on a

regular triangular lattice.

IV. CONCLUDING REMARKS

In summary, we have investigated the antiferromagnetic Ising model on a Barabasi-Albert
scale-free network using the replica exchange Monte Carlo method. Through the calculation
of the overlap parameter we observe spin glass behaviour at low temperatures. Using the
scaling behaviour of the Binder parameter the critical temperature separating the SG and
the the paramagnetic phases is found to be T, = 4.0(2) with a scaling exponent of SG
correlation length v ~ 1.10(2). Such behaviour is not observed for the AF Ising model on
regular triangular lattices. Hence the topology of the interactions plays a critical role in the

dynamics of the system.
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