Introduction

One of the most conspicuous properties of nature is the great
diversity of size and length scales in the structure of the world. An
ocean, for example, has currents that persist for thousands of kilome-
ters and has tides of global extent; it has also waves that range in size
from less than a centimeter to several meters; at much finer resolu-
tion, seawater must be regarded has an aggregate of molecules whose
characteristic scale of length is roughly 10™8 centimeters. From the
smallest structure to the largest is span of 17 orders of magnitude.
In general, events distinguished by great disparity in size have little
influence on one another; they do not communicate, and so the phe-
nomena associated to each scale can be treated independently. The
interaction of two adjacent molecules is much the same whether the
molecules are in the Pacific Ocean or in a teapot. What is equally
important, an ocean wave can be described quite accurately as a dis-
turbance of a continuous fluid, ignoring completely the molecular
structure of the liquid. The success of almost all practical theories
in physics depends on isolating some limited range of length scales.
If it were necessary in the equation of hydrodynamics to specify the
motion of every water molecule, a theory of ocean waves would be
far beyond the means of the 20th century science. A class of phe-
nomena does exist, however, where events at many scales of length
make contributions of equal importance. An example is the behaviour
of the water when it is heated to boiling under the pressure of 217
atmospheres. At that pressure water does not boil until the temper-
ature reaches 647 degrees Kelvin. This combination of pressure and
temperature defines the critical point of water, where the distinctions
between fluid and gas disappear; at higher pressures there is just a
single, undifferentiated fluid phase, and water cannot be made to boil
no matter how much the temperature is raised. Near the critical point
water develops fluctuations in density at all possible scales. The fluc-
tuations take the form of drops of liquid thoroughly interspersed with
bubbles of gas, and there are both drops and bubbles of all sizes from
the single molecules up to the volume of the specimen. Precisely at
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the critical point, the length scale of the largest fluctuations becomes
infinite, but the smaller fluctuations are in no way diminished. Any
theory that describes a system near its critical point must take into

account the entire spectrum of length scales.
K.G. Wilson [Wil79]

1.1 What is complexity?

The term complezity is probably one of the most intuitive and, at the same time,
elusive in modern science. Although a precise definition is lacking, nevertheless,
everybody can imagine a complex system to be just something that it is hard to
understand! This, of course, is not very rigorous. An example would probably
help to clarify this concept. Suppose we have an unspecified device, a “black
box”, that we want to analyze. In order to have some insight into its behaviour, it
is natural to supply it with some kind of linear input and then look at the results.
If the output obtained is nothing that can be easily foreseen from the knowledge
of the initial condition that we imposed, then we can start arguing that what
we are dealing with is something “complex”. This simple example points out,
possibly, the most outstanding benchmark of all the complex systems, that is
the non-linearity of the forces acting between elementary parts composing the
system itself. These kinds of interactions usually lead to the emergence of
patterns which are considered to be another peculiarity of complex systems.

However, non-linearities and emergent behaviour are not the only symptoms
of complexity, rather they are just the tip of the iceberg. Other characteristic
features include:

e Feedback: Both negative (damping) and positive (amplifying) are typi-
cally encountered in complex systems. The stock market is a clear exam-
ple: previous trades can have repercussions on current decisions. Memory
effects can also lead to hysteresis phenomena.

e Non-equilibrium: Complex systems in nature are usually open, dissipa-
tive, systems. Nevertheless, patterns of stability can be found.

¢ Embedded complexity: The components of a complex system may
themselves be complex systems. For example, an economy is made up
of organizations, which are made up of people, which are made up of cells
- all of which are complex systems.

e Multifractal/multiscale processes: Usually, the dynamics of complex
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systems involves different temporal and spatial scales, giving rise to self-
similar features.

e Network of interactions: The topology of the interactions between the
parts of these systems is often described by non-trivial networks.

e Self-organization: Complex systems often tend to self-organize and give
rise to coherent structures without external inputs. A broader discussion
on this argument is given in Chapter 2.

Now that we have a vague idea of what we are dealing with, we can start won-
dering: is there any chance to predict the behaviour of these systems? Although
this question may sound academic, it is everything but. Predictability is
probably the most outstanding issue in complex system theory. Most complex
systems, in fact, are not found in an exotic physics laboratory, but they are
actually related to many common aspects of every-day life. Most people would
be surprised to know, for example, that there are emergent patterns in traffic
jams or how the dynamics of earthquakes and the stock market have similarities
during specific periods, as shown in Fig. 1.1. No need to say that the capa-
bility to predict, even for very short horizons, the behaviour of these systems
would be a great step forward for human society. To some extent, the degree of
predictability itself can be used to define how complex the system is [BCFV02].

At this point, I hope the reader has a general idea regarding the main features
characterizing a complex system. A more detailed and advanced introduction,
that goes beyond the scope of this work, can be found in the book of Badii and
Politi [BP97]. In order to have a better overview of the subject, in the next
section we introduce complexity from an historical prospective and, after that,
we consider some specific examples of complex systems.

1.2 Complexity: an historical overview

As a matter of fact the the world is not simple! Our prehistoric ancestors
already realized how complex it is to start a fire to cook the meat! So, is there
any possibility of tracking back the origin of complexity without getting lost
in the sands of time? In reality there is, as long as we realize that “complex
problems” are not “complex systems”: while the latter are defined inside a
scientific framework, the former belong to the sphere of philosophy and must
not be addressed in this context.

After this preface, we can say that modern compler system theory, as an
independent area of research dates back to the early ’80s, and, precisely, in May
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Figure 1.1: (a) Cumulative Benioff strain release in magnitude 5 or greater
earthquakes in the San Francisco Bay area before the 17th October 1989 Loma
Prieta earthquake [NTG95]. (b) Hang Seng index for the Hong Kong stock
market prior to the 1994 crash [Sor03b]. Both data sets are fitted with a log-
periodic function, derived by a possible underlying discrete scale invariance in
these two different systems. A more exhaustive discussion on the subject can be
found in Chapter 2.

1984, with the foundation, by George Cowan, of the Santa Fe Institute. Two
years later, the Center for Complex Systems at the University of Illinois, led by
Stephen Wolfram, become operative as well. The rise of these two institutions,
explicitly devoted to the interdisciplinary study of complex phenomena, can
arguably be considered as the dawn for complex system research as we know it
today.

However, already at the end of the 19th century the notion of complexity,
and non-predictability in particular, started to become familiar to the scientific
community as the result of the independent works of the Austrian physicist
Ludwig Boltzmann and the French mathematician Henri Poincaré.

Ludwig Boltzmann, the father of statistical mechanics, raised, for the first
time in modern physics, important arguments against determinism, in a Newto-
nian sense, of the dynamics of systems composed by many interacting elements,
as, for example, a gas. The statistical approach that Boltzmann introduced to
overcome this problem was a great success. Dropping the standard equations
of motion, all the physics of the system was determined by just three param-
eters: temperature, volume and pressure. On the other hand, Henri Poincaré,
during the 1890s, proved that the motion of three planets influenced only by the
gravitational (non-linear) forces acting between them, could be extremely com-
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plicated and, actually, unpredictable. The three body problem to some extent,
can be considered as a precursor of chaos theory.

These discoveries had a great impact on the scientific community of that age.
In fact, most of the physicists used to share the same beliefs as Newton, that is,
the complexity of the world was just apparent: once the physical laws describing
it were discovered, then the ordered pattern of Nature should have appeared as
well. Statistical mechanics and non-linear dynamics, for the first time, question
this vision: the single parts do not add up and there is an intrinsic complexity
and unpredictability in the world which, actually, seemed to tend toward a
disordered state.

After Boltzmann and Poincaré, different scientists faced problems that, to-
day, we could call “complex”. Nevertheless, in order to have a coherent move-
ment which recognized the intrinsic importance of complexity we have to wait
until the late 1940s. The reason for this lies in the fact that complexity was, and
still is, deeply related with computation and, therefore, with the development
of computers and computer science.

In 1948, Claude E. Shannon founded the field of information theory, a math-
ematical framework for data communication and storage. It is actually in this
context that complexity started to be regarded as a principal area of research.
In this particular case, the issue with complexity was related to the minimum in-
formation that could completely describe a certain signal. In order to tackle this
problem, Shannon defined a measure, known as Shannon entropy due to analo-
gies with the definition of entropy in thermodynamics, which, when applied to
an information source, could determine the minimum channel capacity required
to reliably transmit the source as encoded binary digits. Historically, the mini-
mum information, that is the number of bits describing the signal, became the
first quantitative measure of complezity.

During these years, information theory developed in different directions. The
problems explicitly regarding complexity were addressed in the branch called
computational complexity theory, devoted to the study of the “resources” re-
quired during computation to solve a given problem. The main resources, in this
case, were time (how many steps it would take to solve a problem) and space
(how much memory it would take). In this area important progress was made in
defining complexity in a formal way, as, for example, the algorithmic complezx-
ity, that is the size of the minimal program able to reproduce an input string
(Solomonoff, 1964 [Sol64]; Kolmogorov, 1965 [Kol65]; Chaitin, 1966 [Cha66]).

Still, regarding the relation between complexity and computer science, it
is worthy to mention the work of Alan Turing who, in 1936, developed the
famous Turing machine, a theoretical computing device to serve as an idealized
model for mathematical calculation [Tur36]. The idea of Turing, had important
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repercussions in the future development of numerical models. In fact, it led to
the introduction of one of the most popular tools able to represent the dynamical
behaviour of extended complex systems, that is cellular automata, developed in
the late 1940s by John von Neumann [vN66]. Cellular automata are discrete
systems, both in space and time, in which the elementary cells evolve according
to some local rules. This simulation method gained a vast popularity thanks to
the Game of Life by John H. Conway (1970). In this model, several properties,
similar to the ones of a microscopic “living” world, emerge by the application
of a set of simple deterministic rules [BCG82]: soon it became a paradigm
of the complex system. Further works in cellular automata, along with their
applications in different areas of science, were carried on in the '80s by different
authors and in particular Stephen Wolfram [Wol86].

Other areas in which the concept of complexity has been often associated are
hydrodynamic turbulence and biological evolution (especially after the discovery
of periods of mass extinction). These areas will be more specifically discussed
in the next section.

This brief introduction on the historical background of complex system theory,
far from being exhaustive, can give a idea to the reader how it is basically impos-
sible to find a simple temporal path for the evolution of this multidisciplinary
area which has roots in basically all the scientific disciplines. Its evolution has
been highly non-linear through the time, but how could anyone have possibly
expected anything less than that!

1.3 Example of complex systems: from physics
to finance

The notion of complexity is not limited to some specific areas of human knowl-
edge but rather embraces all possible fields of investigation. In the following
subsections we give some examples of complex systems, selected from, appar-
ently, very different disciplines such as physics (turbulence and spin glasses),
biology (evolution of species) and economics (the stock market). These exam-
ples, although not exhaustive, can give a feeling to the reader of how broad
complexity is and how much we still have to investigate in order to reach some
decent understanding of the way things “work”.
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1.3.1 Turbulence

Hydrodynamic turbulence is probably one of the most outstanding problems in
modern physics and the difficulties in this field can be summarized by a famous
aphorism from Sir Horace Lamb:

When I die and go to Heaven there are two matters on which I
hope enlightenment: one is quantum electrodynamics and the other is
turbulence of fluids. About the former I am really rather optimistic.

This sentence, although sarcastic, is definitely appropriate. After all, the
physics of incompressible fluids, turbulence included, is contained in the Navier-
Stokes equations,

)7 = —Vp+v V37, (1.1)

7 = 0,
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where ¥ is the velocity field of the flow, p is the pressure and v the kinematic
viscosity. These equations are known since 1823 and, in principle, once we
have defined the initial and boundary conditions, we should be able to solve
the equation of motion, turbulence included. Unfortunately, this is true just
theoretically. If we look at the experiments, we obtain a rich dynamics that is
basically impossible to recover, for different technical reasons, by just integrating
the Navier-Stokes equations.

The transition from an ordered, or quiescent, state in the fluid, where we have
an homogeneous distribution of the velocity field, to a turbulent regime, where
the velocity field becomes spatio-temporally chaotic, is due to the injection of
energy at large scales, see Fig. 1.2 [Fri95]. In the so called fully turbulent regime
several orders of length scales are involved in the process of energy transfer from
the largest to the smaller ones, where the energy is finally dissipated. Actually,
what we observed is an energy cascade where eddies of all sizes are active, as
shown in the sketch of Fig. 1.2 (c) [Fri95]. Moreover, this property does not
depend on the specific fluid under consideration: it is universal.

A very important parameter used in turbulence studies in order to charac-
terize the state of the system is the Reynolds number, R;, defined as R; = v; /v,
where v; is the velocity difference at some scale [. This number characterizes
the interplay between the nonlinear advection, (7 - 6) ¥, and dissipation, v V27,
terms in Eq. (1.1). While the drag term tends to bring the fluid into a quiescent
state, a high velocity field, enhanced by the injection of energy at large scales,
tends to drive the fluid toward a turbulent state. In this phase the smallest
eddies have a limiting size, called Kolmogorov length, of l; = (v/€/*), with €
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Figure 1.2: (a) Wake behind two identical cylinders at R; = 240. (b) Homo-
geneous turbulence behind a grid. (c) Space fillings eddies in a sketch of the
Kolmogorov 1941 theory. In this case, [y is the size of the largest eddies and
r = 1/2 is the scaling ratio. These pictures are taken from [Fri95].

being the mean dissipation rate. Each of the smallest eddies can be associated
with the degrees of freedom, N, of the fluid and their number goes approxi-
mately as R%/* per unit of volume. In order to give an insight into the problem,
we can think about the turbulence in the atmosphere. In this case R > 10'®
and, therefore, the degrees of freedom are greater than 10%*/2 per unit of vol-
ume! This kind of problem would discourage most people to attempt a large
scale simulation of turbulence. In reality, there are empirical laws that seem to
come to help. In fact the sizes of the eddies are not randomly distributed but
they follow a self-similar hierarchy from the largest to the small scales until the
dissipation takes over. This self-similarity property has led to the famous theory
formulated by Kolmogorov in 1941. In this formulation the scaling exponent,
Cm, of the m-order structure function for the velocity field,

([9(& + 1) = 5(@)[™) ~ |, (1.2)

is supposed to scale as (,, = m/3. The regime in which this condition is satisfied
goes under the name of the inertial regime, [ < | < ls, where [ is the size of the
system. However, nonlinear deviations from this scaling behaviour have been
experimentally found, leading to the formulation of different phenomenological
models. An excellent general review on the subject of turbulence can be found in
the seminal book of Frisch [Fri95] while for more a detailed discussions regarding

the dynamical system approach and modeling we suggest the book of Bohr et
al. [BJPV9S].



1.3 Example of complex systems: from physics to finance 9

At this point it is trivial to state that turbulence is a highly complex field
due to the non-linearity and high dimensionality of the problem. Nevertheless,
this high complexity gives rise to structures and emerging patterns at all scales,
in a fashion similar to other systems with less degrees of freedom. Therefore, we
need to find a representation, possible to handle from a computational point of
view, which gives rise to the basic structures observed.

1.3.2 Complex systems in statistical mechanics: the
spin glasses

In equilibrium statistical mechanics, systems gradually evolve toward the state of
minimum energy where the fluctuations of the macroscopic variables eventually
vanish. In general, the macroscopic properties of the system can be deduced
from the Gibbs-Boltzmann assumption. In this framework each possible con-
figuration of the system, X = (p1,..., D -, q1, -, @, --.), fiXes a certain weight,
exp [—H(X)/kgT)], where H(X) represents the energy of the system in the state
X at the temperature T and kg is the Boltzmann constant. A faithful physical
description is possible once we identify an ensemble of micro-states which give a
leading contribution to the statistical averages for an infinite system size, that
is in the thermodynamic limit. This correspondence is governed by the balance
of the weights for the various configurations, controlled by the energy, and their
number, quantified by the entropy.

An example of a statistical system governed by such a dynamics is the Ising
model, where the evolution of a set of N boolean spins, 0; = +1 (i = 1, ..., N),
is described by the Hamiltonian,

H=— ZJij 0; 05 — ZhiUi, (1.3)
i i

where J;; is the coupling constant between spins ¢ and j and h; is the strength of
an external magnetic field. Due to the discreteness of its variables, the dynam-
ics is not usually solved analytically but via numerical methods, such as Monte
Carlo algorithms. In this case the evolution of the system is simulated stochas-
tically by associating a transition probability, W (X — X), corresponding to a
spin flip, to switch from one configuration, X, to another, X. In practice, the
coefficient W's satisfy the detailed balance condition

WX X)_ o <_li—1;> , (1.4)

WX = X)

with AH = H(X) — H(X). This condition is imposed in a way that, at equi-
librium, the number of transitions from the state X to X is balanced by the
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number of transitions from X to X. A proper choice for W was suggested by

Metropolis in 1953 [MRR*53] and it is still widely used. This rule reads
~ 1 it AH <0

WX —=X)= ’ 1.5

( ) { exp(—AH/kgT) if AH >0 (1:5)

and it is known as Metropolis algorithm.

Although this formalism appears to be relatively simple, it can give rise to
very complex dynamics. The source of complexity, in this case, is fixed by the
energy landscape generated by the particular Hamiltonian under consideration.
In fact, in some particular cases this landscape is not “smooth” but rough and
organized in a hierarchical structure of local minima. In this case the system
can get trapped in one of these minima and the exploration of the rest of the
state-space can happen just sporadically. This “frozen state” is directly related
to the problem of ergodicity breaking, that is the impossibility of accessing all the
allowed configurations: the macroscopic state become dependent on the initial
conditions.

The most popular example of spin systems showing ergodicity breaking and a
complex energy landscape is the spin glass. Spin glasses, originally introduced to
simulate the behaviour of alloys, such as CuMn, are magnetic systems, similar
to the Ising model, in which there is “competition” between the interactions
of the magnetic moments resulting in a frozen-in disorder reminiscent of what
occurs in ordinary glass. Although these systems lack long range order, they are
characterized by short range order below the spin glass temperature, T, when
magnetic clusters starts to appear. In this case the complexity of the energy
landscape emerges from the conflicting interests between spins, or frustration,
and a certain degree of disorder in the interactions.

The simplest model of a spin glass is defined by the Hamiltonian in Eq. (1.3),
where the interactions between spins, J;;, are not uniformly ferromagnetic, J;; =
+1, or antiferromagnetic, J;; = —1, but they are randomly distributed on the
lattice. This simulates the intrinsic disorder of the material and leads to the
random frustration of the cells. Moreover, we can set h; = 0.

The complexity of the energy landscape generated by spin glass models ex-
tended their application beyond the boundaries of solid state physics. An ex-
ample is the dynamics of ecologies, where the evolution of species is supposed to
take place in a rough landscape of energy, called fitness, similar to the one ob-
served in spin glasses. Other relevant examples of interdisciplinary application
of spin glasses can be found in optimization theory, neural networks, protein
folding and social interactions. For a review on spin glass theory, the interested
reader can have a look at Refs. [MPV87] and [BY86].
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1.3.3 Biological evolution

One of the most interesting subjects explored in statistical mechanics during the
past decade is the study of the dynamics of ecosystems, that is their evolution.

In the classical Darwinian vision, which has been uncontested until the 1970s
inside the scientific community, this should not represent a problem at all since
the evolution is a “smooth” process. What does smooth mean in this con-
text? Well, in this regard, I would like to report a passage taken from the 1859
masterpiece by Charles Darwin, “On the origin of species”:

Natural selection is daily and hourly scrutinizing throughout the
world every variation, even the slightest; rejecting all that which is
bad, preserving and adding up all that is good; silently and insensibly
working... We see nothing of these slow changes in progress until the
hand of time has marked the long lapse of ages.

According to this interpretation, natural selection is then “slow” and we
would not be able to tell the difference in the ecosystems if we observe it during
short geological times since the “hand of time” has to “mark the long lapse of
ages” first. In its historic prospective, this idea is actually revolutionary. For the
first time the hypothesis of a Divine creation was openly questioned on the basis
of scientific findings, that is the fossils. Moreover, according to the available
fossil record of that age, an almost stationary evolution was a totally acceptable
hypothesis.

The situation started to get more complicated with the discovery of mass ez-
tinctions which characterize particular eras in time. Examples of the signatures
of these sudden changes in the ecosystems are reported in Fig 1.3, borrowed
from Ref. [RS82].

Paleontologists tried to find exogenous justifications for such empirical “anoma-
lies”. The most popular scenario of an external shock leading to large scale ex-
tinction is, without any doubt, the impact of an asteroid in the Gulf of Mexico
at the end of the Cretaceous period which, “traditionally”, signs the end to the
reign of the dinosaurs on Earth.

A different kind of interpretation for the discontinuities in the fossil records is
the one proposed by Eldredge and Gould [EG72] in the early seventies. They pos-
tulated an evolution that is almost stationary apart from periods during which
it is naturally “punctuated” by rapid, avalanche-like, changes. This theory, ref-
ereed as punctuated equilibrium, although being nothing more than an empirical
observation in its original form, for the fist time took into consideration that
ecosystems can actually evolve according to a very complex, nonlinear, dynam-
ics and not follow a “smooth” path that can be deviated just by external factors.
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Figure 1.3: (a) Total extinction rate, measured in million years, for families of
marine invertebrates and vertebrates. Statistically significant mass extinctions
are evident at the end of the Ordovician (ASHG), Permian (GUAD-DZHULF),
Triassic (NOR) and Cretaceous (MAEST) periods [RS82]. (b) Diversity through
time for families of marine vertebrates and invertebrates. The numbers in the
plot indicate five mass extinctions in which a clear drop in the biodiversity are
recognizable [RS82].

This new point of view raised the attention of many physicists and put the
evolutionary problem under a new light. Nowadays there is a quite general
agreement in the physics community, that the dynamics of ecosystems follow a
path that is actually very similar to the one observed in spin glasses. In fact,
the complexity of the energy landscape at low temperatures, could represent
the potential fitness for the ecology. If the evolving system has reached the
bottom of a deep fitness valley, then we are in an almost equilibrium situation
and drastic changes will rarely happen. The frequency of the changes in the
ecosystem becomes inversely proportional to the barrier heights from one valley
to the next. The smaller the barriers are, the more frequent the changes are. If
we would check the evolution of the species in the geological record, we would
find many fossils corresponding to the position at the bottom of the valley where
the species remained for so long, but few or none corresponding to the crossing
of the ridge, which happened very fast on the geological time scale.

Another physical interpretation of the fossil record is addressed in the frame-
work of self-organized criticality. A review on the subject and the way it applies
to this problem is discussed in detail in chapter 5. A general review of the
statistical mechanics approach to the evolutionary problem can be found in
Refs. [NP99] and [Dro01].
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1.3.4 The stock market

In the past few years an increasing number of physicists have been involved in
the study of economic systems with particular emphasis on the financial markets.
Actually, this is not the first time that physics and economics have met. Newton
himself, Majorana and, more recently, Mandeldbrot, actively worked in this field.
Nevertheless, the interest, and therefore the relative number of publications, has
never been as broad as today.

What is the reason behind this sudden interest? Probably there are many,
including better chances to find jobs outside the academia. But, without any
doubt, a huge contribution has been given by the technological changes that took
place during the ’80s, leading to an electronic trading system which enabled the
storage of large amounts of data. Before that period, the number of data avail-
able was quite scarce and daily data were actually considered “high-frequency”.
A large sample was probably composed by something of the order of 1000 points.
In these circumstances, apart from some sporadic attempts [Man97], physicists
were still perplexed about studying systems which they could not empirically
test against models in a statistically reliable way. But, as just mentioned, the
new technologies changed everything radically: high frequency data moved from
one day period to one minute in the most liquid markets and the number of
samples available become easily larger of that of many physical experiments.

Once these large databases became available to the public, physicists began
to tackle this new area, no more bounded by the initial skepticism. The first
results were surprising: different empirical works revealed the importance of
some stylized features of the stock market that were rarely taken into consider-
ation by economists.

What physicists found was actually what they always suspected: the stock
market is, indeed, a complex system and its dynamical behaviour is not very
different from that of physical systems! This not in its loose meaning but,
strictly, from a quantitative point of view. In fact concepts they were very
familiar with, such as power-law distributions, correlation, scaling and random
processes, appeared in the data sets. Fig. 1.4, from Ref. [MS97], shows the time
series from a turbulent flow and the stock market: similarities are evident.

This new experimental revolution paved the way for applying concepts from
phase transitions, statistical mechanics, nonlinear dynamics and disordered sys-
tems to the stock market that started to be regarded, de facto, as a physical
system.

It is also important to stress that not only empirical studies were carried
out but also different physically-related models started to be developed in paral-
lel, leading to new ideas regarding the underlying basic mechanism of the stock
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Figure 1.4: (a) S&P500 index for the US market from January 1984 to December
1989. The sampling period is 1 hour. (b) Price differences in the S&P500
calculated for the time series in (a). (¢) Time series of wind velocity recorded
for high Reynolds number, R; ~ 1500, in the atmosphere. Velocity differences in
the time series of plot (c). Note the similarities between these two, apparently,
different systems. The plots in this figure are borrowed from Ref. [MS97].

market dynamics: well established concepts such as disordered frustrated sys-
tems, self-organization, scaling and universality were brought to this novel field
of research.

Since the 1990s, papers on economic subjects started to be published in new
interdisciplinary journals as well as in established ones such as Physical Review.
At the same time conferences around the world were organized: econophysics
was born.

Nowadays, there are a few physicists still arguing that in finance is not possi-
ble to perform large scale experiments and, therefore, it has not much to do with
physics. But this claim is only partially true. Many relevant areas of physics
are effected by exactly the same limitations. Examples include astrophysics,
atmospheric physics and geophysics. The study of the stock market, and the
economic world in general, must be considered a proper branch of complex sys-
tems research, as much as spin glasses or turbulence.

A more quantitative discussion of econophysics and its applications is left
for the next chapters of the thesis. An introduction to the new emerging field
can be found in the book of Mantegna and Stanley [MS99] and in the report of
Feigenbaum [Fei03].

I would like to conclude this short introduction on stock markets with a
mention to a fact that took place recently in an Econophysics Colloquium in
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Canberra, Australia. In this occasion an economist said that if you trow a dead
bird in the air, every physicist will be able to predict the dynamics of its body.
But if the bird is alive there is no way the physicist can say something: this is
a sociological issue. This is probably true, but this is not the way a physicist
thinks either! He will never be able to predict where a single bird will fly but
if you have a very large number of birds, hundreds of them, he will probably
guess correctly what it is going to happen once you set them free (at least for a
while)!

1.4 OQutline

The rest of the thesis is organized as follows. In Chapter 2 we empirically inves-
tigate to what extent the self-organization of the stock market can be related
to the physical frameworks of self-organized criticality and discrete scale invari-
ance. In Chapter 3 we use cellular automata to show the role played by the
herding behaviour of stochastic agents. This is linked with the large fluctuations
observed in the price time series. Chapter 4 is dedicated to a numerical ex-
ploration the importance of complex, scale-free, networks both in physical and
social systems. In particular, the antiferromagnetic Ising model and stochastic
opinion formation are studied. The implications of explicit interactions in an ex-
tremal dynamic model for biological evolution are discussed in Chapter 5. This
model can also be relevant for the dynamics of firms in the economic contest.
General conclusions are left for the last chapter.






Self-organization in the stock
market: avalanche dynamics and
log-periodic oscillations

In the present chapter we search for quantitative imprints of self-organization in
one of the most widely studied complex systems: the stock market. In particular,
we study the dynamics of several world-wide price indices for indications of self-
organized criticality (SOC) and embedded log-periodic structures. The main
feature of SOC systems is that their evolution, from one metastable state to
another, takes place in avalanches of elementary events, which are triggered as
soon as a certain threshold is exceeded. The criticality refers to characteristic
power law distributions in size and duration of these avalanches. Self-similar,
log-periodic oscillations, instead, are believed to be the result of feedback and
herding processes, enhanced by a discrete scale-invariant hierarchy in market
organization, during particular periods. The detection of these patterns have
important implications in crash forecasting. Evidence for both phenomena are
pointed out. In particular we found that the dynamics of the stock market can
be described well by an avalanche behaviour alternated by quiescent periods.
Correlation between the market avalanches has also been found, implying non-
trivial memory effects. Moreover, we show evidence for fractal log-periodicity
in the most important western indices during a recession period starting at the
beginning of 2000 and lasting until the end of 2003. The results presented in
this chapter are the summary of two papers published in international physical
journals in 2005 [BLT05a, BDL*05].

2.1 Self-organization in complex systems

The term self-organization refers, in general, to the emergence of large-scale
structures in non-linear extended systems: a macroscopic spatio-temporal or-
dered state emerges solely by the non-linear interactions of the microscopic el-
ements composing the system itself. Moreover, the interactions between these
elements are, most of the time, just at local level, that is, each elementary compo-
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nent have no information of the global state. As for the cellular automata men-
tioned in the introductory chapter, short range forces are sufficient to drive the
system toward a macroscopic coherent phase. The concept of pattern-emergence
seems to be widely recognized in the literature as the most striking feature of
self-organization. Examples of emergent natural patterns are shown in Fig. 2.1

Figure 2.1: Two dimensional wave pattern in the Belousov-Zhabotinski reaction
(a) and ripples in a sand dune (b).

Now, is it possible that human society itself, composed by highly individual-
istic people, share features of self-organization? There is no doubt that human
beings have a natural tendency to modify the environment and take decisions
according to their personal needs and ideas of “coherence”. This concept of
“tuning” is very subjective and, in principle, there is no apparent reason why
the interaction of several individuals should give rise to recurrent patterns on a
large-scale.

In the present chapter we show that this is actually the case and, therefore,
human society is not different from other complex systems. In particular we
quantitatively study the phenomenon of self-organization in one of the most
interesting and widely studied environments ruled by the human interactions:
the stock market.

2.1.1 Self-organization in the stock market

Human society appears to be one of the most fascinating examples of a self-
organized system. The complex interactions between individuals can give rise
to patterns and coherent events similar to those observed in Nature. A widely
studied example of human organization is the stock market. In this particular
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case we have actual measures of the interactions between agents, that is the
temporal evolution of a stock price. Under this circumstance, it is possible
to quantify the strength of coherence and synchronization in human behaviour
when it is driven by certain expectations, as, for example, the performance of a
certain stock. Moreover, by analyzing stock market time series we can get rid of
the intrinsic ambiguity associated with the term “coherent event” and “pattern”
and define some proper measures for the self-organization of this system.

In sections. 2.2 and 2.3 we summarize the main concepts of a particular kind
of self-organization and its relevance in the stock market context, that is the self-
organized criticality (SOC). A possible method for revealing SOC from a time
series is explained in Sec. 2.4 while the results of its application to financial data
are reported in Sec. 2.5. Embedded log-periodic oscillations of the price index
can be regarded as a further symptom of self-organization and correspond to an
underlying discrete scale invariance (DSI). This subject is discussed in Sec. 2.6
and the corresponding empirical findings are shown in Sec. 2.8. Discussions and
conclusions are left for the last section of this chapter.

2.2 Self-organized criticality: how nature works?

In the late eighties, two seminal papers by Bak, Tang and Wiesenfeld (BTW)
[BTW87, BTW88|, caught the attention of the physics community. In these
works the authors argued that the dynamical behaviour of many complex sys-
tems can be explained by the concept of self-organized criticality (SOC) [Jen98,
Tur99]. The key concept of SOC is that complex systems, although obeying
different microscopic physics, may exhibit similar dynamical behaviour. In par-
ticular, the statistical properties of these systems can be described by power
laws, reflecting a lack of any characteristic scale. These features are equivalent
to those of physical systems during a phase transition, that is at the critical
point. The applicability of this framework to natural systems has been par-
ticularly emphasized in the actual “manifesto” of self-organized criticality, the
somehow controversial book of Bak “How Nature works” [Bak99].

It is worth mentioning that one of the main criticisms of this theory is
that the system does not reach the critical state “naturally”, as originally
claimed [BTW87, BTW88]. Rather a certain degree of implicit tuning is nec-
essary. In particular, local conservation laws and specific boundary conditions
seem to be important ingredients for the appearance of power laws [Jen98].

The classical example of a system exhibiting SOC behaviour is the 2D sand-
pile model [BTW87, BTW88, Jen98, Tur99], originally proposed as a toy model
for energy dissipation in turbulent flows. Here the cells of a 2D grid are ran-
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domly filled, by an external driver, with “sand”. When the gradient between
two adjacent cells exceeds a certain threshold a redistribution of the sand occurs,
leading to more instabilities and further redistributions. The storing of energy
and then a rapid dissipation in an avalanche-like fashion is probably the main
feature of systems exhibiting SOC behaviour. This implies a dynamics that is
governed by the presence of, at least, two well separated time scales (driver and
avalanches for the sandpile) and by a threshold for discharge. The benchmark
of the sandpile model, and indeed of all systems exhibiting SOC, is that the
distribution of the avalanche sizes, their duration and the energy released, obey
power laws.

The framework of self-organized criticality has been claimed to play an im-
portant role in solar flaring [LH91, LHMB93], space plasmas [Cea03, Vea03] and
earthquakes [BT89, SS89, SDS90, HSSS98| in the context of both astrophysics
and geophysics. In the biological sciences, SOC, has been related, for example,
with evolution/extinction of species [BS93]. Some work has also been carried out
in the social sciences. In particular, traffic flow and traffic jams [NH93, Nag95,
Nag85,Nag96], wars [RT98] and economics [Tur99, BCSW93, BPS97, Fei03] dy-
namics have been studied. A more detailed list of subjects and references related
to SOC can be found in the review paper of Turcotte [Tur99].

2.3 Self-organized criticality and stock market
dynamics

The presence of SOC in economics, seen as a complex self-interacting system
have been suggested in different works [Tur99, BCSW93, BPS97, Fei03] but em-
pirical studies are still lacking. In the present discussion we attempt to formal-
ize the presence of SOC behaviour in the stock market in terms of scale-free
avalanche dynamics. In this framework, we look at the stock market as a sort
of sandpile. Periods of relative calm can be suddenly interrupted once a certain
threshold, as for example the expectation of the agents, is reached and a period
of frantic activity and large fluctuations of prices, equivalent to an avalanche,
sets in [BLT05a].

In order to gain some insight into this problem, we analyze the tick-by-tick
behaviour of the Nasdaq E-mini Futures index (NQ), P,(t), from 21/6/1999
to 19/6/2002 for a total of 2! data. A sample of this data is illustrated in
Fig. 2.2(a). In particular, we study the logarithmic returns of this index, defined
as

r(t) = mP(t) —In Po(t — 1), (2.1)
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Figure 2.2: Sample of the tick-by-tick time series of the Nasdaq E-mini Fu-
tures(a), as well as the corresponding returns (b).

and plotted in Fig. 2.2(b).

To examine the extent to which our findings apply to other stock market
indices we also studied the S&P ASX50 (for the Australian stock market) at
intervals of 30 minutes over the period 20/1/1998 to 1/5/2002, for a total of 2!
data points. Possible differences between daily and high frequency data have
also been taken into consideration though the analysis of the Dow Jones daily
closures from 2/2/1939 to 13/4/2004. The results are presented in Sec. 2.5.

From a visual analysis of the time series of returns, Fig. 2.2(b), we observe
long periods of relative tranquility, characterized by small fluctuations, and pe-
riods in which the index goes through very large fluctuations, equivalent to
avalanches, clustered in relatively short time intervals. These may be viewed as
a consequence of a build-up process leading the system to an extremely unstable
state. Once this critical point has been reached, any small fluctuation can, in
principle, trigger a chain reaction, similar to an avalanche, which is needed to
stabilize the system again.

The issue regarding the presence of SOC in the stock market is not only of
theoretical importance, since it would lead to improvements in financial model-
ing, but could also enhance the predictive power [CL96] of econophysics.



2. Self-organization in the stock market: avalanche dynamics and
22 log-periodic oscillations

4 Origina Time Series
o Filtered Time Series | |
— Gaussian E
—0.01
=
S
a
A
A, 1
‘. — 0.0001
A Ay
A At A

. L . 1e-06

-20 -10

—~Oor—
=
o
N
(e}

Figure 2.3: PDF of the logarithmic returns of the NQ before (triangles) and
after filtering (circles), with C' = 2. The original time series is reduced to the
level of noise. A Gaussian distribution is plotted for comparison. The insert
shows the fourth member of the Daubechies wavelets used in the filtering.

2.4 Looking for avalanches: the wavelet method

Recent empirical studies have shown that the dynamical behaviour of the fluctua-
tions in financial time series is similar to that of hydrodynamic turbulence [GBP*96,
MS97] — although differences have also been pointed out [MS97]. Both the spa-
tial velocity fluctuations in turbulent flows and the stock market returns show
an intermittent behaviour, characterized by broad tails in the probability dis-
tribution function (PDF), P, and a non-linear multifractal spectrum [GBP*96].
The PDF for the normalized logarithmic returns,

1) —» T (22)

where (...); is the average over the length of the sample, /, and o the standard
deviation, is plotted in Fig. 2.3. The departure from a Gaussian behaviour is
evident, in particular, in the peak of the distribution and in the broad tails,
which are related to extreme events.

The empirical analogies between turbulence and the stock market may sug-
gest the existence of a temporal information cascade for the latter [GBP*96].
This is equivalent to assuming that various traders require different information
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according to their specific strategies. In this way different time scales become
involved in the trading process. In the present work we use a wavelet method
in order to study multi-scale market dynamics.

The wavelet transform is a relatively new tool for the study of intermittent
and multifractal signals [Far92]. The approach enables one to decompose the
signal in terms of scale and time units and so to separate its coherent parts —
that is, the bursty periods related to the tails of the PDF — from the noise-like
background, thus enabling an independent study of the intermittent and the
quiescent intervals [FSK99].

The continuous wavelet transform (CWT) is defined as the scalar product of
the analyzed signal, f(t), at scale  and time ¢, with a real or complex “mother
wavelet” , ¥(t):

u—t
n

W f(8) = (f ) = / f(um,t(u)du:% / FNdu.  (23)

The idea behind the wavelet transform is similar to that of windowed Fourier
analysis and it can be shown that the scale parameter is indeed inversely pro-
portional to the classic Fourier frequency. The main difference between the two
techniques lies in the resolution in the time-frequency domain. In the Fourier
analysis the resolution is scale independent, leading to aliasing of high and low
frequency components that do not fall into the frequency range of the window.
However in the wavelet decomposition the resolution changes according to the
scale (i.e. frequency). At smaller scales the temporal resolution increases at
the expense of frequency localization, while for large scales we have the oppo-
site. For this reason the wavelet transform is considered a sort of mathematical
“microscope”. While the Fourier analysis is still an appropriate method for
the study of harmonic signals, where the information is equally distributed, the
wavelet approach becomes fundamental when the signal is intermittent and the
information localized.

The CWT of Eq.(2.3) is a powerful tool to graphically identify coherent
events, but it contains a lot of redundancy in the coefficients. For a time series
analysis it is often preferable to use a discrete wavelet transform (DWT). The
DWT can be seen as a appropriate sub-sampling of Eq.(2.3) using dyadic scales.
That is, one chooses n = 27, for j = 0, ..., L — 1, where L is the number of scales
involved, and the temporal coefficients are separated by multiples of n for each
dyadic scale, t = n2/, with n being the index of the coefficient at the jth scale.
The DWT coefficients, W ,,, can then be expressed as

Win = (f,thym) = 27972 / £ () (29 — n)du, (2.4)
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where ;,, is the discretely scaled and shifted version of the mother wavelet.
The wavelet coefficients are a measure of the correlation between the original
signal, f(t), and the mother wavelet, 1(¢) at scale j and time n. In order to be
a wavelet, the function (¢) must satisfy some conditions. First it has to be well
localized in both real and Fourier space and second the following relation

Cy =2 /+°° W(]]zwdl{: < o0, (2.5)

—0oQ

must hold, where (k) is the Fourier transform of t(t). The requirement ex-
pressed by Eq.(2.5) is called admissibility and it guarantees the existence of the
inverse wavelet transform. The previous conditions are generally satisfied if the
mother wavelet is an oscillatory function around zero, with a rapidly decaying
envelope. Moreover, for the DW'T, if the set of the mother wavelet and its
translated and scaled copies form an orthonormal basis for all functions having
a finite squared modulus, then the energy of the starting signal is conserved in
the wavelet coefficients. This property is, of course, extremely important when
analyzing physical time series [KCV01]. More comprehensive discussions on
the wavelet properties and applications are given in Refs. [Dau88| and [Far92].
Among the many orthonormal bases known, in our analysis we use the fourth
member of the Daubechies wavelets [Dau88|, shown in the insert of Fig. 2.3.
The spiky form of this wavelet insures a strong correlation for the bursty events
in the time series. The following method of analysis has also been tested with
other wavelets and the results are qualitatively unchanged.

The importance of the wavelet transform in the study of turbulent signals lies
in the fact that the large amplitude wavelet coefficients are related to the extreme
events in the tails of the PDF, while the laminar or quiescent periods are related
to the ones with smaller amplitude [KCVO01]. In this way it is possible to define
a criterion whereby one can filter the time series of the coefficients depending on
the specific needs. In our case we adopt the method used in Ref. [KCVO01] and
originally proposed by Katul et al. [Kea94]. In this method wavelet coefficients
that exceed a fixed threshold are set to zero, according to

- { Win if W2, < C- (W2 ),

- , 2.
W 0  otherwise, (2.6)

here (...), denotes the average over the time parameters at a certain scale and
C is the threshold coefficient. Once we have filtered the wavelet coefficients
Wj,n we perform an inverse wavelet transform, obtaining a smoothed version,
Fig. 2.4(b), of the original time series, Fig. 2.4(a). The residuals of the original
time series with the filtered one correspond to the bursty periods which we aim
to study, Fig. 2.4(c).
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Figure 2.4: A sample of the original time series of logarithmic returns for the
NQ is shown in (a), same as Fig. 2.2(b). The filtered version is shown in (b).
The noise-like behaviour of this time series is evident. The residual time series
is shown in (c¢). This corresponds to the high activity periods of the time series,
related to the broad wings of the PDF. The cut-off parameter in this case is

C =2

The time series of logarithmic prices can also be reconstructed from the
residuals, as shown in Fig. 2.5. Its behaviour is very different from the one
reconstructed from the filtered Gaussianly distributed returns. Note how, in the
latter case, the time series is completely independent of the actual market price.

At this point one might wonder if it is possible to tune the parameter C' to
maximally remove the uninteresting GGaussian noise, associated with the efficient
phase of the market where movement can be well approximated by a random
walk [MS99], from the original signal. Fig. 2.6 illustrates the extent to which the
filtered signal is Gaussian as a function of this parameter. Here we report the
value of the excess of kurtosis, K, = (r*)/(r?)2—3, where (...) is the average of the
filtered time series over the period considered. For pure GGaussian noise this value
should be 0. With this test we are able to identify C' ~ 1 as optimal for both
the NQ and Dow Jones. The Gaussian PDF of the filtered time series, C' = 2, is
shown in Fig. 2.3, no skewness is present as well. Moreover, an examination of
the standard autocorrelation function of the filtered time series shows a complete
temporal independence, further confirming that we have successfully filtered
pure Gaussian noise.
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Figure 2.5: The Dow Jones time series is superimposed with the time series
reconstructed from the filtered returns and the residual returns remaining after
the filtered returns are subtracted from the original returns. The price behaviour
generated by the “efficient” or filtered returns is largely independent of the
observed price. The filtering parameter, in this case, is C' = 1.
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Figure 2.6: The excess of kurtosis, K., plotted as a function of the filter param-
eter C' for the NQ and Dow Jones indices. A sample of Gaussian noise is also
included for contrast. An optimal value of C' ~ 1 is found, optimally filtering
the original market time series to the level of noise.

However, despite the existence of an optimal parameter for the filtering, in
the next section we show that the precise value of C' does not change qualitatively
the results our analysis.

As a final remark, we would like to point out how a simple threshold method
would not be appropriate for this kind of analysis. In fact, we would include in
the filtering some non-Gaussian returns at small scales that are relevant in our
analysis. This drawback is illustrated in Fig. 2.7 (Top) where the PDF for the
returns of the NQ, filtered using a fixed threshold of r;, = 5 standard deviations
is shown by the open squares. In this case broad wings, related to events that
do not follow Gaussian statistics, are clearly evident.

2.5 Empirical results

In the previous section we have introduced the wavelet method in order to
distinguish periods of high activity and periods of low or noise-like activity. The
results are shown in Fig. 2.3 for C' = 2. Once we have isolated the noise part
of the time series we are able to perform a reliable statistical analysis on the
coherent events of the residual time series, Fig. 2.4(c). In particular, we define
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Figure 2.7: Comparison between the PDF of the original time series for the NQ
and its wavelet filtered version for C' = 1. A Gaussian distribution is plotted for
visual comparison. The simple threshold, r;;, = 5, method for filtering is also
shown. In this case it is clear that we do not remove just Gaussian noise, but
also coherent events that can be relevant for the analysis.

coherent events as the periods of the residual time series in which the volatility,
u(t) = |r(t)], (2.7)

is above a small threshold, ¢ ~ 0. The smoothing procedure is emphasized by
the change in the PDFs before and after the filtering — as shown in Fig. 2.3.
From this plot it is clear how the broad tails, related to the high energy events
that we want to study, and the associated central peak are cut-off by the filtering
procedure. The filtered time series is basically a Gaussian, related to a noise
process.

A parallel between avalanches in the classical sandpile models (BTW models)
exhibiting SOC [BTW87,BTW88] and the previously defined coherent events in
the stock market is straightforward. In order to test the relation between the
two, we make use of some properties of the BTW models. In particular, we
use the fact that the avalanche size distribution and the avalanche duration are
distributed according to power laws, while the laminar, or waiting times between
avalanches are exponentially distributed, reflecting the lack of any temporal
correlation between them [BCGT99, WSM98|. This is equivalent to stating that
the triggering process has no memory.

Similar to the dissipated energy in a turbulent flow, we define the avalanche
size, V, in the market context as the integrated value of the squared volatility,
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over each coherent event of the residual time series. The duration, Dy, is defined
as the interval of time between the beginning and the end of a coherent event,
while the laminar time, L, is the time elapsing between the end of an event and
the beginning of the next one. The time series for V', D; and L; are plotted in
Fig. 2.8 for C = 2.
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Figure 2.8: Time series for the avalanche size, V, for the NQ, (a); duration, D,
of the avalanches, (b); and laminar times, L; (c). The plots are obtained using
C = 2 as the filtering parameter.

The results for the statistical analysis for the NQ index are shown in Figs. 2.9,
2.10 and 2.11, respectively, for the avalanche size, duration and laminar times.
The robustness of our method has been tested against the energy threshold, we
perform the same analysis with different values of C.

A power law relation is clearly evident for all the quantities investigated,
largely independent of the specific value of C'. At this point is important to
stress the difference in the distribution of laminar times between the BT'W model
and the data analyzed. As explained previously, the BTW model shows an
exponential distribution for the latter, derived from a Poisson process with no
memory [BCGT99, WSM98|. The power law distribution found for the stock
market instead implies the existence of temporal correlations between coherent,
events.

This empirical result rules-out the hypothesis that the stock market is in a
SOC state, at least in relation to the classical sandpile models.

In order to extend the study of the avalanche behaviour to different markets,
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Figure 2.9: Probability distribution function for the avalanche sizes tested
against several values of C. The power law behaviour is robust with respect
to this parameter. Results for NQ.

we perform the same analysis over the 30 minute returns for the S&P ASX50.
The results are shown in Figs. 2.12, 2.13 and 2.14. While the power law scaling
for the laminar times is still very clear, the power law for the other quantities is
to less precise, perhaps reflecting a different underlying dynamics compared to
the NQ. On the other hand it is also important to stress the difference in length
of the two time series analyzed. While for the NQ we used 2!° data points, only
2'4 were available for the S&P ASX50, making the first study statistically more
reliable.

We also investigate the possibility of differences between high frequency data
and daily closures by considering a sample of 2!* daily closures of the Dow Jones
index, from 2/2/1939 to 13/4/2004. The power law behaviour is consistent with
that found for the high frequency data, as shown in Figs. 2.15, 2.16 and 2.17.

Remarkably, the same power law features have been also observed in other
physical contexts [BCG199, KCV01,Sea01, Aea01,Cor04]. For the solar flaring,
Boffetta et al. [BCGT99] have shown that the characteristic distributions found
empirically are more similar to the dissipative behaviour of the shell model for
turbulence [BJPV98, GCI8] than to SOC. On the other hand the intermittency
in turbulent flows discussed in Sec 2.4 is believed to be the result of a non-
linear energy cascade that generates non-Gaussian events at small scales [Fri95]
where the shape of the PDF is extremely leptokurtic. At larger scales the spatial
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Figure 2.10: The duration of the high activity periods show a power law distri-
bution, independent of the value of C'. Results for NQ.

correlation decreases and the PDF converges toward a Gaussian. These features
imply the absence of global self-similarity — which, as we have noted, is an
intrinsic component of SOC models [Cea02].

Freeman et al. [FWRO00] have argued that, although an exponential distri-
bution holds for classical sandpile models, there exist some non-conservative
modifications of the BTW models in which departures from an exponential be-
haviour for the L, distribution [CO92, OC92, HK92, CC92] are observed in the
presence of scale-free dynamics for other relevant parameters. The question re-
mains whether or not these systems are still in a SOC state [FWRO00]. If we
assume that the power law scaling of the laminar times corresponds to a break-
down of self-organized criticality, then we face the problem of how to explain the
observed scale-free behaviour of the non-conservative models. This ambiguity
can be resolved if we assume that the system is in a near-SOC state, that is
the scaling properties of the system are kept even if it is not exactly critical
and temporal correlations may be present [FWRO00, CP00]. Another possible
scenario is related with the existence of temporal correlations in the driver [DL-
RVV97,NCML01,SNC02,LdAGO05, BMO05]. In this case the power law behavior
of the waiting time distribution would be explained and the realization of a SOC
state preserved [DLRVV97,SNC02].
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Figure 2.11: Power law distribution of laminar times for different values of C.
Results for NQ.

2.6 Self-similar log-periodic oscillations in the
stock market: self-organization and
predictability

We have seen that, in the context of self-organized criticality, complex systems
can evolve according to an intermittent, avalanche-like dynamics. In this fractal
framework, the very large events are nothing but a magnification of the smaller
ones and, therefore, present no peculiarity. This fact, in a certain way, makes
predictions in the SOC environment very difficult, as a proper formalism in this
direction is still lacking, although there have been some attempts [CL96|.

On the other side, it is well known that extreme events, or outliers, can
rise in periods of high activity. These can be regarded as self-generated shocks
that may influence the dynamics of the systems for a relative long periods after
their appearance. Examples of this behaviour in complex systems include earth-
quakes, landslides and volcanic eruptions [Sor98]. The stock market itself is not
an exception. During stock market crashes, as for example the one of October
1987, millions and millions of dollars evaporate in few minutes. Because of their
peculiar nature, we may think about using a specific framework, possibly fractal
and related to self-organization, in order to have insight into the dynamics. As it
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Figure 2.12: Probability distribution function for the avalanche sizes for the
S&P ASX50, from 20/1/1988 to 1/5/2002.

is possible to imagine, finding a proper theory for the description of these events
would be of great practical and theoretical importance since it would deeply
enhance the chances of anticipating, and therefore preventing, risky situations.

Some authors [Sor03b] have attributed the market crashes to a slow build-up
of long range correlations between agents operating in the market itself, leading
to a self-reinforcing imitating, or “herding”, behaviour. Once the system has
reached the critical state it becomes so sensitive that every exogenous shock,
that is every small perturbation, can lead to a collapse: a large part of the
agents involved in the trading can synchronize to sell their stocks.

On the other side, what has been empirically observed is that the build-up
process leading to the crash is characterized by a power law increase of the price
with superimposed log-periodic oscillations. The same kind of patterns have also
been observed in recovery periods after market crashes [Sor03b, Sor03a]. The
presence of these log-periodic structures before and after stock market crashes
can be interpreted as an imprint of an intrinsic discrete scale invariance (DSI)
in this complex system [Sor03b].

In the next section we give a brief introduction of the DSI framework. More-
over, to shed some light on this debated issue, we analyze the daily closures of
four of the most important indices worldwide since 2000: the DAX for Germany
and the Nasdaql100, the S&P500 and the Dow Jones for the United States. The
results are presented in Sec. 2.8. In the same section we also show the spec-
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Figure 2.13: Distribution of the duration of the coherent events for the S&P
ASX50.

tral similarities between the data and the Weierstrass-type function, used as a
prototype of a log-periodic fractal function.

2.7 Discrete scale invariance

It is well known that many physical systems undergo phase transitions around
specific critical points in the parameter space [Sta71,Sor04]. Near these points
the system is strongly correlated and many characteristic quantities can be ap-
proximated well by power laws, related to the scale-invariance of the system in
that state. If we assume that ¢(t) is an observable near a critical point, t., as
for example the susceptibility of the Ising model near the critical temperature,
for a change of scale ¢t — At we have

P(At) = pug(t), (2.8)

where = A since ¢(t) ~ t*. The power law is a solution of Eq.(2.8) for VA.
A weaker version of the over mentioned scale invariance is the discrete-scale
invariance (DSI) [Sor98]. In this case the system becomes self-similar only for
an infinite but countable set of values of the parameter A\. That is Eq.(2.8)
holds only for A = Ay, Ao... where in general )\, = A". In this case A represents
a preferential scaling factor that characterizes a hierarchical structure in the
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Figure 2.14: Distribution of laminar times for S&P ASX50 index.

system. The solution of Eq.(2.8) can be written in a more generic form that
accounts also for a possible discrete scale invariance:

o(t) =1 © (112((;))) , (2.9)

where O is an arbitrary periodic function of period 1. Using a first order Fourier
expansion on Eq.(2.9) and writing t — |t, — | we obtain

d(t) = A1 + Aglt. — t|* + Aslte — t|* cos(wln [t. — t| — ), (2.10)

where w = 27/In(A). The dominant power law behaviour, a hallmark of all
critical phenomena, and the log-periodic corrections to the leading term are the
main features of Eq. (2.10).

Sornette, Johansen and Bouchaud [SJB96,SJ97| first pointed out how dif-
ferent price indices in the stock market show a power law increase with super-
imposed accelerating oscillations just before a crash. The remarkable fact was
that the log-periodic formula (2.10), derived for DSI systems, provided a very
good approximation for this empirical fact. This led them to conjecture about
the existence of a critical point in time, ., for which the market can undergo a
phase transition (crash).

According to this framework the stock market is seen as a self-organized
system that drives itself toward a critical point. Just as the Ising model has a
parameter governing the temperature of the system and a critical temperature
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Figure 2.15: Probability distribution function for the avalanche sizes for the Dow
Jones daily closures, from 2/2/1939 to 13/4/2004.

where the system undergoes a phase transition, it is postulated that the market
also has such an underlying parameter which takes the critical value at time
t.. The appearance of log-periodic oscillations has been related to a discrete
hierarchal structure of the traders. Near the critical point, when the market
is very compact and unstable, every perturbation can spread throughout the
system: a common decision to sell by a certain group in the hierarchy of traders
can trigger a herd effect, leading to a crash. This concept, in a way, is similar to
SOC.

Since the first paper by Sornette, Johansen and Bouchaud [SJB96] many
physicists have been attracted by the idea of phase-transitions in a self-organized
stock market [FF96, VBMA98, DRS99, DGRS03], even if criticisms have been
also raised [LPC199,11i99, Fei01]. A recent review on the subject can be found
in Ref. [Sor03b].

An intriguing scenario has been proposed by Drozdz and coworkers [DRS99,
DGRSO03]. Inspired by theoretical consistency arguments, they found empirical
evidence that short time log-periodic structures can be nested within log-periodic
structures on a larger scale. The appearance of these self-similar periods, one
inside the other, has been related to the underlying fractal nature of the DSI,
giving rise to a multi-scale log-periodicity. Moreover, the existence of a pref-
erential scaling ratio A ~ 2 has been pointed out for both the leading pattern
and the related sub-structures. This last fact led them to formulate a univer-
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Figure 2.16: Distribution of the duration of the Dow Jones index.

sality hypothesis for the parameter A and as a consequence they fixed a priori
the frequency of the oscillations to correspond to A = 2. In this way, the pre-
dictive power of Eq. (2.10) increases considerably [DRS99, DGRS03]. Further
evidence of embedded sub-structures has been reported recently by Sornette and
Zhou [SZ03,ZS04].

Log-periodic patterns have been observed not only in bullish periods of the
market but also during the “antibubbles”, or bearish periods, that follow a
market peak [JSL99,S5Z02, DGRS03,ZS03a]. An example of these log-periodic
oscillations has been documented during the long period of recession experienced
by most of the world stock markets since the middle of 2000 [ZS03a]. In this
period, which ends approximately (in our understanding) in the first months of
2003, all the most important markets world-wide are remarkably synchronized.
A simple plot of the logarithmic indices, P,(t), is provided Fig. 2.18. We believe
this is sufficient to convince the reader of this behaviour. It is nothing but an
expression of the growing globalization of the modern economy [DGRS01].

In the present work we focus on the study of the daily closures of three of the
most important international indices from 2000 until the end of September 2004:
the DAX for the German market and the S&P500, the NQ and the Dow Jones*
for the American market. We confirm (within our DSI model of Eq. (2.9)),

4The Dow Jones index has been included for historical, more that economic, reasons. In
fact, it constitutes just a small sub-set of the S&P500 basket but, nevertheless, it is considered
by many to be a good indicator for the health of the economy.
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Figure 2.17: Distribution of laminar times for the Dow Jones index.

the existence of a main log-periodic structure starting in September 2000 and
ending in November 2002 for all the indices in Sec. 2.8. Moreover, for the first
time, we identify a clear bearish sub-structure, starting around the 15th of May
2002 and ending one year later. Ongoing log-periodic oscillations with the same
characteristic frequency, starting in January 2004, also are reported.

We also address the question of a possible universality of the power law ex-
ponent «, related to the trend of the time series. We then convert the S&P500,
Nasdaq100 and the Dow Jones in Euros while the DAX is expressed in Ameri-
can Dollars. The conversion, while leaving the oscillations unaltered, seriously
distorts the trends. Therefore, no universal characteristic can be claimed for
this parameter.

A Lomb analysis of the main structure and the relative sub-structure, pre-
sented in Sec. 2.8.1, reveals that the dominating frequency of both is related
to a common value of A that is A ~ 2. A second relevant harmonic, at a fre-
quency double that of the fundamental, is also present. These results confirm
the fractal hypothesis of Drozdz at al. [DRS99, DGRS03]. Further indications
pointing to self-similar log-periodicity have been found using a Lomb analysis of
a Weierstrass-type function [BL80,GS02|, taken as prototype of a log-periodic
fractal function. The relevance of such a function for stock market log-periodic
criticality was suggested for the first time in Ref. [DRS99].



2.8 Evidence of embedded log-periodic oscillations in western stock markets
from 2000 39

— DAX
EuroStocks
ol ---- Ftsel00
2 Qﬁ‘?;}n e --- Hang Seng
ol l‘&@'? -- Nasdag100
Vil At -— Nikkei225
-+- S&P500

n
i1
my d
R )
I

BN
MWk Nk
1 At hy
.""“M""" R W\) v

Normalized Logarithmic Indices
o
T

| | | | | |
2002 2003 2004 2005
Time

1

%00

Figure 2.18: Time series of the logarithm of the most important indices world-
wide since 2000. The time series have been appropriately normalized, P,(t) —
%, where (...) denotes the average over the period under consideration
and o is the standard deviation. The synchronization of the indices during
the recession period, and further on for some, is an expression of the modern
globalized economy. The year tick in the graph marks the position of the 1st of

January of the year itself.

2.8 Evidence of embedded log-periodic
oscillations in western stock markets from

2000

The DSI model of Eq. (2.10) is used to fit the logarithm of the DAX, Nasdaq100,
S&P500 and Dow Jones. Considering that the periodic function © is arbitrary,
we take the modulus of the cosine as it provides a better representation of the
data [DGRSO03] than the cosine itself. The fitting procedure that we use is
borrowed from Ref. [SJB96]. According to that we express the parameters from
Aq, Ay and Ajz of Eq. (2.10) as a function of o, w (or A), ¢ and ¢, by imposing
the constraint that the cost function, x2, has a null derivative with respect to
them. Following the method by Drozdz at al. [DRS99, DGRS03], we fix the
parameter A, considering it to be a universal constant. In particular we choose
A = 2. If this assumption turns out to be confirmed, then the predictive power
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of the model will be increased considerably. Moreover, as we are interested here
in bearish periods only and not in predicting the most probable crash time, we
introduce a further simplification by adjusting ¢, visually. In this way there are
only two parameters left to explore: o and ¢. The results of the fits are shown
in Figs. 2.19, 2.20, 2.21 and 2.22 for the DAX, the Nasdaq100, the S&P500 and
Dow Jones respectively.
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Figure 2.19: Time series of the DAX from 1/1/2000 until 22/9/2004. A log-
periodic structure of the approximate duration of two years and starting in
September 2000 is highlighted by the solid curve labeled (A). In this case we
fix . =1/9/2000 in Eq. (2.10). A one year sub-structure is visible starting in
May 2002, as illustrated by the dashed curve (B) (¢, =16/5/2002). The dashed
dotted curve labeled (C) (t. =26/1/2004) is related to the ongoing log-periodic
oscillations. For all the fits we fixed A = 2.

A log-periodic structure starting around the 1st of September 2000 and fin-
ishing in November 2002 is clearly evident for all the sets of data considered.
Moreover a nested sub-structure starting around the 15th of May 2002 is also
visible. Log-periodic oscillations also characterize the present state of the mar-
ket. A possible origin of this behaviour can be localized at the end of January
2004.

At this point it is important to emphasize that the previous fits are obtained
for a preferential scaling coefficient, A = 2. This is already a good indication of
the universal nature of the hierarchical scaling in stock markets.

Another interesting point regards the universality of the parameter «, related
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Figure 2.20: Time series for the Nasdaq100 index from 1/1/2000 until 22/9/2004.
The critical times and the coding are the same as in Fig. 2.19. The sub-structure
starting in May 2002 is not as evident as for the S&P500 or DAX.

to the main trend of the time series. In order to have some insight into this
direction we repeat the previous fits after the conversion of the various indices
into different currencies. That is we transform the DAX from Euros to American
dollars, and the Nasdaq100, S&P500 and Dow Jones from American dollars to
Euros. The results are shown in Figs. 2.23, 2.24, 2.25 and 2.26.

It appears clear from the plots that, while the oscillatory structures are
unaltered by the currency conversion, the trends experience a serious distortion
and therefore we cannot extract a universal characteristic for the exponent .
On the other hand, one might wonder to what extent the market dynamics are
digested in a currency other than the native currency?.

2.8.1 A non-parametric approach: the Lomb analysis

In order to justify our assumption of A = 2 we perform a non-parametric test
on the angular frequency value of the log-periodic oscillations. Following the
method proposed by Johansen et al. in Ref. [JSLI9], we analyze the time series

3The problem of a change in the currency of the S&P500 index has been addressed also
in Ref. [ZS05]. In this case it was argued that the main source of distortion of this index is
related to the depreciation of the American dollar due to the feedback action of the Federal
Reserve Bank.
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Figure 2.21: Time series for the S&P500 index from 1/1/2000 until 22/9/2004.
The critical times and coding are the same as in Fig. 2.19.

of residuals, R(t), obtained by removing the leading power law trend in the

logarithm of the price, P,(t), according to

P.(t) — Ay — Aglt. — t]®
Aslt. — t|@

R(t) = (2.11)
If the model of Eq. (2.10) reproduces the behaviour of the market correctly then
the residual dependence on in the variable In(|t, — ¢|) must be a cosine function
and a spectral analysis should reveal a high peak corresponding to the angular
frequency w.

Once we have obtained the residuals, shown in the inserts of Figs. 2.27, 2.28
and 2.29, we apply a spectral decomposition of these signals according to the
Lomb algorithm [PTVF94]. This spectral algorithm makes use of a series of local
fits using a cosine function with a phase and provides some practical advantages,
compared to the classical Fourier transform, when the data under examination
are not evenly sampled, as in our case. The results of the Lomb analysis for
the periods under consideration are presented in Figs. 2.27, 2.28 and 2.29. In
these plots the angular frequency corresponding to A = 2, that is w ~ 9.06, is
represented by a vertical dashed line. The results of the analysis show, for all
the periods, a dominating peak in the vicinity of A = 2. This fact brings more
evidence to the existence of a universal scaling factor A =~ 2. It is also important
to underline how the Lomb analysis shows, in most of the cases, a second main
frequency that is about two times the leading frequency.
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Figure 2.22: Time series for the Dow Jones index from 1/1/2000 until 22/9/2004.
The critical times and coding are the same as in Fig. 2.19.

We can also assign a confidence level to the main peaks found in the anal-
ysis. Following the technique proposed in Ref. [ZS02], the ratio between the
two highest peaks in the Lomb periodogram is used to give an estimation of the
significance level of the higher peak. In selecting the peaks for the ratio are ex-
cluded the higher-order harmonics, multiples of the fundamental. All the ratios
found from our analysis are clustered in a range approximately between 3 and 6,
except for the Nasdaq100 index of Fig. 2.28. Even for a ratio of about 3, the con-
fidence level is higher than 99% assuming Gaussian noise [ZS02]. If, instead, we
assume that the noise is temporally correlated, then a fractional Brownian mo-
tion [Fed88] with Hurst exponent, H, at the worst, unrealistic, case of H = 0.9,
provides a confidence level which remains greater than 80% [ZS02]. Hence all
the peaks found by the Lomb analysis show a high statistical significance, with
the only exception being that of the Nasdaq100 where the first peak has a low
confidence level.

In order to have a better understanding of the spectral patterns just found,
we test the same method of analysis on a Weierstrass-type function [BL80,GS02].
The Weierstrass-type functions are a particular solution of the discrete renor-
malization group equation for critical phenomena [Sor04, GS02]. Defined in the
interval [0,1], these functions are characterized by a self-similar hierarchy of log-
periodic structures accumulating at a critical point ¢, (¢, can be 0 or 1 according
to particular choices of the parameters). Zhou and Sornette have shown that
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Figure 2.23: The DAX expressed in American dollars. Features are as described
in Fig. 2.19.

Weierstrass-type functions can provide a good approximation for the bearish
period of the stock market starting from 2000 [ZS03b].

The following Weierstrass-type function [Sor04,GS02] has been used as a test
for the Lomb method:

[ee]
fw(t) = ZO /\(2}D)n exp[— A"t cos(y)] cos[\"t sin ()], (2.12)
n=

where vy € [0,7/2] is a parameter that fixes the oscillatory structures. If v = 7/2
then the parameter D corresponds to the fractal dimension of the function. For
v < /2 the function becomes smooth and it is no longer fractal [Sor04, GS02]
but preserves the large scale log-periodic oscillation. Characteristic curves are
illustrated in Fig. 2.30.

Once we have chosen the test function, the same procedures as used for the
stock market time series are applied to the artificial time series generated by
Eq. (2.12) with A = 2 fixed. In this case the Lomb analysis reveals for the
fractal case (y = 7/2), apart from the clear peak at the main frequency, other
smaller, high frequency harmonics regularly spaced, as illustrated in Fig. 2.31.

The higher frequency periodic peaks are a manifestation of the fractality of
the function itself. In fact, for v < 1 those frequencies are absent. The high
frequency harmonics, in the pure fractal case (y = 7/2), are a reflection of the
self-similarity of the function at different scales.
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Figure 2.24: The Nasdaql00 expressed in Euros. Features are as described in
Fig. 2.19.

Remarkably, the real data has similar high frequency modes that have about
the same spacing as the ones artificially obtained with the Weierstrass-type
function. We can also conjecture that these modes are related, as in the previous
case, to self-similar structures in the time series. Of course, because of the lack of
points and noise effects, these harmonics are not as clear as for the Weierstrass-
type function.

The similarity in the spectral pattern between real and artificial data is an
indication of the existence of self-similar structures at different scales in stock
market time series, providing further support for the fractal framework of Drozdz
and coworkers [DRS99, DGRS03]. The sub-structure starting in May 2002 is a
clear example of self-similarity in stock market dynamics.

2.9 Discussion and conclusion

In the present chapter we have presented empirical evidence of self-organization
in the stock market. In particular, we looked for the distribution of high activity
periods, or avalanches, and self-similar log-periodic oscillation.

In the first study we have quantified the relevance of self-organized criticality
in financial trading. A proof that SOC plays a central role would be of great
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Figure 2.25: The S&P500 converted from American dollars to Euros. Features
are as described in Fig. 2.19.

theoretical importance, as this would impose some constraints on the dynamics
of this complex system. In fact, a bounded attractor in the state space would be
implied. Moreover, it would be possible to build new predictive schemes based
on this framework [CL96].

From the wavelet analysis on a sample of high frequency data for the Nasdaq
E-mini Futures index, we have found that the behaviour of high activity periods,
or avalanches, is characterized by power laws in the size, duration and laminar
times. The power laws in the avalanche size and duration are a characteristic
feature of a critical underlying dynamics in the system, but this is not enough
to claim the self-organized critical state. In fact the power law behavior in
the laminar time distribution implies a memory process in the triggering driver
that is absent in the classical BTW models, where an exponential behavior
is expected. These findings extend beyond the Nasdaq E-mini Futures index
analysis: similar quantitative behaviour has been observed in the S&P ASX50
high frequency data for the Australian market and the daily closures of the Dow
Jones index for the American market. The exponents found for the power laws
are not universal across the indices. This would be expected in the case of a
near-SOC dynamics where the shape of the distribution can be influenced by
the degree of dissipation of the system which is likely to change from market to
market.
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Figure 2.26: The Dow Jones converted from American dollars to Euros. Features
are as described in Fig. 2.19.

Therefore, we can say that, a definitive relation between SOC theory and the
stock market has not been found. Rather, we have shown that a memory process
is related with periods of high activity. This does not rule out completely the
hypothesis of underlying self-organized critical dynamics in the market. Non-
conservative systems near the SOC state can still show power law dynamics even
in presence of temporal correlations of the avalanches [FWR00, CP00]. Another
possible explanation is that the memory process, possibly chaotic, is intrinsic in
the driver. In this case the power law behavior of the waiting time distribution
would be explained and the realization of a SOC state preserved [DLRVV97,
SNC02].

The investigation of DSI has lead to the identification of, at least, three
clear log-periodic periods which characterize the behaviour of some of the most
important indices worldwide since the year 2000. Moreover, one of the log-
periodic structures found is embedded in a longer one, interestingly, both in the
decelerating market phase. This finding supports the hypothesis of self-similar
log-periodicity proposed by Drozdz and coworkers [DRS99, DGRS03]. A non
parametric analysis over these periods has also been performed. The results
of the analysis confirm the existence of log-periodic structures. Moreover, we
found further evidence for a preferential scaling factor of A ~ 2. The presence of
a higher order harmonic at a frequency that is double the fundamental can also
be related to the fractal structure of the time series. A test on a Weierstrass-
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Figure 2.27: Lomb analysis for the DAX (solid line), Nasdaq100 (dashed line),
S&P500 (dotted line) and Dow Jones (dashed-dotted line) during the period from
1/9/2000 to 30/12/2002. A main frequency around & = 9.06 (A = 2), dashed
vertical line, is clearly evident. Another important harmonic contribution can
be seen at w &~ 2w. In the insert the residuals, with the same coding, are plotted.

type function supports this hypothesis. We have also investigated a possible
universality of the power law index «. For this purpose we have converted
the price time series to different currencies, namely the DAX from Euros to
American Dollars and the Nasdaql00, the S&P500 and the Dow Jones from
American dollars to Euros. While the log-periodic oscillations remain unaltered
by this procedure, the trends come to be seriously distorted and no universality
can be claimed.

In conclusion, we found clear evidence of self-organization in the stock price
and its logarithmic returns. The relevance of a memory process has also been
pointed out for both of them. In particular, the temporal correlation of high
activity periods in the returns can be the result of some kind of dissipation of
information, similar to turbulence, or a memory process intrinsic in the driver
itself. Of course, a combination of the two processes can also be possible. The
non-linear reaction of a discrete hierarchical organization to positive or negative
feedback from the market itself can play a fundamental role in the appearance
of embedded log-periodic oscillations in the price indices.

Further theoretical and numerical studies are necessary to properly under-
stand these phenomena and, possibly, to find a coherent link between the two
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Figure 2.28: Lomb analysis for the DAX (solid line), Nasdaq100 (dashed line),
S&P500 (dotted line) and Dow Jones (dashed-dotted line) during the period
from 16/5/2002 to 3/5/2003. Regular high order harmonics are still present. As
already seen from the fit, the log-periodic behaviour of the Nasdaq100 index is
not as clear as for the other indices. The residuals are presented in the insert.

of them.
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Figure 2.29: Lomb analysis for the DAX (solid line), Nasdaq100 (dashed line),
S&P500 (dotted line) and Dow Jones (dashed-dotted line) during the period
from 26/1/2004 to 22/9/2004. A main frequency along with other higher order
harmonics are revealed. In this case the phase of the residuals for the Dow Jones
differs from the other indices, reflecting a less then perfect synchronization.
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Figure 2.30: The Weierstrass-type function of Eq. (2.12) for (a) v = 7/2, (b)
v = 0.937/2, (c) v = 0.907/2 and (d) v = 0. For all the plots D = 1.5 and
A = 2. The sum in Eq. (2.12) has been truncated at N = 32 because the function
does not change significantly beyond this value of N. The time axis has been
rescaled, as the Weierstrass-type function is defined only for ¢t € [0,1]. In the

present plots the function is fractal only in (a).
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Figure 2.31: Lomb analysis for the Weierstrass-type function of Eq.(2.12). The
self-similarity of the function in the fractal case (y = 7/2) is reflected in the
regularity of the high order harmonics. Once we smooth the function, the high
order harmonics related to the fractality disappear while the dominant frequency

of the log-periodic leading term is unaltered.





