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Abstract

The understanding of the emergent behaviour of complezr systems is probably
one of the most intriguing challenges in modern theoretical physics. In the
present Thesis we use novel data analysis techniques and numerical simulations
in order to shed some light on the fundamental mechanisms involved in their
dynamics. We divide the main core of the research into three parts, each of
which address a specific, and formally well defined, issue.

In the first part, we study the processes of self-organization and herding
in the evolution of the stock market. The data analysis, carried out over the
fluctuations of several international indices, shows an avalanche-like dynamics
characterized by power laws and indicative of a critical state. Further evidence of
criticality relates to the behaviour of the price index itself. In this case we observe
a power law decline with superimposed embedded log-periodic oscillations which
are possibly due to an intrinsic discrete scale invariance. A stochastic cellular
automata, instead, is used to mimic an open stock market and reproduce the
herding behaviour responsible for the large fluctuations observed in the price.
The results underline the importance of the largest clusters of traders which,
alone, can induce a large displacement between demand and supply and lead to
a crash.

The second part of the Thesis focuses on the role played by the complex
network of interactions that is created among the elementary parts of the sys-
tem itself. We consider, in particular, the influence of the so-called “scale-free”
networks, where the distribution of connectivity follows a power law, on the
antiferromagnetic Ising model and on a model of stochastic opinion formation.
Novel features, not encountered on regular lattices, have been pointed out. In
the former case a spin glass transition at low temperatures is present while, in
the latter, the turbulent-like behaviour emerging from the model is found to be
particularly robust against the indecision of the agents.

The last part is left for a numerical investigation of an extremal dynamical
model for evolution/extinction of species. We demonstrate how the mutual
cooperation between them comes to play a fundamental role in the survival
probability: a healthy environment can support even less fitted species.
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