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Abstract

This thesis concerns the identification of quantitative trait loci (QTL) for important traits

in cattle line crosses. One of these traits is birth weight of calves, which affects both animal

production and welfare through correlated effects on parturition and subsequent growth.

Birth weight was one of the traits measured in the Davies’ Gene Mapping Project. These

data form the motivation for the methods presented in this thesis.

Multiple QTL models have been previously proposed and are likely to be superior to

single QTL models. The multiple QTL models can be loosely divided into two categories:

1) model building methods that aim to generate good models that contain only a subset of

all the potential QTL; and 2) methods that consider all the observed marker explanatory

variables. The first set of methods can be misleading if an incorrect model is chosen. The

second set of methods does not have this limitation. However, a full fixed effect analysis is

generally not possible as the number of marker explanatory variables is typically large with

respect to the number of observations. This can be overcome by using constrained estimation

methods or by making the marker effects random.

One method of constrained estimation is the least absolute selection and shrinkage oper-

ator (LASSO). This method has the appealing ability to produce predictions of effects that

are identically zero. The LASSO can also be specified as a random model where the effects

follow a double exponential distribution.

In this thesis, the LASSO is investigated from a random effects model perspective. Two

methods to approximate the marginal likelihood are presented. The first uses the standard

form for the double exponential distribution and requires adjustment of the score equations

for unbiased estimation. The second is based on an alternative probability model for the

double exponential distribution. It was developed late in the candidature and gives similar

dispersion parameter estimates to the first approximation, but does so in a more direct

manner.

The alternative LASSO model suggests some novel types of predictors. Methods for a

number of different types of predictors are specified and are compared for statistical efficiency.

Initially, inference for the LASSO effects is performed using simulation. Essentially,

this treats the random effects as fixed effects and tests the null hypothesis that the effect

is zero. In simulation studies, it is shown to be a useful method to identify important

effects. However, the effects are random, so such a test is not strictly appropriate. After the

specification of the alternative LASSO model, a method for making probability statements

about the random effects being above or below zero is developed. This method is based on

the predictive distribution of the random effects (posterior in Bayesian terminology).

The random LASSO model is not sufficiently flexible to model most QTL mapping data.
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Typically, these data arise from large experiments and require models containing terms

for experimental design. For example, the Davies’ Gene Mapping experiment requires fixed

effects for different sires, a covariate for birthdate within season and random normal effects for

management group. To accommodate these sources of variation a mixed model is employed.

The marker effects are included into this model as random LASSO effects. Estimation of the

dispersion parameters is based on an approximate restricted likelihood (an extension of the

first method of estimation for the simple random effects model). Prediction of the random

effects is performed using a generalisation of Henderson’s mixed model equations.

The performance of the LASSO linear mixed model for QTL identification is assessed via

simulation. It performs well against other commonly used methods but it may lack power

for lowly heritable traits in small experiments. However, the rate of false positives in such

situations is much lower. Also, the LASSO method is more precise in locating the correct

marker rather than a marker in its vicinity. Analysis of the Davies’ Gene Mapping Data

using the methods described in this thesis identified five non-zero marker-within-sire effects

(there were 570 such effects). This analysis clearly shows that most of the genome does not

affect the trait of interest.

The simulation results and the analysis of the Davies’ Gene Mapping Project Data show

that the LASSO linear mixed model is a competitive method for QTL identification. It

provides a flexible method to model the genetic and experimental effects simultaneously.
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Chapter 1

Introduction

A cattle herd improvement strategy is an integral component in maximising profitability

of any beef production system. Traditionally, herd improvement has been implemented

by measuring every animal for various traits of economic importance and choosing those

animals that exhibit favourable phenotypes for breeding purposes. The favourable genes are

passed on to the next generation of animals within the herd. However, this strategy is not

practical for some traits of economic importance. For example: feed efficiency, the cost of

measurement outweighs the potential increase in profitability; and calving ease, the trait is

measured after a potentially fatal birth event. An alternative strategy that may work for

these traits is to identify genes or proxies for those genes that control these traits and then

identify animals with favourable alleles. Thus, herd improvement can occur without direct

measurement of the traits.

Incorporating the genetic information into the breeding strategy could take the form of

marker assisted selection (MAS) where a molecular marker is identified that is genetically

linked to a gene or genes that affect the trait of interest. Such markers are sometimes called

quantitative trait loci (QTL singular and plural). The QTL are generally not the causative

gene themselves. Hence, care must be taken when using these markers as the linkage phase

of the QTL and gene may differ between populations.

QTL can also be used to assist gene discovery. They identify regions of the genome that

may contain causative genes. This localisation narrows down the set of candidate genes dras-

tically. Once a causative gene is known it can be used in breeding schemes without needing

to know the linkage phase. Also, knowledge of the causative gene enhances understanding

of the quantitative trait through its affect on the biochemistry of the animal.

1.1 Overview of Literature

Here, a general overview of the literature is given to motivate the methods developed in this

thesis. A more detailed review is given in subsequent chapters. The overview consists of two

parts: QTL mapping; and statistical methods relevant to this thesis.

1
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1.1.1 QTL Mapping

The basic idea behind QTL mapping in diploid species is to statistically associate a trait of

interest to a region of the genome, measured by (molecular) markers. The idea was originally

proposed by Sax (1923), for associating quantitative traits to dichotomous measurements on

individuals. In outbreeding diploid species, such as cattle, QTL mapping is based on studying

the change in the trait means of the two inheritance classes for the different alleles of a locus

(Beckmann & Soller, 1988).

The popularity of QTL mapping has escalated with the ease of scoring molecular markers.

In essence, molecular markers measure a dichotomous variable on an individual. The appeal

of molecular markers is that it is possible to score many different markers on each individual,

quickly and cost effectively. This increases the amount of genetic information, enabling more

precise QTL mapping to occur.

A simple statistical method that was popular in early QTL mapping was examining the

differences in trait values between a single marker’s inherited allele types. Each marker is

fitted in a separate model and the QTL was deemed to be associated with the marker that

produced the best model. Typically the QTL effect is assumed to be equal to the marker

effect, even though the marker effect will be attenuated the further the marker is from

the QTL (Geldermann, 1975). To overcome this, Weller (1986) proposed a mixture model

based on a single marker. This model acknowledges that there is a possibility of cross-overs

between marker and gene and hence the marker classes may not be the gene’s classes. Lander

& Botstein (1989) extended this model by incorporating knowledge about how the markers

were related to each other (using a linkage map). Their method scans the entire genome

using consecutive pairs markers as the basis for identifying the inheritance classes at a given

genomic position. This method is called interval mapping (IM) and the mixture model at

each putative location is estimated using maximum likelihood. This estimation procedure

can be computationally expensive and some less demanding methods have been proposed.

The most popular of these is the regression interval mapping method (Haley & Knott, 1992

and Martinez & Curnow, 1992). Whittaker et al. (1996) showed that computation can be

further reduced by noting that the QTL additive effect is a function of the flanking markers’

effects.

The marker-by-marker and IM methods consider a series of models that contain a single

QTL. The single QTL assumption is unlikely to be true as quantitative traits are generally

thought to have a complex genetic basis (e.g. Hartl & Jones, 1998 and Kearsey & Pooni,

1996). The single QTL models can be extended to allow for multiple QTL using one of two

common themes. The first is to use models that contain multiple markers (or intervals),

selected from the full set. The selection can be based on marker explanatory variables only

(Broman & Speed, 2002), on a combination of intervals and markers (Jansen, 1993a; Zeng,

1993; Jansen, 1994; Jansen & Stam, 1994; and Zeng, 1994), or on intervals only (Haley &

Knott, 1992; Whittaker et al., 1996; Kao et al., 1999; and Zeng et al., 1999). The second

theme circumvents the issue of selection and includes all the marker effects as random effects,
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equivalent in many cases to constrained or penalised estimation (e.g. Lindley & Smith, 1972).

Most of these methods (Whittaker et al., 2000; Ball, 2001; Gianola et al., 2003; and Xu,

2003) use marker explanatory variables and not intervals. The method of Xu (2003) has

been extended to use intervals (Wang et al., 2005) but this is unlikely to increase precision

if the markers are sufficiently dense (Broman & Speed, 2002).

Whittaker et al. (2000) and Gianola et al. (2003) assume that the distribution of the

marker effects is normal. Xu (2003) also assumes normality but allows a separate variance

for each marker effect; a function of the marker’s effect. This allows for differential shrinkage

between the markers. Some markers are estimated to be approximately zero as they have

very small variance. Thus, the method of Xu (2003) essentially performs model selection

using an all marker model.

It is unclear if the normality assumption is appropriate for the marker effects. Empirical

evidence suggests that QTL effects have kurtosis similar to a double exponential variable

(Chamberlin et al., 2005), higher than a normal variable. The double exponential distribution

may provide a better model for the QTL effects as the first four moments match the unknown

distribution.

1.1.2 Statistical Methods

Recently, there have been a number of estimation methods proposed that perform selection.

Often, these are posed as constrained regression problems where the constraint forms a

solution space whose shape increases the chance of obtaining identically zero estimates.

These methods are: the non-negative garrote (Breiman, 1995); the least absolute selection

and shrinkage operator (LASSO; Tibshirani, 1996); the bridge (Frank & Friedman, 1993

and Fu, 1998); and the elastic net (Zou & Hastie, 2005). They are similar in construction

to the popular ridge regression (Hoerl & Kennard, 1970a and Hoerl & Kennard, 1970b),

although ridge regression does not produce identically zero estimates. Ridge regression

can be formulated as a random effects model where the effects and residuals are normally

distributed (Lindley & Smith, 1972). The LASSO has a similar formulation; the effects are

double exponentially distributed (Tibshirani, 1996).

As noted by Yuan & Lin (2005) the double exponential distribution has an alternative

formulation. If β is a centred double exponential distribution with variance 2φ2 then it can

be expressed as the margin of joint distribution f(β|δ)f(δ) where f(β|δ) is a centred normal

distribution with variance δ and f(δ) is an exponential distribution (Andrews & Mallows,

1974 and Kotz et al., 2001). This formulation suggests that the LASSO induces different

variances for the different random effects (when considered as a normal model).

The LASSO has generated a considerable amount of interest amongst researchers. This is

perhaps due to its conceptual simplicity. There have been a number of algorithmic methods

proposed to estimate the effects given a constraint or penalty parameter (Tibshirani, 1996;

Fu, 1998; Osborne et al., 2000; Öjelund et al., 2001; Miller, 2002; and Efron et al., 2004).

However, it is unclear how to best choose the constraint or penalty parameter. Suggestions
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include cross-validation (Tibshirani, 1996), generalised cross validation (Tibshirani, 1996 and

Fu, 1998) and the use of the Cp statistic (Efron et al., 2004). All these methods require an

estimate of the degrees of freedom which varies from one author to another.

1.2 Motivating Data

The Davies’ Mapping Project was established with the goal of discovering QTL and causative

genes for a variety of traits in beef cattle. The data from the main experiment of this project

form the motivation for the methods presented in this thesis. Particular attention is paid to

the birth weight trait which affects both animal production and welfare through correlated

effects on parturition and subsequent growth rates. Birth weight was measured within the

first day of an animal’s life. For a more detailed description of the Davies’ Gene Mapping

Experiment see Afolayan et al. (2002a) and Afolayan et al. (2002b).

The genetic design of the Davies’ Experiment was a double back-cross using three F1

sires, produced from Limousin cattle (a beef breed) and Jersey cattle (a dairy breed). Each

sire was used to create a large half-sib family, whose dams were either Limousin or Jersey.

In total there were 356 progeny, approximately evenly spread between the sires. There

were 287 molecular markers scored at 264 unique genomic positions spanning the 29 cattle

autosomes. The markers were mostly microsatellites, but there were also 36 single nucleotide

polymorphisms (SNPs) located in 20 genes. Each sire was heterozygous for only a subset of

the markers; sire 361 had 188, sire 368 had 184 and sire 398 had 198 heterozygous markers.

It is expected that birth weight will depend on sire, breed of dam (BOD) as well as QTL.

Logistics (e.g. semen availability, yard size and labour requirements) meant that a non-

genetic experimental design was not only desirable but necessary. In particular, the progeny

were produced over three years and the steers and heifers were treated as separate manage-

ment groups. Each year-by-sex combination is considered to be a level of the Cohort factor.

Further, it is expected that birth weight will depend on the date within season that the

animal was born. Thus, the Cohort factor and the date of birth covariate should also be

accounted for when identifying QTL as these may explain variation in birth weight.

1.3 Overview of Thesis

The aim of this thesis is to assess the use of LASSO methodology for QTL mapping. The

methods are developed with the Davies’ Gene Mapping data in mind. The genetic effects

should be modelled simultaneously with the experimental effects. This is performed by

incorporating LASSO random effects into a standard mixed model, which contains fixed and

random normal effects. This new model is named the LASSO linear mixed model (LLMM)

throughout this thesis.

Reviews of genetics and QTL mapping (Chapter 2), mixed models (Chapter 3) and

subset selection and constrained estimation methods (Chapter 4) are provided to motivate
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the methods in this thesis. They also provide a useful background to the details of the

published techniques.

Viewing the LASSO effects as random suggests that the level of shrinkage can be chosen

by the ratio of the residual variance and the dispersion parameter for the LASSO effects

(Chapter 4). Hence, estimating the dispersion parameters may be a potential method to

estimate the level of shrinkage. To accomplish this estimation, the likelihood based on

the marginal distribution of the observations is used. Exact analytical forms for a LASSO

random effects model (containing only LASSO effects) are presented in Chapter 5. The

analytical forms for the marginal distribution are difficult to evaluate and to optimise. Hence,

approximations are sought.

Two approximations based on Laplace’s method are presented. The first approximation

(Chapter 7) produces score equations that are biased. These are adjusted using a computer

intensive bootstrapping method (McCullagh & Tibshirani, 1990). The second approximation

(Chapter 10) uses the hierarchical form for the double exponential distribution and does not

require adjustment to the score equations.

Both these approximations are extended for the LLMM using a modification of Laplace’s

method (Taylor & Verbyla, 2006) that allows for estimation of fixed effects. These are

approximate restricted likelihoods. The first approximation is presented in Chapter 8. Par-

alleling its random effects model counterpart in Chapter 7, it produces score equations that

are biased and are adjusted in a similar manner. The second approximation using the hier-

archical formulation of the double exponential distribution is presented in Chapter 11. The

second approximation has not been implemented.

After estimation of the dispersion parameters in the random LASSO model the analyst

will typically want to predict the random effects. The standard LASSO method is to pre-

dict using the mode of the predictive distribution (Tibshirani, 1996). However, this is not

the only possibility. For example, the expected value of the predictive distribution should

provide predictions with lower mean squared error (e.g. Searle et al., 1992). These issues

are investigated for the LASSO random effects model in a theoretical manner in Chapter 5

and empirically in Chapter 10.

The direct extension to standard LASSO prediction in the LLMM is to find the mode of

the joint predictive distribution. This is achieved using an extension of Henderson’s mixed

model equations (Chapter 8). Solving for the LASSO effects can be posed as a penalised

regression problem where the residuals have a known correlation structure. This is performed

using an extension of the interior point descent algorithm (Osborne et al., 2000), described

in Chapter 6.

Two methods of inference for the random LASSO effects are presented. The first treats

the LASSO predictions as though they were fixed effects (Chapter 7). An empirical distribu-

tion is created assuming that all LASSO effects are zero. The observed predictions are then

compared against this distribution. This method of inference is used in the demonstrated

QTL mapping methodology and appears to work well. However, it is not strictly appropriate
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for random effects. A more appropriate method is to calculate the conditional probability of

the effect, given the data, being greater than (less than) zero. A method to perform these

calculations is given in Chapter 10.

Details for using the LLMM for QTL mapping are presented in Chapter 9. The hierarchi-

cal form of the LASSO model suggests some similarities with Xu (2003). In particular each

marker effect is a normal random variable with its own variance. The LLMM’s performance

is assessed via simulation and compared against the recommended method from Broman &

Speed (2002).



Chapter 2

Review: Genetics and QTL Mapping

2.1 Introduction

In this Chapter, a review of statistical methods for identifying QTL is presented. However,

before any statistical models are proposed an understanding of the elementary genetical

processes underlying QTL detection is crucial. These processes are briefly reviewed in the

first two sections. The remainder of the Chapter contains a review of published methods

used to locate QTL.

2.2 Basic (Mendelian) Genetics

2.2.1 Constituents of Phenotype

The phenotype of an animal is its overall physical characteristic. Often individual aspects of

an animal’s phenotype will be measured. Such measurements are called traits. The words

phenotype and traits are often confused. A phenotype is an amalgamation of an infinite

number of traits. However, common usage permits phenotype to be used as a synonym for

trait.

The phenotype of an animal has constituent parts; genetic, environmental and their

interaction. The environmental part is governed by how the physical environment affects

the animal. An example is two genetically identical animals, one with poor feed and the other

with good feed. The animal on poor feed will have less condition than the animal on good

feed. The genetic part of the phenotype is governed by how the animal acts as a biological

system. In an equal environment some animals will perform better than others. Realistically,

there is a genetic and environmental interaction. The way the animal functions is dependent

on the environment that it is placed in. In animal studies this interaction is seldom considered

as this would require genetic replication, a practically impossible requirement for outbreeding

organisms.

7
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2.2.2 Genetic Pathways

The biological function of an animal is governed by how many and what type of proteins

it produces. The amount and type of proteins a cell produces is governed by which genes

an animal carries. Most types of cells contain complete copies of all of the genes carried by

an animal. Each gene is a sequence of deoxyribonucleic acid (DNA), which is embedded in

longer sequences called a chromosome. There are many genes located on each chromosome.

Genes form proteins by a process termed the “central dogma”, comprising two main

processes; the first is transcription and the second is translation. Transcription is the process

which takes the gene and generates ribonucleic acid (RNA). The RNA in turn, through

translation, is converted into protein(s). For a more thorough description of the central

dogma see Hartl & Jones (1998) and Hartwell et al. (2000).

Some genetic effects on the phenotype are best described through the central dogma.

Dominance occurs when a single copy of a gene does not produce half the effect in the

phenotype as two copies of the gene. This occurs when the amount or type of protein is

altered by having a single copy of the gene. Pleiotropy occurs when a protein affects more

than one trait measured on the phenotype. Epistasis occurs when the individual genes’

effects do not explain the total genetic portion of the phenotype. That is, the effect of one

gene is dependent on the genotype at another gene or other genes. There are two causes for

epistasis: a gene’s protein may not be produced unless another gene’s protein is present, or

the proteins themselves interact.

2.2.3 Genetic Structure

A chromosome is a single strand of DNA that contains genes. Every complex organism has

more than one chromosome. For example, humans have 23 chromosomes, fruit fly 4, wheat

7 and cattle 29 (plus one sex chromosome). Humans, fruit fly, cattle and many other species

have two copies of each chromosome. Such organisms are called diploid and the two copies of

each chromosome are called homologous pairs. In diploid organisms one of the chromosomes

is inherited from the father and one from the mother. Some organisms have only one copy

of each chromosome (haploid organisms) and some, for example wheat, have more than two

copies (polyploid organisms).

A position on a chromosome is called a locus (loci plural) which may or may not be a

position in a gene. Each locus represents a position on each of the homologous chromosomes.

In diploid organisms, the genetic material at a locus has two components, called alleles, one

on each chromosome.

If a locus has the same allele on each of its chromosomes then the locus is said to be

homozygous. If the alleles are different at a locus then it is said to be heterozygous at that

locus. An animal that is homozygous at each and every locus along a chromosome is said to

be inbred for that chromosome. It is inbred if it is inbred for every chromosome. If an animal

is not inbred, it is outbred. In reality no animal species is completely inbred, even laboratory
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animals bred heavily to increase homozygosity still contain heterozygous loci (measured or

otherwise). However, theoretical reasoning using an inbred organism model is often useful.

It can be important to know if the alleles of two distinct loci on the same chromosome

lie on the same member of a homologous pair. Such information is called the phase of the

alleles. If two alleles lie on the same chromosome then they are said to be ‘in-phase’ (coupling

phase). If they are on different chromosomes then they are ‘out-of-phase’ (repulsive phase).

There are chemicals, called molecular markers, designed to bind to particular loci and

whose expression can be measured. If a change in the alleles at that locus is made then the

expression of the chemical is also changed, enabling the measurement of which alleles an

individual is carrying to be performed.

2.2.4 Genetic Effect - Terminology

Consider a gene A that affects a single quantitative trait and is the only gene doing so.

Also, suppose that the gene has only two alleles A1 and A2. If the trait value is the same

for individuals homozygous for A1 and heterozygotes, then the allele A1 is termed dominant

and A2 is recessive for the trait. If the trait value for the heterozygote is exactly half way

between the trait values for both homozygotes then neither of the alleles is dominant. If the

trait value for the heterozygote is in between but closer to the trait value for allele A1, then

A1 is partially dominant over A2. The trait value for the heterozygote can also lie outside

the interval bounded by the trait values for the homozygotes, this is called over-dominance.

An interesting class of loci are those whose heterozygotes express both the values of

the homozygotes. These are called co-dominant loci. Some types of molecular markers

(including the ones considered in later chapters) often fall into this category - heterozygotes

can be distinguished from homozygotes.

For quantitative traits governed by a single gene, a number of useful summary quantita-

tive values can be defined. These are defined on the means of the different allele combinations

for the trait. The mid-parent value is the mean of both homozygote groups, and if there is

no dominance then this is also the trait value of the heterozygotes. If there is dominance

then it is defined as the distance from the mid-parent to the heterozygote’s trait value. The

additive effect is the difference between each homozygote group’s trait value and the mid-

parent, hence the difference between the homozygotes trait values is twice this value. Thus

quantitative traits are conceptually handled in a similar manner to categorical traits. For a

more in depth discussion of genetic effects for quantitative traits see Kearsey & Pooni (1996,

Chapter 1).

2.2.5 Meiosis, Recombination and Genetic Distance

The formation of sex cells, called gametes, is completed in the meiosis process. This process

creates new chromosomes which contain segments of the original homologous pair. Each

created chromosome is unique and has no homologous counterpart. An abridged description
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of meiosis is now given, a more complete description is given in Hartl & Jones (1998).

• Each chromosome in a homologous pair doubles to form sister chromatids. The sister

chromatids are joined.

• The homologous pairs align to form a bivalent pair, a series of four chromatids - two

pairs of sister chromatids.

• During the joining of the pairs of sister chromatids the non-sister chromatids can touch,

forming a chiasma. At these points both the non-sister chromatids break and recombine

with the remaining portion of the chromosome, in effect swapping an equal-in-length

portion of the chromosome. The positions where the non-sister chromatids swap DNA

is called a ‘recombination event’ or simply ‘recombination’.

• The recombined chromatids separate and form haploid sex cells; the gametes.

It is the gametes, recombined chromosomes, that are inherited from a parent to its offspring

rather than a complete copy of one of the parent’s chromosomes. The offspring also receives

a set of chromosomes from the other parent, which have also potentially undergone recom-

bination in meiosis. This is the method that a parent passes on recombined copies of its

genetic material.

Two alleles of loci on different chromosomes will be inherited together with stochastic

independence, as the formation of gametes is independent for different chromosomes. If the

two loci are on the same chromosome and are in coupling phase then the alleles will be

inherited together unless there is a recombination event between them. The probability of

such a recombination event diminishes with the distance between the loci. As these loci will

have a higher probability of being inherited together, they are said to be linked.

It is commonly assumed that the probability of occurrence of a recombination event at

a particular locus is independent of the presence of another recombination event elsewhere

on the chromosome. If this is the case then the recombinations are said to occur with

no interference. The opposite assumption is that the presence of a recombination event

somewhere on the chromosome prevents another from occurring, called complete interference.

Haldane (1919) showed that neither assumption is valid, at least for the model organism,

the fruit fly.

During many meioses, the number of recombination events between two loci can be

recorded. The fraction of the recombinations to the number of meioses is a useful measure

to assess if the loci are linked and if they are then how tightly. This fraction is called the

‘recombination fraction’. If the loci are unlinked then the expected recombination fraction

will be 0.5 and if the loci are closely linked then it will be a small positive fraction.

Two recombination events along a chromatid in the interval flanked by two observed loci

are possible. The loci alleles will still be in coupling phase even though recombinations have

occurred between them. This implies that the recombination fraction does not capture all



2.2. BASIC (MENDELIAN) GENETICS 11

the recombination events that take place. In fact the recombination fraction is an under

estimate.

The recombination fraction estimates are non-additive over neighbouring intervals if there

is not complete interference. To demonstrate, suppose that A, B and C are three loci, all

on the same chromosome and in that order. Let rab be the recombination fraction between

A and B and likewise for rbc and rac. Then for situations without complete interference

rac 6= rab + rbc. This inequality arises because there may be chromatids that recombine

within the first interval and within the second.

To accommodate the double recombinations and the unknown level of interference the

following formula can be used

rac = rab + rbc − δrabrbc

where 0 ≤ δ ≤ 2 represents interference. A small value of δ represents complete interference

and a large one little interference.

In practise, this model is not used, as the choice of δ is not obvious and the recombination

fractions are not linear, making expressions for multiple intervals unwieldy. Commonly, the

recombination fractions are converted into genetic distances, with a linear scale. The function

to convert recombinations to genetic distances is called a mapping function.

The most popular mapping function is Haldane’s mapping function (Haldane, 1919).

This function assumes that there is no interference along the chromosome. A summary of

the derivation is now given.

Let the loci A and B define a segment of a chromosome such that the genetic distance

between the loci is d(A, B) = dg. This segment can be divided up into N small segments of

equal length. As N →∞ the probability of getting exactly t recombination events within the

interval flanked by A and B follows a Poisson distribution. This is justified by observing that

the outcome is a count given an infinite number of observations. The Poisson probability

distribution is

P(t) =
dt

ge
−dg

t!
.

Double recombinations or any even t recombination events are not observed, so only the

odd t are summed over to obtain the probability of observing a recombination event between

the loci. This sum gives

rab = P(1) + P(3) + P(5) + . . .

= e−dg

(

d1
g

1!
+

d3
g

3!
+

d5
g

5!
+ . . .

)

= e−dgsinh(dg)

=
1− e−2dg

2
,

and

dg = − log (1− 2rab)

2
.
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The assumption of no interference is incorrect (Haldane, 1919). There are other functions,

such as Kosambi’s that take into account partial interference (Kosambi, 1944), but these are

used less frequently. The reason for this is unclear, it may be due to increased complexity

for relatively little inferential gain.

2.2.6 F2 and Back-Cross Populations for Outbreeding Organisms

It is important to consider some of the common experimental structures used for genetical

experimentation. The most common populations are the F2 cross and the (first) back-cross,

with back-crossing performed to potentially both founding parents.

Both of these structures start with identifying two original parental lines that are diver-

gent for some trait of interest; call these Pl and Ph for the low and high lines for the trait

respectively. For ease of exposition, suppose that both the divergent parental populations are

inbred, that is they are all homozygous for all loci and within each population the animals

are all genetically identical. At an arbitrary locus M the allele type of the low line is ml and

the allele type of the high line is mh. The parental lines are crossed to produce a population

of F1 individuals. The F1 individuals will be heterozygous and genetically identical at all

loci.

The F1 individuals can then be mated to other F1 individuals producing the F2 popula-

tion. This population will contain individuals that are genetically segregating, that is they

have different chromosomal construction due to meiosis. This arises because both F1 mother

and father can pass on either allele. For the arbitrary locus M, the allele types of the F2

population are mlml, mlmh, mhml and mhmh. Each allele type occurs with frequency of one

quarter, implying that one quarter of the animals will be homozygous for the low allele, one

quarter homozygous for the high allele and one half will be heterozygous.

Instead of mating the F1 individuals with themselves, they can be mated to either (or

both) of the parental lines. These crosses are called back-crosses. Consider the cross to the

low parental line, BCl. All the BCl individuals will inherit a ml allele from their Pl parent

and either a m1 or a mh allele from their Fl parent. The population structure of the BCl

population is one half homozygotes for the ml allele and one half heterozygotes. The other

back-cross, between the high parental line and the F1 population, BCh is likewise found to

be one half homozygotes for the mh allele and one half heterozygotes. A double back-cross

population is formed by making back-crosses to both of the parental lines.

The double back-cross will have the same genetical composition as an F2 cross. However,

there is a distinct and important difference. The populations are parented by different genetic

types. In the F2 population both parents are heterozygotes and in the double back-cross

the parents come from all three genetical types. If there is any difference in the quality

of parenting between the genotypes, for example milk quality, then this may affect the

trait values of the offspring. Any dominance measure calculated from a double back-cross

population may be estimating parenting skill of the different genotypes.

All the information given on population structures up to this point has assumed inbreed-
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ing. This assumption makes the process easier to understand. For outbreeding organisms

such as cattle, the original individuals in the divergent lines are not necessarily homozygous,

nor are the animals within each line genetically identical to each other. This means that two

members of the parental lines (one from each divergent line) may have in common zero, one

or two alleles at a given locus. Further, the set of alleles in the high parental line may not be

disjoint to the set of alleles in the low parental line. Hence the F1 individuals at a particular

locus may be heterozygous or homozygous for any number of alleles. If these individuals are

then used to form an F2 or back-cross population the progeny may again take any genetical

form. However, it is expected (and hoped) that two divergent parental lines will differ for

the genes of interest and hence, for at least this locus, the inbreeding model holds.

Animals in a mapping population should ideally only differ genetically from each other

due to recombination in meiosis. This implies that the best population to use is one where

the meioses from both parents can be examined. This can only be done with full-sib fam-

ilies, where progeny share the same mother and father. Unfortunately in species with low

fecundity, such as cattle, such full-sib populations are time consuming and/or expensive to

produce. Cattle typically only have one offspring per year and hence full-sib families will

span multiple years and the population may possess genotype-by-year interaction. Instead

half-sib populations are commonly used where a single parent is mated to many others.

The genetic effects are then tracked for the common parents and the genetic effects of the

non-common parents are considered as noise.

2.3 QTL Mapping In Outbreeding Organisms

The objective of many genetic experiments is to try and relate a quantitative trait to a locus

or loci controlling it. Typically this is done by producing F2 or back-cross populations from

divergent lines that may or may not be inbreeding. The individuals in the derived population

have two types of measurements taken on them, a particular trait of the phenotype of interest

and a number of molecular markers. These markers form proxies for regions of the genome

which are used to assess the associations with the trait.

The idea behind mapping QTL in outbreeding organisms is a slight generalisation of that

for inbreeding organisms. Association of genomic regions, measured by markers, and the trait

is assessed by considering which alleles, at which loci, carried by the parents cause a change

in the trait value within the progeny population (Beckmann & Soller, 1988). Consider an

animal that at locus A carries a high and low allele ah and al respectively. All the progeny

from this animal that inherit the high allele ah will, on average, have a higher trait value

than those progeny inheriting al. For inbreed crosses the allele types imply inheritance type.

The statistical methods presented later in this chapter will assume that all genetic effects

of interest can be estimated for the given design. Also, it will be assumed that there are

only two alleles. In many outbred populations there will be more than two, however within

a half-sib family of diploid organisms there will only be two alleles for which inheritance can

be inferred.
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2.3.1 Missing and Non-Informative Markers

The observed molecular marker scores are observed random variables. These data are subject

to measurement error and missing values. Further, in line crosses of outbred organisms it

is often impossible to definitively assign which of the progeny’s alleles were inherited from

which parent (Beckmann & Soller, 1988 and Haley et al., 1994). Both missing marker and

non-informative markers can generally be treated in the same manner.

The missing or non-informative markers can be replaced by the expected probability of

inheriting one of the parental alleles based on the neighbouring markers and the parental

linkage phase (Martinez & Curnow, 1994). Alternatively, when assessing a particular locus

for different animals, potentially different markers can be used depending on information

content of the animals’ nearest markers (Haley et al., 1994). These two approaches can be

shown to be equivalent (Paul Eckermann, 2003 personal communication).

2.3.2 Parental Haplotype Reconstruction

The construction of the two parental haplotypes is crucial for calculating which marker

alleles each individual progeny inherited from their parents. Construction for inbred lines is

trivial as each parental line has its own alleles which are unique within the experiment. In

outbreeding organisms the construction of haplotypes considers pairs of consecutive markers

on the linkage map in turn.

Assume that the linkage map is known, either by a consensus map or by construction.

Consider the 2 parental haplotypes H1 and H2, a population of its progeny Ω and two

consecutive markers Ml and Mr with alleles ml1, ml2, mr1 and mr2 respectively. Assign ml1

to lie on parental haplotype H1. Haplotype reconstruction for these two markers reduces to

deciding if the marker allele mr1 at marker Mr is in coupling or repulsive phase with ml1 and

hence if it lies on parental haplotype H1. Using Bayes’ law, the probability of the parental

haplotypes are

P(ml1//mr1|Ω) =
P(Ω|ml1//mr1)P(ml1//mr1)

P(Ω)
and

P(ml1//mr2|Ω) =
P(Ω|ml1//mr2)P(ml1//mr2)

P(Ω)

respectively where the // notation implies coupling phase. Without prior knowledge obtained

by pedigree, the probability of each parental haplotype is equal to 0.5. The probability of

the progeny P(Ω) is equal for the two phases. Thus, the only difference in the haplo-

type probabilities is the probability of the progeny given the haplotype, P(Ω|ml1//mr1) or

P(Ω|ml1//mr2).

This result simplifies the construction of haplotypes significantly as each haplotype can

be considered separately and the haplotype with the highest probability is chosen (Haley

et al., 1994 and Knott et al., 1996).
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2.3.3 Single Marker Models

The simplest statistical model for QTL detection is the ANOVA model, assessing each marker

individually (Geldermann, 1975). The model fitted contains an additive effect and (if ap-

plicable) a dominance effect. The QTL are said to be associated with the markers that

are most significant and the QTL effect(s) are estimated to be those based on the marker

inheritance classes. These estimates will be biased depending on how far the QTL lies from

the marker. The additive effect for the marker under consideration is a(1 − 2r) where a is

the QTL additive effect and r is the recombination fraction between QTL and marker. This

result is derived using Table 2.1 as half the difference between the marker homozygotes. The

bias in the genetic parameters derived from the marker inheritance class means increases

with the recombination fraction. The residual variance will not be homogeneous if there is

dominance present in the population (Asins & Carbonell, 1988), see Table 2.1. The marker

inheritance class means are estimated with differing precision if dominance is present.

To overcome the biased genetic effect estimate from single marker ANOVA models, Weller

(1986) proposed a method of estimation that incorporates the recombination between the

marker and the QTL. Weller (1986) realised that the markers were only proxies for the QTL

and hence are only estimates for them. To overcome this he proposed that the distribution

of the trait values within a marker allele class is a mixture distribution. The component

distributions to be mixed over are the distributions of the three QTL classes and the mix-

ing probabilities are based on the recombinations needed to realise the QTL class given the

marker class. For the trait distributions of the low line homozygotes fq1q1(·), the heterozy-

gotes fq1q2(·) and the high line homozygotes fq2q2(·) the mixture distributions are (Weller,

1986)

f(yi) = (1− r)2fq1q1(yi) + 2r(1− r)fq1q2(yi) + r2fq2q2(yi)

f(yj) = r(1− r)fq1q1(yj) + 2(1− 2r(1− r))fq1q2(yj) + r(1− r)fq2q2(yj)

f(yk) = r2fq1q1(yk) + 2r(1− r)fq1q2(yk) + (1− r)2fq2q2(yk)

where the first and third distribution are for the marker homozygotes, the second is for

the marker heterozygotes and r is the recombination fraction. Typically the functional

form of the QTL classes’ distributions are assumed to be normal. Weller (1986) estimated

different variances for the three QTL classes’ distributions, but they may be assumed equal

if appropriate (e.g. Lander & Botstein, 1989). With unequal variances, the trait density

has seven parameters, three location parameters, three variances and the recombination

fraction. There are only six observed pieces of information, the trait means and variances of

each unknown marker type class. Hence, optimisation of this density is somewhat of an art.

Weller (1986) suggested solving for the genetic parameters based mostly on the homozygote

classes and then using these for estimation for the other parameters.
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Table 2.1: Expected recombination frequencies for the marker and QTL inheritance classes, and the marker inheritance classes’
expected trait values and variances. The recombination fraction is r, the additive QTL effect is a and the QTL dominance effect is
d.

QTL Allele Type Marker Inheritance Class
Marker Type

q1q1 q1q2 q2q2 Expected Value Variance1

m1m1 (1− r)2 2r(1− r) r2 a(1− 2r) + 2dr(1− r) 2a2r(1− 2r) + 2d2rs− 4adr(1− 3r + 2r2)
m1m2 r(1− r) (1− 2r + 2r2) r(1− r) d(1− 2r + 2r2) 2a2r(1− r) + 2d2rs
m2m2 r2 2r(1− r) (1− r)2 −a(1− 2r) + 2dr(1− r) 2a2r(1− 2r) + 2d2rs + 4adr(1− 3r + 2r2)

QTL Class Mean a d −a

1 s = 1− 3r + 4r2 − 2r3. Table adapted from Asins & Carbonell (1988)
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2.3.4 Interval Mapping

Neither of the single marker methods, ANOVA or the mixture approach, takes into account

the association between the markers. Ignoring the quantitative trait, the ordering of the

markers and the genetic distances can be determined by considering the recombination frac-

tions, creating a linkage map. Each linkage group in the map corresponds to a chromosome,

and each marker is located on a chromosome. The task of associating the quantitative trait

to positions on the genome can then be re-stated as positioning the QTL to locations on

the marker map, with each position placed in between known markers, in particular those

flanking the putative position.

The flanking markers, considered as a pair, can then be used to quantify the association

between the genomic region and the trait. This process is called interval mapping (IM)

and was first proposed by Lander & Botstein (1989). There are two estimation methods

commonly used for IM: the mixture approach, an extension of the mixture likelihood single

marker analysis (Weller, 1986); and a regression approach, a simplification of the mixture

approach. The mixture approach is more computationally demanding and also slightly more

powerful (Xu, 1995 and Kao, 2000) however, the estimates of the genetic effects are almost

identical (Haley & Knott, 1992; Xu, 1995; and Kao, 2000). The regression approach is also

more flexible due to reduced computation.

In both methods the putative QTL are considered to be significant if the log-likelihood

ratio, or a function of it, reaches a threshold value. In mixture interval mapping the log odds

of the difference (LOD) statistic is often used. The threshold for a significant LOD score

value can be difficult to choose as it needs to take into account multiple testing of many

non-independent tests. A common solution is to use an arbitrary cut-off, often chosen to

be a LOD score of 3. Theoretical solutions that make various assumptions about the data

are available (for example Lander & Botstein, 1989; Rebäı et al., 1994; Rebäı et al., 1995;

Lander & Kruglyak, 1995; and Piepho, 2001). Empirical thresholds, based on permutation

methods, have also been proposed (Churchill & Doerge, 1994 and Doerge & Churchill, 1996)

and are common for simple models but are often considered impractical for complex models

due to multiple fitting of the model. The theoretical and empirical thresholds have been

shown to produce similar results, at least for one of the theoretical adjustments (Doerge &

Rebäı, 1996).

The interval mapping approach has been shown to produce a more powerful detection

method than the single marker methods when the marker map is known (Rebäı et al., 1995).

In situations where the marker map is estimated poorly, the usefulness of IM could be

questioned. However, interval mapping seems to be robust to incorrectly estimated distances

between the markers (Dodds et al., 2004). Improper ordering of the markers is likely to have

a much more drastic effect on interval mapping.
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Mixture Interval Mapping

This approach is similar to the single marker mapping of Weller (1986). However, two

markers are used to calculate the mixing probabilities for the trait distributions. Also, the

variances within the trait distributions for each QTL inheritance class are assumed equal.

Typically, the QTL inheritance type for an individual at a particular putative location is

regarded as missing information (Lander & Botstein, 1989; Jansen, 1992; and Carbonell

et al., 1992). The expectation-maximisation (EM) algorithm can be used to maximise the

mixture likelihood.

The likelihood for individual i with unknown QTL inheritance type from an F2 population

is

Li(µ, a, σ2) = pi(q1q1)fq1q1(yi) + pi(q1q2)fq1q2(yi) + pi(q2q2)fq2q2(yi)

where pi(q1q1), pi(q1q2) and pi(q2q2) are the probability for the ith individual of the QTL

having types q1q1, q1q2 and q2q2 respectively, and fq1q1 , fq1q2 and fq2q2 are the distributions

for the q1q1, q1q2 and q2q2 QTL classes.

The expectation step is to estimate for each individual the probability distribution pi of

the QTL classes given the trait values and the marker values. In the mixture setting this is

calculating the expected value of the Bayesian posterior estimate for the QTL inheritance

class conditional on the markers’ inheritance classes and trait values. That is, for individual

i and QTL alleles qj and qk, the mixing probability is (Jansen, 1992)

pi(qjqk|yi, M i) =
pi(qjqk|M i)f(yi|qjqk)

f(yi|M i)
(2.3.1)

where yi is the measured trait for the ith individual and M i are the flanking marker types

for the ith individual. This form shows that the mixture IM approach takes the trait values

into account when estimating the QTL inheritance types.

The maximisation step can be carried out using regression or generalised linear models

for non-normal data (Jansen, 1992 and Jansen, 1993b). This process involves expanding the

data set, once for each putative QTL inheritance class, using the mixing probabilities from

(2.3.1) as weights and then modelling the trait values on this expanded data set.

A particular position within an interval need not be considered. Rather, consideration can

be given to each interval in turn and the recombination between QTL and flanking markers

can be estimated (Jansen, 1992). This estimation process is lengthy and has the potential to

fail to reach convergence or to converge to a local maximum (Jansen & Stam, 1994). These

authors suggest that profiling over the recombination fraction within an interval is a better

solution. In practice, a set of putative QTL positions are identified and then assessed for

association (Lander & Botstein, 1989 and Jansen & Stam, 1994). This estimation process

will mean that many models will be fitted, one for each putative position.
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Regression Interval Mapping

The mixture IM method can be computationally demanding and hence restrictive for the

type and complexity of models that can be fitted. It appears that the (posterior) probability

(2.3.1) of the QTL class given the marker data and the quantitative trait is dominated

by the probability of the QTL classes conditional on the marker data ignoring the trait

measurements. That is, there is more information about the QTL classes in the marker

data than there is in the trait data (Xu, 1995). This observation implies that the posterior

probability may be well approximated by the conditional probability ignoring the trait data

(Kao, 2000). This method was originally proposed by Haley & Knott (1992) and Martinez

& Curnow (1992). Unlike mixture IM, estimation needs to occur only once at each putative

location and does not need iteration on an expanded data set.

The explanatory variables, functions of the expected conditional probabilities, are calcu-

lated where the specified putative QTL lie on the assumed marker map. In particular they

are based on the probability of inheriting the different QTL alleles. For a pair of flanking

markers Ml and Mr with inheritance alleles {ml1, ml2} and {mr1, mr2} for the left and right

flanking markers respectively, the expected frequencies of the marker-QTL-marker haplotype

are given in Table 2.2. The expected recombinations between the markers are also given in

this table.

The expected conditional probabilities are the ratio of the expected frequency of the

QTL inheritance type of interest and the expected frequency of the marker inheritance

types. The explanatory variables in the linear model are formed by taking the difference

of the two expectations for being homozygous and the expected conditional probability of

being heterozygous. These estimate twice the additive effect (2a) and the dominance effect

(d) respectively. The explanatory variables are given explicitly in Table 2.3 and are based

on Table 2.2.
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Table 2.2: Expected frequencies in an F2 cross for putative QTL inheritance classes conditional on the marker inheritance type. The
last column is the expected recombination fraction between the flanking marker pair. The recombination between markers is r, left
marker and QTL rl, and right marker and QTL rr.

Marker Type QTL Inheritance Class Recombination Frequency
Ml Mr q1q1 q1q2 q2q2

Marker Recombination Frequency

ml1ml1 mr1mr1 (1−rl)
2(1−rr)2/4 2rl(1−rl)rr(1−rr)/4 r2

l
r2
r/4 (1−r)2/4

ml1ml1 mr1mr2 (1−rl)
2rr(1−rr)/4 [rl(1−rl)(1−rr)2+rl(1−rl)r

2
r ]/4 r2

l
rr(1−rr)/4 r(1−r)/4

ml1ml1 mr2mr2 (1−rl)
2r2

r/4 2rl(1−rl)rr(1−rr)/4 r2
l
(1−rr)2/4 r2/4

ml1ml2 mr1mr1 rl(1−rl)(1−rr)2/4 [(1−rl)
2rr(1−rr)+r2

l
rr(1−rr)]/4 rl(1−rr)r2

r/4 r(1−r)/4

ml1ml2 mr1mr2 rl(1−rr)rr(1−rr)/4 [(1−rl)
2(1−rr)2+r2

l
(1−rr)2+(1−rl)

2r2
r+r2

l
r2
r ]/4 rl(1−rr)rr(1−rr)/4 (r2+(1−r)2)/4

ml1ml2 mr2mr2 rl(1−rr)r2
r/4 ([1−rl)

2rr(1−rr)+r2
l
rr(1−rr)]/4 rl(1−rl)(1−rr)2/4 r(1−r)/4

ml2ml2 mr1mr1 r2
l
(1−rr)2/4 2rl(1−rl)rr(1−rr)/4 (1−rl)

2r2
r/4 r2/4

ml2ml2 mr1mr2 r2
l
rr(1−rr)/4 [rl(1−rl)(1−rr)2+rl(1−rl)r

2
r ]/4 (1−rl)

2rr(1−rr)/4 r(1−r)/4

ml2ml2 mr2mr2 r2
l
r2
r/4 2rl(1−rl)rr(1−rr)/4 (1−rl)

2(1−rr)2/4 (1−r)2/4
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Table 2.3: Explanatory variables for regression mapping in an F2 population. The recombination between markers is r, left marker
and QTL rl, and right marker and QTL rr.

Marker Type Explanatory Variables
Ml Mr 2a d

ml1ml1 mr1mr1 [(1−rl)
2(1−rr)2−r2

l
r2
r ]/(1−r)2 [2rl(1−rr)r2(1−r2)]/(1−r)

ml1ml1 mr1mr2 [(1−rl)
2rr(1−rr)−r2

l
rr(1−rr)]/r(1−r) [rl(1−rl)(1−rr)2+rl(1−rl)r

2
r ]/r(1−r)

ml1ml1 mr2mr2 [(1−rl)
2r2

r−r2
l
(1−rr)2]/r2 [2rl(1−rl)rr(1−rr)]/r2

ml1ml2 mr1mr1 [rl(1−rl)(1−rr)2−rl(1−rr)r2
r ]/r(1−r) [(1−rl)

2rr(1−rr)+r2
l
rr(1−rr)]/r(1−r)

ml1ml2 mr1mr2 0 [(1−rl)
2(1−rr)2+r2

l
(1−rr)2+(1−rl)

2r2
r+r2

l
r2
r ]/[r2+(1−r)2]

ml1ml2 mr2mr2 [rl(1−rr)r2
r−rl(1−rl)(1−rr)2]/r(1−r) [(1−rl)

2rr(1−rr)+r2
l
rr(1−rr)]/(1−r)2]

ml2ml2 mr1mr1 [r2
l
(1−rr)2−(1−rl)

2r2
r ]/r2 [2rl(1−rl)rr(1−rr)]/r2

ml2ml2 mr1mr2 [r2
l
rr(1−rr)−(1−rl)

2rr(1−rr)]/r(1−r) [rl(1−rl)(1−rr)2+rl(1−rl)r
2
r ]/r(1−r)

ml2ml2 mr2mr2 [r2
l
r2
r−(1−rl)

2(1−rr)2]/(1−r)2 [2rl(1−rl)rr(1−rr)]/(1−r)2
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The computation time for the regression interval mapping can be further reduced when

models with only additive effects are considered. Many putative positions within an interval

do not have to be individually assessed. Instead the position within the interval can be shown

to be a function of the effects of the flanking markers (Whittaker et al., 1996). Consider the

regression interval mapping model

E (y) = β0 + β1E (q|mimi+1, rl)

= β0 + aδmi + aρmi+1

= β0 + β∗
1mi + β∗

2mi+1

where δ = E (q|mi = 1, mi+1 = −1, rl) and ρ = E (q|mi = −1, mi+1 = 1, rl). The single co-

efficient in the simple regression model has been replaced by two coefficients (β1 and β2).

These two coefficients can be equated to the two unknown QTL parameters, the additive

effect a and the position rl giving

rl = 0.5

(

1−
√

1− 4β∗
2r(1− r)

β∗
2 + β∗

1(1− 2r)

)

and

a2 =
(β∗

1 + (1− 2r)β∗
2)(β

∗
2 + (1− 2r)β∗

1)

1− 2r

where r is the recombination fraction between the two markers.

Dominance terms can be incorporated into this model by estimating this effect at the

estimated position (Whittaker et al., 1996). However, this may be an inefficient method to

incorporate dominance as it is then only estimated at genomic positions where the additive

effect is high.

One possible drawback of the regression approach using flanking markers to estimate

the QTL effect and position within an interval is collinearity between the flanking markers.

Flanking markers in tight linkage may cause the columns of the model’s design matrix to be

numerically dependent. If this occurs then the results may be unpredictable. The problem

is expected to be exacerbated when more than one QTL is fitted on a chromosome in a

multiple QTL model.

A criticism of regression interval mapping, irrespective of estimation procedure, is that

the residual variance is over-estimated (Xu, 1995). Consider the variance of the regression

model estimating only one additive effect

σ2
e = var (yj) = var (β0 + βaE (qj |mj,imj,i+1, rl) + ej)

= β2
avar (E (qj |mj,imj,i+1, rl)) + var (ej) (2.3.2)

≥ var (ej) = σ2
ǫ .
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The estimated variance σ2
e is a function of the true residual variance σ2

ǫ , the additive effect

βa and the conditional probability of QTL inheritance class. This implies that the regression

approach will not be as powerful as a model that incorporates the heterogeneity, such as the

mixture IM approach (Xu, 1995; Xu, 1998a; and Xu, 1998b).

The regression approach is a first moment approximation. The biased residual variance

can be reduced by approximating the distribution of the trait given the marker inheritance

types by first and second moments. To achieve this Xu (1998a) and Xu (1998b) suggested

using an iteratively re-weighted least squares (IRWLS) approach. This is an iterative pro-

cedure that uses a weighting matrix for each observation. The weights are based on the

previous iteration’s estimates of the residual variance, additive and dominance genetic ef-

fects and the variances of the expectation of the QTL inheritance class given the flanking

markers. If W is the weight matrix at a given iteration then the weight for individual j is

Wjj =
β2

a

σ2
e

var(zj|m) +
β2

d

σ2
e

var(wj|m) +
2βaβd

σ2
e

cov(zjwj|m) + 1

where βa is the additive effect, βd is the dominance effect, zj = ±1, wj = 0 if the individual

is homozygous, zj = 0, wj = 1 if it is heterozygous and σ2
e is the residual variance.

Like regression interval mapping, the IRWLS interval mapping produces unbiased esti-

mates of the genetic effects. However, the residual variance is not inflated and hence should

give a more powerful test (Xu, 1998a and Xu, 1998b). More computation is required than

the regression method but assuming that good starting values can be obtained, convergence

may not take more than a small number of iterations.

2.4 Multiple QTL methods

All the methods considered thus far examine the association of a particular locus on the

genome ignoring all the other loci. Some of these other loci may be QTL and hence they

may explain variation in the trait. Ignoring the other QTL may lead to misleading inference

(e.g. Miller, 2002).

There have been a number of methods proposed that allow for multiple QTL. They can

loosely be divided into three types: those extending the single marker models by fitting

multiple markers; those using a combination of single interval mapping and marker models

by including marker explanatory variable in a model when conducting interval mapping; and

those extending interval mapping by considering multiple intervals simultaneously.

2.4.1 Multiple Marker Models

These models are an extension of the single marker models. However, instead of fitting a

separate model for each and every marker, a single model is fitted with either all the markers

present (e.g. Whittaker et al., 2000; Gianola et al., 2003; and Xu, 2003) or a selected subset

of them (e.g. Broman & Speed, 2002).
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In practice it is not possible, nor desirable to include all the markers scored into a single

model as fixed effects. Often there are more markers than there are individual observations

so the fixed effect estimates are not unique. The marker variables are highly correlated if

they are on the same chromosome, potentially producing a system of estimating equations

that is ill-conditioned and hence estimates that are highly variable - an undesirable situation.

To overcome these problems a forward moving selection procedure such as forward selec-

tion or stepwise selection is often employed. These methods fit a series of models, starting

from a model with no marker variables. The complexity of the model is increased until all

the remaining marker variables in the model are not significantly related to the outcome.

Ridge regression (Hoerl & Kennard, 1970a) was proposed by Whittaker et al. (2000) for

the characterisation of the genetic merit of a set of markers. The most important of these

will be those that are close, in genomic position, to the QTL. These provide proxies for the

QTL.

Ridge regression can be specified as a random regression where the marker effects are

identically and independently distributed as normal variates (Lindley & Smith, 1972). If

the markers are assumed not to be QTL then this random effects model does not take into

account all the information known about the genetical system. In particular it assumes

that all the marker effects are independent. Gianola et al. (2003) reformulated the ridge

regression model using the random normal specification. They allowed for the correlation by

drawing the random effects from a multivariate normal distribution with an auto-regressive,

or gaussian correlation structure. If the markers are equally spaced then the marker variables

have an auto-regressive structure. However, this does not imply that the marker effects also

have the same structure.

Another method based on ridge regression was proposed by Xu (2003). This method

assumes that each marker effect had a normal distribution, however they have their own

variance, further, the variance is inversely proportional to the marker effect. Xu (2003)

estimated the model using Markov chain monte carlo (MCMC) methods as, analytical ex-

pressions are difficult or impossible to obtain and solve. However, as noted by ter Braak

et al. (2005) the model originally proposed by Xu (2003) will produce improper posterior

distributions. ter Braak et al. (2005) also suggest a different sampling method for MCMC

that should explore the posterior distribution more thoroughly. The model presented in Xu

(2003) has the attractive feature that the important markers are observations from a dis-

tribution with larger variance than the unimportant ones. This means that the important

effects will be estimated with less shrinkage than the unimportant effects.

For any given marker, the size of its effect is dependent on the genetic distance between

it and a QTL. In genomic areas where there are many markers, this diminution of effect size

is unlikely to cause problems. However, if the marker map doesn’t contain (approximately)

equally spaced markers, then the diminution of the genetic effect will be disproportional.

The markers will have different sized effects depending on whether they come from a marker

rich or poor genomic area. This problem has been largely overlooked. However, in a Bayesian



2.4. MULTIPLE QTL METHODS 25

setting the inclusion of a marker may be assigned a higher probability if it comes from a

marker poor genomic region. This is incorporated in the model averaging method of Ball

(2001).

2.4.2 Composite Interval Mapping

While a putative position is being examined by the interval mapping method, other genetic

effects can be approximately modelled by including markers that are located in proximity to

other QTL. This method is called composite interval mapping (CIM) (Zeng, 1993 and Zeng,

1994) or multiple QTL mapping (MQM) (Jansen, 1993a and Jansen & Stam, 1994). Selection

of the markers for inclusion into the model is a problem almost identical to the multiple

marker regression problem discussed previously and can be solved by forward selection or

stepwise model building.

The power to detect QTL using CIM is greater than using simple interval mapping (Zeng,

1994 and Jansen & Stam, 1994). In fact, for moderate to high marker densities the power to

detect QTL using CIM is approximately the same as using the QTL not under consideration

themselves (Jansen, 1994). This implies that the inclusion of markers as proxies for QTL

performs well.

Initially CIM was proposed for estimation via the mixture interval mapping technique.

However, some practitioners use CIM with regression interval mapping. The residual vari-

ance for the regression mapping method (Section 2.3.4) is composed of two parts, the true

residual variance and the extra variance obtained from not considering the estimation prob-

lem as a mixture. Xu (1998a) warns against using regression interval mapping for CIM as

the reduction in true residual variance might mean that the estimated residual variance is

dominated by the component due to ignoring the mixture structure. In place of regression

interval mapping the iteratively re-weighted least squares method or the mixture method

could be used if this is considered a sufficient problem. However, the benefit of multiple

QTL methods is likely to out weigh the inflation of variance.

Like the multiple marker models, the effect size of the non-flanking markers contained

in a CIM model is dependent on distance of the QTL to the marker. For CIM this means

that test statistics conditioning on markers acting as proxies for QTL in genomic regions

containing few markers may not be comparable to those with markers acting as proxies in

areas with many QTL (Zeng et al., 1999). The markers in the different areas will explain

different amounts of residual variation.

In practice, there seems to be little difference between fitting the QTL model using

CIM (with forward selection for the marker co-variables) and fitting a marker model using

forward selection (Broman & Speed, 2002). This may be because, in dense or moderately

dense marker maps, the marker variables themselves provide good proxies to the QTL.

The markers that are not flanking the interval of interest could be included into the

model as constrained variables, potentially as ridge regression variables (Boer et al., 2002).

This method removes the need to select any markers in preference for any of the others and
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enables all the additive genetic effects to be accounted for. Additive digenic epistatic terms

can also be accounted for by including these as ridge regression parameters, potentially with

a different constraint parameter from the additive main effects (Boer et al., 2002).

Testing thresholds for presence of a QTL at the putative location using CIM can be

obtained theoretically by extending those for simple interval mapping. Specifically, if it is

assumed that there is an infinite residual degrees of freedom, then the test statistic will follow

a distribution that is between a χ2
1 and a χ2

2 (Jansen, 1994). Accounting for multiple testing

uses the same adjustments used for simple interval mapping. Permutation thresholds can be

extended to the CIM setting (Doerge & Churchill, 1996). These involve either permuting on

the residuals of the model containing only the marker effects or conditioning on the marker

classes of all the markers in the model.

2.4.3 Multiple Interval Mapping

The idea of mapping multiple QTL using multiple intervals was first introduced at the in-

ception of interval mapping (Lander & Botstein, 1989). Commonly with mixture estimation,

a forward selection procedure is used for identifying the model. However, if there is more

than one QTL on the same chromosome then it will be difficult to distinguish the QTL with

this procedure as both QTL will appear as a single ghost QTL (Haley & Knott, 1992 and

Martinez & Curnow, 1992). In these cases it may be beneficial to use a two dimensional

search routine to simultaneously find the two QTL on a chromosome, if there are indeed two

(Haley & Knott, 1992). This two dimensional procedure is akin to finding the best model

via the selection method of best subsets of size 2. This can be computationally demanding if

mixture interval mapping is used for estimation and hence regression interval mapping may

be preferred.

The process of fitting multiple intervals, using estimation by the mixture methods, has

been named multiple interval mapping (MIM) by Kao et al. (1999). If mixture interval

mapping is used then the number of mixing classes increases, by about two fold for backcross

populations and about three fold for F2 populations, each time a QTL is added to the model

(Kao et al., 1999). To overcome this difficulty the estimation can be simplified by only

including a small number of important mixing classes into the estimation process (Kao et al.,

1999). Alternatively, a stochastic element can be introduced into the estimation procedure as

was outlined in the monte carlo EM estimation method for QTL analysis by Jansen (1996).

If all the mixing class probabilities in the MIM model are close to zero or one, then the

estimates will be almost identical to the regression mapping approach.

A selection method that uses the inherent structure of the genetic data was presented

by Piepho & Gauch (2001). The marker variables (and QTL variables if known) will be

stochastically independent if they lie on different chromosomes. This implies that selec-

tion can occur sequentially for each chromosome in turn using the identified model for the

other chromosomes. Piepho & Gauch (2001) use the flanking marker regression method of

Whittaker et al. (1996) to estimate the QTL positions within the interval once it has been
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identified. This reduces the computational cost for a high dimensional search.

2.5 Bayesian Methods

Up to this point, this review has largely ignored Bayesian methods. The notable exceptions

are the all marker models of Ball (2001), Gianola et al. (2003), Xu (2003) and ter Braak

et al. (2005). Here, this omission is rectified by providing a brief review of some of the

key ideas. This section is not comprehensive, as there is a substantial amount of literature

available. Furthermore, the Bayesian paradigm is not employed in this thesis.

Many of the methods that will be described were developed for outbreeding species where

there is a known pedigree structure (common in species such as dairy cattle). Consequently,

many of the proposed models include a polygenic random effect for each animal. The covari-

ance of these random effects is defined by the numerator relationship matrix. The inclusion

of these effects in the model suggests that many of the following methods are an extension of

the animal model which is frequently used in non-molecular quantitative genetics. Since the

motivating data set for this thesis does not contain pedigree information about the parental

populations, explicit mention of these terms in the following is not made. Only the portions

of the models relevant to experimental crosses are presented.

2.5.1 Single Marker Models

The development of Bayesian QTL mapping methods has proceeded along a similar path

to the non-Bayesian methods. In particular, early Bayesian methods were based on single

marker models, similar to those in Section 2.3.3 (Hoeschele & VanRaden, 1993a; Hoeschele

& VanRaden, 1993b; Thaller & Hoeschele, 1996a; Thaller & Hoeschele, 1996b). The under-

lying genetic model in these papers is similar to that presented in Weller (1986). However,

Hoeschele & VanRaden (1993a) argue that sensible prior information is available for the

QTL mapping problem and hence the Bayesian approach could be considered more appro-

priate. Another potential benefit of these models over the non-Bayesian methods is that

variation in the nuisance parameters (e.g. the recombination fraction) can be accounted for

by integration of the joint posterior distribution.

2.5.2 Incorporating Multiple Markers

The Bayesian single marker model, like the corresponding non-Bayesian model, can be ex-

tended using multiple markers. The most direct extension is to consider the QTL to be

associated with a linkage group rather than just a single marker (Uimari et al., 1996; Sa-

tagopan et al., 1996). Such analyses will provide information about the linkage status of the

QTL with the linkage group. Also, the marker map and QTL position can be estimated, up

to a predefined order, using the marker and the trait values (Uimari et al., 1996). Similar

to composite interval mapping, markers acting as proxies (cofactors) to QTL on different
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chromosomes can be included into the model to remove their genetic effect and hence reduce

residual variance (e.g. Satagopan et al., 1996).

2.5.3 Outbred Line Crosses

As mentioned earlier in this chapter, QTL mapping in outbred line crosses requires special

consideration. The phases of the parents’ linked markers are unknown. This was addressed

for single QTL models in half-sib designs by George et al. (2000). These authors estimate the

additive and dominance genetic effects over a number of unrelated families. Estimation of

the QTL location within the marker map (whose genetic distances were estimated during the

analysis) was performed by using the reversible jump Markov chain Monte Carlo algorithm

(RJMCMC; Green, 1995). The estimation problem can be posed as a variable selection

problem where the variables to be selected are the intervals’ putative QTL.

2.5.4 Multiple QTL Models

The single QTL models based on multiple markers are easily extended to models that in-

clude multiple QTL (e.g. Satagopan et al., 1996; Uimari & Hoeschele, 1997). The method

presented in Uimari & Hoeschele (1997) is a 2 QTL version of their previous work (Uimari

et al., 1996). For any given chromosome this method assesses the hypotheses that there are:

1) no QTL linked to the chromosome; 2) 1 QTL linked and one unlinked; and 3) two QTL

linked to the chromosome. While these hypotheses generalise those in their previous paper,

they are still quite limiting as there have to be exactly two QTL affecting the quantitative

trait. The method of Satagopan et al. (1996) avoids such problems by fitting a number of

models with varying assumptions about the number of QTL. The final model is chosen to

be the one that substantially increases the Bayes factor (Kass & Raftery, 1995) from models

with fewer QTL. Interval estimates for the position of the QTL can be obtained by using the

high posterior density (HPD; e.g. Gelman et al., 1995, page 34). The distribution of these

parameters may be multi-modal and hence the HPD may have disjoint intervals. This may

indicate that the model does not contain a sufficient number of QTL.

The multiple QTL method of Satagopan et al. (1996) assumes a fixed number of QTL

prior to undertaking analysis. In the Bayesian paradigm, this can be avoided by assuming

that the number of QTL is also random. Commonly, it is assumed to be a Poisson random

variable. This means that the mechanics of Bayesian variable selection, such as RJMCMC

can be employed. This was first performed by Sillanpää & Arjas (1998) for inbred line crosses

and subsequently for outbred populations in Sillanpää & Arjas (1999). In both these papers

the genome, defined by the marker map, was split up into ‘bins’, which were used as units

to assess the relevant posterior densities. The bins group similar samples from the Markov

chain together and require fewer samples as the number of considered locations is finite.
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2.5.5 Epistatic QTL Models

In a manner similar to the MIM method in Section 2.4.3, the Bayesian multiple QTL methods

can be extended to allow pairwise (and higher order) interactions amongst QTL. Often such

pairwise interactions are called digenic epistasis. This topic has been tackled in the Bayesian

paradigm by Sen & Churchill (2001), Yi & Xu (2002) and Yi et al. (2003).

The method of Sen & Churchill (2001) is appealing as it does not require complex sam-

pling methods to explore the posterior distribution. This is avoided because conditional on

the QTL genotypes, the QTL effects and the trait values are independent of the marker

values and the QTL position. This means that genotypes can be sampled and importance

sampling (e.g. Gelman et al., 1995) can be used to evaluate the required posterior distri-

bution. However, there are limitations of this model. In particular, most of the marginal

posterior distributions are dependent on the choice of model, implying that model selection

is important. Sen & Churchill (2001) proposed solution to this problem is to perform a scan

of potential simple models, to use these to propose more complex models and then to choose

a final model using Bayes factors (Kass & Raftery, 1995). This model selection method may

prove to be a shortcoming of this method as it is yet unproven except for a limited number

of examples.

The methods of Yi & Xu (2002) and Yi et al. (2003) use a more accepted method of

model selection - the RJMCMC algorithm. Yi & Xu (2002) use RJMCMC to choose QTL for

inclusion in the model irrespective of the size of its main effect, its interaction effects or both.

This means that a QTL with large interaction(s) but small main effect may be inadvertently

omitted from the model. This was addressed by Yi et al. (2003) by sampling the main effects

and interactions separately. However, the latter method allows the inclusion of interactions

without the corresponding main effects. This violates the marginality principle (Nelder,

1994).

2.5.6 Performance of Bayesian QTL Methods

All the analysis methods described in this section are computationally intensive. Some

authors reported that their analysis took many days to compute. This is not satisfactory

from a practical viewpoint. Worse, many of the estimation methods (those based on MCMC)

require input from the analyst. This means that inference from an analysis is only as good

as the analyst.

The only way to objectively compare analysis methods is to perform simulation studies

(Broman & Speed, 2002). For some of these methods this is an almost impossible task due

to the computational burden which such a study would require. This is a severe draw-back.
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Chapter 3

Review: Mixed Models

3.1 Introduction

This chapter serves as a review and an introduction for the theory behind mixed models

and estimation with restricted maximum likelihood (REML; Patterson & Thompson, 1971).

The mixed model framework forms the basis for the methods developed in this thesis. It

is not intended to be an all-encompassing exposition on the subject; for that the reader

is referred to Cullis et al. (2006). Emphasis in this chapter is placed on the standard

mixed model where random effects and residuals are normally distributed. The average

information algorithm (Gilmour et al., 1995) is reviewed as the means for estimating the

parameters. Lastly, Laplace’s method for obtaining approximate marginal likelihoods and

a derivative of it called partial Laplace’s method (Taylor & Verbyla, 2006) are presented.

These approximate likelihoods can be used for extensions of the standard mixed model when

the random effects or residuals are non-normal.

This chapter makes extensive use of the statistical results in Appendix A and the vector

and matrix algebra results in Appendix B.

3.2 Mixed Models

A (linear) mixed model is a model where the location effects are both fixed and random.

That is

y = Xτ + Zu + e (3.2.1)

where X is a n × p design matrix for the p fixed effects τ , Z is a n × r design matrix for

the r random effects u and e is the n× 1 vector of residuals.

The random effects u and the residuals e can come from any probability distribution,

but they are commonly assumed to be independent. Another common assumption about

these distributions is that they are both normal with mean zero, that is
[

u

e

]

∼ N

([

0

0

]

, σ2

[

G(γ) 0

0 R(θ)

])

31
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where σ2 is the residual variance, G(γ) is a known r × r matrix function of the variance

parameters γ associated with the random effects and R(θ) is a known n×n matrix function of

the variance parameters θ. The residual structures G(γ) and R(θ) are correlation structures

that are completely parameterised by γ and θ respectively.

The expected value and the variance of the outcomes under the linear mixed model (3.2.1)

are
E (y) = E (Xτ + Zu + e)

= Xτ and

var (y) = var (Xτ + Zu + e)

= var (Zu) + var (e)

= σ2(ZGZT + R)

= σ2H(γ, θ) say.

If the distribution of u and e are both normal then the distribution of y will also be normal.

Neither the mean nor variance of the observed random variable y contains the unobserved

random effects u. Rather, the distribution of the observed data depends on the random

effects only through their variances and design matrices. When estimation of parameters is

carried out, it is the fixed effects and variance parameters that are estimated. If the random

effects are considered interesting then they are predicted as a post-hoc procedure, conditional

on knowing the variance parameters.

The estimation of the fixed effects and the variance parameters should be based on

the distribution of the observed outcomes marginal to the unobserved random effects. To

obtain such a distribution the joint distribution of the observed outcomes and the unobserved

random effects should be integrated over with respect to the random effects. That is

f(y) =

∫

f(y, u)∂u

=

∫

f(y|u)f(u)∂u

where the area of integration is over the support of the random vector u.

Depending on the functional forms of f(y|u) and f(u), this integral can be difficult

to evaluate analytically. In such cases analytical approximations such as Laplace’s method

(Erdélyi, 1956 and de Bruijn, 1961) can be useful. Alternatively, numerical methods, such

as quadrature or Markov Chain Monte Carlo, can also be employed. Fortunately, in the

standard mixed model where both residual and random effects are normally distributed, the

marginal distribution is also normal with functional form

f(y) =
1

(2πσ2)
n
2

|H|− 1
2 exp

(

− 1

2σ2
(y −Xτ )T H−1(y −Xτ )

)

.

This marginal likelihood for the standard normal mixed model can be maximised with

respect to the fixed effects τ and the variance parameters ratios γ and θ. These estimates are
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the maximum likelihood estimates. Maximisation for τ yields the generalised least squares

estimate

τ̂ = (XT H−1X)−1XT H−1y (3.2.2)

which is unbiased as E (τ̂ ) = τ . From the Gauss-Markov theorem, τ̂ has minimum variance

of all unbiased estimates and hence is the best linear unbiased estimate (BLUE).

In a manner analogous to estimating the residual variance in linear models by maxi-

mum likelihood, the estimates of the variance parameters are biased downwards. The bias

arises because estimation of the fixed effects is not taken into consideration when estimat-

ing the variance parameters. This has consequences, not only for the variance parameters

themselves, but also for the estimation of the fixed effects as these are functions of the vari-

ance matrix H . An unbiased method for estimating the variance parameters is obtained if

the observed data are partitioned by a linear transformation. This idea was introduced by

Patterson & Thompson (1971) and is called restricted maximum likelihood (REML).

3.3 Restricted Maximum Likelihood

A derivation of REML will now be given for the standard mixed model. It closely follows

that given in Verbyla (1990). The observed data is transformed into two orthogonal spaces,

one of dimension p that contains the fixed effects and one of dimension (n−p) that contains

the residuals. The partitioned data containing the residuals has a distribution free of the

fixed effects but contains the variance parameters. These are estimated from this partition

of the data. The fixed effects are then estimated from the partition containing both the fixed

effects and the variance parameters. Details are now given.

Consider a partitioned linear transformation W = [W 1W 2], with W 1 and W 2 having

dimensions n× p and n× (n− p) respectively. Further, choose W such that

W T
1 X = Ip and W T

2 X = 0.

The first condition forces W T
1 y to lie on the solution space for τ , that is the space spanned

by X. The second condition forces W T
2 y to lie on the space orthogonal to X. If W T

1 y is

chosen to be the projection of y onto the space spanned by X then W T
2 y lies in the residual

space (Seber, 1977).

The distribution of the transformed outcomes can be expressed by

Wy =

[

W T
1 y

W T
2 y

]

=

[

y1

y2

]

∼ N

([

τ

0

]

, σ2

[

W T
1 HW 1 W T

1 HW 2

W T
2 HW 1 W T

2 HW 2

])

.

This joint distribution shows that as far as the estimation of τ is concerned, y2 is a

covariate for y1. Hence, the appropriate distribution for the estimation of τ is y1 conditional

on y2. The conditional and marginal distributions are both normal (using Result A.1 and
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Corollary A.1)

f(y1|y2) ∼ N
(

τ + W T
1 HW T

2 (W T
2 H−1W 2)

−1y2, σ
2(XT H−1X)−1

)

f(y2) ∼ N
(

0, σ2W T
2 HW 2

)

.
(3.3.1)

The distribution of y2 does not contain the fixed effects and hence it should be used for

estimation of the variance parameters.

The marginal distribution in (3.3.1) contains the arbitrary transformation W . However,

for the standard mixed model, the elements of the functional form of the normal distribution

can be expressed in terms free of this transformation (see Theorem A.2). The marginal

log likelihood based on y2 is the restricted likelihood used in REML estimation. Ignoring

constants it is

ℓr = −1

2

(

(n− p) log σ2 + log |H|+ log XT HX +
yT Py

σ2

)

(3.3.2)

where P = H−1 − H−1X(XT H−1X)−1XT H−1. The log-likelihood for estimating the

variance parameters does not depend on the arbitrary transformation used to derive it.

3.4 Estimation of Fixed Effects and Variance Parameters

3.4.1 Fixed Effects

The conditional log-likelihood of y1 given y2 is used for estimation of the fixed effects τ .

From (3.3.1) the functional form of this log-likelihood, ignoring terms not involving τ , is

ℓf = − 1

2σ2

(

y1 − (τ + y∗)
)T

XT H−1X
(

y1 − (τ + y∗)
)

where y∗ = W T
1 H−1W 2(W

T
2 H−1W 2)

−1y2.

Maximising and solving this log-likelihood with respect to τ gives the REML estimator

for the fixed effects

τ̂ = y1 −W T
1 H−1W 2(W

T
2 H−1W 2)

−1y2

= W T
1

(

H −H−1W 2(W
T
2 H−1W 2)

−1W T
2 H

)

H−1y

= W 1X(XT H−1X)−1XT H−1y from Lemma B.1

= (XT H−1X)−1XT H−1y

which is the same form as the fixed effects from maximum likelihood estimation (3.2.2).

However, the REML estimates will be different from the maximum likelihood estimates as

the variance parameters and hence the variance matrix H will have different estimates. Like

the maximum likelihood estimates, these are BLUEs for given variance parameters.
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3.4.2 Variance Parameters

The restricted log-likelihood (3.3.2) is used for estimation of the variance parameters. It is

illustrative for estimation to combine the variance parameters associated with the random

effects and the residuals together, let η = (γT , θT )T . The REML estimates of the vari-

ance parameters are those which solve the score equations (see Theorem A.3 for details of

derivation of the score for ηi)

U(σ2) =
∂ℓr

∂σ2

= −1

2

(

(n− p)

σ2
− yT Py

σ4

)

(3.4.1)

U(ηi) =
∂ℓr

∂ηi

= −1

2

(

tr
(

PḢ i

)

− yT PḢ iPy

σ2

)

(3.4.2)

where ηi is the ith parameter of η, i = 1 . . . nk, nk is the number of variance parameters and

Ḣ i is the derivative of H with respect to ηi.

Solving the score U(σ2) gives the closed form for the estimate of residual variance

σ̂2 =
yT Py

(n− p)

which is the residual sums of squares divided by the degrees of freedom. In general there is

no closed form for the estimates of the other variance parameters and numerical methods are

usually employed to find the estimates. Commonly iterative root finding procedures, such as

the Newton-Raphson (NR) or Fisher scoring (FS) methods are used. Other methods such as

the EM-algorithm or variants of it are also employed. The root finding procedures update

the target vector (η) by an amount that depends on the value of the score for the previous

iteration’s value and a descent direction D. The updates for the (m + 1)th iteration are of

the form

η(m+1) = η(m) −D
(

η(m)
)

U
(

η(m)
)

.

The descent directions D are chosen so that the updated solution is closer to the final

solution than the previous solution. Common choices for D are the inverse of the Hessian of

the restricted log-likelihood (the negative observed information) and its expected value (the

negative expected information). These choices give the NR and FS methods respectively.

The elements of the observed information matrix are derived in Theorem A.5 and are

Io(σ
2, σ2) =

(n− p)

2σ4
− yT Py

σ6

Io(σ
2, ηi) =

yT PḢ iPy

2σ4

Io(ηi, ηj) =
1

2
tr
(

PḦ ij

)

− 1

2
tr
(

PḢ iPḢj

)

+
yT PḢ iPḢjPy

σ2
− yT PḦ ijPy

2σ2
.
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The elements of the expected information matrix are derived in Theorem A.6

Ie(σ
2, σ2) =

(n− p)

2σ4

Ie(σ
2, ηi) =

1

2σ2
tr
(

PḢ i

)

Ie(ηi, ηj) =
1

2
tr
(

PḢ iPḢj

)

.

Patterson & Thompson (1971) originally employed the FS method to optimise the re-

stricted log-likelihood for the variance parameters. This can prove to be computationally

demanding for moderate to large data sets as the square matrices in the trace terms have

rank equal to the number of observations. The need to calculate these matrices is removed

if the descent directions used are a combination (an average) of the observed and expected

information (Gilmour et al., 1995). This idea is explored later when computational methods

are discussed in Section 3.6.

3.5 Prediction of Random Effects

As noted earlier, the distribution of the observed outcomes y is not dependent on the un-

observed random effects u. However, the u do appear in the linear model (3.2.1) and may

be of interest for interpretation. These effects are drawn from a known distribution, with

mean zero and variance defined by the (estimated) variance parameters. For this reason,

prediction of the random effects once the variance parameters are known is conceptually

different from estimation of the variance components and fixed effects.

The predictions should be unbiased in distribution. That is, they have zero expected

value and their variance is equal to the relevant variance component. Another desirable

attribute that could reasonably be imposed is that the predictions have minimum variance

of all such unbiased predictors. These requirements, along with linearity, lead to a class

of predictors known as best linear unbiased predictors (BLUPs). For a discussion on the

use of BLUPs see Robinson (1991). Sometimes, for example in Searle et al. (1992), linear

predictors of the random effects only are called best linear predictors (BLP). No distinction

is made here.

The minimum variance requirement of BLUPs implies that the distance between the

unbiased predictors and the true effects is minimised amongst all choices of predictors. This

leads to the BLUPs being the unbiased predictors that minimise the mean squared error

(MSE) between the true and predicted effects. So

MSE = E
(

(u− ũ(y))2
)

= E
(

E
(

(u− ũ(y))2|y
))

= E
(

E
(

u2|y
)

− 2E (u|y) ũ(y) + ũ2(y)
)

= E
(

var (u|y) + E2 (u|y)− 2E (u|y) ũ(y) + ũ2(y)
)

= E (var (u|y)) + E
(

(E (u|y)− ũ(y))2) (3.5.1)
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showing that MSE is minimised if and only if ũ = E (u|y).

3.5.1 Predictions to Minimise Prediction Error

The forms for the estimates and predictions are required if they are to be easily calculated.

Here, a derivation giving both the best linear unbiased estimates (BLUEs) and the best

linear unbiased predictors (BLUPs) is presented. It requires knowledge of only the first and

second moments of the distribution of the random effects and residuals.

Theorem 3.1. (Cullis et al., 2006) Let c1 and c2 be p × 1 and q × 1 vectors respectively.

Also let σ2 and H be known. The predictor of the linear combination of fixed and random

effects cT
1 τ + cT

2 u which has the minimum MSE among the class of unbiased predictors is

cT
1 τ̂ + cT

2 ũ where

τ̂ = (XT H−1X)−1XT H−1y and

ũ = GZT Py.

Proof. Let aT y be an unbiased linear predictor of cT
1 τ + cT

2 u, chosen so that its expected

value matches that of the data

E
(

aT y
)

= E
(

cT
1 τ + cT

2 u
)

aT Xτ = E
(

cT
1 τ
)

+ E
(

cT
2 u
)

aT Xτ = cT
1 τ + 0

giving

aT X = cT
1 . (3.5.2)

This condition imposes a constraint on the optimisation problem, arising because not all

values of c1 induce the correct expected value.

The MSE for the predictor aT y is given by

MSE = E
(

(aT y − (cT
1 τ + cT

2 u))2
)

= E
(

(aT y − cT
2 u)2

)

− E
(

2(aT y − cT
2 u)cT

1 τ
)

+ E
(

(cT
1 τ )2

)

= var
(

aT y − cT
2 u
)

+ E2
(

aT y − cT
2 u
)

− 2E
(

aT y − cT
2 u
)

E
(

cT
1 τ
)

+ E
(

(cT
1 τ )2

)

= var
(

aT y − cT
2 u
)

+ (aT Xτ )2 − 2aT XτcT
1 τ + (cT

1 τ )2

= var
(

aT y − cT
2 u
)

+ (cT
1 τ )2 − 2(cT

1 τ )2 + (cT
1 τ )2

= var
(

aT y − cT
2 u
)

= σ2
(

aT Ha + cT
2 Gc2 − 2cT

2 Ga
)

To find the optimal linear combination a, MSE is minimised subject to the constraint

(3.5.2). This is facilitated by defining the Lagrangian S = MSE + 2σ2λT (c1 −XT a) where
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2σ2λ is a p× 1 vector of Lagrange multipliers. Using Result B.1 the partial derivatives of S

with respect to a and λ are

∂S

∂a
= 2σ2(Ha−ZGc2 −Xλ) and

∂S

∂λ
= 2σ2(c1 −XT a).

These give

a = H−1(ZGc2 + Xλ) and (3.5.3)

XT a = c1.

Solving for λ gives

λ =
(

XT H−1X
)−1 (

c1 −XT H−1ZGc2

)

.

This is substituted for a in (3.5.3) to give

a = H−1ZGc2 + H−1X(XT H−1X)−1c1 −H−1X(X ′T H−1X)−1X ′T H−1ZGc2

=
(

H−1 −H−1X(XT H−1X)−1XT H−1
)

ZGc2 + H−1X(XT H−1H)−1c1

= PZGc2 + H−1X(XT H−1H)−1c1

evaluation of the linear combination gives

aT y = (PZGc2 + H−1X(XT H−1H)−1c1)
T y

= cT
1 (XT H−1H)−1XT H−1y + cT

2 GZT Py

= cT
1 τ̂ + cT

2 ũ.

3.5.2 Mixed Model Equations

The best predictions for the random effects are the expected values of the effects conditional

on the observed outcomes (3.5.1). This suggests a different method for calculating the fixed

and random effects in the standard mixed model, a method that reproduces the more gen-

eral Theorem 3.1. This alternative method hinges on the fact that in the standard mixed

model the mode of the so-called joint distribution of the observed outcomes and the unob-

served random effects coincides with the mean of the conditional (predictive or posterior)

distribution for the random variables. In the alternative method the joint distribution of the

random effects and the outcomes is maximised with respect to the fixed and random effects

(Henderson, 1950).
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The joint distribution of the outcomes and the random effects is
[

y

u

]

∼ N

([

Xτ

0

]

, σ2

[

H ZG

GZT G

])

.

The conditional distribution of the outcomes given the random effects is N(Xτ+Zu, σ2R)

and the marginal distribution of the random effects is N(0, σ2G). The joint log-density for

known variance parameters, ignoring terms not involving τ nor u, is

log f(y, u) = log f(y|u) + log f(u)

= − 1

2σ2

(

(y −Xτ −Zu)T R−1(y −Xτ −Zu) + uT Gu
)

.

Differentiation with respect to τ and u gives the mixed model equations (MME). These

are often expressed as the matrix equation
[

XT R−1X XT R−1Z

ZT R−1X ZT R−1Z + G−1

][

τ̂

ũ

]

=

[

XT R−1y

ZT R−1y

]

. (3.5.4)

Theorem 3.2. (e.g. Cullis et al., 2006) The general BLUP solutions to the fixed effects and

random effects given in Theorem 3.1 can be obtained for the standard mixed model by solving

the mixed model equations.

Proof. The approach taken is to solve the MME using Gaussian elimination. Absorb the

coefficient matrix on the left hand side of (3.5.4) and the outcome vector on the right hand

side of (3.5.4), giving an expression for the fixed effects free of the random effects

(XT R−1X −XT R−1Z(ZT R−1Z + G−1)−1ZT R−1X)τ̂ + 0u =

XT R−1y −XT R−1Z(ZT R−1Z + G−1)−1ZT R−1y.

Using Result B.2

XT H−1Xτ̂ = XT H−1y

giving

τ̂ = (XT H−1X)−1XH−1y.

Back-solve for the random effects

ZT R−1X(XT H−1X)−1XT H−1y + (ZT R−1Z + G−1)ũ = ZT R−1y

giving

ũ = (ZT R−1Z + G−1)−1ZT R−1H(H−1 −H−1X(XT H−1X)−1XT H−1)y

= (ZT R−1Z + G−1)−1ZT R−1HPy

and an application of Result B.2 gives

ũ = GZT Py.
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3.5.3 Residuals

A general form for the predicted residuals will be useful for computation. From Theorem

3.1 the estimated fixed and predicted random effects are known for a mixed model where

the first two moments of the relevant distributions are known. The corresponding residuals

are now given.

Theorem 3.3. The residuals from the mixed model described for Theorem 3.1 where the

location effects are predicted by BLUP are

ẽ = RPy.

Proof. The residuals are

ẽ = y −Xτ̂ −Zũ

= y −X(XT H−1X)−1XT H−1y −ZGZT Py

=
(

H(H−1 −H−1X(XT H−1X)−1XT H−1)−ZGZT P
)

y

= (H −ZGZT )Py

= RPy.

3.6 Computation for the Standard Mixed Model

The iterative descent procedure used for solving the score equations is now defined in more

detail. The standard methods of Newton-Raphson (NR) and Fisher Scoring (FS) can require

heavy computation. The matrix P is required to be evaluated explicitly. It is a function of

H−1; the inverse of a potentially large matrix.

The quadratic forms in the observed information do not require explicit evaluation of

P . These terms can be found numerically by using the (augmented) mixed model equations

and Gaussian elimination, in particular the process of absorption. See Seber (1977) for a

description for fixed effects only models and calculation of the residual sums of squares. The

mixed model equations are augmented in the first column and row by working variates {qi}
and the first element of the matrix is qT

i R−1qi. Seber (1977), Gilmour et al. (1995) and

Cullis et al. (2006) show that after absorption, when qi = y, the first element is the residual

sums of squares yT Py. The other quadratic terms can likewise be evaluated with judicious

choices for the working variates.

This suggests, from a computational view, that a descent direction that contains only the

quadratic forms and not the trace terms is desirable. Gilmour et al. (1995) introduced the

idea of combining the observed and expected information matrices in such a manner that

removes the trace terms. This combination matrix is called the average information matrix

as it is approximately an average. Its elements are formed by taking an element-wise convex
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combination of the observed information and the expected information. The elements of the

average information matrix (Ia) are

Ia(σ
2, σ2) =

1

2
Io(σ

2, σ2) +
1

2
Ie(σ

2, σ2)

=
1

2σ2
yT Py

Ia(σ
2, ηi) = 1Io(σ

2, ηi) + 0Ie(σ
2, ηi)

=
1

2σ4
H

yT PḢ iPy

Ia(ηi, ηj) =
1

2
Io(ηi, ηj) +

1

2
Ie(ηi, ηj)

=
1

2

[

tr
(

PḦ ij

)

− 1

2
tr
(

PḢ iPḢj

)

+
1

σ2
yT PḢ iPḢjPy

− 1

2σ2
yT PḦ ijPy +

1

2
tr
(

PḢ iPḢj

)

]

≈ 1

2σ2
yT PḢ iPḢ jPy.

Note that the approximation for Ia(ηi, ηj) is exact for models where the variance parameters

enter the variance matrix linearly.

The matrix Ia consists only of quadratic forms. It is also a convex combination of known

descent directions for the variance parameters. Implying that Ia is also a descent direction

for the variance parameters. It is a better choice for use in descent methods as each descent

requires less computation, even if it requires more descent steps to reach convergence.

3.6.1 Working Variates

The working variates needed to produce the quadratic forms after absorption are q1 and qi

for σ2 and ηi respectively. These variates are

q1 = y

qi = Ḣ iPy

Theorem 3.4. The working variates q1 and qi generate, after absorption, the required

quadratic forms.

Proof. Recall that PHP = P . So

qT
1 Pq1 = yT Py

qT
1 Pqi = yT PḢ iPy

qT
i Pqi = yT PḢ iPḢjPy.
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The working variates {qi} are functions of the matrix P , precisely the matrix that is de-

manding to compute. Fortunately, the expressions for the working variates can be expressed

in a form free of this matrix.

Theorem 3.5. The working variates {qi} corresponding to residual variance parameters

{θi} are given by

qi = ṘiR
−1ẽ.

The working variates {qi} corresponding to a non-residual variance parameters {γi} are

given by

qi = ZiĠiZ
−1
i ũ.

Proof. From Theorem 3.4 the working variates are qi = Ḣ iPy. For qi corresponding to a

residual parameter Ḣ i = Ṙi and

qi = ṘiPy

= ṘiR
−1RPy

= ṘiR
−1ẽ from Theorem 3.3.

For a working variate associated with a non-residual parameter Ḣ i = ZiĠiZ
T
i and

qi = ZiĠiZ
T
i Py

= ZiĠiG
−1
i GiZ

T
i Py

= ZiĠiG
−1
i ũ from Theorem 3.1.

If R−1 and G−1 are of known form then these working variates reduce computation

drastically.

3.6.2 Alternative Forms for Restricted Likelihood and Scores

So far attention has been given to the calculation of the descent directions. It was argued that

the observed and expected information were computationally demanding and hence should

be avoided in favour of the average information. However, the evaluation of the likelihood and

score functions in (3.3.2), (3.4.1) and (3.4.2) are still computationally expensive. Fortunately

alternative forms exist for these quantities which are less demanding.

Theorem 3.6. The restricted log-likelihood in (3.3.2) can be expressed as

ℓr = −1

2

(

(n− p) log σ2 + log |G|+ log |R|+ log |C|+ 1

σ2
yT Py

)

where

C =

[

XT R−1X XT R−1Z

ZT R−1X ZT R−1Z + G−1

]

and is the coefficient matrix in the mixed model equations (3.5.4).
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Proof. Consideration of only the determinants is necessary.

|C| =
∣

∣ZT R−1Z + G−1
∣

∣

∣

∣XT H−1X
∣

∣

=
∣

∣G−1
∣

∣

∣

∣In −R−1ZGZT
∣

∣

∣

∣XT H−1X
∣

∣ using Result B.3

=
∣

∣G−1
∣

∣

∣

∣R−1
∣

∣ |H|
∣

∣XT H−1X
∣

∣

giving

∣

∣H−1
∣

∣

∣

∣XT H−1X
∣

∣ =
∣

∣G−1
∣

∣

∣

∣R−1
∣

∣ |C|

Theorem 3.7. (Cullis et al., 2006) The score equation for a residual variance parameter θi

is

U(θi) = −1

2

(

tr
(

R−1Ṙi

)

− tr
(

C−1BT R−1ṘiR
−1B

)

− 1

σ2
ẽT R−1ṘiR

−1ẽ

)

,

and the score equation for a non-residual variance parameter γi is

U(γi) = −1

2

(

tr
(

G−1
1 Ġi

)

− tr
(

G−1
i ĠiG

−1
i CZiZi

)

− 1

σ2
ũT G−1

i ĠiG
−1
i ũi

)

where C is the coefficient matrix in the mixed model equations (3.5.4), B = (X , Z) and

CZiZi is the ri × ri partition of the inverse of C corresponding to ui.

Proof. First consider U(θi). From (3.4.2) and using P = R−1 −R−1BC−1BR−1

U(θi) = −1

2

(

tr
(

(R−1 −R−1BC−1BT R−1)Ṙi

)

− 1

σ2
yT PRR−1ṘiR

−1RPy

)

= −1

2

(

tr
(

R−1Ṙi

)

− tr
(

C−1BT R−1ṘiR
−1B

)

− 1

σ2
ẽT R−1ṘiR

−1ẽ

)

from Theorem 3.3.

Now consider U(γi). Define the (p + r) × ri matrix Si so that BSi = Zi. The ma-

trix Si contains zeros everywhere except for an identity matrix of order ri in the partition

corresponding to Zi in B. Also define G∗ = C −BT R−1B. From (3.4.2) the trace term is

tr
(

PḢ i

)

= tr
(

ĠiZ
T
i (R−1 −R−1BC−1BT R−1)Zi

)

= tr
(

ĠiS
T
i BT R−1(B −BC−1BR−1B)Si

)

= tr
(

Ġ
−1

ST
i BT R−1BC−1(C −BR−1B)Si

)

= tr
(

ĠiS
T
i BT R−1BC−1G∗Si

)

= tr
(

ĠiS
T
i (C −G∗)C−1G∗Si

)

= tr
(

ĠiS
T
i G∗Si

)

− tr
(

ĠiS
T
i G∗C−1G−1Si

)

= tr
(

ĠiG
−1
i

)

− tr
(

G−1
i CZiZiG−1

i Ġi

)

.
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The quadratic term may be written as

yT PḢ iPy = yT PZiĠiZ
T
i Py

= yT PZiGiG
−1
i ĠiG

−1
i GiZ

T
i Py

= ũT
i G−1

i ĠiG
−1
i ũi.

Substitute these expressions into the score in (3.4.2) to obtain the result.

Many of the terms required to calculate the restricted likelihood and the scores can be

found during the process of absorption for the working variates, in particular log |C| and

C−1. This implies that the restricted log-likelihood and the score equations can be calculated

with minimal computational effort. Computation can be further reduced by noticing that

C and C−1 will typically contain a large number of zero elements. This sparsity can be

exploited by using sparse matrix methods (Gilmour et al., 1995). This reduces computation

further.

3.6.3 The AI Algorithm

The algorithm used to maximise the restricted log-likelihood (solve the score equations) is

now succinctly stated.

1. Initiate variance parameters.

2. Solve mixed model equations in (3.5.4) for τ̂ , ũ and ẽ given current estimates for

variance parameters.

3. Form working variates using current estimates of variance parameters and predicted

random effects via (3.5).

4. Augment mixed model equations with working variables and absorb to obtain elements

of the average information matrix, log |C| and C−1.

5. Calculate the score equations and the restricted log-likelihood in Theorems 3.7 and 3.6

respectively.

6. Update variance parameters using the descent direction defined by the current average

information and score equations.

7. If restricted log-likelihood has not converged then go back to step 2 until convergence.

3.7 Analytical Approximations to the Marginal Likelihood

For models other than the standard mixed model, where both random effects and residuals

are normally distributed, exact analytical forms for the marginal (restricted) likelihood are

typically not available. In these cases approximations may be available and prove to be very
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useful. Here, two such approximations are presented. When used on the standard mixed

model the first, called Laplace’s method (Erdélyi, 1956 and de Bruijn, 1961), reproduces

the full marginal likelihood. The second, called partial Laplace (Taylor, 2005 and Taylor &

Verbyla, 2006), reproduces the restricted likelihood.

3.7.1 Laplace’s Method

Consider the integral of the data over the r dimensional random effects vector u whose

support is R
r. Denote the exponent of the joint distribution as m(y; τ , u, η) = m(u). For

some distributions this will involve taking the exponent of the log-density. The marginal

distribution is

f(y; τ , η) =

∫

Rr

exp (−m(u)) ∂u.

The base idea behind Laplace’s method is to approximate the integrand by a normal

distribution, which has an integral of 1 when the area of integration is R
r. In practice, this

involves approximating the function m(u) by a well chosen quadratic. The obvious choice for

the quadratic is the second order Taylor polynomial around the maximum of the integrand

ũ. With this choice the first derivative of m(u) is zero.

m(u) ≈ m(ũ)− 1

2
(u− ũ)T M̈(ũ)(u− ũ)∂u

where M̈(ũ) the matrix of second derivatives evaluated at u = ũ. The approximate marginal

integral is

f(y; τ , η) ≈ exp (−m(ũ))

∫

Rr

exp

(

−1

2
(u− ũ)T M̈(ũ)(u− ũ)

)

∂u

= exp (−m(ũ)) (2π)
r
2

∣

∣

∣
M̈ (ũ)

∣

∣

∣

− 1
2 ×

∫

Rr

1

(2π)
r
2

∣

∣

∣
M̈(ũ)

∣

∣

∣

1
2
exp

(

−1

2
(u− ũ)T M̈(ũ)(u− ũ)

)

∂u

= (2π)
r
2

∣

∣

∣
M̈(ũ)

∣

∣

∣

− 1
2
exp (−m(ũ)) .

This analytical approximation is free of the random effects, as they have been evaluated

at their maximum. When this approximation is applied to the standard mixed model the

full marginal likelihood is returned exactly. Indeed, for any density whose exponent is once

or at most twice differentiable the approximation is exact.

3.7.2 Partial Laplace’s Method

Laplace’s method for analytical approximation, like all ML methods, will produce biased

estimates for the variance parameters. Hence, the estimates for the fixed effects and the

predictions for the random effects will also be biased. Laplace’s method can be modified to
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reproduce the restricted likelihood for the standard mixed model. The modified version is

called Partial Laplace (Taylor, 2005 and Taylor & Verbyla, 2006). It works by taking the

expansion of the integrand around the maximum of the integrand free of fixed effects.

Partition the exponent of the joint distribution, using methods similar to those used to

derive REML (Section 3.3), into two functions; one of which will not have the fixed effects

τ as an argument. That is

m(y; τ , u, η) = m1(y; τ , u, η) + m2(y; u, η)

= m1 + m2 say.

Expand the integrand of the marginal distribution around ũp, the maximiser of m2. The

Taylor series expansion is then taken around this point. It is

m(u) ≈ m1 + m2 + (u− ũp)
T ṁ1 +

1

2
(u− ũp)

T
(

M̈ 1 + M̈ 2

)

(u− ũp)

where ṁ1 = ṁ1(τ , ũp) is the vector of derivatives of m1(τ , u) evaluated at ũp, M̈ 1(τ , ũp)

and M̈ 2(ũp) are the matrices of second derivatives of m1(τ , u) and m2(u) respectively

evaluated at ũp.

Completing the square in the quadratic approximation of m(y; τ , u) using only the terms

involving u gives

m(u) ≈ m1 + m2 +
1

2
aT
(

M̈ 1 + M̈ 2

)

a− 1

2
ṁT

1

(

M̈ 1 + M̈ 2

)

ṁ1

where a = (u−ũp)+
(

M̈ 1 + M̈ 2

)−1

ṁ1 and all instances of m1 and m2 and their derivatives

are evaluated at ũp. The approximate marginal density is

f(y; τ , η) ≈ exp (−m1 −m2) exp

(

1

2
ṁT

1

(

M̈ 1 + M̈ 2

)−1

ṁ1

)

×
∫

Rr

exp

(

−1

2
aT
(

M̈ 1 + M̈ 2

)

a

)

∂u

= (2π)
r
2

∣

∣

∣
M̈ 1 + M̈ 2

∣

∣

∣

− 1
2

exp (−m1 −m2) exp

(

1

2
ṁT

1

(

M̈ 1 + M̈ 2

)−1

ṁ1

)

=

(

(2π)r
∣

∣

∣
M̈ 1M̈

−1

2 + Ip

∣

∣

∣

− 1
2
exp

(

−m1(ũ) +
1

2
ṁ1(M̈ 1 + M̈ 2)

−1ṁ1

))

×
(

∣

∣

∣
M̈ 2

∣

∣

∣

− 1
2
exp (−m2(ũp))

)

= m∗
1(y; τ , ũp)m

∗
2(y; ũp) say.

The functions m∗
1(y; τ , ũp) and m∗

2(y; ũp) are analogous to the conditional and marginal

likelihoods derived for restricted likelihood. That is m∗
2(y; ũp) is a function of the data free

of fixed effects used to estimate the variance parameters. The function m∗
1(y; τ , ũp) is then

used to estimate the fixed effects given the data free of fixed effects.



3.7. ANALYTICAL APPROXIMATIONS TO THE MARGINAL LIKELIHOOD 47

In the standard mixed model ũp is a maximiser of m1(y; τ , u) as well as m2(y; u) and the

approximation m2(y; ũp) reproduces the restricted likelihood in (3.3.2) exactly (Taylor, 2005

and Taylor & Verbyla, 2006). In general it is expected that if ũp maximises both partitions

of the data then good results will be obtained. Further, if the exponent of the integrand is

only once or twice differentiable then the Taylor series expansion is exact.

The resulting function for estimating the dispersion parameters obtained using the partial

Laplace method has an alternative derivation. It is exactly the approximation obtained by

partitioning the observed outcomes, ignoring the part of the density corresponding to m1

and then integrating the remaining function.
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Chapter 4

Review: Subset Selection and Biased

Estimation

4.1 Introduction

Aspects of subset selection and biased estimation in linear models are discussed in this

chapter. These methods have benefits for both prediction of new observations and model

interpretation. Also, they have direct application to QTL identification when multiple QTL

models are used. When the parameter estimates are required to be unbiased it will be shown

that it may be important to use a reduced set of explanatory variables. This decreases

the variance of the predictions (Miller, 2002) and makes interpretation of the model as

parsimonious as possible. Various methods for reducing the number of explanatory variables

in the model, such as the familiar forward and backward selection, will be discussed. If the

requirement of unbiased estimates is relaxed then other methods of estimating the linear

model’s parameters can be useful. Two of these approaches are ridge regression (Hoerl &

Kennard, 1970a and Hoerl & Kennard, 1970b) and the LASSO (Tibshirani, 1996). Ridge

regression is also commonly used in situations where the correlations between the explanatory

variables are high. In such cases the ridge estimates have substantially lower variance than

their unbiased counterparts. Both ridge regression and the LASSO are commonly considered

as constrained regression problems, however it will be shown that both these methods can

also be specified as a penalised regression and a random effects model where the random

effects follow a normal and a double exponential distribution respectively. Estimation of

LASSO effects requires non-standard methods as the objective function is non-differentiable.

The interior point descent algorithm of Osborne et al. (2000) is used throughout this thesis

and will be reviewed in this chapter.

4.2 Why Select Subsets?

Consider the linear model

y = Lβ + e (4.2.1)

49
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where y is the n × 1 vector of outcomes, L is the n × q matrix of explanatory variables, β

is the q× 1 vector of location parameters and e is the n× 1 vector of residuals. Commonly,

the residuals are assumed to be independently and identically distributed. There are two,

not necessarily exclusive, uses for the linear model: prediction of future observations and

interpretation of the biological system.

For the present discussion, assume that the location parameter vector β is estimated by

the least squares method. This gives unbiased estimates, their expected values and their

variance as

β̂ = (LT L)−1LT y, (4.2.2)

E
(

β̂
)

= β and

var
(

β̂
)

= σ2(LT L)−1

where σ2 is the residual variance. The residual variance is typically unknown and must be

estimated. The common (unbiased) estimate is

σ̂2 =
(y −Lβ̂)T (y −Lβ̂)

n− q
=

yT
(

I −L(LT L)−1LT
)

y

n− q
.

This is the REML estimate and not the ML estimate described in Chapter 3.

4.2.1 Prediction

The linear model in (4.2.1), estimated by least squares, can be used for predicting a new

observation from a previously fitted model. Intuitively, it could be argued that all of the

available explanatory variables should be included in the model, as all the variables may have

some effect on the outcome. However, this may not be the best strategy, as a prediction

from a model with a larger number of explanatory variables will have a higher variance than

a prediction from a model with a smaller set of explanatory variables.

Theorem 4.1. The variance of a prediction is greater from model A than from model A∗

where the explanatory variables in model A∗ are a subset of the explanatory variables in

model A.

Proof. (Adapted from Miller, 2002). For a given observation yi with explanatory variables li

and least squares estimate β̂, the prediction ŷi and the prediction’s variance from the fitted

model are

ŷi = lTi β̂

var (ŷi) = σ2lT
i (LT L)−1li.

Consider a Cholesky decomposition of the matrix LT L into KKT where K is a square

lower triangular matrix of size q. Note that with this decomposition (LT L)−1 = (K−1)T K−1.

This gives the variance of the prediction to be σ2(K−1li)
T (K−1l).
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Write L = [LA∗LĀ∗ ] so that LA∗ is the design matrix for the variables in model A∗ and

LĀ∗ is the design matrix for all the explanatory variables not in model A∗. Partition K,

K−1, li and β̂ comformably using the sets A∗ and Ā∗. The variance of the prediction from

model A∗ is

var
(

lT
iA∗β̂A∗

)

= σ2
(

K−1
A∗liA∗

)T (
K−1

A∗liA∗

)

,

which is the sums of squares of the qA∗ explanatory variables in LA∗ . Hence, the prediction’s

variance is a monotone increasing function of the number of explanatory variables included

in the model and var
(

lT
iA∗β̂A∗

)

≤ var
(

lT
iAβ̂A

)

.

The result from Theorem 4.1 implies that models containing very few explanatory vari-

ables are favourable as they have low prediction variance. However, overly small models may

have inflated bias in both the parameter estimates and the predicted values.

Theorem 4.2. Suppose that the expected value of the outcomes is E (y) = Lβ. A model

containing a subset of the explanatory variables will have a biased least squares estimate,

unless all the effects of variables not included in the model are identically zero. Further,

the predictions from such an overly reduced model will also be biased unless all effects not

included in the model are identically zero.

Proof. (Adapted from Miller, 2002). Let the explanatory variables included in the reduced

model be arranged in the design matrix by LA and the one not included in the reduced

model be denoted by LĀ. Arrange the explanatory variables and the model’s effects so that

L = [LA, LĀ] and β = [βT
AβT

Ā]T . The expected value of the reduced model’s estimates is

E
(

β̂A

)

= (LT
ALA)−1LT

AE (y)

= (LT
ALA)−1LT

ALy

= (LT
ALA)−1LT

A [LALĀ] β

= (LT
ALA)−1LT

ALAβA + (LT
ALA)−1LT

ALĀβĀ

= βA + (LT
ALA)−1LT

ALĀβĀ.

So the least squares estimate β̂A is biased unless βĀ = 0.

For a given observation yi and associated explanatory variables lTi = [lT
iA, lTiĀ] the bias in

the prediction is

liβ − E
(

lTiAβ̂iA

)

= liβ − lTiAβA − lT
iA(LT

ALA)−1LT
ALĀβĀ

= lT
iĀβĀ − lTiA(LT

ALA)−1LT
ALĀβĀ.

The predictions from a reduced model fitted by least squares will have biased predictions

unless βĀ = 0.

Theorem 4.1 indicates that a small model is beneficial for reducing the prediction’s vari-

ance and Theorem 4.2 indicates that a large model is beneficial for reducing the prediction’s

bias. The goal of model selection is to minimise the prediction variance while not removing

too many variables to make the predictions overly biased.
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4.2.2 Interpretation of Model

Now consider the use of linear models, estimated by least squares, for drawing a useful and

plausible explanation of the biological system under consideration. Obviously, the model

should only contain explanatory variables that have an effect on the outcome, all other

explanatory variables are not interesting. Further, the estimated effects included in the

model should represent their unknown counterparts. Theorem 4.2 shows that an estimate

of a location parameter is biased if important explanatory variables are removed from the

model. Hence, the aim of model selection for explanation is to find the simplest model whose

effect estimates are not overly biased.

4.3 Algorithms for Finding Reduced Linear Models

In the previous section it was shown that model selection is vital for both predictive models

and models for interpretation. There have been many methods proposed to find the best

model or models. Only the most popular are reviewed here. Much of this section is taken

from Seber (1977), Neter et al. (1996) and Miller (2002) where the reader will find a more

detailed discussion on these and other algorithms.

The algorithms can be broken up into three broad categories. The first are the forward

moving algorithms that start with a model containing only a mean and add variables until

a final model is found. The next is the backwards moving algorithm that starts with a

full model (all the explanatory variables included in the model) and removes explanatory

variables until a final model is reached. The last are the search routines that systematically

assess all models containing a given number of variables.

For explanatory models, and to a lesser extent predictive models, there are a number of

restrictions which the analyst should observe while building the reduced model, irrespective

of the type of algorithm used. The principle of marginality and functional marginality should

be respected (Nelder, 1994). The principle of marginality stipulates that interactions should

not be included in the model unless the main effects are included. Functional marginality

stipulates, for example, that a quadratic term should not be fitted unless the corresponding

linear term is also fitted. Both these types of marginality circumvent unwanted restrictions

on the model parameter’s solution space. Also, individual dummy variables for a factor

should not be included in the model unless all of the dummy variables for that factor are

included.

4.3.1 Forward Selection

This is a forward moving algorithm, that starts with a null model (containing only a mean

parameter) and sequentially adds variables until the final model is found. An arbitrary criti-

cal F-value, called F-to-enter or Fe, is specified prior to the commencement of the algorithm.

The first step is to assess all the variables individually by adding them to the null model.
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That is, fitting the set of models

y = µ + ljβj + e; j = 1 . . . q.

The set of F-ratios corresponding to these q models are calculated

F ∗
j =

MSRj

MSEj

where MSRj is the mean squares due to the jth model and MSEj is the mean squared error

from the jth model.

The variable that has the highest F ∗
j value is added to the model if it exceeds Fe. The

process is repeated by adding the remaining explanatory variables to the previously enlarged

model. The only difference is that the F ∗
j values are now the partial F-ratios: the mean

squared residual and the mean squared error for the jth explanatory variable conditional on

the other explanatory variables being in the model.

The algorithm terminates when all explanatory variable that are not included in the

model have F ∗ values that do not exceed Fe. Convergence is guaranteed as there are a finite

number of variables to add into the model.

If the explanatory variables are a mix of both covariates and factors then the critical

Fe should be replaced with a p-value to enable all variables to be compared meaningfully.

If some of the variables are marginal or functionally marginal to others, then they should

not be included into the model before the marginal variables. This implies that the set of

potential explanatory variables in such a case will grow with the inclusion of a variable.

A word of caution is given regarding the meaning of the statistics {F ∗
j }qj=1 or the corre-

sponding p-values. It is commonly assumed that these follow an F-distribution under the

null hypothesis of no-effect for variable lj. An individual F ∗
j statistic for a variable lj chosen

at random from all the potential explanatory variables will follow an F-distribution. Their

maximum, the F ∗
j value corresponding to the variable most associated with the outcome,

will not have an F-distribution and hence any test assuming this will be incorrect (Draper

et al., 1971; Seber, 1977; and Miller, 2002).

A further problem with any subset selection method is estimating the residual variance

for use in the significance test. Early in a forward moving selection algorithm the residual

variance estimate may be artificially inflated. Late in the forward moving selection procedure

the residual variance estimate may be underestimated.

4.3.2 Backward Selection

This is a backwards moving algorithm. It starts with a maximal, or full, model containing

all the explanatory variables considered for inclusion into the final regression model. Unlike

forward selection, backward selection removes explanatory variables from the model. Prior

to the commencement of the algorithm an arbitrary constant is chosen. This is often called

F-to-remove or Fr.
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The first step is to estimate a model with all the explanatory variables present. The next

step is to calculate the partial F-statistics {F †
j }qj=1 formed by dropping each explanatory

variable from the model in turn. The explanatory variable corresponding to the smallest F †
j

is removed if F †
j is smaller than Fr.

The process is repeated until all explanatory variables in the model have partial F-

statistics greater than Fr. Convergence is guaranteed as there are only a finite number of

variables to remove from the model.

Much of the discussion of the forward selection algorithm applies to the backward se-

lection algorithm. In particular: if the explanatory variables are a mix of covariates and

factors then the corresponding partial p-value should be used instead of {F †
j }qj=1. The true

significance level is something different from that given from F †
j .

Backward selection is more computationally expensive than forward selection as the cost

of fitting each model is greater, especially if the number of explanatory variables is large.

If the number of explanatory variables is greater than the number of observations the least

squares estimates are not uniquely defined and hence the algorithm is not appropriate.

4.3.3 Stepwise Selection

Forward and backward selection can be seen as simplifications of a slightly more general

algorithm, namely stepwise regression (Efroymson, 1960). This algorithm is generally seen

as a forward moving algorithm but it does include some backwards steps. Like forward

selection and backward selection Fe and Fr are specified prior to the commencement of the

algorithm.

The algorithm starts by finding the explanatory variable, if any, that is most significantly

associated with the outcome. That is, finding the F ∗
j that exceeds Fe by the most. After

this process has been repeated twice, so that there are two variables in the model, each of

the two variables are assessed for removal by calculating F †
j . If either or both variables have

a smaller F †
j than Fr then the smallest is removed.

The algorithm continues in this fashion, adding a new explanatory variable and then

assessing previously chosen explanatory variables, until no explanatory variable absent from

the model has a F ∗
j value exceeding Fe and no explanatory variable present in the model has

an F †
j smaller than Fr. Convergence is guaranteed if Fr < Fe (Miller, 2002).

As observed for forward and backward selection, special consideration should be given

when the explanatory variables are a mix of covariates and factors. Also, like forward and

backward selection, the F-statistics will have an unknown distribution and hence the F-tests

at each stage of the model building process will be incorrect (Draper et al., 1971; Seber,

1977; and Miller, 2002).
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4.3.4 Best Subsets

Forward selection, backward selection and stepwise will often produce different models. Fur-

ther, there is no guarantee that any of these models will produce the best model. This is

because none of these algorithms search the entire model space.

This suggests the use of methods that search the model space more thoroughly. The

complete search of the model space is a method called best subsets (or all subsets). Methods

to identify all the models and compute the least squares estimates efficiently are given in

Seber (1977) and Miller (2002). Fitting all the subsets is a computationally demanding task,

much more demanding than any of the previous model identification methods. However,

some methods such as Branch and Bound (e.g. Miller, 2002) try to efficiently search the

parameter space by only considering those models which are likely to be good. This is a

variation on the same theme generating the selection and stepwise algorithms.

Once all the subset models have been identified and estimated they need to be individually

assessed for goodness. Generally goodness is defined by the model’s ability to predict the

data. Sometimes the number of parameters in the model are taken into account and the

models that can predict the data well, with fewer parameters, are favoured. There are three

common statistics that use all the available data for estimation for assessing the goodness

of a model: the coefficient of determination (R2
p); the adjusted coefficient of determination

(Adj-R2
p); and Mallows’ Cp statistic. A brief description of these will be given. More detail

can be found in Seber (1977) and Neter et al. (1996).

The methods, based on the coefficients of determination statistics, simply try to find the

models that predict the data the best. The two coefficients of determination statistics for a

model with p parameters are

R2
p =

SSR

SST
= 1− SSE

SST

Adj-R2
p = 1− (n− 1)

(n− p)

SSE

SST

where SSR is the sums of squares explained by the model, SSE is the residual sums of

squares and SST is the total sums of squares. The Adj-R2
p statistic penalises those models

with greater numbers of parameters. However, the penalty is minimal when the number of

parameters is much smaller than the number of observations.

Adding more explanatory variables into a model will increase the R2
p and Adj-R2

p statistics,

assuming the adjustment for Adj-R2
p is not great. Hence the best subset, using either of these

statistics, is the set where the addition of explanatory variables does not increase R2
p and/or

Adj-R2
p dramatically.

An alternative is Mallows’ Cp statistic, defined as

Cp =
SSEp

MSEq

− (n− 2p)
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where SSEp is the residual sums of squares for the model which has size p and MSEq is the

mean squared error for the model containing all the explanatory variables. The denominator

is chosen to be an unbiased estimator of the residual variance.

It can be shown (Neter et al., 1996) that when there is no bias in the predictions - that

is, E (ŷi) = µi for i = 1 . . . n and µi is the true observation without error, the expected value

of Cp is approximately p. A model with a value of Cp far from p is likely to have biased

predictions and a model with Cp close to p is likely to produce good predictions.

4.3.5 One True Model?

One appealing aspect of forward selection, backwards selection and stepwise selection is that

these algorithms will produce a single model for interpretation and prediction. On the other

hand the best subsets method may identify multiple models which fit the data approximately

equivalently. Hence, there may be no single model that describes the data better than other

models. This can be more realistic from a data analysis point of view.

4.4 Ill-Conditioning

In many linear models the explanatory variables are correlated, sometimes highly correlated.

If these highly correlated variables are included simultaneously in the model then the system

of equations used for estimation may become ill-conditioned. This has the effect of making

the estimates highly unstable, where small changes in the data produce potentially large

changes in estimation. The estimates and the predictions may have unreasonably high

variance.

Ill-conditioning arises because the explanatory variables in the design matrix are highly

correlated. In extreme situations at least one of the explanatory variables is an approximate

linear combination of other explanatory variables. Consider the total variance, the sum of

the marginal variances, of the p fixed effects’ estimates given in (4.2.2)

q
∑

i=1

var
(

β̂i

)

= σ2tr
(

(

LT L
)−1
)

= σ2

q
∑

i=1

λ−1
i

≥ σ2λ−1
s

where {λi}qi=1 is the set of eigenvalues for (LT L)−1 and λs is the smallest of this set (Seber,

1977). Since (LT L)−1 is positive definite then all the eigenvalues will be positive. This

variance may be unreasonably large if the smallest eigenvalue is very small.

Many methods are used to remove the unwanted outcomes of ill-conditioning. These in-

clude: model reduction, prudently choosing explanatory variables which are not ill-conditioned;

data transformation, reducing the explanatory variables to principal components which are
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in turn used as explanatory variables; and biased estimation, relaxing the unbiasedness re-

quirement of the estimators. This last method will be discussed in more detail in the next

section. Biased estimation works because the ill-conditioned system is transformed into a

non ill-conditioned system. Relaxing the unbiasedness of the estimators requirement is often

desirable, especially for prediction purposes.

4.5 Biased Estimation

One of the key attributes of the fixed effect estimates, such as least squares, is that they are

unbiased in the sense that E
(

β̂
)

= β. However, if this constraint is removed the estimates

obtained from an ill-conditioned system can be more stable. The estimates themselves

produce predictions with lower mean squared error (MSE)

MSE = E
(

(yi − µi)
2
)

= E
(

(yi − E (yi) + E (yi)− µi)
2)

= E
(

(yi − E (yi))
2)+ 2BE (yi − E (yi)) + B2

= E
(

(yi − E (yi))
2)+ B2

= σ2 + B2

where σ2 is the residual variance and B is the bias - the distance from the expected value to

the true value (Neter et al., 1996). Unbiased estimates require that E (yi) = µi or equivalently

B = 0. This is a constraint when considering estimation for minimum MSE. If this constraint

is lifted then the estimates will potentially have lower MSE. This attribute makes biased

estimates more appealing than unbiased ones for prediction purposes and for situations

when the estimate’s variance is unwarrantedly large, as it is from an ill-conditioned system.

There are three common methods used for biased estimation: constrained regression;

penalised regression; and random effect models. There is an equivalence between all three

methods given certain assumptions and choices for constraining parameters. The different

methods of estimation are essentially different ways to specify the ratio of the variance

parameters of the random effects model.

The most common type of biased estimates are the ridge regression estimates (Hoerl &

Kennard, 1970a and Hoerl & Kennard, 1970b). Another type of biased estimate is the least

absolute selection and shrinkage operator (LASSO; Tibshirani, 1996). Both these types of

biased estimation can be defined by all three mentioned methods of biased estimation. In

fact, they can both be seen to be special instances of another class of estimators called bridge

estimators (Frank & Friedman, 1993 and Fu, 1998).

Both ridge regression and LASSO estimates have been proven to reduce MSE for sensible

choices of the shrinkage parameters (Hoerl & Kennard, 1970b; Huang, 2003; and Rosset &

Zhu, 2004). This property makes these methods popular.

The three methods of biased estimation will now be discussed using ridge regression and

the LASSO as examples. These models are of particular interest as they have the favourable
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quality of simplicity. For illustration assume the linear model in (4.2.1). Further, assume

that all the explanatory variables in the design matrix L have equal variance or that they

can be sensibly transformed to have equal variance. This is important as the estimation

methods are not invariant to arbitrary changes of scale.

4.5.1 Constrained Likelihood

A seemingly arbitrary method for producing biased estimates is constrained likelihood. This

approach involves minimising an objective function, such as the sums of squares, subject to

a constraint on the parameters β. When the objective function is the sums of squares the

method is called constrained regression. Typically the constraint is formulated by limiting

the length of the parameters. For ridge regression length is defined as the L2-norm, for the

LASSO it is defined as the L1-norm and for the bridge it is the Lp-norm (see Definition C.1).

The constrained estimation problem for a q dimensional vector β can be stated as

minimise:
β∈R

q
S(β) =

1

2
(y −Lβ)T (y −Lβ)

subject to: ‖β‖p ≤ t

where 0 ≤ t < to, to = ‖β̂‖p, β̂ is the least squares estimate of β and ‖ · ‖p is the Lp-norm

operator.

The constrained estimation process can be displayed graphically when there are q = 2

explanatory variables. For ridge regression the solution space is the L2 circle centred at the

origin and for the LASSO it is the L1 circle centred at the origin. In both cases the solution is

the point where the ellipses defining the objective function for different choices of β intersect

the solution space (Tibshirani, 1996). This is shown in Figure 4.1.

After viewing Figure 4.1 it becomes immediately obvious that the nature of the estimates

from ridge regression and the LASSO have similarities. However, it is also clear that the

estimates from the LASSO method may contain identically zero elements, induced by the

polyhedral nature of the L1 solution space. In the example variable 1 is estimated to be zero,

while variable 2 is non-zero and shrunk towards zero. The ridge does not have this ability

to produce identically zero estimates, as the L2 solution space is not polyhedral.

The choice of the constraint parameter t can be quite arbitrary. Commonly, cross vali-

dation or some variant of it is used to choose this parameter. This method chooses t such

that it predicts the data best among all choices of t.

A constraint parameter for ridge regression that has been suggested as useful in nearly

all cases is (Hoerl et al., 1975)

t =
qσ2

βT β
.

The values σ2 and β are unknown and are replaced by their least squares estimates, if they

are available. This can be misleading as often the estimates will have high variance and

hence may be far from the true values.
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Figure 4.1: LASSO and Ridge Regression solution spaces with objective function ellipses.
Ellipses are centred around the unconstrained estimates. Constrained estimates are the
points where the ellipses first reach the solution space.

As the name suggests the LASSO performs selection as well as shrinkage. As such, it

may replace selection methods in some situations and is in direct competition with other au-

tomatic model selection and estimation methods such as the non-negative garotte (Breiman,

1995) and the elastic net (Zou & Hastie, 2005).

4.5.2 Penalised Likelihood

The constraint problem can be viewed as a quadratic or more generally a convex program-

ming problem. The Lagrangian function plays a key role in methods for constrained estima-

tion. It incorporates the constraint into the objective function, giving a single function to

optimise. For the constrained regression problem, ignoring those terms not involving β, the

Lagrangian is

L (β, λ) = S(β) + λ‖β‖p (4.5.1)

where λ is the Lagrange multiplier.
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The function (4.5.1) is also called a penalised regression if S(β) is the sums of squares

objective. If S(β) is a log-likelihood then it is called a penalised likelihood. The estimates

are taken to be those that minimise the function L (β, λ) for a given penalty parameter

λ. There is a one to one relationship between the penalty parameter λ and the constraint

parameter t. If there was no such relationship then the Lagrangian would not be a unique

description of the constrained estimation process.

Unfortunately the exact functional relationship between the constraint parameter t and

the penalty parameter λ is unknown for the LASSO. If an equivalent t for a given λ, or vice

versa, is required then a numerical search is required. Osborne et al. (2000) suggest using

a grid search or a Newton-Raphson iterative method to solve this problem. The latter is

used in the implementation of the computational methods for this thesis; details are given

in Chapter 6.

4.5.3 Random Effects Models

Consider a model where the effects are identically and independently normally distributed

with mean zero and variance σ2
g . In this case the log-joint distribution of the outcomes and

effects, ignoring terms not involving β, is

log f(y, β) = − 1

2σ2
(y −Lβ)T (y −Lβ)− 1

2σ2
g

βT β

∝ (y −Lβ)T (y −Lβ) +
σ2

σ2
g

βT β

which is the penalised regression form for ridge regression with λ = σ2

σ2
g
. The similarity

between random normal models and ridge regression was first shown by Lindley & Smith

(1972).

The LASSO model can likewise be defined. In particular the model effects are assumed

to be independently distributed as double exponential variables with mean zero and variance

2φ2. The functional form for the centred double exponential distribution is

f(βi) =
1

2φ
exp

(

−1

φ
|βi|
)

.

The moment generating function for the double exponential distribution is given in The-

orem A.7 and its variance is given in Corollary A.1. The functional form of the log-joint

distribution, ignoring terms not involving β, is

log f(y, β) = (y −Lβ)T (y −Lβ) +
σ2

φ

q
∑

i=1

|βi|

which is the penalised regression for the LASSO with λ = σ2/φ.

These results imply that the estimates from a penalised likelihood, or equivalently a

constrained likelihood, can be identical to those from a random effects model. However,
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the random effects model specification provides insight into the meaning of the penalty

parameter. It is the ratio of the residual dispersion parameter and the dispersion parameter

of the random effects. If these are known a priori then the choice of penalty parameter

and constraint is immediate. If the dispersion parameters are unknown then they could be

estimated. This provides a method for choosing the penalty and implies that the penalty

has an interpretation.

Other penalised regressions can be expressed as a random effects model, for example a

subset of the bridge models (Fu, 1998) and the elastic net (Zou & Hastie, 2005). These cases

may require the random effects to have a distribution that is not common, involves variance

and shape parameters or is a mixture of distributions.

4.6 Computation for Ridge Regression

If the model postulated contains only terms treated as ridge regression terms, then the

estimate of β can be directly found by optimising the penalised regression. The same result

also follows from treating the ridge effects as random normal variates. With λ = σ2

σ2
g

known,

both approaches give

β̃ = (LT L + λIq)
−1Ly. (4.6.1)

If there are fixed (unconstrained) effects then the variation in the observed outcomes

caused by them has to be accounted for. The most efficient method to do this is joint

estimation via the mixed model equations in Chapter 3. Assuming that there is no residual

variance structure and that the specification of the normal variates (ridge parameters) is

independent and identically distributed, then the reduced MME can be given
[

XT X XT L

LT X LT L + λI

][

τ̂

β̃

]

=

[

XT y

LT y

]

.

It is often suggested that the outcomes should be pre-adjusted for fixed effects by sub-

tracting from the outcomes predictions based on a fixed effect only model. This is not advised

as pre-adjusting imposes an unwanted covariance structure on the adjusted outcomes. For

illustration, assume a model with fixed effects τ and associated design matrix X. The

adjusted outcomes (or residuals) from the fixed effect only model are

ẽ = y −Xτ̂

=
(

I −X(XT X)−1XT
)

y.

The mean and variance of ẽ are

E (ẽ) =
(

I −X(XT X)−1XT
)

E (y)

= 0

var (ẽ) =
(

I −X(XT X)−1XT
)

var (y)
(

I −X(XT X)−1XT
)T

= σ2
(

I −X(XT X)−1XT
)

.
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Those who propose pre-adjusting often assume that var (ẽ) is homogeneous and diagonal

but this assumption is clearly not correct for the general case.

A special case is when there is only an overall mean parameter in the fixed effects. Then

var (ẽ) = σ2(I − 1

n
J)

where J is a n × n matrix of ones. If n is large then preadjusting the outcomes will be

approximately correct. However, it should still be avoided if possible.

In most practical situations the penalty parameter, equivalently the constraint parameter

or the variance components, are unknown prior to analysis. This means that they have to

be estimated. A common method is to use cross-validation or some variant of it to choose

the penalty parameter that minimises the prediction error. An alternative approach is to

estimate the variance components, preferably via REML, and to use these estimates to solve

the optimisation problem. The two approaches will not, in general, give identical results.

4.7 Computation for the LASSO

All the methods of estimation known to the author require the explanatory variables to be

standardised, as constrained regression is not invariant to arbitrary changes of scale. Also,

the outcomes have to be standardised or at least centred for known fixed effects before

estimation of the LASSO effects. As mentioned in Section 4.6 this is potentially misleading

as the adjusted outcomes are not independent. The method for computation presented here

is the algorithm of Osborne et al. (2000) and is based on solving the constraint problem.

Other methods to solve the constraint problem include the quadratic programming solution

in Tibshirani (1996), the iterative ridge approximation method in Öjelund et al. (2001), the

linear constraint method of Miller (2002) and the least angle regression method in Efron

et al. (2004). The least angle regression method is a stylised form of the algorithm of

Osborne et al. (2000). There is also a method to estimate LASSO effects from the penalised

regression (Fu, 1998). These should all give the same answers for equivalent constraint and

penalty parameters.

One of the attractive attributes of the algorithm of Osborne et al. (2000) is that it works

even if the number of explanatory variables is greater than the number of observations. Only

the LAR algorithm of Efron et al. (2004) shares this characteristic. The other algorithms

either start at the full least squares estimate or use them in the calculations.

4.7.1 First Order Conditions

Commonly, optimisation is carried out by taking derivatives and finding the critical points

of the objective function. This is not possible for the LASSO as the Lagrangian of the

constraint problem (4.5.1) is not differentiable. Instead a generalisation of the differential,

called the sub-differential, is used (e.g. Osborne, 1985). It is defined on convex functions and
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is stated formally in Definition C.3. The sub-differential of the Lagrangian for the LASSO

problem is

∂βL (β, λ) = −LT (y −Lβ) + λv (4.7.1)

where v = (v1, v2, . . . , vq)
T is chosen such that vi = −1 if βi < 0, vi = +1 is βi > 0 and

vi ∈ (−1, 1) if βi = 0. This form implies that vT β = ‖β‖1 and ‖v̄‖∞ = 1. The vector v is

introduced to allow for the different possibilities of sub-gradient (see Definition C.2) when

elements of the random variable β are zero. In a linear programming analogy the v behaves

in a manner similar to slack variables.

At an optimal point (a solution), the zero vector must be a member of the sub-differential

(e.g. Osborne, 1985). Let β̄ be the optimal point and let v̄ correspond to this solution. Then

0 = −LT (y −Lβ̄) + λv̄ (4.7.2)

and hence

β̄ = (LT L)−LT y − λ(LT L)−v̄.

where D− is a generalised inverse of D.

If the L∞ norm of (4.7.2) is taken then λ = ‖LT (y−Lβ̄)‖∞ and so the optimal solution

v̄ is given by

v̄ =
LT (y −Lβ̄)

‖LT (y −Lβ̄)‖∞
. (4.7.3)

This expression gives an optimality check. If β̄ is not optimal then v̄ will have elements

outside of [−1, 1]. This arises as 0 /∈ ∂βL (β, λ). Hence, the maximiser β̄ is the value which

has a corresponding v̄ with elements within [−1, 1] (Osborne et al., 2000).

4.7.2 Linearisation and Optimal Descent Directions

The sub-differential of the Lagrangian for the LASSO problem (4.7.1) is differentiable with

respect to β and λ, abusing notation call this quantity∇2L (β, λ). This implies that methods

requiring the sub-differential’s derivative to solve the sub-differential can be used. An obvious

choice is the iterative Newton-Raphson method which updates the solution by taking linear

steps from the current solution. Let the updated solution be related to the previous solution

by

(

β(k+1)

λ(k+1)

)

=

(

β(k)

λ(k)

)

+

(

h(k)

ν(k)

)

.

The first order Taylor series around the previous solutions, so that the updated solutions

solve the approximation, give the equations for choosing h(k) and ν(k) (Osborne et al., 2000).
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They are

∇2
L (β(k), λ(k))

(

h(k)

ν(k)

)

= ∂(β,λ)L (β(k), λ(k)).

The equations for choosing the linear descent directions for LASSO estimation based on

these general ones are
(

LT L v̄(k)

v̄(k)T

0

)(

h(k)

ν(k)

)

=

(

LT (y −Lβ̄
(k)

)

t− v̄(k)T

β̄
(k)

)

. (4.7.4)

These equations specify the linear form of the Karush-Kuhn-Tucker conditions in Result C.1.

The choice of descent direction chosen by these equations will be the optimal choice from

the current position.

4.7.3 Interior Point Descent Algorithm

The interior point descent algorithm of Osborne et al. (2000) is based on this Newton-

Raphson iterative process described for a single updating step in (4.7.4). The algorithm

starts with an arbitrary interior point, uses the steps defined by h(k) to find the next point

and checks to see if this point is the optimal solution via (4.7.3). However, this algorithm

chooses descent directions only for a subset of {βi} - those which are non-zero at the current

iteration. This is done to ensure convergence, even when the number of explanatory variables

is larger than the number of observations.

Let S = {i1, i2, . . . , iqS} be the set of qS indices for which v̄ij = ±1, where ij ∈ S. The

set S is called the active set and corresponds to those explanatory variables whose effect

estimates are non-zero. Without loss of generality, define β = (βT
S , 0T )T , L = (LS , LZ) and

h = (hT
S , 0T )T , that is a rearrangement of these entities so that the elements with index in

S occur first. Also let θT = (θT
S , 0T ) = (sign(β̄

(k)
S )T , 0T ) be the vector of current signs of the

solutions augmented with zeros. The descent algorithm performs a local linearisation of the

LASSO constraint problem around the current β̄
(k)
S

minimise:
h(k)

(

y −LS(β̄
(k)
S + h

(k)
S )
)T (

y −LS(β̄
(k)
S + h

(k)
S )
)

subject to: θ
(k)T

S

(

β̄
(k)
S + h

(k)
S

)

≤ t.

If the constraint is active then the choice of hS can be given by the linear Karush-Kuhn-

Tucker conditions in (4.7.4) reduced to the set S. That is
(

LT
SLS θS

θT
S 0

)(

h
(k)
S

ν(k)

)

=

(

LT
S (y −LSβ̄

(k)
S )

t− θT
S β̄

(k)
S

)

. (4.7.5)

Solutions to these equations are

h
(k)
S = (LT

SLS)−1(LT
S (y −LSβ̄

(k)
S )− ν(k)θS) where

ν(k) = max

(

0,
θT
S (LT

SL)−1LT
Sy − t

θT
S (LT

SLS)−1θS

)

.
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The increment of ν(k) is forced to be non-negative. If it were not then the increment for the

estimates could produce new estimates equal to or greater than the least squares estimates,

the unconstrained problem on a subset of explanatory variables.

This choice of h
(k)
S allows the sign of any element of β̄

(k+1)
S to change. If this occurs then

convergence is not guaranteed. Osborne et al. (2000) force the estimate updates to be of

the same sign as the previous estimates. If this is the case then the updates are said to be

sign feasible. If the updates are not sign feasible then the updating step is reduced so that

the offending element is identically zero; it is removed from the active set S.

After each updating step the current solution is checked for optimality via (4.7.3). If it

is optimal the algorithm stops, if not then another variable is added to the active set. This

variable is chosen as the one with maximum corresponding vi. The algorithm is now ready

to be stated in full and is based on the presentation in Lokhorst (1999). It is also given in

the flow diagram in Figure 4.2.

1. Main Step To move from iteration k to iteration (k + 1) solve the local optimisation

problem specified in (4.7.5) to obtain the solutions for h
(k)
S and ν(k). Consider the

updated parameter solutions β̄
(k+1)
S = β̄

(k)
S + h

(k)
S .

2. Sub-routine

• IF β̄
(k+1)

is not sign feasible then

(a) Find the smallest γ ∈ (0, 1) for which there exists a i ∈ S such that β̄
(k)
i +

γh
(k)
i = 0. This moves the first new zero component to zero in the descent

direction.

(b) Update the active set S by removing i and recompute solutions to (4.7.5)

with the reduced system.

(c) Iterate until the new solution is sign feasible.

• ELSE β̄
(k+1)

is sign feasible.

(a) Calculate v̄(k+1) as per (4.7.3).

– If |v̄(k+1)
j | = |θ(k+1)

j | for j ∈ S and −1 < v̄
(k+1)
j < 1 for j /∈ S then β̄

(k+1)

is a solution and algorithm is stopped.

– Else find j /∈ S such that v̄
(k+1)
j has maximum absolute value. Update S,

β̄
(k+1)
S and θ

(k+1)
S by appending j, 0 and sign(v̄(k+1)) respectively. Return

to the main step and start process again.

Convergence is guaranteed as each updated solution is within the solution space and

arises from a descent step which reduces the objective function (Osborne et al., 2000). From

a geometrical viewpoint, each update moves the current solution (of dimension |S|) to a point

within the solution space which decreases the objective function. This update decreases the

objective function the most, given the updated solution is of dimension |S|. The dimension

is then increased by one and the whole process continues. Eventually, after a finite number
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Figure 4.2: Flow diagram for interior point descent algorithm.

of steps, the current solution is on the boundary of the solution space - the L1-sphere. The

update then moves the current solution around the boundary until the optimal solution is

found. This is efficient as linear steps move the solution along the edges of the polyhedral

solution space. Convergence is guaranteed in a finite number of iterations as there are only

finitely many combinations of the elements of β.

For any particular data set, the need may arise for estimating the model for multiple

values of t. The efficiency of estimation in this set of models can be increased if the constraints

are ordered so that the model with the smallest constraint is estimated first and then the

next smallest and so on. The estimates from the model with the smaller constraint can then

be used as the starting point for the model with the larger constraint. Further, many of the

quantities needed, such as (LT
SLS)−1, can be used in the first iteration of the bigger model.

Starting the iterative procedure with S = ∅ shows some similarities with more standard

model building methods (Osborne et al., 2000). In particular, if the initial active set is S = ∅
then each iteration corresponds to the addition (or deletion) of a new variable, in this sense

it is a forward moving algorithm (Section 4.3). Unlike the forward stepwise algorithm, the

interior point algorithm is governed by a global optimality criterion.

4.8 Biased Estimate Standard Errors

4.8.1 Ridge Regression

The variance of the ridge regression estimates can be deduced from its function form. If the

estimates (4.6.1) are a linear combination of the normal outcome data then they will also

have a normal distribution with mean 0 and variance

var
(

β̃
)

= var
(

(LT L + λIq)
−1Ly

)

= (LT L + λIq)
−1Lvar (y) LT (LT L + λIq)

−1. (4.8.1)

Commonly var (y) is assumed to be diagonal and homogeneous. However, the random effects

model formulation suggests that this is not appropriate.
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4.8.2 The LASSO

Approximate standard errors for the LASSO have been proposed in Tibshirani (1996) and

Osborne et al. (2000). Both are based on the same idea; approximating the LASSO estimates

by ridge regression estimates and then using (4.8.1). Both approximations correspond to

using an approximation for the L1-norm (Osborne et al., 2000).

The approximation proposed by Tibshirani (1996) reformulates the constraint as

q
∑

i=1

|βi| =
q
∑

i=1

β2
j

|βj|
.

This enables an approximation of the form of the ridge regression estimates of β̄ = (LT L +

λW−)−1LT y, where W is a diagonal matrix with the jth diagonal element being |β̄j|, W− is

a generalised inverse of W and λ is the Lagrange multiplier. Based on (4.8.1) and assuming

that var (y) = σ2I the approximate variance is

var
(

β̄
)

≈ σ2(LT L + λW−)−1LLT (LT L + λW−)−1.

This approximation gives an estimated variance of 0 for estimates with β̄j = 0 (Tibshirani,

1996 and Osborne et al., 2000). This is cause for concern. The numerical values obtained

from this equation are also dependent on the choice of generalised inverse.

To overcome this problem Osborne et al. (2000) suggested a different approximation.

They note that at a solution (4.7.2) the Lagrange multiplier must have the form

λ =
(y −Lβ̄)T Lβ̄

‖β̄‖1
and the form of v̄ is given in (4.7.3). At the solution 0 ∈ ∂βL (βλ) and so from (4.7.2)

LT y = LT Lβ̄ + λv̄

=

(

LT L +
LT (y −Lβ̄)(y −Lβ̄)T L

‖LT (y −Lβ̄)‖∞‖β̄‖1

)

β̄

= (LT L + W o)β̄ say.

This gives the LASSO estimates to be

β̄ = (LT L + W o)
−1LT y.

The approximate variance of this estimator is

var
(

β̄
)

≈ (LT L + W o)
−1LT var (y) L(LT L + W o)

−1

= σ2(LT L + W o)
−1LT L(LT L + W o)

−1

if var (y) = σ2I.

The usefulness of these variance estimators is questioned as the distribution of the esti-

mates will typically have a mass of probability at zero (Osborne et al., 2000). This observa-

tion is formally investigated from an asymptotic viewpoint in Knight & Fu (2000).
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Chapter 5

Some Results for the LASSO Random

Model

5.1 Introduction

Under the random effects model formulation for the LASSO, the LASSO estimates are defined

to be the mode of the joint distribution of the observed outcomes y and the random effects

β (Tibshirani, 1996). They are modes, not means, of the joint distribution f(y, β) and

hence also of the predictive distribution (or posterior distribution in Bayesian terminology)

f(β|y) = f(β−β̃). In this chapter some of the important distributions related to the LASSO

random effects model are investigated along with some of the moments of these distributions.

This is performed initially using a simplistic model with only one LASSO random effect. The

multiple LASSO effect case is intractable. However, the marginal distribution is available.

The LASSO estimate is compared to the mean of the predictive distribution. They

are similar in many situations, except when the mean and mode approach zero. In such

situations the mean, like the ridge regression estimate, will never be identically zero. This

implies that the selection attribute of the LASSO rests on the estimates being modes.

Lastly, in this chapter, it is shown that the non-zero LASSO estimates β̄S can be es-

timated free of the zero estimates β̄Z . This suggests that computation can be reduced

significantly if the LASSO effects are partitioned into those whose estimate is non-zero and

those whose estimate is zero prior to calculating the effect.

5.2 Random Effects Model with Single Effect

Initially consider the simplest (pathological) random effects model, with only one effect β

y = lβ + e (5.2.1)

where y is a n×1 vector of observed random variables, l is the design vector for the random

effect β ∼ DE(0, 2φ2) and e is the vector of independent residuals whose distribution is

assumed normal with mean zero and common variance σ2.

69
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5.2.1 Marginal Distribution of Observations

The marginal distribution is important in mixed model theory as it forms the basis for the

likelihood. In the single random effect LASSO model (5.2.1) the marginal distribution is

found by partitioning the interval of integration into positive and negative real numbers.

This circumvents the problem of integrating the absolute value function. The resulting

integral is a function of the LASSO estimate assuming that the estimate were positive or

negative. If the LASSO estimate has equal probability of being either positive or negative

then the marginal likelihood will be dominated by the corresponding term.

Theorem 5.1. The marginal distribution for the random effects model in (5.2.1) is

f(y) =
(2πσ2

β̂
)

1
2

2φ(2πσ2)
n
2

exp

(

−yT y

2σ2

)

×
[

exp

(

β̄2
+

2σ2
β̂

)(

1− Φ

(

− β̄+

σβ̂

))

+ exp

(

β̄2
−

2σ2
β̂

)

Φ

(

− β̄−

σβ̂

)]

(5.2.2)

where β̂ = (lT l)−1lT y, σ2
β̂

= σ2(lT l)−1, β̄+ = β̂ − σ2
β̂
/φ and β̄− = β̂ + σ2

β̂
/φ. Note that β̄+ is

the LASSO estimate if β is known to be positive, likewise β̄− is the LASSO estimate if β is

known to be negative.

Proof. The marginal distribution is found by integrating over the random effect β

f(y) =

∫ ∞

−∞

f(y|β)f(β)dβ

=
1

2φ(2πσ2)
n
2

∫ ∞

−∞

exp

(

− 1

2σ2
(y − lβ)T (y − lβ)− 1

φ
|β|
)

dβ

=
1

2φ(2πσ2)
n
2

∫ ∞

−∞

exp

(

−yT y

2σ2
− lT l

2σ2

(

β2 − 2(lT l)−1lT yβ +
2σ2(lT l)−1

φ
|β|
))

dβ

=
1

2φ(2πσ2)
n
2

exp

(

−yT y

2σ2

)

[

∫ ∞

0

exp

(

− 1

2σ2
β̂

(

β2 − 2β̄+ + β̄2
+

)

+
β̄2

+

2σ2
β̂

)

dβ

+

∫ 0

−∞

exp

(

− 1

2σ2
β̂

(

β2 − 2β̄− + β̄2
−

)

+
β̄2
−

2σ2
β̂

)

dβ

]

=
1

2φ(2πσ2)
n
2

exp

(

−yT y

2σ2

)

[

exp

(

β̄2
+

2σ2
β̂

)

∫ ∞

0

exp

(

− 1

2σ2
β̂

(

β − β̄+

)2

)

dβ

+exp

(

β̄2
−

2σ2
β̂

)

∫ 0

−∞

exp

(

− 1

2σ2
β̂

(

β − β̄−

)2

)

dβ

]

=
1

2φ(2πσ2)
n
2

exp

(

−yT y

2σ2

)

[

exp

(

β̄2
+

2σ2
β̂

)

A + exp

(

β̄2
−

2σ2
β̂

)

B

]

say. (5.2.3)
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Initially consider the integral A. Change the variable (e.g. Apostol, 1967) using

u =
β − β̄+

σβ̂

giving
du

dβ
=

1

σβ̂

.

This gives

A =
√

2πσ2
β̂

∫ ∞

−
−β̄+
σ

β̂

1√
2π

exp

(

−1

2
u2

)

du

=
√

2πσ2
β̂

(

1− Φ

(

− β̄+

σβ̂

))

.

Similarly

B =
√

2πσ2
β̂
Φ

(

− β̄−

σβ̂

)

.

The result is obtained by substituting A and B into (5.2.3).

When the LASSO estimate is large with respect to (w.r.t.) σβ̂ and positive then the first

term of the marginal likelihood will be dominant and the second almost zero. Exactly the

opposite occurs when the LASSO estimate is large w.r.t. σβ̂ and negative. If neither β̄+/σβ̂

nor β̄−/σβ̂ is large then the marginal distribution will not be dominated by either term.

It will be useful for the derivation of the expected value of the posterior distribution to

have an alternative form for the marginal distribution.

Corollary 5.1. The marginal distribution for the random effects model (5.2.1) can be ex-

pressed in terms of the least squares estimate.

f(y) =
(2πσ2

β̂
)

1
2

2φ(2πσ2)
n
2

exp

(

−yT y

2σ2

)

exp

(

β̂2

2σ2
β̂

+
σ2

β̂

2φ2

)

×
[

exp

(

− β̂

φ

)(

1− Φ

(

− β̄+

σβ̂

))

+ exp

(

β̂

φ

)

Φ

(

− β̄−

σβ̂

)]

(5.2.4)

Proof. Substitute β̄+ = β̂ −
σ2

β̂

φ
and β̄− = β̂ +

σ2
β̂

φ
and the result is obtained immediately.

5.2.2 Predictive Distribution

Consider that the dispersion parameters are known or that there are plug-in estimates avail-

able. The predicted effects for the random effects model are often taken as a summary of

the predictive distribution, often this summary is the mean or mode of the distribution.
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Theorem 5.2. The predictive distribution of the scalar effect β is

f(β|y) =

exp

(

1
σ2 y

T lβ − 1
2σ2

β̂

β2 − 1
φ
|β|
)

√

2πσ2
β̂

[

exp

(

β̄2
+

2σ2
β̂

)

(

1− Φ
(

− β̄+

σ
β̂

))

+ exp

(

β̄2
−

2σ2
β̂

)

Φ
(

− β̄−

σ
β̂

)

]

where all terms are defined in either model (5.2.1) or Theorem 5.1.

Proof. Start with Bayes’ law

f(β|y) =
f(y|β)f(β)

f(y)

=
1

f(y)2φ(2πσ2)
n
2

exp

(

− 1

2σ2
yT y +

1

σ2
yT lβ − 1

2σ2
β2 − 1

φ
|β|
)

.

Substitute in the expression for f(y) from Theorem 5.1 and notice that σ2
β̂

= σ2(lT l)−1.

This distribution is non-smooth at β = 0 due to the presence of the absolute value

function. The distribution for small values of φ resembles a spike at zero. For larger values

of φ it resembles a truncated normal where the non-truncated part has not been re-scaled.

For even larger values of φ the predictive distribution represents a normal distribution. The

predictive distribution is plotted against increasing values of φ in Figure 5.1. Also plotted

in Figure 5.1 are the mean and mode of the predictive distribution. The expression for the

mean is derived in the next section and the mode is given in (4.7.2). For small values of φ

the mode is zero while the mean is small but non-zero. As φ is increased the mean increases,

as does the mode but at a differing rate. For large φ the mean and mode tend to coincide.

Cumulative Predictive Distribution

For inferential purposes is often useful to make probability statements about the random

effect β. Such statements take the form P(β < B|y) or P(β > B|y) = 1 − P(β ≤ B|y)

for some value B. These both involve the cumulative distribution function (CDF) for the

predictive distribution. In the single random effect situation it is possible to express this

function explicitly.
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Theorem 5.3. The CDF for the predictive distribution for model (5.2.1) is given by

P(β < B|y) =
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Proof. The proof will only be given for B > 0. The proof for B ≤ 0 follows similarly. The

CDF is given by

P(β ≤ B|y) =

∫ 0

−∞

f(β|y)dβ +

∫ B

0

f(β|y)dβ

From Theorem 5.2 and using the methods in the proof of Theorem 5.1 gives
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using the change of variable described in the proof of Theorem 5.1
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.

Typically of special interest are the probabilities P(β < 0|y) and P(β > 0|y). If one of

the quantities β̄+ or β̄− is much larger than the other then the CDF given in Theorem 5.3

has a remarkably simple form. For illustration, suppose that the LASSO estimate is large

and negative. Then

d ≈ exp

(

β̄2
−

2σ2
β̂

)

Φ

(

− β̄−

σβ̂

)

and P(β < 0|y) ≈ 1. The opposite is true if the LASSO estimate is large and positive. This

simple observation shows that the probability of an effect being less than (or greater than)

zero depends mostly on the size of the LASSO estimate w.r.t. the standard deviation of the

least squares estimate, σβ̂ .
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Expected Value of Predictive Distribution

Using a similar method to that used for the marginal distribution, the expected value of the

predictive distribution can be evaluated.

Theorem 5.4. The expected value of the predictive distribution f(β|y) is

E (β|y) = β̂ +
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φ
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where all parameters are defined in Theorem 5.1 or in model (5.2.1).

Proof.

E (β|y) =

∫ ∞

−∞

βf(β|y)dβ

=
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)

=
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(A + B) say.

First consider the integral A, using an argument similar to that used in the proof of

Theorem 5.1.

A =
1

2φ(2πσ2)
n
2

exp

(

− 1

2σ2
yT y

)
∫ ∞

0

βexp

(

− 1

2σ2
β̂

(β2 − 2ββ̄+)

)

dβ

=
1

2φ(2πσ2)
n
2

exp

(

− 1

2σ2
yT y

)

[

∫ ∞

0

(β − β̄+)exp

(

− 1

2σ2
β̂

(β2 − 2ββ̄+)

)

dβ

+ β̄+

∫ ∞

0

exp

(

− 1

2σ2
β̂

(β2 − 2ββ̄+)

)

dβ

]

=
1

2φ(2πσ2)
n
2

exp

(

− 1

2σ2
yT y

)

[

∫ ∞

0

(β − β̄+)exp

(

− 1

2σ2
β̂

(β2 − 2ββ̄+)

)

dβ

+
√

2πσ2
β̂
β̄+exp

(

β̄2
+

2σ2
β̂

)(

1− Φ

(

− β̄+

σβ̂

))]

.

The first integral is simplified by a change of variables. Let

u =
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The last equality holds as the integrand is the exponential distribution. The integral A can

be expressed as

A =
1

2φ(2πσ2)
n
2

exp

(

− 1

2σ2
yT y

)

[

σ2
β̂

+
√

2πσ2
β̂
β̄+exp

(

β̄2
+

2σ2
β̂

)(

1− Φ

(

− β̄+

σβ̂

))]

=
1

2φ(2πσ2)
n
2

exp

(

− 1

2σ2
yT y

)

×
[

σ2
β̂

+
√

2πσ2
β̂
β̄+exp

(

β̂2

2σ2
β̂

+
σ2

β̂

2φ2

)

exp

(

− β̂

φ

)(

1− Φ

(

− β̄+

σβ̂

))]

.

A similar sequence of operations gives the integral B
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Using the form of f(y) given in Corollary 5.1 the expected value is
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 .

The expected value in Theorem 5.4, like the ridge regression and the LASSO, is a shrink-

age estimate. That is, the estimate is moved towards zero from the least squares estimate.

The amount of shrinkage is governed by the additive shrinkage term in Theorem 5.4. The

type of shrinkage adjustment in the expected value in Theorem 5.4 and the LASSO is additive

in contrast to the ridge regression estimate which is multiplicative.

The second part of this additive shrinkage term is, theoretically, in the interval (−1, 1).

The normal cumulative distribution function does not have a closed form and hence, in

practice, must be evaluated numerically. For small φ this causes the computed estimate to

be unstable as algorithms to perform this numerical evaluation are not extremely accurate

in the tails of the normal distribution.
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If the dispersion parameter of the random effect, φ, is allowed to tend to infinity, the mean

estimate will tend towards the least squares estimate β̂. This arises as the denominator in

the additive shrinkage term will cause the adjustment to tend to zero.

Comparison of Mean and Mode of the Predictive Distribution

The mode of the predictive distribution (the LASSO estimate) is the same as the mode of

the joint distribution.

mode (f(β|y)) = β̄

= (lT l)−1lT y − σ2

φ
(lT l)−1v̄

= β̂ −
σ2

β̂

φ
v̄

where v̄ = sign(β̄) or equivalently for the scalar effect sign(β̂).

The functional form of the mean and mode are strikingly similar. The difference is in the

second, or shrinkage adjustment, term. The adjustment in the mean is based on a probability

argument. If the LASSO estimate is either very large and positive or negative, then this

term will approximate the sign of the LASSO estimate.

The mean and mode will converge to the least squares estimate as φ increases. The

mean estimate will always be larger in absolute value than the LASSO estimate. For a non-

zero mode, the probability adjustment term for the mean estimate tends to ±1 whereas the

adjustment in the LASSO estimate is identically ±1. For a zero mode the mean estimate

is non-zero and hence will be larger in absolute value. The mean and LASSO estimates are

plotted against φ in Figure 5.2 demonstrating the points raised.

Variance of Predictive Distribution

The variance of the predictive distribution can be important for making probability state-

ments about the random effects. In the simple model (5.2.1) the predictive distribution

variance is far from trivial. It can be evaluated analytically but it does not provide great

insight into the nature of the distribution. Nevertheless, it is now given for completeness.

Theorem 5.5. The variance of the predictive distribution f(β|y) for scalar β is
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Figure 5.2: Plot of the least squares estimate, the predictive distribution’s mean and mode
(LASSO estimate) as a function of φ. β̂ = 0.275, σ̂2 = 92.22.

and all other parameters are defined in Theorem 5.1 or in model (5.2.1).

Proof. The variance is given by

var (β|y) = exp
(

β2|y
)

− (E (β|y))2 .

The second term is available immediately from Theorem 5.4. Note that

E (β|y) = β̂ +
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d

so that

(E (β|y))2 = β̂2 − 2β̂
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The first term can be expressed as (see proofs of Theorems 5.1 and 5.4)
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From the proof of Theorem 5.4
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From the proof of Theorem 5.1
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These two equations give
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The integral in A1 is evaluated using integration by parts (e.g. Apostol, 1967). Let

f(β) = β − β̄+ ⇒ f ′(β) = 1 and
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Appealing to L’Hôpitals rule for the value of f(β)g(β) evaluated at ∞ yields

A1 = −β̄+σ2
β̂

+ σ2
β̂

√

2πσ2
β̂
exp

(

β̄2
+

2σ2
β̂

)(

1− Φ

(

− β̄+

σβ̂

))

and

A = σ2
β̂
β̄+ +

√

2πσ2
β̂
exp

(

β̄2
+

2σ2
β̂

)(

1− Φ

(

− β̄+

σβ̂

))

(

β̄2
+ + σ2

β̂

)

.

An analogous sequence of operations gives
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The part of E (β2|y) involving the integrals can now be given
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This gives the variance to be

var (β|y) = σ2
β̂
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The only easily obtainable observation regarding this variance is that when φ tends to

infinity, the predictive distribution’s variance tends to the least squares estimate’s variance

σ2
β̂
. From the plots of the predictive distribution in Figure 5.1, it is expected that the

predictive distribution’s variance should decrease as φ gets smaller. However, this is not

obvious from the variance in Theorem 5.2.2.
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5.3 Vector of Effects

A multiple dimension generalisation of the marginal distribution for a single random effect

β is available. However, the expected value and variance of the predictive distribution are

not easily obtained.

Consider the model containing q random effects β

y = Lβ + e (5.3.1)

where y is a n×1 vector of observed outcomes, L is a n×q design matrix, β is a q×1 vector

of independent random effects with βi ∼ DE(0, 2φ2) and e is the n×1 vector of independent

normal residuals with common variance σ2.

5.3.1 Marginal Distribution of Observations

Theorem 5.6. The marginal distribution for the multiple random effects model is

f(y) =
(2π)

q

2

(2φ)q(2πσ2)
n
2

|Σ| 12 exp

(

− 1

2σ2
yT y

)

×
2q
∑

j=1

[

exp
(

β̄
T
j Σ−1β̄j

)

∫

Aj

1

(2π)
q

2

|Σ|− 1
2 exp

(

−1

2
(β − β̄j)

T Σ−1(β − β̄j)

)

dβ

]

(5.3.2)

where {Aj}2q

j=1 is the complete set of orthants in R
q, β̄j = β̂−σ2

φ
(LT L)−vj, β̂ = (LT L)−1LT y,

Σ−1 = 1
σ2 (L

T L) and vj is a vector with elements ±1 corresponding to the sign of the points

in orthant Aj.

Proof.

f(y) =

∫

Rq

f(y|β)f(β)

=
1

(2φ)q(2πσ2)
n
2

∫

Rq

exp

(

− 1

2σ2
(y −Lβ)T (y −Lβ)− 1

φ
‖β‖1

)

dβ

=
1

(2φ)q(2πσ2)
n
2

exp

(

− 1

2σ2
yT y

)

×
∫

Rq

exp

(

− 1

2σ2

(

βT LT Lβ − βT LT y − yT Lβ +
σ2

φ
vT β +

σ2

φ
βT v

))

dβ

where v = sign(β). Now

f(y) =
1

(2φ)q(2πσ2)
n
2

exp

(

− 1

2σ2
yT y

)

×
∫

Rq

exp

(

−1

2

(

βT Σ−1β − βT Σ−1β̂ − β̂
T
Σ−1β +

σ2

φ
vT β +

σ2

φ
βT v

))

dβ
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where β̂ = (LT L)−1LT y and Σ−1 = 1
σ2 (L

T L). This gives

f(y) =
1

(2φ)q(2πσ2)
n
2

exp

(

− 1

2σ2
yT y

)

×
∫

Rq

exp

(

−1

2

(

βT Σ−1β − βT Σ−1β̄ − β̄
T
Σ−1β

)

)

dβ

where β̄ = β̂ − 1
φ
Σv = β̂ − σ2

φ
(LT L)−v. Complete the square in the exponent to obtain

f(y) =
1

(2φ)q(2πσ2)
n
2

exp

(

− 1

2σ2
yT y

)

exp
(

β̄
T
Σ−1β̄

)

∫

Rq

exp

(

−1

2
(β − β̄)T Σ−1(β − β̄)

)

dβ.

The form of v will vary depending on which orthant of Rq is being considered. There are

2q possible forms for v. Evaluation of this integral proceeds by separating the integral into

a sum of 2q integrals, each one integrating over one of the orthants {A}2q

j=1. The sum gives

the result.

The evaluation of a multivariate normal probability requires numerical methods. This is

a well known statistical problem. Acceptable solutions have been found where the number

of dimensions q is not large and when the value of the probability is moderate (preferably

around 0.5), for example see Kotz et al. (2000) or Gassmann et al. (2002). Unfortunately, in

this application q may be large and many, maybe all, of the probabilities will be close to zero

or one. For these reasons, along with the complexity of the form for the marginal distribution,

an alternative form must be obtained for the marginal distribution if it is to be used. This

problem is addressed in Chapter 7 and 10 where approximate marginal distributions are

developed.

5.4 Reduction of LASSO Estimates

The LASSO estimates given in Chapter 4 require a generalised inverse of the q × q matrix

LT L. This can be avoided in situations where the partition of the effects (β) into those that

will be estimated to be non-zero (βS) and those that will be estimated to be zero (βZ) is

known. The mechanism to perform this comes from an alternative expression to those in

Chapter 4 for the LASSO effects conditional on the partition.

Theorem 5.7. Consider that the dispersion parameters, the partition of the random effects

in model (5.3.1) into those that will be estimated to be non-zero (βS) and those estimated

to be zero (βZ) are all known. Further, assume that q < n so that LT L is non-singular.

Arrange the effects so that the non-zero effects are in the first positions and arrange v and
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L conformably. The LASSO estimates in Chapter 4 can be given by

β̄ =

[

β̄S

β̄Z

]

=

[

(LT
SLS)−1LSy − σ2

φ
(LT

SLS)−1vS

0

]

.

Proof. Define

(LT L)−1 =

[

(LT L)−1
SS (LT L)−1

SZ

(LT L)−1
ZS (LT L)−1

ZZ

]

and let (LT L) be likewise partitioned. From Chapter 4 it is known that

β̄Z = 0

= (LT L)−1
Z ·

LT y − σ2

φ
(LT L)−1

Z ·
v̄

= (LT L)−1
ZSLT

Sy + (LT L)−1
ZZLT

Zy − σ2

φ
(LT L)−1

ZS v̄S −
σ2

φ
(LT L)−1

ZZ v̄Z

giving

LT
Zy − σ2

φ
v̄Z = −

[

(LT L)−1
ZZ

]−1
(

(LT L)−1
ZS(LT

Sy − σ2

φ
v̄S)

)

.

Similarly

β̄S = (LT L)−1
SSLT

Sy + (LT L)−1
SZLT

Zy − σ2

φ
(LT L)−1

SSv̄S −
σ2

φ
(LT L)−1

SZ v̄Z

= (LT L)−1
SSLT

Sy − σ2

φ
(LT L)−1

SSv̄S − (LT L)−1
SZ

[

(LT L)−1
ZZ

]−1
(

(LT L)−1
ZS(LT

Sy − σ2

φ
v̄S)

)

=
(

(LT L)−1
SS − (LT L)−1

SZ

[

(LT L)−1
ZZ

]−1
(LT L)−1

ZS

)

(

LT
Sy − σ2

φ
v̄S

)

=
[

(LT L)−1
SS

]−1
(

LT
Sy − σ2

φ
v̄S

)

= (LT
SLS)−1LT

Sy − σ2

φ
(LT

SLS)−1v̄S .

This theorem implies that LASSO computation can be significantly reduced if the par-

tition into the sets S and Z are known. This is implicitly exploited in the interior point

descent algorithm (Chapter 4) which constructs the non-zero set S incrementally. The ma-

trix (LT
SLS)−1 can be constructed incrementally in this algorithm removing a substantial

amount of computing. This strategy in described in more detail in Chapter 6.
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5.5 Summary

In this chapter some of the important distributions associated with the simplest (patholog-

ical) LASSO model have been investigated (Section 5.2). The marginal distribution of the

outcomes for the multiple effect LASSO model was also derived (Theorem 5.6). This distri-

bution is difficult to calculate and/or maximise. Hence, alternative expressions are needed.

Finally, it was shown that computation for the LASSO predictions can be simplified if the

partition into zero and non-zero estimates is known prior to analysis.



Chapter 6

LASSO Computing

6.1 Introduction

The computing methods for estimating LASSO effects, described in Chapter 4, form the

basis for the computing methods used throughout this thesis. However, as described in

Chapter 4 these methods are not sufficiently flexible to perform some of the tasks that will

be required in later chapters. In particular, the interior point descent algorithm described in

Chapter 4 assumes that, conditional on the LASSO random effects, the observed outcomes

are independent and identically distributed. In this chapter this requirement is relaxed to

allow a known covariance structure.

The interior point descent algorithm for LASSO effect estimation is implemented using

an efficient updating routine, outlined in this chapter. For a given constraint parameter,

the algorithm starts with a null set of explanatory variables to which a single variable is

added after each iteration. This addition is performed without the need to repeat many

calculations at each iteration.

When introducing the interior point algorithm, Osborne et al. (2000) suggested that

the penalised regression (4.5.1) could be estimated using the same methods for estimation

of the constrained regression. They suggested numerical methods using a grid search or a

Newton-Raphson algorithm. The details of a Newton-Raphson algorithm are described in

this chapter.

The S-PLUS 6.1 functions to implement the interior point descent algorithm for correlated

data and the penalised regression are given in Appendix D. Faster implementations are nearly

always possible. For example it is expected that implementation in a lower level language

such as Fortran or C++ would speed up computation significantly.

Finally, this chapter includes a discussion of the generalised cross validation (GCV) style

statistic of Tibshirani (1996) and Fu (1998). The estimate of the degrees of freedom for

the LASSO model given in Tibshirani (1996) is not monotonic and has discontinuities when

considered as a function of t. In contrast, the estimate of Fu (1998) appears to be monotonic

and may provide a better method for choosing the constraint or penalty parameter.

85
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6.2 Interior Point Descent Algorithm for Correlated Data

Recall the LASSO random linear model

y = Lβ + e

where y is the n × 1 vector of observed outcomes, β is the q × 1 vector of LASSO effects,

L is the n× q design matrix and e is the n× 1 vector of residuals. Up to this point in the

thesis, the elements of e are assumed to be independently and identically distributed. This

assumption is now relaxed by allowing var (e) = σ2R where R is an arbitrary correlation

structure. The LASSO optimisation problem for independent and identically distributed

residuals in Chapter 4 can be extended to allow for this known correlation structure.

minimise:
β∈R

q
S(β) =

1

2
(y −Lβ)T R−1(y −Lβ)

subject to: ‖β‖1 ≤ t

where 0 ≤ t < ‖β̂‖1 and β̂ = (LT R−1L)−1LT R−1y is the unconstrained estimate.

The incorporation of the correlation matrix R into the optimisation problem causes

change in the equations used in the interior point algorithm but not in the iterative process.

The derivation of the equations needed for the algorithm is now given. It follows closely

the method described in Osborne et al. (2000) for independent and identically distributed

residuals, given in Chapter 4.

6.2.1 First Order Conditions

The Lagrangian of the constraint problem is the penalised regression

L (β, λ) =
1

2
(y −Lβ)T R−1(y −Lβ) + λ‖β‖1 − λt (6.2.1)

where λ is the Lagrange multiplier corresponding to constraint t. The sub-differential of the

Lagrangian for the correlated constraint problem is

∂β(β, λ) = −LT R−1(y −Lβ) + λv

where v is a vector whose elements, vi, are elements of [−1, 1] such that vT β = ‖β‖1. At a

solution β̄ to the Lagrangian 0 ∈ ∂β(β, λ) and

0 = −LT R−1(y −Lβ̄) + λv̄ (6.2.2)

so that

β̄ = (LT R−1L)−LT R−1y − λ(LT R−1L)−v̄
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where v̄ is a realisation of v such that v̄T β̄ = ‖β̄‖1. Taking the L∞-norm of the estimating

equation in (6.2.2) yields the expression for λ

λv̄ = LT R−1(y −Lβ̄)

so that

λ = ‖LT R−1(y −Lβ̄)‖∞.

These expressions in turn allow the form of v̄ to be specified.

v̄ =
LT R−1(y −LT β̄)

‖LT R−1(y −Lβ̄)‖∞
.

This equation gives an optimality check for the algorithm to be discussed presently. If v̄

satisfies ‖v̄‖∞ = 1 then the solution has been found (Osborne et al., 2000).

6.2.2 Linearisation and Optimal Descent Directions

The optimal descent directions given for the independent and identically distributed resid-

ual case in Chapter 4 are easily extended to the correlated residual case. Paralleling the

independent and identically distributed residual case, the descent directions are those that

satisfy the Karush-Kuhn-Tucker conditions in Result C.1. Let the descent direction for the

current estimate be h(k) and the descent direction for the Lagrange multiplier be ν(k). The

descent directions for βS and λ are given as the solutions to
(

LT
SR−1LS v̄

(k)
S

v̄
(k)T

S 0

)(

h
(k)
S

ν(k)

)

=

(

LT
SR−1(y −LSβ̄

(k)
S )

t− v̄
(k)T

S β̄
(k)
S

)

.

The superscripts have been added to show that the solution to these equations is only local

and iteration is needed to find the global solution (see Result C.1).

6.2.3 Interior Point Descent Algorithm

Mirroring the interior point descent algorithm for the independent and identically distributed

residuals (Chapter 4) the LASSO model effects β are divided into those that are estimated

to be non-zero (β
S
) and those that are estimated to be zero (β

Z
). Let θ(k)T

= (θ(k)T

S
, 0T ) =

(sign(β̄
S
)(k)T

, 0T ) be the current vector of the signs of β̄. The descent algorithm updates

the current non-zero LASSO estimates β̄
(k)

S
by

β̄
(k+1)

S
= β̄

(k)

S
+ h(k)

S
where

h(k)
S

= (LT
S
R−1L

S
)−1(LT

S
R−1(y −L

S
β̄

(k)

S
)− ν(k)θ(k)

S
) and

ν(k) = max

(

0,
θ(k)T

S
(LT

S
R−1L

S
)−1LT

S
R−1y − t

θ(k)T

S
(LT

S
R−1L

S
)−1θ(k)

S

)

.

(6.2.3)

These generalised forms of the updating equations for the interior point descent algorithm

are now incorporated into the iterative procedure in Chapter 4.
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6.2.4 Variable Updating

The interior point descent algorithm adds a new variable to the active set S after each

iteration. Hence, the algorithm behaves similarly to a forward moving algorithm. Some

of the computational advantages used in single variable addition (e.g. Seber, 1977) can be

employed in the LASSO estimation process. A QR factorisation method is suggested in

Osborne et al. (2000) but no details are given. Here the details of an alternative, simple and

perhaps numerically näıve method are given.

After the kth iteration, there will be at most k variables in the active set S(k) and it

is guaranteed that there are at most n non-zero LASSO estimates, where n is the number

of observations (Osborne et al., 2000, Theorem 6). Without loss of generality assume that

|S(k)| < n, otherwise the solution would have been found. To obtain the LASSO estimate for

the kth iteration the matrix (LT
S(k)R

−1LS(k))−1 is calculated. Assume the (k + 1)th iteration

identifies variable lj as being the next variable to enter the active set. To calculate the

LASSO effects, the matrix (LT
S(k+1)R

−1LS(k+1))−1 is needed. This can be expressed as a

partitioned matrix and inverted based on the previous iteration’s solution by using Result

B.4.

(LT
S(k+1)R

−1LS(k+1))−1 =

(

LT
S(k)R

−1LS(k) LT
S(k)R

−1lj

lT
j R−1LS(k) lT

j R−1lj

)

=

(

(LT
S(k)R

−1LS(k))−1 + BTBT −TBT

−BT T

)−1

where

T =
(

lTj R−1l − lT
j R−1LS(k)(LT

S(k)R
−1LS(k))−1LS(k)R−1l

)−1
and

B = (LT
S(k)R

−1LS(k))−1LS(k)R−1l.

The matrices T and B are calculated with minimal computational cost since (LT
S(k)R

−1LS(k))−1

is already known from the previous iteration.

During the sign change step of the algorithm a variable is removed from the active

set. In a typical run of the interior point algorithm the number of up-dating steps far

outweighs the number of down-dating steps and hence the method used to down-date is not

as important as the method to up-date. There is no analogous routine to that described for

up-dating for down-dating the matrix (LT
S(k)R

−1LS(k))−1. A decomposition of this matrix,

such as the QR decomposition, could be utilised to increase efficiency but has not been

implemented. Whenever a down-dating step is needed, the complete matrix is inverted.

This is a computationally expensive but correct approach.

6.3 Estimating Penalised Regression

The interior point descent algorithm can be used to find the solution to the penalised regres-

sion (6.2.1). As discussed in Section 6.2.1 the penalised regression equation is the Lagrangian
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for the constraint problem and the penalty parameter λ is the Lagrange multiplier. From a

statistical viewpoint, the task of estimating the penalised regression is equivalent to finding

the t for which the Lagrange multiplier is λ.

There is a penalty λmax such that all λ ≥ λmax induces all LASSO estimates to be

identically zero, that is they have constraint t = 0. Without loss of generality, the set of

possible λ is reduced to P = {λ|0 ≤ λ ≤ λmax}. Since any λ ∈P is a Lagrange multiplier

for a particular t ∈ T = {t|0 ≤ t ≤ ‖β̂‖1} then there is a relationship between t ∈ T and

λ ∈P. Further, for each t ∈ T there must be one and only one corresponding λ ∈P, that

is the relationship between t ∈ T and λ ∈ P is a function h(t) = λ. The function must

be surjective. If it were not, then T would not completely define the set of possible LASSO

solutions. The function h(t) is monotonic decreasing as increasing the constraint t implies

that there is less penalty λ on the unconstrained estimating equation. Further, it is strictly

monotonic decreasing - if it were not then the LASSO solutions, defined by λ ∈ P, would

not be unique.

The function h(t) is easily evaluated by finding the LASSO solution and then calculating

the Lagrange multiplier for that solution. An example of the function h(t) = λ is given in

Figure 6.1 for the prostate data from Stamey et al. (1989). Note that it has all the properties

described.

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80

λ versus t for prostate data

λ

t

Figure 6.1: Penalty parameter λ versus constraint parameter t for LASSO models fitted to
the prostate data.

To solve the penalised regression using the interior point descent algorithm for a given

penalty, λg say, the constraint t ∈ T such that h(t) = λg is required. This is achieved by
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the iterative Newton-Raphson procedure. Each iteration is updated via

t(i+1) = t(i) − h
(

t(i)
)

− λg

h′ (t(i))

where t(i) is the previous iteration and h′(t) is the derivative of h(t). Iteration is carried out

until convergence with some predefined tolerance is achieved. The functional form of h(t)

is unknown but its value at any point can be calculated - it is the value of the Lagrange

multiplier at the LASSO solution for constraint t. The value of h′(t) is also unknown and

must be approximated. The forward difference approximation to the differential

h′(t) ≈ h(t)− h(t + ∆t)

∆t

is used, where ∆t is a small positive number. If the limit as ∆t → 0 of this approximation

is taken, then it is the differential (tangent) of the function h at t. This iterative method is

called a numerical Newton-Raphson algorithm as the derivative (or differential) is approxi-

mated numerically.

Using the interior point descent algorithm, models corresponding to a small t are quicker

to fit than those with a large t. This makes t = 0 an obvious starting point for the numerical

Newton-Raphson search.

Care must be taken with all numerical methods when choosing the convergence tolerance

and arbitrary constants used in the computation. In practice, for all data sets encountered

so far, a convergence tolerance of 0.001 and ∆t = 0.000001 has been used and seems to

perform acceptably. If the convergence tolerance is decreased, then the value of ∆t should

also be decreased and under no circumstances should ∆t be larger than the convergence

tolerance. If it was larger, then it is possible to obtain t(i) < tg < t(i) + ∆t, which could

cause convergence failure.

6.3.1 Computation Costs for Penalised Regression

The computational cost of calculating the approximate derivative is minimal. The LASSO

solution used in calculating h
(

t(i)
)

forms an interior point for h
(

t(i) + ∆t
)

which is extremely

close to the new solution and is almost guaranteed to be reached with one step of the interior

point descent algorithm.

Calculating h
(

t(i)
)

requires considerably more computation, especially if the set of active

explanatory variables in the descent algorithm is started at the null set for every iteration.

The computation cost can be significantly reduced by identifying better starting values for

the descent algorithm. A method for doing this is now described.

The Newton-Raphson search is started at t = 0, the first movement of the search increases

t, as will any movement from a point t(i) < tg where h(tg) = λg. For these steps the previous

iteration’s solution to the interior point descent algorithm can be used as starting values.

The movement from a point where t(i) > tg will decrease t(i). This means that the previous

iteration’s solution cannot be used as the starting point as it is not an interior point. Instead
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the solution to the kth iteration is used where k is the largest value such that t(k) ≤ tg or

equivalently h
(

t(k)
)

≥ h(tg) = λg. This point is guaranteed to be an interior point for the

current iteration. It turns out that the choice of k can always be taken to be the iteration

immediately prior to the previous iteration. The proof is given in the following Theorem (to

demonstrate that each step is closer to the solution) and Corollary (showing the point just

raised).

Theorem 6.1. Let h(t) be a non-negative strictly monotonic decreasing function of t. The

solution to h(t) = λg is required. Let tg be this solution. If a Newton-Raphson iterative

search is employed by defining t(i+1) = t(i) − h(t(i))−λg

h′(t(i))
where h′(t) is the differential of h at t

then

|t(i+1) − tg| ≤ |t(i) − tg|.

That is the updated t(i+1) is closer to the solution than the previous t(i).

Proof. Note that since h(t) is strictly monotonic decreasing then h′(t) < 0 for all t. Now

∣

∣t(i+1) − tg
∣

∣ =
∣

∣t(i+1) − t(i) + t(i) − tg
∣

∣

=

∣

∣

∣

∣

∣

−h
(

t(i)
)

− λg

h′ (t(i))
+ t(i) − tg

∣

∣

∣

∣

∣

.

If t(i) − tg > 0 then −h(t(i))−λg

h′(t(i))
< 0 and

∣

∣t(i+1) − tg
∣

∣ =

∣

∣

∣

∣

∣

−h
(

t(i)
)

− λg

h′ (t(i))
+ t(i) − tg

∣

∣

∣

∣

∣

<
∣

∣t(i) − tg
∣

∣ .

If t(i) − tg < 0 then −h(t(i))−λg

h′(t(i))
> 0 and

∣

∣t(i+1) − tg
∣

∣ =

∣

∣

∣

∣

∣

−h
(

t(i)
)

− λg

h′ (t(i))
+ t(i) − tg

∣

∣

∣

∣

∣

<
∣

∣t(i) − tg
∣

∣ .

In summary
∣

∣t(i+1) − tg
∣

∣ ≤
∣

∣t(i) − tg
∣

∣ .

Theorem 6.1 guarantees convergence if the differential is known, as each updated value is

consecutively closer to the solution. When the differential is replaced by an approximation,

convergence is not guaranteed. However, if the approximation is good, then convergence is

almost always expected.

Corollary 6.1. Let t(k) < tg be such that t(k+1) > tg then t(k) ≤ t(i) for all i > k.
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Proof. If t(i) > tg then the result is immediate. If t(i) < tg then from Theorem 6.1

t(k) − tg < t(i) − tg for all i > k

giving

t(k) < t(i)

as t(i) = t(k+j), j = 1, 2, . . .

Using this simple scheme for generating starting points for the interior point descent

algorithm reduces the computation cost of fitting penalised regressions significantly. In fact,

if there are not too many backward steps, those with t(i+1) < t(i), the cost of computation

should not be impedingly more than the constraint problem. For the prostate data of Stamey

et al. (1989) analysed in Tibshirani (1996) the maximum difference, over t, between the two

estimation methods is under 0.4 seconds, or approximately 3 times slower. The time taken

to compute the solution for both the estimation methods is plotted against the constraint in

Figure 6.2.
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Figure 6.2: Computation times for constrained regression and penalised regression versus
constraint value t. The data are the prostate data and t varies from 0 to ‖β̂‖1. Analyses
performed on a laptop Pentium 4 P.C. with 512 MB RAM and a clock-speed of 2.0 GHz.

The maximum time taken for fitting models with a large number of explanatory variables

is greater than that for a model with a smaller number of explanatory variables. This applies

to both the constrained and penalised regression. The difference in computing time for the

constrained and penalised regressions is expected to grow for large models as the number of

descent steps is greater.
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6.4 Discussion of Degrees of Freedom for GCV

A generalized cross validation (GCV) style statistic was proposed by Tibshirani (1996) as a

method of choosing the constraint parameter t. A discussion on methods to calculate the

statistic is now given. The appropriateness of using the GCV to choose the constraint is not

considered. Much of the content of the forthcoming chapters presents a different method for

choosing the constraint, one that the author feels is more natural as it is based on a statistical

model. The GCV statistic is based on the ridge regression approximation (Tibshirani, 1996)

β̄ = (LT L + λW−)−1LT y (6.4.1)

where λ is the Lagrange multiplier or penalty parameter, W is a diagonal matrix with |β̄|
on its diagonal and W− is a generalised inverse; here it is the Moore-Penrose inverse. Using

the ridge regression approximation the GCV style statistic given by Tibshirani (1996) is

GCV(t) =
RSS(t)

n
(

1− q(t)
n

)2

where

q(t) = tr
(

L
(

LT L + λW−
)−1

LT
)

= tr
(

LT L
(

LT L + λW−
)−1
)

RSS(t) is the residual sums of squares for the constraint t and q(t) is the number of effective

parameters or the effective degrees of freedom in the fitted model.

Theorem 6.2. Let LT L be positive definite. Then the degrees of freedom estimate q(t) from

Tibshirani (1996) can be expressed as

q(t) =

q
∑

i=1

1

1 + ei
= qZ +

qS
∑

i=1

1

1 + e∗i

where q is the number of columns in the design matrix L, qS is the number of non-zero

LASSO predictions, qZ is the number of zero LASSO predictions, ei is the ith eigenvalue of

λW−(LT L)−1 and e∗i is the ith non-zero eigenvalue of λW−(LT L)−1.

Proof.

q(t) = tr
(

LT L(LT L + λW−)−1
)

= tr
(

(I + λW−(LT L)−1)−1
)

=

q
∑

i=1

1

1 + ei
.
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There will be qZ zero eigenvalues of W and hence λW−(LT L)−1. So

q(t) = qZ +

qS
∑

i=1

1

1 + e∗i
.

Intuitively, it is expected that if there is a severe constraint placed on the estimates then

q(t) = 0. Further, q(t) should be a monotonic increasing function of t. This is not the case;

when t = 0 the matrix W− is identically zero, as are all the eigenvalues of λW−(LT L)−1

and q(t) = q. This is the maximum value of q(t) and hence it cannot be a monotonically

increasing function.

An alternative definition of q(t) was given in Fu (1998). In this definition the number of

zero estimates is subtracted from the previous definition. That is

qf (t) = tr
(

LT L
(

LT L + λW−
)−1
)

− q
Z

where q
Z

is the number of zero estimates. Fu (1998) states that this adjustment to the

number of effective parameters is performed to compensate for the loss of the diagonals of

W due to zero estimates. This is evident from Theorem 6.2. The function qf (t) can be

expressed as

qf (t) =

qS
∑

i=1

1

1 + e∗i
.

The effective degrees of freedom estimate qf(t) has attributes qf(0) = 0 and qf (‖β̂‖1) = q

which makes it more appealing than q(t). It is unclear if it is monotonic increasing for the

rest of the domain, although empirical evidence suggests that it is. Plots of q(t) and qf (t)

for the prostate data from Stamey et al. (1989) are given in Figure 6.3.

The function q(t) has discontinuities at the points where the number of non-zero estimates

change. This arises as the rank of the matrix W also changes at these points. The function

qf(t) also has small discontinuities at least at some of these points. They are visible in

Figure 6.3 at the model sizes 5 and 7. The size of the jumps at the discontinuities in qf (t)

are reduced drastically and are reversed in sign when compared to those in q(t).

6.4.1 Impact of Estimated Degrees of Freedom on GCV Statistic

The GCV statistic depends heavily on the value of the effective degrees of freedom estimate.

For GCV to be a reasonable method for choosing the constraint parameters the effective

degrees of freedom estimator should be an increasing function of the constraint parameter.

The effective degrees of freedom estimate in Tibshirani (1996) does not have this property

and hence may produce GCV statistics that are unpredictable. The GCV statistic based on

qf(t) from Fu (1998) has this property and may perform better. The simulation studies in

Tibshirani (1996) suggest that the GCV method for choosing the constraint provides, over

a number of different model setups, good results for prediction. However, the preceding

discussion showed that GCV based on qf (t) is likely to perform better.
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Figure 6.3: Effective degrees of freedom estimates. Dotted vertical lines indicate where the
number of non-zero estimates change.

6.5 Summary

In this chapter the base methods for computing used in this thesis were outlined. In partic-

ular, the methodology was presented for estimating the constrained and penalised regression

when the outcomes are dependent. This methodology is based on the interior point descent

algorithm (Chapter 4). This chapter also presented a discussion on the GCV method to es-

timate the constraint or penalty parameter. It was shown that the GCV statistic presented

by Tibshirani (1996) is unlikely to produce sensible results.
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Chapter 7

The LASSO as a Random Effects

Model

7.1 Introduction

In previous chapters the LASSO model has been viewed as the random model

y = Lβ + e (7.1.1)

where the effects β were assumed to be double exponentially distributed variables with

variance 2φ2 and the residuals e were assumed to be independently and identically distributed

normal variables with variance σ2. No assumption about the number of LASSO effects is

made. It is possible that the number of LASSO effects (q) is greater than the number of

observations (n).

Conventional statistical analysis using random effects models starts by finding the marginal

distribution of the outcomes. Likelihood estimation of σ2 and φ can then be carried out based

on this marginal distribution. In Chapter 5, exact marginal distributions were developed for

a single β (Theorem 5.1) and for a vector β (Theorem 5.6). However, the exact distribu-

tions are computationally expensive to calculate and relatively inaccurate, especially for high

dimensional problems. For this reason, an alternative expression for the likelihood is needed.

In this chapter an approximate analytical marginal likelihood is presented. The approxi-

mation is based on Laplace’s method and requires a Taylor series expansion of the exponent

of the joint distribution. For the random effects model (7.1.1) the exponent is not differen-

tiable so the sub-differential (Definition C.3) and its derivative are used in place of the first

and second derivatives. The dispersion parameters can be estimated from this likelihood,

but such estimates exhibit bias. The bias is alleviated by adjusting the score equations by

subtracting from the observed scores estimates of the scores’ expected values.

After estimation of the dispersion parameters, an estimated predictive (posterior in

Bayesian terminology) distribution is specified, which is used for effect prediction. Typ-

ically, the analyst will want to assess the relative importance of the LASSO explanatory

variables through the estimate of the effects. The distribution of the LASSO estimates is

97
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typically unknown, except for asymptotic results (Knight & Fu, 2000). In this chapter this

is overcome by using a simulation method. Numerous data sets are simulated from a model

where all the LASSO effects are assigned to zero and effects are predicted for each data set

using plug-in estimates of the dispersion parameters. These predictions form the empirical

null distribution, with which the observed LASSO estimates can be compared.

The unbiased estimation of the dispersion parameters is shown, by simulation, to provide

a natural and very competitive method for choosing the amount of shrinkage. As an example,

the method is applied to the prostate data set used in Tibshirani (1996).

All the methods of analysis presented in this chapter can be implemented using the

S-PLUS code in Appendix D.

7.2 Approximate Likelihood

An approximate likelihood is generated by using a Laplace approximation (see Chapter 3) of

the marginal distribution of the observed data. A standard Laplace approximation requires a

Taylor series expansion around the exponent of the joint distribution of y and β. This is not

available for the LASSO model as the exponent of the joint distribution is non-differentiable.

Details of the method used to obtain the approximation are given in the proof of the following

theorem.

Theorem 7.1. An approximate marginal likelihood for the linear model (7.1.1) is

ℓ(σ2, φ) = −(n− κ)

2
log σ2 − q log φ− 1

2σ2
(yT y − β̄LT Lβ̄)

where κ = min(q, n).

Proof. The exponent of the integrand is

h(β, σ2φ) = − 1

2σ2
(y −Lβ)T (y −Lβ)− 1

φ
‖β‖1

which has sub-differential

∂βh(β, σ2, φ) =
1

σ2
LT (y −Lβ)− 1

φ
v.

Notice that v = sign(β) since the βi are continuous random variables and P(βi = 0) = 0;

within any neighbourhood of a particular β, ∂v/∂β = 0. Hence, the sub-differential’s

derivative is

∂(∂βh(β, σ2, φ))

∂β
= − 1

σ2
LT L.
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The marginal distribution is

f(y) =

∫

R
q
f(y|β)f(β)∂β

=
1

(2πσ2)n/2(2φ)q

∫

R
q
exp

(

h(β, σ2, φ)
)

∂β

≈ 1

(2πσ2)n/2(2φ)q
exp

(

h(β̄, σ2, φ)
)

∫

R
q
exp

(

− 1

2σ2
(β − β̄)T LT L(β − β̄)

)

∂β.

If q < n, then the integrand specifies the kernel of a multivariate normal distribution.

If q > n, then the integrand is the kernel of a singular multivariate normal distribution

with singular variance matrix K− = (LT L)− (see Definition A.1). The integral is known

irrespective of the type of normal approximation. Let ki, i = 1 . . . κ = min(q, n) be the ith

non-zero eigenvalue of K−. Then

f(y) ≈ (2πσ2)κ/2

(2πσ2)n/2(2φ)q

(

κ
∏

i=1

ki

)1/2

exp
(

h(β̄, σ2, φ)
)

.

The function h(β̄, σ2, φ) can be re-written by noticing that at the maximum of h(β, σ2, φ)

LT y = LT Lβ̄ + σ2

φ
v̄ and v̄T β̄ = ‖β̄‖1 so that

h(β̄, σ2, φ) = − 1

2σ2
yT y +

1

σ2
β̄

T
LT y − 1

2σ2
β̄

T
LT Lβ̄ − 1

φ
‖β̄‖1

= − 1

2σ2
yT y +

1

σ2
β̄

T
(LT Lβ̄ +

σ2

φ
v̄)− 1

2σ2
β̄

T
LT Lβ̄ − 1

φ
v̄T β̄

= −
(

1

2σ2
yT y − 1

2σ2
β̄

T
LT Lβ̄

)

.

The result is obtained by taking the logarithm of the marginal distribution and disregarding

constant terms.

7.3 Derivatives of LASSO Estimates

Optimisation of the likelihood requires the derivatives of the LASSO estimates with respect to

the dispersion parameters. These are not obviously obtained as the estimates are themselves

functions of the estimates v̄. Fortunately, there are some restrictions on the derivatives of β̄

and the corresponding v̄ that enable them to be calculated.

The derivation starts by partitioning the estimates into non-zero and zero estimates, β̄S

and β̄Z respectively, and comformably partitioning v̄. Now, β̄Z and v̄S will be constant for

a neighbourhood of the dispersion parameters. If they were not constant, then they would

not be members of their respective sets. However, since they are constant, their derivatives

will be zero. This argument forms the basis for calculating the derivatives of β̄ and hence

optimising the likelihood ℓ.

The following Lemma is crucial for calculating the derivatives. The Theorem giving the

derivatives will follow the Lemma directly.
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Lemma 7.1. Define the q × q matrix D as

LT L = D =

(

DSS DSZ

DZS DZZ

)

and (LT L)− = D− =

(

DSS DSZ

DZS DZZ

)

where L is a n× q matrix and q may be larger than n, then

(

IS ,−DSZ
(

DZZ
)−
)

D− =
(

D−
SS 0

)

.

Proof. Using Theorem B.1 the generalised inverse D− can be written as

D− =

(

D−
SS 0

0 0

)

+

(

−D−
SSDSZ

IZ

)

Q−
(

−DZSD−
SS , IS

)

where Q = DZZ −DZS (DSS)− DSZ . Theorem B.2 shows that Q− = DZZ . To prove the

Lemma it suffices to show that

(

IS ,−DSZ
(

DZZ
)−
)

(

−D−
SSDSZ

IZ

)

Q− = −
(

D−
SSDSZ + DSZ

(

DZZ
)−
)

DZZ

= −
(

D−
SSDSZ −D−

SSDSZDZZ
(

DZZ
)−
)

DZZ

= −D−
SSDSZ

(

DZZ −DZZ
(

DZZ
)−

DZZ
)

= 0

where the second line follows from using Theorem B.1 and the last line follows from the

definition of a generalised inverse.

Theorem 7.2. The derivatives of the LASSO estimates with respect to σ2 and φ are

∂β̄

∂σ2
= −1

φ

(

(LT
SLS)−1 0

0 0

)

v̄ and

∂β̄

∂φ
= −σ2

φ2

(

(LT
SLS)−1 0

0 0

)

v̄.

Proof. The derivation for the derivative with respect to σ2 is presented. The derivative with

respect to φ follows similarly. The LASSO estimate must solve the equation ∂βh(β, σ2, φ) = 0

and hence is given by

β̄ = (LT L)−LT y − σ2

φ
(LT L)−v̄ = β̂ − σ2

φ
D−v̄.

where D and D− are defined as in Lemma 7.1. Recall that the derivatives of β̄Z and of v̄S
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are zero, so

∂β̄Z

∂σ2
= 0

= −1

φ
DZ·v̄ − σ2

φ
DZ· ∂v̄

∂σ2

= −1

φ
DZ·v̄ − σ2

φ
DZS ∂v̄S

∂σ2
− σ2

φ
DZZ ∂v̄Z

∂σ2

= −1

φ
DZ·v̄ − σ2

φ
DZZ ∂v̄Z

∂σ2

∴
∂v̄Z

∂σ2
= − 1

σ2

(

DZZ
)−

DZ·v̄.

Now,

∂β̄S

∂σ2
=

1

φ2
DS·v̄ − σ2

φ
DS· ∂v̄

∂σ2

=
1

φ2
DS·v̄ − σ2

φ
DSS ∂v̄S

∂σ2
− σ2

φ
DSZ ∂v̄Z

∂σ2

=
1

φ2
DS·v̄ − σ2

φ
DSZ ∂v̄Z

∂σ2

=
1

φ2
DS·v̄ +

1

φ
DSZ

(

DZZ
)−

DS·v̄

= −1

φ

[

IS ,−DSZ
(

DZZ
)−
]

D−v̄

= −1

φ

(

D−
SS 0

0 0

)

v̄ by Lemma 7.1.

Theorem 6 of Osborne et al. (2000) states that there will be at most n elements in S. This

means that the matrix DSS = LT
SLS will be full rank and uniquely invertible. That is

D−
SS = D−1

SS .

7.4 Score Equations and Estimates

It is now possible to specify the score equations (first derivatives of the log-likelihood in

Theorem 7.1). When assigned to zero and solved, these provide the estimating equations.

Theorem 7.3. The score equations for the dispersion parameters σ2 and φ are

∂ℓr(σ
2, φ)

∂σ2
= −(n− κ)

2σ2
+

1

2σ4

(

yT y − β̄
T
LT Lβ̄

)

− 1

σ2φ
‖β̄‖1

∂ℓr(σ
2, φ)

∂φ
= − q

φ
+

1

φ2
‖β̄‖1.
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Proof. The score for the residual variance σ2, using the derivative of the LASSO estimates

in Theorem 7.2, is

∂ℓr(σ
2, φ)

∂σ2
= −(n− κ)

2σ2
+

1

2σ4

(

yT y − β̄
T
LT Lβ̄

)

− 1

σ2φ
v̄T

(

(

LT
SLS

)−1
0

0 0

)

LT Lβ̄

= −(n− κ)

2σ2
+

1

2σ4

(

yT y − β̄
T
LT Lβ̄

)

− 1

σ2φ
v̄T
S β̄S

= −(n− κ)

2σ2
+

1

2σ4

(

yT y − β̄
T
LT Lβ̄

)

− 1

σ2φ
‖β̄‖1.

The score for the dispersion parameter φ is

∂ℓr(σ
2, φ)

∂φ
= − q

φ
+

1

φ2
v̄T

(

(LT
SLS)−1 0

0 0

)

LT Lβ̄

= − q

φ
+

1

φ2
v̄T
S β̄S

= − q

φ
+

1

φ2
‖β̄‖1.

Assigning the score equations to be zero and solving them gives estimates for the disper-

sion parameters. These have closed forms and are given in the following Theorem.

Theorem 7.4. The estimates, for given β̄, for the dispersion parameters σ2 and φ are

σ̂2 =

(

yT y − β̄
T
LT Lβ̄

)

n− κ + 2
φ
‖β̄‖1

φ̂ =
‖β̄‖1

q
.

Proof. Consider the estimate for σ2

∂ℓr(σ
2, φ)

∂σ2
= 0

= − 1

2σ̂2

(

(n− κ)

2
+

2

φ
‖β̄‖1

)

+
1

2σ̂4

(

yT y − β̄
T
LT Lβ̄

)

∴ σ̂2

(

n− κ +
2

φ
‖β̄‖1

)

=
(

yT y − β̄
T
LT Lβ̄

)

∴ σ̂2 =

(

yT y − β̄
T
LT Lβ̄

)

n− κ + 2
φ
‖β̄‖1

.
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Now, consider the estimate for φ

∂ℓr(σ
2, φ)

∂φ
= 0

= − q

φ̂
+

1

φ̂2
‖β̄‖1

∴ φ̂q = ‖β̄‖1

∴ φ̂ =
‖β̄‖1

q
.

7.4.1 Bias in Score Equations and Estimates

The unbiasedness of the estimates obtained from using Theorem 7.4 is investigated using

a simulation study. The simulation study was performed by generating n = 100 outcomes

from the model (7.1.1), using a common 100× 30 design matrix. Three distributions of the

q = 30 LASSO random effects were used, all with mean zero and varying variances. Three

distributions for the residuals, assumed to be independently and identically distributed, were

also used. The bias in both the score equations and the resulting estimates were calculated at

each combination of LASSO effect variance and residual variance. The levels of the dispersion

parameters were chosen to provide a spread in the number of non-zero LASSO estimates.

The results are presented in Table 7.1.

Table 7.1: Average score and dispersion parameters for 1000 simulations of model (7.1.1)
at chosen combinations of σ2 and φ. The scores are calculated using Theorem 7.3 and the
estimates calculated using Theorem 7.4.

σ̂2† φ̂‡

φ = 0.05 φ = 0.3 φ = 1 φ = 0.05 φ = 0.3 φ = 1
σ2 = 0.25 106.38 118.07 118.87 -282.77 -2.20 0.02

Score σ2 = 1 21.05 29.61 29.85 -529.06 -8.84 -0.21
σ2 = 2 9.27 14.42 15.12 -589.16 -15.64 -0.21

σ2 = 0.25 0.30 0.25 0.25 2.64×10−2 0.29 1.00
Estimate σ2 = 1 1.45 1.04 1.01 5.91×10−3 0.27 0.99

σ2 = 2 3.01 2.12 2.01 9.03×10−4 0.25 0.99

† Standard errors for scores: < 1.09 for σ2 = 0.25, < 0.26 for σ2 = 1, < 0.13 for σ2 = 2 and
for estimates: < 0.002 for σ2 = 0.25, < 0.006 for σ2 = 1, < 0.014 for σ2 = 2.
‡ Standard errors for scores: < 3.17 for φ = 0.05, < 0.62 for φ = 0.3, < 0.18 for φ = 1 and
for estimates: < 0.001 for φ = 0.05, < 0.002 for φ = 0.3 and < 0.006 for φ = 1.

If the score equations are unbiased, then their expectation and their empirical means

should be zero. However this is not the case (Table 7.1). This also leads to bias in the
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dispersion parameter estimates. The level of bias is greatest for large values of the penalty

parameter σ2/φ. In these situations the number of non-zero LASSO estimates is small, for

the σ2 = 2 and φ = 0.05 simulation the average number of non-zero estimates was only 0.02

non-zero LASSO estimates per data set.

The bias can be substantially alleviated, but not totally removed, by replacing the number

of LASSO effects q by the number of non-zero LASSO estimates qS in the score equations

and the resulting dispersion parameter estimates. However, this is an ad-hoc procedure.

The results of the simulation, over the same simulated data sets as the simulation for the

un-modified scores and estimates, are given in Table 7.2. Compared with Table 7.1, there is

less bias. However, the bias is not totally removed. Thus, there is still a need for a better

method to adjust the score equations. A method to perform this is presented in the next

section.

Table 7.2: Average score and dispersion parameters for 1000 simulations of model (7.1.1) at
chosen combinations of σ2 and φ. The scores and estimates are calculated by replacing q
with qS in Theorems 7.3 and 7.4.

σ̂2† φ̂‡

φ = 0.05 φ = 0.3 φ = 1 φ = 0.05 φ = 0.3 φ = 1
σ2 = 0.25 74.76 116.11 118.67 33.37 1.08 0.12

Score σ2 = 1 7.57 27.90 29.65 10.04 2.52 0.21
σ2 = 2 1.89 12.92 14.93 1.46 4.38 0.56

σ2 = 0.25 0.26 0.25 0.25 0.056 0.30 1.00
Estimate σ2 = 1 1.08 1.01 1.00 0.056 0.31 1.01

σ2 = 2 2.13 2.02 2.00 0.021 0.32 1.02

† Standard errors for scores: < 1.18 for σ2 = 0.25, < 0.27 for σ2 = 1, < 0.14 for σ2 = 2 and
for estimates: < 0.001 for σ2 = 0.25, < 0.005 for σ2 = 1, < 0.01 for σ2 = 2.
‡ Standard errors for scores: < 2.53 for φ = 0.05, < 0.58 for φ = 0.3, < 0.18 for φ = 1 and
for estimates: < 0.002 for φ = 0.05, < 0.002 for φ = 0.3 < 0.006 for φ = 1.

7.5 Adjusted Score Equations

A method of adjusting the scores and information for estimation of parameters when nuisance

parameters are present was specified in McCullagh & Tibshirani (1990). The score equations

are adjusted so that they are unbiased, that is they have zero expectation. The score

equations in Theorem 7.3 do not contain nuisance parameters but the method of McCullagh

& Tibshirani (1990) can still be used. That is, the score equations can be adjusted so that

they have zero expectation.

Let the expected values of the score for σ2 and φ be Mσ2 and Mφ respectively. The

estimates obtained from the adjusted score equations are given in the following Theorem.
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Theorem 7.5. The estimates for σ2 and φ arising from the mean adjusted score equations

are

σ̂2 =
yT y − β̄

T
LT Lβ̄

n− κ + 2
φ
‖β̄‖1 + 2σ̂2Mσ2

and

φ̂ =
‖β̄‖1

q + φ̂Mφ

.

Proof. Firstly, consider σ2. The estimates are those that solve the equation

− (n− κ)

2σ̂2
+

1

2σ̂4

(

yT y − β̄
T
LT Lβ̄

)

− 1

σ̂2φ
‖β̄‖1 −Mσ2 = 0

∴
1

2σ̂2

(

n− κ +
2

φ
‖β̄‖1 + 2σ̂2Mσ2

)

=
1

2σ̂4

(

yT y − β̄
T
LT Lβ̄

)

∴ σ̂2 =
yT y − β̄

T
LT Lβ̄

n− κ + 2
φ
‖β̄‖1 + 2σ̂2Mσ2

.

Now consider φ.

− q

φ̂
+

1

φ̂2
‖β̄‖1 −Mφ = 0

∴ φ̂(q + φ̂Mφ) = ‖β̄‖1

∴ φ̂ =
‖β̄‖1

q + φ̂Mφ

.

The estimates in Theorem 7.5 arise from a quadratic equation. They are not solved as

a quadratic, rather the form of the original estimates in Theorem 7.4 is maintained. This

form makes the adjustment to the denominator obvious. Terms in the denominator of both

estimates are essentially the degrees of freedom for the LASSO effects. The estimates in

this form require iteration to calculate, which is already necessary due to the presence of the

LASSO estimates β̄.

7.5.1 Theoretical Expected Scores

Exact theoretical calculation of the expected values of the score equations is not possible

as the first and second moments of the distribution of the LASSO estimates and the corre-

sponding estimates of v̄ are unknown.

It may be possible to obtain a reasonable approximation to the expected scores or their

constituent components by using the substitution E (v̄) = v̄. That is, using the observed v̄

in place of its expected value. It turns out that this approximation is not sensible. However,

the investigation is presented for completeness.
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Theorem 7.6. With the assumption that E (v̄) = v̄ then

E
(

β̄
T
LT Lβ̄

)

= tr
(

LT L
(

2φ2Iq − σ2(LT L)−
))

+
σ4

φ2
v̄T (LT L)−v̄ and

E
(

‖β̄‖1
)

= −σ2

φ
v̄T (LT L)−v̄.

Proof. The expected value and variance of β̂ = (LT L)−LT y, along with the result for

expectations for quadratic forms (Theorem A.4) is needed.

E (y) = 0

var (y) = 2φ2LLT + σ2In

E
(

β̂
)

= E
(

(LT L)−LT y
)

= 0

var
(

β̂
)

= (LT L)−LT var (y)L(LT L)−

= 2φ2(LT L)−LT LLT L(LT L)− + σ2(LT L)−LT L(LT L)−

= (LT L)−LT L
(

2φ2LT L + σ2Iq

)

(LT L)−.

The expected value of the quadratic form β̂
T
LT Lβ̂ can now be evaluated. Using Theorem

A.4, it is

β̂
T
LT Lβ̂ = tr

(

LT L(LT L)−LT L
(

2φ2LT L + σ2Iq

)

(LT L)−
)

= tr
((

2φ2LT L + σ2Iq

)

(LT L)−LT L
)

= tr
((

2φ2Iq + σ2(LT L)−
)

LT L
)

.

Consider E
(

β̄
T
LT Lβ̄

)

first.

E
(

β̄
T
LT Lβ̄

)

= E

(

β̂
T
LT Lβ̂ − 2

σ2

φ
v̄T (LT L)−LT Lβ̂ +

σ4

φ2
v̄T (LT L)−v̄

)

= E
(

β̂
T
LT Lβ̂

)

− 2
σ2

φ
v̄T (LT L)−LT LE

(

β̂
)

+
σ4

φ2
v̄T (LT L)−v̄

= tr
((

2φ2Iq + σ2(LT L)−
)

LT L
)

+
σ4

φ2
v̄T (LT L)−v̄.

Now consider E
(

‖β̄‖1
)

= E
(

v̄T β̄
)

.

E
(

v̄T β̄
)

= v̄T E

(

β̂ − σ2

φ
(LT L)−v̄

)

= −σ2

φ
v̄T (LT L)−v̄.
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There is a problem with the expected values in Theorem 7.6. The expected value of ‖β̄‖1
is negative as the quadratic form involving v̄ is always positive. This assumption obviously

leads to an inappropriate expected score. Nevertheless, the performance of these expected

scores is now assessed via a small simulation study.

The simulation study consisted of simulating 1000 data sets from the model (7.1.1) with

n = 100 and q = 20. The design matrix L was generated once and held constant throughout

the 1000 simulations. The dispersion values used to simulate the data were σ2 = 1 and

φ = 0.274. The dispersion parameters used to calculate the score equations were σ2
∗ = 1.5

and φ∗ = 0.245. These were chosen to be different from the simulation values because

non-zero scores were desirable. Also, the true values are never known prior to estimation.

For each simulation the values of β̄
T
LLβ̄, ‖β̄‖1, their expectations and both scores were

recorded. If the expected values represent their corresponding observations, then the mean

of the observed quantities and the expectations should be equal. Further, the expected

values should have smaller variance. Results are given in Figure 7.1 and Table 7.3. The

expectations are not constant as the expectations are functions of the stochastic variable v̄.
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Figure 7.1: Plots of approximate analytical values versus observed values. The vertical
(horizontal) lines are the means of the observed (expected) values.

The simulation results show that the expected score cannot be usefully calculated by

assuming that E (v̄) = v̄. The expected scores are not only substantially biased, but are also

of the wrong sign for ∂ℓr/∂σ2. Hence, adjusting the observed score with this expectation
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Table 7.3: Means and variances of observed values and their expectations over 1000 simula-
tions.

Observed Expected
Mean Variance Mean Variance

∂ℓr/∂σ2 -7.18 7.56 14.97 0.06
∂ℓr/∂φ -6.01 407.68 -101.63 9.64

β̄
T
LT Lβ̄ 263.59 24826.64 224.10 1.30
‖β̄‖1 4.54 1.47 -1.2 0.03

will exacerbate the problem rather than alleviate it!

The expected scores do have substantially less variation than the observed scores. This

implies that the majority of the variation in β̄ comes from β̂ and not from σ2

φ
(LT L)−v̄. This

is not totally unexpected as the elements in v̄ are bounded by −1 and 1. The amount of

variance reduction will depend on the relative values of σ2 and φ. The larger the ratio σ2/φ,

the less variance reduction. However, since the resulting expected score equations are biased

this observation has not been investigated further.

7.5.2 Empirical Expected Scores

An alternative to calculating the theoretical expected score is to calculate an empirical

version. Here, a parametric bootstrap (e.g. Davison & Hinkley, 1997) is used. This approach

is similar to the bootstrap adjustment term used by McCullagh & Tibshirani (1990).

The scores are to be calculated at a specific value of σ2 and φ. The bootstrap expectation

is found from repeatedly simulating from the random effects model (7.1.1) using the given

values of σ2 and φ. For each data set the scores are calculated. The average of the scores

for each data set are the bootstrap estimates of the expected scores. If the observed scores

are highly variable then a larger number of bootstrap samples will be needed to obtain a

specified level of precision in the expected scores. Unfortunately, the scores can be highly

variable (Table 7.3).

Under the same simulation setup used to highlight the bias in the score equations in

Section 7.4.1, the bootstrap adjusted scores and subsequent estimates were assessed. The

same data sets as those in the simulations in Section 7.4.1 were used so the results are directly

comparable. The bootstrap expectation was calculated using 200 bootstrap samples prior

to simulating the 1000 data sets for calculation of the scores. The resulting score equations

and estimates are presented in Table 7.4.

Comparing Table 7.4 to Tables 7.1 and 7.2, it is obvious that the bootstrap adjusted

scores and the subsequent estimates are much less biased than the unadjusted and the qS
version of the unadjusted. This estimation comes at a cost in that the computation required

to calculate the estimates is much greater.
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Table 7.4: Average score and dispersion parameters for 1000 simulations of model (7.1.1)
at chosen combinations of σ2 and φ. The scores are adjusted by subtracting a bootstrap
expected value using 200 bootstrap samples. The estimates are calculated by the results in
7.5.

σ̂2† φ̂‡

φ = 0.05 φ = 0.3 φ = 1 φ = 0.05 φ = 0.3 φ = 1
σ2 = 0.25 -0.45 -0.54 2.12 -3.77 0.74 0.24

Score σ2 = 1 -0.91 1.25 -0.93 -1.18 1.11 -0.52
σ2 = 2 -0.26 0.09 -0.02 0.92 0.53 0.37

σ2 = 0.25 0.25 0.25 0.25 0.049 0.30 1.01
Estimate σ2 = 1 0.98 1.02 0.99 0.049 0.30 0.98

σ2 = 2 1.98 2.01 2.00 0.055 0.30 1.01

† Standard errors for scores: < 1.09 for σ2 = 0.25, < 0.26 for σ2 = 1, < 0.13 for σ2 = 2 and
for estimates: < 0.002 for σ2 = 0.25, < 0.005 for σ2 = 1, < 0.01 for σ2 = 2.
‡ Standard errors for scores: < 3.16 for φ = 0.05, < 0.62 for φ = 0.3, < 0.18 for φ = 1 and
for estimates: < 0.004 for φ = 0.05, < 0.003 for φ = 0.3 < 0.006 for φ = 1.

7.6 Estimation Algorithm Overview

All the tools necessary to estimate the dispersion parameters have now been developed. Es-

timation proceeds via iteration. Firstly, dispersion parameter estimates are assigned initial

values so that there are non-zero LASSO estimates. This is achieved by finding the maxi-

mum ratio λ = σ2/φ and choosing the initial ratio to be 10% of that value. Iteration now

starts. The LASSO estimates are calculated using the last iteration’s dispersion parameter

estimates. The previous iteration’s dispersion parameters are then used to calculate the score

adjustment terms in Section 7.5.2. The score adjustment terms and the LASSO estimates

are then used to update the dispersion parameters according to Theorem 7.5. This process of

three steps is iterated over until convergence of the dispersion parameter estimates to some

predefined tolerance level is reached.

The use of the bootstrap introduces a stochastic element into the estimation routine. This

means that convergence can never be guaranteed. This can be overcome by taking partial

steps from the previous estimate in the direction of the new estimate. This procedure is

similar to the step-halving procedure (e.g. Jennrich & Sampson, 1976). When maximising

likelihoods for variance components, Jennrich & Sampson (1976) used an iteratively reduced

step size to avoid overshooting the maxima. If φ̂(i+1) is the updated estimate from Theorem

7.5 then the update chosen is

φ̂(i+1)
∗ = φ̂(i) + ν

(

φ̂(i+1) − φ̂(i)
)

where 0 < ν < 1 and is reduced from one iteration to the next. The reduction is implemented

by multiplying ν by a chosen constant between 0 and 1. In practice, a value close to 1 is
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recommended to prevent inflating the risk of not finding the solution to the adjusted scores.

At each iteration the updated φ̂ may be zero. This occurs when β̄ = 0, at which point all

subsequent estimates of φ will also be zero. This may not be warranted and can be guarded

against algorithmically. In this implementation an updated φ̂ that is zero is replaced by a

fraction (one quarter) of its previous value. The estimate may be zero and this possibility

is allowed for by limiting the number of times a zero estimate is replaced by the fraction of

the previous. In this implementation the replacement is allowed for 10 times (default).

If the method of adjusting the score equations in Theorem 7.3 by replacing q by qS is

used, then care in estimation also needs to be taken. Difficulties potentially arise as the

estimates from one iteration to the next tend to cycle between different neighbourhoods of

estimate values. To avoid this occurring, the step reduction technique can once again be

employed.

7.6.1 Number of Bootstrap Samples

With all bootstrap methods the number of bootstrap samples must be specified. If too

few samples are used, then the expected values could be highly variable and the resulting

estimates may not be accurate. If too many samples are used then the computational burden

will be great.

In the estimation algorithm for the dispersion parameters the initial iterations will be

traversing through regions of the parameter space that are relatively far from the final

solution. These iterations do not need to have a precise estimate expected value. The

later iterations will be close to the final solution, where a precise estimate of the expected

value is required. This suggests that increasing the number of bootstrap samples from one

iteration to the next could save computational effort and still deliver reasonable precision. A

maximum number of bootstrap samples should be specified. This avoids spending too much

effort in calculating the scores.

A simulation study was performed to assess the effect of choosing a varying number of

bootstrap samples. A total of 10 data sets were generated and each data set was analysed

10 times using the bootstrap adjusted score method. Each data set consisted of n = 100

observations and q = 35 LASSO effects. The dispersion parameters were chosen to be

φ = 0.1 and σ2 = 1. Four different numbers of bootstrap samples were used in each analysis:

B = 5, B = 25, B = 50 and B = 100. Each of these were held constant throughout the

estimation process. In addition to these four analyses, the increasing number of bootstrap

samples scheme was employed with B = 5 initially and B = min(5 + 5i, 100) subsequently,

where i is the iteration number.

The multiple estimates of each data set will exhibit variation due to the stochastic element

introduced by the bootstrap. The variation for each bootstrap sample replication number

for each data set was summarised by the standard deviation of the estimates (Figure 7.2).

The CPU time taken to perform each analysis was also recorded (Figure 7.3). Not surpris-

ingly, estimating using a larger number of bootstrap samples decreases the variability in the
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estimates. However, this comes at the cost of increased computation. Increasing the number

of bootstrap samples after each iteration decreases the computational cost (compared with

the large sample size) but retains the low estimation variance.
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Figure 7.2: Standard deviation of the 10 estimates for each data set. The simulation values
for dispersion parameters were σ2 = 1 and φ = 0.1. The label ‘incr’ represents the increasing
bootstrap sample scheme.

These results indicate that increasing the number of bootstrap samples after each iteration

decreases the computational effort required when compared to keeping the maximal number

throughout the estimation process. However, for any particular data set, the incremental

method does not seem to produce less variable results than the corresponding fixed sample

number scheme (Figure 7.2). The estimates for the incremental scheme for some data sets

have a slightly inflated standard deviation. Over all data sets the variability of the estimates

does not seem to increase. This coupled with the savings in computation suggest that the

incremental scheme should be used routinely.

7.7 Significance Testing of Estimates

After estimation of the dispersion parameters and the LASSO effects has been performed the

task of the analyst is to interpret the model. The LASSO effects that have been estimated

to be zero are easily interpreted - they do not explain variation in the observed outcomes.

However, the non-zero estimates may be non-zero due to chance. Most commonly, a signif-

icance test is used to determine which effects are important and which effects are not. A

testing strategy for the LASSO estimates is now described.



112 CHAPTER 7. THE LASSO AS A RANDOM EFFECTS MODEL
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Figure 7.3: Mean (left panel) and standard deviation (right panel) time for estimation of
dispersion parameters. The label ‘incr’ represents the increasing bootstrap sample scheme.

Standard errors of the LASSO estimates can be obtained using the approximations in

Chapter 4. However, these are potentially misleading. They are based on a ridge regression

(normal random effects model) approximation and may not be accurate. Also, the distri-

bution of the LASSO estimates is unknown. Hence, the usefulness of standard errors is

debatable. However, some asymptotic distribution results are known (Knight & Fu, 2000).

These authors show that there is a positive probability mass at 0 in the asymptotic distri-

bution if the true effect is zero (or small for small samples). Away from 0 the density is

continuous. Unfortunately, these results require the unknown true LASSO effects. Knight

& Fu (2000) present a bootstrap method for calculating the estimates’ standard errors.

In this chapter, calculation of the distribution of the LASSO estimates is avoided and

the LASSO estimates are tested directly using a simulation test (e.g. Davison & Hinkley,

1997, Chapter 4.2). This procedure generates a test of the null hypothesis that each LASSO

effect is equal to zero. An empirical null distribution is generated by simulating data sets

assuming that all the LASSO effects are zero and then analysing each simulated data set.

For the model in (7.1.1) this requires simulation from a Nn(0, σ2In) distribution. The value

of σ2 is unknown and is replaced by the estimate from the data σ̂2, obtained from the

original analysis. The estimated dispersion parameters from the original analysis are used

for predicting the LASSO effects for each simulated data set. Denote the estimates from the

kth simulated data set as β̄
(k)

. The distribution of the simulated estimates β̄
(k)

forms the

empirical null distribution.

Two types of (two-tailed) tests are available using this empirical null distribution. The
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first is a comparison-wise test where each effect is tested independently at the specified

type-1 error rate α. A critical value for a single LASSO estimate β̄i is found by obtaining

the 100(1 − α) percentile of the empirical distribution of |β̄(k)
i |. If |β̄i| is greater than this

critical value then the effect is significant at the α level. This test does not take into account

multiple testing; an especially important issue when there are a large number of LASSO

effects and the probability of finding false positives is unacceptably high. The second type

of test allows for multiple comparisons giving an experiment-wise test were a single critical

value is used for all the LASSO estimates. The critical value is the 100(1− α) percentile of

the distribution of max(|β̄(k)
i |) where the maximum is taken of the q estimates for the kth

data set.

This procedure is illustrated for the prostate data used in Tibshirani (1996). This data is

briefly explained and analysed in more detail in Section 7.9. Here, graphical representations

of the empirical null distributions are given in Figures 7.4 and 7.5 for comparison-wise and

experiment-wise tests respectively. The distributions are generated using 5000 simulations.

This may be more than necessary for practical use, but it is beneficial for explanation.

Perhaps the most striking feature of the distributions in Figure 7.4 is the spike at zero. This

is not unexpected since the estimates β̄
(k)

are LASSO estimates and hence can have elements

estimated to be identically zero.
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Figure 7.4: Empirical null distributions for the 8 comparison-wise tests for the prostate data.
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Figure 7.5: Empirical null distribution for the experiment-wise test for the prostate data.
Critical value for a 5% experiment-wise test is 0.192.

7.8 Simulation Study

The performance of the LASSO random effects model with dispersion parameter estimation

is assessed via simulation. Other types of LASSO model selection and other common subset

selection methods are used as a comparison. In particular the random effects model LASSO

is compared with estimates obtained from the adjusted score equations from Theorem 7.5

and from replacing q with qS in Theorem 7.4 are considered. These are labeled LASSOboot

and LASSOqs respectively. Other LASSO models, estimated by GCVT ib and GCVfu (see

Chapter 6) and forwards selection, backwards selection, best subsets and full least squares

are also considered (see Chapter 4). This is by no means an exhaustive list but it does

provide the basis for a useful comparison to established methods.

The GCV statistics were evaluated at 200 different values of the constraint parameter t.

These points were evenly spaced between 0 and ‖β̂‖1 where β̂ is the least squares estimate.

The value of t that gives the minimum GCV statistic is used as the constraint for the final

model.

Models using forwards selection, backwards selection and best subsets were chosen to

minimise the Cp statistic. This is approximately equivalent to minimising Akaike’s informa-

tion criterion (Venables & Ripley, 2002, page 174).



7.8. SIMULATION STUDY 115

7.8.1 Simulation Design

The random effects model in (7.1.1) was used in each of two related simulation studies.

The simulation design was: number of observations n = 100, number of LASSO effects

q = 11, the vector of LASSO effects βT = (0, 0, 2, 0, 0,−5, 0, 0, 1, 0, 0) and the residuals

were sampled independently from a N(0, 75) distribution. Each simulation study consisted

of 100 simulated data sets. In the first simulation the rows of L were sampled from a

N11(0, I) distribution. In the second simulation the rows of L were sampled from the normal

distribution N11(0, A) where A was a correlation matrix corresponding to the structure

obtained from an AR(1) process with correlation 0.819. The second simulation was designed

to provide moderate ill-conditioning. The design matrices were held constant throughout

both simulation studies. The conditioning number of the design matrices, the ratio of the

largest to smallest eigenvalues, was 2.97 for the independent simulation and 105.61 for the

correlated simulation.

The mean squared error for estimates was recorded (MSE= (β − β̄)T (β − β̄)/q) for

each simulated data set and its corresponding estimated model. Also recorded were the

number of non-zero estimates, the number of significant effects (comparison-wise 5% level),

the number of times the truly non-zero effects were significant in the model (true positives),

the average number of other significant estimates (average false positives) and the estimates

of the dispersion parameters. The estimate for the random effects dispersion was available

only in the LASSO random effects models.

7.8.2 Simulation Results

Summaries of the simulations are given in Table 7.5. The LASSO methods, apart from

GCVT ib, produce models with lower MSE than all other methods. This was observed in both

the independent and correlated simulations. The number of non-zero estimates was fewer for

the LASSOboot method than the other LASSO methods in both simulations. The LASSOboot

method seems to be finding the more important explanatory variables and including less of

the others.

The residual variance estimate σ̂2 was higher in the correlated simulation than in the

independent simulation for all methods. Since the total amount of variance in the outcomes

must remain constant on average, the variance due to the explanatory variables must drop.

This implies that the estimate of the dispersion parameter (φ̂) should decrease between the

independent and correlated simulations. This occurs for the LASSOboot method but does not

for the LASSOqs method. This attribute of the LASSOqs method is a concern and potentially

reflects its ad-hoc motivation.

The number of true and false positives are presented in Table 7.6. In the independent

simulation, all methods excluding backwards selection, had approximately equal power to

detect all three explanatory variables affecting the outcome. The rate of false positives

approximately matches the nominal level for all methods. In the correlated simulation the
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least squares method had poor power to detect the most important explanatory variable (l6).

The backwards selection and best subsets methods exhibited good power but also suffered

from a highly inflated false positive rate. Both the LASSO methods had reasonable ability

to identify the important explanatory variables and suffered only slightly from an increase

in the rate of false positives.
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Table 7.5: Summary of simulation studies with independent and correlated L. MSEe is the average mean squared error for estimates,
q
S

and q∗
S

are the average number of non-zero and significant estimates respectively, and σ̂2 and φ̂ are mean values for the dispersion
parameter estimates.

MSE q
S

q∗
S

σ̂2 φ̂
LASSO GCVT ib 0.56 (0.03) 9.95 (0.09) - - -
LASSO GCVFu 0.43 (0.02) 6.22 (0.14) - - -
LASSOqs 0.45 (0.02) 6.42 (0.13) 2.18 (0.08) 71.44 (1.0) 1.31 (0.03)
LASSOboot 0.44 (0.02) 5.64 (0.20) 2.22 (0.08) 71.51 (1.0) 1.05 (0.02)

Independent L
Forward Select 0.55 (0.03) 2.68 (0.10) 2.23 (0.09) 70.89 (1.0) -
Backward Select 0.64 (0.03) 3.60 (0.13) 2.39 (0.12) 69.87 (1.0) -
Best Subsets 0.64 (0.03) 3.55 (0.12) 2.32 (0.09) 69.90 (1.0) -
Least Squares 0.84 (0.03) 11.00 (0.00) 2.16 (0.08) 72.58 (1.1) -

LASSO GCVT ib 2.46 (0.21) 9.56 (0.10) - - -
LASSO GCVFu 1.52 (0.14) 5.51 (0.15) - - -
LASSOqs 1.36 (0.10) 3.67 (0.17) 1.82 (0.11) 76.74 (1.2) 1.34 (0.06)
LASSOboot 1.44 (0.09) 2.80 (0.19) 1.89 (0.12) 77.15 (1.2) 0.90 (0.04)

Correlated L
Forward Select 2.49 (0.23) 2.62 (0.10) 2.17 (0.08) 73.89 (1.1) -
Backward Select 3.68 (0.32) 3.41 (0.14) 2.62 (0.13) 72.97 (1.1) -
Best Subsets 3.43 (0.32) 3.24 (0.14) 2.63 (0.12) 73.02 (1.1) -
Least Squares 4.93 (0.36) 11.00 (0.00) 1.32 (0.11) 76.26 (1.2) -

Parenthetic values are standard errors over simulations
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Table 7.6: Number of true and false positives from simulation studies (100 simulations each).
The true positives correspond to the number of times the 3rd, 6th and 9th explanatory
variables (l3, l6 and l9) were significant. The false positives (Other) are the average (over
variables) of all the other significant effects. The comparison wise error rate was set at 5%.

Independent L Correlated L
l3 l6 l9 Other l3 l6 l9 Other

LASSOqs 66 100 13 4.9 23 82 13 8.0
LASSOboot 67 100 14 5.1 21 83 14 8.9
Forward Select 66 100 14 5.4 33 82 16 10.8
Backward Select 66 90 23 7.5 37 78 20 15.9
Best Subsets 66 100 18 6.0 39 82 21 15.1
Least Squares 66 100 15 4.4 15 50 15 6.5

In summary, if only MSE is considered, then GCVFu, LASSOqs or LASSOboot are su-

perior to GCVT ib, full least squares and the selection methods. These three methods had

approximately equal rates of true and false positives. However, the LASSOboot method had

the lowest number of non-zero estimates. For this reason it should be preferred.

7.9 Example: Prostate Data

The prostate data was used as an example by Tibshirani (1996), Fu (1998) and Osborne et al.

(2000) and is re-analysed in this section. These data come from a study by Stamey et al.

(1989) who examined the relationship between the level of prostate specific antigen and eight

clinical measures on men who were about to receive a radical prostatectomy. The clinical

measures used as explanatory variables were log(cancer volume) (lcavol), log(prostate weight)

(lweight), age, log(bengin prostatic hyperplasia amount) (lbph), seminal vesicle invasion

(svi), log(capsular penetration) (lcp), Gleason score (gleason) and percentage Gleason scores

4 or (pgg45). For more details about the study see Stamey et al. (1989). The clinical

measures and the outcome are centred and the clinical measures are also standardised. The

model fitted was a main effects only model. It has been assumed that the explanatory

variables have been transformed appropriately. This assumption enables direct comparison

to previous analyses.

Osborne et al. (2000, Remark 10) pointed out that there was an error in the analysis by

Tibshirani (1996). This error had the effect of choosing a model by GCVT ib that had a too

severe constraint. The results obtained from the analysis presented here (Table 7.7) agree

closely with those from Osborne et al. (2000).

The model was fitted to the data using all the methods described in the simulation study.

The same model was identified using backwards selection and best subsets so results are only

presented for backwards selection. Significance tests for all methods were performed using

comparison-wise tests. For the LASSO random effects model estimation methods, 5000 data
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sets were simulated to produce the empirical null distributions. No attempt was made to

assess the significance of the terms from the GCV models as no obvious estimate of residual

variance was available.
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Table 7.7: Estimates for the different estimation methods for the prostate cancer data example.

LASSO Selection

GCV‡
T ib GCV‡

Fu LASSOqs LASSOboot Forwards Backwards Full Least Squares
lcavol 0.629 0.621 0.626*** 0.627*** 0.650*** 0.648*** 0.692***
lweight 0.205 0.190 0.200*** 0.201** 0.253*** 0.194* 0.226**
age -0.083 -0.047 -0.070 -0.073 - - -0.146†

lbph 0.124 0.103 0.116† 0.118† - 0.131 0.155†

svi 0.256 0.246 0.252** 0.253*** 0.276** 0.295*** 0.317**
lcp -0.002 0.000 0.000 0.000 - - -0.147
gleason 0.009 0.000 0.004 0.006 - - 0.033
pgg45 0.073 0.063 0.070 0.071 - - 0.128
σ2 - - 0.504 0.504 0.514 0.505 0.502

‡ Significance tests not available.
Comparison-wise significance ***p < 0.001, **p < 0.01, *p < 0.05 and †p < 0.1.
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The four different methods for LASSO estimation, namely the two GCV methods and the

two random effects model methods, behaved similarly. Only small differences in the size of

the effects were seen although they did have differing numbers of zero effects. Qualitatively

this appears important while quantitatively it is not. The significance levels for the two

random LASSO models did not differ substantially.

For these data the behaviour of the LASSO method lay between the selection methods

and the full least squares method. The LASSO identified four significant terms (lcavol,

lweight, lbph and svi). The subset methods identified only the three significant terms while

backwards selection and best subsets included lbph in the model even though it was not

significant.

7.10 Summary

In this chapter, a method of estimation for the dispersion parameters in the LASSO model

was presented. Estimation was based on the score equations from an approximate likeli-

hood. These score equations were biased and were adjusted using an empirical estimate

of the scores’ expected values. Inference was performed by using a simulation method,

which empirically generates a testing distribution for the LASSO effects. The methodology

presented in this chapter was demonstrated by simulation to be competitive against other

LASSO methods and subset selection methods.
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Chapter 8

The LASSO Linear Mixed Model

8.1 Introduction

Previously the LASSO model was specified as a random effects model (Chapters 5 and 7).

Under this formulation the parameters to be estimated were dispersion parameters and the

LASSO estimates were predictions from a statistical model. This method of estimation

was shown via simulation to be a competitive and useful method for estimating the LASSO

effects. However, the random effects model is too restrictive for many real applications where

models allowing for fixed effects and random normal effects are required.

Accommodation of fixed, random normal and random LASSO effects is facilitated by

embedding the LASSO effects into a standard mixed model to produce the LASSO linear

mixed model (LLMM).

y = Xτ + Zu + Lβ + e (8.1.1)

where

u ∼ N(0, σ2G(γ)),

βi ∼ DE(0, 2φ2) i = 1, 2, . . . , q,

e ∼ N(0, σ2R(θ)),

σ2 is the residual variance, G(γ) is the scaled variance matrix of the random normal effects,

2φ2 is the variance of the LASSO effects and R(θ) is the scaled variance matrix for the

residuals. The vectors γ and θ completely parameterise the correlation matrices G and R

respectively. Often the matrix R is assumed to be the identity, an assumption not made in

this chapter. However, the S-PLUS code written to run the models presented in this chapter

does not allow estimation of these parameters. This code is presented in Appendix D.

The topic of this chapter is the estimation of parameters τ , γ, φ and θ and the prediction

of the random effects u and β. The model effects τ , u and β are estimated/predicted

using an extension of the mixed model equations (Henderson, 1950). These equations are

solved using a modified Gaussian elimination technique. The modification is necessary as

solving for β requires non-standard methodology (Section 6.3). The dispersion parameters

123
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are estimated using an approximation to the restricted likelihood. The approximation is

obtained using the partial Laplace method described in Chapter 3. Special consideration is

required in this context as the exponent of the joint distribution is not differentiable and

the normal approximation may be singular. These are overcome using a similar strategy

to that outlined in Chapter 7. For comparison, the standard Laplace approximation to the

unrestricted likelihood is also presented. Differences similar to those between the restricted

likelihood and the un-restricted likelihood for standard models are observed.

Solving the score equations requires iteration as the scores are functions of the LASSO

estimates β̄. A further complication arises at each iteration as there is no closed form for the

estimates of γ and θ. These dispersion parameters are updated using a scoring algorithm

based on an average information algorithm (Chapter 3), which is more efficient than updating

using a standard Newton-Raphson algorithm.

8.2 The LASSO Mixed Model Equations

The location effects in the LLMM are estimated by maximising the so-called joint distri-

bution of the observed outcomes and the unobserved random LASSO and random normal

effects. The dispersion parameters are assumed known or are replaced by appropriate plug-

in estimators. This parallels the estimation of fixed and random effects in the standard

mixed model (Henderson, 1950). In the standard mixed model the mode of the predictive

distribution (posterior in Bayesian terminology) coincides with the mean, and hence finding

the maximum (mode) of the joint distribution also finds the mean. This is not the case for

the LASSO linear mixed model and so the estimates are not best in the sense that they

are expected values. The ability of the LASSO to estimate effects to be identically zero is

precisely due to the estimates being modes (see Chapter 5).

The joint distribution of the outcomes, the random normal effects and the random LASSO

effects is

f(y, u, β) = f(y|u, β)f(u)f(β)

=
1

(2πσ2)
n
2

|R|− 1
2 exp

(

− 1

2σ2
(y −Xτ −Zu−Lβ)T R−1(y −Xτ −Zu−Lβ)

)

× 1

(2πσ2)
r
2

|G|− 1
2 exp

(

− 1

2σ2
uT G−1u

)

1

(2φ)q
exp

(

−1

φ
‖β‖1

)

.

The estimating equations for τ and u are derived by taking the derivatives of the log-

arithm of the joint distribution and assigning them to zero. The joint distribution is not

differentiable w.r.t. β. However, the joint distribution is convex in β and, as in Chapter 7,

the sub-differential is used. The sub-differential is equated to zero to obtain the estimating
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equation for β. The derivatives w.r.t. τ and u, the sub-differential w.r.t. β are

∂f(y, u, β)

∂τ
=

1

σ2
XT R−1y − 1

σ2

(

XT R−1Xτ + XT R−1Zu + XT R−1Lβ
)

∂f(y, u, β)

∂u
=

1

σ2
ZT R−1y − 1

σ2

(

ZT R−1Xτ + (ZT R−1Z + G−1)u + ZT R−1Lβ
)

∂βf(y, u, β) =
1

σ2
LT R−1y − 1

φ
v − 1

σ2

(

LT R−1Xτ + LT R−1Zu + LT R−1Lβ
)

and the estimating equations are

XT R−1Xτ̂ + XT R−1Zũ + XT R−1Lβ̄ = XT R−1y

ZT R−1Xτ̂ + (ZT R−1Z + G−1)ũ + ZT R−1Lβ̄ = ZT R−1y

LT R−1Xτ̂ + LT R−1Zũ + LT R−1Lβ̄ = LT R−1y − σ2

φ
v̄.

These estimating equations are called the LASSO mixed model equations (LMME). Simul-

taneous estimates of τ , u and β are obtained by replacing the unknown effects with their

estimates and then solving the resulting simultaneous equations. The LMME can be ex-

pressed in matrix notation







LT R−1L LT R−1X LT R−1Z

XT R−1L XT R−1X XT R−1Z

ZT R−1L ZT R−1X ZT R−1Z + G−1













β̄

τ̂

ũ






=







LT R−1y − σ2

φ
v̄

XT R−1y

ZT R−1y






. (8.2.1)

The LMME are solved using a modified version of Gaussian elimination. The modification is

needed because the interior point algorithm for correlated effects in Chapter 6 has to be used

to estimate β̄ and v̄. During the absorption process in Gaussian elimination, the residual

sums of squares can be obtained if the coefficient matrix on the left hand side of (8.2.1)

is appended with the outcome vector on the right hand side. This leads to the augmented

LMME matrix











yT R−1y yT R−1L− σ2

φ
v̄T yT R−1X yT R−1Z

LT R−1y − σ2

φ
v̄ LT R−1L LT R−1X LT R−1Z

XT R−1y XT R−1L XT R−1X XT R−1Z

ZT R−1y ZT R−1L ZT R−1X ZT R−1Z + G−1











.

The Gaussian elimination process starts with the absorption of the last row of the LMME.

For example the term XT R−1X becomes

XT R−1X ← XT R−1X −XT R−1Z(ZT R−1Z + G−1)−1ZT R−1X

= XT
(

R−1 −R−1Z(ZT R−1Z + G−1)−1ZT R−1
)

X

= XT H−1X
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where H = ZGZT + R. The updated system of equations is











yT H−1y yT H−1L− σ2

φ
v̄T yT H−1X 0

LT H−1y − σ2

φ
v̄ LT H−1L LT H−1X 0

XT H−1y XT H−1L XT H−1X 0

ZT R−1y ZT R−1L ZT R−1X ZT R−1Z + G−1











.

The absorption process is performed again, this time on the second last row. For example

the term LT H−1L becomes

LT H−1L← LT H−1L−LT H−1X(XT H−1X)−1XT L

= LT PL

where P = H−1 −H−1X(XT H−1X)−1XT H−1. The updated system of equations is











yT Py yT PL− σ2

φ
v̄T 0 0

LT Py − σ2

φ
v̄ LT PL 0 0

XT H−1y XT H−1L XT H−1X 0

ZT R−1y ZT R−1L ZT R−1X ZT R−1Z + G−1











. (8.2.2)

The LASSO estimates are straight forward and are identical in form to those given in (6.2.2)

LT PLβ̄ = LT Py − σ2

φ
v̄

giving

β̄ = (LT PL)−LT Py − σ2

φ
(LT PL)−v̄. (8.2.3)

The last step of absorption gives the residual sums of squares as the first element (e.g. Seber,

1977 and Gilmour et al., 1995). The matrix LT PL may be non-singular if q > n − p, but

for ease of illustration assume that LT PL is non-singular. Using the functional form for the

LASSO estimates in (8.2.3)

yT Py ← yT Py −
(

LT Py − σ2

φ
v̄

)T

(LT PL)−1

(

LT Py − σ2

φ
v̄

)

= yT Py −
(

(

LT Py − σ2

φ
v̄

)T

(LT PL)−1

)

LT PL

(

(LT PL)−1

(

LT Py − σ2

φ
v̄

))

= yT Py − β̄
T
LPLβ̄. (8.2.4)

The estimates τ̂ and ũ can now be given as solutions to the absorbed matrix (8.2.2).

The fixed and random normal effects’ estimates are found by back-substitution. Consider

the back substitution for the fixed effects estimates τ̂

XT H−1Lβ̄ + XT H−1Xτ̂ = XT H−1y
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giving

τ̂ = (XT H−1X)−1XT H−1(y −Lβ̄).

This is the generalised least squares estimate based on the outcomes adjusted for the LASSO

estimates. For comparison to the standard mixed model see Theorem 3.1. The next step in

back substitution gives the random effect predictions

ZT R−1Lβ̄+ZT R−1Xτ̂ + (ZT R−1Z + G−1)ũ = ZT R−1y

giving

ũ =
(

ZT R−1Z + G−1
)−1

ZT R−1(y −Xτ̂Lβ̄)

=
(

ZT R−1Z + G−1
)−1

ZT R−1

×
(

y −Lβ̄ −X(XT H−1X)−1XT H−1(y −Lβ̄)
)

=
(

ZT R−1Z + G−1
)−1

ZT R−1

×
(

H
(

H−1 −H−1X(XT H−1X)−1XT H−1
)

(y −Lβ̄)
)

using Result B.2

= GZT (ZGZT + R)−1HP (y −Lβ̄)

= GZT P (y −Lβ̄).

This is analogous to the random effect estimate for the standard mixed model from Theorem

3.1. However, like the fixed effect estimates, the outcomes are adjusted for the LASSO

estimates.

8.3 Approximate Marginal and Restricted Marginal Likelihood

For a model containing only LASSO random effects (Chapter 7), the likelihood was based

on a Laplace approximation of the marginal distribution. The same method can be applied

here producing a marginal likelihood that assumes that the fixed effects are known. Results

for the standard mixed model with only fixed and random normal effects show that such

a likelihood produces biased estimates of the dispersion parameters. Hence, a restricted

likelihood (Patterson & Thompson, 1971) is often employed. The restriction is a linear

transformation of the data into a conditional distribution of rank p that contains information

about the fixed effects and a marginal distribution of rank (n− p) that contains information

only about the dispersion parameters (e.g. Verbyla, 1990). The latter distribution is the basis

of the restricted likelihood. The partial Laplace method (Taylor, 2005 and Taylor & Verbyla,

2006) produces an approximation to the restricted likelihood. Both an approximation to the

unrestricted and restricted likelihoods are derived in this section.
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In the derivation for both likelihoods the random normal effects are integrated out prior

to the LASSO effects.
∫

R
r
f(y, u, β)∂u =

∫

R
r
f(y|u, β)f(u)∂uf(β)

= f(y|β)f(β)

=
1

(2πσ2)
n
2 (2φ)q

|H|− 1
2×

exp

(

− 1

2σ2
(y −Xτ −Lβ)T H−1(y −Xτ −Lβ)− 1

φ
‖β‖1

)

where H = ZGZT + R. That is, the distribution of the outcomes marginal to u but

conditional on β is normal.

8.3.1 Laplace Approximation

The Laplace approximation (Chapter 3) provides a convenient method for approximating

integrals and it is used here to approximate the unrestricted likelihood.

Theorem 8.1. The approximate marginal likelihood obtained using the Laplace approxima-

tion for the LLMM is

ℓ(τ , σ2, φ, γ, θ) = −(n− κ)

2
log σ2 − qlog (2φ)− 1

2
log |H|+ 1

2
log (k1 . . . kκ)

− 1

2σ2

(

(y −Xτ )T H−1(y −Xτ )− β̌
T
LH−1Lβ̌

)

where κ = rank(LT H−1L)−, ki is the ith non-zero eigenvalue of (LT H−1L)− and β̌ is the

solution to

LT H−1Lβ̌ = LT H−1(y −Xτ )− σ2

φ
v̌.

Proof. Denote the exponent of the joint distribution of the outcomes and the LASSO effects,

marginal to the random normal effects, by −h(y, β). The sub-differential of h(y, β) is

∂βh(y, β) = − 1

σ2
LT H−1(y −Xτ −Lβ) +

1

φ
v

and the sub-differential’s derivative is

∂(∂βh(y, β))

∂β
=

1

σ2
LT H−1L.

The minimiser of h(y, β) is β̌ that solves ∂βh(y, β) = 0; that is, the solution to

LT H−1Lβ̌ = LT H−1(y −Xτ )− σ2

φ
v̌.
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Mirroring the proof of Theorem 7.1 a series expansion based on a Taylor series is employed,

with the first and second derivative replaced with the sub-differential and its derivative. The

expansion is taken around the β̌, the maximiser of h(y, β). This gives

h(y, β) ≈ 1

2σ2
(y −Xτ −Lβ̌)T H−1(y −Xτ −Lβ̌) +

1

φ
β̌

T
v̌

+
1

2σ2
(β − β̌)T LT H−1L(β − β̌)

=
1

2σ2
(y −Xτ )T H−1(y −Xτ ) +

1

2σ2
β̌

T
LH−1Lβ̌

− 1

σ2
β̌

T
(

LT H−1(y −Xτ ) +
σ2

φ
v̌

)

+
1

2σ2
(β − β̌)T LT H−1L(β − β̌)

=
1

2σ2
(y −Xτ )T H−1(y −Xτ )− 1

2σ2
β̌

T
LH−1Lβ̌

+
1

2σ2
(β − β̌)T LT H−1L(β − β̌).

The marginal distribution is

f(y) ≈ 1

(2πσ2)
n
2 (2φ)q

|H|− 1
2 (2πσ2)

κ
2 (k1 . . . kκ)

1
2×

exp

(

− 1

2σ2
(y −Xτ )T H−1(y −Xτ ) +

1

2σ2
β̌

T
LT H−1Lβ̌

)

×
∫

R
q

(k1 . . . kκ)
− 1

2

(2πσ2)
1
2

exp

(

− 1

2σ2
(β − β̌)T LT H−1L(β − β̌)

)

∂β

=
1

(2πσ2)
n−κ

2 (2φ)q
|H|− 1

2 (k1 . . . kκ)
1
2×

exp

(

− 1

2σ2
(y −Xτ )T H−1(y −Xτ ) +

1

2σ2
β̌

T
LT H−1Lβ̌

)

where the second equality holds due to the definition of a singular multivariate normal

distribution (see Definition A.1). The theorem is completed by taking the logarithm and

disregarding constants.

8.3.2 Partial Laplace Approximation

In Chapter 3 the partial Laplace approximation was reviewed. It was seen that the part

of the likelihood free of fixed effects (the restricted likelihood) can be obtained by taking

a linear transformation of the outcomes, ignoring the part of the data dependent on fixed

effects and then integrating out the random effects. For the LASSO likelihood this will now

be employed for an approximate restricted likelihood.

Theorem 8.2. The approximate restricted marginal likelihood obtained from the partial
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Laplace approximation for the LLMM is

ℓr(σ
2, φ, γ, θ) = −n− p− κ

2
log σ2 − q log φ− 1

2
log |H| − 1

2
log |XT H−1X|

+
1

2
log (k1 . . . kκ)−

1

2σ2

(

yT Py − β̄
T
LT PLβ̄

)

where κ = rank
(

(LT PL)−
)

, ki is the ith non-zero eigenvalue of (LT PL)− and β̄ is defined

in (8.2.3).

Proof. Following Verbyla (1990) define W = [W 1, W 2] such that W T
1 X = Ip, W T

2 X = 0

and let

W T y =

(

W T
1 y

W T
2 y

)

=

(

y1

y2

)

.

Now, y1 depends on fixed effects and y2 does not. The latter is used for estimation of

dispersion parameters.

(

y1

y2

)∣

∣

∣

∣

∣

β ∼ N

((

τ + W T
1 Lβ

W T
2 Lβ

)

, σ2

(

W T
1 HW 1 W T

1 HW 2

W T
2 HW 1 W T

2 HW 2

))

For the partial Laplace approximation only, consider

f(y2|β)f(β) =
1

(2πσ2)
(n−p)

2

1

(2φ)q
|W T

2 HW 2|−
1
2×

exp

(

− 1

2σ2
(y2 −W T

2 Lβ)T (W T
2 HW 2)

−1(y2 −W T
2 Lβ)− 1

φ
‖β‖1

)

.

This can be re-expressed in a form where the transformation does not involve the parameters.

Using Theorem A.2 the joint distribution is

f(y2|β)f(β) =
1

(2πσ2)
(n−p)

2

1

(2φ)q
|W T W |− 1

2 |H|− 1
2 |XT H−1X|− 1

2×

exp

(

− 1

2σ2
(y −Lβ)T P (y −Lβ)− 1

φ
‖β‖1

)

.

A series expansion, based on a Taylor series, is now used. It is similar to the one in the proof

of Theorem 7.1 where the first and second derivatives were replaced by the sub-differential

and its derivative. The series expansion is taken around its minimum β̄, which is the same

quantity as the LASSO prediction from the LMME. With the exponent written as −m2(β)

the sub-differential and its derivative are

∂βm2(β) = − 1

σ2
LT P (y −Lβ) +

1

φ
v and

∂(∂βm2(β))

∂β
=

1

σ2
LT PL
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respectively. The approximation to m2(β) is

m2(β) ≈ 1

2σ2
(y −Lβ̄)T P (y −Lβ̄) +

1

φ
‖β̄‖1 +

1

2σ2
(β − β̄)T LT PL(β − β̄)

=
1

2σ2
yT Py − 1

σ2
β̄

T
LT Py +

1

2σ2
β̄

T
LT PLβ̄ +

1

φ
+

1

2σ2
(β − β̄)T LT PL(β − β̄)

=
1

2σ2
yT Py +

1

2σ2
β̄

T
LT PLβ̄ − 1

σ2
β̄

T

(

LT Py − σ2

φ
v̄

)

+
1

2σ2
(β − β̄)T LT PL(β − β̄)

=
1

2σ2
yT Py − 1

2σ2
β̄

T
LT PLβ̄ +

1

2σ2
(β − β̄)T LT PL(β − β̄).

Using this approximation to the exponent gives the partial Laplace method

f(y2) =

∫

R
q
f(y2|β)f(β)∂β

=
1

(2πσ2)
(n−p)

2

1

(2φ)q
|W T W |− 1

2 |H|− 1
2 |XT H−1X|− 1

2×

exp

(

− 1

2σ2
(yT Py − β̄

T
LT PLβ̄)

)

(k1 . . . kκ)
1
2 (2πσ2)

κ
2×

∫

R
q

1

(2φσ2)
κ
2

(k1 . . . kκ)
− 1

2 exp

(

− 1

2σ2
(β − β̄)T LT PL(β − β̄)

)

∂β

=
1

(2πσ2)
(n−p−κ)

2

1

(2φ)q
|W T W |− 1

2 |H|− 1
2 |XT H−1X |− 1

2 (k1 . . . kκ)
1
2×

exp

(

− 1

2σ2
(yT Py − β̄

T
LT PLβ̄)

)

where the third equality holds because the integrand is the functional form for a singular

multivariate normal distribution (see Definition A.1). Taking the logarithm and disregarding

constants gives the approximate restricted likelihood.

The differences between the approximate marginal distribution and the approximate re-

stricted marginal distribution are similar to the differences observed for the standard normal

mixed model. That is the matrix H−1 in the unrestricted likelihood is replaced by P , the

term −1
2
log |XT H−1X | is included and the coefficient of log σ2 is (n− p−κ)/2 rather than

(n− κ)/2. The approximate unrestricted likelihood requires knowledge of the unknown pa-

rameter τ . Also, the estimate β̌ is not that obtained from the LMME (8.2.1) and it depends

on the unknown τ . Usually, a plug-in estimator of τ would be used when calculating the

likelihood. However, this is circumvented in the approximate restricted likelihood and the

estimates β̄ are exactly those that solve the LMME. Given that these differences occur, it

seems that the approximate restricted likelihood is more appropriate. The remainder of this

chapter will use only this likelihood.

Under the condition that κ = q < n − p, the approximate restricted likelihood has a

particular form. This form is similar to the exact restricted likelihood for the standard

mixed models.
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Corollary 8.1. If LT PL is non-singular then the approximate restricted likelihood is

ℓr(σ
2, φ, γ, θ) = −n− p− q

2
log σ2 − q log φ− 1

2
log |H| − 1

2
log |XT H−1X|

+
1

2
log |LT PL| − 1

2σ2

(

yT Py − β̄
T
LT PLβ̄

)

.

Proof. Use Theorem 8.2 and note that (k1 . . . kκ) = |LT PL|.

8.4 Derivatives of LASSO Estimates

Obtaining the score equations and the information for the approximate restricted likelihood

requires the derivatives of the LASSO estimates. The derivatives w.r.t. σ2 and φ are gener-

alisations of those for the LASSO random effects model in Theorem 7.2. The derivation of

those derivatives (see Chapter 7) was enabled by noticing that the derivatives of sub-vectors

of β̄ and v̄ are zero. This argument is used again. Also, Lemma 7.1 is needed in slight

generalisation. This is presented first.

Lemma 8.1. Define the q × q matrix D as

LT PL = D =

(

DSS DSZ

DZS DZZ

)

and (LT PL)− = D− =

(

DSS DSZ

DZS DZZ

)

where L is a n× q matrix and q may be larger than n and P is a n× n symmetric matrix,

then
(

IS ,−DSZ
(

DZZ
)−
)

D− =
(

D−
SS 0

)

.

Proof. The proof follows that of Lemma 7.1 with D redefined.

Theorem 8.3. Let ηT = (γT , θT ) whose ith element is ηi. The derivatives of the LASSO

estimates with respect to σ2, φ and ηi are

∂β̄

∂σ2
= −1

φ

(

(LT
SPLS)−1 0

0 0

)

v̄,

∂β̄

∂φ
= −σ2

φ2

(

(LT
SPLS)−1 0

0 0

)

v̄ and

∂β̄

∂ηi
= −

(

(LT
SPLS)−1 0

0 0

)

LT PḢ iP (y −Lβ̄)

respectively where Ḣ i is the derivative of H w.r.t ηi.

Proof. The derivatives w.r.t. σ2 and φ are trivial extensions of Theorem 7.2. The derivative

w.r.t. ηi is now presented. Denote the least squares estimate of the LASSO effects as β̂.
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Then

∂β̄Z

∂ηi
= 0 =

∂β̂Z

∂ηi
− σ2

φ

∂DZ·

∂ηi
v̄ − σ2

φ
DZS ∂v̄S

∂ηi
− σ2

φ
DZZ ∂v̄Z

∂ηi

∴
∂v̄Z

∂ηi
=

φ

σ2

(

DZZ
)− ∂β̂Z

∂ηi
−
(

DZZ
)− ∂DZ·

∂ηi
v̄

as ∂v̄S/∂ηi = 0. Now

∂β̄S

∂ηi
=

∂β̂S

∂ηi
− σ2

φ

∂DS·

∂ηi
v̄ − σ2

φ
DSS ∂v̄S

∂ηi
− σ2

φ
DSZ ∂v̄Z

∂ηi

=
∂β̂S

∂ηi
− σ2

φ

∂DS·

∂ηi
v̄ −DSZ

(

DZZ
)− ∂β̂Z

∂ηi
+

σ2

φ
DSZ

(

DZZ
)− ∂DZ·

∂ηi
v̄

=
(

IS ,−DSZ
(

DZZ
)−
) ∂β̂

∂ηi

− σ2

φ

(

IS ,−DSZ
(

DZZ
)−
) ∂D−

∂ηi

v̄

=
(

IS ,−DSZ
(

DZZ
)−
)

(

−D−∂D

∂ηi
D−LT Py + D−LT ∂P

∂ηi
y +

σ2

φ
D−∂D

∂ηi
D−v̄

)

=
(

IS ,−DSZ
(

DZZ
)−
)(

D−LT PḢ iPLD−LT Py −D−LT PḢ iPy

−σ2

φ
D−LT PḢ iPLD−v̄

)

= −
(

IS ,−DSZ
(

DZZ
)−
)

D−LT PḢ iP

(

y −L

(

D−LT Py − σ2

φ
D−v̄

))

.

Using Theorem 8.1 and the form of the LASSO estimates in (8.2.3) this derivative is

∂β̄S

∂ηi
= −

(

D−
SS , 0

)

LT PḢ iP
(

y −Lβ̄
)

.

Hence

∂β̄

∂γi

= −
(

(LT
SPLS)− 0

0 0

)

LT PḢ iP (y −Lβ̄).

In all cases where qS ≤ n the matrix LT
SPLS will be of full rank. Theorem 6 of Osborne

et al. (2000) shows that there will be at most n non-zero LASSO predictions.

8.5 Estimation of Dispersion Parameters

8.5.1 Unadjusted Score Equations

Theorem 8.4. The un-adjusted score equations from the approximate restricted likelihood

in Theorem 8.2 are
∂ℓr

∂σ2
= −n− p− κ

2σ2
+

1

2σ4

(

yT Py − β̄
T
LT PLβ̄

)

− 1

σ2φ
‖β̄‖1

∂ℓr

∂φ
= − q

φ
+

1

φ2
‖β̄‖1

∂ℓr

∂ηi
= −1

2
tr
(

PḢ i

)

+
1

2

∂log (k1 . . . kκ)

∂ηi
+

1

2σ2
(y −Lβ̄)T LT Ḣ iL(y −Lβ̄)
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Proof. The score equations for σ2 and φ are direct extensions to those presented in Theorem

7.3. Only the derivation for the ηi score is presented. The derivation uses matrix derivatives

in Result B.1.

∂ℓr

∂ηi
= −1

2
tr
(

H−1Ḣ
)

+
1

2
tr
(

(XT H−1X)−1XT H−1Ḣ iH
−1X

)

+
1

2

∂log (k1 . . . kκ)

∂ηi

1

2σ2
yT PḢ iPy − 1

σ2
(y −Lβ̄)T PḢPL

(

(LT PL)−1 0

0 0

)

LT PLβ̄

− 1

2σ2
β̄

T
LT PḢPLβ̄

= −1

2
tr
(

PḢ i

)

+
1

2

∂log (k1 . . . kκ)

∂ηi
+

1

2σ2
(y −Lβ̄)T PḢ iP (y −Lβ̄).

Corollary 8.2. If the matrix LT PL is non-singular then the score equation for ηi is

∂ℓr

∂ηi

= −1

2
tr
(

P ∗Ḣ i

)

+
1

2σ2
(y −Lβ̄)T LT Ḣ iL(y −Lβ̄)

where P ∗ = P −PLT (LT PL)−1LP .

Proof. Consider the approximate restricted likelihood in Corollary 8.1. In particular, con-

sider only the determinant terms (other terms were differentiated in Theorem 8.4). The

derivative of the determinant terms is

∂

∂ηi

(

−1

2
log |H| − 1

2
log |XT H−1X|+ 1

2
log |LT PL|

)

= −1

2
tr
(

PḢ i

)

+
1

2
tr
(

(LT PL)−1LT PḢ iPL
)

= −1

2
tr
(

P ∗Ḣ i

)

.

8.5.2 Observed Information

The information for the dispersion parameters will provide a method for solving the score

equations for ηi.
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Theorem 8.5. The observed information for the unadjusted scores has elements

− ∂2ℓr

∂σ2∂σ2
=

n− p− κ + 4
φ
‖β̄‖1

2σ4
− 1

σ6
(yT Py − β̄

T
LT PLβ̄) +

1

σ2φ2
v̄T
S (LT

SPLS)−1v̄S ,

− ∂2ℓr

∂φ∂φ
=

q

φ2
− 2

φ3
‖β̄‖1 +

σ2

φ4
v̄T
S (LT

SPLS)−1v̄S ,

− ∂2ℓr

∂ηi∂ηj
=

1

2
tr
(

PḢ iPḢ j

)

− 1

2
tr
(

PḦ ij

)

+
1

2

∂2log (k1 . . . kκ)

∂ηi∂ηj

− 1

σ2
(y −Lβ̄)T PḢ iTḢjP (y −Lβ̄) +

1

2σ2
(y −Lβ̄)T PḦ ijP (y −Lβ̄),

− ∂2ℓr

∂φ∂σ2
= − 1

φ2
v̄T
S (LT

SPLS)−1v̄S ,

− ∂2ℓr

∂ηi∂σ2
= − 1

2σ4
(y −Lβ̄)T PḢ iP (y −Lβ̄)

+
1

σ2φ
v̄T
S (LT

SPLS)−1LSPḢ iP (y −Lβ̄) and

− ∂2ℓr

∂φ∂ηi
= − 1

φ2
v̄T
S (LT

SPLS)−1LT
SPḢ iP (y −Lβ̄)

where T = P − PLS(LT
SPLS)−1LSP , and Ḧ ij is the second derivative of H with respect

to ηi and ηj.

Proof. Only the result for (∂2ℓr)/(∂ηi∂ηj) is considered as the others are relatively straight-

forward. First, consider the derivatives of the quadratic form Q = (y − Lβ̄)T PḢ iP (y −
Lβ̄)/(2σ2).

∂Q

∂ηj
=

1

σ2
(y −Lβ̄)T PḢ iPL

(

(LT
SPLS)−1 0

0 0

)

LT PḢjP (y −Lβ̄)

− 1

σ2
(y −Lβ̄)T PḢ iPḢjP (y −Lβ̄) +

1

2σ2
(y −Lβ̄)T PḦ ijP (y −Lβ̄)

= − 1

σ2
(y −Lβ̄)TPḢ i

(

P − PLS(LT
SPLS)−1LT

SP
)

ḢjP (y −Lβ̄)

+
1

2σ2
(y −Lβ̄)T PḦ ijP (y −Lβ̄).

The derivatives of the log-determinants are given in the proof of Theorem A.5.

8.5.3 Adjusted Score Equations and Estimates

The score equations for σ2 and φ arising from the random model containing only LASSO

effects, presented in Chapter 7, were biased. To overcome this the expected score equations

were subtracted from the observed scores in the manner proposed by McCullagh & Tibshirani

(1990). The expected scores are calculated using a parametric bootstrap routine. The same
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method is employed for the LLMM. This adjustment also has the fortuitous effect of removing

the need to calculate the derivative ∂log (k1 . . . kκ) /∂ηi.

As with the model containing only LASSO effects, there are closed form estimates of the

parameters σ2 and φ. However, there is not a closed form for the dispersion parameters η

relating to the random normal effects and residuals.

Theorem 8.6. The estimates for σ2 and φ arising from the adjusted score equations are

σ̂2 =
yT Py − β̄

T
LT PLβ̄

n− p− κ + 2
φ
‖β̄‖1 + 2σ̂2Mσ2

φ̂ =
‖β̄‖1

q + φ̂Mφ

where Mσ2 and Mφ are the (bootstrap) estimates of the expected values for the score equations

for σ2 and φ respectively.

Proof. Follows directly from the proof of Theorem 7.5.

Theorem 8.7. The adjusted score equation for ηi arising from subtracting a bootstrap esti-

mate of the score’s expected value is

(

∂ℓ(σ2, φ, η)

∂ηi

)∗

=
1

2σ2
(y −Lβ̄)T PḢ iP (y −Lβ̄)

− 1

2σ2B

B
∑

j=1

(y∗
j −Lβ̄

∗
j)

T PḢ iP (y∗
j −Lβ̄

∗
j)

where y∗
j and β̄

∗
j are the jth bootstrap sample and LASSO estimate respectively and B is the

number of bootstrap samples performed.

Proof. Consider the unadjusted score in Theorem 8.4. The bootstrap adjustment term is

the average of the scores of the simulated data. Each of these simulated scores will have a

component corresponding to −tr
(

PḢ i

)

and ∂log (k1 . . . kκ) /∂ηi which are constant across

all B simulations. Upon subtraction these terms cancel leaving only those terms in the

Theorem statement.

A method of scoring is used to solve the adjusted score equations for η. The information

matrix (negative Hessian) used is based on the adjusted observed information. The observed

information is not used as it can be computationally expensive to evaluate. The approximate

information used closely mirrors that of the information used in the average information

algorithm (Chapter 3) and its elements can be efficiently calculated. The information used
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in the scoring routine has elements

I(σ2, φ) = I(ηi, φ) = 0

I(σ2, σ2) =
(y −Lβ̄)T P (y −Lβ̄)

2σ2

I(σ2, ηi) =
1

2σ4
(y −Lβ̄)T PḢ iP (y −Lβ̄)

− 1

2σ4B

B
∑

j=1

(y∗ −Lβ̄
∗
)T PḢ iP (y∗ −Lβ̄

∗
) and

I(ηi, ηj) =
1

σ2
(y −Lβ̄)T PḢ iTḢjP (y −Lβ̄).

(8.5.1)

Calculating Information

The elements of the information matrix can be efficiently calculated using working variates

similar to those in Chapter 3. In particular the working variates for elements corresponding

to σ2 and η = (γT , θT ) are

ωy = y −Lβ̄

ωi = Ḣ iP (y −Lβ̄)

=

{

ZiĠiG
−1
i ũi if ηi = γi

ṘiR
−1ẽ if ηi = θi

where Zi and Gi are the parts of Z and G relating to γi, Ġi is the derivative of Gi with

respect to γi, Ṙi is the derivative of R with respect to θi and ũi and ẽ are the predicted

random normal effects corresponding to parameter γi and predicted residuals respectively.

The quadratic forms are found by appending the matrix ω = [ωy, ω1, . . . , ωm] to the coef-

ficient matrix in (8.2.1) in place of y. Absorption over the random normal and fixed effect

equations gives

ωT
y Pωy = (y −Lβ̄)TP (y −Lβ̄) and

ωT
y Pωi = (y −Lβ̄)TPḢ iP (y −Lβ̄).

Continuing the absorption process over the LASSO equations that have non-zero estimates

gives

ωT
i Tωj = (y −Lβ̄)T PḢ iTḢjP (y −Lβ̄).

8.5.4 Solving Adjusted Score Equations

The adjusted score equations for σ2 and φ have a closed form for the estimates (Theorem 8.6).

However, there is no closed form for updating the estimates for η. Updating is performed by

using a method of scoring based on the approximate information in (8.5.1). The approximate
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information has 0 covariance between φ and all other dispersion parameters. This implies

that solving the adjusted score equations for η can be performed ignoring φ. Solving the

score equation for η also requires iteration. The equation

η̂(i+1) = η̂(i) + I−1
ηη

∂ℓr

∂η
(η̂(i))

where I−1
ηη is the part of the inverse information corresponding to the random normal dis-

persion parameters, is repeatedly solved until some predefined convergence is reached.

8.5.5 Algorithm Overview

The estimation process proceeds in a parallel manner to the estimation of the dispersion

parameters in the model containing only LASSO effects. However, additional steps are

required to estimate the extra dispersion parameters (η). The estimation process is started

by specifying an initial set of dispersion parameters. The initial values used as default in the

function developed for this thesis are ηi = 0.1 and the ratio σ2/φ chosen to be 10% of its

maximum value. This value for the ratio should allow non-zero LASSO estimates. The initial

estimates of σ2 and φ are the estimates obtained from using the unadjusted score equations

with q replaced with qS , the number of non-zero LASSO estimates. The initial bootstrap

adjustment terms are calculated using these initial dispersion parameter estimates.

Iteration now starts. Estimates for σ2 and φ are updated using the previous estimates

and the bootstrap adjustments calculated from the previous estimates. The estimate for

η is updated according to the average information algorithm outlined in Chapter 3. This

step also requires iteration. The bootstrap estimates of the scores are then updated and the

iteration process starts again. The estimation process stops when the parameter estimates

converge.

The use of the bootstrap routine introduces a stochastic element into the estimation

process, and as in Chapter 7 convergence to a point estimate is not guaranteed. This is

overcome by using the step halving routine outlined in Chapter 7. Also outlined in Chapter

7 is a method for reducing the number of bootstrap samples needed by initially specifying a

low number and then increasing it after each iteration.

8.6 Significance Testing of LASSO Effects

After the dispersion parameters have been estimated, the LASSO estimates are tested for

significance using the simulation test of Chapter 7. The null distribution for the LLMM is

normal (as all LASSO effects are assumed to be zero), more precisely it is N (Xτ , σ2H(η)).

The parameters τ , σ2 and η are unknown and are replaced by their estimates in the simu-

lation testing procedure.

Both comparison-wise and experiment-wise significant tests are available in a manner

completely analogous to those in Chapter 7.
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8.7 Simulation

The dispersion parameter estimation method was tested using a small simulation study

consisting of simulating and analysing 100 data sets, each comprising n = 150 individuals.

The simulation model contained: a fixed effect for the mean τm = 3, a fixed effect for a

covariate whose explanatory variable values were drawn once from a N(0, 1) distribution and

whose effect was τc = −2, a set of 15 independent random normal effects with variance

σ2
15 = 0.6, a set of 10 independent random normal effects with variance σ2

10 = 2 and a set of

LASSO effects with variance 2φ2 = 0.1. The residual variance was set at σ2 = 1.

The bootstrap adjustment terms were calculated using B = 20 samples initially. This was

increased by 10 after each iteration until B = 200 was reached. The step size for dispersion

parameter updating was decreased to 95% after each iteration. The fixed effect estimates,

the dispersion parameter estimates and the number of non-zero LASSO effects were recorded

for each analysis.

Results for the simulation are presented in Table 8.1. The fixed effects and dispersion

parameters appear to be estimated in an unbiased manner. However, the fixed effect esti-

mates are calculated at the mode, and not the mean, of the joint distribution. This implies

that the two coincide within the resolution of this simulation study.

Table 8.1: Results from the efficacy simulation for the LLMM estimated using the bootstrap
adjusted scores.

Model Parameter Simulation Value Mean Standard Error
Overall Mean 3.0 2.97 0.086
Covariate -2.0 -1.99 0.011
Random Effect Variance 0.6 0.61 0.031
Random Effect Variance 2.0 2.15 0.111
LASSO effect Variance 0.1 0.09 0.006
Residual Variance 1.0 1.00 0.013

Non-zero LASSO Estimates - 12.75 0.218

The variance estimate for the random normal effects with simulated variance of 2.00 may

be slightly inflated. However, closer inspection of the results show that there is at least one

data set that has a high estimated variance. If this estimate is removed then the mean of the

99 remaining estimates is 2.10 (±0.1). It is unclear if this high value is due to the random

data generation process or if it is an artifact of the estimation process.

This simulation shows that the methodology presented in this chapter provides estimates

of the fixed effects and the dispersion parameters that are approximately unbiased. The

methodology provides the framework where LASSO effects can be jointly modelled with

experimental effects.
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8.8 Summary

In this chapter the LASSO model was extended to allow for both fixed and random nor-

mal effects. Prediction of the model’s location effects, given dispersion parameters, was

performed using a modified Gaussian elimination technique on an extension of the mixed

model equations. The dispersion parameters were estimated by solving adjusted score equa-

tions arising from an approximate restricted likelihood. A simulation study showed that this

methodology gave approximately unbiased estimates of the fixed effects and the dispersion

parameters.



Chapter 9

QTL Detection Using the LLMM

9.1 Introduction

A shortcoming of many QTL mapping methods is the need to fit multiple models to determine

the most likely (if any) QTL location(s). Various ways around this problem have been

proposed by Whittaker et al. (2000), Gianola et al. (2003) and Xu (2003), who include

all the marker information into a single model. However, the number of marker effects in

these models is often larger than the size of the mapping population. This means that the

marker effects cannot be included into the model as fixed effects, at least not without a model

selection step. Even if the number of markers is not greater than the number of individuals

a full fixed effect analysis is likely to be ill-conditioned. This may cause unreliable estimates

(see Chapter 4 for a discussion of ill-conditioning). To allow fitting all the marker effects into

a single model Whittaker et al. (2000), Gianola et al. (2003) and Xu (2003) included the

marker effects as random (equivalently constrained) effects. Using the random effects model

formulation a natural question to ask is, ‘What distribution do the marker effects have?’

Intuitively, it is expected that for any given trait there will be a large number of small QTL

effects and a small number of large effects. The distribution of QTL effects, approximately

the marker effects, will have high probability near zero with reasonably heavy tails. It is

expected that the distribution will also be symmetric as sign is arbitrary for additive effects

in most designs. The double exponential distribution may be a reasonable assumption for

this distribution. This is supported, at least empirically, by Chamberlin et al. (2005) who

investigated the distribution of estimated effects from a series of locations throughout the

genome in a dairy cattle population. They showed that the distribution of marker effects

has similar distributional moments to that of a double exponential distribution.

Including the marker effects as double exponentially distributed effects forms the LASSO

model. In Chapter 7 it was shown that the LASSO random effects model was a powerful tool

for estimating effects when there are zero effects in the model. This model was incorporated

into a mixed model framework for joint modelling of LASSO effects together with fixed and

random normal effects in Chapter 8. This extended mixed model, the LLMM, provides a

methodology to map QTL.

141
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In this chapter the details of the method for mapping QTL using the LLMM are presented,

assessed by simulation for a trait of large heritability and for a trait of low heritability, and

finally demonstrated on the Davies’ Gene Mapping data set described in Chapter 1.

9.2 QTL Mapping Method

QTL mapping using the LLMM is a relatively straight-forward procedure. First, a com-

plete set of marker covariates is obtained using the method described in Chapter 2. This

procedure replaces the missing and non-informative marker values by the conditional expec-

tations given the flanking markers. For this reason it is important to have an accurate map.

However, unlike interval mapping methods, the only use of the marker map in QTL analysis

using the LLMM is for the imputation of missing/non-informative markers. This procedure

underestimates the variance in the marker covariates. It may be preferable to use procedures

which can guard against this, such as multiple imputation. This is not considered in here as

it is not considered to be a significant problem.

The scale of the marker variables is changed so that the elements lie within the interval

[−1, 1]. If a marker was fully informative then the marker variables would have elements of

either −1 or 1. Individual marker variables are not standardised to have unit variance as

they already have a commensurate scale. This contrasts with the general regression setting

(e.g. the prostate data Stamey et al., 1989 analysed in Chapter 7).

The marker effects are included in the LLMM as LASSO effects. They represent QTL

surrogates as they will be correlated to the true QTL through genetic linkage. Other genetic

effects and experimental effects are included in the model as either fixed or random normal

effects, depending on what is considered appropriate.

The dispersion parameters and the fixed, random normal and the LASSO effects are

estimated using the methods described in Chapter 8. The LASSO effects are tested using

an experiment-wise (called a genome-wise) test at a pre-specified significance level using

the simulation method in Chapter 8. Those marker effects that are significant are defined

to be associated with a QTL. That is, there is a QTL near these markers. Many of the

marker effects will be estimated to be zero, which should make model interpretation easier

by screening out sections of the genome without QTL.

This method of identifying and estimating important marker effects assumes that the

effects are random. Implicitly, this assumes that the probability of an individual marker

effect being identically zero is precisely zero. From a genetical viewpoint this is unrealistic

and is therefore a potential flaw in the model. This flaw could be guarded against by using

the LLMM as a model selection step to identify the marker effects that are non-zero and

then by estimating their effects using an unbiased estimator. Unfortunately, this style of

estimation introduces another flaw, as such estimates are likely to be biased upwards (e.g.

Broman, 2001). This is an example of the statistical phenomenon called ‘selection bias’

(Miller, 2002, Chapter 6). Ideally, estimation of effect size should come from a secondary

study. However, this is generally not practical and estimation must come from the same
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data as does identification.

If selection bias is ignored then unbiased estimates for the marker effects can still be

obtained using the LLMM QTL mapping framework. The LLMM could be used as a working

model, used solely to identify the important marker effects. Estimation of marker effects

would then proceed by treating them as fixed effects in the corresponding (normal) mixed

model. The estimated variance components from the LLMM should provide excellent starting

values for this mixed model and hence computation can be minimal. This two step procedure

parallels the general model selection method outlined in Öjelund et al. (2001) and Efron

et al. (2004). The basic idea behind these published methods is to use the LASSO to select

the model and then to estimate the non-zero effects via least squares. Unfortunately, neither

sets of authors provide simulation results to see if the two-step working model method is

superior to the simpler LASSO model. That is, to see if selection bias detracts substantially

from the intuitive appeal of the two-step estimation method.

Due to the potential selection bias, the two-step estimation method is not used in this

thesis. Also, the primary focus of the methods in this chapter is the identification of QTL

and not the estimation of their effects. Where the size of an effect is presented, it is based

on the random effects model.

9.3 Simulations

The simulation design was based on that in Broman & Speed (2002). Briefly, genomes of

9 chromosomes of 100cM in length were simulated. Each chromosome contained 11 equally

spaced, fully informative markers. Chromosomes 1 and 2 each contained 2 QTL located at

30cM and 70cM, the QTL were linked in coupling phase on chromosome 1 and in repulsive

phase on chromosome 2. Chromosomes 3, 4 and 5 each contained 1 QTL at positions 50cM,

30cM and 0cM respectively. The remaining chromosomes did not contain any QTL. Four

population sizes were considered n = 130, n = 250 and n = 500. The population size

n = 130 was chosen to mirror a single family from the Davies’ Gene Mapping data. The

others are used as a comparison to the methods presented in Broman & Speed (2002). For

each population size the simulation study consisted of generating and analysing 500 data

sets.

The LLMM method was compared against the recommended approach from Broman &

Speed (2002), namely the forward selection method with entry criterion defined by BICδ (FS-

BICδ). The BICδ was created by multiplying BIC by a constant δ ≥ 1, chosen to account for

multiple testing (Broman & Speed, 2002). For this simulation design δ = 2.43 for n = 130,

δ = 2.10 for n = 250 and δ = 1.85 for n = 500. Any marker variable included in the final

model was considered to be linked to a QTL.

Only FS-BICδ was used for comparison as the relative merit of FS-BICδ against many

other analyses was presented in Broman & Speed (2002). These authors found that FS-

BICδ was amongst the best of methods considered at identifying QTL. In particular, the

FS-BICδ method behaved favourably when compared to interval mapping and composite
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interval mapping (Chapter 2).

The LLMM method was implemented using a convergence tolerance of 0.002, chosen

to be as small as possible while still maintaining computational feasibility. The number of

bootstrap samples for the first iteration was 30, this was increased by 5 each iteration until

the number of samples reached 100. The step size was reduced after each iteration to 95%

of its previous value. Only those effects that were significant at this level were considered to

be associated with a QTL.

Two criteria were used to classify if a QTL was correctly identified or not. Firstly, a QTL

was considered to be correctly identified if its associated marker was found to be significant

(0cM tolerance). Secondly, a QTL was considered to be correctly identified if its associated

marker or one either side of it on the linkage map was chosen as being significant (10cM

tolerance). The 10cM tolerance criterion is the one used by Broman & Speed (2002). For

some simulated data sets more than 1 marker within 10cM of a true QTL was identified

as significant. Under the 10cM tolerance criterion these situations were deemed to find the

QTL only once.

Two types of traits were considered. Those with a high heritability (h2 = 50%) and those

with a low heritability (h2 = 10%). The QTL substitution effect (replacing one QTL allele

with the other) for the highly heritable trait is 0.760 and for the lowly heritable trait was

0.252. The highly heritable trait was considered in Broman & Speed (2002).

9.3.1 Heritability 50%

For all population sizes and tolerance levels the average number of correctly identified QTL

are given in Table 9.1. Results are given for correctly chosen total number of QTL, linked

QTL (in both phases) and unlinked QTL. For nearly all the population sizes and both

tolerance levels the LLMM identified more QTL than the FS-BICδ method. The exceptions

were for n = 250 (tolerance 10cM) and n = 500 (tolerance 10cM). The differences are small

in both these cases. The difference in identification rates for the two tolerance levels was less

for the LLMM than for FS-BICδ, implying the LLMM was more precise in locating QTL.

The average number of extraneous QTL identified are presented in Table 9.2. Results

are given for the total extraneous QTL, the extraneous QTL linked to a true QTL and

the extraneous QTL not linked to a true QTL. For the smaller population sizes (n = 130

and n = 250), the LLMM identified approximately equal numbers of extraneous QTL for

tolerance 10cM and less for tolerance 0cM. For population size n = 500, the LLMM might

identify slightly more extraneous QTL than FS-BICδ. However, for tolerance 0cM most of

the difference arises from multiple significant marker effects within 10cM of the true QTL.

In practice these would imply a single genetic effect within the region.
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Table 9.1: Heritability 50% QTL simulation results: the average number of correctly identi-
fied QTL per simulated data set.

Correctly Chosen QTL
Tolerance #Individuals Model Total Coupling Repulsion Other

LLMM 3.61 (0.06) 1.13 (0.03) 0.70 (0.03) 1.78 (0.04)
n=130

FS-BICδ 2.68 (0.07) 0.83 (0.03) 0.37 (0.03) 1.48 (0.04)
0cM

LLMM 6.03 (0.04) 1.75 (0.02) 1.61 (0.03) 2.67 (0.02)
n=250

FS-BICδ 5.68 (0.05) 1.58 (0.03) 1.48 (0.03) 2.62 (0.03)

LLMM 6.93 (0.01) 1.98 (0.01) 1.97 (0.01) 2.98 (0.01)
n=500

FS-BICδ 6.80 (0.02) 1.93 (0.01) 1.94 (0.01) 2.93 (0.01)

LLMM 4.22 (0.06) 1.37 (0.03) 0.81 (0.03) 2.04 (0.04)
n=130

FS-BICδ 3.40 (0.07) 1.09 (0.02) 0.48 (0.03) 1.84 (0.04)
10cM

LLMM 6.33 (0.04) 1.87 (0.02) 1.68 (0.03) 2.78 (0.02)
n=250

FS-BICδ 6.42 (0.04) 1.84 (0.02) 1.69 (0.03) 2.89 (0.02)

LLMM 6.99 (0.01) 2.00 (0.00) 1.99 (0.00) 3.00 (0.00)
n=500

FS-BICδ 7.00 (0.00) 2.00 (0.00) 2.00 (0.00) 3.00 (0.00)

9.3.2 Heritability 10%

For all population sizes and tolerance levels the average number of correctly identified QTL

are given in Table 9.3. Results are given for correctly chosen total number of QTL, linked

QTL (in both phases) and unlinked QTL. The reduction in heritability reduces the ability

of all methods to identify QTL. However, the FS-BICδ method identifies more QTL for

the smallest population size and approximately equivalent numbers for the larger population

sizes. The difference between the number of correctly identified QTL under the two tolerance

levels is greater for FS-BICδ. This implies that the QTL identified by the LLMM are more

precise in location than those identified by FS-BICδ.

The average number of extraneous QTL identified are presented in Table 9.4. Results

are given for the total extraneous QTL, the extraneous QTL linked to a true QTL and the

extraneous QTL not linked to a true QTL. The number of extraneous QTL identified is

substantially less for the LLMM than for FS-BICδ. This is particularly true for the small

population sizes.

9.3.3 Simulation Summary

The LLMM appears to be a useful tool for identifying QTL when compared to FS-BICδ which

was shown to be competitive compared to some other commonly used methods (Broman &

Speed, 2002).

For large heritabilities, the LLMM identified more QTL than FS-BICδ without increasing

the rate of false positives. For low heritabilities, the LLMM identified less QTL but had a
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Table 9.2: Heritability 50% QTL simulation results: the average number of extraneous QTL
found per simulated data set.

Extraneous QTL
Tolerance #Individuals Model Total Linked Unlinked

LLMM 1.12 (0.05) 1.04 (0.03) 0.08 (0.01)
n=130

FS-BICδ 1.16 (0.04) 1.11 (0.04) 0.05 (0.01)
0cM

LLMM 0.86 (0.04) 0.83 (0.04) 0.03 (0.01)
n=250

FS-BICδ 1.11 (0.04) 1.08 (0.04) 0.03 (0.01)

LLMM 0.58 (0.03) 0.52 (0.03) 0.05 (0.01)
n=500

FS-BICδ 0.44 (0.03) 0.41 (0.03) 0.03 (0.01)

LLMM 0.41 (0.03) 0.33 (0.03) 0.08 (0.01)
n=130

FS-BICδ 0.43 (0.03) 0.38 (0.03) 0.05 (0.01)
10cM

LLMM 0.29 (0.02) 0.26 (0.02) 0.03 (0.01)
n=250

FS-BICδ 0.32 (0.02) 0.29 (0.02) 0.03 (0.01)

LLMM 0.18 (0.02) 0.13 (0.02) 0.05 (0.01)
n=500

FS-BICδ 0.11 (0.02) 0.08 (0.01) 0.03 (0.01)

substantially lower rate of false positives. The LLMM may be conservative but greater

confidence can be placed in a QTL identified by the LLMM (as opposed to one identified

by FS-BICδ). Also, the location of the QTL identified by the LLMM appeared to be more

accurate than the FS-BICδ method.

9.4 Davies’ Gene Mapping Data

The genetic model used for the analysis of the Davies’ Gene Mapping experiment (Chapter

1) included a separate (LASSO) effect for each informative marker within each of the three

sires. This model allowed the effect of a QTL to differ between sires, both in location and

in size. It was likely that some QTL would not be segregating in all sires and this model

allowed for that. There were a total of 570 unique marker within sire effects included as

LASSO effects in the model. The model contained only additive non-epistatic effects.

Missing and non-informative marker values were assigned the conditional expectation

given the flanking markers. The cattle linkage map from Ihara et al. (2004) was used for

this purpose. This linkage map does not contain locations for single nucleotide polymor-

phisms (SNPs) which were located on chromosomes BTA1, BTA8, BTA11 and BTA20. The

SNPs were inserted into the linkage map using the CRI-MAP software (Green et al., 1990).

This software assesses a given putative location for a SNP by calculating the likelihood from

a multi-point linkage analysis (Lander & Green, 1987). After the linkage map was generated,

the QTL Express software (Seaton et al., 2002) was used to calculate the conditional proba-

bilities at specified locations along the linkage map. The marker locations form a subset of
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Table 9.3: Heritability 10% QTL simulation results: the average number of correctly identi-
fied QTL per simulated data set.

Correctly Chosen QTL
Tolerance #Individuals Model Total Coupling Repulsion Other

LLMM 0.17 (0.02) 0.10 (0.01) 0.01 (0.00) 0.07 (0.01)
n=130

FS-BICδ 0.35 (0.02) 0.17 (0.02) 0.03 (0.01) 0.15 (0.02)
0cM

LLMM 0.51 (0.03) 0.28 (0.02) 0.02 (0.01) 0.21 (0.02)
n=250

FS-BICδ 0.57 (0.03) 0.33 (0.02) 0.02 (0.01) 0.23 (0.02)

LLMM 1.33 (0.04) 0.58 (0.27) 0.11 (0.02) 0.63 (0.03)
n=500

FS-BICδ 1.27 (0.04) 0.55 (0.23) 0.09 (0.01) 0.63 (0.03)

LLMM 0.29 (0.02) 0.17 (0.02) 0.02 (0.01) 0.11 (0.02)
n=130

FS-BICδ 0.64 (0.02) 0.35 (0.02) 0.05 (0.01) 0.24 (0.02)
10cM

LLMM 0.74 (0.03) 0.42 (0.02) 0.03 (0.01) 0.29 (0.02)
n=250

FS-BICδ 0.95 (0.03) 0.56 (0.02) 0.04 (0.01) 0.34 (0.02)

LLMM 1.71 (0.05) 0.78 (0.03) 0.14 (0.02) 0.77 (0.03)
n=500

FS-BICδ 1.76 (0.04) 0.82 (0.02) 0.12 (0.02) 0.82 (0.04)

the locations from QTL Express.

The model contained fixed effects for the overall mean, breed of dam factor and date of

birth covariate. The breed of dam factor was coded using a dummy variable. The model also

contained a single set of 6 random normal effects for Cohort (sex by year interaction). This

means that the model contained 3 fixed effects and 3 dispersion parameters to be estimated.

There were 6 random normal effects and 570 LASSO effects to be predicted.

The estimation process used a convergence tolerance of 0.001. The number of bootstrap

samples used for calculating the expected scores was initially 500, which was increased by

20 after each iteration until a maximum of 1000 was reached. This may be excessive, but

the analysis was considered to be important enough to warrant these choices. After each

iteration the step size for dispersion parameter updating was reduced to 97.5% of its previous

value. The initial values of the residual variance and the variance associated with the Cohort

factor were chosen to be those from a corresponding mixed normal model without the marker

effects. The initial value for the dispersion parameter φ was taken to be 0.2. Reasonable

starting values and a large number of bootstrap samples meant that the initial step length

(see Section 8.5.4) could be reduced as the initial parameter values should be close to the

final parameter estimates. The initial step length was taken to be one half of the step chosen

by the scoring algorithm. After estimation of the dispersion parameters, the marker effect

predictions were tested using a genome-wise simulation test at the 5% type-1 error rate. The

empirical null-distribution was found using 2000 simulated data sets.

The fixed effect and dispersion parameter estimates are given in Table 9.5. There were
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Table 9.4: Heritability 10% QTL simulation results: the average number of extraneous QTL
found per simulated data set.

Extraneous QTL
Tolerance #Individuals Model Total Linked Unlinked

LLMM 0.27 (0.03) 0.22 (0.02) 0.05 (0.01)
n=130

FS-BICδ 0.71 (0.02) 0.54 (0.02) 0.16 (0.02)
0cM

LLMM 0.44 (0.03) 0.41 (0.03) 0.03 (0.01)
n=250

FS-BICδ 0.66 (0.03) 0.61 (0.03) 0.05 (0.01)

LLMM 0.67 (0.03) 0.64 (0.03) 0.03 (0.01)
n=500

FS-BICδ 0.79 (0.03) 0.76 (0.03) 0.03 (0.01)

LLMM 0.14 (0.02) 0.09 (0.01) 0.05 (0.01)
n=130

FS-BICδ 0.41 (0.02) 0.25 (0.02) 0.16 (0.02)
10cM

LLMM 0.20 (0.02) 0.18 (0.02) 0.03 (0.01)
n=250

FS-BICδ 0.29 (0.02) 0.24 (0.02) 0.05 (0.01)

LLMM 0.27 (0.02) 0.24 (0.02) 0.03 (0.01)
n=500

FS-BICδ 0.30 (0.02) 0.28 (0.02) 0.03 (0.01)

only 5 non-zero marker estimates, presented in Table 9.6. The small number of non-zero

estimates implies that there are large regions of the genome that do not contain any QTL for

birth weight. Using the LLMM model these regions are easily identified. The two non-zero

marker estimates on BTA1 for sire 368 are the two markers defining a single interval. This

result would imply the presence of a QTL within that interval.

Previous analysis of these data (Morris et al., 2003) used an interval mapping proce-

dure (see Chapter 2) within each sire family. Also, they used the theoretical genome-wise

threshold obtained from the method of Lander & Kruglyak (1995). They identified QTL

on chromosomes BTA1, BTA5, BTA14 and BTA21 in roughly the same locations and sire

families to those non-zero estimates presented in Table 9.6. The simulation results presented

in this chapter and in Broman & Speed (2002) suggest that the significant results in Morris

et al. (2003) may be due to false positives from either the interval mapping method or from

the determination of the critical threshold value.

This analysis shows the flexibility and power of the QTL mapping using the LLMM.

In particular, all the genetic effects are included in a single model which contains effects

for the sensible modelling of non-QTL genetic and experimental sources of variation. Also,

interpretation of the marker (LASSO) effects is a relatively easy task as most of them have

been predicted to be zero.
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Table 9.5: Fixed effect and dispersion parameter estimates for the birth weight trait from
the Davies’ Gene Mapping Data. Units of outcome variable are kilograms (kilograms per
day for day of birth covariate).

Parameter Estimate
µ 16.569

Breed of Dam (Jersey) 0.000
Breed of Dam (Limousin) 8.799

Fixed Effects Sire (LOU) 0.000
Sire (RYAN) 1.539
Sire (TOM) 0.037
Day of Birth 0.048

var (Cohort) 2.49
Dispersion Parameters var (Marker Effects) 0.02

Residual Variance 10.37

Table 9.6: Davies’ Gene Mapping Data analysis of birth weight trait. The non-zero marker
estimates (units are kilograms). Estimates are the substitution effect of replacing one sire
marker allele with the other.

Chromosome Position (cM) Sire Substitution Effect
BTA1 99.2 368 0.043
BTA1 109.9 368 0.132
BTA5 35.3 398 0.478
BTA14 50.9 361 0.855*
BTA21 12.6 368 0.348

∗ significant at the 5% genome-wise level (critical value 0.66), all others not significant.

9.5 Summary

In this chapter, the performance of the LLMM for identifying QTL was assessed via simula-

tion and demonstrated using the Davies’ Gene Mapping data. The simulations showed that

the LLMM was competitive for identifying QTL. The analysis of the Davies’ Gene Mapping

data for the birth weight trait identified only five non-zero marker effects. This clearly shows

which regions of the genome do not contain QTL and enables localisation of potential QTL.
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Chapter 10

An Alternative LASSO Random

Effects Model

10.1 Introduction and Motivation

The LASSO was investigated from a random effects model viewpoint in Chapter 7. Specif-

ically, the LASSO effects were assumed to come from a double exponential distribution.

The dispersion parameters were estimated by maximising an approximate likelihood for the

observed data. The resulting score equations were biased and were adjusted using an es-

timate of their respective expected values. This estimate was obtained empirically using a

computationally expensive bootstrap routine. A simulation showed that this approach is a

superior, or at least competitive, method for obtaining the LASSO predictions and possesses

the desirable attribute of arising from a statistical model.

A better approach would be to derive an alternative approximate likelihood whose score

equations were not biased and could be solved analytically, without a stochastic element to

the maximisation. Estimation using these alternative score equations could reduce compu-

tation drastically. In this chapter an alternative LASSO random model is explored. It leads

to an approximate likelihood that produces dispersion parameter estimates which have a

tolerable level of bias and that is computationally simpler to maximise.

An unsatisfactory feature of the estimation method presented in Chapter 7 is that the

dispersion parameter φ is estimated to be zero when the LASSO effects are all predicted

to be zero (see Theorem 7.4). The alternative method presented in this chapter does not

possess this attribute.

Up to this point in this thesis, prediction of the LASSO random effects has used the stan-

dard LASSO method proposed initially by Tibshirani (1996). This predictor is the mode of

the predictive (posterior) distribution f(β|y). This is not the only type of predictor avail-

able. In particular, best prediction and best linear prediction (e.g. Searle et al., 1992) can be

evaluated for the LASSO random effects model. The alternative form of the LASSO random

effects model also suggests that prediction conditional on the random variance effects could

be considered. These different types of predictors are compared for predictive performance
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using a simulation study.

Generally, in a mixed model framework the distribution f(β|y) is called the ‘predictive

distribution’ as f(β|y) = f(β − β̃), where β̃ is the best predictor of β (Searle et al.,

1992). This terminology is used throughout this chapter, not the Bayesian term ‘posterior

distribution’.

In Chapter 7, a method of inference was proposed. It tested the null hypothesis that

βi = 0 against the alternative that βi 6= 0. This essentially treats the LASSO random effects

as though they were fixed. Formal inference for random effects should be based on the

predictive distribution, in particular probability statements such as P(βi > 0|y) should be

used. Using these probabilities, inference about the random effect can be formally obtained.

Two methods for calculating these probabilities are proposed.

S-PLUS code that performs the methods described in this chapter is presented in Ap-

pendix D.

10.2 The Alternative Random Effects Model

The alternative random LASSO model stems from the fact that there is a conditional normal

equivalent to the double exponential distribution (Andrews & Mallows, 1974 and Kotz et al.,

2001). Yuan & Lin (2005) formulate the central double exponential distribution using the

hierarchical structure

β|δ ∼ N(0, δ) and δ ∼ exp(2φ2)

where exp(2φ2) is the exponential distribution with mean 2φ2. The density function of δ is

f(δ) =
1

2φ2
exp

(

− 1

2φ2
δ

)

.

This alternative representation of the double exponential distribution has interesting im-

plications for the LASSO model. In particular, it shows that there are equivalences between

the LASSO and a variant of ridge regression called ‘adaptive ridge regression’. This is not

a new result (Grandvalet, 1998 and Grandvalet & Canu, 1998) but the alternative random

effects model formulation formalises the equivalence on a probabilistic level rather than a

purely numerical level.

The LASSO random effects model can be stated using the alternative formulation as

y = Lβ + e (10.2.1)

where

βi|δi ∼ N(0, δi); i = 1 . . . q

δi ∼ exp(2φ2) and

e ∼ N(0, σ2I).
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The model still only has two parameters (σ2 and 2φ2) but now there are twice as many

random effects ({βi} and {δi}). The advantage of the alternative model to that presented

in Chapter 7 is that the joint distribution of the observed data y, the LASSO effects β

and the vector of random variance effects δ is differentiable with respect to β and δ. This

implies that Laplace’s approximation can be used directly without resorting to analogues of

derivatives from convex programming. This is likely to have been the cause of the biased

estimates of the methods presented in Chapter 7.

10.3 Approximate Marginal Likelihood

The likelihood is based on the marginal distribution of the observed data. Using the al-

ternative random effects model the marginal distribution is found by integrating the joint

distribution f(y, β, δ) over both β and δ. Fortunately, the joint distribution f(y, β|δ) of

the observed data and the LASSO effects is normal and hence the marginal distribution of

y over β conditional on δ is also normal. In particular,

y|δ ∼ N(0, H)

where H = σ2I + LDLT , D = diagv(δ) and diagv(x) is a square matrix with the elements

of x filling its diagonals.

An exact analytical expressions for the marginal likelihood is difficult to obtain. A

Laplace approximation (Chapter 3) to the marginal likelihood is used in its place. The ran-

dom variables to be integrated out are defined on the positive set of real numbers, not the full

set. It is expected that a transformation of the random effects will make the approximation

more accurate. In the following Theorem the transformation α = log (δ) is used.

Theorem 10.1. The approximate marginal log-likelihood for the alternative LASSO random

effects model is

ℓ(σ2, 2φ2; y) = −qlog
(

2φ2
)

− 1

2
log |Λ̄o| −

1

2
log |H̄|

− 1

2
yT H̄

−1
y − 1

2φ2

q
∑

i=1

exp (ᾱi) +

q
∑

i=1

ᾱi

where ᾱ is the maximiser of

Q(α; y, σ2, 2φ2) = −1

2
log |H| − 1

2
yT H−1y − 1

2φ2

q
∑

i=1

exp (αi) +

q
∑

i=1

αi,

H̄ is H evaluated at δ = exp (ᾱ) and Λ̄o is

Λo =
∂T Q(α)

∂α∂αT
= −diagv (exp (α) ◦ b)+

exp (α) exp (α)T ◦
(

1

2

(

LT H−1L
)

◦
(

LT H−1L
)

−wwT ◦
(

LT H−1L
)

)

evaluated at α = ᾱ.
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Proof. The exact marginal distribution is

f(y) =

∫

R
q

+

f(y|δ)f(δ)∂δ

=
1

(2π)
n
2 (2φ2)q

∫

R
q

+

|H|− 1
2 exp

(

−1

2
yT H−1y − 1

2φ2

q
∑

i=1

δi

)

∂δ

=
1

(2π)
n
2 (2φ2)q

∫

R
q

+

exp

(

−1

2
log |H| − 1

2
yT H−1y − 1

2φ2

q
∑

i=1

δi

)

∂δ

where R
q

+ is the positive orthant (inclusive of zero) of R
q

. Using the transformation α =

log (δ) the marginal distribution is

f(y) =
1

(2π)
n
2 (2φ2)q

∫

R
q
exp

(

−1

2
log |H| − 1

2
yT H−1y − 1

2φ2

q
∑

i=1

exp (αi)

)

∣

∣

∣

∣

∂δ

∂α

∣

∣

∣

∣

∂α

=
1

(2π)
n
2 (2φ2)q

∫

R
q
exp

(

−1

2
log |H| − 1

2
yT H−1y − 1

2φ2

q
∑

i=1

exp (αi) + log |D|
)

∂α

=
1

(2π)
n
2 (2φ2)q

∫

R
q
exp

(

−1

2
log |H| − 1

2
yT H−1y − 1

2φ2

q
∑

i=1

exp (αi) +

q
∑

i=1

αi

)

∂α

=
1

(2π)
n
2 (2φ2)q

∫

R
q
exp (Q(α)) ∂α say

where H and D are now parameterised in terms of α (not δ), and |∂δ/∂α| is the Jacobian

of the transformation.

The Laplace approximation requires the first two derivatives of Q(α) with respect to α.

Consider initially the derivatives with respect to a single αi.

∂Q(α)

∂αi

= −1

2
tr

(

H−1∂H

∂αi

)

+
1

2
yT H−1∂H

∂αi

H−1y − 1

2φ2
exp (αi) + 1

= −1

2
exp (αi) lT

i H−1li +
1

2
exp (αi)yT H−1lil

T
i H−1y − 1

2φ2
exp (αi) + 1

= −1

2
exp (αi)Mii +

1

2
exp (αi)w2

i −
1

2φ2
exp (αi) + 1

= −exp (αi)

(

1

2
Mii −

1

2
w2

i +
1

2φ2

)

+ 1

= −exp (αi) bi + 1 say

where li is the ith column of the design matrix L, Mij is the (i, j)th element of M = LT H−1L

and wi = lTi H−1y. Also,

∂2Q(α)

∂α2
i

= −exp (αi) bi − exp (αi)

(

−1

2
exp (αi) lT

i H−1lil
T
i H−1li + exp (αi)wil

T
i H−1liwi

)

= −exp (αi) bi + exp (αi)
2

(

1

2
M2

ii − w2
i Mii

)
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and for i 6= j

∂2Q(α)

∂αi∂αj

= −exp (αi)

(

−1

2
exp (αj) lTi H−1ljl

T
j H−1li + exp (αj)wil

T
i H−1ljl

T
j H−1y

)

= exp (αi) exp (αj)

(

1

2
MijMij − wiwjMij

)

.

The first and second derivatives with respect to the vector α are therefore

∂Q(α)

∂α
= −exp (α) ◦

(

1

2
vecd

(

LT H−1L
)

− 1

2
w ◦w +

1

2φ2
1

)

+ 1

= −exp (α) ◦ b + 1 and (10.3.1)

∂2Q(α)

∂α∂αT
= −diagv (exp (α) ◦ b) +

exp (α) exp (α)T ◦
(

1

2

(

LT H−1L
)

◦
(

LT H−1L
)

−wwT ◦
(

LT H−1L
)

)

= −Λo say, (10.3.2)

where X ◦Z is the element by element multiplication of the same sized matrices (or vectors)

X and Z, vecd (X) is a vector consisting of the diagonal elements of the square matrix X

and 1 is a vector of ones.

The approximation to the marginal distribution is

f(y) =
1

(2π)
n
2 (2φ2)q

∫

R
q
exp (Q(α)) ∂α

≈ 1

(2π)
n
2 (2φ2)q

(2π)
q

2 |Λ̄o|−
1
2 exp (Q(ᾱ))

∫

R
q

1

(2π)
q

2

|Λ̄o|
1
2 exp

(

−1

2
(α− ᾱ)T Λ̄o(α− ᾱ)

)

∂α

=
1

(2π)
(n−q)

2 (2φ2)q
|Λ̄o|−

1
2 exp (Q(ᾱ))

where Λ̄o and H̄ are Λo and H respectively evaluated at α = ᾱ.

The log-likelihood is obtained by taking the log of the marginal distribution and disre-

garding terms not involving the parameters σ2 and 2φ2.

The matrix Λo is the observed information matrix for α. It is not guaranteed to be

positive definite. In some situations it may be convenient to use the expected information

conditional on the random variance effects, which is guaranteed to be positive definite.

Theorem 10.2. The conditional expected information for α is

Λe = diagv

(

1

2φ2
exp (α)

)

+
1

2
exp (α) exp (α)T ◦

(

LT H−1L
)

◦
(

LT H−1L
)

.

Proof. Define w and b as in the proof of Theorem 10.1. Then

E (wiwj|α) = cov (wi, wj|α) + E (wi|α) E (wj |α)

= lT
i H−1var (y|α)H−1lj

= liH
−1lj and

E
(

wwT |α
)

= LT H−1L.



156 CHAPTER 10. AN ALTERNATIVE LASSO RANDOM EFFECTS MODEL

The conditional expected information for α is

E (Λo|α) = diagv (exp (α) ◦ E (b|α)) +
1

2
exp (α) exp (α)T ◦

((

LT H−1L
)

◦
(

LT H−1L
))

= diagv

(

1

2φ2
exp (α)

)

+
1

2
exp (α) exp (α)T ◦

(

LT H−1L
)

◦
(

LT H−1L
)

.

Both observed and conditional expected information matrices have been used with success

in Laplace approximations. The justification for using the conditional expected information

comes from an appeal to the so-called Bayesian Central Limit Theorem. This theorem

states that as the sample size increases f(y|α) will tend to dominate over f(α) in the joint

distribution. Hence, the information matrix of the conditional distribution will tend to the

information matrix of the joint distribution. Also, the conditional distribution will tend to

be normal. In this application of Laplace’s method the choice of information matrix that

will give the most stable and accurate approximation is not immediately clear and derivation

will continue with both. Unless the distinction between Λo and Λe is needed, the generic

notation of Λ will be used to mean either information matrix. Score equations and estimate

attributes will be derived for both.

10.3.1 Estimating the Random Dispersion Effects

The estimates ᾱ (the maximisers of the integrand of the joint distribution) are required to

evaluate the log-likelihood in Theorem 10.1. This is performed using the method of scoring

with the expected information for α in Theorem 10.2. The update step for the (i + 1)th

iteration is

ᾱ(i+1) = ᾱ(i) + sΛ−1
e

∂Q(α)

∂α

where both Λe and ∂Q(α)/∂α are evaluated at α = ᾱ(i) and 0 < s ≤ 1. In the implemen-

tation of this procedure, the step size s was chosen to be 1 for all iterations except the first

where s = 1/50. This initial step size prevents absurd movements in the first iteration. If no

sensible starting values are available for ᾱ, then αi = log (2φ2)− 1/2 is used for all i. This

is an approximate expected value for αi as

E (αi) = E (log δi)

≈ E

(

log 2φ2 + (δi − 2φ2)
1

2φ2
− 1

2
(δi − 2φ2)2 1

4φ4

)

= log 2φ2 − 1

8φ4
var (δi)

= log 2φ2 − 1

2
.

Not surprisingly, sensible starting values, if available, speed up convergence substantially.
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The iterative procedure is terminated when both the scores are zero within a predefined

tolerance and successive iterations’ estimates (ᾱ) do not change within that same predefined

tolerance. The default tolerance in this implementation is 10−6. This may seem excessive

but subsequent numerical methods require accurate values of ᾱ.

The maximisation process appears to be stable and sufficiently fast for all the modelling

situations considered in this chapter. The computational cost increases with the number of

effects but particularly with the sample size, due to the calculation of H−1.

10.3.2 An Example of the Approximate Likelihoods’ Surfaces

A single realisation of the approximate likelihood surfaces (as a function of σ2 and 2φ2) may

give an indication of the behaviour of the likelihood in general. The approximate likelihood

is evaluated with both the observed information and the conditional expected information

for a simulated data set. The data were generated using the random effects model in (10.2.1)

with n = 50, q = 20, σ2 = 1, 2φ2 = 1 and the elements of L were generated from a standard

normal. The resulting likelihoods are presented in Figure 10.1.
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Figure 10.1: An example of the approximate likelihoods given in Theorem 10.1 using the
observed and conditional expected information matrices for α. Contours are at every 1.0
unit change of the likelihood. The circular points (•) are the values used for simulation and
the triangular points (N) are the observed maxima.

Both approximate likelihoods have a distinct maximum and appear to be concave. This

implies that the task of finding the maximum can be reduced to finding a local maximum.

The difference between the two approximations is quite large. Most notably the maxima are

in quite different locations and the rate of decrease as either σ2 or 2φ2 increase is greater for
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the likelihood based on the expected information. The difference in location for the maxima

suggests that one or both of the approximations could be biased. This is investigated using

a simulation study later in the chapter.

10.4 Score Equations and Their Components

The score equations require, amongst other relatively easily obtainable expressions, analytical

expressions for the derivatives of ᾱ and Λ̄.

Theorem 10.3. The derivatives of ᾱ are

∂ᾱ

∂σ2
=

((

1

2
M̄ ◦ M̄ − w̄w̄T ◦ M̄

)

D̄ − D̄
−1

)−1

×
(

w̄ ◦ w̄2 −
1

2
vecd

(

M̄ 2

)

)

and
∂ᾱ

∂2φ2
= − 1

4φ4

((

1

2
M̄ ◦ M̄ − w̄w̄T ◦ M̄

)

D̄ − D̄
−1

)−1

1

where D̄ = diagv (exp (ᾱ)), w̄2 = LT H̄
−2

y, M̄ 2 = LT H̄
−2

L and H̄
−2

= H̄
−1

H̄
−1

.

Proof. There is no closed form for ᾱ. However, the derivatives can be found using implicit

differentiation of the estimating equation for α in (10.3.1). Consider the derivative with

respect to σ2, ∂Q(α)/∂αi = 0 implies that

0 = −1

2
lT
i H̄

−1
li +

1

2
yT H̄

−1
lil

T
i H̄

−1
y − 1

2φ2
+ exp (−ᾱi)

therefore

0 =
1

2
lTi H̄

−1 ∂H̄

∂σ2
H̄

−1
li − yT H̄

−1
lil

T
i H̄

−1∂H̄

∂σ2
H̄

−1
y − exp (−ᾱi)

∂ᾱi

∂σ2
.

Now

∂H̄

∂σ2
= I + Ldiagv(exp ᾱ ◦ ∂ᾱ

∂σ2
)LT

= I + LD̄σ2LT say.

So

w̄il
T
i H̄

−2
y−1

2
lTi H̄

−2
li

=
1

2
lTi H̄

−1
LD̄σ2LT H̄

−1
li − w̄il

T
i H̄

−1
LD̄σ2LT H̄

−1
y − exp (−ᾱi)

∂ᾱi

∂σ2

=

q
∑
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(

1

2
M̄2

ijexp (ᾱj)
∂ᾱj

∂σ2

)

− w̄i

q
∑

j=1

(

M̄ijw̄jexp (ᾱj)
∂ᾱj

∂σ2

)

− exp (−ᾱi)
∂ᾱi

∂σ2

=

q
∑

j=1
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1

2
M̄2

ij − w̄iw̄jM̄ij

)

exp (ᾱj)
∂ᾱj

∂σ2

)

− exp (−ᾱi)
∂ᾱi

∂σ2

=

(

1

2
M̄i· ◦ M̄i· − w̄iw̄

T ◦ M̄i·

)(

exp (ᾱ) ◦ ∂ᾱ

∂σ2

)

− exp (−ᾱi)
∂ᾱi

∂σ2
.
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For all the αi

((

1

2
M̄ ◦ M̄ − w̄w̄T ◦ M̄

)

D̄ − diagv (exp (−ᾱ))

)

∂ᾱ

∂σ2
=

w̄ ◦
(

LT H̄
−2

y
)

− 1

2
vecd

(

LT H̄
−2

L
)

.

A similar derivation gives the derivative with respect to 2φ2.

Theorem 10.4. The derivatives of the observed information matrix for α evaluated at ᾱ

are

∂Λ̄o

∂σ2
= D̄σ2diagv

(

1

2
vecd

(

M̄
)

− 1

2
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1
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1
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2
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(

−M̄ ◦ M̄2 +
(

w̄w̄T
2 + w̄2w̄

T
)

◦ M̄ + w̄w̄T ◦ M̄2

)
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w̄w̄T − M̄
)

◦ M̄D̄2φ2M̄ +
(

w̄
(

M̄D̄2φ2w̄
)T

+
(

M̄D̄2φ2w̄
)

w̄T
)

◦ M̄
)

where D̄σ2 = diagv
(

exp (α) ◦ ∂ᾱ
∂σ2

)

, ∆̄σ2 = (exp (ᾱ)◦∂ᾱ/∂σ2)exp (ᾱ)T , and D̄2φ2 and ∆̄2φ2

are similarly defined.

Proof. Consider the derivative with respect to σ2. The derivative with respect to 2φ2 follows

similarly. Express the observed information for α, given in (10.3.2), as

Λ̄o = A + B.

The derivatives of M̄ and w̄ repeatedly occur throughout the derivation. They are

∂M̄ij

∂σ2
= −lT

i H̄
−2

lj − lTi H̄
−1

LD̄σ2LT H̄
−1

lj and

∂w̄i

∂σ2
= −liH̄

−2
y − lT

i H̄
−1

LD̄σ2LT H̄
−1

y.
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The matrix A is diagonal and the derivative of the ith diagonal element Aii is

∂Aii

∂σ2
= exp (ᾱi)

∂ᾱi

∂σ2

(

1

2
M̄ii −

1

2
w̄2

i +
1

2φ2

)

+ exp (ᾱi)

(

−1

2
lT
i H̄

−2
li −

1

2
lT
i H̄

−1
LD̄σ2LT H̄

−1
li + w̄iliH̄

−2
y + w̄il

T
i H̄

−1
LD̄σ2w̄

)

.

The derivative of the full matrix A is

∂A

∂σ2
= D̄σ2diagv

(

1

2
vecd

(

M̄
)

− 1

2
w̄ ◦ w̄ +

1

2φ2
1

)

+ diagv

(

exp (ᾱ) ◦
(

−1

2
vecd

(

M̄ 2

)

− 1

2
vecd

(

M̄D̄σ2M̄
)

+ w̄ ◦ w̄2 + w̄ ◦ M̄D̄σ2w̄

))

.

The derivative of the (i, j)th element of B, Bij say, is

∂Bij

∂σ2
= −

(

exp (ᾱi)
∂ᾱi

∂σ2
exp (ᾱj) + exp (ᾱi) exp (ᾱj)

∂ᾱj

∂σ2

)(

1

2
M̄2

ij − w̄iw̄jM̄ij

)

− exp (ᾱi) exp (ᾱj)
(

−M̄ijl
T
i H̄

−2
lj + w̄jl

T
i H̄

−2
yM̄ij + w̄il

T
j H̄

−2
yM̄ij + w̄iw̄jl

T
i H̄

−2
lj

)

− exp (ᾱi) exp (ᾱj)
(

−M̄ijl
T
i H̄

−1
LD̄σ2LT H̄

−1
lj + w̄jl

T
i H̄

−1
LD̄σ2LT H̄

−1
yM̄ij

+w̄il
T
j H̄

−1
LD̄σ2LT H̄

−1
yM̄ij + w̄iw̄jl

T
i H̄

−1
LD̄σ2LT H̄

−1
lj

)

and the full matrix derivative is

∂B

∂σ2
= −

(

∆̄σ2 + ∆̄
T
σ2

)

◦
(

1

2
M̄ ◦ M̄ − w̄w̄T ◦ M̄

)

− exp (ᾱ) exp (ᾱ)T ◦
(

−M̄ ◦ M̄ 2 +
(

w̄w̄T
2 + w̄2w̄

T
)

◦ M̄ + w̄w̄T ◦ M̄ 2

)

−exp (ᾱ) exp (ᾱ)T◦
(

(

w̄w̄T − M̄
)

◦ M̄D̄σ2M̄ +
(

w̄
(

M̄D̄σ2w̄
)T

+ M̄D̄σ2w̄w̄T
)

◦ M̄
)

.

The derivative of the estimated observed information Λ̄o is ∂A/∂σ2 + ∂B/∂σ2.

Theorem 10.5. The derivatives for the conditional expected information for α evaluated at

ᾱ are

∂Λ̄e

∂σ2
=

1

2φ2
D̄σ2 +

1

2

(

∆̄σ2 + ∆̄
T
σ2

)

◦ M̄ ◦ M̄ − exp (ᾱ) exp (ᾱ)T ◦ M̄ ◦
(

M̄ 2 + M̄D̄σ2M̄
)

and

∂Λ̄e

∂2φ2
= − 1

4φ4
D̄+

1

2φ2
D̄2φ2+

1

2

(

∆̄2φ2 + ∆̄
T
2φ2

)

◦M̄◦M̄−exp (ᾱ) exp (ᾱ)T◦M̄◦
(

M̄D̄2φ2M̄
)

.

Proof. Consider the derivative with respect to σ2. The derivative with respect to 2φ2 follows

similarly. Express the conditional expected information matrix in Theorem (10.2) as

Λ̄e = A + B.
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The terms A and B will be treated separately.

∂A

∂σ2
=

1

2φ2
D̄ ◦ diagv

(

∂ᾱ

∂σ2

)

=
1

2φ2
D̄σ2 .

Let Bij be the (i, j)th element of B then

∂Bij

∂σ2
=

1

2
exp (ᾱi)

∂ᾱi

∂σ2
exp (ᾱj) M̄2

ij + exp (ᾱi) exp (ᾱj)
∂ᾱj

∂σ2
M̄2

ij

− exp (ᾱi) exp (ᾱj) M̄ijl
T
i H̄

−2
lj − exp (ᾱi) exp (ᾱj) M̄ijl

T
i H̄

−1
LD̄σ2LT H̄

−1
lj

and the derivative of the full matrix β is

∂B

∂σ2
=

1

2

(

(

exp (ᾱ) ◦ ∂ᾱ

∂σ2

)

exp (ᾱ)T + exp (ᾱ)

(

exp (ᾱ) ◦ ∂ᾱ

∂σ2

)T
)

◦ M̄ ◦ M̄

− exp (ᾱ) exp (ᾱ)T ◦ M̄ ◦
(

LT H̄
−2

L + M̄D̄σ2M̄
)

.

The derivative of the conditional expected information is the sum of the two component

derivatives.

Theorem 10.6. The score equations for σ2 and 2φ2 are

∂ℓ

∂σ2
= −1

2
tr

(

Λ̄
−1 ∂Λ̄

∂σ2

)

− 1

2
tr
(

H̄
−1
)

− 1

2
tr
(

LT H̄
−1

LD̄σ2

)

+
1

2
yT H̄

−2
y

+
1

2
yT H̄

−1
LD̄σ2LT H̄

−1
y − 1

2φ2

q
∑

i=1

exp (ᾱi)
∂ᾱi

∂σ2
+

q
∑

i=1

∂ᾱi

∂σ2

∂ℓ

∂2φ2
= − q

2φ2
− 1

2
tr

(

Λ̄
−1 ∂Λ̄

∂2φ2

)

− 1

2
tr
(

LT H̄
−1

LD̄2φ2

)

+
1

2
yT H̄

−1
LD̄2φ2LT H̄

−1
y

+
1

4φ4

q
∑

i=1

exp (ᾱi)−
1

2φ2

q
∑

i=1

exp (ᾱi)
∂ᾱi

∂2φ2
+

q
∑

i=1

∂ᾱi

∂2φ2
.

Proof. Using the results from Theorems 10.3, 10.4 and 10.2, the derivatives of the log-

likelihood in Theorem 10.1 are readily obtained.

10.5 Estimation

The maximum likelihood estimates of σ2 and 2φ2 are obtained from maximising the ap-

proximate log-likelihood in Theorem 10.1 using the score equations in Theorem 10.6. The

maximum of the approximate log-likelihood is obtained using a slightly altered form of the

Newton-Raphson (NR) method.

The standard NR method requires the Hessian of the log-likelihood to be calculated

at each updated position of the parameters. An analytic form for the Hessian has not

been given as the derivation would be extremely difficult, requiring second derivatives of

ᾱ, Λ̄o and/or Λ̄e. The analytic form, even if it were available, would require a substantial
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amount of computations on potentially large matrices and so it is likely to be computationally

prohibitive to calculate. Numerical methods such as the Quasi-Newton method (e.g. Stoer

& Bulirsch, 1993, page 317) could be used. This method is employed by S-PLUS’ function

nlminb (A. T. & T. Bell Laboratories, 1984). However, the simpler method of approximating

the Hessian at each updated estimate is employed here.

The approximation is found by taking the matrix of first forward differences of the score

equations (a similar idea to the numerical methods for estimating the penalised LASSO

objective in Chapter 6). Let

A =

(

Aσ2σ2 Aσ22φ2

A2φ2σ2 A2φ22φ2

)

be the approximate Hessian of the log-likelihood for parameters σ2 and 2φ2. The individual

elements of A at position (σ2, 2φ2) are given by

Aσ2σ2 =
∂ℓ

∂σ2 (σ
2 + ε, 2φ2)− ∂ℓ

∂σ2 (σ
2, 2φ2)

ε

A2φ22φ2 =

∂ℓ
∂2φ2 (σ

2, 2φ2 + ε)− ∂ℓ
∂2φ2 (σ

2, 2φ2)

ε

A∗
σ22φ2 =

∂ℓ
∂σ2 (σ

2, 2φ2 + ε)− ∂ℓ
∂σ2 (σ

2, 2φ2)

ε

A∗
2φ2σ2 =

∂ℓ
∂2φ2 (σ

2 + ε, 2φ2)− ∂ℓ
∂2φ2 (σ

2, 2φ2)

ε

Aσ22φ2 = A2φ2σ2 =
1

2
(A∗

σ22φ2 + A∗
2φ2σ2)

where ε is some small positive number. The quantities A∗
2φ2σ2 and A∗

σ22φ2 should be equal

if the approximation is accurate, as the second (exact) derivative is invariant to the order

of differentiation. However, they cannot be assumed equal in the approximation and the

average is used as it is likely to be more stable.

This approximation requires multiple calculations of the score equations and hence mul-

tiple evaluations of ᾱ. Prior to evaluation of the approximate Hessian, ᾱ is calculated at

(σ2, 2φ2) and these provide excellent starting values for the calculation of ᾱ at (σ2 + ε, 2φ2)

and (σ2, 2φ2 + ε). The calculation of the approximate Hessian requires little additional

computation above calculation of the score equations.

The choice of ε depends heavily on the convergence tolerance when calculating ᾱ using

the scoring method in Section 10.3.1. In particular, if ε is relatively small compared to

the tolerance level, then the approximate Hessian for the log-likelihood can have positive

diagonal elements. This would appear to be incorrect as the log-likelihood surface is likely

to be concave (e.g. Figure 10.1). In such situations, the NR routine may diverge. To

overcome this, a small tolerance value should be used. In the simulations in this chapter, the

tolerance was set to 10−6 and ε was chosen to be 0.01. These have been found to work well

for the analyses in this chapter but they may have to be changed for any particular data set.
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10.6 Performance of Estimation Methods

The estimation methods presented in this chapter are evaluated via simulation. There are

two aspects to the estimation that can be examined. The first is to see if the approximate

log-likelihoods (using the observed and expected information for α) are unbiased for the

dispersion parameters. That is, if the estimation methods are efficacious. The second is to

investigate how the new methods compare to the estimation method presented in Chapter

7.

10.6.1 Efficacy

Efficacy was examined using 9 closely related simulations. Specifically, for each combination

of σ2 = (2.0, 1.0, 0.5) and 2φ2 = (2.0, 1.0, 0.5), data sets were simulated and the dispersion

parameters were estimated using the approximate log-likelihoods with both the observed and

conditional expected information matrices for α. A total of 2000 data sets of each dispersion

parameter combination were simulated and analysed using both the conditional expected

information for α, and the observed information for α. For each simulation the number

of observations was n = 50 and the number of LASSO effects was q = 20. The dispersion

parameter estimates were recorded for each data set. A summary of the results are presented

in Table 10.1.

Table 10.1: Means (± standard errors) of the estimates from the alternative LASSO random
effects model approximate likelihoods. The common simulation values were: n = 50 and
q = 20. 2000 simulations were used to generate each of these statistics.

Simulation Values Expected Information Observed Information

σ2 2φ2 σ̂2 2φ̂2 σ̂2 2φ̂2

2.0 1.939 (0.016) 1.558 (0.022) 1.886 (0.015) 2.148 (0.029)
2.0 1.0 1.925 (0.015) 0.790 (0.011) 1.850 (0.015) 1.109 (0.016)

0.5 1.968 (0.017) 0.398 (0.006) 1.873 (0.016) 0.566 (0.009)

2.0 0.973 (0.008) 1.552 (0.022) 0.956 (0.008) 2.107 (0.030)
1.0 1.0 0.980 (0.008) 0.792 (0.012) 0.953 (0.008) 1.091 (0.016)

0.5 0.981 (0.008) 0.391 (0.006) 0.942 (0.008) 0.550 (0.008)

2.0 0.481 (0.004) 1.513 (0.022) 0.476 (0.004) 2.031 (0.029)
0.5 1.0 0.480 (0.004) 0.761 (0.011) 0.471 (0.004) 1.032 (0.014)

0.5 0.485 (0.004) 0.389 (0.006) 0.472 (0.004) 0.537 (0.008)

The approximate log-likelihood based on the conditional expected information for α

produced estimates for 2φ2 that were substantially biased downward. However, the estimates

from the approximate log-likelihood based on the observed information for α were far less

biased. However, they were slightly biased downwards for σ2 and upwards for 2φ2. Clearly,

the observed information approximation should be preferred.
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The bias in both parameter estimates from the observed information for α was alleviated

when σ2 was larger than 2φ2. This implies that in a practical situations it may be beneficial

to re-scale the explanatory variables (using a linear transformation) after an initial analysis

has been performed.

The approximate log-likelihood based on the observed information matrix for α appeared

to be superior to that based on the conditional expected information for α. For the remainder

of the thesis the latter approximation is disregarded.

10.6.2 Comparison with Bootstrap Adjustment Method

The dispersion parameter estimates found using the approximate log-likelihood was com-

pared with those from the bootstrap adjusted score estimation method. A total of 100 data

sets were simulated with n = 100, q = 35, σ2 = 1 and 2φ2 = 1. Each data set was analysed

using both methods, and the dispersion parameters along with the time taken to finish esti-

mation were recorded. A convergence tolerance for the dispersion parameters of 0.001 was

used for both methods. The results for the dispersion parameter estimates are presented in

Figure 10.2. If there was complete agreement in the estimates from the two methods then

observed points should lie on the y = x line.
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Figure 10.2: Plot of the estimates of σ2 and 2φ2 obtained from the bootstrap adjusted score
method versus those obtained from the approximate log-likelihood in this Chapter. The
solid line is y = x.

There was good agreement between the two methods (Figure 10.2). It appears that

estimation using bootstrap adjusted scores may lead to slightly larger estimates for both σ2
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and 2φ2. The mean (± standard error) for the estimates based on the methods in Chapter

7 were σ̂2 = 0.991 (±0.020) and 2φ̂2 = 1.073 (±0.038) and corresponding values for the

methods developed in this chapter were σ̂2 = 0.977 (±0.019) and 2φ̂2 = 1.060 (±0.036).

Some of the discrepancies are likely to have occurred because of the stochastic element in

the estimation for the bootstrap adjusted scores. However, this should not explain the small

differences in the means.

Estimation was performed on a Linux computer with processor speed 2.2 GHz and 2.0

Gb of RAM. The mean CPU time for estimation using the methods in Chapter 7 was

46.11 minutes (±1.82 minutes) and the mean CPU time for estimation using the method

described in this chapter was 1.60 minutes (±0.03 minutes). The difference is enormous and

given that the estimates do not differ substantially, it shows that the log-likelihood based

on the alternative model should be used in practice. However, the difference in CPU time

will change depending on the attributes of the data, in particular the sample size n and

the number of LASSO effects q. Increasing n should not increase the estimation time for

the bootstrap adjusted score method substantially. It will increase estimation time for the

alternative random effects model approximate log-likelihood as H has to be formed and

inverted. Increasing q will increase estimation time for both methods.

10.7 Prediction of LASSO Random Effects

Up to this point, prediction for the LASSO random effects has been performed using the

suggestion from Tibshirani (1996). That is, the predictors were chosen to be the mode of

the predictive distribution f(β|y). If the criterion for prediction is to minimise the mean

squared error of prediction (MSE), then the expected value of the predictive distribution

should be used (Searle et al., 1992, Chapter 7). This predictor is the best predictor (BP),

which is likely to be non-linear in non-normal models. If the predictor is constrained to be

a linear function of the data y then a third type of predictor is available, the best linear

predictor (BLP).

The standard LASSO, BP and BLP predictors are different summaries of the predictive

distribution marginal to δ. However, the alternative LASSO model also suggests that con-

ditioning on δ may also lead to useful predictions as the conditional predictive distribution

is normal and standard normal theory applies. However, the choice of which value of δ to

choose is not obvious. Sensible choices are limited due to practical considerations; two are

considered here. The first conditions on δ = δ̄ where δ̄ is the maximum of the predictive

distribution f(δ|y). The second conditions on δ = δ̄α = exp (ᾱ) where ᾱ is the maximum of

the predictive distribution of f(α|y) found during the last iteration of dispersion parameter

estimation. The values δ̄ and exp (ᾱ) will not be equal due to the constrained solution space

of δ. It is expected that some of the δ̄i may be identically zero.

All the predictors considered require knowledge of the dispersion parameters. These are

unknown and are replaced using their estimates. The resulting predictors should formally

called empirical predictions but in this section the ‘empirical’ adjective is dropped.
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Descriptions of how to calculate all predictors are now given with the exception of the

predictive mode (described in Chapter 6).

10.7.1 Best Linear Predictor

Calculation of the BLP requires only knowledge of the mean and variance of the joint dis-

tribution of the random LASSO effects β and the observed outcomes y. It is convenient to

use the random effects model in (7.1.1) where the random LASSO effects possess a centred

double exponential distribution. The mean for both the LASSO effects and the outcomes

is the zero vector. The variance and covariances are var (y) = σ2Ha, var (β) = 2φ2I and

cov (y, β) = 2φ2L where Ha = σ2I + 2φ2LLT and I is the identity matrix of appropriate

dimension. The BLP and its associated variance are (Searle et al., 1992)

E (β|y) = 2φ2LT H−1
a y

var (β|y) = 2φ2I − 4φ4LT H−1
a L

(10.7.1)

If the predictive distribution is approximately normal then the BLP predictor should ap-

proximate the BP well.

10.7.2 Best Predictor

There is not a closed form expression for the LASSO BP. Here, it is calculated numerically

using importance sampling (e.g. Gelman et al., 1995). In particular,

E (β|y) =

∫

R
q
βf(β|y)∂β

=

∫

R
q
β

f(β|y)

g(β)
g(β)∂β

= E

(

β
f(β|y)

g(β)

)

≈ 1

B

B
∑

i=1

βi

f(βi|y)

g(βi)

where g(β) is a proposal distribution that approximates the predictive distribution rea-

sonably well and βi is the ith of B samples from the distribution g(β). The ratios wi =

f(βi|y)/g(βi) are called ‘importance weights’.

The BP approximation requires evaluation of the predictive distribution. An applica-

tion of Bayes’ law gives this distribution to be f(β|y) = f(y|β)f(β)/f(y). There is no

exact method to calculate the marginal distribution but analytic approximations using the

methods described in Section 10.3 could be used. However, this could be computationally

prohibitive due to the n × n matrix H being formed and inverted for every sample. The

marginal distribution can also be approximated using the same set of samples generated
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in importance sampling. Using a similar derivation to the approximation of E (β|y) the

marginal approximation is

f(y) =

∫

R
q
f(y, β)∂β = E

(

f(y, β)

g(β)

)

≈ 1

B

B
∑

i=1

w∗
i .

where w∗
i = f(βi, y)/g(βi). The BP is then

E (β|y) ≈
1
B

∑B
i=1 βiw

∗
i

1
B

∑B
j=1 w∗

j

=

∑B
i=1 βiw

∗
i

∑B
j=1 w∗

j

. (10.7.2)

A multivariate normal distribution with mean and variance defined by BLP (10.7.1) is

used as the proposal distribution. This may not be the most appropriate proposal distribu-

tion but it is easily computed.

Gelman et al. (1995) suggest that importance sampling can give imprecise results if the

proposal distribution is not appropriately matched to the predictive distribution. Thus, good

results can be obtained if the large importance weights occur with high probability. A good

proposal distribution generates importance weights that have a left skewed distribution. A

plot of the frequencies of the (log) importance weights provides a check (Gelman et al., 1995)

of the adequacy of the proposal distribution. As an example for the prediction problem for

the LASSO random effects model is given in Figure 10.3. It is neither obviously left nor

right skewed and it is assumed that good results can be obtained (for a sufficiently large B)

using this proposal distribution.

Other proposal distributions, such as multivariate t-distributions with low degrees of

freedom, have also been investigated as these place more mass in the tails of the distribution.

Proposal distributions of this type did not improve the distribution of the importance ratio

significantly (results not shown). Hence, they were not used. Also, the proposal distribution

with mean equal to the LASSO predictions (the predictive distribution’s mode) rather than

the BLP was considered. Once again, this did not improve the distribution of the importance

weights.

10.7.3 Conditional Prediction

An appealing feature of the random effects model in (10.2.1) is that conditional on δ, the

predictive distribution is normal. This observation suggests that conditioning on δ is a

convenient method for prediction. In this chapter, these predictors are called conditional

best predictors (CBP). Prediction of this type can be partially justified by observing that it

is the prediction of a random effect that is required (not the effect’s variance). However, this

argument does not provide full justification as the distribution of the random effects changes

once conditioning occurs. Another shortcoming of conditional prediction is choosing the
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Distribution of Importance Weights
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Figure 10.3: Distribution of the log of the observed importance weights.

value of δ to condition on. Two choices are presented and investigated here. The first is the

maximum of the predictive distribution δ̄ = maxf(δ|y) = maxf(δ, y). The second is chosen

because of convenience rather than any particular statistical reason. It is δ̄α = exp (ᾱ)

where ᾱ is the maximum of the predictive distribution f(α|y) ∝ f(α, y). The values ᾱ

have already been calculated in the last iteration of the dispersion parameter estimation.

The CBP estimates are

CBPδ̄ = D̄δL
T H̄

−1
δ y and

CBPᾱ = D̄αLT H̄
−1
α y

where D̄δ = diagv
(

δ̄
)

, H̄δ = σ2I + LD̄δL
T , D̄α = diagv (exp (ᾱ)) and H̄α = σ2I +

LD̄αLT .

The conditional predictors are fundamentally different from the marginal predictors. It

is expected that their behaviour may also be different. In particular, there is no guarantee

that the total variance of (β|δ = δ̄) or (β|δ = exp (ᾱ)) is similar to that of β. Hence, the

predictors may be subjected to heavier (or lighter) constraints. One way around this might

be to use an unbiased predictor for δ. However, it is not clear how this could be done.
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Estimation of δ

Estimation of ᾱ has already been described (Section 10.3.1). A description of the method

of estimation for δ̄ is now given. This method is not ideal as it can be computationally

expensive and can fail to converge if q is large. However, it easily suffices for the purposes of

this thesis where it is only used for comparisons of predictors. More work will be required if

the conditional predictors are considered to be desirable.

Estimation requires the maximisation of the joint distribution, which is equivalent to

maximisation of its exponent

Q(δ) = −1

2
log |Hδ| −

1

2
yT H−1

δ y − 1

2φ2

q
∑

i=1

δi.

Since δi (1 ≤ i ≤ q) is an exponential random variable, the maximum δ̄i must be greater

than, or equal to zero. This implies that the solution space is the positive orthant and the

solution to the constrained problem may lie on the boundary (in practice it often does).

There are a number of numerical methods that could be employed, for example the Newton-

Raphson (NR) and the quasi-Newton algorithms. These methods seem to be suitable for

small problems (q / 10, n = 100) but for larger problems both these methods are unstable

and tend to diverge (or not converge). A slightly modified version of the Lindley-Smith

algorithm (Lindley & Smith, 1972) has been found to behave much better. It is still not

suitable for larger problems (q ' 50, n = 100) but it does provide a method for comparison

of the different predictors of the LASSO random effects.

The estimation procedure requires the first and second derivatives of Q(δ) with respect

to δ. The derivation of these derivatives follows closely to that of the first and second

derivatives of Q(α) with respect to α in Section 10.3.1. For this reason, a full derivation for

the derivatives is not given. The derivatives are

∂Q(δ)

∂δ
= −1

2
vecd (M) +

1

2
w ◦w − 1

2φ2
1

= U(δ) and

∂2Q(δ)

∂δ∂δT
=

1

2
M ◦M −wwT ◦M

= Λδ.

The Lindley-Smith algorithm updates all the individual δi in turn by solving the score

equation for the single effect conditional on all other effects equal to their latest estimate.

Estimation stops when all the score equations have been solved. There is no closed form for

updating the individual δi and so the NR algorithm is used. That is, the (j +1)th iteration’s

estimate of δi is

δ
(j+1)
i = δ

(j)
i + sΛ−1

δ,iiUi(δ)
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where Λδ,ii is the ith diagonal of Λδ, Ui(δ) is the ith element of U(δ), 0 < s ≤ 1 and the score

and information are evaluated at δ = δ̄
(j)

. Updating each δi is iterative and the algorithm

stops when the ith score equation is solved to within a predefined tolerance. A small step

size was chosen as default (s = 0.1) to guard against gross over-shooting of the maximum,

which can occur reasonably frequently.

In this constrained situation, the estimation algorithm was started with δ̄ = 0 as steps

away from zero tend to be more stable (less dramatic) than steps towards it. All the effects

whose current estimate is zero and whose score equation less than zero can be ignored as

any update would be negative. Of the remaining effects, the effect with largest absolute

score (the most violated effect) is chosen for updating. This choice of variable differs from

the standard Lindley-Smith algorithm, which cycles through effects in a predefined order.

The updating routine is repeated until all the non-zero effects have zero scores and all others

have negative scores.

It is advisable to choose an equivalent (or stricter) tolerance level for updating each

individual effect than for overall convergence. If this were not the case, even the effect most

recently updated may not pass the overall convergence criterion. The defaults chosen here

are 0.001 for both overall and individual effect convergence.

10.7.4 Example of Different Predictors

To illustrate the attributes of the different types of predictors a single data set was simulated

and analysed. The data set contained n = 100 observations, q = 50 explanatory variables,

residual variance of σ2 = 10 and random LASSO effect variance 2φ2 = 1. These values

were chosen to induce some LASSO predictions to be identically zero. Using the estimation

methods presented in Section 10.5, the dispersion parameters were estimated to be σ̂2 = 8.11

and 2φ̂2 = 1.08.

The best predictor was calculated using 50 000 importance samples. This is excessive (a

small fraction of this should suffice) but there was concern about the curse of dimensionality

before performing this prediction.

The different predictors and the realised random effects are plotted against each other

in a scatter plot matrix in Figure 10.4. For this single data set, there is good general

agreement between the different types of predictors. Two prediction methods (LASSO and

CBPδ̄ exhibited the ability to estimate identically zero effects. CBPδ̄ estimated more zero

effects (qZ = 23) than the LASSO method (qZ = 9). By definition, the mean variance of the

marginal effects was 2φ̂2 = 1.08. The mean variance of the conditional distributions were

0.95 for CBPᾱ and 0.30 for CBPδ̄. Both of these are considerably lower than the marginal

counterparts.
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Figure 10.4: Scatter plot matrix of different predictors estimated from the same data. Solid
line is y = x.
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10.7.5 Performance of Predictors

By definition, the best predictor should have lowest MSE of all the (marginal) predictors.

However, there is a stochastic element to calculating the BP and hence it may not exhibit

this property in practice. Also, it is interesting to know how the standard LASSO predictor,

the best linear predictor and both conditional predictors perform in relation to the BP and

to each other. A simulation study was performed to investigate this.

The simulation study consisted of simulating and analysing 500 data sets with attributes:

n = 100, q = 15, σ2 = 10 and 2φ2 = 1. For each simulated data set, the MSE and the number

of identically zero predictions were recorded. The simulation results are given in Table 10.2.

The average dispersion parameter estimates were 9.88 (±0.07) for σ2 and 1.21 (±0.03) for

2φ2. These follow the same pattern of bias found in the efficacy simulation study (Section

10.6).

Table 10.2: Average mean squared error (MSE), number of zero predictions (qZ) and average
variance of predictors (MVP) for each of the different prediction methods. Parenthetic values
are standard errors. Dashes in qZ column signify no zero estimates.

Predictor MSE qZ MVP
BP 0.1003 (0.0017) - 1.21 (0.03)
LASSO 0.1038 (0.0018) 2.49 (0.08) 1.21 (0.03)
BLP 0.1041 (0.0017) - 1.21 (0.03)

CBPᾱ 0.1026 (0.0017) - 1.04 (0.02)
CBPδ̄ 0.1193 (0.0022) 5.35 (0.09) 0.53 (0.01)

The simulation shows that BP is the most statistically efficient predictor of the all predic-

tors considered. The LASSO and BLP have similar prediction ability. Of the three marginal

predictors, only the LASSO has the ability to generate identically zero predictions. The

conditional predictors behave quite differently. The CBPδ̄ method generates more zero pre-

dictions than the LASSO method. The CBPᾱ method forms more accurate predictions than

either the LASSO method or BLP. The average variance of the predictions for both condi-

tional predictors were lower on average than the average 2φ̂2. In fact, for all 500 simulations

the estimate of 2φ̂2 was higher than the average variance of the conditional predictors. This

implies that there is, on average across effects, a larger constraint for the conditional predic-

tors. In spite of this, the CBPᾱ predictor is still competitive with the marginal predictors.

In any practical situation it appears that using any of these predictors (except CBPδ̄) will

provide useful predictions. However of these predictors, only the LASSO has the attractive

ability to predict effects to be identically zero. It is expected to be a useful choice when

predicting for models where interpretation is important.
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10.8 Inference for Random LASSO Effects

In Chapter 7 inference was carried out for the model by performing the hypothesis tests with

null hypothesis βi = 0. This method was subsequently shown to be useful in determining

the important effects from the rest. This test treats the effects as fixed even though they

are not. The hypothesis test is not strictly appropriate for random effects as the effects’

distribution is estimated from the data and not the individual effects themselves. The latter

are predicted from the estimated predictive distribution.

Inference for random effects should be made from predictive probability statements. Of

particular interest for the LASSO random model are the probabilities P(βi > 0|y) and

P(βi < 0|y). If either of these probabilities are large then the explanatory variable is

considered statistically important. Of course, the statistical significance of an effect does not

necessarily imply biological/genetical significance. For biological/genetical significance the

probabilities P(βi = 0|y) and P(βi 6= 0|y) would be extremely useful. However, under the

random effects model the point probability is identically zero and hence these probabilities

provide no insight using the LASSO random effects model.

Two methods to obtain these probabilities are now presented and compared. The first

method uses importance sampling from the predictive distribution. The second method

approximates the predictive distribution with a multivariate normal and probabilities are

generated for each of the random effects.

The importance sampling approach requires the generation of importance weights and

the probabilities are ratios of the sum of the importance weights in the relevant orthant to

the total sum or the importance weights. This is now made clearer for the derivation of

the approximation for P(βi > 0|y). Define R
q

i be the positive half-space of R
q

, defined by

βi > 0, and the function I(βi > 0|y) be the indicator function taking a value of 1 if βi > 0

and 0 otherwise. Then

P(βi > 0|y) =

∫

R
q

i

f(β|y)∂β

=

∫

R
q

I(βi > 0)f(β|y)

g(β)
g(β)∂β

= E

(

I(βi > 0)f(β|y)

g(β)

)

= E (I(βi > 0)wj)

≈ 1

B

B
∑

j=1

(

I(βi > 0)wj

)

.

Paralleling the calculation of the best predictors, the predictive distribution’s normalising

factor is calculated using importance sampling. The approximate predictive probability is

P(βi > 0|y) ≈
∑B

j=1 I(βi > 0)w∗
j

∑B
k=1 w∗

k
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where w∗
j = f(βj , y)/g(βj) and βj is the jth sample from g(β).

The second approach (based on approximating the predictive distribution by a multi-

variate normal) is simplistic, perhaps overly so. It requires little computation as the only

extra calculations required are elementary matrix operations. The multivariate normal ap-

proximation is simply that defined by the mean and variance of the predictive distribution

obtained using best linear prediction (10.7.1). The probability statements, P(βi > 0|y), are

made on the marginal univariate normal distributions.

Results from the single explanatory variable model in Chapter 5 show that when the pre-

dictor is large, the predictive distribution appears to be symmetrical and reasonably normal

(see Theorem 5.2 and Figure 5.1). If this results also holds for the multiple explanatory

variable situation, then the probability statements should be approximately correct for the

effects with large predictions. The effects with small predictions are unlikely to have ap-

proximately normal marginal predictive distributions. This may not cause concern as these

effects are unlikely to be important.

10.8.1 Example of Probability Calculation

The relative performance of the two methods to calculate the required inferential probabil-

ities for the LASSO random effects model are demonstrated using a simulation study. The

simulation design employed was the same used to investigate the predictive performance

of the different types of predictors. However, in this study the probability P(βi > 0|y)

was calculated using both the stochastic and normal approximation methods. The resulting

probabilities for all effects for all simulations are plotted in Figure 10.5. This is a plot of

7500 points (500 simulations each with q = 15 effects).

In general there is relatively good agreement between the two methods (left hand panel

of Figure 10.5). However, closer inspection reveals that near the critical values (P(βi >

0|y) = 0.05 and P(βi > 0|y) = 0.95) the approximate probabilities are higher than the

corresponding stochastic ones (right hand panels). This implies that inference using the

approximation is likely to be overly aggressive. It could still provide a useful working tool

during analysis but this simulation shows that it should not be used formally.

10.9 Re-Analysis of the Prostate Cancer Data

The prostate data was presented in Stamey et al. (1989), analysed in Tibshirani (1996),

Osborne et al. (2000) and Chapter 7. A re-analysis highlights the methods presented in this

chapter.

The dispersion parameters were estimated using the likelihood from Section 10.3. The es-

timation process took 40 seconds to converge. This is considerably quicker than the bootstrap

method from Chapter 7, which took 14.11 minutes to converge. The dispersion parameter

estimates from the two methods are similar, σ̂2 = 0.504 and 2φ̂2 = 0.073 for the bootstrap

adjustment method and σ̂2 = 0.494 and 2φ̂2 = 0.087 for the methods in this chapter.
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Figure 10.5: Approximate versus stochastic P(βi > 0|y). Left graph is all probabilities,
upper right graph is only large probabilities and lower right are only small probabilities.
Solid lines are y = x. Dashed lines are critical values (p = 0.05 and p = 0.95).

The LASSO random effects were estimated using the standard LASSO prediction (Tib-

shirani, 1996 and Chapter 4) along with the prediction methods in Section 10.7. These are

presented in Table 10.3. There was generally good agreement between the predictors. The

LASSO and conditional best predictor, CBPδ̄, are the only predictors that calculated zero

predictions. CBPδ̄ predicted more zeros than the LASSO.

Inference was carried out using the stochastic and approximate probability statements

in Section 10.8. Both sets of probabilities are given in Table 10.3. There was reasonable

quantitative agreement between the two sets of probabilities. The approximate probabilities

were always more aggressive (closer to zero or one). Also, there were qualitative differences

for the inference based on the two sets of probabilities. In particular, the explanatory variable

‘svi’ could be considered important using the approximate probabilities but not so using the

stochastic probabilities. Further, the explanatory variable ‘age’ approached significance using

the approximate probabilities. This inference agrees well with that from using the simulation

hypothesis test from Chapter 7 presented in Table 7.7.

10.10 Summary

In this Chapter, an alternative random effects model specification for the LASSO was pre-

sented. The alternative specification leads to an approximate marginal likelihood, whose

score equations do not require adjustment. A number of different predictors for the LASSO
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model were defined and assessed via simulation. The standard LASSO predictor (Tibshirani,

1996) performed adequately and had the appeal of producing identically zero predictions.

Inference concerning the LASSO effects was based on the probability statements P(βi > 0|y)

or P(βi < 0|y), which can be calculated using importance sampling.
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Table 10.3: Re-analysis of the prostate cancer data. Ps(βi > 0|y) and Pa(βi > 0|y) are the stochastic and approximate probabilities
described in Section 10.8. Results are directly comparable with Table 7.7.

Predictions Probabilities
BP LASSO BLP CBPδ̄ CBPᾱ Ps(βi > 0|y) Pa(βi > 0|y)

lcavol 0.634 0.627 0.617 0.636 0.646 1.000 1.000
lweight 0.207 0.202 0.221 0.182 0.215 0.995 0.997
age -0.091 -0.076 -0.119 0.000 -0.115 0.111 0.066
svi 0.123 0.120 0.141 0.083 0.138 0.946 0.961
lbph 0.266 0.253 0.291 0.256 0.284 0.997 0.999
lcp -0.044 0.000 -0.067 0.000 -0.074 0.340 0.276
gleason 0.034 0.007 0.043 0.000 0.037 0.655 0.662
pgg45 0.084 0.071 0.101 0.017 0.097 0.808 0.820
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Chapter 11

An Alternative LLMM

An alternative specification for the LASSO random effects model was presented in Chapter

10. This alternative model provides a more direct method for estimating the dispersion

parameters than the random effects model in Chapter 7. In particular, the need to adjust

the score equations using a bootstrap estimate of the expected score was removed. This

reduced the amount of computation significantly. However, the random effects model is not

flexible enough to handle QTL experimental data. These data require models containing

fixed and random normal effects. The alternative random LASSO model is now extended by

including LASSO random effects into a normal mixed model. This parallels the extension

of the random LASSO model in Chapter 7 to the LASSO linear mixed model (LLMM) in

Chapter 8. The alternative LLMM is

y = Xτ + Zu + Lβ + e (11.0.1)

where

u ∼ Nr(0, σ2G(γ)),

e ∼ Nn(0, σ2R(θ)),

βi|δi ∼ N(0, δi) i = 1, 2, . . . , q,

δi ∼ exp(2φ2),

X, Z and L are design matrices for the p fixed effects, the r random normal effects and

the q random LASSO effects respectively, σ2 is the residual variance, G(γ) is the correla-

tion structure associated with the random normal effects, R(θ) is the correlation structure

associated with the residuals, 2φ2 is the variance of the LASSO random effects and exp(δi)

is the exponential distribution with mean δi. The vectors of parameters γ and θ completely

specify the matrices G and R respectively. Throughout this chapter, no distinction is made

between the parameters γ and θ. To avoid confusion, define κ = (γT , θT )T .

It is proposed that estimation of the dispersion parameters can be performed using an

approximate restricted likelihood based on a partial Laplace approximation (Chapter 3).

The approximation and its score equations are presented in this chapter.

179
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In addition some methods for computation, prediction and inference are discussed.

The methods in this chapter have not been implemented. It is expected that they will

behave well but it can not be guaranteed.

11.1 Approximate Restricted Likelihood

As in Chapter 10, the distribution of the observed outcomes y conditional on the random

variances δ is normal. In particular,

y|δ ∼ N(Xτ , σ2ZGZT + LDLT + σ2R)

= N(Xτ , σ2Hm + LDLT )

= N(Xτ , H)

where D = diagv (δ) and Hm = σ2R + σ2ZGZT , the variance of the data conditional on

the LASSO effects.

Theorem 11.1. The approximate restricted log-likelihood based on a partial Laplace approx-

imation of the marginal distribution is

ℓr(σ
2, 2φ2, κ; y) = −q log 2φ2 − 1

2
log |Λ̄| − 1

2
log |H̄| − 1

2
log |XT H̄

−1
X|

− 1

2
yT P̄ y − 1

2φ2

q
∑

i=1

exp (ᾱi) +

q
∑

i=1

ᾱi

where ᾱ is the maximiser of

Q(α) = −1

2
log |H| − 1

2
|XT H−1X| − 1

2
yT Py − 1

2φ2

q
∑

i=1

exp (αi) +

q
∑

i=1

αi,

Λ is the matrix of second derivatives of Q(α) with respect to α,

P = H−1 −H−1X(XT H−1X)−1XT H−1

and the bar notation signifies that the quantity is evaluated at α = ᾱ.

Proof. Following Verbyla (1990) the matrix W = (W 1, W 2) is chosen so that

W T
1 X = Ip and W T

2 X = 0.

Define y1 = W T
1 y and y2 = W T

2 y. Then the conditional normal distribution can be

specified as

(

y1

y2

)∣

∣

∣

∣

∣

δ ∼ N

((

τ

0

)

,

(

W T
1 HW 1 W T

1 HW 2

W T
2 HW 1 W T

2 HW 2

))

.
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Only the joint distribution of y2 and δ needs to be considered for the partial Laplace ap-

proximation. The joint distribution is

f(y2|δ)f(δ) =
1

(2π)
n−p

2 (2φ2)q
|W T

2 HW 2|−
1
2 exp

(

−1

2
yT

2 (W T
2 HW 2)

−1y2 −
1

2φ2

q
∑

i=1

δi

)

∝ 1

(2φ2)q
exp

(

−1

2
log |H| − 1

2
log |XT H−1X| − 1

2
yT Py − 1

2φ2

q
∑

i=1

δi

)

.

The restricted marginal likelihood is obtained by integrating this function over R
q

+. The

partial Laplace method approximates the integrand by a normal distribution. To make this

approximation more accurate a transformation is made, namely α = log δ. The support of

α is the same as that of the approximating normal’s support. The joint distribution of y2

and α is

f(y2|α)f(α)

∝ 1

(2φ2)q
exp

(

−1

2
log |H| − 1

2
log |XT H−1X| − 1

2
yT Py − 1

2φ2

q
∑

i=1

exp αi +

q
∑

i=1

αi

)

=
1

(2φ2)q
exp (Q(α)) say

where all quantities are parameterised in terms of α and not δ. The term
∑q

i=1 αi in

the exponent arises from the Jacobian of the transformation. The approximate restricted

likelihood is based on the distribution

f(y2) =

∫

R
q
f(y2|α)f(α)∂α

∝ 1

(2φ2)q

∫

R
q
exp (Q(α)) ∂α.

The first two derivatives of Q(α) with respect to α are required for the approximation.

Define M = LT PL and w = LT Py. Consider first the derivatives with respect to individual

elements of α, αi say.

∂Q(α)

∂αi
= −1

2
exp (αi) tr

(

H−1lil
T
i

)

− 1

2
exp (αi) tr

(

(XT H−1X)−1XT H−1lil
T
i H−1X

)

+
1

2
exp (αi) yT Plil

T
i Py − 1

2φ2
exp (αi) + 1

= −exp (αi)

(

1

2
lT
i Pli −

1

2
w2

i +
1

2φ2

)

+ 1

= −exp (αi) bi + 1 say.

The diagonal elements of the Hessian are

∂2Q(α)

∂α2
i

= −exp (αi) bi + exp (αi)

(

1

2
M2

ii − w2
i Mii

)



182 CHAPTER 11. AN ALTERNATIVE LLMM

and the off-diagonal elements are (i 6= j)

∂2Q(α)

∂αi∂αj

= exp (αi) exp (αj)

(

1

2
M2

ij − wiwjMij

)

.

The first derivative is

∂Q(α)

∂α
= −exp (α) ◦

(

1

2
vecd (M)− 1

2
w ◦w +

1

2φ2
1

)

+ 1

= −exp (α) ◦ b + 1.

The Hessian is

∂2Q(α)

∂α∂αT
= −diagv (exp (α) ◦ b) + exp (α) exp (α)T ◦

(

1

2
M ◦M −wwT ◦M

)

= −Λ say.

The distribution f(y2) is approximately

f(y2) ∝
1

(2φ2)q
exp (Q(ᾱ)) |Λ̄|− 1

2

=
1

(2φ2)q
|Λ̄|− 1

2 |H̄|− 1
2 |XT H̄

−1
X|− 1

2 exp

(

−1

2
yT P̄ y − 1

2φ2

q
∑

i=1

exp (ᾱi) +

q
∑

i=1

ᾱi

)

and the approximate log-likelihood is obtained by taking the log of this expression.

The matrix Λ is the observed information for α. It is not guaranteed to be positive

definite, which may cause problems when used in estimation. Its expectation, conditional

on α, is positive definite and can be used in calculating ᾱ. In Chapter 10 however, the use

of the expected information matrix for α in the likelihood approximation did not produce

satisfactory dispersion parameter estimates. It is expected that the same result applies for

the alternative LLMM.

Theorem 11.2. The conditional expectation for α is

Λe = diagv

(

1

2φ2
exp (α)

)

+ exp (α) exp (α)T ◦M ◦M

where M = LT PL.

Proof. Define w and M as in the proof of Theorem 11.1. Then

E (wiwj |α) = cov (wi, wj|α) + E (wi|α) E (wj|α)

= lT
i Plj and

E
(

wwT |α
)

= LT PL.

The conditional expected information for α is

E (Λ|α) = diagv (exp (α) ◦ E (b|α)) +
1

2
exp (α) exp (α)T ◦M ◦M

= diagv

(

1

2φ2
exp (α)

)

+
1

2
exp (α) exp (α)T ◦M ◦M .



11.2. SCORE EQUATIONS AND THEIR COMPONENTS 183

11.2 Score Equations and Their Components

The score equations require the derivatives of ᾱ and Λ̄ with respect to σ2, 2φ2 and {κk}.
These are non-trivial results and are presented before the score equations.

Theorem 11.3. The derivatives of ᾱ are

∂ᾱ

∂σ2
=

((

1

2
M̄ ◦ M̄ − w̄w̄T ◦ M̄

)

D̄ − D̄
−1

)−1(

w̄ ◦ w̄2 −
1

2
vecd

(

M̄ 2

)

)

,

∂ᾱ

∂2φ2
= − 1

4φ4

((

1

2
M̄ ◦ M̄ − w̄w̄T ◦ M̄

)

D̄ − D̄
−1

)−1

1 and

∂ᾱ

∂κk

= σ2

((

1

2
M̄ ◦ M̄ − w̄w̄T ◦ M̄

)

D̄ − D̄
−1

)−1(

w̄ ◦ w̄2k −
1

2
vecd

(

M̄ 2k

)

)

where M̄ = LT P̄L, w̄ = LT P̄ y, M̄ 2 = LT P̄HmP̄L, w̄2 = LT P̄HmP̄ y, M̄ 2k =

LT P̄ ḢmkP̄L, w̄2k = LT P̄ ḢmkP̄ y and Ḣmk is the derivative of Hm with respect to the

kth dispersion parameter κk.

Proof. Only the proof for ∂ᾱ/∂κk will be presented as the others follow similarly. They are

extensions of the results in Theorem 10.3.

The estimating equation for the ith random variance parameter αi, ∂Q(α)/∂αi = 0,

implies that

0 = −1

2
lTi P̄ li +

1

2
w̄2

i −
1

2φ2
+ exp (−ᾱi)

∴ 0 =
1

2
lT
i P̄

(

σ2Ḣmk + LD̄κk
LT
)

P̄ li − w̄iliP̄
(

σ2Ḣmk + LD̄κk
LT
)

P̄ y

− exp (−ᾱi)
∂ᾱi

∂κk

as

∂P̄

∂κk

= −P̄
(

σ2Ḣmk + LD̄κk
LT
)

P̄ and

D̄κk
=

∂D̄

∂κk

= diagv

(

exp (ᾱ) ◦ ∂ᾱ

∂κk

)

.

Continuing with the implicit differentiation for the ith random variance parameter yields

σ2

(

w̄il
T
i P̄ ḢmkP̄ y − 1

2
lT
i P̄ ḢmkP̄ li

)

=
1

2
lTi P̄LD̄κk

LT P̄ li − w̄il
T
i P̄LD̄κk

LT P̄ y − exp (−ᾱi)
∂ᾱi

∂κk

=

q
∑

j=1

((

1

2
M̄2

ij − w̄iw̄jM̄ij

)

exp (ᾱj)
∂ᾱj

∂κk

)

− exp (−ᾱi)
∂ᾱi

∂κk

=

(

1

2
M̄ i· ◦ M̄ i· − w̄iw̄

T ◦ M̄ i·

)(

exp (ᾱ)
∂ᾱ

∂κk

)

− exp (−ᾱi)
∂ᾱi

∂κk
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where M̄ i· is the ith row of M̄ . The expression for all the random dispersion parameters is

σ2

(

w̄LT P̄ ḢmkP̄ y − vecd

(

1

2
LT P̄ ḢmkP̄L

))

=

((

1

2
M̄ ◦ M̄ − w̄w̄T ◦ M̄

)

D̄ − D̄
−1

)

∂ᾱ

∂κk

.

Solving for the derivative completes the proof.

Theorem 11.4. The derivatives of the observed information for α, evaluated at ᾱ are

∂Λ̄

∂σ2
= D̄σ2diagv

(

1

2
vecd

(

M̄
)

− 1

2
w̄ ◦ w̄ +

1

2φ2
1

)

+ diagv

(

exp (ᾱ) ◦
(

−1

2
vecd

(

M̄2 − M̄D̄σ2M̄
)

+ w̄ ◦ w̄2 + w̄ ◦ M̄D̄σ2w̄

))

−
(

∆̄σ2 + ∆̄
T
σ2

)

◦
(

1

2
M̄ ◦ M̄ − w̄w̄T ◦ M̄

)

− exp (ᾱ) exp (ᾱ)T ◦
((

w̄w̄T − M̄
)

◦ M̄2 +
(

w̄w̄T
2 + w̄2w̄

T
)

◦ M̄
)

− exp (ᾱ) exp (ᾱ)T ◦
(

(

w̄w̄T − M̄
)

◦ M̄D̄σ2M̄ +
(

(

M̄D̄σ2w̄
)

w̄T + w̄
(

M̄D̄σ2w̄
)T
)

◦ M̄
)

,

∂Λ̄

∂2φ2
= D̄2φ2diagv

(

1

2
vecd

(

M̄
)

− 1

2
w̄ ◦ w̄ +

1

2φ2
1

)

+ diagv

(

exp (ᾱ) ◦
(

−1

2
vecd

(

M̄D̄2φ2M̄
)

+ w̄ ◦ M̄D̄2φ2w̄ − 1

4φ4
1

))

−
(

∆̄2φ2 + ∆̄
T
2φ2

)

◦
(

1

2
M̄ ◦ M̄ − w̄w̄T ◦ M̄

)

− exp (ᾱ) exp (ᾱ)T ◦
(

(

w̄w̄T − M̄
)

◦ M̄D̄2φ2M̄ +
(

(

M̄D̄2φ2w̄
)

w̄T + w̄
(

M̄D̄2φ2w̄
)T
)

◦ M̄
)

and

∂Λ̄

∂κk
= D̄κk

diagv

(

1

2
vecd

(

M̄
)

− 1

2
w̄ ◦ w̄ +

1

2φ2
1

)

+ diagv

(

exp (ᾱ) ◦
(

−1

2
vecd

(

σ2Ṁ2k + M̄D̄κk
M̄
)

+ σ2w̄ ◦ w̄2k + w̄ ◦ M̄D̄κk
M̄

))

−
(

∆̄κk
+ ∆̄

T
κk

)

◦
(

1

2
M̄ ◦ M̄ − w̄w̄T ◦ M̄

)

− σ2exp (ᾱ) exp (ᾱ)T ◦
((

w̄w̄T − M̄
)

◦ M̄2k +
(

w̄w̄T
2k + w̄2kw̄

T
)

◦ M̄
)

− exp (ᾱ) exp (ᾱ)T ◦
(

(

w̄w̄T − M̄
)

◦ M̄D̄κk
M̄ +

(

(

M̄D̄κk
w̄
)

w̄T + w̄
(

M̄D̄κk
w̄
)T
)

◦ M̄
)

where the matrices ∆̄σ2, ∆̄2φ2 and ∆̄κk
are all similarly defined. For example

∆̄σ2 =

(

exp (ᾱ) ◦ ∂ᾱ

∂σ2

)

exp (ᾱ)T .

Proof. The proof closely follows that of Theorem 10.4. It is omitted.
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Theorem 11.5. The score equations for σ2, 2φ2 and κk are

∂ℓr

∂σ2
= −1

2
tr

(

Λ̄
−1 ∂Λ̄

∂σ2

)

− 1

2
tr
(

P̄
(

Hm + LD̄σ2LT
))

+
1

2
yT P̄ (Hm + LD̄σ2LT )P̄ y − 1

2φ2

q
∑

i=1

exp (ᾱi)
∂αi

∂σ2
+

q
∑

i=1

∂ᾱi

∂σ2
,

∂ℓr

∂2φ2
= − q

2φ2
− 1

2
tr

(

Λ̄
−1 ∂Λ̄

∂2φ2

)

− 1

2
tr
(

LT P̄LD̄2φ2

)

+
1

2
yT P̄LD̄2φ2LT P̄ y

+
1

4φ4

q
∑

i=1

exp (ᾱi)−
1

2φ2

q
∑

i=1

exp (ᾱi)
∂ᾱi

∂2φ2
+

q
∑

i=1

∂ᾱi

∂2φ2

and

∂ℓr

∂κk
= −1

2
tr

(

Λ̄
−1 ∂Λ̄

∂κk

)

− 1

2
tr
(

P̄
(

σ2Ḣmk + LD̄κk
LT
))

+
1

2
yT P̄

(

σ2Ḣmk + LD̄κk
LT
)

P̄ y − 1

2φ2

q
∑

i=1

exp (ᾱi)
∂ᾱi

∂κk
+

q
∑

i=1

∂ᾱi

∂κk

where all quantities are given in Theorems 11.3 and 11.4.

Proof. The score equations are directly obtained using the results in Appendix B.

11.3 Computation

11.3.1 Estimating the Random Dispersion Effects

The estimating equation for α in the alternative LLMM, namely ∂Q(α)/∂α, is a slight

extension of the corresponding estimating equation for the random LASSO model. In par-

ticular, instances of the matrix H are replaced by P . Using this observation, it is expected

that the same estimating approach could be used to estimate ᾱ in the alternative LLMM.

11.3.2 Estimation of Dispersion Parameters

An extension of the algorithm used to calculate the random LASSO model in Chapter 10

could be employed to estimate the dispersion parameters. This would require calculating

a numerical approximation to the Hessian of the dispersion parameters each time they are

updated. If there are only a few dispersion parameters then this should work well. That is,

the algorithm should be stable and relatively inexpensive. However, increasing the number

of dispersion parameters increases the number of times the matrix P̄ is evaluated. The

computational cost of these calculations may be prohibitive. Also, as the number of disper-

sion parameters increases the numerical Hessian may become less stable and may even be

singular. This could cause the algorithm to fail.

These computational problems were not experienced in the estimation method described

for the LLMM in Chapter 8. In that chapter, an approximate information based on the
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average information (Chapter 3) was employed. The average information matrix requires

only the calculation of quadratic forms, available from absorption of suitably chosen working

variates. These quadratic forms also appear in the score equations and hence can be re-used.

The quadratic forms in the score equations for the alternative LLMM (Theorem 11.5)

could be calculated using suitably chosen working variates. However, neither the observed

nor expected information matrices are available and hence it is not clear how to suitably ap-

proximate the elements of the information with quadratic forms. Further, different quadratic

forms would be required for the scores and the information as they are both evaluated at ᾱ

or a derivative of it. This would reduce the computational gain made by using only quadratic

forms.

11.4 Prediction and Estimation of Effects

Once the dispersion parameters have been estimated the fixed effects can be estimated

and both sets of random effects can be predicted using the LASSO mixed model equations

(LMME; Chapter 8). This estimation and prediction method calculates the effects at the

joint distribution’s maximum enabling the LASSO effects to be predicted to be identically

zero. These predictions from the LMME will not be best as they are not expected values.

However, in Chapter 8 the fixed effect estimates were shown to be approximately unbiased

and hence, loss in prediction error (if significant) will mostly arise from prediction of the

random effects.

Estimation of the fixed effects could also be conducted through the partial Laplace ap-

proximation (Chapter 3). The estimates obtained in this manner may be well approximated

by the best linear unbiased estimators (BLUEs), especially if the estimates from the partial

Laplace method are approximately linear. The BLUEs are easily calculated as they are the

generalised least squares estimates (Searle et al., 1992, Chapter 12). The variance of the

outcomes is

var (y) = σ2ZGZT + 2φ2LLT + σ2R

= H∗ say

and the BLUE for the fixed effects is

τ̂ = (XT H−1
∗ X)−1XT H−1

∗ y.

Estimating the fixed effects and, predicting the random normal and the random LASSO

effects assuming linearity gives the best linear unbiased predictor (BLUP). This is a direct

extension of the best linear predictor in Chapter 10. This method gives the BLUE for the

fixed effects and the following predictors for the random normal effects and the random

LASSO effects

ũ = σ2GZT P−1
∗ y and

β̃ = 2φ2LT P−1
∗ y
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where P ∗ = H−1
∗ −H−1

∗ X(XT H−1
∗ X)−1XH−1

∗ . These predictors are obtained using an

extension of Theorem 3.1. The BLUPs will also not be the best predictors as the constraint

of linearity is imposed.

Calculation of the best predictors (BP) for the LASSO random effects could proceed using

the importance sampling approach introduced in Chapter 10. There, samples were generated

using the conditional distribution of β|y. In the mixed model setting the conditioning should

be performed on y2 and not y as the former does not contain the fixed effects - see Cullis

et al. (2006, Chapter 6) for a discussion for normal mixed models. A suitable proposal

distribution might be a multivariate normal with mean β̃ and variance 2φ2I − 4φ4LT P ∗L.

The random normal and random LASSO effects are assumed to be independent and hence

the best predictor for the random normal is the BLUP ũ. The fixed effects could be estimated

using the BLUE τ̂ .

The conditional best predictors, introduced in Chapter 10, could also be used for the

LLMM model. Conditional on the random dispersion effects the model is normal and BLUP

should be used. In Chapter 10, the choice of value to condition on was not clear. The same

applies for the LLMM.

11.5 Inference for Random Effects

Inference for the random LASSO effects could be performed using the principles given in

Chapter 10. An obvious choice for the proposal distribution is the multivariate normal used

for calculating the LASSO BP.

Inference for the random normal effects could be performed using the methods for the

normal mixed model. This can be done as the random normal effects and the random LASSO

effects are assumed independent.

11.6 Summary

In this chapter, the methods for estimation, prediction and inference for the alternative

LLMM were outlined. Estimation, is based on an approximate residual likelihood based on

the marginal distribution of the data. These methods have not been implemented.
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Chapter 12

Closing Remarks

12.1 Overview

The motivation for the methods developed in this thesis is the identification of quantitative

trait loci (QTL). The analysis of QTL mapping data can be thought of as a model selection

problem as there are many genetic markers (explanatory variables) scored throughout the

population. The markers or the intervals between them, form proxies for QTL. Only a (small)

number of these markers/intervals will be linked to a QTL and hence affect the quantitative

trait of interest. The task of finding the most appropriate subset(s) of markers/intervals

is far from trivial as the number of potential models can be very large, for example in

just one family of the Davies’ Gene Mapping Project data (Chapter 1) there were over two

thousand million models with less than five QTL. Traditional model building algorithms,

such as forward selection, have been used with some success for the QTL mapping problem

(Chapter 2). However, these only consider a tiny fraction of the potential models and may

produce sub-optimal models.

In this thesis a novel selection method, the least absolute selection and shrinkage oper-

ator (LASSO; Tibshirani, 1996), is investigated from both the general regression and the

QTL mapping contexts. The LASSO effects are incorporated into a mixed model to allow

selection in the presence of experimental effects. The extended mixed model appears to be

a competitive method for choosing subsets in linear mixed models, especially for the QTL

mapping problem.

12.2 Summary of Methodology

A convenient method for circumventing the problem of subset selection is to include all

measured genetic information into a single model, an all-marker regression. In QTL mapping

experiments the number of genetic markers is often large with respect to the number of

observations. Hence, fitting an all-marker model using fixed effects is not sensible. An

alternative is to use random effects, or equivalently constrained effects (Whittaker et al.,

2000; Gianola et al., 2003; and Xu, 2003). If the random effect all-marker model is to be

189
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used then an assumption about the distribution of the random effects has to be made.

Empirical evidence (Chamberlin et al., 2005) suggests that the distribution of QTL effects

may have similar kurtosis to that of a double exponential distribution. This implies that

assuming that the marker effects follow a double exponential distribution may be a useful

model (matching the distribution to the fourth moment). This is the random effects model

specification of a novel statistical estimation method called the ‘least absolute selection and

shrinkage operator’ (LASSO; Tibshirani, 1996).

Prior to this thesis the LASSO had not been developed from a random effects model

perspective. In particular, the observation that the level of shrinkage can be estimated via

estimation of dispersion parameter (Chapter 4) had not been exploited. In this thesis, esti-

mation of dispersion parameters was performed using the marginal likelihood of the observed

data. The exact likelihood (Chapter 5) was both intractable and difficult to compute, so two

approximate likelihoods were developed (Chapters 7 and 10).

The first approximate likelihood (Chapter 7) formed the basis for the demonstrated QTL

mapping methods presented in this thesis. Unfortunately, it produced score equations that

were biased. They were adjusted using an empirical estimate of the score equations’ means

(McCullagh & Tibshirani, 1990). The method for estimating the dispersion parameters for

specification of the amount of shrinkage was competitive when compared to other LASSO

and subset selection methods.

The second approximation (Chapter 10) was motivated from an alternative specification

of the LASSO model. It produced score equations that were approximately unbiased. Hence,

they did not require adjusting. The estimates from both the approximate likelihoods agreed

well, but the second method required less computation.

Generally, prediction from LASSO models is taken as the mode of the predictive distri-

bution (posterior distribution in Bayesian terminology). Under the random effects model

formulation this is not the only choice. In particular, the expected value of the predic-

tive distribution (best predictor) may be superior in terms of mean squared error (Searle

et al., 1992). Methods to evaluate these, and other, predictors were given in Chapter 10. A

simulation study showed that best predictor had lowest mean squared error but the LASSO

predictions were comparable. They also had the benefit of predicting effects to be identically

zero.

Two methods of inference were presented in this thesis. The first was based on the

hypothesis test βi = 0, evaluated via simulation (Chapter 7). This test treated the effects as

though they were fixed. In Chapter 10 this was rectified by the presentation of a method to

calculate the probabilities P(βi > 0|y) and/or P(βi < 0|y).

So far in this summary, only random effects models containing double exponential effects

have been discussed. These models are too simple for analysing QTL mapping data, which

require models that allow for experimental effects. This topic was addressed in Chapters 8

and 11 by incorporating LASSO effects into a mixed model containing fixed and random nor-

mal effects. It was suggested that dispersion parameters in both models could be estimated
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using a partial Laplace approximation (Taylor & Verbyla, 2006) to the restricted likelihood.

Only the methods described in Chapter 8 were implemented. Simulations showed that the

estimation method provided approximately unbiased estimates of dispersion parameters and

fixed effects. LASSO, random normal and fixed effects were predicted/estimated using an

extension of the mixed model equations (Henderson, 1950).

Incorporating LASSO effects into a mixed model established the methodology to analyse

QTL mapping data. The QTL mapping method was defined, assessed via simulation and

demonstrated using the Davies’ Gene Mapping data in Chapter 9. The new method appeared

to be very competitive in locating QTL. For highly heritable traits (h2 = 50%) it found

more QTL without increasing the false positive rate. For lowly heritable traits (h2 = 10%),

a comparable number of QTL were identified but the rate of false positives was lower. The

model used in the analysis of the Davies’ Gene mapping data included 570 marker-within-

sire effects. Only 5 of these were predicted to be non-zero. This showed that the method

developed identified areas of the genome that might be associated with the quantitative trait

while clearly disregarding the rest.

In summary, the methods presented in this thesis form an approach to LASSO modeling

in the presence of experimental effects. For simple models containing only LASSO effects,

this approach is at least competitive with other common methods for estimating the amount

of shrinkage. The inclusion of fixed and random normal effects into the model generalises

its applicability. The extended model (LLMM) is well suited to QTL mapping data due to

its distributional assumptions. In simulation studies the LLMM performs better than other

commonly used methods and has the ability to predict marker effects to be identically zero.

12.3 Possible Future Research

12.3.1 Reducing Computation

A shortcoming of the implemented LLMM model presented in this thesis is the computational

effort required to estimate the dispersion parameters. This is mostly due to the stochastic

element introduced by computing the bootstrap estimates of the expected scores. If this

empirical method could be removed, then computation for the estimation should be greatly

reduced.

Implementing the alternative LLMM presented in Chapter 11 should alleviate this prob-

lem. However, estimation may still be slow if there are a large number of observations and/or

a large number of explanatory variables. Further work will still be needed for a very quick

estimation algorithm.

12.3.2 All-marker Model

The all-marker model itself may attract some criticism for two reasons. Firstly, the model

only considers a finite set of specific positions of the genome rather than the full set of

positions. However, if there is a reasonably large number of markers then the loss in power
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and precision should be minimal compared to an interval mapping approach (e.g. Broman

& Speed, 2002). The second potential criticism is that the markers will not be evenly spread

throughout the genome. Those markers that are in marker-poor regions may or may not

have a higher probability of being associated with a QTL than those in a marker-rich region.

The Bayesian approach taken by Ball (2001) could be used to overcome this. He placed prior

information on the markers effects that was based on the density of markers.

12.3.3 Distributional Assumptions

The LLMM may not be the most appropriate random effects model for mapping QTL. Other

effect distributions could be investigated, for example, the set of distributions used as priors

for bridge estimation in Fu (1998). These distributions have a shape parameter as well as a

dispersion parameter (the double exponential and normal distributions are members of this

family). The shape parameter could be estimated from a marginal likelihood in a similar

fashion to the dispersion parameter described in this thesis. However, difficulties are likely

to occur when the shape parameter has more mass near zero than the double exponential.

In this case, the exponent of the joint distribution of outcomes and random effects will have

a non-convex solution space. Hence, calculating the maximum of this function with respect

to the random effects will be a non-trivial task.

An alternative method to generalise the distributional assumptions in the LLMM is to

generalise the alternative form of the double exponential distribution (Chapter 10). The

random variances could be assumed to arise from a more general distribution than the ex-

ponential (such as the gamma). If the gamma were chosen, then the shape and dispersion

parameters could be estimated from the likelihood of the observed data. Methods to obtain

predictions in situations where the shape parameter is less than 1 (the exponential distri-

bution’s shape) could again be difficult. Kiiveri (2003) proposed a similar model to this.

However, his Bayesian analysis chose a Jeffery’s prior in place of the gamma distribution.

Extending the conditional normal representation of the double exponential distribu-

tion using a gamma distribution subsumes another class of distributions; namely, the t-

distributions with ν degrees of freedom. These can be specified as a conditional normal

where the variance arises from a χ2
ν distribution (e.g. Andrews & Mallows, 1974). The χ2

ν

distribution is a gamma with shape parameter ν/2. The t-distribution is sometimes used in

fixed effect models to accommodate large residuals (Lange et al., 1989). This is precisely

the nature of marker effects in QTL mapping (although this is an effect distribution and not

a residual distribution). However, the t-distribution has a smaller mass of probability near

zero than the double exponential and hence may not be as appropriate for QTL mapping.

12.3.4 Multiple QTL Distributions

In the analysis of the Davies’ Gene Mapping data all the marker-within-sire effects were

assumed to come from the same distribution. However, this may not be appropriate. For
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example, each sire’s set of marker effects may exhibit different variance. This can be in-

corporated by including separate sets of LASSO random effects in the LLMM. Estimation

would proceed in a similar manner, but with an extended likelihood. It may also transpire

that a single dispersion parameter is not adequate, even within a sire family. For example,

the variance of the effects on the different chromosomes may be different. Again, separate

dispersion parameters could be fitted, but the model is likely to be difficult to estimate as

the number of dispersion effects is large with respect to the number of observations. The

individual dispersion parameters could be treated as random, extending the hierarchy of the

LLMM. It is not immediately clear what distributional assumption should be made about

the dispersion parameters. Perhaps, following the alternative LASSO model, an exponential

distribution could be considered. The distribution of the effects, marginal to the proposed

random dispersion effects, may be well-approximated by one of the generalisations of the

double exponential distribution.

12.3.5 Multiple Traits

In most experiments on domestic animals, many traits are measured. Often, the analysis of

these experiments considers multiple trait models. If there is genetic or residual correlation

between the traits, then these analyses should increase the accuracy of prediction. In QTL

mapping experiments, many traits are also recorded. For example, birth weight was just

one of approximately 100 traits measured in the Davies’ Gene Mapping Project. Multi-

trait models are likely to be useful for the analysis of QTL mapping data as they could

help identify pleiotropic QTL. There is potential for the LLMM to be extended for the

multiple trait analysis. This extension is not available from the standard form of the double

exponential distribution, as there appears to be no generalisation that would continue to

generate identically zero LASSO predictions. However, the conditional normal representation

may hold some hope. The model (ignoring fixed and random normal effects) for the t traits

on the ith individual could be

yi = Bli + ei

where yi, and ei are the t × 1 column vectors of trait observations and residuals for the

ith individual respectively, li is the q × 1 column vector of marker observations for the ith

individual and B is the t × q matrix of marker effects. Each of the t rows of B represents

the marker effects on a trait. Following the LLMM, it may be appropriate to assume that

different marker effects on the same trait are independent. However, the effect of any indi-

vidual marker may have a correlated effect on different traits. This implies that the elements

within a row of B are correlated. Using the conditional normal representation, there are two

possible methods to induce such a correlation. One or both may prove to be useful. Let βk

be the kth column of B and let δk be the corresponding random variance effects from the

conditional normal model.
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The first method of inducing a correlation amongst a marker’s effects on multiple traits

uses the distribution specification

β|δk ∼ N(0, D
1
2
k ΣD

1
2
k )

δkl ∼ exp(2φ2), for l = 1 . . . t

where Dk = diagv (δk), Σ = Σ(γ) is a t × t correlation matrix whose structure depends

on dispersion parameters γ. It is expected that the correlation matrix Σ should be held

constant across all markers.

The second method uses the a conditional normal distribution, but assumes that the δk

follow a multivariate distribution. It is not clear what this distribution should be. There are

numerous types of multivariate exponentials in Kotz et al. (2000), which may provide a useful

representation for the correlation structure. However, a possible method for generalising the

exponential to a multivariate distribution may be obtained by first noting that an exponential

distribution with mean 2 is the same as a χ2
2 distribution. A multivariate generalisation of

the χ2
2 distribution is the t-dimensional Wishart distribution with 2 degrees of freedom. In

principle, the variances and covariances between the elements of a Wishart distributed δk

could be estimated through the expectation specification of the Wishart distribution.

12.3.6 Outlier Detection

In this thesis, detection of important LASSO effects was performed using inference methods.

However, this identification can be considered as outlier detection of the unobserved random

effects. There have been many different methods proposed to identify outlying residuals in

linear models (e.g. Cook & Weisberg, 1982). Some of these approaches are considered for

random effects by Gogel et al. (2001). In particular, the alternative outlier model (AOM)

might be useful (Cook et al., 1982; Thompson, 1985; and Verbyla et al., 2006). Using

the AOM for LASSO random effects will require special consideration. The distribution

assumption for the variance inflation term is not obvious. Consider the simple LASSO

model

y = Lβ + e

where all terms have the same meaning as in Chapter 7. The alternative outlier model for

the ith LASSO effect βi is

y = L(β + di) + e

where di is a vector of zeros with a non-zero effect ωi in its ith element. An appropriate

assumption to make about the random effects might be that {βj} and ωi are double expo-

nentially distributed variables. However, this would imply that the total effect of the ith

explanatory variable βi + omegai does not have a double exponential distribution. This

implies that the AOM is no longer a LASSO model. The AOM with this specification may

still be useful for identifying outliers.
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12.3.7 Summary of Future Work

As presented in this thesis, the LASSO linear mixed model provides a useful model for

mapping quantitative trait loci. The topics raised in this discussion are areas for future

research. They may broaden and/or strengthen the models applicability and usefulness.
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Appendix A

Statistical Results

Result A.1. (e.g. Flury, 1997) For a jointly normal distributed pair of random variables v1

and v2 with distribution

(

v1

v2

)

∼ N

((

µ1

µ2

)

,

(

V11 V12

V21 V22

))

.

The conditional expectation and variance of v1|v2 are

E (v1|v2) = µ1 + V12V
−1

22
(v2 − µ2) and

var (v1|v2) = V11 − V12V
−1

22
V21.

Theorem A.1. The conditional variance matrix of y1 given y2 is σ2(XT H−1X)−1.

Proof. Pre- and post-multiplication of the result in Lemma B.1 by W T
1 and W 1 respectively

gives

W T
1 HW 1 −W T

1 HW 2(W
T
2 HW 2)

−1W 2HW 1 = W T
1 X(XT H−1X)−1XT W 1

= (XT H−1X)−1.

The left hand side is in the form of Result A.1 implying that it is the conditional variance of

y1 given y2. This implies that the right hand side is also the same conditional variance.

Theorem A.2. In the normal density function of the marginal distribution of y2, the terms

involving the transformation W can be expressed free of the transformation by

1. |W T
2 HW 2| = |W T W ||H||XT H−1X| and

2.
yT

2 (WT
2 HW2)−1y2

σ2 = yT Py

σ2

where P = H−1 −H−1X(XT H−1X)−1XT H−1.
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Proof. 1. Equating the determinants of the variance-covariance matrices specified in the

joint distribution to those in the conditional and marginal distributions gives
∣

∣W T HW
∣

∣ =
∣

∣(XT H−1X)−1
∣

∣

∣

∣W T
2 HW 2

∣

∣ .

Rearranging gives

∣

∣W T
2 HW 2

∣

∣ =
∣

∣WW T
∣

∣ |H|
∣

∣XH−1X
∣

∣ .

2. Consider a rearrangement of the result in Lemma B.1, namely

HW 2(W
T
2 HW 2)

−1W T
2 H = H −X(XT H−1X)−1XT .

Pre- and post-multiply both sides by H−1 gives

W 2(W
T
2 HW 2)

−1W T
2 = H−1 −H−1X(XT H−1X)−1XT H−1.

= P say.

Writing y2 as W T
2 y gives an expression for the numerator in the exponent

yT
2 (W T

2 HW 2)
−1y2/σ

2 = yT W 2(W
T
2 HW 2)

−1W 2y/σ2

= yT Py/σ2.

Theorem A.3. (Cullis et al., 2006) The score equation for ηi from the restricted likelihood

in Chapter 3 is

Up(ηi) = −1

2

(

tr
(

PḢ i

)

− yT PḢ iPy/σ2
)

.

Proof. First consider the derivative of the log-determinants and use Result B.1

∂ log |H|
∂ηi

+
∂ log |XT H−1X|

∂ηi

= tr
(

H−1Ḣi

)

+ tr

(

(XT H−1X)−1∂XT H−1X

∂ηi

)

= tr
(

H−1Ḣi

)

− tr
(

(XT H−1X)−1XT H−1ḢiH
−1X

)

= tr
(

H−1Ḣi − (XT H−1X)−1XT H−1ḢiH
−1X

)

= tr
(

H−1Ḣi −H−1X(XT H−1X)−1XT H−1Ḣi

)

= tr
(

PḢi

)

.

Now consider the sums of squares in the restricted log-likelihood and use Result B.1

∂yT Py

∂ηi
= yT ∂P

∂ηi
y

= −yT PḢPy.
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Theorem A.4. (Seber, 1977) Let z be an n× 1 vector of random variables and let A be an

n× n symmetric matrix. If E (z) = θ and var (z) = Σ, then

E
(

zT Az
)

= tr[AΣ] + θT Aθ.

Proof.

E
(

zT Az
)

= E
(

(z − θ)T A(z − θ) + 2zT Aθ − θT Aθ
)

= E
(

(z − θ)T A(z − θ)
)

+ 2E
(

zT Aθ
)

− θT Aθ

=
∑

i

∑

j

aijE ((zi − θi)(zj − θj)) + θT Aθ

=
∑

i

∑

j

aijσij + θT Aθ

= tr[AΣ] + θT Aθ.

Theorem A.5. The elements of the observed information matrix from the restricted log-

likelihood are

Io(σ
2, σ2) = −(n− p)

2σ4
+

yT Py

σ6

Io(σ
2, ηi) =

yT PḢ iPy

2σ4

Io(ηi, ηj) =
1

2
tr
(

PḦ ij

)

− 1

2
tr
(

PḢ iPḢ
)

+
yT PḢ iPḢPy

σ2
− yT PḦ ijPy

2σ2

where Ḧ ij = ∂2H
∂ηi∂ηj

.

Proof. The observed information matrix is the negative of the Hessian for the restricted

likelihood function. Using the matrix derivatives in Result B.1 the Hessian has elements

∂2ℓr

∂σ4
=

∂U(σ2)

∂σ2

=
(n− p)

2σ4
− yT Py

σ6
,

∂2ℓr

∂σ2∂ηi

=
∂U(σ2)

∂ηi

= −yT PḢ iPy

2σ4
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and

∂2ℓr

∂ηi∂ηj

=
∂U(ηi)

∂ηj

= −1

2





∂tr
(

PḢ i

)

∂ηj
− 1

σ2

∂yT PḢ iPy

∂ηj





= −1

2

(

tr
(

−P ḢjPḢ i + PḦ ij

)

+ yT
(

PḦ ijP − 2PḢ iPḢjP
)

y/σ2
)

= −1

2
tr
(

PḦ ij

)

+
1

2
tr
(

PḢjPḢ i

)

− 1

σ2
yT PḢ iPḢjPy +

1

2σ2
yT PḦ ijPy.

Theorem A.6. The elements of the expected information matrix from the restricted log-

likelihood are

Ie(σ
2, σ2) =

(n− p)

2σ4

Ie(σ
2, ηi) =

1

2σ2
tr
(

PḢ i

)

Ie(ηi, ηj) =
1

2
tr
(

PḢ iPḢj

)

.

Proof. Note that PX = 0 and PHP = P . Using the results for expected values of

quadratic forms in Result A.4 the expected values of the quadratic forms in the observed

information in Theorem A.5 are

E
(

yT Py
)

= σ2tr (PH) + τ T XT PXτ

= σ2tr (In)− σ2tr
(

H−1X(XT H−1X)−1XT
)

= σ2(n− p) as second term is rank p,

E
(

yT PḢ iPy
)

= σ2tr
(

PḢ iPH
)

+ τ T XT PḢ iPXτ

= σ2tr
(

PḢ i

)

,

E
(

yT PḢ iPḢjPy
)

= σ2tr
(

PḢ iPḢjPH
)

+ τ T XT PḢ iPḢjPXτ

= σ2tr
(

PḢ iPḢj

)

and

E
(

yT PḦ iPy
)

= σ2tr
(

PḦ iPH
)

+ τ T XT PḦ iPXτ

= σ2tr
(

PḦ i

)

.

These expectations are then substituted into the observed information elements in Theorem

A.5 to produce the result.

Theorem A.7. The moment generating function of the central Laplace distribution with

dispersion parameter φ is

m(t) =
(

1− t2φ2
)−1

.
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Proof. The functional form of the Laplace distribution is

f(y) =
1

2φ
exp

(

−1

φ
|y|
)

The moment generating function is

m(t) = E (exp (ty))

=

∫ ∞

−∞

exp (ty)
1

2φ
exp

(

−1

φ
|y|
)

dy

=
1

2φ

(
∫ ∞

0

exp

(

− y

φ/(1− tφ)

)

dy +

∫ 0

−∞

exp

(

y

φ/(1 + tφ)

))

=
1

2φ

(

φ

1− tφ
+

φ

1 + tφ

)

=
(

1− t2φ2
)−1

.

Corollary A.1. The variance of a central Laplace distribution with dispersion parameter φ

is 2φ2.

Proof. The first two derivatives of the moment generating function are

dm(t)

dt
= (1− t2φ2)−2(2tφ2)

=
2tφ2

(1− t2φ2)2

d2m(t)

dt2
=

8t2φ4

(1− t2φ2)3
+

2φ2

(1− t2φ2)
.

Evaluating the second derivative at t = 0 gives the variance

var (y) =
0

1
+

2φ2

1
= 2φ2.

Definition A.1. (e.g. Mardia et al., 1979) The singular multivariate normal density func-

tion is given by

f(y) =
(2π)−κ/2

(λ1 · · ·λκ)1/2
exp

(

−1

2
(y − µ)T Σ− (y − µ)

)

where Σ− is a generalised inverse of the matrix Σ of rank κ, (λ1, . . . , λκ) are the non-zero

eigenvalues of Σ and µ is the mean vector.
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Appendix B

Vector and Matrix Algebra Results

Lemma B.1. (Verbyla, 1990) If the matrices X and W 2 are such that W T
2 X = 0 and H

is positive definite then

H −HW 2(L
T
2 HL2)

−1W 2H = X(XT H−1X)−1XT .

Proof. Transform the standard linear mixed model by H− 1
2 ; the inverse symmetric square

root of H . Define X∗ = H− 1
2 X. Then, a basis for the orthogonal complement of R(X∗) is

given by the columns of W ∗
2 = H

1
2 W 2 as

W ∗
2
T X∗ = W T

2 H
1
2 H− 1

2 X

= W T
2 X

= 0.

Since R(W ∗
2) is orthogonal to R(X∗) then it is possible to express the orthogonal pro-

jection onto R(W ∗
2) by (Seber, 1977)

W ∗
2(W

∗
2
T W ∗

2)
−1W ∗

2
T = In−X∗(X∗T X∗)−1X∗T

which is equivalent to

H
1
2 W 2(W

T
2 HW 2)

−1W 2H
1
2 = In−H− 1

2 X(XT H−1X)−1XT H− 1
2 .

Multiplication of both sides by H
1
2 yields the equation in the Lemma statement.

Result B.1. (e.g. Cullis et al., 2006) Let A be a n × n symmetric matrix and B a p × p

matrix that is: a function of η and is non-singular. With Ḃi = ∂B
∂ηi

the following hold

1. ∂aT x
∂x

= a

2. ∂xT x
∂x

= 2x, ∂xT Ax
∂x

= 2Ax, xT Ay

∂x
= Ay
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3. ∂ log |B|
∂ηi

= tr
(

B−1Ḃi

)

4. ∂B−1

∂ηi
= −B−1ḂiB

−1

5. ∂P
∂κi

= −PḢ iP , where P = H−1 −H−1X(XT H−1X)−1XT H−1.

Result B.2. (Cullis et al., 2006) For non-singular matrices R, G and R of dimensions

n× n, q × q and for n× q respectively.

(R + ZGZT )−1 = R−1 −R−1Z(G−1 + ZT R−1Z)−1ZT R−1

if and only if

(G−1 + ZT R−1Z)−1ZT R−1 = GZT (R + ZGZT )−1.

This follows from the identity

H−1 = (ZGZT + R)−1

= R−1 −R−1Z(ZT R−1Z + G−1)−1ZT R−1.

Result B.3. For the p×n matrix D, the n× p matrix E and the non-singular p× p matrix

A

|A + DE| = |A||Ip + A−1DE|
= |A||In + EA−1D|.

Result B.4. (Harville, 1997) The inverse of a partitioned matrix A =

(

A11 A12

A21 A22

)

, as-

suming that all necessary inverses exist, is

A−1 =

(

A11 A12

A21 A22

)

=

(

T −TA12A
−1
22

−A−1
22 A21T A−1

22 + A−1
22 A21TA12A

−1
22

)

where T = (A11 −A12A
−1
22 A21)

−1.

Theorem B.1. (Harville, 1997, Theorem 9.6.1) Let T represent an m × p matrix, U an

m× q matrix, V an n× p matrix, and W an n× q matrix, and define Q = W − V T−U .

Suppose that the column space of U is a subspace of the column space of T and that the row

space of V is a subspace of the row space of T . Then, the partitioned matrix

(

T− + T −UQ−V T − −T −UQ−

−Q−V T− Q−

)

=

(

T − 0

0 0

)

+

(

−T−U

Iq

)

Q−
(

−V T −, Iq

)

is a generalised inverse of

(

T U

V W

)

.
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Theorem B.2. (Harville, 1997, Theorem 9.6.5) Let T , U , V , W and Q be as defined

in Theorem B.1 with the same row and column space properties. Then, for any generalised

inverse B =

(

B11 B12

B21 B22

)

of the partitioned matrix

(

T U

V W

)

, the q × n submatrix B22 is

a generalised inverse of Q.
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Appendix C

Miscellaneous Results

Definition C.1. For a n dimensional vector x the Lp-norm for 0 ≤ p <∞ and the L∞-norm

are defined as

‖x‖p =
n
∑

i=1

|xi|p and

‖x‖∞ =
max
0≤i≤n

|xi|

The L1-norm and the L2-norm are special cases of the Lp-norm for p = 1 and p = 2

respectively.

Definition C.2. (Osborne, 1985) Define the function f : X → Y where X ⊆ R
k and Y ⊆ R.

The k dimensional vector d is a sub-gradient of f at x ∈ X if and only if for all x, y ∈ X

f(y) ≥ f(x) + dT (y − x).

Geometrically, a sub-gradient d at x is a tangent of f at x such that the line through f(x)

with gradient d never enters the graph of f .

Definition C.3. (Osborne, 1985) For the function f defined in Definition C.2 the set of all

sub-gradients at a point x ∈ X is called the sub-differential of f at x and has notation ∂(x).

When f is multivariate the partial sub-differential is given by ∂x1
(x1, x2).

Result C.1. (Nash & Sofer, 1996) Consider a non-linear constraint problem with objective

function s(x) and constraints t(x). Define N(x) such that its columns form a basis for the

null space of the Jacobian of the constraints at x and L (x, λ) to be the Lagrangian. The

constraint problem has an optimal solution at x∗ with associated Lagrange multipliers λ∗ if

the Karush-Kuhn-Tucker conditions are met. These are

• ∂L (x∗,λ∗)
∂x

= 0

• λ∗ ≥ 0
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• λT
∗ t(x∗) = 0

• N(x∗)
T ∂2L (x,λ)

∂x∂xT N(x∗) is positive semi-definite.

The first point reflects the first-order optimality conditions, the second is the non-negative

constraint on the Lagrange multipliers, the third imposes that if the constraint function is

inactive then the associated Lagrange multiplier is zero and the fourth condition stipulates

that the stationary point must be a minimum.



Appendix D

S-PLUS Functions

These are S functions to perform the methods in the main body of the thesis. Use them

with love and caution. Please advise me if you find any mistakes.

4.1 Fitting the Constrained Regression for Correlated Observations

See Chapter 6 for details.

#------------------------------------------------------------------ Constrained Prediction

lasso.t<-function(LPL,LPy,t=1,fm.prev=NULL,print.stuff=F)

#-----------------------------------------------------------------------------------------

#Calculates LASSO constrained regression predictions.

#L is the LASSO design matrix, P is variance matrix of outcomes LPL=t(L)%*%P%*%L, y is the

#vector of outcomes, LPy=t(L)%*%P%*%y, t is the constraint, fm.prev is a previous fit of

#the LASSO constraint model (with smaller constraint) and print.stuff provides an iteration

#trace for the function.

#function returns a list whose elements are the predictions, the corresponding v, lambda

#(eigen value) for the given t, various quantities for the lasso model (for later fitting)

#and the set of indexes for the non-zero predictions.

#-----------------------------------------------------------------------------------------

{

#--------------------------------------------------------- Initialises common quantities

init.const<-function(LPL,LPy,fm.prev=NULL){

if (is.null(fm.prev))

list(LRL.inv=NULL,LRL=NULL,LRy=NULL,LRL.full=LPL,LRy.full=LPy)

else

fm.prev$const

}

#------------------------------------------------------------------------- v Calculation

calc.v<-function(const,b,set){

if (length(set)==0)

calc.v<-const$LRy.full

else{

b.s<-as.matrix(b[set])

lambda.inf<-max(abs(const$LRy-const$LRL%*%b.s))

if (lambda.inf==0)

(const$LRy.full-const$LRL.full%*%as.matrix(b))

else

(const$LRy.full-const$LRL.full%*%as.matrix(b))/lambda.inf

}

}

#------------------------------------------------- Checks if current solution is optimal

is.optimal<-function(v.vec,set){
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flag<-T

if (length(set)==0)

flag<-F

else

if (length(v.vec)>length(set))

if (max(abs(v.vec[setdiff(1:length(v.vec),set)]))>1)

flag<-F

flag

}

#--------------------------------------------------- Finds next regressor to enter model

get.regressor<-function(vec,set){

not.active<-setdiff(1:length(vec),set)

pos<-order(-abs(vec[not.active]))[1]

c(set,not.active[pos])

}

#--------------------------------------- Calculates the sign of the non-zero predictions

get.sign<-function(b,set,vec){

b.s<-b[set]

temp<-sign(b.s)

for (ii in 1:length(set))

if (temp[ii]==0)

temp[ii]<- sign(vec[set[ii]])

temp

}

#----------------------------------------Updates common quantities for current iteration

update.const<-function(old.const,new.S,old.S=c()){

if (!(length(old.S)<1)){

if (length(new.S)>length(old.S)){

#LRL^-1

loc<-setdiff(new.S,old.S)

LRL.inv<-old.const$LRL.inv

LRz<-old.const$LRL.full[old.S,loc]

zRz<-old.const$LRL.full[loc,loc]

zPz<-zRz-t(LRz)%*%LRL.inv%*%LRz

co<--LRL.inv%*%LRz%*%(1/zPz)

new.mat<-rbind(LRL.inv+LRL.inv%*%LRz%*%(1/zPz)%*%t(LRz)%*%LRL.inv,t(co))

new.mat<-cbind(new.mat,c(co,(1/zPz)))

new.LRL<-old.const$LRL.full[new.S,new.S]

new.LRy<-old.const$LRy.full[new.S]

}

else{

#LRL & LRy

new.LRL<-old.const$LRL.full[new.S,new.S]

new.mat<-solve(new.LRL)

new.LRy<-old.const$LRy.full[new.S]

dim<-length(new.mat[1,])

}

}

else{

new.LRL<-old.const$LRL.full[new.S,new.S]

new.LRy<-old.const$LRy.full[new.S]

new.mat<-1/new.LRL

}

list(LRL.inv=new.mat,LRL=new.LRL,LRy=new.LRy,LRL.full=old.const$LRL.full,LRy.full=old.const$LRy.full)

}

#----------------------------------------------------------- Calculates decent direction

calc.h<-function(const,b,t.c,set,th){

b.s<-as.matrix(b[set])

ls.bs<-const$LRL.inv%*%const$LRy

temp<-(t(th)%*%ls.bs-t.c)/(t(th)%*%const$LRL.inv%*%th)

mu<-max(c(0,temp))

h<-ls.bs-b.s-const$LRL.inv%*%th*mu

list(h=h,lambda=mu)

}
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#-------------------------------------------------------- Is new solution sign-feasible?

sign.feasible<-function(b,set,h.d,th){

b.s<-b[set]

len<-length(set)-1

if (len==0)

T

else

all(sign(b.s+h.d)[1:len]-sign(th)[1:len]==0)

}

#------------------------------------------------------------- Find most violated update

find.i<-function(b,set,h.d){

b.s<-b[set]

test<- -b.s/h.d

maxi<-max(abs(test))

len<-length(set)-1

for (ii in 1:len)

if (sign(b.s[ii])!=sign(b.s+h.d)[ii])

if (test[ii]<=maxi){

maxi<-test[ii]

pos<-ii

}

pos

}

#------------------------------------------------------------ Calculate update step size

find.gamma<-function(vi,b,set,h.d){

b.s<-b[set]

-b.s[vi]/h.d[vi]

}

#---------------------------------------------------- Update predictions when downdating

update.b<-function(g,b,set,h.d){

b.s<-b[set]

b.s<-b.s+g*h.d

b[set]<-b.s

b

}

#------------------------------------------------------------------ Move to new solution

move<-function(b,h.d,set){

b.s<-b[set]

b.s<-b.s+h.d

b[set]<-b.s

b

}

#------------------------------------------------------------------ Finding non-zero set

find.set<-function(b){

set<-double()

kount<-1

for (ii in 1:length(b))

if (round(b[ii],10)!=0){

set[kount]<-ii

kount<-kount+1

}

if (kount!=1)

set

else

NULL

}

#--------------------------------------- Reorder the iteration quantities for outputting

reorder.const<-function(const,set){

if (length(set)<=1)

val<-const

else{

LRL.inv<-const$LRL.inv[order(set),order(set)]

LRL<-const$LRL[order(set),order(set)]

LRy<-const$LRy[order(set)]



212 APPENDIX D. S-PLUS FUNCTIONS

val<-list(LRL.inv=LRL.inv,LRL=LRL,LRy=LRy,LRL.full=const$LRL.full,LRy.full=const$LRy.full)

}

class(val)<-"my.const"

val

}

#-----------------------------------------------------------------------------------------

# The lasso.t Function

#-----------------------------------------------------------------------------------------

if (!is.null(fm.prev))

if (length(fm.prev$set)==0)

fm.prev<-NULL

iter.const<-init.const(LPL,LPy,fm.prev)

new.S<-c()

if (is.null(fm.prev))

beta<-rep(0,length=length(LPy))

else{

beta<-fm.prev$coef

new.S<-fm.prev$set

}

v<-calc.v(iter.const,beta,new.S)

kount<-1

kounter<-1

while ( !is.optimal(v,new.S) | (kount==1) & (t!=0) ) {

old.S<-new.S

if ( (kount!=1) | is.null(fm.prev) ){

new.S<-get.regressor(v,old.S)

iter.const<-update.const(iter.const,new.S,old.S)

}

theta<-get.sign(beta,new.S,v)

h<-calc.h(iter.const,beta,t,new.S,theta)

while ((!sign.feasible(beta,new.S,h$h,theta))&(kounter<20)){

old.S<-new.S

vio<-as.integer(find.i(beta,new.S,h$h))

gamma<-find.gamma(vio,beta,new.S,h$h)

beta<-update.b(gamma,beta,new.S,h$h)

new.S<-setdiff(new.S,new.S[vio])

theta<-get.sign(beta,new.S,v)

iter.const<-update.const(iter.const,new.S,old.S)

h<-calc.h(iter.const,beta,t,new.S,theta)

kount<-kount+1

kounter<-kounter+1

if (print.stuff==T) print(c("Sign Change Step,violated variable number: ",new.S[vio]))

}

beta<-move(beta,h$h,new.S)

lam<-h$lambda

v<-calc.v(iter.const,beta,new.S)

kount<-kount+1

}

if ((kounter==20)&(print.stuff==T))

print("Problem with sign change step")

if (t==0){

temp.S<-get.regressor(v,new.S)

temp.const<-update.const(iter.const,temp.S,new.S)

new.S<-NA

theta<-get.sign(beta,temp.S,v)

h<-calc.h(temp.const,beta,t,temp.S,theta)

lam<-h$lambda

}

my.const<-reorder.const(iter.const,new.S)

new.S<-sort(new.S)

res<-list(coef=beta,v=v,lambda=lam,const=my.const,set=new.S)

class(res)<-"lasso.t"

res

}
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4.2 Fitting the Penalised Regression for Correlated Observation

See Chapter 6 for details.

#---------------------------------------------------- Find t for given lambda by approx NR

lasso.lambda<-function(LPL,LPy,lambda.goal,delta.t=0.000001,maxit=50,tolerance=0.001,s.size=1,print.stuff=T)

#-----------------------------------------------------------------------------------------

#Calculates LASSO penalised regression predictions

#L is the LASSO design matrix, P is variance matrix of outcomes LPL=t(L)%*%P%*%L, y is the

#vector of outcomes, LPy=t(L)%*%P%*%y, lambda.goal is the given lambda to find t for,

#delta.t is the step size for t when numerically evaluating the differential, maxit is the

#max number of iterations allowed, tolerance is the desired precision and s.size is the

#step size to use when updating.

#Returns a list containing: t, lasso predictions, v, a boolean for converged, number of

#iterations, the iteration quantities, the active set of variables, lambda.goal and the

#maxium lambda for that data

#-----------------------------------------------------------------------------------------

{

#---------------------------------------------------------------------------- Converged?

converged<-function(tol,pt1,pt2)

all(abs(pt1-pt2)<=tol)

#-----------------------------------------------------------------------------------------

# The lasso.lambda Function

#-----------------------------------------------------------------------------------------

t.p<-h.dash<-double(length=maxit)

h<-lambda<-matrix(ncol=2,nrow=maxit)

ii<-1

t.p[ii]<-0

fm.1<-backup<-lasso.t(LPL=LPL,LPy=LPy,t=t.p[ii])

lambda.max<-lambda[ii,1]<-fm.1$lambda

if (length(lambda.goal)==0)

lambda.goal<-fm.1$lambda+100

if (lambda.goal > fm.1$lambda){

lambda.goal<-fm.1$lambda

too.big<-T

if (print.stuff)

print("Desired lambda too large -- assigned to largest value")

}

else{

too.big<-F

while ( (!converged(tol=tolerance,lambda.goal,lambda[ii])) & (ii<maxit)){

fm.2<-lasso.t(LPL=LPL,LPy=LPy,t=(t.p[ii]+delta.t),fm.prev=fm.1)

lambda[ii,2]<-fm.2$lambda

h[ii,1]<-lambda[ii,1]-lambda.goal

h[ii,2]<-lambda[ii,2]-lambda.goal

h.dash[ii]<-abs(h[ii,2]-h[ii,1])/delta.t

t.p[ii+1]<-t.p[ii]+s.size*(h[ii,1]/h.dash[ii])

if (t.p[ii+1]<0){

t.p[ii+1]<-t.p[ii] #was 0.1*t.p[ii]

print("In NR routine: updated t negative, this iteration assigned to zero")

}

if (t.p[ii+1]>t.p[ii])

fm.1<-lasso.t(LPL=LPL,LPy=LPy,t=t.p[ii+1],fm.prev=fm.2)

else

fm.1<-lasso.t(LPL=LPL,LPy=LPy,t=t.p[ii+1],fm.prev=backup)

if (fm.1$lambda>lambda.goal)

backup<-fm.1

lambda[ii+1,1]<-fm.1$lambda

ii<-ii+1

}

}

if (ii==maxit){

conv<-F

print("convergence failed in finding t")

}

else
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conv<-T

val<-list(t=t.p[ii],coef=fm.1$coef,v=fm.1$v,converged=conv,niter=ii,const=fm.1$const,

set=fm.1$set,lambda=fm.1$lambda,lambda.max=lambda.max,too.big=too.big)

val

}

4.3 Solving the LASSO Mixed Model Equations

See Chapter 8 for details.

#----------------------------------------------------------------------------- Solves LMME

gauss.elim<-function(C,lambda,p,q,r,print.stuff=T,fm=NULL)

#-----------------------------------------------------------------------------------------

#Solves the LMME by modified Gaussian elimination

#C is the LMME matrix appended with the ’modified outcome’ vectors, lambda is the penalty

#for the LASSO equations, p is #fixed effects, q is #LASSO effects, r is a vector with

#each element describing the number of random effects for that group, print.stuff is a

#boolean for trace printing and fm is a previous lasso.lambda model for starting values.

#Function returns a list: a list of fixed, LASSO and random estimates/predictions, the

#adjusted sums of squares, the l1 norm of LASSO effects, v, the set of active LASSO vars,

#various quantities for later use.

#-----------------------------------------------------------------------------------------

{

if ((p!=0)|(sum(r)!=0))

A<-absorb(mat=C,t=1,q=q,p=p,r=r,to="lasso",log.det=FALSE)

else

A<-list(absorbed=C,log.det=NULL)

if (is.null(fm)){

fm<-lasso.lambda(LPL=A$absorbed[1+1:q,1+1:q],LPy=A$absorbed[1,1+1:q],

lambda.goal=lambda,tolerance=1e-10,maxit=30,s.size=1,print.stuff=print.stuff)

if (fm$too.big)

lambda<-fm$lambda.max

beta<-fm$coef

}

else

beta<-fm$coef$lasso

esti<-b.solve(mat=A$absorbed,beta=beta,p=p,q=q,r=r)

RSS<-A$absorbed[1,1]-t(beta)%*%A$absorbed[1+1:q,1+1:q]%*%beta

vb<-as.double(t(fm$v)%*%beta)

v<-fm$v

set<-fm$set

LPL.invS<-fm$const$LRL.inv

res<-list(coef=esti,RSS=RSS,vb=vb,v=v,set=set,LPL.invS=LPL.invS,

LPL=A$absorbed[1+1:q,1+1:q],LPy=A$absorbed[1+1:q,1],t=fm$t)

res

}

#------------------------------------------------------------------------ Absorbs a matrix

absorb<-function(mat,t=1,q,p,r,to="lasso",log.det=FALSE)

#-----------------------------------------------------------------------------------------

#mat is the matrix which will be absorbed to either the block of equations to="top" or

#to="lasso", t is the dim of the appended equations, q is the no. of the LASSO vars, p is

#the no. of fixed effects and r is the vector of numbers of random effects, log.det==TRUE

#stipulates that the log det will be calculated, assumes that fixed and ranodm normal

#effects will be absorbed.

#Function returns a list: the absorbed matrix, log-det of the absorbed equations.

#-----------------------------------------------------------------------------------------

{

new.mat<-mat

#absorb the random effects

if (sum(r)!=0)

for (ii in 1:length(r)){

if (length(r)!=ii){
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dim.remain<-1:(t+q+p+sum(r[1:(length(r)-ii)]))

dim.spent<-setdiff(1:(t+q+p+sum(r[1:(length(r)-ii+1)])),dim.remain)

}

else{

dim.remain<-1:(t+q+p+0)

dim.spent<-setdiff(1:(t+q+p+r[1]),dim.remain)

}

new.mat[dim.remain,dim.remain]<-new.mat[dim.remain,dim.remain]-new.mat[dim.remain,dim.spent]%*%

solve(new.mat[dim.spent,dim.spent])%*%new.mat[dim.spent,dim.remain]

new.mat[dim.remain,dim.spent]<-0

}

if (p!=0){

dim.remain<-1:(t+q)

dim.spent<-(t+q+1):(t+q+p)

new.mat[dim.remain,dim.remain]<-new.mat[dim.remain,dim.remain]-new.mat[dim.remain,dim.spent]%*%

solve(new.mat[dim.spent,dim.spent])%*%new.mat[dim.spent,dim.remain]

new.mat[dim.remain,dim.spent]<-0

}

if (to=="top"){

new.mat[1:t,1:t]<-new.mat[1:t,1:t]-new.mat[1:t,t+1:q]%*%solve(new.mat[t+1:q,t+1:q])%*%new.mat[t+1:q,1:t]

new.mat[1:t,t+1:q]<-0

}

if (log.det)

mat.det<-switch(to,

"lasso"=log(det(as.matrix(mat[t+q+1:(rp.sum),t+q+1:rp.sum],ncol=rp.sum))),

"top"=log(det(as.matrix(mat[t+1:(q+rp.sum),t+1:(q+rp.sum)],ncol=q+rp.sum))))

else

mat.det<-NULL

val<-list("absorbed"=new.mat,"log.det"=mat.det)

val

}

#--------------------------------------------------- Backsolves a previously absorbed LMME

b.solve<-function(mat,beta,p,r,q)

#-----------------------------------------------------------------------------------------

#mat is an absorbed matrix to the lasso effects, the LMME are assumed to have only the

#outcomes appended. beta is a vector of the estimated lasso effects, p is the no. of fixed

#effects, r is the vector containing the no. of random effects and q is the number of

#lasso effects.

#Function returns a list of the vectors: ’fixed’, ’lasso’ and ’random’ corresponding to

#the respective effects

#-----------------------------------------------------------------------------------------

{

if (is.null(beta))

print("beta must be specified for back solving routine, function will fall over")

rp.sum<-p+sum(r)

solved<-matrix(nrow=q+rp.sum,ncol=1)

solved[1:q,1]<-beta

if (p!=0)

fixed<-solved[q+1:p,1]<-solve(mat[1+q+1:p,1+q+1:p])%*%(mat[1+q+1:p,1]-mat[1+q+1:p,1+1:q]%*%solved[1:q])

else

fixed<-c()

if (sum(r)!=0){

random<-list()

for (ii in 1:length(r)){

if (ii!=1)

current<-1+q+p+sum(r[1:(ii-1)])+1:r[ii]

else

current<-1+q+p+1:r[ii]

current.effect<-intersect(1:(1+q+p+sum(r)),current)-1

previous<-2:(min(current)-1)

previous.effect<-1:(min(current)-2)

random[[ii]]<-solved[current.effect,1]<-solve(mat[current,current])%*%(mat[current,1]

-mat[current,previous]%*%solved[previous.effect])
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}

}

else

random<-NULL

val<-list(fixed=as.double(fixed),lasso=as.double(beta),random=random)

val

}

4.4 Fitting the LASSO Random Effects Model and the LASSO Linear Mixed
Model (LLMM)

See Chapter 7 for details on the random LASSO effect only model. See Chapter 8 for details
on the LLMM. The function LLMM.boot() calls update.comps.boot() and will be the one
that the user calls.

Updating Components

#-------------------------------------------------------------- Calc scores for all gammas

get.gammas.scores<-function(sigma2,G.i,fm,r,q,p,n.random,m.list.here=NULL)

#-----------------------------------------------------------------------------------------

#Slave function to LLMM.boot and update.comps.boot

#function returns the (potentially bootstrapped adjusted) scores for gamma

{

score.gamma<-function(sigma2,G.dot,G.inv,u.tilde,r)

t(u.tilde)%*%G.inv%*%G.dot%*%G.inv%*%u.tilde/(2*sigma2)

scores<-double(length=n.random)

before<-0

for (jj in 1:n.random){

temp.G.inv<-G.i$inv[before+1:r[jj],before+1:r[jj]]

scores[jj]<-score.gamma(sigma2=sigma2,G.dot=G.i$dot[[jj]],G.inv=temp.G.inv,

u.tilde=fm$coef$random[[jj]],r=r[jj])

before<-before+r[jj]

}

if (is.null(m.list.here))

scores

else

scores-m.list.here$gamma/sigma2

}

#------------------------------------------------------------ Updates disperion components

update.comps.boot<-function(fm,prev,n,p,q,kappa,r=r,s.s,max.z,n.boot=100,C.star,quads,

m.list,n.random,G.i,esti.sig.phi,type=type,kount1)

#-----------------------------------------------------------------------------------------

{

#---------------------------------------------------- Update estimates for sigma and phi

get.sig.phi<-function(fm,prev,n,q,kappa,p,r,n.random,n.boot,G.i,m.list,s.s,max.z,type)

{

q.s<-length(fm$set)

if (q.s!=0){

temp.RSS<-as.double(fm$RSS-2*prev$sigma*fm$vb/prev$phi)

if (type=="boot"){

new.phi<-fm$vb/(q+prev$phi*m.list$phi)

new.sigma<-as.double(temp.RSS/(n-p-kappa+2*prev$sigma*m.list$sigma))

}

else{

new.phi<-fm$vb/q.s

new.sigma<-as.double(temp.RSS/(n-p-q.s))

}

new.phi<-as.double(prev$phi+s.s*(new.phi-prev$phi))

new.sigma<-as.double(prev$sigma+s.s*(new.sigma-prev$sigma))

new.z.kount<-prev$z.kount

able<-TRUE
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step.flag<-FALSE

}

else{

temp.RSS<-as.double(fm$RSS)

if (prev$z.kount<max.z){

print("Next iterate of phi zero, step.size reduced by 25%")

new.z.kount<-prev$z.kount+1

temp.s.s<-(0.25^new.z.kount)*s.s

new.phi<-temp.s.s*prev$phi

if (type=="boot")

new.sigma<-prev$sigma+

s.s*(as.double(temp.RSS/(n-p-kappa+2*prev$sigma*m.list$sigma)-prev$sigma))

else

new.sigma<-prev$sigma+s.s*(as.double(temp.RSS/(n-p-q.s)-prev$sigma))

able<-FALSE

step.flag<-FALSE

}

else{

m.list<-list(sigma=0,phi=0)

new.phi<-0

new.sigma<-temp.RSS/(n-p)

new.z.kount<-prev$z.kount

able<-TRUE

step.flag<-TRUE

}

}

list(sigma=new.sigma,phi=new.phi,z.kount=new.z.kount,able=able,step.flag=step.flag)

}

#-------------------------------------------------------------- Calc average information

get.info<-function(g.set,n,q,p,quads,sig,n.random,m.list)

{

n.g<-length(g.set)

info<-matrix(0,ncol=n.g+1,nrow=n.g+1)

info[1,1]<-quads$q1Pq1/(2*sig)

if (!is.null(g.set))

for (ii in 1+1:n.g){

info[1,ii]<-info[ii,1]<-quads$q1Pqi[g.set[ii-1]]/(2*sig^2)-m.list$gamma[ii-1]/(sig^2)

if (n.random!=1)

for (jj in 1+1:n.g)

info[ii,jj]<-info[jj,ii]<-quads$qiTqj[g.set[ii-1],g.set[jj-1]]/sig

else

info[2,2]<-quads$qiTqj/sig

}

info.inv<-solve(info)

list(info=info,info.inv=info.inv)

}

#---------------------------------------------------------------------- moves the gammas

update.gamma<-function(g.set,prev.gamma,s.s,info.inv,scores,print.stuff=T)

{

n.g<-length(g.set)

new.gamma<-double(length=length(prev.gamma))

if (!is.null(g.set)){

#### negative or positive?

new.gamma[g.set]<-prev.gamma[g.set]+s.s[2]*info.inv[1+1:n.g,1+1:n.g]%*%scores[g.set]

not.g.set<-setdiff(1:length(prev.gamma),g.set)

new.gamma[not.g.set]<-prev.gamma[not.g.set]

g.set<-NULL

for (ii in 1:n.g){

if (new.gamma[ii]<0){

if (prev.gamma[ii]>0.00001){

new.gamma[ii]<-0.1*prev.gamma[ii]

if (print.stuff==T)

print("Updated gamma(s) negative, reduced by 10% and removed from descent step")

}

else{

new.gamma[ii]<-0.00001

if (print.stuff==T)

print("Updated gamma(s) negative and gamma small. Assigned to 0.00001")
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}

}

else{

if (!is.element(ii, not.g.set))

g.set<-c(g.set,ii)

}

}

}

else

new.gamma<-prev.gamma

list(new.gamma=new.gamma,g.set=g.set,prev.gamma=prev.gamma)

}

#-----------------------------------------------------------------------------------------

# The Disperion updating function

#-----------------------------------------------------------------------------------------

if (esti.sig.phi==TRUE)

sig.phi<-get.sig.phi(fm=fm,prev=prev,n=n,q=q,kappa=kappa,p=p,r=r,n.random=n.random,

n.boot=n.boot,G.i=G.i,m.list=m.list,s.s=s.s[1],max.z=max.z,type)

else

sig.phi<-list(sigma=prev$sigma,phi=prev$phi,z.kount=prev$z.kount,

able=prev$able,step.flag=prev$step.flag,type)

if (prev$z.kount<max.z)

C.star<-NULL

if (n.random!=0){

score.gamma<-get.gammas.scores(sigma2=prev$sigma,G.i=G.i,fm=fm,r=r,q=q,p=p,

n.random=n.random,m.list.here=m.list)

if (kount1==1)

get.set<-1:n.random

else

get.set<-prev$gamma.set

active<-n.random+1

while (length(get.set)<active){

active<-length(get.set)

av.info<-get.info(g.set=get.set,n=n,q=q,p=p,quads=quads,sig=prev$sigma,

n.random=n.random,m.list=m.list)

new.gamma<-update.gamma(g.set=get.set,prev.gamma=prev$gamma,s.s=s.s,

info.inv=av.info$info.inv,scores=score.gamma,print.stuff=T)

prev$gamma<-new.gamma$new.gamma

get.set<-new.gamma$g.set

if (is.null(get.set))

active<-0

score.gamma<-get.gammas.scores(sigma2=prev$sigma,G.i=G.i,fm=fm,r=r,q=q,p=p,

n.random=n.random,m.list.here=m.list)

}

}

else

new.gamma<-score.gamma<-get.set<-c()

list(sigma=as.double(sig.phi$sigma),phi=as.double(sig.phi$phi),

gamma=new.gamma$new.gamma,score.gamma=score.gamma,gamma.set=get.set,

z.kount=sig.phi$z.kount,able.conv=sig.phi$able,step.flag=sig.phi$step.flag,

M=c(2*prev$sigma*m.list$sigma,prev$phi*m.list$phi))

}

The Governing LLMM Function

#-------------------------------------------------------------------------- Forms the LMME

get.C<-function(top,L,X,Z,G.inv,n,q,p,r,n.random)

#-----------------------------------------------------------------------------------------

#slave function to LLMM.boot and update.comps.boot

#Function returns the appended LMME

{

t<-length(top[1,])

K<-matrix(nrow=n,ncol=t+q+p+sum(r))

if (p!=0)

K[,1:(t+q+p)]<-cbind(top,L,X)
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else

K[,1:(t+q)]<-cbind(top,L)

if (n.random!=0){

present<-t+q+p

for (ii in 1:n.random){

K[,present+1:r[ii]]<-Z[[ii]]

present<-present+r[ii]

}

C<-t(K)%*%K

C[t+q+p+1:sum(r),t+q+p+1:sum(r)]<-C[t+q+p+1:sum(r),t+q+p+1:sum(r)]+G.inv

}

else

C<-t(K)%*%K

C

}

#----------------------------------------------- Fits LLMM using bootstrap adjusted scores

LLMM.boot<-function(y,L,X,Z=NULL,n.random=0,inits=list(sigma=NULL,phi=NULL,gamma=NULL),maxit=c(100,10,10),

tolerance=c(0.001,0.01),step.size=c(1,0.95,1),n.boot=c(100,0,500),type="boot")

#-----------------------------------------------------------------------------------------

#y is outcome vector, L is design matrix for LASSO effects, X is design matrix for fixed

#effects, Z is a list of design matrices for random effects, n.random=length(Z), inits are

#initial dispersion parameters (if any), maxit[1] is the total number of parameter updates

#to allow, maxit[2] is the max no. of iterations to allow phi to go to zero before

#assigning it to zero, maxit[3] is the max number of updates to perform for each iteration

#of gamma, tolerance are tolerance levels for overall convergence and gamma convergence,

#step.size are for [1] parameter updates, [2] for reducing [1] after each iteration and [3]

#for updating gamma, n.boot [1] is the number of initial bootstrap samples, [2] increse

#amount after each iteration, [3] max no. of bootstrap samples and type="boot" for bootstrap

#estimation and "qs" for the ad-hoc adjustment.

#Function returns effects (fixed, lasso and random), sigma, phi, gamma, RSS, set of active

#LASSO effects, convergence boolean, v, fitted values, residuals, t and some estimation quantities.

{

#----------------------------------------------------------------- Update the G matrices

update.G<-function(gamma,n.random,r)

{

if (n.random!=0){

G.dot<-list(length=n.random)

G.diag<-double(legnth=sum(r))

present<-1

for (ii in 1:n.random){

G.dot[[ii]]<-diag(rep(1,r[ii]))

G.diag[present:sum(r[1:n.random<=ii])]<-gamma[ii]

present<-present+r[ii]

}

G<-diag(G.diag)

G.inv<-diag(1/G.diag)

list(G=G,inv=G.inv,dot=G.dot)

}

else

list(G=NULL,inv=NULL,dot=NULL)

}

#--------------------------------------------------------------------- Check convergence

converged<-function(tol,pt1,pt2,able=T)

{

if (able){

if (all(abs(pt1-pt2)<=tol))

"TRUE"

else

"FALSE"

}

else

FALSE

}
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#----------------------------------------------------- Check convergence of gamma scores

converged.gamma<-function(tol,pt1,pt2,g.set)

{

if (!is.null(g.set)){

if (all(abs(pt1[g.set]-pt2[g.set])<=tol))

TRUE

else

FALSE

}

else

TRUE

}

#---------------------------------------------------------- Initialises model parameters

init.model<-function(C,q,p,r,inits)

{

if ((sum(r)+p)!=0)

A<-absorb(mat=C,t=1,q=q,p=p,r=r,to="lasso",log.det=FALSE)

else

A<-list(absorbed=C,log.det=NULL)

fm<-lasso.t(LPL=A$absorbed[1+1:q,1+1:q],LPy=A$absorbed[1+1:q,1],t=0)

lambda.max<-fm$lambda

if ((is.null(inits$sigma)) & (is.null(inits$phi)))

start.lambda<-0.1*lambda.max

else{

start.lambda<-inits$sigma/(inits$phi)

if (start.lambda>lambda.max)

start.lambda<-0.1*lambda.max

}

list(lambda.max=lambda.max,start.lambda=start.lambda)

}

#----------------------------------------------------------- Initialises disp parameters

init.comp<-function(fm,inits,n,p,r,max.lambda,n.random)

{

q.s<-length(fm$set)

if (is.null(inits$phi))

new.phi<-as.double(fm$vb/q.s)

else

new.phi<-inits$phi

if (is.null(inits$sigma))

new.sigma<-as.double(fm$RSS/(n-p-q.s+2*fm$vb/new.phi))

else

new.sigma<-inits$sigma

while ((new.sigma/new.phi)>=max.lambda){

new.phi<-2*new.phi

new.sigma<-0.5*new.sigma

}

z.kount<-0

if (n.random!=0)

gamma.set<-1:n.random

else

gamma.set<-NULL

list(sigma=new.sigma,phi=new.phi,gamma=inits$gamma,score.gamma=rep(-99,length(r)),

able.conv=T,step.flag=NULL,M=c(NA,NA),z.kount=z.kount,gamma.set=gamma.set)

}

#------------------------------------------------------------------ Bootstrapping scores

get.bias<-function(n,p,q,kappa,r,n.random,B,prev,L,X,Z,fm,G.i)

{

score.sigma<-function(n,p,q,kappa,sigma2,phi,RSS,vb)

as.double(-(n-p-kappa)/(2*sigma2)+RSS/(2*(sigma2^2))-vb/(sigma2*phi))

score.phi<-function(q,phi,vb)

as.double(-q/phi+vb/(phi^2))

score.boot<-matrix(ncol=2+n.random,nrow=B)

max.int<-ceiling(B/50)



4.4. LASSO RANDOM EFFECTS MODEL AND LLMM 221

if (n.random==0){

dimnames(score.boot)[[2]]<-c("sigma","phi")

for (ii in 1:B){

b.star<-matrix((2*rbinom(n=length(L[1,]),size=1,prob=0.5)-1)*rexp(n=length(L[1,]),

rate=1/prev$phi),ncol=1)

e.star<-matrix(rnorm(n=n,mean=0,sd=sqrt(prev$sigma)),ncol=1)

if (p!=0)

y.star<-X%*%fm$coef$fixed+L%*%b.star+e.star

else

y.star<-L%*%b.star+e.star

C.star<-get.C(top=y.star,L=L,X=X,Z=Z,G.inv=G.i$inv,n=n,q=q,p=p,r=r,n.random=n.random)

if (prev$phi!=0){

fm1<-gauss.elim(C=C.star,lambda=prev$sigma/prev$phi,p=p,q=q,r=r,print.stuff=F)

score.boot[ii,1]<-score.sigma(n=n,p=p,q=q,kappa=kappa,sigma2=prev$sigma,

phi=prev$phi,RSS=fm1$RSS,vb=fm1$vb)

score.boot[ii,2]<-score.phi(q=q,phi=prev$phi,vb=fm1$vb)

}

else{

fm1<-gauss.elim(C=C.star,lambda=prev$sigma/0.0000001,p=p,q=q,r=r,print.stuff=F)

score.boot[ii,1]<-score.sigma(n=n,p=p,q=q,kappa=kappa,sigma2=prev$sigma,

phi=1,RSS=fm1$RSS,vb=fm1$vb)

score.boot[ii,2]<- 0

}

if (is.element(ii/50,1:max.int))

print(c("bootstrap iteration",ii))

}

gamma.res<-NULL

}

else{

dimnames(score.boot)[[2]]<-c("sigma","phi",paste("gamma",1:n.random,sep="_"))

for (ii in 1:B){

Zu.star<-matrix(rep(0,n),ncol=1)

for (jj in 1:n.random)

Zu.star<-Zu.star+Z[[jj]]%*%matrix(rnorm(n=r[jj],mean=0,

sd=sqrt(prev$sigma*prev$gamma[jj])),ncol=1)

b.star<-matrix((2*rbinom(n=length(L[1,]),

size=1,prob=0.5)-1)*rexp(n=length(L[1,]),rate=1/prev$phi),ncol=1)

e.star<-matrix(rnorm(n=n,mean=0,sd=sqrt(prev$sigma)),ncol=1)

if (p!=0)

y.star<-X%*%fm$coef$fixed+Zu.star+L%*%b.star+e.star

else

y.star<-Zu.star+L%*%b.star+e.star

C.star<-get.C(top=y.star,L=L,X=X,Z=Z,G.inv=G.i$inv,n=n,q=q,p=p,r=r,n.random=n.random)

if (prev$phi!=0){

fm1<-gauss.elim(C=C.star,lambda=prev$sigma/prev$phi,p=p,q=q,r=r,print.stuff=F)

score.boot[ii,1]<-score.sigma(n=n,p=p,q=q,kappa=kappa,sigma2=prev$sigma,

phi=prev$phi,RSS=fm1$RSS,vb=fm1$vb)

score.boot[ii,2]<-score.phi(q=q,phi=prev$phi,vb=fm1$vb)

}

else{

fm1<-gauss.elim(C=C.star,lambda=prev$sigma/0.0000001,p=p,q=q,r=r,print.stuff=F)

score.boot[ii,1]<- score.sigma(n=n,p=p,q=q,kappa=kappa,sigma2=prev$sigma,

phi=1,RSS=fm1$RSS,vb=fm1$vb)

score.boot[ii,2]<- 0

}

score.boot[ii,2+1:n.random]<-get.gammas.scores(sigma2=1,G.i=G.i,fm=fm1,

r=r,q=q,p=p,n.random=n.random,m.list.here=NULL)

if (is.element(ii/50,1:max.int))

print(c("bootstrap iteration",ii))

}

gamma.res<-double(length=n.random)

for (jj in 1:n.random)

gamma.res[jj]<-mean(score.boot[,2+jj],trim=0.05)

}

list(sigma=mean(score.boot[,1],trim=0.05),phi=mean(score.boot[,2],trim=0.05),gamma=gamma.res)

}
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#-------------------------------------------- Calculate working variables for absorption

get.working<-function(y,fm,L,Z,r,n.random,G)

{

beta<-fm$coef$lasso

u<-fm$coef$random

q1<-y-L%*%beta

qi<-matrix(ncol=n.random,nrow=length(L[,1]))

place<-0

for (ii in 1:n.random){

qi[,ii]<-Z[[ii]]%*%G$dot[[ii]]%*%G$inv[place+1:r[ii],place+1:r[ii]]%*%u[[ii]]

place<-place+r[ii]

}

cbind(q1,qi)

}

#--------------------------------------------------------- Obtain quadratic forms for AI

get.quads<-function(C,t,q,p,r,n.random,set)

{

A1<-absorb(mat=C,t=t,q=q,p=p,r=r,to="lasso")

q.s<-length(set)

if (q.s!=0)

A2<-absorb(mat=A1$absorbed[c(1:t,t+set),c(1:t,t+set)],t=t,q=q.s,p=0,r=0,to="top")

else

A2<-list(absorbed=A1$absorbed[1:t,1:t])

list(q1Pq1=A1$absorbed[1,1],q1Pqi=A1$absorbed[1,1+1:n.random],

qiTqj=A2$absorbed[1+1:n.random,1+1:n.random])

}

#-----------------------------------------------------------------------------------------

# The LLMM.boot Function

#-----------------------------------------------------------------------------------------

n<-length(y)

q<-length(L[1,])

if (!is.null(X))

p<-length(X[1,])

else

p<-0

if (n.random!=0){

r<-double(length=n.random)

for (ii in 1:n.random)

r[ii]<-length(Z[[ii]][1,])

}

else

r<-0

s.s.orig<-step.size[1]

if (is.null(inits$gamma))

inits$gamma<-rep(0.1,n.random)

G.i<-update.G(gamma=inits$gamma,n.random,r=r)

C.star<-get.C(top=y,L=L,X=X,Z=Z,G.inv=G.i$inv,n=n,q=q,p=p,r=r,n.random=n.random)

dum<-init.model(C=C.star,q=q,p=p,r=r,inits=inits)

fm<-gauss.elim(C=C.star,lambda=dum$start.lambda,p=p,q=q,r=r)

var.comp<-init.comp(fm=fm,inits=inits,n=n,p=p,r=r,max.lambda=dum$lambda.max,n.random=n.random)

flag<-kount<-1

prev.comp<-list(sigma=-99,phi=-99,gamma=rep(-99,n.random),z.kount=0)

if (n.random!=0)

print(c("Iteration","Sigma2","Phi",paste("Gamma",1:n.random,sep="_"),"q.s","M.sigma","M.phi"))

else

print(c("Iteration","Sigma2","Phi","q.s","M.sigma","M.phi"))

conv<-F

while ((!converged(pt1=c(var.comp$sigma,var.comp$phi,var.comp$gamma),

pt2=c(prev.comp$sigma,prev.comp$phi,prev.comp$gamma),tol=tolerance[1],able=var.comp$able))

& (kount<=maxit[1])){

kount1<-1

prev.comp<-var.comp
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e.vals<-eigen(C.star[1+1:q,1+1:q])$values

kappa<-length(e.vals[round(e.vals,5)>0])

if (kount!=1){

if (type=="boot"){

print("Bootstrapping for bias correction")

m.list<-get.bias(n=n,p=p,q=q,kappa=kappa,r=r,n.random=n.random,B=n.boot[1],

prev=var.comp,L=L,X=X,Z=Z,fm=fm,G.i=G.i)

print("Done bootstrapping")

}

else

m.list<-list(sigma=0,phi=0,gamma=rep(0,n.random))

if (n.random!=0){

get.sigma.phi<-TRUE

var.comp$gamma.set<-1:n.random

while ((!converged.gamma(pt1=var.comp$score.gamma,pt2=rep(0,n.random),

g.set=var.comp$gamma.set,tol=tolerance[2]))&(kount1<=maxit[3])){

Q<-get.working(y=y,fm=fm,L=L,Z=Z,r=r,n.random=n.random,G=G.i)

C.starS<-get.C(top=Q,L=L,X=X,Z=Z,G.inv=G.i$inv,n=n,q=q,p=p,r=r,n.random=n.random)

quads<-get.quads(C=C.starS,t=length(Q[1,]),q=q,p=p,r=r,n.random=n.random,set=fm$set)

var.comp<-update.comps.boot(fm=fm,prev=var.comp,n=n,p=p,q=q,kappa=kappa,

s.s=step.size[c(1,3)],max.z=maxit[2],C.star=C.star,quads=quads,

m.list=m.list,n.random=n.random,G.i=G.i,r=r,esti.sig.phi=get.sigma.phi,

type=type,kount1=kount1)

get.sigma.phi<-FALSE

G.i<-update.G(gamma=var.comp$gamma,n.random,r=r)

C.star<-get.C(top=y,L=L,X=X,Z=Z,G.inv=G.i$inv,n=n,q=q,p=p,r=r,n.random=n.random)

fm<-gauss.elim(C=C.star,lambda=NULL,p=p,q=q,r=r,fm=fm)

kount1<-kount1+1

}

if (kount1>maxit[3])

print("gamma update not converged!")

var.comp$gamma[var.comp$gamma.set]<-prev.comp$gamma[var.comp$gamma.set]+

step.size[1]*(var.comp$gamma[var.comp$gamma.set]-prev.comp$gamma[var.comp$gamma.set])

var.comp$score.gamma<-rep(-9999,n.random)

}

else

var.comp<-update.comps.boot(fm=fm,prev=var.comp,n=n,q=q,kappa=kappa,p=p,

s.s=step.size[c(1,3)],max.z=maxit[2],C.star=C.star,quads=NULL,m.list=m.list,

n.random=n.random,G.i=G.i,r=r,esti.sig.phi=TRUE,type=type,kount1=1)

}

else{

if (n.random==0)

prev.comp<-list(sigma=-99,phi=-99,gamma=NULL)

if (n.random!=0){

m.list<-list(gamma=rep(NA,n.random))

prev.comp<-list(sigma=-99,phi=-99,gamma=rep(-99,n.random))

}

}

if ((is.na(var.comp$phi))|(var.comp$phi==0)){

var.comp$phi<-0

dum<-init.model(C=C.star,q=q,p=p,r=r,inits=inits)

fm<-gauss.elim(C=C.star,lambda=dum$lambda.max,p=p,q=q,r=r,fm=NULL)

if (var.comp$step.flag){

print("Phi identically zero, step.size assigned to 1")

step.size[1]<-1

var.comp$step.flag<-FALSE

}

}

else

fm<-gauss.elim(C=C.star,lambda=var.comp$sigma/var.comp$phi,p=p,q=q,r=r,fm=NULL)

if (n.random!=0)

print(c(kount,round(var.comp$sigma,4),round(var.comp$phi,4),

round(var.comp$gamma,4),length(fm$set),round(var.comp$M[1],4),round(var.comp$M[2],4)))

else

print(c(kount,round(var.comp$sigma,4),round(var.comp$phi,4),length(fm$set),

round(var.comp$M[1],4),round(var.comp$M[2],4)))

if ((kount>1)&(var.comp$phi!=0)){

step.size[1]<-step.size[1]*step.size[2]
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print(c("step size reduced now:",round(step.size[1],3)))

if (type=="boot"){

if (n.boot[1]<n.boot[3]){

n.boot[1]<-n.boot[1]+n.boot[2]

print(c("Number of bootstrap samples increased, now:", n.boot[1]))

}

else

print("Number of bootstrap samples not increased, already at largest limit")

}

}

kount<-kount+1

}

if ((kount-1)==maxit[1]) conv<-F else conv<-T

if (!conv) print("Failed to Converge") else print("Converged")

if (is.null(var.comp$phi))

var.comp$phi<-0

fitted<-L%*%fm$coef$lasso

if (!is.null(X))

fitted<-X%*%fm$coef$fixed+fitted

if (n.random!=0)

for (ii in 1:n.random)

fitted<-fitted+Z[[ii]]%*%fm$coef$random[[ii]]

residual<-y-fitted

res<-list(fixed=fm$coef$fixed,lasso=fm$coef$lasso,random=fm$coef$random,

sigma=var.comp$sigma,phi=var.comp$phi,gamma=var.comp$gamma,RSS=var.comp$RSS,

set=fm$set,conv=conv,v=fm$v,fitted=fitted,residuals=residual,LPL=fm$LPL,LPy=fm$LPy,t=fm$t)

class(res)<-"LLMM.boot"

res

}

4.5 Hypothesis Testing for LASSO Predictions

See Chapters 7 and 8 for details.

#------------------------------------------------- Simulation Testing of LASSO Predictions

LASSO.sim.test<-function(obj,X=NULL,Z=NULL,L,B=100,alpha=c(0.01,0.05,0.1),plot.dist=FALSE,return.dist=FALSE)

#-----------------------------------------------------------------------------------------

#Finds critical values for testing the LASSO predictions (both experiment and comparison wise)

#obj is a Splus function fiited using LLMM.boot. X,Z and L are the fixed, random and LASSO

#effect design matrices (Z a list), B is the number of simulation samples, alpha is the

#vector of critical value probs required, plot.dist is a boolean (if TRUE then the dist.

#of the predictions is plotted) and return.dist is a boolean (if TRUE then the full set

#of sampled predictions (under null hypoth) are returned).

#Function returns a list containing: experiment-wise and comparison-wise critical values

#for the alpha level and if return.dist==T then the full set of simulated predictions.

{

get.C.base<-function(L,X.mat,Z,G.inv,n,q,p,r,n.random){

K<-matrix(nrow=n,ncol=q+p+sum(r))

K[,1:(q+p)]<-cbind(L,X.mat)

if (n.random!=0){

present<-q+p

for (ii in 1:n.random){

K[,present+1:r[ii]]<-Z[[ii]]

present<-present+r[ii]

}

C<-t(K)%*%K

C[q+p+1:sum(r),q+p+1:sum(r)]<-C[q+p+1:sum(r),q+p+1:sum(r)]+G.inv

}

else
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C<-t(K)%*%K

C

}

esti.fun<-function(X,X.mat,L,Z.mat,C.base,lambda,q,p,r,n.random){

pqr<-p+q+sum(r)

C.star<-matrix(ncol=pqr+1,nrow=pqr+1)

C.star[1+1:pqr,1]<-C.star[1,1+1:pqr]<-as.double(t(X)%*%cbind(L,X.mat,Z.mat))

C.star[1,1]<-t(X)%*%X

C.star[-1,-1]<-C.base

A.star<-absorb(mat=C.star,to="lasso",t=1,q=q,p=p,r=r)

LPy.star<-A.star$absorbed[1+1:q,1]

LPL.star<-A.star$absorbed[1+1:q,1+1:q]

fm.star<-lasso.lambda(LPL=LPL.star,LPy=LPy.star,lambda.goal=lambda,print.stuff=F)

temp<-rev(order(abs(fm.star$coef)))

temp1<-c(temp[1],abs(fm.star$coef[temp[1]]),abs(fm.star$coef))

temp1

}

n<-length(obj$fitted)

a<-length(alpha)

maxes<-matrix(ncol=a,nrow=B)

q<-length(L[1,])

if (!is.null(X)){

mean.Xt<-as.double(X%*%obj$fixed)

p<-length(X[1,])

}

else{

p<-0

mean.Xt<-rep(0,length(L[,1]))

}

if (is.null(Z)){

r<-0

H.mat<-obj$sigma*diag(1,n)

n.random<-0

Z.mat<-NULL

}

else{

n.random<-length(Z)

r<-double(length=n.random)

H.mat<-obj$sigma*diag(1,n)

G.diag<-double()

start<-0

Z.mat<-matrix(nrow=n)

for (ii in 1:n.random){

r[ii]<-length(Z[[ii]][1,])

H.mat<-H.mat+obj$sigma*obj$gamma[ii]*Z[[ii]]%*%t(Z[[ii]])

G.diag[start+1:r[ii]]<-obj$gamma[ii]

Z.mat<-cbind(Z.mat,Z[[ii]])

start<-start+r[ii]

}

Z.mat<-Z.mat[,-1]

G.inv<-solve(diag(G.diag))

}

base.C<-get.C.base(L=L,X.mat=X,Z=Z.mat,G.inv=G.inv,n=n,q=q,p=p,r=r,n.random=n.random)

y.star<-t(rmvnorm(B,mean=mean.Xt,cov=H.mat,d=n))

b.bar.star<-t(apply(X=y.star,MARG=2,FUN=esti.fun,L=L,X.mat=X,Z.mat=Z.mat,

C.base=base.C,lambda=obj$sigma/obj$phi,q=q,p=p,r=r,n.random=n.random))

quants<-matrix(nrow=length(alpha),ncol=q+1)

for (ii in 1:(q+1))

quants[,ii]<-quantile(b.bar.star[,1+ii],probs=(1-alpha))

if (plot.dist){

par(mfrow=c(2,3))

hist(b.bar.star[,2],nclass=B/4,prob=TRUE,main="Experimentwise Critical Values",

xlab="Maximum absolute effect")

abline(v=quants[,1])

for (ii in 1:q){

hist(b.bar.star[,2+ii],nclass=B/4,prob=TRUE,main=paste("Variable",ii),

xlab=paste("Variable",ii," absolute effect"))
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abline(v=quants[,1+ii])

}

}

if (return.dist)

res<-list(exp=quants[,1],compar=quants[,1+1:q],dist=b.bar.star)

else

res<-list(exp=quants[,1],compar=quants[,1+1:q])

res

}

4.6 Fitting the Alternative LASSO Random Effects Model

See Chapter 10 for details. The function alt.LASSO() estimates the dispersion parameters.
It calls diagv(), esti.alpha(), calc.scores() and calc.likelihood(). The user may
want to call individual functions but generally only calls to alt.LASSO() will be made.

Utility Function

#--------------------------------------------- Form a diagonal square matrix from a vector

diagv<-function(dim,vec=NULL)

#-----------------------------------------------------------------------------------------

# Forms a dim x dim matrix with vec on the diagonal.

# If vec==NULL then the identity is returned

{

mat<-matrix(0,ncol=dim,nrow=dim)

if (is.null(vec))

diag(mat)<-1

else

diag(mat)<-vec

mat

}

Estimating Random Variance Effects α

#----------------------------------------------- Estimate random variances effects (alpha)

esti.alpha<-function(y,L,sigma2,two.phi2,tolerance=1e-6,maxit=150,step.size=1,inits=NULL,print.stuff=TRUE)

#-----------------------------------------------------------------------------------------

#Estimates alpha for the alternative LASSO probability model.

#y is the vector of outcomes, L is the design matrix for the LASSO effects, sigma2 is the

#residual variance, two.phi2 is the variance of the LASSO, effects, tolerance is the

#convergnce tolerance for estimates and scores for alpha, maxit is the number of iterations

#allowed, step.size is the length of step to take at each iteration, inits are starting

#values for the alpha, print.stuff is a flag asking if printing of values at each iteration

#and at the end of estimation be performed.

#Function returns a list of 1) the estimated deltas and 2) a list of useful quantities

#-----------------------------------------------------------------------------------------

{

get.forms<-function(n,q,sigma2,two.phi2,new.alpha,y,L){

new.delta<-exp(new.alpha)

D<-diagv(q,new.delta)

ident.n<-diagv(n)

ident.q<-diagv(q)

H<-sigma2*ident.n+L%*%D%*%t(L)

eig<-eigen(H,symmetric=T)

eig$values<-ifelse(round(eig$values,10)<=0,0,1/eig$values)

H.inv<-eig$vectors%*%diag(eig$values)%*%t(eig$vectors)

w<-t(L)%*%H.inv%*%y

ww<-w%*%t(w)

LHL<-t(L)%*%H.inv%*%L

A.vec<-0.5*diag(LHL)-0.5*diag(ww)+rep(1,q)/two.phi2
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esti.eqn<--new.delta*A.vec+rep(1,q)

Lambda<-diagv(q,new.delta/two.phi2)+0.5*new.delta%*%t(new.delta)*(LHL*LHL)

eig<-eigen(Lambda,symmetric=T)

eig$values<-ifelse(round(eig$values,10)<=0,0,1/eig$values)

Lambda.inv<-eig$vectors%*%diag(eig$values)%*%t(eig$vectors)

res<-list(w=w,LHL=LHL,H=H,H.inv=H.inv,Lambda=Lambda,Lambda.inv=Lambda.inv,

esti.eqn=esti.eqn,D=D,d=new.delta,b.vec=A.vec)

res

}

converged<-function(new,prev,tolerance)

all(abs(new-prev)<tolerance)

move<-function(prev.alpha,forms,step.size){

update.d<-prev.alpha+step.size*forms$Lambda.inv%*%forms$esti.eqn

update.d

}

#-----------------------------------------------------------------------------------------

# The esti.alpha function

#-----------------------------------------------------------------------------------------

n<-dim(L)[1]

q<-dim(L)[2]

if (is.null(inits)) new.alpha<-rep(log(two.phi2)-0.5,q) else new.alpha<-inits

forms<-get.forms(n,q,sigma2,two.phi2,new.alpha,y,L)

kount<-1

prev.alpha<-new.alpha

while ( (kount==1) | (kount<=maxit) &

!(converged(forms$esti.eqn,rep(0,q),tolerance) & converged(new.alpha,prev.alpha,tolerance)) ){

prev.alpha<-new.alpha

if (kount<=5)

new.alpha<-move(prev.alpha,forms,step.size/50)

else

new.alpha<-move(prev.alpha,forms,step.size)

forms<-get.forms(n,q,sigma2,two.phi2,new.alpha,y,L)

if (print.stuff)

print(paste("Iteration:",kount," ","Max difference",round(max(abs(new.alpha-prev.alpha)),5),

" ","Max derivative:",round(max(abs(forms$esti.eqn)),5)))

kount<-kount+1

}

if (kount==maxit+1){

print("convergence for alpha failed :-(")

conv<-FALSE

}

else{

conv<-TRUE

if (print.stuff)

print("convergence for alpha succeeded!")

}

res<-list(alpha=new.alpha,forms=forms,converged=conv)

res

}

Calculating Approximate Likelihood and Scores

#-----------------------------------------------Calculate Scores for dispersion parameters

calc.scores<-function(x,alpha=NULL,y,L,q,tolerance=1e-4,maxit=150,type=’o’)

#-----------------------------------------------------------------------------------------

#Calcultes the scores for the dispersion parameters for the alternative LASSO random model

#x = c(ssq, 2\phi^2) and is the dispersion parameter values to use, alpha is the current

#value of the random variance effects (if available), y is the observations, L is the

#design matrix, q is the number of LASSO effects, tolerance is the tolerance to use when

#calculating alpha.hat, maxit is the max number of iterations to use when calculating
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#alpha.hat, type==’o’ signifies to use the observed information for alpha, otherwise the

#expected is used

#Function returns a double (legnth 2) with of scores for x. The double has the attribute

#alpha for the estimated alpha.hat

#-----------------------------------------------------------------------------------------

{

get.forms<-function(alpha,forms,a.deriv=NULL,L,y,q,type){

if (is.null(a.deriv)){

forms$H2.inv<-forms$H.inv%*%forms$H.inv

forms$M2<-t(L)%*%forms$H2.inv%*%L

forms$w2<-t(L)%*%forms$H2.inv%*%y

forms$MM<-forms$LHL*forms$LHL

forms$ww<-forms$w%*%t(forms$w)

forms$wwM<-forms$ww*forms$LHL

forms$dd<-forms$d%*%t(forms$d)

forms$ww2<-forms$w%*%t(forms$w2)

forms$ddM<-forms$dd*forms$LHL

if (type==’o’){

forms$Lambda<-diagv(q,forms$d*forms$b.vec) - forms$dd*(0.5*forms$MM-forms$wwM)

forms$Lambda.inv<-solve(forms$Lambda)

}

}

else{

temp<-list(sigma2=forms$d*a.deriv$sigma2,two.phi2=forms$d*a.deriv$two.phi2)

forms$D.star<-list(sigma2=diagv(q,temp$sigma2),two.phi2=diagv(q,temp$two.phi2))

forms$Delta<-list(sigma2=temp$sigma2%*%t(forms$d),two.phi2=temp$two.phi2%*%t(forms$d))

forms$MDM<-list(sigma2=forms$LHL%*%forms$D.star$sigma2%*%forms$LHL,

two.phi2=forms$LHL%*%forms$D.star$two.phi2%*%forms$LHL)

forms$MDw<-list(sigma2=forms$LHL%*%forms$D.star$sigma2%*%forms$w,

two.phi2=forms$LHL%*%forms$D.star$two.phi2%*%forms$w)

}

forms

}

get.alpha.derivs<-function(x,alpha,forms,q){

inv.mat<-solve((0.5*forms$MM-forms$wwM)%*%forms$D-solve(forms$D))

sigma2.deriv<-inv.mat%*%(-0.5*diag(forms$M2)+diag(forms$ww2))

two.phi2.deriv<- -inv.mat%*%matrix(rep(1,q),ncol=1)/(x[2]^2)

list(sigma2=sigma2.deriv,two.phi2=two.phi2.deriv)

}

get.lambda.derivs.expected<-function(x,alpha,forms,q){

sigma2.deriv<-forms$D.star$sigma2/x[2]+0.5*(forms$Delta$sigma2+

t(forms$Delta$sigma2))*forms$MM-forms$ddM*(forms$M2+forms$MDM$sigma2)

two.phi2.deriv<- -forms$D/(x[2]^2) + forms$D.star$two.phi2/x[2] +

0.5*(forms$Delta$two.phi2+t(forms$Delta$two.phi2))*forms$MM-forms$ddM*forms$MDM$two.phi2

list(sigma2=sigma2.deriv,two.phi2=two.phi2.deriv)

}

get.lambda.derivs.observed<-function(x,alpha,forms,q){

A.mat<- forms$D.star$sigma2*diagv(q,forms$b.vec)+

diagv(q,forms$d*(-0.5*diag(forms$M2)-

0.5*diag(forms$MDM$sigma2)+diag(forms$ww2)+forms$w*forms$MDw$sigma2))

B.mat<- -(forms$Delta$sigma2+t(forms$Delta$sigma2))*(0.5*forms$MM-forms$wwM)-

forms$dd*(-forms$LHL*forms$M2+(forms$ww2+t(forms$ww2))*forms$LHL+forms$ww*forms$M2)-

forms$dd*((forms$ww-forms$LHL)*forms$MDM$sigma2 +

(forms$w%*%t(forms$MDw$sigma2)+forms$MDw$sigma2%*%t(forms$w))*forms$LHL)

sigma2.deriv<-A.mat+B.mat

A.mat<- forms$D.star$two.phi2*diagv(q,forms$b.vec)+

diagv(q,forms$d*(-0.5*diag(forms$MDM$two.phi2)+forms$w*forms$MDw$two.phi2-

matrix(1/(x[2]^2),ncol=1,nrow=q)))

B.mat<- -(forms$Delta$two.phi2+t(forms$Delta$two.phi2))*(0.5*forms$MM-forms$ww*forms$LHL)-

forms$dd*((forms$ww-forms$LHL)*forms$MDM$two.phi2 +

(forms$w%*%t(forms$MDw$two.phi2)+forms$MDw$two.phi2%*%t(forms$w))*forms$LHL)

two.phi2.deriv<-A.mat+B.mat

list(sigma2=sigma2.deriv,two.phi2=two.phi2.deriv)

}



4.6. ALTERNATIVE LASSO RANDOM EFFECTS MODEL 229

get.scores<-function(x,alpha,forms,alpha.derivs,Lambda.derivs,q,y){

tr<-function(mat)

sum(diag(mat))

sigma2.score<- -0.5*tr(forms$Lambda.inv%*%Lambda.derivs$sigma2)-0.5*tr(forms$H.inv)-

0.5*tr(forms$LHL%*%diagv(q,forms$d*alpha.derivs$sigma2))+

0.5*t(y)%*%forms$H2.inv%*%y+

0.5*t(forms$w)%*%diagv(q,forms$d*alpha.derivs$sigma2)%*%forms$w-

sum(forms$d*alpha.derivs$sigma2)/x[2]+sum(alpha.derivs$sigma2)

two.phi2.score<- -q/x[2]-0.5*tr(forms$Lambda.inv%*%Lambda.derivs$two.phi2)-

0.5*tr(forms$LHL%*%diagv(q,forms$d*alpha.derivs$two.phi2))+

0.5*t(forms$w)%*%diagv(q,forms$d*alpha.derivs$two.phi2)%*%forms$w+

sum(forms$d)/(x[2]^2)-sum(forms$d*alpha.derivs$two.phi2)/x[2]+

sum(alpha.derivs$two.phi2)

list(sigma2=sigma2.score,two.phi2=two.phi2.score)

}

if (is.null(alpha))

alpha<-esti.alpha(y=y,L=L,sigma2=x[1],two.phi2=x[2],tolerance=tolerance,maxit=maxit,

inits=NULL,print.stuff=FALSE)

else

alpha<-esti.alpha(y=y,L=L,sigma2=x[1],two.phi2=x[2],tolerance=tolerance,maxit=maxit,

inits=alpha,print.stuff=FALSE)

forms<-get.forms(alpha=alpha$alpha,forms=alpha$forms,a.deriv=NULL,L=L,y=y,q=q,type=type)

alpha.derivs<-get.alpha.derivs(x,alpha,forms,q)

forms<-get.forms(alpha=alpha$alpha,forms=forms,a.deriv=alpha.derivs,L=L,y=y,q=q,type=type)

if (type==’e’)

Lambda.derivs<-get.lambda.derivs.expected(x,alpha,forms,q)

else

Lambda.derivs<-get.lambda.derivs.observed(x,alpha,forms,q)

scores<- unlist(get.scores(x,alpha$alpha,forms,alpha.derivs,Lambda.derivs,q,y))

names(scores)<-list("sigma2","two.phi2")

attr(scores,"alpha")<-alpha

scores

}

#------------------------------------------------------ Calculates approximate likelihoods

calc.likelihood<-function(x,y,L,alpha=NULL,tolerance=1e-4,maxit,type=’o’)

#-----------------------------------------------------------------------------------------

#Calculates the approximate likelihood for the alternative LASSO random model.

#x = c(ssq, 2\phi^2) and is the dispersion parameter values to use, y is the outcomes, L is

#the design matrix, alpha is the estimated random variance effects (if available), tolerance

#is the convergence tolerance for the estiamtion of alpha, maxit is the max number of

#iterations to allow in estimating alpha and type=’o’ indiciates approximation using the

#observed information matrix - otherwise the expected will be used.

#Function returns a double with attributes of the estiamted alpha

#-----------------------------------------------------------------------------------------

{

get.like<-function(two.phi2,alpha,y){

Lambda.eig<-eigen(alpha$forms$Lambda,symmetric=TRUE)$values

Lambda.det<-prod(Lambda.eig[Lambda.eig>0])

H.eig<-eigen(alpha$forms$H,symmetric=TRUE)$values

H.det<-prod(H.eig[H.eig>0])

D.det<-prod(diag(alpha$forms$D))

like<- -q*log(two.phi2)-0.5*log(Lambda.det)-0.5*log(H.det)-

0.5*t(y)%*%alpha$forms$H.inv%*%y-

sum(diag(alpha$forms$D))/two.phi2+sum(alpha$alpha)

as.double(like)

}

if (is.null(alpha))

alpha<-esti.alpha(y=y,L=L,sigma2=x[1],two.phi2=x[2],tolerance=tolerance,

maxit=maxit,inits=NULL,print.stuff=FALSE)

else

alpha<-esti.alpha(y=y,L=L,sigma2=x[1],two.phi2=x[2],tolerance=tolerance,

maxit=maxit,inits=alpha,print.stuff=FALSE)

if (type==’o’){
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d<-exp(alpha$alpha)

alpha$forms$Lambda<-diagv(q,d*alpha$forms$b.vec)-

d%*%t(d)*(0.5*alpha$forms$LHL*alpha$forms$LHL-

alpha$forms$w%*%t(alpha$forms$w)*alpha$forms$LHL)

}

like<-get.like(x[2],alpha,y)

attr(like,"alpha")<-alpha$alpha

like

}

Estimating the Dispersion Parameters

#------------------------------------------------------ Estimate the dispersion parameters

alt.LASSO<-function(y,L,init.disp=NULL,tolerance=c(1e-6,1e-3),maxit=c(500,100),

step.size=1,type=’o’,pert=1e-2,print.stuff=TRUE,max.jump=10)

#Estimates the dispersion parameters for the simple LASSO random model.

#y is the outcome vector, L is the design matrix, init.disp is the initial dispersion vector

#c(ssq, 2\phi^2) - if available, tolerance[1] is the tolerance for estimating alpha,

#tolerance[2] is the tolerance for estimating the dispersion, maxit[1] is the max no. of

#iterations for estimating alpha, maxit[2] is the max no. of iterations for estimating

#dispersion, step.size is the size of the step to take when updating dispersions, type==’o’

#signifies estimation using the observed information for alpha - expected info otherwise,

#pert is the value to use when approximating the information for the dispersion, print.stuff

#is a logical (T implies iteration trace is generated) and max.jump is the maximum move a

#dispersion parameter can make.

#Function returns a list: the dispersion estiamtes, the alpha estiamtes, the scores, the

#approx logl and a succesfull convergence flag

#-----------------------------------------------------------------------------------------

{

calc.hessian<-function(x,alpha,scores,y,L,q,tolerance,maxit,type,pert){

scores1.1<-scores

scores2.1<-calc.scores(x=c(x[1]+pert,x[2]),alpha=alpha,y=y,L=L,q=q,

tolerance=tolerance,maxit=maxit,type=type)

scores1.2<-calc.scores(x=c(x[1],x[2]+pert),alpha=alpha,y=y,L=L,q=q,

tolerance=tolerance,maxit=maxit,type=type)

hessian<-matrix(,ncol=2,nrow=2)

hessian[1,1]<-(scores2.1[1]-scores1.1[1])/pert

hessian[2,2]<-(scores1.2[2]-scores1.1[2])/pert

hessian[1,2]<-(scores1.2[1]-scores1.1[1])/pert

hessian[2,1]<-(scores2.1[2]-scores1.1[2])/pert

hessian[2,1]<-hessian[1,2]<-(hessian[1,2]+hessian[2,1])/2

if (any(diag(hessian)>=0))

print(c("Diagonal Hessian positive:",round(diag(hessian),4)))

hessian

}

converged<-function(pt1,pt2,tol)

all(abs(pt1-pt2)<tol)

move<-function(disp,scores,hessian,s,max.jump){

step<- -s*solve(hessian)%*%matrix(scores,ncol=1)

if (any(abs(step)>max.jump)){

print("estiamte jumps more than allowed, update reduced")

step<-ifelse(abs(step)>max.jump,max.jump,step)

}

temp<-matrix(disp,ncol=1)+step

if (any(temp<=0)){

print("updated dispersion(s) negative: violated estimates reduced to 90%")

temp[temp<=0,1]<-0.9*disp[temp<=0]

}

temp

}

#-----------------------------------------------------------------------------------------

# alt.LASSO

#-----------------------------------------------------------------------------------------
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if (is.null(init.disp))

disp<-c(0.1,0.1)

else

disp<-as.double(init.disp)

names(disp)<-list("sigma2","two.phi2")

alpha<-esti.alpha(y=y,L=L,sigma2=disp[1],two.phi2=disp[2],tolerance=tolerance[1],

maxit=maxit[1],inits=NULL,print.stuff=FALSE)

kount<-1

old.disp<-disp

scores<-rep(-99,2)

print(c("iteration",kount-1,"sigma2",round(disp[1],4),"two.phi2",round(disp[2],4)))

scores<-calc.scores(x=disp,alpha=alpha$alpha,y=y,L=L,q=q,tolerance=tolerance[1],

maxit=maxit[1],type=type)

while ((kount==1) | (kount<=maxit[2]) &

!(converged(old.disp,disp,tolerance[2])&converged(scores,rep(0,2),tolerance[2]))){

old.disp<-disp

alpha<-attr(scores,"alpha")

hessian<-calc.hessian(x=disp,alpha=alpha$alpha,scores=scores,y=y,L=L,q=q,

tolerance=tolerance[1],maxit=maxit[1],type=type,pert=pert)

disp<-move(disp=disp,scores=scores,hessian=hessian,s=step.size,max.jump)

scores<-calc.scores(x=disp,alpha=alpha$alpha,y=y,L=L,q=q,

tolerance=tolerance[1],maxit=maxit[1],type=type)

if (print.stuff)

print(c("iteration",kount,"sigma2",round(disp[1],4),"two.phi2",round(disp[2],4)))

kount<-kount+1

}

scores<-calc.scores(x=disp,alpha=alpha$alpha,y=y,L=L,q=q,tolerance=tolerance[1],

maxit=maxit[1],type=type)

alpha<-attr(scores,"alpha")$alpha

if (kount>maxit[2]){

conv<-as.double(paste(as.double(converged(old.disp,disp,tolerance[2])),

as.double(converged(scores,rep(0,2),tolerance[2])),sep=""))

print(paste("Convergence for Dispersion Parameters Failed with Fault:",conv,sep=" "))

}

else{

if (print.stuff)

print("Convergence Succeeded")

conv<-11

}

logl<- calc.likelihood(x=disp,y=y,L=L,alpha=alpha$alpha,tolerance=tolerance[1],

maxit=maxit[1],type=type)

res<-list(dispersion=disp,alpha=alpha,scores=scores,logl=logl,converged=conv)

res

}

4.7 Importance Sampling for the LASSO Random Effects Model

See Chapter 10 for details.

#---------------------------------------------- Importance sampling for BP and P(beta>0|y)

LASSO.imp.samps<-function(y,L,disp,B,imp.wts=FALSE)

#-----------------------------------------------------------------------------------------

#Performs importance sampling for posterior expectation (BP) and probabilities

#y is the outcomes, L is the design matrix, B is the number of samples to use, imp.wts is

#boolean - T implies importance weights will be returned.

#Function returns a list with p-values, expected posterior (BP) and the importance weights

#(if asked for)

#-----------------------------------------------------------------------------------------

{

get.draws<-function(prop.mean,prop.var,B)

rmvnorm(n=B,mean=prop.mean,cov=prop.var)

get.joint.dens<-function(samps,y,L,disp,n,q){

ddexp<-function(X,phi)
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prod(dexp(abs(X),rate=1/phi)/2)

my.dmvnorm<-function(X,y,L,sigma2,n)

prod(dnorm(x=y,mean=L%*%X,sd=sqrt(sigma2)))

phi<-sqrt(disp[2]/2)

laps<-apply(samps,MARG=1,FUN=ddexp,phi=phi)

norms<-apply(samps,MARG=1,FUN=my.dmvnorm,y=as.double(y),L=L,sigma2=disp[1],n=n)

laps*norms

}

get.p.value<-function(samps,wts,q){

wts.sum<-sum(wts)

p.vals<-double(length=q)

for (ii in 1:q){

indi<-ifelse(samps[,ii]>0,1,0)

p.vals[ii]<-sum(wts[indi==1])/wts.sum

}

p.vals

}

get.expect<-function(samps,wts,q){

temp<-samps*wts

colSums(temp)/sum(wts)

}

calc.BLP<-function(y,L,disp,n,q){

D.av<-diagv(q,disp[2])

temp.H.inv<-(diagv(n,1)-L%*%solve(disp[1]*solve(D.av)+t(L)%*%L)%*%t(L))/disp[1]

BLP<-D.av%*%t(L)%*%temp.H.inv%*%y

BLP.vari<-D.av-D.av%*%t(L)%*%temp.H.inv%*%L%*%D.av

t.vals<-BLP/sqrt(diag(BLP.vari))

list(expect=as.double(BLP),vari=BLP.vari,t.vals=as.double(t.vals))

}

#-----------------------------------------------------------------------------------------

# Importance sampling

#-----------------------------------------------------------------------------------------

n<-dim(L)[1]

q<-dim(L)[2]

BLP<-calc.BLP(y=y,L=L,disp=disp,n=n,q=q)

samps<-get.draws(prop.mean=BLP$expect,prop.var=BLP$vari,B=B)

f.fun<-get.joint.dens(samps=samps,y=y,L=L,disp=disp,n=n,q=q)

g.fun<-dmvnorm(samps,mean=BLP$expect,cov=BLP$vari)

wts<-f.fun/g.fun

p.vals<-get.p.value(samps=samps,wts=wts,q=q)

expect.wts<-get.expect(samps=samps,wts=wts,q=q)

if (imp.wts)

list(p.vals=p.vals,expected=expect.wts,imp.wts=wts)

else

list(p.vals=p.vals,expected=expect.wts,imp.wts=NULL)

}
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